Sample records for allergen-specific immune responses

  1. Pollen derived low molecular compounds enhance the human allergen specific immune response in vivo.

    PubMed

    Gilles-Stein, S; Beck, I; Chaker, A; Bas, M; McIntyre, M; Cifuentes, L; Petersen, A; Gutermuth, J; Schmidt-Weber, C; Behrendt, H; Traidl-Hoffmann, C

    2016-10-01

    Besides allergens, pollen release bioactive, low molecular weight compounds that modulate and stimulate allergic reactions. Clinical relevance of these substances has not been investigated to date. To elucidate the effect of a non-allergenic, low molecular weight factors from aqueous birch pollen extracts (Bet-APE < 3 kDa) on the human allergic immune response in vivo. Birch and grass pollen allergic individuals underwent skin prick testing with allergen alone, allergen plus Bet-APE < 3 kDa, or allergen plus pre-identified candidate substances from low molecular pollen fraction. Nasal allergen challenges were performed in non-atopic and pollen allergic individuals using a 3 day repeated threshold challenge battery. Subjects were either exposed to allergen alone or to allergen plus Bet-APE< 3 kDa. Local cytokine levels, nasal secretion weights, nasal congestion and symptom scores were determined. Skin prick test reactions to pollen elicited larger weals when allergens were tested together with the low molecular weight compounds from pollen. Similar results were obtained with candidate pollen-associated lipid mediators. In nasal lining fluids of allergic patients challenged with allergen plus Bet-APE < 3 kDa, IL-8 and IgE was significantly increased as compared to allergen-only challenged patients. These patients also produced increased amounts of total nasal secretion and reported more severe rhinorrhea than the allergen-only challenged group. Low molecular compounds from pollen enhance the allergen specific immune response in the skin and nose. They are therefore of potential clinical relevance in allergic patients. © 2016 John Wiley & Sons Ltd.

  2. Immunosuppression in Early Postnatal Days Induces Persistent and Allergen-Specific Immune Tolerance to Asthma in Adult Mice

    PubMed Central

    Chen, Yan; Zhang, Jin; Lu, Yong; Wang, Libo

    2015-01-01

    Bronchial asthma is a chronic airway inflammatory condition with high morbidity, and effective treatments for asthma are limited. Allergen-specific immunotherapy can only induce peripheral immune tolerance and is not sustainable. Exploring new therapeutic strategies is of great clinical importance. Recombinant adenovirus (rAdV) was used as a vector to make cells expressing cytotoxic T lymphocyte-associated antigen-4-immunoglobulin (CTLA4Ig) a soluble CTLA4 immunoglobulin fusion protein. Dendritic cells (DCs) were modified using the rAdVs together with allergens. Then these modified DCs were transplanted to mice before allergen sensitization. The persistence and specificity of immune tolerance were evaluated in mice challenged with asthma allergens at 3 and 7 months. DCs modified by CTLA4Ig showed increased IL-10 secretion, decreased IL-12 secretion, and T cell stimulation in vitro. Mice treated with these DCs in the early neonatal period developed tolerance against the allergens that were used to induce asthma in the adult stage. Asthma symptoms, lung damage, airway reactivity, and inflammatory response all improved. Humoral immunity indices showed that this therapeutic strategy strongly suppressed mice immune responses and was maintained for as long as 7 months. Furthermore, allergen cross-sensitization and challenge experiments demonstrated that this immune tolerance was allergen-specific. Treatment with CTLA4Ig modified DCs in the early neonatal period, inducing persistent and allergen-specific immune tolerance to asthma in adult mice. Our results suggest that it may be possible to develop a vaccine for asthma. PMID:25860995

  3. A mechanism for the induction of type 2 immune responses by a protease allergen in the genital tract.

    PubMed

    Oh, Ji Eun; Oh, Dong Sun; Jung, Hi Eun; Lee, Heung Kyu

    2017-02-14

    The genital mucosa is a barrier that is constantly exposed to a variety of pathogens, allergens, and external stimuli. Although both allergen exposure and parasite infections frequently occur in the genital area, the mechanism by which immune responses-particularly type 2 immunity-are induced has rarely been studied in the genital mucosa. Here, we demonstrate the induction of T helper type 2 (Th2) immunity in the genital mucosa in response to a model allergen, the protease papain. Intravaginal papain immunization induced type 2 immunity in a manner that was dependent on protease activity and the estrous phase of the mice. In addition, IL-33 was released from the vaginal epithelia after intravaginal papain immunization, leading to the activation of type 2 innate lymphoid cells (ILC2s). Moreover, the IL-33-MyD88 (myeloid differentiation primary response gene 88) signaling pathway was critical for the induction of type 2 immunity. We also found that Th2 differentiation in response to intravaginal papain treatment requires a specific dendritic cell (DC) subset that is controlled by interferon regulatory factor 4 (IRF4). These findings suggest that type 2 immunity is induced by a unique mechanism in the genital tract, which is an important, but often overlooked, barrier surface.

  4. IL-33 and Thymic Stromal Lymphopoietin Mediate Immune Pathology in Response to Chronic Airborne Allergen Exposure

    PubMed Central

    Iijima, Koji; Kobayashi, Takao; Hara, Kenichiro; Kephart, Gail M.; Ziegler, Steven F.; McKenzie, Andrew N.; Kita, Hirohito

    2014-01-01

    Humans are frequently exposed to various airborne allergens in the atmospheric environment. These allergens may trigger a complex network of immune responses in the airways, resulting in asthma and other chronic airway diseases. Here, we investigated the immunological mechanisms involved in the pathological changes induced by chronic exposure to multiple airborne allergens. Naïve mice were exposed intranasally to a combination of common airborne allergens, including the house dust mite, Alternaria, and Aspergillus, for up to 8 weeks. These allergens acted synergistically and induced robust eosinophilic airway inflammation, specific IgE antibody production, type 2 cytokine response and airway hyperreactivity (AHR) in 4 weeks, followed by airway remodeling in 8 weeks. Increased lung infiltration of T cells, B cells, and type 2 innate lymphoid cells (ILC2s) was observed. CD4+ T cells and ILC2s contributed to the sources of IL-5 and IL-13, suggesting involvement of both innate and adaptive immunity in this model. The lung levels of IL-33 increased quickly within several hours after allergen exposure and continued to rise throughout the chronic phase of inflammation. Mice deficient in IL-33 receptor (Il1rl1−/−) and TSLP receptor (Tslpr−/−) showed significant reduction in airway inflammation, IgE antibody levels and AHR. In contrast, mice deficient in IL-25 receptor or IL-1 receptor showed minimal differences as compared to wild-type animals. Thus, chronic exposure to natural airborne allergens triggers a network of innate and adaptive type 2 immune responses and airway pathology, and IL-33 and TSLP likely play key roles in this process. PMID:25015831

  5. Allergen-specific immunotherapy: update on immunological mechanisms.

    PubMed

    Alvaro, M; Sancha, J; Larramona, H; Lucas, J M; Mesa, M; Tabar, A I; Martinez-Cañavate, A

    2013-01-01

    Immunotherapy selectively modulates the allergen-specific immune response. It involves the gradual administration of increasing amounts of allergen for the purpose of inducing protective immunological changes and it is the only curative approach for specific type I allergy. Description of the allergic inflammation.- Comprehension of the early cellular changes after specific immunotherapy has been initiated. Exposure of the mechanisms involved in tolerance induction by regulatory T cells (Treg) with the inhibition of the Th2 responses. Comprehension of IL-10 and transforming growth factor (TGF- ) roles. Explanation of specific IgE, IgG and IgA changes. Description of the suppression of inflammatory responses during immunotherapy. Copyright © 2012 SEICAP. Published by Elsevier Espana. All rights reserved.

  6. Modulation of allergic immune responses by mucosal application of recombinant lactic acid bacteria producing the major birch pollen allergen Bet v 1.

    PubMed

    Daniel, C; Repa, A; Wild, C; Pollak, A; Pot, B; Breiteneder, H; Wiedermann, U; Mercenier, A

    2006-07-01

    Probiotic lactic acid bacteria (LAB) are able to modulate the host immune system and clinical trials have demonstrated that specific strains have the capacity to reduce allergic symptoms. Therefore, we aimed to evaluate the potential of recombinant LAB producing the major birch pollen allergen Bet v 1 for mucosal vaccination against birch pollen allergy. Recombinant Bet v 1-producing Lactobacillus plantarum and Lactococcus lactis strains were constructed. Their immunogenicity was compared with purified Bet v 1 by subcutaneous immunization of mice. Intranasal application of the live recombinant strains was performed to test their immunomodulatory potency in a mouse model of birch pollen allergy. Bet v 1 produced by the LAB was recognized by monoclonal anti-Bet v 1 and IgE antibodies from birch pollen-allergic patients. Systemic immunization with the recombinant strains induced significantly lower IgG1/IgG2a ratios compared with purified Bet v 1. Intranasal pretreatment led to reduced allergen-specific IgE vs enhanced IgG2a levels and reduced interleukin (IL)-5 production of splenocytes in vitro, indicating a shift towards non-allergic T-helper-1 (Th1) responses. Airway inflammation, i.e. eosinophils and IL-5 in lung lavages, was reduced using either Bet v 1-producing or control strains. Allergen-specific secretory IgA responses were enhanced in lungs and intestines after pretreatment with only the Bet v 1-producing strains. Mucosal vaccination with live recombinant LAB, leading to a shift towards non-allergic immune responses along with enhanced allergen-specific mucosal IgA levels offers a promising approach to prevent systemic and local allergic immune responses.

  7. Lack of allergy to timothy grass pollen is not a passive phenomenon but associated with the allergen-specific modulation of immune reactivity.

    PubMed

    Hinz, D; Seumois, G; Gholami, A M; Greenbaum, J A; Lane, J; White, B; Broide, D H; Schulten, V; Sidney, J; Bakhru, P; Oseroff, C; Wambre, E; James, E A; Kwok, W W; Peters, B; Vijayanand, P; Sette, A

    2016-05-01

    Timothy grass (TG) pollen is a common seasonal airborne allergen associated with symptoms ranging from mild rhinitis to severe asthma. The aim of this study was to characterize changes in TG-specific T cell responses as a function of seasonality. Peripheral blood mononuclear cells (PBMCs) obtained from allergic individuals and non-allergic controls, either during the pollen season or out of season, were stimulated with either TG extract or a pool of previously identified immunodominant antigenic regions. PBMCs from allergic subjects exhibit higher IL-5 and IL-10 responses in season than when collected out of season. In the case of non-allergic subjects, as expected we observed lower IL-5 responses and robust production of IFN-γ compared to allergic individuals. Strikingly, non-allergic donors exhibited an opposing pattern, with decreased immune reactivity in season. The broad down-regulation in non-allergic donors indicates that healthy individuals are not oblivious to allergen exposure, but rather react with an active modulation of responses following the antigenic stimulus provided during the pollen season. Transcriptomic analysis of allergen-specific T cells defined genes modulated in concomitance with the allergen exposure and inhibition of responses in non-allergic donors. Magnitude and functionality of T helper cell responses differ substantially in season vs. out of season in allergic and non-allergic subjects. The results indicate the specific and opposing modulation of immune responses following the antigenic stimulation during the pollen season. This seasonal modulation reflects the enactment of specific molecular programmes associated with health and allergic disease. © 2015 John Wiley & Sons Ltd.

  8. Helminth Allergens, Parasite-Specific IgE, and Its Protective Role in Human Immunity

    PubMed Central

    Fitzsimmons, Colin Matthew; Falcone, Franco Harald; Dunne, David William

    2014-01-01

    The Th2 immune response, culminating in eosinophilia and IgE production, is not only characteristic of allergy but also of infection by parasitic worms (helminths). Anti-parasite IgE has been associated with immunity against a range of helminth infections and many believe that IgE and its receptors evolved to help counter metazoan parasites. Allergens (IgE-antigens) are present in only a small minority of protein families and known IgE targets in helminths belong to these same families (e.g., EF-hand proteins, tropomyosin, and PR-1 proteins). During some helminth infection, especially with the well adapted hookworm, the Th2 response is moderated by parasite-expressed molecules. This has been associated with reduced allergy in helminth endemic areas and worm infection or products have been proposed as treatments for allergic conditions. However, some infections (especially Ascaris) are associated with increased allergy and this has been linked to cross-reactivity between worm proteins (e.g., tropomyosins) and highly similar molecules in dust-mites and insects. The overlap between allergy and helminth infection is best illustrated in Anisakis simplex, a nematode that when consumed in under-cooked fish can be both an infective helminth and a food allergen. Nearly 20 molecular allergens have been isolated from this species, including tropomyosin (Ani s 3) and the EF-hand protein, Ani s troponin. In this review, we highlight aspects of the biology and biochemistry of helminths that may have influenced the evolution of the IgE response. We compare dominant IgE-antigens in worms with clinically important environmental allergens and suggest that arrays of such molecules will provide important information on anti-worm immunity as well as allergy. PMID:24592267

  9. In vivo and in vitro immunomodulation of Der p 1 allergen-specific response by Lactobacillus plantarum bacteria.

    PubMed

    Hisbergues, M; Magi, M; Rigaux, P; Steuve, J; Garcia, L; Goudercourt, D; Pot, B; Pestel, J; Jacquet, A

    2007-09-01

    Lactic acid bacteria (LAB) were reported to reduce some allergic manifestations in mice and humans but their impact on the aeroallergen-dependent immune mechanisms is still debated. The potential capacities of Lactobacillus plantarum NCIMB8826 to reduce the allergic response induced by Der p 1, the major house dust mite allergen of Dermatophagoides pteronyssinus, were evaluated in vivo and in vitro. Methods First, the effect of the intranasal co-administration of LAB and purified Der p 1 allergen before a sensitization protocol was evaluated. The allergen-specific antibody and cellular responses as well as airway inflammation were measured. Second, the impact of LAB on the cytokine profile of spleens cells from Der p 1-sensitized mice was assessed. Third, upon stimulation with LAB, the levels of cytokine produced by dendritic cells derived from the bone marrow (BMDCs) of wild-type, Toll-like receptor 2 (TLR2)-, TLR4- and MyD88-KO mice were compared. Results The co-application of L. plantarum and Der p 1 induced a T-helper type 1 (Th1)-biased allergen-specific IgG response, the absence of specific IgE response and favoured the production of INF-gamma upon allergen re-stimulation. Moreover, the previous LAB administration reduced the development of bronchoalveolar lavage eosinophilia usually induced by aerosol exposure. Additionally, the studied LAB strain was shown to modify in vitro the cytokine level produced by Der p 1-sensitized spleen cells mainly towards a Th1 profile. Finally, L. plantarum stimulated high IL-12 and moderate IL-10 production in mouse BMDCs notably through the TLR2-, MyD88-dependent and TLR4-independent pathway. In vivo co-administration of probiotic LAB with Der p 1 might prevent the development of the mite allergic response. The probiotic L. plantarum was shown to display in vitro therapeutic potentials for the treatment of allergy and to trigger the immune system by a TLR2- and MyD88-dependent signalling pathway.

  10. Glove-derived foreign proteins induce allergen-specific IgE in a mouse model.

    PubMed

    Busch, Marion; Schröder, Claudia; Baron, Jens-Malte; Ott, Hagen; Bruckner, Thomas; Diepgen, Thomas L; Mahler, Vera

    2008-04-01

    Currently, most medical gloves are produced with a low content of natural rubber latex (NRL) protein. However, they may be substituted by proteins of foreign origin to maintain specific properties of the material. The aim of this study was to investigate the allergenicity and immunogenicity of unexpected proteins (i.e., soy and casein) compared with NRL proteins in a murine model in BALB/c mice. All respective allergen sources (extracts from three brands of NRL gloves, soy, and casein) were able to induce significant allergen-specific IgE and IgG(1) responses. On average, the highest IgE induction occurred after immunization with NRL, followed by soy and casein. Certain individuals from each treatment group exhibited levels of specific IgE as high as due to NRL. To analyze further specific IgE responses on a single allergen level, we established a microarray based on recombinant allergens for allergen-specific murine IgE detection. Besides specific IgE against rHev b 3, -6, -7, -8, and -11, specific IgE against kappa-casein could be detected in mice immunized with NRL glove extract, indicating a sensitization potential of the contained foreign protein. The substitution of genuine latex proteins by proteins of foreign origin may lead to a shift and de novo increase in sensitization to the finished products.

  11. Chemical modification of birch allergen extract leads to a reduction in allergenicity as well as immunogenicity.

    PubMed

    Würtzen, Peter Adler; Lund, Lise; Lund, Gitte; Holm, Jens; Millner, Anders; Henmar, Helene

    2007-01-01

    In Europe, specific immunotherapy is currently conducted with vaccines containing allergen preparations based on intact extracts. In addition to this, chemically modified allergen extracts (allergoids) are used for specific allergy treatment. Reduced allergenicity and thereby reduced risk of side effects in combination with retained ability to activate T cells and induce protective allergen-specific antibody responses has been claimed for allergoids. In the current study, we compared intact allergen extracts and allergoids with respect to allergenicity and immunogenicity. The immunological response to birch allergen extract, alum-adsorbed extract, birch allergoid and alum-adsorbed allergoid was investigated in vitro in human basophil histamine release assay and by stimulation of human allergen-specific T cell lines. In vivo, Bet v 1-specific IgG titers in mice were determined after repetitive immunizations. In all patients tested (n = 8), allergoid stimulations led to reduced histamine release compared to the intact allergen extract. However, the allergoid preparations were not recognized by Bet v 1-specific T cell lines (n = 7), which responded strongly to the intact allergen extract. Mouse immunizations showed a clearly reduced IgG induction by allergoids and a strongly potentiating effect of the alum adjuvant. Optimal IgG titers were obtained after 3 immunizations with intact allergen extracts, while 5 immunizations were needed to obtain maximal response to the allergoid. The reduced histamine release observed for allergoid preparations may be at the expense of immunological efficacy because the chemical modifications lead to a clear reduction in T cell activation and the ability to induce allergen-specific IgG antibody responses. Copyright 2007 S. Karger AG, Basel.

  12. Allergen-Specific Cytokine Polarization Protects Shetland Ponies against Culicoides obsoletus-Induced Insect Bite Hypersensitivity

    PubMed Central

    Meulenbroeks, Chantal; van der Lugt, Jaco J.; van der Meide, Nathalie M. A.; Willemse, Ton; Rutten, Victor P. M. G.; Zaiss, Dietmar M. W.

    2015-01-01

    The immunological mechanisms explaining development of an allergy in some individuals and not in others remain incompletely understood. Insect bite hypersensitivity (IBH) is a common, seasonal, IgE-mediated, pruritic skin disorder that affects considerable proportions of horses of different breeds, which is caused by bites of the insect Culicoides obsoletus (C. obsoletus). We investigated the allergen-specific immune status of individual horses that had either been diagnosed to be healthy or to suffer of IBH. Following intradermal allergen injection, skin biopsies were taken of IBH-affected and healthy ponies and cytokine expression was determined by RT-PCR. In addition, allergen-specific antibody titers were measured and cytokine expression of in vitro stimulated, allergen-specific CD4 T-cells was determined. 24 hrs after allergen injection, a significant increase in mRNA expression of the type-2 cytokine IL-4 was observed in the skin of IBH-affected Shetland ponies. In the skin of healthy ponies, however, an increase in IFNγ mRNA expression was found. Analysis of allergen-specific antibody titers revealed that all animals produced allergen-specific antibodies, and allergen-specific stimulation of CD4 T-cells revealed a significant higher percentage of IFNγ-expressing CD4 T-cells in healthy ponies compared to IBH-affected ponies. These data indicate that horses not affected by IBH, in contrast to the so far established dogma, are not immunologically ignorant but have a Th1-skewed allergen-specific immune response that appears to protect against IBH-associated symptoms. To our knowledge this is the first demonstration of a natural situation, in which an allergen-specific immune skewing is protective in an allergic disorder. PMID:25901733

  13. ASSESSMENT OF IMMUNE RESPONSES TO PENICILLIUM CHRYSOGENUM AND CHARACTERIZATION OF ITS ALLERGENS

    EPA Science Inventory

    Assessment of immune responses to Penicillium chrysogenum and characterization of its allergens

    Yongjoo Chung1, Michael E Viana2, Lisa B Copeland3, and MaryJane K Selgrade3, Marsha D W Ward3. 1 UNC, SPH, Chapel Hill, NC, 2NCSU, CVM, Raleigh, NC, 3US EPA, ORD, NHEERL, RTP,...

  14. Prophylactic and therapeutic vaccination with carrier-bound Bet v 1 peptides lacking allergen-specific T cell epitopes reduces Bet v 1-specific T cell responses via blocking antibodies in a murine model for birch pollen allergy.

    PubMed

    Linhart, B; Narayanan, M; Focke-Tejkl, M; Wrba, F; Vrtala, S; Valenta, R

    2014-02-01

    Vaccines consisting of allergen-derived peptides lacking IgE reactivity and allergen-specific T cell epitopes bound to allergen-unrelated carrier molecules have been suggested as candidates for allergen-specific immunotherapy. To study whether prophylactic and therapeutic vaccination with carrier-bound peptides from the major birch pollen allergen Bet v 1 lacking allergen-specific T cell epitopes has influence on Bet v 1-specific T cell responses. Three Bet v 1-derived peptides, devoid of Bet v 1-specific T cell epitopes, were coupled to KLH and adsorbed to aluminium hydroxide to obtain a Bet v 1-specific allergy vaccine. Groups of BALB/c mice were immunized with the peptide vaccine before or after sensitization to Bet v 1. Bet v 1- and peptide-specific antibody responses were analysed by ELISA. T cell and cytokine responses to Bet v 1, KLH, and the peptides were studied in proliferation assays. The effects of peptide-specific and allergen-specific antibodies on T cell responses and allergic lung inflammation were studied using specific antibodies. Prophylactic and therapeutic vaccination with carrier-bound Bet v 1 peptides induced a Bet v 1-specific IgG antibody response without priming/boosting of Bet v 1-specific T cells. Prophylactic and therapeutic vaccination of mice with the peptide vaccine induced Bet v 1-specific antibodies which suppressed Bet v 1-specific T cell responses and allergic lung inflammation. Vaccination with carrier-bound allergen-derived peptides lacking allergen-specific T cell epitopes induces allergen-specific IgG antibodies which suppress allergen-specific T cell responses and allergic lung inflammation. © 2013 John Wiley & Sons Ltd.

  15. Mechanisms of allergen-specific immunotherapy and novel ways for vaccine development.

    PubMed

    Jutel, Marek; Van de Veen, Willem; Agache, Ioana; Azkur, Kürsat A; Akdis, Mübeccel; Akdis, Cezmi A

    2013-12-01

    Allergen-specific immunotherapy (SIT) is the only available curative treatment of allergic diseases. Recent evidence provided a plausible explanation to its multiple mechanisms inducing both rapid desensitization and long-term allergen-specific immune tolerance, and suppression of allergic inflammation in the affected tissues. During SIT, peripheral tolerance is induced by the generation of allergen-specific regulatory T cells, which suppress proliferative and cytokine responses against the allergen of interest. Regulatory T cells are characterized by IL-10 and TGF-beta secretion and expression of important cell surface suppressive molecules such as cytotoxic T lymphocyte antigen-4 and programmed death-1 that directly or indirectly influence effector cells of allergic inflammation, such as mast cells, basophils and eosinophils. Regulatory T cells and particularly IL-10 also have an influence on B cells, suppressing IgE production and inducing the production of blocking type IgG4 antibodies. In addition, development of allergen-specific B regulatory cells that produce IL-10 and develop into IgG4 producing plasma cells represent essential players in peripheral tolerance. These findings together with the new biotechnological approaches create a platform for development of the advanced vaccines. Moreover, reliable biomarkers could be selected and validated with the intention to select the patients who will benefit most from this immune-modifying treatment. Thus, allergen-SIT could provide a complete cure for a larger number of allergic patients and novel preventive approaches need to be elaborated.

  16. Immune responses to novel allergens and modulation of inflammation by vitamin K3 analogue: a ROS dependent mechanism.

    PubMed

    Kohli, Vineet; Sharma, Deepak; Sandur, Santosh Kumar; Suryavanshi, Shweta; Sainis, Krishna B

    2011-02-01

    The possibility of newer allergens being responsible for atopy needs to be explored at regional level due to environmental variables. Current studies were undertaken to identify common environmental allergens causing atopy in a defined population of India and to correlate the presence of various risk factors with the clinical presentation of allergy. Newer allergens like human dander and rice grain dust were identified and reported as the most common cause of atopy in this region. Atopy, elevated serum total IgE and familial tendency, was observed in 88%, 69% and 58% of allergic patients respectively. Further, allergen-specific immune responses like lymphocyte proliferation and cytokine secretion were studied in vitro using peripheral blood mononuclear cells (PBMC) isolated from both allergic and non-allergic individuals. Although, some allergens induced significant lymphocyte proliferation in vitro, allergen-induced cytokine secretion except that of TNF-α was not seen. Significantly higher ratio of secreted IL-4/IFN-γ cytokines was observed in PBMC isolated from allergic subjects in response to PHA. Plumbagin (vitamin K3 analogue) completely inhibited PHA-induced cytokine production in PBMC, in both allergic and non-allergic individuals. Plumbagin modulated the levels of intracellular reactive oxygen species and glutathione and suppressed PHA induced activation of NF-κB in human PBMC. The results thus show in human PMBC, for the first time, the anti-allergic and anti-inflammatory effects of plumbagin and underscore its therapeutic potential. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. The quest for bacterial allergens.

