Science.gov

Sample records for allequash creek wetland

  1. Mercury cycling in the Allequash Creek watershed, northern Wisconsin

    USGS Publications Warehouse

    Krabbenhoft, D.P.; Benoit, J.M.; Babiarz, C.L.; Hurley, J.P.; Andren, A.W.

    1995-01-01

    Although there have been recent significant gains in our understanding of mercury (Hg) cycling in aquatic environments, few studies have addressed Hg cycling on a watershed scale in particular, attention to Hg species transfer between watershed components (upland soils, groundwater, wetlands, streams, and lakes) has been lacking. This study describes spatial and temporal distributions of total Hg and MeHg among watershed components of the Allequash Creek watershed (northern Wisconsin, USA). Substantial increases in total Hg and MeHg were observed as groundwater discharged through peat to form springs that flow into the stream, or rivulets that drain across the surface of the wetland. This increase was concomitant with increases in DOC. During fall, when the Allequash Creek wetland released a substantial amount of DOC to the stream, a 23 fold increase in total Hg concentrations was observed along the entire length of the stream. Methylmercury, however, did not show a similar response. Substantial variability was observed in total Hg (0.9 to 6.3) and MeHg (<0.02 to 0.33) concentrations during synoptic surveys of the entire creek. For the Allequash Creek watershed, the contributing groundwater basin is about 50% larger than the topographic drainage basin. Total Hg concentrations in groundwater, the area of the groundwater basin, and annual stream flow data give a watershed-yield rate of 12 mg/km2/d, which equates to a retention rate of 96%. The calculated MeHg yield rate for the wetland area is 0.6 to 1.5 mg/km2/d, a value that is 3-6 fold greater than the atmospheric deposition rate.

  2. Variability of isotope and major ion chemistry in the Allequash Basin, Wisconsin

    USGS Publications Warehouse

    Walker, John F.; Hunt, Randall J.; Bullen, Thomas D.; Krabbenhoft, David P.; Kendall, Carol

    2003-01-01

    As part of ongoing research conducted at one of the U.S. Geological Survey's Water, Energy, and Biogeochem-ical Budgets sites, work was undertaken to describe the spatial and temporal variability of stream and ground water isotopic composition and cation chemistry in the Trout Lake watershed, to relate the variability to the watershed flow system, and to identify the linkages of geochemical evolution and source of water in the watershed. The results are based on periodic sampling of sites at two scales along Allequash Creek, a small headwater stream in northern Wisconsin. Based on this sampling, there are distinct water isotopic and geochemical differences observed at a smaller hillslope scale and the larger Allequash Creek scale. The variability was larger than expected for this simple watershed, and is likely to be seen in more complex basins. Based on evidence from multiple isotopes and stream chemistry, the flow system arises from three main source waters (terrestrial-, lake-, or wetland-derived recharge) that can be identified along any flowpath using water isotopes together with geochemical characteristics such as iron concentrations. The ground water chemistry demonstrates considerable spatial variability that depends mainly on the flow-path length and water mobility through the aquifer. Calcium concentrations increase with increasing flowpath length, whereas strontium isotope ratios increase with increasing extent of stagnation in either the unsaturated or saturated zones as waters move from source to sink. The flowpath distribution we identify provides important constraints on the calibration of ground water flow models such as that undertaken by Pint et al. (this issue).

  3. Flowpath delineation and ground water age, Allequash Basin, Wisconsin

    USGS Publications Warehouse

    Pint, Christine D.; Hunt, Randall J.; Anderson, Mary P.

    2003-01-01

    An analysis of ground water flowpaths to a lake and creek in northern Wisconsin shows the flow system in a geologically simple basin dominated by lakes can be surprisingly complex. Differences in source area, i.e., lakes or terrestrial, combined with the presence of intervening lakes, which may or may not capture underflowing ground water as water moves downgradient from recharge areas, contribute to a complex mix of flowpaths. The result is water of different chemistry and vastly different ages may discharge in close proximity. Flowpaths, travel times, and capture zones in the Allequash Basin in northern Wisconsin were delineated using particle tracking based on a calibrated steady-state ground water flow model. The flowpath analysis supports the conclusions of Walker et al. (2003) who made inferences about flowpath characteristics from isotope and major ion chemistry. Simulated particle tracking agreed with Walker et al.'s measurements of water source (lake or terrestrial recharge) in the stream subsurface and also supported their assertion that ground water with a high calcium concentration in the lower basin of Allequash Lake is derived from long flowpaths. Numerical simulations show that ground water discharging in this area originates more than 5 km away in a source area located upgradient of Big Muskellunge Lake, which is upgradient of Allequash Lake. These results graphically illustrate that in settings with multiple sources of water with different age characteristics and converging flowlines (like the Allequash Basin) it may be difficult to obtain accurate estimates of ground water age by chemical analyses of ground water.

  4. Identification and characterization of wetlands in the Bear Creek watershed

    SciTech Connect

    Rosensteel, B.A.; Trettin, C.C.

    1993-10-01

    The primary objective of this study was to identify, characterize, and map the wetlands in the Bear Creek watershed. A preliminary wetland categorization system based on the Cowardin classification system (Cowardin et al. 1979) with additional site-specific topographic, vegetation, and disturbance characteristic modifiers was developed to characterize the type of wetlands that exist in the Bear Creek watershed. An additional objective was to detect possible relationships among site soils, hydrology, and the occurrence of wetlands in the watershed through a comparison of existing data with the field survey. Research needs are discussed in the context of wetland functions and values and regulatory requirements for wetland impact assessment and compensatory mitigation.

  5. THE BENEFITS OF WETLANDS: THE UPPER HALFWAY CREEK PROJECT

    EPA Science Inventory

    Researchers from the U.S. EPA are working in collaboration with U.S. Geological Survey and the U.S. Fish and Wildlife Services on this project. Upper Halfway Creek marsh is a constructed wetland managed by the U.S. Fish and Wildlife Service. This project will assist the U.S. EP...

  6. Floodplain and wetlands assessment of the White Oak Creek Embayment

    SciTech Connect

    Not Available

    1991-07-01

    This report describes the proposed methods for dealing with contaminants that have accumulated in White Oak Creek, White Oak Lake, and the White Oak Creek Embayment as a result of process releases and discharges from the Oak Ridge National Laboratory. Alternative methods of cleaning up the area which were considered in accordance with regulatory guidelines are listed, and information supporting the selected methods is provided. Also included are results of a site survey conducted at the White Oak Creek Embayment and the expected effects of the proposed control structures on the floodplain and wetlands. The appendix contains figures showing the nine cross-sections of the stream channel surveyed during studies of the White Oak Creek area.

  7. Vegetation survey of Four Mile Creek wetlands. [Savannah River Plant

    SciTech Connect

    Loehle, C.

    1990-11-01

    A survey of forested wetlands along upper Four Mile Creek was conducted. The region from Road 3 to the creek headwaters was sampled to evaluate the composition of woody and herbaceons plant communities. All sites were found to fall into either the Nyssa sylvatica (Black Gum) -- Persea borbonia (Red Bay) or Nyssa sylvatica -- Acer rubrum (Red Maple) types. These community types are generally species-rich and diverse. Previous studies (Greenwood et al., 1990; Mackey, 1988) demonstrated contaminant stress in areas downslope from the F- and H-Area seepage basins. In the present study there were some indications of contaminant stress. In the wetland near H-Area, shrub basal area, ground cover stratum species richness, and diversity were low. In the area surrounding the F-Area tree kill zone, ground cover stratum cover and shrub basal area were low and ground cover stratum species richness was low. The moderately stressed site at F-Area also showed reduced overstory richness and diversity and reduced ground cover stratum richness. These results could, however, be due to the very high basal area of overstory trees in both stressed F-Area sites that would reduce light availability to understory plants. No threatened or endangered plant species were found in the areas sampled. 40 refs., 4 figs., 8 tabs.

  8. Evaluation of recharge to the Skunk Creek Aquifer from a constructed wetland near Lyons, South Dakota

    USGS Publications Warehouse

    Thompson, Ryan F.

    2002-01-01

    A wetland was constructed in the Skunk Creek flood plain near Lyons in southeast South Dakota to mitigate for wetland areas that were filled during construction of a municipal golf course for the city of Sioux Falls. A water-rights permit was obtained to allow the city to pump water from Skunk Creek into the wetland during times when the wetland would be dry. The amount of water seeping through the wetland and recharging the underlying Skunk Creek aquifer was not known. The U.S. Geological Survey, in cooperation with the city of Sioux Falls, conducted a study during 1997-2000 to evaluate recharge to the Skunk Creek aquifer from the constructed wetland. Three methods were used to estimate recharge from the wetland to the aquifer: (1) analysis of the rate of water-level decline during periods of no inflow; (2) flow-net analysis; and (3) analysis of the hydrologic budget. The hydrologic budget also was used to evaluate the efficiency of recharge from the wetland to the aquifer. Recharge rates estimated by analysis of shut-off events ranged from 0.21 to 0.82 foot per day, but these estimates may be influenced by possible errors in volume calculations. Recharge rates determined by flow-net analysis were calculated using selected values of hydraulic conductivity and ranged from 566,000 gallons per day using a hydraulic conductivity of 0.5 foot per day to 1,684,000 gallons per day using a hydraulic conductivity of 1.0 foot per day. Recharge rates from the hydrologic budget varied from 0.74 to 0.85 foot per day, and averaged 0.79 foot per day. The amount of water lost to evapotranspiration at the study wetland is very small compared to the amount of water seeping from the wetland into the aquifer. Based on the hydrologic budget, the average recharge efficiency was estimated as 97.9 percent, which indicates that recharging the Skunk Creek aquifer by pumping water into the study wetland is highly efficient. Because the Skunk Creek aquifer is composed of sand and gravel, the

  9. An inventory of wetlands in the East Fork Poplar Creek floodplain, Anderson and Roane Counties, Tennessee

    SciTech Connect

    1992-12-01

    An inventory of wetlands within the floodplain of East Fork Poplar Creek (EFPC) in Anderson and Roane Counties, Tennessee was conducted during October, 1991 through May, 1992 for the US Department of Energy (DOE) by the US Army Corps of Engineers, Nashville District. About 15 miles of EFPC channel and 500 acres of its floodplain are contaminated with mercury and other contaminants released from the Y-12 Plant on the DOE Oak Ridge Reservation. The wetland inventory will serve as baseline information for DOE`s remedial action planning and National Environmental Policy Act compliance efforts related to the contamination. In order to provide broad wetland determinations beyond which future wetland definitions are unlikely to expand, the 1989 Federal Manual for Identifying And Delineating Jurisdictional Wetlands was utilized. Using the manual`s methodology in a contaminated system under the approved health and safety plan presented some unique problems, resulting in intrusive sampling for field indicators of hydric soils being accomplished separately from observation of other criteria. Beginning with wetland areas identified on National Wetland Inventory Maps, the entire floodplain was examined for presence of wetland criteria, and 17 wetlands were identified ranging from 0.01 to 2.81 acres in size. The majority of wetlands identified were sized under 1 acre. Some of the wetlands identified were not delineated on the National Wetland Inventory Maps, and much of the wetland area delineated on the maps did not meet the criteria under the 1989 manual.

  10. The Effect of Wetland Location on the Level of Nitrates in Reedy Creek

    NASA Astrophysics Data System (ADS)

    Mayfield, S. C.

    2002-05-01

    : A wetland is defined as an area of land where the water level remains near or above the surface of the ground for most of the year. Wetlands play an important role in nature. They support many plants and animals. However, not all wetlands have the same effect on water quality. While some wetlands impede drainage flow from developed land, filtering out pollutants and greatly improving the quality of water entering streams, others provide no significant water-quality benefits. One way to determine if a wetland acts in one of these ways is through this investigation. This investigation was designed to determine if a wetland aids in decreasing nitrate levels. If is believed that if a wetland is located in Reedy Creek, then its location will cause the level of nitrates downstream to decrease. The investigation required water samples to be taken from upstream and downstream of Reedy Creek once a week for three weeks. During the three weeks, different weather conditions were experienced. A nitrate test was done on each water sample. The exact level of nitrates was recorded. The results showed that the wetland did not aid in decreasing nitrated levels.

  11. Vegetation survey of Pen Branch and Four Mile Creek wetlands

    SciTech Connect

    Not Available

    1992-01-01

    One hundred-fifty plots were recently sampled (vegetational sampling study) at the Savannah River Site (SRS). An extensive characterization of the vascular flora, in four predetermined strata (overstory, Understory, shrub layer, and ground cover), was undertaken to determine dominance, co-dominance, and the importance value (I.V.) of each species. These results will be used by the Savannah River Laboratory (SRL) to evaluate the environmental status of Four Mile Creek, Pen Branch, and two upland pine stands. Objectives of this study were to: Describe in detail the plant communities previously mapped with reference to the topography and drainage, including species of plants present: Examine the successional trends within each sampling area and describe the extent to which current vegetation communities have resulted from specific earlier vegetation disturbances (e.g., logging and grazing); describe in detail the botanical field techniques used to sample the flora; describe the habitat and location of protected and/or rare species of plants; and collect and prepare plant species as herbarium quality specimens. Sampling was conducted at Four Mile Creek and Pen Branch, and in two upland pine plantations of different age growth.

  12. Vegetation survey of Pen Branch and Four Mile Creek wetlands

    SciTech Connect

    Not Available

    1992-10-01

    One hundred-fifty plots were recently sampled (vegetational sampling study) at the Savannah River Site (SRS). An extensive characterization of the vascular flora, in four predetermined strata (overstory, Understory, shrub layer, and ground cover), was undertaken to determine dominance, co-dominance, and the importance value (I.V.) of each species. These results will be used by the Savannah River Laboratory (SRL) to evaluate the environmental status of Four Mile Creek, Pen Branch, and two upland pine stands. Objectives of this study were to: Describe in detail the plant communities previously mapped with reference to the topography and drainage, including species of plants present: Examine the successional trends within each sampling area and describe the extent to which current vegetation communities have resulted from specific earlier vegetation disturbances (e.g., logging and grazing); describe in detail the botanical field techniques used to sample the flora; describe the habitat and location of protected and/or rare species of plants; and collect and prepare plant species as herbarium quality specimens. Sampling was conducted at Four Mile Creek and Pen Branch, and in two upland pine plantations of different age growth.

  13. Wetland delineation with IKONOS high-resolution satellite imagery, Fort Custer Training Center, Battle Creek, Michigan, 2005

    USGS Publications Warehouse

    Fuller, L.M.; Morgan, T.R.; Aichele, S.S.

    2006-01-01

    The Michigan Army National Guard’s Fort Custer Training Center (FCTC) in Battle Creek, Mich., has the responsibility to protect wetland resources on the training grounds while providing training opportunities, and for future development planning at the facility. The National Wetlands Inventory (NWI) data have been the primary wetland-boundary resource, but a check on scale and accuracy of the wetland boundary information for the Fort Custer Training Center was needed. In cooperation with the FCTC, the U.S. Geological Survey (USGS) used an early spring IKONOS pan-sharpened satellite image to delineate the wetlands and create a more accurate wetland map for the FCTC. The USGS tested automated approaches (supervised and unsupervised classifications) to identify the wetland areas from the IKONOS satellite image, but the automated approaches alone did not yield accurate results. To ensure accurate wetland boundaries, the final wetland map was manually digitized on the basis of the automated supervised and unsupervised classifications, in combination with NWI data, field verifications, and visual interpretation of the IKONOS satellite image. The final wetland areas digitized from the IKONOS satellite imagery were similar to those in NWI; however, the wetland boundaries differed in some areas, a few wetlands mapped on the NWI were determined not to be wetlands from the IKONOS image and field verification, and additional previously unmapped wetlands not recognized by the NWI were identified from the IKONOS image.

  14. Trophic states of creeks and their relationship to changes in water level in Xixi National Wetland Park, China.

    PubMed

    Li, Yufeng; Liu, Hongyu; Hao, Jingfeng; Zheng, Nan; Cao, Xiao

    2012-04-01

    Urban wetland parks are a new type of urban park that have developed rapidly in recent years and have caught the attention of multiple governmental departments. The objective of this paper was to describe the trophic states of creeks and their relationship to water levels in an urban wetland park in Xixi, China. The study was based on temporal and spatial data collected monthly between March 2009 and March 2010. The results indicated that: (1) water quality significantly changed from upstream to downstream in study creeks. From upstream to downstream, water quality of creeks I and III improved; however, the water quality of creek IV and V declined; (2) trophic states in Xixi creeks differed according to seasons. Overall, the nutrition in creeks was measured at the slight eutrophication level. Nutrition was highest in summer and lowest in winter; (3) the relationship between water quality and water level differed dramatically between creeks. Water quality and water level in creek I was significantly negatively correlated, while no obvious trends were observed in other creeks. In order to improve water quality in creeks, the valid technique is to strengthen the management of inflowing water quality and then control water levels.

  15. Effects of a cattail wetland on water quality of Irondequoit Creek near Rochester, New York

    USGS Publications Warehouse

    Coon, William F.; Bernard, John M.; Seischab, Franz K.

    2000-01-01

    A 6-year (1990-96) study of the Ellison Park wetland, a 423-acre, predominantly cattail (Typha glauca) marsh in Monroe County, N.Y., was conducted to document the effect that this wetland has on the water quality of Irondequoit Creek, which flows through it. Irondequoit Creek drains 151 square miles of mostly urban and suburban land and is the main tributary to Irondequoit Bay on Lake Ontario. The wetland was a sink for total phosphorus and total suspended solids (28 and 47 percent removal efficiencies, respectively, over the 6-year study period). Sedimentation and vegetative filtration appear to be the primary mechanisms for the decrease in loads of these constituents. Total nitrogen loads were decreased slightly by the wetland; removal efficiencies for ammonia-plusorganic nitrogen and nitrate-plus-nitrite were 6 and 3 percent, respectively. The proportions of total phosphorus and total nitrogen constituents were altered by the wetland. Orthophosphate and ammonia nitrogen were generated within the wetland and represented 12 percent of the total phosphorus output load and 1.8 percent of total nitrogen output load, respectively. Conservative chemicals, such as chloride and sulfate, were littleaffected by the wetland. Concentrations of zinc, lead, and cadmium showed statistically significant decreases, which are attributed to sedimentation and filtration of sediment and organic matter to which these elements adsorb. Sediment samples from open-water depositional areas in the wetland contained high concentrations of (1) trace metals, including barium, manganese, strontium, zinc (each of which exceeded 200 parts per million), as well as chromium, copper, lead, and vanadium, and (2) some polycyclic aromatic hydrocarbons. Persistent organochlorine pesticides, such as chlordane, dieldrin, DDT and its degradation products (DDD and DDE), and polychlorinated biphenyls (PCB?s), also were detected, but concentrations of these compounds were within the ranges often found in

  16. Preliminary assessment of microbial communities and biodegradation of chlorinated volatile organic compounds in wetlands at Cluster 13, Lauderick Creek area, Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Lorah, Michelle M.; Voytek, Mary A.; Spencer, Tracey A.

    2003-01-01

    A preliminary assessment of the microbial communities and biodegradation processes for chlorinated volatile organic compounds was con-ducted by the U.S. Geological Survey in wetlands at the Cluster 13, Lauderick Creek area at Aberdeen Proving Ground, Maryland. The U.S. Geological Survey collected wetland sediment samples from 11 sites in the Lauderick Creek area for microbial analyses, and used existing data to evaluate biodegradation processes and rates. The bacterial and methanogen communities in the Lauderick Creek wetland sediments were similar to those observed in a previous U.S. Geological Survey study at the West Branch Canal Creek wet-land area, Aberdeen Proving Ground. Evaluation of the degradation rate of 1,1,2,2-tetrachloroethane and the daughter compounds produced also showed similar results for the two wetlands. How-ever, a vertical profile of contaminant concentra-tions in the wetlands was available at only one site in the Lauderick Creek area, and flow velocities in the wetland sediment are unknown. To better evaluate natural attenuation processes and rates in the wetland sediments at Lauderick Creek, chemi-cal and hydrologic measurements are needed along ground-water flowpaths in the wetland at additional sites and during different seasons. Nat-ural attenuation in the wetlands, enhanced biore-mediation, and constructed wetlands could be feasible remediation methods for the chlorinated volatile organic compounds discharging in the Lauderick Creek area. The similarities in the microbial communities and biodegradation pro-cesses at the Lauderick Creek and West Branch Canal Creek areas indicate that enhanced bioreme-diation techniques currently being developed for the West Branch Canal Creek wetland area would be transferable to this area.

  17. Pipeline Corridors through wetlands -- Impacts on plant communities: Mill Creek Tributary Crossing, Jefferson County, New York, 1992 Survey

    SciTech Connect

    Van Dyke, G.D.; Shem, L.M.; Zimmerman, R.E.

    1994-12-01

    The goal of the Gas Research Institute Wetland Corridors Program is to identify representative impacts of existing pipelines on the wetlands they traverse. To accomplish this goal, 12 existing wetland crossings were surveyed. These sites varied in elapsed time since pipeline construction, wetland type, pipeline installation techniques, and right-of-way (ROW) management practices. This report presents the results of the survey July 1992, at the Mills Creek tributary crossing, Jefferson County, New York. Data were collected from three wetland communities along the 1991 pipeline and compared with predisturbance data obtained in a June 1991 survey. Within one year after pipeline installation, 50% of the soil surface of the ROW in the scrub-shrub community was covered by emergent vegetation. Average wetland values for the ROW in 1992 were lower than in 1991, indicating that the removal of woody plants resulted in a community composed of species with greater fidelity to wetlands. In the emergent marsh community after one year, the average percentage of surface covered by standing water was greater in the ROW than in the adjacent natural areas. The ROW in the forested wetland community also contained standing water, although none was found in the natural forest areas. The entire study site remains a wetland, with the majority of plant species in all sites being either obligate or facultative wetland species. Weighted and unweighted average wetland indices for each community, using all species, indicated wetland vegetation within the newly established ROW.

  18. Altered mangrove wetlands as habitat for estuarine nekton: are dredged channels and tidal creeks equivalent?

    USGS Publications Warehouse

    Krebs, Justin M.; Brame, Adam B.; McIvor, Carole C.

    2007-01-01

    Hasty decisions are often made regarding the restoration of "altered" habitats, when in fact the ecological value of these habitats may be comparable to natural ones. To assess the "value" of altered mangrove-lined habitats for nekton, we sampled for 1 yr within three Tampa Bay wetlands. Species composition, abundance, and spatial distribution of nekton assemblages in permanent subtidal portions of natural tidal creeks and wetlands altered by construction of mosquito-control ditches and stormwater-drainage ditches were quantified through seasonal seine sampling. Results of repeated-measures analysis of variance and ordination of nekton community data suggested differences in species composition and abundance between natural and altered habitat, though not consistently among the three wetlands. In many cases, mosquito ditches were more similar in assemblage structure to tidal creeks than to stormwater ditches. In general, mosquito ditches and stormwater ditches were the most dissimilar in terms of nekton community structure. These dissimilarities were likely due to differences in design between the two types of ditches. Mosquito ditches tend to fill in over time and are thus more ephemeral features in the landscape. In contrast, stormwater ditches are a more permanent altered habitat that remain open due to periodic flushing from heavy runoff. Results indicate that environmental conditions (e.g., salinity, current velocity, vegetative structure) may provide a more useful indication of potential habitat "value" for nekton than whether the habitat has been altered. The type of ditching is therefore more important than ditching per se when judging the habitat quality of these altered channels for fishes, shrimps and crabs. Planning should entail careful consideration of environmental conditions rather than simply restoring for restoration's sake.

  19. Pipeline corridors through wetlands - impacts on plant communities: Deep Creek and Brandy Branch crossings, Nassau County, Florida

    SciTech Connect

    Shem, L.M.; Van Dyke, G.D.; Zimmerman, R.E.

    1994-12-01

    The goal of the Gas Research Institute Wetland Corridors Program is to document impacts of existing pipelines on the wetlands they traverse. To accomplish this goal, 12 existing wetland crossings were surveyed. These sites varied in elapsed time since pipeline construction, wetland type, pipeline installation techniques, and right-of-way (ROW) management practices. This report presents the results of surveys conducted July 14-18, 1992, at the Deep Creek and the Brandy Branch crossings of a pipeline installed during May 1991 in Nassau County, Florida. Both floodplains supported bottomland hardwood forests. The pipeline at the Deep Creek crossing was installed by means of horizontal directional drilling after the ROW had been clear-cut, while the pipeline at the Brandy Branch crossing was installed by means of conventional open trenching. Neither site was seeded or fertilized. At the time of sampling, a dense vegetative community, made up primarily of native perennial herbaceous species, occupied the ROW within the Deep Creek floodplain. The Brandy Branch ROW was vegetated by a less dense stand of primarily native perennial herbaceous plants. Plant diversity was also lower at the Brandy Branch crossing than at the Deep Creek crossing. The results suggest that some of the differences in plant communities are related to the more hydric conditions at the Brandy Branch floodplain.

  20. Effects of wastewater-lagoon discharge through wetlands on water quality in Bonifas Creek, Gogebic County, Michigan

    USGS Publications Warehouse

    Aichele, Stephen Scranton; Ellis, James M.

    2000-01-01

    The Lac Vieux Desert Band of the Superior Chippewa (LVD) recently constructed a wastewater-treatment facility that discharges effluent twice annually from settling lagoons to wooded wetland areas adjoining the channel of Bonifas Creek, a small stream that flows near the LVD community in Watersmeet, Michigan. This report describes the hydrology of the site and the results of analyses of water samples from Bonifas Creek and the settling lagoons. Water samples were collected from sites on the creek upstream and downstream of the effluent-receiving area, before and after discharge from the lagoons. The concentrations of calcium, magnesium, and bicarbonate increased from the upstream to the downstream site, but the concentrations of sodium, chloride, and sulfate decreased. These changes in water chemistry, however, were similar both before and after the release from the lagoons, and are consistent with known pattern of influxes of ground water into Bonifas Creek. Therefore, it appears that the discharge of wastewater into the area adjoining Bonifas Creek is unlikely to have any immediate effect on the quality of water in the creek

  1. Inventorying and monitoring wetland condition and restoration potential on a watershed basis with examples from spring creek watershed, Pennsylvania, USA.

    PubMed

    Brooks, Robert P; Wardrop, Denice Heller; Cole, Charles Andrew

    2006-10-01

    We developed an approach for inventorying wetland resources, assessing their condition, and determining restoration potential in a watershed context. This article outlines how this approach can be developed into a Wetland Monitoring Matrix (WMM) that can help resource management agencies make regulatory and nonregulatory decisions. The WMM can be embedded in a standard planning process (Wetlands, Wildlife, and Watershed Assessment Techniques for Evaluation and Restoration, or W3ATER) involving the setting of objectives, assessing the condition of the resource, prioritizing watersheds or sites, implementing projects, and evaluating progress. To that process we have added the concepts of reference, hydrogeomorphic (HGM) classification, and prioritization for protection and restoration by triage or adaptive management. Three levels of effort are possible, increasing in detail and diagnostic reliability as data collection shifts from remote sensing to intensive sampling on the ground. Of key importance is the use of a consistent set of monitoring protocols for conducting condition assessments, designing restoration and creation projects, and evaluating the performance of mitigation projects; the same variables are measured regardless of the intended use of the data. This approach can be tailored to any region by establishing a reference set of wetlands organized by HGM subclasses, prioritizing watersheds and individual wetlands, and implementing consistent monitoring protocols. Application of the approach is illustrated with examples from wetlands and streams of the Spring Creek Watershed in central Pennsylvania, USA.

  2. Effects of flow modification on a cattail wetland at the mouth of Irondequoit Creek near Rochester, New York : water levels, wetland biota, sediment, and water quality

    USGS Publications Warehouse

    Coon, William F.

    2004-01-01

    An 11-year (1990-2001) study of the Ellison Park wetland, a 423-acre, predominantly cattail (Typha glauca) wetland at the mouth of Irondequoit Creek, was conducted to document the effects that flow modifications, including installation of a flow-control structure (FCS) in 1997 and increased diversion of stormflows to the backwater areas of the wetland, would have on the wetlands ability to decrease chemical loads transported by Irondequoit Creek into Irondequoit Bay on Lake Ontario. The FCS was designed to raise the water-surface elevation and thereby increase the dispersal and detention of stormflows in the upstream half of the wetland; this was expected to promote sedimentation and microbial utilization of nutrients, and thereby decrease the loads of certain constituents, primarily phosphorus, that would otherwise be carried into Irondequoit Bay. An ecological monitoring program was established to document changes in the wetlands water levels, biota, sedimentation rates, and chemical quality of water and sediment that might be attributable to the flow modifications. Water-level increases during storms were mostly confined to the wetland area, within about 5,000 ft upstream from the FCS. Backwater at a point of local concern, about 13,000 ft upstream, was due to local debris jams or constriction of flow by bridges and was not attributable to the FCS. Plant surveys documented species richness, concentrations of nutrients and metals in cattail tissues, and cattail productivity. Results indicated that observed differences among survey periods and between the areas upstream and downstream from the FCS were due to seasonal changes in water levels -- either during the current year or at the end of the previous years growing season -- that reflected the water-surface elevation of Lake Ontario, rather than water-level control by the FCS. Results showed no adverse effects from the naturally high water levels that prevail annually during the spring and summer in the wetland

  3. Effects of groundwater levels and headwater wetlands on streamflow in the Charlie Creek basin, Peace River watershed, west-central Florida

    USGS Publications Warehouse

    Lee, T.M.; Sacks, L.A.; Hughes, J.D.

    2010-01-01

    The Charlie Creek basin was studied from April 2004 to December 2005 to better understand how groundwater levels in the underlying aquifers and storage and overflow of water from headwater wetlands preserve the streamflows exiting this least-developed tributary basin of the Peace River watershed. The hydrogeologic framework, physical characteristics, and streamflow were described and quantified for five subbasins of the 330-square mile Charlie Creek basin, allowing the contribution of its headwaters area and tributary subbasins to be separately quantified. A MIKE SHE model simulation of the integrated surface-water and groundwater flow processes in the basin was used to simulate daily streamflow observed over 21 months in 2004 and 2005 at five streamflow stations, and to quantify the monthly and annual water budgets for the five subbasins including the changing amount of water stored in wetlands. Groundwater heads were mapped in Zone 2 of the intermediate aquifer system and in the Upper Floridan aquifer, and were used to interpret the location of artesian head conditions in the Charlie Creek basin and its relation to streamflow. Artesian conditions in the intermediate aquifer system induce upward groundwater flow into the surficial aquifer and help sustain base flow which supplies about two-thirds of the streamflow from the Charlie Creek basin. Seepage measurements confirmed seepage inflow to Charlie Creek during the study period. The upper half of the basin, comprised largely of the Upper Charlie Creek subbasin, has lower runoff potential than the lower basin, more storage of runoff in wetlands, and periodically generates no streamflow. Artesian head conditions in the intermediate aquifer system were widespread in the upper half of the Charlie Creek basin, preventing downward leakage from expansive areas of wetlands and enabling them to act as headwaters to Charlie Creek once their storage requirements were met. Currently, the dynamic balance between wetland

  4. Channel, floodplain, and wetland responses to floods and overbank sedimentation, 1846-2006, Halfway Creek Marsh, Upper Mississippi Valley, Wisconsin

    USGS Publications Warehouse

    Fitzpatrick, F.A.; Knox, J.C.; Schubauer-Berigan, J. P.

    2009-01-01

    Conversion of upland forest and prairie vegetation to agricultural land uses, following Euro-American settlement in the Upper Mississippi River System, led to accelerated runoff and soil erosion that subsequently transformed channels, floodplains, and wetlands on bottomlands. Halfway Creek Marsh, at the junction of Halfway Creek and the Mississippi River on Wisconsin's western border, is representative of such historical transformation. This marsh became the focus of a 2005-2006 investigation by scientists from the U.S. Geological Survey, the University of Wisconsin- Madison, and the U.S. Environmental Protection Agency, who used an understanding of the historical transformation to help managers identify possible restoration alternatives for Halfway Creek Marsh. Field-scale topographic surveys and sediment cores provided data for reconstructing patterns and rates of historical overbank sedimentation in the marsh. Information culled from historical maps, aerial photographs, General Land Offi ce Survey notes, and other historical documents helped establish the timing of anthropogenic disturbances and document changes in channel patterns. Major human disturbances, in addition to agricultural land uses, included railroad and road building, construction of artifi cial levees, drainage alterations, and repeated dam failures associated with large floods. A volume of approximately 1,400,000 m3, involving up to 2 m of sandy historical overbank deposition, is stored through the upper and lower marshes and along the adjacent margins of Halfway Creek and its principal tributary, Sand Lake Coulee. The estimated overbank sedimentation rate for the entire marsh is ??3,000 m3 yr-1 for the recent period 1994-2006. In spite of reduced surface runoff and soil erosion in recent years, this recent sedimentation rate still exceeds by ??4 times the early settlement (1846-1885) rate of 700 m3 yr-1, when anthropogenic acceleration of upland surface runoff and soil erosion was beginning

  5. Evaluation of Potential Wetlands to Reduce Peak Flows in Future Climate Scenarios in the Eagle Creek Watershed, IN

    NASA Astrophysics Data System (ADS)

    Walters, K. M.; Babbar-Sebens, M.

    2014-12-01

    Global climate change is expected to increase the severity of floods and droughts and the frequency of extreme streamflow events in the Midwestern United States. Managing these projected impacts poses a major challenge for water resources, conservation, and land use management. Wetlands have been considered as a conservation strategy and work to increase the capacity of watersheds by storing runoff upstream. The implementation of wetlands, especially in tile-drained agricultural watersheds, can reduce peak flows and help mitigate the anticipated impacts of climate change. The goal of this study was to evaluate the long-term performance of wetlands to reduce peak flows in future climate scenarios in the Eagle Creek Watershed in Indiana. A secondary goal of this research was to establish a methodology for incorporating climate change into hydrological models to conduct long-term land management studies and decisions. The Soil and Water Assessment Tool (SWAT) model was forced with an ensemble of bias corrected climate projections from the North American Regional Climate Change Assessment Program (NARCCAP) to evaluate the impacts of climate change on watershed hydrology and the ability of wetlands to reduce peak flows. Long-term monthly streamflow results predicted a slight increase in streamflow in the winter and a slight decrease in the summer from the past (1971-2000) to future (2041-2070) time periods. About half of the climate realizations produced an increase in the 5% exceedance flow and half a decrease, but all predictions agreed that high flow events will increase in frequency in the winter and decrease in the spring and summer. Results from the wetland analysis showed that if all potential wetlands identified in a previous study are installed in the watershed, maximum peak flow reductions of around 20-50 cubic meters per second for the past and future, as well as decreased frequency of extreme events, can be seen. Wetlands proved to be a robust solution for

  6. Retention of sediments and nutrients in Jackson Creek wetland near Delavan Lake, Wisconsin, 1993-95

    USGS Publications Warehouse

    Goddard, Gerald L.; Elder, John F.

    1997-01-01

    The wetland system consistently retained suspended sediments during the study period. Volumetric surveys of the ponds showed sediment accumulation each year, and during the 32 months, 46 percent of the inflow sediment load was retained in the wetland and the retention ponds. Retention of nutrients in the wetland system, however, was of lesser magnitude and much greater seasonal variability. Over time periods of one year or more, most nutrient forms were retained in the wetland system. Nutrient retention, relative to the 32-month inflow loads was: 19 percent of total phosphorus, 11 percent of dissolved orthophosphate, 8 percent of total ammonia plus organic nitrogen, and 0.4 percent of dissolved nitrite plus nitrate nitrogen. Of the nutrient forms measured, only dissolved ammonia, whose 32-month outflow from the wetland system was 22 percent greater than inflow, showed a long-term net release from the system. However, net releases over shorter time periods were commonly observed for all nutrients, and these occurred frequently during the growing season, suggesting probable availability to algal and macrophyte communities downstream. Awareness of the variability and complexity of the nutrient-trapping function of a wetland system can help maintain realistic expectations of the benefits of wetland restoration projects and can be valuable in developing more effective management practices.

  7. Pipeline corridors through wetlands -- Impacts on plant communities: Little Timber Creek Crossing, Gloucester County, New Jersey. Topical report, August 1991--January 1993

    SciTech Connect

    Shem, L.M.; Zimmerman, R.E.; Alsum, S.K.; Van Dyke, G.D. |

    1994-12-01

    The goal of the Gas Research Institute Wetland Corridors Program is to document impacts of existing pipelines on the wetlands they traverse. To accomplish this goal, 12 existing wetland crossings were surveyed. These sites varied in elapsed time since pipeline construction, wetland type, pipeline installation techniques, and right-of-way (ROW) management practices. This report presents results of a survey conducted over the period of August 5--7, 1991, at the Little Timber Creek crossing in Gloucester County, New Jersey, where three pipelines, constructed in 1950, 1960, and 1990, cross the creek and associated wetlands. The old side of the ROW, created by the installation of the 1960 pipeline, was designed to contain a raised peat bed over the 1950 pipeline and an open-water ditch over the 1960 pipeline. The new portion of the ROW, created by installation of the 1990 pipeline, has an open-water ditch over the pipeline (resulting from settling of the backfill) and a raised peat bed (resulting from rebound of compacted peat). Both the old and new ROWs contain dense stands of herbs; the vegetation on the old ROW was more similar to that in the adjacent natural area than was vegetation in the new ROW. The ROW increased species and habitat diversity in the wetlands. It may contribute to the spread of purple loosestrife and affect species sensitive to habitat fragmentation.

  8. Design and performance of the constructed wetland wastewater treatment system at Phillips High School, Bear Creek, Alabama

    SciTech Connect

    Not Available

    1990-05-01

    A constructed wetlands waste water treatment system has been constructed at Phillips High School, Bear Creek, Alabama, to polish the effluent from the school's extended aeration package treatment plant. The project is a demonstration of innovative technology under the Congressionally appropriated Bear Creek Floatway projects. Construction was completed in August 1988 at a cost of $36,266. Monitoring results for the period October 1988 through July 1989 reveal that the system has been very effective in polishing the effluent from the package treatment plant. The effectiveness is attributed primarily to maintenance of an overall oxidizing environment within the gravel substrate. Average monthly removals during the first year of operation exceeded 90 percent for BOD, TSS, organic nitrogen, total phosphorus, dissolved phosphorus, and fecal coliforms. Average removal percentages ranged in the 80s for ammonia and total nitrogen and in the 70s for nitrate + nitrite nitrogen and dissolved BOD. The prevalence of oxidizing conditions is probably the result of low carbonaceous demand, the low inlet hydraulic loading rate, and the combination of the shallow gravel depth and the excellent plant coverage and root depths during the first year of operation. 11 refs., 17 figs., 2 tabs.

  9. Analysis of water and soil from the wetlands of Upper Three Runs Creek. Volume 1, Summary report

    SciTech Connect

    Haselow, L.A.; Rogers, V.A.; Riordan, C.J.; Eidson, G.W.; Herring, M.K.

    1992-08-01

    Shallow water and soils along Upper Three Runs Creek (UTRC) and associated wetlands between SRS Road F and Cato Road were sampled for nonradioactive and radioactive constituents. The sampling program is associated with risk evaluations being performed for various regulatory documents in these areas of the Savannah River Site (SRS). WSRC selected fifty sampling sites bordering the Mixed Waste Management Facility (MWMF), F- and H-Area Seepage Basins (FHSB), and the Sanitary Landfill (SL). The analytical results from this study provided information on the water and soil quality in UTRC and its associated wetlands. The analytical results from this investigation indicated that the primary constituents and radiological indicators detected in the shallow water and soils were tritium, gross alpha, radium 226, total radium and strontium 90. This investigation involved the collection of shallow water samples during the Fall of 1991 and the Spring of 1992 at fifty (50) sampling locations. Sampling was performed during these periods to incorporate high and low water table periods. Samples were collected from three sections along UTRC denoted as Phase I (MWMF), Phase II (FHSB) and Phase III (SL). One vibracored soil sample was also collected in each phase during the Fall of 1991.

  10. Estimating Fill-Spill Wetland Surface Connections in the Pipestem Creek, ND, Across Wet-Dry Conditions

    EPA Science Inventory

    Wetlands in the Prairie Pothole Region {PPR) can be connected via surface flows through a fill-spill mechanism, with some wetlands eventually spilling into stream/river systems. This wetland-to-wetland and wetland-to-stream connection of wetlands via fill-spill has high temporal ...

  11. Lithologic and ground-water-quality data collected using Hoverprobe drilling techniques at the West Branch Canal Creek wetland, Aberdeen Proving Ground, Maryland, April-May 2000

    USGS Publications Warehouse

    Phelan, Daniel J.; Senus, Michael P.; Olsen, Lisa D.

    2001-01-01

    This report presents lithologic and groundwater- quality data collected during April and May 2000 in the remote areas of the tidal wetland of West Branch Canal Creek, Aberdeen Proving Ground, Maryland. Contamination of the Canal Creek aquifer with volatile organic compounds has been documented in previous investigations of the area. This study was conducted to investigate areas that were previously inaccessible because of deep mud and shallow water, and to support ongoing investigations of the fate and transport of volatile organic compounds in the Canal Creek aquifer. A unique vibracore drill rig mounted on a hovercraft was used for drilling and groundwater sampling. Continuous cores of the wetland sediment and of the Canal Creek aquifer were collected at five sites. Attempts to sample ground water were made by use of a continuous profiler at 12 sites, without well installation, at a total of 81 depths within the aquifer. Of those 81 attempts, only 34 sampling depths produced enough water to collect samples. Ground-water samples from two sites had the highest concentrations of volatile organic compounds?with total volatile organic compound concentrations in the upper part of the aquifer ranging from about 15,000 to 50,000 micrograms per liter. Ground-water samples from five sites had much lower total volatile organic compound concentrations (95 to 2,100 micrograms per liter), whereas two sites were essentially not contaminated, with total volatile organic compound concentrations less than or equal to 5 micrograms per liter.

  12. Pipeline corridors through wetlands - impact on plant communities: Mill Creek Tributary Crossing, Jefferson County, New York, 1991 survey. Topical report, June 1991--April 1993

    SciTech Connect

    Van Dyke, G.D. |; Shem, L.M.; Zimmerman, R.E.

    1994-12-01

    The goal of the Gas Research Institute Wetland Corridors Program is to document impacts of existing pipelines on the wetlands they traverse. To accomplish this goal, 12 existing wetland crossings were surveyed. These sites varied in elapsed time since pipeline construction, wetland type, pipeline installation techniques, and right-of-way (ROW) management practices. This report presents the results of a survey conducted in June 1991 at the Mill Creek tributary crossing, Jefferson County, New York. One pipeline had been installed through the wetland in 1966, and another was scheduled to be installed later in 1991. Data were collected along the existing pipeline ROW and also along the planned ROW for use as baseline data in future studies. Four separate communities were surveyed. A scrub-shrub wetland and a forested wetland were sampled along the existing ROW where the planned pipeline was to be installed. A mixed vegetation community was sampled along the existing ROW, west of where the planned pipeline would joint the ROW. A marsh community was sampled along the route of the planned pipeline. All plant species found on the ROW of the scrub-shrub community were also present in the adjacent natural areas. The vegetation on the ROW of the forested wetland community also consisted mostly of species found in the adjacent natural areas. In the mixed vegetation community, a small drainage channel present on the ROW, possibly resulting from the pipeline construction, provided habitat for a number of obligate species not found in other areas of this community. Differences noted among different areas of this community were also attributed to slight variations in elevation.

  13. Mercury Methylation, Demethylation, and Bioavailability in the Hyporheic Sediments of a Northern Wisconsin Wetland

    NASA Astrophysics Data System (ADS)

    Creswell, J. E.; Babiarz, C. L.; Shafer, M. M.; Roden, E. E.; Armstrong, D. E.

    2007-12-01

    It is generally accepted that wetland sediments have a high potential to produce methylmercury, yet the factors controlling the relevant chemical transformations are poorly understood. Previous studies suggest that sulfate- reducing bacteria play an important role in methylation, but iron-reducing bacteria may also participate in this process. Methylation rates are influenced by both the concentration of Hg(II) and its speciation, which affects its bioavailability. Net accumulation depends also on demethylation rates, rates which may be significant in these systems. The objective of this study is to gain a better understanding of the main factors controlling the bioavailability of inorganic mercury for the production of methylmercury in wetland hyporheic zones. Stable isotopes of mercury are being used to investigate potential methylation and demethylation rates in the hyporheic sediments of Allequash Creek, near Boulder Junction, WI. Other techniques that are being applied to examine the chemical and biological drivers of mercury methylation and bioavailability include tin-reducible mercury "titrations" to measure the concentration of strong mercury-binding ligands in porewater, 14C-acetate uptake assays to determine the activity of the native microbial consortia , ion exchange resin experiments to explore the role of dissolved organic carbon in mercury binding, and inhibition studies (e.g. molybdenum amendments) of sulfate-reducing bacteria to assess their role in producing methylmercury. Manipulations of environmental conditions in laboratory microcosms are used to determine the relative importance of physical factors, such as temperature, and biogeochemical factors, such as sulfate, sulfide, dissolved organic carbon (DOC), and iron levels, on the fate of mercury in hyporheic systems. Preliminary results show that while significant levels of inorganic mercury are present in the hyporheic groundwater, strong mercury-binding ligands in the wetland porewaters at a

  14. Wetlands.

    ERIC Educational Resources Information Center

    Nelson, Patricia L.

    1986-01-01

    Suggests studying New York's wetlands, both in the classroom and in the field, to illustrate ecological concepts of diversity, succession, and adaptation and to learn about their importance in controlling flooding, erosion, and pollution. (NEC)

  15. Estimating Mercury-Binding Ligand Concentrations in Freshwater Wetland Porewaters Using the “Tin-Reducible-Mercury” Titration Method

    NASA Astrophysics Data System (ADS)

    Creswell, J. E.; Babiarz, C.; Shafer, M. M.; Armstrong, D. E.

    2009-12-01

    sediment cores collected from the Allequash Creek wetland in northern Wisconsin, in July 2008, October, 2008, February, 2009, and July 2009. This method provides an important means of estimating mercury bioavailability and methylation potential in sensitive ecosystems.

  16. Microbial Consortia Development and Microcosm and Column Experiments for Enhanced Bioremediation of Chlorinated Volatile Organic Compounds, West Branch Canal Creek Wetland Area, Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Lorah, Michelle M.; Majcher, Emily H.; Jones, Elizabeth J.; Voytek, Mary A.

    2008-01-01

    Chlorinated solvents, including 1,1,2,2-tetrachloroethane, tetrachloroethene, trichloroethene, carbon tetrachloride, and chloroform, are reaching land surface in localized areas of focused ground-water discharge (seeps) in a wetland and tidal creek in the West Branch Canal Creek area, Aberdeen Proving Ground, Maryland. In cooperation with the U.S. Army Garrison, Aberdeen Proving Ground, Maryland, the U.S. Geological Survey is developing enhanced bioremediation methods that simulate the natural anaerobic degradation that occurs without intervention in non-seep areas of the wetland. A combination of natural attenuation and enhanced bioremediation could provide a remedy for the discharging ground-water plumes that would minimize disturbance to the sensitive wetland ecosystem. Biostimulation (addition of organic substrate or nutrients) and bioaugmentation (addition of microbial consortium), applied either by direct injection at depth in the wetland sediments or by construction of a permeable reactive mat at the seep surface, were tested as possible methods to enhance anaerobic degradation in the seep areas. For the first phase of developing enhanced bioremediation methods for the contaminant mixtures in the seeps, laboratory studies were conducted to develop a microbial consortium to degrade 1,1,2,2-tetrachloroethane and its chlorinated daughter products under anaerobic conditions, and to test biostimulation and bioaugmentation of wetland sediment and reactive mat matrices in microcosms. The individual components required for the direct injection and reactive mat methods were then combined in column experiments to test them under groundwater- flow rates and contaminant concentrations observed in the field. Results showed that both direct injection and the reactive mat are promising remediation methods, although the success of direct injection likely would depend on adequately distributing and maintaining organic substrate throughout the wetland sediment in the seep

  17. Extent of areal inundation of riverine wetlands along Cypress Creek and the Peace, Alafia, North Prong Alafia, and South Prong Alafia Rivers, west-central Florida

    USGS Publications Warehouse

    Lewelling, B.R.

    2003-01-01

    Riverine and palustrine system wetlands are a major ecological component of river basins in west-central Florida. Healthy wetlands are dependent upon the frequency and duration of periodic flooding or inundation. This report assesses the extent, area, depth, frequency, and duration of periodic flooding and the effects of potential surface-water withdrawals on the wetlands along Cypress Creek and the Peace, Alafia, North Prong Alafia, and South Prong Alafia Rivers. Results of the study were derived from step-backwater analysis performed at each of the rivers using the U.S. Army Corps of Engineers Hydrologic Engineering Center-River Analysis System (HEC-RAS) one-dimensional model. The step-backwater analysis was performed using selected daily mean discharges at the 10th, 50th, 70th, 80th, 90th, 98th, 99.5th, and 99.9th percentiles to compute extent of areal inundation, area of inundation, and hydraulic depth to assess the net reduction of areal inundation if 10 percent of the total river flow were diverted for potential withdrawals. The extent of areal inundation is determined by cross-sectional topography and the degree to which the channel is incised. Areal inundation occurs along the broad, low relief of the Cypress Creek floodplain during all selected discharge percentiles. However, areal inundation of the Peace and Alafia Rivers floodplains, which generally have deeply incised channels, occurs at or above discharges at the 80th percentile. The greatest area of inundation along the three rivers generally occurs between the 90th and 98th percentile discharges. The decrease in inundated area resulting from a potential 10-percent withdrawal in discharge ranged as follows: Cypress Creek, 22 to 395 acres (1.7 to 8.4 percent); Peace River, 17 to 1,900 acres (2.1 to 13.6 percent); Alafia River, 1 to 90 acres (1 to 19.6 percent); North Prong Alafia River, 1 to 46 acres (0.7 to 23.4 percent); and South Prong Alafia River, 1 to 75 acres (1.5 to 13.4 percent).

