Science.gov

Sample records for allen mouse brain

  1. Neuroinformatics of the Allen Mouse Brain Connectivity Atlas.

    PubMed

    Kuan, Leonard; Li, Yang; Lau, Chris; Feng, David; Bernard, Amy; Sunkin, Susan M; Zeng, Hongkui; Dang, Chinh; Hawrylycz, Michael; Ng, Lydia

    2015-02-01

    The Allen Mouse Brain Connectivity Atlas is a mesoscale whole brain axonal projection atlas of the C57Bl/6J mouse brain. Anatomical trajectories throughout the brain were mapped into a common 3D space using a standardized platform to generate a comprehensive and quantitative database of inter-areal and cell-type-specific projections. This connectivity atlas has several desirable features, including brain-wide coverage, validated and versatile experimental techniques, a single standardized data format, a quantifiable and integrated neuroinformatics resource, and an open-access public online database (http://connectivity.brain-map.org/). Meaningful informatics data quantification and comparison is key to effective use and interpretation of connectome data. This relies on successful definition of a high fidelity atlas template and framework, mapping precision of raw data sets into the 3D reference framework, accurate signal detection and quantitative connection strength algorithms, and effective presentation in an integrated online application. Here we describe key informatics pipeline steps in the creation of the Allen Mouse Brain Connectivity Atlas and include basic application use cases. PMID:25536338

  2. Computational neuroanatomy: mapping cell-type densities in the mouse brain, simulations from the Allen Brain Atlas

    NASA Astrophysics Data System (ADS)

    Grange, Pascal

    2015-09-01

    The Allen Brain Atlas of the adult mouse (ABA) consists of digitized expression profiles of thousands of genes in the mouse brain, co-registered to a common three-dimensional template (the Allen Reference Atlas).This brain-wide, genome-wide data set has triggered a renaissance in neuroanatomy. Its voxelized version (with cubic voxels of side 200 microns) is available for desktop computation in MATLAB. On the other hand, brain cells exhibit a great phenotypic diversity (in terms of size, shape and electrophysiological activity), which has inspired the names of some well-studied cell types, such as granule cells and medium spiny neurons. However, no exhaustive taxonomy of brain cell is available. A genetic classification of brain cells is being undertaken, and some cell types have been chraracterized by their transcriptome profiles. However, given a cell type characterized by its transcriptome, it is not clear where else in the brain similar cells can be found. The ABA can been used to solve this region-specificity problem in a data-driven way: rewriting the brain-wide expression profiles of all genes in the atlas as a sum of cell-type-specific transcriptome profiles is equivalent to solving a quadratic optimization problem at each voxel in the brain. However, the estimated brain-wide densities of 64 cell types published recently were based on one series of co-registered coronal in situ hybridization (ISH) images per gene, whereas the online ABA contains several image series per gene, including sagittal ones. In the presented work, we simulate the variability of cell-type densities in a Monte Carlo way by repeatedly drawing a random image series for each gene and solving the optimization problem. This yields error bars on the region-specificity of cell types.

  3. Allen Brain Atlas-Driven Visualizations: a web-based gene expression energy visualization tool.

    PubMed

    Zaldivar, Andrew; Krichmar, Jeffrey L

    2014-01-01

    The Allen Brain Atlas-Driven Visualizations (ABADV) is a publicly accessible web-based tool created to retrieve and visualize expression energy data from the Allen Brain Atlas (ABA) across multiple genes and brain structures. Though the ABA offers their own search engine and software for researchers to view their growing collection of online public data sets, including extensive gene expression and neuroanatomical data from human and mouse brain, many of their tools limit the amount of genes and brain structures researchers can view at once. To complement their work, ABADV generates multiple pie charts, bar charts and heat maps of expression energy values for any given set of genes and brain structures. Such a suite of free and easy-to-understand visualizations allows for easy comparison of gene expression across multiple brain areas. In addition, each visualization links back to the ABA so researchers may view a summary of the experimental detail. ABADV is currently supported on modern web browsers and is compatible with expression energy data from the Allen Mouse Brain Atlas in situ hybridization data. By creating this web application, researchers can immediately obtain and survey numerous amounts of expression energy data from the ABA, which they can then use to supplement their work or perform meta-analysis. In the future, we hope to enable ABADV across multiple data resources. PMID:24904397

  4. A mesoscale connectome of the mouse brain.

    PubMed

    Oh, Seung Wook; Harris, Julie A; Ng, Lydia; Winslow, Brent; Cain, Nicholas; Mihalas, Stefan; Wang, Quanxin; Lau, Chris; Kuan, Leonard; Henry, Alex M; Mortrud, Marty T; Ouellette, Benjamin; Nguyen, Thuc Nghi; Sorensen, Staci A; Slaughterbeck, Clifford R; Wakeman, Wayne; Li, Yang; Feng, David; Ho, Anh; Nicholas, Eric; Hirokawa, Karla E; Bohn, Phillip; Joines, Kevin M; Peng, Hanchuan; Hawrylycz, Michael J; Phillips, John W; Hohmann, John G; Wohnoutka, Paul; Gerfen, Charles R; Koch, Christof; Bernard, Amy; Dang, Chinh; Jones, Allan R; Zeng, Hongkui

    2014-04-10

    Comprehensive knowledge of the brain's wiring diagram is fundamental for understanding how the nervous system processes information at both local and global scales. However, with the singular exception of the C. elegans microscale connectome, there are no complete connectivity data sets in other species. Here we report a brain-wide, cellular-level, mesoscale connectome for the mouse. The Allen Mouse Brain Connectivity Atlas uses enhanced green fluorescent protein (EGFP)-expressing adeno-associated viral vectors to trace axonal projections from defined regions and cell types, and high-throughput serial two-photon tomography to image the EGFP-labelled axons throughout the brain. This systematic and standardized approach allows spatial registration of individual experiments into a common three dimensional (3D) reference space, resulting in a whole-brain connectivity matrix. A computational model yields insights into connectional strength distribution, symmetry and other network properties. Virtual tractography illustrates 3D topography among interconnected regions. Cortico-thalamic pathway analysis demonstrates segregation and integration of parallel pathways. The Allen Mouse Brain Connectivity Atlas is a freely available, foundational resource for structural and functional investigations into the neural circuits that support behavioural and cognitive processes in health and disease. PMID:24695228

  5. High-resolution gene expression atlases for adult and developing mouse brain and spinal cord.

    PubMed

    Henry, Alex M; Hohmann, John G

    2012-10-01

    Knowledge of the structure, genetics, circuits, and physiological properties of the mammalian brain in both normal and pathological states is ever increasing as research labs worldwide probe the various aspects of brain function. Until recently, however, comprehensive cataloging of gene expression across the central nervous system has been lacking. The Allen Institute for Brain Science, as part of its mission to propel neuroscience research, has completed several large gene-mapping projects in mouse, nonhuman primate, and human brain, producing informative online public resources and tools. Here we present the Allen Mouse Brain Atlas, covering ~20,000 genes throughout the adult mouse brain; the Allen Developing Mouse Brain Atlas, detailing expression of approximately 2,000 important developmental genes across seven embryonic and postnatal stages of brain growth; and the Allen Spinal Cord Atlas, revealing expression for ~20,000 genes in the adult and neonatal mouse spinal cords. Integrated data-mining tools, including reference atlases, informatics analyses, and 3-D viewers, are described. For these massive-scale projects, high-throughput industrial techniques were developed to standardize and reliably repeat experimental goals. To verify consistency and accuracy, a detailed analysis of the 1,000 most viewed genes for the adult mouse brain (according to website page views) was performed by comparing our data with peer-reviewed literature and other databases. We show that our data are highly consistent with independent sources and provide a comprehensive compendium of information and tools used by thousands of researchers each month. All data and tools are freely available via the Allen Brain Atlas portal (www.brain-map.org). PMID:22832508

  6. Precise Anatomic Localization of Accumulated Lipids in Mfp2 Deficient Murine Brains Through Automated Registration of SIMS Images to the Allen Brain Atlas

    NASA Astrophysics Data System (ADS)

    Škrášková, Karolina; Khmelinskii, Artem; Abdelmoula, Walid M.; De Munter, Stephanie; Baes, Myriam; McDonnell, Liam; Dijkstra, Jouke; Heeren, Ron M. A.

    2015-06-01

    Mass spectrometry imaging (MSI) is a powerful tool for the molecular characterization of specific tissue regions. Histochemical staining provides anatomic information complementary to MSI data. The combination of both modalities has been proven to be beneficial. However, direct comparison of histology based and mass spectrometry-based molecular images can become problematic because of potential tissue damages or changes caused by different sample preparation. Curated atlases such as the Allen Brain Atlas (ABA) offer a collection of highly detailed and standardized anatomic information. Direct comparison of MSI brain data to the ABA allows for conclusions to be drawn on precise anatomic localization of the molecular signal. Here we applied secondary ion mass spectrometry imaging at high spatial resolution to study brains of knock-out mouse models with impaired peroxisomal β-oxidation. Murine models were lacking D-multifunctional protein (MFP2), which is involved in degradation of very long chain fatty acids. SIMS imaging revealed deposits of fatty acids within distinct brain regions. Manual comparison of the MSI data with the histologic stains did not allow for an unequivocal anatomic identification of the fatty acids rich regions. We further employed an automated pipeline for co-registration of the SIMS data to the ABA. The registration enabled precise anatomic annotation of the brain structures with the revealed lipid deposits. The precise anatomic localization allowed for a deeper insight into the pathology of Mfp2 deficient mouse models.

  7. Exercises in Anatomy, Connectivity, and Morphology using Neuromorpho.org and the Allen Brain Atlas

    PubMed Central

    Chu, Philip; Peck, Joshua; Brumberg, Joshua C.

    2015-01-01

    Laboratory instruction of neuroscience is often limited by the lack of physical resources and supplies (e.g., brains specimens, dissection kits, physiological equipment). Online databases can serve as supplements to material labs by providing professionally collected images of brain specimens and their underlying cellular populations with resolution and quality that is extremely difficult to access for strictly pedagogical purposes. We describe a method using two online databases, the Neuromorpho.org and the Allen Brain Atlas (ABA), that freely provide access to data from working brain scientists that can be modified for laboratory instruction/exercises. Neuromorpho.org is the first neuronal morphology database that provides qualitative and quantitative data from reconstructed cells analyzed in published scientific reports. The Neuromorpho.org database contains cross species and multiple neuronal phenotype datasets which allows for comparative examinations. The ABA provides modules that allow students to study the anatomy of the rodent brain, as well as observe the different cellular phenotypes that exist using histochemical labeling. Using these tools in conjunction, advanced students can ask questions about qualitative and quantitative neuronal morphology, then examine the distribution of the same cell types across the entire brain to gain a full appreciation of the magnitude of the brain’s complexity. PMID:25838808

  8. Exploration and visualization of connectivity in the adult mouse brain.

    PubMed

    Feng, David; Lau, Chris; Ng, Lydia; Li, Yang; Kuan, Leonard; Sunkin, Susan M; Dang, Chinh; Hawrylycz, Michael

    2015-02-01

    The Allen Mouse Brain Connectivity Atlas is a mesoscale whole brain axonal projection atlas of the C57Bl/6J mouse brain. All data were aligned to a common template in 3D space to generate a comprehensive and quantitative database of inter-areal and cell-type-specific projections. A suite of computational tools were developed to search and visualize the projection labeling experiments, available at http://connectivity.brain-map.org. We present three use cases illustrating how these publicly-available tools can be used to perform analyses of long range brain region connectivity. The use cases make extensive use of advanced visualization tools integrated with the atlas including projection density histograms, 3D computed anterograde and retrograde projection paths, and multi-specimen projection composites. These tools offer convenient access to detailed axonal projection information in the adult mouse brain and the ability to perform data analysis and visualization of projection fields and neuroanatomy in an integrated manner. PMID:25637033

  9. A high resolution spatiotemporal atlas of gene expression of the developing mouse brain

    PubMed Central

    Thompson, Carol L.; Ng, Lydia; Menon, Vilas; Martinez, Salvador; Lee, Chang-Kyu; Glattfelder, Katie; Sunkin, Susan M.; Henry, Alex; Lau, Christopher; Dang, Chinh; Garcia-Lopez, Raquel; Martinez-Ferre, Almudena; Pombero, Ana; Rubenstein, John L.R.; Wakeman, Wayne B.; Hohmann, John; Dee, Nick; Sodt, Andrew J.; Young, Rob; Smith, Kimberly; Nguyen, Thuc-Nghi; Kidney, Jolene; Kuan, Leonard; Jeromin, Andreas; Kaykas, Ajamete; Miller, Jeremy; Page, Damon; Orta, Geri; Bernard, Amy; Riley, Zackery; Smith, Simon; Wohnoutka, Paul; Hawrylycz, Mike; Puelles, Luis; Jones, Allan R.

    2015-01-01

    SUMMARY To provide a temporal framework for the genoarchitecture of brain development, in situ hybridization data were generated for embryonic and postnatal mouse brain at 7 developmental stages for ~2100 genes, processed with an automated informatics pipeline and manually annotated. This resource comprises 434,946 images, 7 reference atlases, an ontogenetic ontology, and tools to explore co-expression of genes across neurodevelopment. Gene sets coinciding with developmental phenomena were identified. A temporal shift in the principles governing the molecular organization of the brain was detected, with transient neuromeric, plate-based organization of the brain present at E11.5 and E13.5. Finally, these data provided a transcription factor code that discriminates brain structures and identifies the developmental age of a tissue, providing a foundation for eventual genetic manipulation or tracking of specific brain structures over development. The resource is available as the Allen Developing Mouse Brain Atlas (developingmouse.brain-map.org). PMID:24952961

  10. An anatomic gene expression atlas of the adult mouse brain.

    PubMed

    Ng, Lydia; Bernard, Amy; Lau, Chris; Overly, Caroline C; Dong, Hong-Wei; Kuan, Chihchau; Pathak, Sayan; Sunkin, Susan M; Dang, Chinh; Bohland, Jason W; Bokil, Hemant; Mitra, Partha P; Puelles, Luis; Hohmann, John; Anderson, David J; Lein, Ed S; Jones, Allan R; Hawrylycz, Michael

    2009-03-01

    Studying gene expression provides a powerful means of understanding structure-function relationships in the nervous system. The availability of genome-scale in situ hybridization datasets enables new possibilities for understanding brain organization based on gene expression patterns. The Anatomic Gene Expression Atlas (AGEA) is a new relational atlas revealing the genetic architecture of the adult C57Bl/6J mouse brain based on spatial correlations across expression data for thousands of genes in the Allen Brain Atlas (ABA). The AGEA includes three discovery tools for examining neuroanatomical relationships and boundaries: (1) three-dimensional expression-based correlation maps, (2) a hierarchical transcriptome-based parcellation of the brain and (3) a facility to retrieve from the ABA specific genes showing enriched expression in local correlated domains. The utility of this atlas is illustrated by analysis of genetic organization in the thalamus, striatum and cerebral cortex. The AGEA is a publicly accessible online computational tool integrated with the ABA (http://mouse.brain-map.org/agea). PMID:19219037

  11. Identification of a set of genes showing regionally enriched expression in the mouse brain

    PubMed Central

    D'Souza, Cletus A; Chopra, Vikramjit; Varhol, Richard; Xie, Yuan-Yun; Bohacec, Slavita; Zhao, Yongjun; Lee, Lisa LC; Bilenky, Mikhail; Portales-Casamar, Elodie; He, An; Wasserman, Wyeth W; Goldowitz, Daniel; Marra, Marco A; Holt, Robert A; Simpson, Elizabeth M; Jones, Steven JM

    2008-01-01

    Background The Pleiades Promoter Project aims to improve gene therapy by designing human mini-promoters (< 4 kb) that drive gene expression in specific brain regions or cell-types of therapeutic interest. Our goal was to first identify genes displaying regionally enriched expression in the mouse brain so that promoters designed from orthologous human genes can then be tested to drive reporter expression in a similar pattern in the mouse brain. Results We have utilized LongSAGE to identify regionally enriched transcripts in the adult mouse brain. As supplemental strategies, we also performed a meta-analysis of published literature and inspected the Allen Brain Atlas in situ hybridization data. From a set of approximately 30,000 mouse genes, 237 were identified as showing specific or enriched expression in 30 target regions of the mouse brain. GO term over-representation among these genes revealed co-involvement in various aspects of central nervous system development and physiology. Conclusion Using a multi-faceted expression validation approach, we have identified mouse genes whose human orthologs are good candidates for design of mini-promoters. These mouse genes represent molecular markers in several discrete brain regions/cell-types, which could potentially provide a mechanistic explanation of unique functions performed by each region. This set of markers may also serve as a resource for further studies of gene regulatory elements influencing brain expression. PMID:18625066

  12. Multimodal, multidimensional models of mouse brain.

    PubMed

    Mackenzie-Graham, Allan J; Lee, Erh-Fang; Dinov, Ivo D; Yuan, Heng; Jacobs, Russell E; Toga, Arthur W

    2007-01-01

    Naturally occurring mutants and genetically manipulated strains of mice are widely used to model a variety of human diseases. Atlases are an invaluable aid in understanding the impact of such manipulations by providing a standard for comparison and to facilitate the integration of anatomic, genetic, and physiologic observations from multiple subjects and experiments. We have developed digital atlases of the C57BL/6J mouse brain (adult and neonate) as comprehensive frameworks for storing and accessing the myriad types of information about the mouse brain. Along with raw and annotated images, these contain database management systems and a set of tools for comparing information from different techniques and different animals. Each atlas establishes a canonical representation of the mouse brain and provides the tools for the manipulation and analysis of new data. We describe both these atlases and discuss how they may be put to use in organizing and analyzing data from mouse models of epilepsy. PMID:17767578

  13. Expression Profiling of the Solute Carrier Gene Family in the Mouse BrainS⃞

    PubMed Central

    Dahlin, Amber; Royall, Josh; Hohmann, John G.; Wang, Joanne

    2009-01-01

    The solute carrier (Slc) superfamily is a major group of membrane transport proteins present in mammalian cells. Although Slc transporters play essential and diverse roles in the central nervous system, the localization and function of the vast majority of Slc genes in the mammalian brain are largely unknown. Using high-throughput in situ hybridization data generated by the Allen Brain Atlas, we systematically and quantitatively analyzed the spatial and cellular distribution of 307 Slc genes, which represent nearly 90% of presently known mouse Slc genes, in the adult C57BL/6J mouse brain. Our analysis showed that 252 (82%) of the 307 Slc genes are present in the brain, and a large proportion of these genes were detected at low to moderate expression levels. Evaluation of 20 anatomical brain subdivisions demonstrated a comparable level of Slc gene complexity but significant difference in transcript enrichment. The distribution of the expressed Slc genes was diverse, ranging from near-ubiquitous to highly localized. Functional annotation in 20 brain regions, including the blood-brain and blood-cerebral spinal fluid (CSF) barriers, suggests major roles of Slc transporters in supporting brain energy utilization, neurotransmission, nutrient supply, and CSF production. Furthermore, hierarchical cluster analysis revealed intricate Slc expression patterns associated with neuroanatomical organization. Our studies also revealed Slc genes present within defined brain microstructures and described the putative cell types expressing individual Slc genes. These results provide a useful resource for investigators to explore the roles of Slc genes in neurophysiological and pathological processes. PMID:19179540

  14. Histomorphological Phenotyping of the Adult Mouse Brain.

    PubMed

    Mikhaleva, Anna; Kannan, Meghna; Wagner, Christel; Yalcin, Binnaz

    2016-01-01

    This article describes a series of standard operating procedures for morphological phenotyping of the mouse brain using basic histology. Many histological studies of the mouse brain use qualitative approaches based on what the human eye can detect. Consequently, some phenotypic information may be missed. Here we describe a quantitative approach for the assessment of brain morphology that is simple and robust. A total of 78 measurements are made throughout the brain at specific and well-defined regions, including the cortex, the hippocampus, and the cerebellum. Experimental design and timeline considerations, including strain background effects, the importance of sectioning quality, measurement variability, and efforts to correct human errors are discussed. © 2016 by John Wiley & Sons, Inc. PMID:27584555

  15. Evaluation of atlas based mouse brain segmentation

    NASA Astrophysics Data System (ADS)

    Lee, Joohwi; Jomier, Julien; Aylward, Stephen; Tyszka, Mike; Moy, Sheryl; Lauder, Jean; Styner, Martin

    2009-02-01

    Magentic Reasonance Imaging for mouse phenotype study is one of the important tools to understand human diseases. In this paper, we present a fully automatic pipeline for the process of morphometric mouse brain analysis. The method is based on atlas-based tissue and regional segmentation, which was originally developed for the human brain. To evaluate our method, we conduct a qualitative and quantitative validation study as well as compare of b-spline and fluid registration methods as components in the pipeline. The validation study includes visual inspection, shape and volumetric measurements and stability of the registration methods against various parameter settings in the processing pipeline. The result shows both fluid and b-spline registration methods work well in murine settings, but the fluid registration is more stable. Additionally, we evaluated our segmentation methods by comparing volume differences between Fmr1 FXS in FVB background vs C57BL/6J mouse strains.

  16. Gene co-expression analysis identifies brain regions and cell types involved in migraine pathophysiology: a GWAS-based study using the Allen Human Brain Atlas.

    PubMed

    Eising, Else; Huisman, Sjoerd M H; Mahfouz, Ahmed; Vijfhuizen, Lisanne S; Anttila, Verneri; Winsvold, Bendik S; Kurth, Tobias; Ikram, M Arfan; Freilinger, Tobias; Kaprio, Jaakko; Boomsma, Dorret I; van Duijn, Cornelia M; Järvelin, Marjo-Riitta R; Zwart, John-Anker; Quaye, Lydia; Strachan, David P; Kubisch, Christian; Dichgans, Martin; Davey Smith, George; Stefansson, Kari; Palotie, Aarno; Chasman, Daniel I; Ferrari, Michel D; Terwindt, Gisela M; de Vries, Boukje; Nyholt, Dale R; Lelieveldt, Boudewijn P F; van den Maagdenberg, Arn M J M; Reinders, Marcel J T

    2016-04-01

    Migraine is a common disabling neurovascular brain disorder typically characterised by attacks of severe headache and associated with autonomic and neurological symptoms. Migraine is caused by an interplay of genetic and environmental factors. Genome-wide association studies (GWAS) have identified over a dozen genetic loci associated with migraine. Here, we integrated migraine GWAS data with high-resolution spatial gene expression data of normal adult brains from the Allen Human Brain Atlas to identify specific brain regions and molecular pathways that are possibly involved in migraine pathophysiology. To this end, we used two complementary methods. In GWAS data from 23,285 migraine cases and 95,425 controls, we first studied modules of co-expressed genes that were calculated based on human brain expression data for enrichment of genes that showed association with migraine. Enrichment of a migraine GWAS signal was found for five modules that suggest involvement in migraine pathophysiology of: (i) neurotransmission, protein catabolism and mitochondria in the cortex; (ii) transcription regulation in the cortex and cerebellum; and (iii) oligodendrocytes and mitochondria in subcortical areas. Second, we used the high-confidence genes from the migraine GWAS as a basis to construct local migraine-related co-expression gene networks. Signatures of all brain regions and pathways that were prominent in the first method also surfaced in the second method, thus providing support that these brain regions and pathways are indeed involved in migraine pathophysiology. PMID:26899160

  17. Functional connectivity hubs of the mouse brain.

    PubMed

    Liska, Adam; Galbusera, Alberto; Schwarz, Adam J; Gozzi, Alessandro

    2015-07-15

    Recent advances in functional connectivity methods have made it possible to identify brain hubs - a set of highly connected regions serving as integrators of distributed neuronal activity. The integrative role of hub nodes makes these areas points of high vulnerability to dysfunction in brain disorders, and abnormal hub connectivity profiles have been described for several neuropsychiatric disorders. The identification of analogous functional connectivity hubs in preclinical species like the mouse may provide critical insight into the elusive biological underpinnings of these connectional alterations. To spatially locate functional connectivity hubs in the mouse brain, here we applied a fully-weighted network analysis to map whole-brain intrinsic functional connectivity (i.e., the functional connectome) at a high-resolution voxel-scale. Analysis of a large resting-state functional magnetic resonance imaging (rsfMRI) dataset revealed the presence of six distinct functional modules related to known large-scale functional partitions of the brain, including a default-mode network (DMN). Consistent with human studies, highly-connected functional hubs were identified in several sub-regions of the DMN, including the anterior and posterior cingulate and prefrontal cortices, in the thalamus, and in small foci within well-known integrative cortical structures such as the insular and temporal association cortices. According to their integrative role, the identified hubs exhibited mutual preferential interconnections. These findings highlight the presence of evolutionarily-conserved, mutually-interconnected functional hubs in the mouse brain, and may guide future investigations of the biological foundations of aberrant rsfMRI hub connectivity associated with brain pathological states. PMID:25913701

  18. High-resolution prediction of mouse brain connectivity using gene expression patterns.

    PubMed

    Fakhry, Ahmed; Ji, Shuiwang

    2015-02-01

    The brain is a multi-level system in which the high-level functions are generated by low-level genetic mechanisms. Thus, elucidating the relationship among multiple brain levels via correlative and predictive analytics is an important area in brain research. Currently, studies in multiple species have indicated that the spatiotemporal gene expression patterns are predictive of brain wiring. Specifically, results on the worm Caenorhabditis elegans have shown that the prediction of neuronal connectivity using gene expression signatures yielded statistically significant results. Recent studies on the mammalian brain produced similar results at the coarse regional level. In this study, we provide the first high-resolution, large-scale integrative analysis of the transcriptome and connectome in a single mammalian brain at a fine voxel level. By using the Allen Brain Atlas data, we predict voxel-level brain connectivity based on the gene expressions in the adult mouse brain. We employ regularized models to show that gene expression is predictive of connectivity at the voxel-level with an accuracy of 93%. We also identify a set of genes playing the most important role in connectivity prediction. We use only this small number of genes to predict the brain wiring with an accuracy over 80%. We discover that these important genes are enriched in neurons as compared to glia, and they perform connectivity-related functions. We perform several interesting correlative studies to further elucidate the transcriptome-connectome relationship. PMID:25109429

  19. Analysis of spatial-temporal gene expression patterns reveals dynamics and regionalization in developing mouse brain

    PubMed Central

    Chou, Shen-Ju; Wang, Chindi; Sintupisut, Nardnisa; Niou, Zhen-Xian; Lin, Chih-Hsu; Li, Ker-Chau; Yeang, Chen-Hsiang

    2016-01-01

    Allen Brain Atlas (ABA) provides a valuable resource of spatial/temporal gene expressions in mammalian brains. Despite rich information extracted from this database, current analyses suffer from several limitations. First, most studies are either gene-centric or region-centric, thus are inadequate to capture the superposition of multiple spatial-temporal patterns. Second, standard tools of expression analysis such as matrix factorization can capture those patterns but do not explicitly incorporate spatial dependency. To overcome those limitations, we proposed a computational method to detect recurrent patterns in the spatial-temporal gene expression data of developing mouse brains. We demonstrated that regional distinction in brain development could be revealed by localized gene expression patterns. The patterns expressed in the forebrain, medullary and pontomedullary, and basal ganglia are enriched with genes involved in forebrain development, locomotory behavior, and dopamine metabolism respectively. In addition, the timing of global gene expression patterns reflects the general trends of molecular events in mouse brain development. Furthermore, we validated functional implications of the inferred patterns by showing genes sharing similar spatial-temporal expression patterns with Lhx2 exhibited differential expression in the embryonic forebrains of Lhx2 mutant mice. These analysis outcomes confirm the utility of recurrent expression patterns in studying brain development. PMID:26786896

  20. MENGA: A New Comprehensive Tool for the Integration of Neuroimaging Data and the Allen Human Brain Transcriptome Atlas

    PubMed Central

    Rizzo, Gaia; Veronese, Mattia; Expert, Paul; Turkheimer, Federico E.; Bertoldo, Alessandra

    2016-01-01

    Introduction Brain-wide mRNA mappings offer a great potential for neuroscience research as they can provide information about system proteomics. In a previous work we have correlated mRNA maps with the binding patterns of radioligands targeting specific molecular systems and imaged with positron emission tomography (PET) in unrelated control groups. This approach is potentially applicable to any imaging modality as long as an efficient procedure of imaging-genomic matching is provided. In the original work we considered mRNA brain maps of the whole human genome derived from the Allen human brain database (ABA) and we performed the analysis with a specific region-based segmentation with a resolution that was limited by the PET data parcellation. There we identified the need for a platform for imaging-genomic integration that should be usable with any imaging modalities and fully exploit the high resolution mapping of ABA dataset. Aim In this work we present MENGA (Multimodal Environment for Neuroimaging and Genomic Analysis), a software platform that allows the investigation of the correlation patterns between neuroimaging data of any sort (both functional and structural) with mRNA gene expression profiles derived from the ABA database at high resolution. Results We applied MENGA to six different imaging datasets from three modalities (PET, single photon emission tomography and magnetic resonance imaging) targeting the dopamine and serotonin receptor systems and the myelin molecular structure. We further investigated imaging-genomic correlations in the case of mismatch between selected proteins and imaging targets. PMID:26882227

  1. Mouse Genetic Models of Human Brain Disorders.

    PubMed

    Leung, Celeste; Jia, Zhengping

    2016-01-01

    Over the past three decades, genetic manipulations in mice have been used in neuroscience as a major approach to investigate the in vivo function of genes and their alterations. In particular, gene targeting techniques using embryonic stem cells have revolutionized the field of mammalian genetics and have been at the forefront in the generation of numerous mouse models of human brain disorders. In this review, we will first examine childhood developmental disorders such as autism, intellectual disability, Fragile X syndrome, and Williams-Beuren syndrome. We will then explore psychiatric disorders such as schizophrenia and lastly, neurodegenerative disorders including Alzheimer's disease and Parkinson's disease. We will outline the creation of these mouse models that range from single gene deletions, subtle point mutations to multi-gene manipulations, and discuss the key behavioral phenotypes of these mice. Ultimately, the analysis of the models outlined in this review will enhance our understanding of the in vivo role and underlying mechanisms of disease-related genes in both normal brain function and brain disorders, and provide potential therapeutic targets and strategies to prevent and treat these diseases. PMID:27047540

  2. Mouse Genetic Models of Human Brain Disorders

    PubMed Central

    Leung, Celeste; Jia, Zhengping

    2016-01-01

    Over the past three decades, genetic manipulations in mice have been used in neuroscience as a major approach to investigate the in vivo function of genes and their alterations. In particular, gene targeting techniques using embryonic stem cells have revolutionized the field of mammalian genetics and have been at the forefront in the generation of numerous mouse models of human brain disorders. In this review, we will first examine childhood developmental disorders such as autism, intellectual disability, Fragile X syndrome, and Williams-Beuren syndrome. We will then explore psychiatric disorders such as schizophrenia and lastly, neurodegenerative disorders including Alzheimer’s disease and Parkinson’s disease. We will outline the creation of these mouse models that range from single gene deletions, subtle point mutations to multi-gene manipulations, and discuss the key behavioral phenotypes of these mice. Ultimately, the analysis of the models outlined in this review will enhance our understanding of the in vivo role and underlying mechanisms of disease-related genes in both normal brain function and brain disorders, and provide potential therapeutic targets and strategies to prevent and treat these diseases. PMID:27047540

  3. Structural covariance networks in the mouse brain.

    PubMed

    Pagani, Marco; Bifone, Angelo; Gozzi, Alessandro

    2016-04-01

    The presence of networks of correlation between regional gray matter volume as measured across subjects in a group of individuals has been consistently described in several human studies, an approach termed structural covariance MRI (scMRI). Complementary to prevalent brain mapping modalities like functional and diffusion-weighted imaging, the approach can provide precious insights into the mutual influence of trophic and plastic processes in health and pathological states. To investigate whether analogous scMRI networks are present in lower mammal species amenable to genetic and experimental manipulation such as the laboratory mouse, we employed high resolution morphoanatomical MRI in a large cohort of genetically-homogeneous wild-type mice (C57Bl6/J) and mapped scMRI networks using a seed-based approach. We show that the mouse brain exhibits robust homotopic scMRI networks in both primary and associative cortices, a finding corroborated by independent component analyses of cortical volumes. Subcortical structures also showed highly symmetric inter-hemispheric correlations, with evidence of distributed antero-posterior networks in diencephalic regions of the thalamus and hypothalamus. Hierarchical cluster analysis revealed six identifiable clusters of cortical and sub-cortical regions corresponding to previously described neuroanatomical systems. Our work documents the presence of homotopic cortical and subcortical scMRI networks in the mouse brain, thus supporting the use of this species to investigate the elusive biological and neuroanatomical underpinnings of scMRI network development and its derangement in neuropathological states. The identification of scMRI networks in genetically homogeneous inbred mice is consistent with the emerging view of a key role of environmental factors in shaping these correlational networks. PMID:26802512

  4. Cell-type-specific neuroanatomy of cliques of autism-related genes in the mouse brain.

    PubMed

    Grange, Pascal; Menashe, Idan; Hawrylycz, Michael

    2015-01-01

    Two cliques of genes identified computationally for their high co-expression in the mouse brain according to the Allen Brain Atlas, and for their enrichment in genes related to autism spectrum disorder (ASD), have recently been shown to be highly co-expressed in the cerebellar cortex, compared to what could be expected by chance. Moreover, the expression of these cliques of genes is not homogeneous across the cerebellar cortex, and it has been noted that their expression pattern seems to highlight the granular layer. However, this observation was only made by eye, and recent advances in computational neuroanatomy allow to rank cell types in the mouse brain (characterized by their transcriptome profiles) according to the similarity between their spatial density profiles and the spatial expression profiles of the cliques. We establish by Monte Carlo simulation that with probability at least 99%, the expression profiles of the two cliques are more similar to the density profile of granule cells than 99% of the expression of cliques containing the same number of genes (Purkinje cells also score above 99% in one of the cliques). Thresholding the expression profiles shows that the signal is more intense in the granular layer. Finally, we work out pairs of cell types whose combined expression profiles are more similar to the expression profiles of the cliques than any single cell type. These pairs predominantly consist of one cortical pyramidal cell and one cerebellar cell (which can be either a granule cell or a Purkinje cell). PMID:26074809

  5. Cell-type-specific neuroanatomy of cliques of autism-related genes in the mouse brain

    PubMed Central

    Grange, Pascal; Menashe, Idan; Hawrylycz, Michael

    2015-01-01

    Two cliques of genes identified computationally for their high co-expression in the mouse brain according to the Allen Brain Atlas, and for their enrichment in genes related to autism spectrum disorder (ASD), have recently been shown to be highly co-expressed in the cerebellar cortex, compared to what could be expected by chance. Moreover, the expression of these cliques of genes is not homogeneous across the cerebellar cortex, and it has been noted that their expression pattern seems to highlight the granular layer. However, this observation was only made by eye, and recent advances in computational neuroanatomy allow to rank cell types in the mouse brain (characterized by their transcriptome profiles) according to the similarity between their spatial density profiles and the spatial expression profiles of the cliques. We establish by Monte Carlo simulation that with probability at least 99%, the expression profiles of the two cliques are more similar to the density profile of granule cells than 99% of the expression of cliques containing the same number of genes (Purkinje cells also score above 99% in one of the cliques). Thresholding the expression profiles shows that the signal is more intense in the granular layer. Finally, we work out pairs of cell types whose combined expression profiles are more similar to the expression profiles of the cliques than any single cell type. These pairs predominantly consist of one cortical pyramidal cell and one cerebellar cell (which can be either a granule cell or a Purkinje cell). PMID:26074809

  6. Wireless intra-brain communication for image transmission through mouse brain.

    PubMed

    Sasagawa, Kiyotaka; Matsuda, Takashi; Davis, Peter; Zhang, Bing; Li, Keren; Kobayashi, Takuma; Noda, Toshihiko; Tokuda, Takashi; Ohta, Jun

    2011-01-01

    We demonstrate wireless image data transmission through a mouse brain. The transmission characteristics of mouse brain is measured. By inserting electrodes into the brain, the transmission efficiency is drastically increased. An AM signal modulated with the image data from an implantable image sensor was launched into the brain and the received signal was demodulated. The data was successfully transmitted through the brain and the image was reproduced. PMID:22254951

  7. Distribution of Cytoglobin in the Mouse Brain.

    PubMed

    Reuss, Stefan; Wystub, Sylvia; Disque-Kaiser, Ursula; Hankeln, Thomas; Burmester, Thorsten

    2016-01-01

    Cytoglobin (Cygb) is a vertebrate globin with so far poorly defined function. It is expressed in the fibroblast cell-lineage but has also been found in neurons. Here we provide, using immunohistochemistry, a detailed study on the distribution of Cygb in the mouse brain. While Cygb is a cytoplasmic protein in active cells of the supportive tissue, in neurons it is located in the cytoplasm and the nucleus. We found the expression of Cygb in all brain regions, although only a fraction of the neurons was Cygb-positive. Signals were of different intensity ranging from faint to very intense. Telencephalic neurons in all laminae of the cerebral cortex (CCo), in the olfactory bulb (in particular periglomerular cells), in the hippocampal formation (strongly stained pyramidal cells with long processes), basal ganglia (scattered multipolar neurons in the dorsal striatum, dorsal and ventral pallidum (VP)), and in the amygdala (neurons with unlabeled processes) were labeled by the antibody. In the diencephalon, we observed Cygb-positive neurons of moderate intensity in various nuclei of the dorsal thalamus, in the hypothalamus, metathalamus (geniculate nuclei), epithalamus with strong labeling of habenular nucleus neurons and no labeling of pineal cells, and in the ventral thalamus. Tegmental neurons stood out by strongly stained somata with long processes in, e.g., the laterodorsal nucleus. In the tectum, faintly labeled neurons and fibers were detected in the superior colliculus (SC). The cerebellum exhibited unlabeled Purkinje-neurons but signs of strong afferent cortical innervation. Neurons in the gray matter of the spinal cord showed moderate immunofluorescence. Peripheral ganglia were not labeled by the antibody. The Meynert-fascicle and the olfactory and optic nerves/tracts were the only Cygb-immunoreactive (Cygb-IR) fiber systems. Notably, we found a remarkable level of colocalization of Cygb and neuronal nitric oxide (NO)-synthase in neurons, which supports a

  8. Distribution of Cytoglobin in the Mouse Brain

    PubMed Central

    Reuss, Stefan; Wystub, Sylvia; Disque-Kaiser, Ursula; Hankeln, Thomas; Burmester, Thorsten

    2016-01-01

    Cytoglobin (Cygb) is a vertebrate globin with so far poorly defined function. It is expressed in the fibroblast cell-lineage but has also been found in neurons. Here we provide, using immunohistochemistry, a detailed study on the distribution of Cygb in the mouse brain. While Cygb is a cytoplasmic protein in active cells of the supportive tissue, in neurons it is located in the cytoplasm and the nucleus. We found the expression of Cygb in all brain regions, although only a fraction of the neurons was Cygb-positive. Signals were of different intensity ranging from faint to very intense. Telencephalic neurons in all laminae of the cerebral cortex (CCo), in the olfactory bulb (in particular periglomerular cells), in the hippocampal formation (strongly stained pyramidal cells with long processes), basal ganglia (scattered multipolar neurons in the dorsal striatum, dorsal and ventral pallidum (VP)), and in the amygdala (neurons with unlabeled processes) were labeled by the antibody. In the diencephalon, we observed Cygb-positive neurons of moderate intensity in various nuclei of the dorsal thalamus, in the hypothalamus, metathalamus (geniculate nuclei), epithalamus with strong labeling of habenular nucleus neurons and no labeling of pineal cells, and in the ventral thalamus. Tegmental neurons stood out by strongly stained somata with long processes in, e.g., the laterodorsal nucleus. In the tectum, faintly labeled neurons and fibers were detected in the superior colliculus (SC). The cerebellum exhibited unlabeled Purkinje-neurons but signs of strong afferent cortical innervation. Neurons in the gray matter of the spinal cord showed moderate immunofluorescence. Peripheral ganglia were not labeled by the antibody. The Meynert-fascicle and the olfactory and optic nerves/tracts were the only Cygb-immunoreactive (Cygb-IR) fiber systems. Notably, we found a remarkable level of colocalization of Cygb and neuronal nitric oxide (NO)-synthase in neurons, which supports a

  9. Prolyl carboxypeptidase mRNA expression in the mouse brain.

    PubMed

    Jeong, Jin Kwon; Diano, Sabrina

    2014-01-13

    Prolyl carboxypeptidase (PRCP), a serine protease, is widely expressed in the body including liver, lung, kidney and brain, with a variety of known substrates such as plasma prekallikrein, bradykinin, angiotensins II and III, and α-MSH, suggesting its role in the processing of tissue-specific substrates. In the brain, PRCP has been shown to inactivate hypothalamic α-MSH, thus modulating melanocortin signaling in the control of energy metabolism. While its expression pattern has been reported in the hypothalamus, little is known on the distribution of PRCP throughout the mouse brain. This study was undertaken to determine PRCP expression in the mouse brain. Radioactive in situ hybridization was performed to determine endogenous PRCP mRNA expression. In addition, using a gene-trap mouse model for PRCP deletion, X-gal staining was performed to further determine PRCP distribution. Results from both approaches showed that PRCP gene is broadly expressed in the brain. PMID:24161824

  10. Optimization of large-scale mouse brain connectome via joint evaluation of DTI and neuron tracing data.

    PubMed

    Chen, Hanbo; Liu, Tao; Zhao, Yu; Zhang, Tuo; Li, Yujie; Li, Meng; Zhang, Hongmiao; Kuang, Hui; Guo, Lei; Tsien, Joe Z; Liu, Tianming

    2015-07-15

    Tractography based on diffusion tensor imaging (DTI) data has been used as a tool by a large number of recent studies to investigate structural connectome. Despite its great success in offering unique 3D neuroanatomy information, DTI is an indirect observation with limited resolution and accuracy and its reliability is still unclear. Thus, it is essential to answer this fundamental question: how reliable is DTI tractography in constructing large-scale connectome? To answer this question, we employed neuron tracing data of 1772 experiments on the mouse brain released by the Allen Mouse Brain Connectivity Atlas (AMCA) as the ground-truth to assess the performance of DTI tractography in inferring white matter fiber pathways and inter-regional connections. For the first time in the neuroimaging field, the performance of whole brain DTI tractography in constructing a large-scale connectome has been evaluated by comparison with tracing data. Our results suggested that only with the optimized tractography parameters and the appropriate scale of brain parcellation scheme, can DTI produce relatively reliable fiber pathways and a large-scale connectome. Meanwhile, a considerable amount of errors were also identified in optimized DTI tractography results, which we believe could be potentially alleviated by efforts in developing better DTI tractography approaches. In this scenario, our framework could serve as a reliable and quantitative test bed to identify errors in tractography results which will facilitate the development of such novel tractography algorithms and the selection of optimal parameters. PMID:25953631

  11. Evaluation of Autophagy Using Mouse Models of Brain Injury

    PubMed Central

    Au, Alicia K.; Bayir, Hülya; Kochanek, Patrick M.; Clark, Robert S. B.

    2009-01-01

    SUMMARY Autophagy is a homeostatic, carefully regulated, and dynamic process for intracellular recycling of bulk proteins, aging organelles, and lipids. Autophagy occurs in all tissues and cell types, including the brain and neurons. Alteration in the dynamics of autophagy has been observed in many diseases of the central nervous system. Disruption of autophagy for an extended period of time results in accumulation of unwanted proteins and neurodegeneration. However, the role of enhanced autophagy after acute brain injury remains undefined. Established mouse models of brain injury will be valuable in clarifying the role of autophagy after brain injury, and are the topic of discussion in this review. PMID:19879944

  12. Mitochondrial viability in mouse and human postmortem brain

    PubMed Central

    Barksdale, Keri A.; Perez-Costas, Emma; Gandy, Johanna C.; Melendez-Ferro, Miguel; Roberts, Rosalinda C.; Bijur, Gautam N.

    2010-01-01

    Neuronal function in the brain requires energy in the form of ATP, and mitochondria are canonically associated with ATP production in neurons. The electrochemical gradient, which underlies the mitochondrial transmembrane potential (ΔΨmem), is harnessed for ATP generation. Here we show that ΔΨmem and ATP-production can be engaged in mitochondria isolated from human brains up to 8.5 h postmortem. Also, a time course of postmortem intervals from 0 to 24 h using mitochondria isolated from mouse cortex reveals that ΔΨmem in mitochondria can be reconstituted beyond 10 h postmortem. It was found that complex I of the mitochondrial electron transport chain was affected adversely with increasing postmortem intervals. Mitochondria isolated from postmortem mouse brains maintain the ability to produce ATP, but rates of production decreased with longer postmortem intervals. Furthermore, we show that postmortem brain mitochondria retain their ΔΨmem and ATP-production capacities following cryopreservation. Our finding that ΔΨmem and ATP-generating capacity can be reinitiated in brain mitochondria hours after death indicates that human postmortem brains can be an abundant source of viable mitochondria to study metabolic processes in health and disease. It is also possible to archive these mitochondria for future studies.—Barksdale, K. A., Perez-Costas, E., Gandy, J. C., Melendez-Ferro, M., Roberts, R. C., Bijur, G. N. Mitochondrial viability in mouse and human postmortem brain. PMID:20466876

  13. Wiring cost and topological participation of the mouse brain connectome

    PubMed Central

    Rubinov, Mikail; Ypma, Rolf J. F.; Watson, Charles; Bullmore, Edward T.

    2015-01-01

    Brain connectomes are topologically complex systems, anatomically embedded in 3D space. Anatomical conservation of “wiring cost” explains many but not all aspects of these networks. Here, we examined the relationship between topology and wiring cost in the mouse connectome by using data from 461 systematically acquired anterograde-tracer injections into the right cortical and subcortical regions of the mouse brain. We estimated brain-wide weights, distances, and wiring costs of axonal projections and performed a multiscale topological and spatial analysis of the resulting weighted and directed mouse brain connectome. Our analysis showed that the mouse connectome has small-world properties, a hierarchical modular structure, and greater-than-minimal wiring costs. High-participation hubs of this connectome mediated communication between functionally specialized and anatomically localized modules, had especially high wiring costs, and closely corresponded to regions of the default mode network. Analyses of independently acquired histological and gene-expression data showed that nodal participation colocalized with low neuronal density and high expression of genes enriched for cognition, learning and memory, and behavior. The mouse connectome contains high-participation hubs, which are not explained by wiring-cost minimization but instead reflect competitive selection pressures for integrated network topology as a basis for higher cognitive and behavioral functions. PMID:26216962

  14. Aquaporin-11 (AQP11) Expression in the Mouse Brain

    PubMed Central

    Koike, Shin; Tanaka, Yasuko; Matsuzaki, Toshiyuki; Morishita, Yoshiyuki; Ishibashi, Kenichi

    2016-01-01

    Aquaporin-11 (AQP11) is an intracellular aquaporin expressed in various tissues, including brain tissues in mammals. While AQP11-deficient mice have developed fatal polycystic kidneys at one month old, the role of AQP11 in the brain was not well appreciated. In this study, we examined the AQP11 expression in the mouse brain and the brain phenotype of AQP11-deficient mice. AQP11 messenger ribonucleic acid (mRNA) and protein were expressed in the brain, but much less than in the thymus and kidney. Immunostaining showed that AQP11 was localized at the epithelium of the choroid plexus and at the endothelium of the brain capillary, suggesting that AQP11 may be involved in water transport at the choroid plexus and blood-brain barrier (BBB) in the brain. The expression of AQP4, another brain AQP expressed at the BBB, was decreased by half in AQP11-deficient mice, thereby suggesting the presence of the interaction between AQP11 and AQP4. The brain of AQP11-deficient mice, however, did not show any morphological abnormalities and the function of the BBB was intact. Our findings provide a novel insight into a water transport mechanism mediated by AQPs in the brain, which may lead to a new therapy for brain edema. PMID:27258268

  15. Toxicokinetics and toxicodynamics of paraquat accumulation in mouse brain

    PubMed Central

    Prasad, Kavita; Tarasewicz, Elizabeth; Mathew, Jason; Ohman Strickland, Pamela A.; Buckley, Brian; Richardson, Jason R.; Richfield, Eric K.

    2014-01-01

    Paraquat (PQ) is a potential human neurotoxicant and is used in models of oxidative stress. We determined the toxicokinetics (TK) and toxicodynamics (TD) of PQ in adult mouse brain following repeated or prolonged PQ exposure. PQ accumulated in different brain regions and reached a plateau after ~18 i.p. (10 mg/kg) doses and resulted in modest morbidity and mortality unpredictably associated with dose interval and number. PQ had divergent effects on horizontal locomotor behavior depending on the number of doses. PQ decreased striatal dopamine levels after the 18th to 36th i.p. dose (10 mg/kg) and reduced the striatal level of tyrosine hydroxylase. Drinking water exposure to PQ (0.03– 0.05 mg/ml) did not result in any mortality and resulted in concentration and time dependent levels in the brain. The brain half-life of PQ varied with mouse strain. PQ accumulates and may saturate a site in mouse brain resulting in complex PQ level and duration-related consequences. These findings should alter our risk assessment of this compound and demonstrate a useful, but complex dynamic model for understanding the consequences of PQ in the brain. PMID:19084006

  16. Nanoscopy in a living mouse brain.

    PubMed

    Berning, Sebastian; Willig, Katrin I; Steffens, Heinz; Dibaj, Payam; Hell, Stefan W

    2012-02-01

    We demonstrated superresolution optical microscopy in a living higher animal. Stimulated emission depletion (STED) fluorescence nanoscopy reveals neurons in the cerebral cortex of a mouse with <70-nanometer resolution. Dendritic spines and their subtle changes can be observed at their relevant scales over extended periods of time. PMID:22301313

  17. A versatile new technique to clear mouse and human brain

    NASA Astrophysics Data System (ADS)

    Costantini, Irene; Di Giovanna, Antonino Paolo; Allegra Mascaro, Anna Letizia; Silvestri, Ludovico; Müllenbroich, Marie Caroline; Sacconi, Leonardo; Pavone, Francesco S.

    2015-07-01

    Large volumes imaging with microscopic resolution is limited by light scattering. In the last few years based on refractive index matching, different clearing approaches have been developed. Organic solvents and water-based optical clearing agents have been used for optical clearing of entire mouse brain. Although these methods guarantee high transparency and preservation of the fluorescence, though present other non-negligible limitations. Tissue transformation by CLARITY allows high transparency, whole brain immunolabelling and structural and molecular preservation. This method however requires a highly expensive refractive index matching solution limiting practical applicability. In this work we investigate the effectiveness of a water-soluble clearing agent, the 2,2'-thiodiethanol (TDE) to clear mouse and human brain. TDE does not quench the fluorescence signal, is compatible with immunostaining and does not introduce any deformation at sub-cellular level. The not viscous nature of the TDE make it a suitable agent to perform brain slicing during serial two-photon (STP) tomography. In fact, by improving penetration depth it reduces tissue slicing, decreasing the acquisition time and cutting artefacts. TDE can also be used as a refractive index medium for CLARITY. The potential of this method has been explored by imaging a whole transgenic mouse brain with the light sheet microscope. Moreover we apply this technique also on blocks of dysplastic human brain tissue transformed with CLARITY and labeled with different antibody. This clearing approach significantly expands the application of single and two-photon imaging, providing a new useful method for quantitative morphological analysis of structure in mouse and human brain.

  18. Periodic properties of the histaminergic system of the mouse brain.

    PubMed

    Rozov, Stanislav V; Zant, Janneke C; Karlstedt, Kaj; Porkka-Heiskanen, Tarja; Panula, Pertti

    2014-01-01

    Brain histamine is involved in the regulation of the sleep-wake cycle and alertness. Despite the widespread use of the mouse as an experimental model, the periodic properties of major markers of the mouse histaminergic system have not been comprehensively characterized. We analysed the daily levels of histamine and its first metabolite, 1-methylhistamine, in different brain structures of C57BL/6J and CBA/J mouse strains, and the mRNA level and activity of histidine decarboxylase and histamine-N-methyltransferase in C57BL/6J mice. In the C57BL/6J strain, histamine release, assessed by in vivo microdialysis, underwent prominent periodic changes. The main period was 24 h peaking during the activity period. Additional 8 h periods were also observed. The release was highly positively correlated with active wakefulness, as shown by electroencephalography. In both mouse strains, tissue histamine levels remained steady for 24 h in all structures except for the hypothalamus of CBA/J mice, where 24-h periodicity was observed. Brain tissue 1-methylhistamine levels in both strains reached their maxima in the periods of activity. The mRNA level of histidine decarboxylase in the tuberomamillary nucleus and the activities of histidine decarboxylase and histamine-N-methyltransferase in the striatum and cortex did not show a 24-h rhythm, whereas in the hypothalamus the activities of both enzymes had a 12-h periodicity. These results show that the activities of histamine-metabolizing enzymes are not under simple direct circadian regulation. The complex and non-uniform temporal patterns of the histaminergic system of the mouse brain suggest that histamine is strongly involved in the maintenance of active wakefulness. PMID:24438489

  19. Toxic effect of lithium in mouse brain

    SciTech Connect

    Dixit, P.K.; Smithberg, M.

    1988-01-01

    The effect of lithium ion on glucose oxidation in the cerebrum and cerebellum of mice was measured in vitro by the conversion of isotopic glucose into /sup 14/CO/sub 2//mg wet weight. Glucose utilization is unaffected by lowest lithium dosage but is inhibited by high lithium concentrations (197-295 mM). Chronic administration of lithium to adult mice decreased the DNA content of the cerebrum and cerebellum at concentrations of 80 and 108 mM. The DNA content of selected postnatal stages of cerebrum and cerebellum was measured starting on Day 1 or 2. This served as another parameter to evaluate glucose oxidation studies at these ages. On the basis of wet weight, both brain parts of neonates of ages 1 and 10 days were approximately one-half that of the adult counterparts. On the basis of DNA content, the cerebrum enhanced its glucose utilization twofold from Day 1 to Day 10 and tripled its utilization from Day 10 to Day 20. The glucose utilization by cerebrum at Day 20 is similar to adult values. In contrast, glucose oxidation in the cerebellum remained relatively constant throughout the postnatal growth. The relative susceptibility of the two brain parts is discussed.

  20. Mouse brain responses to charged particle radiation

    NASA Astrophysics Data System (ADS)

    Nelson, Gregory; Nelson, Gregory; Chang, Polly; Favre, Cecile; Fike, John; Mao, Xiao-Wen; Obenaus, Andre; Pecaut, Michael; Vlkolinsky, Roman; Song, Sheng-Kwei; Spigelman, Igor; Stampanoni, Marco

    CHANGES IN DISEASE LATENCY AND HOMEOSTASIS: 1) APP23 transgenic mice exhibit many of the pathological features of Alzheimer's Disease, and the disease progression is continuous over several months. Electrophysiological measurements have shown that disease-related decreases in synaptic efficacy occur earlier in irradiated APP23 animals. 2) Using vascular polymer cast technology combined with micro-tomographic imaging, microvasculature changes following irradiation have been detected and are consistent with loss of vessels and an increased spacing between them. The time course of vessel changes to control and irradiated animals is being constructed. 3) In order to assess the ability of the brain to respond to external environmental shocks and restore orderly normal function (homeostasis), we apply a controlled septic shock by treating animals with lipopolysaccharide (LPS). We find that in irradiated animals, the patterns of electrophysiological changes associated with reactions to lipopolysaccharide (LPS) are complex and unlike those of either LPS or irradiation alone. They further suggest that the brain continues to remodel for up to 6 months following radiation. This is consistent with the idea that irradiation may potentiate the risks from late secondary insults.

  1. Noninvasive photoacoustic computed tomography of mouse brain metabolism in vivo

    NASA Astrophysics Data System (ADS)

    Yao, Junjie; Xia, Jun; Maslov, Konstantin; Avanaki, Mohammadreza R. N.; Tsytsarev, Vassiliy; Demchenko, Alexei V.; Wang, Lihong V.

    2013-03-01

    To control the overall action of the body, brain consumes a large amount of energy in proportion to its volume. In humans and many other species, the brain gets most of its energy from oxygen-dependent metabolism of glucose. An abnormal metabolic rate of glucose and/or oxygen usually reflects a diseased status of brain, such as cancer or Alzheimer's disease. We have demonstrated the feasibility of imaging mouse brain metabolism using photoacoustic computed tomography (PACT), a fast, noninvasive and functional imaging modality with optical contrast and acoustic resolution. Brain responses to forepaw stimulations were imaged transdermally and transcranially. 2-NBDG, which diffuses well across the blood-brain-barrier, provided exogenous contrast for photoacoustic imaging of glucose response. Concurrently, hemoglobin provided endogenous contrast for photoacoustic imaging of hemodynamic response. Glucose and hemodynamic responses were quantitatively unmixed by using two-wavelength measurements. We found that glucose uptake and blood perfusion around the somatosensory region of the contralateral hemisphere were both increased by stimulations, indicating elevated neuron activity. The glucose response amplitude was about half that of the hemodynamic response. While the glucose response area was more homogenous and confined within the somatosensory region, the hemodynamic response area showed a clear vascular pattern and spread about twice as wide as that of the glucose response. The PACT of mouse brain metabolism was validated by high-resolution open-scalp OR-PAM and fluorescence imaging. Our results demonstrate that 2-NBDG-enhanced PACT is a promising tool for noninvasive studies of brain metabolism.

  2. Onset of aquaporin-4 expression in the developing mouse brain.

    PubMed

    Fallier-Becker, Petra; Vollmer, Jörg P; Bauer, Hans-C; Noell, Susan; Wolburg, Hartwig; Mack, Andreas F

    2014-08-01

    The main water channel in the brain, aquaporin-4 (AQP4) is involved in maintaining homeostasis and water exchange in the brain. In adult mammalian brains, it is expressed in astrocytes, mainly, and in high densities in the membranes of perivascular and subpial endfeet. Here, we addressed the question how this polarized expression is established during development. We used immunocytochemistry against AQP4, zonula occludens protein-1, glial fibrillary acidic protein, and β-dystroglycan to follow astrocyte development in E15 to P3 NMRI mouse brains, and expression of AQP4. In addition we used freeze-fracture electron microscopy to detect AQP4 in the form of orthogonal arrays of particles (OAPs) on the ultrastructural level. We analyzed ventral, lateral, and dorsal regions in forebrain sections and found AQP4 immunoreactivity to emerge at E16 ventrally before lateral (E17) and dorsal (E18) areas. AQP4 staining was spread over cell processes including radial glial cells in developing cortical areas and became restricted to astroglial endfeet at P1-P3. This was confirmed by double labeling with GFAP. In freeze-fracture replicas OAPs were found with a slight time delay but with a similar ventral to dorsal gradient. Thus, AQP4 is expressed in the embryonic mouse brain starting at E16, earlier than previously reported. However a polarized expression necessary for homeostatic function and water balance emerges at later stages around and after birth. PMID:24915007

  3. Inducible and combinatorial gene manipulation in mouse brain

    PubMed Central

    Dogbevia, Godwin K.; Marticorena-Alvarez, Ricardo; Bausen, Melanie; Sprengel, Rolf; Hasan, Mazahir T.

    2015-01-01

    We have deployed recombinant adeno-associated viruses equipped with tetracycline-controlled genetic switches to manipulate gene expression in mouse brain. Here, we show a combinatorial genetic approach for inducible, cell type-specific gene expression and Cre/loxP mediated gene recombination in different brain regions. Our chemical-genetic approach will help to investigate ‘when’, ‘where’, and ‘how’ gene(s) control neuronal circuit dynamics, and organize, for example, sensory signal processing, learning and memory, and behavior. PMID:25954155

  4. Recent Progress in Magnetic Resonance Imaging of the Embryonic and Neonatal Mouse Brain

    PubMed Central

    Wu, Dan; Zhang, Jiangyang

    2016-01-01

    The laboratory mouse has been widely used as a model system to investigate the genetic control mechanisms of mammalian brain development. Magnetic resonance imaging (MRI) is an important tool to characterize changes in brain anatomy in mutant mouse strains and injury progression in mouse models of fetal and neonatal brain injury. Progress in the last decade has enabled us to acquire MRI data with increasing anatomical details from the embryonic and neonatal mouse brain. High-resolution ex vivo MRI, especially with advanced diffusion MRI methods, can visualize complex microstructural organizations in the developing mouse brain. In vivo MRI of the embryonic mouse brain, which is critical for tracking anatomical changes longitudinally, has become available. Applications of these techniques may lead to further insights into the complex and dynamic processes of brain development. PMID:26973471

  5. Analysis of primary cilia in the developing mouse brain.

    PubMed

    Paridaen, Judith T M L; Huttner, Wieland B; Wilsch-Bräuninger, Michaela

    2015-01-01

    Stem and progenitor cells in the developing mammalian brain are highly polarized cells that carry a primary cilium protruding into the brain ventricles. Here, cilia detect signals present in the cerebrospinal fluid that fills the ventricles. Recently, striking observations have been made regarding the dynamics of primary cilia in mitosis and cilium reformation after cell division. In neural progenitors, primary cilia are not completely disassembled during cell division, and some ciliary membrane remnant can be inherited by one daughter cell that tends to maintain a progenitor fate. Furthermore, newborn differentiating cells grow a primary cilium on their basolateral plasma membrane, in spite of them possessing apical membrane and adherens junctions, and thus change the environment to which the primary cilium is exposed. These phenomena are proposed to be involved in cell fate determination and delamination of daughter cells in conjunction with the production of neurons. Here, we describe several methods that can be used to study the structure, localization, and dynamics of primary cilia in the developing mouse brain; these include time-lapse imaging of live mouse embryonic brain tissues, and analysis of primary cilia structure and localization using correlative light- and electron- and serial-block-face scanning electron microscopy. PMID:25837388

  6. Diffusion tensor imaging of the developing mouse brain.

    PubMed

    Mori, S; Itoh, R; Zhang, J; Kaufmann, W E; van Zijl, P C; Solaiyappan, M; Yarowsky, P

    2001-07-01

    It is shown that diffusion tensor MR imaging (DTI) can discretely delineate the microstructure of white matter and gray matter in embryonic and early postnatal mouse brains based on the existence and orientation of ordered structures. This order was found not only in white matter but also in the cortical plate and the periventricular zone, which are precursors of the cerebral cortex. This DTI-based information could be used to accomplish the automated spatial definition of the cortical plate and various axonal tracts. The DTI studies also revealed a characteristic evolution of diffusion anisotropy in the cortex of the developing brain. This ability to detect changes in the organization of the brain during development will greatly enhance morphological studies of transgenic and knockout models of cortical dysfunction. Magn Reson Med 46:18-23, 2001. PMID:11443706

  7. Neonatal influenza infection causes pathological changes in the mouse brain

    PubMed Central

    2014-01-01

    Influenza A virus infections have been proposed to be associated with a broad spectrum of central nervous system complications that range from acute encephalitis/encephalopathy to neuropsychiatric disorders in humans. In order to study early influenza virus exposure in the brain, we created an influenza-infection model in neonatal mice to investigate infection route and resulting pathological changes in the brain. Real-time polymerase chain reaction and immunohistochemical analyses showed that influenza virus infection induced by an intraperitoneal injection was first detected as early as 1 day post infection (dpi), and the peak infection was observed at 5 dpi. The viral antigen was detected in a wide range of brain regions, including: the cerebral cortex, hippocampus, cerebellum, and brainstem. Apoptotic cell death and gliosis were detected in the areas of viral infection. Significant increases in proinflammatory cytokine expression were also observed at 5 dpi. Viral RNAs were detected in the cerebrospinal fluid of infected adult mice as early as 1 dpi. In addition, many infected cells were observed near the ventricles, indicating that the virus may enter the brain parenchyma through the ventricles. These results demonstrate that influenza virus may effectively infect broad regions of the brain through the hematogenous route, potentially through the cerebrospinal fluid along the ventricles, and subsequently induce neuropathological changes in the neonatal mouse brain. PMID:24917271

  8. Label-free structural photoacoustic tomography of intact mouse brain

    NASA Astrophysics Data System (ADS)

    Li, Lei; Xia, Jun; Li, Guo; Garcia-Uribe, Alejandro; Wang, Lihong V.

    2015-03-01

    Capitalizing on endogenous hemoglobin contrast, photoacoustic computed tomography (PACT), a deep-tissue highresolution imaging modality, has drawn increasing interest in neuro-imaging. However, most existing studies are limited to functional imaging on the cortical surface, and the deep-brain structural imaging capability of PACT has never been demonstrated. Here, we explicitly studied the limiting factors of deep-brain PACT imaging. We found that the skull distorted the acoustic signal and blood suppressed the structural contrast from other chromophores. When the two effects are mitigated, PACT can provide high-resolution label-free structural imaging through the entire mouse brain. With 100 μm in-plane resolution, we can clearly identify major structures of the brain, and the image quality is comparable to that of magnetic resonance microscopy. Spectral PACT studies indicate that structural contrasts mainly originate from cytochrome and lipid. The feasibility of imaging the structure of the brain in vivo has also been discussed. Our results demonstrate that PACT is a promising modality for both structural and functional brain imaging.

  9. Mouse Models of Brain Metastasis for Unravelling Tumour Progression.

    PubMed

    Soto, Manuel Sarmiento; Sibson, Nicola R

    2016-01-01

    Secondary tumours in the brain account for 40 % of triple negative breast cancer patients, and the percentage may be higher at the time of autopsy. The use of in vivo models allow us to recapitulate the molecular mechanisms potentially used by circulating breast tumour cells to proliferate within the brain.Metastasis is a multistep process that depends on the success of several stages including cell evasion from the primary tumour, distribution and survival within the blood stream and cerebral microvasculature, penetration of the blood-brain barrier and proliferation within the brain microenvironment. Cellular adhesion molecules are key proteins involved in all of the steps in the metastatic process. Our group has developed two different in vivo models to encompass both seeding and colonisation stages of the metastatic process: (1) haematogenous dissemination of tumour cells by direct injection into the left ventricle of the heart, and (2) direct implantation of the tumour cells into the mouse brain.This chapter describes, in detail, the practical implementation of the intracerebral model, which can be used to analyse tumour proliferation within a specific area of the central nervous system and tumour-host cell interactions. We also describe the use of immunohistochemistry techniques to identify, at the molecular scale, tumour-host cell interactions, which may open new windows for brain metastasis therapy. PMID:27325270

  10. Data for mitochondrial proteomic alterations in the aging mouse brain

    PubMed Central

    Stauch, Kelly L.; Purnell, Phillip R.; Villeneuve, Lance M.; Fox, Howard S.

    2015-01-01

    Mitochondria are dynamic organelles critical for many cellular processes, including energy generation. Thus, mitochondrial dysfunction likely plays a role in the observed alterations in brain glucose metabolism during aging. Despite implications of mitochondrial alterations during brain aging, comprehensive quantitative proteomic studies remain limited. Therefore, to characterize the global age-associated mitochondrial proteomic changes in the brain, we analyzed mitochondria isolated from the brain of 5-, 12-, and 24-month old mice using quantitative mass spectrometry. We identified changes in the expression of proteins important for biological processes involved in the generation of precursor metabolites and energy through the breakdown of carbohydrates, lipids, and proteins. These results are significant because we identified age-associated proteomic changes suggestive of altered mitochondrial catabolic reactions during brain aging. The proteomic data described here can be found in the PRIDE Archive using the reference number PXD001370. A more comprehensive analysis of this data may be obtained from the article “Proteomic analysis and functional characterization of mouse brain mitochondria during aging reveal alterations in energy metabolism” in PROTEOMICS. PMID:26217775

  11. Cyclooxygenase-2 Mediates Anandamide Metabolism in the Mouse Brain

    PubMed Central

    Kaczocha, Martin

    2010-01-01

    Cyclooxygenase-2 (COX-2) mediates inflammation and contributes to neurodegeneration. Best known for its pathological up-regulation, COX-2 is also constitutively expressed within the brain and mediates synaptic transmission through prostaglandin synthesis. Along with arachidonic acid, COX-2 oxygenates the endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol in vitro. Inhibition of COX-2 enhances retrograde signaling in the hippocampus, suggesting COX-2 mediates endocannabinoid tone in healthy brain. The degree to which COX-2 may regulate endocannabinoid metabolism in vivo is currently unclear. Therefore, we explored the effect of COX-2 inhibition on [3H]AEA metabolism in mouse brain. Although AEA is hydrolyzed primarily by fatty acid amide hydrolase (FAAH), ex vivo autoradiography revealed that COX-2 inhibition by nimesulide redirected [3H]AEA substrate from COX-2 to FAAH in the cortex, hippocampus, thalamus, and periaqueductal gray. These data indicate that COX-2 possesses the capacity to metabolize AEA in vivo and can compete with FAAH for AEA in several brain regions. Temporal fluctuations in COX-2 expression were observed in the brain, with an increase in COX-2 protein and mRNA in the hippocampus at midnight compared with noon. COX-2 immunolocalization was robust in the hippocampus and several cortical regions. Although most regions exhibited no temporal changes in COX-2 immunolocalization, increased numbers of immunoreactive cells were detected at midnight in layers II and III of the somatosensory and visual cortices. These temporal variations in COX-2 distribution reduced the enzyme's contribution toward [3H]AEA metabolism in the somatosensory cortex at midnight. Taken together, our findings establish COX-2 as a mediator of regional AEA metabolism in mouse brain. PMID:20702753

  12. Mouse IDGenes: a reference database for genetic interactions in the developing mouse brain

    PubMed Central

    Matthes, Michaela; Preusse, Martin; Zhang, Jingzhong; Schechter, Julia; Mayer, Daniela; Lentes, Bernd; Theis, Fabian; Prakash, Nilima; Wurst, Wolfgang; Trümbach, Dietrich

    2014-01-01

    The study of developmental processes in the mouse and other vertebrates includes the understanding of patterning along the anterior–posterior, dorsal–ventral and medial– lateral axis. Specifically, neural development is also of great clinical relevance because several human neuropsychiatric disorders such as schizophrenia, autism disorders or drug addiction and also brain malformations are thought to have neurodevelopmental origins, i.e. pathogenesis initiates during childhood and adolescence. Impacts during early neurodevelopment might also predispose to late-onset neurodegenerative disorders, such as Parkinson’s disease. The neural tube develops from its precursor tissue, the neural plate, in a patterning process that is determined by compartmentalization into morphogenetic units, the action of local signaling centers and a well-defined and locally restricted expression of genes and their interactions. While public databases provide gene expression data with spatio-temporal resolution, they usually neglect the genetic interactions that govern neural development. Here, we introduce Mouse IDGenes, a reference database for genetic interactions in the developing mouse brain. The database is highly curated and offers detailed information about gene expressions and the genetic interactions at the developing mid-/hindbrain boundary. To showcase the predictive power of interaction data, we infer new Wnt/β-catenin target genes by machine learning and validate one of them experimentally. The database is updated regularly. Moreover, it can easily be extended by the research community. Mouse IDGenes will contribute as an important resource to the research on mouse brain development, not exclusively by offering data retrieval, but also by allowing data input. Database URL: http://mouseidgenes.helmholtz-muenchen.de. PMID:25145340

  13. Comparative mouse brain tractography of diffusion magnetic resonance imaging

    PubMed Central

    Moldrich, Randal X.; Pannek, Kerstin; Hoch, Renee; Rubenstein, John L.; Kurniawan, Nyoman D.; Richards, Linda J.

    2010-01-01

    Diffusion magnetic resonance imaging (dMRI) tractography can be employed to simultaneously analyse three-dimensional white matter tracts in the brain. Numerous methods have been proposed to model diffusion-weighted magnetic resonance data for tractography, and we have explored the functionality of some of these for studying white and grey matter pathways in ex vivo mouse brain. Using various deterministic and probabilistic algorithms across a range of regions of interest we found that probabilistic tractography provides a more robust means of visualizing both white and grey matter pathways than deterministic tractography. Importantly, we demonstrate the sensitivity of probabilistic tractography profiles to streamline number, step size, curvature, fiber orientation distribution, and whole-brain versus region of interest seeding. Using anatomically well-defined cortico-thalamic pathways, we show how density maps can permit the topographical assessment of probabilistic tractography. Finally, we show how different tractography approaches can impact on dMRI assessment of tract changes in a mouse deficient for the frontal cortex morphogen, fibroblast growth factor 17. In conclusion, probabilistic tractography can elucidate the phenotypes of mice with neurodegenerative or neurodevelopmental disorders in a quantitative manner. PMID:20303410

  14. Protein Expression Dynamics During Postnatal Mouse Brain Development

    PubMed Central

    Laeremans, Annelies; Van de Plas, Babs; Clerens, Stefan; Van den Bergh, Gert; Arckens, Lutgarde; Hu, Tjing-Tjing

    2013-01-01

    We explored differential protein expression profiles in the mouse forebrain at different stages of postnatal development, including 10-day (P10), 30-day (P30), and adult (Ad) mice, by large-scale screening of proteome maps using two-dimensional difference gel electrophoresis. Mass spectrometry analysis resulted in the identification of 251 differentially expressed proteins. Most molecular changes were observed between P10 compared to both P30 and Ad. Computational ingenuity pathway analysis (IPA) confirmed these proteins as crucial molecules in the biological function of nervous system development. Moreover, IPA revealed Semaphorin signaling in neurons and the protein ubiquitination pathway as essential canonical pathways in the mouse forebrain during postnatal development. For these main biological pathways, the transcriptional regulation of the age-dependent expression of selected proteins was validated by means of in situ hybridization. In conclusion, we suggest that proteolysis and neurite outgrowth guidance are key biological processes, particularly during early brain maturation. PMID:25157209

  15. Chemoselective imaging of mouse brain tissue via multiplex CARS microscopy.

    PubMed

    Pohling, Christoph; Buckup, Tiago; Pagenstecher, Axel; Motzkus, Marcus

    2011-08-01

    The fast and reliable characterization of pathological tissue is a debated topic in the application of vibrational spectroscopy in medicine. In the present work we apply multiplex coherent anti-Stokes Raman scattering (MCARS) to the investigation of fresh mouse brain tissue. The combination of imaginary part extraction followed by principal component analysis led to color contrast between grey and white matter as well as layers of granule and Purkinje cells. Additional quantitative information was obtained by using a decomposition algorithm. The results perfectly agree with HE stained references slides prepared separately making multiplex CARS an ideal approach for chemoselective imaging. PMID:21833351

  16. Interleukin-1 receptors in mouse brain: Characterization and neuronal localization

    SciTech Connect

    Takao, T.; Tracey, D.E.; Mitchell, W.M.; De Souza, E.B. )

    1990-12-01

    The cytokine interleukin-1 (IL-1) has a variety of effects in brain, including induction of fever, alteration of slow wave sleep, and alteration of neuroendocrine activity. To examine the potential sites of action of IL-1 in brain, we used iodine-125-labeled recombinant human interleukin-1 (( 125I)IL-1) to identify and characterize IL-1 receptors in crude membrane preparations of mouse (C57BL/6) hippocampus and to study the distribution of IL-1-binding sites in brain using autoradiography. In preliminary homogenate binding and autoradiographic studies, (125I)IL-1 alpha showed significantly higher specific binding than (125I)IL-1 beta. Thus, (125I)IL-1 alpha was used in all subsequent assays. The binding of (125I)IL-1 alpha was linear over a broad range of membrane protein concentrations, saturable, reversible, and of high affinity, with an equilibrium dissociation constant value of 114 +/- 35 pM and a maximum number of binding sites of 2.5 +/- 0.4 fmol/mg protein. In competition studies, recombinant human IL-1 alpha, recombinant human IL-1 beta, and a weak IL-1 beta analog. IL-1 beta +, inhibited (125I)IL-1 alpha binding to mouse hippocampus in parallel with their relative bioactivities in the T-cell comitogenesis assay, with inhibitory binding affinity constants of 55 +/- 18, 76 +/- 20, and 2940 +/- 742 pM, respectively; rat/human CRF and human tumor necrosis factor showed no effect on (125I)IL-1 alpha binding. Autoradiographic localization studies revealed very low densities of (125I)IL-1 alpha-binding sites throughout the brain, with highest densities present in the molecular and granular layers of the dentate gyrus of the hippocampus and in the choroid plexus. Quinolinic acid lesion studies demonstrated that the (125I)IL-1 alpha-binding sites in the hippocampus were localized to intrinsic neurons.

  17. Endogenously Nitrated Proteins in Mouse Brain: Links To Neurodegenerative Disease

    SciTech Connect

    Sacksteder, Colette A.; Qian, Weijun; Knyushko, Tanya V.; Wang, Haixing H.; Chin, Mark H.; Lacan, Goran; Melega, William P.; Camp, David G.; Smith, Richard D.; Smith, Desmond J.; Squier, Thomas C.; Bigelow, Diana J.

    2006-07-04

    Increased nitrotyrosine modification of proteins has been documented in multiple pathologies in a variety of tissue types; emerging evidence suggests its additional role in redox regulation of normal metabolism. In order to identify proteins sensitive to nitrating conditions in vivo, a comprehensive proteomic dataset identifying 7,792 proteins from whole mouse brain, generated by LC/LC-MS/MS analyses, was used to identify nitrated proteins. This analysis resulted in identification of 31 unique nitrotyrosine sites within 29 different proteins. Over half of the nitrated proteins identified have been reported to be involved in Parkinson's disease, Alzheimer's disease, or other neurodegenerative disorders. Similarly, nitrotyrosine immunoblots of whole brain homogenates show that treatment of mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), an experimental model of Parkinson's disease, induces increased nitration of the same protein bands observed to be nitrated in brains of untreated animals. Comparing sequences and available high resolution structures around nitrated tyrosines with those of unmodified sites indicates a preference of nitration in vivo for surface accessible tyrosines in loops, characteristics consistent with peroxynitrite-induced tyrosine modification. More striking is the five-fold greater nitration of tyrosines having nearby basic sidechains, suggesting electrostatic attraction of basic groups with the negative charge of peroxynitrite. Together, these results suggest that elevated peroxynitrite generation plays a role in neurodegenerative changes in the brain and provides a predictive tool of functionally important sites of nitration.

  18. Prolonged Toxicokinetics and Toxicodynamics of Paraquat in Mouse Brain

    PubMed Central

    Prasad, Kavita; Winnik, Bozena; Thiruchelvam, Mona J.; Buckley, Brian; Mirochnitchenko, Oleg; Richfield, Eric K.

    2007-01-01

    Background Paraquat (PQ) has been implicated as a risk factor for the Parkinson disease phenotype (PDP) in humans and mice using epidemiologic or experimental approaches. The toxicokinetics (TK) and toxicodynamics (TD) of PQ in the brain are not well understood. Objectives The TK and TD of PQ in brain were measured after single or repeated doses. Methods Brain regions were analyzed for PQ levels, amount of lipid peroxidation, and functional activity of the 20S proteasome. Results Paraquat (10 mg/kg, ip) was found to be persistent in mouse ventral midbrain (VM) with an apparent half-life of approximately 28 days and was cumulative with a linear pattern between one and five doses. PQ was also absorbed orally with a concentration in brain rising linearly after single doses between 10 and 50 mg/kg. The level of tissue lipid peroxides (LPO) was differentially elevated in three regions, being highest in VM, lower in striatum (STR), and least in frontal cortex (FCtx), with the earliest significant elevation detected at 1 day. An elevated level of LPO was still present in VM after 28 days. Despite the cumulative tissue levels of PQ after one, three, and five doses, the level of LPO was not further increased. The activity of the 20S proteasome in the striatum was altered after a single dose and reduced after five doses. Conclusions These data have implications for PQ as a risk factor in humans and in rodent models of the PDP. PMID:17938734

  19. Adult mouse brain gene expression patterns bear an embryologic imprint

    PubMed Central

    Zapala, Matthew A.; Hovatta, Iiris; Ellison, Julie A.; Wodicka, Lisa; Del Rio, Jo A.; Tennant, Richard; Tynan, Wendy; Broide, Ron S.; Helton, Rob; Stoveken, Barbara S.; Winrow, Christopher; Lockhart, Daniel J.; Reilly, John F.; Young, Warren G.; Bloom, Floyd E.; Lockhart, David J.; Barlow, Carrolee

    2005-01-01

    The current model to explain the organization of the mammalian nervous system is based on studies of anatomy, embryology, and evolution. To further investigate the molecular organization of the adult mammalian brain, we have built a gene expression-based brain map. We measured gene expression patterns for 24 neural tissues covering the mouse central nervous system and found, surprisingly, that the adult brain bears a transcriptional “imprint” consistent with both embryological origins and classic evolutionary relationships. Embryonic cellular position along the anterior–posterior axis of the neural tube was shown to be closely associated with, and possibly a determinant of, the gene expression patterns in adult structures. We also observed a significant number of embryonic patterning and homeobox genes with region-specific expression in the adult nervous system. The relationships between global expression patterns for different anatomical regions and the nature of the observed region-specific genes suggest that the adult brain retains a degree of overall gene expression established during embryogenesis that is important for regional specificity and the functional relationships between regions in the adult. The complete collection of extensively annotated gene expression data along with data mining and visualization tools have been made available on a publicly accessible web site (www.barlow-lockhart-brainmapnimhgrant.org). PMID:16002470

  20. Pleiotropic effects of 5-aminolevulinic acid in mouse brain.

    PubMed

    Lavandera, Jimena; Rodríguez, Jorge; Ruspini, Silvina; Meiss, Roberto; Zuccoli, Johanna Romina; Martínez, María Del Carmen; Gerez, Esther; Batlle, Alcira; Buzaleh, Ana María

    2016-08-01

    5-Aminolevulinic acid (ALA) seems to be responsible for the neuropsychiatric manifestations of acute intermittent porphyria (AIP). Our aim was to study the effect of ALA on the different metabolic pathways in the mouse brain to enhance our knowledge about the action of this heme precursor on the central nervous system. Heme metabolism, the cholinergic system, the defense enzyme system, and nitric oxide metabolism were evaluated in the encephalon of CF-1 mice receiving a single (40 mg/kg body mass) or multiple doses of ALA (40 mg/kg, every 48 h for 14 days). We subsequently found ALA accumulation in the encephalon of the mice. ALA also altered the brain cholinergic system. After one dose of ALA, a decrease in superoxide dismutase activity and a reduction in glutathione levels were detected, whereas malondialdehyde levels and catalase activity were increased. Heme oxygenase was also increased as an antioxidant response to protect the encephalon against injury. All nitric oxide synthase isoforms were induced by ALA, these changes were more significant for the inducible isoform in glial cells. In conclusion, ALA affected several metabolic pathways in mouse encephalon. Data indicate that a rapid response to oxidative stress was developed; however, with long-term intoxication, the redox balance was probably restored, thereby minimizing oxidative damage. PMID:27472495

  1. Selective neuronal toxicity of cocaine in embryonic mouse brain cocultures.

    PubMed Central

    Nassogne, M C; Evrard, P; Courtoy, P J

    1995-01-01

    Cocaine exposure in utero causes severe alterations in the development of the central nervous system. To study the basis of these teratogenic effects in vitro, we have used cocultures of neurons and glial cells from mouse embryonic brain. Cocaine selectively affected embryonic neuronal cells, causing first a dramatic reduction of both number and length of neurites and then extensive neuronal death. Scanning electron microscopy demonstrated a shift from a multipolar neuronal pattern towards bi- and unipolarity prior to the rounding up and eventual disappearance of the neurons. Selective toxicity of cocaine on neurons was paralleled by a concomitant decrease of the culture content in microtubule-associated protein 2 (MAP2), a neuronal marker measured by solid-phase immunoassay. These effects on neurons were reversible when cocaine was removed from the culture medium. In contrast, cocaine did not affect astroglial cells and their glial fibrillary acidic protein (GFAP) content. Thus, in embryonic neuronal-glial cell cocultures, cocaine induces major neurite perturbations followed by neuronal death without affecting the survival of glial cells. Provided similar neuronal alterations are produced in the developing human brain, they could account for the qualitative or quantitative defects in neuronal pathways that cause a major handicap in brain function following in utero exposure to cocaine. Images Fig. 2 Fig. 5 PMID:7479930

  2. The expression of BST2 in human and experimental mouse brain tumors

    PubMed Central

    Wainwright, Derek A.; Balyasnikova, Irina V.; Han, Yu; Lesniak, Maciej S.