    PubMed

    Nordengrün, Maria; Michalik, Stephan; Völker, Uwe; Bröker, Barbara M; Gómez-Gascón, Lidia

    2018-04-26

    Allergies are complex diseases featuring local tissue inflammation, which is characterized by an exaggerated type 2 immune response to environmental compounds known as allergens. Pollens, environmental fungi, and house dust mites are examples of common allergens. Bacteria have a dual role in allergy. Usually, they are associated with protection, however, certain bacterial species promote the development and exacerbation of allergic inflammation. Notably, IgE antibodies specific for bacterial antigens are found in the sera of allergic individuals. This implies that some bacterial factors are allergens, eliciting a specific type 2 immune response. However, to date, only a few of these are molecularly defined. This review summarizes the current knowledge about known bacterial allergens, and it provides an overview of the available techniques for the discovery of new allergens as well as for measuring the immune responses directed against them. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

  18. Intrauterine sensitization of allergen-specific IgE analyzed by a highly sensitive new allergen microarray.

    PubMed

    Kamemura, Norio; Tada, Hitomi; Shimojo, Naoki; Morita, Yoshinori; Kohno, Yoichi; Ichioka, Takao; Suzuki, Koichi; Kubota, Kenji; Hiyoshi, Mineyoshi; Kido, Hiroshi

    2012-07-01

    To design a rational allergy prevention program, it is important to determine whether allergic sensitization starts in utero under the maternal immune system. To investigate the origin of allergen-specific IgE antibodies in cord blood (CB) and maternofetal transfer of immunoglobulins. The levels of food and inhalant allergen-specific IgE, IgA, IgG, and IgG(4) antibodies in CB and maternal blood (MB) from 92 paired neonates and mothers were measured by using a novel allergen microarray of diamond-like-carbon-coated chip, with high-sensitivity detection of allergen-specific antibodies and allergen profiles. The levels of allergen-specific IgE antibodies against food and inhalant allergens and allergen profiles were identical in CB and newborn blood, but the levels and profiles, specifically against inhalant allergens, were different from those in MB. The level of allergen-specific IgA antibodies was below the detection levels in CB despite clear detection in MB. Therefore, contamination with MB in CB was excluded on the basis of extremely low levels of IgA antibodies in CB and the obvious mismatch of the allergen-specific IgE and IgA profiles between CB and MB. However, the levels of allergen-specific IgG and IgG(4) antibodies and their allergen profiles were almost identical in both MB and CB. Allergen-specific levels of IgE and IgA antibodies and their allergen profiles analyzed by the diamond-like-carbon allergen chip indicate that IgE antibodies in CB are of fetal origin. Food-allergen specific IgE antibodies were detected more often than inhalant-allergen specific IgE antibodies in CB, the reason of which remains unclarified. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  19. Airway uric acid is a sensor of inhaled protease allergens and initiates type 2 immune responses in respiratory mucosa1

    PubMed Central

    Hara, Kenichiro; Iijima, Koji; Elias, Martha K.; Seno, Satoshi; Tojima, Ichiro; Kobayashi, Takao; Kephart, Gail M.; Kurabayashi, Masahiko; Kita, Hirohito

    2014-01-01

    While type 2 immune responses to environmental antigens are thought to play pivotal roles in asthma and allergic airway diseases, the immunological mechanisms that initiate the responses are largely unknown. Many allergens have biologic activities, including enzymatic activities and abilities to engage innate pattern-recognition receptors such as TLR4. Here we report that IL-33 and thymic stromal lymphopoietin (TSLP) were produced quickly in the lungs of naïve mice exposed to cysteine proteases, such as bromelain and papain, as a model for allergens. IL-33 and TSLP sensitized naïve animals to an innocuous airway antigen OVA, which resulted in production of type 2 cytokines and IgE antibody and eosinophilic airway inflammation when mice were challenged with the same antigen. Importantly, upon exposure to proteases, uric acid (UA) was rapidly released into the airway lumen, and removal of this endogenous UA by uricase prevented type 2 immune responses. UA promoted secretion of IL-33 by airway epithelial cells in vitro, and administration of UA into the airways of naïve animals induced extracellular release of IL-33, followed by both innate and adaptive type 2 immune responses in vivo. Finally, a potent UA synthesis inhibitor, febuxostat, mitigated asthma phenotypes that were caused by repeated exposure to natural airborne allergens. These findings provide mechanistic insights into the development of type 2 immunity to airborne allergens and recognize airway UA as a key player that regulates the process in respiratory mucosa. PMID:24663677

  20. Saccharomyces cerevisiae-Derived Mannan Does Not Alter Immune Responses to Aspergillus Allergens.

    PubMed

    Lew, D Betty; LeMessurier, Kim S; Palipane, Maneesha; Lin, Yanyan; Samarasinghe, Amali E

    2018-01-01

    Severe asthma with fungal sensitization predominates in the population suffering from allergic asthma, to which there is no cure. While corticosteroids are the mainstay in current treatment, other means of controlling inflammation may be beneficial. Herein, we hypothesized that mannan from Saccharomyces cerevisiae would dampen the characteristics of fungal allergic asthma by altering the pulmonary immune responses. Using wild-type and transgenic mice expressing the human mannose receptor on smooth muscle cells, we explored the outcome of mannan administration during allergen exposure on the pathogenesis of fungal asthma through measurement of cardinal features of disease such as inflammation, goblet cell number, and airway hyperresponsiveness. Mannan treatment did not alter most hallmarks of allergic airways disease in wild-type mice. Transgenic mice treated with mannan during allergen exposure had an equivalent response to non-mannan-treated allergic mice except for a prominent granulocytic influx into airways and cytokine availability. Our studies suggest no role for mannan as an inflammatory regulator during fungal allergy.

  1. Safety of engineered allergen-specific immunotherapy vaccines

    PubMed Central

    Focke-Tejkl, Margarete; Valenta, Rudolf

    2015-01-01

    Purpose of review The purpose of the review is to summarize and comment on recent developments regarding the safety of engineered immunotherapy vaccines. Recent findings In the last 2 years, several studies were published in which allergy vaccines were developed on the basis of chemical modification of natural allergen extracts, the engineering of allergen molecules by recombinant DNA technology and synthetic peptide chemistry, allergen genes, new application routes and conjugation with immune modulatory molecules. Several studies exemplified the general applicability of hypoallergenic vaccines on the basis of recombinant fusion proteins consisting of nonallergenic allergen-derived peptides fused to allergen-unrelated carrier molecules. These vaccines are engineered to reduce both, immunoglobulin E (IgE) as well as allergen-specific T cell epitopes in the vaccines, and thus should provoke less IgE and T-cell-mediated side-effects. They are made to induce allergen-specific IgG antibodies against the IgE-binding sites of allergens with the T-cell help of the carrier molecule. Summary Several interesting examples of allergy vaccines with potentially increased safety profiles have been published. The concept of fusion proteins consisting of allergen-derived hypoallergenic peptides fused to allergen-unrelated proteins that seems to be broadly applicable for a variety of allergens appears to be of particular interest because it promises not only to reduce side-effects but also to increase efficacy and convenience of allergy vaccines. PMID:22885888

  2. T cell epitope-specific defects in the immune response to cat allergen in patients with atopic dermatitis.

    PubMed

    Carneiro, Raquel; Reefer, Amanda; Wilson, Barbara; Hammer, Juergen; Platts-Mills, Thomas; Custis, Natalie; Woodfolk, Judith

    2004-04-01

    Atopic dermatitis (AD) is often associated with high titer IgE antibodies (ab) to allergens, and IL-10-mediated regulation of IFN-gamma has been proposed to contribute to this IgE ab production. However, the relevance of IL-10 and IFN-gamma to IgE associated with AD has not been examined in the context of an allergen-specific system. Analysis of PBMC responses in vitro showed deficient T cell proliferation to overlapping IL-10- (peptide (P) 2:1) and IFN-gamma- (P2:2) inducing chain 2 major epitopes of cat allergen (Fel d 1) in cultures from sensitized AD patients (mean IgE to cat=20.9 IU/ml). Diminished IFN-gamma induction by Fel d 1 and P2:2, along with elevated peptide-induced IL-10 (except for P2:1) was observed in PBMC cultures from AD subjects compared with non-AD (sensitized and non-sensitized) subjects. Neither T cell proliferation nor IFN-gamma production to chain 2 epitopes could be restored by anti-IL-10 mAb in cultures from sensitized AD subjects. Moreover, allergen avoidance was associated with a paradoxical decrease in both IL-10 and IFN-gamma in peptide-stimulated PBMC from these subjects. Control of IFN-gamma production to chain 2 epitopes by IL-10 may be relevant to sensitization status. Development of high titer IgE ab in AD could reflect a failure of this mechanism.

  3. Staphylococcal enterotoxin A-activated regulatory T cells promote allergen-specific TH2 response to intratracheal allergen inoculation.

    PubMed

    Zeng, Wei-Ping; McFarland, Margaret M; Zhou, Baohua; Holtfreter, Silva; Flesher, Susan; Cheung, Ambrose; Mallick, Avishek

    2017-02-01

    T H 2 responses are implicated in asthma pathobiology. Epidemiologic studies have found a positive association between asthma and exposure to staphylococcal enterotoxins. We used a mouse model of asthma to determine whether staphylococcal enterotoxins promote T H 2 differentiation of allergen-specific CD4 conventional T (Tcon) cells and asthma by activating allergen-nonspecific regulatory T (Treg) cells to create a T H 2-polarizing cytokine milieu. Ovalbumin (OVA)-specific, staphylococcal enterotoxin A (SEA)-nonreactive naive CD4 Tcon cells were cocultured with SEA-reactive allergen-nonspecific Treg or CD4 Tcon cells in the presence of OVA and SEA. The OVA-specific CD4 T cells were then analyzed for IL-13 and IFN-γ expression. SEA-activated Treg cells were analyzed for the expression of the T H 2-polarizing cytokine IL-4 and the T-cell activation markers CD69 and CD62L. For asthma induction, mice were intratracheally sensitized with OVA or cat dander extract (CDE) alone or together with SEA and then challenged with OVA or CDE. Mice were also subject to transient Treg cell depletion before sensitization with OVA plus SEA. Asthma features and T H 2 differentiation in these mice were analyzed. SEA-activated Treg cells induced IL-13 but suppressed IFN-γ expression in OVA-specific CD4 Tcon cells. SEA-activated Treg cells expressed IL-4, upregulated CD69, and downregulated CD62L. Sensitization with OVA plus SEA but not OVA alone induced asthma, and SEA exacerbated asthma induced by CDE. Depletion of Treg cells abolished these effects of SEA and IL-13 expression in OVA-specific T cells. SEA promoted T H 2 responses of allergen-specific T cells and asthma pathogenesis by activating Treg cells. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  4. Allergen-specific T-cell tolerance induction with allergen-derived long synthetic peptides: results of a phase I trial.

    PubMed

    Fellrath, Jean-Marc; Kettner, Alexander; Dufour, Nathalie; Frigerio, Christian; Schneeberger, Dominique; Leimgruber, Annette; Corradin, Gampietro; Spertini, François

    2003-04-01

    There is a need to improve the safety and efficacy of allergen-specific immunotherapy. Long synthetic peptide-based immunotherapy was proven safe, immunogenic, and protective in preclinical trials. To evaluate the safety and immunogenicity of an allergen-derived long synthetic overlapping peptide (LSP) immunotherapy, we designed a double-blind, placebo-controlled phase I clinical trial in patients hypersensitive to bee venom. Patients from the active group were injected at day 0 with a mixture of 3 LSPs mapping the entire PLA2 molecule, a major bee venom allergen, in a dose-escalating protocol to a maintenance dose of 100 microg per peptide repeated at days 4, 7, 14, 42, and 70. The control group was injected with human albumin. Whereas specific T-cell proliferation in the peptide group increased up to day 14, a sharp decline was observed thereafter, ending in specific T-cell hyporesponsiveness at day 80. Serum-specific IgG4 response was enhanced, in contrast to anti-PLA2 IgE. Specific T-cell cytokine modulation was marked by increased IL-10 and IFN-gamma secretion. LSP injections were well tolerated in all patients except for mild, late allergic reactions in 2 patients at day 70. The results of this short-term study demonstrate that LSP-based allergen immunotherapy was safe and able to induce T(H)1-type immune deviation, allergen-specific IL-10 production, and T-cell hyporesponsiveness. LSPs, which offer the advantage of covering all possible T-cell epitopes for any HLA genotype, can be considered candidates for a novel and safe approach of specific immunotherapy.

  5. Extracellular vesicles are key intercellular mediators in the development of immune dysfunction to allergens in the airways.

    PubMed

    Shin, T-S; Kim, J H; Kim, Y-S; Jeon, S G; Zhu, Z; Gho, Yong Song; Kim, Yoon-Keun

    2010-10-01

    Previous evidence indicates that inhalation of lipopolysaccharide (LPS)-containing with allergens induced mixed Th1 and Th17 cell responses in the airways. Extracellular vesicles (EVs) are nanometer-sized spherical, lipid-bilayered structures and are recently in the public eye as an intercellular communicator in immune responses. To evaluate the role of EVs secreted by LPS inhalation in the development of airway immune dysfunction in response to allergens. Extracellular vesicles in bronchoalveolar lavage fluids of BALB/c mice were isolated and characterized 24 h after applications to the airway of 10 μg of LPS for 3 days. To evaluate the role of LPS-induced EVs on the development of airway immune dysfunction, in vivo and in vitro experiments were performed using the isolated LPS-induced EVs. The inhalation of LPS enhanced EVs release into the BAL fluid, when compared to the application of PBS. Airway sensitization with allergens and LPS-induced EVs resulted in a mixed Th1 and Th17 cell responses, although that with allergens and PBS-induced EVs induced immune tolerance. In addition, LPS-induced EVs enhanced the production of Th1- and Th17-polarizing cytokines (IL-12p70 and IL-6, respectively) by lung dendritic cells. Moreover, the immune responses induced by the LPS-induced EVs were blocked by denaturation of the EV-bearing proteins. These data suggest that EVs (especially, the protein components) secreted by LPS inhalation are a key intercellular communicator in the development of airway immune dysfunction to inhaled LPS-containing allergens.

  6. Extracellular vesicles are key intercellular mediators in the development of immune dysfunction to allergens in the airways

    PubMed Central

    Shin, T-S; Kim, J H; Kim, Y-S; Jeon, S G; Zhu, Z; Gho, Y S; Kim, Y-K

    2010-01-01

    Background Previous evidence indicates that inhalation of lipopolysaccharide (LPS)-containing with allergens induced mixed Th1 and Th17 cell responses in the airways. Extracellular vesicles (EVs) are nanometer-sized spherical, lipid-bilayered structures and are recently in the public eye as an intercellular communicator in immune responses. Objective To evaluate the role of EVs secreted by LPS inhalation in the development of airway immune dysfunction in response to allergens. Methods Extracellular vesicles in bronchoalveolar lavage fluids of BALB/c mice were isolated and characterized 24 h after applications to the airway of 10 μg of LPS for 3 days. To evaluate the role of LPS-induced EVs on the development of airway immune dysfunction, in vivo and in vitro experiments were performed using the isolated LPS-induced EVs. Results The inhalation of LPS enhanced EVs release into the BAL fluid, when compared to the application of PBS. Airway sensitization with allergens and LPS-induced EVs resulted in a mixed Th1 and Th17 cell responses, although that with allergens and PBS-induced EVs induced immune tolerance. In addition, LPS-induced EVs enhanced the production of Th1- and Th17-polarizing cytokines (IL-12p70 and IL-6, respectively) by lung dendritic cells. Moreover, the immune responses induced by the LPS-induced EVs were blocked by denaturation of the EV-bearing proteins. Conclusion These data suggest that EVs (especially, the protein components) secreted by LPS inhalation are a key intercellular communicator in the development of airway immune dysfunction to inhaled LPS-containing allergens. PMID:20337607

  7. A preventive immunization approach against insect bite hypersensitivity: Intralymphatic injection with recombinant allergens in Alum or Alum and monophosphoryl lipid A.

    PubMed

    Jonsdottir, Sigridur; Svansson, Vilhjalmur; Stefansdottir, Sara Bjork; Schüpbach, Gertraud; Rhyner, Claudio; Marti, Eliane; Torsteinsdottir, Sigurbjorg

    2016-04-01

    Insect bite hypersensitivity (IBH) is an IgE-mediated dermatitis of horses caused by bites of Culicoides insects, not indigenous to Iceland. Horses born in Iceland and exported to Culicoides-rich areas are frequently affected with IBH. The aims of the study were to compare immunization with recombinant allergens using the adjuvant aluminum hydroxide (Alum) alone or combined with monophosphoryl lipid A (MPLA) for development of a preventive immunization against IBH. Twelve healthy Icelandic horses were vaccinated intralymphatically three times with 10 μg each of four recombinant Culicoides nubeculosus allergens in Alum or in Alum/MPLA. Injection with allergens in both Alum and Alum/MPLA resulted in significant increase in specific IgG subclasses and IgA against all r-allergens with no significant differences between the adjuvant groups. The induced antibodies from both groups could block binding of allergen specific IgE from IBH affected horses to a similar extent. No IgE-mediated reactions were induced. Allergen-stimulated PBMC from Alum/MPLA horses but not from Alum only horses produced significantly more IFNγ and IL-10 than PBMC from non-vaccinated control horses. In conclusion, intralymphatic administration of small amounts of pure allergens in Alum/MPLA induces high IgG antibody levels and Th1/Treg immune response and is a promising approach for immunoprophylaxis and immunotherapy against IBH. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Allergen-induced Th1 and Th2 cytokine secretion in relation to specific allergen sensitization and atopic symptoms in children.

    PubMed

    Jenmalm, M C; Van Snick, J; Cormont, F; Salman, B

    2001-10-01

    Allergic diseases are believed to be due to T helper (Th)2-like immunity to allergens in affected tissues, and immune responses to allergens are characterized by a cross-regulation between Th1 and Th2 cells. Atopic individuals may develop IgE antibodies to only one or more allergens. However, the mechanisms behind sensitization to a specific allergen, e.g. why an individual develops IgE to cat but not birch, are not known. Our aim was to study birch- and cat-induced Th1 and Th2 cytokine secretion in children who were sensitized to birch but not to cat, and vice versa. The subjects in the study were 60 12-year-old children. Seventeen of the children were sensitized (skin prick test and circulating IgE positive) to birch but not cat, 13 were sensitized to cat but not birch, 11 were sensitized both to birch and cat, and 19 children were skin prick test and circulating IgE negative. Forty-six children had a history of atopic symptoms, and 42 of them had current symptoms. Peripheral blood mononuclear cells were separated from venous blood and stimulated with cat or birch allergen. The levels of IL-4, IL-5, IL-9, IL-10, IL-13 and IFN-gamma in the cell supernatants were analysed by ELISA. Sensitized children produced more of the Th2 cytokines IL-4, IL-5, IL-9 and IL-13 than non-sensitized atopic and non-atopic children in response to stimulation with the allergen they were sensitized to. High levels of the Th2 cytokines IL-4 and IL-5 and low levels of the anti-inflammatory cytokine IL-10 were associated with atopic symptoms, and high cat-induced IL-9 levels with asthma. The Th2 cytokines IL-4, IL-5, IL-9 and IL-13 were all commonly detected in sensitized children after stimulation with the specific, in contrast to an unrelated, allergen. Atopic symptoms were associated with increased levels of IL-4 and IL-5 and tended to be associated with low levels of IL-10, and asthma with high cat-induced IL-9 levels.

  9. Allergenicity, immunogenicity and dose-relationship of three intact allergen vaccines and four allergoid vaccines for subcutaneous grass pollen immunotherapy

    PubMed Central

    Henmar, H; Lund, G; Lund, L; Petersen, A; Würtzen, P A

    2008-01-01

    Different vaccines containing intact allergens or chemically modified allergoids as active ingredients are commercially available for specific immunotherapy. Allergoids are claimed to have decreased allergenicity without loss of immunogenicity and this is stated to allow administration of high allergoid doses. We compared the allergenicity and immunogenicity of four commercially available chemically modified grass pollen allergoid products with three commercially available intact grass pollen allergen vaccines. The allergenicity was investigated with immunoglobulin (Ig)E-inhibition and basophil activation assays. Human T cell proliferation and specific IgG-titres following mouse immunizations were used to address immunogenicity. Furthermore, intact allergen vaccines with different contents of active ingredients were selected to study the influence of the allergen dose. In general, a lower allergenicity for allergen vaccines was clearly linked to a reduced immunogenicity. Compared with the vaccine with the highest amount of intact allergen, the allergoids caused reduced basophil activation as well as diminished immunogenicity demonstrated by reduced T cell activation and/or reduced induction of murine grass-specific IgG antibodies. Interestingly, intact allergen vaccines with lower content of active ingredient exhibited similarly reduced allergenicity, while immunogenicity was still higher or equal to that of allergoids. The low allergenicity observed for some allergoids was inherently linked to a significantly lower immunogenic response questioning the rationale behind the chemical modification into allergoids. In addition, the linkage between allergenicity, immunogenicity and dose found for intact allergen vaccines and the immunogen as well as allergenic immune responses observed for allergoids suggest that the modified allergen vaccines do not contain high doses of immunologically active ingredients. PMID:18647321

  10. Allergenicity, immunogenicity and dose-relationship of three intact allergen vaccines and four allergoid vaccines for subcutaneous grass pollen immunotherapy.

    PubMed

    Henmar, H; Lund, G; Lund, L; Petersen, A; Würtzen, P A

    2008-09-01

    Different vaccines containing intact allergens or chemically modified allergoids as active ingredients are commercially available for specific immunotherapy. Allergoids are claimed to have decreased allergenicity without loss of immunogenicity and this is stated to allow administration of high allergoid doses. We compared the allergenicity and immunogenicity of four commercially available chemically modified grass pollen allergoid products with three commercially available intact grass pollen allergen vaccines. The allergenicity was investigated with immunoglobulin (Ig)E-inhibition and basophil activation assays. Human T cell proliferation and specific IgG-titres following mouse immunizations were used to address immunogenicity. Furthermore, intact allergen vaccines with different contents of active ingredients were selected to study the influence of the allergen dose. In general, a lower allergenicity for allergen vaccines was clearly linked to a reduced immunogenicity. Compared with the vaccine with the highest amount of intact allergen, the allergoids caused reduced basophil activation as well as diminished immunogenicity demonstrated by reduced T cell activation and/or reduced induction of murine grass-specific IgG antibodies. Interestingly, intact allergen vaccines with lower content of active ingredient exhibited similarly reduced allergenicity, while immunogenicity was still higher or equal to that of allergoids. The low allergenicity observed for some allergoids was inherently linked to a significantly lower immunogenic response questioning the rationale behind the chemical modification into allergoids. In addition, the linkage between allergenicity, immunogenicity and dose found for intact allergen vaccines and the immunogen as well as allergenic immune responses observed for allergoids suggest that the modified allergen vaccines do not contain high doses of immunologically active ingredients.

  11. CD23 surface density on B cells is associated with IgE levels and determines IgE-facilitated allergen uptake, as well as activation of allergen-specific T cells.

    PubMed

    Selb, Regina; Eckl-Dorna, Julia; Neunkirchner, Alina; Schmetterer, Klaus; Marth, Katharina; Gamper, Jutta; Jahn-Schmid, Beatrice; Pickl, Winfried F; Valenta, Rudolf; Niederberger, Verena

    2017-01-01

    Increasing evidence suggests that the low-affinity receptor for IgE, CD23, plays an important role in controlling the activity of allergen-specific T cells through IgE-facilitated allergen presentation. We sought to determine the number of CD23 molecules on immune cells in allergic patients and to investigate whether the number of CD23 molecules on antigen-presenting cells is associated with IgE levels and influences allergen uptake and allergen-specific T-cell activation. Numbers of CD23 molecules on immune cells of allergic patients were quantified by using flow cytometry with QuantiBRITE beads and compared with total and allergen-specific IgE levels, as well as with allergen-induced immediate skin reactivity. Allergen uptake and allergen-specific T-cell activation in relation to CD23 surface density were determined by using flow cytometry in combination with confocal microscopy and T cells transfected with the T-cell receptor specific for the birch pollen allergen Bet v 1, respectively. Defined IgE-allergen immune complexes were formed with human monoclonal allergen-specific IgE and Bet v 1. In allergic patients the vast majority of CD23 molecules were expressed on naive IgD + B cells. The density of CD23 molecules on B cells but not the number of CD23 + cells correlated with total IgE levels (R S  = 0.53, P = .03) and allergen-induced skin reactions (R S  = 0.63, P = .008). Uptake of allergen-IgE complexes into B cells and activation of allergen-specific T cells depended on IgE binding to CD23 and were associated with CD23 surface density. Addition of monoclonal IgE to cultured PBMCs significantly (P = .04) increased CD23 expression on B cells. CD23 surface density on B cells of allergic patients is correlated with allergen-specific IgE levels and determines allergen uptake and subsequent activation of T cells. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  12. Determination of allergen specificity by heavy chains in grass pollen allergen-specific IgE antibodies.