  18. Channel, Floodplain, And Wetland Responses To Floods And Overbank Sedimentation, 1846-2006, Halfway Creek Marsh, Upper Mississippi Valley, Wisconsin

    EPA Science Inventory

    Conversion of upland forest and prairie vegetation to agricultural land uses, following Euro-American settlement in the Upper Mississippi River System, led to accelerated runoff and soil erosion that subsequently transformed channels, floodplains, and wetlands on bottomlands. Ha...

  19. Water- and Bed-Sediment Quality of Seguchie Creek and Selected Wetlands Tributary to Mille Lacs Lake in Crow Wing County, Minnesota, October 2003 to October 2006

    USGS Publications Warehouse

    Fallon, James D.; Yaeger, Christine S.

    2009-01-01

    Mille Lacs Lake and its tributaries, located in east-central Minnesota, are important resources to the public. In addition, many wetlands and lakes that feed Mille Lacs Lake are of high resource quality and vulnerable to degradation. Construction of a new four-lane expansion of U.S. Highway 169 has been planned along the western part of the drainage area of Mille Lacs Lake in Crow Wing County. Concerns exist that the proposed highway could affect the resource quality of surface waters tributary to Mille Lacs Lake. Baseline water- and bed-sediment quality characteristics of surface waters tributary to Mille Lacs Lake were needed prior to the proposed highway construction. The U.S. Geological Survey, in cooperation with the Minnesota Department of Transportation, characterized the water- and bed-sediment quality at selected locations that the proposed route intersects from October 2003 to October 2006. Locations included Seguchie Creek upstream and downstream from the proposed route and three wetlands draining to Mille Lacs Lake. The mean streamflow of Seguchie Creek increased between the two sites: flow at the downstream streamflow-gaging station of 0.22 cubic meter per second was 5.6 percent greater than the mean streamflow at the upstream streamflow-gaging station of 0.21 cubic meter per second. Because of the large amount of storage immediately upstream from both gaging stations, increases in flow were gradual even during intense precipitation. The ranges of most constituent concentrations in water were nearly identical between the two sampling sites on Seguchie Creek. No concentrations exceeded applicable water-quality standards set by the State of Minnesota. Dissolved-oxygen concentrations at the downstream gaging station were less than the daily minimum standard of 4.0 milligrams per liter for 6 of 26 measurements. Constituent loads in Seguchie Creek were greater at the downstream site than the upstream site for all measured, including dissolved chloride (1

  20. Analysis of water and soil from the wetlands of Upper Three Runs Creek. Volume 2B: Analytical data packages, January--February 1992 sampling

    SciTech Connect

    Haselow, L.A.; Rogers, V.A.; Riordan, C.J.; Eidson, G.W.; Herring, M.K.

    1992-08-01

    Shallow water and soils along Upper Three Runs Creek (UTRC) and associated wetlands between SRS Road F and Cato Road were sampled for nonradioactive and radioactive constituents. The sampling program is associated with risk evaluations being performed for various regulatory documents in these areas of the Savannah River Site (SRS). WSRC selected fifty sampling sites bordering the Mixed Waste Management Facility (MWMF), F- and H-Area Seepage Basins (FHSB), and the Sanitary Landfill (SL). The analytical results from this study provided information on the water and soil quality in UTRC and its associated wetlands. The analytical results from this investigation indicated that the primary constituents and radiological indicators detected in the shallow water and soils were tritium, gross alpha, radium 226, total radium and strontium 90. This investigation involved the collection of shallow water samples during the Fall of 1991 and the Spring of 1992 at fifty (50) sampling locations. Sampling was performed during these periods to incorporate high and low water table periods. Samples were collected from three sections along UTRC denoted as Phase I (MWMF), Phase II (FHSB) and Phase III (SL). One vibracored soil sample was also collected in each phase during the Fall of 1991. This document is compiled of experimental data obtained from the sampling procedures.

  1. Analysis of water and soil from the wetlands of Upper Three Runs Creek. Volume 2A, Analytical data packages September--October 1991 sampling

    SciTech Connect

    Haselow, L.A.; Rogers, V.A.; Riordan, C.J.; Eidson, G.W.; Herring, M.K.

    1992-08-01

    Shallow water and soils along Upper Three Runs Creek (UTRC) and associated wetlands between SRS Road F and Cato Road were sampled for nonradioactive and radioactive constituents. The sampling program is associated with risk evaluations being performed for various regulatory documents in these areas of the Savannah River Site (SRS). WSRC selected fifty sampling sites bordering the Mixed Waste Management Facility (MWMF), F- and H-Area Seepage Basins (FHSB), and the Sanitary Landfill (SL). The analytical results from this study provided information on the water and soil quality in UTRC and its associated wetlands. The analytical results from this investigation indicated that the primary constituents and radiological indicators detected in the shallow water and soils were tritium, gross alpha, radium 226, total radium and strontium 90. This investigation involved the collection of shallow water samples during the Fall of 1991 and the Spring of 1992 at fifty (50) sampling locations. Sampling was performed during these periods to incorporate high and low water table periods. Samples were collected from three sections along UTRC denoted as Phase I (MWMF), Phase II (FHSB) and Phase III (SL). One vibracored soil sample was also collected in each phase during the Fall of 1991. This document is compiled solely of experimental data obtained from the sampling procedures.

  2. Design and Performance of an Enhanced Bioremediation Pilot Test in a Tidal Wetland Seep, West Branch Canal Creek, Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Majcher, Emily H.; Lorah, Michelle M.; Phelan, Daniel J.; McGinty, Angela L.

    2009-01-01

    Because of a lack of available in situ remediation methods for sensitive wetland environments where contaminated groundwater discharges, the U.S. Geological Survey, in cooperation with the U.S. Army Garrison, Aberdeen Proving Ground, Maryland, conceived, designed, and pilot tested a permeable reactive mat that can be placed horizontally at the groundwater/surface-water interface. Development of the reactive mat was part of an enhanced bioremediation study in a tidal wetland area along West Branch Canal Creek at Aberdeen Proving Ground, where localized areas of preferential discharge (seeps) transport groundwater contaminated with carbon tetrachloride, chloroform, tetrachloroethene, trichloroethene, and 1,1,2,2-tetrachloroethane from the Canal Creek aquifer to land surface. The reactive mat consisted of a mixture of commercially available organic- and nutrient-rich peat and compost that was bioaugmented with a dechlorinating microbial consortium, WBC-2, developed for this study. Due to elevated chlorinated methane concentrations in the pilot test site, a layer of zero-valent iron mixed with the peat and compost was added at the base of the reactive mat to promote simultaneous abiotic and biotic degradation. The reactive mat for the pilot test area was designed to optimize chlorinated volatile organic compound degradation efficiency without altering the geotechnical and hydraulic characteristics, or creating undesirable water quality in the surrounding wetland area, which is referred to in this report as achieving geotechnical, hydraulic, and water-quality compatibility. Optimization of degradation efficiency was achieved through the selection of a sustainable organic reactive matrix, electron donor, and bioaugmentation method. Consideration of geotechnical compatibility through design calculations of bearing capacity, settlement, and geotextile selection showed that a 2- to 3-feet tolerable thickness of the mat was possible, with 0.17 feet settlement predicted for

  3. Design and analysis of a natural-gradient ground-water tracer test in a freshwater tidal wetland, West Branch Canal Creek, Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Olsen, Lisa D.; Tenbus, Frederick J.

    2005-01-01

    A natural-gradient ground-water tracer test was designed and conducted in a tidal freshwater wetland at West Branch Canal Creek, Aberdeen Proving Ground, Maryland. The objectives of the test were to characterize solute transport at the site, obtain data to more accurately determine the ground-water velocity in the upper wetland sediments, and to compare a conservative, ionic tracer (bromide) to a volatile tracer (sulfur hexafluoride) to ascertain whether volatilization could be an important process in attenuating volatile organic compounds in the ground water. The tracer test was conducted within the upper peat unit of a layer of wetland sediments that also includes a lower clayey unit; the combined layer overlies an aquifer. The area selected for the test was thought to have an above-average rate of ground-water discharge based on ground-water head distributions and near-surface detections of volatile organic compounds measured in previous studies. Because ground-water velocities in the wetland sediments were expected to be slow compared to the underlying aquifer, the test was designed to be conducted on a small scale. Ninety-seven ?-inch-diameter inverted-screen stainless-steel piezometers were installed in a cylindrical array within approximately 25 cubic feet (2.3 cubic meters) of wetland sediments, in an area with a vertically upward hydraulic gradient. Fluorescein dye was used to qualitatively evaluate the hydrologic integrity of the tracer array before the start of the tracer test, including verifying the absence of hydraulic short-circuiting due to nonnatural vertical conduits potentially created during piezometer installation. Bromide and sulfur hexafluoride tracers (0.139 liter of solution containing 100,000 milligrams per liter of bromide ion and 23.3 milligrams per liter of sulfur hexafluoride) were co-injected and monitored to generate a dataset that could be used to evaluate solute transport in three dimensions. Piezometers were sampled 2 to 15 times

  4. Wetland Wonders. Goose Creek State Park: An Environmental Education Learning Experience Designed for Grades 4-6.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Environment, Health, and Natural Resources, Raleigh. Div. of Parks and Recreation.

    This curriculum guide was developed to provide environmental education through a series of hands-on activities for the classroom and the outdoor setting of Goose Creek State Park, North Carolina. This activity packet, designed for the 4th, 5th, and 6th grades, meets established curriculum objectives of the North Carolina Department of Public…

  5. Mercury, Methylmercury, and Other Constituents in Sediment and Water from Seasonal and Permanent Wetlands in the Cache Creek Settling Basin and Yolo Bypass, Yolo County, California, 2005-06

    USGS Publications Warehouse

    Marvin-DiPasquale, Mark; Alpers, Charles; Fleck, Jacob

    2009-01-01

    This report presents surface water and surface (top 0-2 cm) sediment geochemical data collected during 2005-2006, as part of a larger study of mercury (Hg) dynamics in seasonal and permanently flooded wetland habitats within the lower Sacramento River basin, Yolo County, California. The study was conducted in two phases. Phase I represented reconnaissance sampling and included three locations within the Cache Creek drainage basin; two within the Cache Creek Nature Preserve (CCNP) and one in the Cache Creek Settling Basin (CCSB) within the creek's main channel near the southeast outlet to the Yolo Bypass. Two additional downstream sites within the Yolo Bypass Wildlife Area (YBWA) were also sampled during Phase I, including one permanently flooded wetland and one seasonally flooded wetland, which had began being flooded only 1-2 days before Phase I sampling. Results from Phase I include: (a) a negative correlation between total mercury (THg) and the percentage of methylmercury (MeHg) in unfiltered surface water; (b) a positive correlation between sediment THg concentration and sediment organic content; (c) surface water and sediment THg concentrations were highest at the CCSB site; (d) sediment inorganic reactive mercury (Hg(II)R) concentration was positively related to sediment oxidation-reduction potential and negatively related to sediment acid volatile sulfur (AVS) concentration; (e) sediment Hg(II)R concentrations were highest at the two YBWA sites; (f) unfiltered surface water MeHg concentration was highest at the seasonal wetland YBWA site, and sediment MeHg was highest at the permanently flooded YBWA site; (g) a 1,000-fold increase in sediment pore water sulfate concentration was observed in the downstream transect from the CCNP to the YBWA; (h) low sediment pore water sulfide concentrations (<1 umol/L) across all sites; and (i) iron (Fe) speciation data suggest a higher potential for microbial Fe(III)-reduction in the YBWA compared to the CCSB. Phase II

  6. Pipeline corridors through wetlands - impacts on plant communities: Cassadaga Creek Tributary Crossing, Gerry Township, Chautauqua County, New York. Topical report, August 1992--November 1993

    SciTech Connect

    Shem, L.M.; Van Dyke, G.D.; Zimmerman, R.E.

    1994-12-01

    The goal of the Gas Research Institute Wetland Corridors Program is to document impacts of existing pipelines on the wetlands they traverse. To accomplish this goal, 12 existing wetland crossings were surveyed. These sites varied in elapsed time since pipeline construction, wetland type, pipeline installation techniques, and right-of-way (ROW) management practices. This report presents the results of a survey conducted over the period of August 3-4, 1992, at the Cassadaga wetlands crossing in Gerry Township, Chautauqua County, New York. The pipeline at this site was installed during February and March 1981. After completion of pipeline installation, the ROW was fertilized, mulched, and seeded with annual ryegrass. Two adjacent sites were surveyed in this study: a forested wetland and an emergent wetlands Eleven years after pipeline installation, the ROW at both sites supported diverse vegetative communities. Although devoid of large woody species, the ROW within the forested wetland had a dense vegetative cover. The ROW within the emergent wetland had a slightly less dense and more diverse vegetative community compared with that in the adjacent natural areas (NAs). The ROW within the emergent wetland also had a large number of introduced species that were not present in the adjacent NAs. The ROW, with its emergent marsh plant community, provided habitat diversity within the forested wetlands Because the ROW contained species not found within the adjacent NAs, overall species diversity was increased.

  7. AmeriFlux US-Los Lost Creek

    SciTech Connect

    Desai, Ankur

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Los Lost Creek. Site Description - Shrub wetland site, chosen to be representative of the wetlands within the WLEF tall tower flux footprint. This is a deciduous shrub wetland. Coniferous and grassy stands also exist within the WLEF flux footprint. Solar power. The site has excellent micrometeorological characteristics.

  8. The Beaver Creek story

    USGS Publications Warehouse

    Doyle, W.H.; Whitworth, B.G.; Smith, G.F.; Byl, T.D.

    1996-01-01

    Beaver Creek watershed in West Tennessee includes about 95,000 acres of the Nation's most productive farmland and most highly erodible soils. In 1989 the U.S. Geological Survey, in cooperation with the Tennessee Department of Agriculture, began a study to evaluate the effect of agricultural activities on water quality in the watershed and for best management practices designed to reduce agricultural nonpoint-source pollution. Agrichemical monitoring included testing the soils, ground water, and streams at four farm sites ranging from 27 to 420 acres. Monitoring stations were operated downstream to gain a better understanding of the water chemistry as runoff moved from small ditches into larger streams to the outlet of the Beaver Creek watershed. Prior to the implementation of best management practices at one of the farm study sites, some storms produced an average suspended-sediment concentration of 70,000 milligrams per liter. After the implementation of BMP's, however, the average value never exceeded 7,000 milligrams per liter. No-till crop production was the most effective best management practice for conserving soil on the farm fields tested. A natural bottomland hardwood wetland and a constructed wetland were evaluated as instream resource-management systems. The wetlands improved water quality downstream by acting as a filter and removing a significant amount of nonpoint-source pollution from the agricultural runoff. The constructed wetland reduced the sediment, pesticide, and nutrient load by approximately 50 percent over a 4-month period. The results of the Beaver Creek watershed study have increased the understanding of the effects of agriculture on water resources. Study results also demonstrated that BMP's do protect and improve water quality.

  9. Tidal creek changes at the Sonoma Baylands restoration site

    USGS Publications Warehouse

    Dingler, John R.; Cacchione, David A.; ,

    1998-01-01

    Over the past 150 years, human activity has had a major impact on tidal wetlands adjoining the San Francisco Bay-Delta estuary Growing concern about the effect of this change on the ecology of the estuary has prompted Bay area managers to attempt to reclaim tidal wetlands. The Sonoma Baylands Restoration Project is designed to use dredge material to convert 348 acres from farmland to wetland. This paper describes changes to a tidal creek that flows from that restoration site to San Pablo Bay (north San Francisco Bay) through an existing tidal wetland during different phases of the project. Hydrologic measurements near the bottom of the creek and cross-creek profiles show how the creek responded to non-tidal flow conditions introduced by filling the site with dredge materials. At the time of this study, the creek had deepened by approximately 40 cm but had not widened.

  10. Water-quality and water-level data for a freshwater tidal wetland, West Branch Canal Creek, Aberdeen Proving Ground, Maryland, October 1998-September 1999

    USGS Publications Warehouse

    Spencer, Tracey A.; Olsen, Lisa D.; Lorah, Michelle M.; Mount, Mastin M.

    2000-01-01

    This report presents water-quality data for ground-water and surface-water samples and water-level data collected by the U.S. Geological Survey from October 1998 through September 1999 at West Branch Canal Creek, Aberdeen Proving Ground, Maryland. The report also provides a description of the sampling and analytical methods that were used to collect and analyze the samples, and includes an evaluation of the quality-assurance data. The ground-water sampling network includes 88 wells or piezometers, including four 2-inch wells, two 4-inch wells, thirty 0.75-inch piezo-meters, and fifty-two 0.25-inch piezometers. Water levels were measured in 105 wells or piezometers. Surface-water samples were collected at five sites. Samples were collected from wells and 0.75-inch piezometers for measurement of field parameters, and analysis of inorganic and organic constituents during three sampling rounds: March, May through June, and July through August of 1999. Inorganic constituents and organic constituents were analyzed in samples collected from 0.25-inch piezometers during three sampling rounds in February through March, May, and September of 1999. Water levels were measured in October and November of 1998, and in February and May of 1999. Surface-water samples were collected between February and August of 1999 for analysis of organic constituents.

  11. 75 FR 57978 - Notice of Intent; Request for Comments on Adoption of the National Park Service's Wetland and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-23

    ... Service's Wetland and Creek Restoration Final Environmental Impact Statement/Environmental Impact Report... statement/environmental impact report (EIS/EIR) for the Wetland and Creek Restoration at Big Lagoon, Muir... riparian area and wetlands extending from just downstream of Highway 1 to the beach. Background The NPS...

  12. Wetlands postcard

    USGS Publications Warehouse

    Ball, Lianne C.

    2016-05-25

    Research conducted by scientists at the U.S. Geological Survey provides reliable scientific information for the management of wetlands ranging from small freshwater alpine lakes in the Western United States to coastal wetlands of the Great Lakes and salt marshes along the Southeastern coast. Learn more about USGS wetlands research at: http://www.usgs.gov/ecosystems/environments/wetlands.html.

  13. L-Lake/Steel Creek data base

    SciTech Connect

    Dicks, A.S.

    1988-10-01

    This report documents the data collected from the L-Lake/Steel Creek Biological Monitoring Program from November 1985 through December 1988. The data base is comprised of information to evaluate the major biotic components of L Lake, Steel Creek, and portions of the Savannah River swamp. Data were collected in lake, stream, and wetlands areas that are potentially affected by the discharge of heated effluents from L-Reactor. Biological data consist of measurements of composition, abundance, distribution, and selected functional attributes of the algae, macrophyte, zooplankton, macroinvertebrate, and fish populations. Water chemistry data consist of measurements of concentration for numerous chemical parameters and other limnological parameters.

  14. Wetlands stewardship

    SciTech Connect

    Whelan, J.M.

    1992-04-01

    Wetlands have important ecological values and functions. It is estimated that 80 percent of the Nation's coastal fisheries are dependent on wetlands for spawning, nursery areas, and food sources. Both coastal and inland wetlands provide essential breeding, nesting, feeding, and predator escape habitats for millions of waterfowl, other birds, mammals, and reptiles. Well over one-third of the 564 plant and animal species listed as threatened or endangered in the United States utilize wetland habitats during some portion of their life cycle. Wetlands Stewardship is intended as a resource for everyone interested in wetlands protection.

  15. 1. EAGLE CREEK RECREATION AREA, VIEW OF EAGLE CREEK TRAIL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EAGLE CREEK RECREATION AREA, VIEW OF EAGLE CREEK TRAIL REGISTRY BOOTH. - Historic Columbia River Highway, Eagle Creek Recreation Area, Historic Columbia River Highway at Eagle Creek, Troutdale, Multnomah County, OR

  16. Tillman Creek Mitigation Site As-Build Report.

    SciTech Connect

    Gresham, Doug

    2009-05-29

    This as-built report describes site conditions at the Tillman Creek mitigation site in South Cle Elum, Washington. This mitigation site was constructed in 2006-2007 to compensate for wetland impacts from the Yakama Nation hatchery. This as-built report provides information on the construction sequence, as-built survey, and establishment of baseline monitoring stations.

  17. Restoring Fossil Creek

    ERIC Educational Resources Information Center

    Flaccus, Kathleen; Vlieg, Julie; Marks, Jane C.; LeRoy, Carri J.

    2004-01-01

    Fossil Creek had been dammed for the past 90 years, and plans were underway to restore the stream. The creek runs through Central Arizona and flows from the high plateaus to the desert, cutting through the same formations that form the Grand Canyon. This article discusses the Fossil Creek monitoring project. In this project, students and teachers…

  18. Evaluation of Operations Scenarios for Managing the Big Creek Marsh

    NASA Astrophysics Data System (ADS)

    Wilson, Ian; Rahman, Masihur; Wychreschuk, Jeremy; Lebedyk, Dan; Bolisetti, Tirupati

    2013-04-01

    Wetland management in changing climate is important for maintaining sustainable ecosystem as well as for reducing the impact of climate change on the environment as wetlands act as natural carbon sinks. The Big Creek Marsh within the Essex County is a Provincially Significant Wetland (PSW) in Ontario, Canada. The marsh is approximately 900 hectares in area and is primarily fed by streamflow from the Big Creek Watershed. The water level of this wetland has been managed by the stakeholders using a system of pumps, dykes and a controlled outlet to the Lake Erie. In order to adequately manage the Big Creek Marsh and conserve diverse aquatic plant species, Essex Region Conservation Authority (ERCA), Ontario has embarked on developing an Operations Plan to maintain desire water depths during different marsh phases, viz., Open water, Hemi and Overgrown marsh phases. The objective of the study is to evaluate the alternatives for managing water level of the Big Creek Marsh in different marsh phases. The Soil and Water Assessment Tool (SWAT), a continuous simulation model was used to simulate streamflow entering into the marsh from the Big Creek watershed. A Water Budget (WB) model was developed for the Big Creek Marsh to facilitate in operational management of the marsh. The WB model was applied to simulate the marsh level based on operations schedules, and available weather and hydrologic data aiming to attain the target water depths for the marsh phases. This paper presents the results of simulated and target water levels, streamflow entering into the marsh, water releasing from the marsh, and water pumping into and out of the marsh under different hydrologic conditions.

  19. Correlation between aircraft MSS and LIDAR remotely sensed data on a forested wetland in South Carolina

    NASA Technical Reports Server (NTRS)

    Jensen, John R.; Hodgson, Michael E.; Mackey, Halkard E., Jr.; Krabill, William

    1987-01-01

    Wetlands in a portion of the Savannah River swamp forest, the Steel Creek Delta, were mapped using April 26, 1985 high-resolution aircraft multispectral scanner (MSS) data. Due to the complex spectral characteristics of the wetland vegetation, it was necessary to implement several techniques in the classification of the MSS imagery of the Steel Creek Delta. In particular, when performing unsupervised classification, an iterative cluster busting technique was used which simplified the cluster labeling process. In addition to the MSS data, light detecting and ranging (LIDAR) data were acquired by National Aeronautics and Space Administration (NASA) personnel along two flightlines over the Steel Creek Delta. These data were registered with the wetland classification map and correlated. Statistical analyses demonstrated that the laser derived canopy height information was significantly correlated with the Steel Creek Delta wetland classes encountered along the profiling transect of the LIDAR data.

  20. Freshwater Wetlands.

    ERIC Educational Resources Information Center

    Naturescope, 1986

    1986-01-01

    Provides descriptions about freshwater wetlands, such as marshes, swamps, and bogs. Contains three learning activities which deal with unusual wetland plants, the animals and plants in a typical marsh, and the effects of a draught on a swamp. Included are reproducible handouts and worksheets for two of the activities. (TW)

  1. Exploring Wetlands.

    ERIC Educational Resources Information Center

    Kerr, Elizabeth; Harrison, Gordon

    1996-01-01

    Presents a wetlands education model for secondary education students. Students monitor a wetland, participate in decision-making, and take actions to protect it. In a series of six steps, the model guides students through the process of defining a problem; envisioning solutions; evaluating appropriate solutions based on environmental, economic and…

  2. Wetland Survey of Selected Areas in the Oak Ridge Y-12 Plant Area of Responsibilty, Oak Ridge, Tennessee

    SciTech Connect

    Rosensteel

    1997-01-01

    This document was prepared to summarize wetland surveys performed in the Y- 1 2 Plant area of responsibility in June and July 1994. Wetland surveys were conducted in three areas within the Oak Ridge Y- 12 Plant area of responsibility in June and July 1994: the Upper East Fork Poplar Creek (UEFPC) Operable Unit (OU), part of the Bear Creek Valley OU (the upper watershed of Bear Creek from the culvert under Bear Creek Road upstream through the Y-12 West End Environmental Management Area, and the catchment of Bear Creek North Tributary 1), and part of Chestnut Ridge OU 2 (the McCoy Branch area south of Bethel Valley Road). Using the criteria and methods set forth in the Wetlands Delineation Manual, 18 wetland areas were identified in the 3 areas surveyed; these areas were classified according to the system developed by Cowardin. Fourteen wetlands and one wetland/pond area that are associated with disturbed or remnant stream channels and seeps were identified in the UEFPC OU. Three wetlands were identified in the Bear Creek Valley OU portion of the survey area. One wetland was identified in the riparian zone of McCoy Branch in the southern portion of Chestnut Ridge OU 2.

  3. Resource Management plan for the Oak Ridge Reservation. Volume 28, Wetlands on the Oak Ridge Reservation

    SciTech Connect

    Cunningham, M.; Pounds, Larry

    1991-12-01

    A survey of wetlands on the Oak Ridge Reservation (ORR) was conducted in 1990. Wetlands occurring on ORR were identified using National Wetlands Inventory (NWI) maps and field surveys. More than 120 sites were visited and 90 wetlands were identified. Wetland types on ORR included emergent communities in shallow embayments on reservoirs, emergent and aquatic communities in ponds, forested wetland on low ground along major creeks, and wet meadows and marshes associated with streams and seeps. Vascular plant species occurring on sites visited were inventoried, and 57 species were added to the checklist of vascular plants on ORR. Three species listed as rare in Tennessee were discovered on ORR during the wetlands survey. The survey provided an intensive ground truth of the wetlands identified by NWI and offered an indication of wetlands that the NWI remote sensing techniques did not detect.

  4. Wetland-stream ecosystems of the western Kentucky coalfield: environmental disturbance and the shaping of aquatic community structure

    SciTech Connect

    Hill, P.L. Jr.

    1983-01-01

    The effects of surface mining effluents of the shaping of aquatic community structure in wetland-stream ecosystems of the western Kentucky coalfield were examined. Three variously impacted drainage systems were utilized for the investigation of cause-and-effect relationships. Clear Creek wetland-stream ecosystem had a uniformly low pH, high conductivity and high dissolved minerals load linked to the oozing of old, unreclaimed surface mine spoils. Cypress Creek wetland-stream ecosystem exhibited a slug-pulsing of mine drainage effluents tied to active surface mining limited to the headwaters region. Henderson Sloughs-Pond Creek wetland-stream ecosystem had no mining impact and was utilized as a comparison site. Macroinvertebrate taxa and diversity were considerably lowered in the systems receiving mine drainage. The Shannon-Weaver diversity index (H) was 0.61 for Clear Creek, 1.80 for Cypress Creek and 2.01 for Henderson Sloughs. Large numbers of chironomid larvae dominated the benthic community of Clear Creek while mayflies, caddisflies and crustaceans were the major components of the Cypress Creek community. Henderson Sloughs-Pond Creek had an even more diverse community of mayflies, caddisflies, crustaceans, molluscs and odonates. Fishes followed the same general trend, being almost absent in Clear Creek (H - 0.47), slightly depressed in Cypress Creek (H = 1.74) and generally diverse in Henderson Sloughs (H = 2.37).

  5. Remediation of abandoned mine discharges in the Loyalhanna Creek watershed

    SciTech Connect

    Fish, C.L.; Fish, D.H.

    1999-07-01

    Abandoned deep mine discharges were responsible for high iron loadings into several streams in the Loyalhanna Creek watershed. A total of seven discharges with flow rates from 20 to 1240 gal/min were flowing into Four Mile Run near Latrobe, PA. The iron concentrations in these discharges averaged near 80 ppm. The pH, however, was near neutral due to contact with underground limestone deposits. The high iron concentrations had severely degraded the habitat of the streams including 22 miles of Loyalhanna Creek. Benthic macroinvertebrates are especially vulnerable to the deposition of iron in these streams. In 1993, the Loyalhanna Mine Drainage Coalition was formed to oversee the remediation of the AMD discharges affecting Loyalhanna Creek. During this time monthly monitoring of the discharges began. Then using the chemistry and flow data, passive wetland treatment systems were designed to remediate the mine drainage. The remediation process precipitates and collects the iron oxide in the wetlands, thus eliminating the iron precipitation from the stream. In 1997 and 1998 three wetland treatment systems were constructed. The three wetlands capture the flow from the seven discharges and during low flow periods remove 95--100% of the iron from these discharges. The affected streams have shown a significant decrease in the iron concentrations and a subsequent improvement in the habitat quality of the streams. Fish and macroinvertebrates have been found in the most polluted stream which was void of life before the treatment systems were in operation.

  6. 77 FR 42714 - Eagle Creek Hydropower, LLC, Eagle Creek Land Resources, LLC, Eagle Creek Water Resources, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-20

    ... Energy Regulatory Commission Eagle Creek Hydropower, LLC, Eagle Creek Land Resources, LLC, Eagle Creek... No.: 9690-109. c. Date Filed: June 19, 2012. d. Applicants: Eagle Creek Hydropower, LLC; Eagle Creek... President-- Operations, Eagle Creek Hydropower, LLC, Eagle Creek Water Resources, LLC, Eagle Creek...

  7. Argus Energy WV, LLC wins 2007 Wetlands West Virginia Award

    SciTech Connect

    2007-07-15

    Argus Energy's Kiah Creek Operation has received the 2007 Wetlands West Virginia Award presented by the West Virginian Coal Association. The operation was originally a 1267 acre underground mine in the Coalburg seam. Underground mining commenced in 2000 until the end of 2003 with more than two million tons of coal being produced. The creation of the wetlands was achieved during the operations. 8 photos.

  8. Forested wetlands

    SciTech Connect

    Lugo, A.E.; Brinson, M.; Brown, S.

    1990-01-01

    Forested wetlands have important roles in global biogeochemical cycles, supporting freshwater and saltwater commercial fisheries, and in providing a place for wildlife of all kinds to flourish. Scientific attention towards these ecosystems has lagged with only a few comprehensive works on forested wetlands of the world. A major emphasis of this book is to develop unifying principles and data bases on the structure and function of forested wetlands, in order to stimulate scientific study of them. Wetlands are areas that are inundated or saturated by surface-water or ground-water, at such a frequency and duration that under natural conditions they support organisms adapted to poorly aerated and/or saturated soil. The strategy of classifying the conditions that control the structure and behavior of forested wetlands by assuming that the physiognomy and floristic composition of the system will reflect the total energy expenditure of the ecosystem; and the structural and functional characteristics of forested wetlands from different parts of the world are the major topics covered.

  9. Modeling heavy metal removal in wetlands

    SciTech Connect

    Lung, W.S.; Light, R.N.

    1994-12-31

    Although the use of wetland ecosystems to purify water has gained increased attention only recently, it has been recognized as a wastewater treatment technique for centuries. While considerable research has occurred to quantify the nutrient (nitrogen and phosphorus) removal mechanisms of wetlands, relatively few investigators have focused on the mechanisms of heavy metal removal and uptake by wetland sediments and plants. The quantification of the assimilative capacity of heavy metals by wetland ecosystems is a critical component in the design and use of wetlands for this purpose. A computer model has been developed to simulate the fate and transport of heavy metals introduced to a wetland ecosystem. Modeled water quality variables include phytoplankton biomass and productivity; macrophyte (Nulumbo lutea) biomass; total phosphorus in the water column; dissolved copper in the water column and sediments; particulate copper in the water column and sediments; and suspended solids. These variables directly affect the calculated rate of copper uptake by macrophytes, and the rate of copper recycling as a function of the decomposition of copper-laden biomass litter. The model was calibrated using total phosphorus and chlorophyll a data from the Old Woman Creek Wetland in Ohio. Verification of the model was achieved using data on the copper content of the macrophyte Nelumbo lutea.

  10. What Makes a Wetland a Wetland?

    ERIC Educational Resources Information Center

    Naturescope, 1986

    1986-01-01

    Provides descriptions of and activities about various kinds of wetlands. Contains seven learning activities ranging from creating wetland scenes with picture cutouts to actually exploring a wetland. Includes reproducible handouts and worksheets for several of the activities. (TW)

  11. Hydrology and water quality of Reedy Creek in the Reedy Creek Improvement District, central Florida, 1986-89

    USGS Publications Warehouse

    Hampson, P.S.

    1993-01-01

    The Reedy Creek Improvement District encompasses an area of about 43 sq mi in southwestern Orange and northwestern Osceola Counties in central Florida. The District operates a wastewater-treatment plant that discharges through two forested wetland areas and a percolation-pond system into Reedy Creek. Discharges from these wetland systems provide a relatively steady base flow which maintains streamflow in Reedy Creek during periods of low rainfall. Streamflows during the study were characterized by relatively long periods of below-average discharge interspersed with periods of high discharges. The highest mean discharges were recorded in 1988 and the lowest mean discharges were recorded in 1989. Water-quality data collection included the operation of four continuous water-quality monitors recording hourly water temperature, specific conductance, and dissolved oxygen concentration, and the collection of water-quality samples. Dissolved oxygen concentrations were similar for all stations on Reedy Creek and frequently were less than the minimum Florida standard of 5.0 mg/L. These low dissolved oxygen concentrations probably are the result of natural conditions. Nutrient analyses of water-quality samples were used to compute loadings into and out of a wetland conservation area in the southern part of the District and in the reach of Reedy Creek downstream from the wastewater discharges. Overall retention percentages for 1986-89, not including atmospheric and precipitation inputs, were 59.1 percent for total ammonia nitrogen: 3.4 percent for total organic nitrogen, which was the predominant nitrogen species: 33.2 percent for total nitrate nitrogen; 27.0 percent for total phosphorus; and 26.0 percent for total organic carbon. Highest loading inputs to the wetland conservation area were from the reach of Reedy Creek receiving wastewater discharge. Discharges from the wetlands receiving wastewater and entering the wetland conservation area during 1988 carried 16.3 percent

  12. Shell Creek Summers

    ERIC Educational Resources Information Center

    Seier, Mark; Goedeken, Suzy

    2005-01-01

    In 2002 Shell Creek Watershed Improvement Group turned to the Newman Grove Public Schools' science department to help educate the public on water quality in the watershed and to establish a monitoring system that would be used to improve surface and groundwater quality in the creek's watershed. Nebraska Department of Environmental Quality provided…

  13. Wetlands ecology

    NASA Technical Reports Server (NTRS)

    Anderson, R. R. (Principal Investigator); Carter, V. L.; Mcginness, J. W., Jr.

    1972-01-01

    The author has identified the following significant results. The ERTS imagery analyzed provides approximately 2/3 coverage of the test site. Analysis was made using visual methods, density slicing, and multispectral analysis. Preliminary conclusions reached are that most, if not all, of the investigation objectives can be met. Saline and near-saline wetlands can be delineated from ERTS-1 images as the wetland-upland boundaries and land-water interface are clearly defined. Major plant species or communities such as Spartina alterniflora (high and low vigor forms), Spartina patens/Distichlis spicata, and Juncus roemarianus can be discriminated and spoil disposal areas identified.

  14. ANAEROBIC COMPOST CONSTRUCTED WETLANDS SYSTEM TECHNOLOGY - SITE ITER

    EPA Science Inventory

    In Fall 1994, anaerobic compost wetlands in both upflow and downflow configurations were constructed adjacent to and received drainage from the Burleigh Tunnel, which forms part of the Clear Creek/Central City Superfund site. The systems were operated over a 3 year period. The e...

  15. ANAEROBIC COMPOST CONSTRUCTED WETLANDS SYSTEM TECHNOLOGY - SITE TECHNOLOGY CAPSULE

    EPA Science Inventory

    In fall 1994, anaerobic compost wetlands in both upflow and down flow configurations were constructed adjacent to and received drainage from the Burleigh tunnel, which forms part of the Clear Creek/Central City Superfund site. The systems were operated over a 3 year period. The ...

  16. Indian Creek-AML: Coal slurry reclamation (Kansas case history)

    SciTech Connect

    Witthar, S.R.

    1998-12-31

    Black and Veatch, assisted by Jack Nawrot, developed conceptual and final designs and provided construction assistance to create grasslands and wetlands in order to reclaim an abandoned coal mine for the state of Kansas. The mine included spoils, a coal refuse dump, and slurry pond in the Indian Creek drainage basin in east central Kansas. The Indian Creek flowed from an off-site abandoned mine and through the coal slurry pond where its waters became more polluted. The intent of the reclamation project was to improve water quality and create a wildlife refuge. The coal refuse was covered and seeded with a diversity of vegetation including several grasses and legume. The slurry pond was developed into a series of large wetland cells to improve water quality. Prior to reclamation, the water leaving the site had a typical pH of 3.3, ranging from 2.4 to 5.6, an iron content which typically over 22 mg/L and ranging over 100 mg/L, and contained large amounts of coal slurry. The acid sediment in the slurry killed fish and caused visible damage to a new large concrete box culvert several miles downstream of the site. Post-reclamation water quality leaving the Indian Creek site showed immediate improvement even before vegetation was reestablished. The existing wetland treatment systems have been successfully treating water for over seven years with the pH of the water leaving the wetlands above 7 and soluble iron content less than 1 mg/L. Fish in the constructed wetlands support waterfowl which now nest onsite.

  17. Zambia Wetland

    Atmospheric Science Data Center

    2013-04-16

    ... these images is the prominent roundish shape of the Lukanga Swamp, another important wetland. The images along the left are natural ... plateau of the Kafue National Park, to the west of Lukanga Swamp, appears brighter in 2004 compared with 2003, which indicates weaker ...

  18. Coastal Wetlands.

    ERIC Educational Resources Information Center

    Area Cooperative Educational Services, New Haven, CT. Environmental Education Center.

    This material includes student guide sheets, reference materials, and tape script for the audio-tutorial unit on Inland Wetlands. A set of 35mm slides and an audio tape are used with the materials. The material is designed for use with Connecticut schools, but it can be adapted to other localities. The unit materials emphasize the structure,…

  19. Saltwater Wetlands.

    ERIC Educational Resources Information Center

    Naturescope, 1986

    1986-01-01

    Provides information about saltwater wetlands. Contains seven learning activities which deal with "making" a mud snail, plants and animals of mangroves, and the effects of tides on salt marshes. Included are reproducible handouts and worksheets for several of the activities. (TW)

  20. Inland Wetlands.

    ERIC Educational Resources Information Center

    Area Cooperative Educational Services, New Haven, CT. Environmental Education Center.

    This material includes student guide sheets, reference materials, and tape script for the audio-tutorial unit on Inland Wetlands. A set of 35mm slides and an audio tape are used with the material. The material is designed for use with Connecticut schools, but it can be adapted to other localities. The materials emphasize characteristics of inland…

  1. Sources of baseflow for the Minnehaha Creek Watershed, Minnesota, US

    NASA Astrophysics Data System (ADS)

    Nieber, J. L.; Moore, T. L.; Gulliver, J. S.; Magner, J. A.; Lahti, L. B.

    2013-12-01

    . The analysis of the stable isotopes indicate that much of the low flow volume originates from surface storages including wetlands and small lakes within the watershed, with a small amount of the flow originating from groundwater seepage into the creek in the upper reaches of the creek. The temperature surveys and the seepage meter measurements along the main channel of the watershed show a trend that groundwater enters into the creek in the upper reaches, while the flux exchange is from the creek to groundwater in the lower reaches. The differences in flux direction between the upper and lower portions of the creek can be explained by three possible nonexclusive causes. First, the creek empties to the Mississippi River, and as the mouth of the creek is approached, the regional piezometric head drops significantly. Second, the lower end of the creek has a much larger portion of ';bottomless' surficial aquifer and therefore greater potential vertical loss of water. Third, the lower portion of the watershed is more developed and has major stormwater pipe infrastructure, a possible pathway for accelerating drainage of the surficial aquifer. To address the issue of low groundwater contribution to low-flows in the creek it is proposed to divert stormwater to key locations within the riparian zone along the creek, and to infiltrate that water and store it for slow release to the creek during non-rain periods.

  2. Dynamics of suspended sediment exchange and transport in a degraded mangrove creek in Kenya.

    PubMed

    Kitheka, Johnson U; Ongwenyi, George S; Mavuti, Kenneth M

    2002-12-01

    This study focuses on sediment exchange dynamics in Mwache Creek, a shallow tidal mangrove wetland in Kenya. The surface area of the creek is 17 km2 at high water spring. The creek experiences semidiurnal tides with tidal ranges of 3.2 m and 1.4 m during spring and neap tides, respectively. The creek is ebb dominant in the frontwater zone main channel and is flood dominant in the backwater zone main channel. During rainy season, the creek receives freshwater and terrigenous sediments from the seasonal Mwache River. Heavy supply of terrigenous sediments during the El Niño of 1997-1998 led to the huge deposition of sediments (10(60 tonnes) in the wetland that caused massive destruction of the mangrove forest in the upper region. In this study, sea level, tidal discharges, tidal current velocities, salinity, total suspended sediment concentrations (TSSC) and particulate organic sediment concentrations (POSC) measured in stations established within the main channel and also within the mangrove forests, were used to determine the dynamics of sediment exchange between the frontwater and backwater zones of the main channel including also the exchange with mangrove forests. The results showed that during wet seasons, the high suspended sediment concentration associated with river discharge and tidal resuspension of fine channel-bed sediment accounts for the inflow of highly turbid water into the degraded mangrove forest. Despite the degradation of the mangrove forest, sediment outflow from the mangrove forest was considerably less than the inflow. This caused a net trapping of sediment in the wetland. The net import of the sediment dominated in spring tide during both wet and dry season and during neap tide in the wet season. However, as compared to heavily vegetated mangrove wetlands, the generally degraded Mwache Creek mangrove wetland sediment trapping efficiency is low as the average is about 30% for the highly degraded backwater zone mangrove forest and 65% in the

  3. Measuring Contingent Values for Wetlands: Effects of Information About Related Environmental Goods

    NASA Astrophysics Data System (ADS)

    Whitehead, John C.; Blomquist, Glenn C.

    1991-10-01

    A model of contingent market behavior is developed which emphasizes the role of household information about wetlands and related environmental goods. Information is acquired through previous experience with wetlands and through the contingent market. Households which are unaware of substitute or complement environmental goods when participating in contingent markets may overstate or understate willingness to pay values. This paper estimates willingness to pay for preservation of the Clear Creek wetland in western Kentucky when faced with surface coal mining. We test for the effects of explicit information about related environmental goods on contingent values by measuring the difference in stated willingness to pay. Willingness to pay for preservation of the Clear Creek wetland decreases with information about surface coal mine lake reclamation and, in the initial, independent format increases with information about a nearby publicly owned, wetland area. These findings suggest that the lack of explicit information about related environmental goods in contingent markets can contribute to a misstatement of willingness to pay.

  4. Riparian Wetlands: Mapping

    EPA Science Inventory

    Riparian wetlands are critical systems that perform functions and provide services disproportionate to their extent in the landscape. Mapping wetlands allows for better planning, management, and modeling, but riparian wetlands present several challenges to effective mapping due t...

  5. Our Valuable Wetlands.

    ERIC Educational Resources Information Center

    Texley, Juliana

    1988-01-01

    Defines wetlands and lists several types of wetland habitat. Describes explorations that can be done with secondary school students including the baby boom, a food pyramid, and microenvironments. Includes a classroom poster with text on the variety of wetlands. (CW)

  6. Urban Wetlands' Filtration of Pollutants in Milledgeville, Georgia

    NASA Astrophysics Data System (ADS)

    Sadowski, H.; Mutiti, S.; Melvin, C.; Hazzard, S.; Berry, L. E.; GCSU Hydrogeoligists

    2011-12-01

    Wetlands provide the vital biological service of filtering contaminants and wastes. Constructed wetlands can be used to treat urban wastewater, providing additional economic value. Suspended sediments are trapped and retained by roots, microbes break down nutrients and disinfection occurs via photolysis. The primary objective of this research was to investigate the effectiveness of a structurally-unique urban wetland along the Oconee River in Milledgeville, Georgia at filtering contaminants from urban runoff. In the past two years, there have been at least two reported instances where sewer blockages occurred and raw waste spilled into the wetland and nearby streams. Contaminants of concern include pathogens, nutrients, pharmaceuticals and other chemical compounds found in runoff. The wetland is made up of a series of basins that are in places separated by covered bricks and provides the only opportunity for runoff to be filtered before entering the creek and river. To understand the processes affecting water flow within the basins, a variety of field tests (in-situ permeameter, slug, evaporation, and infiltration tests) were conducted. Soil cores were also collected for nitrate, aluminum, and phosphate transport experiments. Water samples were collected from the runoff, the basins, the creek, and discharge into the creek during and after rain events. These samples were analyzed using Hach colorimeters, spectrophotometers and a mass spectrophotometer. Interflow through a sandy layer, with a hydraulic conductivity of about 20 m/d, was observed at about 1 meter below ground surface. Evaporation and infiltration tests in the wetland yielded values of about 0.001 and 0.46 m/d. Preliminary results showed the creek to have relatively lower nutrient and iron concentrations than the input runoff and the wetland. In contrast, phosphate, iron and sulfate levels were higher in the basins than in the incoming runoff. This is probably a result of accumulation over time

  7. Jackson Creek Spillway modifications

    SciTech Connect

    Freitas, M.J.; Young, D.J.; McCloud, B.J.

    1995-12-31

    The Jackson Creek Spillway in Amador County, California has been modified in response to issues raised during the Federal Energy Regulatory Commission (FERC) mandated 5-year safety inspections. The calculated factors of safety for the Jackson Creek Spillway, under the probable maximum flood (PMF) and maximum credible earthquake (MCE) loading conditions, were below levels considered acceptable by the FERC and modifications to the structure were required. Woodward-Clyde Consultants, under contract to the East Bay Municipal Utility District (EBMUD), designed the modifications and in the summer and fall of 1994 the modifications to the Jackson Creek Spillway were successfully constructed with both FERC and California Division of Safety of Dams (DSOD) approval. This paper will summarize the design and construction issues, and discuss the lessons learned during modification of this 67-year-old structure.

  8. BEAVER CREEK WILDERNESS, KENTUCKY.

    USGS Publications Warehouse

    Englund, K.J.; Hammack, R.W.

    1984-01-01

    The Beaver Creek Wilderness, Kentucky, was studied. Coal is the most important mineral resource in the Beaver Creek Wilderness. The coal is tentatively ranked as high-volatile A bituminous, and like coal of this rank in nearby mining areas, it is primarily suitable for use as steam coal. The coal resources are estimated to total 8. 31 million short tons in beds greater than 14 in. thick. Nonmetallic minerals present in the Wilderness include limestone, shale, clay, and sandstone; these commodities are abundant outside the wilderness. The information available is not adequate for the assessment of the oil and gas resource potential of the Beaver Creek Wilderness. There is little likelihood for the occurrence of metallic mineral resources.

  9. Wetlands Research Program Bulletin. Volume 5. Number 1

    SciTech Connect

    Gilbert, M.C.; Stutheit, R.G.; Davis, M.

    1995-03-01

    The city of Lincoln, Neb., was founded in the mid-18OOs along Salt Creek. During the last century, the saline marshes suffered extensive degradation through commercial and residential development, road construction, and agriculture. Today, Nebraska`s eastern saline wetlands are considered to be among the most restricted and imperiled ecosystems. Eastern Nebraska saline wetlands are regionally unique, located in floodplain swales and depressions within the Salt Creek and Rock Creek watersheds in Lancaster and southern Saunders counties. Water sources are a combination of discharge from the Dakota sandstone formation aquifer, precipitation, and overbank flooding. Salts are concentrated in the soil during dry periods. Vegetation in these wetlands is characterized by halophytes including spearscale (Atriplex subspicata), inland saltgrass (Distichlis spicata var. stricta), saltwort (Sa1icornia rubra), prairie bulrush (Scirpus mantimus var. paludosus), sea blite (Suaeda depressa), and narrow-leaved cattail (Typha angustifolia). Four plant species considered rare in Nebraska are saltmarsh aster (Aster subulatus var. ligulatus), seaside heliotrope (Heliotropium curassavicurn), saltwort, and Texas dropseed (Sporobolus texanus) can be found in the marshes along Salt Creek.

  10. Boulder Creek Study

    ERIC Educational Resources Information Center

    Bingaman, Deirdre; Eitel, Karla Bradley

    2010-01-01

    Boulder Creek runs literally in the backyard of Donnelly Elementary School and happens to be on the EPA list of impaired water bodies. Therefore, a unique opportunity for problem solving opened the door to an exciting chance for students to become scientists, while also becoming active in their community. With the help of the Idaho Department of…

  11. The Paint Creek Project.

    ERIC Educational Resources Information Center

    Northrop, David; Vonck, Beth

    1998-01-01

    Describes a summer program project designed and conducted by a mixed-age group of elementary children. Students collected data to determine whether a local stream was polluted, and interpretations of the data varied. An informational video about the project and the creek was produced. (PVD)

  12. Freshwater flow from estuarine creeks into northeastern Florida Bay

    USGS Publications Warehouse

    Hittle, Clinton; Patino, Eduardo; Zucker, Mark A.