    2011-01-01

    Glioblastoma multiforme (grade IV astrocytoma) is a highly malignant brain tumor with poor treatment options and an average lifespan of 15 months after diagnosis. Previous work has demonstrated that BST2 (bone marrow stromal cell antigen 2; also known as PDCA-1, CD137 and HM1.24) is expressed by multiple myeloma, endometrial cancer and primary lung cancer cells. BST2 is expressed on the plasma membrane, which makes it an ideal target for immunotherapy. Accordingly, several groups have shown BST2 mAb to be effective for targeting tumor cells. In this report, we hypothesized that BST2 is expressed in human and mouse brain tumors and plays a critical role in brain tumor progression. We show that BST2 mRNA expression is increased in mouse brain IC-injected with GL261 cells, when compared to mouse brain IC-injected with saline at 3 weeks post-operative (p < 0.05). To test the relevance of BST2, we utilized the intracranially (IC)-injected GL261 cell-based malignant brain tumor mouse model. We show that BST2 mRNA expression is increased in mouse brain IC-injected GL261 cells, when compared to mouse brain IC-injected saline at 3 weeks post-operative (p < 0.05). Furthermore, BST2 immunofluorescence predominantly localized to mouse brain tumor cells. Finally, mice IC-injected with GL261 cells transduced with shRNA for BST2 ± pre-incubation with BST2 mAb show no difference in overall lifespan when compared to mice IC-injected with GL261 cells transduced with a scrambled shRNA ± pre-incubation with BST2 mAb. Collectively, these data show that while BST2 expression increases during brain tumor progression in both human and mouse brain tumors, it has no apparent consequences to overall lifespan in an orthotopic mouse brain tumor model. PMID:21565182

  3. Enhanced access to rare brain cDNAs by prescreening libraries: 207 new mouse brain ESTs.

    PubMed

    Davies, R W; Roberts, A B; Morris, A J; Griffith, G W; Jerecìć, J; Ghandi, S; Kaiser, K; Savioz, A

    1994-12-01

    To use single-pass cDNA sequencing to characterize low-frequency cDNA clones from a region of the brain that includes the primary site of neurodegeneration in human Parkinson disease, we have developed a prescreening procedure using single brain region first-strand cDNA probes. Selection of cDNA clones giving low hybridization signals allowed the elimination of clones resulting from abundant messages and enrichment for clones corresponding to low-copy messages. Comparative sequencing of standard and prescreened cDNA libraries (191 and 124 clones, respectively) showed that this procedure raised the frequency of novel sequences encountered from 54 to 81%. The increased proportion of novel ESTs justifies the labor of prescreening. Automation of this procedure will accelerate the molecular description of genes expressed in any brain region, or any tissue, and represents a way to maximize access to cDNA sequences for human and mouse genome characterization. In total, the comparative sequencing experiments generated 207 new mouse and 11 new rat brain ESTs. PMID:7713496

  4. Analyzing in situ gene expression in the mouse brain with image registration, feature extraction and block clustering

    PubMed Central

    Jagalur, Manjunatha; Pal, Chris; Learned-Miller, Erik; Zoeller, R Thomas; Kulp, David

    2007-01-01

    Background Many important high throughput projects use in situ hybridization and may require the analysis of images of spatial cross sections of organisms taken with cellular level resolution. Projects creating gene expression atlases at unprecedented scales for the embryonic fruit fly as well as the embryonic and adult mouse already involve the analysis of hundreds of thousands of high resolution experimental images mapping mRNA expression patterns. Challenges include accurate registration of highly deformed tissues, associating cells with known anatomical regions, and identifying groups of genes whose expression is coordinately regulated with respect to both concentration and spatial location. Solutions to these and other challenges will lead to a richer understanding of the complex system aspects of gene regulation in heterogeneous tissue. Results We present an end-to-end approach for processing raw in situ expression imagery and performing subsequent analysis. We use a non-linear, information theoretic based image registration technique specifically adapted for mapping expression images to anatomical annotations and a method for extracting expression information within an anatomical region. Our method consists of coarse registration, fine registration, and expression feature extraction steps. From this we obtain a matrix for expression characteristics with rows corresponding to genes and columns corresponding to anatomical sub-structures. We perform matrix block cluster analysis using a novel row-column mixture model and we relate clustered patterns to Gene Ontology (GO) annotations. Conclusion Resulting registrations suggest that our method is robust over intensity levels and shape variations in ISH imagery. Functional enrichment studies from both simple analysis and block clustering indicate that gene relationships consistent with biological knowledge of neuronal gene functions can be extracted from large ISH image databases such as the Allen Brain Atlas [1

  5. H. Julian Allen

    NASA Technical Reports Server (NTRS)

    1957-01-01

    H. Julian Allen stands beside the observation window of the 8 x 7 foot test section of the NACA Ames Unitary Plan Wind Tunnel. H. Julian Allen is best known for his 'Blunt Body Theory' of aerodynamics, a design technique for alleviating the severe re-entry heating problem which was then delaying the development of ballistic missiles. His findings revolutionized the fundamental design of ballistic missle re-entry shapes. Subsequently, applied research led to applications of the 'blunt' shape to ballistic missles and spacecraft which were intended to re-enter the Earth's atmosphere. This application led to the design of ablative heat shields that protected the Mercury, Gemini and Apollo astronauts as their space capsules re- entered the Earth's atmosphere. 'Harvey' Allen as he was called by most, was not only a brilliant scientist and aeronautical engineer but was also admired for his kindness, thoughtfulness and sense of humor. Among his many other accomplishments, Harvey Allen served as Center Director of the NASA Ames Research Center from 1965 to 1969. He died of a heart attack on January 29, 1977 at the age of 66.

  6. Screw-Retaining Allen Wrench

    NASA Technical Reports Server (NTRS)

    Granett, D.

    1985-01-01

    Steadying screws with fingers unnecessary. Crimp in uncompressed spring wire slightly protrudes from one facet of Allen wrench. Compressed spring retains Allen screw. Tool used with Allen-head screws in cramped spaces with little or no room for fingers to hold fastener while turned by wrench.

  7. Differential distribution of ELMO1 and ELMO2 mRNAs in the developing mouse brain.

    PubMed

    Katoh, Hironori; Fujimoto, Satoshi; Ishida, Chisaki; Ishikawa, Yukio; Negishi, Manabu

    2006-02-16

    ELMO is an upstream regulator of the Rho family small GTPase Rac. We investigated the distributions of mRNAs of two subtypes of ELMO, ELMO1 and ELMO2, in the developing mouse brain. Both ELMO1 and ELMO2 mRNAs are widely distributed in the developing mouse brain, but they were expressed in different neuronal populations in the cerebral cortex, thalamus, and cerebellum. Thus, ELMO1 and ELMO2 may play different roles during brain development. PMID:16443196

  8. MR images of mouse brain using clinical 3T MR scanner and 4CH-Mouse coil

    NASA Astrophysics Data System (ADS)

    Lim, Soo Mee; Park, Eun Mi; Lyoo, In Kyoon; Lee, Junghyun; Han, Bo Mi; Lee, Jeong Kyong; Lee, Su Bin

    2015-07-01

    Objectives: Although small-bore high-field magnets are useful for research in small rodent models,this technology, however, has not been easily accessible to most researchers. This current study, thus,tried to evaluate the usability of 4CH-Mouse coil (Philips Healthcare, Best, the Netherlands) forpreclinical investigations in clinical 3T MR scan environment. We evaluated the effects of ischemicpreconditioning (IP) in the mouse stroke model with clinical 3T MR scanner and 4CH-Mouse coil. Materials and Methods: Experiments were performed on male C57BL/6 mice that either received the IP or sham operation (control). Three different MR sequences including diffusion weighted images (DWI), T2-weighted images (T2WI), and fluid attenuated inversion recovery (FLAIR) were performed on the mouse brains following 24, 72 hours of middle cerebral artery occlusion (MCAO) and analyzed for infarct lesions. Results: The images showed that the IP-treated mouse brains had significantly smaller infarct volumes compared to the control group. Of the MR sequences employed, the T2WI showed the highest level of correlations with postmortem infarct volume measurements. Conclusions: The clinical 3T MR scanner turned out to have a solid potential as a practical tool for imaging small animal brains. MR sequences including DWI, T2WI, FLAIR were obtained with acceptable resolution and in a reasonable time constraint in evaluating a mouse stroke model brain.

  9. Brain Penetration and Efficacy of Different Mebendazole Polymorphs in a Mouse Brain Tumor Model

    PubMed Central

    Wanjiku, Teresia; Rudek, Michelle A; Joshi, Avadhut; Gallia, Gary L.; Riggins, Gregory J.

    2015-01-01

    Purpose Mebendazole (MBZ), first used as an antiparasitic drug, shows preclinical efficacy in models of glioblastoma and medulloblastoma. Three different MBZ polymorphs (A, B and C) exist and a detailed assessment of the brain penetration, pharmacokinetics and anti-tumor properties of each individual MBZ polymorph is necessary to improve mebendazole-based brain cancer therapy. Experimental Design and Results In this study, various marketed and custom-formulated MBZ tablets were analyzed for their polymorph content by IR spectroscopy and subsequently tested in orthotopic GL261 mouse glioma model for efficacy and tolerability. The pharmacokinetics and brain concentration of MBZ polymorphs and two main metabolites were analyzed by LC-MS. We found that polymorph B and C both increased survival in a GL261 glioma model, as B exhibited greater toxicity. Polymorph A showed no benefit. Both, polymorph B and C, reached concentrations in the brain that exceeded the IC50 in GL261 cells 29-fold. In addition, polymorph C demonstrated an AUC0-24h brain-to-plasma (B/P) ratio of 0.82, whereas B showed higher plasma AUC and lower B/P ratio. In contrast, polymorph A presented markedly lower levels in the plasma and brain. Furthermore, the combination with elacridar was able to significantly improve the efficacy of polymorph C in GL261 glioma and D425 medulloblastoma models in mice. Conclusion Among MBZ polymorphs, C reaches therapeutically effective concentrations in the brain tissue and tumor with less side effects and is the better choice for brain cancer therapy. Its efficacy can be further enhanced by combination with elacridar. PMID:25862759

  10. High-resolution photoacoustic tomography of resting-state functional connectivity in the mouse brain

    PubMed Central

    Nasiriavanaki, Mohammadreza; Xia, Jun; Wan, Hanlin; Bauer, Adam Quentin; Culver, Joseph P.; Wang, Lihong V.

    2014-01-01

    The increasing use of mouse models for human brain disease studies presents an emerging need for a new functional imaging modality. Using optical excitation and acoustic detection, we developed a functional connectivity photoacoustic tomography system, which allows noninvasive imaging of resting-state functional connectivity in the mouse brain, with a large field of view and a high spatial resolution. Bilateral correlations were observed in eight functional regions, including the olfactory bulb, limbic, parietal, somatosensory, retrosplenial, visual, motor, and temporal regions, as well as in several subregions. The borders and locations of these regions agreed well with the Paxinos mouse brain atlas. By subjecting the mouse to alternating hyperoxic and hypoxic conditions, strong and weak functional connectivities were observed, respectively. In addition to connectivity images, vascular images were simultaneously acquired. These studies show that functional connectivity photoacoustic tomography is a promising, noninvasive technique for functional imaging of the mouse brain. PMID:24367107

  11. Effects of colistin on amino acid neurotransmitters and blood-brain barrier in the mouse brain.

    PubMed

    Wang, Jian; Yi, Meishuang; Chen, Xueping; Muhammad, Ishfaq; Liu, Fangping; Li, Rui; Li, Jian; Li, Jichang

    2016-01-01

    Neurotoxicity is one of the major potential side effects of colistin therapy. However, the mechanistic aspects of colistin-induced neurotoxicity remain largely unknown. The objective of this study was to examine the effects of colistin on the blood-brain barrier (BBB) and amino acid neurotransmitters in the cerebral cortex of mouse. Mice were divided into four groups (n=5) and were administrated intravenously with 15mg/kg/day of colistin sulfate for 1, 3 and 7days successively while the control group was administrated intravenously with saline solution. The permeability and ultrastructure of the BBB were detected using the Evans blue (EB) dye and transmission electron microscopy (TEM), and the expression of Claudin-5 were determined by real-time PCR examination and western blotting. The brain uptake of colistin was measured by high-performance liquid chromatography (HPLC). The effects of colistin on amino acid neurotransmitters and their receptors were also examined by HPLC and real-time PCR. The results of EB extravasation, TEM and expression of Claudin-5 showed that colistin treatment did not affect the BBB integrity. In addition, multiple doses of colistin could induce accumulation of this compound in the brain parenchyma although there was poor brain uptake of colistin. Moreover, colistin exposure significantly increased the contents of glutamate (Glu) and gamma aminobutyric acid (GABA), and enhanced the mRNA expression levels of gamma aminobutyric acid type A receptor (GABAAR), gamma aminobutyric acid type B receptor (GABABR), N-methyl-d-aspartate 1 receptor (NR1), N-methyl-d-aspartate 2A receptor (NR2A) and N-methyl-d-aspartate 2B receptor (NR2B) in the cerebral cortex. Our data demonstrate that colistin is able to accumulate in the mouse brain and elevate the levels of amino acid neurotransmitters. These findings may be associated with colistin-induced neurotoxicity. PMID:27018023

  12. 5-hydroxymethylcytosine is detected in RNA from mouse brain tissues.

    PubMed

    Miao, Zhigang; Xin, Ning; Wei, Bin; Hua, Xiaodong; Zhang, Gaocai; Leng, Cuihua; Zhao, Chenyu; Wu, Di; Li, Jizhen; Ge, Wei; Sun, Miao; Xu, Xingshun

    2016-07-01

    5-hydroxymethylcytosine (5hmC) is considered as a novel DNA modification and plays an important role in cancer, stem cells, and developmental diseases. In this study, we demonstrated the existence of RNA 5hmC modification in mouse brain RNA by using a dot blot analysis method. Our data indicated that 5hmC modification in RNA samples was less than that in DNA samples. Further, we optimized the conditions for 5hmC detection in RNA samples such as DNase treatment, denature reagents, denature time, sample air-dry time, and the cross-linking time between RNA and membrane. Our results demonstrated that DNase treatment and denature reagents were two important factors that affected the 5hmC detection in RNA samples. By using the optimal conditions for RNA 5hmC detection, we found that the brainstem, the hippocampus, and the cerebellum had high levels of 5hmC modification and 5mC modification in RNA. Finally, we found that RNA 5hmC modification decreased in MPTP-induced Parkinson's disease model in mice. These suggest that 5hmC modification in RNA might play an important regulative role on protein or microRNA expression in these brain tissues. Because DNA 5hmC modification plays an important role in neural differentiation and development as well as neurological diseases, the significance of 5hmC modification in RNA in different neurological diseases needs further investigation. In summary, our study demonstrated for the first time the abundance of 5hmC modification in brain RNA by using a dot blot analysis method and proved that dot blot analysis is a useful method for 5hmC detection in RNA samples. PMID:27117867

  13. EPICS: Allen-Bradley hardware reference manual

    SciTech Connect

    Nawrocki, G.

    1993-04-05

    This manual covers the following hardware: Allen-Bradley 6008 -- SV VMEbus I/O scanner; Allen-Bradley universal I/O chassis 1771-A1B, -A2B, -A3B, and -A4B; Allen-Bradley power supply module 1771-P4S; Allen-Bradley 1771-ASB remote I/O adapter module; Allen-Bradley 1771-IFE analog input module; Allen-Bradley 1771-OFE analog output module; Allen-Bradley 1771-IG(D) TTL input module; Allen-Bradley 1771-OG(d) TTL output; Allen-Bradley 1771-IQ DC selectable input module; Allen-Bradley 1771-OW contact output module; Allen-Bradley 1771-IBD DC (10--30V) input module; Allen-Bradley 1771-OBD DC (10--60V) output module; Allen-Bradley 1771-IXE thermocouple/millivolt input module; and the Allen-Bradley 2705 RediPANEL push button module.

  14. The expression of BST2 in human and experimental mouse brain tumors.

    PubMed

    Wainwright, Derek A; Balyasnikova, Irina V; Han, Yu; Lesniak, Maciej S

    2011-08-01

    Glioblastoma multiforme (grade IV astrocytoma) is a highly malignant brain tumor with poor treatment options and an average lifespan of 15 months after diagnosis. Previous work has demonstrated that BST2 (bone marrow stromal cell antigen 2; also known as PDCA-1, CD137 and HM1.24) is expressed by multiple myeloma, endometrial cancer and primary lung cancer cells. BST2 is expressed on the plasma membrane, which makes it an ideal target for immunotherapy. Accordingly, several groups have shown BST2 mAb to be effective for targeting tumor cells. In this report, we hypothesized that BST2 is expressed in human and mouse brain tumors and plays a critical role in brain tumor progression. We show that BST2 expression is upregulated at both the mRNA and protein level in high grade when compared to low grade human astrocytoma (p<0.05). To test the relevance of BST2, we utilized the intracranially (IC)-injected GL261 cell-based malignant brain tumor mouse model. We show that BST2 mRNA expression is increased in mouse brain IC-injected with GL261 cells, when compared to mouse brain IC-injected with saline at 3 weeks post-operative (p<0.05). Furthermore, BST2 immunofluorescence predominantly localized to mouse brain tumor cells. Finally, mice IC-injected with GL261 cells transduced with shRNA for BST2±preincubated with BST2 mAb show no difference in overall lifespan when compared to mice IC-injected with GL261 cells transduced with a scrambled shRNA±preincubated with BST2 mAb. Collectively, these data show that while BST2 expression increases during brain tumor progression in both human and mouse brain tumors, it has no apparent consequences to overall lifespan in an orthotopic mouse brain tumor model. PMID:21565182

  15. Japanese encephalitis vaccines: moving away from the mouse brain.

    PubMed

    Zanin, Mark P; Webster, Diane E; Martin, Jenny L; Wesselingh, Steven L

    2003-06-01

    Japanese encephalitis (JE) is a severe disease that is widespread throughout Asia and is spreading beyond its traditional boundaries. Three vaccines are currently in use against JE but only one is available internationally, a mouse-brain-derived inactivated vaccine first used in the 1930s. Although this vaccine has been effective in reducing the incidence of JE, it is relatively expensive and has been linked to severe allergic and neurological reactions. Cell-culture-derived inactivated and attenuated vaccines have been developed but are only used in the People's Republic of China. Other vaccines currently in various stages of development are DNA vaccines, a chimeric yellow fever-JE viral vaccine, virus-like particle vaccines and poxvirus-based vaccines. Poxvirus-based vaccines and the chimeric yellow fever-JE vaccine have been tested in Phase I clinical trials. These new vaccines have the potential to significantly reduce the impact of JE in Asia, particularly if used in an oral vaccine delivery strategy. PMID:12903806

  16. Measuring Complexity of Mouse Brain Morphological Changes Using GeoEntropy

    NASA Astrophysics Data System (ADS)

    El-fiqi, Heba Z.; Pham, Tuan D.; Hattori, Haroldo T.; Crane, Denis I.

    2010-01-01

    Given the current emphasis on research into human neurodegenerative diseases, an effective computing approach for the analysis of complex brain morphological changes would represent a significant technological innovation. The availability of mouse models of such disorders provides an experimental system to test novel approaches to brain image analysis. Here we utilize a mouse model of a neurodegenerative disorder to model changes to cerebellar morphology during the postnatal period, and have applied the GeoEntropy algorithm to measure the complexity of morphological changes.

  17. Serial two-photon tomography: an automated method for ex-vivo mouse brain imaging

    PubMed Central

    Ragan, Timothy; Kadiri, Lolahon R.; Venkataraju, Kannan Umadevi; Bahlmann, Karsten; Sutin, Jason; Taranda, Julian; Arganda-Carreras, Ignacio; Kim, Yongsoo; Seung, H. Sebastian

    2011-01-01

    Here we describe an automated method, which we call serial two-photon (STP) tomography, that achieves high-throughput fluorescence imaging of mouse brains by integrating two-photon microscopy and tissue sectioning. STP tomography generates high-resolution datasets that are free of distortions and can be readily warped in 3D, for example, for comparing multiple anatomical tracings. This method opens the door to routine systematic studies of neuroanatomy in mouse models of human brain disorders. PMID:22245809

  18. Permeabilization of brain tissue in situ enables multiregion analysis of mitochondrial function in a single mouse brain

    PubMed Central

    Herbst, Eric AF; Holloway, Graham P

    2015-01-01

    Abstract Mitochondria function as the core energy providers in the brain and symptoms of neurodegenerative diseases are often attributed to their dysregulation. Assessing mitochondrial function is classically performed in isolated mitochondria; however, this process requires significant isolation time, demand for abundant tissue and disruption of the cooperative mitochondrial reticulum, all of which reduce reliability when attempting to assess in vivo mitochondrial bioenergetics. Here we introduce a method that advances the assessment of mitochondrial respiration in the brain by permeabilizing existing brain tissue to grant direct access to the mitochondrial reticulum in situ. The permeabilized brain preparation allows for instant analysis of mitochondrial function with unaltered mitochondrial morphology using significantly small sample sizes (∼2 mg), which permits the analysis of mitochondrial function in multiple subregions within a single mouse brain. Here this technique was applied to assess regional variation in brain mitochondrial function with acute ischaemia–reperfusion injuries and to determine the role of reactive oxygen species in exacerbating dysfunction through the application of a transgenic mouse model overexpressing catalase within mitochondria. Through creating accessibility to small regions for the investigation of mitochondrial function, the permeabilized brain preparation enhances the capacity for examining regional differences in mitochondrial regulation within the brain, as the majority of genetic models used for unique approaches exist in the mouse model. PMID:25529987

  19. 4D MEMRI atlas of neonatal FVB/N mouse brain development.

    PubMed

    Szulc, Kamila U; Lerch, Jason P; Nieman, Brian J; Bartelle, Benjamin B; Friedel, Miriam; Suero-Abreu, Giselle A; Watson, Charles; Joyner, Alexandra L; Turnbull, Daniel H

    2015-09-01

    The widespread use of the mouse as a model system to study brain development has created the need for noninvasive neuroimaging methods that can be applied to early postnatal mice. The goal of this study was to optimize in vivo three- (3D) and four-dimensional (4D) manganese (Mn)-enhanced MRI (MEMRI) approaches for acquiring and analyzing data from the developing mouse brain. The combination of custom, stage-dependent holders and self-gated (motion-correcting) 3D MRI sequences enabled the acquisition of high-resolution (100-μm isotropic), motion artifact-free brain images with a high level of contrast due to Mn-enhancement of numerous brain regions and nuclei. We acquired high-quality longitudinal brain images from two groups of FVB/N strain mice, six mice per group, each mouse imaged on alternate odd or even days (6 3D MEMRI images at each day) covering the developmental stages between postnatal days 1 to 11. The effects of Mn-exposure, anesthesia and MRI were assessed, showing small but significant transient effects on body weight and brain volume, which recovered with time and did not result in significant morphological differences when compared to controls. Metrics derived from deformation-based morphometry (DBM) were used for quantitative analysis of changes in volume and position of a number of brain regions. The cerebellum, a brain region undergoing significant changes in size and patterning at early postnatal stages, was analyzed in detail to demonstrate the spatiotemporal characterization made possible by this new atlas of mouse brain development. These results show that MEMRI is a powerful tool for quantitative analysis of mouse brain development, with great potential for in vivo phenotype analysis in mouse models of neurodevelopmental diseases. PMID:26037053

  20. Allene ether Nazarov cyclization.

    PubMed

    Tius, Marcus A

    2014-05-01

    The ease of synthesis and the exceptional reactivity of alkoxyallenes has led to their use in a large number of highly diverse applications. This Report describes their use in various versions of the allene ether Nazarov cyclization. Following a brief introduction to the Nazarov cyclization (Section 1), the oxidative cyclization of vinyl alkoxyallenes is discussed first (Section 2). Nazarov cyclizations of α-alkoxyallenyl vinyl ketones and of α-alkoxyallenyl vinyl tertiary carbinols are covered (Section 3). The discovery and the subsequent rational design of acetals that serve as chiral auxiliaries on the allene in highly enantioselective Nazarov cyclizations is explained (Section 4). Interrupted Nazarov cyclizations of alkoxyallenes that are generated in situ from the isomerization of propargyl ethers on solid supports are discussed, including the evolution of a highly diastereoselective, chiral auxiliary controlled version of the reaction. Some applications of the methodology to natural products total synthesis have been included so as to provide the reader with benchmarks with which to judge the utility of the methodology. PMID:24196585

  1. Characterization of piRNAs across postnatal development in mouse brain

    PubMed Central

    Ghosheh, Yanal; Seridi, Loqmane; Ryu, Taewoo; Takahashi, Hazuki; Orlando, Valerio; Carninci, Piero; Ravasi, Timothy

    2016-01-01

    PIWI-interacting RNAs (piRNAs) are responsible for maintaining the genome stability by silencing retrotransposons in germline tissues– where piRNAs were first discovered and thought to be restricted. Recently, novel functions were reported for piRNAs in germline and somatic cells. Using deep sequencing of small RNAs and CAGE of postnatal development of mouse brain, we identified piRNAs only in adult mouse brain. These piRNAs have similar sequence length as those of MILI-bound piRNAs. In addition, we predicted novel candidate regulators and putative targets of adult brain piRNAs. PMID:27112104

  2. Endogenous peptide(s) inhibiting [3H]cocaine binding in mouse brain.

    PubMed

    Reith, M E; Sershen, H; Lajtha, A

    1980-12-01

    The supernatant fraction of centrifuged homogenate of brain tissue contains material that inhibits the saturable binding of [3H]cocaine to crude mouse brain membranes. This material was subjected to heat treatment to remove protein; further purification was achieved by filtering through an Amicon UM-10 membrane ultrafilter and gel filtration of the ultrafiltrate on Sephadex G-25. Sensitivity to acid hydrolysis and peptidase action indicates that the inhibitory activity resides in peptide material with low molecular weight. The partially purified inhibitor has similar effects to that of cocaine on the specific binding of various ligands to opiate and nonopiate receptors in mouse brain membranes. PMID:6261176

  3. Light Scattering Properties Vary across Different Regions of the Adult Mouse Brain

    PubMed Central

    Stubblefield, Elizabeth A.; Felsen, Gidon

    2013-01-01

    Recently developed optogenetic tools provide powerful approaches to optically excite or inhibit neural activity. In a typical in-vivo experiment, light is delivered to deep nuclei via an implanted optical fiber. Light intensity attenuates with increasing distance from the fiber tip, determining the volume of tissue in which optogenetic proteins can successfully be activated. However, whether and how this volume of effective light intensity varies as a function of brain region or wavelength has not been systematically studied. The goal of this study was to measure and compare how light scatters in different areas of the mouse brain. We delivered different wavelengths of light via optical fibers to acute slices of mouse brainstem, midbrain and forebrain tissue. We measured light intensity as a function of distance from the fiber tip, and used the data to model the spread of light in specific regions of the mouse brain. We found substantial differences in effective attenuation coefficients among different brain areas, which lead to substantial differences in light intensity demands for optogenetic experiments. The use of light of different wavelengths additionally changes how light illuminates a given brain area. We created a brain atlas of effective attenuation coefficients of the adult mouse brain, and integrated our data into an application that can be used to estimate light scattering as well as required light intensity for optogenetic manipulation within a given volume of tissue. PMID:23874433

  4. Binge consumption of ethanol during pregnancy leads to significant developmental delay of mouse embryonic brain

    NASA Astrophysics Data System (ADS)

    Sudheendran, Narendran; Bake, Shameena; Miranda, Rajesh C.; Larin, Kirill V.

    2014-03-01

    Consumption of alcohol during pregnancy can be severely detrimental to the development of the brain in fetuses. This study explores the usage of optical coherence tomography (OCT) to the study the effects of maternal consumption of ethanol on brain development in mouse fetuses. On gestational day 14.5, fetuses were collected and fixed in 4% paraformaldehyde. A swept-source OCT (SSOCT) system was used to acquire 3D images of the brain of ethanol-exposed and control fetuses. The volume of right and left brain ventricles were measured and used to compare between ethanol-exposed and control fetuses. A total of 5 fetuses were used for each of the two groups. The average volumes of the right and left ventricles were measured to be 0.35 and 0.15 mm3 for ethanol-exposed and control fetuses, respectively. The results demonstrated that there is an alcohol-induced developmental delay in mouse fetal brains.

  5. Evaluation of neuronal protective effects of xanthine oxidoreductase inhibitors on severe whole-brain ischemia in mouse model and analysis of xanthine oxidoreductase activity in the mouse brain.

    PubMed

    Suzuki, Go; Okamoto, Ken; Kusano, Teruo; Matsuda, Yoko; Fuse, Akira; Yokota, Hiroyuki

    2015-01-01

    Global cerebral ischemia and reperfusion (I/R) often result in high mortality. Free radicals play an important role in global cerebral I/R. Xanthine oxidoreductase (XOR) inhibitors, such as allopurinol, have been reported to protect tissues from damage caused by reactive oxygen species (ROS) by inhibiting its production through XOR inhibition. The recently introduced XOR inhibitor febuxostat, which is a more potent inhibitor than allopurinol, is expected to decrease free radical production more effectively. Here, we analyzed the effects of allopurinol and febuxostat in decreasing global severe cerebral I/R damage in mice. Mice were divided into three groups: a placebo group, an allopurinol group, and a febuxostat group. Pathological examinations, which were performed in each group in the CA1 and CA2 regions of the hippocampus 4 days after I/R surgery, revealed that there was a decrease in the number of neuronal cells in the 14-min occlusion model in both regions and that drugs that were administered to prevent this damage were not effective. The enzymatic activity was extremely low in the mouse brain, and XOR could not be detected in the nonischemic and ischemic mice brains with western blot analyses. Thus, one of the reasons for the decreased effectiveness of XOR inhibitors in controlling severe whole-brain ischemia in a mouse model was the low levels of expression of XOR in the mouse brain. PMID:25744353

  6. In vivo three-photon microscopy of subcortical structures within an intact mouse brain

    NASA Astrophysics Data System (ADS)

    Horton, Nicholas G.; Wang, Ke; Kobat, Demirhan; Clark, Catharine G.; Wise, Frank W.; Schaffer, Chris B.; Xu, Chris

    2013-03-01

    Two-photon fluorescence microscopy enables scientists in various fields including neuroscience, embryology and oncology to visualize in vivo and ex vivo tissue morphology and physiology at a cellular level deep within scattering tissue. However, tissue scattering limits the maximum imaging depth of two-photon fluorescence microscopy to the cortical layer within mouse brain, and imaging subcortical structures currently requires the removal of overlying brain tissue or the insertion of optical probes. Here, we demonstrate non-invasive, high-resolution, in vivo imaging of subcortical structures within an intact mouse brain using three-photon fluorescence microscopy at a spectral excitation window of 1,700 nm. Vascular structures as well as red fluorescent protein-labelled neurons within the mouse hippocampus are imaged. The combination of the long excitation wavelength and the higher-order nonlinear excitation overcomes the limitations of two-photon fluorescence microscopy, enabling biological investigations to take place at a greater depth within tissue.

  7. Characterization of the Mouse Brain Proteome Using Global Proteomic Analysis Complemented with Cysteinyl-Peptide Enrichment

    SciTech Connect

    Wang, Haixing H.; Qian, Weijun; Chin, Mark H.; Petyuk, Vladislav A.; Barry, Richard C.; Liu, Tao; Gritsenko, Marina A.; Mottaz, Heather M.; Moore, Ronald J.; Camp, David G.; Khan, Arshad H.; Smith, Desmond; Smith, Richard D.

    2006-02-01

    Given the growing interest in applying genomic and proteomic approaches for studying the mammalian brain using mouse models, we hereby present for the first time a comprehensive characterization of the mouse brain proteome. Preparation of the whole brain sample incorporated a highly efficient cysteinyl-peptide enrichment (CPE) technique to complement a global enzymatic digestion method. Both the global and the cysteinyl-enriched peptide samples were analyzed by SCX fractionation coupled with reversed phase LC-MS/MS analysis. A total of 48,328 different peptides were confidently identified (>98% confidence level), covering 7792 non-redundant proteins (~34% of the predicted mouse proteome). 1564 and 1859 proteins were identified exclusively from the cysteinyl-peptide and the global peptide samples, respectively, corresponding to 25% and 31% improvements in proteome coverage compared to analysis of only the global peptide or cysteinyl-peptide samples. The identified proteins provide a broad representation of the mouse proteome with little bias evident due to protein pI, molecular weight, and/or cellular localization. Approximately 26% of the identified proteins with gene ontology (GO) annotations were membrane proteins, with 1447 proteins predicted to have transmembrane domains, and many of the membrane proteins were found to be involved in transport and cell signaling. The MS/MS spectrum count information for the identified proteins was used to provide a measure of relative protein abundances. The mouse brain peptide/protein database generated from this study represents the most comprehensive proteome coverage for the mammalian brain to date, and the basis for future quantitative brain proteomic studies using mouse models.

  8. Radiation-Induced Alterations in Mouse Brain Development Characterized by Magnetic Resonance Imaging

    SciTech Connect

    Gazdzinski, Lisa M.; Cormier, Kyle; Lu, Fred G.; Lerch, Jason P.; Wong, C. Shun; Nieman, Brian J.

    2012-12-01

    Purpose: The purpose of this study was to identify regions of altered development in the mouse brain after cranial irradiation using longitudinal magnetic resonance imaging (MRI). Methods and Materials: Female C57Bl/6 mice received a whole-brain radiation dose of 7 Gy at an infant-equivalent age of 2.5 weeks. MRI was performed before irradiation and at 3 time points following irradiation. Deformation-based morphometry was used to quantify volume and growth rate changes following irradiation. Results: Widespread developmental deficits were observed in both white and gray matter regions following irradiation. Most of the affected brain regions suffered an initial volume deficit followed by growth at a normal rate, remaining smaller in irradiated brains compared with controls at all time points examined. The one exception was the olfactory bulb, which in addition to an early volume deficit, grew at a slower rate thereafter, resulting in a progressive volume deficit relative to controls. Immunohistochemical assessment revealed demyelination in white matter and loss of neural progenitor cells in the subgranular zone of the dentate gyrus and subventricular zone. Conclusions: MRI can detect regional differences in neuroanatomy and brain growth after whole-brain irradiation in the developing mouse. Developmental deficits in neuroanatomy persist, or even progress, and may serve as useful markers of late effects in mouse models. The high-throughput evaluation of brain development enabled by these methods may allow testing of strategies to mitigate late effects after pediatric cranial irradiation.

  9. Non-specific immunostaining by a rabbit antibody against gustducin α subunit in mouse brain.

    PubMed

    Xiong, Guoxiang; Redding, Kevin; Chen, Bei; Cohen, Akiva S; Cohen, Noam A

    2015-02-01

    Gustducin is a guanosine nucleotide-binding protein functionally coupled with taste receptors and thus originally identified in taste cells of the tongue. Recently, bitter taste receptors and gustducin have been detected in the airways, digestive tracts and brain. The existing studies showing taste receptors and gustducin in the brain were carried out exclusively on frozen sections. In order to avoid the technical shortcomings associated with frozen sectioning, we performed immunofluorescence staining using vibratome-cut sections from mouse brains. Using a rabbit gustducin antibody, we could not detect neurons or astrocytes as reported previously. Rather, we found dense fibers in the nucleus accumbens and periventricular areas. We assumed these staining patterns to be specific after confirmation with conventional negative control staining. For the verification of this finding, we stained gustducin knockout mouse brain and tongue sections with the same rabbit gustducin antibody. Whereas negative staining was confirmed in the tongue, intensive fibers were constantly stained in the brain. Moreover, immunostaining with a goat gustducin antibody could not demonstrate the fibers in the brain tissue. The present study implies a cross immunoreaction that occurs with the rabbit gustducin antibody in mouse brain samples, suggesting that the conventional negative controls may not be sufficient when an immunostaining pattern is to be verified. PMID:25411190

  10. Genetic mouse models to study blood–brain barrier development and function

    PubMed Central

    2013-01-01

    The blood–brain barrier (BBB) is a complex physiological structure formed by the blood vessels of the central nervous system (CNS) that tightly regulates the movement of substances between the blood and the neural tissue. Recently, the generation and analysis of different genetic mouse models has allowed for greater understanding of BBB development, how the barrier is regulated during health, and its response to disease. Here we discuss: 1) Genetic mouse models that have been used to study the BBB, 2) Available mouse genetic tools that can aid in the study of the BBB, and 3) Potential tools that if generated could greatly aid in our understanding of the BBB. PMID:23305182

  11. Mapping social behavior-induced brain activation at cellular resolution in the mouse

    PubMed Central

    Kim, Yongsoo; Venkataraju, Kannan Umadevi; Pradhan, Kith; Mende, Carolin; Taranda, Julian; Turaga, Srinivas C.; Arganda-Carreras, Ignacio; Ng, Lydia; Hawrylycz, Michael J.; Rockland, Kathleen; Seung, H. Sebastian; Osten, Pavel

    2014-01-01

    Understanding how brain activation mediates behaviors is a central goal of systems neuroscience. Here we apply an automated method for mapping brain activation in the mouse in order to probe how sex-specific social behaviors are represented in the male brain. Our method uses the immediate early gene c-fos, a marker of neuronal activation, visualized by serial two-photon tomography: the c-fos-GFP-positive neurons are computationally detected, their distribution is registered to a reference brain and a brain atlas, and their numbers are analyzed by statistical tests. Our results reveal distinct and shared female and male interaction-evoked patterns of male brain activation representing sex discrimination and social recognition. We also identify brain regions whose degree of activity correlates to specific features of social behaviors and estimate the total numbers and the densities of activated neurons per brain areas. Our study opens the door to automated screening of behavior-evoked brain activation in the mouse. PMID:25558063

  12. Localization of PPAR isotypes in the adult mouse and human brain

    PubMed Central

    Warden, Anna; Truitt, Jay; Merriman, Morgan; Ponomareva, Olga; Jameson, Kelly; Ferguson, Laura B.; Mayfield, R. Dayne; Harris, R. Adron

    2016-01-01

    Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that act as ligand-activated transcription factors. PPAR agonists have well-documented anti-inflammatory and neuroprotective roles in the central nervous system. Recent evidence suggests that PPAR agonists are attractive therapeutic agents for treating neurodegenerative diseases as well as addiction. However, the distribution of PPAR mRNA and protein in brain regions associated with these conditions (i.e. prefrontal cortex, nucleus accumbens, amygdala, ventral tegmental area) is not well defined. Moreover, the cell type specificity of PPARs in mouse and human brain tissue has yet to be investigated. We utilized quantitative PCR and double immunofluorescence microscopy to determine that both PPAR mRNA and protein are expressed ubiquitously throughout the adult mouse brain. We found that PPARs have unique cell type specificities that are consistent between species. PPARα was the only isotype to colocalize with all cell types in both adult mouse and adult human brain tissue. Overall, we observed a strong neuronal signature, which raises the possibility that PPAR agonists may be targeting neurons rather than glia to produce neuroprotection. Our results fill critical gaps in PPAR distribution and define novel cell type specificity profiles in the adult mouse and human brain. PMID:27283430

  13. Terahertz spectroscopy of brain tissue from a mouse model of Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Shi, Lingyan; Shumyatsky, Pavel; Rodríguez-Contreras, Adrián; Alfano, Robert

    2016-01-01

    The terahertz (THz) absorption and index of refraction of brain tissues from a mouse model of Alzheimer's disease (AD) and a control wild-type (normal) mouse were compared using THz time-domain spectroscopy (THz-TDS). Three dominating absorption peaks associated to torsional-vibrational modes were observed in AD tissue, at about 1.44, 1.8, and 2.114 THz, closer to the peaks of free tryptophan molecules than in normal tissue. A possible reason is that there is more free tryptophan in AD brain tissue, while in normal brain tissue more tryptophan is attached to other molecules. Our study suggests that THz-absorption modes may be used as an AD biomarker fingerprint in brain, and that THz-TDS is a promising technique for early diagnosis of AD.

  14. Transcriptome analyses of adult mouse brain reveal enrichment of lncRNAs in specific brain regions and neuronal populations

    PubMed Central

    Kadakkuzha, Beena M.; Liu, Xin-An; McCrate, Jennifer; Shankar, Gautam; Rizzo, Valerio; Afinogenova, Alina; Young, Brandon; Fallahi, Mohammad; Carvalloza, Anthony C.; Raveendra, Bindu; Puthanveettil, Sathyanarayanan V.

    2015-01-01

    Despite the importance of the long non-coding RNAs (lncRNAs) in regulating biological functions, the expression profiles of lncRNAs in the sub-regions of the mammalian brain and neuronal populations remain largely uncharacterized. By analyzing RNASeq datasets, we demonstrate region specific enrichment of populations of lncRNAs and mRNAs in the mouse hippocampus and pre-frontal cortex (PFC), the two major regions of the brain involved in memory storage and neuropsychiatric disorders. We identified 2759 lncRNAs and 17,859 mRNAs in the hippocampus and 2561 lncRNAs and 17,464 mRNAs expressed in the PFC. The lncRNAs identified correspond to ~14% of the transcriptome of the hippocampus and PFC and ~70% of the lncRNAs annotated in the mouse genome (NCBIM37) and are localized along the chromosomes as varying numbers of clusters. Importantly, we also found that a few of the tested lncRNA-mRNA pairs that share a genomic locus display specific co-expression in a region-specific manner. Furthermore, we find that sub-regions of the brain and specific neuronal populations have characteristic lncRNA expression signatures. These results reveal an unexpected complexity of the lncRNA expression in the mouse brain. PMID:25798087

  15. Changing Iron Content of the Mouse Brain during Development

    PubMed Central

    Holmes-Hampton, Gregory P.; Chakrabarti, Mrinmoy; Cockrell, Allison L.; McCormick, Sean P.; Abbott, Louise C.; Lindahl, Lora S.; Lindahl, Paul A.

    2012-01-01

    Iron is crucial to many processes in the brain yet the percentages of the major iron-containing species contained therein, and how these percentages change during development, have not been reliably determined. To do this, C57BL/6 mice were enriched in 57Fe and their brains were examined by Mössbauer, EPR, and electronic absorption spectroscopy; Fe concentrations were evaluated using ICP-MS. Excluding the contribution of residual blood hemoglobin, the three major categories of brain Fe included ferritin (an iron storage protein), mitochondrial iron (consisting primarily of Fe/S clusters and hemes), and mononuclear nonheme high-spin (NHHS) FeII and FeIII species. Brains from prenatal and one-week old mice were dominated by ferritin and were deficient in mitochondrial Fe. During the next few weeks of life, the brain grew and experienced a burst of mitochondriogenesis. Overall brain Fe concentration and the concentration of ferritin declined during this burst phase, suggesting that the rate of Fe incorporation was insufficient to accommodate these changes. The slow rate of Fe import and export to/from the brain, relative to other organs, was verified by an isotopic labeling study. Iron levels and ferritin stores replenished in young adult mice. NHHS FeII species were observed in substantial levels in brains of several ages. A stable free-radical species that increased with age was observed by EPR spectroscopy. Brains from mice raised on an Fe-deficient diet showed depleted ferritin iron but normal mitochondrial iron levels. PMID:22810488

  16. Allen Telescope Array

    NASA Astrophysics Data System (ADS)

    Bower, Geoffrey

    2007-05-01

    The Allen Telescope Array (ATA) is a pioneering centimeter-wavelength radio telescope that will produce science that cannot be done with any other instrument. The ATA is the first radio telescope designed for commensal observing; it will undertake the most comprehensive and sensitive SETI surveys ever done as well as the deepest and largest area continuum and spectroscopic surveys. Science operations will commence this year with a 42-element array. The ATA will ultimately comprise 350 6-meter dishes at Hat Creek in California, and will make possible large, deep radio surveys that were not previously feasible. The telescope incorporates many new design features including hydroformed antenna surfaces, a log-periodic feed covering the entire range of frequencies from 500 MHz to 11.2 GHz, low noise, wide-band amplifiers with a flat response over the entire band. The full array has the sensitivity of the Very Large Array but with a survey capability that is greater by an order of magnitude due to the wide field of view of the 6-meter dishes. Even with 42 elements, the ATA will be one of the most powerful radio survey telescopes. Science goals include the Five GHz sky survey (FiGSS) to match the 1.4-GHz NRAO VLA Sky Survey (NVSS) and the Sloan Digital Sky Survey within the first year of operation with the 42 element array, and a deep all-sky survey of extragalactic hydrogen to investigate galaxy evolution and intergalactic gas accretion. Transient and variable source surveys, pulsar science, spectroscopy of new molecular species in the galaxy, large-scale mapping of galactic magnetic filaments, and wide-field imaging of comets and other solar system objects are among the other key science objectives of the ATA. SETI surveys will reach sufficient sensitivity to detect an Arecibo planetary radar from 1,000,000 stars to distances of 300 pc.

  17. Accumulation of oxidative DNA damage in brain mitochondria in mouse model of hereditary ferritinopathy.

    PubMed

    Deng, Xiaoling; Vidal, Ruben; Englander, Ella W

    2010-07-19

    Tissue iron content is strictly regulated to concomitantly satisfy specialized metabolic requirements and avoid toxicity. Ferritin, a multi-subunit iron storage protein, is central to maintenance of iron homeostasis in the brain. Mutations in the ferritin light chain (FTL)-encoding gene underlie the autosomal dominant, neurodegenerative disease, neuroferritinopathy/hereditary ferritinopathy (HF). HF is characterized by progressive accumulation of ferritin and iron. To gain insight into mechanisms by which FTL mutations promote neurodegeneration, a transgenic mouse, expressing human mutant form of FTL, was recently generated. The FTL mouse exhibits buildup of iron in the brain and presents manifestations of oxidative stress reminiscent of the human disease. Here, we asked whether oxidative DNA damage accumulates in the FTL mouse brain. Long-range PCR (L-PCR) amplification-mediated DNA damage detection assays revealed that the integrity of mitochondrial DNA (mtDNA) in the brain was significantly compromised in the 12- but not 6-month-old FTL mice. Furthermore, L-PCR employed in conjunction with DNA modifying enzymes, which target specific DNA adducts, revealed the types of oxidative adducts accumulating in mtDNA in the FTL brain. Consistently with DNA damage predicted to form under conditions of excessive oxidative stress, detected adducts include, oxidized guanines, abasic sites and strand breaks. Elevated mtDNA damage may impair mitochondrial function and brain energetics and in the long term contribute to neuronal loss and exacerbate neurodegeneration in HF. PMID:20478358

  18. Microheterogeneity of adenosine cyclic monophosphate-dependent protein kinases from mouse brain and heart.

    PubMed Central

    Malkinson, A M; Gharrett, A J; Hogy, L

    1978-01-01

    1. DEAE-cellulose chromatography of mouse brain cytosol indicated the presence of only the type II isoenzyme of cyclic AMP-dependent protein kinase. Mouse heart cytosol contained approximately equal amounts of the type I and type II isoenzymes. 2. Both brain and heart type II isoenzymes reassociated after a transient exposure to cyclic AMP, but the heart type I isoenzyme remained dissociated. 3. Elution of brain cytosol continuously exposed to cyclic AMP resolved multiple peaks of protein kinase and cyclic AMP-binding activities. A single peak of kinase and multiple peaks of cyclic AMP-binding activities were found under the same conditions with heart cytosol. Various control experiments suggested that the heterogeneity within the brain type II isoenzymic class had not been caused by proteolysis. 4. Kinetic experiments with unfractionated brain cytosol showed that the binding of cyclic AMP, the dissociation of cyclic AMP from protein and the rate of heat denaturation of the cyclic AMP-binding activity gave results consistent with the presence of multiple binding species. 5. It concluded that the type II isoenzymic peak obtained by DEAE-cellulose chromatography of mouse brain cytosol represents a class of enzymes containing multiple regulatory and catalytic subunits. The two heart cytosol isoenzymes contain a common catalytic subunit. The degree of protein kinase 'microheterogeneity", defined as the presence of multiple regulatory and/or catalytic subunits within a single isoenzymic class, appears to be tissue-specific. PMID:217338

  19. Confocal light sheet microscopy: micron-scale neuroanatomy of the entire mouse brain.

    PubMed

    Silvestri, L; Bria, A; Sacconi, L; Iannello, G; Pavone, F S

    2012-08-27

    Elucidating the neural pathways that underlie brain function is one of the greatest challenges in neuroscience. Light sheet based microscopy is a cutting edge method to map cerebral circuitry through optical sectioning of cleared mouse brains. However, the image contrast provided by this method is not sufficient to resolve and reconstruct the entire neuronal network. Here we combined the advantages of light sheet illumination and confocal slit detection to increase the image contrast in real time, with a frame rate of 10 Hz. In fact, in confocal light sheet microscopy (CLSM), the out-of-focus and scattered light is filtered out before detection, without multiple acquisitions or any post-processing of the acquired data. The background rejection capabilities of CLSM were validated in cleared mouse brains by comparison with a structured illumination approach. We show that CLSM allows reconstructing macroscopic brain volumes with sub-cellular resolution. We obtained a comprehensive map of Purkinje cells in the cerebellum of L7-GFP transgenic mice. Further, we were able to trace neuronal projections across brain of thy1-GFP-M transgenic mice. The whole-brain high-resolution fluorescence imaging assured by CLSM may represent a powerful tool to navigate the brain through neuronal pathways. Although this work is focused on brain imaging, the macro-scale high-resolution tomographies affordable with CLSM are ideally suited to explore, at micron-scale resolution, the anatomy of different specimens like murine organs, embryos or flies. PMID:23037106

  20. Decrease in Prosaposin in the Dystrophic mdx Mouse Brain

    PubMed Central

    Gao, Hui-ling; Li, Cheng; Nabeka, Hiroaki; Shimokawa, Tetsuya; Kobayashi, Naoto; Saito, Shouichiro; Wang, Zhan-You; Cao, Ya-ming; Matsuda, Seiji

    2013-01-01

    Background Duchenne muscular dystrophy caused by a mutation in the X-linked dystrophin gene induces metabolic and structural disorders in the brain. A lack of dystrophin in brain structures is involved in impaired cognitive function. Prosaposin (PS), a neurotrophic factor, is abundant in the choroid plexus and various brain regions. We investigated whether PS serves as a link between dystrophin loss and gross and/or ultrastructural brain abnormalities. Methodology/Principal Findings The distribution of PS in the brains of juvenile and adult mdx mice was investigated by immunochemistry, Western blotting, and in situ hybridization. Immunochemistry revealed lower levels of PS in the cytoplasm of neurons of the cerebral cortex, hippocampus, cerebellum, and choroid plexus in mdx mice. Western blotting confirmed that PS levels were lower in these brain regions in both juveniles and adults. Even with low PS production in the choroids plexus, there was no significant PS decrease in cerebrospinal fluid (CSF). In situ hybridization revealed that the primary form of PS mRNA in both normal and mdx mice was Pro+9, a secretory-type PS, and the hybridization signals for Pro+9 in the above-mentioned brain regions were weaker in mdx mice than in normal mice. We also investigated mitogen-activated protein kinase signalling. Stronger activation of ERK1/2 was observed in mdx mice, ERK1/2 activity was positively correlated with PS activity, and exogenous PS18 stimulated both p-ERK1/2 and PS in SH-SY5Y cells. Conclusions/Significance Low levels of PS and its receptors suggest the participation of PS in some pathological changes in the brains of mdx mice. PMID:24244600

  1. Effects of chronic ethanol consumption on sterol transfer proteins in mouse brain.

    PubMed

    Myers-Payne, S C; Fontaine, R N; Loeffler, A; Pu, L; Rao, A M; Kier, A B; Wood, W G; Schroeder, F

    1996-01-01

    Although lipids are essential to brain function, almost nothing is known of lipid transfer proteins in the brain. Early reports indicates cross-reactivity of brain proteins with antisera against two native liver sterol transfer proteins, sterol carrier protein-2 (SCP-2) and the liver form of fatty acid-binding protein (L-FABP). Herein, polyclonal antibodies raised against the recombinant liver sterol transfer proteins SCP-2 and L-FABP were used to identify the lipid transfer proteins in the brains of alcohol-treated and control mice. L-FABP was not detectable in brain of either control or chronic ethanol-treated mice. In contrast, SCP-2 not only was present, but its level was significantly (p < 0.05) increased 23 and 50%, respectively, in brain homogenates and synaptosomes of mice exposed to alcohol. To determine whether antibodies against the recombinant liver SCP-2 reflected true levels of SCP-2 in brain, the cDNA sequence for brain SCP-2 was isolated from a brain cDNA library. The mouse brain SCP-2 sequence was 99.99% identical to the mouse liver SCP-2 sequence. The translated sequence differed by only one amino acid, and the replacement was conservative. Thus, unlike the fatty acid binding proteins, the SCP-2 moieties of brain and liver are essentially identical. Polyclonal antibodies against acyl-CoA binding protein, a lipid-binding protein that does not bind or transfer sterol, showed that increased levels of brain SCP-2 with chronic ethanol consumption did not represent a general increase in content of all lipid transfer proteins. Changes in the amount of SCP-2 may contribute to membrane tolerance to ethanol. PMID:8522969

  2. Effects of Controlled Cortical Impact on the Mouse Brain Vasculome.

    PubMed

    Guo, Shuzhen; Lok, Josephine; Zhao, Song; Leung, Wendy; Som, Angel T; Hayakawa, Kazuhide; Wang, Qingzhi; Xing, Changhong; Wang, Xiaoying; Ji, Xunming; Zhou, Yiming; Lo, Eng H

    2016-07-15

    Perturbations in blood vessels play a critical role in the pathophysiology of brain injury and neurodegeneration. Here, we use a systematic genome-wide transcriptome screening approach to investigate the vasculome after brain trauma in mice. Mice were subjected to controlled cortical impact and brains were extracted for analysis at 24 h post-injury. The core of the traumatic lesion was removed and then cortical microvesels were isolated from nondirectly damaged ipsilateral cortex. Compared to contralateral cortex and normal cortex from sham-operated mice, we identified a wide spectrum of responses in the vasculome after trauma. Up-regulated pathways included those involved in regulation of inflammation and extracellular matrix processes. Decreased pathways included those involved in regulation of metabolism, mitochondrial function, and transport systems. These findings suggest that microvascular perturbations can be widespread and not necessarily localized to core areas of direct injury per se and may further provide a broader gene network context for existing knowledge regarding inflammation, metabolism, and blood-brain barrier alterations after brain trauma. Further efforts are warranted to map the vasculome with higher spatial and temporal resolution from acute to delayed phase post-trauma. Investigating the widespread network responses in the vasculome may reveal potential mechanisms, therapeutic targets, and biomarkers for traumatic brain injury. PMID:26528928

  3. Aspartoacylase deficiency does not affect N-acetylaspartylglutamate level or glutamate carboxypeptidase II activity in the knockout mouse brain.

    PubMed

    Surendran, Sankar; Ezell, Edward L; Quast, Michael J; Wei, Jingna; Tyring, Stephen K; Michals-Matalon, Kimberlee; Matalon, Reuben

    2004-08-01

    Aspartoacylase (ASPA)-deficient patients [Canavan disease (CD)] reportedly have increased urinary excretion of N-acetylaspartylglutamate (NAAG), a neuropeptide abundant in the brain. Whether elevated excretion of urinary NAAG is due to ASPA deficiency, resulting in an abnormal level of brain NAAG, is examined using ASPA-deficient mouse brain. The level of NAAG in the knockout mouse brain was similar to that in the wild type. The NAAG hydrolyzing enzyme, glutamate carboxypeptidase II (GCP II), activity was normal in the knockout mouse brain. These data suggest that ASPA deficiency does not affect the NAAG or GCP II level in the knockout mouse brain, if documented also in patients with CD. PMID:15246864

  4. An Ultrahigh Resolution SPECT System for I-125 Mouse Brain Imaging Studies

    PubMed Central

    Meng, L. J.; Fu, G.; Roy, E. J.; Suppe, B.; Chen, C. T.

    2009-01-01

    This paper presents some initial experimental results obtained with a dual-head prototype single photon emission microscope system (SPEM) that is dedicated to mouse brain studies using I-125 labeled radiotracers. In particular, this system will be used for in vivo tacking of radiolabeled T cells in mouse brain. This system is based on the use of the intensified electron multiplying charge-coupled device (I-EMCCD) camera that offers the combination of an excellent intrinsic spatial resolution, a good signal-to-noise ratio, a large active area and a reasonable detection efficiency over an energy range between 27–140keV. In this study, the dual-head SPEM system was evaluated using both resolution phantoms and a mouse with locally injected T cells labelled with I-125. It was demonstrated that for a relatively concentrated source object, the current dual-head SPEM system is capable of visualizing the tiny amount of radioactivity (~12 nCi) carried by a very small number (<1000) of T cells. The current SPEM system design allows four or six camera heads to be installed in a stationary system configuration that offers a doubled or tripled sensitivity at a spatial resolution similar to that obtained with the dualhead system. This development would provide a powerful tool for in vivo and non-invasive tracking of radiolabeled T cells in mouse brain and potentially for other rodent brain imaging studies. PMID:20161174

  5. Neuroglobin mitigates mitochondrial impairments induced by acute inhalation of combustion smoke in the mouse brain

    PubMed Central

    Gorgun, Falih Murat; Zhuo, Ming; Singh, Shilpee; Englander, Ella W.

    2014-01-01

    Context Acute inhalation of combustion smoke adversely affects brain homeostasis and energy metabolism. We previously showed that overexpressed neuroglobin (neuron specific globin protein) attenuates the formation of smoke inhalation-induced oxidative DNA damage, in vivo, in the mouse brain, while others reported protection by neuroglobin in diverse models of brain injury, mainly involving oxidative stress and hypoxic/ischemic insults. Objective To determine to what extent elevated neuroglobin ameliorates post smoke-inhalation brain bioenergetics and homeostasis in neuroglobin overexpressing transgenic mouse. Methods Smoke inhalation induced changes in bioenergetics were measured in the wild type and neuroglobin transgene mouse brain. Modulations of mitochondrial respiration were analyzed using the Seahorse XF24 flux analyzer and changes in cytoplasmic energy metabolism were assessed by measuring enzymatic activities and lactate in the course of post smoke recovery. Results Cortical mitochondria from neuroglobin transgene, better maintained ATP synthesis-linked oxygen consumption and unlike wild type mitochondria did not increase futile oxygen consumption feeding the proton leak, reflecting lesser smoke-induced mitochondrial compromise. Measurements revealed lesser reduction of mitochondrial ATP content and lesser compensatory increases in cytosolic energy metabolism, involving pyruvate kinase and lactate dehydrogenase activities as well as cytosolic lactate levels. Additionally, induction of c-Fos, the early response gene and key neuronal stress sensor, was attenuated in neuroglobin transgene compared to wild type brain after smoke. Conclusion Considered together, these differences reflect lesser perturbations produced by acute inhalation of combustion smoke in the neuroglobin overexpressing mouse, suggesting that neuroglobin mitigates mitochondrial dysfunction and neurotoxicity and raises the threshold of smoke inhalation-induced brain injury. PMID:24730682

  6. Ultrasound fails to induce proliferation of human brain and mouse endothelial cell lines

    NASA Astrophysics Data System (ADS)

    Rodemer, Claus; Jenne, Jürgen; Fatar, Marc; Hennerici, Michael G.; Meairs, Stephen

    2012-11-01

    Both in vitro and in vivo studies suggest that ultrasound (US) is capable of inducing angiogenesis. There is no information, however, on whether ultrasound can induce proliferation of brain endothelial cells. We therefore explored the angiogenic potential of ultrasound on a novel immortalised human brain endothelial cell line (hCMEC/D3) and on mouse brain microvascular endothelial cells (bEND3). Ultrasound failed to enhance cell proliferation in both cell lines at all acoustic pressures studied. Endothelial cell damage occurred at 0.24 MPa with significantly slower proliferation. Cells growing in Opticell{trade mark, serif} dishes did not show damage or reduced proliferation at these pressures.

  7. Effect of soman on the cholinergic system in mouse brain

    SciTech Connect

    Tripathi, H.L.; Szakal, A.R.; Little, D.M.; Dewey, W.L.

    1986-03-05

    The effects of soman on levels of acetylcholine (ACh) and choline (Ch) and turnover rate of ACh have been studied in whole brain and brain regions (cerebellum, medulla-pons, midbrain, corpus striatum, hippocampus and cortex) of mice. Animals were injected with saline or a dose of soman up to 80..mu..g/kg, i.v. and were sacrificed by focussed microwave irradiation of the head. The tracer, /sup 3/H-Ch was injected (i.v.) 2 min prior to sacrifice and turnover rate of ACh was quantitated by using HPLC with electrochemical detection. A behaviorally effective dose of 80 ..mu..g/kg soman increased the levels of ACh significantly in whole brain (57.5%), corpus striatum (42.8%), hippocampus (24.1%) and cortex (43.1%). The levels of Ch were also increased in cerebellum (80.1%), midbrain (75.7%), corpus striatum (86.0%) and cortex (52.5%). The turnover rate of ACh was decreased in whole brain (53.8%), cerebellum (80.4%), medulla-pons (66.8%), midbrain (57.0%), corpus striatum (62.1%) and cortex (52.6%). The duration of these effects lasted more than 1 hr and the results indicate that the decrease in ACh turnover is not due necessarily to an increase in brain levels of ACh and/or Ch.

  8. Adenosine transport systems on dissociated brain cells from mouse, guinea-pig, and rat

    SciTech Connect

    Johnston, M.E.; Geiger, J.D. )

    1990-09-01

    The kinetics and sodium dependence of adenosine transport were determined using an inhibitor-stop method on dissociated cell body preparations obtained from mouse, guinea-pig and rat brain. Transport affinity (KT) values for the high affinity adenosine transport systems KT(H) were significantly different between these three species; mean +/- SEM values were 0.34 +/- 0.1 in mouse, 0.9 +/- 0.2 in rat, and 1.5 +/- 0.5 microM in guinea-pig. The KT values for the low affinity transport system KT(L) were not different between the three species. Brain cells from rat displayed a significantly greater maximal capacity to accumulate (3H)adenosine (Vmax) than did mouse or guinea-pig for the high affinity system, or than did mouse for the low affinity system. When sodium chloride was replaced in the transport medium with choline chloride, the KT(H) values for guinea-pig and rat were both increased by approximately 100%; only in rat did the change reach statistical significance. The sodium-dependence of adenosine transport in mouse brain was clearly absent. The differences between KT(H) values in mouse and those in guinea-pig or rat were accentuated in the absence of sodium. The differences in kinetic values, ionic requirements, and pharmacological characteristics between adenosine transporters in CNS tissues of mouse, guinea-pig and rat may help account for some of the variability noted among species in terms of their physiological responses to adenosine.

  9. Mechanical characterization of the P56 mouse brain under large-deformation dynamic indentation

    PubMed Central

    MacManus, David B.; Pierrat, Baptiste; Murphy, Jeremiah G.; Gilchrist, Michael D.

    2016-01-01

    The brain is a complex organ made up of many different functional and structural regions consisting of different types of cells such as neurons and glia, as well as complex anatomical geometries. It is hypothesized that the different regions of the brain exhibit significantly different mechanical properties, which may be attributed to the diversity of cells and anisotropy of neuronal fibers within individual brain regions. The regional dynamic mechanical properties of P56 mouse brain tissue in vitro and in situ at velocities of 0.71–4.28 mm/s, up to a deformation of 70 μm are presented and discussed in the context of traumatic brain injury. The experimental data obtained from micro-indentation measurements were fit to three hyperelastic material models using the inverse Finite Element method. The cerebral cortex elicited a stiffer response than the cerebellum, thalamus, and medulla oblongata regions for all velocities. The thalamus was found to be the least sensitive to changes in velocity, and the medulla oblongata was most compliant. The results show that different regions of the mouse brain possess significantly different mechanical properties, and a significant difference also exists between the in vitro and in situ brain. PMID:26898475

  10. Mechanical characterization of the P56 mouse brain under large-deformation dynamic indentation

    NASA Astrophysics Data System (ADS)

    MacManus, David B.; Pierrat, Baptiste; Murphy, Jeremiah G.; Gilchrist, Michael D.

    2016-02-01

    The brain is a complex organ made up of many different functional and structural regions consisting of different types of cells such as neurons and glia, as well as complex anatomical geometries. It is hypothesized that the different regions of the brain exhibit significantly different mechanical properties, which may be attributed to the diversity of cells and anisotropy of neuronal fibers within individual brain regions. The regional dynamic mechanical properties of P56 mouse brain tissue in vitro and in situ at velocities of 0.71-4.28 mm/s, up to a deformation of 70 μm are presented and discussed in the context of traumatic brain injury. The experimental data obtained from micro-indentation measurements were fit to three hyperelastic material models using the inverse Finite Element method. The cerebral cortex elicited a stiffer response than the cerebellum, thalamus, and medulla oblongata regions for all velocities. The thalamus was found to be the least sensitive to changes in velocity, and the medulla oblongata was most compliant. The results show that different regions of the mouse brain possess significantly different mechanical properties, and a significant difference also exists between the in vitro and in situ brain.

  11. Fluorescent-protein stabilization and high-resolution imaging of cleared, intact mouse brains.

    PubMed

    Schwarz, Martin K; Scherbarth, Annemarie; Sprengel, Rolf; Engelhardt, Johann; Theer, Patrick; Giese, Guenter

    2015-01-01

    In order to observe and quantify long-range neuronal connections in intact mouse brain by light microscopy, it is first necessary to clear the brain, thus suppressing refractive-index variations. Here we describe a method that clears the brain and preserves the signal from proteinaceous fluorophores using a pH-adjusted non-aqueous index-matching medium. Successful clearing is enabled through the use of either 1-propanol or tert-butanol during dehydration whilst maintaining a basic pH. We show that high-resolution fluorescence imaging of entire, structurally intact juvenile and adult mouse brains is possible at subcellular resolution, even following many months in clearing solution. We also show that axonal long-range projections that are EGFP-labelled by modified Rabies virus can be imaged throughout the brain using a purpose-built light-sheet fluorescence microscope. To demonstrate the viability of the technique, we determined a detailed map of the monosynaptic projections onto a target cell population in the lateral entorhinal cortex. This example demonstrates that our method permits the quantification of whole-brain connectivity patterns at the subcellular level in the uncut brain. PMID:25993380

  12. Morphological asymmetries of mouse brain assessed by geometric morphometric analysis of MRI data.

    PubMed

    Barbeito-Andrés, Jimena; Bernal, Valeria; Gonzalez, Paula N

    2016-09-01

    Mammalian brain has repeated structures at both sides of the median plane, although some asymmetries have been described even under normal conditions. Characterizing normal patterns of asymmetry in mouse brain is important to recognize features that depart from expected ranges in the most widely used mammalian model. Analyses on brain morphology based on magnetic resonance image (MRI) have largely focused on volumes while less is known about shape asymmetry. We introduce a flexible protocol based on geometric morphometrics to assess patterns of asymmetry in shape and size of mouse brain from microMRI scans. After systematic digitization of landmarks and semilandmarks, we combine multivariate methods for statistical analyses with visualization tools to display the results. No preliminary treatment of the images (e.g. space normalization) is needed to collect data on MRI slices and visual representations improve the interpretation of the results. Results indicated that the protocol is highly repeatable. Asymmetry was more evident for shape than for size. Particularly, fluctuating asymmetry accounted for more variation than directional asymmetry in all brain regions. Since this approach can detect subtle shape variation between sides, it is a promising methodology to explore morphological changes in the brain of model organisms and can be applied in future studies addressing the effect of genetic and environmental factors on brain morphology. PMID:27108357

  13. Fluorescent-Protein Stabilization and High-Resolution Imaging of Cleared, Intact Mouse Brains

    PubMed Central

    Schwarz, Martin K.; Scherbarth, Annemarie; Sprengel, Rolf; Engelhardt, Johann; Theer, Patrick; Giese, Guenter

    2015-01-01

    In order to observe and quantify long-range neuronal connections in intact mouse brain by light microscopy, it is first necessary to clear the brain, thus suppressing refractive-index variations. Here we describe a method that clears the brain and preserves the signal from proteinaceous fluorophores using a pH-adjusted non-aqueous index-matching medium. Successful clearing is enabled through the use of either 1-propanol or tert-butanol during dehydration whilst maintaining a basic pH. We show that high-resolution fluorescence imaging of entire, structurally intact juvenile and adult mouse brains is possible at subcellular resolution, even following many months in clearing solution. We also show that axonal long-range projections that are EGFP-labelled by modified Rabies virus can be imaged throughout the brain using a purpose-built light-sheet fluorescence microscope. To demonstrate the viability of the technique, we determined a detailed map of the monosynaptic projections onto a target cell population in the lateral entorhinal cortex. This example demonstrates that our method permits the quantification of whole-brain connectivity patterns at the subcellular level in the uncut brain. PMID:25993380

  14. Transcranial magnetic stimulation of mouse brain using high-resolution anatomical models

    NASA Astrophysics Data System (ADS)

    Crowther, L. J.; Hadimani, R. L.; Kanthasamy, A. G.; Jiles, D. C.

    2014-05-01

    Transcranial magnetic stimulation (TMS) offers the possibility of non-invasive treatment of brain disorders in humans. Studies on animals can allow rapid progress of the research including exploring a variety of different treatment conditions. Numerical calculations using animal models are needed to help design suitable TMS coils for use in animal experiments, in particular, to estimate the electric field induced in animal brains. In this paper, we have implemented a high-resolution anatomical MRI-derived mouse model consisting of 50 tissue types to accurately calculate induced electric field in the mouse brain. Magnetic field measurements have been performed on the surface of the coil and compared with the calculations in order to validate the calculated magnetic and induced electric fields in the brain. Results show how the induced electric field is distributed in a mouse brain and allow investigation of how this could be improved for TMS studies using mice. The findings have important implications in further preclinical development of TMS for treatment of human diseases.

  15. Hemodynamic and morphologic responses in mouse brain during acute head injury imaged by multispectral structured illumination

    NASA Astrophysics Data System (ADS)

    Volkov, Boris; Mathews, Marlon S.; Abookasis, David

    2015-03-01

    Multispectral imaging has received significant attention over the last decade as it integrates spectroscopy, imaging, tomography analysis concurrently to acquire both spatial and spectral information from biological tissue. In the present study, a multispectral setup based on projection of structured illumination at several near-infrared wavelengths and at different spatial frequencies is applied to quantitatively assess brain function before, during, and after the onset of traumatic brain injury in an intact mouse brain (n=5). For the production of head injury, we used the weight drop method where weight of a cylindrical metallic rod falling along a metal tube strikes the mouse's head. Structured light was projected onto the scalp surface and diffuse reflected light was recorded by a CCD camera positioned perpendicular to the mouse head. Following data analysis, we were able to concurrently show a series of hemodynamic and morphologic changes over time including higher deoxyhemoglobin, reduction in oxygen saturation, cell swelling, etc., in comparison with baseline measurements. Overall, results demonstrates the capability of multispectral imaging based structured illumination to detect and map of brain tissue optical and physiological properties following brain injury in a simple noninvasive and noncontact manner.

  16. Functional connectivity in the mouse brain imaged by B-mode photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Nasiriavanaki, Mohammadreza; Xing, Wenxin; Xia, Jun; Wang, Lihong V.

    2014-03-01

    The increasing use of mouse models for human brain disease studies, coupled with the fact that existing functional imaging modalities cannot be easily applied to mice, presents an emerging need for a new functional imaging modality. Utilizing acoustic-resolution photoacoustic microscopy (AR-PAM), we imaged spontaneous cerebral hemodynamic fluctuations and their associated functional connections in the mouse brain. The images were acquired noninvasively in B-scan mode with a fast frame rate, a large field of view, and a high spatial resolution. At a location relative to the bregma 0, correlations were investigated inter-hemispherically between bilaterally homologous regions, as well as intra-hemispherically within the same functional regions. The functional connectivity in different functional regions was studied. The locations of these regions agreed well with the Paxinos mouse brain atlas. The functional connectivity map obtained in this study can then be used in the investigation of brain disorders such as stroke, Alzheimer's, schizophrenia, multiple sclerosis, autism, and epilepsy. Our experiments show that photoacoustic microscopy is capable to detect connectivities between different functional regions in B-scan mode, promising a powerful functional imaging modality for future brain research.

  17. High-Resolution and Quantitative X-Ray Phase-Contrast Tomography for Mouse Brain Research

    PubMed Central

    Xi, Yan; Lin, Xiaojie; Yuan, Falei; Yang, Guo-Yuan; Zhao, Jun

    2015-01-01

    Imaging techniques for visualizing cerebral vasculature and distinguishing functional areas are essential and critical to the study of various brain diseases. In this paper, with the X-ray phase-contrast imaging technique, we proposed an experiment scheme for the ex vivo mouse brain study, achieving both high spatial resolution and improved soft-tissue contrast. This scheme includes two steps: sample preparation and volume reconstruction. In the first step, we use heparinized saline to displace the blood inside cerebral vessels and then replace it with air making air-filled mouse brain. After sample preparation, X-ray phase-contrast tomography is performed to collect the data for volume reconstruction. Here, we adopt a phase-retrieval combined filtered backprojection method to reconstruct its three-dimensional structure and redesigned the reconstruction kernel. To evaluate its performance, we carried out experiments at Shanghai Synchrotron Radiation Facility. The results show that the air-tissue structured cerebral vasculatures are highly visible with propagation-based phase-contrast imaging and can be clearly resolved in reconstructed cross-images. Besides, functional areas, such as the corpus callosum, corpus striatum, and nuclei, are also clearly resolved. The proposed method is comparable with hematoxylin and eosin staining method but represents the studied mouse brain in three dimensions, offering a potential powerful tool for the research of brain disorders. PMID:26576198

  18. Towards ultrahigh resting-state functional connectivity in the mouse brain using photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Hariri, Ali; Bely, Nicholas; Chen, Chen; Nasiriavanaki, Mohammadreza

    2016-03-01

    The increasing use of mouse models for human brain disease studies, coupled with the fact that existing high-resolution functional imaging modalities cannot be easily applied to mice, presents an emerging need for a new functional imaging modality. Utilizing both mechanical and optical scanning in the photoacoustic microscopy, we can image spontaneous cerebral hemodynamic fluctuations and their associated functional connections in the mouse brain. The images is going to be acquired noninvasively with a fast frame rate, a large field of view, and a high spatial resolution. We developed an optical resolution photoacoustic microscopy (OR-PAM) with diode laser. Laser light was raster scanned due to XY-stage movement. Images from ultra-high OR-PAM can then be used to study brain disorders such as stroke, Alzheimer's, schizophrenia, multiple sclerosis, autism, and epilepsy.

  19. Metabolism of choline in brain of the aged CBF-1 mouse

    SciTech Connect

    Saito, M.; Kindel, G.; Karczmar, A.G.; Rosenberg, A.

    1986-01-01

    In order to quantify the changes that occur in the cholinergic central nervous system with aging, we have compared acetylcholine (Ach) formation in brain cortex slice preparations from 2-year-old aged CBF-1 mouse brains and compared the findings with those in 2-4-month-old young adult mouse brain slices. Incorporation of exogenous radioactively labelled choline (31 nM (/sup 3/H) choline) into acetyl choline in incubated brain slices was linear with time for 90 min. Percentage of total choline label distributed into Ach remained constant from 5 min after starting the incubation to 90 min. In contrast, distribution of label into intracellular free choline (Ch) and phosphorylcholine (Pch) changed continuously over this period suggesting that the Ch pool for Ach synthesis in brain cortex is different from that for Pch synthesis. Incorporation of radioactivity into Ach was not influenced by administration of 10 microM eserine, showing that the increment of radioactivity in Ach reflects rate of Ach formation, independently from degradation by acetylcholine esterases. Under our experimental conditions, slices from cortices of aged 24-month-old mouse brain showed a significantly greater (27%) incorporation of radioactivity into intracellular Ach than those from young, 2-4-month-old, brain cortices. Inhibitors of Ach release, 1 mM ATP or GABA, had no effect. Since concentration of radioactive precursor in the incubation medium was very low (31 nM), the Ch pool for Ach synthesis in slices was labelled without measurably changing the size of the endogenous pool. These data suggest a compensatory acceleration of Ach synthesis or else a smaller precursor pool specific for Ach synthesis into which labelled Ch migrated in aged brain.

  20. Transport of thyroxine across the blood-brain barrier is directed primarily from brain to blood in the mouse

    SciTech Connect

    Banks, W.A.; Kastin, A.J.; Michals, E.A.

    1985-12-23

    The role of the blood-brain barrier (BBB) in the transport of thyroxine was examined in mice. Radioiodinated (hot thyroxine (hT/sub 4/) administered icv had a half-time disappearance from the brain of 30 min. This increased to 60 min (p < 0.001) when administered with 211 pmole/mouse of unlabeled (cold) thyroxine (cT/sub 4/). The Km for this inhibition of hT/sub 4/ transport out of the brain by cT/sub 4/ was 9.66 pmole/brain. Unlabeled 3,3',5 triiodothyronine (cT/sub 3/) was unable to inhibit transport of hT/sub 4/ out of the brain, although both cT/sub 3/ (p < 0.05) and cT/sub 4/ (p < 0.05) did inhibit transport of radioiodinated 3,3',5 triiodothyronine (hT/sub 3/) to a small degree. Entry of hT/sub 4/ into the brain after peripheral administration was negligible and was not affected by either cT/sub 4/ nor cT/sub 3/. By contrast, the entry of hT/sub 3/ into the brain after peripheral administration was inhibited by cT/sub 3/ (p < 0.001) and was increased by cT/sub 4/ (p < 0.01). The levels of the unlabeled thyroid hormones administered centrally in these studies did not affect bulk flow, as assessed by labeled red blood cells (/sup 99m/Tc-RBC), or the carrier mediated transport of iodide out of the brain. Likewise, the vascular space of the brain and body, as assessed by /sup 99m/Tc-RBC, was unchanged by the levels of peripherally administered unlabeled thyroid hormones. Therefore, the results of these studies are not due to generalized effects of thyroid hormones on BBB transport. The results indicate that in the mouse the major carrier-mediated system for thyroxine in the BBB transports thyroxine out of the brain, while the major system for triiodothyronine transports hormone into the brain. 14 references, 3 figures, 2 tables.