    PubMed

    Gadermaier, Elisabeth; Flicker, Sabine; Lupinek, Christian; Steinberger, Peter; Valenta, Rudolf

    2013-04-01

    Affinity and clonality of allergen-specific IgE antibodies are important determinants for the magnitude of IgE-mediated allergic inflammation. We sought to analyze the contribution of heavy and light chains of human allergen-specific IgE antibodies for allergen specificity and to test whether promiscuous pairing of heavy and light chains with different allergen specificity allows binding and might affect affinity. Ten IgE Fabs specific for 3 non-cross-reactive major timothy grass pollen allergens (Phl p 1, Phl p 2, and Phl p 5) obtained by means of combinatorial cloning from patients with grass pollen allergy were used to construct stable recombinant single chain variable fragments (ScFvs) representing the original Fabs and shuffled ScFvs in which heavy chains were recombined with light chains from IgE Fabs with specificity for other allergens by using the pCANTAB 5 E expression system. Possible ancestor genes for the heavy chain and light chain variable region-encoding genes were determined by using sequence comparison with the ImMunoGeneTics database, and their chromosomal locations were determined. Recombinant ScFvs were tested for allergen specificity and epitope recognition by means of direct and sandwich ELISA, and affinity by using surface plasmon resonance experiments. The shuffling experiments demonstrate that promiscuous pairing of heavy and light chains is possible and maintains allergen specificity, which is mainly determined by the heavy chains. ScFvs consisting of different heavy and light chains exhibited different affinities and even epitope specificity for the corresponding allergen. Our results indicate that allergen specificity of allergen-specific IgE is mainly determined by the heavy chains. Different heavy and light chain pairings in allergen-specific IgE antibodies affect affinity and epitope specificity and thus might influence clinical reactivity to allergens. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by

  13. Non-fragrance allergens in specific cosmetic products.

    PubMed

    Travassos, Ana Rita; Claes, Lieve; Boey, Lies; Drieghe, Jacques; Goossens, An

    2011-11-01

    Reports about the nature of the ingredients responsible for allergic contact dermatitis caused by specific cosmetic products are scarce. Between January 2000 and December 2010, the specific cosmetic products having caused allergic contact dermatitis, as well as the individual allergenic cosmetic ingredients present in them, were recorded by use of a standardized form. Among 11 different categories of cosmetic product, skin care products, followed by hair care and body-cleansing products, were most often involved. The presence of the allergenic ingredient(s) in a specific cosmetic product was confirmed according to the ingredient label in 959 of 1448 records. Six hundred and twenty-one of 959 concerned non-fragrance components, preservatives being responsible for 58% of them. Reactions to formaldehyde and formaldehyde-releasers were most often correlated with body-cleansing products, particularly 2-bromo-2-nitropropane-1,3-diol and skin care products. They were followed by the methylchloroisothiazolinone/methylisothiazolinone mixture, most frequently found as allergens in hair care and intimate hygiene products, and facial cleansers (in the last category together with diazolidinyl urea). Octocrylene was by far the most frequent (photo)allergen in sun care products. This study provides information on the presence and frequency of allergens in specific causal cosmetic products. © 2011 John Wiley & Sons A/S.

  14. Enhanced glucocorticoid-induced leucine zipper in dendritic cells induces allergen-specific regulatory CD4(+) T-cells in respiratory allergies.

    PubMed

    Karaki, S; Garcia, G; Tcherakian, C; Capel, F; Tran, T; Pallardy, M; Humbert, M; Emilie, D; Godot, V

    2014-05-01

    Respiratory allergies rely on a defect of IL-10-secreting regulatory CD4(+) T-cells (IL-10-Tregs ) leading to excessive Th2-biased immune responses to allergens. According to clinical data, the restoration of allergen-specific IL-10-Tregs is required to control respiratory allergies and cure patients. The discovery of mechanisms involved in the generation of IL-10-Tregs will thus help to provide effective treatments. We previously demonstrated that dendritic cells (DCs) expressing high levels of the glucocorticoid-induced leucine zipper protein (GILZ) generate antigen-specific IL-10-Tregs . We suspect a defective expression of GILZ in the DCs of respiratory allergic patients and speculate that increasing its expression might restore immune tolerance against allergens through the induction of IL-10-Tregs . We assessed GILZ expression in blood DCs of patients and healthy nonallergic donors by qPCR. We compared the ability of patients' DCs to induce allergen-specific IL-10-Tregs before and after an in vivo up-regulation of GILZ expression by steroid administration, steroids being inducers of GILZ. We report lower levels of GILZ in DCs of respiratory allergic patients that return to normal levels after steroid administration. We show that patients' DCs with increased levels of GILZ generate allergen-specific IL-10-Tregs again. We further confirm unequivocally that GILZ is required in patients' DCs to activate these IL-10-Tregs . This proof of concept study shows that the re-establishment of GILZ expression in patients' DCs to normal levels restores their capacity to activate allergen-specific IL-10-Tregs . We thus highlight the up-regulation of GILZ in DCs as a new interventional approach to restore the immune tolerance to allergens. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Kissing selectively decreases allergen-specific IgE production in atopic patients.

    PubMed

    Kimata, H

    2006-05-01

    Stress enhanced allergic skin wheal responses and allergen-specific IgE production. In contrast, mothers' kissing caused relaxation in infants, and kissing by lovers or spouses to atopic patients reduced allergic skin wheal responses. I studied the effect of kissing on production of allergen-specific IgE and cytokines in atopic patients. Twenty-four patients with mild atopic eczema and 24 patients with mild allergic rhinitis kissed with lovers or spouses freely for 30 min while listening to soft music. Just before and immediately after kissing, blood mononuclear cells were separated cultured for allergen, and production of allergen-specific immunoglobulin and cytokine was measured. Kissing selectively decreased allergen-specific IgE production with skewing cytokine pattern toward Th1 type. Kissing may alleviate allergic symptoms by decrease in allergen-specific IgE production.

  16. Trichuris suis ova therapy for allergic rhinitis does not affect allergen-specific cytokine responses despite a parasite-specific cytokine response.

    PubMed

    Bourke, C D; Mutapi, F; Nausch, N; Photiou, D M F; Poulsen, L K; Kristensen, B; Arnved, J; Rønborg, S; Roepstorff, A; Thamsborg, S; Kapel, C; Melbye, M; Bager, P

    2012-11-01

    Parasitic helminths have been shown to reduce inflammation in most experimental models of allergic disease, and this effect is mediated via cytokine responses. However, in humans, the effects of controlled helminth infection on cytokine responses during allergy have not been studied. The aim was to investigate whether infection with the nematode parasite Trichuris suis alters systemic cytokine levels, cellular cytokine responses to parasite antigens and pollen allergens and/or the cytokine profile of allergic individuals. In a randomized double-blinded placebo-controlled clinical trial (UMIN trial registry, Registration no. R000001298, Trial ID UMIN000001070, URL: http://www.umin.ac.jp/map/english), adults with grass pollen-induced allergic rhinitis received three weekly doses of 2500 Trichuris suis ova (n = 45) or placebo (n = 44) over 6 months. IFN-γ, TNF-α, IL-4, IL-5, IL-10 and IL-13 were quantified via cytometric bead array in plasma. Cytokines, including active TGF-β, were also quantified in supernatants from peripheral blood mononuclear cells cultured with parasite antigens or pollen allergens before, during and after the grass pollen season for a sub-cohort of randomized participants (T. suis ova-treated, n = 12, Placebo-treated, n = 10). Helminth infection induced a Th2-polarized cytokine response comprising elevated plasma IL-5 and parasite-specific IL-4, IL-5 and IL-13, and a global shift in the profile of systemic cytokine responses. Infection also elicited high levels of the regulatory cytokine IL-10 in response to T. suis antigens. Despite increased production of T. suis-specific cytokines in T. suis ova-treated participants, allergen-specific cytokine responses during the grass pollen season and the global profile of PBMC cytokine responses were not affected by T. suis ova treatment. This study suggests that cytokines induced by Trichuris suis ova treatment do not alter allergic reactivity to pollen during the peak of allergic rhinitis

  17. Induction of pneumococcal polysaccharide-specific mucosal immune responses by oral immunization.

    PubMed

    VanCott, J L; Kobayashi, T; Yamamoto, M; Pillai, S; McGhee, J R; Kiyono, H

    1996-04-01

    Liposome and cholera toxin (CT) are considered to be effective antigen delivery vehicles and adjuvants for mucosal vaccines. The effect of these antigen delivery systems on adjuvant responses to mucosally administered pneumococcal polysaccharide (Pnup) was investigated in this study. Both mucosal (e.g. oral) and systemic (i.p.) immunization of mice with purified preparations of Pnup type 23F induced antigen-specific IgM responses in sera. Interestingly, oral immunization of as little as 10 micrograms of Pnup type 23F was sufficient to induce systemic IgM responses. Pnup-specific IgM antibodies peaked by day 7 and no booster responses were evident after a second dose on day 14. In order to examine whether IgG and IgA Pnup-specific immune responses are induced by mucosal immunization, the mucosal adjuvant CT was mixed with Pnup type 23 as an oral vaccine. Co-oral administration of CT and Pnup type 23F resulted in the induction of Pnup-specific faecal IgA antibodies. These results were confirmed by detecting antigen-specific IgA-spot-forming cells in mononuclear cell suspensions prepared from the intestine of immunized mice. These findings suggest that oral immunization with Pnup in the presence of mucosal adjuvants, such as CT, could induce Pnup-specific IgA responses whereas Pnup alone did not. In an attempt to further enhance antigen-specific antibody responses, Pnup type 23F was encapsulated in liposomes and used as mucosal vaccine. However, immunogenicity of Pnup was not improved.

  18. Maternal allergic disease does not affect the phenotype of T and B cells or the immune response to allergens in neonates.

    PubMed

    Rindsjö, E; Joerink, M; Johansson, C; Bremme, K; Malmström, V; Scheynius, A

    2010-07-01

    It is hypothesized that the in utero environment in allergic mothers can affect the neonatal immune responses. The aim of this study was to analyse the effect of maternal allergic disease on cord blood mononuclear cell (CBMC) phenotype and proliferative responses upon allergen stimulation. Peripheral blood mononuclear cells (PBMC) from 12 allergic and 14 nonallergic mothers and CBMC from their children were analysed. In the mothers, we determined cell proliferation, production of IL-4 and expression of FOXP3 in response to allergen stimulation. In the children, we evaluated cell proliferation and FOXP3 expression following allergen stimulation. Furthermore, expression of different homing markers on T cells and regulatory T cells and maturity of the T cells and B cell subsets were evaluated directly ex vivo. The timothy- and birch-allergic mothers responded with increased proliferation and/or IL-4 production towards timothy and birch extract, respectively, when compared to nonallergic mothers. This could not be explained by impairment of FOXP3(+) regulatory T cells in the allergic mothers. CBMC proliferation and FOXP3 expression in response to allergens were not affected by the allergic status of the mother. Also, phenotype of T cells, FOXP3(+) regulatory T cells and B cells was not affected by the allergic status of the mother. Our results suggest that maternal allergic disease has no effect on the neonatal response to allergens or the phenotype of neonatal lymphocytes. The factors studied here could, however, still affect later development of allergy.

  19. MyD88-dependent dendritic and epithelial cell crosstalk orchestrates immune responses to allergens.

    PubMed

    Thomas, S Y; Whitehead, G S; Takaku, M; Ward, J M; Xu, X; Nakano, K; Lyons-Cohen, M R; Nakano, H; Gowdy, K M; Wade, P A; Cook, D N

    2018-05-01

    Sensitization to inhaled allergens is dependent on activation of conventional dendritic cells (cDCs) and on the adaptor molecule, MyD88. However, many cell types in the lung express Myd88, and it is unclear how signaling in these different cell types reprograms cDCs and leads to allergic inflammation of the airway. By combining ATAC-seq with RNA profiling, we found that MyD88 signaling in cDCs maintained open chromatin at select loci even at steady state, allowing genes to be rapidly induced during allergic sensitization. A distinct set of genes related to metabolism was indirectly controlled in cDCs through MyD88 signaling in airway epithelial cells (ECs). In mouse models of asthma, Myd88 expression in ECs was critical for eosinophilic inflammation, whereas Myd88 expression in cDCs was required for Th17 cell differentiation and consequent airway neutrophilia. Thus, both cell-intrinsic and cell-extrinsic MyD88 signaling controls gene expression in cDCs and orchestrates immune responses to inhaled allergens.

  20. Age-related T cell responses to allergens in childhood.

    PubMed

    Smart, J M; Suphioglu, C; Kemp, A S

    2003-03-01

    T cell priming, as determined by allergen-induced proliferative responses, is believed to occur principally in early childhood in both atopic and non-atopic infants under the influence of multiple factors including environmental allergen exposure. It is considered that T cell priming with expansion of Th2 cells is a crucial factor in the development of atopic disease. To examine T cell priming to commonly encountered allergens in childhood in relation to age. In a cross-sectional study T cell proliferation in relation to age was examined for three common allergens, ovalbumin (OVA), house dust mite (HDM) and rye grass pollen (RYE), in atopic and non-atopic children. The effect of age on Th1 (IFN-gamma) and Th2 (IL-5 and IL-13) cytokine production in response to these allergens was investigated to examine the possibility of immune deviation with time. A significant increase in T cell proliferation with age was observed with RYE among atopic children only. However, the same was not observed with the two other allergens studied (i.e. OVA and HDM). In addition, RYE-induced (but not HDM or OVA) cytokine production showed an increased Th2 deviation with age as reflected in the increasing IL-5/IFN-gamma and IL-13/IFN-gamma ratios only among the atopic subjects with rye grass pollen sensitivity. These findings suggest that grass pollen sensitivity in childhood is accompanied by a progressive accumulation of allergen-primed T cells and progressive deviation of the allergen-induced cytokine response towards a Th2 response in atopic subjects throughout childhood.

  1. Specific IgE and IgG measured by the MeDALL allergen-chip depend on allergen and route of exposure: The EGEA study.

    PubMed

    Siroux, Valérie; Lupinek, Christian; Resch, Yvonne; Curin, Mirela; Just, Jocelyne; Keil, Thomas; Kiss, Renata; Lødrup Carlsen, Karin; Melén, Erik; Nadif, Rachel; Pin, Isabelle; Skrindo, Ingebjørg; Vrtala, Susanne; Wickman, Magnus; Anto, Josep Maria; Valenta, Rudolf; Bousquet, Jean

    2017-02-01

    The nature of allergens and route and dose of exposure may affect the natural development of IgE and IgG responses. We sought to investigate the natural IgE and IgG responses toward a large panel of respiratory and food allergens in subjects exposed to different respiratory allergen loads. A cross-sectional analysis was conducted in 340 adults of the EGEA (Epidemiological study of the Genetics and Environment of Asthma, bronchial hyperresponsiveness and atopy) (170 with and 170 without asthma) cohort. IgE and IgG responses to 47 inhalant and food allergen components were analyzed in sera using allergen microarray and compared between 5 French regions according to the route of allergen exposure (inhaled vs food allergens). Overall 48.8% of the population had allergen-specific IgE levels of 0.3 ISAC standardized units (ISU) or more to at least 1 of the 47 allergens with no significant differences across the regions. For ubiquitous respiratory allergens (ie, grass, olive/ash pollen, house dust mites), specific IgE did not show marked differences between regions and specific IgG (≥0.5 ISU) was present in most subjects everywhere. For regionally occurring pollen allergens (ragweed, birch, cypress), IgE sensitization was significantly associated with regional pollen exposure. For airborne allergens cross-reacting with food allergens, frequent IgG recognition was observed even in regions with low allergen prevalence (Bet v 1) or for allergens less frequently recognized by IgE (profilins). The variability in allergen-specific IgE and IgG frequencies depends on exposure, route of exposure, and overall immunogenicity of the allergen. Allergen contact by the oral route might preferentially induce IgG responses. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  2. Allergic asthma is distinguished by sensitivity of allergen-specific CD4+ T cells and airway structural cells to type 2 inflammation.

    PubMed

    Cho, Josalyn L; Ling, Morris F; Adams, David C; Faustino, Lucas; Islam, Sabina A; Afshar, Roshi; Griffith, Jason W; Harris, Robert S; Ng, Aylwin; Radicioni, Giorgia; Ford, Amina A; Han, Andre K; Xavier, Ramnik; Kwok, William W; Boucher, Richard; Moon, James J; Hamilos, Daniel L; Kesimer, Mehmet; Suter, Melissa J; Medoff, Benjamin D; Luster, Andrew D

    2016-10-05

    Despite systemic sensitization, not all allergic individuals develop asthma symptoms upon airborne allergen exposure. Determination of the factors that lead to the asthma phenotype in allergic individuals could guide treatment and identify novel therapeutic targets. We used segmental allergen challenge of allergic asthmatics (AA) and allergic nonasthmatic controls (AC) to determine whether there are differences in the airway immune response or airway structural cells that could drive the development of asthma. Both groups developed prominent allergic airway inflammation in response to allergen. However, asthmatic subjects had markedly higher levels of innate type 2 receptors on allergen-specific CD4 + T cells recruited into the airway. There were also increased levels of type 2 cytokines, increased total mucin, and increased mucin MUC5AC in response to allergen in the airways of AA subjects. Furthermore, type 2 cytokine levels correlated with the mucin response in AA but not AC subjects, suggesting differences in the airway epithelial response to inflammation. Finally, AA subjects had increased airway smooth muscle mass at baseline measured in vivo using novel orientation-resolved optical coherence tomography. Our data demonstrate that the development of allergic asthma is dependent on the responsiveness of allergen-specific CD4 + T cells to innate type 2 mediators as well as increased sensitivity of airway epithelial cells and smooth muscle to type 2 inflammation. Copyright © 2016, American Association for the Advancement of Science.

  3. Peripheral erythrocytes decrease upon specific respiratory challenge with grass pollen allergen in sensitized mice and in human subjects.

    PubMed

    Jordakieva, Galateja; Wallmann, Julia; Schmutz, René; Lemell, Patrick; Wegmann, Michael; Nittke, Thomas; Mittlböck, Martina; Fehrenbach, Heinz; Godnic-Cvar, Jasminka; Zieglmayer, René; Jensen-Jarolim, Erika

    2014-01-01

    Specific hyper-responsiveness towards an allergen and non-specific airway hyperreactivity both impair quality of life in patients with respiratory allergic diseases. We aimed to investigate cellular responses following specific and non-specific airway challenges locally and systemically in i) sensitized BALB/c mice challenged with grass pollen allergen Phl p 5, and in ii) grass pollen sensitized allergic rhinitis subjects undergoing specific airway challenge in the Vienna Challenge Chamber (VCC). BALB/c mice (n = 20) were intraperitoneally immunized with grass pollen allergen Phl p 5 and afterwards aerosol challenged with either the specific allergen Phl p 5 (n = 10) or the non-specific antigen ovalbumin (OVA) (n = 10). A protocol for inducing allergic asthma as well as allergic rhinitis, according to the united airway concept, was used. Both groups of exposed mice showed significantly reduced physical activity after airway challenge. Specific airway challenge further resulted in goblet cell hyperplasia, enhanced mucous secretion, intrapulmonary leukocyte infiltration and lymphoid follicle formation, associated with significant expression of IL-4, IL-5 and IL-13 in splenocytes and also partially in lung tissue. Concerning circulating blood cell dynamics, we observed a significant drop of erythrocyte counts, hemoglobin and hematocrit levels in both mouse groups, challenged with allergen or OVA. A significant decrease in circulating erythrocytes and hematocrit levels after airway challenges with grass pollen allergen was also found in grass pollen sensitized human rhinitis subjects (n = 42) at the VCC. The effects on peripheral leukocyte counts in mice and humans however were opposed, possibly due to the different primary inflammation sites. Our data revealed that, besides significant leukocyte dynamics, particularly erythrocytes are involved in acute hypersensitivity reactions to respiratory allergens. A rapid recruitment of erythrocytes to the lungs to compensate

  4. Characteristics of antibody responses induced in mice by protein allergens.

    PubMed

    Hilton, J; Dearman, R J; Sattar, N; Basketter, D A; Kimber, I

    1997-12-01

    Whereas many foreign proteins are immunogenic, only a proportion is also allergenic, having the capacity to induce the quality of immune response necessary to support the production of IgE antibody. We have demonstrated previously that intraperitoneal administration to mice of proteins such as ovalbumin (OVA) or the industrial enzyme A. oryzae lipase, which possess significant allergenic potential, stimulates the production of both IgG and IgE antibody. Identical exposure to bovine serum albumin (BSA), a protein with limited potential to cause immediate respiratory or gastrointestinal hypersensitivity reactions, induced IgG responses only. In the current investigations, the quality of immune responses induced following exposure to these proteins via mucosal tissue (intranasal) has been compared with those provoked following administration via a non-mucosal (intraperitoneal) route of exposure. Intranasal or intraperitoneal administration of BSA, OVA or A. oryzae lipase elicited in each case vigorous IgG and IgG1 antibody responses. For all three proteins, at every concentration tested, and via both routes of exposure, IgG1 antibody titres paralleled closely IgG titres. However, the three materials displayed a differential potential to provoke IgE responses and this correlated with their known allergenic potential in humans. Thus, OVA and A. oryzae lipase stimulated strong IgE antibody responses, whereas BSA provoked low titre IgE only at the highest concentration tested (5% administered intraperitoneally). The quality of induced responses was not affected by the route of exposure. It would appear, therefore, that the stimulation of IgG and IgG1 antibody responses is a reflection of protein immunogenicity whereas protein allergenicity is associated with the induction of strong IgE responses.

  5. Total and allergen-specific IgE levels during and after pregnancy in relation to maternal allergy.

    PubMed

    Sandberg, Martina; Frykman, Anne; Jonsson, Yvonne; Persson, Marie; Ernerudh, Jan; Berg, Göran; Matthiesen, Leif; Ekerfelt, Christina; Jenmalm, Maria C

    2009-07-01

    Type 2 T-helper cell (Th2)-skewed immunity is associated with successful pregnancy and the ability to easily direct immune responses to a Th2-polarised profile may be an evolutionary benefit. The Th2-like immunity associated with allergic disease might generate favourable effects for the maintenance of pregnancy, but could also promote development of Th2-like immune responses and allergic disease in the offspring. The aim of this study was to explore, by using IgE as a stable proxy for Th2, the Th1/Th2 balance in allergic and non-allergic women by measuring allergen-specific and total IgE antibody levels in plasma during pregnancy and after delivery. Specific and total IgE antibody levels were determined by ImmunoCAP technology at five occasions during pregnancy (gestational weeks 10-12, 15-16, 25, 35 and 39), as well as at 2 and 12 months after delivery. Thirty-six women without and 20 women with allergic symptoms were included, of whom 13 were sensitised with allergic symptoms and 30 were non-sensitised without allergic symptoms. The levels of total IgE, but not allergen-specific IgE, were increased during early pregnancy when compared to 12 months after delivery in the sensitised women with allergic symptoms, but not in the non-sensitised women without allergic symptoms (p<0.01). This increase in total IgE levels during early pregnancy only in the sensitised women with allergic symptoms indicates that allergy is associated with an enhanced Th2 deviation during pregnancy.

  6. [Mass spectrometry identification and immune cross-reactivity of a minor shrimp allergen-sarcoplasmic calcium binding protein from Litopenaeus vannamei].

    PubMed

    Wang, Cai-xia; Huang, Jian-fang; Xiang, Jun-jian; Sun, Yi-fan; Lv, Si; Guo, Jie

    2012-08-01

    To identify sarcoplasmic calcium-binding protein (SCP) as a minor shrimp allergen by mass spectrometry, and to analyze the immune cross-reactivity among crustacean SCPs. The M(r); 21 000 allergen from Litopenaeus vannamei was identified by MALDI-TOF/TOF-MS. BLAST and ClustalW were used to compare amino acid sequence identity of the allergen among crustaceans. The puritifed M(r); 21 000 allergen was injected subcutaneously in mice to produce the specific polyclonal antibodies to analyze immune cross-reactivity of the allergen with proteins from 8 other species of crustaceans by Western blotting. The M(r); 21 000 shrimp allergen was identified as SCP. Sequence comparison revealed that SCP had 81%-100% amino acid identity among crustaceans. Western blotting showed that the proteins with M(r); about 21 000, corresponding to SCP from Metapenaeus ensis, Penaeus monodon, Oratosquilla oratoria, Macrobrachium rosenbergii, Procambarus clarkii, Portunus pelagicus, Charybdis feriatus, Eriocheir sinensis were recognized by polyclonal antibodies against SCP of Litopenaeus vannamei. SCP is a minor shrimp allergen, and SCPs have a high sequence homology and strong immune cross-reactivity among crustaceans, which can be used as detective, diagnostic and safe immunotherapeutic agents for subjects with shrimp allergy.

  7. Vaccine development for allergen-specific immunotherapy based on recombinant allergens and synthetic allergen peptides: Lessons from the past and novel mechanisms of action for the future

    PubMed Central

    Valenta, Rudolf; Campana, Raffaela; Focke-Tejkl, Margit; Niederberger, Verena

    2016-01-01

    In the past, the development of more effective, safe, convenient, broadly applicable, and easy to manufacture vaccines for allergen-specific immunotherapy (AIT) has been limited by the poor quality of natural allergen extracts. Progress made in the field of molecular allergen characterization has now made it possible to produce defined vaccines for AIT and eventually for preventive allergy vaccination based on recombinant DNA technology and synthetic peptide chemistry. Here we review the characteristics of recombinant and synthetic allergy vaccines that have reached clinical evaluation and discuss how molecular vaccine approaches can make AIT more safe and effective and thus more convenient. Furthermore, we discuss how new technologies can facilitate the reproducible manufacturing of vaccines of pharmaceutical grade for inhalant, food, and venom allergens. Allergy vaccines in clinical trials based on recombinant allergens, recombinant allergen derivatives, and synthetic peptides allow us to target selectively different immune mechanisms, and certain of those show features that might make them applicable not only for therapeutic but also for prophylactic vaccination. PMID:26853127

  8. Apoplastic Venom Allergen-like Proteins of Cyst Nematodes Modulate the Activation of Basal Plant Innate Immunity by Cell Surface Receptors

    PubMed Central

    Lozano-Torres, Jose L.; Wilbers, Ruud H. P.; Warmerdam, Sonja; Finkers-Tomczak, Anna; Diaz-Granados, Amalia; van Schaik, Casper C.; Helder, Johannes; Bakker, Jaap; Goverse, Aska; Schots, Arjen; Smant, Geert

    2014-01-01

    Despite causing considerable damage to host tissue during the onset of parasitism, nematodes establish remarkably persistent infections in both animals and plants. It is thought that an elaborate repertoire of effector proteins in nematode secretions suppresses damage-triggered immune responses of the host. However, the nature and mode of action of most immunomodulatory compounds in nematode secretions are not well understood. Here, we show that venom allergen-like proteins of plant-parasitic nematodes selectively suppress host immunity mediated by surface-localized immune receptors. Venom allergen-like proteins are uniquely conserved in secretions of all animal- and plant-parasitic nematodes studied to date, but their role during the onset of parasitism has thus far remained elusive. Knocking-down the expression of the venom allergen-like protein Gr-VAP1 severely hampered the infectivity of the potato cyst nematode Globodera rostochiensis. By contrast, heterologous expression of Gr-VAP1 and two other venom allergen-like proteins from the beet cyst nematode Heterodera schachtii in plants resulted in the loss of basal immunity to multiple unrelated pathogens. The modulation of basal immunity by ectopic venom allergen-like proteins in Arabidopsis thaliana involved extracellular protease-based host defenses and non-photochemical quenching in chloroplasts. Non-photochemical quenching regulates the initiation of the defense-related programmed cell death, the onset of which was commonly suppressed by venom allergen-like proteins from G. rostochiensis, H. schachtii, and the root-knot nematode Meloidogyne incognita. Surprisingly, these venom allergen-like proteins only affected the programmed cell death mediated by surface-localized immune receptors. Furthermore, the delivery of venom allergen-like proteins into host tissue coincides with the enzymatic breakdown of plant cell walls by migratory nematodes. We, therefore, conclude that parasitic nematodes most likely utilize

  9. Apoplastic venom allergen-like proteins of cyst nematodes modulate the activation of basal plant innate immunity by cell surface receptors.