    2001-01-01

    total measured freshwater entering northeastern Florida Bay. The mean monthly wet-season (May-October) flow at Trout Creek is about 340 cubic feet per second, compared to 55 cubic feet per second at West Highway Creek, 52 cubic feet per second at Taylor River, 49 cubic feet per second at Mud Creek, and 33 cubic feet per second at McCormick Creek. The other two flow signatures are the decline of freshwater discharge at McCormick Creek at the start of the El Nino event, and the absence of net-negative flows at West Highway Creek. The observed flow distribution within the study area, suggests that the overall flow direction of freshwater in the Everglades wetlands in the lower part of Taylor Slough may have a strong eastward flow component as water approaches the coastline. Data analysis also indicates that Trout Creek could potentially be used as a long-term monitoring station to estimate total freshwater flow into northeastern Florida Bay, provided that the remaining questions regarding flow patterns at McCormick Creek and the creeks in Long Sound are answered and that no major changes in flow characteristics occur in the future.

  13. Correlation between aircraft MSS and lidar remotely sensed data on a forested wetland

    NASA Technical Reports Server (NTRS)

    Jensen, John R.; Hodgson, Michael E.; Mackey, Halkard E., Jr.; Krabill, William

    1987-01-01

    Inland wetland in a portion of the Savannah River swamp forest were mapped with an overall accuracy of 88.5 percent on April 26,l985 using high resolution aircraft Daedalus AADS-1268 MSS data. In addition, data were acquired using a NASA sensor system flown along two flight lines over the Steel Creek Delta. The data were significantly correlated with in situ tree height measurements. The data were registered to the wetland classification map and correlated. Statistical analyses demonstrated that the laser derived canopy height information was significantly associated with the Steel Creek Delta wetland classes encountered along the transect (an F-value of 58.46 at the 0.0001 level of confidence). The relationship between vegetation height and vegetation type was then used to produce a three-dimensional model of the landscape which can be of value when computing biomass or canopy density in this forested wetland environment.

  14. Wonderful Wetlands: An Environmental Education Curriculum Guide for Wetlands.

    ERIC Educational Resources Information Center

    King County Parks Div., Redmond, WA.

    This curriculum guide was designed to give teachers, students, and society a better understanding of wetlands in the hope that they learn why wetlands should be valued and preserved. It explores what is meant by wetlands, functions and values of wetlands, wetland activities, and wetland offerings which benefit animal and plant life, recreation,…

  15. Carbon dioxide and methane emissions from an artificially drained coastal wetland during a flood: Implications for wetland global warming potential

    NASA Astrophysics Data System (ADS)

    Gatland, J. R.; Santos, I. R.; Maher, D. T.; Duncan, T. M.; Erler, D. V.

    2014-08-01

    Floods frequently produce deoxygenation and acidification in waters of artificially drained coastal acid sulfate soil (CASS) wetlands. These conditions are ideal for carbon dioxide and methane production. We investigated CO2 and CH4 dynamics and quantified carbon loss within an artificially drained CASS wetland during and after a flood. We separated the system into wetland soils (inundated soil during flood and exposed soil during post flood period), drain water, and creek water and performed measurements of free CO2 ([CO2*]), CH4, dissolved inorganic and organic carbon (DIC and DOC), stable carbon isotopes, and radon (222Rn: natural tracer for groundwater discharge) to determine aquatic carbon loss pathways. [CO2*] and CH4 values in the creek reached 721 and 81 μM, respectively, 2 weeks following a flood during a severe deoxygenation phase (dissolved oxygen ~ 0% saturation). CO2 and CH4 emissions from the floodplain to the atmosphere were 17-fold and 170-fold higher during the flooded period compared to the post-flood period, respectively. CO2 emissions accounted for about 90% of total floodplain mass carbon losses during both the flooded and post-flood periods. Assuming a 20 and 100 year global warming potential (GWP) for CH4 of 105 and 27 CO2-equivalents, CH4 emission contributed to 85% and 60% of total floodplain CO2-equivalent emissions, respectively. Stable carbon isotopes (δ13C in dissolved CO2 and CH4) and 222Rn indicated that carbon dynamics within the creek were more likely driven by drainage of surface floodwaters from the CASS wetland rather than groundwater seepage. This study demonstrated that >90% of CO2 and CH4 emissions from the wetland system occurred during the flood period and that the inundated wetland was responsible for ~95% of CO2-equivalent emissions over the floodplain.

  16. Hydrogeology of wetlands

    USGS Publications Warehouse

    Winter, T.C.; Llamas, M.R.

    1993-01-01

    A collection of 10 papers presented at the Hydrogeology of Wetlands Symposium, 28th International Geological Congress in Washington, DC, in July 1989. The purpose of the symposium was to assemble papers describing hydrogeologic studies of wetlands representative of different geographic regions, wetland types, and study approaches. The papers presented at the Symposium ranged geographically from wetlands in the Arctic to the Subtropics. Different wetland types included coastal, riverine, depressional glacial terrane, and dunal depressions. Different study approaches included regional syntheses, analyses of groundwater flow systems, wetland-river interaction, and geomorphology-vegetation interaction. -from Editors

  17. WELCOME CREEK WILDERNESS, MONTANA.

    USGS Publications Warehouse

    Lidke, D.J.; Close, T.J.

    1984-01-01

    Mineral-resource surveys indicate probable or substantiated mineral-resource potential for small amounts of gold and other metals. Areas of alluvium in Welcome Creek and in part of Rock Creek are classed as having probable and substantiated mineral-resource potential for small quantities of gold in small and scattered placers and in placer tailings. A small area which contains the Cleveland mine, on Cleveland Mountain, near the west border of the wilderness was classed as having probable mineral-resource potential for silver and gold in veins. Although green mudstone strata that often are favorable hosts for stratabound copper occurrences were found in the northeast part of the wilderness, no copper deposits were found and these studies indicate little likelihood for the occurrence of copper resources. The nature of the geologic terrain indicates that there is little likelihood of the occurrence of energy resources.

  18. Habitat Evaluation Procedures (HEP) Report; Carey Creek, Technical Report 2005.

    SciTech Connect

    Entz, Ray

    2005-05-01

    In August 2002, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Carey Creek property, an acquisition completed by the Kalispel Tribe of Indians in December 2001. Evaluation species and appropriate models include bald eagle, black-capped chickadee, Canada goose, mallard, yellow warbler, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Carey Creek Project provides a total of 172.95 Habitat Units (HUs) for the species evaluated. Conifer forest habitat provides 4.91 HUs for bald eagle, black-capped chickadee, and white-tailed deer. Forested wetlands provide 52.68 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. Scrub-shrub wetlands provide 2.82 HUs for mallard, yellow warbler and white-tailed deer. Wet meadow and grassland meadow provide 98.13 HUs for mallard and Canada goose. Emergent wetlands provide 11.53 HUs for mallard, muskrat, and Canada goose. Open water provides 2.88 HUs for Canada goose, mallard, and muskrat. The objective of using HEP at the Carey Creek Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  19. Wetland Characteristics and Denitrification

    EPA Science Inventory

    This presentation serves as an initial summary of our wetland field work's watershed characteristics hydrologic characteristics, water quality measurements, and denitrification assays. We present our measurement results in the context of wetland type (Estuarine, Freshwater Mars...

  20. Fish assemblages, connectivity, and habitat rehabilitation in a diked Great Lakes coastal wetland complex

    USGS Publications Warehouse

    Kowalski, Kurt P.; Wiley, Michael J.; Wilcox, Douglas A.

    2014-01-01

    Fish and plant assemblages in the highly modified Crane Creek coastal wetland complex of Lake Erie were sampled to characterize their spatial and seasonal patterns and to examine the implications of the hydrologic connection of diked wetland units to Lake Erie. Fyke netting captured 52 species and an abundance of fish in the Lake Erie–connected wetlands, but fewer than half of those species and much lower numbers and total masses of fish were captured in diked wetland units. Although all wetland units were immediately adjacent to Lake Erie, there were also pronounced differences in water quality and wetland vegetation between the hydrologically isolated and lake-connected wetlands. Large seasonal variations in fish assemblage composition and biomass were observed in connected wetland units but not in disconnected units. Reestablishment of hydrologic connectivity in diked wetland units would allow coastal Lake Erie fish to use these vegetated habitats seasonally, although connectivity does appear to pose some risks, such as the expansion of invasive plants and localized reductions in water quality. Periodic isolation and drawdown of the diked units could still be used to mimic intermediate levels of disturbance and manage invasive wetland vegetation.

  1. Sedimentation of prairie wetlands

    USGS Publications Warehouse

    Gleason, Robert A.; Euliss, Ned H.

    1998-01-01

    Many wetlands in the prairie pothole region are embedded within an agricultural landscape where they are subject to varying degrees of siltation. Cultivation of wetland catchment areas has exacerbated soil erosion; wetlands in agricultural fields receive more sediment from upland areas than wetlands in grassland landscapes and hence are subject to premature filling (i.e., they have shorter topographic lives). Associated impacts from increased turbidity, sediment deposition, and increased surface water input likely have impaired natural wetland functions. Although trapping of sediments by wetlands is often cited as a water quality benefit, sediment input from agricultural fields has potential to completely fill wetlands and shorten their effective life-span. Thus, the value placed on wetlands to trap sediments is in conflict with maximizing the effective topographic life of wetlands. Herein, we provide an overview of sedimentation, identify associated impacts on wetlands, and suggest remedial management strategies. We also highlight the need to evaluate the impact of agricultural practices on wetland functions from an interdisciplinary approach to facilitate development of best management practices that benefit both wetland and agricultural interests.

  2. Wetlands: An Interdisciplinary Exploration

    ERIC Educational Resources Information Center

    Czerniak, Charlene M.

    2004-01-01

    The topic of wetlands provides a rich context for curriculum integration. This unit contains seven activities that integrate environmental science with math, technology, social studies, language arts, and other disciplines. In this series, students will identify plants and animals found in wetlands, understand the function of wetlands through the…

  3. Wetlands, Wildlife, and People.

    ERIC Educational Resources Information Center

    Naturescope, 1986

    1986-01-01

    Discusses the problems created when wetlands are drained or altered by humans. Provides a brief case study of the Everglades as an example of the effects of human intervention. Presents four learning activities (along with reproducible worksheets) that deal with the benefits of wetlands, and some debated issues over wetlands. (TW)

  4. Are isolated wetlands isolated?

    USGS Publications Warehouse

    Smith, Loren M.; Euliss, Ned H.; Haukos, David A.

    2011-01-01

    While federal regulations during the past 10 years have treated isolated wetlands as unconnected to aquatic resources protected by the Clean Water Act, they provide critical ecosystem services to society that extend well beyond their wetland boundaries. The authors offer well-documented examples from the scientific literature on some of the ecosystem services provided by isolated wetlands to society and other ecosystems.

  5. Modeling Channelization in Coastal Wetlands with Ecological Feedbacks

    NASA Astrophysics Data System (ADS)

    Hughes, Z. J.; Mahadevan, A.; Pennings, S.; FitzGerald, D.

    2014-12-01

    In coastal wetlands in Georgia and South Carolina, dendritic channel networks are actively incising headward at the rate of nearly 2 m/yr. The future geomorphic evolution of these marshes remains in question as rates of relative sea-level rise increase. Our objective is to understand the mechanisms that lead to the evolution of these channel networks through field observations and modeling. We model the geomorphological evolution of tidal creeks by viewing the wetland as a permeable medium. The porosity of the medium affects its hydraulic conductivity, which in turn is altered by erosion. Our multiphase model spontaneously generates channelization and branching networks through flow and erosion. In our field studies, we find that crabs play an active role in grazing vegetation and in the bioturbation of sediments. These effects are incorporated in our model based on field and laboratory observations of crab behavior and its effects on the marsh. We find the erosional patterns and channelization are significantly altered by the faunal feedback. Crabs enhance the growth of channels, inducing the headward erosion of creeks where flow-induced stresses are weakest. They are instrumental in generating high rates of creek extension, which channelize the marsh more effectively in response to sea-level rise. This indicates that the evolution of coastal wetlands is responding to interactions between physics and ecology and highlights the importance of the faunal contribution to these feedbacks.

  6. 216. Construction of the Back Creek Bridge over Back Creek ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    216. Construction of the Back Creek Bridge over Back Creek and Virginia Route 613. This is a good example of a precast concrete girder bridge. Note the fallen beam at the far end. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  7. Simulated wetland conservation-restoration effects on water quantity and quality at watershed scale.

    PubMed

    Wang, Xixi; Shang, Shiyou; Qu, Zhongyi; Liu, Tingxi; Melesse, Assefa M; Yang, Wanhong

    2010-07-01

    Wetlands are one of the most important watershed microtopographic features that affect hydrologic processes (e.g., routing) and the fate and transport of constituents (e.g., sediment and nutrients). Efforts to conserve existing wetlands and/or to restore lost wetlands require that watershed-level effects of wetlands on water quantity and water quality be quantified. Because monitoring approaches are usually cost or logistics prohibitive at watershed scale, distributed watershed models such as the Soil and Water Assessment Tool (SWAT), enhanced by the hydrologic equivalent wetland (HEW) concept developed by Wang [Wang, X., Yang, W., Melesse, A.M., 2008. Using hydrologic equivalent wetland concept within SWAT to estimate streamflow in watersheds with numerous wetlands. Trans. ASABE 51 (1), 55-72.], can be a best resort. However, there is a serious lack of information about simulated effects using this kind of integrated modeling approach. The objective of this study was to use the HEW concept in SWAT to assess effects of wetland restoration within the Broughton's Creek watershed located in southwestern Manitoba, and of wetland conservation within the upper portion of the Otter Tail River watershed located in northwestern Minnesota. The results indicated that the HEW concept allows the nonlinear functional relations between watershed processes and wetland characteristics (e.g., size and morphology) to be accurately represented in the models. The loss of the first 10-20% of the wetlands in the Minnesota study area would drastically increase the peak discharge and loadings of sediment, total phosphorus (TP), and total nitrogen (TN). On the other hand, the justifiable reductions of the peak discharge and loadings of sediment, TP, and TN in the Manitoba study area may require that 50-80% of the lost wetlands be restored. Further, the comparison between the predicted restoration and conservation effects revealed that wetland conservation seems to deserve a higher priority

  8. Water-Quality Characteristics of Cottonwood Creek, Taggart Creek, Lake Creek, and Granite Creek, Grand Teton National Park, Wyoming, 2006

    USGS Publications Warehouse

    Clark, Melanie L.; Wheeler, Jerrod D.; O'Ney, Susan E.

    2007-01-01

    To address water-resource management objectives of the National Park Service in Grand Teton National Park, the U.S. Geological Survey in cooperation with the National Park Service has conducted water-quality sampling on streams in the Snake River headwaters area. A synoptic study of streams in the western part of the headwaters area was conducted during 2006. Sampling sites were located on Cottonwood Creek, Taggart Creek, Lake Creek, and Granite Creek. Sampling events in June, July, August, and October were selected to characterize different hydrologic conditions and different recreational-use periods. Stream samples were collected and analyzed for field measurements, major-ion chemistry, nutrients, selected trace elements, pesticides, and suspended sediment. Water types of Cottonwood Creek, Taggart Creek, Lake Creek, and Granite Creek were calcium bicarbonate. Dissolved-solids concentrations were dilute in Cottonwood Creek and Taggart Creek, which drain Precambrian-era rocks and materials derived from these rocks. Dissolved-solids concentrations ranged from 11 to 31 milligrams per liter for samples collected from Cottonwood Creek and Taggart Creek. Dissolved-solids concentrations ranged from 55 to 130 milligrams per liter for samples collected from Lake Creek and Granite Creek, which drain Precambrian-era rocks and Paleozoic-era rocks and materials derived from these rocks. Nutrient concentrations generally were small in samples collected from Cottonwood Creek, Taggart Creek, Lake Creek, and Granite Creek. Dissolved-nitrate concentrations were the largest in Taggart Creek. The Taggart Creek drainage basin has the largest percentage of barren land cover of the basins, and subsurface waters of talus slopes may contribute to dissolved-nitrate concentrations in Taggart Creek. Pesticide concentrations, trace-element concentrations, and suspended-sediment concentrations generally were less than laboratory reporting levels or were small for all samples. Water

  9. Do suspended sediment and bedload move progressively from the summit to the sea along Magela Creek, northern Australia?

    NASA Astrophysics Data System (ADS)

    Erskine, W. D.; Saynor, M. J.; Turner, K.; Whiteside, T.; Boyden, J.; Evans, K. G.

    2015-03-01

    Soil erosion rates on plots of waste rock at Ranger uranium mine and basin sediment yields have been measured for over 30 years in Magela Creek in northern Australia. Soil erosion rates on chlorite schist waste rock are higher than for mica schist and weathering is also much faster. Sediment yields are low but are further reduced by sediment trapping effects of flood plains, floodouts, billabongs and extensive wetlands. Suspended sediment yields exceed bedload yields in this deeply weathered, tropical landscape, but the amount of sand transported greatly exceeds that of silt and clay. Nevertheless, sand is totally stored above the topographic base level. Longitudinal continuity of sediment transport is not maintained. As a result, suspended sediment and bedload do not move progressively from the summit to the sea along Magela Creek and lower Magela Creek wetlands trap about 90.5% of the total sediment load input.

  10. Plant and Invertebrate Community Changes Caused by Flood-Pulsing in a Constructed Riparian Wetland

    NASA Astrophysics Data System (ADS)

    Caiazza, M. K.; Nieset, J. E.; Romito, A.; de Szalay, F. A.

    2005-05-01

    In 2002, Kent State University constructed a research facility that includes ten independently flooded wetland basins (10 m X 20 m) along a second order creek. We tested the effects of flood-pulsing on the wetland biota by allowing 5 basins (flood-pulse wetlands) to fluctuate with creek water levels to simulate floodplain marshes, and maintaining 5 basins (static wetlands) at constant water levels. We sampled emergent plants and aquatic invertebrates in 2003 and 2004. Abiotic conditions were different between treatments. We collected 83 plant species, and flood pulsing had strong effects on plant communities. Mean species richness and plant cover were higher in static wetlands, and Sorensen's similarity indices between habitat types decreased over time. Plant biomass increased in all wetlands from 2003 to 2004, but mean biomass was not different between treatments. Many dominant plant species were affected by the flood pulsing treatment. Wetland invertebrate communities were diverse (47 taxa), but we detected few responses. Total abundance, species richness, and numbers of most dominant species were not different between treatments. These results indicate that flood-pulsing acted as a stressor on emergent plant communities, but did not strongly impact aquatic macroinvertebrates.

  11. 75 FR 27332 - AER NY-Gen, LLC; Eagle Creek Hydro Power, LLC; Eagle Creek Water Resources, LLC; Eagle Creek Land...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-14

    ... Energy Regulatory Commission AER NY-Gen, LLC; Eagle Creek Hydro Power, LLC; Eagle Creek Water Resources... Creek Hydro Power, LLC, Eagle Creek Water Resources, LLC, and Eagle Creek Land Resources, LLC.... For the transferee: Mr. Paul Ho, Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources, LLC,...

  12. National Wetlands Inventory products

    USGS Publications Warehouse

    ,

    1998-01-01

    control. These predominantly wet areas, or wetlands as they are commonly called, now represent only about 5 percent of the land surface of the lower 48 States. Out of 221 million acres of wetlands that once existed in the conterminous United States, the U.S. Fish and Wildlife Service (FWS) estimates that only about 103.3 million acres remain. Each year, development, drainage, and agriculture eliminate another 290,000 acres-an area a little less than half the size of Rhode Island. From the 1950's to the 1970's, conversion of wetlands to farmland caused 87 percent of all wetland losses. The FWS has long recognized the importance of America's wetlands because they form breeding and wintering grounds for great numbers of migratory birds. In 1977, the FWS began the National Wetlands Inventory (NWI), a systematic effort to classify and map America's remaining wetlands.

  13. Montane wetland water chemistry, Uinta Mountains, Utah

    NASA Astrophysics Data System (ADS)

    Severson, K. S.; Matyjasik, M.; Ford, R. L.; Hernandez, M. W.; Welsh, S. B.; Summers, S.; Bartholomew, L. M.

    2009-12-01

    This study attempts to determine the relationship between surface and groundwater chemistry and wetland characteristics within the Reader Lakes watershed, Uinta Mountains. The dominant rock type in the study area is quartz sandstone of the Hades Pass formation, Unita Mountain Group (Middle Proterozoic). Minor amounts of interbedded arkose and illite-bearing shale are also present. Water chemistry data have been collected from more than one hundred locations during the 2008 and 2009 summer seasons. The Reader Creek watershed is approximately 9.8 km long and about 3.5 km wide in the central portion of the basin. Direct precipitation is the primary source of groundwater recharge and the area is typically covered by snow from November until May. Four distinct wetland complexes, designated as the upper, middle, lower and the sloping fen, constitute the major wetland environments in the study area. The chemistry of the melt water from the high-elevation snowfield is affected by weathering of incorporated atmospheric dust and surface rocks. Total dissolved solids in both years were between 7 and 9 mg/L. Major anions include HCO3 (averaging 4.0 mg/L), SO4 (1.3 mg/L), NO3 (0.9 mg/L), Cl (0.8 mg/L), F (0.07 mg/L), PO4 (0.03 mg/L), and Br(0.015 mg/L). Major cations include Na (1.1 mg/L), Ca (1.0 mg/L), K (0.28 mg/L), and Mg (0.15 mg/L). Groundwater concentrations in the lower meadow, as measured in piezomters, are distinctly different, with the following maximum concentrations of anions: HCO3 (36.7 mg/L), SO4 (5.0 mg/L), Cl (3.4 mg/L), NO3 (0.9 mg/L), PO4 (0.28 mg/L), F (0.23 mg/L), Br (0.12 mg/L), and cations: Ca (22 mg/L), Na (4.6 mg/L), Mg (3.4 mg/L), and K (1.8 mg/L)- with a maximum value of 83 mg/L for total dissolved solids. Waters in Reader Creek, the main trunk channel, are typically sodium-potassium and sodium -potassium bicarbonate, with some calcium-bicarbonate, mostly in the middle part of the watershed. Groundwater from springs is sodium-potassium in the upper

  14. Monitoring of a Best Management Practice Wetland Before and After Maintenance

    EPA Science Inventory

    The USEPA’s Urban Watershed Management Branch has monitored stormwater drainage and best management practices (BMP) as part of its overall research program. One such project monitored a retention pond with wetland plantings in the Richmond Creek (RC) watershed; one of several in...

  15. Ship Creek bioassessment investigations

    SciTech Connect

    Cushing, C.E.; Mueller, R.P.; Murphy, M.T.

    1995-06-01

    Pacific Northwest Laboratory (PNL) was asked by Elmendorf Air Force Base (EAFB) personnel to conduct a series of collections of macroinvertebrates and sediments from Ship Creek to (1) establish baseline data on these populations for reference in evaluating possible impacts from Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) activities at two operable units, (2) compare current population indices with those found by previous investigations in Ship Creek, and (3) determine baseline levels of concentrations of any contaminants in the sediments associated with the macroinvertebrates. A specific suite of indices established by the US Environmental Protection Agency (EPA) was requested for the macroinvertebrate analyses; these follow the Rapid Bioassessment Protocol developed by Plafkin et al. (1989) and will be described. Sediment sample analyses included a Microtox bioassay and chemical analysis for contaminants of concern. These analyses included, volatile organic compounds, total gasoline and diesel hydrocarbons (EPA method 8015, CA modified), total organic carbon, and an inductive-coupled plasma/mass spectrometry (ICP/MS) metals scan. Appendix A reports on the sediment analyses. The Work Plan is attached as Appendix B.

  16. Kiowa Creek Switching Station

    SciTech Connect

    Not Available

    1990-03-01

    The Western Area Power Administration (Western) proposes to construct, operate, and maintain a new Kiowa Creek Switching Station near Orchard in Morgan County, Colorado. Kiowa Creek Switching Station would consist of a fenced area of approximately 300 by 300 feet and contain various electrical equipment typical for a switching station. As part of this new construction, approximately one mile of an existing 115-kilovolt (kV) transmission line will be removed and replaced with a double circuit overhead line. The project will also include a short (one-third mile) realignment of an existing line to permit connection with the new switching station. In accordance with the Council on Environmental Quality (CEQ) regulations for implementing the procedural provisions of the National Environmental Policy Act of 1969 (NEPA), 40 CFR Parts 1500--1508, the Department of Energy (DOE) has determined that an environmental impact statement (EIS) is not required for the proposed project. This determination is based on the information contained in this environmental assessment (EA) prepared by Western. The EA identifies and evaluates the environmental and socioeconomic effects of the proposed action, and concludes that the advance impacts on the human environment resulting from the proposed project would not be significant. 8 refs., 3 figs., 1 tab.

  17. A Hydrologic Study of High Creek Fen: Groundwater Dynamics and Sources

    NASA Astrophysics Data System (ADS)

    Legg, T. M.; Blanken, P.; Anderson, S. P.

    2007-12-01

    High Creek Fen is a groundwater-fed wetland located in South Park, Colorado. Although the ecology and hydrology of the fen have been studied, the groundwater sources to the fen have not been identified. In addition, the spatial and temporal variation in the physical and chemical properties of groundwater at High Creek Fen are not well understood. This research has become a priority because land use changes in the South Park are exacerbating groundwater resource issues. Hydrologic modifications to High Creek Fen could have dramatic ecological effects that threaten globally rare plants and invertebrates. In addition, the Nature Conservancy is interested in identifying additional preservation lands to protect the hydrologic and ecologic integrity of High Creek fen. To characterize the physical properties of groundwater, a regional groundwater contour map was created to establish the regional groundwater flowpaths. Next, the local physical dynamics of groundwater was characterized using hydraulic head and groundwater level measurements at bi-weekly intervals from June 2007 to October 2007. These measurements were paired with stream discharge measurements at High Creek, the outlet of the fen, in order to determine the relationship between spatial and temporal groundwater dynamics and the surface water discharge. Water samples were collected from possible groundwater sources for chemical and isotopic characterization. These potential sources include groundwater in the piezometers throughout the fen, and surface water in the fen and in High Creek. This data supports the existence of multiple, relatively shallow, groundwater sources to High Creek Fen. Additionally, the data highlights the spatial and temporal variation of physical and chemical groundwater dynamics at High Creek Fen. Since it is a groundwater-fed system, understanding the hydrology of High Creek Fen is dependent on our understanding of groundwater dynamics. This research provides the foundation for studying

  18. Freshwater Wetlands: A Citizen's Primer.

    ERIC Educational Resources Information Center

    Catskill Center for Conservation and Development, Inc., Hobart, NY.

    The purpose of this "primer" for the general public is to describe the general characteristics of wetlands and how wetland alteration adversely affects the well-being of humans. Particular emphasis is placed on wetlands in New York State and the northeast. Topics discussed include wetland values, destruction of wetlands, the costs of wetland…

  19. Monitoring and research at Walnut Creek National Wildlife Refuge

    USGS Publications Warehouse

    Roelle, James E.; Hamilton, David B.

    1993-01-01

    Walnut Creek National Wildlife Refuge-Prairie Learning Center (Walnut Creek or the Refuge) is one of the newest additions to the National Wildlife Refuge System, which consists of over 480 units throughout the United States operated by the U.S. Department of the Interior, Fish and Wildlife Service (the Service). Located about 20 miles east of Des Moines, Iowa, the Refuge has an approved acquisition boundary containing 8,654 acres (Figure 1). Acquisition is from willing sellers only, and to date the Service has purchased approximately 5,000 acres. The acquisition boundary encompasses about 43% of the watershed of Walnut Creek, which bisects the Refuge and drains into the Des Moines River to the southeast. Approximately 25%-30% of the Walnut Creek watershed is downstream of the Refuge. As authorized by Congress in 1990, the purposes of the Refuge are to (U.S. Fish and Wildlife Service 1992): • restore native tallgrass pairie, wetland, and woodland habitats for breeding and migratory waterfowl and resident wildlife; • serve as a major environmental education center providing opportunities for study; • provide outdoor recreation benefits to the public; and • provide assistance to local landowners to improve their lands for wildlife habitat. To implement these purposes authorized by Congress, the Refuge has established the goal of recreating as nearly as possible the natural communities that existed at the time of settlement by Euro-Americans (circa 1840). Current land use is largely agricultural, including 69% cropland, 17% grazed pasture, and 7.5% grassland (dominantly brome) enrolled in the Conservation Reserve Program). About 1,395 acres of relict native communities also exist on the Refuge, including prairie (725 acres), oak savanna and woodland (450 acres), and riparian or wetland areas (220 acres). Some of these relicts are highly restorable; others contain only a few prairie plants in a matrix of brome and will be more difficult to restore. When the

  20. Identification and Classification of Wetlands using Physics based Distributed Hydrologic Model

    NASA Astrophysics Data System (ADS)

    Bhatt, G.; Kumar, M.; Duffy, C.; Dressler, K. A.; Wardrop, D. H.

    2010-12-01

    Wetlands are a valuable natural resource because of the role they play on local water availability and quality in a watershed. They also serve as a vital link between water and land because of their interactions with streams, rivers and lakes. Understanding hydrology in the wetlands is crucial to the prediction of ecological processes, due to the close coupling between the two. Identification and classification of wetlands are important as the near surface availability of water dominates the types of plant and animal communities living in the soil and on its surface. In this research, we use PennState Integrated Hydrologic Model (PIHM) to predict location of wetlands in Shaver’s Creek watershed located in Center and Huntington counties Pennsylvania, in the ridge and valley ecoregion. The predicted locations were validated against the National Wetland Inventory. We also show the effect of spatial and temporal variability of hydrologic states such as streams, groundwater, overland flow, and evaporative fluxes on wetland hydrology. “Nested-modeling” approach, facilitated by PIHMgis, was used to capture the spatio-temporal changes in wetland at high resolution. The model results were hence validated against groundwater table measurements and analyzed to classify the wetlands into three categories (1) Wet (2) Intermittent (3) Dry wetlands, and the unique hydrologic interactions for each class were identified.

  1. Economic valuation of flood mitigation services: A case study from the Otter Creek, VT.

    NASA Astrophysics Data System (ADS)

    Galford, G. L.; Ricketts, T.; Bryan, K. L.; ONeil-Dunne, J.; Polasky, S.

    2014-12-01

    The ecosystem services provided by wetlands are widely recognized but difficult to quantify. In particular, estimating the effect of landcover and land use on downstream flood outcomes remains challenging, but is increasingly important in light of climate change predictions of increased precipitation in many areas. Economic valuation can help incorporate ecosystem services into decisions and enable communities to plan for climate and flood resiliency. Here we estimate the economic value of Otter Creek wetlands for Middlebury, VT in mitigating the flood that followed Tropical Storm Irene, as well as for ten historic floods. Observationally, hydrographs above and below the wetlands in the case of each storm indicated the wetlands functioned as a temporary reservoir, slowing the delivery of water to Middlebury. We compare observed floods, based on Middlebury's hydrograph, with simulated floods for scenarios without wetlands. To simulate these "without wetlands" scenarios, we assume the same volume of water was delivered to Middlebury, but in a shorter time pulse similar to a hydrograph upstream of the wetlands. For scenarios with and without wetlands, we map the spatial extent of flooding using LiDAR digital elevation data. We then estimate flood depth at each affected building, and calculate monetary losses as a function of the flood depth and house value using established depth damage relationships. For example, we expect damages equal to 20% of the houses value for a flood depth of two feet in a two-story home with a basement. We define the value of flood mitigation services as the difference in damages between the with and without wetlands scenario, and find that the Otter Creek wetlands reduced flood damage in Middlebury by 88% following Hurricane Irene. Using the 10 additional historic floods, we estimate an ongoing mean value of $400,000 in avoided damages per year. Economic impacts of this magnitude stress the importance of wetland conservation and warrant the

  2. GEE CREEK WILDERNESS, TENNESSEE.

    USGS Publications Warehouse

    Epstein, Jack B.; Gazdik, Gertrude C.

    1984-01-01

    On the basis of geologic, geochemical, and mine and prospect surveys, it was determined that the Gee Creek Wilderness, Tennessee has little promise for the occurrence of mineral resources. Iron ore was formerly mined, but the deposits are small, have a high phosphorous content, and are inaccessible. Shale, suitable for brick or lightweight aggregate, and sandstone, which could be utilized for crushed stone or sand, are found in the area, but are also found in areas closer to potential markets. The geologic setting precludes the presence of oil and gas resources in the surface rocks, but the possibility of finding natural gas at depth below the rocks exposed in the area cannot be discounted. Geophysical exploration would be necessary to define the local structure in rocks at depth to properly evaluate the potential of the area for gas.

  3. Draft Wetlands Rule Released

    NASA Astrophysics Data System (ADS)

    Zielinski, Sarah

    2006-04-01

    The U.S. Environmental Protection Agency (EPA) and the U.S. Army Corps of Engineers released on 28 March a draft of a new rule to guide compensatory mitigation for when wetlands are unavoidably lost due to development. However, whether the rule is successful in preventing a net loss in wetlands will depend largely on its implementation, according to two wetlands scientists who evaluated the issue for the U.S. National Research Council (NRC) in 2001. Under the federal Clean Water Act, developers who seek to build on wetlands must compensate for any wetlands loss if they are unable to avoid or minimize the loss. Such compensation is covered under the newly proposed compensatory mitigation rule. Benjamin Grumbles, EPA assistant administrator for water, called the rule an ``innovative new standard that will accelerate the pace of wetlands conservation and restoration.''

  4. Pipeline corridors through wetlands

    SciTech Connect

    Zimmerman, R.E.; Wilkey, P.L.; Isaacson, H.R.

    1992-12-01

    This paper presents preliminary findings from six vegetational surveys of gas pipeline rights-of-way (ROW) through wetlands and quantifies the impacts of a 20-year-old pipeline ROW through a boreal forest wetland. Six sites of various ages were surveyed in ecosystems ranging from coastal marsh to forested wetland. At all sites except one, both the number and the percentage of wetland species on the Row approximated or exceeded those in the adjacent natural area. The boreal forest study showed that (1) adjacent natural wetland areas were not altered in type; (2) water sheet flow restriction had been reversed by nature; (3) no nonnative plant species invaded the natural area; (4) three-quarters of the ROW area was a wetland, and (5) the ROW increased diversity.

  5. Pipeline corridors through wetlands

    SciTech Connect

    Zimmerman, R.E.; Wilkey, P.L. ); Isaacson, H.R. )

    1992-01-01

    This paper presents preliminary findings from six vegetational surveys of gas pipeline rights-of-way (ROW) through wetlands and quantifies the impacts of a 20-year-old pipeline ROW through a boreal forest wetland. Six sites of various ages were surveyed in ecosystems ranging from coastal marsh to forested wetland. At all sites except one, both the number and the percentage of wetland species on the Row approximated or exceeded those in the adjacent natural area. The boreal forest study showed that (1) adjacent natural wetland areas were not altered in type; (2) water sheet flow restriction had been reversed by nature; (3) no nonnative plant species invaded the natural area; (4) three-quarters of the ROW area was a wetland, and (5) the ROW increased diversity.

  6. Geomorphic Function and Restoration Potential of Spring Creeks in Southeastern Idaho: Analysis and Communication

    NASA Astrophysics Data System (ADS)

    Hanrahan, T. P.; Hill, Z.; Levell, A.; Maguire, T.; Risso, D.

    2014-12-01

    A large wetland and floodplain complex adjacent to the Snake River in southeastern Idaho, USA, encompasses numerous spring-fed creeks that originate on the floodplain and discharge at their confluence with the Snake River and American Falls Reservoir. Resource managers are implementing a program to restore these spring creeks for the recovery of Yellowstone cutthroat trout and ecosystem health. Our objectives were to evaluate the physical characteristics of these spring creeks, develop a conceptual model of their geomorphic function, compare the restoration potential of individual reaches, and communicate our findings to a broad audience of resource managers and regional stakeholders in order to foster restoration planning. A geomorphic assessment along 38 km of three spring creeks was completed by collecting data at several transects within distinct geomorphic reaches, and by collecting data continuously throughout all reaches. These data were summarized in a GIS database and used to quantify the overall geomorphic functioning of each reach. The geomorphic functional scores were scaled from 0% (non-functional) to 100% (fully functional). Among all three spring creeks, geomorphic function ranged from 29% to 63%, with bank conditions and riparian vegetation being the primary causes of overall channel degradation. Results from the geomorphic assessment fostered the development of a conceptual model for spring creek function, whereby degraded bank conditions represent the primary controlling factor of decreased geomorphic function and fish habitat quality. The reach-based geomorphic functional scoring provides an indicator of relative restoration potential for each reach, and is one of the factors used in determining site-specific priorities for protecting, enhancing, and restoring spring creeks on the Fort Hall Bottoms. The study results, conceptual model and restoration strategy were communicated to resource managers and regional stakeholders through a graphically

  7. Dynamics of arsenic in the mining sites of Pine Creek Geosyncline, Northern Australia.

    PubMed

    Eapaea, Miro Peter; Parry, David; Noller, Barry

    2007-07-01

    The transportation and fixation of arsenic (As) in soil and sediments from five mine sites within the Pine Creek Geosyncline, Northern Territory, were examined based on measurements of operationally-defined fractions of As in soils, sediment and evaporates. Arsenic was mainly retained in sediments in the form iron arsenate (Fe-As). In wetland systems, As was retained as Fe-As together with calcium arsenate (Ca-As) from alkaline groundwater and organic-bound As from detrital material. In retention ponds As was retained as Fe-As, Ca-As and residual As (Res-As) up to 1700 mg/kg. Sediment traps can retain As from alkaline and acidic source seepages. The retention of Res-As and other mineral particulates during erosional or controlled process water discharges was associated with high Fe-As and organic-bound As in sediment. Arsenic was retained as Fe-As, Ca-As and residual As in 100 year old tailings at Millar's Battery, Union Reefs mine nearby McKinlay River and the small copper mine lease MLN 95 adjacent Copperfield Creek nearby Pine Creek. Natural geo-mobilisation of As was observed in upstream sediments at Copperfield Creek (5-8 mg/kg), Mt. Bundey Creek (10-12 mg/kg), upstream Ryan's Creek (10-12 mg/kg) and downstream East branch Ryan's Creek (7 mg/kg). Erosion of As-containing mineralisation was observed in the McKinlay River upstream and downstream (23-26 mg/kg) and upstream Ryan's Creek boundary of the Goodall mine lease MLN 1049 (24-40 mg/kg). Overall, As was mainly retained in sediments in the form Fe-As. The concentration data for As were used to propose mechanisms of As dispersion and retention occurring at the various mine sites that can be utilised for future mine water management design to minimise As dispersion.

  8. Perspective view of span over French Creek and east abutment, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Perspective view of span over French Creek and east abutment, looking NW. - Pennsylvania Railroad, French Creek Trestle, Spanning French Creek, north of Paradise Street, Phoenixville, Chester County, PA

  9. 2. EAGLE CREEK RECREATION AREA, VIEW OF COMMUNITY KITCHEN. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. EAGLE CREEK RECREATION AREA, VIEW OF COMMUNITY KITCHEN. - Historic Columbia River Highway, Eagle Creek Recreation Area, Historic Columbia River Highway at Eagle Creek, Troutdale, Multnomah County, OR

  10. 77 FR 13592 - AER NY-Gen, LLC; Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources, LLC, Eagle Creek Land...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    ... Energy Regulatory Commission AER NY-Gen, LLC; Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources... Power, LLC, Eagle Creek Water Resources, LLC, and Eagle Creek Land Resources, LLC (transferees) filed an...) 805-1469. Transferees: Mr. Bernard H. Cherry, Eagle Creek Hydro Power, LLC, Eagle Creek...

  11. Uranium Immobilization in Wetland Soils

    NASA Astrophysics Data System (ADS)

    Jaffe, Peter R.; Koster van Groos, Paul G.; Li, Dien; Chang, Hyun-Shik; Seaman, John C.; Kaplan, Daniel I.; Peacock, Aaron D.; Scheckel, Kirk

    2014-05-01

    stronger for the mesocosms with the higher Fe(II) load. Analysis via XANES showed that a fraction (up to ~1/3) of uranium was reduced to U(IV), for mesocosms operated under low iron loading, indicating that iron cycling in the rhizosphere also results in uranium reduction and immobilization. For mesocosms operating under the higher iron loading, the fraction of uranium immobilized as U(IV) was much lower, indicating that uranium co-precipitation with iron might have been the dominant immobilization process. In parallel to these mesocosm experiments, dialysis samplers have been deployed at the Savannah River National Laboratory near a creek with uranium contamination, to determine dissolved species, including Fe(II) and U(VI) in these wetland soils and their seasonal variability. The results show that there is a strong seasonal variability in dissolved iron and uranium, indicating a strong immobilization during the growing season, which is consistent with the mesocosm experimental results that the rhizosphere iron and uranium cycling are closely linked.

  12. Ground water dependence of endangered ecosystems: Nebraska's eastern saline wetlands.

    PubMed

    Harvey, F Edwin; Ayers, Jerry F; Gosselin, David C

    2007-01-01

    Many endangered or threatened ecosystems depend on ground water for their survival. Nebraska's saline wetlands, home to a number of endangered species, are ecosystems whose development, sustenance, and survival depend on saline ground water discharge at the surface. This study demonstrates that the saline conditions present within the eastern Nebraska saline wetlands result from the upwelling of saline ground water from within the underlying Dakota Aquifer and deeper underlying formations of Pennsylvanian age. Over thousands to tens of thousands of years, saline ground water has migrated over regional scale flowpaths from recharge zones in the west to the present-day discharge zones along the saline streams of Rock, Little Salt, and Salt Creeks in Lancaster and Saunders counties. An endangered endemic species of tiger beetle living within the wetlands has evolved under a unique set of hydrologic conditions, is intolerant to recent anthropogenic changes in hydrology and salinity, and is therefore on the brink of extinction. As a result, the fragility of such systems demands an even greater understanding of the interrelationships among geology, hydrology, water chemistry, and biology than in less imperiled systems where adaptation is more likely. Results further indicate that when dealing with ground water discharge-dependent ecosystems, and particularly those dependent on dissolved constituents as well as the water, wetland management must be expanded outside of the immediate surface location of the visible ecosystem to include areas where recharge and lateral water movement might play a vital role in wetland hydrologic and chemical mixing dynamics. PMID:17973752

  13. Wetlands and Web Pages.

    ERIC Educational Resources Information Center

    Tisone-Bartels, Dede

    1998-01-01

    Argues that the preservation of areas like the Shoreline Park (California) wetlands depends on educating students about the value of natural resources. Describes the creation of a Web page on the wetlands for third-grade students by seventh-grade art and ecology students. Outlines the technical process of developing a Web page. (DSK)

  14. Wetlands: Earth's Kidneys

    EPA Science Inventory

    Wetlands are unique, diverse, and productive habitats that emerge at the fringe of aquatic and upland land systems. The U.S. Environmental Protection Agency (EPA) defines wetlands as "areas that are regularly inundated by surface water or groundwater and characterized by a preva...

  15. Hydrologic data of two wetlands at Spring City, Tennessee, December 1991 through November 1992

    USGS Publications Warehouse

    Johnson, Gregory C.; Brede, Lawrence M.

    1995-01-01

    Hydrologic data for two small adjacent wetlands at Spring City, Tennessee, were collected from December 1991 through November 1992. One of the wetlands was natural and the other was constructed to replace a wetland disturbed by the construction of a road embankment. Water levels were monitored in five 7-inch-diameter wells, approximately 5 feet deep. Water-level recorders on these wells provided continuous records of stage during periods of wetland inundation, and of water-table depths during periods when the wetlands were not inundated. Water levels also were measured periodically in 20 smaller diameter, shallow wells installed in the wetlands. A recording rain gage was installed in the constructed wetland, and a continuous stage recorder was installed on Town Creek, which forms the eastern border of the wetlands. Land surface at the wells was inundated from 0 to 75 percent of the study period, depending on the well. Additionally, water levels were not more than 1.5 feet below land surface for 57 to 85 percent of the time.

  16. Remote sensing of wetlands

    NASA Technical Reports Server (NTRS)

    Roller, N. E. G.

    1977-01-01

    The concept of using remote sensing to inventory wetlands and the related topics of proper inventory design and data collection are discussed. The material presented shows that aerial photography is the form of remote sensing from which the greatest amount of wetlands information can be derived. For extensive, general-purpose wetlands inventories, however, the use of LANDSAT data may be more cost-effective. Airborne multispectral scanners and radar are, in the main, too expensive to use - unless the information that these sensors alone can gather remotely is absolutely required. Multistage sampling employing space and high altitude remote sensing data in the initial stages appears to be an efficient survey strategy for gathering non-point specific wetlands inventory data over large areas. The operational role of remote sensing insupplying inventory data for application to several typical wetlands management problems is illustrated by summary descriptions of past ERIM projects.

  17. Forested wetland habitat

    USGS Publications Warehouse

    Duberstein, Jamie A.; Krauss, Ken W.; Kennish, Michael J.

    2015-01-01

    A forested wetland (swamp) is a forest where soils are saturated or flooded for at least a portion of the growing season, and vegetation, dominated by trees, is adapted to tolerate flooded conditions. A tidal freshwater forested wetland is a forested wetland that experiences frequent but short-term surface flooding via tidal action, with average salinity of soil porewater less than 0.5 g/l. It is known locally as tidal várzea in the Amazon delta, Brazil. A tidal saltwater forested wetland (mangrove forest) is a forested wetland that experiences frequent but short-term surface flooding via tidal action, with average salinity often exceeding 3 g/l and reaching levels that can exceed seawater. Mangrove ecosystems are composed of facultative halophytes that generally experience better growth at moderate salinity concentrations.

  18. Big Bayou Creek and Little Bayou Creek Watershed Monitoring Program

    SciTech Connect

    Kszos, L.A.; Peterson, M.J.; Ryon; Smith, J.G.

    1999-03-01

    Biological monitoring of Little Bayou and Big Bayou creeks, which border the Paducah Site, has been conducted since 1987. Biological monitoring was conducted by University of Kentucky from 1987 to 1991 and by staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) from 1991 through March 1999. In March 1998, renewed Kentucky Pollutant Discharge Elimination System (KPDES) permits were issued to the US Department of Energy (DOE) and US Enrichment Corporation. The renewed DOE permit requires that a watershed monitoring program be developed for the Paducah Site within 90 days of the effective date of the renewed permit. This plan outlines the sampling and analysis that will be conducted for the watershed monitoring program. The objectives of the watershed monitoring are to (1) determine whether discharges from the Paducah Site and the Solid Waste Management Units (SWMUs) associated with the Paducah Site are adversely affecting instream fauna, (2) assess the ecological health of Little Bayou and Big Bayou creeks, (3) assess the degree to which abatement actions ecologically benefit Big Bayou Creek and Little Bayou Creek, (4) provide guidance for remediation, (5) provide an evaluation of changes in potential human health concerns, and (6) provide data which could be used to assess the impact of inadvertent spills or fish kill. According to the cleanup will result in these watersheds [Big Bayou and Little Bayou creeks] achieving compliance with the applicable water quality criteria.

  19. Changes in ground-water quality in the Canal Creek Aquifer between 1995 and 2000-2001, West Branch Canal Creek area, Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Phelan, Daniel J.; Fleck, William B.; Lorah, Michelle M.; Olsen, Lisa D.

    2002-01-01

    Since 1917, Aberdeen Proving Ground, Maryland has been the primary chemical-warfare research and development center for the U.S. Army. Ground-water contamination has been documented in the Canal Creek aquifer because of past disposal of chemical and ordnance manufacturing waste. Comprehensive sampling for volatile organic compounds in ground water by the U.S. Geological Survey in the West Branch Canal Creek area was done in June?October 1995 and June?August 2000. The purpose of this report is (1) to compare volatile organic compound concentrations and determine changes in the ground-water contaminant plumes along two cross sections between 1995 and 2000, and (2) to incorporate data from new piezometers sampled in spring 2001 into the plume descriptions. Along the southern cross section, total concentrations of volatile organic compounds in 1995 were determined to be highest in the landfill area east of the wetland (5,200 micrograms per liter), and concentrations were next highest deep in the aquifer near the center of the wetland (3,300 micrograms per liter at 35 feet below land surface). When new piezometers were sampled in 2001, higher carbon tetrachloride and chloroform concentrations (2,000 and 2,900 micrograms per liter) were detected deep in the aquifer 38 feet below land surface, west of the 1995 sampling. A deep area in the aquifer close to the eastern edge of the wetland and a shallow area just east of the creek channel showed declines in total volatile organic compound concentrations of more than 25 percent, whereas between those two areas, con-centrations generally showed an increase of greater than 25 percent between 1995 and 2000. Along the northern cross section, total concentrations of volatile organic compounds in ground water in both 1995 and 2000 were determined to be highest (greater than 2,000 micrograms per liter) in piezometers located on the east side of the section, farthest from the creek channel, and concentrations were progressively lower

  20. High Arctic Hillslope-Wetland Linkages: Types, Patterns and Importance

    NASA Astrophysics Data System (ADS)

    Young, K. L.; Abnizova, A.