  1. MRI as a tool to study brain structure from mouse models for mental retardation

    NASA Astrophysics Data System (ADS)

    Verhoye, Marleen; Sijbers, Jan; Kooy, R. F.; Reyniers, E.; Fransen, E.; Oostra, B. A.; Willems, Peter; Van der Linden, Anne-Marie

    1998-07-01

    Nowadays, transgenic mice are a common tool to study brain abnormalities in neurological disorders. These studies usually rely on neuropathological examinations, which have a number of drawbacks, including the risk of artefacts introduced by fixation and dehydration procedures. Here we present 3D Fast Spin Echo Magnetic Resonance Imaging (MRI) in combination with 2D and 3D segmentation techniques as a powerful tool to study brain anatomy. We set up MRI of the brain in mouse models for the fragile X syndrome (FMR1 knockout) and Corpus callosum hypoplasia, mental Retardation, Adducted thumbs, Spastic paraplegia and Hydrocephalus (CRASH) syndrome (L1CAM knockout). Our major goal was to determine qualitative and quantitative differences in specific brain structures. MRI of the brain of fragile X and CRASH patients has revealed alterations in the size of specific brain structures, including the cerebellar vermis and the ventricular system. In the present MRI study of the brain from fragile X knockout mice, we have measured the size of the brain, cerebellum and 4th ventricle, which were reported as abnormal in human fragile X patients, but found no evidence for altered brain regions in the mouse model. In CRASH syndrome, the most specific brain abnormalities are vermis hypoplasia and abnormalities of the ventricular system with some degree of hydrocephalus. With the MRI study of L1CAM knockout mice we found vermis hypoplasia, abnormalities of the ventricular system including dilatation of the lateral and the 4th ventricles. These subtle abnormalities were not detected upon standard neuropathological examination. Here we proved that this sensitive MRI technique allows to measure small differences which can not always be detected by means of pathology.

  2. Practical Application of Microelectroporation into Developing Mouse Brain

    NASA Astrophysics Data System (ADS)

    Shimogori, Tomomi; Ogawa, Masaharu

    One key approach toward understanding the genetic mechanisms underlying embryonic development involves the overexpression or misexpression of target genes in specific regions and at specific time points. The mouse gene-knockout system has been used extensively for loss-of-function studies due to the availability of a large number of mutant lines and the technical advantages of this system. In contrast, gain-of-function analyses have been performed through the production of knock-in and transgenic animals and with the use of various viruses (Cornetta 2006; Jakobsson et al., 2003; Hashimoto and Mikoshiba, 2004). However, it is not always possible to express or suppress genes in a spatially and temporally restricted manner, and the generation of genetically modified mice and recombinant viruses is time consuming and labor intensive. With the aim of solving these problems, many attempts have been made to apply the electroporation technique in research on developmental biology. Due to the accessibility of the avian embryo, it has been used as a classic model system for the study of developmental events in vertebrates. A novel technique for successful gene delivery into chick embryos has been established; this technique is known as in ovo electroporation and appears to be an excellent method, permitting quick and direct examination of the function of the delivered genes (Muramatsu et al., 1997; Itasaki et al., 1999; Momose et al., 1999; Nakamura et al., 2000; Yasuda et al., 2000). It seems that this technique can be adapted to the mouse embryo and would permit more rapid functional analysis of genes than is achieved by the generation of knockout or transgenic mouse lines. However, the inaccessibility of embryos in the mammalian uterus renders in utero manipulations targeting precise regions difficult or impossible at most stages of development. Efforts have been undertaken by various researchers to establish an in utero electroporation system, and there have been several

  3. Quantitative map of multiple auditory cortical regions with a stereotaxic fine-scale atlas of the mouse brain

    PubMed Central

    Tsukano, Hiroaki; Horie, Masao; Hishida, Ryuichi; Takahashi, Kuniyuki; Takebayashi, Hirohide; Shibuki, Katsuei

    2016-01-01

    Optical imaging studies have recently revealed the presence of multiple auditory cortical regions in the mouse brain. We have previously demonstrated, using flavoprotein fluorescence imaging, at least six regions in the mouse auditory cortex, including the anterior auditory field (AAF), primary auditory cortex (AI), the secondary auditory field (AII), dorsoanterior field (DA), dorsomedial field (DM), and dorsoposterior field (DP). While multiple regions in the visual cortex and somatosensory cortex have been annotated and consolidated in recent brain atlases, the multiple auditory cortical regions have not yet been presented from a coronal view. In the current study, we obtained regional coordinates of the six auditory cortical regions of the C57BL/6 mouse brain and illustrated these regions on template coronal brain slices. These results should reinforce the existing mouse brain atlases and support future studies in the auditory cortex. PMID:26924462

  4. Multiple Antenatal Dexamethasone Treatment Alters Brain Vessel Differentiation in Newborn Mouse Pups.

    PubMed

    Neuhaus, Winfried; Schlundt, Marian; Fehrholz, Markus; Ehrke, Alexander; Kunzmann, Steffen; Liebner, Stefan; Speer, Christian P; Förster, Carola Y

    2015-01-01

    Antenatal steroid treatment decreases morbidity and mortality in premature infants through the maturation of lung tissue, which enables sufficient breathing performance. However, clinical and animal studies have shown that repeated doses of glucocorticoids such as dexamethasone and betamethasone lead to long-term adverse effects on brain development. Therefore, we established a mouse model for antenatal dexamethasone treatment to investigate the effects of dexamethasone on brain vessel differentiation towards the blood-brain barrier (BBB) phenotype, focusing on molecular marker analysis. The major findings were that in total brains on postnatal day (PN) 4 triple antenatal dexamethasone treatment significantly downregulated the tight junction protein claudin-5, the endothelial marker Pecam-1/CD31, the glucocorticoid receptor, the NR1 subunit of the N-methyl-D-aspartate receptor, and Abc transporters (Abcb1a, Abcg2 Abcc4). Less pronounced effects were found after single antenatal dexamethasone treatment and in PN10 samples. Comparisons of total brain samples with isolated brain endothelial cells together with the stainings for Pecam-1/CD31 and claudin-5 led to the assumption that the morphology of brain vessels is affected by antenatal dexamethasone treatment at PN4. On the mRNA level markers for angiogenesis, the sonic hedgehog and the Wnt pathway were downregulated in PN4 samples, suggesting fundamental changes in brain vascularization and/or differentiation. In conclusion, we provided a first comprehensive molecular basis for the adverse effects of multiple antenatal dexamethasone treatment on brain vessel differentiation. PMID:26274818

  5. Methodology for fiber-optic Raman mapping and FTIR imaging of metastases in mouse brains.

    PubMed

    Krafft, Christoph; Kirsch, Matthias; Beleites, Claudia; Schackert, Gabriele; Salzer, Reiner

    2007-10-01

    The objectives of this study were to optimize the preparation of pristine brain tissue to obtain reference information, to optimize the conditions for introducing a fiber-optic probe to acquire Raman maps, and to transfer previous results obtained from human brain tumors to an animal model. Brain metastases of malignant melanomas were induced by injecting tumor cells into the carotid artery of mice. The procedure mimicked hematogenous tumor spread in one brain hemisphere while the other hemisphere remained tumor free. Three series of sections were prepared consecutively from whole mouse brains: dried, thin sections for FTIR imaging, hematoxylin and eosin-stained thin sections for histopathological assessment, and pristine, 2-mm thick sections for Raman mapping. FTIR images were recorded using a spectrometer with a multi-channel detector. Raman maps were collected serially using a spectrometer coupled to a fiber-optic probe. The FTIR images and the Raman maps were segmented by cluster analysis. The color-coded cluster memberships coincided well with the morphology of mouse brains in stained tissue sections. More details in less time were resolved in FTIR images with a nominal resolution of 25 microm than in Raman maps collected with a laser focus 60 microm in diameter. The spectral contributions of melanin in tumor cells were resonance enhanced in Raman spectra on excitation at 785 nm which enabled their sensitive detection in Raman maps. Possible reasons why metastatic cells of malignant melanomas were not identified in FTIR images are discussed. PMID:17639353

  6. Cell and tissue kinetics of the subependymal layer in mouse brain following heavy charged particle irradiation

    SciTech Connect

    Manley, N.B.; Fabrikant, J.I.; Alpen, E.L.

    1988-12-01

    The following studies investigate the cellular response and cell population kinetics of the subependymal layer in the mouse brain exposed to heavy charged particle irradiation. Partial brain irradiation with helium and neon ions was confined to one cortex of the brain. Both the irradiated and the unirradiated contralateral cortex showed similar disturbances of the cell and tissue kinetics in the subependymal layers. The irradiated hemisphere exhibited histological damage, whereas the unirradiated side appeared normal histologically. This study concerns the cell population and cell cycle kinetics of the subependymal layer in the mouse brain, and the effects of charged particle irradiations on this cell population. Quantitative high resolution autoradiography was used to study the kinetic parameters in this cell layer. This study should help in understanding the effects of these high-energy heavy ions on normal mammalian brain tissue. The response of the mammalian brain exposure to charged particle ionizing radiation may be extremely variable. It varies from minimal physiological changes to overt tissue necrosis depending on a number of factors such as: the administered dose, dose-rate, the volume of the irradiated tissue, and the biological end-point being examined.

  7. A reliable method for intracranial electrode implantation and chronic electrical stimulation in the mouse brain

    PubMed Central

    2013-01-01

    Background Electrical stimulation of brain structures has been widely used in rodent models for kindling or modeling deep brain stimulation used clinically. This requires surgical implantation of intracranial electrodes and subsequent chronic stimulation in individual animals for several weeks. Anchoring screws and dental acrylic have long been used to secure implanted intracranial electrodes in rats. However, such an approach is limited when carried out in mouse models as the thin mouse skull may not be strong enough to accommodate the anchoring screws. We describe here a screw-free, glue-based method for implanting bipolar stimulating electrodes in the mouse brain and validate this method in a mouse model of hippocampal electrical kindling. Methods Male C57 black mice (initial ages of 6–8 months) were used in the present experiments. Bipolar electrodes were implanted bilaterally in the hippocampal CA3 area for electrical stimulation and electroencephalographic recordings. The electrodes were secured onto the skull via glue and dental acrylic but without anchoring screws. A daily stimulation protocol was used to induce electrographic discharges and motor seizures. The locations of implanted electrodes were verified by hippocampal electrographic activities and later histological assessments. Results Using the glue-based implantation method, we implanted bilateral bipolar electrodes in 25 mice. Electrographic discharges and motor seizures were successfully induced via hippocampal electrical kindling. Importantly, no animal encountered infection in the implanted area or a loss of implanted electrodes after 4–6 months of repetitive stimulation/recording. Conclusion We suggest that the glue-based, screw-free method is reliable for chronic brain stimulation and high-quality electroencephalographic recordings in mice. The technical aspects described this study may help future studies in mouse models. PMID:23914984

  8. A Novel Mouse Model of Penetrating Brain Injury

    PubMed Central

    Cernak, Ibolja; Wing, Ian D.; Davidsson, Johan; Plantman, Stefan

    2014-01-01

    Penetrating traumatic brain injury (pTBI) has been difficult to model in small laboratory animals, such as rats or mice. Previously, we have established a non-fatal, rat model for pTBI using a modified air-rifle that accelerates a pellet, which hits a small probe that then penetrates the experimental animal’s brain. Knockout and transgenic strains of mice offer attractive tools to study biological reactions induced by TBI. Hence, in the present study, we adapted and modified our model to be used with mice. The technical characterization of the impact device included depth and speed of impact, as well as dimensions of the temporary cavity formed in a brain surrogate material after impact. Biologically, we have focused on three distinct levels of severity (mild, moderate, and severe), and characterized the acute phase response to injury in terms of tissue destruction, neural degeneration, and gliosis. Functional outcome was assessed by measuring bodyweight and motor performance on rotarod. The results showed that this model is capable of reproducing major morphological and neurological changes of pTBI; as such, we recommend its utilization in research studies aiming to unravel the biological events underlying injury and regeneration after pTBI. PMID:25374559

  9. Hierarchical organization of functional connectivity in the mouse brain: a complex network approach

    PubMed Central

    Bardella, Giampiero; Bifone, Angelo; Gabrielli, Andrea; Gozzi, Alessandro; Squartini, Tiziano

    2016-01-01

    This paper represents a contribution to the study of the brain functional connectivity from the perspective of complex networks theory. More specifically, we apply graph theoretical analyses to provide evidence of the modular structure of the mouse brain and to shed light on its hierarchical organization. We propose a novel percolation analysis and we apply our approach to the analysis of a resting-state functional MRI data set from 41 mice. This approach reveals a robust hierarchical structure of modules persistent across different subjects. Importantly, we test this approach against a statistical benchmark (or null model) which constrains only the distributions of empirical correlations. Our results unambiguously show that the hierarchical character of the mouse brain modular structure is not trivially encoded into this lower-order constraint. Finally, we investigate the modular structure of the mouse brain by computing the Minimal Spanning Forest, a technique that identifies subnetworks characterized by the strongest internal correlations. This approach represents a faster alternative to other community detection methods and provides a means to rank modules on the basis of the strength of their internal edges. PMID:27534708

  10. Hierarchical organization of functional connectivity in the mouse brain: a complex network approach.

    PubMed

    Bardella, Giampiero; Bifone, Angelo; Gabrielli, Andrea; Gozzi, Alessandro; Squartini, Tiziano

    2016-01-01

    This paper represents a contribution to the study of the brain functional connectivity from the perspective of complex networks theory. More specifically, we apply graph theoretical analyses to provide evidence of the modular structure of the mouse brain and to shed light on its hierarchical organization. We propose a novel percolation analysis and we apply our approach to the analysis of a resting-state functional MRI data set from 41 mice. This approach reveals a robust hierarchical structure of modules persistent across different subjects. Importantly, we test this approach against a statistical benchmark (or null model) which constrains only the distributions of empirical correlations. Our results unambiguously show that the hierarchical character of the mouse brain modular structure is not trivially encoded into this lower-order constraint. Finally, we investigate the modular structure of the mouse brain by computing the Minimal Spanning Forest, a technique that identifies subnetworks characterized by the strongest internal correlations. This approach represents a faster alternative to other community detection methods and provides a means to rank modules on the basis of the strength of their internal edges. PMID:27534708

  11. Tau isoform regulation is region- and cell-specific in mouse brain.

    PubMed

    McMillan, Pamela; Korvatska, Elena; Poorkaj, Parvoneh; Evstafjeva, Zana; Robinson, Linda; Greenup, Lynne; Leverenz, James; Schellenberg, Gerard D; D'Souza, Ian

    2008-12-20

    Tau is a microtubule-associated protein implicated in neurodegenerative tauopathies. Alternative splicing of the tau gene (MAPT) generates six tau isoforms, distinguishable by the exclusion or inclusion of a repeat region of exon 10, which are referred to as 3-repeat (3R) and 4-repeat (4R) tau, respectively. We developed transgenic mouse models that express the entire human MAPT gene in the presence and absence of the mouse Mapt gene and compared the expression and regulation of mouse and human tau isoforms during development and in the young adult. We found differences between mouse and human tau in the regulation of exon 10 inclusion. Despite these differences, the isoform splicing pattern seen in normal human brain is replicated in our mouse models. In addition, we found that all tau, both in the neonate and young adult, is phosphorylated. We also examined the normal anatomic distribution of mouse and human tau isoforms in mouse brain. We observed developmental and species-specific variations in the expression of 3R- and 4R-tau within the frontal cortex and hippocampus. In addition, there were differences in the cellular distribution of the isoforms. Mice transgenic for the human MAPT gene exhibited higher levels of neuronal cell body expression of tau compared to wildtype mice. This neuronal cell body expression of tau was limited to the 3R isoform, whereas expression of 4R-tau was more "synaptic like," with granular staining of neuropil rather than in neuronal cell bodies. These developmental and species-specific differences in the regulation and distribution of tau isoforms may be important to the understanding of normal and pathologic tau isoform expression. PMID:18925637

  12. Tau isoform regulation is region and cell-specific in mouse brain

    PubMed Central

    McMillan, Pamela; Korvatska, Elena; Poorkaj, Parvoneh; Evstafjeva, Zana; Robinson, Linda; Greenup, Lynne; Leverenz, James; Schellenberg, Gerard D.; D’Souza, Ian

    2008-01-01

    Tau is a microtubule-associated protein implicated in neurodegenerative tauopathies. Alternative splicing of the tau gene (MAPT) generates six tau isoforms, distinguishable by the exclusion or inclusion of a repeat region of exon 10, that are referred to as 3-repeat (3R) and 4-repeat (4R) tau, respectively. We developed transgenic mouse models that express the entire human MAPT gene in the presence and absence of the mouse Mapt gene and compared the expression and regulation of mouse and human tau isoforms during development and in the young adult. We found differences between mouse and human tau in the regulation of exon 10 inclusion. Despite these differences, the isoform splicing pattern seen in normal human brain is replicated in our mouse models. In addition, we found that all tau, both in the neonate and young adult, is phosphorylated. We also examined the normal anatomic distribution of mouse and human tau isoforms in mouse brain. We observed developmental and species-specific variations in the expression of 3R and 4R-tau within the frontal cortex and hippocampus. In addition, there were differences in the cellular distribution of the isoforms. Mice transgenic for the human MAPT gene exhibited higher levels of neuronal cell body expression of tau compared to wild-type mice. This neuronal cell body expression of tau was limited to the 3R isoform, whereas expression of 4R tau was more “synaptic like”, with granular staining of neuropil rather than in neuronal cell bodies. These developmental and species-specific differences in the regulation and distribution of tau isoforms may be important to the understanding of normal and pathologic tau isoform expression. PMID:18925637

  13. Allene Functionalization via Bicyclic Methylene Aziridines

    PubMed Central

    Boralsky, Luke A.; Marston, Dagmara; Grigg, R. David; Hershberger, John C.; Schomaker, Jennifer M.

    2011-01-01

    The oxidative functionalization of olefins is a common method for the formation of vicinal carbon-heteroatom bonds. However, oxidative methods to transform allenes into synthetic motifs containing three contiguous carbon-heteroatom bonds are much less developed. This paper describes the use of bicyclic methylene aziridines (MAs), prepared via intramolecular allene aziridination, as scaffolds for functionalization of all three allene carbons. PMID:21438516

  14. Altered Neurocircuitry in the Dopamine Transporter Knockout Mouse Brain

    PubMed Central

    Zhang, Xiaowei; Bearer, Elaine L.; Boulat, Benoit; Hall, F. Scott; Uhl, George R.; Jacobs, Russell E.

    2010-01-01

    The plasma membrane transporters for the monoamine neurotransmitters dopamine, serotonin, and norepinephrine modulate the dynamics of these monoamine neurotransmitters. Thus, activity of these transporters has significant consequences for monoamine activity throughout the brain and for a number of neurological and psychiatric disorders. Gene knockout (KO) mice that reduce or eliminate expression of each of these monoamine transporters have provided a wealth of new information about the function of these proteins at molecular, physiological and behavioral levels. In the present work we use the unique properties of magnetic resonance imaging (MRI) to probe the effects of altered dopaminergic dynamics on meso-scale neuronal circuitry and overall brain morphology, since changes at these levels of organization might help to account for some of the extensive pharmacological and behavioral differences observed in dopamine transporter (DAT) KO mice. Despite the smaller size of these animals, voxel-wise statistical comparison of high resolution structural MR images indicated little morphological change as a consequence of DAT KO. Likewise, proton magnetic resonance spectra recorded in the striatum indicated no significant changes in detectable metabolite concentrations between DAT KO and wild-type (WT) mice. In contrast, alterations in the circuitry from the prefrontal cortex to the mesocortical limbic system, an important brain component intimately tied to function of mesolimbic/mesocortical dopamine reward pathways, were revealed by manganese-enhanced MRI (MEMRI). Analysis of co-registered MEMRI images taken over the 26 hours after introduction of Mn2+ into the prefrontal cortex indicated that DAT KO mice have a truncated Mn2+ distribution within this circuitry with little accumulation beyond the thalamus or contralateral to the injection site. By contrast, WT littermates exhibit Mn2+ transport into more posterior midbrain nuclei and contralateral mesolimbic structures at

  15. Isolation and Flow Cytometric Analysis of Immune Cells from the Ischemic Mouse Brain

    PubMed Central

    Boltze, Johannes; Wagner, Daniel-Christoph; Weise, Gesa

    2016-01-01

    Ischemic stroke initiates a robust inflammatory response that starts in the intravascular compartment and involves rapid activation of brain resident cells. A key mechanism of this inflammatory response is the migration of circulating immune cells to the ischemic brain facilitated by chemokine release and increased endothelial adhesion molecule expression. Brain-invading leukocytes are well-known contributing to early-stage secondary ischemic injury, but their significance for the termination of inflammation and later brain repair has only recently been noticed. Here, a simple protocol for the efficient isolation of immune cells from the ischemic mouse brain is provided. After transcardial perfusion, brain hemispheres are dissected and mechanically dissociated. Enzymatic digestion with Liberase is followed by density gradient (such as Percoll) centrifugation to remove myelin and cell debris. One major advantage of this protocol is the single-layer density gradient procedure which does not require time-consuming preparation of gradients and can be reliably performed. The approach yields highly reproducible cell counts per brain hemisphere and allows for measuring several flow cytometry panels in one biological replicate. Phenotypic characterization and quantification of brain-invading leukocytes after experimental stroke may contribute to a better understanding of their multifaceted roles in ischemic injury and repair. PMID:26967380

  16. Relationship of impaired brain glucose metabolism to learning deficit in the senescence-accelerated mouse.

    PubMed

    Ohta, H; Nishikawa, H; Hirai, K; Kato, K; Miyamoto, M

    1996-10-11

    The relationship between brain glucose metabolism and learning deficit was examined in the senescence-accelerated-prone mouse (SAMP) 8, which has been proven to be a useful murine model of age-related behavioral disorders. SAMP8, 7 months old, exhibited marked learning impairment in the passive avoidance task, as compared with the control strain, senescence-accelerated-resistant mice (SAMR) 1. SAMP8 also exhibited a reduction in brain glucose metabolism, as indicated by a reduction in [14C]2-deoxyglucose accumulation in the brain following the intravenous injection impaired glucose metabolism correlated significantly with the learning impairment in all brain regions in SAMR1 and SAMP8. In the SAMP8, a significant correlation was observed in the posterior half of the cerebral cortex. These results suggest that the SAMP8 strain is a useful model of not only age-related behavioral disorders, but also glucose hypometabolism observed in aging and dementias. PMID:8905734

  17. Imaging whole-brain cytoarchitecture of mouse with MRI-based quantitative susceptibility mapping.

    PubMed

    Wei, Hongjiang; Xie, Luke; Dibb, Russell; Li, Wei; Decker, Kyle; Zhang, Yuyao; Johnson, G Allan; Liu, Chunlei

    2016-08-15

    The proper microstructural arrangement of complex neural structures is essential for establishing the functional circuitry of the brain. We present an MRI method to resolve tissue microstructure and infer brain cytoarchitecture by mapping the magnetic susceptibility in the brain at high resolution. This is possible because of the heterogeneous magnetic susceptibility created by varying concentrations of lipids, proteins and irons from the cell membrane to cytoplasm. We demonstrate magnetic susceptibility maps at a nominal resolution of 10-μm isotropic, approaching the average cell size of a mouse brain. The maps reveal many detailed structures including the retina cell layers, olfactory sensory neurons, barrel cortex, cortical layers, axonal fibers in white and gray matter. Olfactory glomerulus density is calculated and structural connectivity is traced in the optic nerve, striatal neurons, and brainstem nerves. The method is robust and can be readily applied on MRI scanners at or above 7T. PMID:27181764

  18. Mapping oxygen concentration in the awake mouse brain

    PubMed Central

    Lyons, Declan G; Parpaleix, Alexandre; Roche, Morgane; Charpak, Serge

    2016-01-01

    Although critical for brain function, the physiological values of cerebral oxygen concentration have remained elusive because high-resolution measurements have only been performed during anesthesia, which affects two major parameters modulating tissue oxygenation: neuronal activity and blood flow. Using measurements of capillary erythrocyte-associated transients, fluctuations of oxygen partial pressure (Po2) associated with individual erythrocytes, to infer Po2 in the nearby neuropil, we report the first non-invasive micron-scale mapping of cerebral Po2 in awake, resting mice. Interstitial Po2 has similar values in the olfactory bulb glomerular layer and the somatosensory cortex, whereas there are large capillary hematocrit and erythrocyte flux differences. Awake tissue Po2 is about half that under isoflurane anesthesia, and within the cortex, vascular and interstitial Po2 values display layer-specific differences which dramatically contrast with those recorded under anesthesia. Our findings emphasize the importance of measuring energy parameters non-invasively in physiological conditions to precisely quantify and model brain metabolism. DOI: http://dx.doi.org/10.7554/eLife.12024.001 PMID:26836304

  19. Preparation of mouse brain tissue for immunoelectron microscopy.

    PubMed

    Tremblay, Marie-Eve; Riad, Mustapha; Majewska, Ania

    2010-01-01

    Transmission electron microscopy (TEM) is extremely useful for visualizing microglial, oligodendrocytic, astrocytic, and neuronal subcellular compartments (dendrite, dendritic spine, axon, axon terminal, perikaryon), as well as their intracellular organelles and cytoskeleton, in the central nervous system at high spatial resolution. Combined with TEM, pre-embedding immunocytochemistry allows the discrimination of cellular elements with few distinctive features and identification criteria (e.g., microglial perikarya and processes, when using an antibody against the microglia-specific marker Iba1 (ionized calcium binding adaptor molecule 1; as presented here)), identifying the neurotransmitter contents of cellular elements (e.g., serotonergic) and their ultrastructural localization of soluble or membrane-bound proteins (e.g., 5 HT1A and EphA4 receptors). Here, we describe a protocol for transcardiac perfusion of mice with acrolein fixative, removal and sectioning of the brain, as well as immunoperoxidase-diaminobenzidine (DAB) staining, resin embedding, and ultrathin sectioning of the brain sections. Upon completion of these procedures, the immunostained material is ready for examination with TEM. When rigorously performed, this technique provides an excellent compromise between optimal ultrastructural preservation and immunocytochemical detection. PMID:20689505

  20. A Critique of Mark D. Allen's "The Preservation of Verb Subcategory Knowledge in a Spoken Language Comprehension Deficit"

    ERIC Educational Resources Information Center

    Kemmerer, David

    2008-01-01

    Allen [Allen, M. (2005). "The preservation of verb subcategory knowledge in a spoken language comprehension deficit." "Brain and Language, 95", 255-264.] reports a single patient, WBN, who, during spoken language comprehension, is still able to access some of the syntactic properties of verbs despite being unable to access some of their semantic…

  1. Resting-state functional connectivity imaging of the mouse brain using photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Nasiriavanaki, Mohammadreza; Xia, Jun; Wan, Hanlin; Bauer, Adam Q.; Culver, Joseph P.; Wang, Lihong V.

    2014-03-01

    Resting-state functional connectivity (RSFC) imaging is an emerging neuroimaging approach that aims to identify spontaneous cerebral hemodynamic fluctuations and their associated functional connections. Clinical studies have demonstrated that RSFC is altered in brain disorders such as stroke, Alzheimer's, autism, and epilepsy. However, conventional neuroimaging modalities cannot easily be applied to mice, the most widely used model species for human brain disease studies. For instance, functional magnetic resonance imaging (fMRI) of mice requires a very high magnetic field to obtain a sufficient signal-to-noise ratio and spatial resolution. Functional connectivity mapping with optical intrinsic signal imaging (fcOIS) is an alternative method. Due to the diffusion of light in tissue, the spatial resolution of fcOIS is limited, and experiments have been performed using an exposed skull preparation. In this study, we show for the first time, the use of photoacoustic computed tomography (PACT) to noninvasively image resting-state functional connectivity in the mouse brain, with a large field of view and a high spatial resolution. Bilateral correlations were observed in eight regions, as well as several subregions. These findings agreed well with the Paxinos mouse brain atlas. This study showed that PACT is a promising, non-invasive modality for small-animal functional brain imaging.

  2. Transcriptomic configuration of mouse brain induced by adolescent exposure to 3,4-methylenedioxymethamphetamine

    SciTech Connect

    Eun, Jung Woo; Kwack, Seung Jun; Noh, Ji Heon; Jung, Kwang Hwa; Kim, Jeong Kyu; Bae, Hyun Jin; Xie Hongjian; Ryu, Jae Chun; Ahn, Young Min; Min, Jin-Hye; Park, Won Sang; Lee, Jung Young; Rhee, Gyu Seek; Nam, Suk Woo

    2009-05-15

    The amphetamine derivative ({+-})-3,4-methylenedioxymethamphetamine (MDMA or ecstasy) is a synthetic amphetamine analogue used recreationally to obtain an enhanced affiliative emotional response. MDMA is a potent monoaminergic neurotoxin with the potential to damage brain serotonin and/or dopamine neurons. As the majority of MDMA users are young adults, the risk that users may expose the fetus to MDMA is a concern. However, the majority of studies on MDMA have investigated the effects on adult animals. Here, we investigated whether long-term exposure to MDMA, especially in adolescence, could induce comprehensive transcriptional changes in mouse brain. Transcriptomic analysis of mouse brain regions demonstrated significant gene expression changes in the cerebral cortex. Supervised analysis identified 1028 genes that were chronically dysregulated by long-term exposure to MDMA in adolescent mice. Functional categories most represented by this MDMA characteristic signature are intracellular molecular signaling pathways of neurotoxicity, such as, the MAPK signaling pathway, the Wnt signaling pathway, neuroactive ligand-receptor interaction, long-term potentiation, and the long-term depression signaling pathway. Although these resultant large-scale molecular changes remain to be studied associated with functional brain damage caused by MDMA, our observations delineate the possible neurotoxic effects of MDMA on brain function, and have therapeutic implications concerning neuro-pathological conditions associated with MDMA abuse.

  3. From cartoon to real time MRI: in vivo monitoring of phagocyte migration in mouse brain.

    PubMed

    Mori, Yuki; Chen, Ting; Fujisawa, Tetsuya; Kobashi, Syoji; Ohno, Kohji; Yoshida, Shinichi; Tago, Yoshiyuki; Komai, Yutaka; Hata, Yutaka; Yoshioka, Yoshichika

    2014-01-01

    Recent studies have demonstrated that immune cells play an important role in the pathogenesis of many neurological conditions. Immune cells constantly survey the brain microvasculature for irregularities in levels of factors that signal homeostasis. Immune responses are initiated when necessary, resulting in mobilisation of the microglial cells resident in the central nervous system (CNS) and/or of infiltrating peripheral cells. However, little is known about the kinetics of immune cells in healthy and diseased CNS, because it is difficult to perform long-term visualisation of cell motility in live tissue with minimal invasion. Here, we describe highly sensitive in vivo MRI techniques for sequential monitoring of cell migration in the CNS at the single-cell level. We show that MRI combined with intravenous administration of super-paramagnetic particles of iron oxide (SPIO) can be used to monitor the transmigration of peripheral phagocytes into healthy or LPS-treated mouse brains. We also demonstrate dynamic cell migration in live animal brains with time-lapse MRI videos. Time-lapse MRI was used to visualise and track cells with low motility in a control mouse brain. High-sensitivity MRI cell tracking using SPIO offers new insights into immune cell kinetics in the brain and the mechanisms of CNS homeostasis. PMID:25385430

  4. Dysbindin-Associated Proteome in the P2 Synaptosome Fraction of Mouse Brain

    PubMed Central

    2015-01-01

    The gene DTNBP1 encodes the protein dysbindin and is among the most promising and highly investigated schizophrenia-risk genes. Accumulating evidence suggests that dysbindin plays an important role in the regulation of neuroplasticity. Dysbindin was reported to be a stable component of BLOC-1 complex in the cytosol. However, little is known about the endogenous dysbindin-containing complex in the brain synaptosome. In this study, we investigated the associated proteome of dysbindin in the P2 synaptosome fraction of mouse brain. Our data suggest that dysbindin has three isoforms associating with different complexes in the P2 fraction of mouse brain. To facilitate immunopurification, BAC transgenic mice expressing a tagged dysbindin were generated, and 47 putative dysbindin-associated proteins, including all components of BLOC-1, were identified by mass spectrometry in the dysbindin-containing complex purified from P2. The interactions of several selected candidates, including WDR11, FAM91A1, snapin, muted, pallidin, and two proteasome subunits, PSMD9 and PSMA4, were verified by coimmunoprecipitation. The specific proteasomal activity is significantly reduced in the P2 fraction of the brains of the dysbindin-null mutant (sandy) mice. Our data suggest that dysbindin is functionally interrelated to the ubiquitin-proteasome system and offer a molecular repertoire for future study of dysbindin functional networks in brain. PMID:25198678

  5. High-speed Label-free Functional Photoacoustic Microscopy of Mouse Brain in Action

    PubMed Central

    Yao, Junjie; Wang, Lidai; Yang, Joon-Mo; Maslov, Konstantin I.; Wong, Terence T. W.; Li, Lei; Huang, Chih-Hsien; Zou, Jun; Wang, Lihong V.

    2015-01-01

    We present fast functional photoacoustic microscopy (PAM), which is capable of three-dimensional high-resolution high-speed imaging of the mouse brain, complementary to other imaging modalities. A single-wavelength pulse-width-based method was implemented to image blood oxygenation with capillary-level resolution and a one-dimensional imaging rate of 100 kHz. We applied PAM to image the vascular morphology, blood oxygenation, blood flow, and oxygen metabolism in the brain in both resting and stimulated states. PMID:25822799

  6. Pinostrobin from Cajanus cajan (L.) Millsp. inhibits sodium channel-activated depolarization of mouse brain synaptoneurosomes.

    PubMed

    Nicholson, Russell A; David, Laurence S; Pan, Rui Le; Liu, Xin Min

    2010-10-01

    This investigation focuses on the in vitro neuroactive properties of pinostrobin, a substituted flavanone from Cajanus cajan (L.) Millsp. of the Fabaceae family. We demonstrate that pinostrobin inhibits voltage-gated sodium channels of mammalian brain (IC(50)=23 µM) based on the ability of this substance to suppress the depolarizing effects of the sodium channel-selective activator veratridine in a synaptoneurosomal preparation from mouse brain. The resting membrane potential of synaptoneurosomes was unaffected by pinostrobin. The pharmacological profile of pinostrobin resembles that of depressant drugs that block sodium channels. PMID:20472040

  7. Minimally invasive microendoscopy system for in vivo functional imaging of deep nuclei in the mouse brain

    PubMed Central

    Bocarsly, Miriam E.; Jiang, Wan-chen; Wang, Chen; Dudman, Joshua T.; Ji, Na; Aponte, Yeka

    2015-01-01

    The ability to image neurons anywhere in the mammalian brain is a major goal of optical microscopy. Here we describe a minimally invasive microendoscopy system for studying the morphology and function of neurons at depth. Utilizing a guide cannula with an ultrathin wall, we demonstrated in vivo two-photon fluorescence imaging of deeply buried nuclei such as the striatum (2.5 mm depth), substantia nigra (4.4 mm depth) and lateral hypothalamus (5.0 mm depth) in mouse brain. We reported, for the first time, the observation of neuronal activity with subcellular resolution in the lateral hypothalamus and substantia nigra of head-fixed awake mice. PMID:26601017

  8. Transcriptional profiling of the postnatal brain of the Ts1Cje mouse model of Down syndrome.

    PubMed

    Tan, Kai-Leng; Ling, King-Hwa; Hewitt, Chelsee A; Cheah, Pike-See; Simpson, Ken; Gordon, Lavinia; Pritchard, Melanie A; Smyth, Gordon K; Thomas, Tim; Scott, Hamish S

    2014-12-01

    The Ts1Cje mouse model of Down syndrome (DS) has partial trisomy of mouse chromosome 16 (MMU16), which is syntenic to human chromosome 21 (HSA21). It develops various neuropathological features demonstrated by DS patients such as reduced cerebellar volume [1] and altered hippocampus-dependent learning and memory [2,3]. To understand the global gene expression effect of the partially triplicated MMU16 segment on mouse brain development, we performed the spatiotemporal transcriptome analysis of Ts1Cje and disomic control cerebral cortex, cerebellum and hippocampus harvested at four developmental time-points: postnatal day (P)1, P15, P30 and P84. Here, we provide a detailed description of the experimental and analysis procedures of the microarray dataset, which has been deposited in the Gene Expression Omnibus (GSE49050) database. PMID:26484118

  9. Cell-type–based model explaining coexpression patterns of genes in the brain

    PubMed Central

    Grange, Pascal; Bohland, Jason W.; Okaty, Benjamin W.; Sugino, Ken; Bokil, Hemant; Nelson, Sacha B.; Ng, Lydia; Hawrylycz, Michael; Mitra, Partha P.

    2014-01-01

    Spatial patterns of gene expression in the vertebrate brain are not independent, as pairs of genes can exhibit complex patterns of coexpression. Two genes may be similarly expressed in one region, but differentially expressed in other regions. These correlations have been studied quantitatively, particularly for the Allen Atlas of the adult mouse brain, but their biological meaning remains obscure. We propose a simple model of the coexpression patterns in terms of spatial distributions of underlying cell types and establish its plausibility using independently measured cell-type–specific transcriptomes. The model allows us to predict the spatial distribution of cell types in the mouse brain. PMID:24706869

  10. A mouse model of human repetitive mild traumatic brain injury

    PubMed Central

    Kane, Michael J.; Pérez, Mariana Angoa; Briggs, Denise I.; Viano, David C.; Kreipke, Christian W.; Kuhn, Donald M.

    2011-01-01

    A novel method for the study of repetitive mild traumatic brain injury (rmTBI) that models the most common form of head injury in humans is presented. Existing animal models of TBI impart focal, severe damage unlike that seen in repeated and mild concussive injuries, and few are configured for repetitive application. Our model is a modification of the Marmarou weight drop method and allows repeated head impacts to lightly anesthetized mice. A key facet of this method is the delivery of an impact to the cranium of an unrestrained subject allowing rapid acceleration of the free-moving head and torso, an essential characteristic known to be important for concussive injury in humans, and a factor that is missing from existing animal models of TBI. Our method does not require scalp incision, emplacement of protective skull helmets or surgery and the procedure can be completed in 1-2 minutes. Mice spontaneously recover the righting reflex and show no evidence of seizures, paralysis or impaired behavior. Skull fractures and intracranial bleeding are very rare. Minor deficits in motor coordination and locomotor hyperactivity recover over time. Histological analyses reveal mild astrocytic reactivity (increased expression of GFAP) and increased phospho-tau but a lack of blood-brain-barrier disruption, edema and microglial activation. This new animal model is simple and cost-effective and will facilitate characterization of the neurobiological and behavioral consequences of rmTBI. It is also ideal for high throughput screening of potential new therapies for mild concussive injuries as experienced by athletes and military personnel. PMID:21930157

  11. Molecular cloning of the mouse CCK gene: expression in different brain regions and during cortical development.

    PubMed Central

    Vitale, M; Vashishtha, A; Linzer, E; Powell, D J; Friedman, J M

    1991-01-01

    In this paper we describe experiments that address specific issues concerning the regulation of the mouse cholecystokinin gene in brain and intestine. The mouse cholecystokinin gene was cloned and sequenced. Extensive homology among the mouse, man and rat genes was noted particularly in the three exons and the regions upstream of the RNA start site. RNAse protection assays for each of the three exons were used to demonstrate that CCK is expressed in only a subset of tissues and that the same cap site and splice choices are used in brain, intestine as well as in cerebellum, cortex, midbrain, hypothalamus and hippocampus. CCK RNA was also noted to be detectable in kidney. Thus the same gene using the same promoter is expressed in subsets of cells that differ in their biochemical, morphologic and functional characteristics. The level of expression of CCK was also monitored during mouse cortical development and the appearance of CCK RNA was compared to glutamate decarboxylase (GAD), enkephalin and somatostatin. It was noted that each of these cortical markers was first expressed at different times during cortical development. The appearance of CCK RNA during intestinal development was also measured and found to precede appearance in cortex by several days. Images PMID:2011497

  12. Effects of Acorn (Quercus acutissima CARR.) Supplementation on Acetylcholine and Its Related Enzyme Activities in Brain of Dementia Model Mouse

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was carried out to investigate the effects of acorn (Quercus acutissima CARR.) on brain dementia in mouse. Murine dementia model was induced by scopolamin administration to abdominal cavity (30 mg/kg BW). Male ICR mouse (30 ' 2 g BW) were fed basic diet (control group), or experimental d...

  13. Tight junction protein expression and barrier properties of immortalized mouse brain microvessel endothelial cells.

    PubMed

    Brown, Rachel C; Morris, Andrew P; O'Neil, Roger G

    2007-01-26

    Understanding the molecular and biochemical mechanisms regulating the blood-brain barrier is aided by in vitro model systems. Many studies have used primary cultures of brain microvessel endothelial cells for this purpose. However, primary cultures limit the generation of material for molecular and biochemical assays since cells grow slowly, are prone to contamination by other neurovascular unit cells, and lose blood-brain barrier characteristics when passaged. To address these issues, immortalized cell lines have been generated. In these studies, we assessed the suitability of the immortalized mouse brain endothelial cell line, bEnd3, as a blood-brain barrier model. RT-PCR and immunofluorescence indicated expression of multiple tight junction proteins. bEnd3 cells formed barriers to radiolabeled sucrose, and responded like primary cultures to disrupting stimuli. Exposing cells to serum-free media on their basolateral side significantly decreased paracellular permeability; astrocyte-conditioned media did not enhance barrier properties. The serum-free media-induced decrease in permeability was correlated with an increase in claudin-5 and zonula occludens-1 immunofluorescence at cell-cell contracts. We conclude that bEnd3 cells are an attractive candidate as a model of the blood-brain barrier due to their rapid growth, maintenance of blood-brain barrier characteristics over repeated passages, formation of functional barriers and amenability to numerous molecular interventions. PMID:17169347

  14. Cannabichromene and tetrahydrocannabinol determination in mouse blood and brain by gas chromatography-mass spectrometry.

    PubMed

    DeLong, Gerald T; Wolf, Carl E; Poklis, Alphonse; Lichtman, Aron

    2011-09-01

    Cannabichromene (CBC) is a phytocannabinoid, the second most abundant cannabinoid quantitatively in marijuana. CBC has been shown to produce antinociception and anti-inflammatory effects in rodents. This method is validated for the measurement of THC and CBC simultaneously after extraction from mouse blood or brain. Whole brain harvested from mice was homogenized 2:1 (v/w) with normal saline. Fifty nanograms of THC-d₃ was added to 0.5 mL of heparinized mouse blood, brain homogenate, and THC and CBC fortified blood or brain calibrators, then equilibrated overnight at 5 °C. Two milliliters of "ice cold" acetonitrile was added drop-wise while the sample was vortex mixed, and then the sample was centrifuged and stored overnight at -30 °C. The cannabinoids were extracted from the acetonitrile layer with 2 mL of 0.2 N NaOH and 4 mL of hexane/ethyl acetate (9:1). The solvent was isolated and evaporated to dryness. Trimethylsilyl derivatives were prepared and then analyzed by gas chromatography-mass spectrometry. Linearity in blood and brain of THC and CBC was 2-10,000 ng/mL (ng/g). THC and CBC recovery ranged from 56 to 78% in blood and brain. Precision was demonstrated at 100 ng/mL and 1000 ng/mL with CVs < 15%. The validated method allows for blood and brain concentrations of cannabinoids to be quantificated and correlated with pharmacological effects produced in mice. PMID:21871159

  15. Maternal vitamin D deficiency alters fetal brain development in the BALB/c mouse.

    PubMed

    Hawes, Jazmin E; Tesic, Dijana; Whitehouse, Andrew J; Zosky, Graeme R; Smith, Jeremy T; Wyrwoll, Caitlin S

    2015-06-01

    Prenatal exposure to vitamin D is thought to be critical for optimal fetal neurodevelopment, yet vitamin D deficiency is apparent in a growing proportion of pregnant women. The aim of this study was to determine whether a mouse model of vitamin D-deficiency alters fetal neurodevelopment. Female BALB/c mice were placed on either a vitamin D control (2,195 IU/kg) or deficient (0 IU/kg) diet for 5 weeks prior to and during pregnancy. Fetal brains were collected at embryonic day (E) 14.5 or E17.5 for morphological and gene expression analysis. Vitamin D deficiency during pregnancy reduced fetal crown-rump length and head size. Moreover, lateral ventricle volume was reduced in vitamin D-deficient foetuses. Expression of neurotrophin genes brain-derived neurotrophic factor (Bdnf) and transforming growth factor-β1 (Tgf-β1) was altered, with Bdnf reduced at E14.5 and increased at E17.5 following vitamin D deficiency. Brain expression of forkhead box protein P2 (Foxp2), a gene known to be important in human speech and language, was also altered. Importantly, Foxp2 immunoreactive cells in the developing cortex were reduced in vitamin D-deficient female foetuses. At E17.5, brain tyrosine hydroxylase (TH) gene expression was reduced in females, as was TH protein localization (to identify dopamine neurons) in the substantia nigra of vitamin D-deficient female foetuses. Overall, we show that prenatal vitamin D-deficiency leads to alterations in fetal mouse brain morphology and genes related to neuronal survival, speech and language development, and dopamine synthesis. Vitamin D appears to play an important role in mouse neurodevelopment. PMID:25753408

  16. Tensor-Based Morphometry and Stereology Reveal Brain Pathology in the Complexin1 Knockout Mouse

    PubMed Central

    Kielar, Catherine; Sawiak, Stephen J.; Navarro Negredo, Paloma; Tse, Desmond H. Y.; Morton, A. Jennifer

    2012-01-01

    Complexins (Cplxs) are small, soluble, regulatory proteins that bind reversibly to the SNARE complex and modulate synaptic vesicle release. Cplx1 knockout mice (Cplx1−/−) have the earliest known onset of ataxia seen in a mouse model, although hitherto no histopathology has been described in these mice. Nevertheless, the profound neurological phenotype displayed by Cplx1−/− mutants suggests that significant functional abnormalities must be present in these animals. In this study, MRI was used to automatically detect regions where structural differences were not obvious when using a traditional histological approach. Tensor-based morphometry of Cplx1−/− mouse brains showed selective volume loss from the thalamus and cerebellum. Stereological analysis of Cplx1−/− and Cplx1+/+ mice brain slices confirmed the volume loss in the thalamus as well as loss in some lobules of the cerebellum. Finally, stereology was used to show that there was loss of cerebellar granule cells in Cplx1−/− mice when compared to Cplx1+/+ animals. Our study is the first to describe pathological changes in Cplx1−/− mouse brain. We suggest that the ataxia in Cplx1−/− mice is likely to be due to pathological changes in both cerebellum and thalamus. Reduced levels of Cplx proteins have been reported in brains of patients with neurodegenerative diseases. Therefore, understanding the effects of Cplx depletion in brains from Cplx1−/− mice may also shed light on the mechanisms underlying pathophysiology in disorders in which loss of Cplx1 occurs. PMID:22393426

  17. Prioritizing the development of mouse models for childhood brain disorders.

    PubMed

    Ogden, Kevin K; Ozkan, Emin D; Rumbaugh, Gavin

    2016-01-01

    Mutations in hundreds of genes contribute to cognitive and behavioral dysfunction associated with developmental brain disorders (DBDs). Due to the sheer number of risk factors available for study combined with the cost of developing new animal models, it remains an open question how genes should be prioritized for in-depth neurobiological investigations. Recent reviews have argued that priority should be given to frequently mutated genes commonly found in sporadic DBD patients. Intrigued by this idea, we explored to what extent "high priority" risk factors have been studied in animals in an effort to assess their potential for generating valuable preclinical models capable of advancing the neurobiological understanding of DBDs. We found that in-depth whole animal studies are lacking for many high priority genes, with relatively few neurobiological studies performed in construct valid animal models aimed at understanding the pathological substrates associated with disease phenotypes. However, some high priority risk factors have been extensively studied in animal models and they have generated novel insights into DBD patho-neurobiology while also advancing early pre-clinical therapeutic treatment strategies. We suggest that prioritizing model development toward genes frequently mutated in non-specific DBD populations will accelerate the understanding of DBD patho-neurobiology and drive novel therapeutic strategies. This article is part of the Special Issue entitled 'Synaptopathy--from Biology to Therapy'. PMID:26231830

  18. Mapping the mouse brain with rs-fMRI: An optimized pipeline for functional network identification.

    PubMed

    Zerbi, Valerio; Grandjean, Joanes; Rudin, Markus; Wenderoth, Nicole

    2015-12-01

    The use of resting state fMRI (rs-fMRI) in translational research is a powerful tool to assess brain connectivity and investigate neuropathology in mouse models. However, despite encouraging initial results, the characterization of consistent and robust resting state networks in mice remains a methodological challenge. One key reason is that the quality of the measured MR signal is degraded by the presence of structural noise from non-neural sources. Notably, in the current pipeline of the Human Connectome Project, a novel approach has been introduced to clean rs-fMRI data, which involves automatic artifact component classification and data cleaning (FIX). FIX does not require any external recordings of physiology or the segmentation of CSF and white matter. In this study, we evaluated the performance of FIX for analyzing mouse rs-fMRI data. Our results showed that FIX can be easily applied to mouse datasets and detects true signals with 100% accuracy and true noise components with very high accuracy (>98%), thus reducing both within- and between-subject variability of rs-fMRI connectivity measurements. Using this improved pre-processing pipeline, maps of 23 resting state circuits in mice were identified including two networks that displayed default mode network-like topography. Hierarchical clustering grouped these neural networks into meaningful larger functional circuits. These mouse resting state networks, which are publicly available, might serve as a reference for future work using mouse models of neurological disorders. PMID:26296501

  19. Prion Protein Accumulation in Lipid Rafts of Mouse Aging Brain

    PubMed Central

    Agostini, Federica; Dotti, Carlos G.; Pérez-Cañamás, Azucena; Ledesma, Maria Dolores; Benetti, Federico; Legname, Giuseppe

    2013-01-01

    The cellular form of the prion protein (PrPC) is a normal constituent of neuronal cell membranes. The protein misfolding causes rare neurodegenerative disorders known as transmissible spongiform encephalopathies or prion diseases. These maladies can be sporadic, genetic or infectious. Sporadic prion diseases are the most common form mainly affecting aging people. In this work, we investigate the biochemical environment in which sporadic prion diseases may develop, focusing our attention on the cell membrane of neurons in the aging brain. It is well established that with aging the ratio between the most abundant lipid components of rafts undergoes a major change: while cholesterol decreases, sphingomyelin content rises. Our results indicate that the aging process modifies the compartmentalization of PrPC. In old mice, this change favors PrPC accumulation in detergent-resistant membranes, particularly in hippocampi. To confirm the relationship between lipid content changes and PrPC translocation into detergent-resistant membranes (DRMs), we looked at PrPC compartmentalization in hippocampi from acid sphingomyelinase (ASM) knockout (KO) mice and synaptosomes enriched in sphingomyelin. In the presence of high sphingomyelin content, we observed a significant increase of PrPC in DRMS. This process is not due to higher levels of total protein and it could, in turn, favor the onset of sporadic prion diseases during aging as it increases the PrP intermolecular contacts into lipid rafts. We observed that lowering sphingomyelin in scrapie-infected cells by using fumonisin B1 led to a 50% decrease in protease-resistant PrP formation. This may suggest an involvement of PrP lipid environment in prion formation and consequently it may play a role in the onset or development of sporadic forms of prion diseases. PMID:24040215

  20. Expression of the ankyrin repeat domain 6 gene (Ankrd6) during mouse brain development.

    PubMed

    Tissir, F; Bar, I; Goffinet, A M; Lambert De Rouvroit, C

    2002-08-01

    The structure and developmental expression pattern of the ankyrin repeat domain 6 (Ankrd6) gene, initially named Diversin, were studied in the mouse. Ankrd6 is transcribed as a 5.8-kb mRNA composed of 15 exons that encodes a 712 amino acid protein with 6 ankyrin repeats. Ankrd6 is expressed prominently in the developing brain from E12 to maturity, suggesting a role during brain development. In embryos, expression is maximal in ventricular zones of neuronal proliferation and intermediate zones of neuronal migration and extends to postmigratory neuronal fields during the postnatal period. In the mature brain, the Ankrd6-related signal is highest in cortical layer II, granule cells of the dentate gyrus, olfactory granules and a subset of Purkinje cells in the vestibulocerebellum. Ankrd6 is related to the Drosophila gene Diego, which interacts with Flamingo in the regulation of planar cell polarity (Feiguin et al., 2001). However, the canvas of Ankrd6 expression does not match closely that of the three mouse Flamingo homologs, Celsr1-3 (Tissir et al., 2002). These data suggest that Ankrd6 may be involved in brain development in interaction with Celsr/Flamingo but also other signaling pathways. PMID:12203740

  1. Chronic brief restraint decreases in vivo binding of benzodiazepine receptor ligand to mouse brain.

    PubMed

    Mosaddeghi, M; Burke, T F; Moerschbaecher, J M

    1993-01-01

    This study examines the effects of chronic brief restraint on in vivo benzodiazepine (BZD) receptor binding in mouse brain. Three groups of mice were used. Mice in group 1 were neither restrained nor injected (ACUTE control). Mice in group 2 were restrained for 5-6 s by grabbing the back skin and holding the subject upside-down at a 45 degrees angle as if to be injected (CHRONIC SHAM control) for 7 d. Mice in group 3 (CHRONIC SALINE) received daily single intraperitoneal (ip) injections of saline (5 mL/kg) for 7 d. On d 8 BZD receptors were labeled in vivo by administration of 3 microCi [3H]flumazenil (ip). The levels of ligand bound in vivo to cerebral cortex (CX), cerebellum (CB), brain stem (BS), striatum (ST), hippocampus (HP), and hypothalamus (HY) were determined. Results indicated that the level of binding was significantly (p < 0.01) lower by 30-50% (depending on the brain region) in saline-injected or sham control groups compared to acute control animals. Furthermore, the values for sham control were similar to the saline-treated group. Our data suggest that exposure to chronic mild restraint produces a decrease in in vivo binding of [3H]flumazenil in mouse brain and supports the hypothesis that chronic mild stress produces a decrease in BZD receptor binding sites. PMID:8385464

  2. CRISPR/Cas9-mediated gene knockout in the mouse brain using in utero electroporation

    PubMed Central

    Shinmyo, Yohei; Tanaka, Satoshi; Tsunoda, Shinichi; Hosomichi, Kazuyoshi; Tajima, Atsushi; Kawasaki, Hiroshi

    2016-01-01

    The CRISPR/Cas9 system has recently been adapted for generating knockout mice to investigate physiological functions and pathological mechanisms. Here, we report a highly efficient procedure for brain-specific disruption of genes of interest in vivo. We constructed pX330 plasmids expressing humanized Cas9 and single-guide RNAs (sgRNAs) against the Satb2 gene, which encodes an AT-rich DNA-binding transcription factor and is responsible for callosal axon projections in the developing mouse brain. We first confirmed that these constructs efficiently induced double-strand breaks (DSBs) in target sites of exogenous plasmids both in vitro and in vivo. We then found that the introduction of pX330-Satb2 into the developing mouse brain using in utero electroporation led to a dramatic reduction of Satb2 expression in the transfected cerebral cortex, suggesting DSBs had occurred in the Satb2 gene with high efficiency. Furthermore, we found that Cas9-mediated targeting of the Satb2 gene induced abnormalities in axonal projection patterns, which is consistent with the phenotypes previously observed in Satb2 mutant mice. Introduction of pX330-NeuN using our procedure also resulted in the efficient disruption of the NeuN gene. Thus, our procedure combining the CRISPR/Cas9 system and in utero electroporation is an effective and rapid approach to achieve brain-specific gene knockout in vivo. PMID:26857612

  3. Expression Profile of DNA Damage Signaling Genes in Proton Exposed Mouse Brain

    NASA Astrophysics Data System (ADS)

    Ramesh, Govindarajan; Wu, Honglu

    Exposure of living systems to radiation results in a wide assortment of lesions, the most signif-icant of is damage to genomic DNA which induce several cellular functions such as cell cycle arrest, repair, apoptosis etc. The radiation induced DNA damage investigation is one of the im-portant area in biology, but still the information available regarding the effects of proton is very limited. In this report, we investigated the differential gene expression pattern of DNA damage signaling genes particularly, damaged DNA binding, repair, cell cycle arrest, checkpoints and apoptosis using quantitative real-time RT-PCR array in proton exposed mouse brain tissues. The expression profiles showed significant changes in DNA damage related genes in 2Gy proton exposed mouse brain tissues as compared with control brain tissues. Furthermore, we also show that significantly increased levels of apoptotic related genes, caspase-3 and 8 activities in these cells, suggesting that in addition to differential expression of DNA damage genes, the alteration of apoptosis related genes may also contribute to the radiation induced DNA damage followed by programmed cell death. In summary, our findings suggest that proton exposed brain tissue undergo severe DNA damage which in turn destabilize the chromatin stability.

  4. Differential distribution of the sodium-activated potassium channels slick and slack in mouse brain.

    PubMed

    Rizzi, Sandra; Knaus, Hans-Günther; Schwarzer, Christoph

    2016-07-01

    The sodium-activated potassium channels Slick (Slo2.1, KCNT2) and Slack (Slo2.2, KCNT1) are high-conductance potassium channels of the Slo family. In neurons, Slick and Slack channels are involved in the generation of slow afterhyperpolarization, in the regulation of firing patterns, and in setting and stabilizing the resting membrane potential. The distribution and subcellular localization of Slick and Slack channels in the mouse brain have not yet been established in detail. The present study addresses this issue through in situ hybridization and immunohistochemistry. Both channels were widely distributed and exhibited distinct distribution patterns. However, in some brain regions, their expression overlapped. Intense Slick channel immunoreactivity was observed in processes, varicosities, and neuronal cell bodies of the olfactory bulb, granular zones of cortical regions, hippocampus, amygdala, lateral septal nuclei, certain hypothalamic and midbrain nuclei, and several regions of the brainstem. The Slack channel showed primarily a diffuse immunostaining pattern, and labeling of cell somata and processes was observed only occasionally. The highest Slack channel expression was detected in the olfactory bulb, lateral septal nuclei, basal ganglia, and distinct areas of the midbrain, brainstem, and cerebellar cortex. In addition, comparing our data obtained from mouse brain with a previously published study on rat brain revealed some differences in the expression and distribution of Slick and Slack channels in these species. J. Comp. Neurol. 524:2093-2116, 2016. © 2015 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. PMID:26587966

  5. General Anesthetics Inhibit Erythropoietin Induction under Hypoxic Conditions in the Mouse Brain

    PubMed Central

    Tanaka, Tomoharu; Kai, Shinichi; Koyama, Tomohiro; Daijo, Hiroki; Adachi, Takehiko; Fukuda, Kazuhiko; Hirota, Kiichi

    2011-01-01

    Background Erythropoietin (EPO), originally identified as a hematopoietic growth factor produced in the kidney and fetal liver, is also endogenously expressed in the central nervous system (CNS). EPO in the CNS, mainly produced in astrocytes, is induced under hypoxic conditions in a hypoxia-inducible factor (HIF)-dependent manner and plays a dominant role in neuroprotection and neurogenesis. We investigated the effect of general anesthetics on EPO expression in the mouse brain and primary cultured astrocytes. Methodology/Principal Findings BALB/c mice were exposed to 10% oxygen with isoflurane at various concentrations (0.10–1.0%). Expression of EPO mRNA in the brain was studied, and the effects of sevoflurane, halothane, nitrous oxide, pentobarbital, ketamine, and propofol were investigated. In addition, expression of HIF-2α protein was studied by immunoblotting. Hypoxia-induced EPO mRNA expression in the brain was significantly suppressed by isoflurane in a concentration-dependent manner. A similar effect was confirmed for all other general anesthetics. Hypoxia-inducible expression of HIF-2α protein was also significantly suppressed with isoflurane. In the experiments using primary cultured astrocytes, isoflurane, pentobarbital, and ketamine suppressed hypoxia-inducible expression of HIF-2α protein and EPO mRNA. Conclusions/Significance Taken together, our results indicate that general anesthetics suppress activation of HIF-2 and inhibit hypoxia-induced EPO upregulation in the mouse brain through a direct effect on astrocytes. PMID:22216265

  6. Histamine Induces Alzheimer's Disease-Like Blood Brain Barrier Breach and Local Cellular Responses in Mouse Brain Organotypic Cultures

    PubMed Central

    Sedeyn, Jonathan C.; Wu, Hao; Hobbs, Reilly D.; Levin, Eli C.; Nagele, Robert G.; Venkataraman, Venkat

    2015-01-01

    Among the top ten causes of death in the United States, Alzheimer's disease (AD) is the only one that cannot be cured, prevented, or even slowed down at present. Significant efforts have been exerted in generating model systems to delineate the mechanism as well as establishing platforms for drug screening. In this study, a promising candidate model utilizing primary mouse brain organotypic (MBO) cultures is reported. For the first time, we have demonstrated that the MBO cultures exhibit increased blood brain barrier (BBB) permeability as shown by IgG leakage into the brain parenchyma, astrocyte activation as evidenced by increased expression of glial fibrillary acidic protein (GFAP), and neuronal damage-response as suggested by increased vimentin-positive neurons occur upon histamine treatment. Identical responses—a breakdown of the BBB, astrocyte activation, and neuronal expression of vimentin—were then demonstrated in brains from AD patients compared to age-matched controls, consistent with other reports. Thus, the histamine-treated MBO culture system may provide a valuable tool in combating AD. PMID:26697497

  7. Histamine Induces Alzheimer's Disease-Like Blood Brain Barrier Breach and Local Cellular Responses in Mouse Brain Organotypic Cultures.

    PubMed

    Sedeyn, Jonathan C; Wu, Hao; Hobbs, Reilly D; Levin, Eli C; Nagele, Robert G; Venkataraman, Venkat

    2015-01-01

    Among the top ten causes of death in the United States, Alzheimer's disease (AD) is the only one that cannot be cured, prevented, or even slowed down at present. Significant efforts have been exerted in generating model systems to delineate the mechanism as well as establishing platforms for drug screening. In this study, a promising candidate model utilizing primary mouse brain organotypic (MBO) cultures is reported. For the first time, we have demonstrated that the MBO cultures exhibit increased blood brain barrier (BBB) permeability as shown by IgG leakage into the brain parenchyma, astrocyte activation as evidenced by increased expression of glial fibrillary acidic protein (GFAP), and neuronal damage-response as suggested by increased vimentin-positive neurons occur upon histamine treatment. Identical responses-a breakdown of the BBB, astrocyte activation, and neuronal expression of vimentin-were then demonstrated in brains from AD patients compared to age-matched controls, consistent with other reports. Thus, the histamine-treated MBO culture system may provide a valuable tool in combating AD. PMID:26697497

  8. Intra-Arterial Delivery of AAV Vectors to the Mouse Brain After Mannitol Mediated Blood Brain Barrier Disruption

    PubMed Central

    Santillan, Alejandro; Sondhi, Dolan; Dyke, Jonathan P.; Crystal, Ronald G.; Gobin, Y. Pierre; Ballon, Douglas J.

    2014-01-01

    The delivery of therapeutics to neural tissue is greatly hindered by the blood brain barrier (BBB). Direct local delivery via diffusive release from degradable implants or direct intra-cerebral injection can bypass the BBB and obtain high concentrations of the therapeutic in the targeted tissue, however the total volume of tissue that can be treated using these techniques is limited. One treatment modality that can potentially access large volumes of neural tissue in a single treatment is intra-arterial (IA) injection after osmotic blood brain barrier disruption. In this technique, the therapeutic of interest is injected directly into the arteries that feed the target tissue after the blood brain barrier has been disrupted by exposure to a hyperosmolar mannitol solution, permitting the transluminal transport of the therapy. In this work we used contrast enhanced magnetic resonance imaging (MRI) studies of IA injections in mice to establish parameters that allow for extensive and reproducible BBB disruption. We found that the volume but not the flow rate of the mannitol injection has a significant effect on the degree of disruption. To determine whether the degree of disruption we observed with this method was sufficient for delivery of nanoscale therapeutics, we performed IA injections of an adeno-associated viral vector containing the CLN2 gene (AAVrh.10CLN2), which is mutated in the lysosomal storage disorder Late Infantile Neuronal Ceroid Lipofuscinosis (LINCL). We demonstrated that IA injection of AAVrh.10CLN2 after BBB disruption can achieve widespread transgene production in the mouse brain after a single administration. Further, we showed that there exists a minimum threshold of BBB disruption necessary to permit the AAV.rh10 vector to pass into the brain parenchyma from the vascular system. These results suggest that IA administration may be used to obtain widespread delivery of nanoscale therapeutics throughout the murine brain after a single

  9. Intra-arterial delivery of AAV vectors to the mouse brain after mannitol mediated blood brain barrier disruption.

    PubMed

    Foley, Conor P; Rubin, David G; Santillan, Alejandro; Sondhi, Dolan; Dyke, Jonathan P; Gobin, Y Pierre; Crystal, Ronald G; Ballon, Douglas J

    2014-12-28

    The delivery of therapeutics to neural tissue is greatly hindered by the blood brain barrier (BBB). Direct local delivery via diffusive release from degradable implants or direct intra-cerebral injection can bypass the BBB and obtain high concentrations of the therapeutic in the targeted tissue, however the total volume of tissue that can be treated using these techniques is limited. One treatment modality that can potentially access large volumes of neural tissue in a single treatment is intra-arterial (IA) injection after osmotic blood brain barrier disruption. In this technique, the therapeutic of interest is injected directly into the arteries that feed the target tissue after the blood brain barrier has been disrupted by exposure to a hyperosmolar mannitol solution, permitting the transluminal transport of the therapy. In this work we used contrast enhanced magnetic resonance imaging (MRI) studies of IA injections in mice to establish parameters that allow for extensive and reproducible BBB disruption. We found that the volume but not the flow rate of the mannitol injection has a significant effect on the degree of disruption. To determine whether the degree of disruption that we observed with this method was sufficient for delivery of nanoscale therapeutics, we performed IA injections of an adeno-associated viral vector containing the CLN2 gene (AAVrh.10CLN2), which is mutated in the lysosomal storage disorder Late Infantile Neuronal Ceroid Lipofuscinosis (LINCL). We demonstrated that IA injection of AAVrh.10CLN2 after BBB disruption can achieve widespread transgene production in the mouse brain after a single administration. Further, we showed that there exists a minimum threshold of BBB disruption necessary to permit the AAV.rh10 vector to pass into the brain parenchyma from the vascular system. These results suggest that IA administration may be used to obtain widespread delivery of nanoscale therapeutics throughout the murine brain after a single

  10. Effects of traumatic brain injury on reactive astrogliosis and seizures in mouse models of Alexander disease

    PubMed Central

    Cotrina, Maria Luisa; Chen, Michael; Han, Xiaoning; Iliff, Jeffrey; Ren, Zeguang; Sun, Wei; Hagemann, Tracy; Goldman, James; Messing, Albee; Nedergaard, Maiken

    2014-01-01

    Alexander disease (AxD) is the only known human pathology caused by mutations in an astrocyte-specific gene, glial fibrillary acidic protein (GFAP). These mutations result in abnormal GFAP accumulations that promote seizures, motor delays and, ultimately, death. The exact contribution of increased, abnormal levels of astrocytic mutant GFAP in the development and progression of the epileptic phenotype is not clear, and we addressed this question using two mouse models of AxD. Comparison of brain seizure activity spontaneously and after traumatic brain injury (TBI), an effective way to trigger seizures, revealed that abnormal GFAP accumulation contributes to abnormal brain activity (increased interictal discharges) but is not a risk factor for the development of epilepsy after TBI. These data highlight the need to further explore the complex and heterogeneous response of astrocytes towards injury and the involvement of GFAP in the progression of AxD. PMID:25069089

  11. A genome-scale map of expression for a mouse brain section obtained using voxelation

    SciTech Connect

    Chin, Mark H.; Geng, Alex B.; Khan, Arshad H.; Qian, Weijun; Petyuk, Vladislav A.; Boline, Jyl; Levy, Shawn; Toga, Arthur W.; Smith, Richard D.; Leahy, Richard M.; Smith, Desmond J.

    2007-08-20

    Gene expression signatures in the mammalian brain hold the key to understanding neural development and neurological diseases. We have reconstructed 2- dimensional images of gene expression for 20,000 genes in a coronal slice of the mouse brain at the level of the striatum by using microarrays in combination with voxelation at a resolution of 1 mm3. Good reliability of the microarray results were confirmed using multiple replicates, subsequent quantitative RT-PCR voxelation, mass spectrometry voxelation and publicly available in situ hybridization data. Known and novel genes were identified with expression patterns localized to defined substructures within the brain. In addition, genes with unexpected patterns were identified and cluster analysis identified a set of genes with a gradient of dorsal/ventral expression not restricted to known anatomical boundaries. The genome-scale maps of gene expression obtained using voxelation will be a valuable tool for the neuroscience community.

  12. Isolation and expansion of human and mouse brain microvascular endothelial cells.

    PubMed

    Navone, Stefania E; Marfia, Giovanni; Invernici, Gloria; Cristini, Silvia; Nava, Sara; Balbi, Sergio; Sangiorgi, Simone; Ciusani, Emilio; Bosutti, Alessandra; Alessandri, Giulio; Slevin, Mark; Parati, Eugenio A

    2013-09-01

    Brain microvascular endothelial cells (BMVECs) have an important role in the constitution of the blood-brain barrier (BBB). The BBB is involved in the disease processes of a number of neurological disorders in which its permeability increases. Isolation of BMVECs could elucidate the mechanism involved in these processes. This protocol describes how to isolate and expand human and mouse BMVECs. The procedure covers brain-tissue dissociation, digestion and cell selection. Cells are selected on the basis of time-responsive differential adhesiveness to a collagen type I-precoated surface. The protocol also describes immunophenotypic characterization, cord formation and functional assays to confirm that these cells in endothelial proliferation medium (EndoPM) have an endothelial origin. The entire technique requires ∼7 h of active time. Endothelial cell clusters are readily visible after 48 h, and expansion of BMVECs occurs over the course of ∼60 d. PMID:23928501

  13. Quantitative Expression Profile of Distinct Functional Regions in the Adult Mouse Brain

    PubMed Central

    Nagano, Mamoru; Uno, Kenichiro D.; Tsujino, Kaori; Hanashima, Carina; Shigeyoshi, Yasufumi; Ueda, Hiroki R.

    2011-01-01

    The adult mammalian brain is composed of distinct regions with specialized roles including regulation of circadian clocks, feeding, sleep/awake, and seasonal rhythms. To find quantitative differences of expression among such various brain regions, we conducted the BrainStars (B*) project, in which we profiled the genome-wide expression of ∼50 small brain regions, including sensory centers, and centers for motion, time, memory, fear, and feeding. To avoid confounds from temporal differences in gene expression, we sampled each region every 4 hours for 24 hours, and pooled the samples for DNA-microarray assays. Therefore, we focused on spatial differences in gene expression. We used informatics to identify candidate genes with expression changes showing high or low expression in specific regions. We also identified candidate genes with stable expression across brain regions that can be used as new internal control genes, and ligand-receptor interactions of neurohormones and neurotransmitters. Through these analyses, we found 8,159 multi-state genes, 2,212 regional marker gene candidates for 44 small brain regions, 915 internal control gene candidates, and 23,864 inferred ligand-receptor interactions. We also found that these sets include well-known genes as well as novel candidate genes that might be related to specific functions in brain regions. We used our findings to develop an integrated database (http://brainstars.org/) for exploring genome-wide expression in the adult mouse brain, and have made this database openly accessible. These new resources will help accelerate the functional analysis of the mammalian brain and the elucidation of its regulatory network systems. PMID:21858037

  14. Tunicamycin-induced unfolded protein response in the developing mouse brain

    SciTech Connect

    Wang, Haiping; Wang, Xin; Ke, Zun-Ji; Comer, Ashley L.; Xu, Mei; Frank, Jacqueline A.; Zhang, Zhuo; Shi, Xianglin; Luo, Jia

    2015-03-15

    Accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) causes ER stress, resulting in the activation of the unfolded protein response (UPR). ER stress and UPR are associated with many neurodevelopmental and neurodegenerative disorders. The developing brain is particularly susceptible to environmental insults which may cause ER stress. We evaluated the UPR in the brain of postnatal mice. Tunicamycin, a commonly used ER stress inducer, was administered subcutaneously to mice of postnatal days (PDs) 4, 12 and 25. Tunicamycin caused UPR in the cerebral cortex, hippocampus and cerebellum of mice of PD4 and PD12, which was evident by the upregulation of ATF6, XBP1s, p-eIF2α, GRP78, GRP94 and MANF, but failed to induce UPR in the brain of PD25 mice. Tunicamycin-induced UPR in the liver was observed at all stages. In PD4 mice, tunicamycin-induced caspase-3 activation was observed in layer II of the parietal and optical cortex, CA1–CA3 and the subiculum of the hippocampus, the cerebellar external germinal layer and the superior/inferior colliculus. Tunicamycin-induced caspase-3 activation was also shown on PD12 but to a much lesser degree and mainly located in the dentate gyrus of the hippocampus, deep cerebellar nuclei and pons. Tunicamycin did not activate caspase-3 in the brain of PD25 mice and the liver of all stages. Similarly, immature cerebellar neurons were sensitive to tunicamycin-induced cell death in culture, but became resistant as they matured in vitro. These results suggest that the UPR is developmentally regulated and the immature brain is more susceptible to ER stress. - Highlights: • Tunicamycin caused a development-dependent UPR in the mouse brain. • Immature brain was more susceptible to tunicamycin-induced endoplasmic reticulum stress. • Tunicamycin caused more neuronal death in immature brain than mature brain. • Tunicamycin-induced neuronal death is region-specific.

  15. Correlation between subacute sensorimotor deficits and brain edema in two mouse models of intracerebral hemorrhage

    PubMed Central

    Krafft, Paul R.; McBride, Devin W.; Lekic, Tim; Rolland, William B.; Mansell, Charles E.; Ma, Qingyi; Tang, Jiping; Zhang, John H.

    2014-01-01

    Formation of brain edema after intracerebral hemorrhage (ICH) is highly associated with its poor outcome, thus it is clinically important to understand the effect brain edema has on outcome. However, the relationship between cerebral edema and behavioral deficits has not been thoroughly examined in the preclinical setting. Hence, this study aimed to evaluate the ability of common sensorimotor tests to predict the extent of brain edema in two mouse models of ICH. One hundred male CD-1 mice were subjected to sham surgery or ICH induction via intrastriatal injection of either autologous blood (30 μL) or bacterial collagenase (0.0375 U or 0.075 U). At 24 and 72 hours after surgery, animals underwent a battery of behavioral tests, including the modified Garcia neuroscore (Neuroscore), corner turn test (CTT), forelimb placing test (FPT), wire hang task (WHT) and beam walking (BW). Brain edema was evaluated via the wet weight/dry weight method. Intrastriatal injection of autologous blood or bacterial collagenase resulted in a significant increase in brain water content and associated sensorimotor deficits (p<0.05). A significant correlation between brain edema and sensorimotor deficits was observed for all behavioral tests except for WHT and BW. Based on these findings, we recommend implementing the Neuroscore, CTT and/or FPT in preclinical studies of unilateral ICH in mice. PMID:24518201

  16. Histone modifications change with age, dietary restriction and rapamycin treatment in mouse brain

    PubMed Central

    Gong, Huan; Qian, Hong; Ertl, Robin; Astle, Clinton M.; Wang, Gang G.; Harrison, David E.; Xu, Xiangru

    2015-01-01

    The risk of developing neurodegenerative disorders such as Alzheimer's disease (AD) increases dramatically with age. Understanding the underlying mechanisms of brain aging is crucial for developing preventative and/or therapeutic approaches for age-associated neurological diseases. Recently, it has been suggested that epigenetic factors, such as histone modifications, maybe be involved in brain aging and age-related neurodegenerations. In this study, we investigated 14 histone modifications in brains of a cohort of young (3 months), old (22 months), and old age-matched dietary restricted (DR) and rapamycin treated BALB/c mice. Results showed that 7 out of all measured histone markers were changed drastically with age. Intriguingly, histone methylations in brain tissues, including H3K27me3, H3R2me2, H3K79me3 and H4K20me2 tend to disappear with age but can be partially restored by both DR and rapamycin treatment. However, both DR and rapamycin treatment also have a significant impact on several other histone modifications such as H3K27ac, H4K16ac, H4R3me2, and H3K56ac, which do not change as animal ages. This study provides the first evidence that a broad spectrum of histone modifications may be involved in brain aging. Besides, this study suggests that both DR and rapamycin may slow aging process in mouse brain via these underlying epigenetic mechanisms. PMID:26021816

  17. Conditional N-WASP knockout in mouse brain implicates actin cytoskeleton regulation in hydrocephalus pathology.

    PubMed

    Jain, Neeraj; Lim, Lee Wei; Tan, Wei Ting; George, Bhawana; Makeyev, Eugene; Thanabalu, Thirumaran

    2014-04-01

    Cerebrospinal fluid (CSF) is produced by the choroid plexus and moved by multi-ciliated ependymal cells through the ventricular system of the vertebrate brain. Defects in the ependymal layer functionality are a common cause of hydrocephalus. N-WASP (Neural-Wiskott Aldrich Syndrome Protein) is a brain-enriched regulator of actin cytoskeleton and N-WASP knockout caused embryonic lethality in mice with neural tube and cardiac abnormalities. To shed light on the role of N-WASP in mouse brain development, we generated N-WASP conditional knockout mouse model N-WASP(fl/fl); Nestin-Cre (NKO-Nes). NKO-Nes mice were born with Mendelian ratios but exhibited reduced growth characteristics compared to their littermates containing functional N-WASP alleles. Importantly, all NKO-Nes mice developed cranial deformities due to excessive CSF accumulation and did not survive past weaning. Coronal brain sections of these animals revealed dilated lateral ventricles, defects in ciliogenesis, loss of ependymal layer integrity, reduced thickness of cerebral cortex and aqueductal stenosis. Immunostaining for N-cadherin suggests that ependymal integrity in NKO-Nes mice is lost as compared to normal morphology in the wild-type controls. Moreover, scanning electron microscopy and immunofluorescence analyses of coronal brain sections with anti-acetylated tubulin antibodies revealed the absence of cilia in ventricular walls of NKO-Nes mice indicative of ciliogenesis defects. N-WASP deficiency does not lead to altered expression of N-WASP regulatory proteins, Fyn and Cdc42, which have been previously implicated in hydrocephalus pathology. Taken together, our results suggest that N-WASP plays a critical role in normal brain development and implicate actin cytoskeleton regulation as a vulnerable axis frequently deregulated in hydrocephalus. PMID:24462670

  18. Effects of angiopoietin-1 on vascular endothelial growth factor-induced angiogenesis in the mouse brain.

    PubMed

    Zhu, Y; Shwe, Y; Du, R; Chen, Y; Shen, F X; Young, W L; Yang, G Y

    2006-01-01

    A better understanding of angiogenic factors and their effects on angiogenesis in brain is necessary to treat cerebral vascular disorders such as ischemic brain injury. Vascular endothelial growth factor (VEGF) induces angiogenesis and increases blood-brain barrier (BBB) permeability in adult mouse brain. The effect of angiopoietin-1 on BBB leakage during the angiogenesis process is unclear. We sought to identify the effects of combining VEGF with angiopoietin-1 on cerebral angiogenesis and BBB. Adult male CD-1 mice underwent AdFc (adenoviral vector control), AdAng-1, VEGF protein, VEGF protein plus AdAng-1, or saline (negative control) injection. Brain microvessels were counted using lectin staining on tissue sections after 2 weeks of adenoviral gene transfer. The presence of zonula occludens-1 (ZO-1) was determined by Western blot analysis and immunohistochemistry. Microvessel count and augmented capillary diameter increased in mice treated with either VEGF protein or AdAng-1 plus VEGF protein compared to saline, AdFc, or AdAng-1 alone (p < 0.05). Double-labeled immunostaining demonstrated that ZO-1-positive staining was more complete on the microvessel wall in the AdAng-1 and AdAng-1 plus VEGF protein treated group compared to VEGF protein group. The results of ZO-1 expression from Western blot analysis paralleled that from immunohistochemistry (p < 0.05). We conclude that focal VEGF and angiopoietin-1 hyperstimulation in mouse brain increases microvessel density while maintaining ZO-1 protein expression, suggesting that angiopoietin-1 plays a role in synergistically inducing angiogenesis and BBB integrity. PMID:16671501

  19. Na+/H+ exchanger 1 deficiency alters gene expression in mouse brain.

    PubMed

    Zhou, Dan; Xue, Jin; Gavrialov, Orit; Haddad, Gabriel G

    2004-08-11

    Na(+)/H(+) exchanger 1 (NHE1) is well known to function as a major regulator of intracellular pH (pH(i)). It is activated by low pH(i) and exchanges extracellular Na(+) for intracellular H(+) to maintain cellular homeostasis. Despite the fact that we now have evidence suggesting other roles for NHE1, there has been no comprehensive study investigating its role as a signaling molecule. Toward this aim, we used in this study NHE1 null mutant mice and cDNA microarrays to investigate the effects of NHE1 on global gene expression in various regions of the brain, e.g., cortex, hippocampus, brain stem-diencephalon, and cerebellum. We found that a total of 35 to 79 genes were up- or downregulated in each brain region, with the majority being downregulated. The effect of NHE1 null mutation on gene expression is region specific, and only 11 genes were changed in all brain regions studied. Further analysis of the cis-regulatory regions of downregulated genes revealed that transcription suppressors, BCL6 and E4BP4, were probable candidates that mediated the inhibitory effect of NHE1 null mutation. One of the genes, MCT-13, was not only downregulated in the NHE1 null mutant brain but also in tissue cultures treated with an NHE1 inhibitor. We conclude that 1) a relatively small number of genes were altered in the NHE1 null mouse brain; 2) the effects of NHE1 null mutation on gene expression are region specific; and 3) several genes implicated in neurodegeneration have altered expression, potentially offering a molecular explanation for the phenotype of the NHE1 null mouse. PMID:15306696

  20. Multiscale Exploration of Mouse Brain Microstructures Using the Knife-Edge Scanning Microscope Brain Atlas

    PubMed Central

    Chung, Ji Ryang; Sung, Chul; Mayerich, David; Kwon, Jaerock; Miller, Daniel E.; Huffman, Todd; Keyser, John; Abbott, Louise C.; Choe, Yoonsuck

    2011-01-01

    Connectomics is the study of the full connection matrix of the brain. Recent advances in high-throughput, high-resolution 3D microscopy methods have enabled the imaging of whole small animal brains at a sub-micrometer resolution, potentially opening the road to full-blown connectomics research. One of the first such instruments to achieve whole-brain-scale imaging at sub-micrometer resolution is the Knife-Edge Scanning Microscope (KESM). KESM whole-brain data sets now include Golgi (neuronal circuits), Nissl (soma distribution), and India ink (vascular networks). KESM data can contribute greatly to connectomics research, since they fill the gap between lower resolution, large volume imaging methods (such as diffusion MRI) and higher resolution, small volume methods (e.g., serial sectioning electron microscopy). Furthermore, KESM data are by their nature multiscale, ranging from the subcellular to the whole organ scale. Due to this, visualization alone is a huge challenge, before we even start worrying about quantitative connectivity analysis. To solve this issue, we developed a web-based neuroinformatics framework for efficient visualization and analysis of the multiscale KESM data sets. In this paper, we will first provide an overview of KESM, then discuss in detail the KESM data sets and the web-based neuroinformatics framework, which is called the KESM brain atlas (KESMBA). Finally, we will discuss the relevance of the KESMBA to connectomics research, and identify challenges and future directions. PMID:22275895

  1. Proteomic analysis of the mouse brain after repetitive exposure to hypoxia.

    PubMed

    Cui, Can; Zhou, Tao; Li, Jingyi; Wang, Hong; Li, Xiaorong; Xiong, Jie; Xu, Pingxiang; Xue, Ming

    2015-07-01

    Hypoxic preconditioning (HPC) is known to have a protective effect against hypoxic damage; however, the precise mechanisms involved remain unknown. In this study, an acute and repetitive hypoxia mouse model, two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) coupled with matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/TOF-MS), and Western blot experiments were used to identify the differential expression of key proteins in the mouse brain during HPC. Approximately 2100 2D-DIGE spots were observed following gel imaging and spot detection. Significant differences (p < 0.05) in the expression of 66 proteins were observed between the 3× HPC treatment group and the control group, 45 proteins were observed between the 6× HPC treatment group and the control group, and 70 proteins were observed between the 3× HPC treatment group and the 6× HPC group. Consistent results among Western blot, 2D-DIGE and MS methods were observed for the proteins, ATP synthase subunit alpha, malate dehydrogenase, guanine nucleotide-binding protein subunit beta-1 and proteasome subunit alpha type-2. The proteins associated with ATP synthesis and the citric acid cycle were down-regulated, while those linked to glycolysis and oxygen-binding were up-regulated. This proteomic analysis of the mouse brain after HPC furthers understanding of the molecular pathways involved in the protective effect of HPC and these findings provide new insight into the mechanisms of hypoxia and HPC. PMID:25937538

  2. A search for functional histamine H4 receptors in the human, guinea pig and mouse brain.

    PubMed

    Feliszek, Monika; Speckmann, Valerie; Schacht, Daniel; von Lehe, Marec; Stark, Holger; Schlicker, Eberhard

    2015-01-01

    Histamine H4 receptors are expressed in immune cells, but their potential role in the brain is less clear. Although H4 transcripts have been identified in human and rat brain, the presence of H4 receptors on the protein level has so far not been proven since appropriate antibodies fulfilling the strict criteria for G protein-coupled receptors are missing. Here, we searched for functional H4 receptors in human, guinea pig and mouse cortex. We studied whether H4 receptor activation is associated with increased GTPγS binding and reduced noradrenaline release. The latter two effects have been previously shown for H3 receptors, which, like the H4 receptors, are coupled to G i/o protein. G protein activation was studied using (35)S-GTPγS binding in cortical membranes. The electrically induced (3)H-noradrenaline release was determined in superfused cortical slices. The H4 agonist 4-methylhistamine failed to affect (35)S-GTPγS binding and/or noradrenaline release in human, guinea pig and mouse cortex although an H 3 receptor-mediated increase in (35)S-GTPγS binding and inhibition of noradrenaline release occurred in parallel experiments. In conclusion, functional H4 receptors increasing (35)S-GTPγS binding and/or decreasing noradrenaline release are not found in human, guinea pig and mouse cortex. PMID:25300787

  3. Oscillating gradient diffusion MRI reveals unique microstructural information in normal and hypoxia-ischemia injured mouse brains

    PubMed Central

    Wu, Dan; Martin, Lee J.; Northington, Frances J.; Zhang, Jiangyang

    2014-01-01

    Purpose We investigated whether oscillating gradient diffusion MRI (dMRI) can provide information on brain microstructural changes after formaldehyde fixation and after hypoxic-ischemic (HI) injury beyond that provided by conventional dMRI. Methods Pulsed gradient spin echo (PGSE) and oscillating gradient spin echo (OGSE) dMRI of the adult mouse brain was performed in vivo (50-200 Hz, b = 600 mm2/s), and a similar protocol was applied to neonatal mouse brains at 24 hours after unilateral hypoxia-ischemia. Animals were perfusion fixed with 4% paraformaldehyde for ex vivo dMRI and histology. Results Apparent diffusion coefficients (ADCs) measured in the live adult mouse brain presented tissue-dependent frequency-dependence. In vivo OGSE-ADC maps at high oscillating frequencies (>100Hz) showed clear contrast between the molecular layer and granule cell layer in the adult mouse cerebellum. Formaldehyde fixation significantly altered the temporal diffusion spectra in several brain regions. In neonatal mouse brains with HI injury, in vivo ADC measurements from edema regions showed diminished edema contrasts at 200 Hz compared to the PGSE results. Histology showed severe tissue swelling and necrosis in the edema regions. Conclusion The results demonstrate the unique ability of OGSE-dMRI in delineating tissue microstructures at different spatial scales. PMID:25168861

  4. Quantitative gene expression profiling of mouse brain regions reveals differential transcripts conserved in human and affected in disease models.