    PubMed

    Lozano-Torres, Jose L; Wilbers, Ruud H P; Warmerdam, Sonja; Finkers-Tomczak, Anna; Diaz-Granados, Amalia; van Schaik, Casper C; Helder, Johannes; Bakker, Jaap; Goverse, Aska; Schots, Arjen; Smant, Geert

    2014-12-01

    Despite causing considerable damage to host tissue during the onset of parasitism, nematodes establish remarkably persistent infections in both animals and plants. It is thought that an elaborate repertoire of effector proteins in nematode secretions suppresses damage-triggered immune responses of the host. However, the nature and mode of action of most immunomodulatory compounds in nematode secretions are not well understood. Here, we show that venom allergen-like proteins of plant-parasitic nematodes selectively suppress host immunity mediated by surface-localized immune receptors. Venom allergen-like proteins are uniquely conserved in secretions of all animal- and plant-parasitic nematodes studied to date, but their role during the onset of parasitism has thus far remained elusive. Knocking-down the expression of the venom allergen-like protein Gr-VAP1 severely hampered the infectivity of the potato cyst nematode Globodera rostochiensis. By contrast, heterologous expression of Gr-VAP1 and two other venom allergen-like proteins from the beet cyst nematode Heterodera schachtii in plants resulted in the loss of basal immunity to multiple unrelated pathogens. The modulation of basal immunity by ectopic venom allergen-like proteins in Arabidopsis thaliana involved extracellular protease-based host defenses and non-photochemical quenching in chloroplasts. Non-photochemical quenching regulates the initiation of the defense-related programmed cell death, the onset of which was commonly suppressed by venom allergen-like proteins from G. rostochiensis, H. schachtii, and the root-knot nematode Meloidogyne incognita. Surprisingly, these venom allergen-like proteins only affected the programmed cell death mediated by surface-localized immune receptors. Furthermore, the delivery of venom allergen-like proteins into host tissue coincides with the enzymatic breakdown of plant cell walls by migratory nematodes. We, therefore, conclude that parasitic nematodes most likely utilize

  10. European Academy of Allergy and Clinical Immunology task force report on 'dose-response relationship in allergen-specific immunotherapy'.

    PubMed

    Calderón, M A; Larenas, D; Kleine-Tebbe, J; Jacobsen, L; Passalacqua, G; Eng, P A; Varga, E M; Valovirta, E; Moreno, C; Malling, H J; Alvarez-Cuesta, E; Durham, S; Demoly, P

    2011-10-01

    For a century, allergen-specific immunotherapy (SIT) has proven to be an effective treatment for allergic rhinitis, asthma, and insect sting allergy. However, as allergen doses are frequently adapted to the individual patient, there are few data on dose-response relationship in SIT. Allergen products for SIT are being increasingly required to conform to regulatory requirements for human medicines, which include the need to demonstrate dose-dependent effects. This report, produced by a Task Force of the EAACI Immunotherapy Interest Group, evaluates the currently available data on dose-response relationships in SIT and aims to provide recommendations for the design of future studies. Fifteen dose-ranging studies fulfilled the inclusion criteria and twelve reported a dose-response relationship for clinical efficacy. Several studies also reported a dose-response relationship for immunological and safety endpoints. Due to the use of different reference materials and methodologies for the determination of allergen content, variations in study design, and choice of endpoints, no comparisons could be made between studies and, as a consequence, no general dosing recommendations can be made. Despite recently introduced guidelines on the standardization of allergen preparations and study design, the Task Force identified a need for universally accepted standards for the measurement of allergen content in SIT preparations, dosing protocols, and selection of clinical endpoints to enable dose-response effects to be compared across studies. © 2011 John Wiley & Sons A/S.

  11. Allergen-specific responses of CD19(+)CD5(+)Foxp3(+) regulatory B cells (Bregs) and CD4(+)Foxp3(+) regulatory T cell (Tregs) in immune tolerance of cow milk allergy of late eczematous reactions.

    PubMed

    Noh, Joonyong; Noh, Geunwoong; Kim, Hyuk Soon; Kim, A-Ram; Choi, Wahn Soo

    2012-01-01

    Foxp3-expressing cells among CD19(+)CD5(+) B cells were identified as regulatory B cells. Food allergy manifesting as late eczematous reactions is regarded as a non-IgE-mediated food allergy. The diagnosis for milk allergy manifesting as late eczematous reactions was made on the basis of the findings obtained from a double-blind placebo-controlled food challenge in patients with atopic dermatitis. Twelve patients with milk allergy and 12 patients who could tolerate milk were selected. On casein stimulation, the CD19(+)CD5(+)Foxp3(+) B cell (Breg) fraction in CD5(+) B cells decreased from 4.4±1.1% to 3.1±0.7% (P=0.047, n=12) in the milk allergy group and increased from 4.4±1.3% to 5.2±1.4% (P=0.001, n=10) in the milk-tolerant group. On the other hand, on allergen stimulation, the number of CD4(+)Foxp3(+) regulatory T cells (Tregs) in the milk allergy group and milk-tolerant group increased from 2.6±0.7% to 3.4±0.6% (P=0.014, n=9) and from 2.7±1.0% to 3.5±1.0% (P=0.038, n=10), respectively. In conclusion, allergen-specific responses of Bregs, rather than those of Tregs, seem to influence the immune responses (i.e., allergy or tolerance) to a food allergen. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Allergen-specific sublingual immunotherapy in the treatment of migraines: a prospective study.

    PubMed

    Theodoropoulos, D S; Katzenberger, D R; Jones, W M; Morris, D L; Her, C; Cullen, N A M; Morrisa, D L

    2011-10-01

    Inflammation is a cardinal feature of migraines. A number of observations point to the possibility that an allergic component of a type I (IgE-mediated) nature may be involved in at least some migraineurs. Not only are migraines frequent among patients with allergic rhinitis but quite frequently the same medical approaches are beneficial in both diseases: anti-inflammatories, adrenergic tone modifiers, immune suppressants. The effect that immunotherapy for allergic rhinitis has upon migraines is studied. Patients were recruited who suffered from typical migraines but were not treated with regular migraine controllers (beta blockers, antiepileptics, tricyclics, etc.). They underwent allergen-specific, sublingual immunotherapy with physician-formulated, individually-prepared airborne allergen extracts. Response to treatment was assessed with serum C-reactive protein level changes and symptom scores. Serum C-reactive protein (CRP), an acute phase reactant, was chosen as a marker because its usefulness has already been assessed in interictal migraine activity. Interictal serum CRP levels decline was observed in the course of sublingual immunotherapy. Concurrent improvement in symptom scores for both rhinitis and migraines was also observed. In patients with allergic rhinitis, migraine development and course may have a significant allergic component. Assessment of migraineurs for the possibility of coexisting allergic rhinitis is justified. Treatment of allergic rhinitis by immune response modifiers, such as immunotherapy, may have a place in the management of migraines for these patients.

  13. Modulation of the allergen-induced human IgE response in Hu-SCID mice: inhibitory effect of human recombinant IFN-gamma and allergen-derived lipopeptide.

    PubMed

    Duez, C; Gras-Masse, H; Hammad, H; Akoum, H; Didierlaurent, A; André, C; Tonnel, A B; Pestel, J

    2001-01-01

    We have previously established a model to study the in vivo human IgE response using humanized SCID mice. Allergic SCID mice were obtained following intraperitoneal injection with mononuclear cells from Dermatophagoides pteronyssinus (Dpt)-sensitive patients, and sensitization by Dpt allergen intraperitoneal injection (immunization) or Dpt aerosol (inhalation). Human serum IgE was measured in allergic SCID mice after administration of human recombinant IFN-gamma or the lipopeptide LP 52-71 (derived from peptide p52-71 from Der p 1, Dpt major allergen, coupled to a lipophilic moiety), during the immunization or the inhalation phase. IFN-gamma inhibited human IgE production when given at the time of immunization, but not during inhalation. This effect was long-lasting as Dpt aerosol, given one month after immunization and IFN-gamma administration, failed to increase IgE levels. Unlike Dpt or p52-71, LP 52-71 failed to induce human IgE production at day 14 and 21 after its injection, but did inhibit the development of the IgE response after a secondary Dpt-challenge. Moreover, LP 52-71 administration 14 days after Dpt inhalation decreased IgE levels, in contrast to peptide 52-71, which increased IgE levels. Thus, taken together these results indicate that the development of the human IgE response in allergic SCID mice can be modulated by modified allergen and a Th1 cytokine.

  14. Fusion proteins of flagellin and the major birch pollen allergen Bet v 1 show enhanced immunogenicity, reduced allergenicity, and intrinsic adjuvanticity.

    PubMed

    Kitzmüller, Claudia; Kalser, Julia; Mutschlechner, Sonja; Hauser, Michael; Zlabinger, Gerhard J; Ferreira, Fatima; Bohle, Barbara

    2018-01-01

    Recombinant fusion proteins of flagellin and antigens have been demonstrated to induce strong innate and adaptive immune responses. Such fusion proteins can enhance the efficacy of allergen-specific immunotherapy. We sought to characterize different fusion proteins of flagellin and the major birch pollen allergen Bet v 1 for suitability as allergy vaccines. A truncated version of flagellin (NtCFlg) was genetically fused to the N- or C-terminus of Bet v 1. Toll-like receptor (TLR) 5 binding was assessed with HEK293 cells expressing TLR5. Upregulation of CD40, CD80, CD83, and CD86 on monocyte-derived dendritic cells from allergic patients was analyzed by using flow cytometry. The T cell-stimulatory capacity of the fusion proteins was assessed with naive and Bet v 1-specific T cells. IgE binding was tested in inhibition ELISAs and basophil activation tests. Mice were immunized with the fusion proteins in the absence and presence of aluminum hydroxide. Cellular and antibody responses were monitored. Murine antibodies were tested for blocking capacity in basophil activation tests. Both fusion proteins matured monocyte-derived dendritic cells through TLR5. Compared with Bet v 1, the fusion proteins showed stronger T cell-stimulatory and reduced IgE-binding capacity and induced murine Bet v 1-specific antibodies in the absence of aluminum hydroxide. However, only antibodies induced by means of immunization with NtCFlg fused to the C-terminus of Bet v 1 inhibited binding of patients' IgE antibodies to Bet v 1. Bet v 1-flagellin fusion proteins show enhanced immunogenicity, reduced allergenicity, and intrinsic adjuvanticity and thus represent promising vaccines for birch pollen allergen-specific immunotherapy. However, the sequential order of allergen and adjuvant within a fusion protein determines its immunologic characteristics. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  15. Insights into the immune manipulation mechanisms of pollen allergens by protein domain profiling.

    PubMed

    Patel, Seema; Rani, Aruna; Goyal, Arun

    2017-10-01

    Plant pollens are airborne allergens, as their inhalation causes immune activation, leading to rhinitis, conjunctivitis, sinusitis and oral allergy syndrome. A myriad of pollen proteins belonging to profilin, expansin, polygalacturonase, glucan endoglucosidase, pectin esterase, and lipid transfer protein class have been identified. In the present in silico study, the protein domains of fifteen pollen sequences were extracted from the UniProt database and submitted to the interactive web tool SMART (Simple Modular Architecture Research Tool), for finding the protein domain profiles. Analysis of the data based on custom-made scripts revealed the conservation of pathogenic domains such as OmpH, PROF, PreSET, Bet_v_1, Cpl-7 and GAS2. Further, the retention of critical domains like CHASE2, Galanin, Dak2, DALR_1, HAMP, PWI, EFh, Excalibur, CT, PbH1, HELICc, and Kelch in pollen proteins, much like cockroach allergens and lethal viruses (such as HIV, HCV, Ebola, Dengue and Zika) was observed. Based on the shared motifs in proteins of taxonomicall-ydispersed organisms, it can be hypothesized that allergens and pathogens manipulate the human immune system in a similar manner. Allergens, being inanimate, cannot replicate in human body, and are neutralized by immune system. But, when the allergens are unremitting, the immune system becomes persistently hyper-sensitized, creating an inflammatory milieu. This study is expected to contribute to the understanding of pollen allergenicity and pathogenicity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Nanoparticle-allergen interactions mediate human allergic responses: protein corona characterization and cellular responses.

    PubMed

    Radauer-Preiml, Isabella; Andosch, Ancuela; Hawranek, Thomas; Luetz-Meindl, Ursula; Wiederstein, Markus; Horejs-Hoeck, Jutta; Himly, Martin; Boyles, Matthew; Duschl, Albert

    2016-01-16

    Engineered nanomaterials (ENMs) interact with different biomolecules as soon as they are in contact, resulting in the formation of a biomolecule 'corona'. Hence, the 'corona' defines the biological identity of the ENMs and could affect the response of the immune system to ENM exposure. With up to 40 % of the world population suffering from type I allergy, a possible modulation of allergen effects by binding to ENMs is highly relevant with respect to work place and consumer safety. Therefore, the aim of this present study was to gain an insight into the interactions of gold nanoparticles with different seasonally and perennially occurring outdoor and indoor allergens. Gold nanoparticles (AuNPs) were conjugated with the major allergens of birch pollen (Bet v 1), timothy grass pollen (Phl p 5) and house dust mite (Der p 1). The AuNP-allergen conjugates were characterized by means of TEM negative staining, dynamic light scattering (DLS), z-potential measurements and hyperspectral imaging. Furthermore, 3D models were constructed, based on the characterization data, to visualize the interaction between the allergens and the AuNPs surface. Differences in the activation of human basophil cells derived from birch/grass pollen- and house dust mite-allergic patients in response to free allergen and AuNP-allergen conjugates were determined using the basophil activation assay (BAT). Potential allergen corona replacement during BAT was controlled for using Western blotting. The protease activity of AuNP-Der p 1 conjugates compared to free Der p 1 was assessed, by an enzymatic activity assay and a cellular assay pertaining to lung type II alveolar epithelial cell tight junction integrity. The formation of a stable corona was found for all three allergens used. Our data suggest, that depending on the allergen, different effects are observed after binding to ENMs, including enhanced allergic responses against Der p 1 and also, for some patients, against Bet v 1. Moreover elevated

  17. Effect of household pet ownership on infant immune response and subsequent sensitization

    PubMed Central

    Simpson, Angela

    2010-01-01

    Sensitization to pets is a major risk factor for asthma. There are many reports on the relationship between household pets, sensitization to the pet, and sensitization to other allergens, often with conflicting results. Pet ownership is not random, and household pets are associated with exposures other than pet allergens. We will review some of the evidence regarding the effects of household pets on infant immune responses, focusing on data from birth cohort studies. It remains unclear precisely why some children develop specific sensitizations to pets whilst others do not in the face of equivalent exposures, but it is likely to be due to gene-environment interactions. Further long-term follow-up of children in whom neonatal and infant immune responses have been measured is necessary to understand how these events occur and how they relate to subsequent disease. PMID:21437047

  18. Immune Modulatory Effects of IL-22 on Allergen-Induced Pulmonary Inflammation

    PubMed Central

    Fang, Ping; Zhou, Li; Zhou, Yuqi; Kolls, Jay K.; Zheng, Tao; Zhu, Zhou

    2014-01-01

    IL-22 is a Th17/Th22 cytokine that is increased in asthma. However, recent animal studies showed controversial findings in the effects of IL-22 in allergic asthma. To determine the role of IL-22 in ovalbumin-induced allergic inflammation we generated inducible lung-specific IL-22 transgenic mice. Transgenic IL-22 expression and signaling activity in the lung were determined. Ovalbumin (OVA)-induced pulmonary inflammation, immune responses, and airway hyperresponsiveness (AHR) were examined and compared between IL-22 transgenic mice and wild type controls. Following doxycycline (Dox) induction, IL-22 protein was readily detected in the large (CC10 promoter) and small (SPC promoter) airway epithelial cells. IL-22 signaling was evidenced by phosphorylated STAT3. After OVA sensitization and challenge, compared to wild type littermates, IL-22 transgenic mice showed decreased eosinophils in the bronchoalveolar lavage (BAL), and in lung tissue, decreased mucus metaplasia in the airways, and reduced AHR. Among the cytokines and chemokines examined, IL-13 levels were reduced in the BAL fluid as well as in lymphocytes from local draining lymph nodes of IL-22 transgenic mice. No effect was seen on the levels of serum total or OVA-specific IgE or IgG. These findings indicate that IL-22 has immune modulatory effects on pulmonary inflammatory responses in allergen-induced asthma. PMID:25254361

  19. Complementary roles for lipid and protein allergens in triggering innate and adaptive immune systems.

    PubMed

    Russano, A M; Agea, E; Casciari, C; de Benedictis, F M; Spinozzi, F

    2008-11-01

    Recent advances in allergy research mostly focussed on two major headings: improving protein allergen purification, which is aimed towards a better characterization of IgE- and T-cell reactive epitopes, and the potential new role for unconventional innate and regulatory T cells in controlling airway inflammation. These advancements could appear to be in conflict each other, as innate T cells have a poorly-defined antigen specificity that is often directed toward nonprotein substances, such as lipids. To reconcile these contrasting findings, the model of cypress pollinosis as paradigmatic for studying allergic diseases in adults is suggested. The biochemical characterization of major native protein allergens from undenatured pollen grain demonstrated that the most relevant substance with IgE-binding activity is a glycohydrolase enzyme, which easily denaturizes in stored grains. Moreover, lipids from the pollen membrane are implicated in early pollen grain capture and recognition by CD1(+) dendritic cells (DC) and CD1-restricted T lymphocytes. These T cells display Th0/Th2 functional activity and are also able to produce regulatory cytokines, such as IL-10 and TGF-beta. CD1(+) immature DCs expand in the respiratory mucosa of allergic subjects and are able to process both proteins and lipids. A final scenario may suggest that expansion and functional activation of CD1(+) DCs is a key step for mounting a Th0/Th2-deviated immune response, and that such innate response does not confer long-lasting protective immunity.

  20. Enhanced sensitization and elicitation responses caused by mixtures of common fragrance allergens.

    PubMed

    Bonefeld, Charlotte Menné; Nielsen, Morten Milek; Rubin, Ingrid Maria Cecilia; Vennegaard, Marie Torp; Dabelsteen, Sally; Gimenéz-Arnau, Elena; Lepoittevin, Jean-Pierre; Geisler, Carsten; Johansen, Jeanne Duus

    2011-12-01

    Perfumes are complex mixtures composed of many fragrance ingredients, many of which are known to be only weak allergens when tested individually. It is therefore surprising that fragrance contact allergy is one of the most common forms of contact allergy. To investigate whether mixing different fragrance allergens leads to increased sensitization potency, and to examine the difference in the challenge response to one chemical in mice sensitized either with the mixture of allergens or with only the relevant allergen. CBA mice were sensitized with three different concentrations of three fragrance allergens alone or as a mixture. The sensitization and elicitation responses were measured by ear thickness plus infiltration of B and T cells and T cell proliferation in the draining lymph nodes. We found a dose-dependent sensitization response for each of the allergens. An increased response was seen when the allergens were mixed. A stronger challenge response to cinnamal was seen in mice sensitized with the allergen mixture than in mice sensitized with cinnamal alone. Our findings suggest that mixtures of allergens increase the primary response that potentiates the generation of memory T cells in response to the specific allergen. Thus, allergen mixtures enhance both induction and elicitation of contact allergy. © 2011 John Wiley & Sons A/S.

  1. Immune Responses in Rhinovirus-Induced Asthma Exacerbations.

    PubMed

    Steinke, John W; Borish, Larry

    2016-11-01

    Acute asthma exacerbations are responsible for urgent care visits and hospitalizations; they interfere with school and work productivity, thereby driving much of the morbidity and mortality associated with asthma. Approximately 80 to 85 % of asthma exacerbations in children, adolescents, and less frequently adults are associated with viral upper respiratory tract viral infections, and rhinovirus (RV) accounts for ∼60-70 % of these virus-associated exacerbations. Evidence suggests that it is not the virus itself but the nature of the immune response to RV that drives this untoward response. In particular, evidence supports the concept that RV acts to exacerbate an ongoing allergic inflammatory response to environmental allergens present at the time of the infection. The interaction of the ongoing IgE- and T cell-mediated response to allergen superimposed on the innate and adaptive immune responses to the virus and how this leads to triggering of an asthma exacerbation is discussed.

  2. Pollen Lipidomics: Lipid Profiling Exposes a Notable Diversity in 22 Allergenic Pollen and Potential Biomarkers of the Allergic Immune Response

    PubMed Central

    Bashir, Mohamed Elfatih H.; Lui, Jan Hsi; Palnivelu, Ravishankar; Naclerio, Robert M.; Preuss, Daphne

    2013-01-01

    lipids vary greatly among allergenic species and contain many molecules that have stimulatory or regulatory effects on immune responses. PMID:23469025

  3. Fragrance allergens in 'specific' cosmetic products.

    PubMed

    Nardelli, Andrea; Drieghe, Jacques; Claes, Lieve; Boey, Lies; Goossens, An

    2011-04-01

    Together with preservative agents, fragrance components are the most important sensitizing culprits in cosmetic products. To identify the nature of the fragrance ingredients responsible for allergic contact dermatitis (ACD) from specific cosmetic products. Between 2000 and 2009, positive patch test reactions or positive usage tests with the patients' own cosmetic products, were recorded using a standardised form. Of the 806 cosmetic records, corresponding to 485 patient files, 344 concerned reactions to fragrance ingredients that according to the label were present ('Presence Confirmed' [PC n = 301]) or suspected to be present ('Presence Not Confirmed' [PNC n = 376]) in the causal cosmetic products used, which belonged to 15 different categories, toilet waters/fine perfumes being the most frequent. Geraniol in fragrance mix I (FM I) and hydroxyisohexyl 3-cyclohexene carboxaldehyde (HICC) in FM II were the most frequent PC, and together with hydroxycitronellal and Evernia prunastri (oak moss) the most frequent PNC ingredients in the causal cosmetic products. Limonene was the most frequent PC confirmed fragrance allergen. This study not only underlines the usefulness of fragrance-ingredient labelling in order to identify the causal allergen(s) present in specific cosmetic products, but may also provide information on trends in the actual use of sensitizing fragrance ingredients in them. © 2011 John Wiley & Sons A/S.

  4. Vinegar decreases allergenic response in lentil and egg food allergy.

    PubMed

    Armentia, A; Dueñas-Laita, A; Pineda, F; Herrero, M; Martín, B

    2010-01-01

    Food allergy results from an atypical response of the mucosal immune system to orally consumed allergens. Antacid medication inhibits the digestion of dietary proteins and causes food allergy. A decrease of the gastric pH might enhance the function of digestion and reduce the risk of food allergy. To test a possible decrease in the allergenicity of powerful food allergens (egg, chicken, lentils) with the addition of vinegar during the cooking process. We included seven patients who suffered from anaphylaxis due to egg, chicken and lentils. We added vinegar to egg, chicken and lentil processed extracts used for skin prick tests (SPT) and compared the wheal areas obtained with the same extracts sources and the same way but without vinegar addition. Immunodetection was performed with the different processed extracts and patients' sera. Only one patient consented food challenge with vinegar-marinated-chicken. Wheal areas were significantly minor with the food extract with vinegar. Immunodetection showed a decrease of the response with vinegar processed extracts. Vinegar addition during the cooking process may decrease lentil and chicken allergenicity. Copyright 2009 SEICAP. Published by Elsevier Espana. All rights reserved.

  5. Immune responses of B. malayi thioredoxin (TRX) and venom allergen homologue (VAH) chimeric multiple antigen for lymphatic filariasis.

    PubMed

    Anugraha, Gandhirajan; Jeyaprita, Parasurama Jawaharlal; Madhumathi, Jayaprakasam; Sheeba, Tamilvanan; Kaliraj, Perumal

    2013-12-01

    Although multiple vaccine strategy for lymphatic filariasis has provided tremendous hope, the choice of antigens used in combination has determined its success in the previous studies. Multiple antigens comprising key vaccine candidates from different life cycle stages would provide a promising strategy if the antigenic combination is chosen by careful screening. In order to analyze one such combination, we have used a chimeric construct carrying the well studied B. malayi antigens thioredoxin (BmTRX) and venom allergen homologue (BmVAH) as a fusion protein (TV) and evaluated its immune responses in mice model. The efficacy of fusion protein vaccine was explored in comparison with the single antigen vaccines and their cocktail. In mice, TV induced significantly high antibody titer of 1,28,000 compared to cocktail vaccine TRX+VAH (50,000) and single antigen vaccine TRX (16,000) or VAH (50,000). Furthermore, TV elicited higher level of cellular proliferative response together with elevated levels of IFN-γ, IL-4 and IL-5 indicating a Th1/Th2 balanced response. The isotype antibody profile showed significantly high level of IgG1 and IgG2b confirming the balanced response elicited by TV. Immunization with TV antigen induced high levels of both humoral and cellular immune responses compared to either cocktail or antigen given alone. The result suggests that TV is highly immunogenic in mice and hence the combination needs to be evaluated for its prophylactic potential.