    2012-12-01

    High Arctic wetlands are lush areas in an otherwise barren landscape. They help to store and replenish water and they serve as significant resting and breeding grounds for migratory birds. In addition, they provide rich grazing grounds for arctic fauna such as muskox and caribou. Arctic wetlands can be small, patchy grounds of wet vegetation or they can encompass large zones characterized by lakes, ponds, wet meadows, and, often times, they are inter-mixed with areas of dry ground. While seasonal snowmelt continues to remain the most critical source of water for recharging ponds, lakes, and meadows in these environments, less is known about the role of lateral inputs of water into low-lying wetlands, namely water flowing into these wetland ecosystems from adjacent hillslopes, which often surround them. This paper will review the different modes of hillslope runoff into both patchy and regional-scale wetlands including late-lying snowbeds, snow-filled creeks, and both small and large (>1st order) streams. It will draw upon field results from four arctic islands (Ellesmere, Cornwallis, Somerset and Bathurst Island) and a research period which spans from the mid'90s until present. Our study will evaluate seasonal and inter-seasonal patterns of snowmelt driven discharge (initiation, duration), timing, and magnitude of peak flows, in addition to stream response to rainfall and dry episodes. The impacts of these lateral water sources for a range of wetlands (ponds, wet meadows) will include an analysis of water level fluctuations (frequency, duration), shrinkage/expansion rates, and water quality. Finally, this study will surmise how these types of lateral hillslope inflows might shift in the future and suggest the impact of these changes on the sustainability of High Arctic wetland terrain.

  1. HISTORIC WETLANDS OF PRUDENCE ISLAND

    EPA Science Inventory

    Ten wetland sites around Narragansett Bay, Rhode Island have been selected for a multidisciplinary study. These wetland sites are being studied to develop indicators of "wetland health." The study includes assessing the ecological conditions of the wetlands in the past, and the c...

  2. 5. EAGLE CREEK RECREATION AREA, EXTERIOR VIEW OF PORTION OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. EAGLE CREEK RECREATION AREA, EXTERIOR VIEW OF PORTION OF EAGLE CREEK OVERLOOK. - Historic Columbia River Highway, Eagle Creek Recreation Area, Historic Columbia River Highway at Eagle Creek, Troutdale, Multnomah County, OR

  3. 6. EAGLE CREEK RECREATION AREA, INTERIOR VIEW OF PORTION OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. EAGLE CREEK RECREATION AREA, INTERIOR VIEW OF PORTION OF EAGLE CREEK OVERLOOK. - Historic Columbia River Highway, Eagle Creek Recreation Area, Historic Columbia River Highway at Eagle Creek, Troutdale, Multnomah County, OR

  4. Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-157) - Protect and Restore the Big Canyon Creek Watershed

    SciTech Connect

    St. Hilaire, Kimberly R.

    2004-07-13

    The proposed restoration and protection of the Big Canyon Creek Watershed will assist in the recovery and restoration of fish and wildlife habitat. All activities will take place within the ceded territories of the Nez Perce Tribe. Two activities are planned: road decommissioning and fence to prevent livestock access to sensitive wetlands and riparian areas.

  5. Vegetation survey of PEN Branch wetlands

    SciTech Connect

    Not Available

    1991-01-01

    A survey was conducted of vegetation along Pen Branch Creek at Savannah River Site (SRS) in support of K-Reactor restart. Plants were identified to species by overstory, understory, shrub, and groundcover strata. Abundance was also characterized and richness and diversity calculated. Based on woody species basal area, the Pen Branch delta was the most impacted, followed by the sections between the reactor and the delta. Species richness for shrub and groundcover strata were also lowest in the delta. No endangered plant species were found. Three upland pine areas were also sampled. In support of K Reactor restart, this report summarizes a study of the wetland vegetation along Pen Branch. Reactor effluent enters Indian Grove Branch and then flows into Pen Branch and the Pen Branch Delta.

  6. Hydrologic modeling of coal-mine impacts and associated remediation alternatives for the Nanticoke Creek watershed

    SciTech Connect

    Walski, T.M.; Draus, S.J.; Klemow, K.M.; Tarutis, W.J. Jr.

    1997-12-31

    The Nanticoke Creek watershed (Luzerne County, Pennsylvania) has been heavily impacted by both surface and deep coal mining. Currently, almost all of the flow in the creek including both of its tributaries (Espy Run and Lueder`s Creek) disappear underground into the abandoned Truesale-Bliss (T-B) underground mine workings. The water flows out of the mines at the Askam Borehole as acid mine drainage (AMD) which comprises virtually all of the flow in the lower reaches of Nanticoke Creek. Outflow from this borehole ranges from approximately 8,500 m{sup 3}/day (2.2 MGD) to 52,000 m{sup 3}/day (14 MGD). Wetland treatment systems are being constructed to treat portions of the water that flows from the mine and efforts to restore surface flow in Nanticoke Creek are underway. As less water enters the minepool, less AMD will need to be treated. We present the water-balance model used specifically to estimate the behavior of the mine in response to various reclamation alternatives. Standard hydrologic models either are too complicated or they do not accurately simulate the interaction between the minepool and surface streams at the level of detail required by this study. The water-balance model accounts for rainfall, snowmelt, soil storage, evapotranspiration, minepool storage and the hydraulics of the borehole. Given historical climatic data, the model was able to approximate observed discharges from the Askam Borehole.

  7. National Wetlands Inventory products

    USGS Publications Warehouse

    ,

    1999-01-01

    Marshes, swamps, ponds, and bogs are teeming biological nurseries for migratory birds, fish, and aquatic plants. They also provide natural flood and erosion control. These predominantly wet areas, or wetlands as they are commonly called, now represent only about 5 percent of the land surface of the lower 48 States. Out of 221 million acres of wetlands that once existed in the conterminous United States, the U.S. Fish and Wildlife Service (FWS) estimates that only about 103.3 million acres remain. Each year, development, drainage, and agriculture eliminate another 290,000 acres - an area a little less than half the size of Rhode Island. From the 1950's to the 1970's, conversion of wetlands to farmland caused 87 percent of all wetland losses. The FWS has long recognized the importance of America's wetlands because they form breeding and wintering grounds for great numbers of migratory birds. In 1977, the FWS began the National Wetlands Inventory (NWI), a systematic effort to classify and map America's remaining wetlands.

  8. Neotropical coastal wetlands

    USGS Publications Warehouse

    McKee, Karen L.; Batzer, Darold P.; Baldwin, Andrew H.

    2012-01-01

    The Neotropical region, which includes the tropical Americas, is one of the world's eight biogeographic zones. It contains some of the most diverse and unique wetlands in the world, some of which are still relatively undisturbed by humans. This chapter focuses on the northern segment of the Neotropics (south Florida, the Caribbean islands, Mexico, and Central America), an area that spans a latitudinal gradient from about 7 N to 29 N and 60 W to 112 W. Examples of coastal wetlands in this realm include the Everglades (Florida, USA), Ten Thousand Islands (Florida, USA), Laguna de Terminos (Mexico), Twin Cays (Belize), and Zapata Swamp (Cuba). Coastal wetlands are dominated by mangroves, which will be emphasized here, but also include freshwater swamps and marshes, saline marshes, and seagrass beds. The aim of this chapter is to provide a broad overview of Neotropical coastal wetlands of the North American continent, with an emphasis on mangroves, since this is the dominant vegetation type and because in-depth coverage of all wetland types is impossible here. Instead, the goal is to describe the environmental settings, plant and animal communities, key ecological controls, and some conservation concerns, with specific examples. Because this book deals with wetlands of North America, this chapter excludes coastal wetlands of South America. However, much of the information is applicable to mangrove, marsh, and seagrass communities of other tropicaI regions.

  9. Water quality study at the Congaree Swamp National monument of Myers Creek, Reeves Creek and Toms Creek. Technical report

    SciTech Connect

    Rikard, M.

    1991-11-01

    The Congaree Swamp National Monument is one of the last significant near virgin tracts of bottom land hardwood forests in the Southeast United States. The study documents a water quality monitoring program on Myers Creek, Reeves Creek and Toms Creek. Basic water quality parameters were analyzed. High levels of aluminum and iron were found, and recommendations were made for further monitoring.

  10. Asotin Creek Model Watershed Plan

    SciTech Connect

    Browne, D.; Holzmiller, J.; Koch, F.; Polumsky, S.; Schlee, D.; Thiessen, G.; Johnson, C.

    1995-04-01

    The Asotin Creek Model Watershed Plan is the first to be developed in Washington State which is specifically concerned with habitat protection and restoration for salmon and trout. The plan is consistent with the habitat element of the ``Strategy for Salmon``. Asotin Creek is similar in many ways to other salmon-bearing streams in the Snake River system. Its watershed has been significantly impacted by human activities and catastrophic natural events, such as floods and droughts. It supports only remnant salmon and trout populations compared to earlier years. It will require protection and restoration of its fish habitat and riparian corridor in order to increase its salmonid productivity. The watershed coordinator for the Asotin County Conservation District led a locally based process that combined local concerns and knowledge with technology from several agencies to produce the Asotin Creek Model Watershed Plan.

  11. 27 CFR 9.62 - Loramie Creek.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.62 Loramie Creek. (a) Name. The name of the viticultural area described in this section is “Loramie Creek.” (b) Approved map. The approved map for the Loramie Creek viticultural area is the U.S.G.S....

  12. 27 CFR 9.62 - Loramie Creek.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.62 Loramie Creek. (a) Name. The name of the viticultural area described in this section is “Loramie Creek.” (b) Approved map. The approved map for the Loramie Creek viticultural area is the U.S.G.S....

  13. 27 CFR 9.62 - Loramie Creek.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.62 Loramie Creek. (a) Name. The name of the viticultural area described in this section is “Loramie Creek.” (b) Approved map. The approved map for the Loramie Creek viticultural area is the U.S.G.S....

  14. 27 CFR 9.62 - Loramie Creek.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.62 Loramie Creek. (a) Name. The name of the viticultural area described in this section is “Loramie Creek.” (b) Approved map. The approved map for the Loramie Creek viticultural area is the U.S.G.S....

  15. 27 CFR 9.62 - Loramie Creek.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.62 Loramie Creek. (a) Name. The name of the viticultural area described in this section is “Loramie Creek.” (b) Approved map. The approved map for the Loramie Creek viticultural area is the U.S.G.S....

  16. Sorption of hydrophobic organic chemicals to organic colloids in a freshwater wetland system: Temporal and spatial variations

    SciTech Connect

    Backhus, D.A.; Castellanos, E.; Fast, S.; Golini, C.

    1995-12-01

    Despite the fact that organic colloids are often found in wetland systems in greater abundance than in most other aquatic systems, little work has been done to examine their role in the cycling of organic pollutants. Heightened concern for the degradation of valuable wetland habitat and proposals to use constructed wetlands as treatment options for nonpoint sources of pollution provide a need for examination of organic pollutant:mobile organic colloid interactions in wetlands. A study is underway to determine the quantity, quality, and sorptive properties of colloidal organic matter collected from freshwater wetland systems. Surface water and porewater samples from a coastal freshwater wetland on the shores of Lake Erie (Old Woman Creek) were collected, stored, and analyzed using methods which allow for maintenance of in situ conditions. Sorption experiments were conducted. to the extent possible, on unaltered samples (e.g., examining whole water samples under in situ conditions rather than resuspending processed/concentrated/fractionated organic matter in artificial media). Fluorescence quenching methods were implemented to quantify sorption coefficients of appropriate organic chemical probes (e.g., perylene). To date, three locations within the wetland have been sampled at two time points (Summer and Fall). Initial results suggest that organic colloids in this wetland are present in lower quantities and in general exhibit lower sorption potential than humic and fulvic materials reported in the literature. Significant variations in the sorptive properties of organic colloids have been observed both temporally and spatially in this wetland.

  17. Natural attenuation of chlorinated volatile organic compounds in a freshwater tidal wetland, Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Lorah, Michelle M.; Olsen, Lisa D.; Smith, Barrett L.; Johnson, Mark A.; Fleck, William B.

    1997-01-01

    Ground-water contaminant plumes that are flowing toward or currently discharging to wetland areas present unique remediation problems because of the hydrologic connections between ground water and surface water and the sensitive habitats in wetlands. Because wetlands typically have a large diversity of microorganisms and redox conditions that could enhance biodegradation, they are ideal environments for natural attenuation of organic contaminants, which is a treatment method that would leave the ecosystem largely undisturbed and be cost effective. During 1992-97, the U.S. Geological Survey investigated the natural attenuation of chlorinated volatile organic compounds (VOC's) in a contaminant plume that discharges from a sand aquifer to a freshwater tidal wetland along the West Branch Canal Creek at Aberdeen Proving Ground, Maryland. Characterization of the hydrogeology and geochemistry along flowpaths in the wetland area and determination of the occurrence and rates of biodegradation and sorption show that natural attenuation could be a feasible remediation method for the contaminant plume that extends along the West Branch Canal Creek.

  18. Wetlands: their use and regulation

    SciTech Connect

    Not Available

    1984-01-01

    Although destruction of United States wetlands has slowed, their continued conversion, especially in certain inland regions of the country, may pose adverse ecological effects over the next few decades. The Army Corps of Engineers' regulatory program (Section 404 of the Clean Water Act) protects most coastal wetlands, but provides no protection for 95% of the country's wetlands which remain inland. These inland, freshwater wetlands, converted for agricultural purposes, comprise 80% of the wetland losses over the past 30 years. This report outlines options for more effective federal management, such as the mapping and categorizing of wetlands to determine relative values. In effect, agencies can focus protection programs on higher-value wetlands, especially those threatened by agricultural conversion. The report also discusses the contradictory federal policies aimed at wetlands; for example, the tax code encourages the development and draining of wetlands at the same time that federal regulations discourage their destruction.

  19. Wetland functional health assessment using remote sensing and other techniques: Literature search and overview. Technical memo

    SciTech Connect

    Patience, N.; Klemas, V.

    1993-03-01

    Contents: introduction; remote sensing of wetland biomass and other wetland condition indicators; conceptual approaches in wetland assessment; wetland extent and type; landscape and wetland patterns; wetland biomass and productivity; wetland vegetation; wetland habitat quality; wetland hydrology; and conclusions and recommendations.

  20. Avian utilization of subsidence wetlands

    SciTech Connect

    Nawrot, J.R.; Conley, P.S.; Smout, C.L.

    1995-09-01

    Diverse and productive wetlands have resulted from coal mining in the midwest. The trend from surface to underground mining has increased the potential for subsidence. Planned subsidence of longwall mining areas provides increased opportunities for wetland habitat establishment. Planned subsidence over a 180 meter (590 foot) deep longwall mine in southern Illinois during 1984 to 1986 produced three subsidence wetlands totaling 15 hectares (38 acres). The resulting palustrine emergent wetlands enhanced habitat diversity within the surrounding palustrine forested unsubsided area. Habitat assessments and evaluations of avian utilization of the subsidence wetlands were conducted during February 1990 through October 1991. Avian utilization was greatest within the subsided wetlands. Fifty-three bird species representing seven foraging guilds utilized the subsidence wetlands. Wading/fishing, dabbling waterfowl, and insectivorous avian guilds dominated the subsidence wetlands. The subsidence wetlands represented ideal habitat for wood ducks and great blue herons which utilized snags adjacent to and within the wetlands for nesting (19 great blue heron nests produced 25 young). Dense cover and a rich supply of macroinvertebrates provide excellent brood habitat for wood ducks, while herpetofauna and ichthyofauna provided abundant forage in shallow water zones for great blue herons and other wetland wading birds. The diversity of game and non-game avifauna utilizing the subsidence areas demonstrated the unique value of these wetlands. Preplanned subsidence wetlands can help mitigate loss of wetland habitats in the midwest.

  1. Classification of wetlands vegetation using small scale color infrared imagery

    NASA Technical Reports Server (NTRS)

    Williamson, F. S. L.

    1975-01-01

    A classification system for Chesapeake Bay wetlands was derived from the correlation of film density classes and actual vegetation classes. The data processing programs used were developed by the Laboratory for the Applications of Remote Sensing. These programs were tested for their value in classifying natural vegetation, using digitized data from small scale aerial photography. Existing imagery and the vegetation map of Farm Creek Marsh were used to determine the optimal number of classes, and to aid in determining if the computer maps were a believable product.

  2. LINCOLN CREEK ROADLESS AREA, NEVADA.

    USGS Publications Warehouse

    John, David A.; Stebbins, Scott A.

    1984-01-01

    On the basis of a mineral survey, the Lincoln Creek Roadless Area, Nevada was determined to have little likelihood for the occurrence of mineral resources. Geologic terrane favorable for the occurrence of contact-metasomatic tungsten deposits exists, but no evidence for this type of mineralization was identified. The geologic setting precludes the occurrence of fossil fuels and no other energy resources were identified.

  3. Parachute Creek Shale Oil Program

    SciTech Connect

    Not Available

    1981-01-01

    This pamphlet describes Union Oil's shale oil project in the Parachute Creek area of Garfield County, Colorado. The oil shale is estimated to contain 1.6 billion barrels of recoverable oil in the high Mahogany zone alone. Primarily a public relations publication, the report presented contains general information on the history of the project and Union Oil's future plans. (JMT)

  4. Wetland survey of selected areas in the K-24 Site Area of responsibility

    SciTech Connect

    Rosensteel, B.A.; Awl, D.J.

    1995-07-01

    In accordance with DOE Regulations for Compliance with Floodplain/Wetlands Environmental Review Requirements, wetland surveys were conducted in selected areas within the K-25 Area of Responsibility during the summer of 1994. These areas are Mitchell Branch, Poplar Creek, the K-770 OU, Duct Island Peninsula, the Powerhouse area, and the K-25 South Corner. Previously surveyed areas included in this report are the main plant area of the K-25 Site, the K-901 OU, the AVLIS site, and the K-25 South Site. Wetland determinations were based on the USACE methodology. Forty-four separate wetland areas, ranging in size from 0.13 to 4.23 ha, were identified. Wetlands were identified in all of the areas surveyed with the exception of the interior of the Duct Island Peninsula and the main plant area of the K-25 Site. Wetlands perform functions such as floodflow alteration, sediment stabilization, sediment and toxicant retention, nutrient transformation, production export, and support of aquatic species and wildlife diversity and abundance. The forested, scrub-shrub, and emergent wetlands identified in the K-25 area perform some or all of these functions to varying degrees.

  5. Coastal wetlands of Chesapeake Bay

    USGS Publications Warehouse

    Baldwin, Andrew H.; Kangas, Patrick J.; Megonigal, J. Patrick; Perry, Matthew C.; Whigham, Dennis F.; Batzer, Darold P.; Batzer, Darold P.; Baldwin, Andrew H.

    2012-01-01

    Wetlands are prominent landscapes throughout North America. The general characteristics of wetlands are controversial, thus there has not been a systematic assessment of different types of wetlands in different parts of North America, or a compendium of the threats to their conservation. Wetland Habitats of North America adopts a geographic and habitat approach, in which experts familiar with wetlands from across North America provide analyses and syntheses of their particular region of study. Addressing a broad audience of students, scientists, engineers, environmental managers, and policy makers, this book reviews recent, scientifically rigorous literature directly relevant to understanding, managing, protecting, and restoring wetland ecosystems of North America.

  6. [Research progress on wetland ecotourism].

    PubMed

    Wang, Li-Long; Lu, Lin

    2009-06-01

    Wetland is rich in biodiversity and cultural diversity, possessing higher tourism value and environmental education and community participation functions. Wetland ecotourism reflects the sustainable development of tourism economy and wetland protection, having received great concern from governments and scholars at home and abroad. This paper summarized the related theories and practices, discussed the research advances in wetland ecotourism from the aspects of significance, progress, contents, methods and results, and pointed out the important research fields in the future, aimed to accelerate the development of wetland ecotourism research and to provide reference about the resources exploitation, environment protection, and scientific administration of wetland and related scenic areas.

  7. Remote sensing applications to hydrology in Minnesota. [Rice Creek watershed and St. Paul-Minneapolis metropolitan area

    NASA Technical Reports Server (NTRS)

    Brown, D.; Skaggs, R.

    1975-01-01

    Development of low lying southeastern shore of Pike Lake is described as part of the Rice Creek watershed study. Several small wetlands in Arden Hills, Minnesota were incorporated into the drainage plans as pollutant and nutrient sinks rather than being infilled. Lake water quality in the St. Paul-Minneapolis metropolitan area was analyzed using Landsat images. In the same urban area, the inventory and seasonal change of the open water were also studied.

  8. Water budget for and nitrogen loads to Northeast Creek, Bar Harbor, Maine

    USGS Publications Warehouse

    Nielsen, M.G.

    2002-01-01

    The potential for nutrient enrichment to coastal estuaries on Mt. Desert Island, Maine, may affect the health of these important ecosystems at Acadia National Park. Inputs of water and nitrogen entering one of these coastal estuaries, Northeast Creek, and adjacent wetlands on Mt. Desert Island were quantified in a recent study conducted by the U.S. Geological Survey, in cooperation with the National Park Service. Streamflow and concentra-tions of nitrogen species in the four perennial streams entering the wetland/estuary system were measured monthly for 18 months to estimate loads and develop a water budget. Old Mill Brook was instrumented with a continuous-recording stream-flow gage; the MOVE.1 record-extension technique was used with this and several other nearby continuous gages to estimate daily surface-water inflow to the wetland. Inflow from ungaged basins was estimated from the unit-area yield calculated from data obtained from the gaged basins. Precipitation data collected at the National Atmospheric Deposition Program (NADP) site at Acadia National Park Headquarters and the Acadia National Park weather station were used to calculate atmospheric inputs. Evapotranspiration from the wetland was calculated using Fennessey and Vogel?s regionalized multivariate regression model of Penman-Montieth evapotranspiration. Geologic data collected in the field and taken from published geologic maps indicate that ground water probably does not contribute significantly to the water budget of this wetland system. Surface-water outflow from the wetland was not calculated because of the tidal nature of the outlet of the wetland and the difficulties associated with measuring flow in a tidal stream.

  9. Wetland InSAR

    NASA Astrophysics Data System (ADS)

    Wdowinski, S.; Kim, S.; Amelung, F.; Dixon, T.

    2006-12-01

    Wetlands are transition zones where the flow of water, the nutrient cycling, and the sun energy meet to produce a unique and very productive ecosystem. They provide critical habitat for a wide variety of plant and animal species, including the larval stages of many ocean fish. Wetlands also have a valuable economical importance, as they filter nutrients and pollutants from fresh water used by human and provide aquatic habitats for outdoor recreation, tourism, and fishing. Globally, many such regions are under severe environmental stress, mainly from urban development, pollution, and rising sea level. However, there is increasing recognition of the importance of these habitats, and mitigation and restoration activities have begun in a few regions. A key element in wetlands conservation, management, and restoration involves monitoring its hydrologic system, as the entire ecosystem depends on its water supply. Heretofore, hydrologic monitoring of wetlands are conducted by stage (water level) stations, which provide good temporal resolution, but suffer from poor spatial resolution, as stage station are typically distributed several, or even tens of kilometers, from one another. Wetland application of InSAR provides the needed high spatial resolution hydrological observations, complementing the high temporal resolution terrestrial observations. Although conventional wisdom suggests that interferometry does not work in vegetated areas, several studies have shown that both L- and C-band interferograms with short acquisition intervals (1-105 days) can maintain excellent coherence over wetlands. In this study we explore the usage of InSAR for detecting water level changes in various wetland environments around the world, including the Everglades (south Florida), Louisiana Coast (southern US), Chesapeake Bay (eastern US), Pantanal (Brazil), Okavango Delta (Botswana), and Lena Delta (Siberia). Our main study area is the Everglades wetland (south Florida), which is covered by

  10. Canadian wetland policy promotes conservation

    SciTech Connect

    Rubec, C.

    1992-11-01

    With the recent adoption of The Federal Policy on Wetland Conservation, the Government of Canada has firmly stated that wetland conservation will become a fundamental aspect of federal government decision-making in all federal government programs and institutions. The policy focuses on the sustainable, wise use of wetland areas on federal lands (about 29% of Canada`s wetland base) as well as wetlands, such as national parks, under direct federal authority. The federal government of Canada is promoting a nonregulatory, cooperative approach to achieve the following goals: Maintain the benefits derived from wetlands throughout Canada; Achieve no net loss of wetland functions on federal lands and waters; Enhance and rehabilitate wetlands in areas where the continuing loss or degradation of wetlands or their functions have reached critical levels; Recognize wetland functions in resource planning, management, and economic decision-making with regard to all federal programs, policies, and activities; Secure wetlands of significance to Canadians; and, Recognize sound, sustainable management practices in sectors such as forestry and agriculture that make a positive contribution to wetlands conservation while also achieving wise use of wetland resources.

  11. Association between wetland disturbance and biological attributes in floodplain wetlands

    USGS Publications Warehouse

    Chipps, S.R.; Hubbard, D.E.; Werlin, K.B.; Haugerud, N.J.; Powell, K.A.; Thompson, John; Johnson, T.

    2006-01-01

    We quantified the influence of agricultural activities on environmental and biological conditions of floodplain wetlands in the upper Missouri River basin. Seasonally-flooded wetlands were characterized as low impact (non-disturbed) or high impact (disturbed) based on local land use. Biological data collected from these wetlands were used to develop a wetland condition index (WCI). Fourteen additional wetlands were sampled to evaluate the general condition of seasonally-flooded floodplain wetlands. Structural and functional attributes of macrophyte, algae, and macroinvertebrate communities were tested as candidate metrics for assessing biotic responses. The WCI we developed used six biological metrics to discriminate between disturbed and non-disturbed wetlands: 1) biomass of Culicidae larvae, 2) abundance of Chironomidae larvae, 3) macroinvertebrate diversity, 4) total number of plant species, 5) the proportion of exotic plant species, and 6) total number of sensitive diatom species. Disturbed wetlands had less taxa richness and species diversity and more exotic and nuisance (e.g., mosquitoes) species. Environmental differences between low and high impact wetlands included measures of total potassium, total phosphorus, total nitrogen, alkalinity, conductance, and sediment phosphorus concentration. Canonical analyses showed that WCI scores were weakly correlated (P = 0.057) with environmental variables in randomly selected wetlands. In addition, mean WCI score for random wetlands was higher than that for high impact wetlands, implying that floodplain wetlands were less impacted by the types of agricultural activities affecting high impact sites. Inter-year sampling of some wetlands revealed that WCI metrics were correlated in 2000 and 2001, implying that biological metrics provided useful indicators of disturbance in floodplain wetlands. ?? 2006, The Society of Wetland Scientists.

  12. Mass loading of selected major and trace elements in Lake Fork Creek near Leadville, Colorado, September-October 2001

    USGS Publications Warehouse

    Walton-Day, Katherine; Flynn, Jennifer L.; Kimball, Briant A.; Runkel, Robert L.

    2005-01-01

    A mass-loading study of Lake Fork Creek of the Arkansas River between Sugarloaf Dam and the mouth was completed in September-October 2001 to help ascertain the following: (1) variation of pH and aqueous constituent concentrations (calcium, sulfate, alkalinity, aluminum, cadmium, copper, iron, manganese, lead, and zinc) and their relation to toxicity standards along the study reach; (2) location and magnitude of sources of metal loading to Lake Fork Creek; (3) amount and locations of metal attenuation; (4) the effect of streamside wetlands on metal transport from contributing mine tunnels; and (5) the effect of organic-rich inflow from the Leadville National Fish Hatchery on water quality in Lake Fork Creek. The study was done in cooperation with the Bureau of Land Management, U.S. Department of Agriculture Forest Service, and U.S. Fish and Wildlife Service. Constituent concentrations and pH showed variable patterns over the study reach. Hardness-based acute and chronic toxicity standards were exceeded for some inflows and some constituents. However, stream concentrations did not exceed standards except for zinc starting in the upper parts of the study reach and extending to just downstream from the inflow from the Leadville National Fish Hatchery. Dilution from that inflow lowered stream zinc concentrations to less than acute and chronic toxicity standards. The uppermost 800 meters of the study reach that contained inflow from the Bartlett, Dinero, and Nelson mine tunnels and the Dinero wetland was the greatest source of loading for manganese and zinc. A middle section of the study reach that extended approximately 2 kilometers upstream from the National Fish Hatchery inflow to just downstream from that inflow was the largest source of aluminum, copper, iron, and lead loading. The loading was partially from the National Fish Hatchery inflow but also from unknown sources upstream from that inflow, possibly ground water. The largest sources for calcium and sulfate

  13. Hydrologic functions of prairie wetlands

    USGS Publications Warehouse

    LaBaugh, J.W.; Winter, T.C.; Rosenberry, D.O.

    1998-01-01

    Wetlands in the prairie known as potholes or sloughs represent an ever-changing mosaic of surface waters interacting with the atmosphere, groundwater, and each other in a variety of ways. Studies of groups of adjacent wetlands in different parts of the glaciated North American prairie have enabled some connections to be made between hydrologic processes, biological communities, and use of these wetlands by wetland-dependent wildlife. Understanding controls on variability in water levels, water volume, and salinity in these wetlands sets the stage for understanding controls on biological communities utilizing these wetlands. The role that natural variability in water and salinity plays in making these wetlands an important resource for waterfowl will provide an important context for those who are responsible for artificially altering the variability of water and salinity in prairie wetlands.

  14. North Atlantic Coastal Tidal Wetlands

    EPA Science Inventory

    The book chapter provides college instructors, researchers, graduate and advanced undergraduate students, and environmental consultants interested in wetlands with foundation information on the ecology and conservation concerns of North Atlantic coastal wetlands. The book c...

  15. Wetlands: The changing regulatory landscape

    SciTech Connect

    Glick, R.M. )

    1993-05-01

    Protection of wetlands became a national issue in 1988 when President George Bush pledged no net loss of wetlands in the US under his [open quotes]environmental presidency.[close quotes] As wetlands became a national issue, the job of protecting them became an obligation for many groups, including hydro-power developers. Now, when a site selected for development includes an area that may be classified as a wetland, the developer quickly discovers the importance of recognizing and protecting these natural habitats. Federal legislation severely limits development of wetland, and most states increase the restrictions with their own wetlands regulations. The difficulty of defining wetlands complicates federal and state enforcement. Land that appears to be dry may in fact be classified as a wetland. So, even if a site appears dry, potential hydro developers must confirm whether or not any jurisdictional wetlands are present. Regulated lands include much more than marshes and swamps. Further complicating the definition of wetlands, a recent court decision found that even artificially created wetlands, such as man-made ponds, may be subject to regulation. Hydro developers must be aware of current regulatory requirements before they consider development of any site that may contain wetlands. To be certain that a site is [open quotes]buildable[close quotes] from the standpoint of wetlands regulation, a developer must verify (with the help of state agencies) that the property does not contain any jurisdictional wetlands. If it does, the regulatory process before development becomes much more complicated. For the short term, uncertainty abounds and extreme caution is in order. Because the regulatory process has become so complex and an agreeable definition of wetlands so elusive, the trend among the Corps and collaborating agencies is to constrict nationwide permits in favor of narrowing the jurisdictional definition of wetlands.

  16. Developing a New Wetland Habitat

    ERIC Educational Resources Information Center

    Bernard, Rosalie

    2006-01-01

    This article features a project at Ohio's Miami Valley Career Technology Center (MVCTC) which has made a real difference in the wetland environment on campus. The goals of the wetland project were to replace a poorly functioning tile system and develop two wetland areas for local and migratory wildlife. The environmental/natural resources students…

  17. Wetlands: water, wildlife, plants, & people

    USGS Publications Warehouse

    Vandas, Stephen; Farrar, Frank

    1996-01-01

    Wetlands are part of all our lives. They can generally be described as transitional areas between land and deepwater habitats. There are many different kinds of wetlands, and they can be found in many different habitat types, from forests to deserts; some are maintained by saltwater, others by freshwater. This poster shows general types of diverse wetlands and demonstrates how people and wetlands can benefit by living together. The diversity of plants and animals is shown in cartooned pictures. As with plants and animals, there are many different common names for the various wetland types. The common names used on this poster were used by the U.S. Fish and Wildlife Service in the publication "Wetlands-Status and Trends in the Conterminous United States, Mid-1970's to Mid-1980's." Estuarine wetland types--salt marshes and mangrove swamps--are labeled in red letters. The estuary is where ocean saltwater and river freshwater mix. The estuary is labeled in orange letters. The inland wetland types-inland marshes and wet meadows, forested wetlands, and shrub wetlands-are labeled in yellow. Other wetlands are present in rivers, lakes, and reservoirs. The water bodies associated with these wetlands are labeled in black. The poster is folded into 8.5" x 11" panels; front and back panels can easily be photocopied.

  18. RICHLAND CREEK ROADLESS AREA, ARKANSAS.

    USGS Publications Warehouse

    Miller, Mary H.; Wood, Robert H.

    1984-01-01

    On the basis of geologic and mineral surveys, Richland Creek Roadless Area, Arkanses, has little promise for the occurrence of metallic mineral resources, gas and oil, or oil shale. The Boone Formation of Mississippian age and the Everton Formation of Ordovician age, both known to contain zinc and lead deposits in northern Arkansas, underlie the roadless area. The presence or absence of zinc and lead deposits in these formations in the subsurface can be neither confirmed nor ruled out without exploratory drilling. Most of the Richland Creek Roadless Area is under lease for oil and gas; however two wells drilled near the eastern boundary of the area did not show contained gas or oil.

  19. Reclaiming water with wetlands

    SciTech Connect

    Crother, C.M. )

    1994-07-01

    This article describes how officials in Riverside County, Calif. are using constructed wetlands as part of their water-resources-management program, while creating a wildlife-habitat and public-recreation area in the process. As part of its strategy, Eastern Municipal Water District (EMWD), along with the US Bureau of Reclamation (BuRec), is investigating the use of multipurpose constructed wetlands for wastewater treatment, reclaimed-water reuse, environmental enhancement, wildlife-habitat creation, and public education and recreation. EMWD is evaluating the use of wetlands to treat nitrate-contaminated ground water, recharge ground-water basins, concentrate desalination unit brines and treat storm-water runoff. By incorporating reclaimed water into its water-resources-management program, EMWD will have the flexibility to provide water of different qualities throughout the district and save potable water for potable uses.

  20. Wetland and water supply

    USGS Publications Warehouse

    Baker, John Augustus

    1960-01-01

    The Geological Survey has received numerous inquiries about the effects of proposed changes in the wetland environment. The nature of the inquiries suggests a general confusion in the public mind as to wetland values and an increasing concern by the public with the need for facts as a basis for sound decisions when public action is required. Perhaps the largest gap in our knowledge is in regard to the role played by the wetland in the natural water scheme. Specialists in such fields as agriculture and conservation have studied the wetland in relation to its special uses and values for farming and as a habitat for fish and wildlife. However, except as studied incidentally by these specialists, the role of the wetland with respect to water has been largely neglected. This facet of the wetland problem is of direct concern to the Geological Survey. We commonly speak of water in terms of its place in the hydrologic environment---as, for example, surface water or ground water. These terms imply that water can be neatly pigeonholed. With respect to the wetland environment nothing can be further from the truth. In fact, one objective of this discussion is to demonstrate that for the wetland environment surface water, ground water, and soil water cannot be separated realistically, but are closely interrelated and must be studied together. It should be noted that this statement holds true for the hydrologic environment in general, and that the wetland environment is by no means unique in this respect. Our second and principal objective is to identify some of the problems that must be studied in order to clarify the role of the wetland in relation to water supply. We have chosen to approach these objectives by briefly describing one area for which we have some information, and by using this example to point out some of the problems that need study. First, however, let us define what we, as geohydrologists, mean by wetland and briefly consider wetland classifications. For our

  1. Wetlands for Wastewater Treatment.

    PubMed

    Jiang, Yi; Martinez-Guerra, Edith; Gnaneswar Gude, Veera; Magbanua, Benjamin; Truax, Dennis D; Martin, James L

    2016-10-01

    An update on the current research and development of the treatment technologies, which utilize natural processes or passive components in wastewater treatment, is provided in this paper. The main focus is on wetland systems and their applications in wastewater treatment (as an advanced treatment unit or decentralized system), nutrient and pollutant removal (metals, industrial and emerging pollutants including pharmaceutical compounds). A summary of studies involving the effects of vegetation, wetland design and modeling, hybrid and innovative systems, storm water treatment and pathogen removal is also included. PMID:27620086

  2. Instream investigations in the Beaver Creek Watershed in West Tennessee, 1991-95

    USGS Publications Warehouse

    Byl, T.D.; Carney, K.A.

    1996-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Tennessee Department of Agriculture, began a long-term scientific investigation in 1989 to evaluate the effect of agricultural activities on water quality and the effectiveness of agricultural best management practices in the Beaver Creek watershed, West Tennessee. In 1993 as a part of this study, the USGS, in cooperation with the Natural Resources Conservation Service, Shelby County Soil Conservation District, and the Tennessee Soybean Promotion Board, began an evaluation of the physical, chemical, biological and hydrological factors that affect water quality in streams and wetlands, and instream resource-management systems to treat agricultural nonpoint-source runoff and improve water quality. The purpose of this report is to present the results of three studies of stream and wetland investigations and a study on the transport of aldicarb from an agricultural field in the Beaver Creek watershed. A natural bottomland hardwood wetland and an artificially constructed wetland were evaluated as instream resource-management systems. These two studies showed that wetlands are an effective way to improve the quality of agricultural nonpoint-source runoff. The wetlands reduced concentrations and loads of suspended sediments, nutrients, and pesticides in the streams. A third paper documents the influence of riparian vegetation on the biological structure and water quality of a small stream draining an agricultural field. A comparison of the upper reach lined with herbaceous plants and the lower reach with mature woody vegetation showed a more stable biological community structure and Water- quality characteristics in the woody reach than in the herbaceous reach. The water-quality characteristics monitored were pH, temperature, dissolved oxygen, and specific conductance. The herbaceous reach had a greater diversity and abundance of organisms during spring and early summer, but the abundance dropped by approximately

  3. Simulation of runoff and water quality for 1990 and 2008 land use conditions in the Reedy Creek watershed, East-Central Florida

    USGS Publications Warehouse

    Wicklein, Shaun M.; Schiffer, Donna M.

    2002-01-01

    Hydrologic and water-quality data have been collected within the 177-square-mile Reedy Creek, Florida, watershed, beginning as early as 1939, but the data have not been used to evaluate relations among land use, hydrology, and water quality. A model of the Reedy Creek watershed was developed and applied to the period January 1990 to December 1995 to provide a computational foundation for evaluating the effects of future land-use changes on hydrology and water quality in the watershed. The Hydrological Simulation Program-Fortran (HSPF) model was used to simulate hydrology and water quality of runoff for pervious land areas, impervious land areas, and stream reaches. Six land-use types were used to characterize the hydrology and water quality of pervious and impervious land areas in the Reedy Creek watershed: agriculture, rangeland, forest, wetlands, rapid infiltration basins, and urban areas. Hydrologic routing and water-quality reactions were simulated to characterize hydrologic and water-quality processes and the movement of runoff and its constituents through the main stream channels and their tributaries. Because of the complexity of the stream system within the Reedy Creek Improvement District (RCID) (hydraulic structures, retention ponds) and the anticipated difficulty of modeling the system, an approach of calibrating the model parameters for a subset of the gaged watersheds and confirming the usefulness of the parameters by simulating the remainder of the gaged sites was selected for this study. Two sub-watersheds (Whittenhorse Creek and Davenport Creek) were selected for calibration because both have similar land use to watersheds within the RCID (with the exception of urban areas). Given the lack of available rainfall data, the hydrologic calibration of the Whittenhorse Creek and Davenport Creek sub-watersheds was considered acceptable (for monthly data, correlation coefficients, 0.86 and 0.88, and coefficients of model-fit efficiency, 0.72 and 0

  4. Floods in Starkweather Creek basin, Madison, Wisconsin

    USGS Publications Warehouse

    Lawrence, Carl L.; Holmstrom, Barry K.

    1972-01-01

    The reaches evaluated are (1) Starkweather Creek and West Branch Starkweather Creek, for a distance of 6.0 river miles from the mouth at Lake Monona upstream to the U.S. Highway 51 crossing north of Truax Field; and (2) East Branch Starkweather Creek (2.8 river miles), from its confluence with the West Branch near Milwaukee Street upstream to a point near the Interstate Highway 90-94 crossing.

  5. Traveltime characteristics of Gore Creek and Black Gore Creek, upper Colorado River basin, Colorado

    USGS Publications Warehouse

    Gurdak, Jason J.; Spahr, Norman E.; Szmajter, Richard J.

    2002-01-01

    In the Rocky Mountains of Colorado, major highways are often constructed in stream valleys. In the event of a vehicular accident involving hazardous materials, the close proximity of highways to the streams increases the risk of contamination entering the streams. Recent population growth has contributed to increased traffic volume along Colorado highways and has resulted in increased movement of hazardous materials, particularly along Interstate 70. Gore Creek and its major tributary, Black Gore Creek, are vulnerable to such contamination from vehicular accidents along Interstate 70. Gore Creek, major tributary of the Eagle River, drains approximately 102 square miles, some of which has recently undergone significant urban development. The headwaters of Gore Creek originate in the Gore Range in the eastern part of the Gore Creek watershed. Gore Creek flows west to the Eagle River. Beginning at the watershed boundary on Vail Pass, southeast of Vail Ski Resort, Interstate 70 parallels Black Gore Creek and then closely follows Gore Creek the entire length of the watershed. Interstate 70 crosses Gore Creek and tributaries 20 times in the watershed. In the event of a vehicular accident involving a contaminant spill into Gore Creek or Black Gore Creek, a stepwise procedure has been developed for water-resource managers to estimate traveltimes of the leading edge and peak concentration of a conservative contaminant. An example calculating estimated traveltimes for a hypothetical contaminant release in Black Gore Creek is provided. Traveltime measurements were made during May and September along Black Gore Creek and Gore Creek from just downstream from the Black Lakes to the confluence with the Eagle River to account for seasonal variability in stream discharge. Fluorometric dye injection of rhodamine WT and downstream dye detection by fluorometry were used to measure traveltime characteristics of Gore Creek and Black Gore Creek. During the May traveltime measurements

  6. 33 CFR 110.79c - Fish Creek Harbor, Fish Creek, Wisconsin.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Fish Creek Harbor, Fish Creek, Wisconsin. 110.79c Section 110.79c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.79c Fish Creek Harbor, Fish...

  7. 33 CFR 110.79c - Fish Creek Harbor, Fish Creek, Wisconsin.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Fish Creek Harbor, Fish Creek, Wisconsin. 110.79c Section 110.79c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.79c Fish Creek Harbor, Fish...

  8. 33 CFR 110.79c - Fish Creek Harbor, Fish Creek, Wisconsin.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Fish Creek Harbor, Fish Creek, Wisconsin. 110.79c Section 110.79c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.79c Fish Creek Harbor, Fish...

  9. 33 CFR 110.79c - Fish Creek Harbor, Fish Creek, Wisconsin.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Fish Creek Harbor, Fish Creek, Wisconsin. 110.79c Section 110.79c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.79c Fish Creek Harbor, Fish...

  10. 33 CFR 110.79c - Fish Creek Harbor, Fish Creek, Wisconsin.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Fish Creek Harbor, Fish Creek, Wisconsin. 110.79c Section 110.79c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.79c Fish Creek Harbor, Fish...

  11. 78 FR 62616 - Salmon Creek Hydroelectric Company, Salmon Creek Hydroelectric Company, LLC; Notice of Transfer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-22

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Salmon Creek Hydroelectric Company, Salmon Creek Hydroelectric Company, LLC; Notice of Transfer of Exemption 1. By letter filed September 23, 2013, Salmon Creek Hydroelectric...

  12. Wading into Wetlands.

    ERIC Educational Resources Information Center

    Braus, Judy, Ed.

    1986-01-01

    Ranger Rick's NatureScope is a creative education series dedicated to inspiring in children an understanding and appreciation of the natural world while developing the skills they will need to make responsible decisions about the environment. The topic of this issue is "Wading into Wetlands." Contents are organized into the following sections: (1)…

  13. 1. OVERALL VIEW OF LOBOS CREEK INLET STRUCTURE (#1786), LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. OVERALL VIEW OF LOBOS CREEK INLET STRUCTURE (#1786), LOOKING SOUTHWEST - Presidio Water Treatment Plant, Lobos Creek Inlet Structure, East of Lobos Creek at Baker Beach, San Francisco, San Francisco County, CA

  14. General perspective view of the Spring Creek Bridge, view looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General perspective view of the Spring Creek Bridge, view looking east. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  15. Approach view of the Spring Creek Bridge, view looking north. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Approach view of the Spring Creek Bridge, view looking north. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  16. General perspective view of the Spring Creek Bridge, view looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General perspective view of the Spring Creek Bridge, view looking southeast. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  17. Approach view of the Spring Creek Bridge, view looking south. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Approach view of the Spring Creek Bridge, view looking south. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  18. Topographic view of the Spring Creek Bridge and Collier State ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Topographic view of the Spring Creek Bridge and Collier State Park, view looking east. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  19. Elevation view of the Spring Creek Bridge, view looking east. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Elevation view of the Spring Creek Bridge, view looking east. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  20. General perspective view of the Spring Creek Bridge, view looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General perspective view of the Spring Creek Bridge, view looking northwest. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  1. 128. Credit JE. Outlet of tunnel on South Battle Creek ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    128. Credit JE. Outlet of tunnel on South Battle Creek Canal immediately above Junction with Cross Country Canal. (JE, v. 25 1910 p. 118). - Battle Creek Hydroelectric System, Battle Creek & Tributaries, Red Bluff, Tehama County, CA

  2. 2. GENERAL VIEW SHOWING SIMPSON CREEK BRIDGE WITH BRIDGEPORT LAMP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. GENERAL VIEW SHOWING SIMPSON CREEK BRIDGE WITH BRIDGEPORT LAMP AND CHIMNEY COMPANY IN BACKGROUND. - Bridgeport Lamp Chimney Company, Simpson Creek Bridge, Spanning Simpson Creek, State Route 58 vicinity, Bridgeport, Harrison County, WV

  3. 7. Cable Creek Bridge after completion. Zion National Park negative ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Cable Creek Bridge after completion. Zion National Park negative number 1485, classification series 002, 12. - Floor of the Valley Road, Cable Creek Bridge, Spanning Cable Creek on Floor of Valley, Springdale, Washington County, UT

  4. 3. EAGLE CREEK RECREATION AREA, VIEW OF PICNIC AREA WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. EAGLE CREEK RECREATION AREA, VIEW OF PICNIC AREA WITH COMMUNITY KITCHEN IN BACKGROUND. - Historic Columbia River Highway, Eagle Creek Recreation Area, Historic Columbia River Highway at Eagle Creek, Troutdale, Multnomah County, OR

  5. Detail view of the Ten Mile Creek Bridge, view looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of the Ten Mile Creek Bridge, view looking northeast at the modified "X" bracing and concrete hangers. - Ten Mile Creek Bridge, Spanning Ten Mile Creek on Oregon Coast Highway, Yachats, Lincoln County, OR

  6. Detail view of the Ten Mile Creek Bridge decorative concrete ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of the Ten Mile Creek Bridge decorative concrete arched balustrade at southeast corner of bridge, view looking east. - Ten Mile Creek Bridge, Spanning Ten Mile Creek on Oregon Coast Highway, Yachats, Lincoln County, OR

  7. Detail perspective view of the Ten Mile Creek Bridge arch, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail perspective view of the Ten Mile Creek Bridge arch, decorative cantilevered balustrade, and floor beams. - Ten Mile Creek Bridge, Spanning Ten Mile Creek on Oregon Coast Highway, Yachats, Lincoln County, OR

  8. 1. Salmon Creek Diversion Dam, weir (to left), sand and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Salmon Creek Diversion Dam, weir (to left), sand and silt sluice gate (center), main canal headworks (to right), view to northwest - Salmon Creek Diversion Dam, Salmon Creek, Okanogan, Okanogan County, WA

  9. 2. Salmon Creek Diversion Dam, overview, diversion weir center foreground, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Salmon Creek Diversion Dam, overview, diversion weir center foreground, headworks overflow weir to center left, view to east - Salmon Creek Diversion Dam, Salmon Creek, Okanogan, Okanogan County, WA

  10. 8. DETAIL VIEW OF DATEPLATE WHICH READS 'HARP CREEK, LUTEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. DETAIL VIEW OF DATEPLATE WHICH READS 'HARP CREEK, LUTEN BRIDGE CO., CONTRACTOR, ARKANSAS STATE HIGHWAY DEPARTMENT, 1928' - Harp Creek Bridge, Spans Harp Creek at State Highway 7, Harrison, Boone County, AR

  11. 59. Credit FM. Flood waters on South Battle Creek next ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    59. Credit FM. Flood waters on South Battle Creek next to powerhouse. Note height of water in relation to tailraces. - Battle Creek Hydroelectric System, Battle Creek & Tributaries, Red Bluff, Tehama County, CA

  12. Perspective view showing 850 plate girder span directly over creek, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Perspective view showing 85-0 plate girder span directly over creek, looking west. - New York, Chicago & St. Louis Railroad, Elk Creek Trestle, Spanning Elk Creek, south of Elk Park Road, Lake City, Erie County, PA

  13. Detail view of 850 plate girder span directly over creek, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of 85-0 plate girder span directly over creek, looking west. - New York, Chicago & St. Louis Railroad, Elk Creek Trestle, Spanning Elk Creek, south of Elk Park Road, Lake City, Erie County, PA

  14. 2. Deep Creek Road, old bridge at campground entrance. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Deep Creek Road, old bridge at campground entrance. - Great Smoky Mountains National Park Roads & Bridges, Deep Creek Road, Between Park Boundary near Bryson City & Deep Creek Campground, Gatlinburg, Sevier County, TN

  15. 1. Deep Creek Road, picnic pavilion Great Smoky Mountains ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Deep Creek Road, picnic pavilion - Great Smoky Mountains National Park Roads & Bridges, Deep Creek Road, Between Park Boundary near Bryson City & Deep Creek Campground, Gatlinburg, Sevier County, TN

  16. Approach view of the North Fork Butter Creek Bridge, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Approach view of the North Fork Butter Creek Bridge, view looking south - North Fork Butter Creek Bridge, Spanning North Fork Butter Creek Bridge at Milepost 76.63 on Heppner Highway (Oregon Route 74), Pilot Rock, Umatilla County, OR

  17. Elevation view of the North Fork Butter Creek Bridge, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Elevation view of the North Fork Butter Creek Bridge, view looking west - North Fork Butter Creek Bridge, Spanning North Fork Butter Creek Bridge at Milepost 76.63 on Heppner Highway (Oregon Route 74), Pilot Rock, Umatilla County, OR

  18. Detail perspective view of the North Fork Butter Creek Bridge, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail perspective view of the North Fork Butter Creek Bridge, view looking southwest - North Fork Butter Creek Bridge, Spanning North Fork Butter Creek Bridge at Milepost 76.63 on Heppner Highway (Oregon Route 74), Pilot Rock, Umatilla County, OR

  19. General perspective view of the North Fork Butter Creek Bridge, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General perspective view of the North Fork Butter Creek Bridge, view looking north - North Fork Butter Creek Bridge, Spanning North Fork Butter Creek Bridge at Milepost 76.63 on Heppner Highway (Oregon Route 74), Pilot Rock, Umatilla County, OR

  20. General perspective view of the North Fork Butter Creek Bridge, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General perspective view of the North Fork Butter Creek Bridge, view looking south - North Fork Butter Creek Bridge, Spanning North Fork Butter Creek Bridge at Milepost 76.63 on Heppner Highway (Oregon Route 74), Pilot Rock, Umatilla County, OR

  1. General perspective view of the North Fork Butter Creek Bridge, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General perspective view of the North Fork Butter Creek Bridge, view looking southwest - North Fork Butter Creek Bridge, Spanning North Fork Butter Creek Bridge at Milepost 76.63 on Heppner Highway (Oregon Route 74), Pilot Rock, Umatilla County, OR

  2. Approach view of the North Fork Butter Creek Bridge, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Approach view of the North Fork Butter Creek Bridge, view looking north - North Fork Butter Creek Bridge, Spanning North Fork Butter Creek Bridge at Milepost 76.63 on Heppner Highway (Oregon Route 74), Pilot Rock, Umatilla County, OR

  3. 2. Big Creek Road, worm fence and road at trailhead. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Big Creek Road, worm fence and road at trailhead. - Great Smoky Mountains National Park Roads & Bridges, Big Creek Road, Between State Route 284 & Big Creek Campground, Gatlinburg, Sevier County, TN

  4. A Wetland Camp for Upland Teachers.

    ERIC Educational Resources Information Center

    Soniat, Lyle; Duggan, Suzanne

    1995-01-01

    Discusses a workshop to provide an opportunity for north Louisiana teachers to learn firsthand about Louisiana's coastal wetlands. The multidisciplinary sessions focused on coastal wetland ecosystems, covering wetland productivity, the functions and value of wetlands, current wetland issues, water quality, botany, geology, fisheries management,…

  5. 7 CFR 12.33 - Use of wetland and converted wetland.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 1 2014-01-01 2014-01-01 false Use of wetland and converted wetland. 12.33 Section 12.33 Agriculture Office of the Secretary of Agriculture HIGHLY ERODIBLE LAND AND WETLAND CONSERVATION Wetland Conservation § 12.33 Use of wetland and converted wetland. (a) The provisions of § 12.32(b)(2)...