    PubMed

    Brochier, Camille; Gaillard, Marie-Claude; Diguet, Elsa; Caudy, Nicolas; Dossat, Carole; Ségurens, Béatrice; Wincker, Patrick; Roze, Emmanuel; Caboche, Jocelyne; Hantraye, Philippe; Brouillet, Emmanuel; Elalouf, Jean-Marc; de Chaldée, Michel

    2008-04-22

    Using serial analysis of gene expression, we collected quantitative transcriptome data in 11 regions of the adult wild-type mouse brain: the orbital, prelimbic, cingulate, motor, somatosensory, and entorhinal cortices, the caudate-putamen, the nucleus accumbens, the thalamus, the substantia nigra, and the ventral tegmental area. With >1.2 million cDNA tags sequenced, this database is a powerful resource to explore brain functions and disorders. As an illustration, we performed interregional comparisons and found 315 differential transcripts. Most of them are poorly characterized and 20% lack functional annotation. For 78 differential transcripts, we provide independent expression level measurements in mouse brain regions by real-time quantitative RT-PCR. We also show examples where we used in situ hybridization to achieve infrastructural resolution. For 30 transcripts, we next demonstrated that regional enrichment is conserved in the human brain. We then quantified the expression levels of region-enriched transcripts in the R6/2 mouse model of Huntington disease and the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson disease and observed significant alterations in the striatum, cerebral cortex, thalamus and substantia nigra of R6/2 mice and in the striatum of MPTP-treated mice. These results show that the gene expression data provided here for the mouse brain can be used to explore pathophysiological models and disclose transcripts differentially expressed in human brain regions. PMID:18252803

  5. Sequence analysis of 497 mouse brain ESTs expressed in the substantia nigra

    SciTech Connect

    Stewart, G.J.; Savioz, A.; Davies, R.W.

    1997-01-15

    The use of subtracted, region-specific cDNA libraries combined with single-pass cDNA sequencing allows the discovery of novel genes and facilitates molecular description of the tissue or region involved. We report the sequence of 497 mouse expressed sequence tags (ESTs) from two subtracted libraries enriched for cDNAs expressed in the substantia nigra, a brain region with important roles in movement control and Parkinson disease. Of these, 238 ESTs give no database matches and therefore derive from novel genes. A further 115 ESTs show sequence similarity to ESTs from other organisms, which themselves do not yield any significant database matches to genes of known function. Fifty-six ESTs show sequence similarity to previously identified genes whose mouse homologues have not been reported. The total number of ESTs reported that are new for the mouse is 407, which, together with the 90 ESTs corresponding to known mouse genes or cDNAs, contributes to the molecular description of the substantia nigra. 21 refs., 4 tabs.

  6. Sequence analysis of 497 mouse brain ESTs expressed in the substantia nigra.

    PubMed

    Stewart, G J; Savioz, A; Davies, R W

    1997-01-15

    The use of subtracted, region-specific cDNA libraries combined with single-pass cDNA sequencing allows the discovery of novel genes and facilitates molecular description of the tissue or region involved. We report the sequence of 497 mouse expressed sequence tags (ESTs) from two subtracted libraries enriched for cDNAs expressed in the substantia nigra, a brain region with important roles in movement control and Parkinson disease. Of these, 238 ESTs give no database matches and therefore derive from novel genes. A further 115 ESTs show sequence similarity to ESTs from other organisms, which themselves do not yield any significant database matches to genes of known function. Fifty-six ESTs show sequence similarity to previously identified genes whose mouse homologues have not been reported. The total number of ESTs reported that are new for the mouse is 407, which, together with the 90 ESTs corresponding to known mouse genes or cDNAs, contributes to the molecular description of the substantia nigra. PMID:9027501

  7. Brain immune cell composition and functional outcome after cerebral ischemia: comparison of two mouse strains

    PubMed Central

    Kim, Hyun Ah; Whittle, Stephanie C.; Lee, Seyoung; Chu, Hannah X.; Zhang, Shenpeng R.; Wei, Zihui; Arumugam, Thiruma V.; Vinh, Anthony; Drummond, Grant R.; Sobey, Christopher G.

    2014-01-01

    Inflammatory cells may contribute to secondary brain injury following cerebral ischemia. The C57Bl/6 mouse strain is known to exhibit a T helper 1-prone, pro-inflammatory type response to injury, whereas the FVB strain is relatively T helper 2-prone, or anti-inflammatory, in its immune response. We tested whether stroke outcome is more severe in C57Bl/6 than FVB mice. Male mice of each strain underwent sham surgery or 1 h occlusion of the middle cerebral artery followed by 23 h of reperfusion. Despite no difference in infarct size, C57Bl/6 mice displayed markedly greater functional deficits than FVB mice after stroke, as assessed by neurological scoring and hanging wire test. Total numbers of CD45+ leukocytes tended to be larger in the brains of C57Bl/6 than FVB mice after stroke, but there were marked differences in leukocyte composition between the two mouse strains. The inflammatory response in C57Bl/6 mice primarily involved T and B lymphocytes, whereas neutrophils, monocytes and macrophages were more prominent in FVB mice. Our data are consistent with the concept that functional outcome after stroke is dependent on the immune cell composition which develops following ischemic brain injury. PMID:25477780

  8. The mouse brain metabolome: region-specific signatures and response to excitotoxic neuronal injury.

    PubMed

    Jaeger, Christian; Glaab, Enrico; Michelucci, Alessandro; Binz, Tina M; Koeglsberger, Sandra; Garcia, Pierre; Trezzi, Jean-Pierre; Ghelfi, Jenny; Balling, Rudi; Buttini, Manuel

    2015-06-01

    Neurodegeneration is a multistep process characterized by a multitude of molecular entities and their interactions. Systems analyses, or omics approaches, have become an important tool in characterizing this process. Although RNA and protein profiling made their entry into this field a couple of decades ago, metabolite profiling is a more recent addition. The metabolome represents a large part or all metabolites in a tissue, and gives a snapshot of its physiology. By using gas chromatography coupled to mass spectrometry, we analyzed the metabolic profile of brain regions of the mouse, and found that each region is characterized by its own metabolic signature. We then analyzed the metabolic profile of the mouse brain after excitotoxic injury, a mechanism of neurodegeneration implicated in numerous neurological diseases. More important, we validated our findings by measuring, histologically and molecularly, actual neurodegeneration and glial response. We found that a specific global metabolic signature, best revealed by machine learning algorithms, rather than individual metabolites, was the most robust correlate of neuronal injury and the accompanying gliosis, and this signature could serve as a global biomarker for neurodegeneration. We also observed that brain lesioning induced several metabolites with neuroprotective properties. Our results deepen the understanding of metabolic changes accompanying neurodegeneration in disease models, and could help rapidly evaluate these changes in preclinical drug studies. PMID:25934215

  9. Effects of heavy ion to the primary culture of mouse brain cells

    NASA Technical Reports Server (NTRS)

    Nojima, Kumie; Nakadai, Taeko; Kohno, Yukio; Vazquez, Marcelo E.; Yasuda, Nakahiro; Nagaoka, Shunji

    2004-01-01

    To investigate effects of low dose heavy particle radiation to CNS system, we adopted mouse neonatal brain cells in culture being exposed to heavy ions by HIMAC at NIRS and NSRL at BNL. The applied dose varied from 0.05 Gy up to 2.0 Gy. The subsequent biological effects were evaluated by an induction of apoptosis and neuron survival focusing on the dependencies of the animal strains, SCID, B6, B6C3F1, C3H, used for brain cell culture, SCID was the most sensitive and C3H the least sensitive to particle radiation as evaluated by 10% apoptotic criterion. The LET dependency was compared with using SCID and B6 cells exposing to different ions (H, C, Ne, Si, Ar, and Fe). Although no detectable LET dependency was observed in the high LET (55-200 keV/micrometers) and low dose (<0.5 Gy) regions. The survivability profiles of the neurons were different in the mouse strains and ions. In this report, a result of memory and learning function to adult mice after whole-body and brain local irradiation at carbon ion and iron ion.

  10. Lithium treatment elongates primary cilia in the mouse brain and in cultured cells

    SciTech Connect

    Miyoshi, Ko; Kasahara, Kyosuke; Miyazaki, Ikuko; Asanuma, Masato

    2009-10-30

    The molecular mechanisms underlying the therapeutic effects of lithium, a first-line antimanic mood stabilizer, have not yet been fully elucidated. Treatment of the algae Chlamydomonas reinhardtii with lithium has been shown to induce elongation of their flagella, which are analogous structures to vertebrate cilia. In the mouse brain, adenylyl cyclase 3 (AC3) and certain neuropeptide receptors colocalize to the primary cilium of neuronal cells, suggesting a chemosensory function for the primary cilium in the nervous system. Here we show that lithium treatment elongates primary cilia in the mouse brain and in cultured cells. Brain sections from mice chronically fed with Li{sub 2}CO{sub 3} were subjected to immunofluorescence study. Primary cilia carrying both AC3 and the receptor for melanin-concentrating hormone (MCH) were elongated in the dorsal striatum and nucleus accumbens of lithium-fed mice, as compared to those of control animals. Moreover, lithium-treated NIH3T3 cells and cultured striatal neurons exhibited elongation of the primary cilia. The present results provide initial evidence that a psychotropic agent can affect ciliary length in the central nervous system, and furthermore suggest that lithium exerts its therapeutic effects via the upregulation of cilia-mediated MCH sensing. These findings thus contribute novel insights into the pathophysiology of bipolar mood disorder and other psychiatric diseases.

  11. Gene repressive mechanisms in the mouse brain involved in memory formation.

    PubMed

    Yu, Nam-Kyung; Kaang, Bong-Kiun

    2016-04-01

    Gene regulation in the brain is essential for long-term plasticity and memory formation. Despite this established notion, the quantitative translational map in the brain during memory formation has not been reported. To systematically probe the changes in protein synthesis during memory formation, our recent study exploited ribosome profiling using the mouse hippocampal tissues at multiple time points after a learning event. Analysis of the resulting database revealed novel types of gene regulation after learning. First, the translation of a group of genes was rapidly suppressed without change in mRNA levels. At later time points, the expression of another group of genes was downregulated through reduction in mRNA levels. This reduction was predicted to be downstream of inhibition of ESR1 (Estrogen Receptor 1) signaling. Overexpressing Nrsn1, one of the genes whose translation was suppressed, or activating ESR1 by injecting an agonist interfered with memory formation, suggesting the functional importance of these findings. Moreover, the translation of genes encoding the translational machineries was found to be suppressed, among other genes in the mouse hippocampus. Together, this unbiased approach has revealed previously unidentified characteristics of gene regulation in the brain and highlighted the importance of repressive controls. [BMB Reports 2016; 49(4): 199-200]. PMID:26949020

  12. ChIP-Seq analysis of the adult male mouse brain after developmental exposure to arsenic.

    PubMed

    Tyler, Christina R; Weber, Jessica A; Labrecque, Matthew; Hessinger, Justin M; Edwards, Jeremy S; Allan, Andrea M

    2015-12-01

    Exposure to the common environmental contaminant arsenic impacts the epigenetic landscape, including DNA methylation and histone modifications, of several cell types. Developmental arsenic exposure (DAE) increases acetylation and methylation of histone proteins and the protein expression of several chromatin-modifying enzymes in the dentate gyrus (DG) subregion of the adult male mouse brain [26]. To complement and support these data, ChIP-Seq analysis of DNA associated with trimethylation of histone 3 lysine 4 (H3K4me3) derived from the adult male DG after DAE was performed. DAE induced differential H3K4me3 enrichment on genes in pathways associated with cellular development and growth, cell death and survival, and neurological disorders, particularly as they relate to cancer, in the adult male brain. Comparison of H3K4me3 enrichment in controls revealed mechanisms that are potentially lacking in arsenic-exposed animals, including neurotransmission, neuronal growth and development, hormonal regulation, protein synthesis, and cellular homeostasis. New pathways impacted by arsenic include cytoskeleton organization, cell signaling, and potential disruption of immune function and warrant further investigation using this DAE paradigm in the mouse brain. PMID:26543888

  13. Gene repressive mechanisms in the mouse brain involved in memory formation

    PubMed Central

    Yu, Nam-Kyung; Kaang, Bong-Kiun

    2016-01-01

    Gene regulation in the brain is essential for long-term plasticity and memory formation. Despite this established notion, the quantitative translational map in the brain during memory formation has not been reported. To systematically probe the changes in protein synthesis during memory formation, our recent study exploited ribosome profiling using the mouse hippocampal tissues at multiple time points after a learning event. Analysis of the resulting database revealed novel types of gene regulation after learning. First, the translation of a group of genes was rapidly suppressed without change in mRNA levels. At later time points, the expression of another group of genes was downregulated through reduction in mRNA levels. This reduction was predicted to be downstream of inhibition of ESR1 (Estrogen Receptor 1) signaling. Overexpressing Nrsn1, one of the genes whose translation was suppressed, or activating ESR1 by injecting an agonist interfered with memory formation, suggesting the functional importance of these findings. Moreover, the translation of genes encoding the translational machineries was found to be suppressed, among other genes in the mouse hippocampus. Together, this unbiased approach has revealed previously unidentified characteristics of gene regulation in the brain and highlighted the importance of repressive controls. [BMB Reports 2016; 49(4): 199-200] PMID:26949020

  14. NLRP3 Inflammasome Is Expressed and Functional in Mouse Brain Microglia but Not in Astrocytes

    PubMed Central

    Gustin, Audrey; Kirchmeyer, Mélanie; Koncina, Eric; Felten, Paul; Losciuto, Sophie; Heurtaux, Tony; Tardivel, Aubry; Heuschling, Paul; Dostert, Catherine

    2015-01-01

    Neuroinflammation is the local reaction of the brain to infection, trauma, toxic molecules or protein aggregates. The brain resident macrophages, microglia, are able to trigger an appropriate response involving secretion of cytokines and chemokines, resulting in the activation of astrocytes and recruitment of peripheral immune cells. IL-1β plays an important role in this response; yet its production and mode of action in the brain are not fully understood and its precise implication in neurodegenerative diseases needs further characterization. Our results indicate that the capacity to form a functional NLRP3 inflammasome and secretion of IL-1β is limited to the microglial compartment in the mouse brain. We were not able to observe IL-1β secretion from astrocytes, nor do they express all NLRP3 inflammasome components. Microglia were able to produce IL-1β in response to different classical inflammasome activators, such as ATP, Nigericin or Alum. Similarly, microglia secreted IL-18 and IL-1α, two other inflammasome-linked pro-inflammatory factors. Cell stimulation with α-synuclein, a neurodegenerative disease-related peptide, did not result in the release of active IL-1β by microglia, despite a weak pro-inflammatory effect. Amyloid-β peptides were able to activate the NLRP3 inflammasome in microglia and IL-1β secretion occurred in a P2X7 receptor-independent manner. Thus microglia-dependent inflammasome activation can play an important role in the brain and especially in neuroinflammatory conditions. PMID:26091541

  15. Vascular Endothelial Growth Factors Enhance the Permeability of the Mouse Blood-brain Barrier

    PubMed Central

    Jiang, Shize; Xia, Rui; Jiang, Yong; Wang, Lei; Gao, Fabao

    2014-01-01

    The blood-brain barrier (BBB) impedes entry of many drugs into the brain, limiting clinical efficacy. A safe and efficient method for reversibly increasing BBB permeability would greatly facilitate central nervous system (CNS) drug delivery and expand the range of possible therapeutics to include water soluble compounds, proteins, nucleotides, and other large molecules. We examined the effect of vascular endothelial growth factor (VEGF) on BBB permeability in Kunming (KM) mice. Human VEGF165 was administered to treatment groups at two concentrations (1.6 or 3.0 µg/mouse), while controls received equal-volume saline. Changes in BBB permeability were measured by parenchymal accumulation of the contrast agent Gd-DTPA as assessed by 7 T magnetic resonance imaging (MRI). Mice were then injected with Evans blue, sacrificed 0.5 h later, and perfused transcardially. Brains were removed, fixed, and sectioned for histological study. Both VEGF groups exhibited a significantly greater signal intensity from the cerebral cortex and basal ganglia than controls (P<0.001). Evans blue fluorescence intensity was higher in the parenchyma and lower in the cerebrovasculature of VEGF-treated animals compared to controls. No significant brain edema was observed by diffusion weighted MRI (DWI) or histological staining. Exogenous application of VEGF can increase the permeability of the BBB without causing brain edema. Pretreatment with VEGF may be a feasible method to facilitate drug delivery into the CNS. PMID:24551038

  16. In vitro inhibitory effect of aflatoxin B1 on acetylcholinesterase activity in mouse brain.

    PubMed

    Cometa, Maria Francesca; Lorenzini, Paola; Fortuna, Stefano; Volpe, Maria Teresa; Meneguz, Annarita; Palmery, Maura

    2005-01-01

    Growing concern on the problem of mycotoxins in the alimentary chain underlines the need to investigate the mechanisms explaining the cholinergic effects of aflatoxin B(1) (AFB(1)). We examined the effect of AFB(1), a mycotoxin produced by Aspergillus flavus, on mouse brain acetylcholinesterase (AChE) and specifically on its molecular isoforms (G(1) and G(4)) after in vitro exposure. AFB(1) (from 10(-9) to 10(-4)M), inhibited mouse brain AChE activity (IC(50) = 31.6 x 10(-6)M) and its G(1) and G(4) molecular isoforms in a dose-dependent manner. Michaelis-Menten parameters indicate that the K(m) value increased from 55.2 to 232.2% whereas V(max) decreased by 46.2-75.1%. The direct, the Lineweaver-Burk and the secondary plots indicated a non-competitive-mixed type antagonism, induced when the inhibitor binds to the free enzyme and to the enzyme-substrate complex. AFB(1)-inhibited AChE was partially reactivated by pyridine 2-aldoxime (2-PAM) (10(-4)M) but the AChE-inhibiting time courses of AFB(1) (10(-4)M) and diisopropylfluorophosphate (DFP) (2 x 10(-7)M) differed. Overall these data suggest that AFB(1) non-competitively inhibits mouse brain AChE by blocking access of the substrate to the active site or by inducing a defective conformational change in the enzyme through non-covalent binding interacting with the AChE peripheral binding site, or through both mechanisms. PMID:15590113

  17. Determination of steroids and their intact glucuronide conjugates in mouse brain by capillary liquid chromatography-tandem mass spectrometry.

    PubMed

    Jäntti, Sirkku E; Tammimäki, Anne; Raattamaa, Helena; Piepponen, Petteri; Kostiainen, Risto; Ketola, Raimo A

    2010-04-15

    A method for the identification and quantitation of 10 brain steroids and their 2 sulfate and 9 glucuronide conjugates in mouse brain tissues was developed and validated. The method includes the extraction of homogenized brain by solid-phase extraction and the analysis of the extracts by capillary liquid chromatography-tandem mass spectrometry. The main advantage of the method is that steroid conjugates in brain can be analyzed as intact compounds, without derivatization, hydrolysis, or complex sample preparation procedures; thus, the true identity of the conjugates can be confirmed with tandem mass spectrometric detection. The method was validated to show its linearity (r > 0.998) and precision (<9%). The limits of detection in solution were from 6 to 80 pmol/L for steroid glucuronides, from 13 to 32 pmol/L for steroid sulfates, and from 26 pmol/L to 2.2 nmol/L for native steroids. The recovery of internal standards was 95% for d3-testosterone glucuronide and 69% for d4-allopregnanolone from spiked mouse hippocampus. Brain tissue samples from mouse hippocampus and hypothalamus were analyzed using the new method. Several steroids and glucuronides were identified and quantified from the mouse brain at concentration levels of 0.2-58 ng/g. The concentrations of steroid glucuronides were significant compared to those of their aglycons, indicating that glucuronidation might be an important metabolic pathway for some steroids in the mouse brain. The method developed in this study provides for the first time direct quantitative determination of steroids and their glucuronides and sulfates in brain without hydrolysis and, therefore, creates the possibility to study in detail the role of steroid glucuronidation and sulfation in the brain. PMID:20345173

  18. In vivo metabolic labeling of sialoglycans in the mouse brain by using a liposome-assisted bioorthogonal reporter strategy.

    PubMed

    Xie, Ran; Dong, Lu; Du, Yifei; Zhu, Yuntao; Hua, Rui; Zhang, Chen; Chen, Xing

    2016-05-10

    Mammalian brains are highly enriched with sialoglycans, which have been implicated in brain development and disease progression. However, in vivo labeling and visualization of sialoglycans in the mouse brain remain a challenge because of the blood-brain barrier. Here we introduce a liposome-assisted bioorthogonal reporter (LABOR) strategy for shuttling 9-azido sialic acid (9AzSia), a sialic acid reporter, into the brain to metabolically label sialoglycoconjugates, including sialylated glycoproteins and glycolipids. Subsequent bioorthogonal conjugation of the incorporated 9AzSia with fluorescent probes via click chemistry enabled fluorescence imaging of brain sialoglycans in living animals and in brain sections. Newly synthesized sialoglycans were found to widely distribute on neuronal cell surfaces, in particular at synaptic sites. Furthermore, large-scale proteomic profiling identified 140 brain sialylated glycoproteins, including a wealth of synapse-associated proteins. Finally, by performing a pulse-chase experiment, we showed that dynamic sialylation is spatially regulated, and that turnover of sialoglycans in the hippocampus is significantly slower than that in other brain regions. The LABOR strategy provides a means to directly visualize and monitor the sialoglycan biosynthesis in the mouse brain and will facilitate elucidating the functional role of brain sialylation. PMID:27125855

  19. UPTAKE OF [3H]-COLCHICINE INTO BRAIN AND LIVER OF MOUSE, RAT, AND CHICK

    SciTech Connect

    Bennett, Edward L.; Alberti, Marie Hebert; Flood, James F.

    1980-07-01

    The uptake of [ring A-4-{sup 3}H] colchicine and [ring C-methoxy-{sup 3}H]colchicine has been compared in mice from 1 to 24 hr after administration. Less radioactivity was found in brain after administration of ring-labeled colchicine than after administration of the methoxy-labeled colchicine. Three hr after administration of ring-labeled colchicine, 5% of the label was in liver and about 0.01% of the label was present in brain. Forty percent of the brain radioactivity was bound to tubulin as determined by vinblastine precipitation. After 3 hr, an average of 8% of the radioactivity from methoxy-labeled colchicine was found in the liver and 0.16% in brain. However, less than 5% of the activity in brain was precipitated by vinblastine, and the colchicine equivalent was comparable to that found after administration of the ring-labeled colchicine. The amount of colchicine entering mouse brain after subcutaneous injection is comparable to the minimum behaviorally effective dose when administered to the caudate. The metabolism of [ring C-methoxy-{sup 3}H] and [ring A-{sup 3}H]colchicine was also studied in rats. the general pattern was similar to mice; less radioactivity was found in brain after administration of the ring-labeled alkoloid than after administration of methoxy-labeled colchicine. Again, 40-50% of ring-labeled colchicine was precipitated by vinblastine. A much smaller percentage of the methoxy-labeled drug was precipitated by vinblastine than of the ring A-labeled colchicine. These experiments, together with behavioral experiments [7], support the hypotheses that structural alteration in synapses by recently synthesized proteins which are transported down the axons and dendrites may be an essential process for long-term memory formation.

  20. Hypertonic saline reduces lipopolysaccharide-induced mouse brain edema through inhibiting aquaporin 4 expression

    PubMed Central

    2012-01-01

    Introduction Three percent sodium chloride (NaCl) treatment has been shown to reduce brain edema and inhibited brain aquaporin 4 (AQP4) expression in bacterial meningitis induced by Escherichia coli. Lipopolysaccharide (LPS) is the main pathogenic component of E. coli. We aimed to explore the effect of 3% NaCl in mouse brain edema induced by LPS, as well as to elucidate the potential mechanisms of action. Methods Three percent NaCl was used to treat cerebral edema induced by LPS in mice in vivo. Brain water content, IL-1β, TNFα, immunoglobulin G (IgG), AQP4 mRNA and protein were measured in brain tissues. IL-1β, 3% NaCl and calphostin C (a specific inhibitor of protein kinase C) were used to treat the primary astrocytes in vitro. AQP4 mRNA and protein were measured in astrocytes. Differences in various groups were determined by one-way analysis of variance. Results Three percent NaCl attenuated the increase of brain water content, IL-1β, TNFα, IgG, AQP4 mRNA and protein in brain tissues induced by LPS. Three percent NaCl inhibited the increase of AQP4 mRNA and protein in astrocytes induced by IL-1β in vitro. Calphostin C blocked the decrease of AQP4 mRNA and protein in astrocytes induced by 3% NaCl in vitro. Conclusions Osmotherapy with 3% NaCl ameliorated LPS-induced cerebral edema in vivo. In addition to its osmotic force, 3% NaCl exerted anti-edema effects possibly through down-regulating the expression of proinflammatory cytokines (IL-1β and TNFα) and inhibiting the expression of AQP4 induced by proinflammatory cytokines. Three percent NaCl attenuated the expression of AQP4 through activation of protein kinase C in astrocytes. PMID:23036239

  1. Brain Distribution and Bioavailability of Elacridar after Different Routes of Administration in the Mouse

    PubMed Central

    Sane, Ramola; Agarwal, Sagar

    2012-01-01

    The objective of this study was to determine the bioavailability and disposition of elacridar (GF120918; N-(4-(2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl)phenyl)-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide) in plasma and brain after various routes of administration in the mouse. Elacridar is a potent inhibitor of P-glycoprotein and breast cancer resistance protein and has been used to examine the influence of these efflux transporters on drug distribution to brain. Friend leukemia virus strain B mice were administered 100 mg/kg elacridar either orally or intraperitoneally. The absolute bioavailability of elacridar after oral or intraperitoneal dosing was determined with respect to an intravenous dose of 2.5 mg/kg. At these doses, the absolute bioavailability was 0.22 for oral administration and 0.01 for intraperitoneal administration. The terminal half-life of elacridar was approximately 4 h after intraperitoneal and intravenous administration and nearly 20 h after oral dosing. The brain-to-plasma partition coefficient (Kp,brain) of elacridar increased as plasma exposure increased, suggesting saturation of the efflux transporters at the blood-brain barrier. The Kp,brain after intravenous, intraperitoneal, and oral dosing was 0.82, 0.43, and 4.31, respectively. The low aqueous solubility and high lipophilicity of elacridar result in poor oral absorption, most likely dissolution-rate-limited. These results illustrate the importance of the route of administration and the resultant plasma exposure in achieving effective plasma and brain concentrations of elacridar and can be used as a guide for future studies involving elacridar administration and in developing formulation strategies to overcome the poor absorption. PMID:22611067

  2. Uptake of (/sup 3/H)colchicine into brain and liver of mouse, rat, and chick

    SciTech Connect

    Bennett, E.L.; Alberti, M.H.; Flood, J.F.

    1981-01-01

    The uptake of (ring A-4-/sup 3/H) colchicine and (ring C-methoxy-/sup 3/H)colchicine has been compared in mice from 1 to 24 hr after administration. Less radioactivity was found in brain after administration of ring-labeled colchicine than after administration of the methoxy-labeled colchicine. Three hr after administration of ring-labeled colchicine, 5% of the label was in liver and about 0.01% of the label was present in brain. Forty percent of the brain radioactivity was bound to tubulin as determined by vinblastine precipitation. After 3 hr, an average of 8% of the radioactivity from methoxy-labeled colchicine was found in the liver and 0.16% in brain. However, less than 5% of the activity in brain was precipitated by vinblastine, and the colchicine equivalent was comparable to that found after administration of the ring-labeled colchicine. The amount of colchicine entering mouse brain after subcutaneous injection is comparable to the minimum behaviorally effective dose when administered to the caudate. The metabolism of (ring C-methoxy-/sup 3/H) and (ring A-/sup 3/H)colchicine was also studied in rats. The general pattern was similar to mice; less radioactivity was found in brain after administration of the ring-labeled alkaloid than after administration of methoxy-labeled colchicine. Again, 40-50% of ring-labeled colchicine was precipitated by vinblastine. A much smaller percentage of the methoxy-labeled drug was precipitated by vinblastine than of the ring A-labeled colchicine. These experiments, together with behavioral experiments, support the hypotheses that structural alterations in synapses by recently synthesized proteins which are transported down the axons and dendrites may be an essential process for long-term memory formation.

  3. Visualizing the spatial gene expression organization in the brain through non-linear similarity embeddings.

    PubMed

    Mahfouz, Ahmed; van de Giessen, Martijn; van der Maaten, Laurens; Huisman, Sjoerd; Reinders, Marcel; Hawrylycz, Michael J; Lelieveldt, Boudewijn P F

    2015-02-01

    The Allen Brain Atlases enable the study of spatially resolved, genome-wide gene expression patterns across the mammalian brain. Several explorative studies have applied linear dimensionality reduction methods such as Principal Component Analysis (PCA) and classical Multi-Dimensional Scaling (cMDS) to gain insight into the spatial organization of these expression patterns. In this paper, we describe a non-linear embedding technique called Barnes-Hut Stochastic Neighbor Embedding (BH-SNE) that emphasizes the local similarity structure of high-dimensional data points. By applying BH-SNE to the gene expression data from the Allen Brain Atlases, we demonstrate the consistency of the 2D, non-linear embedding of the sagittal and coronal mouse brain atlases, and across 6 human brains. In addition, we quantitatively show that BH-SNE maps are superior in their separation of neuroanatomical regions in comparison to PCA and cMDS. Finally, we assess the effect of higher-order principal components on the global structure of the BH-SNE similarity maps. Based on our observations, we conclude that BH-SNE maps with or without prior dimensionality reduction (based on PCA) provide comprehensive and intuitive insights in both the local and global spatial transcriptome structure of the human and mouse Allen Brain Atlases. PMID:25449901

  4. Reduction of photo bleaching and long term archiving of chemically cleared GFP-expressing mouse brains.

    PubMed

    Becker, Klaus; Hahn, Christian Markus; Saghafi, Saiedeh; Jährling, Nina; Wanis, Martina; Dodt, Hans-Ulrich

    2014-01-01

    Tissue clearing allows microscopy of large specimens as whole mouse brains or embryos. However, lipophilic tissue clearing agents as dibenzyl ether limit storage time of GFP-expressing samples to several days and do not prevent them from photobleaching during microscopy. To preserve GFP fluorescence, we developed a transparent solid resin formulation, which maintains the specimens' transparency and provides a constant signal to noise ratio even after hours of continuous laser irradiation. If required, high-power illumination or long exposure times can be applied with virtually no loss in signal quality and samples can be archived for years. PMID:25463047

  5. Reduction of Photo Bleaching and Long Term Archiving of Chemically Cleared GFP-Expressing Mouse Brains

    PubMed Central

    Becker, Klaus; Hahn, Christian Markus; Saghafi, Saiedeh; Jährling, Nina; Wanis, Martina; Dodt, Hans-Ulrich

    2014-01-01

    Tissue clearing allows microscopy of large specimens as whole mouse brains or embryos. However, lipophilic tissue clearing agents as dibenzyl ether limit storage time of GFP-expressing samples to several days and do not prevent them from photobleaching during microscopy. To preserve GFP fluorescence, we developed a transparent solid resin formulation, which maintains the specimens' transparency and provides a constant signal to noise ratio even after hours of continuous laser irradiation. If required, high-power illumination or long exposure times can be applied with virtually no loss in signal quality and samples can be archived for years. PMID:25463047

  6. In-vivo Fluorescent X-ray CT Imaging of Mouse Brain

    SciTech Connect

    Takeda, T.; Wu, J.; Lwin, Thet-Thet; Huo, Q.; Minami, M.; Sunaguchi, N.; Murakami, T.; Mouri, S.; Nasukawa, S.; Yuasa, T.; Akatsuka, T.; Hyodo, K.; Hontani, H.

    2007-01-19

    Using a non-radioactive iodine-127 labeled cerebral perfusion agent (I-127 IMP), fluorescent X-ray computed tomography (FXCT) clearly revealed the cross-sectional distribution of I-127 IMP in normal mouse brain in-vivo. Cerebral perfusion of cortex and basal ganglion was depicted with 1 mm in-plane spatial resolution and 0.1 mm slice thickness. Degree of cerebral perfusion in basal ganglion was about 2-fold higher than that in cortical regions. This result suggests that in-vivo cerebral perfusion imaging is realized quantitatively by FXCT at high volumetric resolution.

  7. JULIDE: a software tool for 3D reconstruction and statistical analysis of autoradiographic mouse brain sections.

    PubMed

    Ribes, Delphine; Parafita, Julia; Charrier, Rémi; Magara, Fulvio; Magistretti, Pierre J; Thiran, Jean-Philippe

    2010-01-01

    In this article we introduce JULIDE, a software toolkit developed to perform the 3D reconstruction, intensity normalization, volume standardization by 3D image registration and voxel-wise statistical analysis of autoradiographs of mouse brain sections. This software tool has been developed in the open-source ITK software framework and is freely available under a GPL license. The article presents the complete image processing chain from raw data acquisition to 3D statistical group analysis. Results of the group comparison in the context of a study on spatial learning are shown as an illustration of the data that can be obtained with this tool. PMID:21124830

  8. Edaravone Enhances Brain-Derived Neurotrophic Factor Production in the Ischemic Mouse Brain

    PubMed Central

    Okuyama, Satoshi; Morita, Mayu; Sawamoto, Atsushi; Terugo, Tsukasa; Nakajima, Mitsunari; Furukawa, Yoshiko

    2015-01-01

    Edaravone, a clinical drug used to treat strokes, protects against neuronal cell death and memory loss in the ischemic brains of animal models through its antioxidant activity. In the present study, we subcutaneously administrated edaravone to mice (3 mg/kg/day) for three days immediately after bilateral common carotid artery occlusion, and revealed through an immunohistochemical analysis that edaravone (1) accelerated increases in the production of brain-derived neurotrophic factor (BDNF) in the hippocampus; (2) increased the number of doublecortin-positive neuronal precursor cells in the dentate gyrus subgranular zone; and (3) suppressed the ischemia-induced inactivation of calcium-calmodulin-dependent protein kinase II in the hippocampus. We also revealed through a Western blotting analysis that edaravone (4) induced the phosphorylation of cAMP response element-binding (CREB), a transcription factor that regulates BDNF gene expression; and (5) induced the phosphorylation of extracellular signal-regulated kinases 1/2, an upstream signal factor of CREB. These results suggest that the neuroprotective effects of edaravone following brain ischemia were mediated not only by the elimination of oxidative stress, but also by the induction of BDNF production. PMID:25850013

  9. A brain-specific gene cluster isolated from the region of the mouse obesity locus is expressed in the adult hypothalamus and during mouse development

    SciTech Connect

    Laig-Webster, M.; Lim, M.E.; Chehab, F.F.

    1994-09-01

    The molecular defect underlying an autosomal recessive form of genetic obesity in a classical mouse model C57 BL/6J-ob/ob has not yet been elucidated. Whereas metabolic and physiological disturbances such as diabetes and hypertension are associated with obesity, the site of expression and the nature of the primary lesion responsible for this cascade of events remains elusive. Our efforts aimed at the positional cloning of the ob gene by YAC contig mapping and gene identification have resulted in the cloning of a brain-specific gene cluster from the ob critical region. The expression of this gene cluster is remarkably complex owing to the multitude of brain-specific mRNA transcripts detected on Northern blots. cDNA cloning of these transcripts suggests that they are expressed from different genes as well as by alternate splicing mechanisms. Furthermore, the genomic organization of the cluster appears to consist of at least two identical promoters displaying CpG islands characteristic of housekeeping genes, yet clearly involving tissue-specific expression. Sense and anti-sense synthetic RNA probes were derived from a common DNA sequence on 3 cDNA clones and hybridized to 8-16 days mouse embryonic stages and mouse adult brain sections. Expression in development was noticeable as of the 11th day of gestation and confined to the central nervous system mainly in the telencephalon and spinal cord. Coronal and sagittal sections of the adult mouse brain showed expression only in 3 different regions of the brain stem. In situ hybridization to mouse hypothalamus sections revealed the presence of a localized and specialized group of cells expressing high levels of mRNA, suggesting that this gene cluster may also be involved in the regulation of hypothalamic activities. The hypothalamus has long been hypothesized as a primary candidate tissue for the expression of the obesity gene mainly because of its well-established role in the regulation of energy metabolism and food intake.

  10. Treating the Developing versus Developed Brain: Translating Preclinical Mouse and Human Studies

    PubMed Central

    Casey, BJ; Glatt, Charles E.; Lee, Francis S.

    2015-01-01

    Summary Behaviors and underlying brain circuits show characteristic changes across the life-span that produce sensitive windows of vulnerability and resilience to psychopathology. Understanding the developmental course of these changes may inform which treatments are best at what ages. Focusing on behavioral domains and neurobiological substrates conserved from mouse to human supports reciprocal hypothesis generation and testing that leverages the strengths of each system in understanding their development. Introducing human genetic variants into mice can further define effects of individual variation on normative development, how they contribute to risk and resilience for mental illness, and inform personalized treatment opportunities. This article emphasizes the period of adolescence, when there is a peak in the emergence of mental illness, in particular, anxiety disorders. We present cross-species studies relating fear learning to anxiety across development, and discuss how clinical treatments can be optimized for individuals and targeted to the biological states of the developing brain. PMID:26087163

  11. PACAP Interactions in the Mouse Brain: Implications for Behavioral and Other Disorders

    SciTech Connect

    Acquaah-Mensah, George; Taylor, Ronald C.; Bhave, Sanjiv V.

    2012-01-10

    As an activator of adenylate cyclase, the neuropeptide Pituitary Adenylate Cyclase Activating Peptide (PACAP) impacts levels of cyclic AMP, a key second messenger available in brain cells. PACAP is involved in certain adult behaviors. To elucidate PACAP interactions, a compendium of microarrays representing mRNA expression in the adult mouse whole brain was pooled from the Phenogen database for analysis. A regulatory network was computed based on mutual information between gene pairs using gene expression data across the compendium. Clusters among genes directly linked to PACAP, and probable interactions between corresponding proteins were computed. Database 'experts' affirmed some of the inferred relationships. The findings suggest ADCY7 is probably the adenylate cyclase isoform most relevant to PACAP's action. They also support intervening roles for kinases including GSK3B, PI 3-kinase, SGK3 and AMPK. Other high-confidence interactions are hypothesized for future testing. This new information has implications for certain behavioral and other disorders.

  12. Rapid and efficient gene delivery into the adult mouse brain via focal electroporation

    PubMed Central

    Nomura, Tadashi; Nishimura, Yusuke; Gotoh, Hitoshi; Ono, Katsuhiko

    2016-01-01

    In vivo gene delivery is required for studying the cellular and molecular mechanisms of various biological events. Virus-mediated gene transfer or generation of transgenic animals is widely used; however, these methods are time-consuming and expensive. Here we show an improved electroporation technique for acute gene delivery into the adult mouse brain. Using a syringe-based microelectrode, local DNA injection and the application of electric current can be performed simultaneously; this allows rapid and efficient gene transduction of adult non-neuronal cells. Combining this technique with various expression vectors that carry specific promoters resulted in targeted gene expression in astrocytic cells. Our results constitute a powerful strategy for the genetic manipulation of adult brains in a spatio-temporally controlled manner. PMID:27430903

  13. Rapid and efficient gene delivery into the adult mouse brain via focal electroporation.

    PubMed

    Nomura, Tadashi; Nishimura, Yusuke; Gotoh, Hitoshi; Ono, Katsuhiko

    2016-01-01

    In vivo gene delivery is required for studying the cellular and molecular mechanisms of various biological events. Virus-mediated gene transfer or generation of transgenic animals is widely used; however, these methods are time-consuming and expensive. Here we show an improved electroporation technique for acute gene delivery into the adult mouse brain. Using a syringe-based microelectrode, local DNA injection and the application of electric current can be performed simultaneously; this allows rapid and efficient gene transduction of adult non-neuronal cells. Combining this technique with various expression vectors that carry specific promoters resulted in targeted gene expression in astrocytic cells. Our results constitute a powerful strategy for the genetic manipulation of adult brains in a spatio-temporally controlled manner. PMID:27430903

  14. Anatomical localization of leucine-rich repeat kinase 2 in mouse brain.

    PubMed

    Melrose, H; Lincoln, S; Tyndall, G; Dickson, D; Farrer, M

    2006-01-01

    Mutations in leucine-rich repeat kinase 2 (LRRK2) have recently been identified in autosomal dominant late-onset Parkinson's disease. Expression of LRRK2 has previously been reported in brain; however, no precise anatomical information is yet available. We have performed in situ hybridization and quantitative reverse transcription polymerase chain reaction to map LRRK2 mRNA expression in mouse brain. We find LRRK2 is highly expressed in the striatum, cortex and olfactory tubercle; however, little or no expression is found in the substantia nigra, where dopaminergic neurons preferentially degenerate in Parkinson's disease. These findings suggest that LRRK2 mRNA is expressed in dopamine-receptive areas rather than in the dopamine-synthesizing neurons. Consistent with a role LRRK2 in Parkinson's disease, dysfunction of leucine-rich repeat kinase 2 protein in dopamine-innervated areas may to lead to altered dopaminergic neurotransmission and degeneration of the nigro-striatal pathway. PMID:16504409

  15. Genetically Engineered Mouse Models of Brain Cancer and the Promise of Preclinical Testing

    PubMed Central

    Huse, Jason T; Holland, Eric C

    2009-01-01

    Recent improvements in the understanding of brain tumor biology have opened the door to a number of rational therapeutic strategies targeting distinct oncogenic pathways. The successful translation of such “designer drugs” to clinical application depends heavily on effective and expeditious screening methods in relevant disease models. By recapitulating both the underlying genetics and the characteristic tumor-stroma microenvironment of brain cancer, genetically engineered mouse models (GEMMs) may offer distinct advantages over cell culture and xenograft systems in the preclinical testing of promising therapies. This review focuses on recently developed GEMMs for both glioma and medulloblastoma, and discusses their potential use in preclinical trials. Examples showcasing the use of GEMMs in the testing of molecularly targeted therapeutics are given, and relevant topics, such as stem cell biology, in vivo imaging technology and radiotherapy, are also addressed. PMID:19076778

  16. In vivo penetration mechanics and mechanical properties of mouse brain tissue at micrometer scales.

    PubMed

    Sharp, Andrew A; Ortega, Alicia M; Restrepo, Diego; Curran-Everett, Douglas; Gall, Ken

    2009-01-01

    Substantial advancement in the understanding of the neuronal basis of behavior and the treatment of neurological disorders has been achieved via the implantation of various devices into the brain. To design and optimize the next generation of neuronal implants while striving to minimize tissue damage, it is necessary to understand the mechanics of probe insertion at relevant length scales. Unfortunately, a broad-based understanding of brain-implant interactions at the necessary micrometer scales is largely missing. This paper presents a generalizable description of the micrometer-scale penetration mechanics and material properties of mouse brain tissue in vivo. Cylindrical stainless steel probes were inserted into the cerebral cortex and olfactory bulb of mice. The effects of probe size, probe geometry, insertion rate, insertion location, animal age, and the presence of the dura and pia on the resulting forces were measured continuously throughout probe insertion and removal. Material properties (modulus, cutting force, and frictional force) were extracted using mechanical analysis. The use of rigid, incompressible, cylindrical probes allows for a general understanding of how probe design and insertion methods influence the penetration mechanics of brain tissue in vivo that can be applied to the quantitative design of most future implantable devices. PMID:19224718

  17. Computational genetic neuroanatomy of the developing mouse brain: dimensionality reduction, visualization, and clustering

    PubMed Central

    2013-01-01

    Background The structured organization of cells in the brain plays a key role in its functional efficiency. This delicate organization is the consequence of unique molecular identity of each cell gradually established by precise spatiotemporal gene expression control during development. Currently, studies on the molecular-structural association are beginning to reveal how the spatiotemporal gene expression patterns are related to cellular differentiation and structural development. Results In this article, we aim at a global, data-driven study of the relationship between gene expressions and neuroanatomy in the developing mouse brain. To enable visual explorations of the high-dimensional data, we map the in situ hybridization gene expression data to a two-dimensional space by preserving both the global and the local structures. Our results show that the developing brain anatomy is largely preserved in the reduced gene expression space. To provide a quantitative analysis, we cluster the reduced data into groups and measure the consistency with neuroanatomy at multiple levels. Our results show that the clusters in the low-dimensional space are more consistent with neuroanatomy than those in the original space. Conclusions Gene expression patterns and developing brain anatomy are closely related. Dimensionality reduction and visual exploration facilitate the study of this relationship. PMID:23845024

  18. Emulation of computer mouse control with a noninvasive brain-computer interface

    PubMed Central

    McFarland, Dennis J.; Krusienski, Dean J.; Sarnacki, William A.; Wolpaw, Jonathan R.

    2009-01-01

    Brain-computer interface (BCI) technology can provide nonmuscular communication and control to people who are severely paralyzed. BCIs can use noninvasive or invasive techniques for recording the brain signals that convey the user’s commands. Although noninvasive BCIs are used for simple applications, it has frequently been assumed that only invasive BCIs, which use electrodes implanted in the brain, will be able to provide multidimensional sequential control of a robotic arm or a neuroprosthesis. The present study shows that a noninvasive BCI using scalp-recorded EEG activity and an adaptive algorithm can provide people, including people with spinal cord injuries, with two-dimensional cursor movement and target selection. Multiple targets were presented around the periphery of a computer screen, with one designated as the correct target. The user’s task was to use EEG to move a cursor from the center the screen to the correct target and then to use an additional EEG feature to select the target. If the cursor reached an incorrect target, the user was instructed not to select it. Thus, this task emulated the key features of mouse operation. The results indicate that people with severe motor disabilities could use brain signals for sequential multidimensional movement and selection. PMID:18367779

  19. Gangliosides and ceramides change in a mouse model of blast induced traumatic brain injury.

    PubMed

    Woods, Amina S; Colsch, Benoit; Jackson, Shelley N; Post, Jeremy; Baldwin, Kathrine; Roux, Aurelie; Hoffer, Barry; Cox, Brian M; Hoffer, Michael; Rubovitch, Vardit; Pick, Chaim G; Schultz, J Albert; Balaban, Carey

    2013-04-17

    Explosive detonations generate atmospheric pressure changes that produce nonpenetrating blast induced "mild" traumatic brain injury (bTBI). The structural basis for mild bTBI has been extremely controversial. The present study applies matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging to track the distribution of gangliosides in mouse brain tissue that were exposed to very low level of explosive detonations (2.5-5.5 psi peak overpressure). We observed major increases of the ganglioside GM2 in the hippocampus, thalamus, and hypothalamus after a single blast exposure. Moreover, these changes were accompanied by depletion of ceramides. No neurological or brain structural signs of injury could be inferred using standard light microscopic techniques. The first source of variability is generated by the Latency between blast and tissue sampling (peak intensity of the blast wave). These findings suggest that subtle molecular changes in intracellular membranes and plasmalemma compartments may be biomarkers for biological responses to mild bTBI. This is also the first report of a GM2 increase in the brains of mature mice from a nongenetic etiology. PMID:23590251

  20. Localization and regulation of PML bodies in the adult mouse brain.

    PubMed

    Hall, Małgorzata H; Magalska, Adriana; Malinowska, Monika; Ruszczycki, Błażej; Czaban, Iwona; Patel, Satyam; Ambrożek-Latecka, Magdalena; Zołocińska, Ewa; Broszkiewicz, Hanna; Parobczak, Kamil; Nair, Rajeevkumar R; Rylski, Marcin; Pawlak, Robert; Bramham, Clive R; Wilczyński, Grzegorz M

    2016-06-01

    PML is a tumor suppressor protein involved in the pathogenesis of promyelocytic leukemia. In non-neuronal cells, PML is a principal component of characteristic nuclear bodies. In the brain, PML has been implicated in the control of embryonic neurogenesis, and in certain physiological and pathological phenomena in the adult brain. Yet, the cellular and subcellular localization of the PML protein in the brain, including its presence in the nuclear bodies, has not been investigated comprehensively. Because the formation of PML bodies appears to be a key aspect in the function of the PML protein, we investigated the presence of these structures and their anatomical distribution, throughout the adult mouse brain. We found that PML is broadly expressed across the gray matter, with the highest levels in the cerebral and cerebellar cortices. In the cerebral cortex PML is present exclusively in neurons, in which it forms well-defined nuclear inclusions containing SUMO-1, SUMO 2/3, but not Daxx. At the ultrastructural level, the appearance of neuronal PML bodies differs from the classic one, i.e., the solitary structure with more or less distinctive capsule. Rather, neuronal PML bodies have the form of small PML protein aggregates located in the close vicinity of chromatin threads. The number, size, and signal intensity of neuronal PML bodies are dynamically influenced by immobilization stress and seizures. Our study indicates that PML bodies are broadly involved in activity-dependent nuclear phenomena in adult neurons. PMID:25956166

  1. Developmental expression of orphan G protein-coupled receptor 50 in the mouse brain.

    PubMed

    Grünewald, Ellen; Tew, Kenneth D; Porteous, David J; Thomson, Pippa A

    2012-06-20

    Mental disorders have a complex etiology resulting from interactions between multiple genetic risk factors and stressful life events. Orphan G protein-coupled receptor 50 (GPR50) has been identified as a genetic risk factor for bipolar disorder and major depression in women, and there is additional genetic and functional evidence linking GPR50 to neurite outgrowth, lipid metabolism, and adaptive thermogenesis and torpor. However, in the absence of a ligand, a specific function has not been identified. Adult GPR50 expression has previously been reported in brain regions controlling the HPA axis, but its developmental expression is unknown. In this study, we performed extensive expression analysis of GPR50 and three protein interactors using rt-PCR and immunohistochemistry in the developing and adult mouse brain. Gpr50 is expressed at embryonic day 13 (E13), peaks at E18, and is predominantly expressed by neurons. Additionally we identified novel regions of Gpr50 expression, including brain stem nuclei involved in neurotransmitter signaling: the locus coeruleus, substantia nigra, and raphe nuclei, as well as nuclei involved in metabolic homeostasis. Gpr50 colocalizes with yeast-two-hybrid interactors Nogo-A, Abca2, and Cdh8 in the hypothalamus, amygdala, cortex, and selected brain stem nuclei at E18 and in the adult. With this study, we identify a link between GPR50 and neurotransmitter signaling and strengthen a likely role in stress response and energy homeostasis. PMID:22860215

  2. Repeated exposure to sublethal doses of the organophosphorus compound VX activates BDNF expression in mouse brain.

    PubMed

    Pizarro, Jose M; Chang, Wenling E; Bah, Mariama J; Wright, Linnzi K M; Saviolakis, George A; Alagappan, Arun; Robison, Christopher L; Shah, Jinesh D; Meyerhoff, James L; Cerasoli, Douglas M; Midboe, Eric G; Lumley, Lucille A

    2012-04-01

    The highly toxic organophosphorus compound VX [O-ethyl S-[2-(diisopropylamino)ethyl]methylphosphonate] is an irreversible inhibitor of the enzyme acetylcholinesterase (AChE). Prolonged inhibition of AChE increases endogenous levels of acetylcholine and is toxic at nerve synapses and neuromuscular junctions. We hypothesized that repeated exposure to sublethal doses of VX would affect genes associated with cell survival, neuronal plasticity, and neuronal remodeling, including brain-derived neurotrophic factor (BDNF). We examined the time course of BDNF expression in C57BL/6 mouse brain following repeated exposure (1/day × 5 days/week × 2 weeks) to sublethal doses of VX (0.2 LD(50) and 0.4 LD(50)). BDNF messenger RNA expression was significantly (p < 0.05) elevated in multiple brain regions, including the dentate gyrus, CA3, and CA1 regions of the hippocampal formation, as well as the piriform cortex, hypothalamus, amygdala, and thalamus, 72 h after the last 0.4 LD(50) VX exposure. BDNF protein expression, however, was only increased in the CA3 region of the hippocampus. Whether increased BDNF in response to sublethal doses of VX exposure is an adaptive response to prevent cellular damage or a precursor to impending brain damage remains to be determined. If elevated BDNF is an adaptive response, exogenous BDNF may be a potential therapeutic target to reduce the toxic effects of nerve agent exposure. PMID:22240983

  3. Olig1 Function Is Required for Oligodendrocyte Differentiation in the Mouse Brain

    PubMed Central

    Dai, Jinxiang; Bercury, Kathryn K.; Ahrendsen, Jared T.

    2015-01-01

    Oligodendrocyte differentiation and myelination are tightly regulated processes orchestrated by a complex transcriptional network. Two bHLH transcription factors in this network, Olig1 and Olig2, are expressed exclusively by oligodendrocytes after late embryonic development. Although the role of Olig2 in the lineage is well established, the role of Olig1 is still unclear. The current studies analyzed the function of Olig1 in oligodendrocyte differentiation and developmental myelination in brain. Both oligodendrocyte progenitor cell commitment and oligodendrocyte differentiation were impaired in the corpus callosum of Olig1-null mice, resulting in hypomyelination throughout adulthood in the brain. As seen in previous studies with this mouse line, although there was an early myelination deficit in the spinal cord, essentially full recovery with normal spinal cord myelination was seen. Intriguingly, this regional difference may be partially attributed to compensatory upregulation of Olig2 protein expression in the spinal cord after Olig1 deletion, which is not seen in brain. The current study demonstrates a unique role for Olig1 in promoting oligodendrocyte progenitor cell commitment, differentiation, and subsequent myelination primarily in brain, but not spinal cord. PMID:25762682

  4. Olig1 function is required for oligodendrocyte differentiation in the mouse brain.

    PubMed

    Dai, Jinxiang; Bercury, Kathryn K; Ahrendsen, Jared T; Macklin, Wendy B

    2015-03-11

    Oligodendrocyte differentiation and myelination are tightly regulated processes orchestrated by a complex transcriptional network. Two bHLH transcription factors in this network, Olig1 and Olig2, are expressed exclusively by oligodendrocytes after late embryonic development. Although the role of Olig2 in the lineage is well established, the role of Olig1 is still unclear. The current studies analyzed the function of Olig1 in oligodendrocyte differentiation and developmental myelination in brain. Both oligodendrocyte progenitor cell commitment and oligodendrocyte differentiation were impaired in the corpus callosum of Olig1-null mice, resulting in hypomyelination throughout adulthood in the brain. As seen in previous studies with this mouse line, although there was an early myelination deficit in the spinal cord, essentially full recovery with normal spinal cord myelination was seen. Intriguingly, this regional difference may be partially attributed to compensatory upregulation of Olig2 protein expression in the spinal cord after Olig1 deletion, which is not seen in brain. The current study demonstrates a unique role for Olig1 in promoting oligodendrocyte progenitor cell commitment, differentiation, and subsequent myelination primarily in brain, but not spinal cord. PMID:25762682

  5. Analysis of bioactive oxysterols in newborn mouse brain by LC/MS[S

    PubMed Central

    Meljon, Anna; Theofilopoulos, Spyridon; Shackleton, Cedric H. L.; Watson, Gordon L.; Javitt, Norman B.; Knölker, Hans-Joachim; Saini, Ratni; Arenas, Ernest; Wang, Yuqin; Griffiths, William J.

    2012-01-01

    Unesterified cholesterol is a major component of plasma membranes. In the brain of the adult, it is mostly found in myelin sheaths, where it plays a major architectural role. In the newborn mouse, little myelination of neurons has occurred, and much of this sterol comprises a metabolically active pool. In the current study, we have accessed this metabolically active pool and, using LC/MS, have identified cholesterol precursors and metabolites. Although desmosterol and 24S-hydroxycholesterol represent the major precursor and metabolite, respectively, other steroids, including the oxysterols 22-oxocholesterol, 22R-hydroxycholesterol, 20R,22R-dihydroxycholesterol, and the C21-neurosteroid progesterone, were identified. 24S,25-epoxycholesterol formed in parallel to cholesterol was also found to be a major sterol in newborn brain. Like 24S- and 22R-hydroxycholesterols, and also desmosterol, 24S,25-epoxycholesterol is a ligand to the liver X receptors, which are expressed in brain. The desmosterol metabolites (24Z),26-, (24E),26-, and 7α-hydroxydesmosterol were identified in brain for the first time PMID:22891291

  6. Identification of novel radiation-induced p53-dependent transcripts extensively regulated during mouse brain development.

    PubMed

    Quintens, Roel; Verreet, Tine; Janssen, Ann; Neefs, Mieke; Leysen, Liselotte; Michaux, Arlette; Verslegers, Mieke; Samari, Nada; Pani, Giuseppe; Verheyde, Joris; Baatout, Sarah; Benotmane, Mohammed A

    2015-01-01

    Ionizing radiation is a potent activator of the tumor suppressor gene p53, which itself regulates the transcription of genes involved in canonical pathways such as the cell cycle, DNA repair and apoptosis as well as other biological processes like metabolism, autophagy, differentiation and development. In this study, we performed a meta-analysis on gene expression data from different in vivo and in vitro experiments to identify a signature of early radiation-responsive genes which were predicted to be predominantly regulated by p53. Moreover, we found that several genes expressed different transcript isoforms after irradiation in a p53-dependent manner. Among this gene signature, we identified novel p53 targets, some of which have not yet been functionally characterized. Surprisingly, in contrast to genes from the canonical p53-regulated pathways, our gene signature was found to be highly enriched during embryonic and post-natal brain development and during in vitro neuronal differentiation. Furthermore, we could show that for a number of genes, radiation-responsive transcript variants were upregulated during development and differentiation, while radiation non-responsive variants were not. This suggests that radiation exposure of the developing brain and immature cortical neurons results in the p53-mediated activation of a neuronal differentiation program. Overall, our results further increase the knowledge of the radiation-induced p53 network of the embryonic brain and provide more evidence concerning the importance of p53 and its transcriptional targets during mouse brain development. PMID:25681390

  7. Dose-dependent effects of levetiracetam after hypoxia and hypothermia in the neonatal mouse brain.

    PubMed

    Strasser, Katja; Lueckemann, Laura; Kluever, Verena; Thavaneetharajah, Sinthuya; Hoeber, Daniela; Bendix, Ivo; Fandrey, Joachim; Bertsche, Astrid; Felderhoff-Mueser, Ursula

    2016-09-01

    Perinatal asphyxia to the developing brain remains a major cause of morbidity. Hypothermia is currently the only established neuroprotective treatment available for term born infants with hypoxic-ischemic encephalopathy, saving one in seven to eight infants from developing severe neurological deficits. Therefore, additional treatments with clinically applicable drugs are indispensable. This study investigates a potential additive neuroprotective effect of levetiracetam combined with hypothermia after hypoxia-induced brain injury in neonatal mice. 9-day-old C57BL/6-mice (P9) were subjected either to acute hypoxia or room-air. After 90min of systemic hypoxia (6% O2), pups were randomized into six groups: 1) vehicle, 2) low-dose levetiracetam (LEV), 3) high-dose LEV, 4) hypothermia (HT), 5) HT combined with low-dose LEV and 6) HT combined with high-dose LEV. Pro-apoptotic factors, neuronal structures, and myelination were analysed by histology and on protein level at appropriate time points. On P28 to P37 long-term outcome was assessed by neurobehavioral testing. Hypothermia confers acute and long-term neuroprotection by reducing apoptosis and preservation of myelinating oligodendrocytes and neurons in a model of acute hypoxia in the neonatal mouse brain. Low-dose LEV caused no adverse effects after neonatal hypoxic brain damage treated with hypothermia whereas administration of high-dose LEV alone or in combination with hypothermia increased neuronal apoptosis after hypoxic brain injury. LEV in low- dosage had no additive neuroprotective effect following acute hypoxic brain injury. PMID:27216570

  8. Chronic maternal morphine alters calbindin D-28k expression pattern in postnatal mouse brain.

    PubMed

    Mithbaokar, Pratibha; Fiorito, Filomena; Della Morte, Rossella; Maharajan, Veeramani; Costagliola, Anna

    2016-01-01

    The distribution pattern of calbindin (CB)-D28k-expressing neurons results to be altered in several brain regions of chronic morphine exposed adult mice. In this study, the influence of chronic maternal exposure to morphine on the distribution pattern of CB-D28k-expressing neurons in the brain of mouse offspring was investigated. Females of CD-1 mice were daily administered with saline or morphine for 7 days before mating, during the whole gestation period, and until 21 day post-partum. Their offspring were sacrificed on postnatal day 18, and the brains were examined by histology using cresyl violet and by immunohistochemistry using a rabbit polyclonal anti-CB-D28k antibody. Histology revealed no significant differences in the distribution pattern and the number of neurons between the offspring forebrain of the control group of mice and the two groups of mice treated with different doses of morphine. However, immunohistochemical analysis revealed that the number of CB-D28k-immunoreactive neurons remarkably decreased in the cingulate cortex, in the layers II-IV of the parietal cortex and in all regions of the hippocampus, while it increased in the layers V-VI of the parietal cortex and in the subicular region of the offspring brain of morphine treated mice. Overall, our findings demonstrate that maternal exposure to morphine alters the pattern of CB-D28k-expressing neuron pattern in specific regions of murine developing brain, in a layer- and dose-dependent way, thus suggesting that these alterations might represent a mechanism by which morphine modifies the functional aspects of developing brain. PMID:26418221

  9. Fructose-1,6-biphosphate prevents excitotoxic neuronal cell death in the neonatal mouse brain.

    PubMed

    Rogido, Marta; Husson, Isabelle; Bonnier, Christine; Lallemand, Marie Christine; Mérienne, Claude; Gregory, George A; Sola, Augusto; Gressens, Pierre

    2003-02-16

    The excitotoxic cascade may represent an important pathway leading to brain damage and cerebral palsy. Brain lesions induced in newborn mice by ibotenate (acting on N-methyl-D-aspartate receptors) and by S-bromowillardiine (acting on alpha-3-amino-hydroxy-5-methyl-4-isoxazole propionic acid and kainate receptors) mimic some aspects of white matter cysts and transcortical necrosis observed in human perinatal brain damage. Fructose 1,6-biphosphate (FBP) is a high-energy glycolytic pathway intermediate which, in therapeutic doses, is non-toxic and neuroprotective in hypoxic-ischemic models of brain injury. Mechanisms of action include modulation of intracellular calcium through phospholipase C (PLC) activation. The goal of this study was to determine the neuroprotective effects of FBP in a mouse model of neonatal excitotoxic brain injury. Mice that received intraperitoneal FBP had a significant reduction in size of ibotenate-induced (80% reduction) or S-bromowillardiine-induced (40% reduction) cortical plate lesions when compared with control animals. Studies of fragmented DNA and cleaved caspase 3 confirmed the survival promoting effects of FBP. FBP had no detectable effect on excitotoxic white matter lesions. The effects of FBP were antagonized by co-administration of PLC, protein kinase C or mitogen-associated protein kinase inhibitors but not by protein kinase A inhibitor. A moderate, transient cooling of pups immediately after the insult extended the therapeutic window for FBP, as FBP administered 24 h after ibotenate was still significantly neuroprotective in these pups. This data extends the neuroprotective profile of FBP in neonatal brain injury and identifies gray matter lesions involving N-methyl-D-aspartate receptors as a major target for this promising drug. PMID:12586434

  10. Nuclear Receptor Coactivators Are Coexpressed with Steroid Receptors and Regulated by Estradiol in Mouse Brain

    PubMed Central

    Tognoni, Christina M.; Chadwick, Joseph G.; Ackeifi, Courtney A.; Tetel, Marc J.

    2011-01-01

    Background/Aims The steroid hormones, including estradiol (E) and progesterone, act in the brain to regulate female reproductive behavior and physiology. These hormones mediate many of their biological effects by binding to their respective intracellular receptors. The receptors for estrogens (ER) and progestins (PR) interact with nuclear receptor coactivators to initiate transcription of steroid-responsive genes. Work from our laboratory and others reveals that nuclear receptor coactivators, including steroid receptor coactivator-1 (SRC-1) and SRC-2, function in brain to modulate ER-mediated induction of the PR gene and hormone-dependent behaviors. In order for steroid receptors and coactivators to function together, both must be expressed in the same cells. Methods Triple-label immunofluorescence was used to determine if E-induced PR cells also express SRC-1 or SRC-2 in reproductively relevant brain regions of the female mouse. Results The majority of E-induced PR cells in the medial preoptic area (61%), ventromedial nucleus of the hypothalamus (63%) and arcuate nucleus (76%) coexpressed both SRC-1 and SRC-2. A smaller proportion of PR cells expressed either SRC-1 or SRC-2, while a few PR cells expressed neither coactivator. In addition, compared to control animals, 17β-estradiol benzoate (EB) treatment increased SRC-1 levels in the arcuate nucleus, but not the medial preoptic area or the ventromedial nucleus of the hypothalamus. EB did not alter SRC-2 expression in any of the three brain regions analyzed. Conclusions Taken together, the present findings identify a population of cells in which steroid receptors and nuclear receptor coactivators may interact to modulate steroid sensitivity in brain and regulate hormone-dependent behaviors in female mice. Given that cell culture studies reveal that SRC-1 and SRC-2 can mediate distinct steroid-signaling pathways, the present findings suggest that steroids can produce a variety of complex responses in these

  11. Expression of the Astrocyte Water Channel Aquaporin-4 in the Mouse Brain.

    PubMed

    Hubbard, Jacqueline A; Hsu, Mike S; Seldin, Marcus M; Binder, Devin K

    2015-01-01

    Aquaporin-4 (AQP4) is a bidirectional water channel that is found on astrocytes throughout the central nervous system. Expression is particularly high around areas in contact with cerebrospinal fluid, suggesting that AQP4 plays a role in fluid exchange between the cerebrospinal fluid compartments and the brain. Despite its significant role in the brain, the overall spatial and region-specific distribution of AQP4 has yet to be fully characterized. In this study, we used Western blotting and immunohistochemical techniques to characterize AQP4 expression and localization throughout the mouse brain. We observed AQP4 expression throughout the forebrain, subcortical areas, and brainstem. AQP4 protein levels were highest in the cerebellum with lower expression in the cortex and hippocampus. We found that AQP4 immunoreactivity was profuse on glial cells bordering ventricles, blood vessels, and subarachnoid space. Throughout the brain, AQP4 was expressed on astrocytic end-feet surrounding blood vessels but was also heterogeneously expressed in brain tissue parenchyma and neuropil, often with striking laminar specificity. In the cerebellum, we showed that AQP4 colocalized with the proteoglycan brevican, which is synthesized by and expressed on cerebellar astrocytes. Despite the high abundance of AQP4 in the cerebellum, its functional significance has yet to be investigated. Given the known role of AQP4 in synaptic plasticity in the hippocampus, the widespread and region-specific expression pattern of AQP4 suggests involvement not only in fluid balance and ion homeostasis but also local synaptic plasticity and function in distinct brain circuits. PMID:26489685

  12. A designed recombinant fusion protein for targeted delivery of siRNA to the mouse brain.

    PubMed

    Haroon, Mohamed Mohamed; Dar, Ghulam Hassan; Jeyalakshmi, Durga; Venkatraman, Uthra; Saba, Kamal; Rangaraj, Nandini; Patel, Anant Bahadur; Gopal, Vijaya

    2016-04-28

    RNA interference represents a novel therapeutic approach to modulate several neurodegenerative disease-related genes. However, exogenous delivery of siRNA restricts their transport into different tissues and specifically into the brain mainly due to its large size and the presence of the blood-brain barrier (BBB). To overcome these challenges, we developed here a strategy wherein a peptide known to target specific gangliosides was fused to a double-stranded RNA binding protein to deliver siRNA to the brain parenchyma. The designed fusion protein designated as TARBP-BTP consists of a double-stranded RNA-binding domain (dsRBD) of human Trans Activation response element (TAR) RNA Binding Protein (TARBP2) fused to a brain targeting peptide that binds to monosialoganglioside GM1. Conformation-specific binding of TARBP2 domain to siRNA led to the formation of homogenous serum-stable complex with targeting potential. Further, uptake of the complex in Neuro-2a, IMR32 and HepG2 cells analyzed by confocal microscopy and fluorescence activated cell sorting, revealed selective requirement of GM1 for entry. Remarkably, systemic delivery of the fluorescently labeled complex (TARBP-BTP:siRNA) in ΑβPP-PS1 mouse model of Alzheimer's disease (AD) led to distinctive localization in the cerebral hemisphere. Further, the delivery of siRNA mediated by TARBP-BTP led to significant knockdown of BACE1 in the brain, in both ΑβPP-PS1 mice and wild type C57BL/6. The study establishes the growing importance of fusion proteins in delivering therapeutic siRNA to brain tissues. PMID:26948382

  13. Expression of the Astrocyte Water Channel Aquaporin-4 in the Mouse Brain

    PubMed Central

    Hubbard, Jacqueline A.; Hsu, Mike S.; Seldin, Marcus M.

    2015-01-01

    Aquaporin-4 (AQP4) is a bidirectional water channel that is found on astrocytes throughout the central nervous system. Expression is particularly high around areas in contact with cerebrospinal fluid, suggesting that AQP4 plays a role in fluid exchange between the cerebrospinal fluid compartments and the brain. Despite its significant role in the brain, the overall spatial and region-specific distribution of AQP4 has yet to be fully characterized. In this study, we used Western blotting and immunohistochemical techniques to characterize AQP4 expression and localization throughout the mouse brain. We observed AQP4 expression throughout the forebrain, subcortical areas, and brainstem. AQP4 protein levels were highest in the cerebellum with lower expression in the cortex and hippocampus. We found that AQP4 immunoreactivity was profuse on glial cells bordering ventricles, blood vessels, and subarachnoid space. Throughout the brain, AQP4 was expressed on astrocytic end-feet surrounding blood vessels but was also heterogeneously expressed in brain tissue parenchyma and neuropil, often with striking laminar specificity. In the cerebellum, we showed that AQP4 colocalized with the proteoglycan brevican, which is synthesized by and expressed on cerebellar astrocytes. Despite the high abundance of AQP4 in the cerebellum, its functional significance has yet to be investigated. Given the known role of AQP4 in synaptic plasticity in the hippocampus, the widespread and region-specific expression pattern of AQP4 suggests involvement not only in fluid balance and ion homeostasis but also local synaptic plasticity and function in distinct brain circuits. PMID:26489685

  14. Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact

    NASA Astrophysics Data System (ADS)

    Wang, Xueding; Pang, Yongjiang; Ku, Geng; Stoica, George; Wang, Lihong V.

    2003-10-01

    Three-dimensional laser-induced photoacoustic tomography, also referred to as optoacoustic tomography, is developed to image animal brain structures noninvasively with the skin and skull intact. This imaging modality combines the advantages of optical contrast and ultrasonic resolution. The distribution of optical absorption in a mouse brain is imaged successfully. The intrinsic optical contrast reveals not only blood vessels but also other detailed brain structures, such as the cerebellum, hippocampus, and ventriculi lateralis. The spatial resolution is primarily diffraction limited by the received photoacoustic waves. Imaged structures of the brain at different depths match the corresponding histological pictures well.