  6. Fish Allergens at a Glance: Variable Allergenicity of Parvalbumins, the Major Fish Allergens

    PubMed Central

    Kuehn, Annette; Swoboda, Ines; Arumugam, Karthik; Hilger, Christiane; Hentges, François

    2014-01-01

    Fish is a common trigger of severe, food-allergic reactions. Only a limited number of proteins induce specific IgE-mediated immune reactions. The major fish allergens are the parvalbumins. They are members of the calcium-binding EF-hand protein family characterized by a conserved protein structure. They represent highly cross-reactive allergens for patients with specific IgE to conserved epitopes. These patients might experience clinical reactions with various fish species. On the other hand, some individuals have IgE antibodies directed against unique, species-specific parvalbumin epitopes, and these patients show clinical symptoms only with certain fish species. Furthermore, different parvalbumin isoforms and isoallergens are present in the same fish and might display variable allergenicity. This was shown for salmon homologs, where only a single parvalbumin (beta-1) isoform was identified as allergen in specific patients. In addition to the parvalbumins, several other fish proteins, enolases, aldolases, and fish gelatin, seem to be important allergens. New clinical and molecular insights advanced the knowledge and understanding of fish allergy in the last years. These findings were useful for the advancement of the IgE-based diagnosis and also for the management of fish allergies consisting of advice and treatment of fish-allergic patients. PMID:24795722

  7. Purified Timothy grass pollen major allergen Phl p 1 may contribute to the modulation of allergic responses through a pleiotropic induction of cytokines and chemokines from airway epithelial cells

    PubMed Central

    Röschmann, K I L; van Kuijen, A-M; Luiten, S; Jonker, M J; Breit, T M; Fokkens, W J; Petersen, A; van Drunen, C M

    2012-01-01

    By definition, allergens are proteins with the ability to elicit powerful T helper lymphocyte type 2 (Th2) responses, culminating in immunoglobulin (Ig)E antibody production. Why specific proteins cause aberrant immune responses has remained largely unanswered. Recent data suggest that there may be several molecular paths that may affect allergenicity of proteins. The focus of this study is the response of airway epithelium to a major allergen from Phleum pratense Phl p 1. Instead of focusing on a few genes and proteins that might be affected by the major allergen, our aim was to obtain a broader view on the immune stimulatory capacity of Phl p 1. We therefore performed detailed analysis on mRNA and protein level by using a microarray approach to define Phl p 1-induced gene expression. We found that this allergen induces modulation and release of a broad range of mediators, indicating it to be a powerful trigger of the immune system. We were able to show that genes belonging to the GO cluster ‘cell communication’ were among the most prominent functional groups, which is also reflected in cytokines and chemokines building centres in a computational model of direct gene interaction. Further detailed comparison of grass pollen extract (GPE)- and Phl p 1-induced gene expression might be beneficial with regard to the application of single components within diagnosis and immunotherapy. PMID:22288584

  8. Comparison of allergenicity and immunogenicity of an intact allergen vaccine and commercially available allergoid products for birch pollen immunotherapy.

    PubMed

    Lund, L; Henmar, H; Würtzen, P A; Lund, G; Hjortskov, N; Larsen, J N

    2007-04-01

    Specific immunotherapy with intact allergen vaccine is a well-documented treatment for allergic diseases. Different vaccine formulations are currently commercially available, the active ingredient either being intact allergens or chemically modified allergoids. The rationale behind allergoids is to decrease allergenicity while maintaining immunogenicity. However, data from the German health authorities based on reporting of adverse events over a 10-year period did not indicate increased safety of allergoids over intact allergens. The objective of this study was to investigate the effect of chemical modification on allergenicity and immunogenicity comparing four commercial allergoid products for birch pollen immunotherapy with an intact allergen vaccine. Solid-phase IgE inhibition and histamine release assays were selected as model systems for allergenicity, and a combination of human T cell proliferation and IgG titres following mouse immunizations were used to address the immunogenicity of the intact allergen vaccine and the four allergoids. In all assays, the products were normalized with respect to the manufacturer's recommended maintenance dose. IgE inhibition experiments showed a change in epitope composition comparing intact allergen vaccine with allergoid. One allergoid product induced enhanced histamine release compared to the intact allergens, while the other three allergoids showed reduced release. Standard T cell stimulation assays using lines from allergic patients showed a reduced response for all allergoids compared with the intact allergen vaccine regardless of the cell type used for antigen presentation. All allergoids showed reduced capacity to induce allergen-specific IgG responses in mice. While some allergoids were associated with reduced allergenicity, a clear reduction in immunogenicity was observed for all allergoid products compared with the intact allergen vaccine, and the commercial allergoids tested therefore do not fulfil the allergoid

  9. Identification and characterization of major cat allergen Fel d 1 mimotopes on filamentous phage carriers.

    PubMed

    Luzar, Jernej; Molek, Peter; Šilar, Mira; Korošec, Peter; Košnik, Mitja; Štrukelj, Borut; Lunder, Mojca

    2016-03-01

    Cat allergy is one of the most prevalent allergies worldwide and can lead to the development of rhinitis and asthma. Thus far, only allergen extracts from natural sources have been used for allergen-specific immunotherapy. However, extracts and whole allergens in immunotherapy present an anaphylaxis risk. Identification of allergen epitopes or mimotopes has an important role in development of safe and effective allergen-specific immunotherapy. Moreover, with a suitable immunogenic carrier, the absence of sufficient immune response elicited by short peptides could be surmounted. In this study, we identified five structural mimotopes of the major cat allergen Fel d 1 by immunoscreening with random peptide phage libraries. The mimotopes were computationally mapped to the allergen surface, and their IgE reactivity was confirmed using sera from cat-allergic patients. Importantly, the mimotopes showed no basophil activation of the corresponding cat-allergic patients, which makes them good candidates for the development of hypoallergenic vaccine. As bacteriophage particles are becoming increasingly recognized as immunogenic carriers, we constructed bacteriophage particles displaying multiple copies of each selected mimotope on major phage coat protein. These constructed phages elicited T cell-mediated immune response, which was predominated by the type 1 T cell response. Mimotopes alone contributed to the type 1 T cell response by promoting IL-2 production. Fel d 1 mimotopes, as well as their filamentous phage immunogenic carriers, represent promising candidates in the development of hypoallergenic vaccine against cat allergy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Immune responses in dogs with cutaneous adverse food reactions.

    PubMed

    Veenhof, E Z; Knol, E F; Willemse, T; Rutten, V P M G

    2012-06-01

    Adverse food reactions (AFR) in dogs are reactions due to apparently harmless food antigens, with an unknown aetiology, i.e. immunopathogenesis. Despite the entry of food allergens via the intestinal tract, in the majority of dogs with AFR, clinical symptoms are only associated with the skin (CAFR). In the present review, factors are presented of relevance in triggering the differentiation of naive T cells into effector T cell types and the role of these T cell types in allergy. More specifically, the allergic immune responses in intestine and skin are discussed in this article as well as the potential pathways, e.g. homing of antigen presenting cells or allergen-induced T cells to the skin, of induction of cutaneous symptoms.

  11. Lymphocyte blastogenic responses to inciting food allergens in dogs with food hypersensitivity.

    PubMed

    Ishida, Rinei; Masuda, Kenichi; Kurata, Keigo; Ohno, Koichi; Tsujimoto, Hajime

    2004-01-01

    Lymphocyte blastogenic responses against food allergens in dogs with food hypersensitivity were evaluated in this study. Eleven dogs with food hypersensitivity, based on food elimination and oral food provocation tests and allergic responses to food allergens, were examined by various tests such as intradermal testing, antigen-specific IgE testing, and lymphocyte blastogenic responses. The number and kinds of food allergens identified as positive by these tests were compared with the offending food allergens that were found in an oral food provocation test. In 9 (82%) of the 11 dogs with food hypersensitivity, there was close agreement for positive allergens between the results of lymphocyte blastogenic responses and oral food provocation test; however, there was little agreement for intradermal and IgE testing of the positive allergens with those of the oral food provocation test (11% and 31%, respectively). In the 9 dogs, the stimulation indices of lymphocyte blastogenic responses increased to 2.0-10.1 upon food provocation but decreased significantly to 0.7-1.4 upon feeding the elimination diet until clinical signs disappeared. These results indicate that lymphocyte blastogenic responses may fluctuate because of exposure to offending food allergens in dogs with food hypersensitivity. Lymphocytes reactive to food allergens may play an important role in the pathogenesis of food hypersensitivity in dogs.

  12. The role of protease-activated receptor-2 on pulmonary neutrophils in the innate immune response to cockroach allergen

    PubMed Central

    2012-01-01

    Background Serine proteases in German cockroach (GC) have been shown to mediate allergic airway inflammation through the activation of protease activated receptor (PAR)-2. Neutrophils play an important role in regulating the innate immune response, and are recruited into the airways following GC frass exposure. As such, we investigated the role of PAR-2 in airway neutrophil recruitment, activation and cytokine production following allergen exposure. Methods Wild type and PAR-2-deficient mice were administered a single intratracheal instillation of PBS or GC frass and neutrophil recruitment, expression of PAR-2, CD80, CD86, and MHC class II were assessed by flow cytometry and levels of tumor necrosis factor (TNF)α was assessed by ELISA. Uptake of AlexaFluor 405-labeled GC frass by neutrophils was performed by flow cytometry. Results Neutrophil recruitment in the lung and airways following GC frass exposure was significantly decreased in PAR-2-deficient mice compared to wild type mice. GC frass exposure increased the level of PAR-2 on pulmonary neutrophils and increased numbers of PAR-2-positive neutrophils were found in the lungs; however PAR-2 did not play a role in meditating allergen uptake. Comparing wild type and PAR-2-deficient mice, we found that a single exposure to GC frass increased levels of CD80 and CD86 on pulmonary neutrophils, an effect which was independent of PAR-2 expression. Neutrophils isolated from the whole lungs of naïve PAR-2-deficient mice treated ex vivo with GC frass produced significantly less TNFα than in similarly treated wild type neutrophils. Lastly, neutrophils were isolated from the bronchoalveolar lavage fluid of wild type and PAR-2-deficient mice following a single intratracheal exposure to GC frass. Airway neutrophils from PAR-2-deficient mice released substantially decreased levels of TNFα, suggesting a role for PAR-2 in neutrophil-derived cytokine production. Conclusions Together these data suggest PAR-2 expression can be

  13. Responses of human birch pollen allergen-reactive T cells to chemically modified allergens (allergoids).

    PubMed

    Dormann, D; Ebner, C; Jarman, E R; Montermann, E; Kraft, D; Reske-Kunz, A B

    1998-11-01

    Allergoids are widely used in specific immunotherapy for the treatment of IgE-mediated allergic diseases. The aim of this study was to analyse whether a modification of birch pollen allergens with formaldehyde affects the availability of T-cell epitopes. Efficient modification of the allergens was verified by determining IgE and IgG binding activity using ELISA inhibition tests. T-cell responses to birch pollen allergoids were analysed in polyclonal systems, using peripheral blood mononuclear cells (PBMC) of five birch pollen-allergic individuals, as well as birch pollen extract-reactive T-cell lines (TCL), established from the peripheral blood of 14 birch pollen-allergic donors. To determine whether the modification of natural (n)Bet v 1 with formaldehyde or maleic anhydride results in epitope-specific changes in T-cell reactivities, 22 Bet v 1-specific T-cell clones (TCC), established from nine additional birch pollen-allergic individuals, were tested for their reactivity with these products. The majority of PBMC and TCL showed a reduced response to the birch pollen extract allergoid. Bet v 1-specific TCC could be divided into allergoid-reactive and -non-reactive TCC. No simple correlation between possible modification sites of formaldehyde in the respective T-cell epitopes and the stimulatory potential of the allergoid was observed. Mechanisms of suppression or of anergy induction were excluded as an explanation for the non-reactivity of representative TCC. All TCC could be stimulated by maleylated and unmodified nBet v 1 to a similar extent. These results demonstrate differences in the availability of T-cell epitopes between allergoids and unmodified allergens, which are most likely due to structural changes within the allergen molecule.

  14. Molecular aspects of allergens in atopic dermatitis

    PubMed Central

    Campana, Raffaela; Dzoro, Sheron; Mittermann, Irene; Fedenko, Elena; Elisyutina, Olga; Khaitov, Musa; Karaulov, Alexander; Valenta, Rudolf

    2017-01-01

    Purpose of review Molecular allergology uses pure, mainly recombinant and structurally defined allergen molecules and allergen-derived epitopes to study mechanisms of IgE-associated allergy, to diagnose, and even predict the development of allergic manifestations and to treat and prevent IgE-associated allergies. Atopic dermatitis, a chronic inflammatory skin disease is almost always associated with IgE sensitization to allergens. However, also non-IgE-mediated pathomechanisms seem to be operative in atopic dermatitis and it is often difficult to identify the disease-causing allergens. Here we review recent work showing the usefulness of molecular allergology to study mechanisms of atopic dermatitis, for diagnosis and eventually for treatment and prevention of atopic dermatitis. Recent findings IgE sensitization to airborne, food-derived, microbial allergens, and autoallergens has been found to be associated with atopic dermatitis. Using defined allergen molecules and non-IgE-reactive allergen derivatives, evidence could be provided for the existence of IgE- and non-IgE-mediated mechanisms of inflammation in atopic dermatitis. Furthermore, effects of epicutaneous allergen administration on systemic allergen-specific immune responses have been studied. Multi-allergen tests containing micro-arrayed allergen molecules have been shown to be useful for the identification of culprit allergens in atopic dermatitis and may improve the management of atopic dermatitis by allergen-specific immunotherapy, allergen avoidance, and IgE-targeting therapies in a personalized medicine approach. Summary Molecular allergology allows for dissection of the pathomechanisms of atopic dermatitis, provides new forms of allergy diagnosis for identification of disease-causing allergens, and opens the door to new forms of management by allergen-specific and T cells-targeting or IgE-targeting interventions in a personalized medicine approach. PMID:28622169

  15. Repurposing Ospemifene for Potentiating an Antigen-Specific Immune Response

    PubMed Central

    Kao, Chiao-Jung; Wurz, Gregory T.; Lin, Yi-Chen; Vang, Daniel P.; Phong, Brian; DeGregorio, Michael W.

    2016-01-01

    Objective Ospemifene, an estrogen receptor agonist/antagonist approved for treatment of dyspareunia and vaginal dryness in postmenopausal women, has potential new indications as an immune modulator. The overall objective of the present series of preclinical studies was to evaluate the immunomodulatory activity of ospemifene in combination with a peptide cancer vaccine. Methods Immune regulating effects, mechanism of action and structure activity relationships of ospemifene and related compounds were evaluated by examining expression of T cell activating cytokines in vitro, and antigen-specific immune response and cytotoxic T-lymphocyte activity in vivo. The effects of ospemifene (OSP) on the immune response to a peptide cancer vaccine (PV) were evaluated following chronic [control (n=22); OSP 50 mg/kg (n=16); PV (n=6); OSP+PV (n=11)], intermittent [control (n=10); OSP 10 and 50 mg/kg (n=11); PV (n=11); combination treatment (n=11 each dose)] and pretreatment [control; OSP 100 mg/kg; PV 100 µg; combination treatment (n=8 all groups)] ospemifene oral dosing schedules in a total of 317 mixed-sex tumor-bearing and non-tumor-bearing mice. Results The results showed that ospemifene induced expression of the key TH1 cytokines interferon gamma and interleukin-2 in vitro, which may be mediated by stimulating T cells through phosphoinositide 3-kinase and calmodulin signaling pathways. In combination with an antigen-specific peptide cancer vaccine, ospemifene increased antigen-specific immune response and increased cytotoxic T-lymphocyte activity in tumor-bearing and non-tumor-bearing mice. The pretreatment, intermittent, and chronic dosing schedules of ospemifene activate naïve T cells, modulate antigen-induced tolerance and reduce tumor-associated, pro-inflammatory cytokines, respectively. Conclusions Taken together, ospemifene’s dose response and schedule-dependent immune modulating activity offers a method of tailoring and augmenting the efficacy of previously failed

  16. Control of epithelial immune-response genes and implications for airway immunity and inflammation.

    PubMed

    Holtzman, M J; Look, D C; Sampath, D; Castro, M; Koga, T; Walter, M J

    1998-01-01

    A major goal of our research is to understand how immune cells (especially T cells) infiltrate the pulmonary airway during host defense and inflammatory disease (especially asthma). In that context, we have proposed that epithelial cells lining the airway provide critical biochemical signals for immune-cell influx and activation and that this epithelial-immune cell interaction is a critical feature of airway inflammation and hyperreactivity. In this brief report, we describe our progress in defining a subset of epithelial immune-response genes the expression of which is coordinated for viral defense both directly in response to replicating virus and indirectly under the control of a specific interferon-gamma signal transduction pathway featuring the Stat1 transcription factor as a critical relay signal between cytoplasm and nucleus. Unexpectedly, the same pathway is also activated during asthmatic airway inflammation in a setting where there is no apparent infection and no increase in interferon-gamma levels. The findings provide the first evidence of an overactive Stat1-dependent gene network in asthmatic airways and a novel molecular link between mucosal immunity and inflammation. The findings also offer the possibility that overactivity of Stat1-dependent genes might augment a subsequent T helper cell (Th1)-type response to virus or might combine with a heightened Th2-type response to allergen to account for more severe exacerbations of asthma.

  17. Skin prick test responses and allergen-specific IgE levels as predictors of peanut, egg, and sesame allergy in infants.

    PubMed

    Peters, Rachel L; Allen, Katrina J; Dharmage, Shyamali C; Tang, Mimi L K; Koplin, Jennifer J; Ponsonby, Anne-Louise; Lowe, Adrian J; Hill, David; Gurrin, Lyle C

    2013-10-01

    Ninety-five percent positive predictive values (PPVs) provide an invaluable tool for clinicians to avoid unnecessary oral food challenges. However, 95% PPVs specific to infants, the age group most likely to present for diagnosis of food allergy, are limited. We sought to develop skin prick test (SPT) and allergen-specific IgE (sIgE) thresholds with 95% PPVs for challenge-confirmed food allergy in a large population-based cohort of 1-year-old infants with challenges undertaken irrespective of SPT wheal size or previous history of ingestion. HealthNuts is a population-based, longitudinal food allergy study with baseline recruitment of 1-year-old infants. Infants were recruited from council-run immunization sessions during which they underwent SPTs to 4 allergens: egg, peanut, sesame, and cow's milk/shrimp. Any infant with a detectable SPT response was invited to undergo oral food challenge and sIgE testing. Five thousand two hundred seventy-six infants participated in the study. Peanut SPT responses of 8 mm or greater (95% CI, 7-9 mm), egg SPT responses of 4 mm or greater (95% CI, 3-5 mm), and sesame SPT responses of 8 mm or greater (95% CI, 5-9 mm) had 95% PPVs for challenge-proved food allergy. Peanut sIgE levels of 34 kUA/L or greater (95% CI, 14-48 kUA/L) and egg sIgE levels of 1.7 kUA/L or greater (95% CI, 1-3 kUA/L) had 95% PPVs for challenge-proved food allergy. Results were robust when stratified on established risk factors for food allergy. Egg SPT responses and sIgE levels were poor predictors of allergy to egg in baked goods. These 95% PPVs, which were generated from a unique dataset, are valuable for the diagnosis of food allergy in young infants and were robust when stratified across a number of different risk factors. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  18. High serum levels of allergen specific IgG-4 (asIgG-4) for common food allergens in healthy blood donors.

    PubMed

    Kruszewski, J; Raczka, A; Kłos, M; Wiktor-Jedrzejczak, W

    1994-01-01

    High serum levels of asIgG-4 against common food allergens are found in many patients with symptoms suggesting food allergy. The same patients are frequently negative for allergen specific IgE (asIgE) against the same allergens. These data were frequently interpreted as suggestive of a role of asIgG-4 in food allergy. In order to evaluate this hypothesis we tested serum levels of asIgG-4 against food allergens in young blood donors without any signs or history of food allergy. Fifty young healthy male donors were evaluated. The serum levels of IgE, and asIgE and IgG-4 against 14 common food allergens were determined. The studies were carried out using commercially available 3M Diagnostics Systems kits. AsIgG-4 against food allergens were found in sera of 92% blood donors, and in 62% of these healthy persons the levels of asIgG-4 were higher than 10.0 micrograms/ml. In a small proportion of patients, high serum levels of IgE and asIgE against the same food and/or inhalant allergens were found. Common occurrence of asIgG-4 against food allergens in healthy persons (without any symptoms which could suggest allergy or food intolerance) argues against the possible participation of these antibodies in the pathogenesis of food allergy. It is possible that their occurrence is the result of immunization against food antigens (allergens). It remains to be resolved whether the presence of these antibodies represents an epiphenomenon or may have some other biological role.

  19. Cockroach Allergen Exposure and Risk of Asthma

    PubMed Central

    Do, Danh C.; Zhao, Yilin; Gao, Peisong

    2015-01-01

    Cockroach sensitization is an important risk factor for the development of asthma. However, its underlying immune mechanisms and the genetic etiology for differences in allergic responses remain unclear. Cockroach allergens identification and their expression as biologically active recombinant proteins has provided a basis for studying the mechanisms regarding cockroach allergens induced allergic sensitization and asthma. Glycans in allergens may play a crucial role in the immunogenicity of allergic diseases. Protease-activated receptor (PAR)-2, Toll-like receptor (TLR), and C-type lectin receptors have been suggested to be important for the penetration of cockroach allergens through epithelial cells to mediate allergen uptake, dendritic cell maturation, antigen presenting cell (APC) function in T cell polarization, and cytokine production. Environmental pollutants, which often co-exist with the allergen, could synergistically elicit allergic inflammation, and aryl hydrocarbon receptor (AhR) activation and signaling may serve as a link between these two elements. Genetic factors may also play an important role in conferring the susceptibility to cockroach sensitization. Several genes have been associated with cockroach sensitization and asthma-related phenotypes. In this review, we will discuss the epidemiological evidence for cockroach allergen-induced asthma, cockroach allergens, the mechanisms regarding cockroach allergens induced innate immune responses, and the genetic basis for cockroach sensitization. PMID:26706467

  20. Purified Timothy grass pollen major allergen Phl p 1 may contribute to the modulation of allergic responses through a pleiotropic induction of cytokines and chemokines from airway epithelial cells.

    PubMed

    Röschmann, K I L; van Kuijen, A-M; Luiten, S; Jonker, M J; Breit, T M; Fokkens, W J; Petersen, A; van Drunen, C M

    2012-03-01

    By definition, allergens are proteins with the ability to elicit powerful T helper lymphocyte type 2 (Th2) responses, culminating in immunoglobulin (Ig)E antibody production. Why specific proteins cause aberrant immune responses has remained largely unanswered. Recent data suggest that there may be several molecular paths that may affect allergenicity of proteins. The focus of this study is the response of airway epithelium to a major allergen from Phleum pratense Phl p 1. Instead of focusing on a few genes and proteins that might be affected by the major allergen, our aim was to obtain a broader view on the immune stimulatory capacity of Phl p 1. We therefore performed detailed analysis on mRNA and protein level by using a microarray approach to define Phl p 1-induced gene expression. We found that this allergen induces modulation and release of a broad range of mediators, indicating it to be a powerful trigger of the immune system. We were able to show that genes belonging to the GO cluster 'cell communication' were among the most prominent functional groups, which is also reflected in cytokines and chemokines building centres in a computational model of direct gene interaction. Further detailed comparison of grass pollen extract (GPE)- and Phl p 1-induced gene expression might be beneficial with regard to the application of single components within diagnosis and immunotherapy. © 2011 The Authors. Clinical and Experimental Immunology © 2011 British Society for Immunology.

  1. [Specific immunotherapy. Hyposensitization with allergens].

    PubMed

    Wedi, B; Kapp, A

    2004-04-01

    Successful allergen-specific immunotherapy (SIT) induces complex immunologic chan-ges resulting in reduced allergic inflammatory reactions. SIT has long-term effects in mild forms of inhalant allergies and is effective even when standard pharmacotherapy fails. Moreover, the risk to develop additional allergic sensitizations and the development of asthma is significantly reduced in children with allergic rhinitis. SIT is the treatment of choice in patients with systemic reactions to hymenoptera venoms. Although the exact effector mechanisms of SIT still have to be clarified, the most probable effect is a modulation of regulatory T cells associated with a switch of allergen-specific B-cells towards IgG4 production. The critical point to insure efficacy and safety is the selection of patients and allergens, task best performed by a specialist trained in allergology. Further details are available in the position papers of the German allergy societies - DGAI(Deutsche Gesellschaft fiir Allergologie und Klinische Immunologie) and ADA (Arzte-verband Deutscher Allergologen) - which can be found at www.dgaki.de.

  2. Comparison of immunoglobulin E measurements on IMMULITE and ImmunoCAP in samples consisting of allergen-specific mouse-human chimeric monoclonal antibodies towards allergen extracts and four recombinant allergens.

    PubMed

    Szecsi, Pal B; Stender, Steen

    2013-01-01

    Specific immunoglobulin E (IgE) antibody in vitro tests are performed on enzyme immunoassay systems. Poor agreement among systems has been reported and comparisons have been made exclusively with allergen extracts - not with recombinant allergens. Here we compare the ImmunoCAP and the IMMULITE systems. Ten patient samples with positive IgE toward egg white, birch pollen or cat or dog dander were compared using allergen extracts or the recombinant allergens Gal d 1, Bet v 1, Fel d 1 and Can f 1 with the two assay systems. Comparisons were also performed using four monoclonal mouse-human chimeric IgE antibodies specific for the same allergenic components. IMMULITE estimated a higher allergen-specific IgE concentration in sera than ImmunoCAP when testing with allergen extracts as well as recombinant allergens. The chimeric antibodies gave an equivalent response in the total IgE and specific IgE (sIgE) with an average ratio of 1.08 (range 0.9-1.3) on ImmunoCAP. In contrast, IMMULITE exhibited sIgE signals that were substantially higher than the summed level of IgE for all four chimeric antibodies (average ratio 2.96 and range 1.7-4.3). Comparison using chimeric antibodies allowed the evaluation of the true performance of the systems. ImmunoCAP measured total IgE and sIgE equally, whereas IMMULITE displayed higher sIgE signals when compared to the summed level of total IgE for all four chimeric antibodies. Results obtained with the two assay systems are not interchangeable by means of mathematical conversion. Copyright © 2013 S. Karger AG, Basel.