  6. 7 CFR 12.33 - Use of wetland and converted wetland.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 1 2011-01-01 2011-01-01 false Use of wetland and converted wetland. 12.33 Section 12.33 Agriculture Office of the Secretary of Agriculture HIGHLY ERODIBLE LAND AND WETLAND CONSERVATION Wetland Conservation § 12.33 Use of wetland and converted wetland. (a) The provisions of § 12.32(b)(2)...

  7. 7 CFR 12.33 - Use of wetland and converted wetland.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 1 2012-01-01 2012-01-01 false Use of wetland and converted wetland. 12.33 Section 12.33 Agriculture Office of the Secretary of Agriculture HIGHLY ERODIBLE LAND AND WETLAND CONSERVATION Wetland Conservation § 12.33 Use of wetland and converted wetland. (a) The provisions of § 12.32(b)(2)...

  8. 7 CFR 12.33 - Use of wetland and converted wetland.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 1 2013-01-01 2013-01-01 false Use of wetland and converted wetland. 12.33 Section 12.33 Agriculture Office of the Secretary of Agriculture HIGHLY ERODIBLE LAND AND WETLAND CONSERVATION Wetland Conservation § 12.33 Use of wetland and converted wetland. (a) The provisions of § 12.32(b)(2)...

  9. Phosphorus Dynamic in Wetlands

    NASA Astrophysics Data System (ADS)

    Pant, H. K.

    2010-12-01

    The projected greater warming at higher/northern latitudes in the coming decades due to global climatic changes can mineralize substantial amount of the organic matter and supply massive amount of phosphorus (P) to the water column, and cause the collapse of freshwater wetlands. Thus, the rates and duration of organic matter accumulations/decompositions under rising global temperatures are critical determinants of how a freshwater wetland functions as an ecological unit within a landscape. Phosphorus is a limiting nutrient and a primary controller of eutrophication. Once the external P loads are curtailed, internal P regeneration, resulting from decompositions of detritus and soil/sediment organic matter determine the productivity, as well as the water quality of a wetland. Thus, global rise in temperature not only causes hydro-climatic fluctuations but can also change the composition of aquatic/semi-aquatic communities, in turn, could lead to adverse effect on human food chain to collapse of the ecosystem. While P enrichment may lead to immediate algal blooms in wetlands/aquatic systems, decreased in P input from external sources may not be able to stop the blooms for a considerable period of time depending on the P loading from within. The extent of P mineralization under changing conditions, enzymatic hydrolysis, and estimation of different P pools using 31P NMR in sediments and the water columns showed that the stability and bioavailability of P can greatly be influenced by rise in temperature and fluctuations in water level, thus, are crucial in determining the fate of the freshwater wetlands.

  10. Utilising Physical, Chemical, And Stable Isotope Techniques To Delineate The Flows Within A Coastal Wetlands System

    NASA Astrophysics Data System (ADS)

    Marimuthu, S.; Reynolds, D. A.

    2004-12-01

    The coastal wetlands system under study comprises a series of small lakes and is very unique in the sense that the lakes within the system display different hydrochemistry and stable isotopic composition although they are connected by channels and form as a cluster of inter-connected lakes. The complex flow systems and the transient nature of the interactions between surface water and groundwater present in the wetlands system were delineated using both chemical and stable isotope data to supplement existing classical hydraulic data. The spatial and temporal variations of chemical and isotopic composition of the individual water bodies within the system were measured for an annual cycle, to provide a unique data set for the analysis. A purely hydraulic analysis of the region surrounding the wetlands would indicate that the wetlands are flow-through bodies, however the chemical and isotope information indicates the lakes almost invariably act as discharge points for the surface water flows and the north south regional groundwater flow. Large volumes of groundwater flow were found within an observed northeast-southwest trending paleochannel within the wetlands system, and in this case, the chemical and isotopic evidence are complimentary with the hydraulic study. The isotope and chloride results from the surface water bodies allowed for the accurate determination of the composition of the major creeks in the system, and a simple portioning model indicated that groundwater is the predominant source for the inflowing creeks. Similarly, the deuterium versus Oxygen-18 and deuterium versus chloride relationships observed in the system portray two distinct evaporation trends, one through the hypersaline lakes and the other through less saline lakes which indicates that the isotopic composition of the water bodies are affected to a great extent by high dissolved salts content. The superposition of these data sets provided a unique vision of the flow system and clearly shows

  11. Reduction of fecal indicator bacteria (FIB) in the Ballona Wetlands saltwater marsh (Los Angeles County, California, USA) with implications for restoration actions.

    PubMed

    Dorsey, John H; Carter, Patrick M; Bergquist, Sean; Sagarin, Rafe

    2010-08-01

    A benefit of wetland preservation and restoration is the ecosystem service of improving water quality, typically assessed based on bacterial loading. The Ballona Wetlands, a degraded salt marsh of approximately 100 ac located on the southern border of Marina Del Rey (Los Angeles County, California, USA) are currently the focus of publicly funded restoration planning. The wetlands receive tidal water, usually contaminated with fecal indicator bacteria (FIB: total and fecal coliforms, Escherichia coli, enterococci) from the adjacent Ballona Creek and Estuary. During the summer of 2007, two 24-h studies were conducted to determine FIB tidal dynamics within the wetland. Measurements of water flow and mean FIB concentrations (n = 3) were measured every 1.5 h to determine total FIB load estimates. FIB loading rates (MPN/s) were greatest during flood tides as water entered the wetlands, and then again during spring tide conditions when sediments were resuspended during swifter spring ebb flows. During daylight hours, the wetland acted as a sink for these bacteria as loads diminished, presumably by sunlight and other processes. Conversely, during late afternoon and night, the wetlands shifted to being a source as excess FIB departed on ebb flows. Therefore, the wetlands act as both a source and sink for FIB depending on tidal conditions and exposure to sunlight. Future restoration actions would result in a tradeoff - increased tidal channels offer a greater surface area for FIB inactivation, but also would result in a greater volume of FIB-contaminated resuspended sediments carried out of the wetlands on stronger ebb flows. As levels of FIB in Ballona Creek and Estuary diminish through recently established regulatory actions, the wetlands could shift into a greater sink for FIB.

  12. Underside from northeast. Waterville Bridge, Spanning Swatara Creek at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Underside from northeast. - Waterville Bridge, Spanning Swatara Creek at Appalachian Trail (moved from Little Pine Creek at State Route 44, Waterville, Lycoming County), Green Point, Lebanon County, PA

  13. SANDY CREEK ROADLESS AREA, MISSISSIPPI.

    USGS Publications Warehouse

    Haley, Boyd R.; Bitar, Richard F.

    1984-01-01

    The Sandy Creek Roadless Area includes about 3. 7 sq mi in the southeastern part of Adams County, Mississippi. On the basis of a mineral survey, the area offers little promise for the occurrence of metallic mineral resources but has a probable resource potential for oil and natural gas. It is possible that wells drilled deep enough to penetrate the older reservoirs will encounter significant quantities of oil and natural gas in the roadless area. The deposits of gravel, sand, and clay present in the area could be utilized in the construction industry, but similar deposits elsewhere are much closer to available markets.

  14. KANAB CREEK ROADLESS AREA, ARIZONA.

    USGS Publications Warehouse

    Billingsley, George H.; Ellis, Clarence E.

    1984-01-01

    On the basis of a mineral survey, the Kanab Creek Roadless Area in north-central Arizona has a probable mineral-resource potential for uranium and copper in four small areas around five collapse structures. Gypsum is abundant in layers along the canyon rim of Snake Gulch, but it is a fairly common mineral in the region outside the roadless area. There is little promise for the occurence of fossil fuels in the area. Studies of collapse structures in surrounding adjacent areas might reveal significant mineralization at depth, such as the recent discovery of the uranium ore body at depth in the Pigeon Pipe.

  15. 33 CFR 117.543 - Bear Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Bear Creek. 117.543 Section 117.543 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.543 Bear Creek. (a) The draws of the...

  16. 33 CFR 117.543 - Bear Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Bear Creek. 117.543 Section 117.543 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.543 Bear Creek. (a) The draws of the...

  17. 33 CFR 117.543 - Bear Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Bear Creek. 117.543 Section 117.543 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.543 Bear Creek. (a) The draw of the...

  18. 33 CFR 117.543 - Bear Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Bear Creek. 117.543 Section 117.543 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.543 Bear Creek. (a) The draw of the...

  19. 33 CFR 117.543 - Bear Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Bear Creek. 117.543 Section 117.543 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.543 Bear Creek. (a) The draw of the...

  20. 33 CFR 117.335 - Taylor Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Taylor Creek. 117.335 Section 117.335 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.335 Taylor Creek. The draw of US441 bridge, mile...

  1. 27 CFR 9.211 - Swan Creek.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... The appropriate maps for determining the boundaries of the Swan Creek viticultural area are three United States Geological Survey (USGS) 1:100,000 scale topographic maps. They are titled: (1) Winston...) Salisbury, North Carolina, 1985, photoinspected 1983. (c) Boundary. The Swan Creek viticultural area...

  2. 33 CFR 117.555 - College Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false College Creek. 117.555 Section 117.555 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.555 College Creek. The draws of...

  3. 33 CFR 117.555 - College Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false College Creek. 117.555 Section 117.555 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.555 College Creek. The draws of...

  4. 33 CFR 117.324 - Rice Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Rice Creek. 117.324 Section 117.324 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.324 Rice Creek. The CSX Railroad Swingbridge,...

  5. 33 CFR 117.324 - Rice Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Rice Creek. 117.324 Section 117.324 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.324 Rice Creek. The CSX Railroad Swingbridge,...

  6. 33 CFR 117.324 - Rice Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Rice Creek. 117.324 Section 117.324 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.324 Rice Creek. The CSX Railroad Swingbridge,...

  7. 33 CFR 117.324 - Rice Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Rice Creek. 117.324 Section 117.324 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.324 Rice Creek. The CSX Railroad Swingbridge,...

  8. 33 CFR 117.324 - Rice Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Rice Creek. 117.324 Section 117.324 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.324 Rice Creek. The CSX Railroad Swingbridge,...

  9. 33 CFR 117.331 - Snake Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Snake Creek. 117.331 Section 117.331 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.331 Snake Creek. The draw of the Snake...

  10. 33 CFR 117.809 - Tonawanda Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Tonawanda Creek. 117.809 Section 117.809 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New York § 117.809 Tonawanda Creek. The draw of...

  11. 33 CFR 117.1013 - Kinsale Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Kinsale Creek. 117.1013 Section 117.1013 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Virginia § 117.1013 Kinsale Creek. The draw of...

  12. 33 CFR 117.1013 - Kinsale Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Kinsale Creek. 117.1013 Section 117.1013 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Virginia § 117.1013 Kinsale Creek. The draw of...

  13. 33 CFR 117.1013 - Kinsale Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Kinsale Creek. 117.1013 Section 117.1013 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Virginia § 117.1013 Kinsale Creek. The draw of...

  14. 33 CFR 117.1013 - Kinsale Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Kinsale Creek. 117.1013 Section 117.1013 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Virginia § 117.1013 Kinsale Creek. The draw of...

  15. 33 CFR 117.557 - Curtis Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Curtis Creek. 117.557 Section 117.557 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.557 Curtis Creek. The draw of the I695...

  16. 33 CFR 117.841 - Smith Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Smith Creek. 117.841 Section 117.841 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements North Carolina § 117.841 Smith Creek. The draw of the...

  17. 33 CFR 117.571 - Spa Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Spa Creek. 117.571 Section 117.571 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.571 Spa Creek. The S181 bridge, mile 4.0,...

  18. 33 CFR 117.331 - Snake Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Snake Creek. 117.331 Section 117.331 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.331 Snake Creek. The draw of the Snake...

  19. 33 CFR 117.331 - Snake Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Snake Creek. 117.331 Section 117.331 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.331 Snake Creek. The draw of the Snake...

  20. 33 CFR 117.331 - Snake Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Snake Creek. 117.331 Section 117.331 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.331 Snake Creek. The draw of the Snake...

  1. 33 CFR 117.331 - Snake Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Snake Creek. 117.331 Section 117.331 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.331 Snake Creek. The draw of the Snake...

  2. Pine Creek Ranch; Annual Report 2002.

    SciTech Connect

    Berry, Mark E.

    2003-02-01

    This report gives information about the following four objectives: OBJECTIVE 1--Gather scientific baseline information for monitoring purposes and to assist in the development of management plans for Pine Creek Ranch; OBJECTIVE 2--Complete and implement management plans; OBJECTIVE 3--Protect, manage and enhance the assets and resources of Pine Creek Ranch; and OBJECTIVE 4--Deliverables.

  3. 33 CFR 117.573 - Stoney Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Stoney Creek. 117.573 Section 117.573 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.573 Stoney Creek. The draw of the Stoney...

  4. 27 CFR 9.211 - Swan Creek.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Swan Creek. 9.211 Section... THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.211 Swan Creek. (a) Name. The name of the viticultural area described in this section is “Swan Creek”....

  5. 27 CFR 9.211 - Swan Creek.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Swan Creek. 9.211 Section... THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.211 Swan Creek. (a) Name. The name of the viticultural area described in this section is “Swan Creek”....

  6. 27 CFR 9.211 - Swan Creek.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Swan Creek. 9.211 Section... THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.211 Swan Creek. (a) Name. The name of the viticultural area described in this section is “Swan Creek”....

  7. 27 CFR 9.211 - Swan Creek.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Swan Creek. 9.211 Section... THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.211 Swan Creek. (a) Name. The name of the viticultural area described in this section is “Swan Creek”....

  8. 33 CFR 117.577 - Weems Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Weems Creek. 117.577 Section 117.577 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.577 Weems Creek. The draw of the S437...

  9. 33 CFR 117.573 - Stoney Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Stoney Creek. 117.573 Section 117.573 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.573 Stoney Creek. The draw of the Stoney...

  10. 33 CFR 117.573 - Stoney Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Stoney Creek. 117.573 Section 117.573 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.573 Stoney Creek. The draw of the Stoney...

  11. 33 CFR 117.577 - Weems Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Weems Creek. 117.577 Section 117.577 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.577 Weems Creek. The draw of the S437...

  12. 33 CFR 117.563 - Marshyhope Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Marshyhope Creek. 117.563 Section 117.563 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.563 Marshyhope Creek. The draw of...

  13. 33 CFR 117.563 - Marshyhope Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Marshyhope Creek. 117.563 Section 117.563 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.563 Marshyhope Creek. The draw of...

  14. 33 CFR 117.577 - Weems Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Weems Creek. 117.577 Section 117.577 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.577 Weems Creek. The draw of the S437...

  15. 33 CFR 117.563 - Marshyhope Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Marshyhope Creek. 117.563 Section 117.563 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.563 Marshyhope Creek. The draw of...

  16. 33 CFR 117.563 - Marshyhope Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Marshyhope Creek. 117.563 Section 117.563 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.563 Marshyhope Creek. The draw of...

  17. 33 CFR 117.563 - Marshyhope Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Marshyhope Creek. 117.563 Section 117.563 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.563 Marshyhope Creek. The draw of...

  18. 33 CFR 117.573 - Stoney Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Stoney Creek. 117.573 Section 117.573 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.573 Stoney Creek. The draw of the Stoney...

  19. 33 CFR 117.573 - Stoney Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Stoney Creek. 117.573 Section 117.573 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.573 Stoney Creek. The draw of the Stoney...

  20. 33 CFR 117.577 - Weems Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Weems Creek. 117.577 Section 117.577 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.577 Weems Creek. The draw of the S437...

  1. 33 CFR 117.577 - Weems Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Weems Creek. 117.577 Section 117.577 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.577 Weems Creek. The draw of the S437...

  2. 33 CFR 117.841 - Smith Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Smith Creek. 117.841 Section 117.841 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements North Carolina § 117.841 Smith Creek. The draw of the...

  3. 33 CFR 117.841 - Smith Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Smith Creek. 117.841 Section 117.841 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements North Carolina § 117.841 Smith Creek. The draw of the...

  4. 33 CFR 117.841 - Smith Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Smith Creek. 117.841 Section 117.841 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements North Carolina § 117.841 Smith Creek. The draw of the...

  5. 33 CFR 117.841 - Smith Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Smith Creek. 117.841 Section 117.841 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements North Carolina § 117.841 Smith Creek. The draw of the...

  6. 33 CFR 117.917 - Battery Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Battery Creek. 117.917 Section 117.917 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.917 Battery Creek. The draw...

  7. 33 CFR 117.917 - Battery Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Battery Creek. 117.917 Section 117.917 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.917 Battery Creek. The draw...

  8. 33 CFR 117.917 - Battery Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Battery Creek. 117.917 Section 117.917 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.917 Battery Creek. The draw...

  9. 33 CFR 117.917 - Battery Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Battery Creek. 117.917 Section 117.917 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.917 Battery Creek. The draw...

  10. 33 CFR 117.917 - Battery Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Battery Creek. 117.917 Section 117.917 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.917 Battery Creek. The draw...

  11. Characterization of Preferential Ground-Water Seepage From a Chlorinated Hydrocarbon-Contaminated Aquifer to West Branch Canal Creek, Aberdeen Proving Ground, Maryland, 2002-04

    USGS Publications Warehouse

    Majcher, Emily H.; Phelan, Daniel J.; Lorah, Michelle M.; McGinty, Angela L.

    2007-01-01

    Wetlands act as natural transition zones between ground water and surface water, characterized by the complex interdependency of hydrology, chemical and physical properties, and biotic effects. Although field and laboratory demonstrations have shown efficient natural attenuation processes in the non-seep wetland areas and stream bottom sediments of West Branch Canal Creek, chlorinated volatile organic compounds are present in a freshwater tidal creek at Aberdeen Proving Ground, Maryland. Volatile organic compound concentrations in surface water indicate that in some areas of the wetland, preferential flow paths or seeps allow transport of organic compounds from the contaminated sand aquifer to the overlying surface water without undergoing natural attenuation. From 2002 through 2004, the U.S. Geological Survey, in cooperation with the Environmental Conservation and Restoration Division of the U.S. Army Garrison, Aberdeen Proving Ground, characterized preferential ground-water seepage as part of an ongoing investigation of contaminant distribution and natural attenuation processes in wetlands at this site. Seep areas were discrete and spatially consistent during thermal infrared surveys in 2002, 2003, and 2004 throughout West Branch Canal Creek wetlands. In these seep areas, temperature measurements in shallow pore water and sediment more closely resembled those in ground water than those in nearby surface water. Generally, pore water in seep areas contaminated with chlorinated volatile organic compounds had lower methane and greater volatile organic compound concentrations than pore water in non-seep wetland sediments. The volatile organic compounds detected in shallow pore water in seeps were spatially similar to the dominant volatile organic compounds in the underlying Canal Creek aquifer, with both parent and anaerobic daughter compounds detected. Seep locations characterized as focused seeps contained the highest concentrations of chlorinated parent compounds

  12. Complex influences of low-head dams and artificial wetlands on fishes in a Colorado River tributary system

    USGS Publications Warehouse

    Beatty, R.J.; Rahel, F.J.; Hubert, W.A.

    2009-01-01

    Low-head dams in arid regions restrict fish movement and create novel habitats that have complex effects on fish assemblages. The influence of low-head dams and artificial wetlands on fishes in Muddy Creek, a tributary of the Colorado River system in the USA was examined. Upstream, fish assemblages were dominated by native species including two species of conservation concern, bluehead sucker, Catostomus discobolus Cope, and roundtail chub, Gila robusta Baird and Girard. The artificial wetlands contained almost exclusively non-native fathead minnow, Pimephales promelas Rafinesque, and white sucker, Catostomus commersonii (Lacep??de). Downstream, fish assemblages were dominated by non-native species. Upstream spawning migrations by non-native white suckers were blocked by dams associated with the wetlands. However, the wetlands do not provide habitat for native fishes and likely inhibit fish movement. The wetlands appear to be a source habitat for non-native fishes and a sink habitat for native fishes. Two non-native species, sand shiner, Notropis stramineus (Cope), and redside shiner, Richardsonius balteatus (Richardson), were present only downstream of the wetlands, suggesting a beneficial role of the wetlands in preventing upstream colonisation by non-native fishes. ?? 2009 Blackwell Publishing Ltd.

  13. Influence of land use and open-water wetlands on water quality in the Lake Wallenpaupack basin, northeastern Pennsylvania

    USGS Publications Warehouse

    Sams, James I.; Day, Rick L.; Stiteler, John M.

    1999-01-01

    The recreational value of Lake Wallenpaupack, along with its proximity to the New York and New Jersey metropolitan areas, has resulted in residential development in parts of the watershed. Some of these developments encroach on existing ponds, lakes, and wetlands and result in the conversion of forest land to residential areas. Sediment and nutrients in runoff from these residential areas, and inputs from agricultural areas, sewage treatment plants, and atmospheric deposition, have had a significant effect on water quality in Lake Wallenpaupack. Water-quality data collected in the Lake Wallenpaupack watershed from 1991 through 1994 indicate the influence of land use on water resources. Water samples collected from a forested undeveloped basin contained lower concentrations of suspended sediment, nitrogen, and total phosphorus than samples collected from the basins of Ariel Creek and Purdy Creek that drain areas having mixed land use with residential developments. Sediment yields were three to four times higher in the developed basins of Purdy and Ariel Creeks compared to the forested undeveloped basin. Annual yields for total nitrogen for Ariel Creek and Purdy Creek were between three to five times greater than yields from the forested basin. For the 1993 water year, the annual yield for dissolved nitrate plus nitrite (as nitrogen) from Ariel Creek Basin was 1,410 pounds per square mile, or about 60 times greater than the 24 pounds per square mile from the undeveloped basin. The total-phosphorus yield from the Ariel Creek Basin was 216 pounds per square mile for the 1994 water year. This was about three times greater than the 74 pounds per square mile from the forested basin. The total-phosphorus yield for the Purdy Creek Basin was 188 pounds per square mile for the 1994 water year, or 2.5 times greater than the yield from the undeveloped forested basin. Only slight differences were observed in dissolved orthophosphate phosphorus loadings between the basins. All

  14. Restoration of Ailing Wetlands

    PubMed Central

    Schmitz, Oswald J.

    2012-01-01

    It is widely held that humankind's destructive tendencies when exploiting natural resources leads to irreparable harm to the environment. Yet, this thinking runs counter to evidence that many ecological systems damaged by severe natural environmental disturbances (e.g., hurricanes) can restore themselves via processes of natural recovery. The emerging field of restoration ecology is capitalizing on the natural restorative tendencies of ecological systems to build a science of repairing the harm inflicted by humans on natural environment. Evidence for this, for example, comes from a new meta-analysis of 124 studies that synthesizes recovery of impacted wetlands worldwide. While it may take up to two human generations to see full recovery, there is promise, given human will, to restore many damaged wetlands worldwide. PMID:22291573

  15. Restoration of ailing wetlands.

    PubMed

    Schmitz, Oswald J

    2012-01-01

    It is widely held that humankind's destructive tendencies when exploiting natural resources leads to irreparable harm to the environment. Yet, this thinking runs counter to evidence that many ecological systems damaged by severe natural environmental disturbances (e.g., hurricanes) can restore themselves via processes of natural recovery. The emerging field of restoration ecology is capitalizing on the natural restorative tendencies of ecological systems to build a science of repairing the harm inflicted by humans on natural environment. Evidence for this, for example, comes from a new meta-analysis of 124 studies that synthesizes recovery of impacted wetlands worldwide. While it may take up to two human generations to see full recovery, there is promise, given human will, to restore many damaged wetlands worldwide.

  16. Management of wetlands for wildlife

    USGS Publications Warehouse

    Matthew J. Gray,; Heath M. Hagy,; J. Andrew Nyman,; Stafford, Joshua D.

    2013-01-01

    Wetlands are highly productive ecosystems that provide habitat for a diversity of wildlife species and afford various ecosystem services. Managing wetlands effectively requires an understanding of basic ecosystem processes, animal and plant life history strategies, and principles of wildlife management. Management techniques that are used differ depending on target species, coastal versus interior wetlands, and available infrastructure, resources, and management objectives. Ideally, wetlands are managed as a complex, with many successional stages and hydroperiods represented in close proximity. Managing wetland wildlife typically involves manipulating water levels and vegetation in the wetland, and providing an upland buffer. Commonly, levees and water control structures are used to manipulate wetland hydrology in combination with other management techniques (e.g., disking, burning, herbicide application) to create desired plant and wildlife responses. In the United States, several conservation programs are available to assist landowners in developing wetland management infrastructure on their property. Managing wetlands to increase habitat quality for wildlife is critical, considering this ecosystem is one of the most imperiled in the world.

  17. Hydrology of the Johnson Creek Basin, Oregon

    USGS Publications Warehouse

    Lee, Karl K.; Snyder, Daniel T.

    2009-01-01

    The Johnson Creek basin is an important resource in the Portland, Oregon, metropolitan area. Johnson Creek forms a wildlife and recreational corridor through densely populated areas of the cities of Milwaukie, Portland, and Gresham, and rural and agricultural areas of Multnomah and Clackamas Counties. The basin has changed as a result of agricultural and urban development, stream channelization, and construction of roads, drains, and other features characteristic of human occupation. Flooding of Johnson Creek is a concern for the public and for water management officials. The interaction of the groundwater and surface-water systems in the Johnson Creek basin also is important. The occurrence of flooding from high groundwater discharge and from a rising water table prompted this study. As the Portland metropolitan area continues to grow, human-induced effects on streams in the Johnson Creek basin will continue. This report provides information on the groundwater and surface-water systems over a range of hydrologic conditions, as well as the interaction these of systems, and will aid in management of water resources in the area. High and low flows of Crystal Springs Creek, a tributary to Johnson Creek, were explained by streamflow and groundwater levels collected for this study, and results from previous studies. High flows of Crystal Springs Creek began in summer 1996, and did not diminish until 2000. Low streamflow of Crystal Springs Creek occurred in 2005. Flow of Crystal Springs Creek related to water-level fluctuations in a nearby well, enabling prediction of streamflow based on groundwater level. Holgate Lake is an ephemeral lake in Southeast Portland that has inundated residential areas several times since the 1940s. The water-surface elevation of the lake closely tracked the elevation of the water table in a nearby well, indicating that the occurrence of the lake is an expression of the water table. Antecedent conditions of the groundwater level and autumn

  18. Freshwater wetlands and wildlife

    SciTech Connect

    Sharitz, R.R.; Gibbons, J.W.

    1989-01-01

    This volume is a product of the Freshwater Wetlands and Wildlife symposium held in Charleston, South Carolina, on March 24--27, 1986 and contains 94 papers. The stimulus for the symposium came from our interest in augmenting the findings of the long-term research programs on freshwater wetlands and wildlife that have been carried out on the US Department of Energy's Savannah River Site in South Carolina. The symposium provided a forum on an international scale for the exchange of data about freshwater ecosystems: their functions, uses, and their future. The papers in this volume address issues related to natural, man-managed, and degraded ecosystems. The volume is divided into two sections. The first section deals with the functions and values of wetlands, including their use as habitat for plants and animals, their role in trophic dynamics, and their basic processes. The second section treats the subject of their status and management, including techniques for assessing their value, laws for protecting them, and plans for properly managing them. Individual papers will be indexed and entered separately on the energy data base.

  19. Measured and Modeled Rainfall-Runoff Responses as Predictive Tools for Construction of Flood Mitigation Wetlands in Headwaters of the Upper Susquehanna River Basin

    NASA Astrophysics Data System (ADS)

    Hunsinger, G. B.; Salvage, K. M.; Graney, J. R.; Hubbard, K. A.

    2004-05-01

    Flooding and associated streambank erosion are major concerns in numerous watersheds within the Upper Susquehanna River Basin (USRB). Construction of wetlands is one technique that has been proposed to help mitigate flooding within this basin. As a pre-cursor to construction, this study utilized hydrogeochemical and numerical methods to examine the behavior of 8 headwater catchments (total area 110.4 km2) feeding flood-prone Catatonk Creek in south-central NY. Sulphur Springs watershed is particularly susceptible to flooding and has been selected for initial creation and demonstration of ~0.1 km2 mitigation wetlands. Miller Creek, an adjacent watershed that contains several natural wetlands was studied for comparison. The objectives of this project were two-fold; 1) to compare event-based hydrogeochemical responses in these watersheds, and 2) to assimilate these data into a HEC-1 model to predict the flood mitigation capacity of constructed wetlands within Sulphur Springs. We anticipate that the detailed analysis of hydrologic response in these watersheds could provide insight applicable to other flood impacted catchments in the USRB. Hydrologic measurements and stream sampling have occurred since June 2003, with more intensive monitoring in Miller Creek (28.4 km2) and Sulphur Springs (22.7 km2) watersheds. Manual measurements of discharge were used to develop stage-discharge rating curves, which combined with automated stage measurements, yield continuous hydrographs at the outlet of each watershed. In addition, changes in discharge were monitored within sub-watersheds of Miller Creek and Sulphur Springs. Rainfall measurements from a network of 9 tipping bucket rain gauges indicate a small-scale orographic effect over the catchment headwaters. Most of the watersheds exhibit flashy responses to rainfall with relatively short lag times (<12 hrs) to peak discharge. In-stream YSI Sondes measured temperature, conductivity/TDS, and pH and indicated greater contribution

  20. EPA METHODS FOR EVALUATING WETLAND CONDITION, WETLANDS CLASSIFICATION

    EPA Science Inventory

    In 1999, the U.S. Environmental Protection Agency (EPA) began work on this series of reports entitled Methods for Evaluating Wetland Condition. The purpose of these reports is to help States and Tribes develop methods to evaluate 1) the overall ecological condition of wetlands us...

  1. Association Between Wetland Disturbance and Biological Attributes in Floodplain Wetlands

    EPA Science Inventory

    Our study explored the relationship between agricultural related disturbance and variation in wetland biota. Our results are intended to provide resource managers with information and tools to asess the condition of floodplain wetlands and make better decisions in terms of their...

  2. Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-160) - Protect and Restore the Lapwai Creek Watershed

    SciTech Connect

    St. Hilaire, Kimberly R.

    2004-07-15

    The proposed restoration and protection of the Lapwai Creek Watershed will assist in the recovery and restoration of fish and wildlife habitat. All activities will take place within the ceded territories of the Nez Perce Tribe (See attached Project Area Map). Activities include placement of grade control weirs to allow fish passage, road decommissioning, and installation of fencing to prevent livestock access to sensitive wetlands and riparian areas.

  3. Flood discharges and hydraulics near the mouths of Wolf Creek, Craig Branch, Manns Creek, Dunloup Creek, and Mill Creek in the New River Gorge National River, West Virginia

    USGS Publications Warehouse

    Wiley, J.B.

    1994-01-01

    The U.S. Geological Survey, in cooperation with the National Park Service, studied the frequency and magnitude of flooding near the mouths of five tributaries to the New River in the New River Gorge National River. The 100-year peak discharge at each tributary was determined from regional frequency equations. The 100-year discharge at Wolf Creek, Craig Branch, Manns Creek, Dunloup Creek, and Mill Creek was 3,400 cubic feet per second, 640 cubic feet per second, 8,200 cubic feet per second, 7,100 cubic feet per second, and 9,400 cubic feet per second, respectively. Flood elevations for each tributary were determined by application of a steady-state, one-dimensional flow model. Manning's roughness coefficients for the stream channels ranged from 0.040 to 0.100. Bridges that would be unable to contain the 100-year flood within the bridge opening included: the State Highway 82 bridge on Wolf Creek, the second Fayette County Highway 25 bridge upstream from the confluence with New River on Dunloup Creek, and an abandoned log bridge on Mill Creek.

  4. 23. VIEW SHOWING HIGH WATER IN ROWDY CREEK WITH COLLAPSED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. VIEW SHOWING HIGH WATER IN ROWDY CREEK WITH COLLAPSED SECTION IN CREEK, LOOKING NORTH TO SOUTH FROM END OF UNCOLLAPSED SECTION Winter 1931-32 - Rowdy Creek Bridge, Spanning Rowdy Creek at Fred Haight Drive, Smith River, Del Norte County, CA

  5. 77 FR 10960 - Drawbridge Operation Regulation; Snake Creek, Islamorada, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-24

    ... SECURITY Coast Guard 33 CFR Part 117 Drawbridge Operation Regulation; Snake Creek, Islamorada, FL AGENCY... of Snake Creek Bridge, mile 0.5, across Snake Creek, in Islamorada, Florida. The regulation is set... Sheriff's Office has requested a temporary modification to the operating schedule of Snake Creek Bridge...

  6. Los Creek Roadless Area, California

    SciTech Connect

    Muffler, L.J.P.; Campbell, H.W.

    1984-01-01

    Geologic and mineral-resource investigations in 1981-1982 by the USGS and USBM identified no mineral-resource potential in the Lost Creek Roadless Area. Sand and gravel have been mined from alluvial flood-plain deposits less than 1 mi outside the roadless area; these deposits are likely to extend into the roadless area beneath a Holocene basalt flow that may be as much as 40 ft thick. An oil and gas lease application which includes the eastern portion of the roadless area is pending. Abundant basalt in the area can be crushed and used as aggregate, but similar deposits of volcanic cinders or sand and gravel in more favorable locations are available outside the roadless area closer to major markets. No indication of coal or geothermal energy resources was identified.

  7. LOST CREEK ROADLESS AREA, CALIFORNIA.

    USGS Publications Warehouse

    Muffler, L.J. Patrick; Campbell, Harry W.

    1984-01-01

    Geologic and mineral-resource investigations identified no mineral-resource potential in the Lost Creek Roadless Area, California. Sand and gravel have been mined from alluvial flood-plain deposits less than 1 mi outside the roadless area; these deposits are likely to extend into the roadless area beneath a Holocene basalt flow that may be as much as 40 ft thick. An oil and gas lease application which includes the eastern portion of the roadless area is pending. Abundant basalt in the area can be crushed and used as aggregate, but similar deposits of volcanic cinders or sand and gravel in more favorable locations are available outside the roadless area closer to major markets. No indication of coal or geothermal energy resources was identified.

  8. Sediment and nutrient trapping efficiency of a constructed wetland near Delavan Lake, Wisconsin, 1993-1995

    USGS Publications Warehouse

    Elder, John F.; Goddard, Gerald L.

    1996-01-01

    Jackson Creek Wetland a 95-acre shallow prairie marsh containing three sediment retention ponds was constructed in 1992 to reduce sediment and nutrient in- flow to eutrophic Delavan Lake. The function of the wetland as a retention system for suspended sediments and nutrients (total and dissolved phosphorus, total ammonia plus organic nitrogen, dissolved ammonia, and nitrite plus nitrate nitrogen) was studied from February 1993 through September 1995. Input and output load computations were based on water flow (discharge) measurements and periodic sampling of suspended sediments and nutrients at the three inflowing streams and at the wetland outflow. Results of the study indicated consistent sediment retention throughout the year; at times, as much as 80 percent of the inflow load was retained in the wetland. Nutrient retention was generally of lesser magnitude and much more variable. Although the annual budgets confirm net retention for all nutrient forms except ammonia, data analysis over shorter time scales show that outflow loads actually can exceed inflow loads during the late spring and summer months the period of greatest likelihood of algal blooms in the lake. This result demonstrates that the nutrient-trapping function of the wetland is variable because of the complexity of the system. Awareness of such variability can help to maintain realistic expectations and effective management practices.

  9. Panther Creek, Idaho, Habitat Rehabilitation, Final Report.

    SciTech Connect

    Reiser, Dudley W.

    1986-01-01

    The purpose of the project was to achieve full chinook salmon and steelhead trout production in the Panther Creek, Idaho, basin. Plans were developed to eliminate the sources of toxic effluent entering Panther Creek. Operation of a cobalt-copper mine since the 1930's has resulted in acid, metal-bearing drainage entering the watershed from underground workings and tailings piles. The report discusses plans for eliminating and/or treating the effluent to rehabilitate the water quality of Panther Creek and allow the reestablishment of salmon and trout spawning runs. (ACR)

  10. Steel Creek wildlife: L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1987

    SciTech Connect

    Giffin, M.A.; Patterson, K.K.

    1988-03-01

    Reptile and amphibian populations in Steel Creek below L-Lake were assessed in monthly or quarterly sampling programs. Thirty-eight species of reptiles or amphibians were collected during 1987 in the Steel Creek corridor below the L-Lake impoundment, and in the delta and channel. Juvenile turtles and alligators, and larval amphibians were observed or collected during the study, indicating continued reproduction in Steel Creek. The reptile and amphibian populations in Steel Creek show no indication of any effect due to the impoundment of the lake or the operation of L-Reactor. Waterfowl and associated birds in Steel Creek below L-Lake were observed, in conjunction with other sampling programs, during winter--spring and fall--winter migrations. Nine species of waterfowl and five species of associated birds were observed in 1987 in the Steel Creek corridor below the L-Lake impoundment and in the delta and channel.

  11. Flood of August 27-28, 1977, West Cache Creek and Blue Beaver Creek, southwestern Oklahoma

    USGS Publications Warehouse

    Corley, Robert K.; Huntzinger, Thomas L.

    1979-01-01

    This report documents a major storm which occurred August 27-28, 1977, in southwest Oklahoma near the communities of Cache and Faxon, OK. Blue Beaver Creek and West Cache Creek and their tributaries experienced extensive flooding that caused an estimated $1 million in damages. Reported rainfall amounts of 8 to 12 inches in 6 hours indicate the storm had a frequency in excess of the 100-year rainfall. Peak discharges on Blue Beaver Creek near Cache and West Cache Creek near Faxon were 13,500 cubic feet per second and 45,700 cubic feet per second respectively. The estimated flood frequency was in excess of 100 years on Blue Beaver Creek and in excess of 50 years on West Cache Creek. Unit runoff on small basins were in excess of 2000 cubic feet per second per square mile. Surveyed highwater marks were used to map the flooded area. (USGS)

  12. Habitat Evaluation Procedures (HEP) Report; Calispell Creek Project, Technical Report 2004-2005.

    SciTech Connect

    Entz, Ray

    2005-02-01

    On July 13, 2004, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Calispell Creek property, an acquisition completed by the Kalispel Tribe of Indians in February 2004. Evaluation species and appropriate models include Canada goose, mallard, muskrat, yellow warbler, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Calispell Creek Project provides a total of 138.17 Habitat Units (HUs) for the species evaluated. Emergent wetland habitat provides 5.16 HUs for mallard and muskrat. Grassland provides 132.02 HUs for mallard and Canada goose. Scrub-shrub vegetation provides 0.99 HUs for yellow warbler and white-tailed deer. The objective of using HEP at the Calispell Creek Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  13. Environmental geophysics at Kings Creek Disposal Site and 30th Street Landfill, Aberdeen Proving Ground, Maryland

    SciTech Connect

    Davies, B.E.; Miller, S.F.; McGinnis, L.D.; Daudt, C.R.; Thompson, M.D.; Stefanov, J.E.; Benson, M.A.; Padar, C.A.

    1995-01-01

    Geophysical studies on the Bush River Peninsula in the Edgewood Area of Aberdeen Proving Ground, Maryland, delineate landfill areas and provide diagnostic signatures of the hydrogeologic framework and possible contaminant pathways. These studies indicate that, during the Pleistocene Epoch, alternating stands of high and low seal levels resulted in a complex pattern of shallow channel-fill deposits in the Kings Creek area. Ground-penetrating radar studies reveal a paleochannel greater than 50 ft deep, with a thalweg trending offshore in a southwest direction into Kings Creek. Onshore, the ground-penetrating radar data indicate a 35-ft-deep branch to the main channel, trending to the north-northwest directly beneath the 30th Street Landfill. Other branches are suspected to meet the offshore paleochannel in the wetlands south and east of the 30th Street Landfill. This paleochannel depositional system is environmentally significant because it may control the shallow groundwater flow regime beneath the site. Electromagnetic surveys have delineated the pre-fill lowland area currently occupied by the 30th Street Landfill. Magnetic and conductive anomalies outline surficial and buried debris throughout the study area. On the basis of geophysical data, large-scale dumping has not occurred north of the Kings Creek Disposal Site or east of the 30th Street Landfill.

  14. Simplified Volume-Area-Depth Method for Estimating Water Storage of Isolated Prairie Wetlands

    NASA Astrophysics Data System (ADS)

    Minke, A. G.; Westbrook, C. J.; van der Kamp, G.

    2009-05-01

    There are millions of wetlands in shallow depressions on the North American prairies but the quantity of water stored in these depressions remains poorly understood. Hayashi and van der Kamp (2000) used the relationship between volume (V), area (A) and depth (h) to develop an equation for estimating wetland storage. We tested the robustness of their full and simplified V-A-h methods to accurately estimate volume for the range of wetland shapes occurring across the Prairie Pothole Region. These results were contrasted with two commonly implemented V-A regression equations to determine which method estimates volume most accurately. We used detailed topographic data for 27 wetlands in Smith Creek and St. Denis watersheds, Saskatchewan that ranged in surface area and basin shape. The full V-A-h method was found to accurately estimate storage (errors <3%) across wetlands of various shapes, and is therefore suitable for calculating water storage in the variety of wetland surface shapes found in the prairies. Both V-A equations performed poorly, with volume underestimated by an average of 15% and 50% Analysis of the simplified V-A-h method showed that volume errors of <10% can be achieved if the basin and shape coefficients are derived properly. This would involve measuring depth and area twice, with sufficient time between measurements that the natural fluctuations in water storage are reflected. Practically, wetland area and depth should be measured in spring, following snowmelt when water levels are near the peak, and also in late summer prior to water depths dropping below 10 cm. These guidelines for applying the simplified V-A-h method will allow for accurate volume estimations when detailed topographic data are not available. Since the V-A equations were outperformed by the full and simplified V-A-h methods, we conclude that wetland depth and basin morphology should be considered when estimating volume. This will improve storage estimations of natural and human

  15. Critical Questions in Wetland Science

    EPA Science Inventory

    Wetlands are transitional between terrestrial and aquatic environments. As such, they perform important ecological functions (e.g., nutrient cycling, flood abatement) providing a variety of ecosystem services on which humans rely. Wetlands are also one of the world’s most e...

  16. 78 FR 5798 - Grouse Creek Wind Park, LLC, Grouse Creek Wind Park II, LLC; Notice of Petition for Enforcement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-28

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Grouse Creek Wind Park, LLC, Grouse Creek Wind Park II, LLC; Notice of... Utility Regulatory Policies Act of 1978 (PURPA), Grouse Creek Wind Park, LLC and Grouse Creek Wind Park...

  17. Wetland indicators. A guide to wetland identification, delineation, classification, and mapping

    SciTech Connect

    Tiner, R.W.

    1999-07-01

    Understand the current concept of wetland and methods for identifying, describing, classifying, and delineating wetlands with ``Wetland Indicators'' capturing the current state of science's role in wetland recognition and mapping. Environmental scientists and others involved with wetland regulations can strengthen their knowledge about wetlands, and the use of various indicators, to support their decisions on difficult wetland determinations. professor Tiner primarily focuses on plants, soils, and other signs of wetland hydrology in the soil, or on the surface of wetlands in his discussion of the book.

  18. Steel Creek fish, L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1991

    SciTech Connect

    Sayers, R.E. Jr.; Mealing, H.G. III

    1992-04-01

    The Savannah River Site (SRS) encompasses 300 sq mi of the Atlantic Coastal plain in west-central South Carolina. The Savannah River forms the western boundary of the site. Five major tributaries of the Savannah River -- Upper Three Runs Creek, Four Mile Creek, Pen Branch, Steel Creek, and Lower Three Runs Creek -- drain the site. All but Upper Three Runs Creek receive, or in the past received, thermal effluents from nuclear production reactors. In 1985, L Lake, a 400-hectare cooling reservoir, was built on the upper reaches of Steel Creek to receive effluent from the restart of L-Reactor, and protect the lower reaches from thermal impacts. The lake has an average width of approximately 600 m and extends along the Steel Creek valley approximately 7000 m from the dam to the headwaters. Water level is maintained at a normal pool elevation of 58 m above mean sea level by overflow into a vertical intake tower that has multilevel discharge gates. The intake tower is connected to a horizontal conduit that passes through the dam and releases water into Steel Creek. The Steel Creek Biological Monitoring Program was designed to meet environmental regulatory requirements associated with the restart of L-Reactor and complements the Biological Monitoring Program for L Lake. This extensive program was implemented to address portions of Section 316(a) of the Clean Water Act. The Department of Energy (DOE) must demonstrate that the operation of L-Reactor will not significantly alter the established aquatic ecosystems.