  15. Standard atlas space for C57BL/6J neonatal mouse brain.

    PubMed

    Lee, Erh-Fang; Jacobs, Russell E; Dinov, Ivo; Leow, Alex; Toga, Arthur W

    2005-11-01

    A standard atlas space with stereotaxic co-ordinates for the postnatal day 0 (P0) C57BL/6J mouse brain was constructed from the average of eight individual co-registered MR image volumes. Accuracy of registration and morphometric variations in structures between subjects were analyzed statistically. We also applied this atlas coordinate system to data acquired using different imaging protocols as well as to a high-resolution histological atlas obtained from separate animals. Mapping accuracy in the atlas space was examined to determine the applicability of this atlas framework. The results show that the atlas space defined here provides a stable framework for image registration for P0 normal mouse brains. With an appropriate feature-based co-registration strategy, the probability atlas can also provide an accurate anatomical map for images acquired using invasive imaging methods. The atlas templates and the probability map of the anatomical labels are available at http://www.loni.ucla.edu/MAP/ . PMID:16228227

  16. Alteration of opioid receptors in seizure-susceptible El mouse brain.

    PubMed

    Onishi, H; Soma, T; Yamagami, S; Kawakita, Y

    1989-01-01

    The distribution density of opioid receptors in the brain of El mice (seizure-susceptible strain) was examined to determine the relation between seizures and the opioid system. Saturation curves and Scatchard plots of [3H]2-D-alanine-5-D-leucine enkephalin binding revealed that the opioid delta receptor density in adult El mice during interictal periods was significantly increased in the cerebral cortex, hippocampus, and septal area. It was further shown that the concentration of such receptors in 25-day-old El mice that had no seizures was also significantly increased in the hippocampus and septal area, with no changes in apparent affinities, as compared with in the corresponding regions in ddY mice (seizure-nonsusceptible strain; the mother strain of El). Such up-regulation of opioid receptors in the El mouse brain could result from deficits in endogenous opioid peptides, which could be associated with the pathogenesis of seizure diathesis in the El mouse. PMID:2540443

  17. Comparative lipidomic analysis of mouse and human brain with Alzheimer disease.

    PubMed

    Chan, Robin B; Oliveira, Tiago G; Cortes, Etty P; Honig, Lawrence S; Duff, Karen E; Small, Scott A; Wenk, Markus R; Shui, Guanghou; Di Paolo, Gilbert

    2012-01-20

    Lipids are key regulators of brain function and have been increasingly implicated in neurodegenerative disorders including Alzheimer disease (AD). Here, a systems-based approach was employed to determine the lipidome of brain tissues affected by AD. Specifically, we used liquid chromatography-mass spectrometry to profile extracts from the prefrontal cortex, entorhinal cortex, and cerebellum of late-onset AD (LOAD) patients, as well as the forebrain of three transgenic familial AD (FAD) mouse models. Although the cerebellum lacked major alterations in lipid composition, we found an elevation of a signaling pool of diacylglycerol as well as sphingolipids in the prefrontal cortex of AD patients. Furthermore, the diseased entorhinal cortex showed specific enrichment of lysobisphosphatidic acid, sphingomyelin, the ganglioside GM3, and cholesterol esters, all of which suggest common pathogenic mechanisms associated with endolysosomal storage disorders. Importantly, a significant increase in cholesterol esters and GM3 was recapitulated in the transgenic FAD models, suggesting that these mice are relevant tools to study aberrant lipid metabolism of endolysosomal dysfunction associated with AD. Finally, genetic ablation of phospholipase D(2), which rescues the synaptic and behavioral deficits of an FAD mouse model, fully normalizes GM3 levels. These data thus unmask a cross-talk between the metabolism of phosphatidic acid, the product of phospholipase D(2), and gangliosides, and point to a central role of ganglioside anomalies in AD pathogenesis. Overall, our study highlights the hypothesis generating potential of lipidomics and identifies novel region-specific lipid anomalies potentially linked to AD pathogenesis. PMID:22134919

  18. Identification of candidate cancer-causing genes in mouse brain tumors by retroviral tagging

    PubMed Central

    Johansson, Fredrik K.; Brodd, Josefin; Eklöf, Charlotta; Ferletta, Maria; Hesselager, Göran; Tiger, Carl-Fredrik; Uhrbom, Lene; Westermark, Bengt

    2004-01-01

    Murine retroviruses may cause malignant tumors in mice by insertional mutagenesis of host genes. The use of retroviral tagging as a means of identifying cancer-causing genes has, however, almost entirely been restricted to hematopoietic tumors. The aim of this study was to develop a system allowing for the retroviral tagging of candidate genes in malignant brain tumors. Mouse gliomas were induced by a recombinant Moloney murine leukemia virus encoding platelet-derived growth factor (PDGF) B-chain. The underlying idea was that tumors evolve through a combination of PDGF-mediated autocrine growth stimulation and insertional mutagenesis of genes that cooperate with PDGF in gliomagenesis. Common insertion sites (loci that were tagged in more than one tumor) were identified by cloning and sequencing retroviral flanking segments, followed by blast searches of mouse genome databases. A number of candidate brain tumor loci (Btls) were identified. Several of these Btls correspond to known tumor-causing genes; these findings strongly support the underlying idea of our experimental approach. Other Btls harbor genes with a hitherto unproven role in transformation or oncogenesis. Our findings indicate that retroviral tagging with a growth factor-encoding virus may be a powerful means of identifying candidate tumor-causing genes in nonhematopoietic tumors. PMID:15273287

  19. Identification of candidate cancer-causing genes in mouse brain tumors by retroviral tagging.

    PubMed

    Johansson, Fredrik K; Brodd, Josefin; Eklöf, Charlotta; Ferletta, Maria; Hesselager, Göran; Tiger, Carl-Fredrik; Uhrbom, Lene; Westermark, Bengt

    2004-08-01

    Murine retroviruses may cause malignant tumors in mice by insertional mutagenesis of host genes. The use of retroviral tagging as a means of identifying cancer-causing genes has, however, almost entirely been restricted to hematopoietic tumors. The aim of this study was to develop a system allowing for the retroviral tagging of candidate genes in malignant brain tumors. Mouse gliomas were induced by a recombinant Moloney murine leukemia virus encoding platelet-derived growth factor (PDGF) B-chain. The underlying idea was that tumors evolve through a combination of PDGF-mediated autocrine growth stimulation and insertional mutagenesis of genes that cooperate with PDGF in gliomagenesis. Common insertion sites (loci that were tagged in more than one tumor) were identified by cloning and sequencing retroviral flanking segments, followed by blast searches of mouse genome databases. A number of candidate brain tumor loci (Btls) were identified. Several of these Btls correspond to known tumor-causing genes; these findings strongly support the underlying idea of our experimental approach. Other Btls harbor genes with a hitherto unproven role in transformation or oncogenesis. Our findings indicate that retroviral tagging with a growth factor-encoding virus may be a powerful means of identifying candidate tumor-causing genes in nonhematopoietic tumors. PMID:15273287

  20. Microarray and KOG analysis of Acanthamoeba healyi genes up-regulated by mouse-brain passage.

    PubMed

    Moon, Eun-Kyung; Xuan, Ying-Hua; Kong, Hyun-Hee

    2014-08-01

    Long-term cultivation in a laboratory could reduce the virulence of Acanthamoeba. To identify virulence factors of Acanthamoeba, the authors compared the transcription profiles of long-term cultivated Acanthamoeba healyi (OLD) and three times mouse-brain passaged A. healyi (MBP) using microarray analysis and eukaryotic orthologous group (KOG) assignments. Microarray analysis revealed that 601 genes were up-regulated by mouse-brain passage. The results of real-time PCR of 8 randomly selected genes up-regulated in the MBP strain confirmed microarray analysis findings. KOG assignments showed relatively higher percentages of the MBP strain up-regulated genes in T article (signal transduction mechanism), O article (posttranslational modification, protein turnover, chaperones), C article (energy production and conversion), and J article (translation, ribosomal structure and biogenesis). In particular, the MBP strain showed higher expressions of cysteine protease and metalloprotease. A comparison of KOG assignments by microarray analysis and previous EST (expressed sequence tags) analysis showed similar populations of up-regulated genes. These results provide important information regarding the identification of virulence factors of pathogenic Acanthamoeba. PMID:24859526

  1. Automated segmentation of in vivo and ex vivo mouse brain magnetic resonance images.

    PubMed

    Scheenstra, Alize E H; van de Ven, Rob C G; van der Weerd, Louise; van den Maagdenberg, Arn M J M; Dijkstra, Jouke; Reiber, Johan H C

    2009-01-01

    Segmentation of magnetic resonance imaging (MRI) data is required for many applications, such as the comparison of different structures or time points, and for annotation purposes. Currently, the gold standard for automated image segmentation is nonlinear atlas-based segmentation. However, these methods are either not sufficient or highly time consuming for mouse brains, owing to the low signal to noise ratio and low contrast between structures compared with other applications. We present a novel generic approach to reduce processing time for segmentation of various structures of mouse brains, in vivo and ex vivo. The segmentation consists of a rough affine registration to a template followed by a clustering approach to refine the rough segmentation near the edges. Compared with manual segmentations, the presented segmentation method has an average kappa index of 0.7 for 7 of 12 structures in in vivo MRI and 11 of 12 structures in ex vivo MRI. Furthermore, we found that these results were equal to the performance of a nonlinear segmentation method, but with the advantage of being 8 times faster. The presented automatic segmentation method is quick and intuitive and can be used for image registration, volume quantification of structures, and annotation. PMID:19344574

  2. Direct profiling of myelinated and demyelinated regions in mouse brain by imaging mass spectrometry

    NASA Astrophysics Data System (ADS)

    Ceuppens, Ruben; Dumont, Debora; van Brussel, Leen; van de Plas, Babs; Daniels, Ruth; Noben, Jean-Paul; Verhaert, Peter; van der Gucht, Estel; Robben, Johan; Clerens, Stefan; Arckens, Lutgarde

    2007-02-01

    One of the newly developed imaging mass spectrometry (IMS) technologies utilizes matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to map proteins in thin tissue sections. In this study, we evaluated the power of MALDI IMS as we developed it in our (Bruker) MALDI TOF (Reflex IV) and TOF-TOF (Ultraflex II) systems to study myelin patterns in the mouse central nervous system under normal and pathological conditions. MALDI IMS was applied to assess myelin basic protein (MBP) isoform-specific profiles in different regions throughout the mouse brain. The distribution of ions of m/z 14,144 and 18,447 displayed a striking resemblance with white matter histology and were identified as MBP isoform 8 and 5, respectively. In addition, we demonstrated a significant reduction of the MBP-8 peak intensity upon MALDI IMS analysis of focal ethidium bromide-induced demyelinated brain areas. Our MS images were validated by immunohistochemistry using MBP antibodies. This study underscores the potential of MALDI IMS to study the contribution of MBP to demyelinating diseases.

  3. Transcytosis in the blood–cerebrospinal fluid barrier of the mouse brain with an engineered receptor/ligand system

    PubMed Central

    Méndez-Gómez, Héctor R; Galera-Prat, Albert; Meyers, Craig; Chen, Weijun; Singh, Jasbir; Carrión-Vázquez, Mariano; Muzyczka, Nicholas

    2015-01-01

    Crossing the blood–brain and the blood–cerebrospinal fluid barriers (BCSFB) is one of the fundamental challenges in the development of new therapeutic molecules for brain disorders because these barriers prevent entry of most drugs from the blood into the brain. However, some large molecules, like the protein transferrin, cross these barriers using a specific receptor that transports them into the brain. Based on this mechanism, we engineered a receptor/ligand system to overcome the brain barriers by combining the human transferrin receptor with the cohesin domain from Clostridium thermocellum, and we tested the hybrid receptor in the choroid plexus of the mouse brain with a dockerin ligand. By expressing our receptor in choroidal ependymocytes, which are part of the BCSFB, we found that our systemically administrated ligand was able to bind to the receptor and accumulate in ependymocytes, where some of the ligand was transported from the blood side to the brain side. PMID:26491705

  4. An Examination of Dynamic Gene Expression Changes in the Mouse Brain During Pregnancy and the Postpartum Period.

    PubMed

    Ray, Surjyendu; Tzeng, Ruei-Ying; DiCarlo, Lisa M; Bundy, Joseph L; Vied, Cynthia; Tyson, Gary; Nowakowski, Richard; Arbeitman, Michelle N

    2016-01-01

    The developmental transition to motherhood requires gene expression changes that alter the brain to drive the female to perform maternal behaviors. We broadly examined the global transcriptional response in the mouse maternal brain, by examining four brain regions: hypothalamus, hippocampus, neocortex, and cerebellum, in virgin females, two pregnancy time points, and three postpartum time points. We find that overall there are hundreds of differentially expressed genes, but each brain region and time point shows a unique molecular signature, with only 49 genes differentially expressed in all four regions. Interestingly, a set of "early-response genes" is repressed in all brain regions during pregnancy and postpartum stages. Several genes previously implicated in underlying postpartum depression change expression. This study serves as an atlas of gene expression changes in the maternal brain, with the results demonstrating that pregnancy, parturition, and postpartum maternal experience substantially impact diverse brain regions. PMID:26596646

  5. Mouse Adenovirus Type 1 Early Region 1A Effects on the Blood-Brain Barrier

    PubMed Central

    Tirumuru, Nagaraja; Pretto, Carla D.; Castro Jorge, Luiza A.

    2016-01-01

    ABSTRACT Mouse adenovirus type 1 (MAV-1) infects endothelial cells and disrupts the blood-brain barrier (BBB), causing encephalitis in inbred and outbred mice. Using a virus mutant that does not produce the early region 1A protein E1A, we investigated whether the activity of this known viral transcriptional regulator is needed for BBB disruption and other phenotypes associated with encephalitis. The wild-type (wt) virus and E1A mutant virus caused similar levels of permeability of sodium fluorescein in brains of infected mice. In an in vitro assay of BBB integrity, wt and mutant virus caused similar decreases in transendothelial electrical resistance in primary mouse brain endothelial cell monolayers. These results indicate that E1A protein does not contribute to disruption of BBB integrity in animals or cultured cells. Both wt and E1A mutant virus infection of mice led to similar increases in the activity of two matrix metalloproteinases known to correlate with BBB disruption, MMP2 and MMP9, while causing no increase in the steady-state expression of MMP2 or MMP9 mRNA. In contrast, the amount of MMP3 transcripts increased upon infection by both viruses and to a higher level in infections by the mutant virus lacking E1A protein production. There was no difference in the levels of steady-state expression of mRNA for tight junction proteins among mock virus, wt virus, and mutant virus infections. Thus, the MAV-1 E1A protein does not measurably affect BBB integrity in the parameters assayed, although it reduces the amount of MMP3 mRNA steady-state expression induced in brains upon infection. IMPORTANCE Encephalitis can be caused by viruses, and it is potentially life-threatening because of the vital nature of the brain and the lack of treatment options. MAV-1 produces viral encephalitis in its natural host, providing a model for investigating factors involved in development of encephalitis. MAV-1 infection disrupts the BBB and increases activity of matrix

  6. Mouse Adenovirus Type 1 Early Region 1A Effects on the Blood-Brain Barrier.

    PubMed

    Tirumuru, Nagaraja; Pretto, Carla D; Castro Jorge, Luiza A; Spindler, Katherine R

    2016-01-01

    Mouse adenovirus type 1 (MAV-1) infects endothelial cells and disrupts the blood-brain barrier (BBB), causing encephalitis in inbred and outbred mice. Using a virus mutant that does not produce the early region 1A protein E1A, we investigated whether the activity of this known viral transcriptional regulator is needed for BBB disruption and other phenotypes associated with encephalitis. The wild-type (wt) virus and E1A mutant virus caused similar levels of permeability of sodium fluorescein in brains of infected mice. In an in vitro assay of BBB integrity, wt and mutant virus caused similar decreases in transendothelial electrical resistance in primary mouse brain endothelial cell monolayers. These results indicate that E1A protein does not contribute to disruption of BBB integrity in animals or cultured cells. Both wt and E1A mutant virus infection of mice led to similar increases in the activity of two matrix metalloproteinases known to correlate with BBB disruption, MMP2 and MMP9, while causing no increase in the steady-state expression of MMP2 or MMP9 mRNA. In contrast, the amount of MMP3 transcripts increased upon infection by both viruses and to a higher level in infections by the mutant virus lacking E1A protein production. There was no difference in the levels of steady-state expression of mRNA for tight junction proteins among mock virus, wt virus, and mutant virus infections. Thus, the MAV-1 E1A protein does not measurably affect BBB integrity in the parameters assayed, although it reduces the amount of MMP3 mRNA steady-state expression induced in brains upon infection. IMPORTANCE Encephalitis can be caused by viruses, and it is potentially life-threatening because of the vital nature of the brain and the lack of treatment options. MAV-1 produces viral encephalitis in its natural host, providing a model for investigating factors involved in development of encephalitis. MAV-1 infection disrupts the BBB and increases activity of matrix metalloproteinases in

  7. Pyrroloquinoline quinone protects mouse brain endothelial cells from high glucose-induced damage in vitro

    PubMed Central

    Wang, Zhong; Chen, Guo-qiang; Yu, Gui-ping; Liu, Chang-jian

    2014-01-01

    Aim: To investigate the effects of pyrroloquinoline quinone (PQQ), an oxidoreductase cofactor, on high glucose-induced mouse endothelial cell damage in vitro. Methods: Mouse brain microvascular endothelial bEND.3 cells were exposed to different glucose concentrations (5.56, 25 and 40 mmol/L) for 24 or 48 h. The cell viability was examined using MTT assay. Flow cytometry was used to analyze the apoptosis and ROS levels in the cells. MitoTracker Green staining was used to examine the mitochondria numbers in the cells. Western blot analysis was used to analyze the expression of HIF-1α and the proteins in JNK pathway. Results: Treatment of bEND.3 cells with high glucose significantly decreased the cell viability, while addition of PQQ (1 and 10 μmol/L) reversed the high glucose-induced cell damage in a concentration-dependent manner. Furthermore, PQQ (100 μmol/L) significantly suppressed the high glucose-induced apoptosis and ROS production in the cells. PQQ significantly reversed the high glucose-induced reduction in both the mitochondrial membrane potential and mitochondria number in the cells. The high glucose treatment significantly increased the expression of HIF-1α and JNK phosphorylation in the cells, and addition of PQQ led to a further increase of HIF-1α level and a decrease of JNK phosphorylation. Addition of JNK inhibitor SP600125 (10 μmol/L) also significantly suppressed high glucose-induced apoptosis and JNK phosphorylation in bEND.3 cells. Conclusion: PQQ protects mouse brain endothelial cells from high glucose damage in vitro by suppressing intracellular ROS and apoptosis via inhibiting JNK signaling pathway. PMID:25283505

  8. High-Throughput, High-Frequency 3D Ultrasound for In Utero Analysis of Embryonic Mouse Brain Development

    PubMed Central

    Aristizábal, Orlando; Mamou, Jonathan; Ketterling, Jeffrey A.; Turnbull, Daniel H.

    2013-01-01

    With the emergence of the mouse as the predominant model system for studying mammalian brain development, in utero imaging methods are urgently required to analyze the dynamics of brain growth and patterning in mouse embryos. To address this need, we combined synthetic focusing with a high-frequency (38-MHz) annular-array ultrasound imaging system for extended depth-of-field, coded excitation for improved penetration, and respiratory-gated transmit-receive. This combination allowed noninvasive in utero acquisition of motion-free, three-dimensional data from individual embryos in approximately 2 minutes, and data from 4 or more embryos in a pregnant mouse in less than 30 minutes. Data were acquired from 148 embryos spanning 5 days of early-to-mid gestational stages of brain development. The results showed that brain anatomy and cerebral vasculature can be imaged with this system, and that quantitative analyses of segmented cerebral ventricles can be used to characterize volumetric changes associated with mouse brain development. PMID:24035625

  9. H. Julian Allen: An Appreciation

    NASA Astrophysics Data System (ADS)

    Vincenti, Walter G.; Boyd, John W.; Bugos, Glenn E.

    2007-01-01

    Harvey Allen is best known as the genius behind the blunt-body concept, published in 1953, which enables spacecraft to return safely home through Earth's dense atmosphere. He was also an extraordinary research leader, who led a world-class research program in hypersonics at the NACA Ames Aeronautical Laboratory. This paper reviews his career as one of America's leading theorists and experimenters, including his engineering education at Stanford, his work on the inverse problem of calculating the airfoil profile to obtain a desired pressure distribution, his hand in constructing wind tunnels and experimental facilities at Ames, and his pioneering and wide-ranging work on atmospheric re-entry. It concludes with an appreciation of his uniquely inspirational style of research management, and of his magnetic personality.

  10. Regulatory module network of basic/helix-loop-helix transcription factors in mouse brain

    PubMed Central

    Li, Jing; Liu, Zijing J; Pan, Yuchun C; Liu, Qi; Fu, Xing; Cooper, Nigel GF; Li, Yixue; Qiu, Mengsheng; Shi, Tieliu

    2007-01-01

    Background The basic/helix-loop-helix (bHLH) proteins are important components of the transcriptional regulatory network, controlling a variety of biological processes, especially the development of the central nervous system. Until now, reports describing the regulatory network of the bHLH transcription factor (TF) family have been scarce. In order to understand the regulatory mechanisms of bHLH TFs in mouse brain, we inferred their regulatory network from genome-wide gene expression profiles with the module networks method. Results A regulatory network comprising 15 important bHLH TFs and 153 target genes was constructed. The network was divided into 28 modules based on expression profiles. A regulatory-motif search shows the complexity and diversity of the network. In addition, 26 cooperative bHLH TF pairs were also detected in the network. This cooperation suggests possible physical interactions or genetic regulation between TFs. Interestingly, some TFs in the network regulate more than one module. A novel cross-repression between Neurod6 and Hey2 was identified, which may control various functions in different brain regions. The presence of TF binding sites (TFBSs) in the promoter regions of their target genes validates more than 70% of TF-target gene pairs of the network. Literature mining provides additional support for five modules. More importantly, the regulatory relationships among selected key components are all validated in mutant mice. Conclusion Our network is reliable and very informative for understanding the role of bHLH TFs in mouse brain development and function. It provides a framework for future experimental analyses. PMID:18021424

  11. High sensitivity mass spectral characterization of glycosphingolipids from bovine erythrocytes, mouse kidney and fetal calf brain

    NASA Astrophysics Data System (ADS)

    Perreault, H.; Hronowski, X. L.; Koul, O.; Street, J.; McCluer, R. H.; Costello, C. E.

    1997-12-01

    Stage-specific embryonic antigen (SSEA) glycosphingolipids (GSLs) found in the central nervous system are implicated in regulating cell-cell recognition, targeting and migration of cells during development. Through the action of fucosyltransferase enzymes, SSEA-1 (Lewisx) glycolipids are biosynthesized in the brain by fucosylation of lipid substrates with the neolacto series glycolipid core structure [Gal[beta]1 --> 4GlcNAc[beta]1 --> 3Gal[beta]1 --> 4Glc[beta]1 --> 1'Cer] (originally termed paragloboside) or its higher analogs. In order to optimize methodology for high sensitivity structural determinations of SSEA-1 type glycolipids from fetal calf brain, potential precursors and SSEA-1 glycolipids of previously established structure were first isolated from bovine erythrocytes and beige mutant mouse kidney, purified by column chromatography and characterized by matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) MS, liquid secondary ionization mass spectrometry (LSIMS), and tandem mass spectrometry (MS/MS), among other techniques. Peracetylated derivatives were detected at the low femtomole level by MALDI-TOF MS and the subnanomole level by LSIMS. MALDI-TOF MS produced mainly [M + Na] + and [M + K]+ species. On the basis of the direct and tandem mass spectral analyses of peracetylated and permethylated derivatives, the carbohydrate sequences in the selected bovine erythrocyte and mouse kidney GSL fractions were found to be consistent with those of glycolipids previously-reported from larger-scale studies of these sources. Their heterogeneous ceramide moieties were characterized by collision induced decomposition (CID) MS/MS of abundant Z0-type ions in the LSI mass spectra of the permethylated GSLs. MALDI-PSD-TOF mass spectral analyses of low and subpicomole amounts of derivatized GSL fractions from fetal calf brain provided carbohydrate sequence information that indicates the presence of mono- and difucosylated SSEA-1 neolacto series

  12. A GSK-3β Inhibitor Protects Against Radiation Necrosis in Mouse Brain

    SciTech Connect

    Jiang, Xiaoyu; Perez-Torres, Carlos J.; Thotala, Dinesh; Engelbach, John A.; Yuan, Liya; Cates, Jeremy; Gao, Feng; Drzymala, Robert E.; Rich, Keith M.; Schmidt, Robert E.; Ackerman, Joseph J.H.; Hallahan, Dennis E.; Garbow, Joel R.

    2014-07-15

    Purpose: To quantify the effectiveness of SB415286, a specific inhibitor of GSK-3β, as a neuroprotectant against radiation-induced central nervous system (brain) necrosis in a mouse model. Methods and Materials: Cohorts of mice were treated with SB415286 or dimethyl sulfoxide (DMSO) prior to irradiation with a single 45-Gy fraction targeted to the left hemisphere (brain) using a gamma knife machine. The onset and progression of radiation necrosis (RN) were monitored longitudinally by noninvasive in vivo small-animal magnetic resonance imaging (MRI) beginning 13 weeks postirradiation. MRI-derived necrotic volumes for SB415286- and DMSO-treated mice were compared. MRI results were supported by correlative histology. Results: Mice treated with SB415286 showed significant protection from radiation-induced necrosis, as determined by in vivo MRI with histologic validation. MRI-derived necrotic volumes were significantly smaller at all postirradiation time points in SB415286-treated animals. Although the irradiated hemispheres of the DMSO-treated mice demonstrated many of the classic histologic features of RN, including fibrinoid vascular necrosis, vascular telangiectasia, hemorrhage, and tissue loss, the irradiated hemispheres of the SB415286-treated mice consistently showed only minimal tissue damage. These studies confirmed that treatment with a GSK-3β inhibitor dramatically reduced delayed time-to-onset necrosis in irradiated brain. Conclusions: The unilateral cerebral hemispheric stereotactic radiation surgery mouse model in concert with longitudinal MRI monitoring provided a powerful platform for studying the onset and progression of RN and for developing and testing new neuroprotectants. Effectiveness of SB415286 as a neuroprotectant against necrosis motivates potential clinical trials of it or other GSK-3β inhibitors.

  13. Transferrin Receptor 1 Facilitates Poliovirus Permeation of Mouse Brain Capillary Endothelial Cells.

    PubMed

    Mizutani, Taketoshi; Ishizaka, Aya; Nihei, Coh-Ichi

    2016-02-01

    As a possible route for invasion of the CNS, circulating poliovirus (PV) in the blood is believed to traverse the blood-brain barrier (BBB), resulting in paralytic poliomyelitis. However, the underlying mechanism is poorly understood. In this study, we demonstrated that mouse transferrin receptor 1 (mTfR1) is responsible for PV attachment to the cell surface, allowing invasion into the CNS via the BBB. PV interacts with the apical domain of mTfR1 on mouse brain capillary endothelial cells (MBEC4) in a dose-dependent manner via its capsid protein (VP1). We found that F-G, G-H, and H-I loops in VP1 are important for this binding. However, C-D, D-E, and E-F loops in VP1-fused Venus proteins efficiently penetrate MBEC4 cells. These results imply that the VP1 functional domain responsible for cell attachment is different from that involved in viral permeation of the brain capillary endothelium. We observed that co-treatment of MBEC4 cells with excess PV particles but not dextran resulted in blockage of transferrin transport into cells. Using the Transwell in vitro BBB model, transferrin co-treatment inhibited permeation of PV into MBEC4 cells and delayed further viral permeation via mTfR1 knockdown. With mTfR1 as a positive mediator of PV-host cell attachment and PV permeation of MBEC4 cells, our results indicate a novel role of TfR1 as a cellular receptor for human PV receptor/CD155-independent PV invasion of the CNS. PMID:26637351

  14. Selective normalisation of regional brain bis(monoacylglycero)phosphate in the mucopolysaccharidosis 1 (Hurler) mouse.

    PubMed

    Saville, Jennifer T; Lehmann, Rebecca J; Derrick-Roberts, Ainslie L K; Fuller, Maria

    2016-03-01

    Bis(monoacylglycero)phosphate (BMP) is a glycerophospholipid highly enriched in the lysosomal network and elevated in lysosomal diseases. To correct this elevation, BMP synthesis was manipulated by dietary fatty acid supplementation and the impact on subregional brain BMP and pathology assessed in the mouse model of mucopolysaccharidosis 1 (Hurler syndrome (HS)). There was widespread elevation of BMP in HS mice across all six sub-regions - brain stem, cortex, cerebellum, hippocampus, olfactory bulb and the sub-cortex - with 22:6/22:6 the most abundant species. Linoleic acid normalised total BMP in all regions except the cortex and cerebellum, although there were differences in fatty acid species; the major finding a decrease in 22:6- and a concomitant increase in 22:5-containing species. A battery of behaviour assessments showed that in the water cross maze both HS and wild type mice performed less well on the linoleic acid diet, and that both HS and wild type mice on the linoleic acid diet performed similarly and better in the exploratory open field test. This may be a consequence of differential subregional BMP composition in the brain. The effects of high fat and docosahexaenoic/eicosapentaenoic acid enriched diets were generally unremarkable. Although major pathologies were not completely abrogated, much of the neurobehavioural testing was confounded by skeletal pathology that did not resolve. This is the first detailed characterisation of subregional brain BMP species informing on the ability to manipulate this phospholipid in the brain, and as such, may hold promise as an adjunct therapy not only for HS but also for other lysosomal diseases. PMID:26710715

  15. Impaired myelination and reduced brain ferric iron in the mouse model of mucolipidosis IV

    PubMed Central

    Grishchuk, Yulia; Peña, Karina A.; Coblentz, Jessica; King, Victoria E.; Humphrey, Daniel M.; Wang, Shirley L.; Kiselyov, Kirill I.; Slaugenhaupt, Susan A.

    2015-01-01

    ABSTRACT Mucolipidosis type IV (MLIV) is a lysosomal storage disease caused by mutations in the MCOLN1 gene, which encodes the lysosomal transient receptor potential ion channel mucolipin-1 (TRPML1). MLIV causes impaired motor and cognitive development, progressive loss of vision and gastric achlorhydria. How loss of TRPML1 leads to severe psychomotor retardation is currently unknown, and there is no therapy for MLIV. White matter abnormalities and a hypoplastic corpus callosum are the major hallmarks of MLIV brain pathology. Here, we report that loss of TRPML1 in mice results in developmental aberrations of brain myelination as a result of deficient maturation and loss of oligodendrocytes. Defective myelination is evident in Mcoln1−/− mice at postnatal day 10, an active stage of postnatal myelination in the mouse brain. Expression of mature oligodendrocyte markers is reduced in Mcoln1−/− mice at postnatal day 10 and remains lower throughout the course of the disease. We observed reduced Perls' staining in Mcoln1−/− brain, indicating lower levels of ferric iron. Total iron content in unperfused brain is not significantly different between Mcoln1−/− and wild-type littermate mice, suggesting that the observed maturation delay or loss of oligodendrocytes might be caused by impaired iron handling, rather than by global iron deficiency. Overall, these data emphasize a developmental rather than a degenerative disease course in MLIV, and suggest that there should be a stronger focus on oligodendrocyte maturation and survival to better understand MLIV pathogenesis and aid treatment development. PMID:26398942

  16. Region-Specific Defects of Respiratory Capacities in the Ndufs4(KO) Mouse Brain

    PubMed Central

    Kayser, Ernst-Bernhard; Sedensky, Margaret M.; Morgan, Philip G.

    2016-01-01

    Background Lack of NDUFS4, a subunit of mitochondrial complex I (NADH:ubiquinone oxidoreductase), causes Leigh syndrome (LS), a progressive encephalomyopathy. Knocking out Ndufs4, either systemically or in brain only, elicits LS in mice. In patients as well as in KO mice distinct regions of the brain degenerate while surrounding tissue survives despite systemic complex I dysfunction. For the understanding of disease etiology and ultimately for the development of rationale treatments for LS, it appears important to uncover the mechanisms that govern focal neurodegeneration. Results Here we used the Ndufs4(KO) mouse to investigate whether regional and temporal differences in respiratory capacity of the brain could be correlated with neurodegeneration. In the KO the respiratory capacity of synaptosomes from the degeneration prone regions olfactory bulb, brainstem and cerebellum was significantly decreased. The difference was measurable even before the onset of neurological symptoms. Furthermore, neither compensating nor exacerbating changes in glycolytic capacity of the synaptosomes were found. By contrast, the KO retained near normal levels of synaptosomal respiration in the degeneration-resistant/resilient “rest” of the brain. We also investigated non-synaptic mitochondria. The KO expectedly had diminished capacity for oxidative phosphorylation (state 3 respiration) with complex I dependent substrate combinations pyruvate/malate and glutamate/malate but surprisingly had normal activity with α-ketoglutarate/malate. No correlation between oxidative phosphorylation (pyruvate/malate driven state 3 respiration) and neurodegeneration was found: Notably, state 3 remained constant in the KO while in controls it tended to increase with time leading to significant differences between the genotypes in older mice in both vulnerable and resilient brain regions. Neither regional ROS damage, measured as HNE-modified protein, nor regional complex I stability, assessed by blue

  17. Spatiotemporal dynamics of the expression of estrogen receptors in the postnatal mouse brain.

    PubMed

    Sugiyama, N; Andersson, S; Lathe, R; Fan, X; Alonso-Magdalena, P; Schwend, T; Nalvarte, I; Warner, M; Gustafsson, J-A

    2009-02-01

    This study reports on the spatiotemporal dynamics of the expression of estrogen receptors (ERs) in the mouse central nervous system (CNS) during the early postnatal and the peripubertal period. At postnatal day 7 (P7), neurons with strong nuclear immunostaining for both ERalpha and ERbeta1 were widely distributed throughout the brain. Sucrose density gradient sedimentation followed by western blotting supported the histochemical evidence for high levels of both ERs at P7. Over the following 2 days, there was a rapid downregulation of ERs. At P9, ERalpha expression was visible only in the hypothalamic area. Decline in ERbeta1 expression was slower than that of ERalpha, and ERalpha-negative, ERbeta1-positive cells were observed in the dentate gyrus and walls of third ventricle. Between P14 and P35, ERs were undetectable except for the hypothalamic area. As before P7, the ovary does not produce estrogen but does produce 5alpha-androstane-3beta, 17beta-diol (3betaAdiol), an estrogenic metabolite of dihydrotestosterone, we examined the effects of high levels of 3betaAdiol in the postnatal period. We used CYP7B1 knockout mice which cannot hydroxylate and inactivate 3betaAdiol. The brains of these mice are abnormally large with reduced apoptosis. In the early postnatal period, there was 1-week delay in the timing of the reduction in ER expression in the brain. These data reveal that the time when ERs might be activated in the brain is limited to the first 8 postnatal days. In addition, the importance of aromatase has to be reconsidered as the alternative estrogen, 3betaAdiol, is important in neuronal function in the postnatal brain. PMID:18982005

  18. Effects of methylmercury on muscarinic receptors in the mouse brain: A quantitative autoradiographic study

    SciTech Connect

    Lee, Haesung; Yee, S.; Geddes, J.; Choi, Byung, H. Univ. of California, Irvine )

    1991-03-11

    Methylmercury (MeHg) is reported to inhibit several stages of cholinergic neurotransmission in brain tissue in-vitro and in-vivo. To examine whether or not behavioral disturbances and/or selective vulnerability of specific neuronal groups in MeHg poisoning may be related to MeHg effects on cholinergic receptors in specific regions of the brain, the density and distribution of muscarinic receptors in the brains of C57BL/6J mice were determined following repeated injections of 5 mg/kg of methylmercuric chloride (MMC). The receptor densities in six cortical laminae of seven cerebral cortical regions, hippocampus and striatum were quantitated by computer-assisted imaging system following in-vitro labeling with ({sup 3}H)-pirenzepine (M1) and ({sup 3}H)N-methyl scopolamine (M2). The results showed heterogeneous distribution of M1 and M2 sites in different regions of the brain, and significant reduction in the density of both receptor subtypes following MeHg poisoning in many cortical and subcortical regions. However, the changes in the density were variable in different laminae even in the same cortical regions. Prominent reductions in M1 densities were noted in the temporal and entorhinal cortices, CA3 and hilar regions of the hippocampus as compared to control, whereas the reduction in M2 receptor density was most prominently noted in the frontal, perirhinal and entorhinal cortices, and CA1 and hilar regions of the hippocampus. Thus, it is apparent that MeHg significantly affects muscarinic receptors in the mouse brain, and that these data when used in conjunction with immunocytochemical and other morphological studies would provide further insights into the mechanisms of neurotoxic effects of MeHg.

  19. aMAP is a validated pipeline for registration and segmentation of high-resolution mouse brain data

    PubMed Central

    Niedworok, Christian J.; Brown, Alexander P. Y.; Jorge Cardoso, M.; Osten, Pavel; Ourselin, Sebastien; Modat, Marc; Margrie, Troy W.

    2016-01-01

    The validation of automated image registration and segmentation is crucial for accurate and reliable mapping of brain connectivity and function in three-dimensional (3D) data sets. While validation standards are necessarily high and routinely met in the clinical arena, they have to date been lacking for high-resolution microscopy data sets obtained from the rodent brain. Here we present a tool for optimized automated mouse atlas propagation (aMAP) based on clinical registration software (NiftyReg) for anatomical segmentation of high-resolution 3D fluorescence images of the adult mouse brain. We empirically evaluate aMAP as a method for registration and subsequent segmentation by validating it against the performance of expert human raters. This study therefore establishes a benchmark standard for mapping the molecular function and cellular connectivity of the rodent brain. PMID:27384127

  20. aMAP is a validated pipeline for registration and segmentation of high-resolution mouse brain data.

    PubMed

    Niedworok, Christian J; Brown, Alexander P Y; Jorge Cardoso, M; Osten, Pavel; Ourselin, Sebastien; Modat, Marc; Margrie, Troy W

    2016-01-01

    The validation of automated image registration and segmentation is crucial for accurate and reliable mapping of brain connectivity and function in three-dimensional (3D) data sets. While validation standards are necessarily high and routinely met in the clinical arena, they have to date been lacking for high-resolution microscopy data sets obtained from the rodent brain. Here we present a tool for optimized automated mouse atlas propagation (aMAP) based on clinical registration software (NiftyReg) for anatomical segmentation of high-resolution 3D fluorescence images of the adult mouse brain. We empirically evaluate aMAP as a method for registration and subsequent segmentation by validating it against the performance of expert human raters. This study therefore establishes a benchmark standard for mapping the molecular function and cellular connectivity of the rodent brain. PMID:27384127

  1. Structural correlates of active-staining following magnetic resonance microscopy in the mouse brain

    PubMed Central

    Cleary, Jon O.; Wiseman, Frances K.; Norris, Francesca C.; Price, Anthony N.; Choy, ManKin; Tybulewicz, Victor L.J.; Ordidge, Roger J.; Brandner, Sebastian; Fisher, Elizabeth M.C.; Lythgoe, Mark F.

    2011-01-01

    Extensive worldwide efforts are underway to produce knockout mice for each of the ~ 25,000 mouse genes, which may give new insights into the underlying pathophysiology of neurological disease. Microscopic magnetic resonance imaging (μMRI) is a key method for non-invasive morphological phenotyping, capable of producing high-resolution 3D images of ex-vivo brains, after fixation with an MR contrast agent. These agents have been suggested to act as active-stains, enhancing structures not normally visible on MRI. In this study, we investigated the structural correlates of the MRI agent Gd-DTPA, together with the optimal preparation and scan parameters for contrast-enhanced gradient-echo imaging of the mouse brain. We observed that in-situ preparation was preferential to ex-situ due to the degree of extraction damage. In-situ brains scanned with optimised parameters, enabled images with a high signal-to-noise-ratio (SNR ~ 30) and comprehensive anatomical delineation. Direct correlation of the MR brain structures to histology, detailed fine histoarchitecture in the cortex, cerebellum, olfactory bulb and hippocampus. Neurofilament staining demonstrated that regions of negative MR contrast strongly correlated to myelinated white-matter structures, whilst structures of more positive MR contrast corresponded to areas with high grey matter content. We were able to identify many sub-regions, particularly within the hippocampus, such as the unmyelinated mossy fibres (stratum lucidum) and their region of synapse in the stratum pyramidale, together with the granular layer of the dentate gyrus, an area of densely packed cell bodies, which was clearly visible as a region of hyperintensity. This suggests that cellular structure influences the site-specific distribution of the MR contrast agent, resulting in local variations in T2*, which leads to enhanced tissue discrimination. Our findings provide insights not only into the cellular distribution and mechanism of MR active

  2. Genome-wide coexpression of steroid receptors in the mouse brain: Identifying signaling pathways and functionally coordinated regions

    PubMed Central

    Lelieveldt, Boudewijn P. F.; Grefhorst, Aldo; van Weert, Lisa T. C. M.; Mol, Isabel M.; Sips, Hetty C. M.; van den Heuvel, José K.; Datson, Nicole A.; Visser, Jenny A.; Meijer, Onno C.

    2016-01-01

    Steroid receptors are pleiotropic transcription factors that coordinate adaptation to different physiological states. An important target organ is the brain, but even though their effects are well studied in specific regions, brain-wide steroid receptor targets and mediators remain largely unknown due to the complexity of the brain. Here, we tested the idea that novel aspects of steroid action can be identified through spatial correlation of steroid receptors with genome-wide mRNA expression across different regions in the mouse brain. First, we observed significant coexpression of six nuclear receptors (NRs) [androgen receptor (Ar), estrogen receptor alpha (Esr1), estrogen receptor beta (Esr2), glucocorticoid receptor (Gr), mineralocorticoid receptor (Mr), and progesterone receptor (Pgr)] with sets of steroid target genes that were identified in single brain regions. These coexpression relationships were also present in distinct other brain regions, suggestive of as yet unidentified coordinate regulation of brain regions by, for example, glucocorticoids and estrogens. Second, coexpression of a set of 62 known NR coregulators and the six steroid receptors in 12 nonoverlapping mouse brain regions revealed selective downstream pathways, such as Pak6 as a mediator for the effects of Ar and Gr on dopaminergic transmission. Third, Magel2 and Irs4 were identified and validated as strongly responsive targets to the estrogen diethylstilbestrol in the mouse hypothalamus. The brain- and genome-wide correlations of mRNA expression levels of six steroid receptors that we provide constitute a rich resource for further predictions and understanding of brain modulation by steroid hormones. PMID:26811448

  3. Genome-wide coexpression of steroid receptors in the mouse brain: Identifying signaling pathways and functionally coordinated regions.

    PubMed

    Mahfouz, Ahmed; Lelieveldt, Boudewijn P F; Grefhorst, Aldo; van Weert, Lisa T C M; Mol, Isabel M; Sips, Hetty C M; van den Heuvel, José K; Datson, Nicole A; Visser, Jenny A; Reinders, Marcel J T; Meijer, Onno C

    2016-03-01

    Steroid receptors are pleiotropic transcription factors that coordinate adaptation to different physiological states. An important target organ is the brain, but even though their effects are well studied in specific regions, brain-wide steroid receptor targets and mediators remain largely unknown due to the complexity of the brain. Here, we tested the idea that novel aspects of steroid action can be identified through spatial correlation of steroid receptors with genome-wide mRNA expression across different regions in the mouse brain. First, we observed significant coexpression of six nuclear receptors (NRs) [androgen receptor (Ar), estrogen receptor alpha (Esr1), estrogen receptor beta (Esr2), glucocorticoid receptor (Gr), mineralocorticoid receptor (Mr), and progesterone receptor (Pgr)] with sets of steroid target genes that were identified in single brain regions. These coexpression relationships were also present in distinct other brain regions, suggestive of as yet unidentified coordinate regulation of brain regions by, for example, glucocorticoids and estrogens. Second, coexpression of a set of 62 known NR coregulators and the six steroid receptors in 12 nonoverlapping mouse brain regions revealed selective downstream pathways, such as Pak6 as a mediator for the effects of Ar and Gr on dopaminergic transmission. Third, Magel2 and Irs4 were identified and validated as strongly responsive targets to the estrogen diethylstilbestrol in the mouse hypothalamus. The brain- and genome-wide correlations of mRNA expression levels of six steroid receptors that we provide constitute a rich resource for further predictions and understanding of brain modulation by steroid hormones. PMID:26811448

  4. Filipin recognizes both GM1 and cholesterol in GM1 gangliosidosis mouse brain

    PubMed Central

    Arthur, Julian R.; Heinecke, Karie A.; Seyfried, Thomas N.

    2011-01-01

    Filipin is an antibiotic polyene widely used as a histochemical marker for cholesterol. We previously reported cholesterol/filipin-positive staining in brain of β-galactosidase (β-gal) knockout (−/−) mice (GM1 gangliosidosis). The content and distribution of cholesterol and gangliosides was analyzed in plasma membrane (PM) and microsomal (MS) fractions from whole-brain tissue of 15 week-old control (β-gal+/−) and GM1 gangliosidosis (β-gal−/−) mice. Total ganglioside content (μg sialic acid/mg protein) was 3-fold and 7-fold greater in the PM and MS fractions, respectively, in βgal−/− mice than in βgal+/− mice. GM1 content was 30-fold and 50-fold greater in the PM and MS fractions, respectively. In contrast, unesterified cholesterol content (μg/mg protein) was similar in the PM and the MS fractions of the βgal−/− and βgal+/− mice. Filipin is known to bind to various sterol derivatives and phospholipids on thin-layer chromatograms. Biochemical evidence is presented showing that filipin also binds to GM1 with an affinity similar to that for cholesterol, with a corresponding fluorescent reaction. Our data suggest that the GM1 storage seen in the β-gal−/− mouse contributes to the filipin ultraviolet fluorescence observed in GM1 gangliosidosis brain. The data indicate that in addition to cholesterol, filipin can also be useful for detecting GM1. PMID:21508255

  5. Wide-field optical coherence microscopy of the mouse brain slice.

    PubMed

    Min, Eunjung; Lee, Junwon; Vavilin, Andrey; Jung, Sunwoo; Shin, Sungwon; Kim, Jeehyun; Jung, Woonggyu

    2015-10-01

    The imaging capability of optical coherence microscopy (OCM) has great potential to be used in neuroscience research because it is able to visualize anatomic features of brain tissue without labeling or external contrast agents. However, the field of view of OCM is still narrow, which dilutes the strength of OCM and limits its application. In this study, we present fully automated wide-field OCM for mosaic imaging of sliced mouse brains. A total of 308 segmented OCM images were acquired, stitched, and reconstructed as an en-face brain image after intensive imaging processing. The overall imaging area was 11.2×7.0  mm (horizontal×vertical), and the corresponding pixel resolution was 1.2×1.2  μm. OCM images were compared to traditional histology stained with Nissl and Luxol fast blue (LFB). In particular, the orientation of the fibers was analyzed and quantified in wide-field OCM. PMID:26421546

  6. Mouse models of human PIK3CA-related brain overgrowth have acutely treatable epilepsy

    PubMed Central

    Roy, Achira; Skibo, Jonathan; Kalume, Franck; Ni, Jing; Rankin, Sherri; Lu, Yiling; Dobyns, William B; Mills, Gordon B; Zhao, Jean J; Baker, Suzanne J; Millen, Kathleen J

    2015-01-01

    Mutations in the catalytic subunit of phosphoinositide 3-kinase (PIK3CA) and other PI3K-AKT pathway components have been associated with cancer and a wide spectrum of brain and body overgrowth. In the brain, the phenotypic spectrum of PIK3CA-related segmental overgrowth includes bilateral dysplastic megalencephaly, hemimegalencephaly and focal cortical dysplasia, the most common cause of intractable pediatric epilepsy. We generated mouse models expressing the most common activating Pik3ca mutations (H1047R and E545K) in developing neural progenitors. These accurately recapitulate all the key human pathological features including brain enlargement, cortical malformation, hydrocephalus and epilepsy, with phenotypic severity dependent on the mutant allele and its time of activation. Underlying mechanisms include increased proliferation, cell size and altered white matter. Notably, we demonstrate that acute 1 hr-suppression of PI3K signaling despite the ongoing presence of dysplasia has dramatic anti-epileptic benefit. Thus PI3K inhibitors offer a promising new avenue for effective anti-epileptic therapy for intractable pediatric epilepsy patients. DOI: http://dx.doi.org/10.7554/eLife.12703.001 PMID:26633882

  7. The tumor suppressor Chd5 is induced during neuronal differentiation in the developing mouse brain

    PubMed Central

    Vestin, Assaf; Mills, Alea A.

    2013-01-01

    Epigenetic regulation of gene expression orchestrates dynamic cellular processes that become perturbed in human disease. An understanding of how subversion of chromatin-mediated events leads to pathologies such as cancer and neurodevelopmental syndromes may offer better treatment options for these pathological conditions. Chromodomain Helicase DNA-binding protein 5 (CHD5) is a dosage-sensitive tumor suppressor that is inactivated in human cancers, including neural-associated malignancies such as neuroblastoma and glioma. Here we report a detailed analysis of the temporal and cell type-specific expression pattern of Chd5 in the mammalian brain. By analyzing endogenous Chd5 protein expression during mouse embryogenesis, in the neonate, and in the adult, we found that Chd5 is expressed broadly in multiple brain regions, that Chd5 sub-cellular localization undergoes a switch from the cytoplasm to the nucleus during mid-gestation, and that Chd5 expression is retained at high levels in differentiated neurons of the adult. These findings may have important implications for defining the role of CHD5-mediated chromatin dynamics in the brain and for elucidating how perturbation of these epigenetic processes leads to neuronal malignancies, neurodegenerative diseases, and neurodevelopmental syndromes. PMID:24120991

  8. Transcranial light affects plasma monoamine levels and expression of brain encephalopsin in the mouse.

    PubMed

    Flyktman, Antti; Mänttäri, Satu; Nissilä, Juuso; Timonen, Markku; Saarela, Seppo

    2015-05-15

    Encephalopsin (OPN3) belongs to the light-sensitive transmembrane receptor family mainly expressed in the brain and retina. It is believed that light affects mammalian circadian rhythmicity only through the retinohypothalamic tract, which transmits light information to the suprachiasmatic nucleus in the hypothalamus. However, it has been shown that light penetrates the skull. Here, we present the effect of transcranial light treatment on OPN3 expression and monoamine concentrations in mouse brain and other tissues. Mice were randomly assigned to control group, morning-light group and evening-light group, and animals were illuminated transcranially five times a week for 8 min for a total of 4 weeks. The concentrations of OPN3 and monoamines were analysed using western blotting and HPLC, respectively. We report that transcranial light treatment affects OPN3 expression in different brain areas and plasma/adrenal gland monoamine concentrations. In addition, when light was administered at a different time of the day, the response varied in different tissues. These results provide new information on the effects of light on transmitters mediating mammalian rhythmicity. PMID:25805701

  9. Immediate epileptogenesis: Impact on brain in C57BL/6J mouse kainate model.

    PubMed

    Puttachary, Sreekanth; Sharma, Shaunik; Thippeswamy, Achala; Thippeswamy, Thimmasettappa

    2016-01-01

    We have recently demonstrated immediate epileptogenesis in the C57BL/6J mouse, the strain that is resistant to kainate-induced neurotoxicity. By using a repeated low dose of kainate, we produced mild and severe status epilepticus (SE) models. In the present study, we demonstrate the impact of mild and severe SE, and spontaneous convulsive/nonconvulsive seizures (CS/NCS) on structure and function of the hippocampus, entorhinal cortex, and amygdala at 7, 14 and 28 day post-SE. Immunohistochemistry (IHC) of brain sections confirmed reactive astrogliosis and microgliosis, neurodegeneration, and increased neurogenesis in both groups. The epileptiform spike rate was higher in the severe group during first 12 days, but they decreased thereafter. Morris water maze test confirmed cognitive deficit in both mild and severe groups at 12d post-SE. However, MRI and IHC at 18 weeks did not reveal any changes in the hippocampus. These findings suggest that in C57BL/6J mice, immediate spontaneous CS could be responsible for early brain pathology or vice versa, however, the persistent spontaneous NCS for a long-term had no impact on the brain structure in both groups. PMID:27100347

  10. Venezuelan equine encephalitis virus infection causes modulation of inflammatory and immune response genes in mouse brain

    PubMed Central

    Sharma, Anuj; Bhattacharya, Bhaskar; Puri, Raj K; Maheshwari, Radha K

    2008-01-01

    Background Neurovirulent Venezuelan equine encephalitis virus (VEEV) causes lethal encephalitis in equines and is transmitted to humans by mosquitoes. VEEV is highly infectious when transmitted by aerosol and has been developed as a bio-warfare agent, making it an important pathogen to study from a military and civilian standpoint. Molecular mechanisms of VEE pathogenesis are poorly understood. To study these, the gene expression profile of VEEV infected mouse brains was investigated. Changes in gene expression were correlated with histological changes in the brain. In addition, a molecular framework of changes in gene expression associated with progression of the disease was studied. Results Our results demonstrate that genes related to important immune pathways such as antigen presentation, inflammation, apoptosis and response to virus (Cxcl10, CxCl11, Ccl5, Ifr7, Ifi27 Oas1b, Fcerg1,Mif, Clusterin and MHC class II) were upregulated as a result of virus infection. The number of over-expressed genes (>1.5-fold level) increased as the disease progressed (from 197, 296, 400, to 1086 at 24, 48, 72 and 96 hours post infection, respectively). Conclusion Identification of differentially expressed genes in brain will help in the understanding of VEEV-induced pathogenesis and selection of biomarkers for diagnosis and targeted therapy of VEEV-induced neurodegeneration. PMID:18558011

  11. Lipidomic analysis and electron transport chain activities in C57BL/6J mouse brain mitochondria

    PubMed Central

    Kiebish, Michael A.; Han, Xianlin; Cheng, Hua; Lunceford, Adam; Clarke, Catherine F.; Moon, Hwi; Chuang, Jeffrey H.; Seyfried, Thomas N.

    2011-01-01

    The objective of this study was to characterize the lipidome and electron transport chain activities in purified non-synaptic (NS) and synaptic (Syn) mitochondria from C57BL/6J mouse cerebral cortex. Contamination from subcellular membranes, especially myelin, has hindered past attempts to accurately characterize the lipid composition of brain mitochondria. An improved Ficoll and sucrose discontinuous gradient method was employed that yielded highly enriched mitochondrial populations free of myelin contamination. The activities of Complexes I, II, III, and II/III were lower in Syn than in NS mitochondria, while Complexes I/III and IV activities were similar in both populations. Shotgun lipidomics showed that levels of cardiolipin (Ptd2Gro) were lower, whereas levels of ceramide and phosphatidylserine were higher in Syn than in NS mitochondria. Coenzyme Q9 and Q10 was also lower in Syn than in NS mitochondria. Gangliosides, phosphatidic acid, sulfatides, and cerebrosides were undetectable in brain mitochondria. The distribution of Ptd2Gro molecular species was similar in both populations and formed a unique pattern, consisting of seven major molecular species groups, when arranged according to mass to charge ratios. Remodeling involving choline and ethanolamine phosphoglycerides could explain Ptd2Gro heterogeneity. NS and Syn mitochondrial lipidomic heterogeneity could influence energy metabolism, which may contribute to metabolic compartmentation of the brain. PMID:18373617

  12. Neurotransmitter and their metabolite concentrations in different areas of the HPRT knockout mouse brain.

    PubMed

    Tschirner, Sarah K; Gutzki, Frank; Schneider, Erich H; Seifert, Roland; Kaever, Volkhard

    2016-06-15

    Lesch-Nyhan syndrome (LNS) is characterized by uric acid overproduction and severe neurobehavioral symptoms, such as recurrent self-mutilative behavior. To learn more about the pathophysiology of the disease, we quantified neurotransmitters and their metabolites in the cerebral hemisphere, cerebellum and the medulla oblongata of HPRT knockout mice, an animal model for LNS, in comparison to the corresponding wild-type. Our analyses included l-glutamate, 4-aminobutanoic acid (GABA), acetylcholine, serotonin, 5-hydroxyindoleacetic acid (5-HIAA), norepinephrine, l-normetanephrine, epinephrine and l-metanephrine and were conducted via high performance liquid chromatography (HPLC) coupled to tandem mass spectrometry (MS/MS). Among these neurotransmitter systems, we did not find any abnormalities in the HPRT knockout mouse brains. On one side, this might indicate that HPRT deficiency most severely affects dopamine signaling, while brain functioning based on other neurotransmitters is more or less spared. On the other hand, our findings may reflect a compensating mechanism for impaired purine salvage that protects the brain in HPRT-deficient mice but not in LNS patients. PMID:27206901

  13. Localization and subcellular distribution of N-copine in mouse brain.

    PubMed

    Nakayama, T; Yaoi, T; Kuwajima, G

    1999-01-01

    N-Copine is a novel protein with two C2 domains. Its expression is brain specific and up-regulated by neuronal activity such as kainate stimulation and tetanus stimulation evoking hippocampal CA1 long-term potentiation. We examined the localization and subcellular distribution of N-copine in mouse brain. In situ hybridization analysis showed that N-copine mRNA was expressed exclusively in neurons of the hippocampus and in the main and accessory olfactory bulb, where various forms of synaptic plasticity and memory formation are known to occur. In immunohistochemical analyses, N-copine was detected mainly in the cell bodies and dendrites in the neurons, whereas presynaptic proteins such as synaptotagmin I and rab3A were detected in the regions where axons pass through. In fractionation experiments of brain homogenate, N-copine was associated with the membrane fraction in the presence of Ca2+ but not in its absence. As a GST-fusion protein with the second C2 domain of N-copine showed Ca2+-dependent binding to phosphatidylserine, this domain was considered to be responsible for the Ca2+-dependent association of N-copine with the membrane. Thus, N-copine may have a role as a Ca2+ sensor in postsynaptic events, in contrast to the known roles of "double C2 domain-containing proteins," including synaptotagmin I, in presynaptic events. PMID:9886090

  14. Reply to David Kemmerer's "A Critique of Mark D. Allen's "The Preservation of Verb Subcategory Knowledge in a Spoken Language Comprehension Deficit""

    ERIC Educational Resources Information Center

    Allen, Mark D.; Owens, Tyler E.

    2008-01-01

    Allen [Allen, M. D. (2005). The preservation of verb subcategory knowledge in a spoken language comprehension deficit. "Brain and Language, "95, 255-264] presents evidence from a single patient, WBN, to motivate a theory of lexical processing and representation in which syntactic information may be encoded and retrieved independently of semantic…

  15. Transgenic overexpression of neuroglobin attenuates formation of smoke-inhalation-induced oxidative DNA damage, in vivo, in the mouse brain.

    PubMed

    Lee, Heung Man; Greeley, George H; Englander, Ella W

    2011-12-15

    Acute inhalation of combustion smoke causes neurological deficits in survivors. Inhaled smoke includes carbon monoxide, noxious gases, and a hypoxic environment, which disrupt oxygenation and generate free radicals. To replicate a smoke-inhalation scenario, we developed an experimental model of acute exposure to smoke for the awake mouse/rat and detected induction of biomarkers of oxidative stress. These include inhibition of mitochondrial respiratory complexes and formation of oxidative DNA damage in the brain. DNA damage is likely to contribute to neuronal dysfunction and progression of brain injury. In the search for strategies to attenuate the smoke-initiated brain injury, we produced a transgenic mouse overexpressing the neuronal globin protein neuroglobin. Neuroglobin was neuroprotective in diverse models of ischemic/hypoxic/toxic brain injuries. Here, we report lesser inhibition of respiratory complex I and reduced formation of smoke-induced DNA damage in neuroglobin transgenic compared to wild-type mouse brain. DNA damage was assessed using the standard comet assay, as well as a modified comet assay done in conjunction with an enzyme that excises oxidized guanines that form readily under conditions of oxidative stress. Both comet assays revealed that overexpressed neuroglobin attenuates the formation of oxidative DNA damage, in vivo, in the brain. These findings suggest that elevated neuroglobin exerts neuroprotection, in part, by decreasing the impact of acute smoke inhalation on the integrity of neuronal DNA. PMID:22001746

  16. Brevetoxin-Induced Neural Insult in the Retrosplenial Cortex of Mouse Brain

    PubMed Central

    Yan, Xiuzhen; Benson, Janet M.; Gomez, Andrea P.; Baden, Daniel G.; Murray, Thomas F.

    2008-01-01

    Brevetoxins (polyether breve toxins; PbTx) are polyether neurotoxins produced by the marine dinoflagellate Karenia brevis, an organism associated with red tide blooms in the Gulf of Mexico and along the Atlantic coast from Florida to North Carolina. Brevetoxin-3 (PbTx-3) is a major component of the array of brevetoxins found in marine aerosols measured along red tide affected beaches. Humans exposed to aerosolized brevetoxins for short periods of time often suffer a variety of adverse health effects. It was consequently of interest to assess the potential for aerosolized brevetoxin to produce a neurotoxic response. Female BALB/c mice were exposed nose-only for 2 consecutive days to PbTx-3 aerosol, with a 2-h exposure on the first day and a 4-h exposure on the second day. The average PbTx-3 exposure concentrations on days 1 and 2 were 312 ± 113 μg brevetoxin 3/m3 and 278± 24μg brevetoxin 3/m3, respectively. The brevetoxin-containing aerosol had a mass median aerodynamic diameter of 0.92μm with a geometric standard deviation of 1.38. Coronal sections of mouse brains were evaluated for neuronal damage using both silver and Fluoro-Jade B staining to identify degenerating neuronal elements. PbTx-3 inhalation exposure produced neuronal degeneration in the posterior cingu-late/retrosplenial cortex of mice as evidenced by silver-positive degenerating neurons in this region. No staining was found in other regions of the PBTx-3-exposed mouse brains or in brains of control, sham-exposed mice. The existence of a neurotoxic insult in PbTx-3-exposed mice was confirmed using Fluoro-Jade B to label degenerating neurons. Fluro-Jade-positive neurons were observed in the retrosplenial cortex of PBTx-3 exposed, but not control, mice. These results suggest that subacute exposure to PbTx-3 for 2 days is sufficient to induce neuronal degeneration in a discrete region of the mouse cerebral cortex. PMID:17043031

  17. Telomerase Activity in the Various Regions of Mouse Brain: Non-Radioactive Telomerase Repeat Amplification Protocol (TRAP) Assay

    PubMed Central

    Grin, Yossi; Admoni, Tamar; Priel, Esther

    2014-01-01

    Telomerase, a ribonucleoprotein, is responsible for maintaining the telomere length and therefore promoting genomic integrity, proliferation, and lifespan. In addition, telomerase protects the mitochondria from oxidative stress and confers resistance to apoptosis, suggesting its possible importance for the surviving of non-mitotic, highly active cells such as neurons. We previously demonstrated the ability of novel telomerase activators to increase telomerase activity and expression in the various mouse brain regions and to protect motor neurons cells from oxidative stress. These results strengthen the notion that telomerase is involved in the protection of neurons from various lesions. To underline the role of telomerase in the brain, we here compare the activity of telomerase in male and female mouse brain and its dependence on age. TRAP assay is a standard method for detecting telomerase activity in various tissues or cell lines. Here we demonstrate the analysis of telomerase activity in three regions of the mouse brain by non-denaturing protein extraction using CHAPS lysis buffer followed by modification of the standard TRAP assay. In this 2-step assay, endogenous telomerase elongates a specific telomerase substrate (TS primer) by adding TTAGGG 6 bp repeats (telomerase reaction). The telomerase reaction products are amplified by PCR reaction creating a DNA ladder of 6 bp increments. The analysis of the DNA ladder is made by 4.5% high resolution agarose gel electrophoresis followed by staining with highly sensitive nucleic acid stain. Compared to the traditional TRAP assay that utilize 32P labeled radioactive dCTP's for DNA detection and polyacrylamide gel electrophoresis for resolving the DNA ladder, this protocol offers a non-toxic time saving TRAP assay for evaluating telomerase activity in the mouse brain, demonstrating the ability to detect differences in telomerase activity in the various female and male mouse brain region. PMID:25225832

  18. Telomerase activity in the various regions of mouse brain: non-radioactive telomerase repeat amplification protocol (TRAP) assay.

    PubMed

    Grin, Yossi; Admoni, Tamar; Priel, Esther

    2014-01-01

    Telomerase, a ribonucleoprotein, is responsible for maintaining the telomere length and therefore promoting genomic integrity, proliferation, and lifespan. In addition, telomerase protects the mitochondria from oxidative stress and confers resistance to apoptosis, suggesting its possible importance for the surviving of non-mitotic, highly active cells such as neurons. We previously demonstrated the ability of novel telomerase activators to increase telomerase activity and expression in the various mouse brain regions and to protect motor neurons cells from oxidative stress. These results strengthen the notion that telomerase is involved in the protection of neurons from various lesions. To underline the role of telomerase in the brain, we here compare the activity of telomerase in male and female mouse brain and its dependence on age. TRAP assay is a standard method for detecting telomerase activity in various tissues or cell lines. Here we demonstrate the analysis of telomerase activity in three regions of the mouse brain by non-denaturing protein extraction using CHAPS lysis buffer followed by modification of the standard TRAP assay. In this 2-step assay, endogenous telomerase elongates a specific telomerase substrate (TS primer) by adding TTAGGG 6 bp repeats (telomerase reaction). The telomerase reaction products are amplified by PCR reaction creating a DNA ladder of 6 bp increments. The analysis of the DNA ladder is made by 4.5% high resolution agarose gel electrophoresis followed by staining with highly sensitive nucleic acid stain. Compared to the traditional TRAP assay that utilize (32)P labeled radioactive dCTP's for DNA detection and polyacrylamide gel electrophoresis for resolving the DNA ladder, this protocol offers a non-toxic time saving TRAP assay for evaluating telomerase activity in the mouse brain, demonstrating the ability to detect differences in telomerase activity in the various female and male mouse brain region. PMID:25225832

  19. Phosphodiesterase Type 5 Inhibitors Increase Herceptin Transport and Treatment Efficacy in Mouse Metastatic Brain Tumor Models

    PubMed Central

    Inoue, Satoshi; Konda, Bindu; Patil, Rameshwar; Ding, Hui; Espinoza, Andres; Wawrowsky, Kolja A.; Patil, Chirag; Ljubimov, Alexander V.; Black, Keith L.

    2010-01-01

    Background Chemotherapeutic drugs and newly developed therapeutic monoclonal antibodies are adequately delivered to most solid and systemic tumors. However, drug delivery into primary brain tumors and metastases is impeded by the blood-brain tumor barrier (BTB), significantly limiting drug use in brain cancer treatment. Methodology/Principal Findings We examined the effect of phosphodiesterase 5 (PDE5) inhibitors in nude mice on drug delivery to intracranially implanted human lung and breast tumors as the most common primary tumors forming brain metastases, and studied underlying mechanisms of drug transport. In vitro assays demonstrated that PDE5 inhibitors enhanced the uptake of [14C]dextran and trastuzumab (Herceptin®, a humanized monoclonal antibody against HER2/neu) by cultured mouse brain endothelial cells (MBEC). The mechanism of drug delivery was examined using inhibitors for caveolae-mediated endocytosis, macropinocytosis and coated pit/clathrin endocytosis. Inhibitor analysis strongly implicated caveolae and macropinocytosis endocytic pathways involvement in the PDE5 inhibitor-enhanced Herceptin uptake by MBEC. Oral administration of PDE5 inhibitor, vardenafil, to mice with HER2-positive intracranial lung tumors led to an increased tumor permeability to high molecular weight [14C]dextran (2.6-fold increase) and to Herceptin (2-fold increase). Survival time of intracranial lung cancer-bearing mice treated with Herceptin in combination with vardenafil was significantly increased as compared to the untreated, vardenafil- or Herceptin-treated mice (p<0.01). Log-rank survival analysis of mice bearing HER2-positive intracranial breast tumor also showed a significant survival increase (p<0.02) in the group treated with Herceptin plus vardenafil as compared to other groups. However, vardenafil did not exert any beneficial effect on survival of mice bearing intracranial breast tumor with low HER2 expression and co-treated with Herceptin (p>0.05). Conclusions

  20. Modular Functionalization of Allenes to Aminated Stereotriads

    PubMed Central

    Adams, Christopher S.; Boralsky, Luke A.; Guzei, Ilia A.; Schomaker, Jennifer M.

    2014-01-01

    Nitrogen-containing stereotriads- compounds with three adjacent stereodefined carbons- are commonly found in biologically important molecules. However, the preparation of molecules bearing these motifs can be challenging. Herein, we describe a modular oxidation protocol which converts a substituted allene to a triply functionalized amine of the form C-X/C-N/CY. The key step employs a Rh-catalyzed intramolecular conversion of the allene to a strained bicyclic methylene aziridine. This reactive intermediate is further elaborated to the target products, often in one reaction vessel and with effective transfer of the axial chirality of the allene to point chirality in the stereotriad. PMID:22708990

  1. [2+2+1] cyclization of allenes.

    PubMed

    Kitagaki, S; Inagaki, F; Mukai, C

    2014-05-01

    The [2+2+1] cyclization of an alkyne, an alkene and carbon monoxide, i.e., the Pauson-Khand reaction, is one of the most powerful tools for constructing a five-membered ring. In place of the alkene or alkyne part, the use of an allene functionality has proven to make this reaction more valuable for organic synthesis. This review focuses on the origin and progress of the allenic [2+2+1] cyclocarbonylation, including the chirality transfer of the allene and its synthetic applications. PMID:24514744

  2. The fetal brain transcriptome and neonatal behavioral phenotype in the Ts1Cje mouse model of Down syndrome.

    PubMed

    Guedj, Faycal; Pennings, Jeroen L A; Ferres, Millie A; Graham, Leah C; Wick, Heather C; Miczek, Klaus A; Slonim, Donna K; Bianchi, Diana W

    2015-09-01

    Human fetuses with Down syndrome demonstrate abnormal brain growth and reduced neurogenesis. Despite the prenatal onset of the phenotype, most therapeutic trials have been conducted in adults. Here, we present evidence for fetal brain molecular and neonatal behavioral alterations in the Ts1Cje mouse model of Down syndrome. Embryonic day 15.5 brain hemisphere RNA from Ts1Cje embryos (n = 5) and wild type littermates (n = 5) was processed and hybridized to mouse gene 1.0 ST arrays. Bioinformatic analyses were implemented to identify differential gene and pathway regulation during Ts1Cje fetal brain development. In separate experiments, the Fox scale, ultrasonic vocalization and homing tests were used to investigate behavioral deficits in Ts1Cje pups (n = 29) versus WT littermates (n = 64) at postnatal days 3-21. Ts1Cje fetal brains displayed more differentially regulated genes (n = 71) than adult (n = 31) when compared to their age-matched euploid brains. Ts1Cje embryonic brains showed up-regulation of cell cycle markers and down-regulation of the solute-carrier amino acid transporters. Several cellular processes were dysregulated at both stages, including apoptosis, inflammation, Jak/Stat signaling, G-protein signaling, and oxidoreductase activity. In addition, early behavioral deficits in surface righting, cliff aversion, negative geotaxis, forelimb grasp, ultrasonic vocalization, and the homing tests were observed. The Ts1Cje mouse model exhibits abnormal gene expression during fetal brain development, and significant neonatal behavioral deficits in the pre-weaning period. In combination with human studies, this suggests that the Down syndrome phenotype manifests prenatally and provides a rationale for prenatal therapy to improve perinatal brain development and postnatal neurocognition. PMID:25975229

  3. Viral Vector-Based Dissection of Marmoset GFAP Promoter in Mouse and Marmoset Brains

    PubMed Central

    Takahashi, Nobutaka; Matsuzaki, Yasunori; Kishi, Shoji; Hirai, Hirokazu

    2016-01-01

    Adeno-associated virus (AAV) vectors are small in diameter, diffuse easily in the brain, and represent a highly efficient means by which to transfer a transgene to the brain of a large animal. A major demerit of AAV vectors is their limited accommodation capacity for transgenes. Thus, a compact promoter is useful when delivering large transgenes via AAV vectors. In the present study, we aimed to identify the shortest astrocyte-specific GFAP promoter region that could be used for AAV-vector-mediated transgene expression in the marmoset brain. The 2.0-kb promoter region upstream of the GFAP gene was cloned from the marmoset genome, and short promoters (1.6 kb, 1.4 kb, 0.6 kb, 0.3 kb and 0.2 kb) were obtained by progressively deleting the original 2.0-kb promoter from the 5’ end. The short promoters were screened in the mouse cerebellum in terms of their strength and astrocyte specificity. We found that the 0.3-kb promoter maintained 40% of the strength of the original 2.0-kb promoter, and approximately 90% of its astrocyte specificity. These properties were superior to those of the 1.4-kb, 0.6-kb (20% promoter strength) and 0.2-kb (70% astrocyte specificity) promoters. Then, we verified whether the 0.3-kb GFAP promoter retained astrocyte specificity in the marmoset cerebral cortex. Injection of viral vectors carrying the 0.3-kb marmoset GFAP promoter specifically transduced astrocytes in both the cerebral cortex and cerebellar cortex of the marmoset. These results suggest that the compact 0.3-kb promoter region serves as an astrocyte-specific promoter in the marmoset brain, which permits us to express a large gene by AAV vectors that have a limited accommodation capacity. PMID:27571575

  4. A novel unbiased counting method for the quantification of synapses in the mouse brain

    PubMed Central

    Reichmann, Florian; Painsipp, Evelin; Holzer, Peter; Kummer, Daniel; Bock, Elisabeth; Leitinger, Gerd

    2015-01-01

    Background The numerical density of synapses and their ultrastructural features are best assessed with electron microscopy. Counting is done within counting frames placed on a pair of sections (disector technique). But this requires that the thin sections are taken from comparable brain regions and the disectors are placed in a uniform random fashion. Small brain areas like the polymorph layer of the mouse dentate gyrus are difficult to encounter, and manually moving the microscope stage for placing the micrographs seems arbitrary. New method Here the polymorph layer was approximated with 20 μm thin, Nissl-stained vibratome sections. The subsequent vibratome section was processed for electron microscopy and serially thin sectioned. The microscope stage was moved using a random number generator, placing at least 20 disectors onto a pair of sections. The numerical synapse density, the numerical density of dense-core vesicles, and other ultrastructural features were compared between mice that had been kept in an enriched environment and mice kept under standard housing conditions. Results Environmental enrichment significantly decreased the numerical density of dense-core vesicles and synaptic cleft widths within the polymorph layer, associated with behavioral improvement in the Morris water maze, a hippocampus-dependent task of spatial learning and memory. Comparison with existing methods This procedure was easy to handle and enabled us to produce thin sections in small, defined brain areas. Furthermore, placing the disectors with random numbers excluded observer bias. Conclusions Our procedure provides an uncomplicated way of assessing numerical densities in small brain areas in an unbiased manner. PMID:25445248

  5. Sexual Dimorphism in the Brain of the Monogamous California Mouse (Peromyscus californicus).

    PubMed

    Campi, Katharine L; Jameson, Chelsea E; Trainor, Brian C

    2013-01-01

    Sex differences in behavior and morphology are usually assumed to be stronger in polygynous species compared to monogamous species. A few brain structures have been identified as sexually dimorphic in polygynous rodent species, but it is less clear whether these differences persist in monogamous species. California mice are among the 5% or less of mammals that are considered to be monogamous and as such provide an ideal model to examine sexual dimorphism in neuroanatomy. In the present study we compared the volume of hypothalamic- and limbic-associated regions in female and male California mice for sexual dimorphism. We also used tyrosine hydroxylase (TH) immunohistochemistry to compare the number of dopamine neurons in the ventral tegmental area (VTA) in female and male California mice. Additionally, tract tracing was used to accurately delineate the boundaries of the VTA. The total volume of the sexually dimorphic nucleus of the preoptic area (SDN-POA), the principal nucleus of the bed nucleus of the stria terminalis (BNST), and the posterodorsal medial amygdala (MEA) was larger in males compared to females. In the SDN-POA we found that the magnitude of sex differences in the California mouse were intermediate between the large differences observed in promiscuous meadow voles and rats and the absence of significant differences in monogamous prairie voles. However, the magnitude of sex differences in MEA and the BNST were comparable to polygynous species. No sex differences were observed in the volume of the whole brain, the VTA, the nucleus accumbens or the number of TH-ir neurons in the VTA. These data show that despite a monogamous social organization, sexual dimorphisms that have been reported in polygynous rodents extend to California mice. Our data suggest that sex differences in brain structures such as the SDN-POA persist across species with different social organizations and may be an evolutionarily conserved characteristic of mammalian brains. PMID

  6. [Suckling mouse brain rabies vaccine supplemented with an adjuvant. Its use in cattle].

    PubMed

    Fuenzalida, E; Díaz, A M; Rivenson, S

    1978-01-01

    This paper describes two experiments carried out in cattle immunized with suckling mouse brain rabies vaccine (SMB) 14, supplemented with 2% Al (OH)3 15 or Freund's modified incomplete adjuvant 2, 26. When determining the vaccinal dose, it was observed that the immune response was independent from the doses used (Table 1), all animals survived the challenge 30 days after vaccination, as compared to a mortality rate of 80% in the controls. To determine the duration of immunity, an amount of 5 ml was chosen as vacinal dose. Two years after immunization, both vaccines protected 96% of the cattle against a viral challenge that killed 63% of the non-vaccinated controls (Table 2). Statistically significant differences were observed between the antibody levels elicited by both vaccines. Antibody levels observed with the oil supplemented vaccine were higher than those produced by the A1 (OH)3 vaccine. PMID:756571

  7. Regrowth of Serotonin Axons in the Adult Mouse Brain Following Injury.

    PubMed

    Jin, Yunju; Dougherty, Sarah E; Wood, Kevin; Sun, Landy; Cudmore, Robert H; Abdalla, Aya; Kannan, Geetha; Pletnikov, Mikhail; Hashemi, Parastoo; Linden, David J

    2016-08-17

    It is widely believed that damaged axons in the adult mammalian brain have little capacity to regrow, thereby impeding functional recovery after injury. Studies using fixed tissue have suggested that serotonin neurons might be a notable exception, but remain inconclusive. We have employed in vivo two-photon microscopy to produce time-lapse images of serotonin axons in the neocortex of the adult mouse. Serotonin axons undergo massive retrograde degeneration following amphetamine treatment and subsequent slow recovery of axonal density, which is dominated by new growth with little contribution from local sprouting. A stab injury that transects serotonin axons running in the neocortex is followed by local regression of cut serotonin axons and followed by regrowth from cut ends into and across the stab rift zone. Regrowing serotonin axons do not follow the pathways left by degenerated axons. The regrown axons release serotonin and their regrowth is correlated with recovery in behavioral tests. PMID:27499084

  8. Oenothein B Suppresses Lipopolysaccharide (LPS)-Induced Inflammation in the Mouse Brain

    PubMed Central

    Okuyama, Satoshi; Makihata, Nahomi; Yoshimura, Morio; Amakura, Yoshiaki; Yoshida, Takashi; Nakajima, Mitsunari; Furukawa, Yoshiko

    2013-01-01

    Oenothein B has been recently evaluated for its ability to affect inflammatory responses in peripheral tissues. In this study, we examined its effect on the damage to the central nervous system due to systemic inflammation. For this purpose, ICR mice were injected with an intraperitoneal (i.p.) dose of lipopolysaccharide (LPS; 1 mg/kg mouse). When oenothein B was administered per os (p.o.), it suppressed (1) LPS-induced abnormal behavior in open field; (2) LPS-induced microglial activation in the hippocampus and striatum; and (3) LPS-induced cyclooxygenase (COX)-2 production in the hippocampus and striatum of these mice. These results suggest that oenothein B had the ability to reduce neuroinflammation in the brain during systemic inflammation. PMID:23652834

  9. Oenothein B suppresses lipopolysaccharide (LPS)-induced inflammation in the mouse brain.

    PubMed

    Okuyama, Satoshi; Makihata, Nahomi; Yoshimura, Morio; Amakura, Yoshiaki; Yoshida, Takashi; Nakajima, Mitsunari; Furukawa, Yoshiko

    2013-01-01

    Oenothein B has been recently evaluated for its ability to affect inflammatory responses in peripheral tissues. In this study, we examined its effect on the damage to the central nervous system due to systemic inflammation. For this purpose, ICR mice were injected with an intraperitoneal (i.p.) dose of lipopolysaccharide (LPS; 1 mg/kg mouse). When oenothein B was administered per os (p.o.), it suppressed (1) LPS-induced abnormal behavior in open field; (2) LPS-induced microglial activation in the hippocampus and striatum; and (3) LPS-induced cyclooxygenase (COX)-2 production in the hippocampus and striatum of these mice. These results suggest that oenothein B had the ability to reduce neuroinflammation in the brain during systemic inflammation. PMID:23652834

  10. Fuzzy scaling analysis of a mouse mutant with brain morphological changes.

    PubMed

    Pham, Tuan D; Müller, Catharina C; Crane, Denis I

    2009-07-01

    Scaling behavior inherently exists in fundamental biological structures, and the measure of such an attribute can only be known at a given scale of observation. Thus, the properties of fractals and power-law scaling have become attractive for research in biology and medicine because of their potential for discovering patterns and characteristics of complex biological morphologies. Despite the successful applications of fractals for the life sciences, the quantitative measure of the scale invariance expressed by fractal dimensions is limited in more complex situations, such as for histopathological analysis of tissue changes in disease. In this paper, we introduce the concept of fuzzy scaling and its analysis of a mouse mutant with postnatal brain morphological changes. PMID:19369166

  11. Quantitative genotyping of mouse brain-specific PEX13 gene disruption by real-time PCR.

    PubMed

    Müller, C Catharina; Nourse, Jamie P; Nguyen, Tam H; Crane, Denis I

    2009-06-30

    The Cre/loxP-system has become an invaluable tool for the generation of tissue-specific gene disruption in mice. However, because Cre recombinase excision of individual genes can be variable, an accurate and sensitive method is necessary to determine the ultimate level of gene disruption. The analysis of gene disruption is particularly difficult for tissue that has been fixed for (immuno)histochemical analysis with paraformaldehyde. Here, we describe a simple, rapid and cost effective method for measurement of gene disruption using quantitative real-time PCR, through application to the analysis of PEX13 gene disruption in a brain-specific PEX13 mouse mutant. We show that this general protocol is suitable for both normal and paraformaldehyde-fixed tissue. PMID:19422853

  12. Brain-derived neurotrophic factor prevents dendritic retraction of adult mouse retinal ganglion cells.

    PubMed

    Binley, Kate E; Ng, Wai S; Barde, Yves-Alain; Song, Bing; Morgan, James E

    2016-08-01

    We used cultured adult mouse retinae as a model system to follow and quantify the retraction of dendrites using diolistic labelling of retinal ganglion cells (RGCs) following explantation. Cell death was monitored in parallel by nuclear staining as 'labelling' with RGC and apoptotic markers was inconsistent and exceedingly difficult to quantify reliably. Nuclear staining allowed us to delineate a lengthy time window during which dendrite retraction can be monitored in the absence of RGC death. The addition of brain-derived neurotrophic factor (BDNF) produced a marked reduction in dendritic degeneration, even when application was delayed for 3 days after retinal explantation. These results suggest that the delayed addition of trophic factors may be functionally beneficial before the loss of cell bodies in the course of conditions such as glaucoma. PMID:27285957

  13. Pomegranate from Oman Alleviates the Brain Oxidative Damage in Transgenic Mouse Model of Alzheimer's disease

    PubMed Central

    Subash, Selvaraju; Essa, Musthafa Mohamed; Al-Asmi, Abdullah; Al-Adawi, Samir; Vaishnav, Ragini; Braidy, Nady; Manivasagam, Thamilarasan; Guillemin, Gilles J.

    2014-01-01

    Oxidative stress may play a key role in Alzheimer's disease (AD) neuropathology. Pomegranates (石榴 Shí Liú) contain very high levels of antioxidant polyphenolic substances, as compared to other fruits and vegetables. Polyphenols have been shown to be neuroprotective in different model systems. Here, the effects of the antioxidant-rich pomegranate fruit grown in Oman on brain oxidative stress status were tested in the AD transgenic mouse. The 4-month-old mice with double Swedish APP mutation (APPsw/Tg2576) were purchased from Taconic Farm, NY, USA. Four-month-old Tg2576 mice were fed with 4% pomegranate or control diet for 15 months and then assessed for the influence of diet on oxidative stress. Significant increase in oxidative stress was found in terms of enhanced levels of lipid peroxidation (LPO) and protein carbonyls. Concomitantly, decrease in the activities of antioxidant enzymes was observed in Tg2576 mice treated with control diet. Supplementation with 4% pomegranate attenuated oxidative damage, as evidenced by decreased LPO and protein carbonyl levels and restoration in the activities of the antioxidant enzymes [superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), glutathione (GSH), and Glutathione S transferase (GST)]. The activities of membrane-bound enzymes [Na+ K+-ATPase and acetylcholinesterase (AChE)] were altered in the brain regions of Tg2576 mouse treated with control diet, and 4% pomegranate supplementation was able to restore the activities of enzymes to comparable values observed in controls. The results suggest that the therapeutic potential of 4% pomegranate in the treatment of AD might be associated with counteracting the oxidative stress by the presence of active phytochemicals in it. PMID:25379464

  14. Differences in GABA-induced chloride ion influx in brain of inbred mouse strains

    SciTech Connect

    Yu, O.; Chiu, T.H.; Rosenberg, H.C.