  3. Allergen-specific IgG antibodies purified from mite-allergic patients sera block the IgE recognition of Dermatophagoides pteronyssinus antigens: an in vitro study.

    PubMed

    Siman, Isabella Lima; de Aquino, Lais Martins; Ynoue, Leandro Hideki; Miranda, Juliana Silva; Pajuaba, Ana Claudia Arantes Marquez; Cunha-Júnior, Jair Pereira; Silva, Deise Aparecida Oliveira; Taketomi, Ernesto Akio

    2013-01-01

    One of the purposes of specific immunotherapy (SIT) is to modulate humoral immune response against allergens with significant increases in allergen-specific IgG levels, commonly associated with blocking activity. The present study investigated in vitro blocking activity of allergen-specific IgG antibodies on IgE reactivity to Dermatophagoides pteronyssinus (Dpt) in sera from atopic patients. Dpt-specific IgG antibodies were purified by ammonium sulfate precipitation followed by protein-G affinity chromatography. Purity was checked by SDS-PAGE and immunoreactivity by slot-blot and immunoblot assays. The blocking activity was evaluated by inhibition ELISA. The electrophoretic profile of the ammonium sulfate precipitated fraction showed strongly stained bands in ligand fraction after chromatography, compatible with molecular weight of human whole IgG molecule. The purity degree was confirmed by detecting strong immunoreactivity to IgG, negligible to IgA, and no reactivity to IgE and IgM. Dpt-specific IgG fraction was capable of significantly reducing levels of IgE anti-Dpt, resulting in 35%-51% inhibition of IgE reactivity to Dpt in atopic patients sera. This study showed that allergen-specific IgG antibodies purified from mite-allergic patients sera block the IgE recognition of Dermatophagoides pteronyssinus antigens. This approach reinforces that intermittent measurement of serum allergen-specific IgG antibodies will be an important objective laboratorial parameter that will help specialists to follow their patients under SIT.

  4. Factors affecting allergen-specific IgE serum levels in cats

    PubMed Central

    Belova, S.; Wilhelm, S.; Linek, M.; Beco, L.; Fontaine, J.; Bergvall, K.; Favrot, C.

    2012-01-01

    Pruritic skin diseases are common in cats and demand rigorous diagnostic workup for finding an underlying etiology. Measurement of a serum allergen-specific IgE in a pruritic cat is often used to make or confirm the diagnosis of a skin hypersensitivity disease, although current evidence suggests that elevated allergen-specific IgE do not always correlate with a clinical disease and vice versa. The aim of the study was to to assess the possible influence of age, deworming status, lifestyle, flea treatment, and gender on allergen-specific IgE levels and to evaluate the reliability of IgE testing in predicting the final diagnosis of a pruritic cat. For this purpose sera of 179 cats with pruritus of different causes and 20 healthy cats were evaluated for allergen-specific IgE against environmental, food and flea allergens using the Fc-epsilon receptor based enzyme-linked immunosorbent assay (ELISA) test. The results of the study showed positive correlation between age, outdoor life style, absence of deworming, absence of flea control measures and levels of allergen-specific IgE. Gender and living area (urban versus rural) did not seem to affect the formation of allergen-specific IgE. According to these findings, evaluating allergen-specific IgE levels, is not a reliable test to diagnose hypersensitivity to food or environmental allergens in cats. On the contrary, this test can be successfully used for diagnosing feline flea bite hypersensitivity. PMID:22754094

  5. Allergen-specific immunotherapy: from therapeutic vaccines to prophylactic approaches

    PubMed Central

    Valenta, R.; Campana, R.; Marth, K.; van Hage, M.

    2015-01-01

    Immunoglobulin E-mediated allergies affect more than 25% of the population. Allergen exposure induces a variety of symptoms in allergic patients, which include rhinitis, conjunctivitis, asthma, dermatitis, food allergy and life-threatening systemic anaphylaxis. At present, allergen-specific immunotherapy (SIT), which is based on the administration of the disease-causing allergens, is the only disease-modifying treatment for allergy. Current therapeutic allergy vaccines are still prepared from relatively poorly defined allergen extracts. However, with the availability of the structures of the most common allergen molecules, it has become possible to produce well-defined recombinant and synthetic allergy vaccines that allow specific targeting of the mechanisms of allergic disease. Here we provide a summary of the development and mechanisms of SIT, and then review new forms of therapeutic vaccines that are based on recombinant and synthetic molecules. Finally, we discuss possible allergen-specific strategies for prevention of allergic disease. PMID:22640224

  6. Immunological mechanisms of sublingual allergen-specific immunotherapy.

    PubMed

    Novak, Natalija; Bieber, T; Allam, J-P

    2011-06-01

    Within the last 100 years of allergen-specific immunotherapy, many clinical and scientific efforts have been made to establish alternative noninvasive allergen application strategies. Thus, intra-oral allergen delivery to the sublingual mucosa has been proven to be safe and effective. As a consequence, to date, sublingual immunotherapy (SLIT) is widely accepted by most allergists as an alternative to conventional subcutaneous immunotherapy. Although immunological mechanisms remain to be elucidated in detail, several studies in mice and humans within recent years provided deeper insights into local as well as systemic immunological features in response to SLIT. First of all, it was shown that the target organ, the oral mucosa, harbours a sophisticated immunological network as an important prerequisite for SLIT, which contains among other cells, local antigen-presenting cells (APC), such as dendritic cells (DCs), with a constitutive disposition to enforce tolerogenic mechanisms. Further on, basic research on local DCs within the oral mucosa gave rise to possible alternative strategies to deliver the allergens to other mucosal regions than sublingual tissue, such as the vestibulum oris. Moreover, characterization of oral DCs led to the identification of target structures for both allergens as well as adjuvants, which could be applied during SLIT. Altogether, SLIT came a long way since its very beginning in the last century and some, but not all questions about SLIT could be answered so far. However, recent research efforts as well as clinical approaches paved the way for another exciting 100 years of SLIT. © 2011 John Wiley & Sons A/S.

  7. Food aversion: a critical balance between allergen-specific IgE levels and taste preference.

    PubMed

    Mirotti, Luciana; Mucida, Daniel; de Sá-Rocha, Luis Carlos; Costa-Pinto, Frederico Azevedo; Russo, Momtchilo

    2010-03-01

    Animals sensitized to allergens change their feeding behavior and avoid drinking the otherwise preferred sweetened solutions containing the allergens. This phenomenon, known as food aversion, appears to be mediated by allergen-specific IgE antibodies. Here we investigated food aversion in BALB/c and C57BL/6 mice, which differ in their allergic responses to the allergen ovalbumin as well as in their preference for sweet taste. BALB/c mice present higher levels of IgE and a natural lower preference for sweet flavors when compared to C57BL/6 mice. Specifically, we studied a conflicting situation in which animals simultaneously experienced the aversive contact with the allergen and the attractive sweet taste of increasing concentrations of sucrose. We found that BALB/c mice were more prone to develop food aversion than C57BL/6 mice and that this aversive behavior could be abolished in both strains by increasing the palatability of the solution containing the allergen. In both strains food aversion was positively correlated with the levels of allergen-specific IgE antibodies and inversely correlated with their preference for sucrose sweetened solutions. 2009 Elsevier Inc. All rights reserved.

  8. Recombinant allergens

    PubMed Central

    Jutel, Marek; Solarewicz-Madejek, Katarzyna; Smolinska, Sylwia

    2012-01-01

    Allergen specific immunotherapy (SIT) is the only known causative treatment of allergic diseases. Recombinant allergen-based vaccination strategies arose from a strong need to both to improve safety and enhance efficacy of SIT. In addition, new vaccines can be effective in allergies including food allergy or atopic dermatitis, which poorly respond to the current treatment with allergen extracts. A number of successful clinical studies with both wild-type and hypoallergenic derivatives of recombinant allergens vaccines have been reported for the last decade. They showed high efficacy and safety profile as well as very strong modulation of T and B cell responses to specific allergens. PMID:23095874

  9. Preexisting Salmonella-specific immunity interferes with the subsequent development of immune responses against the Salmonella strains delivering H9N2 hemagglutinin.

    PubMed

    Hajam, Irshad Ahmed; Lee, John Hwa

    2017-06-01

    Recombinant Salmonella strains expressing foreign heterologous antigens have been extensively studied as promising live vaccine delivery vehicles. In this study, we constructed attenuated smooth (S-HA) and rough (R-HA) Salmonella strains expressing hemagglutinin (HA) of H9N2, a low pathogenic avian influenza A virus. We then investigated the HA-specific immune responses following oral immunization with either S-HA or R-HA strain in chicken model. We further examined the effects of the preexisting anti-Salmonella immunity on the subsequent elicitation of the HA and the Salmonella ompA specific immune responses. Our results showed that primary immunization with either the S-HA or the R-HA strain elicited comparable HA-specific immune responses and the responses were significantly (p<0.05) higher compared to the Salmonella vector control. When chickens were pre-immunized with the smooth Salmonella carrier alone and then vaccinated with either S-HA or R-HA strain 3, 6 and 9 weeks later, respectively, significant reductions were seen for HA-specific immune responses at week 6, a point which corresponded to the peak of the primary Salmonella-specific antibody responses. No reductions were seen at week 3 and 9, albeit, the HA-specific immune responses were boosted at week 9, a point which corresponded to the lowest primary Salmonella-specific antibody responses. The ompA recall responses remain refractory at week 3 and 6 following deliberate immunization with the carrier strain, but were significantly (p<0.05) increased at week 9 post-primary immunization. We conclude that preexisting anti-Salmonella immunity inhibits antigen-specific immune responses and this effect could be avoided by carefully selecting the time point when carrier-specific immune responses are relatively low. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Sensitization rates of causative allergens for dogs with atopic dermatitis: detection of canine allergen-specific IgE

    PubMed Central

    Kang, Min-Hee; Kim, Ha-Jung; Jang, Hye-Jin

    2014-01-01

    Allergen-specific IgE serology tests became commercially available in the 1980s. Since then these tests have been widely used to diagnose and treat allergic skin diseases. However, the relationship between a positive reaction and disease occurrence has been controversial. The purpose of this study was to evaluate allergens using a serologic allergy test in dogs with atopic dermatitis (AD). Dogs clinically diagnosed with AD (n=101) were tested using an allergen-specific IgE immunoassay. Among the total 92 environmental and food allergens, house dust and house dust mites were the most common. Several allergens including airborne pollens and molds produced positive reactions, and which was considered increasing allergens relating to the climate changes. The presence of antibodies against staphylococci and Malassezia in cases of canine AD was warranted in this study. Additionally, strong (chicken, turkey, brown rice, brewer's yeast, and soybean) and weakly (rabbit, vension, duck, and tuna) positive reactions to food allergens could be used for avoidance and limited-allergen trials. PMID:24962408

  11. Sensitization rates of causative allergens for dogs with atopic dermatitis: detection of canine allergen-specific IgE.

    PubMed

    Kang, Min-Hee; Kim, Ha-Jung; Jang, Hye-Jin; Park, Hee-Myung

    2014-12-01

    Allergen-specific IgE serology tests became commercially available in the 1980s. Since then these tests have been widely used to diagnose and treat allergic skin diseases. However, the relationship between a positive reaction and disease occurrence has been controversial. The purpose of this study was to evaluate allergens using a serologic allergy test in dogs with atopic dermatitis (AD). Dogs clinically diagnosed with AD (n = 101) were tested using an allergen-specific IgE immunoassay. Among the total 92 environmental and food allergens, house dust and house dust mites were the most common. Several allergens including airborne pollens and molds produced positive reactions, and which was considered increasing allergens relating to the climate changes. The presence of antibodies against staphylococci and Malassezia in cases of canine AD was warranted in this study. Additionally, strong (chicken, turkey, brown rice, brewer's yeast, and soybean) and weakly (rabbit, vension, duck, and tuna) positive reactions to food allergens could be used for avoidance and limited-allergen trials.

  12. Antigen-specific Treg cells in immunological tolerance: implications for allergic diseases

    PubMed Central

    Abdel-Gadir, Azza; Massoud, Amir H.; Chatila, Talal A.

    2018-01-01

    Allergic diseases are chronic inflammatory disorders in which there is failure to mount effective tolerogenic immune responses to inciting allergens. The alarming rise in the prevalence of allergic diseases in recent decades has spurred investigations to elucidate the mechanisms of breakdown in tolerance in these disorders and means of restoring it. Tolerance to allergens is critically dependent on the generation of allergen-specific regulatory T (Treg) cells, which mediate a state of sustained non-responsiveness to the offending allergen. In this review, we summarize recent advances in our understanding of mechanisms governing the generation and function of allergen-specific Treg cells and their subversion in allergic diseases. We will also outline approaches to harness allergen-specific Treg cell responses to restore tolerance in these disorders. PMID:29375821

  13. Reduced immune responses in chimeric mice engrafted with bone marrow cells from mice with airways inflammation.

    PubMed

    Scott, Naomi M; Ng, Royce L X; McGonigle, Terence A; Gorman, Shelley; Hart, Prue H

    2015-11-01

    During respiratory inflammation, it is generally assumed that dendritic cells differentiating from the bone marrow are immunogenic rather than immunoregulatory. Using chimeric mice, the outcomes of airways inflammation on bone marrow progenitor cells were studied. Immune responses were analyzed in chimeric mice engrafted for >16 weeks with bone marrow cells from mice with experimental allergic airways disease (EAAD). Responses to sensitization and challenge with the allergen causing inflammation in the bone marrow-donor mice were significantly reduced in the chimeric mice engrafted with bone marrow cells from mice with EAAD (EAAD-chimeric). Responses to intranasal LPS and topical fluorescein isothiocyanate (non-specific challenges) were significantly attenuated. Fewer activated dendritic cells from the airways and skin of the EAAD-chimeric mice could be tracked to the draining lymph nodes, and may contribute to the significantly reduced antigen/chemical-induced hypertrophy in the draining nodes, and the reduced immune responses to sensitizing allergens. Dendritic cells differentiating in vitro from the bone marrow of >16 weeks reconstituted EAAD-chimeric mice retained an ability to poorly prime immune responses when transferred into naïve mice. Dendritic cells developing from bone marrow progenitors during airways inflammation are altered such that daughter cells have reduced antigen priming capabilities.

  14. Effects of Air Pollutants on Development of Allergic Immune Responses in the Respiratory Tract

    PubMed Central

    Gershwin, Laurel J.

    2003-01-01

    The increased incidence of allergic asthma in the human population worldwide has stimulated many explanatory theories. A concomitant decrease in air quality leads to epidemiological and laboratory-based studies to demonstrate a link between air pollutants and asthma. Specifically, ozone, environmental tobacco smoke, and diesel exhaust are associated with enhancement of respiratory allergy to inhaled allergens. This review summarizes the state of the knowledge, both human epidemiology and laboratory animal experiments, linking air pollution to allergy. Critical issues involve development of the lung and the fetal immune response, and the potential for substances like ozone and ETS in the air to modulate early immune responses with lifelong consequences. PMID:14768942

  15. Allergen-Specific Immunotherapies for Food Allergy

    PubMed Central

    Feuille, Elizabeth

    2018-01-01

    With rising prevalence of food allergy (FA), allergen-specific immunotherapy (AIT) for FA has become an active area of research in recent years. In AIT, incrementally increasing doses of inciting allergen are given with the goal to increase tolerance, initially through desensitization, which relies on regular exposure to allergen. With prolonged therapy in some subjects, AIT may induce sustained unresponsiveness, in which tolerance is retained after a period of allergen avoidance. Methods of AIT currently under study in humans include oral, sublingual, epicutaneous, and subcutaneous delivery of modified allergenic protein, as well as via DNA-based vaccines encoding allergen with lysosomal-associated membrane protein I. The balance of safety and efficacy varies by type of AIT, as well as by targeted allergen. Age, degree of sensitization, and other comorbidities may affect this balance within an individual patient. More recently, AIT with modified proteins or combined with immunomodulatory therapies has shown promise in making AIT safer and/or more effective. Though methods of AIT are neither currently advised by experts (oral immunotherapy [OIT]) nor widely available, AIT is likely to become a part of recommended management of FA in the coming years. Here, we review and compare methods of AIT currently under study in humans to prepare the practitioner for an exciting new phase in the care of food allergic patients in which improved tolerance to inciting foods will be a real possibility. PMID:29676066

  16. [Effect of vitamine A on mice immune response induced by specific periodontal pathogenic bacteria-immunization].

    PubMed

    Lin, Xiao-Ping; Zhou, Xiao-Jia; Liu, Hong-Li; DU, Li-Li; Toshihisa, Kawai

    2010-12-01

    The aim of this study was to investigate the effect of vitamine-A deficiency on the induction of specific periodontal pathogenic bacteria A. actinomycetetemcomitans(Aa) immunization. BALB/c mice were fed with vitamine A-depleted diet or control regular diet throughout the whole experiment period. After 2 weeks, immunized formalin-killed Aa to build immunized models, 6 weeks later, sacrificed to determine specific antibody-IgG, IgM and sub-class IgG antibody titers in serum, and concentration of IL-10, IFN-γ, TNF-α and RANKL in T cell supernatant were measured by ELISA and T cell proliferation was measured by cintilography. SPSS 11.5 software package was used for statistical analysis. The levels of whole IgG and IgM antibody which were immunized by Aa significantly elevated, non-immune group was unable to produce any antibody. Compared with Aa immunized+RD group, the level of whole IgG in Aa immunized+VAD group was significantly higher (P<0.05); The levels of IgG2a increased obviously, whereas the levels of IgG1 subtype antibody conspicuous decreased, with a significant difference (P<0.05). Aa immunized group could induce body to produce a strong specific T-cell immune response, but Aa immunized+VAD group had a higher T cell proliferate response compared with Aa immunized+RD group, with a statistically significant difference (P<0.05); The expression of RANKL, IFN-γ and TNF-α supernatant increased, while the expression of IL-10 decreased (P<0.05). The lack of vitamin-A diet can increase the immunized mice's susceptibility to periodontal pathogenic bacteria and trigger or aggravate immune inflammatory response. Adequate vitamin A is an important factor in maintaining body health. Supported by Natural Science Foundation of Liaoning Province (Grant No.20092139) and Science and Technology Program of Shenyang Municipality (Grant No.F10-149-9-32).

  17. Comparison of serum concentrations of environmental allergen-specific IgE in atopic and healthy (nonatopic) horses.

    PubMed

    Wilkołek, P; Sitkowski, W; Szczepanik, M; Adamek, Ł; Pluta, M; Taszkun, I; Gołyński, M; Malinowska, A

    2017-12-01

    Allergic responses in humans, horses and other species are mediated by immunoglobulin E (IgE) antibodies. Serum testing to detect allergen-specific IgE antibodies has been developed for dogs, cats and horses; this allows for the identification of allergens and determination of appropriate allergen- specific immunotherapies. This study compared serum allergen-specific IgE concentrations in atopic and healthy horses. The study was performed on Malopolski breed atopic (n=21) and nonatopic (n=21) clinically healthy horses. Allergen-specific IgE serum concentrations were measured in summer seasons of 2008-2015 using a monoclonal anti-IgE antibody. A Northern and Central European allergen panel containing mite, insect, mould and plant pollen allergens, including 15 tests of individual allergens and 5 tests of allergen mixtures was used. The mean allergen-specific IgE concentrations in the atopic and normal horse populations were compared. Among the atopic horses, the strongest positive reactions occurred against the storage mites Tyrophagus putrescentiae and the domestic mite Dermatophagoides farinae. The atopic horses also demonstrated high IgE concentrations against insects, particularly Tabanus sp., the plant pollens colza, cultivated rye and the mould pollen mixture Aspergillus/Penicillium. No horses in the atopic group were IgE-negative. Among all mite, insect, mould and some plant allergen groups the differences in mean specific IgE concentrations between allergic and healthy horses were significant. The mean IgE concentrations for most allergen groups were significantly higher in the atopic horses than in the healthy animals. However, a high incidence of positive reactions was observed in both healthy and allergic horses. Our results showed a high frequency of polysensitization in atopic horses. Copyright© by the Polish Academy of Sciences.

  18. Immunization with Hypoallergens of Shrimp Allergen Tropomyosin Inhibits Shrimp Tropomyosin Specific IgE Reactivity

    PubMed Central

    Wai, Christine Y. Y.; Leung, Nicki Y. H.; Ho, Marco H. K.; Gershwin, Laurel J.; Shu, Shang An; Leung, Patrick S. C.; Chu, Ka Hou

    2014-01-01

    Designer proteins deprived of its IgE-binding reactivity are being sought as a regimen for allergen-specific immunotherapy. Although shrimp tropomyosin (Met e 1) has long been identified as the major shellfish allergen, no immunotherapy is currently available. In this study, we aim at identifying the Met e 1 IgE epitopes for construction of hypoallergens and to determine the IgE inhibitory capacity of the hypoallergens. IgE-binding epitopes were defined by three online computational models, ELISA and dot-blot using sera from shrimp allergy patients. Based on the epitope data, two hypoallergenic derivatives were constructed by site-directed mutagenesis (MEM49) and epitope deletion (MED171). Nine regions on Met e 1 were defined as the major IgE-binding epitopes. Both hypoallergens MEM49 and MED171 showed marked reduction in their in vitro reactivity towards IgE from shrimp allergy patients and Met e 1-sensitized mice, as well as considerable decrease in induction of mast cell degranulation as demonstrated in passive cutaneous anaphylaxis assay. Both hypoallergens were able to induce Met e 1-recognizing IgG antibodies in mice, specifically IgG2a antibodies, that strongly inhibited IgE from shrimp allergy subjects and Met e 1-sensitized mice from binding to Met e 1. These results indicate that the two designer hypoallergenic molecules MEM49 and MED171 exhibit desirable preclinical characteristics, including marked reduction in IgE reactivity and allergenicity, as well as ability to induce blocking IgG antibodies. This approach therefore offers promises for development of immunotherapeutic regimen for shrimp tropomyosin allergy. PMID:25365343

  19. Immunization with Hypoallergens of shrimp allergen tropomyosin inhibits shrimp tropomyosin specific IgE reactivity.

    PubMed

    Wai, Christine Y Y; Leung, Nicki Y H; Ho, Marco H K; Gershwin, Laurel J; Shu, Shang An; Leung, Patrick S C; Chu, Ka Hou

    2014-01-01

    Designer proteins deprived of its IgE-binding reactivity are being sought as a regimen for allergen-specific immunotherapy. Although shrimp tropomyosin (Met e 1) has long been identified as the major shellfish allergen, no immunotherapy is currently available. In this study, we aim at identifying the Met e 1 IgE epitopes for construction of hypoallergens and to determine the IgE inhibitory capacity of the hypoallergens. IgE-binding epitopes were defined by three online computational models, ELISA and dot-blot using sera from shrimp allergy patients. Based on the epitope data, two hypoallergenic derivatives were constructed by site-directed mutagenesis (MEM49) and epitope deletion (MED171). Nine regions on Met e 1 were defined as the major IgE-binding epitopes. Both hypoallergens MEM49 and MED171 showed marked reduction in their in vitro reactivity towards IgE from shrimp allergy patients and Met e 1-sensitized mice, as well as considerable decrease in induction of mast cell degranulation as demonstrated in passive cutaneous anaphylaxis assay. Both hypoallergens were able to induce Met e 1-recognizing IgG antibodies in mice, specifically IgG2a antibodies, that strongly inhibited IgE from shrimp allergy subjects and Met e 1-sensitized mice from binding to Met e 1. These results indicate that the two designer hypoallergenic molecules MEM49 and MED171 exhibit desirable preclinical characteristics, including marked reduction in IgE reactivity and allergenicity, as well as ability to induce blocking IgG antibodies. This approach therefore offers promises for development of immunotherapeutic regimen for shrimp tropomyosin allergy.

  20. Evolutionary distance from human homologs reflects allergenicity of animal food proteins.

    PubMed

    Jenkins, John A; Breiteneder, Heimo; Mills, E N Clare

    2007-12-01

    In silico analysis of allergens can identify putative relationships among protein sequence, structure, and allergenic properties. Such systematic analysis reveals that most plant food allergens belong to a restricted number of protein superfamilies, with pollen allergens behaving similarly. We have investigated the structural relationships of animal food allergens and their evolutionary relatedness to human homologs to define how closely a protein must resemble a human counterpart to lose its allergenic potential. Profile-based sequence homology methods were used to classify animal food allergens into Pfam families, and in silico analyses of their evolutionary and structural relationships were performed. Animal food allergens could be classified into 3 main families--tropomyosins, EF-hand proteins, and caseins--along with 14 minor families each composed of 1 to 3 allergens. The evolutionary relationships of each of these allergen superfamilies showed that in general, proteins with a sequence identity to a human homolog above approximately 62% were rarely allergenic. Single substitutions in otherwise highly conserved regions containing IgE epitopes in EF-hand parvalbumins may modulate allergenicity. These data support the premise that certain protein structures are more allergenic than others. Contrasting with plant food allergens, animal allergens, such as the highly conserved tropomyosins, challenge the capability of the human immune system to discriminate between foreign and self-proteins. Such immune responses run close to becoming autoimmune responses. Exploiting the closeness between animal allergens and their human homologs in the development of recombinant allergens for immunotherapy will need to consider the potential for developing unanticipated autoimmune responses.