  19. Climate change and intertidal wetlands.

    PubMed

    Ross, Pauline M; Adam, Paul

    2013-01-01

    Intertidal wetlands are recognised for the provision of a range of valued ecosystem services. The two major categories of intertidal wetlands discussed in this contribution are saltmarshes and mangrove forests. Intertidal wetlands are under threat from a range of anthropogenic causes, some site-specific, others acting globally. Globally acting factors include climate change and its driving cause-the increasing atmospheric concentrations of greenhouse gases. One direct consequence of climate change will be global sea level rise due to thermal expansion of the oceans, and, in the longer term, the melting of ice caps and glaciers. The relative sea level rise experienced at any one locality will be affected by a range of factors, as will the response of intertidal wetlands to the change in sea level. If relative sea level is rising and sedimentation within intertidal wetlands does not keep pace, then there will be loss of intertidal wetlands from the seaward edge, with survival of the ecosystems only possible if they can retreat inland. When retreat is not possible, the wetland area will decline in response to the "squeeze" experienced. Any changes to intertidal wetland vegetation, as a consequence of climate change, will have flow on effects to biota, while changes to biota will affect intertidal vegetation. Wetland biota may respond to climate change by shifting in distribution and abundance landward, evolving or becoming extinct. In addition, impacts from ocean acidification and warming are predicted to affect the fertilisation, larval development, growth and survival of intertidal wetland biota including macroinvertebrates, such as molluscs and crabs, and vertebrates such as fish and potentially birds. The capacity of organisms to move and adapt will depend on their life history characteristics, phenotypic plasticity, genetic variability, inheritability of adaptive characteristics, and the predicted rates of environmental change. PMID:24832670

  20. Climate change and intertidal wetlands.

    PubMed

    Ross, Pauline M; Adam, Paul

    2013-03-19

    Intertidal wetlands are recognised for the provision of a range of valued ecosystem services. The two major categories of intertidal wetlands discussed in this contribution are saltmarshes and mangrove forests. Intertidal wetlands are under threat from a range of anthropogenic causes, some site-specific, others acting globally. Globally acting factors include climate change and its driving cause-the increasing atmospheric concentrations of greenhouse gases. One direct consequence of climate change will be global sea level rise due to thermal expansion of the oceans, and, in the longer term, the melting of ice caps and glaciers. The relative sea level rise experienced at any one locality will be affected by a range of factors, as will the response of intertidal wetlands to the change in sea level. If relative sea level is rising and sedimentation within intertidal wetlands does not keep pace, then there will be loss of intertidal wetlands from the seaward edge, with survival of the ecosystems only possible if they can retreat inland. When retreat is not possible, the wetland area will decline in response to the "squeeze" experienced. Any changes to intertidal wetland vegetation, as a consequence of climate change, will have flow on effects to biota, while changes to biota will affect intertidal vegetation. Wetland biota may respond to climate change by shifting in distribution and abundance landward, evolving or becoming extinct. In addition, impacts from ocean acidification and warming are predicted to affect the fertilisation, larval development, growth and survival of intertidal wetland biota including macroinvertebrates, such as molluscs and crabs, and vertebrates such as fish and potentially birds. The capacity of organisms to move and adapt will depend on their life history characteristics, phenotypic plasticity, genetic variability, inheritability of adaptive characteristics, and the predicted rates of environmental change.

  1. Climate Change and Intertidal Wetlands

    PubMed Central

    Ross, Pauline M.; Adam, Paul

    2013-01-01

    Intertidal wetlands are recognised for the provision of a range of valued ecosystem services. The two major categories of intertidal wetlands discussed in this contribution are saltmarshes and mangrove forests. Intertidal wetlands are under threat from a range of anthropogenic causes, some site-specific, others acting globally. Globally acting factors include climate change and its driving cause—the increasing atmospheric concentrations of greenhouse gases. One direct consequence of climate change will be global sea level rise due to thermal expansion of the oceans, and, in the longer term, the melting of ice caps and glaciers. The relative sea level rise experienced at any one locality will be affected by a range of factors, as will the response of intertidal wetlands to the change in sea level. If relative sea level is rising and sedimentation within intertidal wetlands does not keep pace, then there will be loss of intertidal wetlands from the seaward edge, with survival of the ecosystems only possible if they can retreat inland. When retreat is not possible, the wetland area will decline in response to the “squeeze” experienced. Any changes to intertidal wetland vegetation, as a consequence of climate change, will have flow on effects to biota, while changes to biota will affect intertidal vegetation. Wetland biota may respond to climate change by shifting in distribution and abundance landward, evolving or becoming extinct. In addition, impacts from ocean acidification and warming are predicted to affect the fertilisation, larval development, growth and survival of intertidal wetland biota including macroinvertebrates, such as molluscs and crabs, and vertebrates such as fish and potentially birds. The capacity of organisms to move and adapt will depend on their life history characteristics, phenotypic plasticity, genetic variability, inheritability of adaptive characteristics, and the predicted rates of environmental change. PMID:24832670

  2. Stimulating a Great Lakes coastal wetland seed bank using portable cofferdams: implications for habitat rehabilitation

    USGS Publications Warehouse

    Kowalski, K.P.; Wilcox, D.A.; Wiley, M.J.

    2009-01-01

    Coastal wetland seed banks exposed by low lake levels or through management actions fuel the reestablishment of emergent plant assemblages (i.e., wetland habitat) critical to Great Lakes aquatic biota. This project explored the effectiveness of using portable, water-filled cofferdams as a management tool to promote the natural growth of emergent vegetation from the seed bank in a Lake Erie coastal wetland. A series of dams stretching approximately 450??m was installed temporarily to isolate hydrologically a 10-ha corner of the Crane Creek wetland complex from Lake Erie. The test area was dewatered in 2004 to mimic a low-water year, and vegetation sampling characterized the wetland seed bank response at low, middle, and high elevations in areas open to and protected from bird and mammal herbivory. The nearly two-month drawdown stimulated a rapid seed-bank-driven response by 45 plant taxa. Herbivory had little effect on plant species richness, regardless of the location along an elevation gradient. Inundation contributed to the replacement of immature emergent plant species with submersed aquatic species after the dams failed and were removed prematurely. This study revealed a number of important issues that must be considered for effective long-term implementation of portable cofferdam technology to stimulate wetland seed banks, including duration of dewatering, product size, source of clean water, replacement of damaged dams, and regular maintenance. This technology is a potentially important tool in the arsenal used by resource managers seeking to rehabilitate the functions and values of Great Lakes coastal wetland habitats.

  3. 33 CFR 117.813 - Wappinger Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New York § 117.813 Wappinger Creek. The draw of the Metro-North Commuter railroad bridge, mile 0.0 at New Hamburg, need not be opened for the passage...

  4. 33 CFR 117.929 - Durham Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OPERATION REGULATIONS Specific Requirements South Carolina § 117.929 Durham Creek. The removable span of the... Charleston of an emergency in the Bushy Park Reservoir, the span shall be removed as soon as possible...

  5. 33 CFR 117.557 - Curtis Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... OPERATION REGULATIONS Specific Requirements Maryland § 117.557 Curtis Creek. The draw of the I695 bridge, mile 1.0 at Baltimore, shall open on signal if at least a one-hour notice is given to the...

  6. 33 CFR 117.571 - Spa Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... OPERATION REGULATIONS Specific Requirements Maryland § 117.571 Spa Creek. The S181 bridge, mile 0.4, at Annapolis, Maryland: (a) From May 1 to October 31, Monday through Friday, except Federal and State...

  7. 33 CFR 117.557 - Curtis Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... OPERATION REGULATIONS Specific Requirements Maryland § 117.557 Curtis Creek. The draw of the I695 bridge, mile 1.0 at Baltimore, shall open on signal if at least a one-hour notice is given to the...

  8. 33 CFR 117.571 - Spa Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... OPERATION REGULATIONS Specific Requirements Maryland § 117.571 Spa Creek. The S181 bridge, mile 4.0, at Annapolis, Maryland: (a) From May 1 to October 31, Monday through Friday, except Federal and State...

  9. 33 CFR 117.571 - Spa Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... OPERATION REGULATIONS Specific Requirements Maryland § 117.571 Spa Creek. The S181 bridge, mile 0.4, at Annapolis, Maryland: (a) From May 1 to October 31, Monday through Friday, except Federal and State...

  10. 33 CFR 117.557 - Curtis Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... OPERATION REGULATIONS Specific Requirements Maryland § 117.557 Curtis Creek. The draw of the I695 bridge, mile 1.0 at Baltimore, shall open on signal if at least a one-hour notice is given to the...

  11. 33 CFR 117.558 - Curtis Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... OPERATION REGULATIONS Specific Requirements Maryland § 117.558 Curtis Creek. (a) The draw of the Pennington... Maryland Transportation Authority in Baltimore. Effective Date Note: By USCG-2010-1103, at 76 FR 9227,...

  12. 33 CFR 117.571 - Spa Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... OPERATION REGULATIONS Specific Requirements Maryland § 117.571 Spa Creek. The S181 bridge, mile 0.4, at Annapolis, Maryland: (a) From May 1 to October 31, Monday through Friday, except Federal and State...

  13. 33 CFR 117.557 - Curtis Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... OPERATION REGULATIONS Specific Requirements Maryland § 117.557 Curtis Creek. The draw of the I695 bridge, mile 1.0 at Baltimore, shall open on signal if at least a one-hour notice is given to the...

  14. 33 CFR 117.555 - College Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.555 College Creek. The draws of the Naval Academy highway bridge, mile 0.3 at Annapolis, and the Maryland highway bridge, mile 0.4...

  15. 33 CFR 117.555 - College Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.555 College Creek. The draws of the Naval Academy highway bridge, mile 0.3 at Annapolis, and the Maryland highway bridge, mile 0.4...

  16. 33 CFR 117.555 - College Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.555 College Creek. The draws of the Naval Academy highway bridge, mile 0.3 at Annapolis, and the Maryland highway bridge, mile 0.4...

  17. Applied wetlands science and technology. 2. edition

    SciTech Connect

    Kent, D.M.

    1999-01-01

    The book provides the fundamentals for defining and regulating wetlands, as well as identifying and delineating wetlands. Functions and values, ecological assessments, and minimization of impacts to wetlands are covered as is background information on wetland enhancement, restoration, creation, and monitoring.

  18. Wetlands: Water, Wildlife, Plants, and People.

    ERIC Educational Resources Information Center

    Vandas, Steve

    1992-01-01

    Describes wetlands and explains their importance to man and ecology. Delineates the role of water in wetlands. Describes how wetlands are classified: estuarine, riverine, lacustrine, palustrine, and marine. Accompanying article is a large, color poster on wetlands. Describes an activity where metaphors are used to explore the functions of…

  19. Hydrology of Mid-Atlantic Freshwater Wetlands

    EPA Science Inventory

    Hydrology is a key variable in the structure and function of a wetland; it is a primary determinant of wetland type, and it drives many of the functions a wetland performs and in turn the services it provides. However, wetland hydrology has been understudied. Efforts by Riparia s...

  20. Factors influencing wetland use by Canada geese

    USGS Publications Warehouse

    Naugle, D.E.; Gleason, J.S.; Jenks, J.A.; Higgins, K.F.; Mammenga, P.W.; Nusser, S.M.

    1997-01-01

    Seasonal and semi-permanent wetlands in eastern South Dakota were surveyed in 1995 and 1996 to identify habitat characteristics influencing wetland use by Canada geese (Branta canadensis maxima). Position of a wetland within the landscape and its area were important landscape-scale features influencing wetland use by geese. Our delineation of potential Canada goose habitat using a wetland geographic information system indicated that distribution and area of semi-permanent wetlands likely limit Canada goose occurrence in regions outside the Prairie Coteau. Periodicity in hydrologic cycles within landscapes also may influence goose use of wetlands in eastern South Dakota.

  1. [Wetland protection and Oncomelania hupensis control].

    PubMed

    Huang, Yi-xin

    2013-10-01

    The wetland is the unique ecosystem that is formed by the interaction between water and land on the earth surface. At present, the wetland ecology and wetland protection is becoming a more and more attention. Oncomelania hupensis is also a wetland creature that is the only snail host for spreading schistosomiasis japonica. The chemical drugs and environmental modification are usually used to the snail control in the schistosomiasis prevention and control. These control measures have different degrees of influence on wetland ecology. In order to meet the requirements of wetland protection, and to strengthen the research of the snail control appropriate technologies on wetland, this paper expounds the influence of different types of wetlands on Oncomelania and the influence of the snail control on wetland ecology. This paper also discusses the countermeasures of snail control of wetlands.

  2. Two science communities and coastal wetlands policy

    SciTech Connect

    LeVine, J.B.

    1984-01-01

    This study compares the attitudes of academic and government wetlands scientists about wetlands science and policy. Analysis of one thousand seven hundred responses to Delphi-type questions posed to twenty California scientists on a wide range of issues about California coastal wetlands found significant differences between academic and government scientists about wetlands definitions, threats to wetlands, wetlands policies, wetlands health, and wetlands mitigation strategies. These differences were consistent with descriptive models of political sociology developed by D. Price and C.P. Snow and with normative models of the philosophy of science developed in the renaissance by F. Bacon and R. Descartes. Characteristics, preferences, and personality attributes consistent with group functions and roles have been described in these models. These findings have serious implications for policy. When academic and government wetlands scientists act as advisors to the major parties in land use conflicts, basic differences in perspective have contributed to costly contention over the future use of wetlands.

  3. Simulation of Integrated Surface-Water/Ground-Water Flow and Salinity for a Coastal Wetland and Adjacent Estuary

    USGS Publications Warehouse

    Langevin, Christian D.; Swain, Eric D.; Melinda A., Wolfert

    2004-01-01

    The SWIFT2D surface-water flow and transport code, which solves the St. Venant equations in two dimensions, was coupled with the SEAWAT variable-density ground-water code to represent hydrologic processes in coastal wetlands and adjacent estuaries. The integrated code was applied to the southern Everglades of Florida to quantify flow and salinity patterns and to evaluate effects of hydrologic processes. Results indicate that most surface water within Taylor Slough flows through Joe Bay and into Florida Bay through Trout Creek. Overtopping of the Buttonwood Embankment, a narrow but continuous ridge that separates the coastal wetlands from Florida Bay, does occur in response to tropical storms, but the net overflow is only 1.5 percent of creek discharge. The net leakage rate for the coastal wetland is about zero with nearly equal upward (17.1 cm/yr) and downward (17.4 cm/yr) rates. During the dry season, the coastal wetland increases in salinity to 30-35 practical salinity units but is flushed each year with the onset of the wet season. Model results demonstrate that surface-water/ground-water interactions, density-dependent flow, and wind affect flow and salinity patterns.

  4. Constructing a Baseline Model of Alpine Wetlands of the Uinta Mountains, Utah, USA

    NASA Astrophysics Data System (ADS)

    Matyjasik, M.; Ford, R. L.; Bartholomew, L. M.; Welsh, S. B.; Hernandez, M.; Koerner, D.; Muir, M.

    2008-12-01

    between wetland and non-wetland areas. On-going analyses of water-chemistry data will be used to identify discrete water sources and to characterize the degree of horizontal and vertical water mixing within the system, as well as to help identify the biochemical requirements of the different plant communities. Results indicate that the chemical composition of the main creek reflects the accumulative effect that the peaty flarks have on the creek as it passes through the wetland system, with pH overall decreasing from 7.3 to 7.0, dissolved oxygen decreasing from 9400 to 8400 micrograms per liter and total dissolved solids increasing from 9 mg/L to 13 mg/L. String ground water is characterized by relatively high pH (ranging from 6.0 to 7.1), high oxidizing-reducing potential (ORP) (ranging from 50 mV to 180 mV), high dissolved oxygen (from 2500 μg/L to 9600 μg /L) while flark ground water has relatively lower pH (5.6 to 6.8), low oxidizing reducing potential (ORP) (ranging from -66 mV to 150 mV), low dissolved oxygen (from 900 μg /L to 9000 μg /L).

  5. Hydrogeologic Assessment of the East Bear Creek Unit, San LuisNational Wildlife Refuge

    SciTech Connect

    Quinn, Nigel W.T.

    2007-07-15

    San Luis National Wildlife Refuge Complex to meetReclamation s obligations for Level 4 water supply under the CentralValley Project Improvement Act. Hydrogeological assessment of the EastBear Creek Unit of the San Luis National Wildlife Refuge was conductedusing a combination of field investigations and a survey of availableliterature from past US Geological Survey Reports and reports by localgeological consultants. Conservative safe yield estimates made using theavailable data show that the East Bear Creek Unit may have sufficientgroundwater resources in the shallow groundwater aquifer to meet aboutbetween 25 percent and 52 percent of its current Level II and between 17percent and 35 percent of its level IV water supply needs. The rate ofsurface and lateral recharge to the Unit and the design of the well fieldand the layout and capacity of pumped wells will decide both thepercentage of annual needs that the shallow aquifer can supply andwhether this yield is sustainable without affecting long-term aquiferquality. In order to further investigate the merits of pumping the nearsurface aquifer, which appears to have reasonable water quality for usewithin the East Bear Creek Unit -- monitoring of the potential sources ofaquifer recharge and the installation of a pilot shallow well would bewarranted. Simple monitoring stations could be installed both upstreamand downstream of both the San Joaquin River and Bear Creek and beinstrumented to measureriver stage, flow and electrical conductivity.Ideally this would be done in conjunction with a shallow pilot well,pumped to supply a portion of the Unit's needs for the wetland inundationperiod.

  6. Distribution of total and methyl mercury in sediments along Steamboat Creek (Nevada, USA)

    USGS Publications Warehouse

    Stamenkovic, J.; Gustin, M.S.; Marvin-DiPasquale, M. C.; Thomas, B.A.; Agee, J.L.

    2004-01-01

    In the late 1800s, mills in the Washoe Lake area, Nevada, used elemental mercury to remove gold and silver from the ores of the Comstock deposit. Since that time, mercury contaminated waste has been distributed from Washoe Lake, down Steamboat Creek, and to the Truckee River. The creek has high mercury concentrations in both water and sediments, and continues to be a constant source of mercury to the Truckee River. The objective of this study was to determine concentrations of total and methyl mercury (MeHg) in surface sediments and characterize their spatial distribution in the Steamboat Creek watershed. Total mercury concentrations measured in channel and bank sediments did not decrease downstream, indicating that mercury contamination has been distributed along the creek's length. Total mercury concentrations in sediments (0.01-21.43 ??g/g) were one to two orders of magnitude higher than those in pristine systems. At 14 out of 17 sites, MeHg concentrations in streambank sediments were higher than the concentrations in the channel, suggesting that low banks with wet sediments might be important sites of mercury methylation in this system. Both pond/wetland and channel sites exhibited high potential for mercury methylation (6.4-30.0 ng g-1 day-1). Potential methylation rates were positively correlated with sulfate reduction rates, and decreased as a function of reduced sulfur and MeHg concentration in the sediments. Potential demethylation rate appeared not to be influenced by MeHg concentration, sulfur chemistry, DOC, sediment grain size or other parameters, and showed little variation across the sites (3.7-7.4 ng g-1 day-1). ?? 2003 Elsevier B.V. All rights reserved.

  7. Blackbird Creek Monitoring Program to Study the impact of Climate Change and Land Use

    NASA Astrophysics Data System (ADS)

    Ozbay, G.; Chintapenta, L. K.; Roeske, K. P.; Stone, M.; Phalen, L.

    2014-12-01

    The Blackbird Creek Monitoring Program at Delaware State University continues to utilize various perspectives to study the dynamics of one of Delaware's most pristine ecosystems. The water quality of Blackbird Creek has been constantly monitored for 3 years and correlated with the rain and storm events. Soil nutrients composition has been studied by extracting the water associated with soil aggregates and analyzing the levels of different nutrients. Soil quality is also assessed for heavy metals to identify potential human impact that may affect the health of ecosystem. Within the Blackbird Creek there is a threat to native plant communities from invasive plant species as they alter the ecosystem dynamics. Saltmarsh cord grass (Spartina alterniflora) and common reed (Phragmites australius) are the common wetland plants. Aerial mapping of the creek has been conducted to determine the area covered by invasive plant species. The microbial community structure plays a key role in soil carbon and nitrogen cycles in the ecosystem. Molecular analysis has been performed to study the microbial diversity with respect to the type of marsh grasses. This program has also incorporated the use of diatoms as biological indicators to assess the health of ecosystem and correlate that data with physical and chemical water quality data. The abundance and diversity of macro fauna such as blue crabs, fish and other significant species has also been studied. Stable isotopic analysis of these macro fauna has also been performed to study the food web. The results from this program will be helpful in addressing environmental challenges and designing management strategies.

  8. Baseline and Postremediation Monitoring Program Plan for the Lower East Fork Poplar Creek operable unit, Oak Ridge, Tennessee

    SciTech Connect

    1996-04-01

    This report was prepared in accordance with CERCLA requirements to present the plan for baseline and postremediation monitoring as part of the selected remedy. It provides the Environmental Restoration Program with information about the requirements to monitor for soil and terrestrial biota in the Lower East Fork Poplar Creek (LEFPC) floodplain; sediment, surface water, and aquatic biota in LEFPC; wetland restoration in the LEFPC floodplain; and human use of shallow groundwater wells in the LEFPC floodplain for drinking water. This document describes the monitoring program that will ensure that actions taken under Phases I and II of the LEFPC remedial action are protective of human health and the environment.

  9. Hoe Creek groundwater restoration, 1989

    SciTech Connect

    Renk, R.R.; Crader, S.E.; Lindblom, S.R.; Covell, J.R.

    1990-01-01

    During the summer of 1989, approximately 6.5 million gallons of contaminated groundwater were pumped from 23 wells at the Hoe Creek underground coal gasification site, near Gillette, Wyoming. The organic contaminants were removed using activated carbon before the water was sprayed on 15.4 acres at the sites. Approximately 2647 g (5.8 lb) of phenols and 10,714 g (23.6 lb) of benzene were removed from the site aquifers. Phenols, benzene, toluene, ethylbenzene, and naphthalene concentrations were measured in 43 wells. Benzene is the only contaminant at the site exceeds the federal standard for drinking water (5 {mu}g/L). Benzene leaches into the groundwater and is slow to biologically degrade; therefore, the benzene concentration has remained high in the groundwater at the site. The pumping operation affected groundwater elevations across the entire 80-acre site. The water levels rebounded quickly when the pumping operation was stopped on October 1, 1989. Removing contaminated groundwater by pumping is not an effective way to clean up the site because the continuous release of benzene from coal tars is slow. Benzene will continue to leach of the tars for a long time unless its source is removed or the leaching rate retarded through mitigation techniques. The application of the treated groundwater to the surface stimulated plant growth. No adverse effects were noted or recorded from some 60 soil samples taken from twenty locations in the spray field area. 20 refs., 52 figs., 8 tabs.

  10. Determination of Premining Geochemical Background and Delineation of Extent of Sediment Contamination in Blue Creek Downstream from Midnite Mine, Stevens County, Washington

    USGS Publications Warehouse

    Church, Stanley E.; Kirschner, Frederick E.; Choate, LaDonna M.; Lamothe, Paul J.; Budahn, James R.; Brown, Zoe Ann

    2008-01-01

    Geochemical and radionuclide studies of sediment recovered from eight core sites in the Blue Creek flood plain and Blue Creek delta downstream in Lake Roosevelt provided a stratigraphic geochemical record of the contamination from uranium mining at the Midnite Mine. Sediment recovered from cores in a wetland immediately downstream from the mine site as well as from sediment catchments in Blue Creek and from cores in the delta in Blue Creek cove provided sufficient data to determine the premining geochemical background for the Midnite Mine tributary drainage. These data provide a geochemical background that includes material eroded from the Midnite Mine site prior to mine development. Premining geochemical background for the Blue Creek basin has also been determined using stream-sediment samples from parts of the Blue Creek, Oyachen Creek, and Sand Creek drainage basins not immediately impacted by mining. Sediment geochemistry showed that premining uranium concentrations in the Midnite Mine tributary immediately downstream of the mine site were strongly elevated relative to the crustal abundance of uranium (2.3 ppm). Cesium-137 (137Cs) data and public records of production at the Midnite Mine site provided age control to document timelines in the sediment from the core immediately downstream from the mine site. Mining at the Midnite Mine site on the Spokane Indian Reservation between 1956 and 1981 resulted in production of more than 10 million pounds of U3O8. Contamination of the sediment by uranium during the mining period is documented from the Midnite Mine along a small tributary to the confluence of Blue Creek, in Blue Creek, and into the Blue Creek delta. During the period of active mining (1956?1981), enrichment of base metals in the sediment of Blue Creek delta was elevated by as much as 4 times the concentration of those same metals prior to mining. Cadmium concentrations were elevated by a factor of 10 and uranium by factors of 16 to 55 times premining

  11. Creek Women and the "Civilizing" of Creek Society, 1790-1820.

    ERIC Educational Resources Information Center

    Dysart, Jane E.

    Women in traditional Creek society, while making few decisions in the public domain, held almost absolute power in the domestic realm. When a Creek couple married, the husband moved into his wife's house and lived among her clan, her matrilineal kin. The house, household goods, fields, and children belonged to her. Boys were educated by their…

  12. 4. O'BRIAN CANAL/SECOND CREEK INTERSECTION Second Creek is in the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. O'BRIAN CANAL/SECOND CREEK INTERSECTION Second Creek is in the foreground; the O'Brian Canal is in the background; vicinity of East 112th Avenue and Potomac Road in Adams County - O'Brian Canal, South Platte River Drainage Area Northest of Denver, Brighton, Adams County, CO

  13. Methane Fluxes from Subtropical Wetlands

    NASA Astrophysics Data System (ADS)

    DeLucia, N.; Gomez-Casanovas, N.; Bernacchi, C.

    2013-12-01

    It is well documented that green house gas concentrations have risen at unequivocal rates since the industrial revolution but the disparity between anthropogenic sources and natural sources is uncertain. Wetlands are one example of a natural ecosystem that can be a substantial source or sink for methane (CH4) depending on climate conditions. Due to strict anaerobic conditions required for CH4-generating microorganisms, natural wetlands are one of the main sources for biogenic CH4. Although wetlands occupy less than 5% of total land surface area, they contribute approximately 20% of total CH4 emissions to the atmosphere. The processes regulating CH4 emissions are sensitive to land use and management practices of areas surrounding wetlands. Variation in adjacent vegetation or grazing intensity by livestock can, for example, alter CH4 fluxes from wetland soils by altering nutrient balance, carbon inputs and hydrology. Therefore, understanding how these changes will affect wetland source strength is essential to understand the impact of wetland management practices on the global climate system. In this study we quantify wetland methane fluxes from subtropical wetlands on a working cattle ranch in central Florida near Okeechobee Lake (27o10'52.04'N, 81o21'8.56'W). To determine differences in CH4 fluxes associated with land use and management, a replicated (n = 4) full factorial experiment was designed for wetlands where the surrounding vegetation was (1) grazed or un-grazed and (2) composed of native vegetation or improved pasture. Net exchange of CH4 and CO2 between the land surface and the atmosphere were sampled with a LICOR Li-7700 open path CH4 analyzer and Li-7500A open path CO2/H20 analyzer mounted in a 1-m3 static gas-exchange chamber. Our results showed and verified that CH4 emissions from subtropical wetlands were larger when high soil moisture was coupled with high temperatures. The presence of cattle only amplified these results. These results help quantify

  14. Hydrogeology of the stratified-drift aquifers in the Cayuta Creek and Catatonk Creek valleys in parts of Tompkins, Schuyler, Chemung, and Tioga Counties, New York

    USGS Publications Warehouse

    Miller, Todd S.; Pitman, Lacey M.

    2012-01-01

    The surficial deposits, areal extent of aquifers, and the water-table configurations of the stratified-drift aquifer systems in the Cayuta Creek and Catatonk Creek valleys and their large tributary valleys in Tompkins, Schuyler, Chemung, and Tioga Counties, New York were mapped in 2009, in cooperation with the New York State Department of Environmental Conservation. Well and test-boring records, surficial deposit maps, Light Detection and Ranging (LIDAR) data, soils maps, and horizontal-to-vertical ambient-noise seismic surveys were used to map the extent of the aquifers, construct geologic sections, and determine the depth to bedrock (thickness of valley-fill deposits) at selected locations. Geologic materials in the study area include sedimentary bedrock, unstratified drift (till), stratified drift (glaciolacustrine and glaciofluvial deposits), and recent alluvium. Stratified drift consisting of glaciofluvial sand and gravel is the major component of the valley fill in this study area. The deposits are present in sufficient amounts in most places to form extensive unconfined aquifers throughout the study area and, in some places, confined aquifers. Stratified drift consisting of glaciolacustrine fine sand, silt, and clay are present locally in valleys underlying the surficial sand and gravel deposits in the southern part of the Catatonk Creek valley. These unconfined and confined aquifers are the source of water for most residents, farms, and businesses in the valleys. A generalized depiction of the water table in the unconfined aquifer was constructed using water-level measurements made from the 1950s through 2010, as well as LIDAR data that were used to determine the altitudes of perennial streams at 10-foot contour intervals and water surfaces of ponds and wetlands that are hydraulically connected to the unconfined aquifer. The configuration of the water-table contours indicate that the general direction of groundwater flow within Cayuta Creek and Catatonk

  15. Blasting of the Twin Creek`s highwall failure

    SciTech Connect

    Gray, C.J.; Bachmann, J.A.

    1996-12-01

    On December 26, 1994, at 1:00 a.m., the Twin Creeks Mine experienced a major highwall failure involving over 2.5 million tons. The long chain of events that led up to this failure actually started in late August when a truck driver first noticed the cracks in the highwall. Soon after, an intense survey prism monitoring program was initiated. An electronic, continuous monitor linked to Dispatch was soon in place which monitored the crack that was most likely to fail into the active pit area first. It wasn`t until early December when the graphs started showing greater increases in movement. On December 22, the acceleration curves skied-out. The 600 ft. highwall finally collapsed about three days later and left material spread 800 ft. across the bottom of the pit. Not knowing if the large overhangs above the slide would soon give away sending more material into the pit or if the numerous tension cracks on the surface would result in yet another major failure, it was only after restoring the rigid monitoring program and observing no movement that the company decided to drill and blast the overhanging material. The purpose of the blast wasn`t to cast the material into the pit, but to kick-out the toe so that the weight of material above would fall upon itself. After two months of preparation and almost three weeks of drilling and loading, the shot occurred on March 21, 1995. Approximately one million tons were successfully blasted that day, and presently they have completed mining the slough material itself and reestablished benches from the top.

  16. Evolution of the landscape along the Clear Creek Corridor, Colorado; urbanization, aggregate mining and reclamation

    USGS Publications Warehouse

    Arbogast, Belinda; Knepper, Daniel H.; Melick, Roger A.; Hickman, John

    2002-01-01

    Prime agricultural land along the Clear Creek floodplain, Colorado, attracted settlement in the 1850's but the demand for sand and gravel for 1900's construction initiated a sequence of events that exceeded previous interests and created the modified landscape and urban ecosystem that exists today. The Clear Creek valley corridor offers a landscape filled with a persistent visible and hidden reminder of it's past use. The map sheets illustrate the Clear Creek landscape as a series of compositions, both at the macro view (in the spatial context of urban structure and highways from aerial photographs) and micro view (from the civic scale where landscape features like trees, buildings, and sidewalks are included). The large-scale topographic features, such as mountains and terraces, appear 'changeless' (they do change over geologic time), while Clear Creek has changed from a wide braided stream to a narrow confined stream. Transportation networks (streets and highways) and spiraling population growth in adjacent cities (from approximately 38,000 people in 1880 to over a million in 1999) form two dominant landscape patterns. Mining and wetland/riparian occupy the smallest amount of land use acres compared to urban, transportation, or water reservoir activities in the Clear Creek aggregate reserve study area. Four types of reclaimed pits along Clear Creek were determined: water storage facilities, wildlife/greenbelt space, multiple-purpose reservoirs, and 'hidden scenery.' The latter involves infilling gravel pits (with earth backfill, concrete rubble, or sanitary landfill) and covering the site with light industry or residential housing making the landform hard to detect as a past mine site. Easier to recognize are the strong-edged, rectilinear water reservoirs, reclaimed from off-channel sand and gravel pits that reflect the land survey grid and property boundaries. The general public may not realize softly contoured linear wildlife corridors connecting urban

  17. Baseline Characteristics of Jordan Creek, Juneau, Alaska

    USGS Publications Warehouse

    Host, Randy H.; Neal, Edward G.

    2004-01-01

    Anadromous fish populations historically have found healthy habitat in Jordan Creek, Juneau, Alaska. Concern regarding potential degradation to the habitat by urban development within the Mendenhall Valley led to a cooperative study among the City and Borough of Juneau, Alaska Department of Environmental Conservation, and the U.S. Geological Survey, that assessed current hydrologic, water-quality, and physical-habitat conditions of the stream corridor. Periods of no streamflow were not uncommon at the Jordan Creek below Egan Drive near Auke Bay stream gaging station. Additional flow measurements indicate that periods of no flow are more frequent downstream of the gaging station. Although periods of no flow typically were in March and April, streamflow measurements collected prior to 1999 indicate similar periods in January, suggesting that no flow conditions may occur at any time during the winter months. This dewatering in the lower reaches likely limits fish rearing and spawning habitat as well as limiting the migration of juvenile salmon out to the ocean during some years. Dissolved-oxygen concentrations may not be suitable for fish survival during some winter periods in the Jordan Creek watershed. Dissolved-oxygen concentrations were measured as low as 2.8 mg/L at the gaging station and were measured as low as 0.85 mg/L in a tributary to Jordan Creek. Intermittent measurements of pH and dissolved-oxygen concentrations in the mid-reaches of Jordan Creek were all within acceptable limits for fish survival, however, few measurements of these parameters were made during winter-low-flow conditions. One set of water quality samples was collected at six different sites in the Jordan Creek watershed and analyzed for major ions and dissolved nutrients. Major-ion chemistry showed Jordan Creek is calcium bicarbonate type water with little variation between sampling sites.

  18. Use of submitochondrial particle (SMP) assays for assessing wetlands constructed for sequestering acid mine runoff

    SciTech Connect

    Bettermann, A.D.; Haahr, J.E.; Lazorchak, J.M.

    1995-12-31

    Use of constructed wetlands to sequester metals from acid mine drainage is part of a USEPA SITE demonstration at Burleigh Tunnel near Silverplume, Colorado. Samples are collected on a seasonal basis for toxicity evaluation of two different pilot treatment systems. Water samples were obtained from the outflow of two experimental wetland cells utilizing either upflow and downflow treatment, as well as upstream and downstream of the discharge of Burleigh Tunnel to Clear Creek. Submitochondrial Particle (SMP), Ceriodaphnia dubia and Pimephales promelas acute bioassays were used to evaluate the water quality. The SMP bioassay is based on the electron transfer complex derived from mitochondria. Toxic responses result from subcellular perturbations of various subsets of enzyme systems contained in the complex. In prior work, a 0.79 r{sup 2} was reported between the SMP bioassay and P. promelas for 11 inorganics on the EPA Priority Pollutant list. The SMP bioassay provided data consistent with the whole organism results. The two most toxic samples: the Burleigh outflow, and the Clear Creek Upstream sample, gave C. dubia LC50s of 1.01% and 8.41%, respectively. The Burleigh outflow P. promelas LC50 was 1.55%. SMP EC50s for the Burleigh outflow and the Clear Creek Upstream sample were 0.63% and 1.63%, respectively. As the SMP bioassay requires 1 hour to run and costs approximately 1/10th of whole organism assays, it was feasible to determine EC50 values for 7 samples vs. the two sample LC50s determined using whole organism assays. The SMP bioassays can provide sufficient sampling density, at low cost, allowing effective delineation of wetland performance over time.

  19. ENGINEERING BULLETIN: CONSTRUCTED WETLANDS TREATMENT

    EPA Science Inventory

    Constructed wetlands have been demonstrated effective in removing organic, metal, and nutrient elements including nitrogen and phosphorus from municipal wastewaters, mine drainage, industrial effluents, and agricultural runoff. The technology is waste stream-specific, requiring...

  20. REMOTE SENSING AND GIS WETLANDS

    EPA Science Inventory

    Learn how photographs and computer sensor generated images can illustrate conditions of hydrology, extent, change over time, and impact of events such as hurricanes and tornados. Other topics include: information storage and modeling, and evaluation of wetlands for managing reso...

  1. A Peek into 'Alamogordo Creek'

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2Figure 3

    On its 825th Martian day (May 20, 2006), NASA's Mars Exploration Rover Opportunity stopped for the weekend to place its instrument arm onto the soil target pictured here, dubbed 'Alamogordo Creek.' Two views from the panoramic camera, acquired at about noon local solar time, are at the top. Below them is a close-up view from the microscopic imager.

    At upper left, a false-color view emphasizes differences among materials in rocks and soil. It combines images taken through the panoramic camera's 753-nanometer, 535-nanometer and 432-nanometer filters. At upper right is an approximately true-color rendering made with the panoramic camera's 600-nanometer, 535-nanometer and 480-nanometer filters. The microscopic-imager frame covers the area outlined by the white boxes in the panoramic-camera views, a rectangle 3 centimeters (1.2 inches) across.

    As Opportunity traverses to the south, it is analyzing soil and rocks along the way for differences from those seen earlier. At this site, the soil contains abundant small spherical fragments, thought to be hematite-rich concretions, plus finer-grained basaltic sand. Most of the spherical fragments seen in the microscopic image are smaller than those first seen at the rover's landing site in 'Eagle Crater,' some five kilometers (3.1 miles) to the north. However, a few larger spherical fragments and other rock fragments can also be seen in the panoramic-camera images.

  2. Sources of atmospheric methane from coastal marine wetlands

    NASA Technical Reports Server (NTRS)

    Harriss, R. C.; Sebacher, D. I.; Bartlett, K. B.; Bartlett, D. S.

    1982-01-01

    Biological methanogenesis in wetlands is believed to be one of the major sources of global tropospheric methane. The present paper reports measurements of methane distribution in the soils, sediments, water and vegetation of coastal marine wetlands. Measurements, carried out in the salt marshes Bay Tree Creek in Virginia and Panacea in northwest Florida, reveal methane concentrations in soils and sediments to vary with depth below the surface and with soil temperature. The fluxes of methane from marsh soils to the atmosphere at the soil-air interface are estimated to range from -0.00067 g CH4/sq m per day (methane sink) to 0.024 g CH4/sq m per day, with an average value of 0.0066 g CH4/sq m per day. Data also demonstrate the important role of tidal waters percolating through marsh soils in removing methane from the soils and releasing it to the atmosphere. The information obtained, together with previous studies, provides a framework for the design of a program based on in situ and remote sensing measurements to study the global methane cycle.

  3. Ecohydraulics and Estuarine Wetland Rehabilitation

    NASA Astrophysics Data System (ADS)

    Rodriguez, J. F.; Howe, A.; Saintilan, N.; Spencer, J.

    2004-12-01

    The hydraulics or water flow in wetlands is known to be a key factor influencing ecosystem development in estuarine wetland environments. The relationship is indirect, with the hydraulics of wetlands influencing a host of factors including soil salinity, waterlogging, sediment transport, sediment chemistry, vegetation dispersal and growth and nutrient availability and cycling. The relationship is also not one way, with the hydraulics of wetlands being influenced by plant and animal activity. Understanding these complex interactions is fundamental for the adequate management of estuarine wetlands. Listed as a Wetland of International Importance under the 1971 Ramsar Convention, the Hunter River estuary is regarded as the most significant site for migratory shorebirds in New South Wales, Australia. Over the past 20 years, the number of migratory shorebirds in the estuary has sharply declined from 8,000 to 4,000 approx. Alteration of bird habitat is believed to be one of the reasons for this alarming trend. In 2004 we started a three-year program to investigate the links between hydraulics, sediment, benthic invertebrates, vegetation and migratory shorebird habitat in the estuary. During the first year we have focused on a highly disturbed part of the Hunter estuary wetlands located on Ash Island. The area is one of the major roosting sites in the estuary and is characterized by a complex hydraulic regime due to a restricted tidal interchange with the Hunter River and the presence of infrastructure for the maintenance of power lines (i.e., roads, bridges, culverts). Salt marshes, mudflat and mangroves are the dominant vegetation types. The monitoring program includes measurements of water levels, salinity, discharge, velocity, turbulence, sediment transport and deposition, plant species and density, soil composition and benthic invertebrates coordinated with observations of bird habitat utilization on a number of locations throughout the wetland and for different flow

  4. Environmental setting of Maple Creek watershed, Nebraska

    USGS Publications Warehouse

    Fredrick, Brian S.; Linard, Joshua I.; Carpenter, Jennifer L.

    2006-01-01

    The Maple Creek watershed covers a 955-square-kilometer area in eastern Nebraska, which is a region dominated by agricultural land use. The Maple Creek watershed is one of seven areas currently included in a nationwide study of the sources, transport, and fate of water and chemicals in agricultural watersheds. This study, known as the topical study of 'Agricultural Chemicals: Sources, Transport, and Fate' is part of the National Water-Quality Assessment Program being conducted by the U.S. Geological Survey. The Program is designed to describe water-quality conditions and trends based on representative surface- and ground-water resources across the Nation. The objective of the Agricultural Chemicals topical study is to investigate the sources, transport, and fate of selected agricultural chemicals in a variety of agriculturally diverse environmental settings. The Maple Creek watershed was selected for the Agricultural Chemicals topical study because its watershed represents the agricultural setting that characterizes eastern Nebraska. This report describes the environmental setting of the Maple Creek watershed in the context of how agricultural practices, including agricultural chemical applications and irrigation methods, interface with natural settings and hydrologic processes. A description of the environmental setting of a subwatershed within the drainage area of Maple Creek is included to improve the understanding of the variability of hydrologic and chemical cycles at two different scales.

  5. Role of Meteorological Controls on the Inter-annual Groundwater Dynamics of Wetlands in a Southeastern US Watershed

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Kumar, M.

    2015-12-01

    Wetlands are highly valued for their numerous ecological services including water quality improvement and land-atmosphere interactions. The effectiveness of wetlands in delivering these services is strongly influenced by the shallow groundwater dynamics. As such, in order to understand the variation of ecological processes in wetlands, it is crucial to first quantify the controls on the temporal variations in the groundwater table. In this paper, a physically based and fully distributed hydrologic model was applied to simulate the long term variation of groundwater and the distribution of wetlands in the Second Creek watershed. Covariation in simulated groundwater table and meteorological variables were analyzed using Bayesian regression to evaluate the integrated role of seasonal meteorological controls on interannual variations in maximum groundwater height and the start date and length of the wet period (defined as the period when the groundwater depth is shallower than 30cm). The meteorological controls were quantified based on the Palmer Drought Severity Index (PDSI), which is an indicator of net wet or dry recharge period. Results indicate that the PDSI in autumn and spring is the dominant control on the length of wet time. The start date of wet time in downstream wetlands is controlled by the autumn PDSI while that in headwater wetlands is controlled by the PDSI in both autumn and the previous summer. The maximum groundwater table height inundation depth of wetlands is controlled by the winter PDSI. These results highlight that to understand that susceptibility of a given groundwater dynamics characteristic, one needs to track the corresponding changes in meteorological forcings within particular seasons. Results will help understand and predict anticipated changes in groundwater dynamics and ecological processes of wetlands in response to changes in meteorological forcings due to climate change in the southeastern U.S.

  6. Airport expansion requires major wetlands mitigation project

    SciTech Connect

    Erickson, B.M.

    1994-01-01

    This article describes the steps taken to mitigate the impact to existing wetlands by creating new wetlands in an airport expansion project. The project addressed maintaining suitable amounts of wetlands to accommodate peak waterfowl populations, moving of high voltage power transmission towers, and maintaining agricultural and hunting interests. This project involved recreating of open water areas, marsh habitat, mud flat habitat, saline meadow habitat, maintaining two existing wetlands in the area of the new wetlands without disturbing them, and improving upland habitat surrounding the new wetlands.

  7. Mesocosm experiments to assess factors affecting phosphorus retention and release in an extended Wisconsin wetland

    USGS Publications Warehouse

    Elder, J.F.; Manion, B.J.; Goddard, G.L.

    1997-01-01

    Phosphorus retention by wetland sediments and vegetation was investigated in Jackson Creek wetland, an extension of an existing prairie marsh in southeastern Wisconsin. The extended wetland construction was undertaken in 1992-93 to help reduce the phosphorus loading to a downstream eutrophic lake. Two approaches were used to study potential and actual phosphorus retention in the system. Mesocosm experiments of 20-40 days duration indicated that retention of total and dissolved reactive phosphorus in mesocosm cells containing macrophytes and/or sediments was reduced by factors of 2-20 relative to cells containing only water or a copper algicide to suppress metabolic activity. In contrast to the nutrient trapping function, these results show a potential for net phosphorus release that can be associated with increased biological richness. Measurements of water flow and nutrient loads at the wetland's inflow and outflow points demonstrated 9-39% net uptake of phosphorus on an annual scale but frequent occurrences of net phosphorus release over shorter (one-month) time scales. These episodes of release are most likely during the summer months. Thus, the wetland role in phosphorus cycling is not one of a true source or sink, although the annual budget data alone suggest substantial net retention. Effective management of the wetland for its nutrient trapping potential can be hindered by this oversimplification. The system is instead subject to relatively short-term alternation between net import and export. The periodic phosphorus export, although representing a small fraction of net annual import, could be critical for growth of macrophyte and algal communities downstream.

  8. Phosphorus Retention and Storage by Isolated Wetlands in the Lake Ocheechobee Basin, Florida

    NASA Astrophysics Data System (ADS)

    Tkaczyk, M.; Jawitz, J.

    2003-04-01

    Wetlands are one of the most promising technologies for use in controlling nutrients from agricultural operations. Their effectiveness, however, depends on the retention capacity of the wetland, contaminant load and the desired effluent quality. The purpose of this study is to evaluate the use of isolated wetlands for attenuation of phosphorus (P) export from the basin. Small isolated wetlands comprise 16.6 % of the landscape in Lake Okeechobee basin, located in south-central Florida. The lake provides flood protection, water supply for agricultural and urban areas, and it is a critical habitat for wildlife. Excessive phosphorus loading causes algal blooms and detrimental changes in biological communities of Lake Okeechobee and the Everglades ecosystem. The land use in the Okeechobee basin is primarily dairy farms and cow-calf operations. Studies conducted within the past two decades have implicated these land uses as a prominent source of the P loading from manure, fertilizers and runoff. Due to poor retention by sandy soils, much of the P is ultimately exported downstream through the Taylor Creek-Nubbin Slough and Kissimmee River to Lake Okeechobee. Despite numerous efforts to reduce P loading from these watersheds, continued improvements are necessary to further reduce nutrients runoff. This research is a multi-year effort to optimize the P removal and assimilation capacity of on-farm treatment wetlands thorough hydrologic manipulation to describe long-term P retention by wetlands. Field data collection is ongoing at four ranch sites selected for this project. Initially, hypothetical case simulations will be evaluated using several modeling methodologies: one-dimensional mass balance based input-output analysis, two-dimensional variably saturated water flow and solute transport model, and three-dimensional analysis at the watershed scale.

  9. The Effects of Locations of Wetlands on Phosphate-Level Content

    NASA Astrophysics Data System (ADS)

    Winston, C. N.

    2002-05-01

    : The purpose of this experiment is to test different locations of a wetland for phosphate content to see whether the wetland is effective in lowering nutrient levels in Reedy Creek. After researching information on phosphates and its effect on wetlands, the researcher hypothesized that if the water from downstream of the Jefferson Village Wetland Mitigation Site is tested, then the phosphate content level will be lower then the upstream location. With the use of the LaMotte Phosphate Kit, the Jefferson Village Mitigation Site was tested upstream and downstream to determine its phosphate-level content. With the Phosphate Acid Reagent and Phosphate Reducing Agent, the test tubes filled with the water sample were shaken to determine whether the solution was contaminated by the solution turning blue. As the shade of blue becomes darker, the contamination level of that site increases. The axial reader was used to determine the actual level of phosphate-content. After the water samples were tested, the results show that the downstream mitigation site of the Jefferson Village Wetland had the highest phosphate content level. With an average content level of 0.133 ppm, the Jefferson Village Mitigation site has remained within the U. S. Environmental Protection Agency standards of 0.1 to 0.3 ppm to be considered uncontaminated by algal blooms. A t-test was performed on the data to determine whether the data was statistically significant. In conclusion, the downstream mitigation site of the Jefferson Village Wetland, having the highest phosphate content level, proved the researcher's hypothesis incorrect.

  10. Fish communities of a disturbed mangrove wetland and an adjacent tidal river in Palmar, Ecuador

    NASA Astrophysics Data System (ADS)

    Shervette, V. R.; Aguirre, W. E.; Blacio, E.; Cevallos, Rodrigo; Gonzalez, Marcelo; Pozo, Francisco; Gelwick, F.

    2007-03-01

    Coastal Ecuador has lost 20-30% of mangrove wetlands over the past 30 years. Such habitat loss can impair the ecological functions of wetlands. A paucity of information exists concerning mangrove fish communities of Ecuador. In this study we identify the fish community of the remaining mangrove wetland in Palmar, Ecuador. Fish were sampled in the dry season of 2003 and the wet season of 2004 by seining in mangrove creeks and Main channel of Rio Palmar. For comparison, an adjacent tidal river without mangroves, Rio Javita, was also sampled. We collected a total of 12,231 individuals comprising 36 species in 16 families from Rios Palmar and Javita. Gobiidae (7 species) was the most diverse family for mangrove sites followed by Gerreidae (5 species) and Engraulidae (4 species). A total of 34 species were collected in the mangrove wetland, 21 of which were exclusive to the mangroves including three species of juvenile snook (Centropomidae), indicating that the mangrove habitat of Palmar may provide nursery habitat for these economically valued species. In Rio Javita, Carangidae (3 species) was the most diverse family followed by Engraulidae and Gerreidae (2 species each). A total of 14 species were collected in the tidal river, only two of which were exclusive to the river. Multivariate analyses of fish community data indicated significant differences in community composition between the mangrove creeks and the tidal river and between seasons in both. Juvenile white mullet, Mugil curema, were collected in high relative abundance in both Rios Palmar and Javita, as was the tropical silverside Atherinella serrivomer an ecologically important species. Although Rios Palmar and Javita are characterized by relatively low fish species richness compared to other tropical estuarine systems, they appear to provide an important habitat for several economically and ecologically valued species.

  11. Water-quality appraisal, Mammoth Creek and Hot Creek, Mono County, California

    USGS Publications Warehouse

    Setmire, J.G.