    1986-03-01

    Audiogenic seizure-susceptible (AS) mice (DBA2J) are a widely used model of epilepsy. The precise pathophysiology of this mouse strain is not fully understood. One of the proposed mechanisms was a difference in GABA/BZ receptor affinity and population from that of audiogenic seizure resistant (ASR) mice. This study attempted to determine the difference in function of GABA/BZ receptor between DBA2J (AS) and C57BL6J (ASR) mice by directly measuring the GABA-induced chloride ion (/sup 36/Cl/sup -/) influx in twice washed crude brain homogenates. /sup 36/Cl/sup -/ influx was terminated by ice-cold buffer and collected by filtration. A concentration range of 2-1000 ..mu..M GABA and two age-matched groups (20-22 days and 40-42 days) were used. GABA-induced /sup 36/Cl/sup -/ influx was dose-dependent, and brain homogenates from DBA2J mice (20-22 days) were less sensitive to GABA-induced Cl/sup -/ ion influx than C57BL6J mice at both age groups. However, in older DBA2J mice (40-42 days), the sensitivity to GABA was intermediate between that of the younger AS mice and the control ASR mice. No significant difference in basal influx of Cl/sup -/ was observed between age groups and mouse strains, nor was there any significant difference between 20-22 days old and 40-42 days old C57BL6J mice. In conclusion, this study had demonstrated a malfunction may recover with age.

  15. Effects of oxidative stress on hyperglycaemia-induced brain malformations in a diabetes mouse model.

    PubMed

    Jin, Ya; Wang, Guang; Han, Sha-Sha; He, Mei-Yao; Cheng, Xin; Ma, Zheng-Lai; Wu, Xia; Yang, Xuesong; Liu, Guo-Sheng

    2016-09-10

    Pregestational diabetes mellitus (PGDM) enhances the risk of fetal neurodevelopmental defects. However, the mechanism of hyperglycaemia-induced neurodevelopmental defects is not fully understood. In this study, several typical neurodevelopmental defects were identified in the streptozotocin-induced diabetes mouse model. The neuron-specific class III beta-tubulin/forkhead box P1-labelled neuronal differentiation was suppressed and glial fibrillary acidic protein-labelled glial cell lineage differentiation was slightly promoted in pregestational diabetes mellitus (PGDM) mice. Various concentrations of glucose did not change the U87 cell viability, but glial cell line-derived neurotrophic factor expression was altered with varying glucose concentrations. Mouse maternal hyperglycaemia significantly increased Tunel(+) apoptosis but did not dramatically affect PCNA(+) cell proliferation in the process. To determine the cause of increased apoptosis, we determined the SOD activity, the expression of Nrf2 as well as its downstream anti-oxidative factors NQO1 and HO1, and found that all of them significantly increased in PGDM fetal brains compared with controls. However, Nrf2 expression in U87 cells was not significantly changed by different glucose concentrations. In mouse telencephalon, we observed the co-localization of Tuj-1 and Nrf2 expression in neurons, and down-regulating of Nrf2 in SH-SY5Y cells altered the viability of SH-SY5Y cells exposed to high glucose concentrations. Taken together, the data suggest that Nrf2-modulated antioxidant stress plays a crucial role in maternal hyperglycaemia-induced neurodevelopmental defects. PMID:27497668

  16. Acupuncture promotes mTOR-independent autophagic clearance of aggregation-prone proteins in mouse brain

    PubMed Central

    Tian, Tian; Sun, Yanhong; Wu, Huangan; Pei, Jian; Zhang, Jing; Zhang, Yi; Wang, Lu; Li, Bin; Wang, Lihua; Shi, Jiye; Hu, Jun; Fan, Chunhai

    2016-01-01

    Acupuncture has historically been practiced to treat medical disorders by mechanically stimulating specific acupoints with fine needles. Despite its well-documented efficacy, its biological basis remains largely elusive. In this study, we found that mechanical stimulation at the acupoint of Yanglingquan (GB34) promoted the autophagic clearance of α-synuclein (α-syn), a well known aggregation-prone protein closely related to Parkinson’s disease (PD), in the substantia nigra par compacta (SNpc) of the brain in a PD mouse model. We found the protein clearance arose from the activation of the autophagy-lysosome pathway (ALP) in a mammalian target of rapamycin (mTOR)-independent approach. Further, we observed the recovery in the activity of dopaminergic neurons in SNpc, and improvement in the motor function at the behavior level of PD mice. Whereas acupuncture and rapamycin, a chemical mTOR inhibitor, show comparable α-syn clearance and therapeutic effects in the PD mouse model, the latter adopts a distinctly different, mTOR-dependent, autophagy induction process. Due to this fundamental difference, acupuncture may circumvent adverse effects of the rapamycin treatment. The newly discovered connection between acupuncture and autophagy not only provides a new route to understanding the molecular mechanism of acupuncture but also sheds new light on cost-effective and safe therapy of neurodegenerative diseases. PMID:26792101

  17. Homeostatic adaptations in brain energy metabolism in mouse models of Huntington disease

    PubMed Central

    Tkac, Ivan; Henry, Pierre-Gilles; Zacharoff, Lori; Wedel, Michael; Gong, Wuming; Deelchand, Dinesh K; Li, Tongbin; Dubinsky, Janet M

    2012-01-01

    Impairment of energy metabolism is a key feature of Huntington disease (HD). Recently, we reported longitudinal neurochemical changes in R6/2 mice measured by in-vivo proton magnetic resonance spectroscopy (1H MRS; Zacharoff et al, 2012). Here, we present similar 1H MRS measurements at an early stage in the milder Q111 mouse model. In addition, we measured the concentration of ATP and inorganic phosphate (Pi), key energy metabolites not accessible with 1H MRS, using 31P MRS both in Q111 and in R6/2 mice. Significant changes in striatal creatine and phosphocreatine were observed in Q111 mice at 6 weeks relative to control, and these changes were largely reversed at 13 weeks. No significant change was detected in ATP concentration, in either HD mouse, compared with control. Calculated values of [ADP], phosphorylation potential, relative rate of ATP synthase (v/Vmax(ATP)), and relative rate of creatine kinase (v/Vmax(CK)) were calculated from the measured data. ADP concentration and v/Vmax(ATP) were increased in Q111 mice at 6 weeks, and returned close to normal at 13 weeks. In contrast, these parameters were normal in R6/2 mice. These results suggest that early changes in brain energy metabolism are followed by compensatory shifts to maintain energetic homeostasis from early ages through manifest disease. PMID:22805874

  18. Transcranial Direct Current Stimulation Modulates Neurogenesis and Microglia Activation in the Mouse Brain

    PubMed Central

    Pikhovych, Anton; Stolberg, Nina Paloma; Jessica Flitsch, Lea; Walter, Helene Luise; Graf, Rudolf; Fink, Gereon Rudolf; Schroeter, Michael

    2016-01-01

    Transcranial direct current stimulation (tDCS) has been suggested as an adjuvant tool to promote recovery of function after stroke, but the mechanisms of its action to date remain poorly understood. Moreover, studies aimed at unraveling those mechanisms have essentially been limited to the rat, where tDCS activates resident microglia as well as endogenous neural stem cells. Here we studied the effects of tDCS on microglia activation and neurogenesis in the mouse brain. Male wild-type mice were subjected to multisession tDCS of either anodal or cathodal polarity; sham-stimulated mice served as control. Activated microglia in the cerebral cortex and neuroblasts generated in the subventricular zone as the major neural stem cell niche were assessed immunohistochemically. Multisession tDCS at a sublesional charge density led to a polarity-dependent downregulation of the constitutive expression of Iba1 by microglia in the mouse cortex. In contrast, both anodal and, to an even greater extent, cathodal tDCS induced neurogenesis from the subventricular zone. Data suggest that tDCS elicits its action through multifacetted mechanisms, including immunomodulation and neurogenesis, and thus support the idea of using tDCS to induce regeneration and to promote recovery of function. Furthermore, data suggest that the effects of tDCS may be animal- and polarity-specific. PMID:27403166

  19. Acupuncture promotes mTOR-independent autophagic clearance of aggregation-prone proteins in mouse brain.

    PubMed

    Tian, Tian; Sun, Yanhong; Wu, Huangan; Pei, Jian; Zhang, Jing; Zhang, Yi; Wang, Lu; Li, Bin; Wang, Lihua; Shi, Jiye; Hu, Jun; Fan, Chunhai

    2016-01-01

    Acupuncture has historically been practiced to treat medical disorders by mechanically stimulating specific acupoints with fine needles. Despite its well-documented efficacy, its biological basis remains largely elusive. In this study, we found that mechanical stimulation at the acupoint of Yanglingquan (GB34) promoted the autophagic clearance of α-synuclein (α-syn), a well known aggregation-prone protein closely related to Parkinson's disease (PD), in the substantia nigra par compacta (SNpc) of the brain in a PD mouse model. We found the protein clearance arose from the activation of the autophagy-lysosome pathway (ALP) in a mammalian target of rapamycin (mTOR)-independent approach. Further, we observed the recovery in the activity of dopaminergic neurons in SNpc, and improvement in the motor function at the behavior level of PD mice. Whereas acupuncture and rapamycin, a chemical mTOR inhibitor, show comparable α-syn clearance and therapeutic effects in the PD mouse model, the latter adopts a distinctly different, mTOR-dependent, autophagy induction process. Due to this fundamental difference, acupuncture may circumvent adverse effects of the rapamycin treatment. The newly discovered connection between acupuncture and autophagy not only provides a new route to understanding the molecular mechanism of acupuncture but also sheds new light on cost-effective and safe therapy of neurodegenerative diseases. PMID:26792101

  20. LPA signaling initiates schizophrenia-like brain and behavioral changes in a mouse model of prenatal brain hemorrhage

    PubMed Central

    Mirendil, H; Thomas, E A; De Loera, C; Okada, K; Inomata, Y; Chun, J

    2015-01-01

    Genetic, environmental and neurodevelopmental factors are thought to underlie the onset of neuropsychiatric disorders such as schizophrenia. How these risk factors collectively contribute to pathology is unclear. Here, we present a mouse model of prenatal intracerebral hemorrhage—an identified risk factor for schizophrenia—using a serum-exposure paradigm. This model exhibits behavioral, neurochemical and schizophrenia-related gene expression alterations in adult females. Behavioral alterations in amphetamine-induced locomotion, prepulse inhibition, thigmotaxis and social interaction—in addition to increases in tyrosine hydroxylase-positive dopaminergic cells in the substantia nigra and ventral tegmental area and decreases in parvalbumin-positive cells in the prefrontal cortex—were induced upon prenatal serum exposure. Lysophosphatidic acid (LPA), a lipid component of serum, was identified as a key molecular initiator of schizophrenia-like sequelae induced by serum. Prenatal exposure to LPA alone phenocopied many of the schizophrenia-like alterations seen in the serum model, whereas pretreatment with an antagonist against the LPA receptor subtype LPA1 prevented many of the behavioral and neurochemical alterations. In addition, both prenatal serum and LPA exposure altered the expression of many genes and pathways related to schizophrenia, including the expression of Grin2b, Slc17a7 and Grid1. These findings demonstrate that aberrant LPA receptor signaling associated with fetal brain hemorrhage may contribute to the development of some neuropsychiatric disorders. PMID:25849980

  1. Direct intracerebral delivery of a miR-33 antisense oligonucleotide into mouse brain increases brain ABCA1 expression. [Corrected].

    PubMed

    Jan, Asad; Karasinska, Joanna M; Kang, Martin H; de Haan, Willeke; Ruddle, Piers; Kaur, Achint; Connolly, Colum; Leavitt, Blair R; Sorensen, Poul H; Hayden, Michael R

    2015-06-26

    The ATP-binding cassette transporter A1 (ABCA1) is a membrane bound protein that serves to efflux cholesterol and phospholipids onto lipid poor apolipoproteins during HDL biogenesis. Increasing the expression and activity of ABCA1 have beneficial effects in experimental models of various neurologic and cardiovascular diseases including Alzheimer's disease. Despite the beneficial effects of liver X receptor (LXR) agonists--compounds that increase ABCA1 expression--in preclinical studies, their therapeutic utility is limited by systemic adverse effects on lipid metabolism. Interestingly, microRNA-33 (miR-33) inhibition increases ABCA1 expression and activity in rodents and non-human primates without severe metabolic adverse effects. Herein, we demonstrate that treatment of cultured mouse neurons, astrocytes and microglia with an antisense oligonucleotide (ASO) targeting miR-33 increased ABCA1 expression, which was accompanied by increased cholesterol efflux and apoE secretion in astrocytic cultures. We also show that intracerebral delivery of an ASO targeting miR-33 leads to increased ABCA1 expression in cerebral cortex or subcortical structures such as hippocampus. These findings highlight an effective strategy for increasing brain ABCA1 expression/activity for relevant mechanistic studies. [Corrected] PMID:25957561

  2. Cerebral Apolipoprotein-D Is Hypoglycosylated Compared to Peripheral Tissues and Is Variably Expressed in Mouse and Human Brain Regions.

    PubMed

    Li, Hongyun; Ruberu, Kalani; Karl, Tim; Garner, Brett

    2016-01-01

    Recent studies have shown that cerebral apoD levels increase with age and in Alzheimer's disease (AD). In addition, loss of cerebral apoD in the mouse increases sensitivity to lipid peroxidation and accelerates AD pathology. Very little data are available, however, regarding the expression of apoD protein levels in different brain regions. This is important as both brain lipid peroxidation and neurodegeneration occur in a region-specific manner. Here we addressed this using western blotting of seven different regions (olfactory bulb, hippocampus, frontal cortex, striatum, cerebellum, thalamus and brain stem) of the mouse brain. Our data indicate that compared to most brain regions, the hippocampus is deficient in apoD. In comparison to other major organs and tissues (liver, spleen, kidney, adrenal gland, heart and skeletal muscle), brain apoD was approximately 10-fold higher (corrected for total protein levels). Our analysis also revealed that brain apoD was present at a lower apparent molecular weight than tissue and plasma apoD. Utilising peptide N-glycosidase-F and neuraminidase to remove N-glycans and sialic acids, respectively, we found that N-glycan composition (but not sialylation alone) were responsible for this reduction in molecular weight. We extended the studies to an analysis of human brain regions (hippocampus, frontal cortex, temporal cortex and cerebellum) where we found that the hippocampus had the lowest levels of apoD. We also confirmed that human brain apoD was present at a lower molecular weight than in plasma. In conclusion, we demonstrate apoD protein levels are variable across different brain regions, that apoD levels are much higher in the brain compared to other tissues and organs, and that cerebral apoD has a lower molecular weight than peripheral apoD; a phenomenon that is due to the N-glycan content of the protein. PMID:26829325

  3. Cerebral Apolipoprotein-D Is Hypoglycosylated Compared to Peripheral Tissues and Is Variably Expressed in Mouse and Human Brain Regions

    PubMed Central

    Li, Hongyun; Ruberu, Kalani; Karl, Tim; Garner, Brett

    2016-01-01

    Recent studies have shown that cerebral apoD levels increase with age and in Alzheimer’s disease (AD). In addition, loss of cerebral apoD in the mouse increases sensitivity to lipid peroxidation and accelerates AD pathology. Very little data are available, however, regarding the expression of apoD protein levels in different brain regions. This is important as both brain lipid peroxidation and neurodegeneration occur in a region-specific manner. Here we addressed this using western blotting of seven different regions (olfactory bulb, hippocampus, frontal cortex, striatum, cerebellum, thalamus and brain stem) of the mouse brain. Our data indicate that compared to most brain regions, the hippocampus is deficient in apoD. In comparison to other major organs and tissues (liver, spleen, kidney, adrenal gland, heart and skeletal muscle), brain apoD was approximately 10-fold higher (corrected for total protein levels). Our analysis also revealed that brain apoD was present at a lower apparent molecular weight than tissue and plasma apoD. Utilising peptide N-glycosidase-F and neuraminidase to remove N-glycans and sialic acids, respectively, we found that N-glycan composition (but not sialylation alone) were responsible for this reduction in molecular weight. We extended the studies to an analysis of human brain regions (hippocampus, frontal cortex, temporal cortex and cerebellum) where we found that the hippocampus had the lowest levels of apoD. We also confirmed that human brain apoD was present at a lower molecular weight than in plasma. In conclusion, we demonstrate apoD protein levels are variable across different brain regions, that apoD levels are much higher in the brain compared to other tissues and organs, and that cerebral apoD has a lower molecular weight than peripheral apoD; a phenomenon that is due to the N-glycan content of the protein. PMID:26829325

  4. Technical Note: Immunohistochemical evaluation of mouse brain irradiation targeting accuracy with 3D-printed immobilization device

    SciTech Connect

    Zarghami, Niloufar Jensen, Michael D.; Talluri, Srikanth; Dick, Frederick A.; Foster, Paula J.; Chambers, Ann F.; Wong, Eugene

    2015-11-15

    Purpose: Small animal immobilization devices facilitate positioning of animals for reproducible imaging and accurate focal radiation therapy. In this study, the authors demonstrate the use of three-dimensional (3D) printing technology to fabricate a custom-designed mouse head restraint. The authors evaluate the accuracy of this device for the purpose of mouse brain irradiation. Methods: A mouse head holder was designed for a microCT couch using CAD software and printed in an acrylic based material. Ten mice received half-brain radiation while positioned in the 3D-printed head holder. Animal placement was achieved using on-board image guidance and computerized asymmetric collimators. To evaluate the precision of beam localization for half-brain irradiation, mice were sacrificed approximately 30 min after treatment and brain sections were stained for γ-H2AX, a marker for DNA breaks. The distance and angle of the γ-H2AX radiation beam border to longitudinal fissure were measured on histological samples. Animals were monitored for any possible trauma from the device. Results: Visualization of the radiation beam on ex vivo brain sections with γ-H2AX immunohistochemical staining showed a sharp radiation field within the tissue. Measurements showed a mean irradiation targeting error of 0.14 ± 0.09 mm (standard deviation). Rotation between the beam axis and mouse head was 1.2° ± 1.0° (standard deviation). The immobilization device was easily adjusted to accommodate different sizes of mice. No signs of trauma to the mice were observed from the use of tooth block and ear bars. Conclusions: The authors designed and built a novel 3D-printed mouse head holder with many desired features for accurate and reproducible radiation targeting. The 3D printing technology was found to be practical and economical for producing a small animal imaging and radiation restraint device and allows for customization for study specific needs.

  5. Is 21st Century Neuroscience Too Focussed on the Rat/Mouse Model of Brain Function and Dysfunction?

    PubMed Central

    Manger, Paul R.; Cort, Jessica; Ebrahim, Naseem; Goodman, Adelaya; Henning, Justine; Karolia, Mohamed; Rodrigues, Stacey-Lee; Štrkalj, Goran

    2008-01-01

    Studies in the basic neurosciences are heavily reliant upon rat and mouse models. The brain is one of the most distinguishing features of the human species, but is enough being done to fully understand the evolution of the human brain and brain diversity in general? Without a clear understanding of the evolution of the nervous system we may be investing a great deal of effort into some limited specific animal models that may prove to be erroneous in terms of the overall usefulness in clinically applied research. Here we present an analysis that demonstrates that 75% of our research efforts are directed to the rat, mouse and human brain, or 0.0001% of the nervous systems on the planet. This extreme bias in research trends may provide a limited scope in the discovery of novel aspects of brain structure and function that would be of importance in understanding both the evolution of the human brain and in selecting appropriate animal models for use in clinically related research. We offer examples both from the historical and recent literature indicating the usefulness of comparative neurobiological investigation in elucidating both normal and abnormal structure and function of the brain. PMID:19127284

  6. A novel method for three-dimensional observation of the vascular networks in the whole mouse brain.

    PubMed

    Hashimoto, Hisashi; Kusakabe, Moriaki; Ishikawa, Hiroshi

    2008-01-01

    A novel method for acquiring serial images suitable for three-dimensional reconstruction of vascular networks in the whole brain of mouse was developed. The brain infused with a White India ink-gelatin solution was fixed and embedded in paraffin containing Sudan Black B through xylene also containing Sudan Black B. Each sliced surface of the paraffin block was coated with liquid paraffin and its image was serially acquired. Coating with liquid paraffin extremely improved the quality of the image. The series of serial images was free of distortion and a three-dimensional image was reconstructed without the problem of the alignment and registration of adjacent images. The volume-rendered image indicated three-dimensional distribution of blood vessels in a whole brain. No ghost or shadow was observed on a volume-rendered image of the White India ink-gelatin infused brain. The z-axial resolution examined on the orthogonal sections reconstituted from serial images obtained at an interval of 5 mum showed no cross talk, indicating that the z-axial resolution was no larger than 5 mum. A proper understanding of the vascular system in a whole brain is indispensable to reveal the development of the vascular system in the brain of normal and genetically manipulated mouse and vascular alterations in pathological situation, such as stroke and neurodegenerative disease. Although simple and inexpensive, this method will provide fundamental information on the vascular system in a whole brain. PMID:17868133

  7. Van Allen Discovery Most Important

    NASA Technical Reports Server (NTRS)

    Jastrow, R.

    1959-01-01

    The first step toward the exploration of space occurred approximately 22 months ago as a part of the International Geophysical Year. In the short interval since October, 1957, the new tools of research, the satellite and the space rocket, have produced two unexpected results of fundamental scientific importance. First, instruments placed in the Explorer satellites by James A. Van Allen have revealed the existence of layers of energetic particles in the outer atmosphere. This discovery constitutes the most significant research achievement of the IGY satellite program. The layers may provide the explanation for the aurora and other geophysical phenomena, and they will also influence the design of vehicles for manned space flight, whose occupants must be shielded against their harmful biological effects. Second, the shape of the earth has been determined very accurately with the aid of data from the first Vanguard. As a result of this investigation, we have found that our planet tends toward the shape of a pear, with its stem at the North Pole. This discovery may produce major changes in our ideas on the interior structure of the earth.

  8. Wireless image-data transmission from an implanted image sensor through a living mouse brain by intra body communication

    NASA Astrophysics Data System (ADS)

    Hayami, Hajime; Takehara, Hiroaki; Nagata, Kengo; Haruta, Makito; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Ohta, Jun

    2016-04-01

    Intra body communication technology allows the fabrication of compact implantable biomedical sensors compared with RF wireless technology. In this paper, we report the fabrication of an implantable image sensor of 625 µm width and 830 µm length and the demonstration of wireless image-data transmission through a brain tissue of a living mouse. The sensor was designed to transmit output signals of pixel values by pulse width modulation (PWM). The PWM signals from the sensor transmitted through a brain tissue were detected by a receiver electrode. Wireless data transmission of a two-dimensional image was successfully demonstrated in a living mouse brain. The technique reported here is expected to provide useful methods of data transmission using micro sized implantable biomedical sensors.

  9. Implantable self-reset CMOS image sensor and its application to hemodynamic response detection in living mouse brain

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Takahiro; Takehara, Hiroaki; Sunaga, Yoshinori; Haruta, Makito; Motoyama, Mayumi; Ohta, Yasumi; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Ohta, Jun

    2016-04-01

    A self-reset pixel of 15 × 15 µm2 with high signal-to-noise ratio (effective peak SNR ≃64 dB) for an implantable image sensor has been developed for intrinsic signal detection arising from hemodynamic responses in a living mouse brain. For detecting local conversion between oxyhemoglobin (HbO) and deoxyhemoglobin (HbR) in brain tissues, an implantable imaging device was fabricated with our newly designed self-reset image sensor and orange light-emitting diodes (LEDs; λ = 605 nm). We demonstrated imaging of hemodynamic responses in the sensory cortical area accompanied by forelimb stimulation of a living mouse. The implantable imaging device for intrinsic signal detection is expected to be a powerful tool to measure brain activities in living animals used in behavioral analysis.

  10. Optical properties of mouse brain tissue after optical clearing with FocusClear™

    NASA Astrophysics Data System (ADS)

    Moy, Austin J.; Capulong, Bernard V.; Saager, Rolf B.; Wiersma, Matthew P.; Lo, Patrick C.; Durkin, Anthony J.; Choi, Bernard

    2015-09-01

    Fluorescence microscopy is commonly used to investigate disease progression in biological tissues. Biological tissues, however, are strongly scattering in the visible wavelengths, limiting the application of fluorescence microscopy to superficial (<200 μm) regions. Optical clearing, which involves incubation of the tissue in a chemical bath, reduces the optical scattering in tissue, resulting in increased tissue transparency and optical imaging depth. The goal of this study was to determine the time- and wavelength-resolved dynamics of the optical scattering properties of rodent brain after optical clearing with FocusClear™. Light transmittance and reflectance of 1-mm mouse brain sections were measured using an integrating sphere before and after optical clearing and the inverse adding doubling algorithm used to determine tissue optical scattering. The degree of optical clearing was quantified by calculating the optical clearing potential (OCP), and the effects of differing OCP were demonstrated using the optical histology method, which combines tissue optical clearing with optical imaging to visualize the microvasculature. We observed increased tissue transparency with longer optical clearing time and an analogous increase in OCP. Furthermore, OCP did not vary substantially between 400 and 1000 nm for increasing optical clearing durations, suggesting that optical histology can improve ex vivo visualization of several fluorescent probes.

  11. LAMP5 Fine-Tunes GABAergic Synaptic Transmission in Defined Circuits of the Mouse Brain

    PubMed Central

    Tiveron, Marie-Catherine; Beurrier, Corinne; Céni, Claire; Andriambao, Naly; Combes, Alexis; Koehl, Muriel; Maurice, Nicolas; Gatti, Evelina; Abrous, Dhoher Nora; Kerkerian-Le Goff, Lydia; Pierre, Philippe; Cremer, Harold

    2016-01-01

    LAMP5 is member of the LAMP family of membrane proteins. In contrast to the canonical members of this protein family, LAMP1 and LAMP2, which show widespread expression in many tissues, LAMP 5 is brain specific in mice. In C. elegans, the LAMP5 ortholog UNC-46 has been suggested to act a trafficking chaperone, essential for the correct targeting of the nematode vesicular GABA-transporter UNC-47. We show here that in the mouse brain LAMP5 is expressed in subpopulations of GABAergic forebrain neurons in the striato-nigral system and the olfactory bulb. The protein was present at synaptic terminals, overlapping with the mammalian vesicular GABA-transporter VGAT. In LAMP5-deficient mice localization of the transporter was unaffected arguing against a conserved role in VGAT trafficking. Electrophysiological analyses in mutants showed alterations in short term synaptic plasticity suggesting that LAMP5 is involved in controlling the dynamics of evoked GABAergic transmission. At the behavioral level, LAMP5 mutant mice showed decreased anxiety and deficits in olfactory discrimination. Altogether, this work implicates LAMP5 function in GABAergic neurotransmission in defined neuronal subpopulations. PMID:27272053

  12. Exploring diazepam's effect on hemodynamic responses of mouse brain tissue by optical spectroscopic imaging.

    PubMed

    Abookasis, David; Shochat, Ariel; Nesher, Elimelech; Pinhasov, Albert

    2014-07-01

    In this study, a simple duel-optical spectroscopic imaging apparatus capable of simultaneously determining relative changes in brain oxy-and deoxy-hemoglobin concentrations was used following administration of the anxiolytic compound diazepam in mice with strong dominant (Dom) and submissive (Sub) behavioral traits. Three month old mice (n = 30) were anesthetized and after 10 min of baseline imaging, diazepam (1.5 mg/kg) was administered and measurements were taken for 80 min. The mouse head was illuminated by white light based LED's and diffused reflected light passing through different channels, consisting of a bandpass filter and a CCD camera, respectively, was collected and analyzed to measure the hemodynamic response. This work's major findings are threefold: first, Dom and Sub animals showed statistically significant differences in hemodynamic response to diazepam administration. Secondly, diazepam was found to more strongly affect the Sub group. Thirdly, different time-series profiles were observed post-injection, which can serve as a possible marker for the groups' differentiation. To the best of our knowledge, this is the first report on the effects of an anxiolytic drug on brain hemodynamic responses in mice using diffused light optical imaging. PMID:25071958

  13. Effect of rabies virus infection on gene expression in mouse brain

    PubMed Central

    Prosniak, Mikhail; Hooper, D. Craig; Dietzschold, Bernhard; Koprowski, Hilary

    2001-01-01

    A variety of molecular genetic approaches were used to study the effect of rabies virus (RV) infection on host gene expression in mouse brain. The down-regulation of gene expression was found to be a major effect of RV infection by using subtraction hybridization. However, a combination of techniques identified approximately 39 genes activated by infection. These included genes involved in regulation of cell metabolism, protein synthesis, synaptic activity, and cell growth and differentiation. Northern blot analysis to monitor temporal activation of several of these genes following infection revealed essentially two patterns of activation: (i) an early response with up-regulation beginning within 3 days after infection and correlating with transcription of RV nuclear protein; and (ii) a late response with enhanced expression occurring at days 6–7 after infection and associated with peak RV replication. The gene activation patterns and the known functions of their products suggest that a number of host genes may be involved in the replication and spread of RV in the brain. PMID:11226313

  14. Glycogen distribution in the microwave-fixed mouse brain reveals heterogeneous astrocytic patterns.

    PubMed

    Oe, Yuki; Baba, Otto; Ashida, Hitoshi; Nakamura, Kouichi C; Hirase, Hajime

    2016-09-01

    In the brain, glycogen metabolism has been implied in synaptic plasticity and learning, yet the distribution of this molecule has not been fully described. We investigated cerebral glycogen of the mouse by immunohistochemistry (IHC) using two monoclonal antibodies that have different affinities depending on the glycogen size. The use of focused microwave irradiation yielded well-defined glycogen immunoreactive signals compared with the conventional periodic acid-Schiff method. The IHC signals displayed a punctate distribution localized predominantly in astrocytic processes. Glycogen immunoreactivity (IR) was high in the hippocampus, striatum, cortex, and cerebellar molecular layer, whereas it was low in the white matter and most of the subcortical structures. Additionally, glycogen distribution in the hippocampal CA3-CA1 and striatum had a 'patchy' appearance with glycogen-rich and glycogen-poor astrocytes appearing in alternation. The glycogen patches were more evident with large-molecule glycogen in young adult mice but they were hardly observable in aged mice (1-2 years old). Our results reveal brain region-dependent glycogen accumulation and possibly metabolic heterogeneity of astrocytes. GLIA 2016;64:1532-1545. PMID:27353480

  15. A mouse model of anxiety molecularly characterized by altered protein networks in the brain proteome.

    PubMed

    Szego, Eva M; Janáky, Tamás; Szabó, Zoltán; Csorba, Attila; Kompagne, Hajnalka; Müller, Géza; Lévay, György; Simor, Attila; Juhász, Gábor; Kékesi, Katalin A

    2010-02-01

    Recently, several attempts have been made to describe changes related to certain anxiety states in the proteome of experimental animal models. However, these studies are restricted by limitations regarding the number and correct identification of separated proteins. Moreover, the application of a systems biology approach to discover the molecular mechanisms of anxiety requires genetically homogenous inbred animal models. Therefore, we developed a novel mouse model of anxiety using a combination of crossbreeding (inbred for 35 generations) and behavioral selection. We found significant changes in 82 proteins in the total brain proteome compared to the control proteome. Thirty-four of these proteins had been previously identified in other anxiety, depression or repeated psychosocial stress studies. The identified proteins are associated with different cellular functions, including synaptic transmission, metabolism, proteolysis, protein biosynthesis and folding, cytoskeletal proteins, brain development and neurogenesis, oxidative stress, signal transduction. Our proteomics data suggest that alterations in serotonin receptor-associated proteins, in the carbohydrate metabolism, in the cellular redox system and in synaptic docking are all involved in anxiety. PMID:20015620

  16. Mouse model of diffuse brain damage following anoxia, evaluated by a new assay of generalized arousal.

    PubMed

    Arrieta-Cruz, Isabel; Pfaff, Donald W; Shelley, Deborah N

    2007-06-01

    Diffuse brain damage following anoxia due to cardiac failure, drowning, carbon monoxide exposure or other accidents constitutes a major medical problem. We have created a novel mouse model using the breathing of pure nitrogen, followed by a recently developed assay that reflects an operational definition of generalized arousal. The operational definition is precise, complete, and leads to quantitative, physical measures in a genetically tractable animal. Exposure to pure nitrogen for controlled periods had a surprising bifurcate effect: about half the mice survived with neurological measures that were virtually normal while the other half died. The new assay detected behavioral deficits unrevealed by neurological screening. Two important features of the results were that (i) deficits were not equal across the circadian cycle, and (ii) deficits were not equal across all the measures within the operational definition of arousal. Specific voluntary motor measurements were decreased in a manner that depended on the phase of the circadian cycle. Sensory responses were also decreased, with an emphasis on vertical movement responses; but, interestingly, fear learning was not damaged. This study establishes the first useful approach to diffuse brain damage in a genetically tractable animal. The model and its outcome measurements will be useful during future attempts at amelioration of acquired neurological disabilities following hypoxic-ischemic injuries. PMID:17448465

  17. Migration of dendritic cells into the brain in a mouse model of prion disease.

    PubMed

    Rosicarelli, Barbara; Serafini, Barbara; Sbriccoli, Marco; Lu, Mei; Cardone, Franco; Pocchiari, Maurizio; Aloisi, Francesca

    2005-08-01

    The immune system plays a key role in the dissemination of prion infections from the periphery to the central nervous system (CNS). While follicular dendritic cells are critical for prion replication in lymphoid tissue and subsequent neuroinvasion, myeloid dendritic cells (DCs) have been implicated in both the clearance and propagation of pathological prion protein. Since nothing is known on the ability of DCs to migrate to the CNS during prion diseases, we investigated the immunohistochemical localization of CD205(+) DCs in the brain of C57BL/6 mice intraperitoneally infected with the mouse-adapted KFu strain of Gerstmann-Sträussler-Scheinker syndrome, a human genetic prion disorder. In normal brain, CD205(+) cells were present in the meninges and choroid plexus, whereas in the majority of mice sacrificed between 120 and 300 days post infection, CD205(+) DCs were also detected in the cerebral cortex, subcortical white matter, thalamus and medulla oblongata. These findings demonstrate that DCs can enter the CNS of prion-infected mice, suggesting a possible role for these cells in the pathogenesis of prion disorders. PMID:15949848

  18. Transcriptome and Histopathological Changes in Mouse Brain Infected with Neospora caninum

    PubMed Central

    Nishimura, Maki; Tanaka, Sachi; Ihara, Fumiaki; Muroi, Yoshikage; Yamagishi, Junya; Furuoka, Hidefumi; Suzuki, Yutaka; Nishikawa, Yoshifumi

    2015-01-01

    Neospora caninum is a protozoan parasite that causes neurological disorders in dogs and cattle. It can cause nonsuppurative meningoencephalitis and a variety of neuronal symptoms are observed, particularly in dogs. However, the pathogenic mechanism, including the relationship between the parasite distribution and the clinical signs, is unclear. In this study, to understand the pathogenic mechanism of neosporosis, parasite distribution and lesions were assessed in the brain of mice infected with N. caninum (strain Nc-1). Host gene expression was also analyzed with RNA sequencing (RNA-Seq). The histopathological lesions in the frontal lobe and the medulla oblongata were significantly more severe in symptomatic mice than in asymptomatic mice, although no association between the severity of the lesions and parasite numbers was found. In infected mice, the expression of 772 mouse brain genes was upregulated. A GOstat analysis predicted that the upregulated genes were involved in the host immune response. Genes whose expression correlated positively and negatively with parasite numbers were involved in the host immune response, and neuronal morphogenesis and lipid metabolic processes, respectively. These results suggest that changes in the gene expression profile associated with neuronal functions as well as immune responses can contribute to the pathogenesis in N. caninum-infected animals. PMID:25604996

  19. Mitochondrial energetic defects in muscle and brain of a Hmbs-/- mouse model of acute intermittent porphyria.

    PubMed

    Homedan, Chadi; Schmitt, Caroline; Laafi, Jihane; Gueguen, Naïg; Desquiret-Dumas, Valérie; Lenglet, Hugo; Karim, Zoubida; Gouya, Laurent; Deybach, Jean-Charles; Simard, Gilles; Puy, Hervé; Malthièry, Yves; Reynier, Pascal

    2015-09-01

    Acute intermittent porphyria (AIP), an autosomal dominant metabolic disease (MIM #176000), is due to a deficiency of hydroxymethylbilane synthase (HMBS), which catalyzes the third step of the heme biosynthetic pathway. The clinical expression of the disease is mainly neurological, involving the autonomous, central and peripheral nervous systems. We explored mitochondrial oxidative phosphorylation (OXPHOS) in the brain and skeletal muscle of the Hmbs(-/-) mouse model first in the basal state (BS), and then after induction of the disease with phenobarbital and treatment with heme arginate (HA). The modification of the respiratory parameters, determined in mice in the BS, reflected a spontaneous metabolic energetic adaptation to HMBS deficiency. Phenobarbital induced a sharp alteration of the oxidative metabolism with a significant decrease of ATP production in skeletal muscle that was restored by treatment with HA. This OXPHOS defect was due to deficiencies in complexes I and II in the skeletal muscle whereas all four respiratory chain complexes were affected in the brain. To date, the pathogenesis of AIP has been mainly attributed to the neurotoxicity of aminolevulinic acid and heme deficiency. Our results show that mitochondrial energetic failure also plays an important role in the expression of the disease. PMID:26071363

  20. Increased brain iron coincides with early plaque formation in a mouse model of Alzheimer's disease

    SciTech Connect

    Leskovjan, A.C.; Miller, L.; Kretlow, A.; Lanzirotti, A.; Barrea,R.; Vogt, S.

    2010-11-23

    Elevated brain iron content, which has been observed in late-stage human Alzheimer's disease, is a potential target for early diagnosis. However, the time course for iron accumulation is currently unclear. Using the PSAPP mouse model of amyloid plaque formation, we conducted a time course study of metal ion content and distribution [iron (Fe), copper (Cu), and zinc (Zn)] in the cortex and hippocampus using X-ray fluorescence microscopy (XFM). We found that iron in the cortex was 34% higher than age-matched controls at an early stage, corresponding to the commencement of plaque formation. The elevated iron was not associated with the amyloid plaques. Interestingly, none of the metal ions were elevated in the amyloid plaques until the latest time point (56 weeks), where only the Zn content was significantly elevated by 38%. Since neuropathological changes in human Alzheimer's disease are presumed to occur years before the first cognitive symptoms appear, quantification of brain iron content could be a powerful marker for early diagnosis of Alzheimer's disease.

  1. Inositol trisphosphate 3-kinase B is increased in human Alzheimer brain and exacerbates mouse Alzheimer pathology.

    PubMed

    Stygelbout, Virginie; Leroy, Karelle; Pouillon, Valérie; Ando, Kunie; D'Amico, Eva; Jia, Yonghui; Luo, H Robert; Duyckaerts, Charles; Erneux, Christophe; Schurmans, Stéphane; Brion, Jean-Pierre

    2014-02-01

    ITPKB phosphorylates inositol 1,4,5-trisphosphate into inositol 1,3,4,5-tetrakisphosphate and controls signal transduction in various hematopoietic cells. Surprisingly, it has been reported that the ITPKB messenger RNA level is significantly increased in the cerebral cortex of patients with Alzheimer's disease, compared with control subjects. As extracellular signal-regulated kinases 1/2 activation is increased in the Alzheimer brain and as ITPKB is a regulator of extracellular signal-regulated kinases 1/2 activation in some hematopoietic cells, we tested whether this increased activation in Alzheimer's disease might be related to an increased activity of ITPKB. We show here that ITPKB protein level was increased 3-fold in the cerebral cortex of most patients with Alzheimer's disease compared with control subjects, and accumulated in dystrophic neurites associated to amyloid plaques. In mouse Neuro-2a neuroblastoma cells, Itpkb overexpression was associated with increased cell apoptosis and increased β-secretase 1 activity leading to overproduction of amyloid-β peptides. In this cellular model, an inhibitor of mitogen-activated kinase kinases 1/2 completely prevented overproduction of amyloid-β peptides. Transgenic overexpression of ITPKB in mouse forebrain neurons was not sufficient to induce amyloid plaque formation or tau hyperphosphorylation. However, in the 5X familial Alzheimer's disease mouse model, neuronal ITPKB overexpression significantly increased extracellular signal-regulated kinases 1/2 activation and β-secretase 1 activity, resulting in exacerbated Alzheimer's disease pathology as shown by increased astrogliosis, amyloid-β40 peptide production and tau hyperphosphorylation. No impact on pathology was observed in the 5X familial Alzheimer's disease mouse model when a catalytically inactive ITPKB protein was overexpressed. Together, our results point to the ITPKB/inositol 1,3,4,5-tetrakisphosphate/extracellular signal-regulated kinases 1

  2. BrdU-positive cells in the neonatal mouse hippocampus following hypoxic-ischemic brain injury

    PubMed Central

    Bartley, John; Soltau, Thomas; Wimborne, Hereward; Kim, Sunjun; Martin-Studdard, Angeline; Hess, David; Hill, William; Waller, Jennifer; Carroll, James

    2005-01-01

    Background Mechanisms that affect recovery from fetal and neonatal hypoxic-ischemic (H-I) brain injury have not been fully elucidated. The incidence of intrapartum asphyxia is approximately 2.5%, but the occurrence of adverse clinical outcome is much lower. One of the factors which may account for this relatively good outcome is the process of neurogenesis, which has been described in adult animals. We used a neonatal mouse model to assess new cells in the hippocampus after H-I injury. Results Neonatal mice underwent permanent unilateral carotid ligation on the seventh postnatal day followed by exposure to 8% hypoxia for 75 minutes. The presence of new cells was determined by bromodeoxyuridine (BrdU) incorporation into cells with sacrifice of the animals at intervals. Brain sections were stained for BrdU in combination with neuronal, glial, endothelial and microglial stains. We found a significant increase in BrdU-positive cells in the neonatal mouse hippocampus in the injured area compared to the non-injured area, most prominent in the dentate gyrus (DG) (154.5 ± 59.6 v. 92.9 ± 32.7 at 3 days after injury; 68.9 ± 23.4 v. 52.4 ± 17.1 at 35 days after injury, p < 0.0011). Among the cells which showed differentiation, those which were stained as either microglial or endothelial cells showed a peak increase at three days after the injury in the DG, injured versus non-injured side (30.5 ± 17.8 v. 2.7 ± 2.6, p < 0.0002). As in the adult animal, neurogenesis was significantly increased in the DG with injury (15.0 ± 4.6 v. 5.2 ± 1.6 at 35 days after injury, p < 0.0002), and this increase was subsequent to the appearance of the other dividing cells. Numbers of new oligodendrocytes were significantly higher in the DG on the non-injured side (7.0 ± 24.2 v. 0.1 ± 0.3, p < 0.0002), suggesting that oligodendrocyte synthesis was reduced in the injured hippocampus. Conclusion These findings demonstrate that the neonatal animal responds to brain injury with neurogenesis

  3. Nicotinamide Protects against Ethanol-Induced Apoptotic Neurodegeneration in the Developing Mouse Brain

    PubMed Central

    Ieraci, Alessandro; Herrera, Daniel G

    2006-01-01

    Background Exposure to alcohol during brain development may cause a neurological syndrome called fetal alcohol syndrome (FAS). Ethanol induces apoptotic neuronal death at specific developmental stages, particularly during the brain-growth spurt, which occurs from the beginning of third trimester of gestation and continues for several years after birth in humans, whilst occuring in the first two postnatal weeks in mice. Administration of a single dose of ethanol in 7-d postnatal (P7) mice triggers activation of caspase-3 and widespread apoptotic neuronal death in the forebrain, providing a possible explanation for the microencephaly observed in human FAS. The present study was aimed at determining whether nicotinamide may prevent ethanol-induced neurodegeneration. Methods and Findings P7 mice were treated with a single dose of ethanol (5g/kg), and nicotinamide was administered from 0 h to 8 h after ethanol exposure. The effects of nicotinamide on ethanol-induced activation of caspase-3 and release of cytochrome-c from the mitochondria were analyzed by Western blot ( n = 4–7/group). Density of Fluoro-Jade B–positive cells and NeuN-positive cells was determined in the cingulated cortex, CA1 region of the hippocampus, and lateral dorsal nucleus of the thalamus ( n = 5–6/group). Open field, plus maze, and fear conditioning tests were used to study the behavior in adult mice ( n = 31–34/group). Nicotinamide reduced the activation of caspase-3 (85.14 ± 4.1%) and the release of cytochrome-c (80.78 ± 4.39%) in postnatal mouse forebrain, too. Nicotinamide prevented also the ethanol-induced increase of apoptosis. We demonstrated that ethanol-exposed mice showed impaired performance in the fear conditioning test and increased activity in the open field and in the plus maze. Administration of nicotinamide prevented all these behavioral abnormalities in ethanol-exposed mice. Conclusions Our findings indicate that nicotinamide can prevent some of the deleterious effects

  4. The dynamic of FUS-induced BBB Opening in Mouse Brain assessed by contrast enhanced MRI

    NASA Astrophysics Data System (ADS)

    Jenne, Jürgen W.; Krafft, Axel J.; Maier, Florian; Krause, Marie N.; Kleber, Susanne; Huber, Peter E.; Martin-Villalba, Ana; Bock, Michael

    2010-03-01

    Focused ultrasound (FUS) in combination with the administration of gas-filled microbubbles, can induce a localized and reversible opening of the blood brain barrier (BBB). Contrast enhanced magnetic resonance imaging (MRI) has been demonstrated as a precise tool to monitor such a local BBB disruption. However, the opening/closing mechanisms of the BBB with FUS are still largely unknown. In this ongoing project, we study the BBB opening dynamics in mouse brain comparing an interstitial and an intravascular MR contrast agent (CA). FUS in mouse brain was performed with an MRI compatible treatment setup (1.7 MHz fix-focus US transducer, f' = 68 mm, NA = 0.44; focus: 8.1 mm length; O/ = 1.1 mm) in a 1.5 T whole body MRI system. For BBB opening, forty 10 ms-long FUS-pulses were applied at a repetition rate of 1 Hz at 1 MPa. The i.v. administration of the micro bubbles (50 μl SonoVue®) was started simultaneously with FUS exposure. To analyze the BBB opening process, short-term and long-term MRI signal dynamics of the interstitial MR contrast agent Magnevist® and the intravascular CA Vasovist® (Bayer-Schering) were studied. To assess short-term signal dynamics, T1-weighted inversion recovery turbo FLASH images (1s) were repeatedly acquired. Repeated 3D FLASH acquisitions (90 s) were used to assess long-term MRI signal dynamics. The short-term MRI signal enhancements showed comparable time constants for both types of MR contrast agents: 1.1 s (interstitial) vs. 0.8 s (intravascular). This time constant may serve as a time constant of the BBB opening process with the given FUS exposure parameters. For the long-term signal dynamics the intravascular CA (62±10 min) showed a fife times greater time constant as the interstitial contrast agent (12±10 min). This might be explained by the high molecular weight (˜60 kDa) of the intravascular Vasovist due to its reversible binding to blood serum albumin resulting in a prolonged half-life in the blood stream compared to the

  5. Quantification of neurotransmitters in mouse brain tissue by using liquid chromatography coupled electrospray tandem mass spectrometry.

    PubMed

    Kim, Tae-Hyun; Choi, Juhee; Kim, Hyung-Gun; Kim, Hak Rim

    2014-01-01

    A simple and rapid liquid chromatography tandem mass spectrometry method has been developed for the determination of BH4, DA, 5-HT, NE, EP, Glu, and GABA in mouse brain using epsilon-acetamidocaproic acid and isotopically labeled neurotransmitters as internal standards. Proteins in the samples were precipitated by adding acetonitrile, and then the supernatants were separated by a Sepax Polar-Imidazole (2.1 mm × 100 mm, i.d., 3 μm) column by adding a mixture of 10 mM ammonium formate in acetonitrile/water (75 : 25, v/v, 300 μl/min) for BH4 and DA. To assay 5-HT, NE, EP, Glu, and GABA; a Luna 3 μ C18 (3.0 mm × 150 mm, i.d., 3 μm) column was used by adding a mixture of 1% formic acid in acetonitrile/water (20 : 80, v/v, 350 μl/min). The total chromatographic run time was 5.5 min. The method was validated for the analysis of samples. The calibration curve was linear between 10 and 2000 ng/g for BH4 (r(2) = 0.995) , 10 and 5000 ng/g for DA (r(2) = 0.997) , 20 and 10000 ng/g for 5-HT (r(2) = 0.994) , NE (r(2) = 0.993) , and EP (r(2) = 0.993) , and 0.2 and 200 μg/g for Glu (r(2) = 0.996) and GABA (r(2) = 0.999) in the mouse brain tissues. As stated above, LC-MS/MS results were obtained and established to be a useful tool for the quantitative analysis of BH4, DA, 5-HT, NE, EP, Glu, and GABA in the experimental rodent brain. PMID:25258696

  6. Bone Marrow-Derived Nonreactive Astrocytes in the Mouse Brain After Permanent Middle Cerebral Artery Occlusion

    PubMed Central

    Tóth, Zsuzsanna E.; Leker, Ronen R.; Shahar, Tal; Bratincsak, Andras; Szalayova, Ildiko; Key, Sharon; Palkovits, Miklós; Cassiani-Ingoni, Riccardo

    2011-01-01

    We studied the effect of permanent unilateral middle cerebral artery occlusion (PMCAO) on the generation of bone marrow (BM)-derived astrocytes in female mice previously transplanted with enchanced green fluorescent protein-expressing BM from male donors. In addition to an untreated PMCAO group, one group of mice also received intracerebral infusion of transforming growth factor-alpha, resulting in a decrease in the size of the infarct. Two months after PMCAO, we found a specific type of astrocyte of BM origin in the side of the injury, near the lesion. These astrocytes did not express glial fibrillary acidic protein (GFAP) by conventional fluorescence immunostaining; however, GFAP was easily detectable by tyramide signal amplification. These cells also expressed S100β, confirming their astrocytic character. Unlike the endogenous reactive astrocytes, these BM-derived astrocytes did not proliferate during the first week of ischemia and did not contribute to the glial scar formation. Transforming growth factor-alpha infusion increased the number of BM-derived astrocytes, without affecting their distribution. Interestingly, exclusively by tyramide signal amplification staining, we found that endogenous astrocytes displaying an identical morphology were also present in control mouse and human brains. Our data demonstrate that a subpopulation of nonreactive astrocytes expressing low levels of GFAP can originate from transplanted BM in the ischemic brain. We believe that these cells represent a subpopulation of astrocytes earlier considered to be GFAP negative. The high number of astrocytes with identical morphology and chemical character in control brains suggest that these type of astrocytes may have important functional role in the central nervous system that calls for further studies. PMID:20604679

  7. Imaging hypothalamic activity using diffusion weighted magnetic resonance imaging in the mouse and human brain.

    PubMed

    Lizarbe, Blanca; Benítez, Ania; Sánchez-Montañés, Manuel; Lago-Fernández, Luis F; Garcia-Martin, María L; López-Larrubia, Pilar; Cerdán, Sebastián

    2013-01-01

    Hypothalamic appetite regulation is a vital homeostatic process underlying global energy balance in animals and humans, its disturbances resulting in feeding disorders with high morbidity and mortality. The objective evaluation of appetite remains difficult, very often restricted to indirect measurements of food intake and body weight. We report here, the direct, non-invasive visualization of hypothalamic activation by fasting using diffusion weighted magnetic resonance imaging, in the mouse brain as well as in a preliminary study in the human brain. The brain of fed or fasted mice or humans were imaged at 7 or 1.5 Tesla, respectively, by diffusion weighted magnetic resonance imaging using a complete range of b values (10

  8. Quinolinic acid-immunoreactivity in the naïve mouse brain.

    PubMed

    Lopez, Yara Pujol; Kenis, Gunter; Rutten, Bart P F; Myint, Aye M; Steinbusch, Harry W M; van den Hove, Daniel L A

    2016-01-01

    Quinolinic acid (QUIN) has been suggested to be involved in infections, inflammatory neurological disorders and in the development of psychiatric disorders. In this view, several studies have been performed to investigate QUIN localization in the brain and its neurotoxic effects. However, evidence is lacking regarding QUIN in healthy, control conditions. The aim of this study was to investigate the region-specific distribution and pattern of QUIN expression in the naïve mouse brain. In addition, possible sex differences in QUIN-immunoreactivity and its link with affect-related behavioural observations were assessed. For this purpose, naïve mice were subjected to the forced swim test (FST) and 20 min open field (OF) testing to measure affect-related behaviour. Afterwards, brains were assessed for QUIN-immunoreactivity. QUIN-immunoreactivity was particularly observed in the cingulate cortex (CC), highlighting clearly delineated cells, and the thalamic reticular nucleus (TRN), showing a more diffuse staining pattern. Subsequently, QUIN-positive cells in the CC were counted, while QUIN-immunoreactivity in the TRN was examined using gray value measurements. No significant differences between sexes were observed for the number of QUIN-positive cells in the CC, neither in levels of QUIN-immunoreactivity in the TRN. A direct correlation was found between QUIN-positive cells in the CC and QUIN-immunoreactivity in the TRN. Moreover, in male mice, a very strong correlation (rsp=.943; p<.01) between QUIN-immunoreactivity at the level of the TRN and motor activity in the OF was observed. Thus, our results suggest that QUIN - detected in the CC and the TRN - may play a role in regulating motor activity in normal conditions. PMID:26686288

  9. Cholinergic and serotonergic modulations differentially affect large-scale functional networks in the mouse brain.

    PubMed

    Shah, Disha; Blockx, Ines; Keliris, Georgios A; Kara, Firat; Jonckers, Elisabeth; Verhoye, Marleen; Van der Linden, Annemie

    2016-07-01

    Resting-state functional MRI (rsfMRI) is a widely implemented technique used to investigate large-scale topology in the human brain during health and disease. Studies in mice provide additional advantages, including the possibility to flexibly modulate the brain by pharmacological or genetic manipulations in combination with high-throughput functional connectivity (FC) investigations. Pharmacological modulations that target specific neurotransmitter systems, partly mimicking the effect of pathological events, could allow discriminating the effect of specific systems on functional network disruptions. The current study investigated the effect of cholinergic and serotonergic antagonists on large-scale brain networks in mice. The cholinergic system is involved in cognitive functions and is impaired in, e.g., Alzheimer's disease, while the serotonergic system is involved in emotional and introspective functions and is impaired in, e.g., Alzheimer's disease, depression and autism. Specific interest goes to the default-mode-network (DMN), which is studied extensively in humans and is affected in many neurological disorders. The results show that both cholinergic and serotonergic antagonists impaired the mouse DMN-like network similarly, except that cholinergic modulation additionally affected the retrosplenial cortex. This suggests that both neurotransmitter systems are involved in maintaining integrity of FC within the DMN-like network in mice. Cholinergic and serotonergic modulations also affected other functional networks, however, serotonergic modulation impaired the frontal and thalamus networks more extensively. In conclusion, this study demonstrates the utility of pharmacological rsfMRI in animal models to provide insights into the role of specific neurotransmitter systems on functional networks in neurological disorders. PMID:26195064

  10. Neuroprotective and neurotrophic effects of long term lithium treatment in mouse brain.

    PubMed

    Riadh, Nciri; Allagui, Mohamed Salah; Bourogaa, Ezzedine; Vincent, Christian; Croute, Françoise; Elfeki, Abdelfattah

    2011-08-01

    Since the worldwide approval of lithium therapy in 1970, lithium has been used for its anti-manic, antidepressant, and anti-suicidal effects. The last decade has witnessed the following discoveries about its neuroprotective and neurotrophic properties, yet the therapeutic mechanisms at the cellular level remain not-fully defined. We have undertaken the present study to determine if chronic lithium treatment, at therapeutically relevant concentrations, exerts neurotrophic/neuroprotective effects in the mouse brain in vivo. For this purpose, 10 months aged mice were fed for 3 months on food pellets contained 1 g (L1 group) or 2 g (L2 group) lithium carbonate/kg, resulting in serum concentrations of 0.4 and 0.8 mM, respectively. The evaluation of lipid peroxidation level and the activities of catalase, superoxide-dismutase and glutathione-peroxidase showed that chronic Li administration, at therapeutic doses doesn't induce oxidative stress in brain tissue. No changes in the expression levels of molecular chaperones, namely, the HSP70, and HSP90 heat shock proteins and the GRP94 glucose-regulated protein were detected. Moreover, this treatment has caused (1) an increase in the relative brain weight (2) a delay in the age induced cerebral glucose impairment (3) an enhancement of the neurogenesis in hippocampus and enthorinal cortex highlighted by silver impregnation. Under these experimental conditions, no modifications were observed in expression levels of GSK3 and of its downstream target β-catenin proteins. These results suggested that chronic Li administration, at therapeutic doses, has a neuroprotective/neurotrophic properties and its therapeutic mechanism doesn't implicate GSK3 inactivation. PMID:21373826

  11. Active and passive MDMA ('ecstasy') intake induces differential transcriptional changes in the mouse brain.

    PubMed

    Fernàndez-Castillo, N; Orejarena, M J; Ribasés, M; Blanco, E; Casas, M; Robledo, P; Maldonado, R; Cormand, B

    2012-02-01

    3,4-Methylenedioxymethamphetamine (MDMA, 'ecstasy') is a recreational drug widely used by adolescents and young adults. Although its rewarding effects are well established, there is controversy on its addictive potential. We aimed to compare the consequences of active and passive MDMA administration on gene expression in the mouse brain since all previous studies were based on passive MDMA administration. We used a yoked-control operant intravenous self-administration paradigm combined with microarray technology. Transcriptomic profiles of ventral striatum, frontal cortex, dorsal raphe nucleus and hippocampus were analysed in mice divided in contingent MDMA, yoked MDMA and yoked saline groups, and several changes were validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The comparison of contingent MDMA and yoked MDMA vs. yoked saline mice allowed the identification of differential expression in several genes, most of them with immunological and inflammatory functions, but others being involved in neuroadaptation. In the comparison of contingent MDMA vs. yoked MDMA administration, hippocampus and the dorsal raphe nucleus showed statistically significant changes. The altered expression of several genes involved in neuroadaptative changes and synapse function, which may be related to learning self-administration behaviour, could be validated in these two brain structures. In conclusion, our study shows a strong effect of MDMA administration on the expression of immunological and inflammatory genes in all the four brain regions studied. In addition, experiments on MDMA self-administration suggest that the dorsal raphe nucleus and hippocampus may be involved in active MDMA-seeking behaviour, and show specific alterations on gene expression that support the addictive potential of this drug. PMID:21951708

  12. Allelic Specificity of Ube3a Expression in the Mouse Brain during Postnatal Development

    PubMed Central

    JUDSON, MATTHEW C.; SOSA-PAGAN, JASON O.; DEL CID, WILMER A.; HAN, JI EUN; PHILPOT, BENJAMIN D.

    2014-01-01

    Genetic alterations of the maternal UBE3A allele result in Angelman syndrome (AS), a neurodevelopmental disorder characterized by severe developmental delay, lack of speech, and difficulty with movement and balance. The combined effects of maternal UBE3A mutation and cell type-specific epigenetic silencing of paternal UBE3A are hypothesized to result in a complete loss of functional UBE3A protein in neurons. However, the allelic specificity of UBE3A expression in neurons and other cell types in the brain has yet to be characterized throughout development, including the early postnatal period when AS phenotypes emerge. Here we define maternal and paternal allele-specific Ube3a protein expression throughout postnatal brain development in the mouse, a species which exhibits orthologous epigenetic silencing of paternal Ube3a in neurons and AS-like behavioral phenotypes subsequent to maternal Ube3a deletion. We find that neurons downregulate paternal Ube3a protein expression as they mature and, with the exception of neurons born from postnatal stem cell niches, do not express detectable paternal Ube3a beyond the first postnatal week. By contrast, neurons express maternal Ube3a throughout postnatal development, during which time localization of the protein becomes increasingly nuclear. Unlike neurons, astrocytes and oligodendrotyes biallelically express Ube3a. Notably, mature oligodendrocytes emerge as the predominant Ube3a-expressing glial cell type in the cortex and white matter tracts during postnatal development. These findings demonstrate the spatiotemporal characteristics of allele-specific Ube3a expression in key brain cell types, thereby improving our understanding of the developmental parameters of paternal Ube3a silencing and the cellular basis of AS. PMID:24254964

  13. Pattern of CXCR7 Gene Expression in Mouse Brain Under Normal and Inflammatory Conditions.

    PubMed

    Banisadr, Ghazal; Podojil, Joseph R; Miller, Stephen D; Miller, Richard J

    2016-03-01

    The chemokine stromal cell-derived factor-1 (SDF-1)/CXCL12 acting via its G-protein coupled receptor (GPCR) CXCR4 has been implicated in neurogenesis, neuromodulation, brain inflammation, HIV-1 encephalopathy and tumor growth. CXCR7 was identified as an alternate receptor for SDF-1/CXCL12. Characterization of CXCR7-deficient mice demonstrated a role for CXCR7 in fetal endothelial biology, cardiac development, and B-cell localization. Despite its ligand binding properties, CXCR7 does not seem to signal like a conventional GPCR. It has been suggested that CXCR7 may not function alone but in combination with CXCR4. Here, we investigated the regional localization of CXCR7 receptors in adult mouse brain using CXCR7-EGFP transgenic mice. We found that the receptors were expressed in various brain regions including olfactory bulb, cerebral cortex, hippocampus, subventricular zone (SVZ), hypothalamus and cerebellum. Extensive CXCR7 expression was associated with cerebral blood vessels. Using cell type specific markers, CXCR7 expression was found in neurons, astrocytes and oligodendrocyte progenitors. GAD-expressing neurons exhibited CXCR7 expression in the hippocampus. Expression of CXCR7 in the dentate gyrus included cells that expressed nestin, GFAP and cells that appeared to be immature granule cells. In mice with Experimental Autoimmune Encephalomyelitis (EAE), CXCR7 was expressed by migrating oligodendrocyte progenitors in the SVZ. We then compared the distribution of SDF-1/CXCL12 and CXCR7 using bitransgenic mice expressing both CXCR7-EGFP and SDF-1-mRFP. Enhanced expression of SDF-1/CXCL12 and CXCR7 was observed in the corpus callosum, SVZ and cerebellum. Overall, the expression of CXCR7 in normal and pathological nervous system suggests CXCR4-independent functions of SDF-1/CXCL12 mediated through its interaction with CXCR7. PMID:25997895

  14. Kinetics of functionalised carbon nanotube distribution in mouse brain after systemic injection: Spatial to ultra-structural analyses.

    PubMed

    Wang, Julie T-W; Rubio, Noelia; Kafa, Houmam; Venturelli, Enrica; Fabbro, Chiara; Ménard-Moyon, Cécilia; Da Ros, Tatiana; Sosabowski, Jane K; Lawson, Alastair D; Robinson, Martyn K; Prato, Maurizio; Bianco, Alberto; Festy, Frederic; Preston, Jane E; Kostarelos, Kostas; Al-Jamal, Khuloud T

    2016-02-28

    Earlier studies proved the success of using chemically functionalised multi-walled carbon nanotubes (f-MWNTs) as nanocarriers to the brain. Little insight into the kinetics of brain distribution of f-MWNTs in vivo has been reported. This study employed a wide range of qualitative and quantitative techniques with the aim of shedding the light on f-MWNT's brain distribution following intravenous injection. γ-Scintigraphy quantified the uptake of studied radiolabelled f-MWNT in the whole brain parenchyma and capillaries while 3D-single photon emission computed tomography/computed tomography imaging and autoradiography illustrated spatial distribution within various brain regions. Raman and multiphoton luminescence together with transmission electron microscopy confirmed the presence of intact f-MWNT in mouse brain, in a label-free manner. The results evidenced the presence of f-MWNT in mice brain parenchyma, in addition to brain endothelium. Such information on the rate and extent of regional and cellular brain distribution is needed before further implementation into neurological therapeutics can be made. PMID:26742944

  15. Kinetics of functionalised carbon nanotube distribution in mouse brain after systemic injection: Spatial to ultra-structural analyses

    PubMed Central

    Wang, Julie T.-W.; Rubio, Noelia; Kafa, Houmam; Venturelli, Enrica; Fabbro, Chiara; Ménard-Moyon, Cécilia; Da Ros, Tatiana; Sosabowski, Jane K.; Lawson, Alastair D.; Robinson, Martyn K.; Prato, Maurizio; Bianco, Alberto; Festy, Frederic; Preston, Jane E.; Kostarelos, Kostas; Al-Jamal, Khuloud T.

    2016-01-01

    Earlier studies proved the success of using chemically functionalised multi-walled carbon nanotubes (f-MWNTs) as nanocarriers to the brain. Little insight into the kinetics of brain distribution of f-MWNTs in vivo has been reported. This study employed a wide range of qualitative and quantitative techniques with the aim of shedding the light on f-MWNT's brain distribution following intravenous injection. γ-Scintigraphy quantified the uptake of studied radiolabelled f-MWNT in the whole brain parenchyma and capillaries while 3D-single photon emission computed tomography/computed tomography imaging and autoradiography illustrated spatial distribution within various brain regions. Raman and multiphoton luminescence together with transmission electron microscopy confirmed the presence of intact f-MWNT in mouse brain, in a label-free manner. The results evidenced the presence of f-MWNT in mice brain parenchyma, in addition to brain endothelium. Such information on the rate and extent of regional and cellular brain distribution is needed before further implementation into neurological therapeutics can be made. PMID:26742944

  16. Differences in amyloid-β clearance across mouse and human blood-brain barrier models: Kinetic analysis and mechanistic modeling

    PubMed Central

    Qosa, Hisham; Abuasal, Bilal S.; Romero, Ignacio A.; Weksler, Babette; Couraud, Pierre-Oliver; Keller, Jeffrey N.; Kaddoumi, Amal

    2014-01-01

    Alzheimer’s disease (AD) has a characteristic hallmark of amyloid-β (Aβ) accumulation in the brain. This accumulation of Aβ has been related to its faulty cerebral clearance. Indeed, preclinical studies that used mice to investigate Aβ clearance showed that efflux across blood-brain barrier (BBB) and brain degradation mediate efficient Aβ clearance. However, the contribution of each process to Aβ clearance remains unclear. Moreover, it is still uncertain how species differences between mouse and human could affect Aβ clearance. Here, a modified form of the brain efflux index method was used to estimate the contribution of BBB and brain degradation to Aβ clearance from the brain of wild type mice. We estimated that 62% of intracerebrally injected 125I-Aβ40 is cleared across BBB while 38% is cleared by brain degradation. Furthermore, in vitro and in silico studies were performed to compare Aβ clearance between mouse and human BBB models. Kinetic studies for Aβ40 disposition in bEnd3 and hCMEC/D3 cells, representative in vitro mouse and human BBB models, respectively, demonstrated 30-fold higher rate of 125I-Aβ40 uptake and 15-fold higher rate of degradation by bEnd3 compared to hCMEC/D3 cells. Expression studies showed both cells to express different levels of P-glycoprotein and RAGE, while LRP1 levels were comparable. Finally, we established a mechanistic model, which could successfully predict cellular levels of 125I-Aβ40 and the rate of each process. Established mechanistic model suggested significantly higher rates of Aβ uptake and degradation in bEnd3 cells as rationale for the observed differences in 125I-Aβ40 disposition between mouse and human BBB models. In conclusion, current study demonstrates the important role of BBB in the clearance of Aβ from the brain. Moreover, it provides insight into the differences between mouse and human BBB with regards to Aβ clearance and offer, for the first time, a mathematical model that describes A

  17. Differences in amyloid-β clearance across mouse and human blood-brain barrier models: kinetic analysis and mechanistic modeling.

    PubMed

    Qosa, Hisham; Abuasal, Bilal S; Romero, Ignacio A; Weksler, Babette; Couraud, Pierre-Oliver; Keller, Jeffrey N; Kaddoumi, Amal

    2014-04-01

    Alzheimer's disease (AD) has a characteristic hallmark of amyloid-β (Aβ) accumulation in the brain. This accumulation of Aβ has been related to its faulty cerebral clearance. Indeed, preclinical studies that used mice to investigate Aβ clearance showed that efflux across blood-brain barrier (BBB) and brain degradation mediate efficient Aβ clearance. However, the contribution of each process to Aβ clearance remains unclear. Moreover, it is still uncertain how species differences between mouse and human could affect Aβ clearance. Here, a modified form of the brain efflux index method was used to estimate the contribution of BBB and brain degradation to Aβ clearance from the brain of wild type mice. We estimated that 62% of intracerebrally injected (125)I-Aβ40 is cleared across BBB while 38% is cleared by brain degradation. Furthermore, in vitro and in silico studies were performed to compare Aβ clearance between mouse and human BBB models. Kinetic studies for Aβ40 disposition in bEnd3 and hCMEC/D3 cells, representative in vitro mouse and human BBB models, respectively, demonstrated 30-fold higher rate of (125)I-Aβ40 uptake and 15-fold higher rate of degradation by bEnd3 compared to hCMEC/D3 cells. Expression studies showed both cells to express different levels of P-glycoprotein and RAGE, while LRP1 levels were comparable. Finally, we established a mechanistic model, which could successfully predict cellular levels of (125)I-Aβ40 and the rate of each process. Established mechanistic model suggested significantly higher rates of Aβ uptake and degradation in bEnd3 cells as rationale for the observed differences in (125)I-Aβ40 disposition between mouse and human BBB models. In conclusion, current study demonstrates the important role of BBB in the clearance of Aβ from the brain. Moreover, it provides insight into the differences between mouse and human BBB with regards to Aβ clearance and offer, for the first time, a mathematical model that describes

  18. Degree of Cajal-Retzius Cell Mislocalization Correlates with the Severity of Structural Brain Defects in Mouse Models of Dystroglycanopathy.

    PubMed

    Booler, Helen S; Williams, Josie L; Hopkinson, Mark; Brown, Susan C

    2016-07-01

    The secondary dystroglycanopathies are characterized by the hypoglycosylation of alpha dystroglycan, and are associated with mutations in at least 18 genes that act on the glycosylation of this cell surface receptor rather than the Dag1 gene itself. At the severe end of the disease spectrum, there are substantial structural brain defects, the most striking of which is often cobblestone lissencephaly. The aim of this study was to determine the gene-specific aspects of the dystroglycanopathy brain phenotype through a detailed investigation of the structural brain defects present at birth in three mouse models of dystroglycanopathy-the FKRP(KD) , which has an 80% reduction in Fkrp transcript levels; the Pomgnt1null , which carries a deletion of exons 7-16 of the Pomgnt1 gene; and the Large(myd) mouse, which carries a deletion of exons 5-7 of the Large gene. We show a rostrocaudal and mediolateral gradient in the severity of brain lesions in FKRP(KD) , and to a lesser extent Pomgnt1null mice. Furthermore, the mislocalization of Cajal-Retzius cells is correlated with the gradient of these lesions and the severity of the brain phenotype in these models. Overall these observations implicate gene-specific differences in the pathogenesis of brain lesions in this group of disorders. PMID:26306834

  19. Nop2 is expressed during proliferation of neural stem cells and in adult mouse and human brain.

    PubMed

    Kosi, Nina; Alić, Ivan; Kolačević, Matea; Vrsaljko, Nina; Jovanov Milošević, Nataša; Sobol, Margarita; Philimonenko, Anatoly; Hozák, Pavel; Gajović, Srećko; Pochet, Roland; Mitrečić, Dinko

    2015-02-01

    The nucleolar protein 2 gene encodes a protein specific for the nucleolus. It is assumed that it plays a role in the synthesis of ribosomes and regulation of the cell cycle. Due to its link to cell proliferation, higher expression of Nop2 indicates a worse tumor prognosis. In this work we used Nop2(gt1gaj) gene trap mouse strain. While lethality of homozygous animals suggested a vital role of this gene, heterozygous animals allowed the detection of expression of Nop2 in various tissues, including mouse brain. Histochemistry, immunohistochemistry and immunoelectron microscopy techniques, applied to a mature mouse brain, human brain and on mouse neural stem cells revealed expression of Nop2 in differentiating cells, including astrocytes, as well as in mature neurons. Nop2 was detected in various regions of mouse and human brain, mostly in large pyramidal neurons. In the human, Nop2 was strongly expressed in supragranular and infragranular layers of the somatosensory cortex and in layer III of the cingulate cortex. Also, Nop2 was detected in CA1 and the subiculum of the hippocampus. Subcellular analyses revealed predominant location of Nop2 within the dense fibrillar component of the nucleolus. To test if Nop2 expression correlates to cell proliferation occurring during tissue regeneration, we induced strokes in mice by middle cerebral artery occlusion. Two weeks after stroke, the number of Nop2/nestin double positive cells in the region affected by ischemia and the periventricular zone substantially increased. Our findings suggest a newly discovered role of Nop2 in both mature neurons and in cells possibly involved in the regeneration of nervous tissue. PMID:25481415

  20. Superparamagnetic iron oxide nanoparticles coated with different polymers and their MRI contrast effects in the mouse brains

    NASA Astrophysics Data System (ADS)

    Xie, Songbo; Zhang, Baolin; Wang, Lei; Wang, Jun; Li, Xuan; Yang, Gao; Gao, Fabao

    2015-01-01

    PEG and PEG/PEI modified superparamagnetic iron oxide nanoparticles (SPIONs) were synthesized by the thermal decomposition of iron (III) acetylacetonate (Fe(acac)3) in poly (ethylene glycol) (PEG) containing poly (ethylene imine) (PEI) (0 or 0.3 g). PEG/PEI-SPIONs were coated with Tween 80 (PEG/PEI/Tween 80-SPIONs). Fourier transform infrared spectroscopy (FTIR) analyses indicated that PEG, PEG/PEI and PEG/PEI/Tween 80 were attached to the surfaces of the SPIONs. The PEG-SPIONs, PEG/PEI-SPIONs and PEG/PEI/Tween 80-SPIONs performed excellent colloidal stability in the phosphate buffered saline (PBS), and in deionized water with the mean hydrodynamic sizes of 19.5, 21.0, 24.0 nm and the zeta potentials of -5.0, 35.0, 19.0 mV, respectively. All the SPIONs showed low cytotoxicity assessed by the MTT assay. In vivo magnetic resonance imaging (MRI) of the Kunming (KM) mouse brains were performed, the PEG-SPIONs, PEG/PEI-SPIONs and PEG/PEI/Tween 80-SPIONs exhibited vascular imaging effects in bulbus olfactorius, frontal cortex, temporal, thalamus and brain stem of the mouse brains after 24 h intravenous injection of the nanoparticles. The SPIONs have potentials as MRI contrast agents in the mouse brains.

  1. In-vivo longitudinal MRI study: an assessment of melanoma brain metastases in a clinically relevant mouse model.

    PubMed

    Henry, Mariama N; Chen, Yuhua; McFadden, Catherine D; Simedrea, Felicia C; Foster, Paula J

    2015-04-01

    Brain metastases are an important clinical problem. Few animal models exist for melanoma brain metastases; many of which are not clinically relevant. Longitudinal MRI was implemented to examine the development of tumors in a clinically relevant mouse model of melanoma brain metastases. Fifty thousand human metastatic melanoma (A2058) cells were injected intracardially into nude mice. Three Tesla MRI was performed using a custom-built gradient insert coil and a mouse solenoid head coil. Imaging was performed on consecutive days at four time points. Tumor burden and volumes of metastases were measured from balanced steady-state free precession image data. Metastases with a disrupted blood-tumor barrier were identified from T1-weighted spin echo images acquired after administration of gadopentetic acid (Gd-DTPA). Metastases permeable to Gd-DTPA showed signal enhancement. The number of enhancing metastases was determined by comparing balanced steady-state free precession images with T1-weighted spin echo images. After the final imaging session, ex-vivo permeability and histological analyses were carried out. Imaging showed that both enhancing and nonenhancing brain metastases coexist in the brain, and that most metastases switched from the nonenhancing to the enhancing phenotype. Small numbers of brain metastases were enhancing when first detected by MRI and remained enhancing, whereas other metastases remained nonenhancing to Gd-DTPA throughout the experiment. No clear relationship existed between the permeability of brain metastases and size, brain location and age. Longitudinal in-vivo MRI is key to studying the complex and dynamic processes of metastasis and changes in the blood-tumor barrier permeability, which may lead to a better understanding of the variable responses of brain metastases to treatments. PMID:25513779

  2. Identification and Characterization of Long Non-Coding RNAs Related to Mouse Embryonic Brain Development from Available Transcriptomic Data

    PubMed Central

    He, Hongjuan; Xiu, Youcheng; Guo, Jing; Liu, Hui; Liu, Qi; Zeng, Tiebo; Chen, Yan; Zhang, Yan; Wu, Qiong

    2013-01-01

    Long non-coding RNAs (lncRNAs) as a key group of non-coding RNAs have gained widely attention. Though lncRNAs have been functionally annotated and systematic explored in higher mammals, few are under systematical identification and annotation. Owing to the expression specificity, known lncRNAs expressed in embryonic brain tissues remain still limited. Considering a large number of lncRNAs are only transcribed in brain tissues, studies of lncRNAs in developmental brain are therefore of special interest. Here, publicly available RNA-sequencing (RNA-seq) data in embryonic brain are integrated to identify thousands of embryonic brain lncRNAs by a customized pipeline. A significant proportion of novel transcripts have not been annotated by available genomic resources. The putative embryonic brain lncRNAs are shorter in length, less spliced and show less conservation than known genes. The expression of putative lncRNAs is in one tenth on average of known coding genes, while comparable with known lncRNAs. From chromatin data, putative embryonic brain lncRNAs are associated with active chromatin marks, comparable with known lncRNAs. Embryonic brain expressed lncRNAs are also indicated to have expression though not evident in adult brain. Gene Ontology analysis of putative embryonic brain lncRNAs suggests that they are associated with brain development. The putative lncRNAs are shown to be related to possible cis-regulatory roles in imprinting even themselves are deemed to be imprinted lncRNAs. Re-analysis of one knockdown data suggests that four regulators are associated with lncRNAs. Taken together, the identification and systematic analysis of putative lncRNAs would provide novel insights into uncharacterized mouse non-coding regions and the relationships with mammalian embryonic brain development. PMID:23967161

  3. Human immunodeficiency virus type 1 transport across the in vitro mouse brain endothelial cell monolayer.

    PubMed

    Nakaoke, Ryota; Ryerse, Jan S; Niwa, Masami; Banks, William A

    2005-05-01

    Human immunodeficiency virus type 1 (HIV-1) is associated with a neuroinflammatory dementia. Cognitive impairment remains a common complication of late-stage HIV-1 infection. Previous studies have shown that entry of HIV-1 into the central nervous system (CNS) occurs soon after infection. For these reasons, it is important to understand how HIV-1 crosses the BBB. We used primary mouse brain microvessel endothelial cell (MBEC) monolayer models to study interactions between brain endothelial cells and radioactively labeled HIV-1 CL4 (131I-HIV-1), which had been rendered noninfectious with aldithiol, and compared to radioactively labeled bovine serum albumin (131I-BSA or 125I-BSA) and detected HIV-1 on MBEC monolayer with electron microscopic analysis. The permeability of the monolayers to HIV-1 was measured by determining the percent material transported (PMT). Luminal to abluminal PMT of 131I-HIV-1 was 4.65 times greater than that of the much smaller 131I-BSA, showing that the MBEC monolayer is more permeable to HIV-1 than to BSA. Electron microscopy showed that HIV-1 was transported through a trans-cellular pathway from luminal side to basolateral space with some virus associated with the nucleus. Unlabeled HIV-1 did not affect the transport of 131I-HIV-1 or break down the MBEC monolayer. Wheatgerm agglutinin (WGA) increased 131I-HIV-1 penetration across the MBEC monolayer, consistent with absorptive endocytosis as the mechanism for HIV-1 penetration. The enhanced transport of HIV-1 was unidirectional, as the abluminal to luminal PMT of 131I-HIV-1 was not different from that of BSA nor enhanced by WGA. Characterization of the radioactivity transported from the luminal to abluminal chamber on Sepharose 4B-200 columns showed the transported radioactivity represented intact virus. MBEC monolayers preloaded from the luminal surface with 131I-HIV-1 showed most of the virus was retained by the endothelial cells, while the remainder was effluxed mainly to the luminal

  4. Neutrophil Protease Inhibition Reduces Neuromyelitis Optica–Immunoglobulin G–Induced Damage in Mouse Brain

    PubMed Central

    Saadoun, Samira; Waters, Patrick; MacDonald, Claire; Bell, B. Anthony; Vincent, Angela; Verkman, A.S.; Papadopoulos, Marios C.