  1. Persistence and evolution of allergen-specific IgE repertoires during subcutaneous specific immunotherapy

    PubMed Central

    Levin, Mattias; King, Jasmine J.; Glanville, Jacob; Jackson, Katherine J. L.; Looney, Timothy J.; Hoh, Ramona A.; Mari, Adriano; Andersson, Morgan; Greiff, Lennart; Fire, Andrew Z.; Boyd, Scott D.; Ohlin, Mats

    2016-01-01

    Background Specific immunotherapy (SIT) is the only treatment with proven long-term curative potential in allergic disease. Allergen-specific IgE is the causative agent of allergic disease, and antibodies contribute to SIT, but the effects of SIT on aeroallergen-specific B cell repertoires are not well understood. Objective To characterize the IgE sequences expressed by allergen-specific B cells, and track the fate of these B cell clones during SIT. Methods We have used high-throughput antibody gene sequencing and identification of allergen-specific IgE using combinatorial antibody fragment library technology to analyze immunoglobulin repertoires of blood and nasal mucosa of aeroallergen-sensitized individuals before and during the first year of subcutaneous SIT. Results Of 52 distinct allergen-specific IgE heavy chains from eight allergic donors, 37 were also detected by high-throughput antibody gene sequencing of blood, nasal mucosa, or both sample types. The allergen-specific clones had increased persistence, higher likelihood of belonging to clones expressing other switched isotypes, and possibly larger clone size than the rest of the IgE repertoire. Clone members in nasal tissue showed close mutational relationships. Conclusion Combining functional binding studies, deep antibody repertoire sequencing, and information on clinical outcomes in larger studies may in the future aid assessment of SIT mechanisms and efficacy. PMID:26559321

  2. Respiratory allergy to Blomia tropicalis: Immune response in four syngeneic mouse strains and assessment of a low allergen-dose, short-term experimental model

    PubMed Central

    2010-01-01

    Background The dust mite Blomia tropicalis is an important source of aeroallergens in tropical areas. Although a mouse model for B. tropicalis extract (BtE)-induced asthma has been described, no study comparing different mouse strains in this asthma model has been reported. The relevance and reproducibility of experimental animal models of allergy depends on the genetic background of the animal, the molecular composition of the allergen and the experimental protocol. Objectives This work had two objectives. The first was to study the anti-B. tropicalis allergic responses in different mouse strains using a short-term model of respiratory allergy to BtE. This study included the comparison of the allergic responses elicited by BtE with those elicited by ovalbumin in mice of the strain that responded better to BtE sensitization. The second objective was to investigate whether the best responder mouse strain could be used in an experimental model of allergy employing relatively low BtE doses. Methods Groups of mice of four different syngeneic strains were sensitized subcutaneously with 100 μg of BtE on days 0 and 7 and challenged four times intranasally, at days 8, 10, 12, and 14, with 10 μg of BtE. A/J mice, that were the best responders to BtE sensitization, were used to compare the B. tropicalis-specific asthma experimental model with the conventional experimental model of ovalbumin (OVA)-specific asthma. A/J mice were also sensitized with a lower dose of BtE. Results Mice of all strains had lung inflammatory-cell infiltration and increased levels of anti-BtE IgE antibodies, but these responses were significantly more intense in A/J mice than in CBA/J, BALB/c or C57BL/6J mice. Immunization of A/J mice with BtE induced a more intense airway eosinophil influx, higher levels of total IgE, similar airway hyperreactivity to methacholine but less intense mucous production, and lower levels of specific IgE, IgG1 and IgG2 antibodies than sensitization with OVA. Finally

  3. Quantitation of IgE antibody specific for ragweed and grass allergens: binding of radiolabeled allergens by solid-phase bond IgE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeiss, C.R.; Levitz, D.; Suszko, I.M.

    1978-08-01

    IgE antibody specific for multiple allergens extracted from grass and ragweed pollens was measured by radioimmunoassay. The assay depends on the interaction between IgE antibody bound to a polystyrene solid phase, /sup 125/I-labeled grass allergens (GA), and ragweed allergens (RW). The binding of /sup 125/I RW by serum IgE antibody from 37 allergic patients ranged from 0.2 ng to 75 ng RW protein (P) bound per ml. This binding of /sup 125/I RW by patient's IgE was paralleled by their IgE binding of /sup 125/I antigen E (AgE), a purified allergen from ragweed pollen (r = 0.90, p less thanmore » 0.001). Inhibition of patient's IgE binding of /sup 125/I RW by highly purified AgE ranged from 25 to 85% indicated individual differences in patient's IgE response to inhaled ragweed pollen. The binding of /sup 125/I GA by serum IgE antibody from 7 grass-sensitive patients ranged from 0.6 ng GA P bound per ml to 15 ng. This assay should be useful in the study of IgE responses to environmental agents containing multiple allergens and has the advantage that other antibody classes cannot interfere with the interaction between IgE antibody and labeled allergens.« less

  4. Allergen-specific Th1 cells counteract efferent Th2 cell-dependent bronchial hyperresponsiveness and eosinophilic inflammation partly via IFN-gamma.

    PubMed

    Huang, T J; MacAry, P A; Eynott, P; Moussavi, A; Daniel, K C; Askenase, P W; Kemeny, D M; Chung, K F

    2001-01-01

    Th2 T cell immune-driven inflammation plays an important role in allergic asthma. We studied the effect of counterbalancing Th1 T cells in an asthma model in Brown Norway rats that favors Th2 responses. Rats received i.v. transfers of syngeneic allergen-specific Th1 or Th2 cells, 24 h before aerosol exposure to allergen, and were studied 18-24 h later. Adoptive transfer of OVA-specific Th2 cells, but not Th1 cells, and OVA, but not BSA exposure, induced bronchial hyperresponsiveness (BHR) to acetylcholine and eosinophilia in a cell number-dependent manner. Importantly, cotransfer of OVA-specific Th1 cells dose-dependently reversed BHR and bronchoalveolar lavage (BAL) eosinophilia, but not mucosal eosinophilia. OVA-specific Th1 cells transferred alone induced mucosal eosinophilia, but neither BHR nor BAL eosinophilia. Th1 suppression of BHR and BAL eosinophilia was allergen specific, since cotransfer of BSA-specific Th1 cells with the OVA-specific Th2 cells was not inhibitory when OVA aerosol alone was used, but was suppressive with OVA and BSA challenge. Furthermore, recipients of Th1 cells alone had increased gene expression for IFN-gamma in the lungs, while those receiving Th2 cells alone showed increased IL-4 mRNA. Importantly, induction of these Th2 cytokines was inhibited in recipients of combined Th1 and Th2 cells. Anti-IFN-gamma treatment attenuated the down-regulatory effect of Th1 cells. Allergen-specific Th1 cells down-regulate efferent Th2 cytokine-dependent BHR and BAL eosinophilia in an asthma model via mechanisms that depend on IFN-gamma. Therapy designed to control the efferent phase of established asthma by augmenting down-regulatory Th1 counterbalancing mechanisms should be effective.

  5. Modified Allergens for Immunotherapy.

    PubMed

    Satitsuksanoa, Pattraporn; Głobińska, Anna; Jansen, Kirstin; van de Veen, Willem; Akdis, Mübeccel

    2018-02-16

    During the past few decades, modified allergens have been developed for use in allergen-specific immunotherapy (AIT) with the aim to improve efficacy and reduce adverse effects. This review aims to provide an overview of the different types of modified allergens, their mechanism of action and their potential for improving AIT. In-depth research in the field of allergen modifications as well as the advance of recombinant DNA technology have paved the way for improved diagnosis and research on human allergic diseases. A wide range of structurally modified allergens has been generated including allergen peptides, chemically altered allergoids, adjuvant-coupled allergens, and nanoparticle-based allergy vaccines. These modified allergens show promise for the development of AIT regimens with improved safety and long-term efficacy. Certain modifications ensure reduced IgE reactivity and retained T cell reactivity, which facilities induction of immune tolerance to the allergen. To date, multiple clinical trials have been performed using modified allergens. Promising results were obtained for the modified cat, grass and birch pollen, and house dust mite allergens. The use of modified allergens holds promise for improving AIT efficacy and safety. There is however a need for larger clinical studies to reliably assess the added benefit for the patient of using modified allergens for AIT.

  6. Genetically modified α-amylase inhibitor peas are not specifically allergenic in mice.

    PubMed

    Lee, Rui-Yun; Reiner, Daniela; Dekan, Gerhard; Moore, Andrew E; Higgins, T J V; Epstein, Michelle M

    2013-01-01

    Weevils can devastate food legumes in developing countries, but genetically modified peas (Pisum sativum), chickpeas and cowpeas expressing the gene for alpha-amylase inhibitor-1 (αAI) from the common bean (Phaseolus vulgaris) are completely protected from weevil destruction. αAI is seed-specific, accumulated at high levels and undergoes post-translational modification as it traverses the seed endomembrane system. This modification was thought to be responsible for the reported allergenicity in mice of the transgenic pea but not the bean. Here, we observed that transgenic αAI peas, chickpeas and cowpeas as well as non-transgenic beans were all allergenic in BALB/c mice. Even consuming non-transgenic peas lacking αAI led to an anti-αAI response due to a cross-reactive response to pea lectin. Our data demonstrate that αAI transgenic peas are not more allergenic than beans or non-transgenic peas in mice. This study illustrates the importance of repeat experiments in independent laboratories and the potential for unexpected cross-reactive allergic responses upon consumption of plant products in mice.

  7. Genetically Modified α-Amylase Inhibitor Peas Are Not Specifically Allergenic in Mice

    PubMed Central

    Dekan, Gerhard; Moore, Andrew E.; Higgins, T. J. V.; Epstein, Michelle M.

    2013-01-01

    Weevils can devastate food legumes in developing countries, but genetically modified peas (Pisum sativum), chickpeas and cowpeas expressing the gene for alpha-amylase inhibitor-1 (αAI) from the common bean (Phaseolus vulgaris) are completely protected from weevil destruction. αAI is seed-specific, accumulated at high levels and undergoes post-translational modification as it traverses the seed endomembrane system. This modification was thought to be responsible for the reported allergenicity in mice of the transgenic pea but not the bean. Here, we observed that transgenic αAI peas, chickpeas and cowpeas as well as non-transgenic beans were all allergenic in BALB/c mice. Even consuming non-transgenic peas lacking αAI led to an anti-αAI response due to a cross-reactive response to pea lectin. Our data demonstrate that αAI transgenic peas are not more allergenic than beans or non-transgenic peas in mice. This study illustrates the importance of repeat experiments in independent laboratories and the potential for unexpected cross-reactive allergic responses upon consumption of plant products in mice. PMID:23326368

  8. Detection of allergen composition and in vivo immunogenicity of depigmented allergoids of Betula alba.

    PubMed

    Carnés, J; Himly, M; Gallego, M; Iraola, V; Robinson, D S; Fernández-Caldas, E; Briza, P

    2009-03-01

    Chemical modification of allergen vaccines to reduce IgE binding improves safety while maintaining clinical efficacy. However, this also complicates the characterization of allergoids using techniques as for native allergen extracts. The objective of this study was to analyse the molecular size of Betula alba depigmented allergoids, conservation of major allergens in the allergoids and in vivo antibody response to immunization. The molecular size of depigmented allergoids was evaluated by high performance-size exclusion chromatography and light scattering techniques. Protein composition was compared with native extracts by capillary liquid chromatography-tandem mass spectrometry based peptide mapping. Rabbits were immunized with depigmented allergoid of Betula pollen adsorbed onto aluminium hydroxide (Depigoid). IgG antibodies against individual allergens were determined by ELISA and immunoblot. Depigmented allergoids contained a range of high molecular weight particles, approximately 60% of which had a molecular weight of 1-3 MDa. Peptide sequencing confirmed the preservation of five isoforms of Bet v 1, as well as Bet v 2, Bet v 6 and Bet v 7. Sera from immunized rabbits showed high levels of specific IgG to rBet v 1.0101 and rBet v 2. The mean protein content was 544+/-106 microg per mg of freeze-dried material for depigmented allergoids and 434+/-71 for native extracts. They retain the capacity to induce specific IgG antibodies against individual allergens present in the native extract. These findings confirm the immunogenicity of depigmented allergoids and may explain why patients treated with these vaccines are protected against the native allergens. Analysis of molecular size and allergen content may be useful techniques for characterization and standardization of allergoid products.

  9. Microarray evaluation of specific IgE to allergen components in elite athletes.

    PubMed

    Bonini, M; Marcomini, L; Gramiccioni, C; Tranquilli, C; Melioli, G; Canonica, G W; Bonini, S

    2012-12-01

    Allergic sensitization and diseases have been reported to have a very high and increasing prevalence in elite athletes. Over 80% of allergic athletes are poly-sensitized. This study aims at evaluating the potential diagnostic added value of a microarray technology (ImmunoCAP ISAC, Phadia AB [at present Thermo Fisher Scientific] Uppsala, Sweden which detects IgE antibodies to specific or cross-reacting allergen components. Seventy-two poly-sensitized athletes according to skin prick test (SPT) with different allergic phenotypes (asthma n = 19; rhino-conjunctivitis n = 20; food allergy and/or oral allergy syndrome n = 13; no clinical symptoms n = 20) and two different control populations (20 poly-sensitized sedentary subjects with respiratory allergy and 20 healthy athletes with negative SPT) were studied for detecting specific IgE (sIgE) both to allergen extracts (ImmunoCAPsIgE) and to allergen components (ImmunoCAP ISAC). ImmunoCAP ISAC detected the presence of sIgE in 90% of poly-sensitized athletes--in 96% with symptoms and in 75% without symptoms--and in 100% of allergic controls. The pattern of positivity towards the 103 components tested differed from subject to subject, even in those with the same sensitization to allergen extract SPT or sIgE. Based on the ISAC results, poly-sensitized athletes were classified into the following prototypical patterns, differently represented in the clinical phenotypes studied (P = 0.03): (1) One single predominant specific allergen positivity; (2) sIgE to two or more non-cross-reacting allergens; (3) sIgE to cross-reacting allergens; and (4) sIgE to components potentially responsible for severe allergic reactions. The ImmunoCAP ISAC represents a useful additional tool for diagnosis and management of poly-sensitized athletes. © 2012 John Wiley & Sons A/S.

  10. Allergen specific sublingual immunotherapy in children with asthma and allergic rhinitis.

    PubMed

    Đurić-Filipović, Ivana; Caminati, Marco; Kostić, Gordana; Filipović, Đorđe; Živković, Zorica

    2016-08-01

    The incidence of asthma and allergic rhinitis (AR) is significantly increased, especially in younger children. Current treatment for children with asthma and allergic rhinitis include allergen avoidance, standard pharmacotherapy, and immunotherapy. Since standard pharmacotherapy is prescribed for symptoms, immunotherapy at present plays an important role in the treatment of allergic diseases. This article presents insights into the up-to-date understanding of immunotherapy in the treatment of children with allergic rhinitis and asthma. PubMed articles published from 1990 to 2014 were reviewed using the MeSH terms "asthma", "allergic rhinitis", "children", and "immune therapy". Additional articles were identified by hand searching of the references in the initial search. Numerous studies have shown that sublingual application of allergen specific immunotherapy (SLIT) is an adequate, safe and efficient substitution to subcutaneous route of allergens administration (SCIT) in the treatment of IgE-mediated respiratory tract allergies in children. According to the literature, better clinical efficacy is connected with the duration of treatment and mono sensitized patients. At least 3 years of treatment and stable asthma before the immunotherapy are positive predictors of good clinical efficacy and tolerability of SLIT. SLIT reduces the symptoms of allergic diseases and the use of medicaments, and improves the quality of life of children with the diseases.

  11. Dengue serotype-specific immune response in Aedes aegypti and Aedes albopictus

    PubMed Central

    Smartt, Chelsea T; Shin, Dongyoung; Alto, Barry W

    2017-01-01

    BACKGROUND Dengue viruses (DENV) are considered one of the most important emerging pathogens and dengue disease is a global health threat. The geographic expansion of dengue viruses has led to co-circulation of all four dengue serotypes making it imperative that new DENV control strategies be devised. OBJECTIVES Here we characterize dengue serotype-specific innate immune responses in Aedes aegypti and Aedes albopictus using DENV from Puerto Rico (PR). METHODS Ae. aegypti and Ae. albopictus were infected with dengue serotype 1 and 2 isolated from Puerto Rico. DENV infected mosquito samples were collected and temporal change in expression of selected innate immune response pathway genes analyzed by quantitative real time PCR. FINDINGS The Toll pathway is involved in anti-dengue response in Ae. aegypti, and Ae. albopictus. Infections with PR DENV- 1 elicited a stronger response from genes of the Toll immune pathway than PR DENV-2 in Ae. aegypti but in infected Ae. albopictus expression of Toll pathway genes tended to be similar between the serotypes. Two genes (a ribosomal S5 protein gene and a nimrod-like gene) from Ae. albopictus were expressed in response to DENV. MAIN CONCLUSIONS These studies revealed a role for antiviral genes in DENV serotype-specific interactions with DENV vectors, demonstrated that infections with DENV-2 can modulate the Toll immune response pathway in Ae. aegypti and elucidated candidate molecules that might be used to interfere with serotype specific vector-virus interactions. PMID:29211244

  12. Dengue serotype-specific immune response in Aedes aegypti and Aedes albopictus.

    PubMed

    Smartt, Chelsea T; Shin, Dongyoung; Alto, Barry W

    2017-12-01

    Dengue viruses (DENV) are considered one of the most important emerging pathogens and dengue disease is a global health threat. The geographic expansion of dengue viruses has led to co-circulation of all four dengue serotypes making it imperative that new DENV control strategies be devised. Here we characterize dengue serotype-specific innate immune responses in Aedes aegypti and Aedes albopictus using DENV from Puerto Rico (PR). Ae. aegypti and Ae. albopictus were infected with dengue serotype 1 and 2 isolated from Puerto Rico. DENV infected mosquito samples were collected and temporal change in expression of selected innate immune response pathway genes analyzed by quantitative real time PCR. The Toll pathway is involved in anti-dengue response in Ae. aegypti, and Ae. albopictus. Infections with PR DENV- 1 elicited a stronger response from genes of the Toll immune pathway than PR DENV-2 in Ae. aegypti but in infected Ae. albopictus expression of Toll pathway genes tended to be similar between the serotypes. Two genes (a ribosomal S5 protein gene and a nimrod-like gene) from Ae. albopictus were expressed in response to DENV. These studies revealed a role for antiviral genes in DENV serotype-specific interactions with DENV vectors, demonstrated that infections with DENV-2 can modulate the Toll immune response pathway in Ae. aegypti and elucidated candidate molecules that might be used to interfere with serotype specific vector-virus interactions.

  13. Chronic cat allergen exposure induces a TH2 cell-dependent IgG4 response related to low sensitization.

    PubMed

    Renand, Amedee; Archila, Luis D; McGinty, John; Wambre, Erik; Robinson, David; Hales, Belinda J; Thomas, Wayne R; Kwok, William W

    2015-12-01

    In human subjects, allergen tolerance has been observed after high-dose allergen exposure or after completed allergen immunotherapy, which is related to the accumulation of anti-inflammatory IgG4. However, the specific T-cell response that leads to IgG4 induction during chronic allergen exposure remains poorly understood. We sought to evaluate the relationship between cat allergen-specific T-cell frequency, cat allergen-specific IgE and IgG4 titers, and clinical status in adults with cat allergy with and without cat ownership and the cellular mechanism by which IgG4 is produced. Fel d 1-, Fel d 4-, Fel d 7-, and Fel d 8-specific T-cell responses were characterized by CD154 expression after antigen stimulation. In allergic subjects without cat ownership, the frequency of cat allergen (Fel d 1 and Fel d 4)-specific TH2 (sTH2) cells correlates with higher IgE levels and is linked to asthma. Paradoxically, we observed that subjects with cat allergy and chronic cat exposure maintain a high frequency of sTH2 cells, which correlates with higher IgG4 levels and low sensitization. B cells from allergic, but not nonallergic subjects, are able to produce IgG4 after cognate interactions with sTH2 clones and Fel d 1 peptide or the Fel d 1 recombinant protein. These experiments suggest that (1) allergen-experienced B cells with the capacity to produce IgG4 are present in allergic subjects and (2) cat allergen exposure induces an IgG4 response in a TH2 cell-dependent manner. Thus IgG4 accumulation could be mediated by chronic activation of the TH2 response, which in turn drives desensitization. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. All rights reserved.

  14. Antigen-specific response of murine immune system toward a yeast beta-glucan preparation, zymosan.

    PubMed

    Miura, T; Ohno, N; Miura, N N; Adachi, Y; Shimada, S; Yadomae, T

    1999-06-01

    Zymosan, a particulate beta-glucan preparation from Saccharomyces cerevisiae, shows various biological activities, including anti-tumor activity. We have previously shown that soluble beta-glucan initiated anti-tumor activity was long-lived and was effective even by prophylactic treatment at 1 month prior to tumor challenge. However, the activity by zymosan was relatively short-lived. Antigen-specific responses of mice to zymosan might be a causative mechanism. In this paper, mice were immunized with zymosan and antibody production and antigen-specific responses of lymphocytes to zymosan were analyzed. Sera of zymosan immune mice contained zymosan-specific IgG assessed by enzyme-linked immunosorbent assay and FACS. Spleen and bone marrow cells of zymosan-immune mice showed higher cytokine production in response to zymosan. Specificity of zymosan-specific responses were also analyzed using various derivatives prepared from zymosan. These facts strongly suggested that mice recognize zymosan as antigen in addition to non-specific immune stimulant.

  15. Recombinant allergy vaccines based on allergen-derived B cell epitopes.

    PubMed

    Valenta, Rudolf; Campana, Raffaela; Niederberger, Verena

    2017-09-01

    Immunoglobulin E (IgE)-associated allergy is the most common immunologically-mediated hypersensitivity disease. It affects more than 25% of the population. In IgE-sensitized subjects, allergen encounter can causes a variety of symptoms ranging from hayfever (allergic rhinoconjunctivitis) to asthma, skin inflammation, food allergy and severe life-threatening anaphylactic shock. Allergen-specific immunotherapy (AIT) is based on vaccination with the disease-causing allergens. AIT is an extremely effective, causative and disease-modifying treatment. However, administration of natural allergens can cause severe side effects and the quality of natural allergen extracts limits its application. Research in the field of molecular allergen characterization has allowed deciphering the molecular structures of the disease-causing allergens and it has become possible to engineer novel molecular allergy vaccines which precisely target the mechanisms of the allergic immune response and even appear suitable for prophylactic allergy vaccination. Here we discuss recombinant allergy vaccines which are based on allergen-derived B cell epitopes regarding their molecular and immunological properties and review the results obtained in clinical studies with this new type of allergy vaccines. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Contributions of direct versus indirect mechanisms for regulatory dendritic cell suppression of asthmatic allergen-specific IgG1 antibody responses

    PubMed Central

    Ma, Yanna; Dawicki, Wojciech; Zhang, Xiaobei

    2018-01-01

    IL-10-differentiated dendritic cells (DC10) can reverse the asthma phenotype in mice, but how they suppress the asthmatic B cell response is unclear. Herein we assessed the mechanism(s) by which DC10 and DC10-induced Treg affect IgG1 production in asthma. We observed a rapid decline in lung-resident OVA-specific IgG1-secreting B cells on cessation of airway allergen challenge, and intraperitoneal DC10 therapy did not amplify that (p>0.05). It did however increase the loss of IgG1-B cells from the bone marrow (by 45+/-7.2%; p≤0.01) and spleen (by 65+/-17.8%; p≤0.05) over 2 wk. Delivery of OVA-loaded DC10 directly into the airways of asthmatic mice decreased the lung IgG1 B cell response assessed 2 dy later by 33+/-9.7% (p≤0.01), while their co-culture with asthmatic lung cell suspensions reduced the numbers of IgG1-secreting cells by 56.5+/-9.7% (p≤0.01). This effect was dependent on the DC10 carrying intact allergen on their cell surface; DC10 that had phagocytosed and fully processed their allergen were unable to suppress B cell responses, although they did suppress asthmatic Th2 cell responses. We had shown that therapeutic delivery of DC10-induced Treg can effectively suppress asthmatic T and B cell (IgE and IgG1) responses; herein CD4+ cells or Treg from the lungs of DC10-treated OVA-asthmatic mice suppressed in vitro B cell IgG1 production by 52.2+/-8.7% (p≤0.001) or 44.6+/-12.2% (p≤0.05), respectively, but delivery of DC10-induced Treg directly into the airways of asthmatic mice had no discernible impact over 2 dy on the numbers of lung IgG1-secreting cells (p≥0.05). In summary, DC10 treatment down-regulates OVA-specific B cell responses of asthmatic mice. While DC10 that carry intact allergen on their cell surface can dampen this response, DC10-induced Treg are critical for full realization of this outcome. This suggests that infectious tolerance is an essential element in regulatory DC control of the B cell response in allergic asthma. PMID

  17. Grass-specific CD4(+) T-cells exhibit varying degrees of cross-reactivity, implications for allergen-specific immunotherapy.

    PubMed

    Archila, L D; DeLong, J H; Wambre, E; James, E A; Robinson, D M; Kwok, W W

    2014-07-01

    Conceptually, allergic responses may involve cross-reactivity by antibodies or T-cells. While IgE cross-reactivity among grass-pollen allergens has been observed, cross-reactivity at the allergen-specific T-cell level has been less documented. Identification of the patterns of cross-reactivity may improve our understanding, allowing optimization of better immunotherapy strategies. We use Phleum pratense as model for the studying of cross-reactivity at the allergen-specific CD4(+) T cell level among DR04:01 restricted Pooideae grass-pollen T-cell epitopes. After in vitro culture of blood mono-nucleated cells from grass-pollen-allergic subjects with specific Pooideae antigenic epitopes, dual tetramer staining with APC-labelled DR04:01/Phleum pratense tetramers and PE-labelled DR04:01/Pooideae grass homolog tetramers was assessed to identify cross-reactivity among allergen-specific DR04:01-restricted T-cells in six subjects. Direct ex vivo staining enabled the comparison of frequency and phenotype of different Pooideae grass-pollen reactive T-cells. Intracellular cytokine staining (ICS) assays were also used to examine phenotypes of these T-cells. T-cells with various degrees of cross-reactive profiles could be detected. Poa p 1 97-116 , Lol p 1 221-240 , Lol p 5a 199-218 , and Poa p 5a 199-218 were identified as minimally cross-reactive T-cell epitopes that do not show cross-reactivity to Phl p 1 and Phl p 5a epitopes. Ex vivo tetramer staining assays demonstrated T-cells that recognized these minimally cross-reactive T-cell epitopes are present in Grass-pollen-allergic subjects. Our results suggest that not all Pooideae grass epitopes with sequence homology are cross-reactive. Non-cross-reactive T-cells with comparable frequency, phenotype and functionality to Phl p-specific T-cells suggest that a multiple allergen system should be considered for immunotherapy instead of a mono-allergen system. © 2014 John Wiley & Sons Ltd.