    1984-01-01

    A late summer reconnaissance in 1981 and a spring high-flow sampling in 1982 of Mammoth Creek and Hot Creek, located in the Mammoth crest area of the Sierra Nevada, indicated that mineralization, eutrophication, sedimentation, and limited areas of fecal contamination were occurring. Mineralization, indicated by a downstream increase in dissolved-solids concentration, was due primarily to geothermal springs that gradually decreased in the percentage of calcium, increased in the percentage of magnesium and sodium, and caused fluctuating, but overall increasing percentage of fluoride, sulfate, and chloride. Resulting water quality in Mammoth Creek was similar to that of the springs forming Hot Creek. Eutrophication was observed in Twin Lakes and the reach of Hot Creek below the fish hatchery. Twin Lakes had floating mats of algae and a high dissolved-oxygen saturation of 147 percent at a pH of 9.2. Hot Creek had excessive aquatic vascular plant and algae growth, dissolved-oxygen saturations ranging from 65 to 200 percent, algal growth potential of 30 milligrams per liter, and nitrates and phosphates of 0.44 and 0.157 milligrams per liter. Sedimentation was noted in observations of bed-material composition showing the presence of fine material beginning at Sherwin Creek Road. Fecal contamination was indicated by fecal coliform counts of 250 colonies per 100 milliliters and fecal streptococcal counts greater than 1,000 colonies per 100 milliliters. (USGS)

  12. Steel Creek water quality: L-Lake/Steel Creek Biological Monitoring Program, November 1985--December 1991

    SciTech Connect

    Bowers, J.A.; Kretchmer, D.W.; Chimney, M.J.

    1992-04-01

    The Savannah River Site (SRS) encompasses 300 sq mi of the Atlantic Coastal Plain in west-central South Carolina. The Savannah River forms the western boundary of the site. Five major tributaries of the Savannah River -- upper Three Runs Creek, Four Mile Creek, Pen Branch, Steel Creek, and Lower Three Runs Creek -- drain the site. All but Upper Three Runs Creek receive, or in the past received, thermal effluents from nuclear production reactors. In 1985, L Lake, a 400-hectare cooling reservoir, was built on the upper reaches of Steel Creek to receive effluent from the restart of L-Reactor, and protect the lower reaches from thermal impacts. The Steel Creek Biological Monitoring Program was designed to meet envirorunental regulatory requirements associated with the restart of L-Reactor and complements the Biological Monitoring Program for L Lake. This extensive program was implemented to address portions of Section 316(a) of the Clean Water Act. The Department of Energy (DOE) must demonstrate that the operation of L-Reactor will not significantly alter the established aquatic ecosystems.

  13. Steel Creek fish: L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1987

    SciTech Connect

    Paller, M.H.; Heuer, J.H.; Kissick, L.A.

    1988-03-01

    Fish samples were collected from Steel Creek during 1986 and 1987 following the impoundment of the headwaters of the stream to form L-Lake, a cooling reservoir for L-Reactor which began operating late in 1985. Electrofishing and ichthyoplankton sample stations were located throughout the creek. Fykenetting sample stations were located in the creek mouth and just above the Steel Creek swamp. Larval fish and fish eggs were collected with 0.5 m plankton nets. Multivariate analysis of the electrofishing data suggested that the fish assemblages in Steel Creek exhibited structural differences associated with proximity to L-Lake, and habitat gradients of current velocity, depth, and canopy cover. The Steel Creek corridor, a lotic reach beginning at the base of the L-Lake embankment was dominated by stream species and bluegill. The delta/swamp, formed where Steel Creek enters the Savannah River floodplain, was dominated by fishes characteristic of slow flowing waters and heavily vegetated habitats. The large channel draining the swamp supported many of the species found in the swamp plus riverine and anadromous forms.

  14. Big Creek Hydroelectric System, East & West Transmission Line, 241mile ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Big Creek Hydroelectric System, East & West Transmission Line, 241-mile transmission corridor extending between the Big Creek Hydroelectric System in the Sierra National Forest in Fresno County and the Eagle Rock Substation in Los Angeles, California, Visalia, Tulare County, CA

  15. Barrel view from southwest. Waterville Bridge, Spanning Swatara Creek ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Barrel view from southwest. - Waterville Bridge, Spanning Swatara Creek at Appalachian Trail (moved from Little Pine Creek at State Route 44, Waterville, Lycoming County), Green Point, Lebanon County, PA

  16. Lower connections from south. Waterville Bridge, Spanning Swatara Creek ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Lower connections from south. - Waterville Bridge, Spanning Swatara Creek at Appalachian Trail (moved from Little Pine Creek at State Route 44, Waterville, Lycoming County), Green Point, Lebanon County, PA

  17. Rock Creek and Potomac Parkway / Waterside Drive Sycamore and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Rock Creek and Potomac Parkway / Waterside Drive Sycamore and White Ash Trees, Rock Creek and Potomac Parkway, median between northbound and southbound lanes near the Waterside Drive exit and entrance ramps., Washington, District of Columbia, DC

  18. 1. WATER ENTERING CONFLUENCE POOL FROM BEAR CREEK AT LEFT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. WATER ENTERING CONFLUENCE POOL FROM BEAR CREEK AT LEFT, AND FROM SANTA ANA RIVER THROUGH TUNNEL #0 AT RIGHT. VIEW TO NORTHEAST. - Santa Ana River Hydroelectric System, Bear Creek Diversion Dam & Confluence Pool, Redlands, San Bernardino County, CA

  19. 40. UNDERSIDE OF TOWN CREEK SPAN (LEFT) AND PEARMAN BRIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. UNDERSIDE OF TOWN CREEK SPAN (LEFT) AND PEARMAN BRIDE (RIGHT) FROM BENEATH BRIDGES, FACING EAST TOWARDS COOPER RIVER SPAN - Grace Memorial Bridge, U.S. Highway 17 spanning Cooper River & Town Creek , Charleston, Charleston County, SC

  20. Detail view of Fanno Creek trestle, showing trestle substructure, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of Fanno Creek trestle, showing trestle substructure, view looking north - Oregon Electric Railroad, Fanno Creek Trestle, Garden Home to Wilsonville Segment, Milepost 34.7, Garden Home, Washington County, OR

  1. 13. Detail view of Sterling Creek lettuce shed showing second ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Detail view of Sterling Creek lettuce shed showing second floor window sill - Richmond Hill Plantation, Sterling Creek Lettuce Shed, East of Richmond Hill on Ford Neck Road, Richmond Hill, Bryan County, GA

  2. 12. Detail view of Sterling Creek lettuce shed showing floor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Detail view of Sterling Creek lettuce shed showing floor joist and support beams - Richmond Hill Plantation, Sterling Creek Lettuce Shed, East of Richmond Hill on Ford Neck Road, Richmond Hill, Bryan County, GA

  3. 1. View of Sterling Creek lettuce shed looking south, with ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View of Sterling Creek lettuce shed looking south, with road in foreground - Richmond Hill Plantation, Sterling Creek Lettuce Shed, East of Richmond Hill on Ford Neck Road, Richmond Hill, Bryan County, GA

  4. 15. Detail view of Sterling Creek lettuce shed showing second ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Detail view of Sterling Creek lettuce shed showing second floor support beams. - Richmond Hill Plantation, Sterling Creek Lettuce Shed, East of Richmond Hill on Ford Neck Road, Richmond Hill, Bryan County, GA

  5. 5. View of Sterling Creek lettuce shed looking northwest showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. View of Sterling Creek lettuce shed looking northwest showing office - Richmond Hill Plantation, Sterling Creek Lettuce Shed, East of Richmond Hill on Ford Neck Road, Richmond Hill, Bryan County, GA

  6. The Boulder Creek Batholith, Front Range, Colorado

    USGS Publications Warehouse

    Gable, Dolores J.

    1980-01-01

    The Boulder Creek batholith is the best known of several large Precambrian batholiths of similar rock composition that crop out across central Colorado. The rocks in the batholith belong to the calc-alkaline series and range in composition from granodiorite through quartz diorite (tonalite) to gneissic aplite. Two rock types dominate': the Boulder Creek Granodiorite, the major rock unit, and a more leucocratic and slightly younger unit herein named Twin Spruce Quartz Monzonite. Besides mafic inclusions, which occur mainly in hornblende-bearing phases of the Boulder Creek Granodiorite, there are cogenetic older and younger lenses, dikes, and small plutons of hornblende diorite, hornblendite, gabbro, and pyroxenite. Pyroxenite is not found in the batholith. The Boulder Creek Granodiorite in the batholith represents essentially two contemporaneous magmas, a northern body occurring in the Gold Hill and Boulder quadrangles and a larger southern body exposed in the Blackhawk and the greater parts of the Tungsten and Eldorado Springs quadrangles. The two bodies are chemically and mineralogically distinct. The northern body is richer in CaO and poorer in K2O, is more mafic, and has a larger percentage of plagioclase than the southern body. A crude sequence of rock types occurs from west to east in the batholith accompanied by a change in plagioclase composition from calcic plagioclase on the west to sodic on the east. Ore minerals tend to decrease, and the ratio potassium feldspar:plagioclase increases inward from the western contact of the batholith, indicating that the Boulder Creek batholith is similar to granodiorite batholiths the world over. Emplacement of the Boulder Creek batholith was contemporaneous with plastic deformation and high-grade regional metamorphism that folded the country rock and the batholith contact along west-northwest and north-northwest axes. Also, smaller satellitic granodiorite bodies tend to conform to the trends of foliation and fold axes in

  7. Hydrology and Flood Profiles of Duck Creek and Jordan Creek Downstream from Egan Drive, Juneau, Alaska

    USGS Publications Warehouse

    Curran, Janet H.

    2007-01-01

    Hydrologic and hydraulic updates for Duck Creek and the lower part of Jordan Creek in Juneau, Alaska, included computation of new estimates of peak streamflow magnitudes and new water-surface profiles for the 10-, 50-, 100-, and 500-year floods. Computations for the 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence interval flood magnitudes for both streams used data from U.S. Geological Survey stream-gaging stations weighted with regional regression equations for southeast Alaska. The study area for the hydraulic model consisted of three channels: Duck Creek from Taku Boulevard near the stream's headwaters to Radcliffe Road near the end of the Juneau International Airport runway, an unnamed tributary to Duck Creek from Valley Boulevard to its confluence with Duck Creek, and Jordan Creek from a pedestrian bridge upstream from Egan Drive to Crest Street at Juneau International Airport. Field surveys throughout the study area provided channel geometry for 206 cross sections, and geometric and hydraulic characteristics for 29 culverts and 15 roadway, driveway, or pedestrian bridges. Hydraulic modeling consisted of application of the U.S. Army Corps of Engineers' Hydrologic Engineering Center River Analysis System (HEC-RAS) for steady-state flow at the selected recurrence intervals using an assumed high tide of 20 feet and roughness coefficients refined by calibration to measured water-surface elevations from a 2- to 5-year flood that occurred on November 21, 2005. Model simulation results identify inter-basin flow from Jordan Creek to the southeast at Egan Drive and from Duck Creek to Jordan Creek downstream from Egan Drive at selected recurrence intervals.

  8. Water-quality appraisal. Mammoth Creek and Hot Creek, Mono County, California

    SciTech Connect

    Setmire, J.G.

    1984-06-01

    A late summer reconnaissance in 1981 and a spring high-flow sampling in 1982 of Mammoth Creek and Hot Creek, located in the Mammoth crest area of the Sierra Nevada, indicated that three water-quality processes were occurring: (1) mineralization; (2) eutrophication; and (3) sedimentation. Limited areas of fecal contamination were also observed. Mineralization due primarily to geothermal springs increased dissolved-solids concentration downstream, which changed the chemical composition of the water. The percentage of calcium decreased gradually, the percentage of magnesium and sodium increased, and the percentage of fluoride, sulfate, and chloride fluctuated, but increased overall. These changes produced water quality in Mammoth Creek similar to that of the springs forming Hot Creek. Twin Lakes and the reach of Hot Creek below the fish hatchery showed evidence of eutrophication. Twin Lakes had floating mats of algae and a high dissolved-oxygen saturation of 147% at a pH of 9.2. Hot Creek had abundant growth of aquatic vascular plants and algae, dissolved-oxygen saturations ranging from 65% to 200%, algal growth potential of 30 milligrams per liter, nitrate concentration of 0.44 milligram per liter, and phosphate concentration of 0.157 milligram per liter. Sediment deposition was determined from detailed observations of bed-material composition, which showed that fine material was deposited at Sherwin Creek Road and downstream. Fecal contamination was indicated by fecal-coliform bacteria counts of 250 colonies per 100 milliliters and fecal-streptococcal bacteria counts greater than 1000 colonies per 100 milliliters. Although bacterial sampling was sporadic and incomplete, it did indicate adverse effects on water quality for the following beneficial uses that have been identified for Mammoth Creek and Hot Creek: (1) municipal supply; (2) cold-water habitat; and (3) contact and noncontact water recreation. 6 refs., 15 figs., 15 tabs.

  9. Investigating organic matter in Fanno Creek, Oregon, Part 1 of 3: estimating annual foliar biomass for a deciduous-dominant urban riparian corridor

    USGS Publications Warehouse

    Sobieszczyk, Steven; Keith, Mackenzie K.; Rounds, Stewart A.; Goldman, Jami H.

    2014-01-01

    For this study, we explored the amount, type, and distribution of foliar biomass that is deposited annually as leaf litter to Fanno Creek and its floodplain in Portland, Oregon, USA. Organic matter is a significant contributor to the decreased dissolved oxygen concentrations observed in Fanno Creek each year and leaf litter is amongst the largest sources of organic matter to the stream channel and floodplain. Using a combination of field measurements and light detection and ranging (LiDAR) point cloud data, the annual foliar biomass was estimated for 13 stream reaches along the creek. Biomass estimates were divided into two sets: (1) the annual foliage available from the entire floodplain overstory canopy, and (2) the annual foliage overhanging the stream, which likely contributes leaf litter directly to the creek each year. Based on these computations, an estimated 991 (±22%) metric tons (tonnes, t) of foliar biomass is produced annually above the floodplain, with about 136 t (±24%) of that foliage falling directly into Fanno Creek. The distribution of foliar biomass varies by reach, with between 150 and 640 t/km2 produced along the floodplain and between 400 and 1100 t/km2 available over the channel. Biomass estimates vary by reach based primarily on the density of tree cover, with forest-dominant reaches containing more mature deciduous trees with broader tree canopies than either wetland or urban-dominant reaches, thus supplying more organic material to the creek. By quantifying the foliar biomass along Fanno Creek we have provided a reach-scale assessment of terrestrial organic matter loading, thereby providing land managers useful information for planning future restoration efforts.

  10. Flood-inundation maps for Indian Creek and Tomahawk Creek, Johnson County, Kansas, 2014

    USGS Publications Warehouse

    Peters, Arin J.; Studley, Seth E.

    2016-01-25

    Digital flood-inundation maps for a 6.4-mile upper reach of Indian Creek from College Boulevard to the confluence with Tomahawk Creek, a 3.9-mile reach of Tomahawk Creek from 127th Street to the confluence with Indian Creek, and a 1.9-mile lower reach of Indian Creek from the confluence with Tomahawk Creek to just beyond the Kansas/Missouri border at State Line Road in Johnson County, Kansas, were created by the U.S. Geological Survey in cooperation with the city of Overland Park, Kansas. The flood-inundation maps, which can be accessed through the U.S. Geological Survey Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the U.S. Geological Survey streamgages on Indian Creek at Overland Park, Kansas; Indian Creek at State Line Road, Leawood, Kansas; and Tomahawk Creek near Overland Park, Kansas. Near real time stages at these streamgages may be obtained on the Web from the U.S. Geological Survey National Water Information System at http://waterdata.usgs.gov/nwis or the National Weather Service Advanced Hydrologic Prediction Service at http://water.weather.gov/ahps/, which also forecasts flood hydrographs at these sites.Flood profiles were computed for the stream reaches by means of a one-dimensional step-backwater model. The model was calibrated for each reach by using the most current stage-discharge relations at the streamgages. The hydraulic models were then used to determine 15 water-surface profiles for Indian Creek at Overland Park, Kansas; 17 water-surface profiles for Indian Creek at State Line Road, Leawood, Kansas; and 14 water-surface profiles for Tomahawk Creek near Overland Park, Kansas, for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from bankfull to the next interval above the 0.2-percent annual exceedance probability flood level (500-year recurrence interval). The

  11. Our nation's wetlands (video). Audio-Visual

    SciTech Connect

    Not Available

    1990-01-01

    The Department of the Interior is custodian of approximately 500 million acres of federally owned land and has an important role to play in the management of wetlands. To contribute to the President's goal of no net loss of America's remaining wetlands, the Department of the Interior has initiated a 3-point program consisting of wetlands protection, restoration, and research: Wetlands Protection--Reduce wetlands losses on federally owned lands and encourage state and private landholders to practice wetlands conservation; Wetlands Restoration--Increase wetlands gains through the restoration and creation of wetlands on both public and private lands; Wetlands Research--Provide a foundation of scientific knowledge to guide future actions and decisions about wetlands. The audiovisual is a slide/tape-to-video transfer illustrating the various ways Interior bureaus are working to preserve our Nation's wetlands. The tape features an introduction by Secretary Manuel Lujan on the importance of wetlands and recognizing the benefit of such programs as the North American Waterfowl Management Program.

  12. 78 FR 28897 - Lost Creek ISR, LLC, Lost Creek Uranium In-Situ Recovery Project; Sweetwater County, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-16

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Lost Creek ISR, LLC, Lost Creek Uranium In-Situ Recovery Project; Sweetwater County, Wyoming AGENCY: Nuclear Regulatory Commission. ACTION: Environmental assessment and finding of no...

  13. 78 FR 938 - Burton Creek Hydro Inc., Sollos Energy, LLC'

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-07

    ... Energy Regulatory Commission Burton Creek Hydro Inc., Sollos Energy, LLC' Notice of Transfer of Exemption 1. By letter filed December 19, 2012, Burton Creek Hydro Inc. informed the Commission that its exemption from licensing for the Burton Creek Hydro Project, FERC No. 7577, originally issued September...

  14. 75 FR 8036 - Monitor-Hot Creek Rangeland Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ... Forest Service Monitor-Hot Creek Rangeland Project AGENCY: Forest Service, USDA. ACTION: Notice of intent... continued livestock grazing ] within the Monitor-Hot Creek Rangeland Project area. The analysis will... conditions within the Monitor-Hot Creek Rangeland Project area towards desired conditions. The project...

  15. View looking Eastnortheast at French Creek trestle, which appears at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View looking Eastnortheast at French Creek trestle, which appears at left center of frame. Bridge in foreground is west entrance to abandoned Phoenix iron works. - Pennsylvania Railroad, French Creek Trestle, Spanning French Creek, north of Paradise Street, Phoenixville, Chester County, PA

  16. 76 FR 35349 - Drawbridge Operation Regulations; Cheesequake Creek, Morgan, NJ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-17

    ... SECURITY Coast Guard 33 CFR Part 117 Drawbridge Operation Regulations; Cheesequake Creek, Morgan, NJ AGENCY... the Route 35 Bridge, mile 0.0, across Cheesequake Creek at Morgan, New Jersey. The deviation is... Bridge, across Cheesequake Creek, mile 0.0, at Morgan, New Jersey, has a vertical clearance in the...

  17. 76 FR 43123 - Drawbridge Operation Regulations; Cheesequake Creek, Morgan, NJ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-20

    ... SECURITY Coast Guard 33 CFR Part 117 Drawbridge Operation Regulations; Cheesequake Creek, Morgan, NJ AGENCY... the Route 35 Bridge, mile 0.0, across Cheesequake Creek at Morgan, New Jersey. The deviation is...: The Route 35 Bridge, across Cheesequake Creek, mile 0.0, at Morgan, New Jersey, has a...

  18. 76 FR 9225 - Drawbridge Operation Regulation; Curtis Creek, Baltimore, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-17

    ... Regulations; Curtis Creek, Baltimore, MD'' in the Federal Register (74 FR 50707). The temporary deviation... SECURITY Coast Guard 33 CFR Part 117 RIN 1625-AA09 Drawbridge Operation Regulation; Curtis Creek, Baltimore... changing the drawbridge operation regulations of the Pennington Avenue Bridge, across Curtis Creek, mile...

  19. 75 FR 1705 - Drawbridge Operation Regulations; Curtis Creek, Baltimore, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-13

    ... SECURITY Coast Guard 33 CFR Part 117 RIN 1625-AA09 Drawbridge Operation Regulations; Curtis Creek... operation of the I695 Bridge across Curtis Creek, mile 0.9, at Baltimore, MD. The deviation is necessary to... section of Curtis Creek and the bridge will not be able to open in the event of an emergency. Coast...

  20. Detail view of the Ten Mile Creek Bridge joint between ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of the Ten Mile Creek Bridge joint between the tied arch span and the approach span, view looking east at southwest corner of bridge. - Ten Mile Creek Bridge, Spanning Ten Mile Creek on Oregon Coast Highway, Yachats, Lincoln County, OR

  1. 33 CFR 110.72 - Blackhole Creek, Md.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Blackhole Creek, Md. 110.72... ANCHORAGE REGULATIONS Special Anchorage Areas § 110.72 Blackhole Creek, Md. The waters on the west side of Blackhole Creek, a tributary of Magothy River, southwest of a line bearing 310°30′ from the most...

  2. 33 CFR 110.72 - Blackhole Creek, Md.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Blackhole Creek, Md. 110.72... ANCHORAGE REGULATIONS Special Anchorage Areas § 110.72 Blackhole Creek, Md. The waters on the west side of Blackhole Creek, a tributary of Magothy River, southwest of a line bearing 310°30′ from the most...

  3. 33 CFR 110.72 - Blackhole Creek, Md.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Blackhole Creek, Md. 110.72... ANCHORAGE REGULATIONS Special Anchorage Areas § 110.72 Blackhole Creek, Md. The waters on the west side of Blackhole Creek, a tributary of Magothy River, southwest of a line bearing 310°30′ from the most...

  4. 33 CFR 110.72 - Blackhole Creek, Md.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Blackhole Creek, Md. 110.72... ANCHORAGE REGULATIONS Special Anchorage Areas § 110.72 Blackhole Creek, Md. The waters on the west side of Blackhole Creek, a tributary of Magothy River, southwest of a line bearing 310°30′ from the most...

  5. Topographic view of the North Fork Butter Creek Bridge (located ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Topographic view of the North Fork Butter Creek Bridge (located center of frame), view looking west - North Fork Butter Creek Bridge, Spanning North Fork Butter Creek Bridge at Milepost 76.63 on Heppner Highway (Oregon Route 74), Pilot Rock, Umatilla County, OR

  6. 20. DISTANT HELICOPTER VIEW TO SOUTHEAST UP LITTLE ROCK CREEK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. DISTANT HELICOPTER VIEW TO SOUTHEAST UP LITTLE ROCK CREEK CANYON, WITH DAM AND RESERVOIR AT RIGHT CENTER. PALMDALE-LITTLEROCK DITCH, MARKED BY DENSE VEGETATION, CROSSES ROAD AT LOWER CENTER - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  7. 33 CFR 110.72 - Blackhole Creek, Md.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Blackhole Creek, Md. 110.72... ANCHORAGE REGULATIONS Special Anchorage Areas § 110.72 Blackhole Creek, Md. The waters on the west side of Blackhole Creek, a tributary of Magothy River, southwest of a line bearing 310°30′ from the most...

  8. Michigan Wetlands: Yours To Protect. A Citizen's Guide to Local Involvement in Wetland Protection. Second Edition.

    ERIC Educational Resources Information Center

    Cwikiel, Wilfred

    This guidebook is designed to assist concerned Michigan citizens, local governments, conservation organizations, landowners, and others in their efforts to initiate wetlands protection activities. Chapter 1 focuses on wetland functions, values, losses, and the urgent need to protect wetland resources. Chapter 2 discusses wetland identification and…

  9. The Pipe Creek Sinkhole biota, a diverse late tertiary continental fossil assemblage from Grant County, Indiana

    USGS Publications Warehouse

    Farlow, J.O.; Sunderman, J.A.; Havens, J.J.; Swinehart, A.L.; Holman, J.A.; Richards, R.L.; Miller, N.G.; Martin, R.A.; Hunt, R.M.; Storrs, G.W.; Curry, B. Brandon; Fluegeman, R.H.; Dawson, M.; Flint, M.E.T.

    2001-01-01

    Quarrying in east-central Indiana has uncovered richly fossiliferous unconsolidated sediment buried beneath Pleistocene glacial till. The fossiliferous layer is part of a sedimentary deposit that accumulated in a sinkhole developed in the limestone flank beds of a Paleozoic reef. Plant and animal (mostly vertebrate) remains are abundant in the fossil assemblage. Plants are represented by a diversity of terrestrial and wetland forms, all of extant species. The vertebrate assemblage (here designated the Pipe Creek Sinkhole local fauna) is dominated by frogs and pond turtles, but fishes, birds; snakes and small and large mammals are also present; both extinct and extant taxa are represented. The mammalian assemblage indicates an early Pliocene age (latest Hemphillian or earliest Blancan North American Land Mammal Age). This is the first Tertiary continental biota discovered in the interior of the eastern half of North America.

  10. Characterization of rainfall-runoff response and estimation of the effect of wetland restoration on runoff, Heron Lake Basin, southwestern Minnesota, 1991-97

    USGS Publications Warehouse

    Jones, Perry M.; Winterstein, Thomas A.

    2000-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Minnesota Department of Natural Resources and the Heron Lake Watershed District, conducted a study to characterize the rainfall-runoff response and to examine the effects of wetland restoration on the rainfall-runoff response within the Heron Lake Basin in southwestern Minnesota. About 93 percent of the land cover in the Heron Lake Basin consists of agricultural lands, consisting almost entirely of row crops, with less than one percent consisting of wetlands. The Hydrological Simulation Program – Fortran (HSPF), Version 10, was calibrated to continuous discharge data and used to characterize rainfall-runoff responses in the Heron Lake Basin between May 1991 and August 1997. Simulation of the Heron Lake Basin was done as a two-step process: (1) simulations of five small subbasins using data from August 1995 through August 1997, and (2) simulations of the two large basins, Jack and Okabena Creek Basins, using data from May 1991 through September 1996. Simulations of the five small subbasins was done to determine basin parameters for the land segments and assess rainfall-runoff response variability in the basin. Simulations of the two larger basins were done to verify the basin parameters and assess rainfall-runoff responses over a larger area and for a longer time period. Best-fit calibrations of the five subbasin simulations indicate that the rainfall-runoff response is uniform throughout the Heron Lake Basin, and 48 percent of the total rainfall for storms becomes direct (surface and interflow) runoff. Rainfall-runoff response variations result from variations in the distribution, intensity, timing, and duration of rainfall; soil moisture; evapotranspiration rates; and the presence of lakes in the basin. In the spring, the amount and distribution of rainfall tends to govern the runoff response. High evapotranspiration rates in the summer result in a depletion of moisture from the soils, substantially

  11. [Wetland landscape ecological classification: research progress].

    PubMed

    Cao, Yu; Mo, Li-jiang; Li, Yan; Zhang, Wen-mei

    2009-12-01

    Wetland landscape ecological classification, as a basis for the studies of wetland landscape ecology, directly affects the precision and effectiveness of wetland-related research. Based on the history, current status, and latest progress in the studies on the theories, indicators, and methods of wetland landscape classification, some scientific wetland classification systems, e.g., NWI, Ramsar, and HGM, were introduced and discussed in this paper. It was suggested that a comprehensive classification method based on HGM and on the integral consideration of wetlands spatial structure, ecological function, ecological process, topography, soil, vegetation, hydrology, and human disturbance intensity should be the major future direction in this research field. Furthermore, the integration of 3S technologies, quantitative mathematics, landscape modeling, knowledge engineering, and artificial intelligence to enhance the automatization and precision of wetland landscape ecological classification would be the key issues and difficult topics in the studies of wetland landscape ecological classification.

  12. Quantifying The Water Quality Services Of Wetlands

    EPA Science Inventory

    Wetlands are well recognized for their potential for providing a wide range of important ecological services including their ability to provide water quality protection. Watershed-scale water quality trading could create market driven incentives to restore and construct wetlands...

  13. 33 CFR 334.240 - Potomac River, Mattawoman Creek and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Potomac River, Mattawoman Creek and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian Head Division, Indian Head, Md. 334... and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian Head Division, Indian Head, Md....

  14. 33 CFR 334.240 - Potomac River, Mattawoman Creek and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Potomac River, Mattawoman Creek and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian Head Division, Indian Head, Md. 334... and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian Head Division, Indian Head, Md....

  15. 33 CFR 334.240 - Potomac River, Mattawoman Creek and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Potomac River, Mattawoman Creek and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian Head Division, Indian Head, Md. 334... and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian Head Division, Indian Head, Md....

  16. 78 FR 20146 - Lost Creek ISR, LLC, Lost Creek Uranium In-Situ Recovery Project, Sweetwater County, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-03

    ... COMMISSION Lost Creek ISR, LLC, Lost Creek Uranium In-Situ Recovery Project, Sweetwater County, Wyoming... considering an amendment to Source Materials License SUA-1598 for continued uranium production operations and in-situ recovery (ISR) of uranium at the Lost Creek Project in Sweetwater County, Wyoming....

  17. Drywell corrosion stopped at Oyster Creek

    SciTech Connect

    Lipford, B.L. ); Flynn, J.C.

    1993-11-01

    This article describes the detection of corrosion on the drywell containment vessel of Oyster Creek Nuclear Plant and the application of a protective coating to repair the drywell. The topics of the article include drywell design features, identification of the problem, initial action, drywell corrosion, failure of cathodic protection, long-term repair, and repair results.

  18. How Fern Creek Is Beating Goliath

    ERIC Educational Resources Information Center

    Donovan, Margaret; Galatowitsch, Patrick; Hefferin, Keri; Highland, Shanita

    2013-01-01

    The "David" is Fern Creek Elementary, a small urban school in Orlando, Florida, that serves an overwhelmingly disadvantaged student population. The "Goliaths" are the mountains of problems that many inner-city students face--poverty, homelessness, mobility, instability, limited parent involvement, and violent neighborhood…

  19. 33 CFR 117.745 - Rancocas Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 117.745 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES... requirements apply to all bridges across the Rancocas River (Creek): (1) Public vessels of the United States... request. (2) The owners of these bridges shall provide and keep in good legible condition clearance...

  20. 33 CFR 117.745 - Rancocas Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 117.745 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES... requirements apply to all bridges across the Rancocas River (Creek): (1) Public vessels of the United States... request. (2) The owners of these bridges shall provide and keep in good legible condition clearance...

  1. 33 CFR 117.815 - Westchester Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New York § 117.815 Westchester Creek. The draw of the Bruckner Boulevard/Unionport Bridge, mile 1.7, at the Bronx, New York, shall open on signal if at least a two-hour advance notice is given to the New York City Department of Transportation (NYCDOT)...

  2. 33 CFR 117.815 - Westchester Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New York § 117.815 Westchester Creek. The draw of the Bruckner Boulevard/Unionport Bridge, mile 1.7, at the Bronx, New York, shall open on signal if at least a two-hour advance notice is given to the New York City Department of Transportation (NYCDOT)...

  3. 33 CFR 117.815 - Westchester Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New York § 117.815 Westchester Creek. The draw of the Bruckner Boulevard/Unionport Bridge, mile 1.7, at the Bronx, New York, shall open on signal if at least a two-hour advance notice is given to the New York City Department of Transportation (NYCDOT)...

  4. 33 CFR 117.815 - Westchester Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New York § 117.815 Westchester Creek. The draw of the Bruckner Boulevard/Unionport Bridge, mile 1.7, at the Bronx, New York, shall open on signal if at least a two-hour advance notice is given to the New York City Department of Transportation (NYCDOT)...

  5. Species status of Mill Creek Elliptio

    SciTech Connect

    Davis, G.M.; Mulvey, M.

    1993-12-31

    This report discusses environmental effects of the Savannah River Plant on aqautic populations in Mill Creek and surrounding tributaries. Of particular concern was the status of Elliptio. Genetics and phenotypic characteristics have shown that the current classification system is not adequate for these populations. The appendices characterize genetic variability at different loci, electrophoretic data, allele frequencies, sympatric species, and anatomical characters.

  6. Bereavement Rituals in the Muscogee Creek Tribe

    ERIC Educational Resources Information Center

    Walker, Andrea C.; Balk, David E.

    2007-01-01

    A qualitative, collective case study explores bereavement rituals in the Muscogee Creek tribe. Data from interviews with 27 participants, all adult members of the tribe, revealed consensus on participation in certain bereavement rituals. Common rituals included (a) conducting a wake service the night before burial; (b) never leaving the body alone…

  7. Gold Creek: Preserving an Environmental Studies Center.

    ERIC Educational Resources Information Center

    Brooks, Suzanne

    In response to a Board of Trustees request for information and recommendations concerning the future use of the Gold Creek property owned by the Los Angeles Community College District, this report emphasizes that the use of this site for instructional field experiences enhances the quality of environmental education for the district's diverse…

  8. Gold Creek: An Environmental Studies Center.

    ERIC Educational Resources Information Center

    Woodley, Laurel

    A description is provided of the Gold Creek Ecological Reserve, 240 acres of undisturbed land in Northeast Los Angeles County, which serves the Los Angeles Community College District (LACCD) as an outdoor laboratory for students and faculty in numerous disciplines. Section I provides introductory information on the reserve and its features, which…

  9. Using hydrogeology to site wetland compensation

    USGS Publications Warehouse

    Miller, Michael V.; Fucciolo, Christine S.; Miner, James J.

    1998-01-01

    The Illinois State Geological Survey has designed an initial site evaluation (ISE) procedure to rapidly separate candidate sites that have favorable hydrogeologic characteristics for wetland restoration or creation from sites where success is doubtful or difficult. ISE aims to focus compensation efforts on sites where former wetland hydrology can be restored or where the hydrogeology of wetlands in similar landscape positions can be reproduced.

  10. 40 CFR 257.9 - Wetlands.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... (b) For purposes of this section, wetlands means those areas that are defined in 40 CFR 232.2(r). ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Wetlands. 257.9 Section 257.9... Location Restrictions § 257.9 Wetlands. (a) Owners or operators of new units and lateral expansions...

  11. 40 CFR 257.9 - Wetlands.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... (b) For purposes of this section, wetlands means those areas that are defined in 40 CFR 232.2(r). ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Wetlands. 257.9 Section 257.9... Location Restrictions § 257.9 Wetlands. (a) Owners or operators of new units and lateral expansions...

  12. North Dakota Wetlands Discovery Guide. Photocopy Booklet.

    ERIC Educational Resources Information Center

    Dietz, Nancy J., Ed.; And Others

    This booklet contains games and activities that can be photocopied for classroom use. Activities include Wetland Terminology, Putting on the Map, Erosional Forces, Water in...Water out, Who Lives Here?, Wetlands in Disguise, Dichotomous Plant Game, Algae Survey, Conducting an Algal Survey, Water Quality Indicators Guide, Farming Wetlands, Wetlands…

  13. Geohydrology of the stratified-drift aquifer system in the lower Sixmile Creek and Willseyville Creek trough, Tompkins County, New York

    USGS Publications Warehouse

    Miller, Todd S.; Karig, Daniel E.

    2010-01-01

    In 2002, the U.S. Geological Survey, in cooperation with the Tompkins County Planning Department began a series of studies of the stratified-drift aquifers in Tompkins County to provide geohydrologic data for planners to develop a strategy to manage and protect their water resources. This aquifer study in lower Sixmile Creek and Willseyville Creek trough is the second in a series of aquifer studies in Tompkins County. The study area is within the northern area of the Appalachian Plateau and extends about 9 miles from the boundary between Tompkins County and Tioga County in the south to just south of the City of Ithaca in the north. In lower Sixmile Creek and Willseyville Creek trough, confined sand and gravel aquifers comprise the major water-bearing units while less extensive unconfined units form minor aquifers. About 600 people who live in lower Sixmile Creek and Willseyville Creek trough rely on groundwater from the stratified-drift aquifer system. In addition, water is used by non-permanent residents such as staff at commercial facilities. The estimated total groundwater withdrawn for domestic use is about 45,000 gallons per day (gal/d) or 0.07 cubic foot per second (ft3/s) based on an average water use of 75 gal/d per person for self-supplied water systems in New York. Scouring of bedrock in the preglacial lower Sixmile Creek and Willseyville Creek valleys by glaciers and subglacial meltwaters truncated hillside spurs, formed U-shaped, transverse valley profiles, smoothed valley walls, and deepened the valleys by as much as 300 feet (ft), forming a continuous trough. The unconsolidated deposits in the study area consist mostly of glacial drift, both unstratified drift (till) and stratified drift (laminated lake, deltaic, and glaciofluvial sediments), as well as some post-glacial stratified sediments (lake-bottom sediments that were deposited in reservoirs, peat and muck that were deposited in wetlands, and alluvium deposited by streams). Multiple advances and

  14. Intensive survey of the bay creek watershed, July 1992

    SciTech Connect

    Short, M.B.; Kelly, T.G.; Hefley, J.E.

    1995-05-01

    During July 1992, the Illinois Environmental Protection Agency conducted an intensive survey of the Bay Creek basin, a fifth order tributary in the Mississippi River North Central Basin. Bay Creek drains approximately 176.4 square miles primarily in Pike and a small portion of Calhoun counties. Four stations were sampled on the Bay Creek main stem and one on Honey Creek. The survey focused on macroinvertebrate communities, fish populations, instream habitat, fish tissue, sediment and water chemistry, and land use as well as a review of ambient water quality data from IEPA station KCA-01 near Nebo, Illinois, as tools to document the biological and chemical status of Bay Creek.

  15. Floodplain/wetland assessment of the effects of construction and operation ofa depleted uranium hexafluoride conversion facility at the Paducah, Kentucky,site.

    SciTech Connect

    Van Lonkhuyzen, R.

    2005-09-09

    The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF{sub 6} inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This floodplain/wetland assessment has been prepared by DOE, pursuant to Executive Order 11988 (''Floodplain Management''), Executive Order 11990 (Protection of Wetlands), and DOE regulations for implementing these Executive Orders as set forth in Title 10, Part 1022, of the ''Code of Federal Regulations'' (10 CFR Part 1022 [''Compliance with Floodplain and Wetland Environmental Review Requirements'']), to evaluate potential impacts to floodplains and wetlands from the construction and operation of a conversion facility at the DOE Paducah site. Reconstruction of the bridge crossing Bayou Creek would occur within the Bayou Creek 100-year floodplain. Replacement of bridge components, including the bridge supports, however, would not be expected to

  16. Steel Creek zooplankton: L Lake/Steel Creek Biological Monitoring Program, January 1986--December 1987

    SciTech Connect

    Starkel, W.M.; Chimney, M.J.

    1988-03-01

    The objectives of this portion of the Steel Creek Biological Monitoring Program were to analyze data on macrozooplankton taxonomy and density in the Steel Creek corridor and swamp/delta, and compare the composition of the post-impoundment macrozooplankton community with pre-impoundment conditions and communities from other stream and swamp systems. The data presented in the report cover the period January 1986 through December 1987. Macrozooplankton samples were collected monthly using an 80 ..mu..m mesh net at Stations 275, 280, and 290 in the Steel Creek corridor and Stations 310, 330, 350, and 370 in the Steel Creek delta/swamp. Macrozooplankton taxa richness was highest at the two Steel Creek corridor stations nearest the L-Lake dam (Stations 275 and 280); mean values were 10.6 and 7.2 taxa collected/month in 1986 vs 12.1 and 12.3 taxa collected/month in 1987. The lowest taxa richness occurred at Steel Creek swamp/delta stations; means ranged from 1.9 to 4.2 taxa collected/month during both years.

  17. Pine Creek Ranch, FY 2001 Annual Report.

    SciTech Connect

    Berry, Mark E.

    2001-11-01

    Pine Creek Ranch was purchased in 1999 by the Confederated Tribes of Warm Springs using Bonneville Power Administration Fish and Wildlife Habitat Mitigation funds. The 25,000 acre property will be managed in perpetuity for the benefit of fish and wildlife habitat. Major issues include: (1) Restoring quality spawning and rearing habitat for stealhead. Streams are incised and fish passage barriers exist from culverts and possibly beaver dams. In addition to stealhead habitat, the Tribes are interested in overall riparian recovery in the John Day River system for wildlife habitat, watershed values and other values such as recreation. (2) Future grazing for specific management purposes. Past grazing practices undoubtedly contributed to current unacceptable conditions. The main stem of Pine Creek has already been enrolled in the CREP program administered by the USDA, Natural Resource Conservation Service in part because of the cost-share for vegetation restoration in a buffer portion of old fields and in part because of rental fees that will help the Tribes to pay the property taxes. Grazing is not allowed in the riparian buffer for the term of the contract. (3) Noxious weeds are a major concern. (4) Encroachment by western juniper throughout the watershed is a potential concern for the hydrology of the creek. Mark Berry, Habitat Manager, for the Pine Creek Ranch requested the Team to address the following objectives: (1) Introduce some of the field staff and others to Proper Functioning Condition (PFC) assessments and concepts. (2) Do a PFC assessment on approximately 10 miles of Pine Creek. (3) Offer management recommendations. (4) Provide guidelines for monitoring.

  18. Restoring Anadromous Fish Habitat in Big Canyon Creek Watershed, 2004-2005 Annual Report.

    SciTech Connect

    Rasmussen, Lynn

    2006-07-01

    The ''Restoring Anadromous Fish Habitat in the Big Canyon Creek Watershed'' is a multi-phase project to enhance steelhead trout in the Big Canyon Creek watershed by improving salmonid spawning and rearing habitat. Habitat is limited by extreme high runoff events, low summer flows, high water temperatures, poor instream cover, spawning gravel siltation, and sediment, nutrient and bacteria loading. Funded by the Bonneville Power Administration (BPA) as part of the Northwest Power Planning Council's Fish and Wildlife Program, the project assists in mitigating damage to steelhead runs caused by the Columbia River hydroelectric dams. The project is sponsored by the Nez Perce Soil and Water Conservation District. Target fish species include steelhead trout (Oncorhynchus mykiss). Steelhead trout within the Snake River Basin were listed in 1997 as threatened under the Endangered Species Act. Accomplishments for the contract period September 1, 2004 through October 31, 2005 include; 2.7 riparian miles treated, 3.0 wetland acres treated, 5,263.3 upland acres treated, 106.5 riparian acres treated, 76,285 general public reached, 3,000 students reached, 40 teachers reached, 18 maintenance plans completed, temperature data collected at 6 sites, 8 landowner applications received and processed, 14 land inventories completed, 58 habitat improvement project designs completed, 5 newsletters published, 6 habitat plans completed, 34 projects installed, 2 educational workshops, 6 displays, 1 television segment, 2 public service announcements, a noxious weed GIS coverage, and completion of NEPA, ESA, and cultural resources requirements.

  19. Restoring Anadromous Fish Habitat in the Lapwai Creek Watershed, Technical Report 2003-2006.

    SciTech Connect

    Rasmussen, Lynn

    2007-02-01

    The Restoring Anadromous Fish Habitat in the Lapwai Creek Watershed is a multi-phase project to enhance steelhead trout in the Lapwai Creek watershed by improving salmonid spawning and rearing habitat. Habitat is limited by extreme high runoff events, low summer flows, high water temperatures, poor instream cover, spawning gravel siltation, and sediment, nutrient and bacteria loading. Funded by the Bonneville Power Administration (BPA) as part of the Northwest Power Planning Council's Fish and Wildlife Program, the project assists in mitigating damage to steelhead runs caused by the Columbia River hydroelectric dams. The project is sponsored by the Nez Perce Soil and Water Conservation District (District). Target fish species include steelhead trout (Oncorhynchus mykiss). Steelhead trout within the Snake River Basin were listed in 1997 as threatened under the Endangered Species Act. Accomplishments for the contract period December 1, 2003 through February 28, 2004 include; seven grade stabilization structures, 0.67 acres of wetland plantings, ten acres tree planting, 500 linear feet streambank erosion control, two acres grass seeding, and 120 acres weed control.

  20. Methane emissions from canopy wetlands

    NASA Astrophysics Data System (ADS)

    Martinson, G. O.; Conrad, R.

    2012-12-01

    Ground wetlands are the main natural source of methane but they fail to explain the observed amounts of methane over tropical forests. Bromeliad tanks are discrete habitats for aquatic organisms and up to several thousand of bromeliad individuals per hectare of tropical forest create a unique canopy wetland ecosystem in neotropical forests. Recently, we have discovered that canopy wetlands inhabit methanogenic archaea, emit substantial amounts of methane and may help to explain the high amounts of methane over neotropical forests. However, the pathway of methane formation and potential methane production in canopy wetlands of different tropical forest ecosystems have not yet been studied. In this study, we investigated the stable carbon isotope fractionation, methanogenic pathway and potential methane production of bromeliad tanks along an elevation gradient in neotropical forests for the first time. We sampled the bromeliad tank-substrate of 3 tank bromeliads per functional type and elevation (1000 m, 2000 m and 3000 m above the sea level). We distinguished three functional types of tank bromeliads, based on plant architecture and ecological niche preference. Functional type I-tank bromeliads are concentrated in the understory and on the ground. Functional type II and type III are concentrated in the mid and overstory. We conducted tank-substrate incubation experiments and measured CH4, CO2, 13CH4 and 13CO2 at regular time intervals during the incubation period. The methane production potential of bromeliad tanks correlated positively with tank-substrate carbon concentration and decreased with increasing canopy height and increasing elevation. The dominant pathway of methane formation in bromeliad tanks was hydrogenotrophic methanogenesis (>50%) and this dominance increased with increasing canopy height and increasing elevation. Our results provide novel insights into the pathway of methane formation in neotropical canopy wetlands and suggest that canopy height is

  1. Understanding Broadscale Drivers of Coastal Wetland Extent

    NASA Astrophysics Data System (ADS)

    Braswell, A. E.; Heffernan, J. B.

    2014-12-01

    Coastal wetlands provide valuable ecosystem services, but are threatened by sea level rise, anthropogenic disturbance, and changing sediment supply. Watershed characteristics, such as watershed area and upland land use, can mediate suspended sediment concentration; while estuarine characteristics, such as fetch, can determine the wave energy and erosion in a coastal area. These combined effects are mediated by local biogeomorphic feedbacks within wetlands to determine wetland extent. There has been little empirical or theoretical study of how broad-scale features of estuaries and watersheds influence wetland formation, persistence, and loss. As such, we cannot predict how wetland extent and resilience to sea level rise will respond to land use change and other human alterations. In this study, we ask, what factors control the broad-scale distribution of coastal wetlands? We examined relationships between coastal wetland extent and watershed/estuarine characteristics at multiple scales along the Eastern and Gulf coasts of the United States. Using existing GIS resources, we delineated the absolute and relative extents of coastal wetlands, and generated watershed and estuarine characteristics to serve as proxies of sediment input, the estuarine energy environment, and local wetland alteration. We found that present coastal wetland distributions reflect interactions across a wide range of spatial scales, ranging from local biogeomorphic processes, to estuarine-scale morphology that governs hydrodynamics, and to past and present watershed processes that influence sediment delivery. Coastal wetland extent scales with estuary size to the half power and the residuals reflect a bimodal distribution. The wetland extent distribution also displays multiple clusters, possibly signaling that local feedbacks drive wetland extent at some scales. When the results are broken up by region, this pattern is stronger in Northeastern United States. Using continental-scale variation in

  2. Montezuma Creek Stability Evaluation at Site of Former Monticello Tailings Pile

    SciTech Connect

    Korte, N.

    2001-10-04

    This report documents the results of an evaluation of stream stability for Montezuma Creek downstream of the former uranium and vanadium millsite at Monticello, Utah. The work was performed by personnel from Oak Ridge National Laboratory's (ORNL's) Environmental Technology Section (ETS). ORNL/ETS was the Independent Verification Contractor (IVC) for the Monticello projects, and it established independent verification strategies that provided the U.S. Department of Energy (DOE) with a third-party assessment of whether remedial action had effectively reduced levels of contamination and whether supporting documentation that described the remediation was adequate. The DOE regulation 10 CFR 1022, which implements Executive Orders 11988 and 11990 for the protection of wetlands and floodplains, provided the regulatory rationale for the activity. This report documents both the impact of millsite remedial activities and postremediation conditions of Montezuma Creek. The scientific rationale for the stream survey was that conventional engineering practices do not adequately account for varying hydrologic regimes nor do they address the entire riparian zone as an interrelated unit. As a result, modifications to streams consistently cause damage to the environment by increasing erosion and sedimentation. Field activities included the establishment of permanent cross sections and periodic measurements and surveys of physical characteristics. The data demonstrated an increase in downstream stream bank erosion when activities at the millsite were greatest. Note, however, that agricultural practices have also contributed to erosion and bank instability. Nevertheless, an increase in fine sediment and bank recession were correlated to the construction. In addition, the project documented the failure of best management practices such as silt fences, to control sediment loss. Furthermore, conventional engineering designs were used to reroute Montezuma Creek, an action that will

  3. Habitat Evaluation Procedures (HEP) Report; Tacoma Creek South Project, Technical Report 2003-2005.

    SciTech Connect

    Entz, Ray

    2005-02-01

    On July 6, 2004, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Tacoma Creek South property, an acquisition completed by the Kalispel Tribe of Indians in June 2004. Evaluation species and appropriate models include bald eagle, black-capped chickadee, Canada goose, mallard, muskrat, yellow warbler, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Tacoma Creek South Project provides a total of 190.79 Habitat Units (HUs) for the species evaluated. Emergent wetlands provide 20.51 HUs for Canada goose, mallard, and muskrat. Grassland provides 1.65 HUs for Canada goose and mallard. Scrub-shrub vegetation provides 11.76 HUs for mallard, yellow warbler, and white-tailed deer. Conifer forest habitat provides 139.92 HUs for bald eagle, black-capped chickadee, and white-tailed deer. Deciduous forest also provides 19.15 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. The objective of using HEP at the Tacoma Creek South Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  4. Integrated wetlands for food production.