    2013-01-01

    Objective Neuromyelitis optica (NMO) is an inflammatory demyelinating disease of the central nervous system associated with pathogenic autoantibodies against the astrocyte water channel protein aquaporin-4 (AQP4). The presence of neutrophils is a characteristic feature in NMO lesions in humans. Neutrophils are not generally found in multiple sclerosis lesions. We evaluated the role of neutrophils in a mouse NMO model. Methods NMO lesions were produced in mice by intracerebral injection of immunoglobulin G (IgG) isolated from NMO patient serum and human complement. We previously reported that this mouse model produces the characteristic histological features of NMO, including perivascular complement activation, inflammatory cell infiltration, and loss of myelin, AQP4, and glial fibrillary acidic protein. Lesions are absent when AQP4 null mice are used or when IgG from non-NMO patients is injected. Results We found remarkably reduced neuroinflammation, myelin loss, and AQP4 loss in brains of neutropenic mice at 24 hours and 7 days, and increased severity of NMO lesions in mice made neutrophilic by granulocyte colony stimulating factor. NMO lesions were greatly reduced by intracerebral administration of the neutrophil protease inhibitors Sivelestat and cathepsin G inhibitor I or by intraperitoneal injection of Sivelestat alone. Immunostaining of human NMO lesions for neutrophil elastase revealed many degranulating perivascular neutrophils, with no equivalent perivascular neutrophils in human multiple sclerosis lesions. Interpretation Our data implicate a central role of neutrophils in the pathogenesis of early NMO lesions and suggest the potential utility of neutrophil protease inhibitors such as Sivelestat in NMO therapy. PMID:22374891

  5. In Vivo Fate Imaging of Intracerebral Stem Cell Grafts in Mouse Brain

    PubMed Central

    Nelles, Melanie; Beyrau, Andreas; Hoehn, Mathias

    2015-01-01

    We generated transgenic human neural stem cells (hNSCs) stably expressing the reporter genes Luciferase for bioluminescence imaging (BLI) and GFP for fluorescence imaging, for multimodal imaging investigations. These transgenic hNSCs were further labeled with a clinically approved perfluoropolyether to perform parallel 19F MRI studies. In vitro validation demonstrated normal cell proliferation and differentiation of the transgenic and additionally labeled hNSCs, closely the same as the wild type cell line, making them suitable for in vivo application. Labeled and unlabeled transgenic hNSCs were implanted into the striatum of mouse brain. The time profile of their cell fate after intracerebral grafting was monitored during nine days following implantation with our multimodal imaging approach, assessing both functional and anatomical condition. The 19F MRI demarcated the graft location and permitted to estimate the cell number in the graft. BLI showed a pronounce cell loss during this monitoring period, indicated by the decrease of the viability signal. The in vivo obtained cell fate results were further validated and confirmed by immunohistochemistry. We could show that the surviving cells of the graft continued to differentiate into early neurons, while the severe cell loss could be explained by an inflammatory reaction to the graft, showing the graft being surrounded by activated microglia and macrophages. These results are different from earlier cell survival studies of our group where we had implanted the identical cells into the same mouse strain but in the cortex and not in the striatum. The cortical transplanted cells did not show any loss in viability but only pronounced and continuous neuronal differentiation. PMID:26641453

  6. Local Application of Drugs to Study Nicotinic Acetylcholine Receptor Function in Mouse Brain Slices

    PubMed Central

    Engle, Staci E.; Broderick, Hilary J.; Drenan, Ryan M.

    2012-01-01

    Tobacco use leads to numerous health problems, including cancer, heart disease, emphysema, and stroke. Addiction to cigarette smoking is a prevalent neuropsychiatric disorder that stems from the biophysical and cellular actions of nicotine on nicotinic acetylcholine receptors (nAChRs) throughout the central nervous system. Understanding the various nAChR subtypes that exist in brain areas relevant to nicotine addiction is a major priority. Experiments that employ electrophysiology techniques such as whole-cell patch clamp or two-electrode voltage clamp recordings are useful for pharmacological characterization of nAChRs of interest. Cells expressing nAChRs, such as mammalian tissue culture cells or Xenopus laevis oocytes, are physically isolated and are therefore easily studied using the tools of modern pharmacology. Much progress has been made using these techniques, particularly when the target receptor was already known and ectopic expression was easily achieved. Often, however, it is necessary to study nAChRs in their native environment: in neurons within brain slices acutely harvested from laboratory mice or rats. For example, mice expressing "hypersensitive" nAChR subunits such as α4 L9′A mice 1 and α6 L9′S mice 2, allow for unambiguous identification of neurons based on their functional expression of a specific nAChR subunit. Although whole-cell patch clamp recordings from neurons in brain slices is routinely done by the skilled electrophysiologist, it is challenging to locally apply drugs such as acetylcholine or nicotine to the recorded cell within a brain slice. Dilution of drugs into the superfusate (bath application) is not rapidly reversible, and U-tube systems are not easily adapted to work with brain slices. In this paper, we describe a method for rapidly applying nAChR-activating drugs to neurons recorded in adult mouse brain slices. Standard whole-cell recordings are made from neurons in slices, and a second micropipette filled with a drug of

  7. Altered Neuroinflammation and Behavior after Traumatic Brain Injury in a Mouse Model of Alzheimer's Disease.

    PubMed

    Kokiko-Cochran, Olga; Ransohoff, Lena; Veenstra, Mike; Lee, Sungho; Saber, Maha; Sikora, Matt; Teknipp, Ryan; Xu, Guixiang; Bemiller, Shane; Wilson, Gina; Crish, Samuel; Bhaskar, Kiran; Lee, Yu-Shang; Ransohoff, Richard M; Lamb, Bruce T

    2016-04-01

    Traumatic brain injury (TBI) has acute and chronic sequelae, including an increased risk for the development of Alzheimer's disease (AD). TBI-associated neuroinflammation is characterized by activation of brain-resident microglia and infiltration of monocytes; however, recent studies have implicated beta-amyloid as a major manipulator of the inflammatory response. To examine neuroinflammation after TBI and development of AD-like features, these studies examined the effects of TBI in the presence and absence of beta-amyloid. The R1.40 mouse model of cerebral amyloidosis was used, with a focus on time points well before robust AD pathologies. Unexpectedly, in R1.40 mice, the acute neuroinflammatory response to TBI was strikingly muted, with reduced numbers of CNS myeloid cells acquiring a macrophage phenotype and decreased expression of inflammatory cytokines. At chronic time points, macrophage activation substantially declined in non-Tg TBI mice; however, it was relatively unchanged in R1.40 TBI mice. The persistent inflammatory response coincided with significant tissue loss between 3 and 120 days post-injury in R1.40 TBI mice, which was not observed in non-Tg TBI mice. Surprisingly, inflammatory cytokine expression was enhanced in R1.40 mice compared with non-Tg mice, regardless of injury group. Although R1.40 TBI mice demonstrated task-specific deficits in cognition, overall functional recovery was similar to non-Tg TBI mice. These findings suggest that accumulating beta-amyloid leads to an altered post-injury macrophage response at acute and chronic time points. Together, these studies emphasize the role of post-injury neuroinflammation in regulating long-term sequelae after TBI and also support recent studies implicating beta-amyloid as an immunomodulator. PMID:26414955

  8. Microwave & Magnetic (M2) Proteomics of a Mouse Model of Mild Traumatic Brain Injury

    PubMed Central

    Evans, Teresa M.; Van Remmen, Holly; Purkar, Anjali; Mahesula, Swetha; Gelfond, J AL; Sabia, Marian; Qi, Wenbo; Lin, Ai-Ling; Jaramillo, Carlos A.; Haskins, William E.

    2014-01-01

    Short-term increases in oxidative stress and decreases in motor function, including debilitating effects on balance and motor control, can occur following primary mild traumatic brain injuries (mTBI). However, the long-term effects on motor unit impairment and integrity as well as the molecular mechanisms underlying secondary injuries are poorly understood. We hypothesized that changes in central nervous system-specific protein (CSP) expression might correlate to these long-term effects. To test our hypothesis, we longitudinally assessed a closed-skull mTBI mouse model, vs. sham control, at 1, 7, 30, and 120 days post-injury. Motor impairment was determined by rotarod and grip strength performance measures, while motor unit integrity was determined using electromyography. Relative protein expression was determined by microwave & magnetic (M2) proteomics of ipsilateral brain tissue, as previously described. Isoprostane measurements were performed to confirm a primary oxidative stress response. Decoding the relative expression of 476 ± 56 top-ranked proteins for each specimen revealed statistically significant changes in the expression of two well-known CSPs at 1, 7 and 30 days post-injury: P < 0.001 for myelin basic protein (MBP) and P < 0.05 for myelin associated glycoprotein (MAG). This was confirmed by Western blot. Moreover, MAG, αII-spectrin (SPNA2) and neurofilament light (NEFL) expression at 30 days post-injury were directly related to grip strength (P < 0.05). While higher-powered studies of larger cohorts merit further investigation, this study supports the proof-of-concept that M2 proteomics is a rapid method to quantify putative protein biomarkers and therapeutic targets of mTBI and suggests the feasibility of CSP expression correlations to long-term effects on motor impairment. PMID:26157646

  9. Expression of Npas4 mRNA in Telencephalic Areas of Adult and Postnatal Mouse Brain

    PubMed Central

    Damborsky, Joanne C.; Slaton, G. Simona; Winzer-Serhan, Ursula H.

    2015-01-01

    The transcription factor neuronal PAS domain-containing protein 4 (Npas4) is an inducible immediate early gene which regulates the formation of inhibitory synapses, and could have a significant regulatory role during cortical circuit formation. However, little is known about basal Npas4 mRNA expression during postnatal development. Here, postnatal and adult mouse brain sections were processed for isotopic in situ hybridization using an Npas4 specific cRNA antisense probe. In adults, Npas4 mRNA was found in the telencephalon with very restricted or no expression in diencephalon or mesencephalon. In most telencephalic areas, including the anterior olfactory nucleus (AON), piriform cortex, neocortex, hippocampus, dorsal caudate putamen (CPu), septum and basolateral amygdala nucleus (BLA), basal Npas4 expression was detected in scattered cells which exhibited strong hybridization signal. In embryonic and neonatal brain sections, Npas4 mRNA expression signals were very low. Starting at postnatal day 5 (P5), transcripts for Npas4 were detected in the AON, CPu and piriform cortex. At P8, additional Npas4 hybridization was found in CA1 and CA3 pyramidal layer, and in primary motor cortex. By P13, robust mRNA expression was located in layers IV and VI of all sensory cortices, frontal cortex and cingulate cortex. After onset of expression, postnatal spatial mRNA distribution was similar to that in adults, with the exception of the CPu, where Npas4 transcripts became gradually restricted to the most dorsal part. In conclusion, the spatial distribution of Npas4 mRNA is mostly restricted to telencephalic areas, and the temporal expression increases with developmental age during postnatal development, which seem to correlate with the onset of activity-driven excitatory transmission. PMID:26633966

  10. Spatial Mapping of Protein Abundances in the Mouse Brain by Voxelation Integrated with High-Throughput Liquid Chromatography - Mass Spectrometry

    SciTech Connect

    Petyuk, Vladislav A; Qian, Weijun; Chin, Mark H; Wang, Haixing H; Livesay, Eric A; Monroe, Matthew E; Adkins, Joshua N; Jaitly, Navdeep; Anderson, David J; Camp, David G; Smith, Desmond J; Smith, Richard D

    2007-01-25

    Temporally and spatially resolved mapping of protein abundance patterns within the mammalian brain is of significant interest for understanding brain function and molecular etiologies of neurodegenerative diseases; however, such imaging efforts have been greatly challenged by complexity of the proteome, throughput and sensitivity of applied analytical methodologies, and accurate quantitation of protein abundances across the brain. Here, we describe a methodology for comprehensive spatial proteome mapping that addresses these challenges by employing voxelation integrated with automated microscale sample processing, high-throughput LC system coupled with high resolution Fourier transform ion cyclotron mass spectrometer and a “universal” stable isotope labeled reference sample approach for robust quantitation. We applied this methodology as a proof-of-concept trial for the analysis of protein distribution within a single coronal slice of a C57BL/6J mouse brain. For relative quantitation of the protein abundances across the slice, an 18O-isotopically labeled reference sample, derived from a whole control coronal slice from another mouse, was spiked into each voxel sample and stable isotopic intensity ratios were used to obtain measures of relative protein abundances. In total, we generated maps of protein abundance patterns for 1,028 proteins. The significant agreement of the protein distributions with previously reported data supports the validity of this methodology, which opens new opportunities for studying the spatial brain proteome and its dynamics during the course of disease progression and other important biological and associated health aspects in a discovery-driven fashion.

  11. Data on Arc and Zif268 expression in the brain of the α-2A adrenergic receptor knockout mouse

    PubMed Central

    Sanders, Jeff

    2016-01-01

    The α2-adrenergic receptor (α2-AR) is widely distributed in the brain with distinct roles for α2-AR subtypes (A, B and C). In this article, data are provided on Activity Regulated Cytoskeleton Associated Protein (Arc) and Zif268 expression in the brain of the α2A-AR knockout (α2A-AR KO) mouse. These data are supplemental to an original research article examining Arc and Zif268 expression in rats injected with the α2-AR antagonist, RX821002 (http://dx.doi.org/10.1016/j.neulet.2015.12.002. [1]). PMID:26952134

  12. Data on Arc and Zif268 expression in the brain of the α-2A adrenergic receptor knockout mouse.

    PubMed

    Sanders, Jeff

    2016-06-01

    The α2-adrenergic receptor (α2-AR) is widely distributed in the brain with distinct roles for α2-AR subtypes (A, B and C). In this article, data are provided on Activity Regulated Cytoskeleton Associated Protein (Arc) and Zif268 expression in the brain of the α2A-AR knockout (α2A-AR KO) mouse. These data are supplemental to an original research article examining Arc and Zif268 expression in rats injected with the α2-AR antagonist, RX821002 (http://dx.doi.org/10.1016/j.neulet.2015.12.002. [1]). PMID:26952134

  13. Systematic Analysis of Long Noncoding RNAs in the Senescence-accelerated Mouse Prone 8 Brain Using RNA Sequencing.

    PubMed

    Zhang, Shuai; Qin, Chunxia; Cao, Guoqiong; Xin, Wenfeng; Feng, Chengqiang; Zhang, Wensheng

    2016-01-01

    Long noncoding RNAs (lncRNAs) may play an important role in Alzheimer's disease (AD) pathogenesis. However, despite considerable research in this area, the comprehensive and systematic understanding of lncRNAs in AD is still limited. The emergence of RNA sequencing provides a predictor and has incomparable advantage compared with other methods, including microarray. In this study, we identified lncRNAs in a 7-month-old mouse brain through deep RNA sequencing using the senescence-accelerated mouse prone 8 (SAMP8) and senescence-accelerated mouse resistant 1 (SAMR1) models. A total of 599,985,802 clean reads and 23,334 lncRNA transcripts were obtained. Then, we identified 97 significantly upregulated and 114 significantly downregulated lncRNA transcripts from all cases in SAMP8 mice relative to SAMR1 mice. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes analyses revealed that these significantly dysregulated lncRNAs were involved in regulating the development of AD from various angles, such as nerve growth factor term (GO: 1990089), mitogen-activated protein kinase signaling pathway, and AD pathway. Furthermore, the most probable AD-associated lncRNAs were predicted and listed in detail. Our study provided the systematic dissection of lncRNA profiling in SAMP8 mouse brain and accelerated the development of lncRNA biomarkers in AD. These attracting biomarkers could provide significant insights into AD therapy in the future. PMID:27483026

  14. In situ detection of histone variants and modifications in mouse brain using imaging mass spectrometry.

    PubMed

    Lahiri, Shibojyoti; Sun, Na; Solis-Mezarino, Victor; Fedisch, Andreas; Ninkovic, Jovica; Feuchtinger, Annette; Götz, Magdalena; Walch, Axel; Imhof, Axel

    2016-02-01

    Histone posttranslational modifications and histone variants control the epigenetic regulation of gene expression and affect a wide variety of biological processes. A complex pattern of such modifications and variants defines the identity of cells within complex organ systems and can therefore be used to characterize cells at a molecular level. However, their detection and identification in situ has been limited so far due to lack of specificity, selectivity, and availability of antihistone antibodies. Here, we describe a novel MALDI imaging MS based workflow, which enables us to detect and characterize histones by their intact mass and their correlation with cytological properties of the tissue using novel statistical and image analysis tools. The workflow allows us to characterize the in situ distribution of the major histone variants and their modification in the mouse brain. This new analysis tool is particularly useful for the investigation of expression patterns of the linker histone H1 variants for which suitable antibodies are so far not available. PMID:26593131

  15. [Immunization of calves with a rabies vaccine from suckling mouse brain].

    PubMed

    Díaz, A M; Lombardo, R A

    1981-01-01

    This paper summarizes the results obtained in a study on the duration of immunity in calves immunized with suckling mouse brain (SMB) rabies vaccine, supplemented with aluminum hydroxide. Rabies circulating antibodies were detected ten days after vaccination in 100% of the 31 vaccinated calves. They began to decrease 90 days after immunization. Of the 15 calves challenged one year postimmunization, 5 (33%) had no detectable antibodies at serum dilution 1:5, but all were protected against the challenge dose virus which killed 75% (3/4) of the non vaccinated controls. The results obtained suggest that SMB rabies vaccine can be used successfully to immunize calves aged from 7 days to 6 months. Since 15 to 20% of the cattle population of a country is less than one-year-old, the protection of this population against rabies with an inactivated vaccine would decrease the number of susceptible animals and facilitate both the vaccination procedures and the movement of animals from rabies-free areas to those where the disease is enzootic. PMID:6765751

  16. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain

    PubMed Central

    Madisen, Linda; Zwingman, Theresa A.; Sunkin, Susan M.; Oh, Seung Wook; Zariwala, Hatim A.; Gu, Hong; Ng, Lydia L.; Palmiter, Richard D.; Hawrylycz, Michael J.; Jones, Allan R.; Lein, Ed S.; Zeng, Hongkui

    2009-01-01

    The Cre/lox system is widely used in mice to achieve cell-type-specific gene expression. However, a strong and universal responding system to express genes under Cre control is still lacking. We have generated a set of Cre reporter mice with strong, ubiquitous expression of fluorescent proteins of different spectra. The robust native fluorescence of these reporters enables direct visualization of fine dendritic structures and axonal projections of the labeled neurons, which is useful in mapping neuronal circuitry, imaging and tracking specific cell populations in vivo. Using these reporters and a high-throughput in situ hybridization platform, we are systematically profiling Cre-directed gene expression throughout the mouse brain in a number of Cre-driver lines, including novel Cre lines targeting different cell types in the cortex. Our expression data are displayed in a public online database to help researchers assess the utility of various Cre-driver lines for cell-type-specific genetic manipulation. PMID:20023653

  17. Quantitative spatial analysis of the mouse brain lipidome by pressurized liquid extraction surface analysis.

    PubMed

    Almeida, Reinaldo; Berzina, Zane; Arnspang, Eva C; Baumgart, Jan; Vogt, Johannes; Nitsch, Robert; Ejsing, Christer S

    2015-02-01

    Here we describe a novel surface sampling technique termed pressurized liquid extraction surface analysis (PLESA), which in combination with a dedicated high-resolution shotgun lipidomics routine enables both quantification and in-depth structural characterization of molecular lipid species extracted directly from tissue sections. PLESA uses a sealed and pressurized sampling probe that enables the use of chloroform-containing extraction solvents for efficient in situ lipid microextraction with a spatial resolution of 400 μm. Quantification of lipid species is achieved by the inclusion of internal lipid standards in the extraction solvent. The analysis of lipid microextracts by nanoelectrospray ionization provides long-lasting ion spray which in conjunction with a hybrid ion trap-orbitrap mass spectrometer enables identification and quantification of molecular lipid species using a method with successive polarity shifting, high-resolution Fourier transform mass spectrometry (FTMS), and fragmentation analysis. We benchmarked the performance of the PLESA approach for in-depth lipidome analysis by comparing it to conventional lipid extraction of excised tissue homogenates and by mapping the spatial distribution and molar abundance of 170 molecular lipid species across different anatomical mouse brain regions. PMID:25548943

  18. Brain injury-induced proteolysis is reduced in a novel calpastatin overexpressing transgenic mouse

    PubMed Central

    Schoch, Kathleen M.; von Reyn, Catherine R.; Bian, Jifeng; Telling, Glenn C.; Meaney, David F.; Saatman, Kathryn E.

    2013-01-01

    The calpain family of calcium-dependent proteases has been implicated in a variety of diseases and neurodegenerative pathologies. Prolonged activation of calpains results in proteolysis of numerous cellular substrates including cytoskeletal components and membrane receptors, contributing to cell demise despite coincident expression of calpastatin, the specific inhibitor of calpains. Pharmacological and gene knockout strategies have targeted calpains to determine their contribution to neurodegenerative pathology; however, limitations associated with treatment paradigms, drug specificity, and genetic disruptions have produced inconsistent results and complicated interpretation. Specific, targeted calpain inhibition achieved by enhancing endogenous calpastatin levels offers unique advantages in studying pathological calpain activation. We have characterized a novel calpastatin overexpressing transgenic mouse model, demonstrating a substantial increase in calpastatin expression within nervous system and peripheral tissues and associated reduction in protease activity. Experimental activation of calpains via traumatic brain injury resulted in cleavage of α-spectrin, collapsin response mediator protein-2, and voltage-gated sodium channel, critical proteins for the maintenance of neuronal structure and function. Calpastatin overexpression significantly attenuated calpain-mediated proteolysis of these selected substrates acutely following severe controlled cortical impact injury, but with no effect on acute hippocampal neurodegeneration. Augmenting calpastatin levels may be an effective method for calpain inhibition in TBI and neurodegenerative disorders. PMID:23305291

  19. Centrally truncated and stabilized porcine neuropeptide Y analogs: design, synthesis, and mouse brain receptor binding.

    PubMed Central

    Krstenansky, J L; Owen, T J; Buck, S H; Hagaman, K A; McLean, L R

    1989-01-01

    Porcine neuropeptide Y (pNPY) has been proposed to form an intramolecularly stabilized structure characterized by N- and C-terminal helical regions arranged antiparallel due to a central turn region. Analogs based on this structural model that have the central turn region and various amounts of the helical regions removed, yet retain the N and C termini in a similar spatial orientation were designed. The gap formed by removal of the central residues (residues 8-17 or 7-20) was spanned with a single 8-aminooctanoic acid residue (Aoc) and the structure was further stabilized by the introduction of a disulfide bridge. [D-Cys7,Aoc8-17,Cys20]pNPY and [Cys5,Aoc7-20,D-Cys24]pNPY were synthesized and found to have receptor binding affinities of 2.3 nM and 150 nM, respectively, in mouse brain membranes (pNPY affinity is 3.6 nM in this assay). It is proposed that the central region (residues 7-17) of pNPY serves a structural role in the peptide and is not involved in direct receptor interaction. PMID:2543973

  20. Ultrasound-aided Multi-parametric Photoacoustic Microscopy of the Mouse Brain

    PubMed Central

    Ning, Bo; Sun, Naidi; Cao, Rui; Chen, Ruimin; Kirk Shung, K.; Hossack, John A.; Lee, Jin-Moo; Zhou, Qifa; Hu, Song

    2015-01-01

    High-resolution quantitative imaging of cerebral oxygen metabolism in mice is crucial for understanding brain functions and formulating new strategies to treat neurological disorders, but remains a challenge. Here, we report on our newly developed ultrasound-aided multi-parametric photoacoustic microscopy (PAM), which enables simultaneous quantification of the total concentration of hemoglobin (CHb), the oxygen saturation of hemoglobin (sO2), and cerebral blood flow (CBF) at the microscopic level and through the intact mouse skull. The three-dimensional skull and vascular anatomies delineated by the dual-contrast (i.e., ultrasonic and photoacoustic) system provide important guidance for dynamically focused contour scan and vessel orientation-dependent correction of CBF, respectively. Moreover, bi-directional raster scan allows determining the direction of blood flow in individual vessels. Capable of imaging all three hemodynamic parameters at the same spatiotemporal scale, our ultrasound-aided PAM fills a critical gap in preclinical neuroimaging and lays the foundation for high-resolution mapping of the cerebral metabolic rate of oxygen (CMRO2)—a quantitative index of cerebral oxygen metabolism. This technical innovation is expected to shed new light on the mechanism and treatment of a broad spectrum of neurological disorders, including Alzheimer’s disease and ischemic stroke. PMID:26688368

  1. Type II fuzzy systems for amyloid plaque segmentation in transgenic mouse brains for Alzheimer's disease quantification

    NASA Astrophysics Data System (ADS)

    Khademi, April; Hosseinzadeh, Danoush

    2014-03-01

    Alzheimer's disease (AD) is the most common form of dementia in the elderly characterized by extracellular deposition of amyloid plaques (AP). Using animal models, AP loads have been manually measured from histological specimens to understand disease etiology, as well as response to treatment. Due to the manual nature of these approaches, obtaining the AP load is labourious, subjective and error prone. Automated algorithms can be designed to alleviate these challenges by objectively segmenting AP. In this paper, we focus on the development of a novel algorithm for AP segmentation based on robust preprocessing and a Type II fuzzy system. Type II fuzzy systems are much more advantageous over the traditional Type I fuzzy systems, since ambiguity in the membership function may be modeled and exploited to generate excellent segmentation results. The ambiguity in the membership function is defined as an adaptively changing parameter that is tuned based on the local contrast characteristics of the image. Using transgenic mouse brains with AP ground truth, validation studies were carried out showing a high degree of overlap and low degree of oversegmentation (0.8233 and 0.0917, respectively). The results highlight that such a framework is able to handle plaques of various types (diffuse, punctate), plaques with varying Aβ concentrations as well as intensity variation caused by treatment effects or staining variability.

  2. CAR T Cells Targeting Podoplanin Reduce Orthotopic Glioblastomas in Mouse Brains.

    PubMed

    Shiina, Satoshi; Ohno, Masasuke; Ohka, Fumiharu; Kuramitsu, Shunichiro; Yamamichi, Akane; Kato, Akira; Motomura, Kazuya; Tanahashi, Kuniaki; Yamamoto, Takashi; Watanabe, Reiko; Ito, Ichiro; Senga, Takeshi; Hamaguchi, Michinari; Wakabayashi, Toshihiko; Kaneko, Mika K; Kato, Yukinari; Chandramohan, Vidyalakshmi; Bigner, Darell D; Natsume, Atsushi

    2016-03-01

    Glioblastoma (GBM) is the most common and lethal primary malignant brain tumor in adults with a 5-year overall survival rate of less than 10%. Podoplanin (PDPN) is a type I transmembrane mucin-like glycoprotein, expressed in the lymphatic endothelium. Several solid tumors overexpress PDPN, including the mesenchymal type of GBM, which has been reported to present the worst prognosis among GBM subtypes. Chimeric antigen receptor (CAR)-transduced T cells can recognize predefined tumor surface antigens independent of MHC restriction, which is often downregulated in gliomas. We constructed a lentiviral vector expressing a third-generation CAR comprising a PDPN-specific antibody (NZ-1-based single-chain variable fragment) with CD28, 4-1BB, and CD3ζ intracellular domains. CAR-transduced peripheral blood monocytes were immunologically evaluated by calcein-mediated cytotoxic assay, ELISA, tumor size, and overall survival. The generated CAR T cells were specific and effective against PDPN-positive GBM cells in vitro. Systemic injection of the CAR T cells into an immunodeficient mouse model inhibited the growth of intracranial glioma xenografts in vivo. CAR T-cell therapy that targets PDPN would be a promising adoptive immunotherapy to treat mesenchymal GBM. Cancer Immunol Res; 4(3); 259-68. ©2016 AACR. PMID:26822025

  3. Beta/A4 proteinlike immunoreactive granular structures in the brain of senescence-accelerated mouse.

    PubMed Central

    Takemura, M.; Nakamura, S.; Akiguchi, I.; Ueno, M.; Oka, N.; Ishikawa, S.; Shimada, A.; Kimura, J.; Takeda, T.

    1993-01-01

    The immunohistochemical localization of amyloid beta/A4 protein in the senescence-accelerated mouse brain was studied using six different antisera against human amyloid precursor protein peptides. beta/A4 proteinlike immunoreactivity was observed in the form of granular structures (beta-LIGS) in various regions, including the medial septum, cerebral cortex, hippocampus, cerebellum, and some cranial nerve roots. beta-LIGS were 1.5 to 2.5 mu in diameter and irregularly shaped. They increased significantly in number with aging, predominantly in animals with a phenotype of age-related deterioration of memory and learning abilities. Congo red and thioflavine S did not stain the granules. On immunoblots, the main immunoreactive bands were observed at 14 to 18 kd. The staining intensities of these bands also increased with advancing age. We consider that beta-LIGS are not only a new morphological manifestation of senescence in mice, but also a pertinent clue in understanding the mechanisms of amyloid deposition. Images Figure 1 Figure 3 Figure 4 PMID:8506956

  4. Cortical and Clonal Contribution of Tbr2 Expressing Progenitors in the Developing Mouse Brain.

    PubMed

    Vasistha, Navneet A; García-Moreno, Fernando; Arora, Siddharth; Cheung, Amanda F P; Arnold, Sebastian J; Robertson, Elizabeth J; Molnár, Zoltán

    2015-10-01

    The individual contribution of different progenitor subtypes towards the mature rodent cerebral cortex is not fully understood. Intermediate progenitor cells (IPCs) are key to understanding the regulation of neuronal number during cortical development and evolution, yet their exact contribution is much debated. Intermediate progenitors in the cortical subventricular zone are defined by expression of T-box brain-2 (Tbr2). In this study we demonstrate by using the Tbr2(Cre) mouse line and state-of-the-art cell lineage labeling techniques, that IPC derived cells contribute substantial proportions 67.5% of glutamatergic but not GABAergic or astrocytic cells to all cortical layers including the earliest generated subplate zone. We also describe the laminar dispersion of clonally derived cells from IPCs using a recently described clonal analysis tool (CLoNe) and show that pair-generated cells in different layers cluster closer (142.1 ± 76.8 μm) than unrelated cells (294.9 ± 105.4 μm). The clonal dispersion from individual Tbr2 positive intermediate progenitors contributes to increasing the cortical surface. Our study also describes extracortical contributions from Tbr2+ progenitors to the lateral olfactory tract and ventromedial hypothalamic nucleus. PMID:24927931

  5. Cortical and Clonal Contribution of Tbr2 Expressing Progenitors in the Developing Mouse Brain

    PubMed Central

    Vasistha, Navneet A.; García-Moreno, Fernando; Arora, Siddharth; Cheung, Amanda F.P.; Arnold, Sebastian J.; Robertson, Elizabeth J.; Molnár, Zoltán

    2015-01-01

    The individual contribution of different progenitor subtypes towards the mature rodent cerebral cortex is not fully understood. Intermediate progenitor cells (IPCs) are key to understanding the regulation of neuronal number during cortical development and evolution, yet their exact contribution is much debated. Intermediate progenitors in the cortical subventricular zone are defined by expression of T-box brain-2 (Tbr2). In this study we demonstrate by using the Tbr2Cre mouse line and state-of-the-art cell lineage labeling techniques, that IPC derived cells contribute substantial proportions 67.5% of glutamatergic but not GABAergic or astrocytic cells to all cortical layers including the earliest generated subplate zone. We also describe the laminar dispersion of clonally derived cells from IPCs using a recently described clonal analysis tool (CLoNe) and show that pair-generated cells in different layers cluster closer (142.1 ± 76.8 μm) than unrelated cells (294.9 ± 105.4 μm). The clonal dispersion from individual Tbr2 positive intermediate progenitors contributes to increasing the cortical surface. Our study also describes extracortical contributions from Tbr2+ progenitors to the lateral olfactory tract and ventromedial hypothalamic nucleus. PMID:24927931

  6. Transcriptomic profile of host response in mouse brain after exposure to plant toxin abrin.

    PubMed

    Bhaskar, A S Bala; Gupta, Nimesh; Rao, P V Lakshmana

    2012-09-01

    Abrin toxin is a plant glycoprotein, which is similar in structure and properties to ricin and is obtained from the seeds of Abrus precatorius (jequirity bean). Abrin is highly toxic, with an estimated human fatal dose of 0.1-1 μg/kg, and has caused death after accidental and intentional poisoning. Abrin is a potent biological toxin warfare agent. There are no chemical antidotes available against the toxin. Neurological symptoms like delirium, hallucinations, reduced consciousness and generalized seizures were reported in human poisoning cases. Death of a patient with symptoms of acute demyelinating encephalopathy with gastrointestinal bleeding due to ingestion of abrin seeds was reported in India. The aim of this study was to examine both dose and time-dependent transcriptional responses induced by abrin in the adult mouse brain. Mice (n=6) were exposed to 1 and 2 LD50 (2.83 and 5.66 μg/kg respectively) dose of abrin by intraperitoneal route and observed over 3 days. A subset of animals (n=3) were sacrificed at 1 and 2 day intervals for microarray and histopathology analysis. None of the 2 LD50 exposed animals survived till 3 days. The histopathological analysis showed the severe damage in brain and the infiltration of inflammatory cells in a dose and time dependent manner. The abrin exposure resulted in the induction of rapid immune and inflammatory response in brain. Clinical biochemistry parameters like lactate dehydrogenase, aspartate aminotransferase, urea and creatinine showed significant increase at 2-day 2 LD50 exposure. The whole genome microarray data revealed the significant regulation of various pathways like MAPK pathway, cytokine-cytokine receptor interaction, calcium signaling pathway, Jak-STAT signaling pathway and natural killer cell mediated toxicity. The comparison of differential gene expression at both the doses showed dose dependent effects of abrin toxicity. The real-time qRT-PCR analysis of selected genes supported the microarray data

  7. Altered behavior and neural activity in conspecific cagemates co-housed with mouse models of brain disorders.

    PubMed

    Yang, Hyunwoo; Jung, Seungmoon; Seo, Jinsoo; Khalid, Arshi; Yoo, Jung-Seok; Park, Jihyun; Kim, Soyun; Moon, Jangsup; Lee, Soon-Tae; Jung, Keun-Hwa; Chu, Kon; Lee, Sang Kun; Jeon, Daejong

    2016-09-01

    The psychosocial environment is one of the major contributors of social stress. Family members or caregivers who consistently communicate with individuals with brain disorders are considered at risk for physical and mental health deterioration, possibly leading to mental disorders. However, the underlying neural mechanisms of this phenomenon remain poorly understood. To address this, we developed a social stress paradigm in which a mouse model of epilepsy or depression was housed long-term (>4weeks) with normal conspecifics. We characterized the behavioral phenotypes and electrophysiologically investigated the neural activity of conspecific cagemate mice. The cagemates exhibited deficits in behavioral tasks assessing anxiety, locomotion, learning/memory, and depression-like behavior. Furthermore, they showed severe social impairment in social behavioral tasks involving social interaction or aggression. Strikingly, behavioral dysfunction remained in the cagemates 4weeks following co-housing cessation with the mouse models. In an electrophysiological study, the cagemates showed an increased number of spikes in medial prefrontal cortex (mPFC) neurons. Our results demonstrate that conspecifics co-housed with mouse models of brain disorders develop chronic behavioral dysfunctions, and suggest a possible association between abnormal mPFC neural activity and their behavioral pathogenesis. These findings contribute to the understanding of the psychosocial and psychiatric symptoms frequently present in families or caregivers of patients with brain disorders. PMID:27211331

  8. (/sup 3/H)Ethylketocyclazocine binding to mouse brain membranes: evidence for a kappa opioid receptor type

    SciTech Connect

    Garzon, J.; Sanchez-Blazquez, P.; Lee, N.M.

    1984-10-01

    The binding of the putative kappa agonist ethylketocyclazocine (EKC) to synaptosomal membranes of mouse brain was studied. This benzomorphan was able to bind to different opioid receptors. A portion of this binding was not inhibited by the agonist naloxone, even at high concentrations (10 microM). This population of receptors, to which opioate alkaloids and opiod peptides display very low affinity, is probably the sigma receptor. Another class of binding sites was identified by the simultaneous addition of the selective agonists Sandoz FK-33824 and D-Ala2-D-Leu5-enkephalin, which blocked the access of EKC to mu and delta opioid receptors, respectively, leaving a portion of naloxone-displaceable benzomorphan binding still detectable. Analysis of this remaining binding revealed a small population of receptors of high affinity, the kappa receptor. Therefore, EKC binds to the mu, delta, kappa and sigma receptors in the mouse brain, with similar affinities for the mu and kappa (0.22 and 0.15 nM). These results confirm the existence of a kappa opioid receptor type in the mouse brain.

  9. Protein Delivery of an Artificial Transcription Factor Restores Widespread Ube3a Expression in an Angelman Syndrome Mouse Brain.

    PubMed

    Bailus, Barbara J; Pyles, Benjamin; McAlister, Michelle M; O'Geen, Henriette; Lockwood, Sarah H; Adams, Alexa N; Nguyen, Jennifer Trang T; Yu, Abigail; Berman, Robert F; Segal, David J

    2016-03-01

    Angelman syndrome (AS) is a neurological genetic disorder caused by loss of expression of the maternal copy of UBE3A in the brain. Due to brain-specific genetic imprinting at this locus, the paternal UBE3A is silenced by a long antisense transcript. Inhibition of the antisense transcript could lead to unsilencing of paternal UBE3A, thus providing a therapeutic approach for AS. However, widespread delivery of gene regulators to the brain remains challenging. Here, we report an engineered zinc finger-based artificial transcription factor (ATF) that, when injected i.p. or s.c., crossed the blood-brain barrier and increased Ube3a expression in the brain of an adult mouse model of AS. The factor displayed widespread distribution throughout the brain. Immunohistochemistry of both the hippocampus and cerebellum revealed an increase in Ube3a upon treatment. An ATF containing an alternative DNA-binding domain did not activate Ube3a. We believe this to be the first report of an injectable engineered zinc finger protein that can cause widespread activation of an endogenous gene in the brain. These observations have important implications for the study and treatment of AS and other neurological disorders. PMID:26727042

  10. Protein Delivery of an Artificial Transcription Factor Restores Widespread Ube3a Expression in an Angelman Syndrome Mouse Brain

    PubMed Central

    Bailus, Barbara J; Pyles, Benjamin; McAlister, Michelle M; O'Geen, Henriette; Lockwood, Sarah H; Adams, Alexa N; Nguyen, Jennifer Trang T; Yu, Abigail; Berman, Robert F; Segal, David J

    2016-01-01

    Angelman syndrome (AS) is a neurological genetic disorder caused by loss of expression of the maternal copy of UBE3A in the brain. Due to brain-specific genetic imprinting at this locus, the paternal UBE3A is silenced by a long antisense transcript. Inhibition of the antisense transcript could lead to unsilencing of paternal UBE3A, thus providing a therapeutic approach for AS. However, widespread delivery of gene regulators to the brain remains challenging. Here, we report an engineered zinc finger-based artificial transcription factor (ATF) that, when injected i.p. or s.c., crossed the blood–brain barrier and increased Ube3a expression in the brain of an adult mouse model of AS. The factor displayed widespread distribution throughout the brain. Immunohistochemistry of both the hippocampus and cerebellum revealed an increase in Ube3a upon treatment. An ATF containing an alternative DNA-binding domain did not activate Ube3a. We believe this to be the first report of an injectable engineered zinc finger protein that can cause widespread activation of an endogenous gene in the brain. These observations have important implications for the study and treatment of AS and other neurological disorders. PMID:26727042

  11. In vivo labeling of 5-hydroxytryptamine uptake sites in mouse brain with ( sup 3 H)-6-nitroquipazine

    SciTech Connect

    Hashimoto, K.; Goromaru, T. )

    1990-10-01

    6-Nitroquipazine (DU 24565; 6-nitro 2-piperazinylquinoline) is a very potent 5-hydroxytryptamine (5-HT; serotonin) uptake inhibitor. It has been demonstrated very recently that (3H)-6-nitroquipazine is a suitable radioligand for studying 5-HT uptake sites. The present study evaluates (3H)6-nitroquipazine as a radioligand for in vivo labeling of 5-HT uptake sites in mouse brain. Very high uptake of radioactivity in the brain after i.v. administration of (3H)-6-nitroquipazine was shown. Regional distribution of the radioactivity in mouse brain 3 hr after injection of (3H)-6-nitroquipazine was in the order (highest to lowest) hypothalamus greater than midbrain greater than striatum greater than hippocampus greater than cerebral cortex greater than medulla oblongata greater than cerebellum. The regional distribution of in vivo (3H)-6-nitroquipazine binding in mouse brain was highly correlated with that in rat brain obtained from previous in vitro binding studies. Coadministration of carrier 6-nitroquipazine (5 mg/kg) significantly decreased the radioactivity in the hypothalamus, whereas that in the cerebellum and cerebral cortex was increased. Because the cerebellum has very low density of (3H)-6-nitroquipazine binding sites, the radioactivity in the cerebellum could, therefore, reflect the amount on nonspecific binding and free ligand. Kinetic studies showed highest in vivo specific binding 1 hr after injection of (3H)-6-nitroquipazine and slow clearance of specific binding. Specific binding in the hypothalamus was inhibited in a stereoselective manner by the stereoisomers of norzimelidine. Furthermore, specific binding in the hypothalamus was reduced by several 5-HT uptake inhibitors, in a dose-dependent manner.

  12. Ultrasound Delivery of an Anti-Aβ Therapeutic Agent to the Brain in a Mouse Model of Alzheimer's Disease

    NASA Astrophysics Data System (ADS)

    Jordão, Jessica F.; Ayala-Grosso, Carlos A.; Chopra, Rajiv; McLaurin, JoAnne; Aubert, Isabelle; Hynynen, Kullervo

    2009-04-01

    Plaques composed of amyloid-beta (Aβ) peptides represent a pathological hallmark in the brain of patients with Alzheimer's disease. Aβ oligomers are considered cytotoxic and several therapeutic approaches focus on reducing Aβ load in the brain of Alzheimer's patients. The efficacy of most anti-Aβ agents is significantly limited because they do not cross the blood-brain-barrier. Innovative technologies capable of enhancing the permeability of the blood-brain barrier, thereby allowing entry of therapeutic agents into the brain, show great promise in circumventing this problem. The application of low-intensity focused ultrasound in the presence of an ultrasound contrast agent causes localized and transient permeability of the blood-brain barrier. We demonstrate the value of this technology for the delivery of anti-Aβ antibodies to the brain of TgCRND8 mice, a mouse model of Alzheimer's disease exhibiting Aβ plaques. BAM-10, an anti-Aβ antibody, was injected into the tail vein simultaneously with exposure to MRI-guided, low-intensity focused ultrasound (FUS) to one hemisphere of TgCNRD8 mice. Four hours after treatment, antibodies were detected at significant amounts only in the brain of mice receiving FUS in addition to BAM-10. This data provides a proof-of-concept that FUS allows anti-Aβ therapeutics to efficiently enter the brain and target Aβ plaques. Four days following a single treatment with BAM-10 and MRI-guided FUS, a significant decrease in the number of Aβ plaques on the side of the treated hemisphere was observed in TgCRND8 mice. In conclusion low-intensity, focused ultrasound is effective in delivering Aβ antibodies to the brain. This technology has the potential to enhance current anti-Aβ treatments by allowing increased exposure of amyloid plaques to treatment agents.

  13. Expression of UDP-Glucuronosyltransferase 1 (UGT1) and Glucuronidation Activity toward Endogenous Substances in Humanized UGT1 Mouse Brain

    PubMed Central

    Kutsuno, Yuki; Hirashima, Rika; Sakamoto, Masaya; Ushikubo, Hiroko; Michimae, Hirofumi; Itoh, Tomoo; Tukey, Robert H.

    2015-01-01

    Although UDP-glucuronosyltransferases (UGTs) are important phase II drug-metabolizing enzymes, they are also involved in the metabolism of endogenous compounds. Certain substrates of UGTs, such as serotonin and estradiol, play important roles in the brain. However, the expression of UGTs in the human brain has not been fully clarified. Recently, humanized UGT1 mice (hUGT1 mice) in which the original Ugt1 locus was disrupted and replaced with the human UGT1 locus have been developed. In the present study, the expression pattern of UGT1As in brains from humans and hUGT1 mice was examined. We found that UGT1A1, 1A3, 1A6, and 1A10 were expressed in human brains. The expression pattern of UGT1As in hUGT1 mouse brains was similar to that in human brains. In addition, we examined the expression of UGT1A1 and 1A6 in the cerebellum, olfactory bulbs, midbrain, hippocampus, and cerebral cortex of hUGT1 mice. UGT1A1 in all brain regions and UGT1A6 in the cerebellum and cerebral cortex of 6-month-old hUGT1 mice were expressed at a significantly higher rate than those of 2-week-old hUGT1 mice. A difference in expression levels between brain regions was also observed. Brain microsomes exhibited glucuronidation activities toward estradiol and serotonin, with mean values of 0.13 and 5.17 pmol/min/mg, respectively. In conclusion, UGT1A1 and UGT1A6 might play an important role in function regulation of endogenous compounds in a region- and age-dependent manner. Humanized UGT1 mice might be useful to study the importance of brain UGTs in vivo. PMID:25953521

  14. Sex chromosome complement determines sex differences in aromatase expression and regulation in the stria terminalis and anterior amygdala of the developing mouse brain.

    PubMed

    Cisternas, Carla D; Tome, Karina; Caeiro, Ximena E; Dadam, Florencia M; Garcia-Segura, Luis M; Cambiasso, María J

    2015-10-15

    Aromatase, which converts testosterone in estradiol, is involved in the generation of brain sex dimorphisms. Here we used the "four core genotypes" mouse model, in which the effect of gonadal sex and sex chromosome complement is dissociated, to determine if sex chromosomes influence the expression of brain aromatase. The brain of 16 days old XY mouse embryos showed higher aromatase expression in the stria terminalis and the anterior amygdaloid area than the brain of XX embryos, independent of gonadal sex. Furthermore, estradiol or dihydrotestosterone increased aromatase expression in cultures of anterior amygdala neurons derived from XX embryos, but not in those derived from XY embryos. This effect was also independent of gonadal sex. The expression of other steroidogenic molecules, estrogen receptor-α and androgen receptor was not influenced by sex chromosomes. In conclusion, sex chromosomes determine sex dimorphisms in aromatase expression and regulation in the developing mouse brain. PMID:26231585

  15. Astronaut Allen during extravehicular activity (EVA) training in CCT

    NASA Technical Reports Server (NTRS)

    1993-01-01

    In the JSC Space Vehicle Mockup Facility, astronaut Andrew M. Allen retrieves gear to rehearse a suit-donning exercise on the middeck. Allen's very realistic environs are provided by the shuttle crew compartment trainer (CCT).

  16. Ultrastructural Analysis of ICP34.5− Herpes Simplex Virus 1 Replication in Mouse Brain Cells In Vivo▿

    PubMed Central

    Mehta, Hina; Muller, Jacqueline; Markovitz, Nancy S.

    2010-01-01

    Replication-competent forms of herpes simplex virus 1 (HSV-1) defective in the viral neurovirulence factor infected cell protein 34.5 (ICP34.5) are under investigation for use in the therapeutic treatment of cancer. In mouse models, intratumoral injection of ICP34.5-defective oncolytic HSVs (oHSVs) has resulted in the infection and lysis of tumor cells, an associated decrease in tumor size, and increased survival times. The ability of these oHSVs to infect and lyse cells is frequently characterized as exclusive to or selective for tumor cells. However, the extent to which ICP34.5-deficient HSV-1 replicates in and may be neurotoxic to normal brain cell types in vivo is poorly understood. Here we report that HSV-1 defective in ICP34.5 expression is capable of establishing a productive infection in at least one normal mouse brain cell type. We show that γ34.5 deletion viruses replicate productively in and induce cellular damage in infected ependymal cells. Further evaluation of the effects of oHSVs on normal brain cells in animal models is needed to enhance our understanding of the risks associated with the use of current and future oHSVs in the brains of clinical trial subjects and to provide information that can be used to create improved oHSVs for future use. PMID:20702618

  17. MRS reveals additional hexose N-acetyl resonances in the brain of a mouse model for Sandhoff disease.

    PubMed

    Lowe, J P; Stuckey, D J; Awan, F R; Jeyakumar, M; Neville, D C A; Platt, F M; Griffin, J L; Styles, P; Blamire, A M; Sibson, N R

    2005-12-01

    Sandhoff disease, one of several related lysosomal storage disorders, results from the build up of N-acetyl-containing glycosphingolipids in the brain and is caused by mutations in the genes encoding the hexosaminidase beta-subunit. Affected individuals undergo progressive neurodegeneration in response to the glycosphingolipid storage. (1)H magnetic resonance spectra of perchloric acid extracts of Sandhoff mouse brain exhibited several resonances ca 2.07 ppm that were not present in the corresponding spectra from extracts of wild-type mouse brain. High-performance liquid chromatography and mass spectrometry of the Sandhoff extracts post-MRS identified the presence of N-acetylhexosamine-containing oligosaccharides, which are the likely cause of the additional MRS resonances. MRS of intact brain tissue with magic angle spinning also showed additional resonances at ca 2.07 ppm in the Sandhoff case. These resonances appeared to increase with disease progression and probably arise, for the most part, from the stored glycosphingolipids, which are absent in the aqueous extracts. Hence in vivo MRS may be a useful tool for detecting early-stage Sandhoff disease and response to treatment. PMID:16206131

  18. Tumourigenicity and Immunogenicity of Induced Neural Stem Cell Grafts Versus Induced Pluripotent Stem Cell Grafts in Syngeneic Mouse Brain.

    PubMed

    Gao, Mou; Yao, Hui; Dong, Qin; Zhang, Hongtian; Yang, Zhijun; Yang, Yang; Zhu, Jianwei; Xu, Minhui; Xu, Ruxiang

    2016-01-01

    Along with the development of stem cell-based therapies for central nervous system (CNS) disease, the safety of stem cell grafts in the CNS, such as induced pluripotent stem cells (iPSCs) and induced neural stem cells (iNSCs), should be of primary concern. To provide scientific basis for evaluating the safety of these stem cells, we determined their tumourigenicity and immunogenicity in syngeneic mouse brain. Both iPSCs and embryonic stem cells (ESCs) were able to form tumours in the mouse brain, leading to tissue destruction along with immune cell infiltration. In contrast, no evidence of tumour formation, brain injury or immune rejection was observed with iNSCs, neural stem cells (NSCs) or mesenchymal stem cells (MSCs). With the help of gene ontology (GO) enrichment analysis, we detected significantly elevated levels of chemokines in the brain tissue and serum of mice that developed tumours after ESC or iPSC transplantation. Moreover, we also investigated the interactions between chemokines and NF-κB signalling and found that NF-κB activation was positively correlated with the constantly rising levels of chemokines, and vice versa. In short, iNSC grafts, which lacked any resulting tumourigenicity or immunogenicity, are safer than iPSC grafts. PMID:27417157

  19. Tumourigenicity and Immunogenicity of Induced Neural Stem Cell Grafts Versus Induced Pluripotent Stem Cell Grafts in Syngeneic Mouse Brain

    PubMed Central

    Gao, Mou; Yao, Hui; Dong, Qin; Zhang, Hongtian; Yang, Zhijun; Yang, Yang; Zhu, Jianwei; Xu, Minhui; Xu, Ruxiang

    2016-01-01

    Along with the development of stem cell-based therapies for central nervous system (CNS) disease, the safety of stem cell grafts in the CNS, such as induced pluripotent stem cells (iPSCs) and induced neural stem cells (iNSCs), should be of primary concern. To provide scientific basis for evaluating the safety of these stem cells, we determined their tumourigenicity and immunogenicity in syngeneic mouse brain. Both iPSCs and embryonic stem cells (ESCs) were able to form tumours in the mouse brain, leading to tissue destruction along with immune cell infiltration. In contrast, no evidence of tumour formation, brain injury or immune rejection was observed with iNSCs, neural stem cells (NSCs) or mesenchymal stem cells (MSCs). With the help of gene ontology (GO) enrichment analysis, we detected significantly elevated levels of chemokines in the brain tissue and serum of mice that developed tumours after ESC or iPSC transplantation. Moreover, we also investigated the interactions between chemokines and NF-κB signalling and found that NF-κB activation was positively correlated with the constantly rising levels of chemokines, and vice versa. In short, iNSC grafts, which lacked any resulting tumourigenicity or immunogenicity, are safer than iPSC grafts. PMID:27417157

  20. Highly resolved in vivo 1H NMR spectroscopy of the mouse brain at 9.4 T.

    PubMed

    Tkác, Ivan; Henry, Pierre-Gilles; Andersen, Peter; Keene, C Dirk; Low, Walter C; Gruetter, Rolf

    2004-09-01

    An efficient shim system and an optimized localization sequence were used to measure in vivo 1H NMR spectra from cerebral cortex, hippocampus, striatum, and cerebellum of C57BL/6 mice at 9.4 T. The combination of automatic first- and second-order shimming (FASTMAP) with strong custom-designed second-order shim coils (shim strength up to 0.04 mT/cm2) was crucial to achieve high spectral resolution (water line width of 11-14 Hz). Requirements for second-order shim strengths to compensate field inhomogeneities in the mouse brain at 9.4 T were assessed. The achieved spectral quality (resolution, S/N, water suppression, localization performance) allowed reliable quantification of 16 brain metabolites (LCModel analysis) from 5-10-microL brain volumes. Significant regional differences (up to 2-fold, P < 0.05) were found for all quantified metabolites but Asp, Glc, and Gln. In contrast, 1H NMR spectra measured from the striatum of C57BL/6, CBA, and CBA/BL6 mice revealed only small (<13%, P < 0.05) interstrain differences in Gln, Glu, Ins, Lac, NAAG, and PE. It is concluded that 1H NMR spectroscopy at 9.4 T can provide precise biochemical information from distinct regions of the mouse brain noninvasively that can be used for monitoring of disease progression and treatment as well as phenotyping in transgenic mice models. PMID:15334565

  1. A Novel Procedure for Rapid Imaging of Adult Mouse Brains with MicroCT Using Iodine-Based Contrast

    PubMed Central

    Anderson, Ryan; Maga, A. Murat

    2015-01-01

    High-resolution Magnetic Resonance Imaging (MRI) has been the primary modality for obtaining 3D cross-sectional anatomical information in animals for soft tissue, particularly brain. However, costs associated with MRI can be considerably high for large phenotypic screens for gross differences in the structure of the brain due to pathology and/or experimental manipulations. MicroCT (mCT), especially benchtop mCT, is becoming a common laboratory equipment with throughput rates equal or faster than any form of high-resolution MRI at lower costs. Here we explore adapting previously developed contrast based mCT to image adult mouse brains in-situ. We show that 2% weight per volume (w/v) iodine-potassium iodide solution can be successfully used to image adult mouse brains within 48 hours post-mortem when a structural support matrix is used. We demonstrate that hydrogel can be effectively used as a perfusant which limits the tissue shrinkage due to iodine. PMID:26571123

  2. Proteomic profiling of brain cortex tissues in a Tau transgenic mouse model of Alzheimer's disease

    SciTech Connect

    Chang, Seong-Hun; Jung, In-Soo; Han, Gi-Yeon; Kim, Nam-Hee; Kim, Hyun-Jung; Kim, Chan-Wha

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer A transgenic mouse model expressing NSE-htau23 was used. Black-Right-Pointing-Pointer 2D-gel electrophoresis to analyze the cortex proteins of transgenic mice was used. Black-Right-Pointing-Pointer Differentially expressed spots in different stages of AD were identified. Black-Right-Pointing-Pointer GSTP1 and CAII were downregulated with the progression of AD. Black-Right-Pointing-Pointer SCRN1 and ATP6VE1 were up regulated and down regulated differentially. -- Abstract: Alzheimer's disease (AD) involves regionalized neuronal death, synaptic loss, and an accumulation of intracellular neurofibrillary tangles and extracellular senile plaques. Although there have been numerous studies on tau proteins and AD in various stages of neurodegenerative disease pathology, the relationship between tau and AD is not yet fully understood. A transgenic mouse model expressing neuron-specific enolase (NSE)-controlled human wild-type tau (NSE-htau23), which displays some of the typical Alzheimer-associated pathological features, was used to analyze the brain proteome associated with tau tangle deposition. Two-dimensional electrophoresis was performed to compare the cortex proteins of transgenic mice (6- and 12-month-old) with those of control mice. Differentially expressed spots in different stages of AD were identified with ESI-Q-TOF (electrospray ionization quadruple time-of-flight) mass spectrometry and liquid chromatography/tandem mass spectrometry. Among the identified proteins, glutathione S-transferase P 1 (GSTP1) and carbonic anhydrase II (CAII) were down-regulated with the progression of AD, and secerin-1 (SCRN1) and V-type proton ATPase subunit E 1 (ATP6VE1) were up-regulated only in the early stages, and down-regulated in the later stages of AD. The proteins, which were further confirmed by RT-PCR at the mRNA level and with western blotting at the protein level, are expected to be good candidates as drug targets for AD. The study

  3. In vivo mouse brain tomography by fast dual-scanning photoacoustic imaging system based on array transducer

    NASA Astrophysics Data System (ADS)

    Yang, Sihua; Xing, Da

    2008-12-01

    A full-view photoacoustic tomography system with dual-scanning using a linear transducer array for fast imaging of complicated blood network was developed. In this system, a 128-element linear transducer array was used to detect photoacoustic signals by combined scanning of electronic scan and mechanical scan. An improved limited-field filtered back projection algorithm with directivity factors was applied to reconstruct the distribution of the absorbed optical energy deposit. An in vivo experiment on a mouse brain was performed to evaluate the ability of this composite system. A clear view of the cerebrovascular network on the brain cortex was acquired successfully. Furthermore, the reconstruct images with different number of scanning positions were also investigated and analyzed to induce a compromised proposal between scanning time and scanning number. The experimental results demonstrate the multi-element photoacoustic imaging system has the potential to acquire the time-resolved functional information for fundamental research of small animal brain imaging.

  4. Activity-Based Protein Profiling of Organophosphorus and Thiocarbamate Pesticides Reveals Multiple Serine Hydrolase Targets in Mouse Brain

    PubMed Central

    NOMURA, DANIEL K.; CASIDA, JOHN E.

    2010-01-01

    Organophosphorus (OP) and thiocarbamate (TC) agrochemicals are used worldwide as insecticides, herbicides, and fungicides, but their safety assessment in terms of potential off-targets remains incomplete. In this study, we used a chemoproteomic platform, termed activity-based protein profiling, to broadly define serine hydrolase targets in mouse brain of a panel of 29 OP and TC pesticides. Among the secondary targets identified, enzymes involved in degradation of endocannabinoid signaling lipids, monoacylglycerol lipase and fatty acid amide hydrolase, were inhibited by several OP and TC pesticides. Blockade of these two enzymes led to elevations in brain endocannabinoid levels and dysregulated brain arachidonate metabolism. Other secondary targets include enzymes thought to also play important roles in the nervous system and unannotated proteins. This study reveals a multitude of secondary targets for OP and TC pesticides and underscores the utility of chemoproteomic platforms in gaining insights into biochemical pathways that are perturbed by these toxicants. PMID:21341672

  5. Rejuvenating Allen's Arc with the Geometric Mean.

    ERIC Educational Resources Information Center

    Phillips, William A.

    1994-01-01

    Contends that, despite ongoing criticism, Allen's arc elasticity formula remains entrenched in the microeconomics principles curriculum. Reviews the evolution and continuing scrutiny of the formula. Argues that the use of the geometric mean offers pedagogical advantages over the traditional arithmetic mean approach. (CFR)

  6. Enhanced Adult Neurogenesis Increases Brain Stiffness: In Vivo Magnetic Resonance Elastography in a Mouse Model of Dopamine Depletion

    PubMed Central

    Klein, Charlotte; Hain, Elisabeth G.; Braun, Juergen; Riek, Kerstin; Mueller, Susanne

    2014-01-01

    The mechanical network of the brain is a major contributor to neural health and has been recognized by in vivo magnetic resonance elastography (MRE) to be highly responsive to diseases. However, until now only brain softening was observed and no mechanism was known that reverses the common decrement of neural elasticity during aging or disease. We used MRE in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP) mouse model for dopaminergic neurodegeneration as observed in Parkinson’s disease (PD) to study the mechanical response of the brain on adult hippocampal neurogenesis as a robust correlate of neuronal plasticity in healthy and injured brain. We observed a steep transient rise in elasticity within the hippocampal region of up to over 50% six days after MPTP treatment correlating with increased neuronal density in the dentate gyrus, which could not be detected in healthy controls. Our results provide the first indication that new neurons reactively generated following neurodegeneration substantially contribute to the mechanical scaffold of the brain. Diagnostic neuroimaging may thus target on regions of the brain displaying symptomatically elevated elasticity values for the detection of neuronal plasticity following neurodegeneration. PMID:24667730

  7. Ex vivo and in vivo imaging of myelin fibers in mouse brain by coherent anti-Stokes Raman scattering microscopy

    PubMed Central

    Fu, Yan; Huff, T. Brandon; Wang, Han-Wei; Wang, Haifeng; Cheng, Ji-Xin

    2009-01-01

    Coherent anti-Stokes Raman scattering (CARS) microscopy was applied to image myelinated fibers in different regions of a mouse brain. The CARS signal from the CH2 symmetric stretching vibration allows label-free imaging of myelin sheath with 3D sub-micron resolution. Compared with two-photon excited fluorescence imaging with lipophilic dye labeling, CARS microscopy provides sharper contrast and avoids photobleaching. The CARS signal exhibits excitation polarization dependence which can be eliminated by reconstruction of two complementary images with perpendicular excitation polarizations. The capability of imaging myelinated fibers without exogenous labeling was used to map the whole brain white matter in brain slices and to analyze the microstructural anatomy of brain axons. Quantitative information about fiber volume%, myelin density, and fiber orientations was derived. Combining CARS with two-photon excited fluorescence allowed multimodal imaging of myelinated axons and other cells. Furthermore, in vivo CARS imaging on an upright microscope clearly identified fiber bundles in brain subcortex white matter. These advances open up new opportunities for the study of brain connectivity and neurological disorders. PMID:19030027

  8. Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood-brain barrier disruption

    NASA Astrophysics Data System (ADS)

    Kinoshita, Manabu; McDannold, Nathan; Jolesz, Ferenc A.; Hynynen, Kullervo

    2006-08-01

    Antibody-based anticancer agents are promising chemotherapeutic agents. Among these agents, Herceptin (trastuzumab), a humanized anti-human epidermal growth factor receptor 2 (HER2/c-erbB2) monoclonal antibody, has been used successfully in patients with breast cancer. However, in patients with brain metastasis, the blood-brain barrier limits its use, and a different delivery method is needed to treat these patients. Here, we report that Herceptin can be delivered locally and noninvasively into the mouse central nervous system through the blood-brain barrier under image guidance by using an MRI-guided focused ultrasound blood-brain barrier disruption technique. The amount of Herceptin delivered to the target tissue was correlated with the extent of the MRI-monitored barrier opening, making it possible to estimate indirectly the amount of Herceptin delivered. Histological changes attributable to this procedure were minimal. This method may represent a powerful technique for the delivery of macromolecular agents such as antibodies to treat patients with diseases of the central nervous system. brain tumor | microbubble

  9. If the skull fits: magnetic resonance imaging and microcomputed tomography for combined analysis of brain and skull phenotypes in the mouse

    PubMed Central

    Blank, Marissa C.; Roman, Brian B.; Henkelman, R. Mark; Millen, Kathleen J.

    2012-01-01

    The mammalian brain and skull develop concurrently in a coordinated manner, consistently producing a brain and skull that fit tightly together. It is common that abnormalities in one are associated with related abnormalities in the other. However, this is not always the case. A complete characterization of the relationship between brain and skull phenotypes is necessary to understand the mechanisms that cause them to be coordinated or divergent and to provide perspective on the potential diagnostic or prognostic significance of brain and skull phenotypes. We demonstrate the combined use of magnetic resonance imaging and microcomputed tomography for analysis of brain and skull phenotypes in the mouse. Co-registration of brain and skull images allows comparison of the relationship between phenotypes in the brain and those in the skull. We observe a close fit between the brain and skull of two genetic mouse models that both show abnormal brain and skull phenotypes. Application of these three-dimensional image analyses in a broader range of mouse mutants will provide a map of the relationships between brain and skull phenotypes generally and allow characterization of patterns of similarities and differences. PMID:22947655

  10. Frustrated expected reward induces differential transcriptional changes in the mouse brain.

    PubMed

    Martín-García, Elena; Fernández-Castillo, Noelia; Burokas, Aurelijus; Gutiérrez-Cuesta, Javier; Sánchez-Mora, Cristina; Casas, Miguel; Ribasés, Marta; Cormand, Bru; Maldonado, Rafael

    2015-01-01

    Frustration represents a particular aspect of the addictive process that is related to loss of control when the expected reward is not obtained. We aim to study the consequences of frustrated expected reward on gene expression in the mouse brain. For this purpose, we used an operant model of frustration using palatable food as reward combined with microarrays. Transcriptomic profiles of frontal cortex, ventral striatum and hippocampus were analysed in five groups of mice: (1) positive control receiving palatable food and the cue light as conditioned stimulus; (2) frustrated group only receiving the cue light; (3) extinction learning group that did not receive palatable food nor the light; (4) negative control that never received the reinforcer nor the light during the whole experiment; and (5) yoked that received palatable food passively. Gene expression changes produced by frustration were revealed in the frontal cortex and ventral striatum, but not in the hippocampus. Most of the changes, such as the modification of the dopamine-DARPP-32 signalling pathway, were common in both areas and estimated to have neuronal origin. Extinction learning induced transcriptional changes only in the ventral striatum, with most genes showing down-regulation and without alteration in the dopamine-DARPP-32 signalling pathway. Active palatable food-seeking behaviour induced changes in gene expression in ventral striatum mainly affecting cell communication. In conclusion, frustration behaviour-induced changes in frontal cortex and ventral striatum mainly related to dopamine-DARPP-32 signalling that could play an important role in the loss of behavioural control during the addictive processes. PMID:25288320

  11. A Novel Mouse Model for Neurotrophic Keratopathy: Trigeminal Nerve Stereotactic Electrolysis through the Brain

    PubMed Central

    Ferrari, Giulio; Chauhan, Sunil K.; Ueno, Hiroki; Nallasamy, Nambi; Gandolfi, Stefano; Borges, Lawrence

    2011-01-01

    Purpose. To develop a mouse model of neurotrophic keratopathy by approaching the trigeminal nerve through the brain and to evaluate changes in corneal cell apoptosis and proliferation. Methods. Six- to 8-week-old male C57BL/6 mice underwent trigeminal stereotactic electrolysis (TSE) to destroy the ophthalmic branch of the trigeminal nerve. Clinical follow-up using biomicroscopy of the cornea was performed at days 2, 4, 5, and 7. To confirm the effectiveness of the procedure, we examined the gross nerve pathology, blink reflex, and immunohistochemistry of the corneal nerves. TUNEL-positive apoptotic and Ki-67–positive proliferating corneal cells were evaluated to detect changes from the contralateral normal eye. Results. TSE was confirmed by gross histology of the trigeminal nerve and was considered effective if the corneal blink reflex was completely abolished. TSE totally abolished the blink reflex in 70% of mice and significantly reduced it in the remaining 30%. Animals with absent blink reflex were used for subsequent experiments. In these mice, a progressive corneal degeneration developed, with thinning of the corneal epithelium and eventually perforation after 7 days. In all mice, 48 hours after TSE, corneal nerves were not recognizable histologically. Seven days after TSE, an increase in cellular apoptosis in all the corneal layers and a reduction in proliferation in basal epithelial cells were detected consistently in all mice. Conclusions. TSE was able, in most cases, to induce a disease state that reflected clinical neurotrophic keratitis without damaging the periocular structures. Moreover, corneal denervation led to increased apoptosis and reduced proliferation of epithelial cells, formally implicating intact nerve function in regulating epithelial survival and turnover. PMID:21071731

  12. Pro-oxidant effects of Ecstasy and its metabolites in mouse brain synaptosomes

    PubMed Central

    Barbosa, Daniel José; Capela, João Paulo; Oliveira, Jorge MA; Silva, Renata; Ferreira, Luísa Maria; Siopa, Filipa; Branco, Paula Sério; Fernandes, Eduarda; Duarte, José Alberto; de Lourdes Bastos, Maria; Carvalho, Félix

    2012-01-01

    BACKGROUND AND PURPOSE 3,4-Methylenedioxymethamphetamine (MDMA or ‘Ecstasy’) is a worldwide major drug of abuse known to elicit neurotoxic effects. The mechanisms underlying the neurotoxic effects of MDMA are not clear at present, but the metabolism of dopamine and 5-HT by monoamine oxidase (MAO), as well as the hepatic biotransformation of MDMA into pro-oxidant reactive metabolites is thought to contribute to its adverse effects. EXPERIMENTAL APPROACH Using mouse brain synaptosomes, we evaluated the pro-oxidant effects of MDMA and its metabolites, α-methyldopamine (α-MeDA), N-methyl-α-methyldopamine (N-Me-α-MeDA) and 5-(glutathion-S-yl)-α-methyldopamine [5-(GSH)-α-MeDA], as well as those of 5-HT, dopamine, l-DOPA and 3,4-dihydroxyphenylacetic acid (DOPAC). KEY RESULTS 5-HT, dopamine, l-DOPA, DOPAC and MDMA metabolites α-MeDA, N-Me-α-MeDA and 5-(GSH)-α-MeDA, concentration- and time-dependently increased H2O2 production, which was significantly reduced by the antioxidants N-acetyl-l-cysteine (NAC), ascorbic acid and melatonin. From experiments with MAO inhibitors, it was observed that H2O2 generation induced by 5-HT was totally dependent on MAO-related metabolism, while for dopamine, it was a minor pathway. The MDMA metabolites, dopamine, l-DOPA and DOPAC concentration-dependently increased quinoproteins formation and, like 5-HT, altered the synaptosomal glutathione status. Finally, none of the compounds modified the number of polarized mitochondria in the synaptosomal preparations, and the compounds’ pro-oxidant effects were unaffected by prior mitochondrial depolarization, excluding a significant role for mitochondrial-dependent mechanisms of toxicity in this experimental model. CONCLUSIONS AND IMPLICATIONS MDMA metabolites along with high levels of monoamine neurotransmitters can be major effectors of neurotoxicity induced by Ecstasy. PMID:21506960

  13. Cerebral hemodynamic responses to seizure in the mouse brain: simultaneous near-infrared spectroscopy-electroencephalography study

    NASA Astrophysics Data System (ADS)

    Lee, Seungduk; Lee, Mina; Koh, Dalkwon; Kim, Beop-Min; Choi, Jee Hyun

    2010-05-01

    We applied near-infrared spectroscopy (NIRS) and electroencephalography (EEG) simultaneously on the mouse brain and investigated the hemodynamic response to epileptic episodes under pharmacologically driven seizure. γ-butyrolactone (GBL) and 4-aminopyridine (4-AP) were applied to induce absence and tonic-clonic seizures, respectively. The epileptic episodes were identified from the single-channel EEG, and the corresponding hemodynamic changes in different regions of the brain were characterized by multichannel frequency-domain NIRS. Our results are the following: (i) the oxyhemoglobin level increases in the case of GBL-treated mice but not 4-AP-treated mice compared to the predrug state; (ii) the dominant response to each absence seizure is a decrease in deoxyhemolobin; (iii) the phase shift between oxy- and deoxyhemoglobin reduces in GBL-treated mice but no 4-AP-treated mice; and (iv) the spatial correlation of hemodynamics increased significantly in 4-AP-treated mice but not in GBL-treated mice. Our results shows that spatiotemporal tracking of cerebral hemodynamics using NIRS can be successfully applied to the mouse brain in conjunction with electrophysiological recording, which will support the study of molecular, cellular, and network origin of neurovascular coupling in vivo.

  14. Effect of fluoxetine and pergolide on expression of nucleoside transporters and nucleic-related enzymes in mouse brain.

    PubMed

    Nagai, Katsuhito; Konishi, Hiroki

    2014-04-01

    Nucleoside transporter (NT) and nucleic-related enzyme (NRE) play key roles in the physiology of nucleosides and the pharmacology of its analogs in mammals. In this study, we examined the effect of fluoxetine, a selective serotonin reuptake inhibitor, and pergolide, a dopamine D receptor agonist, on the expression of NTs and NREs in mouse brain. It was confirmed by the detection of corresponding mRNAs that three equilibrative nucleoside transporter (ENT1-3) isoforms, concentrative nucleoside transporter 2 (CNT2), CNT3, adenosine kinase (AK), and apyrase, but not CNT1, were expressed in brain tissue. Based on an assessment by mRNA determination, the cerebral expression of CNT2 was found to be increased by administration of fluoxetine and pergolide to mice. Furthermore, pergolide increased the expression of ENT2. However, fluoxetine and pergolide had no significant effect on the expression of mRNA for other NTs, AK, and apyrase. Therefore, we concluded that the expression of several NT isoforms, but not NREs, in mouse brain was affected by treatment with fluoxetine and pergolide. PMID:23130601

  15. Effects of cell phone radiation on lipid peroxidation, glutathione and nitric oxide levels in mouse brain during epileptic seizure.

    PubMed

    Esmekaya, Meric Arda; Tuysuz, Mehmet Zahid; Tomruk, Arın; Canseven, Ayse G; Yücel, Engin; Aktuna, Zuhal; Keskil, Semih; Seyhan, Nesrin

    2016-09-01

    The objective of the this study was to evaluate the effects of cellular phone radiation on oxidative stress parameters and oxide levels in mouse brain during pentylenetetrazole (PTZ) induced epileptic seizure. Eight weeks old mice were used in the study. Animals were distributed in the following groups: Group I: Control group treated with PTZ, Group II: 15min cellular phone radiation+PTZ treatment+30min cellular phone radiation, Group III: 30min cellular phone radiation+PTZ treatment+30min cellular phone radiation. The RF radiation was produced by a 900MHz cellular phone. Lipid peroxidation, which is the indicator of oxidative stress was quantified by measuring the formation of thiobarbituric acid reactive substances (TBARS). The glutathione (GSH) levels were determined by the Ellman method. Tissue total nitric oxide (NOx) levels were obtained using the Griess assay. Lipid peroxidation and NOx levels of brain tissue increased significantly in group II and III compared to group I. On the contrary, GSH levels were significantly lower in group II and III than group I. However, no statistically significant alterations in any of the endpoints were noted between group II and Group III. Overall, the experimental findings demonstrated that cellular phone radiation may increase the oxidative damage and NOx level during epileptic activity in mouse brain. PMID:26836107

  16. Blockage of VIP during mouse embryogenesis modifies adult behavior and results in permanent changes in brain chemistry.

    PubMed

    Hill, Joanna M; Hauser, Janet M; Sheppard, Lia M; Abebe, Daniel; Spivak-Pohis, Irit; Kushnir, Michal; Deitch, Iris; Gozes, Illana

    2007-01-01

    Vasoactive intestinal peptide (VIP) regulates growth and development during the early postimplantation period of mouse embryogenesis. Blockage of VIP with a VIP antagonist during this period results in growth restriction, microcephaly, and developmental delays. Similar treatment of neonatal rodents also causes developmental delays and impaired diurnal rhythms, and the adult brains of these animals exhibit neuronal dystrophy and increased VIP binding. These data suggest that blockage of VIP during the development of the nervous system can result in permanent changes to the brain. In the current study, pregnant mice were treated with a VIP antagonist during embryonic days 8 through 10. The adult male offspring were examined in tests of novelty, paired activity, and social recognition. Brain tissue was examined for several measures of chemistry and gene expression of VIP and related compounds. Glial cells from the cortex of treated newborn mice were plated with neurons and examined for VIP binding and their ability to enhance neuronal survival. Treated adult male mice exhibited increased anxiety-like behavior and deficits in social behavior. Brain tissue exhibited regionally specific changes in VIP chemistry and a trend toward increased gene expression of VIP and related compounds that reached statistical significance in the VIP receptor, VPAC-1, in the female cortex. When compared to control astrocytes, astrocytes from treated cerebral cortex produced further increases in neuronal survival with excess synaptic connections and reduced VIP binding. In conclusion, impaired VIP activity during mouse embryogenesis resulted in permanent changes to both adult brain chemistry/cell biology and behavior with aspects of autism-like social deficits. PMID:17726225

  17. Marrow Stromal Cells Migrate Throughout Forebrain and Cerebellum, and They Differentiate into Astrocytes after Injection into Neonatal Mouse Brains

    NASA Astrophysics Data System (ADS)

    Kopen, Gene C.; Prockop, Darwin J.; Phinney, Donald G.

    1999-09-01

    Stem cells are a valuable resource for treating disease, but limited access to stem cells from tissues such as brain restricts their utility. Here, we injected marrow stromal cells (MSCs) into the lateral ventricle of neonatal mice and asked whether these multipotential mesenchymal progenitors from bone marrow can adopt neural cell fates when exposed to the brain microenvironment. By 12 days postinjection, MSCs migrated throughout the forebrain and cerebellum without disruption to the host brain architecture. Some MSCs within the striatum and the molecular layer of the hippocampus expressed glial fibrillary acidic protein and, therefore, differentiated into mature astrocytes. MSCs also populated neuron rich regions including the Islands of Calleja, the olfactory bulb, and the internal granular layer of the cerebellum. A large number of MSCs also were found within the external granular layer of the cerebellum. In addition, neurofilament positive donor cells were found within the reticular formation of the brain stem, suggesting that MSCs also may have differentiated into neurons. Therefore, MSCs are capable of producing differentiated progeny of a different dermal origin after implantation into neonatal mouse brains. These results suggest that MSCs are potentially useful as vectors for treating a variety of central nervous system disorders.

  18. The Abundance of Nonphosphorylated Tau in Mouse and Human Tauopathy Brains Revealed by the Use of Phos-Tag Method.

    PubMed

    Kimura, Taeko; Hatsuta, Hiroyuki; Masuda-Suzukake, Masami; Hosokawa, Masato; Ishiguro, Koichi; Akiyama, Haruhiko; Murayama, Shigeo; Hasegawa, Masato; Hisanaga, Shin-ichi

    2016-02-01

    Tauopathies are neurodegenerative diseases characterized by aggregates of hyperphosphorylated tau. Previous studies have identified many disease-related phosphorylation sites on tau. However, it is not understood how tau is hyperphosphorylated and what extent these sites are phosphorylated in both diseased and normal brains. Most previous studies have used phospho-specific antibodies to analyze tau phosphorylation. These results are useful but do not provide information about nonphosphorylated tau. Here, we applied the method of Phos-tag SDS-PAGE, in which phosphorylated tau was separated from nonphosphorylated tau in vivo. Among heterogeneously phosphorylated tau species in adult mouse brains, the nonphosphorylated 0N4R isoform was detected most abundantly. In contrast, perinatal tau and tau in cold water-stressed mice were all phosphorylated with a similar extent of phosphorylation. In normal elderly human brains, nonphosphorylated 0N3R and 0N4R tau were most abundant. A slightly higher phosphorylation of tau, which may represent the early step of hyperphosphorylation, was increased in Alzheimer disease patients at Braak stage V. Tau with this phosphorylation state was pelleted by centrifugation, and sarkosyl-soluble tau in either Alzheimer disease or corticobasal degeneration brains showed phosphorylation profiles similar to tau in normal human brain, suggesting that hyperphosphorylation occurs in aggregated tau. These results indicate that tau molecules are present in multiple phosphorylation states in vivo, and nonphosphorylated forms are highly expressed among them. PMID:26687814

  19. PEX13 deficiency in mouse brain as a model of Zellweger syndrome: abnormal cerebellum formation, reactive gliosis and oxidative stress

    PubMed Central

    Müller, C. Catharina; Nguyen, Tam H.; Ahlemeyer, Barbara; Meshram, Mallika; Santrampurwala, Nishreen; Cao, Siyu; Sharp, Peter; Fietz, Pamela B.; Baumgart-Vogt, Eveline; Crane, Denis I.

    2011-01-01

    SUMMARY Delayed cerebellar development is a hallmark of Zellweger syndrome (ZS), a severe neonatal neurodegenerative disorder. ZS is caused by mutations in PEX genes, such as PEX13, which encodes a protein required for import of proteins into the peroxisome. The molecular basis of ZS pathogenesis is not known. We have created a conditional mouse mutant with brain-restricted deficiency of PEX13 that exhibits cerebellar morphological defects. PEX13 brain mutants survive into the postnatal period, with the majority dying by 35 days, and with survival inversely related to litter size and weaning body weight. The impact on peroxisomal metabolism in the mutant brain is mixed: plasmalogen content is reduced, but very-long-chain fatty acids are normal. PEX13 brain mutants exhibit defects in reflex and motor development that correlate with impaired cerebellar fissure and cortical layer formation, granule cell migration and Purkinje cell layer development. Astrogliosis and microgliosis are prominent features of the mutant cerebellum. At the molecular level, cultured cerebellar neurons from E19 PEX13-null mice exhibit elevated levels of reactive oxygen species and mitochondrial superoxide dismutase-2 (MnSOD), and show enhanced apoptosis together with mitochondrial dysfunction. PEX13 brain mutants show increased levels of MnSOD in cerebellum. Our findings suggest that PEX13 deficiency leads to mitochondria-mediated oxidative stress, neuronal cell death and impairment of cerebellar development. Thus, PEX13-deficient mice provide a valuable animal model for investigating the molecular basis and treatment of ZS cerebellar pathology. PMID:20959636

  20. Combination brain and systemic injections of AAV provide maximal functional and survival benefits in the Niemann-Pick mouse

    PubMed Central

    Passini, Marco A.; Bu, Jie; Fidler, Jonathan A.; Ziegler, Robin J.; Foley, Joseph W.; Dodge, James C.; Yang, Wendy W.; Clarke, Jennifer; Taksir, Tatyana V.; Griffiths, Denise A.; Zhao, Michael A.; O'Riordan, Catherine R.; Schuchman, Edward H.; Shihabuddin, Lamya S.; Cheng, Seng H.

    2007-01-01

    Niemann-Pick disease (NPD) is caused by the loss of acid sphingomyelinase (ASM) activity, which results in widespread accumulation of undegraded lipids in cells of the viscera and CNS. In this study, we tested the effect of combination brain and systemic injections of recombinant adeno-associated viral vectors encoding human ASM (hASM) in a mouse model of NPD. Animals treated by combination therapy exhibited high levels of hASM in the viscera and brain, which resulted in near-complete correction of storage throughout the body. This global reversal of pathology translated to normal weight gain and superior recovery of motor and cognitive functions compared to animals treated by either brain or systemic injection alone. Furthermore, animals in the combination group did not generate antibodies to hASM, demonstrating the first application of systemic-mediated tolerization to improve the efficacy of brain injections. All of the animals treated by combination therapy survived in good health to an investigator-selected 54 weeks, whereas the median lifespans of the systemic-alone, brain-alone, or untreated ASM knockout groups were 47, 48, and 34 weeks, respectively. These data demonstrate that combination therapy is a promising therapeutic modality for treating NPD and suggest a potential strategy for treating disease indications that cause both visceral and CNS pathologies. PMID:17517638

  1. Surface-based mapping of gene expression and probabilistic expression maps in the mouse cortex.

    PubMed

    Ng, Lydia; Lau, Chris; Sunkin, Susan M; Bernard, Amy; Chakravarty, M Mallar; Lein, Ed S; Jones, Allan R; Hawrylycz, Michael

    2010-02-01

    The Allen Brain Atlas (ABA, www.brain-map.org) is a genome wide, spatially registered collection of cellular resolution in situ hybridization gene expression image data of the C57Bl/6J mouse brain. Derived from the ABA, the Anatomic Gene Expression Atlas (AGEA, http://mouse.brain-map.org/agea) has demonstrated both laminar and areal spatial gene expression correlations in the mouse cortex. While the mouse cortex is lissencephalic, its curvature and substantial bending in boundary areas renders it difficult to visualize and analyze laminar versus areal effects in a rectilinear coordinate framework. In context of human and non-human primate cortex, surface-based representation has proven useful for understanding relative locations of laminar, columnar, and areal features. In this paper, we describe a methodology for constructing surface-based flatmaps of the mouse cortex that enables mapping of gene expression data from individual genes in the ABA, or probabilistic expression maps from the AGEA, to identify and visualize genetic relationships between layers and areas. PMID:19818854

  2. Ibogaine labeling with 99mTc-tricarbonyl: synthesis and transport at the mouse blood-brain barrier.

    PubMed

    Tournier, Nicolas; André, Pascal; Blondeel, Sandy; Rizzo-Padoin, Nathalie; du Moulinet d'Hardemarre, Amaury; Declèves, Xavier; Scherrmann, Jean-Michel; Cisternino, Salvatore

    2009-12-01

    The (99m)Tc-tricarbonyl core may be used as an ideal tool for gamma-labeling ligands in noninvasive SPECT imaging. However, most (99m)Tc-tricarbonyl-labeled agents have difficulty crossing the blood-brain barrier (BBB). We radiolabeled the neuroactive indole ibogaine with (99m)Tc-tricarbonyl and measured its transport into the mouse brain by in situ brain perfusion. We measured the interactions of [(99m)Tc(CO)(3)-ibogaine](+) and (99m)Tc-tricarbonyl with the main BBB efflux transporters P-gp and BCRP in vitro and in vivo. Ibogaine was radiolabeled (yield: over 95%). [(99m)Tc(CO)(3)-ibogaine](+) entered the brain (K(in)) poorly (0.18 microL/g/s), at about the same rate as (99m)Tc-tricarbonyl (0.16 microL/g/s) and [(99m)Tc-sestamibi](+) (0.10 microL/g/s). The CNS tracer [(99m)Tc-HMPAO](0) entered the brain approximately 70-times higher than [(99m)Tc(CO)(3)-ibogaine](+). In vitro studies revealed that neither [(99m)Tc(CO)(3)-ibogaine](+) nor (99m)Tc-tricarbonyl ion were substrates for P-gp or BCRP. But lowering the membrane dipole potential barrier with phloretin enhanced the brain transport of [(99m)Tc(OH(2))(3)(CO)(3)](+) approximately 3-fold. Thus, ibogaine directly labeled with (99m)Tc-tricarbonyl is not suitable for CNS imaging because of its poor uptake. Brain transport is not restricted by efflux transporters but is reduced by its lipophilicity and interaction with the membrane-positive dipole potential. PMID:19492342

  3. Protective effects of intermittent hypoxia on brain and memory in a mouse model of apnea of prematurity

    PubMed Central

    Bouslama, Myriam; Adle-Biassette, Homa; Ramanantsoa, Nelina; Bourgeois, Thomas; Bollen, Bieke; Brissaud, Olivier; Matrot, Boris; Gressens, Pierre; Gallego, Jorge

    2015-01-01

    Apnea of prematurity (AOP) is considered a risk factor for neurodevelopmental disorders in children based on epidemiological studies. This idea is supported by studies in newborn rodents in which exposure to intermittent hypoxia (IH) as a model of AOP significantly impairs development. However, the severe IH used in these studies may not fully reflect the broad spectrum of AOP severity. Considering that hypoxia appears neuroprotective under various conditions, we hypothesized that moderate IH would protect the neonatal mouse brain against behavioral stressors and brain damage. On P6, each pup in each litter was randomly assigned to one of three groups: a group exposed to IH while separated from the mother (IH group), a control group exposed to normoxia while separated from the mother (AIR group), and a group of untreated unmanipulated pups left continuously with their mother until weaning (UNT group). Exposure to moderate IH (8% O2) consisted of 20 hypoxic events/hour, 6 h per day from postnatal day 6 (P6) to P10. The stress generated by maternal separation in newborn rodents is known to impair brain development, and we expected this effect to be smaller in the IH group compared to the AIR group. In a separate experiment, we combined maternal separation with excitotoxic brain lesions mimicking those seen in preterm infants. We analyzed memory, angiogenesis, neurogenesis and brain lesion size. In non-lesioned mice, IH stimulated hippocampal angiogenesis and neurogenesis and improved short-term memory indices. In brain-lesioned mice, IH decreased lesion size and prevented memory impairments. Contrary to common perception, IH mimicking moderate apnea may offer neuroprotection, at least in part, against brain lesions and cognitive dysfunctions related to prematurity. AOP may therefore have beneficial effects in some preterm infants. These results support the need for stratification based on AOP severity in clinical trials of treatments for AOP, to determine whether in

  4. Loss of parvalbumin-immunoreactivity in mouse brain regions after repeated intermittent administration of esketamine, but not R-ketamine.

    PubMed

    Yang, Chun; Han, Mei; Zhang, Ji-Chun; Ren, Qian; Hashimoto, Kenji

    2016-05-30

    Clinical use of the rapid antidepressant drug ketamine is limited, due to psychotomimetic side effects. R-ketamine appears to be a potent, long-lasting and safer antidepressant, relative to S-ketamine (esketamine), since it is free of psychotomimetic side effects. Repeated, intermittent administration of esketamine (10mg/kg, once per week for 8-weeks), but not R-ketamine, caused loss of parvalbumin (PV)-immunoreactivity in the medial prefrontal cortex and hippocampus of mouse brains, regions associated with psychosis. This study suggests that repeated intermittent use of R-ketamine is safer than esketamine in the treatment of depression. PMID:27043274

  5. H. Julian Allen with Blunt Body Theory

    NASA Technical Reports Server (NTRS)

    1957-01-01

    H. Julian Allen is best known for his 'Blunt Body Theory' of aerodynamics, a design technique for alleviating the severe re-entry heating problem which was then delaying the development of ballistic missiles. His findings revolutionized the fundamental design of ballistic missle re-entry shapes. Subsequently, applied research led to applications of the 'blunt' shape to ballistic missles and spacecraft which were intended to re-enter the Earth's atmosphere. This application led to the design of ablative heat shields that protected the Mercury, Gemini and Apollo astronauts as their space capsules re- entered the Earth's atmosphere. 'Harvey' Allen as he was called by most, was not only a brilliant scientist and aeronautical engineer but was also admired for his kindness, thoughtfulness and sense of humor. Among his many other accomplishments, Harvey Allen served as Center Director of the NASA Ames Research Center from 1965 to 1969. He died of a heart attack on January 29, 1977 at the age of 66.

  6. Rapid and local autoregulation of cerebrovascular blood flow: a deep-brain imaging study in the mouse

    PubMed Central

    Kuga, Nahoko; Hirata, Tadashi; Sakai, Ikuko; Tanikawa, Yoshihisa; Chiou, Huei Yu; Kitanishi, Takuma; Matsuki, Norio; Ikegaya, Yuji

    2009-01-01

    The brain obtains energy by keeping the cerebral blood flow constant against unexpected changes in systemic blood pressure. Although this homeostatic mechanism is widely known as cerebrovascular autoregulation, it is not understood how widely and how robustly it works in the brain. Using a needle-like objective lens designed for deep-tissue imaging, we quantified the degree of autoregulation in the mouse hippocampus with single-capillary resolution. On average, hippocampal blood flow exhibited autoregulation over a comparatively broad range of arterial blood pressure and did not significantly respond to pressure changes induced by the pharmacological activation of autonomic nervous system receptors, whereas peripheral tissues showed linear blood flow changes. At the level of individual capillaries, however, about 40% of hippocampal capillaries did not undergo rapid autoregulation. This heterogeneity suggests the presence of a local baroreflex system to implement cerebral autoregulation. PMID:19074968

  7. Mitochondrial free radical overproduction due to respiratory chain impairment in the brain of a mouse model of Rett syndrome: protective effect of CNF1.

    PubMed

    De Filippis, Bianca; Valenti, Daniela; de Bari, Lidia; De Rasmo, Domenico; Musto, Mattia; Fabbri, Alessia; Ricceri, Laura; Fiorentini, Carla; Laviola, Giovanni; Vacca, Rosa Anna

    2015-06-01

    Rett syndrome (RTT) is a pervasive neurodevelopmental disorder mainly caused by mutations in the X-linked MECP2 gene associated with severe intellectual disability, movement disorders, and autistic-like behaviors. Its pathogenesis remains mostly not understood and no effective therapy is available. High circulating levels of oxidative stress markers in patients and the occurrence of oxidative brain damage in MeCP2-deficient mouse models suggest the involvement of oxidative stress in RTT pathogenesis. However, the molecular mechanism and the origin of the oxidative stress have not been elucidated. Here we demonstrate that a redox imbalance arises from aberrant mitochondrial functionality in the brain of MeCP2-308 heterozygous female mice, a condition that more closely recapitulates that of RTT patients. The marked increase in the rate of hydrogen peroxide generation in the brain of RTT mice seems mainly produced by the dysfunctional complex II of the mitochondrial respiratory chain. In addition, both membrane potential generation and mitochondrial ATP synthesis are decreased in RTT mouse brains when succinate, the complex II respiratory substrate, is used as an energy source. Respiratory chain impairment is brain area specific, owing to a decrease in either cAMP-dependent phosphorylation or protein levels of specific complex subunits. Further, we investigated whether the treatment of RTT mice with the bacterial protein CNF1, previously reported to ameliorate the neurobehavioral phenotype and brain bioenergetic markers in an RTT mouse model, exerts specific effects on brain mitochondrial function and consequently on hydrogen peroxide production. In RTT brains treated with CNF1, we observed the reactivation of respiratory chain complexes, the rescue of mitochondrial functionality, and the prevention of brain hydrogen peroxide overproduction. These results provide definitive evidence of mitochondrial reactive oxygen species overproduction in RTT mouse brain and

  8. Low brain ascorbic acid increases susceptibility to seizures in mouse models of decreased brain ascorbic acid transport and Alzheimer's disease.

    PubMed

    Warner, Timothy A; Kang, Jing-Qiong; Kennard, John A; Harrison, Fiona E

    2015-02-01

    Seizures are a known co-occurring symptom of Alzheimer's disease, and they can accelerate cognitive and neuropathological dysfunction. Sub-optimal vitamin C (ascorbic acid) deficiency, that is low levels that do not lead the sufferer to present with clinical signs of scurvy (e.g. lethargy, hemorrhage, hyperkeratosis), are easily obtainable with insufficient dietary intake, and may contribute to the oxidative stress environment of both Alzheimer's disease and epilepsy. The purpose of this study was to test whether mice that have diminished brain ascorbic acid in addition to carrying human Alzheimer's disease mutations in the amyloid precursor protein (APP) and presenilin 1 (PSEN1) genes, had altered electrical activity in the brain (electroencephalography; EEG), and were more susceptible to pharmacologically induced seizures. Brain ascorbic acid was decreased in APP/PSEN1 mice by crossing them with sodium vitamin C transporter 2 (SVCT2) heterozygous knockout mice. These mice have an approximately 30% decrease in brain ascorbic acid due to lower levels of SVCT2 that supplies the brain with ASC. SVCT2+/-APP/PSEN1 mice had decreased ascorbic acid and increased oxidative stress in brain, increased mortality, faster seizure onset latency following treatment with kainic acid (10 mg/kg i.p.), and more ictal events following pentylenetetrazol (50 mg/kg i.p.) treatment. Furthermore, we report the entirely novel phenomenon that ascorbic acid deficiency alone increased the severity of kainic acid- and pentylenetetrazol-induced seizures. These data suggest that avoiding ascorbic acid deficiency may be particularly important in populations at increased risk for epilepsy and seizures, such as Alzheimer's disease. PMID:25616451

  9. Age-dependent change of HMGB1 and DNA double-strand break accumulation in mouse brain

    SciTech Connect

    Enokido, Yasushi; Yoshitake, Ayaka; Ito, Hikaru; Okazawa, Hitoshi

    2008-11-07

    HMGB1 is an evolutionarily conserved non-histone chromatin-associated protein with key roles in maintenance of nuclear homeostasis; however, the function of HMGB1 in the brain remains largely unknown. Recently, we found that the reduction of nuclear HMGB1 protein level in the nucleus associates with DNA double-strand break (DDSB)-mediated neuronal damage in Huntington's disease [M.L. Qi, K. Tagawa, Y. Enokido, N. Yoshimura, Y. Wada, K. Watase, S. Ishiura, I. Kanazawa, J. Botas, M. Saitoe, E.E. Wanker, H. Okazawa, Proteome analysis of soluble nuclear proteins reveals that HMGB1/2 suppress genotoxic stress in polyglutamine diseases, Nat. Cell Biol. 9 (2007) 402-414]. In this study, we analyze the region- and cell type-specific changes of HMGB1 and DDSB accumulation during the aging of mouse brain. HMGB1 is localized in the nuclei of neurons and astrocytes, and the protein level changes in various brain regions age-dependently. HMGB1 reduces in neurons, whereas it increases in astrocytes during aging. In contrast, DDSB remarkably accumulates in neurons, but it does not change significantly in astrocytes during aging. These results indicate that HMGB1 expression during aging is differentially regulated between neurons and astrocytes, and suggest that the reduction of nuclear HMGB1 might be causative for DDSB in neurons of the aged brain.

  10. Hind Limb Unloading Model Alters Nuclear Factor kappa B and Activator Protein-1 Signaling in Mouse Brain

    NASA Astrophysics Data System (ADS)

    Ramesh, Govindarajan; Vani, Vani; Renard, Renard; Vera, Vera; Wilosn, Wilosn; Ramesh, Govindarajan

    Microgravity induces inflammatory response and also modulates immune functions, which may increase oxidative stress. Exposure to the microgravity environment induces adverse neurological effects. However, there is little research exploring the etiology of neurological effects of exposure to this environment. To explore this area we evaluated changes in Nuclear Factor kappa B, Activator Protein 1, MAPP kinase and N terminal c-Jun kinase in mouse brain exposed to a simulated microgravity environment using the hindlimb unloading model. BALB/c male mice were randomly assigned to hindlimb unloading group (n=12) and control group (n=12) to simulate a microgravity environment, for 7 days. Changes observed in NF-κB, AP- 1 DNA binding, MAPKK and N terminal c-Jun kinase were measured using electrophoretic mobility shift assay (EMSA) and western blot analysis and compared to unexposed brain regions. Hindlimb unloading exposed mice showed significant increases in generated NF-κB, AP-1, MAPKK and Kinase in all regions of the brain exposed to hindlimb unloading as compared to the control brain regions. Results suggest that exposure to simulated microgravity can induce expression of certain transcription factors and protein kinases. This work was supported by funding from NASA NCC 9-165. 504b030414000600080000002100828abc13fa0000001c020000130000005b436f6e74656e745f54797065735d2e78

  11. Brain glycogen supercompensation in the mouse after recovery from insulin-induced hypoglycemia.

    PubMed

    Canada, Sarah E; Weaver, Staci A; Sharpe, Shannon N; Pederson, Bartholomew A

    2011-04-01

    Brain glycogen is proposed to function under both physiological and pathological conditions. Pharmacological elevation of this glucose polymer in brain is hypothesized to protect neurons against hypoglycemia-induced cell death. Elevation of brain glycogen levels due to prior hypoglycemia is postulated to contribute to the development of hypoglycemia-associated autonomic failure (HAAF) in insulin-treated diabetic patients. This latter mode of elevating glycogen levels is termed "supercompensation." We tested whether brain glycogen supercompensation occurs in healthy, conscious mice after recovery from insulin-induced acute or recurrent hypoglycemia. Blood glucose levels were lowered to less than 2.2 mmol/liter for 90 min by administration of insulin. Brain glucose levels decreased at least 80% and brain glycogen levels decreased approximately 50% after episodes of either acute or recurrent hypoglycemia. After these hypoglycemic episodes, mice were allowed access to food for 6 or 27 hr. After 6 hr, blood and brain glucose levels were restored but brain glycogen levels were elevated by 25% in mice that had been subjected to either acute or recurrent hypoglycemia compared with saline-treated controls. After a 27-hr recovery period, the concentration of brain glycogen had returned to baseline levels in mice previously subjected to either acute or recurrent hypoglycemia. We conclude that brain glycogen supercompensation occurs in healthy mice, but its functional significance remains to be established. PMID:21259334

  12. BRAIN GLYCOGEN SUPERCOMPENSATION IN THE MOUSE AFTER RECOVERY FROM INSULIN-INDUCED HYPOGLYCEMIA

    PubMed Central

    Canada, Sarah E.; Weaver, Staci A.; Sharpe, Shannon N.; Pederson, Bartholomew A.

    2010-01-01

    Brain glycogen is proposed to function in both physiological and pathological conditions. Pharmacological elevation of this glucose polymer in brain is hypothesized to protect neurons against hypoglycemia-induced cell death. Elevation of brain glycogen levels due to prior hypoglycemia is postulated to contribute to the development of hypoglycemia-associated autonomic failure (HAAF) in insulin-treated diabetic patients. This latter mode of elevating glycogen levels is termed “supercompensation”. We tested whether brain glycogen supercompensation occurs in healthy, conscious mice after recovery from insulin-induced acute or recurrent hypoglycemia. Blood glucose levels were lowered to less than 2.2 mmol/L for 90 min by administration of insulin. Brain glucose levels decreased at least 80% and brain glycogen levels decreased approximately 50% after episodes of either acute or recurrent hypoglycemia. Following these hypoglycemic episodes, mice were allowed access to food for 6 or 27 hrs. After 6 hrs, blood and brain glucose levels were restored while brain glycogen levels were elevated 25% in mice that were previously subjected to either acute or recurrent hypoglycemia as compared with saline-treated controls. Following a 27 hr recovery period, the concentration of brain glycogen had returned to baseline levels in mice previously subjected to either acute or recurrent hypoglycemia. We conclude that brain glycogen supercompensation occurs in healthy mice but its functional significance remains to be established. PMID:21259334

  13. MicroCT and microMRI imaging of a prenatal mouse model of increased brain size

    NASA Astrophysics Data System (ADS)

    López, Elisabeth K. N.; Stock, Stuart R.; Taketo, Makoto M.; Chenn, Anjen; Ravosa, Matthew J.

    2008-08-01

    There are surprisingly few experimental models of neural growth and cranial integration. This and the dearth of information regarding fetal brain development detract from a mechanistic understanding of cranial integration and its relevance to the patterning of skull form, specifically the role of encephalization on basicranial flexion. To address this shortcoming, our research uses transgenic mice expressing a stabilized form of β-catenin to isolate the effects of relative brain size on craniofacial development. These mice develop highly enlarged brains due to an increase in neural precursors, and differences between transgenic and wild-type mice are predicted to result solely from variation in brain size. Comparisons of wild-type and transgenic mice at several prenatal ages were performed using microCT (Scanco Medical MicroCT 40) and microMRI (Avance 600 WB MR spectrometer). Statistical analyses show that the larger brain of the transgenic mice is associated with a larger neurocranium and an altered basicranial morphology. However, body size and postcranial ossification do not seem to be affected by the transgene. Comparisons of the rate of postcranial and cranial ossification using microCT also point to an unexpected effect of neural growth on skull development: increased fetal encephalization may result in a compensatory decrease in the level of cranial ossification. Therefore, if other life history factors are held constant, the ontogeny of a metabolically costly structure such as a brain may occur at the expense of other cranial structures. These analyses indicate the benefits of a multifactorial approach to cranial integration using a mouse model.

  14. Evidence of Altered Age-Related Brain Cytoarchitecture in Mouse Models of Down syndrome: A Diffusional Kurtosis Imaging Study

    PubMed Central

    Nie, Xingju; Hamlett, Eric D.; Granholm, Ann-Charlotte; Hui, Edward S.; Helpern, Joseph A.; Jensen, Jens H.; Boger, Heather A.; Collins, Heather R.; Falangola, Maria F.

    2015-01-01

    Mouse models of Down syndrome (DS) exhibit abnormal brain developmental and neurodegenerative changes similar to those seen in individuals with DS. Although DS mice have been well characterized cognitively and morphologically there are no prior reports utilizing diffusion MRI. In this study we investigated the ability of diffusional kurtosis imaging (DKI) to detect the progressive developmental and neurodegenerative changes in the Ts65Dn (TS) DS mouse model. TS mice displayed higher diffusional kurtosis (DK) in the frontal cortex (FC) compared to normal mice at 2 months of age. At 5 months of age, TS mice had lower radial kurtosis in the striatum (ST), which persisted in the 8-month-old mice. The TS mice exhibited lower DK metrics values in the dorsal hippocampus (HD) at all ages, and the group difference in this region was larger at 8-months. Regression analysis showed that normal mice had a significant age-related increase in DK metrics in FC, ST and HD. On the contrary, the TS mice lacked significant age-related increase in DK metrics in FC and ST. Although preliminary, these results demonstrate that DK metrics can detect TS brain developmental and neurodegenerative abnormalities. PMID:25527393

  15. Comprehensive optical and data management infrastructure for high-throughput light-sheet microscopy of whole mouse brains

    PubMed Central

    Müllenbroich, M. Caroline; Silvestri, Ludovico; Onofri, Leonardo; Costantini, Irene; Hoff, Marcel van’t; Sacconi, Leonardo; Iannello, Giulio; Pavone, Francesco S.

    2015-01-01

    Abstract. Comprehensive mapping and quantification of neuronal projections in the central nervous system requires high-throughput imaging of large volumes with microscopic resolution. To this end, we have developed a confocal light-sheet microscope that has been optimized for three-dimensional (3-D) imaging of structurally intact clarified whole-mount mouse brains. We describe the optical and electromechanical arrangement of the microscope and give details on the organization of the microscope management software. The software orchestrates all components of the microscope, coordinates critical timing and synchronization, and has been written in a versatile and modular structure using the LabVIEW language. It can easily be adapted and integrated to other microscope systems and has been made freely available to the light-sheet community. The tremendous amount of data routinely generated by light-sheet microscopy further requires novel strategies for data handling and storage. To complete the full imaging pipeline of our high-throughput microscope, we further elaborate on big data management from streaming of raw images up to stitching of 3-D datasets. The mesoscale neuroanatomy imaged at micron-scale resolution in those datasets allows characterization and quantification of neuronal projections in unsectioned mouse brains. PMID:26158018

  16. Conditional Tat protein brain expression in the GT-tg bigenic mouse induces cerebral fractional anisotropy abnormalities

    PubMed Central

    Carey, Amanda N.; Liu, Xiaoxu; Mintzopoulos, Dionyssios; Paris, Jason J.; McLaughlin, Jay P.; Kaufman, Marc J.

    2015-01-01

    Cerebral white matter changes including tissue water diffusion abnormalities detected with diffusion tensor magnetic resonance imaging (DTI) are commonly found in humans with Human Immunodeficiency Virus (HIV) infection, as well as in animal models of the disorder. The severities of some of these abnormalities have been reported to correlate with measures of disease progression or severity, or with the degree of cognitive dysfunction. Accordingly, DTI may be a useful translational biomarker. HIV-Tat protein appears to be an important factor in the viral pathogenesis of HIV-associated neurotoxicity. We previously reported cerebral gray matter density reductions in the GT-tg bigenic mouse treated with doxycycline (Dox) to conditionally induce Tat protein expression. Presently, we administered intraperitoneal (i.p.) Dox (100 mg/kg/day) for 7 days to GT-tg mice to determine whether induction of conditional Tat expression led to the development of cerebral DTI abnormalities. Perfused and fixed brains from eight GT-tg mice administered Dox and eight control mice administered saline i.p. were extracted and underwent DTI scans on a 9.4 Tesla scanner. A whole brain analysis detected fractional anisotropy (FA) reductions in several areas including insular and endopiriform regions, as well as within the dorsal striatum. These findings suggest that exposure to Tat protein is sufficient to induce FA abnormalities, and further support the use of the GT-tg mouse to model some effects of HIV. PMID:25619988

  17. Effects of Sesaminol Feeding on Brain Aβ Accumulation in a Senescence-Accelerated Mouse-Prone 8.

    PubMed

    Katayama, Shigeru; Sugiyama, Haruka; Kushimoto, Shoko; Uchiyama, Yusuke; Hirano, Masato; Nakamura, Soichiro

    2016-06-22

    Alzheimer's disease (AD) is characterized by the progressive accumulation of extracellular β-amyloid (Aβ) aggregates. Recently, the senescence-accelerated mouse-prone 8 (SAMP8) model was highlighted as a useful model of age-related AD. Therefore, we used the SAMP8 mouse to investigate the preventive effects of sesame lignans on the onset of AD-like pathology. In preliminary in vitro studies, sesaminol showed the greatest inhibitory effect on Aβ oligomerization and fibril formation relative to sesamin, sesamolin, and sesaminol triglucoside. Hence, sesaminol was selected for further evaluation in vivo. In SAMP8 mice, feed-through sesaminol (0.05%, w/w, in standard chow) administered over a 16 week period reduced brain Aβ accumulation and decreased serum 8-hydroxydeoxyguanosine, an indicator of oxidative stress. Furthermore, sesaminol administration increased the gene and protein expression of ADAM10, which is a protease centrally involved in the non-amyloidogenic processing of amyloid precursor protein. Taken together, these data suggest that long-term consumption of sesaminol may inhibit the accumulation of pathogenic Aβ in the brain. PMID:27233432

  18. The in-vivo monitoring method for traumatic brain injury of mouse based on near-infrared light intensity

    NASA Astrophysics Data System (ADS)

    Li, Weitao; Wang, Xuena; Qian, Zhiyu; Xie, Jieru; Liu, Xing

    2012-02-01

    A system based on near-infrared light intensity was used to monitor mouse model of traumatic brain injury (TBI) noninvasively. The measurement system was controlled by microcontroller. Light from a 760/850nm dual-wavelength light emitting diode was coupled to a 0.6-mm-diameter optical fiber. The collection fibers were coupled to optoelectronic detectors, which were placed in the different distance from the source fiber. The system consisted of a constant current bias, a circuit lock-in amplifier (including band pass filter, lock-in amplifier, and low pass filter), a PCI 6240 data acquisition card and a multi-core-processor computer. The modified Lambert Beer law was used to calculate the concentration of ΔHbO2 and ΔHb. The sensitivity matrix was defined to evaluate the region of effective detection of optical probe. Five groups of TBI mouse models were built by Feeney's free-falling method. The data measured by system show after TBI the concentration of ΔHbO2 decreased and that of ΔHb increased. It can be concluded that the system can be used to monitor the changes of TBI of mouse non-invasively.

  19. Region-Specific Protein Abundance Changes in the Brain of MPTP-induced Parkinson’s Disease Mouse Model

    SciTech Connect

    Zhang, Xu; Zhou, Jianying; Chin, Mark H; Schepmoes, Athena A; Petyuk, Vladislav A; Weitz, Karl K; Petritis, Brianne O; Monroe, Matthew E; Camp, David G; Wood, Stephen A; Melega, William P; Bigelow, Diana J; Smith, Desmond J; Qian, Weijun; Smith, Richard D

    2010-02-15

    Parkinson’s disease (PD) is characterized by dopaminergic neurodegeneration in the nigrostriatal region of the brain; however, the neurodegeneration extends well beyond dopaminergic neurons. To gain a better understanding of the molecular changes relevant to PD, we applied two-dimensional LC-MS/MS to comparatively analyze the proteome changes in four brain regions (striatum, cerebellum, cortex, and the rest of brain) using a MPTP-induced PD mouse model with the objective to identify nigrostriatal-specific and other region-specific protein abundance changes. The combined analyses resulted in the identification of 4,895 non-redundant proteins with at least two unique peptides per protein. The relative abundance changes in each analyzed brain region were estimated based on the spectral count information. A total of 518 proteins were observed with significant MPTP-induced changes across different brain regions. 270 of these proteins were observed with specific changes occurring either only in the striatum and/or in the rest of the brain region that contains substantia nigra, suggesting that these proteins are associated with the underlying nigrostriatal pathways. Many of the proteins that exhibit significant abundance changes were associated with dopamine signaling, mitochondrial dysfunction, the ubiquitin system, calcium signaling, the oxidative stress response, and apoptosis. A set of proteins with either consistent change across all brain regions or with changes specific to the cortex and cerebellum regions were also detected. One of the interesting proteins is ubiquitin specific protease (USP9X), a deubiquination enzyme involved in the protection of proteins from degradation and promotion of the TGF-β pathway, which exhibited altered abundances in all brain regions. Western blot validation showed similar spatial changes, suggesting that USP9X is potentially associated with neurodegeneration. Together, this study for the first time presents an overall picture of

  20. Maximal tractable subclasses of Allen`s interval algebra: Preliminary report

    SciTech Connect

    Drakengren, T.; Jonsson, P.

    1996-12-31

    This paper continues Nebel and Burckert`s investigation of Allen`s interval algebra by presenting nine more maximal tractable subclasses of the algebra (provided that P {ne} NP), in addition to their previously reported ORD-Horn subclass. Furthermore, twelve tractable subclasses are identified, whose maximality is riot decided. Four of these can express the notion of sequentiality between intervals, which is not possible in the ORD-Horn algebra. The satisfiability algorithm, which is common for all the algebras, is shown to be linear.

  1. The EF-hand Ca(2+)-binding protein super-family: a genome-wide analysis of gene expression patterns in the adult mouse brain.

    PubMed

    Girard, F; Venail, J; Schwaller, B; Celio, M R

    2015-05-21

    In mice, 249 putative members of the superfamily of EF-hand domain Ca(2+)-binding proteins, manifesting great diversity in structure, cellular localization and functions have been identified. Three members in particular, namely, calbindin-D28K, calretinin and parvalbumin, are widely used as markers for specific neuronal subpopulations in different regions of the brain. The aim of the present study was to compile a comprehensive atlas of the gene-expression profiles of the entire EF-hand gene superfamily in the murine brain. This was achieved by a meticulous examination of the in-situ hybridization images in the Allen Brain Atlas database. Topographically, our analysis focused on the olfactory bulb, cerebral cortex (barrel cortex in the primary somatosensory area), basal ganglia, hippocampus, amygdala, thalamus, hypothalamus, cerebellum, midbrain, pons and medulla, and on clearly identifiable sub-structures within each of these areas. The expression profiles of four family-members, namely hippocalcin-like 4, neurocalcin-δ, plastin 3 and tescalcin, that have not been hitherto reported, at either the mRNA (in-situ-hybridization) or the protein (immunohistochemical) levels, are now presented for the first time. The fruit of our analysis is a document in which the gene-expression profiles of all members of the EF-hand family genes are compared, and in which future possible neuronal markers for specific cells/brain areas are identified. The assembled information could afford functional clues to investigators, conducive to further experimental pursuit. PMID:25770968

  2. IMPACT, a protein preferentially expressed in the mouse brain, binds GCN1 and inhibits GCN2 activation.

    PubMed

    Pereira, Cátia M; Sattlegger, Evelyn; Jiang, Hao-Yuan; Longo, Beatriz M; Jaqueta, Carolina B; Hinnebusch, Alan G; Wek, Ronald C; Mello, Luiz E A M; Castilho, Beatriz A

    2005-08-01

    Translational control directed by the eukaryotic translation initiation factor 2 alpha-subunit (eIF2alpha) kinase GCN2 is important for coordinating gene expression programs in response to nutritional deprivation. The GCN2 stress response, conserved from yeast to mammals, is critical for resistance to nutritional deficiencies and for the control of feeding behaviors in rodents. The mouse protein IMPACT has sequence similarities to the yeast YIH1 protein, an inhibitor of GCN2. YIH1 competes with GCN2 for binding to a positive regulator, GCN1. Here, we present evidence that IMPACT is the functional counterpart of YIH1. Overexpression of IMPACT in yeast lowered both basal and amino acid starvation-induced levels of phosphorylated eIF2alpha, as described for YIH1 (31). Overexpression of IMPACT in mouse embryonic fibroblasts inhibited phosphorylation of eIF2alpha by GCN2 under leucine starvation conditions, abolishing expression of its downstream target genes, ATF4 (CREB-2) and CHOP (GADD153). IMPACT bound to the minimal yeast GCN1 segment required for interaction with yeast GCN2 and YIH1 and to native mouse GCN1. At the protein level, IMPACT was detected mainly in the brain. IMPACT was found to be abundant in the majority of hypothalamic neurons. Scattered neurons expressing this protein at higher levels were detected in other regions such as the hippocampus and piriform cortex. The abundance of IMPACT correlated inversely with phosphorylated eIF2alpha levels in different brain areas. These results suggest that IMPACT ensures constant high levels of translation and low levels of ATF4 and CHOP in specific neuronal cells under amino acid starvation conditions. PMID:15937339

  3. Transcriptomic gene-network analysis of exposure to silver nanoparticle reveals potentially neurodegenerative progression in mouse brain neural cells.

    PubMed

    Lin, Ho-Chen; Huang, Chin-Lin; Huang, Yuh-Jeen; Hsiao, I-Lun; Yang, Chung-Wei; Chuang, Chun-Yu

    2016-08-01

    Silver nanoparticles (AgNPs) are commonly used in daily living products. AgNPs can induce inflammatory response in neuronal cells, and potentially develop neurological disorders. The gene networks in response to AgNPs-induced neurodegenerative progression have not been clarified in various brain neural cells. This study found that 3-5nm AgNPs were detectable to enter the nuclei of mouse neuronal cells after 24-h of exposure. The differentially expressed genes in mouse brain neural cells exposure to AgNPs were further identified using Phalanx Mouse OneArray® chip, and permitted to explore the gene network pathway regulating in neurodegenerative progression according to Cytoscape analysis. In focal adhesion pathway of ALT astrocytes, AgNPs induced the gene expression of RasGRF1 and reduced its downstream BCL2 gene for apoptosis. In cytosolic DNA sensing pathway of microglial BV2 cells, AgNPs reduced the gene expression of TREX1 and decreased IRF7 to release pro-inflammatory cytokines for inflammation and cellular activation. In MAPK pathway of neuronal N2a cells, AgNPs elevated GADD45α gene expression, and attenuated its downstream PTPRR gene to interfere with neuron growth and differentiation. Moreover, AgNPs induced beta amyloid deposition in N2a cells, and decreased PSEN1 and PSEN2, which may disrupt calcium homeostasis and presynaptic dysfunction for Alzheimer's disease development. These findings suggested that AgNPs exposure reveals the potency to induce the progression of neurodegenerative disorder. PMID:27131904

  4. DYRK1A promotes dopaminergic neuron survival in the developing brain and in a mouse model of Parkinson's disease

    PubMed Central

    Barallobre, M J; Perier, C; Bové, J; Laguna, A; Delabar, J M; Vila, M; Arbonés, M L

    2014-01-01

    In the brain, programmed cell death (PCD) serves to adjust the numbers of the different types of neurons during development, and its pathological reactivation in the adult leads to neurodegeneration. Dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A (DYRK1A) is a pleiotropic kinase involved in neural proliferation and cell death, and its role during brain growth is evolutionarily conserved. Human DYRK1A lies in the Down syndrome critical region on chromosome 21, and heterozygous mutations in the gene cause microcephaly and neurological dysfunction. The mouse model for DYRK1A haploinsufficiency (the Dyrk1a+/− mouse) presents neuronal deficits in specific regions of the adult brain, including the substantia nigra (SN), although the mechanisms underlying these pathogenic effects remain unclear. Here we study the effect of DYRK1A copy number variation on dopaminergic cell homeostasis. We show that mesencephalic DA (mDA) neurons are generated in the embryo at normal rates in the Dyrk1a haploinsufficient model and in a model (the mBACtgDyrk1a mouse) that carries three copies of Dyrk1a. We also show that the number of mDA cells diminishes in postnatal Dyrk1a+/− mice and increases in mBACtgDyrk1a mice due to an abnormal activity of the mitochondrial caspase9 (Casp9)-dependent apoptotic pathway during the main wave of PCD that affects these neurons. In addition, we show that the cell death induced by 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine (MPTP), a toxin that activates Casp9-dependent apoptosis in mDA neurons, is attenuated in adult mBACtgDyrk1a mice, leading to an increased survival of SN DA neurons 21 days after MPTP intoxication. Finally, we present data indicating that Dyrk1a phosphorylation of Casp9 at the Thr125 residue is the mechanism by which this kinase hinders both physiological and pathological PCD in mDA neurons. These data provide new insight into the mechanisms that control cell death in brain DA neurons and they show that

  5. Brain Invasion by Mouse Hepatitis Virus Depends on Impairment of Tight Junctions and Beta Interferon Production in Brain Microvascular Endothelial Cells

    PubMed Central

    Bleau, Christian; Filliol, Aveline; Samson, Michel

    2015-01-01

    ABSTRACT Coronaviruses (CoVs) have shown neuroinvasive properties in humans and animals secondary to replication in peripheral organs, but the mechanism of neuroinvasion is unknown. The major aim of our work was to evaluate the ability of CoVs to enter the central nervous system (CNS) through the blood-brain barrier (BBB). Using the highly hepatotropic mouse hepatitis virus type 3 (MHV3), its attenuated variant, 51.6-MHV3, which shows low tropism for endothelial cells, and the weakly hepatotropic MHV-A59 strain from the murine coronavirus group, we investigated the virus-induced dysfunctions of BBB in vivo and in brain microvascular endothelial cells (BMECs) in vitro. We report here a MHV strain-specific ability to cross the BBB during acute infection according to their virulence for liver. Brain invasion was observed only in MHV3-infected mice and correlated with enhanced BBB permeability associated with decreased expression of zona occludens protein 1 (ZO-1), VE-cadherin, and occludin, but not claudin-5, in the brain or in cultured BMECs. BBB breakdown in MHV3 infection was not related to production of barrier-dysregulating inflammatory cytokines or chemokines by infected BMECs but rather to a downregulation of barrier protective beta interferon (IFN-β) production. Our findings highlight the importance of IFN-β production by infected BMECs in preserving BBB function and preventing access of blood-borne infectious viruses to the brain. IMPORTANCE Coronaviruses (CoVs) infect several mammals, including humans, and are associated with respiratory, gastrointestinal, and/or neurological diseases. There is some evidence that suggest that human respiratory CoVs may show neuroinvasive properties. Indeed, the severe acute respiratory syndrome coronavirus (SARS-CoV), causing severe acute respiratory syndrome, and the CoVs OC43 and 229E were found in the brains of SARS patients and multiple sclerosis patients, respectively. These findings suggest that hematogenously spread

  6. Generation and Disease Model Relevance of a Manganese Enhanced Magnetic Resonance Imaging-Based NOD/scid-IL-2Rγc(null) Mouse Brain Atlas.

    PubMed

    Sajja, Balasrinivasa R; Bade, Aditya N; Zhou, Biyun; Uberti, Mariano G; Gorantla, Santhi; Gendelman, Howard E; Boska, Michael D; Liu, Yutong

    2016-03-01

    Strain specific mouse brain magnetic resonance imaging (MRI) atlases provide coordinate space linked anatomical registration. This allows longitudinal quantitative analyses of neuroanatomical volumes and imaging metrics for assessing the role played by aging and disease to the central nervous system. As NOD/scid-IL-2Rγ(c)(null) (NSG) mice allow human cell transplantation to study human disease, these animals are used to assess brain morphology. Manganese enhanced MRI (MEMRI) improves contrasts amongst brain components and as such can greatly help identifying a broad number of structures on MRI. To this end, NSG adult mouse brains were imaged in vivo on a 7.0 Tesla MR scanner at an isotropic resolution of 100 μm. A population averaged brain of 19 mice was generated using an iterative alignment algorithm. MEMRI provided sufficient contrast permitting 41 brain structures to be manually labeled. Volumes of 7 humanized mice brain structures were measured by atlas-based segmentation and compared against non-humanized controls. The humanized NSG mice brain volumes were smaller than controls (p < 0.001). Many brain structures of humanized mice were significantly smaller than controls. We posit that the irradiation and cell grafting involved in the creation of humanized mice were responsible for the morphological differences. Six NSG mice without MnCl2 administration were scanned with high resolution T2-weighted MRI and segmented to test broad utility of the atlas. PMID:26556033

  7. Chronic methamphetamine treatment reduces the expression of synaptic plasticity genes and changes their DNA methylation status in the mouse brain.

    PubMed

    Cheng, Min-Chih; Hsu, Shih-Hsin; Chen, Chia-Hsiang

    2015-12-10

    Methamphetamine (METH) is a highly addictive psychostimulant that may cause long-lasting synaptic dysfunction and abnormal gene expression. We aimed to explore the differential expression of synaptic plasticity genes in chronic METH-treated mouse brain. We used the RT(2) Profiler PCR Array and the real-time quantitative PCR to characterize differentially expressed synaptic plasticity genes in the frontal cortex and the hippocampus of chronic METH-treated mice compared with normal saline-treated mice. We further used pyrosequencing to assess DNA methylation changes in the CpG region of the five immediate early genes (IEGs) in chronic METH-treated mouse brain. We detected six downregulated genes in the frontal cortex and the hippocampus of chronic METH-treated mice, including five IEGs (Arc, Egr2, Fos, Klf10, and Nr4a1) and one neuronal receptor gene (Grm1), compared with normal saline-treated group, but only four genes (Arc, Egr2, Fos, and Nr4a1) were confirmed to be different. Furthermore, we found several CpG sites of the Arc and the Fos that had significant changes in DNA methylation status in the frontal cortex of chronic METH-treated mice, while the klf10 and the Nr4a1 that had significant changes in the hippocampus. Our results show that chronic administration of METH may lead to significant downregulation of the IEGs expression in both the frontal cortex and the hippocampus, which may partly account for the molecular mechanism of the action of METH. Furthermore, the changes in DNA methylation status of the IEGs in the brain indicate that an epigenetic mechanism-dependent transcriptional regulation may contribute to METH addiction, which warrants additional study. PMID:26496011

  8. Analysis of gene expression in mouse brain regions after exposure to 1.9 GHz radiofrequency fields

    PubMed Central

    McNamee, James P.; Bellier, Pascale V.; Konkle, Anne T. M.; Thomas, Reuben; Wasoontarajaroen, Siriwat; Lemay, Eric; Gajda, Greg B.

    2016-01-01

    Abstract Purpose: To assess 1.9 GHz radiofrequency (RF) field exposure on gene expression within a variety of discrete mouse brain regions using whole genome microarray analysis. Materials and methods: Adult male C57BL/6 mice were exposed to 1.9 GHz pulse-modulated or continuous-wave RF fields for 4 h/day for 5 consecutive days at whole body average (WBA) specific absorption rates of 0 (sham), ∼0.2 W/kg and ∼1.4 W/kg. Total RNA was isolated from the auditory cortex, amygdala, caudate, cerebellum, hippocampus, hypothalamus, and medial prefrontal cortex and differential gene expression was assessed using Illumina MouseWG-6 (v2) BeadChip arrays. Validation of potentially responding genes was conducted by RT-PCR. Results: When analysis of gene expression was conducted within individual brain regions when controlling the false discovery rate (FDR), no differentially expressed genes were identified relative to the sham control. However, it must be noted that most fold changes among groups were observed to be less than 1.5-fold and this study had limited ability to detect such small changes. While some genes were differentially expressed without correction for multiple-comparisons testing, no consistent pattern of response was observed among different RF-exposure levels or among different RF-modulations. Conclusions: The current study provides the most comprehensive analysis of potential gene expression changes in the rodent brain in response to RF field exposure conducted to date. Within the exposure conditions and limitations of this study, no convincing evidence of consistent changes in gene expression was found in response to 1.9 GHz RF field exposure. PMID:27028625

  9. Global Developmental Gene Expression and Pathway Analysis of Normal Brain Development and Mouse Models of Human Neuronal Migration Defects

    PubMed Central

    Pramparo, Tiziano; Libiger, Ondrej; Jain, Sonia; Li, Hong; Youn, Yong Ha; Hirotsune, Shinji; Schork, Nicholas J.; Wynshaw-Boris, Anthony

    2011-01-01

    Heterozygous LIS1 mutations are the most common cause of human lissencephaly, a human neuronal migration defect, and DCX mutations are the most common cause of X-linked lissencephaly. LIS1 is part of a protein complex including NDEL1 and 14-3-3ε that regulates dynein motor function and microtubule dynamics, while DCX stabilizes microtubules and cooperates with LIS1 during neuronal migration and neurogenesis. Targeted gene mutations of Lis1, Dcx, Ywhae (coding for 14-3-3ε), and Ndel1 lead to neuronal migration defects in mouse and provide models of human lissencephaly, as well as aid the study of related neuro-developmental diseases. Here we investigated the developing brain of these four mutants and wild-type mice using expression microarrays, bioinformatic analyses, and in vivo/in vitro experiments to address whether mutations in different members of the LIS1 neuronal migration complex lead to similar and/or distinct global gene expression alterations. Consistent with the overall successful development of the mutant brains, unsupervised clustering and co-expression analysis suggested that cell cycle and synaptogenesis genes are similarly expressed and co-regulated in WT and mutant brains in a time-dependent fashion. By contrast, focused co-expression analysis in the Lis1 and Ndel1 mutants uncovered substantial differences in the correlation among pathways. Differential expression analysis revealed that cell cycle, cell adhesion, and cytoskeleton organization pathways are commonly altered in all mutants, while synaptogenesis, cell morphology, and inflammation/immune response are specifically altered in one or more mutants. We found several commonly dysregulated genes located within pathogenic deletion/duplication regions, which represent novel candidates of human mental retardation and neurocognitive disabilities. Our analysis suggests that gene expression and pathway analysis in mouse models of a similar disorder or within a common pathway can be used to define

  10. Dietary choline deficiency alters global and gene-specific DNA methylation in the developing hippocampus of mouse fetal brains.

    PubMed

    Niculescu, Mihai D; Craciunescu, Corneliu N; Zeisel, Steven H

    2006-01-01

    The availability of choline during critical periods of fetal development alters hippocampal development and affects memory function throughout life. Choline deficiency during fetal development reduces proliferation and migration of neuronal precursor cells in the mouse fetal hippocampus and these changes are associated with modifications in the protein levels of some cell cycle regulators and early differentiation markers. We fed C57 BL/6 mouse dams diets deficient or normal in choline content from days 12 to 17 of pregnancy, and then collected fetal brains on embryonic day 17. Using laser-capture micro-dissection we harvested cells from the ventricular and subventricular zones of Ammon's horn and from the prime germinal zone of the dentate gyrus (hippocampus). In the ventricular and subventricular zones from the choline-deficient group, we observed increased protein levels for kinase-associated phosphatase (Kap) and for p15(INK4b) (two cell cycle inhibitors). In the dentate gyrus, we observed increased levels of calretinin (an early marker of neuronal differentiation). In fetal brain from mothers fed a choline-deficient diet, DNA global methylation was decreased in the ventricular and subventricular zones of Ammon's horn. We also observed decreased gene-specific DNA methylation of the gene (Cdkn3) that encodes for Kap, correlating with increased expression of this protein. This was not the case for p15(INK4b) or calretinin (Cdkn2b and Calb2, respectively). These data suggest that choline deficiency-induced changes in gene methylation could mediate the expression of a cell cycle regulator and thereby alter brain development. PMID:16394266

  11. 4. Historic American Buildings Survey Harold Allen, Photographer 19 June ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Historic American Buildings Survey Harold Allen, Photographer 19 June 1965 SANCTUARY FROM ENTRANCE - Holy Trinity Russian & Greek Orthodox Church, 1121 North Leavitt Street, Chicago, Cook County, IL

  12. 5. Historic American Buildings Survey Harold Allen, Photographer 19 June ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Historic American Buildings Survey Harold Allen, Photographer 19 June 1965 ICONOSTASIS AND CHANDELIER - Holy Trinity Russian & Greek Orthodox Church, 1121 North Leavitt Street, Chicago, Cook County, IL

  13. Selective Inhibition of Alpha/Beta-Hydrolase Domain 6 Attenuates Neurodegeneration, Alleviates Blood Brain Barrier Breakdown, and Improves Functional Recovery in a Mouse Model of Traumatic Brain Injury

    PubMed Central

    Tchantchou, Flaubert

    2013-01-01

    Abstract 2-arachidonylglycerol (2-AG) is the most abundant endocannabinoid in the central nervous system and is elevated after brain injury. Because of its rapid hydrolysis, however, the compensatory and neuroprotective effect of 2-AG is short-lived. Although inhibition of monoacylglycerol lipase, a principal enzyme for 2-AG degradation, causes a robust increase of brain levels of 2-AG, it also leads to cannabinoid receptor desensitization and behavioral tolerance. Alpha/beta hydrolase domain 6 (ABHD6) is a novel 2-AG hydrolytic enzyme that accounts for a small portion of 2-AG hydrolysis, but its inhibition is believed to elevate the levels of 2-AG within the therapeutic window without causing side effect. Using a mouse model of traumatic brain injury (TBI), we found that post-insult chronic treatment with a selective ABHD6 inhibitor WWL70 improved motor coordination and working memory performance. WWL70 treatment reduced lesion volume in the cortex and neurodegeneration in the dendate gyrus. It also suppressed the expression of inducible nitric oxide synthase and cyclooxygenase-2 and enhanced the expression of arginase-1 in the ipsilateral cortex at 3 and 7 days post-TBI, suggesting microglia/macrophages shifted from M1 to M2 phenotypes after treatment. The blood-brain barrier dysfunction at 3 and 7 days post-TBI was dramatically reduced. Furthermore, the beneficial effects of WWL70 involved up-regulation and activation of cannabinoid type 1 and type 2 receptors and were attributable to the phosphorylation of the extracellular signal regulated kinase and the serine/threonine protein kinase AKT. This study indicates that the fine-tuning of 2-AG signaling by modulating ABHD6 activity can exert anti-inflammatory and neuroprotective effects in TBI. PMID:23151067

  14. Selective inhibition of alpha/beta-hydrolase domain 6 attenuates neurodegeneration, alleviates blood brain barrier breakdown, and improves functional recovery in a mouse model of traumatic brain injury.

    PubMed

    Tchantchou, Flaubert; Zhang, Yumin

    2013-04-01

    2-arachidonylglycerol (2-AG) is the most abundant endocannabinoid in the central nervous system and is elevated after brain injury. Because of its rapid hydrolysis, however, the compensatory and neuroprotective effect of 2-AG is short-lived. Although inhibition of monoacylglycerol lipase, a principal enzyme for 2-AG degradation, causes a robust increase of brain levels of 2-AG, it also leads to cannabinoid receptor desensitization and behavioral tolerance. Alpha/beta hydrolase domain 6 (ABHD6) is a novel 2-AG hydrolytic enzyme that accounts for a small portion of 2-AG hydrolysis, but its inhibition is believed to elevate the levels of 2-AG within the therapeutic window without causing side effect. Using a mouse model of traumatic brain injury (TBI), we found that post-insult chronic treatment with a selective ABHD6 inhibitor WWL70 improved motor coordination and working memory performance. WWL70 treatment reduced lesion volume in the cortex and neurodegeneration in the dendate gyrus. It also suppressed the expression of inducible nitric oxide synthase and cyclooxygenase-2 and enhanced the expression of arginase-1 in the ipsilateral cortex at 3 and 7 days post-TBI, suggesting microglia/macrophages shifted from M1 to M2 phenotypes after treatment. The blood-brain barrier dysfunction at 3 and 7 days post-TBI was dramatically reduced. Furthermore, the beneficial effects of WWL70 involved up-regulation and activation of cannabinoid type 1 and type 2 receptors and were attributable to the phosphorylation of the extracellular signal regulated kinase and the serine/threonine protein kinase AKT. This study indicates that the fine-tuning of 2-AG signaling by modulating ABHD6 activity can exert anti-inflammatory and neuroprotective effects in TBI. PMID:23151067

  15. In vivo Postnatal Electroporation and Time-lapse Imaging of Neuroblast Migration in Mouse Acute Brain Slices

    PubMed Central

    Oudin, Madeleine Julie; Doherty, Patrick; Lalli, Giovanna

    2013-01-01

    The subventricular zone (SVZ) is one of the main neurogenic niches in the postnatal brain. Here, neural progenitors proliferate and give rise to neuroblasts able to move along the rostral migratory stream (RMS) towards the olfactory bulb (OB). This long-distance migration is required for the subsequent maturation of newborn neurons in the OB, but the molecular mechanisms regulating this process are still unclear. Investigating the signaling pathways controlling neuroblast motility may not only help understand a fundamental step in neurogenesis, but also have therapeutic regenerative potential, given the ability of these neuroblasts to target brain sites affected by injury, stroke, or degeneration. In this manuscript we describe a detailed protocol for in vivo postnatal electroporation and subsequent time-lapse imaging of neuroblast migration in the mouse RMS. Postnatal electroporation can efficiently transfect SVZ progenitor cells, which in turn generate neuroblasts migrating along the RMS. Using confocal spinning disk time-lapse microscopy on acute brain slice cultures, neuroblast migration can be monitored in an environment closely resembling the in vivo condition. Moreover, neuroblast motility can be tracked and quantitatively analyzed. As an example, we describe how to use in vivo postnatal electroporation of a GFP-expressing plasmid to label and visualize neuroblasts migrating along the RMS. Electroporation of shRNA or CRE recombinase-expressing plasmids in conditional knockout mice employing the LoxP system can also be used to target genes of interest. Pharmacological manipulation of acute brain slice cultures can be performed to investigate the role of different signaling molecules in neuroblast migration. By coupling in vivo electroporation with time-lapse imaging, we hope to understand the molecular mechanisms controlling neuroblast motility and contribute to the development of novel approaches to promote brain repair. PMID:24326479

  16. Minerva Allen, "A Few Good Words": Interview with Minerva Allen, October 25, 1985.

    ERIC Educational Resources Information Center

    Scholer, Bo

    1987-01-01

    Minerva Allen, Assinibone tribal historian and mediator in dealings with off-reservation entities, talks about her poetry, prose, and songs; and her efforts to secure the continuance of tribal languages and traditions. Her role as an educator and writer of textbooks is also discussed. Selected poetry is included. (JMM)

  17. Iminosugar-based inhibitors of glucosylceramide synthase increase brain glycosphingolipids and survival in a mouse model of Sandhoff disease.

    PubMed

    Ashe, Karen M; Bangari, Dinesh; Li, Lingyun; Cabrera-Salazar, Mario A; Bercury, Scott D; Nietupski, Jennifer B; Cooper, Christopher G F; Aerts, Johannes M F G; Lee, Edward R; Copeland, Diane P; Cheng, Seng H; Scheule, Ronald K; Marshall, John

    2011-01-01

    The neuropathic glycosphingolipidoses are a subgroup of lysosomal storage disorders for which there are no effective therapies. A potential approach is substrate reduction therapy using inhibitors of glucosylceramide synthase (GCS) to decrease the synthesis of glucosylceramide and related glycosphingolipids that accumulate in the lysosomes. Genz-529468, a blood-brain barrier-permeant iminosugar-based GCS inhibitor, was used to evaluate this concept in a mouse model of Sandhoff disease, which accumulates the glycosphingolipid GM2 in the visceral organs and CNS. As expected, oral administration of the drug inhibited hepatic GM2 accumulation. Paradoxically, in the brain, treatment resulted in a slight increase in GM2 levels and a 20-fold increase in glucosylceramide levels. The increase in brain glucosylceramide levels might be due to concurrent inhibition of the non-lysosomal glucosylceramidase, Gba2. Similar results were observed with NB-DNJ, another iminosugar-based GCS inhibitor. Despite these unanticipated increases in glycosphingolipids in the CNS, treatment nevertheless delayed the loss of motor function and coordination and extended the lifespan of the Sandhoff mice. These results suggest that the CNS benefits observed in the Sandhoff mice might not necessarily be due to substrate reduction therapy but rather to off-target effects. PMID:21738789

  18. Iminosugar-Based Inhibitors of Glucosylceramide Synthase Increase Brain Glycosphingolipids and Survival in a Mouse Model of Sandhoff Disease

    PubMed Central

    Ashe, Karen M.; Bangari, Dinesh; Li, Lingyun; Cabrera-Salazar, Mario A.; Bercury, Scott D.; Nietupski, Jennifer B.; Cooper, Christopher G. F.; Aerts, Johannes M. F. G.; Lee, Edward R.; Copeland, Diane P.; Cheng, Seng H.; Scheule, Ronald K.; Marshall, John

    2011-01-01

    The neuropathic glycosphingolipidoses are a subgroup of lysosomal storage disorders for which there are no effective therapies. A potential approach is substrate reduction therapy using inhibitors of glucosylceramide synthase (GCS) to decrease the synthesis of glucosylceramide and related glycosphingolipids that accumulate in the lysosomes. Genz-529468, a blood-brain barrier-permeant iminosugar-based GCS inhibitor, was used to evaluate this concept in a mouse model of Sandhoff disease, which accumulates the glycosphingolipid GM2 in the visceral organs and CNS. As expected, oral administration of the drug inhibited hepatic GM2 accumulation. Paradoxically, in the brain, treatment resulted in a slight increase in GM2 levels and a 20-fold increase in glucosylceramide levels. The increase in brain glucosylceramide levels might be due to concurrent inhibition of the non-lysosomal glucosylceramidase, Gba2. Similar results were observed with NB-DNJ, another iminosugar-based GCS inhibitor. Despite these unanticipated increases in glycosphingolipids in the CNS, treatment nevertheless delayed the loss of motor function and coordination and extended the lifespan of the Sandhoff mice. These results suggest that the CNS benefits observed in the Sandhoff mice might not necessarily be due to substrate reduction therapy but rather to off-target effects. PMID:21738789

  19. Absence of aryl hydrocarbon receptors increases endogenous kynurenic acid levels and protects mouse brain against excitotoxic insult and oxidative stress.

    PubMed

    García-Lara, Lucia; Pérez-Severiano, Francisca; González-Esquivel, Dinora; Elizondo, Guillermo; Segovia, José

    2015-09-01

    L-kynurenine (Kyn) is a key element of tryptophan metabolism; it is enzymatically converted by kynurenine aminotransferase II (KAT II) to kynurenic acid (KYNA), which acts as an antagonist to the NMDA receptor-glycine site. Kyn is also an endogenous ligand of the aryl hydrocarbon receptor (AhR), a transcription factor that regulates the expression of a diverse set of genes. KYNA levels are reduced in several regions of the brain of Huntington's disease (HD) patients. The present work uses an AhR-null mouse and age-matched wild-type mice to determine the effect of the absence of AhR on KYNA availability. We found that, in AhR-null mice, there is an increase of KYNA levels in specific brain areas associated with higher expression of KAT II. Moreover, we induced an excitotoxic insult by intrastriatal administration of quinolinic acid, a biochemical model of HD, in both AhR-null and wild-type mice to evaluate the neurological damage as well as the oxidative stress caused by the lesion. The present work demonstrates that, in specific brain regions of AhR-null mice, the levels of KYNA are increased and that this induces a neuroprotective effect against neurotoxic insults. Moreover, AhR-null mice also show improved motor performance in the rotarod test, indicating a constitutive protection of striatal tissue. PMID:26013807

  20. Mining the brain metabolome to understand behavioural disruptions induced in mouse fed Hypochoeris radicata (L.), a neurotoxic plant for horse.

    PubMed

    Domange, Céline; Schroeder, Henri; Violle, Nicolas; Peiffer, Julie; Canlet, Cécile; Paris, Alain; Priymenko, Nathalie

    2013-09-01

    Mining the brain metabolome to understand behavioural disruptions induced in mouse fed Hypochoeris radicata (L.), a neurotoxic plant for horse. C57BL/6J mice orally exposed to 9% H. radicata (HR) are metabolically competent laboratory animals which can be used as model of Australian stringhalt, a neurological horse disease induced by HR ingestion. So, the present study was conducted to assess the brain metabolome and the behavioural performances of mice fed with a 9%-HR-based diet for 21 days. By the end of the period of exposure, mice were investigated for motor activity and coordination, anxiety level, learning and memory performances, social behaviour and rewarding properties of for the plant. Thus, the animals were sacrificed and the brain metabolome was studied using (1)H NMR spectroscopy. HR-exposed mice displayed a motor hyperactivity in several tasks, a less resignation in the forced swimming test, and paradigm place preference for the plant. A bootstrap-based regularized canonical analysis performed on merged behavioural and metabolic datasets showed a clear relationship in HR-treated mice between an increase in cerebral scyllo-inositol, an increased motor activity, and seemingly rewarding properties of HR. These results underlie the interest of such a dual approach to characterize functional end-points of a pathophysiological model of the Australian stringhalt in equine species. PMID:23811200

  1. Impaired neurogenesis, neuronal loss, and brain functional deficits in the APPxPS1-Ki mouse model of Alzheimer's disease.

    PubMed

    Faure, A; Verret, L; Bozon, B; El Tannir El Tayara, N; Ly, M; Kober, F; Dhenain, M; Rampon, C; Delatour, B

    2011-03-01

    Amyloid-β peptide species accumulating in the brain of patients with Alzheimer's disease are assumed to have a neurotoxic action and hence to be key actors in the physiopathology of this neurodegenerative disease. We have studied a new mouse mutant (APPxPS1-Ki) line developing both early-onset brain amyloid-β deposition and, in contrast to most of transgenic models, subsequent neuronal loss. In 6-month-old mice, we observed cell layer atrophies in the hippocampus, together with a dramatic decrease in neurogenesis and a reduced brain blood perfusion as measured in vivo by magnetic resonance imaging. In these mice, neurological impairments and spatial hippocampal dependent memory deficits were also substantiated and worsened with aging. We described here a phenotype of APPxPS1-Ki mice that summarizes several neuroanatomical alterations and functional deficits evocative of the human pathology. Such a transgenic model that displays strong face validity might be highly beneficial to future research on AD physiopathogeny and therapeutics. PMID:19398247

  2. Docosahexaenoic Acid Conjugation Enhances Distribution and Safety of siRNA upon Local Administration in Mouse Brain.

    PubMed

    Nikan, Mehran; Osborn, Maire F; Coles, Andrew H; Godinho, Bruno Mdc; Hall, Lauren M; Haraszti, Reka A; Hassler, Matthew R; Echeverria, Dimas; Aronin, Neil; Khvorova, Anastasia

    2016-01-01

    The use of siRNA-based therapies for the treatment of neurodegenerative disease requires efficient, nontoxic distribution to the affected brain parenchyma, notably the striatum and cortex. Here, we describe the synthesis and activity of a fully chemically modified siRNA that is directly conjugated to docosahexaenoic acid (DHA), the most abundant polyunsaturated fatty acid in the mammalian brain. DHA conjugation enables enhanced siRNA retention throughout both the ipsilateral striatum and cortex following a single, intrastriatal injection (ranging from 6-60 μg). Within these tissues, DHA conjugation promotes internalization by both neurons and astrocytes. We demonstrate efficient and specific silencing of Huntingtin mRNA expression in both the ipsilateral striatum (up to 73%) and cortex (up to 51%) after 1 week. Moreover, following a bilateral intrastriatal injection (60 μg), we achieve up to 80% silencing of a secondary target, Cyclophilin B, at both the mRNA and protein level. Importantly, DHA-hsiRNAs do not induce neural cell death or measurable innate immune activation following administration of concentrations over 20 times above the efficacious dose. Thus, DHA conjugation is a novel strategy for improving siRNA activity in mouse brain, with potential to act as a new therapeutic platform for the treatment of neurodegenerative disorders. PMID:27504598

  3. DNA variation and brain region-specific expression profiles exhibit different relationships between inbred mouse strains: implications for eQTL mapping studies

    PubMed Central

    Hovatta, Iiris; Zapala, Matthew A; Broide, Ron S; Schadt, Eric E; Libiger, Ondrej; Schork, Nicholas J; Lockhart, David J; Barlow, Carrolee

    2007-01-01

    Background Expression quantitative trait locus (eQTL) mapping is used to find loci that are responsible for the transcriptional activity of a particular gene. In recent eQTL studies, expression profiles were derived from either homogenized whole brain or collections of large brain regions. However, the brain is a very heterogeneous organ, and expression profiles of different brain regions vary significantly. Because of the importance and potential power of eQTL studies in identifying regulatory networks, we analyzed gene expression patterns in different brain regions from multiple inbred mouse strains and investigated the implications for the design and analysis of eQTL studies. Results Gene expression profiles of five brain regions in six inbred mouse strains were studied. Few genes exhibited a significant strain-specific expression pattern, whereas a large number of genes exhibited brain region-specific patterns. We constructed phylogenetic trees based on the expression relationships between the strains and compared them with a DNA-level relationship tree. The trees based on the expression of strain-specific genes were constant across brain regions and mirrored DNA-level variation. However, the trees based on region-specific genes exhibited a different set of strain relationships, depending on the brain region. An eQTL analysis showed enrichment of cis-acting regulators among strain-specific genes, whereas brain region-specific genes appear to be mainly regulated by trans-acting elements. Conclusion Our results suggest that many regulatory networks are highly brain region specific and indicate the importance of conducting eQTL mapping studies using data from brain regions or tissues that are physiologically and phenotypically relevant to the trait of interest. PMID:17324278

  4. SETI Surveys on the Allen Telescope Array

    NASA Astrophysics Data System (ADS)

    Backus, Peter R.; Kilsdonk, T. N.; ATA Team

    2009-01-01

    The Allen Telescope Array (ATA-42) is a centimeter-wave array of 42 six-meter dishes that allows simultaneous SETI and other radio astronomy projects. In this paper we report on initial SETI observations using several observation and RFI mitigation strategies. We conducted both "targeted” observations of selected stars and "sky survey” observations of areas of the sky. Some observations were done with the SETI project directing the pointing of the array and others were "commensal,” in a direction selected by another project. In both modes, SETI observations used an independent RF tuning and two synthesized beams pointing at stars or positions in the field of view and tuned to the same frequency band. Results of the two SETI observations were compared and used to excise interference. In some observations, each beam had a null positioned at the center of the other beam. In the long term, we plan to observe one million target stars and survey large sections of the galactic plane over the frequency range from 1 GHz to 10 GHz. Much of this work may be done in parallel with other large-scale surveys. The first phase of the ATA was funded through generous grants from the Paul G. Allen Family Foundation. UC Berkeley, the SETI Institute, the National Science Foundation (Grant No. 0540599), Sun Microsystems, Xilinx, Nathan Myhrvold, Greg Papadopoulos, and other corporations and individual donors contributed additional funding.

  5. Brain

    MedlinePlus

    ... will return after updating. Resources Archived Modules Updates Brain Cerebrum The cerebrum is the part of the ... the outside of the brain and spinal cord. Brain Stem The brain stem is the part of ...

  6. Neuroprotective effect of the active components of three Chinese herbs on brain iron load in a mouse model of Alzheimer’s disease

    PubMed Central

    DONG, XIAN-HUI; GAO, WEI-JUAN; KONG, WEI-NA; XIE, HONG-LIN; PENG, YAN; SHAO, TIE-MEI; YU, WEN-GUO; CHAI, XI-QING

    2015-01-01

    Alzheimer’s disease (AD) is a neurodegenerative brain disorder and the most common cause of dementia. New treatments for AD are required due to its increasing prevalence in aging populations. The present study evaluated the effects of the active components of Epimedium, Astragalus and Radix Puerariae on learning and memory impairment, β-amyloid (Aβ) reduction and brain iron load in an APPswe/PS1ΔE9 transgenic mouse model of AD. Increasing evidence indicates that a disturbance of normal iron homeostasis may contribute to the pathology of AD. However, the underlying mechanisms resulting in abnormal iron load in the AD brain remain unclear. It has been hypothesized that the brain iron load is influenced by the deregulation of certain proteins associated with brain iron metabolism, including divalent metal transporter 1 (DMT1) and ferroportin 1 (FPN1). The present study investigated the effects of the active components of Epimedium, Astragalus and Radix Puerariae on the expression levels of DMT1 and FPN1. The treatment with the active components reduced cognitive deficits, inhibited Aβ plaque accumulation, reversed Aβ burden and reduced the brain iron load in AD model mice. A significant increase was observed in the levels of DMT1-iron-responsive element (IRE) and DMT1-nonIRE in the hippocampus of the AD mouse brain, which was reduced by treatment with the active components. In addition, the levels of FPN1 were significantly reduced in the hippocampus of the AD mouse brain compared with those of control mice, and these levels were increased following treatment with the active components. Thus, the present study indicated that the active components of Epimedium, Astragalus and Radix Puerariae may exert a neuroprotective effect against AD by reducing iron overload in the AD brain and may provide a novel approach for the development of drugs for the treatment of AD. PMID:25780429

  7. Proteome rearrangements after auditory learning: high-resolution profiling of synapse-enriched protein fractions from mouse brain.

    PubMed

    Kähne, Thilo; Richter, Sandra; Kolodziej, Angela; Smalla, Karl-Heinz; Pielot, Rainer; Engler, Alexander; Ohl, Frank W; Dieterich, Daniela C; Seidenbecher, Constanze; Tischmeyer, Wolfgang; Naumann, Michael; Gundelfinger, Eckart D

    2016-07-01

    Learning and memory processes are accompanied by rearrangements of synaptic protein networks. While various studies have demonstrated the regulation of individual synaptic proteins during these processes, much less is known about the complex regulation of synaptic proteomes. Recently, we reported that auditory discrimination learning in mice is associated with a relative down-regulation of proteins involved in the structural organization of synapses in various brain regions. Aiming at the identification of biological processes and signaling pathways involved in auditory memory formation, here, a label-free quantification approach was utilized to identify regulated synaptic junctional proteins and phosphoproteins in the auditory cortex, frontal cortex, hippocampus, and striatum of mice 24 h after the learning experiment. Twenty proteins, including postsynaptic scaffolds, actin-remodeling proteins, and RNA-binding proteins, were regulated in at least three brain regions pointing to common, cross-regional mechanisms. Most of the detected synaptic proteome changes were, however, restricted to individual brain regions. For example, several members of the Septin family of cytoskeletal proteins were up-regulated only in the hippocampus, while Septin-9 was down-regulated in the hippocampus, the frontal cortex, and the striatum. Meta analyses utilizing several databases were employed to identify underlying cellular functions and biological pathways. Data are available via ProteomeExchange with identifier PXD003089. How does the protein composition of synapses change in different brain areas upon auditory learning? We unravel discrete proteome changes in mouse auditory cortex, frontal cortex, hippocampus, and striatum functionally implicated in the learning process. We identify not only common but also area-specific biological pathways and cellular processes modulated 24 h after training, indicating individual contributions of the regions to memory processing. PMID

  8. Coexistence of passive and proton antiporter-mediated processes in nicotine transport at the mouse blood-brain barrier.

    PubMed

    Cisternino, Salvatore; Chapy, Hélène; André, Pascal; Smirnova, Maria; Debray, Marcel; Scherrmann, Jean-Michel

    2013-04-01

    Nicotine, the main tobacco alkaloid leading to smoking dependence, rapidly crosses the blood-brain barrier (BBB) to become concentrated in the brain. Recently, it has been shown that nicotine interacts with some organic cation transporters (OCT), but their influence at the BBB has not yet been assessed in vivo. In this study, we characterized the transport of nicotine at the mouse luminal BBB by in situ brain perfusion. Its influx was saturable and followed the Michaelis-Menten kinetics (K(m)=2.60 mM, V(max)=37.60 nmol/s/g at pH 7.40). At its usual micromolar concentrations in the plasma, most (79%) of the net transport of nicotine at the BBB was carrier-mediated, while passive diffusion accounted for 21%. Studies on knockout mice showed that the OCT Oct1-3, P-gp, and Bcrp did not alter [(3)H]-nicotine transport at the BBB. Neither did inhibiting the transporters Mate1, Octn, or Pmat. The in vivo manipulation of intracellular and/or extracellular pH, the chemical inhibition profile, and the trans-stimulation experiments demonstrated that the nicotine transporter at the BBB shared the properties of the clonidine/proton antiporter. The molecular features of this proton-coupled antiporter have not yet been identified, but it also transports diphenhydramine and tramadol and helps nicotine cross the BBB at a faster rate and to a greater extent. The pharmacological inhibition of this nicotine/proton antiporter could represent a new strategy to reduce nicotine uptake by the brain and thus help curb addiction to smoking. PMID:23212563

  9. Human Mesenchymal Stem Cells Genetically Engineered to Overexpress Brain-derived Neurotrophic Factor Improve Outcomes in Huntington's Disease Mouse Models.

    PubMed

    Pollock, Kari; Dahlenburg, Heather; Nelson, Haley; Fink, Kyle D; Cary, Whitney; Hendrix, Kyle; Annett, Geralyn; Torrest, Audrey; Deng, Peter; Gutierrez, Joshua; Nacey, Catherine; Pepper, Karen; Kalomoiris, Stefanos; D Anderson, Johnathon; McGee, Jeannine; Gruenloh, William; Fury, Brian; Bauer, Gerhard; Duffy, Alexandria; Tempkin, Theresa; Wheelock, Vicki; Nolta, Jan A

    2016-05-01

    Huntington's disease (HD) is a fatal degenerative autosomal dominant neuropsychiatric disease that causes neuronal death and is characterized by progressive striatal and then widespread brain atrophy. Brain-derived neurotrophic factor (BDNF) is a lead candidate for the treatment of HD, as it has been shown to prevent cell death and to stimulate the growth and migration of new neurons in the brain in transgenic mouse models. BDNF levels are reduced in HD postmortem human brain. Previous studies have shown efficacy of mesenchymal stem/stromal cells (MSC)/BDNF using murine MSCs, and the present study used human MSCs to advance the therapeutic potential of the MSC/BDNF platform for clinical application. Double-blinded studies were performed to examine the effects of intrastriatally transplanted human MSC/BDNF on disease progression in two strains of immune-suppressed HD transgenic mice: YAC128 and R6/2. MSC/BDNF treatment decreased striatal atrophy in YAC128 mice. MSC/BDNF treatment also significantly reduced anxiety as measured in the open-field assay. Both MSC and MSC/BDNF treatments induced a significant increase in neurogenesis-like activity in R6/2 mice. MSC/BDNF treatment also increased the mean lifespan of the R6/2 mice. Our genetically modified MSC/BDNF cells set a precedent for stem cell-based neurotherapeutics and could potentially be modified for other neurodegenerative disorders such as amyotrophic lateral sclerosis, Alzheimer's disease, and some forms of Parkinson's disease. These cells provide a platform delivery system for future studies involving corrective gene-editing strategies. PMID:26765769

  10. Human Mesenchymal Stem Cells Genetically Engineered to Overexpress Brain-derived Neurotrophic Factor Improve Outcomes in Huntington's Disease Mouse Models

    PubMed Central

    Pollock, Kari; Dahlenburg, Heather; Nelson, Haley; Fink, Kyle D; Cary, Whitney; Hendrix, Kyle; Annett, Geralyn; Torrest, Audrey; Deng, Peter; Gutierrez, Joshua; Nacey, Catherine; Pepper, Karen; Kalomoiris, Stefanos; D Anderson, Johnathon; McGee, Jeannine; Gruenloh, William; Fury, Brian; Bauer, Gerhard; Duffy, Alexandria; Tempkin, Theresa; Wheelock, Vicki; Nolta, Jan A

    2016-01-01

    Huntington's disease (HD) is a fatal degenerative autosomal dominant neuropsychiatric disease that causes neuronal death and is characterized by progressive striatal and then widespread brain atrophy. Brain-derived neurotrophic factor (BDNF) is a lead candidate for the treatment of HD, as it has been shown to prevent cell death and to stimulate the growth and migration of new neurons in the brain in transgenic mouse models. BDNF levels are reduced in HD postmortem human brain. Previous studies have shown efficacy of mesenchymal stem/stromal cells (MSC)/BDNF using murine MSCs, and the present study used human MSCs to advance the therapeutic potential of the MSC/BDNF platform for clinical application. Double-blinded studies were performed to examine the effects of intrastriatally transplanted human MSC/BDNF on disease progression in two strains of immune-suppressed HD transgenic mice: YAC128 and R6/2. MSC/BDNF treatment decreased striatal atrophy in YAC128 mice. MSC/BDNF treatment also significantly reduced anxiety as measured in the open-field assay. Both MSC and MSC/BDNF treatments induced a significant increase in neurogenesis-like activity in R6/2 mice. MSC/BDNF treatment also increased the mean lifespan of the R6/2 mice. Our genetically modified MSC/BDNF cells set a precedent for stem cell-based neurotherapeutics and could potentially be modified for other neurodegenerative disorders such as amyotrophic lateral sclerosis, Alzheimer's disease, and some forms of Parkinson's disease. These cells provide a platform delivery system for future studies involving corrective gene-editing strategies. PMID:26765769

  11. Non-Laser Capture Microscopy Approach for the Microdissection of Discrete Mouse Brain Regions for Total RNA Isolation and Downstream Next-Generation Sequencing and Gene Expression Profiling

    PubMed Central

    Atkins, Norman; Miller, Charlie M.; Owens, Joseph R.; Turek, Fred W.

    2011-01-01

    As technological platforms, approaches such as next-generation sequencing, microarray, and qRT-PCR have great promise for expanding our understanding of the breadth of molecular regulation. Newer approaches such as high-resolution RNA sequencing (RNA-Seq)1 provides new and expansive information about tissue- or state-specific expression such as relative transcript levels, alternative splicing, and micro RNAs2-4. Prospects for employing the RNA-Seq method in comparative whole transcriptome profiling5 within discrete tissues or between phenotypically distinct groups of individuals affords new avenues for elucidating molecular mechanisms involved in both normal and abnormal physiological states. Recently, whole transcriptome profiling has been performed on human brain tissue, identifying gene expression differences associated with disease progression6. However, the use of next-generation sequencing has yet to be more widely integrated into mammalian studies. Gene expression studies in mouse models have reported distinct profiles within various brain nuclei using laser capture microscopy (LCM) for sample excision7,8. While LCM affords sample collection with single-cell and discrete brain region precision, the relatively low total RNA yields from the LCM approach can be prohibitive to RNA-Seq and other profiling approaches in mouse brain tissues and may require sub-optimal sample amplification steps. Here, a protocol is presented for microdissection and total RNA extraction from discrete mouse brain regions. Set-diameter tissue corers are used to isolate 13 tissues from 750-μm serial coronal sections of an individual mouse brain. Tissue micropunch samples are immediately frozen and archived. Total RNA is obtained from the samples using magnetic bead-enabled total RNA isolation technology. Resulting RNA samples have adequate yield and quality for use in downstream expression profiling. This microdissection strategy provides a viable option to existing sample collection

  12. Mapping of endogenous morphine-like compounds in the adult mouse brain: Evidence of their localization in astrocytes and GABAergic cells.

    PubMed

    Laux, Alexis; Muller, Arnaud H; Miehe, Monique; Dirrig-Grosch, Sylvie; Deloulme, Jean Christophe; Delalande, François; Stuber, Denise; Sage, Dominique; Van Dorsselaer, Alain; Poisbeau, Pierrick; Aunis, Dominique; Goumon, Yannick

    2011-08-15

    Endogenous morphine, morphine-6-glucuronide, and codeine, which are structurally identical to vegetal alkaloids, can be synthesized by mammalian cells from dopamine. However, the role of brain endogenous morphine and its derivative compounds is a matter of debate, and knowledge about its distribution is lacking. In this study, by using a validated antibody, we describe a precise mapping of endogenous morphine-like compounds (morphine and/or its glucuronides and/or codeine) in the mouse brain. First, a mass spectrometry approach confirmed the presence of morphine and codeine in mouse brain, but also, of morphine-6-glucuronide and morphine-3-glucuronide representing two metabolites of morphine. Second, lig