    PubMed

    Chen, Ray Zhuangrui; Wong, Ming-Hung

    2016-07-01

    The widespread use of compound pelleted feeds and chemical fertilizers in modern food production contribute to a vast amount of residual nutrients into the production system and adjacent ecosystem are major factors causing eutrophication. Furthermore, the extensive development and application of chemical compounds (such as chemical pesticides, disinfectants and hormones used in enhancing productivity) in food production process are hazardous to the ecosystems, as well as human health. These unsustainable food production patterns cannot sustain human living in the long run. Wetlands are perceived as self-decontamination ecosystems with high productivities. This review gives an overview about wetlands which are being integrated with food production processes, focusing on aquaculture. PMID:27131797

  5. Radioiodine concentrated in a wetland.

    PubMed

    Kaplan, Daniel I; Zhang, Saijin; Roberts, Kimberly A; Schwehr, Kathy; Xu, Chen; Creeley, Danielle; Ho, Yi-Fang; Li, Hsiu-Ping; Yeager, Chris M; Santschi, Peter H

    2014-05-01

    Most subsurface environmental radioactivity contamination is expected to eventually resurface in riparian zones, or wetlands. There are a number of extremely sharp biogeochemical interfaces in wetlands that could alter radionuclide speciation and promote accumulation. The objective of this study was to determine if a wetland concentrated (129)I emanating from a former waste disposal basin located on the Savannah River Site (SRS) in South Carolina, USA. Additionally, studies were conducted to evaluate the role of sediment organic matter in immobilizing the radioiodine. Groundwater samples were collected along a 0.7-km transect away from the seepage basin and in the downstream wetlands. The samples were analyzed for (129)I speciation (iodide (I(-)), iodate (IO3(-)), and organo-I). Groundwater (129)I concentrations in many locations in the wetlands (as high as 59.9 Bq L(-1)(129)I) were greatly elevated with respect to the source term (5.9 Bq L(-1)(129)I). (129)I concentration profiles in sediment cores were closely correlated to organic matter concentrations (r(2) = 0.992; n = 5). While the sediment organic matter promoted the uptake of (129)I to the wetland sediment, it also promoted the formation of a soluble organic fraction: 74% of the wetland groundwater (129)I could pass through a 1 kDa (<1 nm) membrane and only 26% of the (129)I was colloidal. Of that fraction that could pass through a 1 kDa membrane, 39% of the (129)I was organo-I. Therefore, while wetlands may be highly effective at immobilizing aqueous (129)I, they may also promote the formation of a low-molecular-weight organic species that does not partition to sediments. This study provides a rare example of radioactivity concentrations increasing rather than decreasing as it migrates from a point source and brings into question assumptions in risk models regarding continuous dilution of released contaminants.

  6. Cold climate wetlands: design and performance.

    PubMed

    Wallace, S; Parkin, G; Cross, C

    2001-01-01

    Constructed wetlands are gaining widespread use as a simple, low cost means of wastewater treatment. Introduction of constructed wetlands technology into the northern United States has been limited by the ability of conventional wetland systems to operate without freezing during the winter. A design approach using subsurface-flow constructed wetlands covered with an insulating mulch layer has been demonstrated to prevent freezing. However, introduction of a mulch layer will affect oxygen transfer rates, pollutant removal performance, and plant establishment. These factors must be addressed for successful application of constructed wetlands technology in cold climates.

  7. Monitoring wetlands change using LANDSAT data

    NASA Technical Reports Server (NTRS)

    Hardin, D. L.

    1981-01-01

    A wetlands monitoring study was initiated as part of Delaware's LANDSAT applications demonstration project. Classifications of digital data are conducted in an effort to determine the location and acreage of wetlands loss or gain, species conversion, and application for the inventory and typing of freshwater wetlands. A multi-seasonal approach is employed to compare data from two different years. Unsupervised classifications were conducted for two of the four dates examined. Initial results indicate the multi-seasonal approach allows much better separation of wetland types for both tidal and non-tidal wetlands than either season alone. Change detection is possible but generally misses the small acreages now impacted by man.

  8. Wetland mitigation banking for the petroleum industry

    SciTech Connect

    Crookshank, S.L.

    1996-08-01

    Wetland policies aimed at achieving a no-overall-net-loss goal are likely to increase the cost of petroleum operations conducted in wetlands. This paper argues that wetland mitigation banking is the key to minimizing the costs associated with these wetland policies. Noting the limited opportunities for banking by the petroleum industry currently, the paper examines how wetland mitigation banking regulations should be structured in order to make banking a viable option for industry. It argues that the Army Corps of Engineers should allow banks with proper safety mechanisms in place to sell credits before mitigation projects are completed.

  9. Hydrogeologic framework of the shallow ground-water system in the Cox Hall Creek basin, Cape May County, New Jersey

    USGS Publications Warehouse

    Lacombe, Pierre J.; Zapecza, Otto S.

    2006-01-01

    Cape May County is investigating the feasibility of restoring the lowermost reach of Cox Hall Creek to its former state as a tidal saltwater wetland; however, the potential for contamination of the shallow ground-water system, which provides water to hundreds of nearby privately owned domestic wells, with saltwater from the restored wetland is of particular concern. To evaluate the potential effectiveness and risks of restoring the saltwater wetlands, the County needs information about the hydrogeologic framework in the area, and about the potential vulnerability of the domestic wells to contamination. The shallow ground-water system in the Cox Hall Creek area consists of unconsolidated Holocene and Pleistocene deposits. The Holly Beach water-bearing zone, the unconfined (water-table) aquifer, is about 35 feet thick and contains a 2- to 4-foot-thick clay lens about 10 feet below land surface; a lower, more discontinuous clay lens about 30 to 35 feet below land surface ranges up to 5 feet in thickness. A 75-foot-thick confining unit separates the Holly Beach water-bearing zone from the underlying estuarine sand aquifer. The clay lenses in the Holly Beach water-bearing zone likely retard the movement of contaminants from septic tanks, lawns, and other surficial sources, protecting wells that tap the lower, sandy part of the aquifer. The clay lenses also may protect these wells from salty surface water if withdrawals from the Holly Beach water-bearing zone are not increased substantially. Deeper wells that tap the estuarine sand aquifer are more effectively protected from saltwater from surface sources because of the presence of the overlying confining unit.

  10. Factors affecting coastal wetland loss and restoration

    USGS Publications Warehouse

    Cahoon, D.R.; Phillips, S.W.

    2007-01-01

    Opening paragraph: Tidal and nontidal wetlands in the Chesapeake Bay watershed provide vital hydrologic, water-quality, and ecological functions. Situated at the interface of land and water, these valuable habitats are vulnerable to alteration and loss by human activities including direct conversion to non-wetland habitat by dredge-and-fill activities from land development, and to the effects of excessive nutrients, altered hydrology and runoff, contaminants, prescribed fire management, and invasive species. Processes such as sea-level rise and climate change also impact wetlands. Although local, State, and Federal regulations provide for protection of wetland resources, the conversion and loss of wetland habitats continue in the Bay watershed. Given the critical values of wetlands, the Chesapeake 2000 Agreement has a goal to achieve a net gain in wetlands by restoring 25,000 acres of tidal and nontidal wetlands by 2010. The USGS has synthesized findings on three topics: (1) sea-level rise and wetland loss, (2) wetland restoration, and (3) factors affecting wetland diversity.

  11. Remote Sensing of Global Wetland Dynamics

    NASA Technical Reports Server (NTRS)

    Matthews, Elaine; Prigent, Catherine; Birkett, Charon; Coe, Mike; Hasen, James E. (Technical Monitor)

    2000-01-01

    Although natural wetlands only cover about 4% of the earth's ice-free land surface, they are the world's largest methane (CH4) source and the only one dominated by climate. In addition, wetlands affect climate by modulating temperatures and heat fluxes, storing water, increasing evaporation, and altering the seasonality of runoff and river discharge to the oceans. Current CH4 emissions from wetlands are relatively well understood but the sensitivity of wetlands and their emissions to climate variations remains the largest uncertainty in the global CH4 cycle and could strongly influence predictions of future climate. Therefore, characterizing climate-sensitive processes prevailing in the world's wetlands is crucial to understanding and predicting physical and biogeochemical responses of wetlands to interannual and longer-term climate variations. Recent research has resulted in the first generation of models to predict methane emissions from wetlands but the models must still be applied to static data on wetland distributions. Moreover, no models currently exist to realistically predict the distribution and dynamics of wetlands themselves for the current, or any other, climate. The dominant obstacle to modeling wetland dynamics has been lack of remote sensing techniques and data useful for characterizing quantitatively the seasonal and interannual variations of wetlands. We report on initial remote sensing studies undertaken to validate a global hydrological model linking rivers, takes and wetlands. Using a combination of SSM/I microwave and TOPEX Poseidon altimetry data sets, we developed and applied techniques to quantify inundation extent and duration for several large wetlands in tropical Africa and South America. Our initial results indicate that seasonally-inundated wetlands can be well characterized over large spatial scales and at monthly time scales using these remote sensing data. The results also confirm that currently available remote sensing products can

  12. The Call of the Wetlands.

    ERIC Educational Resources Information Center

    Stewart, Patrick

    1998-01-01

    Frogwatch is a volunteer monitoring program developed in response to worldwide concern about declining populations of amphibians. Outlines a frog-monitoring program and a wetland study to be conducted alone or together. Explains the basics, including choosing a frog, introducing the topic, mapping, recordkeeping, equipment, survey procedures, and…

  13. Nevada Test Site Wetlands Assessment

    SciTech Connect

    D. J. Hansen

    1997-05-01

    This report identifies 16 Nevada Test Site (NTS) natural water sources that may be classified by the U.S. Army Corps of Engineers (USACE) as jurisdictional wetlands and identifies eight water sources that may be classified as waters of the United States. These water sources are rare, localized habitats on the NTS that are important to regional wildlife and to isolated populations of water tolerant plants and aquatic organisms. No field investigations on the NTS have been conducted in the past to identify those natural water sources which would be protected as rare habitats and which may fall under regulatory authority of the Clean Water Act (CWA) of 1997. This report identifies and summarizes previous studies of NTS natural water sources, and identifies the current DOE management practices related to the protection of NTS wetlands. This report also presents management goals specific for NTS wetlands that incorporate the intent of existing wetlands legislation, the principles of ecosystem management, and the interests of regional land managers and other stakeholders.

  14. Environmental Education in Wetland Ecosystems

    ERIC Educational Resources Information Center

    Papapanagou, Eirini; Tiniakou, Argyro; Georgiadis, Theodoros

    2005-01-01

    An educational package based on the Messolongi wetland area and designed to develop environmental awareness amongst Greek secondary students is described. The package includes a book and a pedagogical guide for the teacher, as well as a hypermedia application/CD-ROM and worksheets for the student. The entire educational package combines recent…

  15. The National Wetland Condition Assessment

    EPA Science Inventory

    The first National Wetland Condition Assessment (NWCA) was conducted in 2011 by the US Environmental Protection Agency (USEPA). Vegetation, algae, soil, water chemistry,and hydrologic data were collected at each of 1138 sites across the contiguous US. Ecological condition was ass...

  16. Benthic macroinvertebrate richness along Sausal Creek, Oakland, California

    NASA Astrophysics Data System (ADS)

    Lara, D.; Ahumada, E.; Leon, Y.; Bracho, H.; Telles, C.

    2012-12-01

    Sausal Creek, 5.0 km long, is one of the principal watercourses in Oakland, California. The headwaters of Sausal Creek arise in the Oakland Hills and the creek flows southwestward through the city, discharging into the tidal canal that separates the island of Alameda from Oakland; the creek ultimately flows into San Francisco Bay. Due to the presence of rainbow trout, the stream health of Sausal Creek is a local conservation priority. In the present study, a survey of benthic macroinvertebrates in the creek was conducted and possible correlations between environmental variables and taxonomic richness were analyzed. Three stations along the creek were sampled using a 30.5cm 500 micron aquatic d-net, and temperature, pH and dissolved oxygen levels were measured in creek samples obtained at each station. Temperature, pH and dissolved oxygen levels remained constant along the creek. Taxonomic richness was highest at the upstream site of Palo Seco, located in an eastern section of the creek, and furthest downstream at Dimond Park, in the western portion of the creek. The Monterrey site, just west of Palo Seco was found to be significantly low in benthic macroinvertebrates. The Palo Seco and Monterrey sites are separated by Highway 13 and storm drain inputs may bring contaminants into the creek at this site. At the Monterrey site Sausal Creek follows the Hayward Fault, gas emissions or change in substrate may also affect the local population of benthic invertebrates. Further research will be conducted to determine what factors are contributing to this local anomaly.

  17. Methylmercury degradation and exposure pathways in streams and wetlands impacted by historical mining

    USGS Publications Warehouse

    Donovan, Patrick M.; Blum, Joel D.; Singer, Michael B.; Marvin-DiPasquale, Mark C.; Tsui, Martin T.K.

    2016-01-01

    Monomethyl mercury (MMHg) and total mercury (THg) concentrations and Hg stable isotope ratios (δ202Hg and Δ199Hg) were measured in sediment and aquatic organisms from Cache Creek (California Coast Range) and Yolo Bypass (Sacramento Valley). Cache Creek sediment had a large range in THg (87 to 3870 ng/g) and δ202Hg (−1.69 to −0.20‰) reflecting the heterogeneity of Hg mining sources in sediment. The δ202Hg of Yolo Bypass wetland sediment suggests a mixture of high and low THg sediment sources. Relationships between %MMHg (the percent ratio of MMHg to THg) and Hg isotope values (δ202Hg and Δ199Hg) in fish and macroinvertebrates were used to identify and estimate the isotopic composition of MMHg. Deviation from linear relationships was found between %MMHg and Hg isotope values, which is indicative of the bioaccumulation of isotopically distinct pools of MMHg. The isotopic composition of pre-photodegraded MMHg (i.e., subtracting fractionation from photochemical reactions) was estimated and contrasting relationships were observed between the estimated δ202Hg of pre-photodegraded MMHg and sediment IHg. Cache Creek had mass dependent fractionation (MDF; δ202Hg) of at least −0.4‰ whereas Yolo Bypass had MDF of +0.2 to +0.5‰. This result supports the hypothesis that Hg isotope fractionation between IHg and MMHg observed in rivers (−MDF) is unique compared to +MDF observed in non-flowing water environments such as wetlands, lakes, and the coastal ocean.

  18. Methylmercury degradation and exposure pathways in streams and wetlands impacted by historical mining.

    PubMed

    Donovan, Patrick M; Blum, Joel D; Singer, Michael Bliss; Marvin-DiPasquale, Mark; Tsui, Martin T K

    2016-10-15

    Monomethyl mercury (MMHg) and total mercury (THg) concentrations and Hg stable isotope ratios (δ(202)Hg and Δ(199)Hg) were measured in sediment and aquatic organisms from Cache Creek (California Coast Range) and Yolo Bypass (Sacramento Valley). Cache Creek sediment had a large range in THg (87 to 3870ng/g) and δ(202)Hg (-1.69 to -0.20‰) reflecting the heterogeneity of Hg mining sources in sediment. The δ(202)Hg of Yolo Bypass wetland sediment suggests a mixture of high and low THg sediment sources. Relationships between %MMHg (the percent ratio of MMHg to THg) and Hg isotope values (δ(202)Hg and Δ(199)Hg) in fish and macroinvertebrates were used to identify and estimate the isotopic composition of MMHg. Deviation from linear relationships was found between %MMHg and Hg isotope values, which is indicative of the bioaccumulation of isotopically distinct pools of MMHg. The isotopic composition of pre-photodegraded MMHg (i.e., subtracting fractionation from photochemical reactions) was estimated and contrasting relationships were observed between the estimated δ(202)Hg of pre-photodegraded MMHg and sediment IHg. Cache Creek had mass dependent fractionation (MDF; δ(202)Hg) of at least -0.4‰ whereas Yolo Bypass had MDF of +0.2 to +0.5‰. This result supports the hypothesis that Hg isotope fractionation between IHg and MMHg observed in rivers (-MDF) is unique compared to +MDF observed in non-flowing water environments such as wetlands, lakes, and the coastal ocean. PMID:27234290

  19. Summer food habits and trophic overlap of roundtail chub and creek chub in Muddy Creek, Wyoming

    USGS Publications Warehouse

    Quist, M.C.; Bower, M.R.; Hubert, W.A.

    2006-01-01

    Native fishes of the Upper Colorado River Basin have experienced substantial declines in abundance and distribution, and are extirpated from most of Wyoming. Muddy Creek, in south-central Wyoming (Little Snake River watershed), contains sympatric populations of native roundtail chub (Gila robusta), bluehead sucker, (Catostomus discobolus), and flannelmouth sucker (C. tatipinnis), and represents an area of high conservation concern because it is the only area known to have sympatric populations of all 3 species in Wyoming. However, introduced creek chub (Semotilus atromaculatus) are abundant and might have a negative influence on native fishes. We assessed summer food habits of roundtail chub and creek chub to provide information on the ecology of each species and obtain insight on potential trophic overlap. Roundtail chub and creek chub seemed to be opportunistic generalists that consumed a diverse array of food items. Stomach contents of both species were dominated by plant material, aquatic and terrestrial insects, and Fishes, but also included gastropods and mussels. Stomach contents were similar between species, indicating high trophic, overlap. No length-related patterns in diet were observed for either species. These results suggest that creek chubs have the potential to adversely influence the roundtail chub population through competition for food and the native fish assemblage through predation.

  20. Channel stability of Turkey Creek, Nebraska

    USGS Publications Warehouse

    Rus, David L.; Soenksen, Philip J.

    1998-01-01

    Channelization on Turkey Creek and its receiving stream, the South Fork Big Nemaha River, has disturbed the equilibrium of Turkey Creek and has led to channel-stability problems, such as degradation and channel widening, which pose a threat to bridges and land adjacent to the stream. As part of a multiagency study, the U.S. Geological Survey assessed channel stability at two bridge sites on upper and middle portions of Turkey Creek by analyzing streambed-elevation data for gradation changes, comparing recent cross-section surveys and historic accounts, identifying bank-failure blocks, and analyzing tree-ring samples. These results were compared to gradation data and trend results for a U.S. Geological Survey streamflow-gaging station near the mouth of Turkey Creek from a previous study. Examination of data on streambed elevations reveals that degradation has occurred. The streambed elevation declined 0.5 m at the upper site from 1967-97. The streambed elevation declined by 3.2 m at the middle site from 1948-97 and exposed 2 m of the pilings of the Nebraska Highway 8 bridge. Channel widening could not be verified at the two sites from 1967-97, but a historic account indicates widening at the middle site to be two to three times that of the 1949 channel width. Small bank failures were evident at the upper site and a 4-m-wide bank failure occurred at the middle site in 1987 according to tree ring analyses. Examination of streambed-elevation data from a previous study at the lower site reveals a statistically significant aggrading trend from 1958-93. Further examination of these data suggests minor degradation occurred until 1975, followed by aggradation.

  1. 27 CFR 9.85 - Willow Creek.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... where the 1,000-foot contour line intersects Kirkham Creek (directly north of section 19, T.7 N./R.5E.), beginning in a southerly direction, the boundary line the 1,000-foot contour line to; (1) The point of intersection between the 1,000-foot contour line and the north section line of section 27, T.6N./R.5E.;...

  2. 27 CFR 9.85 - Willow Creek.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... where the 1,000-foot contour line intersects Kirkham Creek (directly north of section 19, T.7 N./R.5E.), beginning in a southerly direction, the boundary line the 1,000-foot contour line to; (1) The point of intersection between the 1,000-foot contour line and the north section line of section 27, T.6N./R.5E.;...

  3. 27 CFR 9.85 - Willow Creek.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... where the 1,000-foot contour line intersects Kirkham Creek (directly north of section 19, T.7 N./R.5E.), beginning in a southerly direction, the boundary line the 1,000-foot contour line to; (1) The point of intersection between the 1,000-foot contour line and the north section line of section 27, T.6N./R.5E.;...

  4. 27 CFR 9.85 - Willow Creek.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... where the 1,000-foot contour line intersects Kirkham Creek (directly north of section 19, T.7 N./R.5E.), beginning in a southerly direction, the boundary line the 1,000-foot contour line to; (1) The point of intersection between the 1,000-foot contour line and the north section line of section 27, T.6N./R.5E.;...

  5. 27 CFR 9.85 - Willow Creek.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... where the 1,000-foot contour line intersects Kirkham Creek (directly north of section 19, T.7 N./R.5E.), beginning in a southerly direction, the boundary line the 1,000-foot contour line to; (1) The point of intersection between the 1,000-foot contour line and the north section line of section 27, T.6N./R.5E.;...

  6. Stream Centerline for Fanno Creek, Oregon

    USGS Publications Warehouse

    Sobieszczyk, Steven

    2011-01-01

    Fanno Creek is a tributary to the Tualatin River and flows though parts of the southwest Portland metropolitan area. The stream is heavily influenced by urban runoff and shows characteristic flashy streamflow and poor water quality commonly associated with urban streams. This data set represents the stream centerline of the current active channel as derived from light detection and ranging (LiDAR) data and aerial photographic imagery.

  7. Land cover classification for Fanno Creek, Oregon

    USGS Publications Warehouse

    Sobieszczyk, Steven

    2011-01-01

    Fanno Creek is a tributary to the Tualatin River and flows though parts of the southwest Portland metropolitan area. The stream is heavily influenced by urban runoff and shows characteristic flashy streamflow and poor water quality commonly associated with urban streams. This data set represents the floodplain land cover as derived from light detection and ranging (LiDAR) data and aerial photographic imagery. The land cover classifications represent current conditions (2009).

  8. Active channel for Fanno Creek, Oregon

    USGS Publications Warehouse

    Sobieszczyk, Steven

    2011-01-01

    Fanno Creek is a tributary to the Tualatin River and flows though parts of the southwest Portland metropolitan area. The stream is heavily influenced by urban runoff and shows characteristic flashy streamflow and poor water quality commonly associated with urban streams. This data set represents the active, wetted channel as derived from light detection and ranging (LiDAR) data and aerial photographic imagery. The wetted channel boundary is equivalent to the extent of water observed during a 2-yr high flow event.

  9. DRY CREEK WILDERNESS STUDY AREA, ARKANSAS.

    USGS Publications Warehouse

    Haley, Boyd R.; Stroud, Raymond B.

    1984-01-01

    The Dry Creek Wilderness Study Area covers an area of about 10 sq mi in parts of Logan, Scott, and Yell Counties, Arkansas. A mineral evaluation study of the area indicated that the area has a probable resource potential for natural gas and little promise for the occurrence of other mineral commodities. Less than 100,000 cu ft/day of natural gas is being produced from one well about 4 mi north of the area.

  10. Parachute Creek shale-oil program. [Brochure

    SciTech Connect

    Not Available

    1982-01-01

    Union Oil Company has a plan for commercial shale-oil production at the Parachute Creek area of Colorado. This brochure describes the property and the company's concept for room and pillar mining and upflow retorting. Environmental precautions will preserve and restore vegetation on disturbed land and will safeguard local streams and underground basinx. Union will assist local communities to provide housing and services. 17 figures. (DCK)

  11. 77 FR 21722 - Gore Creek Restoration Project; Intent To Prepare an Environmental Impact Statement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ... Forest Service Gore Creek Restoration Project; Intent To Prepare an Environmental Impact Statement AGENCY: Medicine Bow-Routt National Forests, Forest Service, USDA. Project: Gore Creek Restoration Project. ACTION... proposed Gore Creek Restoration Project (Gore Creek). The Gore Creek analysis area...

  12. Denverton Creek gas field, Solano County, California

    SciTech Connect

    Lindblom, R.G.; Jacobson, J.B.

    1988-02-01

    The Denverton Creek gas field is located in Solano County, California, 40 mi northeast of San Francisco on the west side of the Sacramento Valley. The field was discovered in 1966 by the Mobil Oil Corporation Trojan Powder 1 well from a sand of Paleocene age within the Martinez channel. During 1967 and 1968, new pool discoveries were made in other Paleocene sands. Commercial gas deliveries began in March 1967 and ceased in 1971, and the field was abandoned in 1973 with a cumulative production of 712 million ft/sup 3/ of gas from three wells. Increases in natural gas prices during the middle and late 1970s, coupled with sound geological concepts supported by improved seismic data, led to a number of discoveries in the valley. Included in this effort was reestablishment of production at Denverton Creek in 1977 by new drilling. Chevron USA, in joint ventures with Cities Service and Channel Exploration, has drilled nine wells in the field, which developed two new pool discoveries. In 1986, the field produced 5 bcf of gas from 11 wells. Gas entrapment in the Denverton Creek field is caused by a number of anomalies, including sand pinch-out, faulting, and truncations by unconformities and the Martinez channel. Although these types of entrapping mechanisms are found in other fields in the Sacramento Valley, the Denverton Creekfield is unique in that all are present in one producing area.

  13. Rock Creek Tower Painting Project : Environmental Assessment.

    SciTech Connect

    United States. Bonneville Power Administration.

    1988-10-01

    Bonneville Power Administration (BPA) built a 500-kV line across Rock Creek, a Class I trout stream about 20 miles east of Missoula, MT. Two 190-foot towers rise on either side of the Rock Creek valley, and the line between is suspended 600 feet over the valley floor. The crossing poses a hazard to passing airplanes and disrupts the natural landscape. The area where the line crosses Rock Creek is prized for its scenic beauty. In response to public demand that BPA protect the visual beauty of this area, BPA painted the towers gray to blend them best in with their natural surroundings. The issue now is to decide between either two gray towers or two orange-and-white towers. The underlying need is to resolve the conflict of pilot safety against scenic intrusion. The proposed action is to paint the gray tower aeronautical orange and white. Alternatives are to paint the orange-and-white tower back to its original gray; or leave the dilemma unresolved (the ''no-action'' alternative). 9 refs., 3 figs.

  14. Steel Creek primary producers: Periphyton and seston, L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1991

    SciTech Connect

    Bowers, J.A.; Toole, M.A.; van Duyn, Y.

    1992-02-01

    The Savannah River Site (SRS) encompasses 300 sq mi of the Atlantic Coastal Plain in west-central South Carolina. Five major tributaries of the Savannah River -- Upper Three Runs Creek, Four Mile Creek, Pen Branch, Steel Creek, and Lower Three Runs Creek -- drain the site. In 1985, L Lake, a 400-hectare cooling reservoir, was built on the upper reaches of Steel Creek to receive effluent from the restart of L-Reactor and to protect the lower reaches from thermal impacts. The Steel Creek Biological Monitoring Program was designed to assess various components of the system and identify and changes due to the operation of L-Reactor or discharge from L Lake. An intensive ecological assessment program prior to the construction of the lake provided baseline data with which to compare data accumulated after the lake was filled and began discharging into the creek. The Department of Energy must demonstrate that the operation of L-Reactor will not significantly alter the established aquatic ecosystems. This report summarizes the results of six years` data from Steel Creek under the L-Lake/Steel Creek Monitoring Program. L Lake is discussed separately from Steel Creek in Volumes NAI-SR-138 through NAI-SR-143.

  15. 77 FR 63326 - Huron Wetland Management District, Madison Wetland Management District, and Sand Lake Wetland...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-16

    ... this process through a notice in the Federal Register (73 FR 53439, September 16, 2008). We released... in the Federal Register (76 FR 65525, October 21, 2011). Huron Wetland Management District was...-consumptive uses, such as bird watching and wildlife photography, accounting for less than eight...

  16. The National Wetland Condition Assessment: National Data on Wetland Quality to Inform and Improve Wetlands Protection

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA), in collaboration with states, tribes, the US Fish and Wildlife Service (US FWS), and other federal partners will conduct the first-ever National Wetland Condition Assessment (NWCA) in 2011. The NWCA is designed to build on the succ...

  17. USGS research on Florida's isolated freshwater wetlands

    USGS Publications Warehouse

    Torres, Arturo E.; Haag, Kim H.; Lee, Terrie M.; Metz, Patricia A.

    2011-01-01

    The U.S. Geological Survey (USGS) has studied wetland hydrology and its effects on wetland health and ecology in Florida since the 1990s. USGS wetland studies in Florida and other parts of the Nation provide resource managers with tools to assess current conditions and regional trends in wetland resources. Wetland hydrologists in the USGS Florida Water Science Center (FLWSC) have completed a number of interdisciplinary studies assessing the hydrology, ecology, and water quality of wetlands. These studies have expanded the understanding of wetland hydrology, ecology, and related processes including: (1) the effects of cyclical changes in rainfall and the influence of evapotranspiration; (2) surface-water flow, infiltration, groundwater movement, and groundwater and surfacewater interactions; (3) the effects of water quality and soil type; (4) the unique biogeochemical components of wetlands required to maintain ecosystem functions; (5) the effects of land use and other human activities; (6) the influences of algae, plants, and invertebrates on environmental processes; and (7) the effects of seasonal variations in animal communities that inhabit or visit Florida wetlands and how wetland function responds to changes in the plant community.

  18. Presence and hazards of nutrients and emerging organic micropollutants from sewage lagoon discharges into Dead Horse Creek, Manitoba, Canada.

    PubMed

    Carlson, Jules C; Anderson, Julie C; Low, Jennifer E; Cardinal, Pascal; MacKenzie, Scott D; Beattie, Sarah A; Challis, Jonathan K; Bennett, Renee J; Meronek, Stephanie S; Wilks, Rebecca P A; Buhay, William M; Wong, Charles S; Hanson, Mark L

    2013-02-15

    management strategies such as constructed wetlands and/or staggered releases be used in order to minimize the hazard posed by nutrient pulses in Dead Horse Creek and other similar systems. PMID:23314381

  19. Steel creek macroinvertebrates: L Lake/steel creek biological monitoring program January 1986--December 1987

    SciTech Connect

    O'Hop, J.R.; Lauritsen, D.; Magoulik, D.

    1988-04-01

    The macroinvertebrate community in Steel Creek was monitored at 13 sampling stations from January 1986 to December 1987 to assess the effects of L-Lake impoundment on the biological community downstream from the dam. The benthic macroinvertebrate communities were sampled monthly at 13 stations in Steel Creek using artificial substrates. Macroinvertebrates suspended in the water column were collected monthly at seven stations using drift nets. Emerging aquatic insects were sampled monthly at seven stations with floating emergence traps. Invertebrates on natural substrates (bottom sediments, snags, and macrophytes) were collected at seven stations in May and September in both 1986 and 1987. Macroinvertebrates were collected in February and August of 1986 and 1987 at 13 stations in Steel Creek using dip nets. 61 refs., 79 figs., 18 tabs.

  20. Bioassessment of Hollis Creek, Oktibbeha County, Mississippi

    USGS Publications Warehouse

    Winger, P.V.; Lasier, P.J.; Bogenrieder, K.J.

    2000-01-01

    Physical, chemical and biological components at five stations on Hollis Creek, Oktibbeha County, Mississippi were evaluated using Rapid Bioassessment Protocols (RBP) and the Sediment Quality Triad (SQT) on August 24-26, 1999, in order to assess potential biological impacts from the Starkville Waste Water Treatment Facility (WWTF) on downstream resources. Two stations were selected above the WWTF and three below. The WWTF discharges treated effluent into Hollis Creek, but during storm events raw sewage may be released. Hollis Creek is a tributary of the Noxubee River that traverses the northern portion of Noxubee National Wildlife Refuge, which is managed as bottomland hardwood forest land for the protection of fish and wildlife resources. Hollis Creek was channelized throughout most of its length, resulting in high, unstable banks, degraded stream channel and unstable substratum. The RBP scores for the habitat evaluations from each station indicated that Stations 1 and 2 had degraded habitat compared to the reference site, Station 5. Benthic macroinvertebrate and fish assemblages also indicated that the biological integrity at Stations 1 and 2 was less than that of the downstream stations. The SQT showed that Stations 1 and 2 were degraded and the most likely causes of the impairment were the elevated concentrations of polycylclic aromatic hydrocarbons and metals in the sediments; Hyalella azteca survival in pore water and growth in solid-phase sediment exposures were reduced at these upstream sites. The source of contaminants to the upper reaches appears to be storm-water runoff. The close concordance between the RBP and SQT in identifying site degradation provided a preponderance of evidence indicating that the upper reaches (Stations 1 and 2) of Hollis Creek were impacted. Biological conditions improved downstream of the WWTF, even though physical degradation steinming from channelization activities were still evident. The increased discharge and stabilized base

  1. The Patroon Creek Contamination Migration Investigation

    SciTech Connect

    Dufek, K.; Zafran, A.; Moore, J.T.

    2006-07-01

    Shaw performed a Site Investigation (SI) for sediment within the Unnamed Tributary of the Patroon Creek, a section of the Patroon Creek, and the Three Mile Reservoir as part of the overall contract with the United States Army Corps of Engineers (USACE) to remediate the Colonie Formerly Utilized Sites Remedial Action Program (FUSRAP) Site. The Unnamed Tributary formerly flowed through the former Patroon Lake, which was located on the main site property and was used as a landfill for radiological and chemical wastes. The objective of the investigation was to determine the absence/presence of radioactive contamination within the three Areas of Concern (AOC). In order to accomplish this objective, Shaw assembled a team to produce a Technical Memorandum that provided an in-depth understanding of the environmental conditions related to the Patroon Creek. Upon completion and analysis of the Technical Memorandum, a Conceptual Site Model (CSM) was constructed and a Technical Planning Program (TPP) was held to develop a Sediment Investigation Work Plan and Sediment Investigation Sampling and Analysis Plan. A total of 32 sample locations were analyzed using on-site direct gamma scans with a Pancake Geiger-Mueller (PGM) instrument for screening purposes and samples were analyzed at on-site and off-site laboratories. The highest interval from each core scan was selected for on-site analysis utilizing a High Purity Germanium (HPGe) detector. Eight of these samples were sent off-site for gamma/alpha spectroscopy confirmation. The data collected during the SI indicated that the U-238 cleanup criterion was exceeded in sediment samples collected from two locations within the Unnamed Tributary but not in downstream sections of Patroon Creek or Three Mile Reservoir. Future actions for impacted sediment in the Unnamed Tributary will be further evaluated. Concentrations of U-238 and Th-232 in all other off-site sediment samples collected from the Unnamed Tributary, Patroon Creek, and

  2. Salinity influences on aboveground and belowground net primary productivity in tidal wetlands

    USGS Publications Warehouse

    Pierfelice, Kathryn N.; Graeme Lockaby, B.; Krauss, Ken W.; Conner, William H.; Noe, Gregory; Ricker, Matthew C.

    2015-01-01

    Tidal freshwater wetlands are one of the most vulnerable ecosystems to climate change and rising sea levels. However salinification within these systems is poorly understood, therefore, productivity (litterfall, woody biomass, and fine roots) were investigated on three forested tidal wetlands [(1) freshwater, (2) moderately saline, and (3) heavily salt-impacted] and a marsh along the Waccamaw and Turkey Creek in South Carolina. Mean aboveground (litterfall and woody biomass) production on the freshwater, moderately saline, heavily salt-impacted, and marsh, respectively, was 1,061, 492, 79, and 0  g m−2 year−1 versus belowground (fine roots) 860, 490, 620, and 2,128  g m−2 year−1. Litterfall and woody biomass displayed an inverse relationship with salinity. Shifts in productivity across saline sites is of concern because sea level is predicted to continue rising. Results from the research reported in this paper provide baseline data upon which coupled hydrologic/wetland models can be created to quantify future changes in tidal forest functions.

  3. Characterisation of the hydrology of an estuarine wetland

    NASA Astrophysics Data System (ADS)

    Hughes, Catherine E.; Binning, Philip; Willgoose, Garry R.

    1998-11-01

    The intertidal zone of estuarine wetlands is characterised by a transition from a saline marine environment to a freshwater environment with increasing distance from tidal streams. An experimental site has been established in an area of mangrove and salt marsh wetland in the Hunter River estuary, Australia, to characterise and provide data for a model of intertidal zone hydrology. The experimental site is designed to monitor water fluxes at a small scale (36 m). A weather station and groundwater monitoring wells have been installed and hydraulic head and tidal levels are monitored over a 10-week period along a short one-dimensional transect covering the transition between the tidal and freshwater systems. Soil properties have been determined in the laboratory and the field. A two-dimensional finite element model of the site was developed using SEEP/W to analyse saturated and unsaturated pore water movement. Modification of the water retention function to model crab hole macropores was found necessary to reproduce the observed aquifer response. Groundwater response to tidal fluctuations was observed to be almost uniform beyond the intertidal zone, due to the presence of highly permeable subsurface sediments below the less permeable surface sediments. Over the 36 m transect, tidal forcing was found to generate incoming fluxes in the order of 0.22 m 3/day per metre width of creek bank during dry periods, partially balanced by evaporative fluxes of about 0.13 m 3/day per metre width. During heavy rainfall periods, rainfall fluxes were about 0.61 m 3/day per metre width, dominating the water balance. Evapotranspiration rates were greater for the salt marsh dominated intertidal zone than the non-tidal zone. Hypersalinity and salt encrustation observed show that evapotranspiration fluxes are very important during non-rainfall periods and are believed to significantly influence salt concentration both in the surface soil matrix and the underlying aquifer.

  4. CONSTRUCTED WETLANDS FOR TREATMENT OF HEAVY METALS IN URBAN STORMWATER RUNOFF: CHEMICAL SPECIATION OF WETLAND SEDIMENTS

    EPA Science Inventory

    Heavy metals in urban stormwater runoff are primarily removed by sedimentation in stormwater best management practices (BMPs) such as constructed wetlands. Heavy metals accumulated in wetland sediments may be potentially toxic to benthic invertebrates and aquatic microorganisms, ...

  5. Exploration of the Upper Hot Creek Ranch Geothermal Resource, Nye County, Nevada

    SciTech Connect

    Dick Benoit; David Blackwell

    2006-01-01

    The Upper Hot Creek Ranch (UHCR) geothermal system had seen no significant exploration activity prior to initiation of this GRED III project. Geochemical geothermometers calculated from previously available but questionable quality analyses of the UHCR hot spring waters indicated possible subsurface temperatures of +320 oF. A complex Quaternary and Holocene faulting pattern associated with a six mile step over of the Hot Creek Range near the UHCR also indicated that this area was worthy of some exploration activity. Permitting activities began in Dec. 2004 for the temperature-gradient holes but took much longer than expected with all drilling permits finally being received in early August 2005. The drilling and geochemical sampling occurred in August 2005. Ten temperature gradient holes up to 500’ deep were initially planned but higher than anticipated drilling and permitting costs within a fixed budget reduced the number of holes to five. Four of the five holes drilled to depths of 300 to 400’ encountered temperatures close to the expected regional thermal background conditions. These four holes failed to find any evidence of a large thermal anomaly surrounding the UHCR hot springs. The fifth hole, located within a narrow part of Hot Creek Canyon, encountered a maximum temperature of 81 oF at a depth of 105’ but had cooler temperatures at greater depth. Temperature data from this hole can not be extrapolated to greater depths. Any thermal anomaly associated with the UHCR geothermal system is apparently confined to the immediate vicinity of Hot Creek Canyon where challenges such as topography, a wilderness study area, and wetlands issues will make further exploration time consuming and costly. Ten water samples were collected for chemical analysis and interpretation. Analyses of three samples of the UHCR thermal give predicted subsurface temperatures ranging from 317 to 334 oF from the Na-K-Ca, silica (quartz), and Na-Li geothermometers. The fact that all

  6. Exploration of the Upper Hot Creek Ranch Geothermal Resource, Nye County, Nevada

    SciTech Connect

    Dick Benoit; David Blackwell

    2005-10-31

    The Upper Hot Creek Ranch (UHCR) geothermal system had seen no significant exploration activity prior to initiation of this GRED III project. Geochemical geothermometers calculated from previously available but questionable quality analyses of the UHCR hot spring waters indicated possible subsurface temperatures of +320 oF. A complex Quaternary and Holocene faulting pattern associated with a six mile step over of the Hot Creek Range near the UHCR also indicated that this area was worthy of some exploration activity. Permitting activities began in Dec. 2004 for the temperature-gradient holes but took much longer than expected with all drilling permits finally being received in early August 2005. The drilling and geochemical sampling occurred in August 2005. Ten temperature gradient holes up to 500’ deep were initially planned but higher than anticipated drilling and permitting costs within a fixed budget reduced the number of holes to five. Four of the five holes drilled to depths of 300 to 400’ encountered temperatures close to the expected regional thermal background conditions. These four holes failed to find any evidence of a large thermal anomaly surrounding the UHCR hot springs. The fifth hole, located within a narrow part of Hot Creek Canyon, encountered a maximum temperature of 81 oF at a depth of 105’ but had cooler temperatures at greater depth. Temperature data from this hole can not be extrapolated to greater depths. Any thermal anomaly associated with the UHCR geothermal system is apparently confined to the immediate vicinity of Hot Creek Canyon where challenges such as topography, a wilderness study area, and wetlands issues will make further exploration time consuming and costly. Ten water samples were collected for chemical analysis and interpretation. Analyses of three samples of the UHCR thermal give predicted subsurface temperatures ranging from 317 to 334 oF from the Na-K-Ca, silica (quartz), and Na-Li geothermometers. The fact that all

  7. Temperature effects in treatment wetlands.

    PubMed

    Kadlec, R H; Reddy, K R

    2001-01-01

    Several biogeochemical processes that regulate the removal of nutrients in wetlands are affected by temperature, thus influencing the overall treatment efficiency. In this paper, the effects of temperature on carbon, nitrogen, and phosphorus cycling processes in treatment wetlands and their implications to water quality are discussed. Many environmental factors display annual cycles that mediate whole system performance. Water temperature is one of the important cyclic stimuli, but inlet flow rates and concentrations, and several features of the annual biogeochemical cycle, also can contribute to the observed patterns of nutrient and pollutant removal. Atmospheric influences, including rain, evapotranspiration, and water reaeration, also follow seasonal patterns. Processes regulating storages in wetlands are active throughout the year and can act as seasonal reservoirs of nutrients, carbon, and pollutants. Many individual wetland processes, such as microbially mediated reactions, are affected by temperature. Response was much greater to changes at the lower end of the temperature scale (< 15 degrees C) than at the optimal range (20 to 35 degrees C). Processes regulating organic matter decomposition are affected by temperature. Similarly, all nitrogen cycling reactions (mineralization, nitrification, and denitrification) are affected by temperature. The temperature coefficient (theta) varied from 1.05 to 1.37 for carbon and nitrogen cycling processes during isolated conditions. Phosphorus sorption reactions are least affected by temperature, with theta values of 1.03 to 1.12. Physical processes involved in the removal of particulate carbon, nitrogen, and phosphorus are not affected much by temperature. In contrast, observed wetland removals may have different temperature dependence. Design models are oversimplified because of limitations of data for calibration. The result of complex system behavior and the simple model is the need to interpret whole ecosystem data

  8. 75 FR 68378 - Meeting Announcement: North American Wetlands Conservation Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-05

    ... Fish and Wildlife Service Meeting Announcement: North American Wetlands Conservation Council AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of meeting. SUMMARY: The North American Wetlands Conservation Council (Council) will meet to select North American Wetlands Conservation Act (NAWCA)...

  9. 76 FR 31626 - Meeting Announcement; North American Wetlands Conservation Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-01

    ... Fish and Wildlife Service Meeting Announcement; North American Wetlands Conservation Council AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of meeting. SUMMARY: The North American Wetlands Conservation Council (Council) will meet to select North American Wetlands Conservation Act (NAWCA)...

  10. 77 FR 71820 - Meeting Announcement: North American Wetlands Conservation Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-04

    ... Fish and Wildlife Service Meeting Announcement: North American Wetlands Conservation Council AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of meeting. SUMMARY: The North American Wetlands Conservation Council (Council) will meet to select North American Wetlands Conservation Act (NAWCA)...

  11. 78 FR 71637 - Meeting Announcement: North American Wetlands Conservation Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-29

    ... Fish and Wildlife Service Meeting Announcement: North American Wetlands Conservation Council AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of meeting. SUMMARY: The North American Wetlands Conservation Council (Council) will meet to select North American Wetlands Conservation Act (NAWCA)...

  12. 77 FR 39252 - Meeting Announcement: North American Wetlands Conservation Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-02

    ... Fish and Wildlife Service Meeting Announcement: North American Wetlands Conservation Council AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of meetings. SUMMARY: The North American Wetlands Conservation Council (Council) will meet to select North American Wetlands Conservation Act (NAWCA)...

  13. 76 FR 69278 - Meeting Announcement: North American Wetlands Conservation Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-08

    ... Fish and Wildlife Service Meeting Announcement: North American Wetlands Conservation Council AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of meeting. SUMMARY: The North American Wetlands Conservation Council will meet to select North American Wetlands Conservation Act grant proposals...

  14. 78 FR 11220 - Meeting Announcement: North American Wetlands Conservation Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-15

    ... Fish and Wildlife Service Meeting Announcement: North American Wetlands Conservation Council AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of meeting. SUMMARY: The North American Wetlands Conservation Council (Council) will meet to select North American Wetlands Conservation Act (NAWCA)...

  15. 75 FR 34479 - Meeting Announcement: North American Wetlands Conservation Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-17

    ... Fish and Wildlife Service Meeting Announcement: North American Wetlands Conservation Council AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of meeting. SUMMARY: The North American Wetlands Conservation Council (Council) will meet to select North American Wetlands Conservation Act (NAWCA)...

  16. Forested wetlands constructed for mitigation of destroyed natural wetlands

    USGS Publications Warehouse

    Perry, M.C.; Pugh, S.B.; Deller, A.S.

    1995-01-01

    Forested wetlands constructed for mitigation were evaluated at six sites in Maryland to determine the success of these areas for providing suitable wildlife habitat. Natural forested wetlands were used as reference sites. Initial mortality of planted woody shrubs and trees was high (avg. 55%) and mostly attributed to excessive moisture. The number of woody seedlings from natural regeneration was inversely proportional to the amount of grass cover on the site, which was planted for erosion control. The number of volunteer woody seedlings was also inversely proportional to the distance from adjacent natural forests. Preliminary data indicate that cost does not support use of transplants and that enhancement of soil with organic supplements, followed by widespread and heavy seeding of woody plants would be more efficient and effective. Wildlife use of areas measured by avian surveys and trapping of mammals, reptiles, and amphibians showed that in general wildlife species were more representative of open grassland areas than forested habitats. Natural succession of the sites probably will take at least 20-30 years before typical values and functions of forested wetlands are obtained.

  17. Geologic map of the Skull Creek Quadrangle, Moffat County Colorado

    USGS Publications Warehouse

    Van Loenen, R. E.; Selner, Gary; Bryant, W.A.

    1999-01-01

    The Skull Creek quadrangle is in northwestern Colorado a few miles north of Rangely. The prominent structural feature of the Skull Creek quadrangle is the Skull Creek monocline. Pennsylvanian rocks are exposed along the axis of the monocline while hogbacks along its southern flank expose rocks that are from Permian to Upper Cretaceous in age. The Wolf Creek monocline and the Wolf Creek thrust fault, which dissects the monocline, are salient structural features in the northern part of the quadrangle. Little or no mineral potential exists within the quadrangle. A geologic map of the Lazy Y Point quadrangle, which is adjacent to the Skull Creek quadrangle on the west, is also available (Geologic Investigations Series I-2646). This companian map shows similar geologic features, including the western half of the Skull Creek monocline. The geology of this quadrangle was mapped because of its proximity to Dinosaur National Monument. It is adjacent to quadrangles previously mapped to display the geology of this very scenic and popular National Monument. The Skull Creek quadrangle includes parts of the Skull Creek Wilderness Study Area, which was assessed for its mineral resource potential.

  18. Characterization of Fish Creek, Teton County, Wyoming, 2004-08

    USGS Publications Warehouse

    Eddy-Miller, Cheryl A.; Peterson, David A.; Wheeler, Jerrod D.; Leemon, Daniel J.

    2010-01-01

    Fish Creek, a tributary to the Snake River, is about 15 river miles long and is located in Teton County in western Wyoming near the town of Wilson (fig. 1). Public concern about nuisance growths of aquatic plants in Fish Creek has been increasing since the early 2000s. To address this concern, the U.S. Geological Survey, in cooperation with the Teton Conservation District, began studying Fish Creek in 2004 to describe the hydrology of the creek and later (2007?08) to characterize the water quality and the biological communities. The purpose of this fact sheet is to summarize the study results from 2004 to 2008.

  19. Northeast and northwest elevations. View to south Flint Creek ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Northeast and northwest elevations. View to south - Flint Creek Hydroelectric Project, Powerhouse, Approximately 3 miles southeast of Porters Corner on Powerhouse Road, Philipsburg, Granite County, MT

  20. Are wetlands the reservoir for avian cholera?

    USGS Publications Warehouse

    Samuel, M.D.; Shadduck, D.J.; Goldberg, D.R.

    2004-01-01

    Wetlands have long been suspected to be an important reservoir for Pasteurella multocida and therefore the likely source of avian cholera outbreaks. During the fall of 1995a??98 we collected sediment and water samples from 44 wetlands where avian cholera epizootics occurred the previous winter or spring. We attempted to isolate P. multocida in sediment and surface water samples from 10 locations distributed throughout each wetland. We were not able to isolate P. multocida from any of the 440 water and 440 sediment samples collected from these wetlands. In contrast, during other investigations of avian cholera we isolated P. multocida from 20 of 44 wetlands, including 7% of the water and 4.5% of the sediment samples collected during or shortly following epizootic events. Our results indicate that wetlands are an unlikely reservoir for the bacteria that causes avian cholera.