  18. Increased Th1 and Th2 allergen-induced cytokine responses in children with atopic disease.

    PubMed

    Smart, J M; Kemp, A S

    2002-05-01

    Polyclonal cytokine responses following stimulation of T cells with mitogens or superantigens provides information on cytokine production from a wide range of T cells. Alternatively allergen-induced T cell responses can provide information on cytokine production by allergen-reactive T cells. While there is evidence of increased Th2 and reduced Th1 cytokine production following T cell stimulation with non-specific mitogens and superantigens, the evidence that Th1 cytokine production to allergens is decreased in line with a postulated imbalance in Th1/Th2 responses is unclear, with studies finding decreased, no difference or increased IFN-gamma responses to allergens in atopic subjects. To examine childhood polyclonal and allergen-induced cytokine responses in parallel to evaluate cytokine imbalances in childhood atopic disease. PBMC cytokine responses were examined in response to a polyclonal stimulus, staphylococcal superantigen (SEB), in parallel with two inhalant allergens, house dust mite (HDM) and rye grass pollen (RYE), and an ingested allergen, ovalbumin (OVA), in (a) 35 healthy children (non-atopic) and (b) 36 children with atopic disease (asthma, eczema and/or rhinitis) (atopic). Atopic children had significantly reduced IFN-gamma and increased IL-4 and IL-5 but not IL13 production to SEB superantigen stimulation when compared with non-atopic children. HDM and RYE allergens stimulated significantly increased IFN-gamma, IL-5 and IL-13, while OVA stimulated significantly increased IFN-gamma production in atopic children. We show that a polyclonal stimulus induces a reduced Th1 (IFN-gamma) and increased Th2 (IL-4 and IL-5) cytokine pattern. In contrast, the allergen-induced cytokine responses in atopic children were associated with both increased Th1 (INF-gamma) and Th2 (IL-5 and IL-13) cytokine production. The increased Th1 response to allergen is likely to reflect prior sensitization and indicates that increases in both Th1 and Th2 cytokine production to

  19. Next-Generation of Allergen-Specific Immunotherapies: Molecular Approaches.

    PubMed

    Curin, Mirela; Khaitov, Musa; Karaulov, Alexander; Namazova-Baranova, Leyla; Campana, Raffaela; Garib, Victoria; Valenta, Rudolf

    2018-06-09

    The aim of this article is to discuss how allergen-specific immunotherapy (AIT) can be improved through molecular approaches. We provide a summary of next-generation molecular AIT approaches and of their clinical evaluation. Furthermore, we discuss the potential of next generation molecular AIT forms for the treatment of severe manifestations of allergy and mention possible future molecular strategies for the secondary and primary prevention of allergy. AIT has important advantages over symptomatic forms of allergy treatment but its further development is limited by the quality of the therapeutic antigen preparations which are derived from natural allergen sources. The field of allergy diagnosis is currently undergoing a dramatic improvement through the use of molecular testing with defined, mainly recombinant allergens which allows high-resolution diagnosis. Several studies demonstrate that molecular testing in early childhood can predict the development of symptomatic allergy later on in life. Clinical studies indicate that molecular AIT approaches have the potential to improve therapy of allergic diseases and may be used as allergen-specific forms of secondary and eventually primary prevention for allergy.

  20. Identification of Aspergillus (A. flavus and A. niger) Allergens and Heterogeneity of Allergic Patients' IgE Response.

    PubMed

    Vermani, Maansi; Vijayan, Vannan Kandi; Agarwal, Mahendra Kumar

    2015-08-01

    Aspergillus species (A. flavus and A. niger) are important sources of inhalant allergens. Current diagnostic modalities employ crude Aspergillus extracts which only indicate the source to which the patient has been sensitized, without identifying the number and type of allergens in crude extracts. We report a study on the identification of major and minor allergens of the two common airborne Aspergillus species and heterogeneity of patients' IgE response to them. Skin prick tests were performed on 300 patients of bronchial asthma and/or allergic rhinitis and 20 healthy volunteers. Allergen specific IgE in patients' sera was estimated by enzyme allergosorbent test (EAST). Immunoblots were performed to identify major/minor allergens of Aspergillus extracts and to study heterogeneity of patients'IgE response to them. Positive cutaneous responses were observed in 17% and 14.7% of patients with A. flavus and A. niger extracts, respectively. Corresponding EAST positivity was 69.2% and 68.7%. In immunoblots, 5 allergenic proteins were identified in A. niger extract, major allergens being 49, 55.4 and 81.5 kDa. Twelve proteins bound patients' IgE in A. flavus extract, three being major allergens (13.3, 34 and 37 kDa). The position and slopes of EAST binding and inhibition curves obtained with individual sera varied from patient to patient. The number and molecular weight of IgE-binding proteins in both the Aspergillus extracts varied among patients. These results gave evidence of heterogeneity of patients' IgE response to major/minor Aspergillus allergens. This approach will be helpful to identify disease eliciting molecules in the individual patients (component resolved diagnosis) and may improve allergen-specific immunotherapy.

  1. Sequential allergen desensitization of basophils is non-specific and may involve p38 MAPK.

    PubMed

    Witting Christensen, S K; Kortekaas Krohn, I; Thuraiaiyah, J; Skjold, T; Schmid, J M; Hoffmann, H J H

    2014-10-01

    Sequential allergen desensitization provides temporary tolerance for allergic patients. We adapted a clinical protocol to desensitize human blood basophils ex vivo and investigated the mechanism and allergen specificity. We included 28 adult, grass allergic subjects. The optimal, activating allergen concentration was determined by measuring activated CD63(+) CD193(+) SS(Low) basophils in a basophil activation test with 8 log-dilutions of grass allergen. Basophils in whole blood were desensitized by incubation with twofold to 2.5-fold increasing allergen doses in 10 steps starting at 1 : 1000 of the optimal dose. Involvement of p38 mitogen-activated protein kinase (MAPK) was assessed after 3 min of allergen stimulation (n = 7). Allergen specificity was investigated by desensitizing cells from multi-allergic subjects with grass allergen and challenging with optimal doses of grass, birch, recombinant house dust mite (rDer p2) allergen or anti-IgE (n = 10). Desensitization reduced the fraction of blood basophils responding to challenge with an optimal allergen dose from a median (IQR) 81.0% (66.3-88.8) to 35.4% (19.8-47.1, P < 0.0001). CD63 MFI expression was reduced from 68 248 (29 336-92 001) to 30 496 (14 046-46 179, P < 0.0001). Basophils from multi-allergic subjects were desensitized with grass allergen. Challenge with grass allergen resulted in 39.6% activation (15.8-58.3). An unrelated challenge (birch, rDer p2 or anti-IgE) resulted in 53.4% activation (30.8-66.8, P = 0.16 compared with grass). Desensitization reduced p38 MAPK phosphorylation from a median 48.1% (15.6-92.8) to 26.1% (7.4-71.2, P = 0.047) and correlated with decrease in CD63 upregulation (n = 7, r > 0.79, P < 0.05). Desensitization attenuated basophil response rapidly and non-specifically at a stage before p38 MAPK phosphorylation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Airway responsiveness to mannitol 24 h after allergen challenge in atopic asthmatics.

    PubMed

    Davis, B E; Amakye, D O; Cockcroft, D W

    2015-06-01

    Airway responsiveness to indirect stimuli correlates positively with airway inflammation. In atopic asthmatics, allergen inhalation is associated with an influx of inflammatory cells and increased responsiveness to the direct-acting stimuli methacholine at 3 and 24 h after exposure. We have shown mannitol responsiveness decreases 3 h after allergen inhalation. The current investigation assessed mannitol responsiveness 24 h after allergen challenge. Eleven mild atopic asthmatics completed allergen challenges on two separate occasions. In random order, methacholine or mannitol challenges were performed 24 h pre- and post-allergen challenge. Levels of fractional exhaled nitric oxide were also measured. Allergen challenge increased airway responsiveness to methacholine 24 h postchallenge; the geometric mean (95% CI) methacholine PC20 decreased from 5.9 mg/ml (1.8-19.4) to 2.2 mg/ml (0.81-5.89); P = 0.01. This coincided with a significant increase (P = 0.02) in FeNO levels. Conversely, allergen challenge decreased airway responsiveness to mannitol; geometric mean (95% CI) dose-response ratio was significantly higher after allergen exposure (57 mg/% FEV1 fall [27-121] to 147 mg/% FEV1 fall [57-379]; P = 0.03), and FeNO levels were not significantly increased (P = 0.054). Allergen-induced changes in airway responsiveness to direct and indirect stimuli are markedly different. The loss in responsiveness to mannitol is likely not explainable by a refractory state. The effect(s) of allergen exposure on airway responsiveness to indirect-acting stimuli require further investigation. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. High Environmental Ozone Levels Lead to Enhanced Allergenicity of Birch Pollen

    PubMed Central

    Beck, Isabelle; Jochner, Susanne; Gilles, Stefanie; McIntyre, Mareike; Buters, Jeroen T. M.; Schmidt-Weber, Carsten; Behrendt, Heidrun; Ring, Johannes; Menzel, Annette; Traidl-Hoffmann, Claudia

    2013-01-01

    Background Evidence is compelling for a positive correlation between climate change, urbanisation and prevalence of allergic sensitisation and diseases. The reason for this association is not clear to date. Some data point to a pro-allergenic effect of anthropogenic factors on susceptible individuals. Objectives To evaluate the impact of urbanisation and climate change on pollen allergenicity. Methods Catkins were sampled from birch trees from different sites across the greater area of Munich, pollen were isolated and an urbanisation index, NO2 and ozone exposure were determined. To estimate pollen allergenicity, allergen content and pollen-associated lipid mediators were measured in aqueous pollen extracts. Immune stimulatory and modulatory capacity of pollen was assessed by neutrophil migration assays and the potential of pollen to inhibit dendritic cell interleukin-12 response. In vivo allergenicity was assessed by skin prick tests. Results The study revealed ozone as a prominent environmental factor influencing the allergenicity of birch pollen. Enhanced allergenicity, as assessed in skin prick tests, was mirrored by enhanced allergen content. Beyond that, ozone induced changes in lipid composition and chemotactic and immune modulatory potential of the pollen. Higher ozone-exposed pollen was characterised by less immune modulatory but higher immune stimulatory potential. Conclusion It is likely that future climate change along with increasing urbanisation will lead to rising ozone concentrations in the next decades. Our study indicates that ozone is a crucial factor leading to clinically relevant enhanced allergenicity of birch pollen. Thus, with increasing temperatures and increasing ozone levels, also symptoms of pollen allergic patients may increase further. PMID:24278250

  4. Complement is a central mediator of radiotherapy-induced tumor-specific immunity and clinical response.

    PubMed

    Surace, Laura; Lysenko, Veronika; Fontana, Andrea Orlando; Cecconi, Virginia; Janssen, Hans; Bicvic, Antonela; Okoniewski, Michal; Pruschy, Martin; Dummer, Reinhard; Neefjes, Jacques; Knuth, Alexander; Gupta, Anurag; van den Broek, Maries

    2015-04-21

    Radiotherapy induces DNA damage and cell death, but recent data suggest that concomitant immune stimulation is an integral part of the therapeutic action of ionizing radiation. It is poorly understood how radiotherapy supports tumor-specific immunity. Here we report that radiotherapy induced tumor cell death and transiently activated complement both in murine and human tumors. The local production of pro-inflammatory anaphylatoxins C3a and C5a was crucial to the tumor response to radiotherapy and concomitant stimulation of tumor-specific immunity. Dexamethasone, a drug frequently given during radiotherapy, limited complement activation and the anti-tumor effects of the immune system. Overall, our findings indicate that anaphylatoxins are key players in radiotherapy-induced tumor-specific immunity and the ensuing clinical responses. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Giardia-specific cellular immune responses in post-giardiasis chronic fatigue syndrome.

    PubMed

    Hanevik, Kurt; Kristoffersen, Einar; Mørch, Kristine; Rye, Kristin Paulsen; Sørnes, Steinar; Svärd, Staffan; Bruserud, Øystein; Langeland, Nina

    2017-01-28

    The role of pathogen specific cellular immune responses against the eliciting pathogen in development of post-infectious chronic fatigue syndrome (PI-CFS) is not known and such studies are difficult to perform. The aim of this study was to evaluate specific anti-Giardia cellular immunity in cases that developed CFS after Giardia infection compared to cases that recovered well. Patients reporting chronic fatigue in a questionnaire study three years after a Giardia outbreak were clinically evaluated five years after the outbreak and grouped according to Fukuda criteria for CFS and idiopathic chronic fatigue. Giardia specific immune responses were evaluated in 39 of these patients by proliferation assay, T cell activation and cytokine release analysis. 20 Giardia exposed non-fatigued individuals and 10 healthy unexposed individuals were recruited as controls. Patients were clinically classified into CFS (n = 15), idiopathic chronic fatigue (n = 5), fatigue from other causes (n = 9) and recovered from fatigue (n = 10). There were statistically significant antigen specific differences between these Giardia exposed groups and unexposed controls. However, we did not find differences between the Giardia exposed fatigue classification groups with regard to CD4 T cell activation, proliferation or cytokine levels in 6 days cultured PBMCs. Interestingly, sCD40L was increased in patients with PI-CFS and other persons with fatigue after Giardia infection compared to the non-fatigued group, and correlated well with fatigue levels at the time of sampling. Our data show antigen specific cellular immune responses in the groups previously exposed to Giardia and increased sCD40L in fatigued patients.

  6. Single nucleotide polymorphisms/haplotypes associated with multiple rubella-specific immune response outcomes post-MMR immunization in healthy children.

    PubMed

    Ovsyannikova, Inna G; Salk, Hannah M; Larrabee, Beth R; Pankratz, V Shane; Poland, Gregory A

    2015-10-01

    The observed heterogeneity in rubella-specific immune response phenotypes post-MMR vaccination is thought to be explained, in part, by inter-individual genetic variation. In this study, single nucleotide polymorphisms (SNPs) and multiple haplotypes in several candidate genes were analyzed for associations with more than one rubella-specific immune response outcome, including secreted IFN-γ, secreted IL-6, and neutralizing antibody titers. Overall, we identified 23 SNPs in 10 different genes that were significantly associated with at least two rubella-specific immune responses. Of these SNPs, we detected eight in the PVRL3 gene, five in the PVRL1 gene, one in the TRIM22 gene, two in the IL10RB gene, two in the TLR4 gene, and five in other genes (PVR, ADAR, ZFP57, MX1, and BTN2A1/BTN3A3). The PVRL3 gene haplotype GACGGGGGCAGCAAAAAGAAGAGGAAAGAACAA was significantly associated with both higher IFN-γ secretion (t-statistic 4.43, p < 0.0001) and higher neutralizing antibody titers (t-statistic 3.14, p = 0.002). Our results suggest that there is evidence of multigenic associations among identified gene SNPs and that polymorphisms in these candidate genes contribute to the overall observed differences between individuals in response to live rubella virus vaccine. These results will aid our understanding of mechanisms behind rubella-specific immune response to MMR vaccine and influence the development of vaccines in the future.

  7. Crystal structure determination and analysis of 11S coconut allergen: Cocosin.

    PubMed

    Vajravijayan, S; Nandhagopal, N; Gunasekaran, K

    2017-12-01

    Allergy is an abnormal immune response against an innocuous target. Food allergy is an adverse reaction caused by common foods most well-known being those involving peanuts. Apart from mono sensitized food allergy, cross-reactivity with other food allergens is also commonly observed. To understand the phenomenon of cross-reactivity related to immune response, three dimensional structures of the allergens and their antigenic epitopes has to be analysed in detail. The X-ray crystal structure of Cocosin, a common 11S food allergen from coconut, has been determined at 2.2Å resolution using molecular replacement technique. The monomer of 52kDa is composed of two β-jelly roll domains, one with acidic and the other with basic character. The structure shows hexameric association with two trimers facing each other. Though the overall structure of Cocosin is similar to other 11S allergens, the occurrence of experimentally determined epitopes of the peanut allergen Ara h 3 at flexible as well as variable regions could be the reason for the clinically reported result of cross-reactivity that the peanut allergic patients are not sensitized with coconut allergen. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Animal models of allergen-induced tolerance in asthma: are T-regulatory-1 cells (Tr-1) the solution for T-helper-2 cells (Th-2) in asthma?

    PubMed

    Tournoy, K G; Hove, C; Grooten, J; Moerloose, K; Brusselle, G G; Joos, G F

    2006-01-01

    Non-specific anti-inflammatory medication is actually the treatment of choice for controlling the T-helper type 2 (Th-2) cell-driven airway inflammation in asthma. The induction of counterbalancing Th-1 cell clones, long considered a promising approach for immunotherapy, has failed to fulfil its promise because of potentially detrimental side-effects. This is therefore probably not a valid option for the treatment of asthma. With the increasing awareness that active immune mechanisms exist to control inflammatory responses, interest rises to investigate whether these can be exploited to control allergen-induced airway disease. The induction of antigen-specific T cells with suppressive characteristics (regulatory T cells) is therefore a potentially interesting approach. These regulatory T cells mediate tolerance in healthy, non-atopic individuals and have the potential of becoming an effective means of preventing allergen-induced airway inflammation and possibly of suppressing ongoing allergic immune responses. Here we review the available knowledge about allergen-induced suppressive immunity obtained from animal models taking into account the different developmental stages of allergic airway disease.

  9. Fish oil supplementation in early infancy modulates developing infant immune responses.

    PubMed

    D'Vaz, N; Meldrum, S J; Dunstan, J A; Lee-Pullen, T F; Metcalfe, J; Holt, B J; Serralha, M; Tulic, M K; Mori, T A; Prescott, S L

    2012-08-01

    Maternal fish oil supplementation during pregnancy has been associated with altered infant immune responses and a reduced risk of infant sensitization and eczema. To examine the effect of early postnatal fish oil supplementation on infant cellular immune function at 6 months of age in the context of allergic disease. In a double-blind randomized controlled trial (ACTRN12606000281594), 420 infants of high atopic risk received fish oil [containing 280 mg docosahexaenoic acid (DHA) and 110 mg eicosapentanoic acid (EPA)] or control oil daily from birth to 6 months. One hundred and twenty infants had blood collected at 6 months of age. Fatty acid levels, induced cytokine responses, T cell subsets and monocyte HLA-DR expression were assessed at 6 months of age. Infant allergies were assessed at 6 and 12 months of age. DHA and EPA levels were significantly higher in the fish oil group and erythrocyte arachidonic acid (AA) levels were lower (all P < 0.05). Infants in the fish oil group had significantly lower IL-13 responses (P = 0.036) to house dust mite (HDM) and higher IFNγ (P = 0.035) and TNF (P = 0.017) responses to phytohaemaglutinin (PHA). Infants with relatively high DHA levels had lower Th2 responses to allergens including lower IL-13 to β-lactoglobulin (BLG) (P = 0.020), and lower IL-5 to BLG (P = 0.045). Postnatal fish oil supplementation increased infant n-3 polyunsaturated fatty acid (PUFA) levels and associated with lowered allergen-specific Th2 responses and elevated polyclonal Th1 responses. Our results add to existing evidence of n-3 PUFA having immunomodulatory properties that are potentially allergy-protective. © 2012 Blackwell Publishing Ltd.

  10. HCV-specific immune responses induced by CIGB-230 in combination with IFN-α plus ribavirin

    PubMed Central

    Amador-Cañizares, Yalena; Martínez-Donato, Gillian; Álvarez-Lajonchere, Liz; Vasallo, Claudia; Dausá, Mariacarla; Aguilar-Noriega, Daylen; Valenzuela, Carmen; Raíces, Ivette; Dubuisson, Jean; Wychowski, Czeslaw; Cinza-Estévez, Zurina; Castellanos, Marlén; Núñez, Magdalys; Armas, Anny; González, Yaimé; Revé, Ismariley; Guerra, Ivis; Pérez Aguiar, Ángel; Dueñas-Carrera, Santiago

    2014-01-01

    AIM: To analyze hepatitis C virus (HCV)-specific immune responses in chronically infected patients under triple therapy with interferon-α (IFN-α) plus ribavirin and CIGB-230. METHODS: CIGB-230 was administered in different schedules with respect to IFN-α plus ribavirin therapy. Paired serum and peripheral blood mononuclear cells (PBMC) samples from baseline and end of treatment were analyzed. The HCV-specific humoral response was tested by enzyme-linked immunosorbent assay, neutralizing antibodies were evaluated by cell culture HCV neutralization assays, PBMC proliferation was assayed by carboxyfluorescein succinimidyl ester staining and IFN-γ secretion was assessed by enzyme-linked immunospot. Data on virological and histological response and their association with immune variables are also provided. RESULTS: From week 12 to week 48, all groups of patients showed a significant reduction in mean leukocyte counts. Statistically significant reductions in antibody titers were frequent, but only individuals immunized with CIGB-230 as early add-on treatment sustained the core-IgG response, and the neutralizing antibody response was enhanced only in patients receiving CIGB-230. Cell-mediated immune responses also tended to decline, but significant reductions in IFN-γ secretion and total absence of core-specific lymphoproliferation were exclusive of the control group. Only CIGB-230-immunized individuals showed de novo induced lymphoproliferative responses against the structural antigens. Importantly, it was demonstrated that the quality of the CIGB-230-induced immune response depended on the number of doses and timing of administration in relation to the antiviral therapy. Specifically, the administration of 6 doses of CIGB-230 as late add-on to therapy increased the neutralizing antibody activity and the de novo core-specific IFN-γ secretion, both of which were associated with the sustained virological response. CONCLUSION: CIGB-230, combined with IFN

  11. The multi-faceted role of allergen exposure to the local airway mucosa.

    PubMed

    Golebski, K; Röschmann, K I L; Toppila-Salmi, S; Hammad, H; Lambrecht, B N; Renkonen, R; Fokkens, W J; van Drunen, C M

    2013-02-01

    Airway epithelial cells are the first to encounter aeroallergens and therefore have recently become an interesting target of many studies investigating their involvement in the modulation of allergic inflammatory responses. Disruption of a passive structural barrier composed of epithelial cells by intrinsic proteolytic activity of allergens may facilitate allergen penetration into local tissues and additionally affect chronic and ongoing inflammatory processes in respiratory tissues. Furthermore, the ability of rhinoviruses to disrupt and interfere with epithelial tight junctions may alter the barrier integrity and enable a passive passage of inhaled allergens through the airway epithelium. On the other hand, epithelial cells are no longer considered to act only as a physical barrier toward inhaled allergens, but also to actively contribute to airway inflammation by detecting and responding to environmental factors. Epithelial cells can produce mediators, which may affect the recruitment and activation of more specialized immune cells to the local tissue and also create a microenvironment in which these activated immune cells may function and propagate the inflammatory processes. This review presents the dual role of epithelium acting as a passive and active barrier when encountering an inhaled allergen and how this double role contributes to the start of local immune responses. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  12. Potent Cell-Intrinsic Immune Responses in Dendritic Cells Facilitate HIV-1-Specific T Cell Immunity in HIV-1 Elite Controllers.

    PubMed

    Martin-Gayo, Enrique; Buzon, Maria Jose; Ouyang, Zhengyu; Hickman, Taylor; Cronin, Jacqueline; Pimenova, Dina; Walker, Bruce D; Lichterfeld, Mathias; Yu, Xu G

    2015-06-01

    The majority of HIV-1 elite controllers (EC) restrict HIV-1 replication through highly functional HIV-1-specific T cell responses, but mechanisms supporting the evolution of effective HIV-1-specific T cell immunity in these patients remain undefined. Cytosolic immune recognition of HIV-1 in conventional dendritic cells (cDC) can facilitate priming and expansion of HIV-1-specific T cells; however, HIV-1 seems to be able to avoid intracellular immune recognition in cDCs in most infected individuals. Here, we show that exposure of cDCs from EC to HIV-1 leads to a rapid and sustained production of type I interferons and upregulation of several interferon-stimulated effector genes. Emergence of these cell-intrinsic immune responses was associated with a reduced induction of SAMHD1 and LEDGF/p75, and an accumulation of viral reverse transcripts, but inhibited by pharmacological blockade of viral reverse transcription or siRNA-mediated silencing of the cytosolic DNA sensor cGAS. Importantly, improved cell-intrinsic immune recognition of HIV-1 in cDCs from elite controllers translated into stronger abilities to stimulate and expand HIV-1-specific CD8 T cell responses. These data suggest an important role of cell-intrinsic type I interferon secretion in dendritic cells for the induction of effective HIV-1-specific CD8 T cells, and may be helpful for eliciting functional T cell immunity against HIV-1 for preventative or therapeutic clinical purposes.

  13. Promotion of allergic immune responses by intranasally-administrated nanosilica particles in mice

    NASA Astrophysics Data System (ADS)

    Yoshida, Tokuyuki; Yoshioka, Yasuo; Fujimura, Maho; Yamashita, Kohei; Higashisaka, Kazuma; Morishita, Yuki; Kayamuro, Hiroyuki; Nabeshi, Hiromi; Nagano, Kazuya; Abe, Yasuhiro; Kamada, Haruhiko; Tsunoda, Shin-Ichi; Itoh, Norio; Yoshikawa, Tomoaki; Tsutsumi, Yasuo

    2011-12-01

    With the increase in use of nanomaterials, there is growing concern regarding their potential health risks. However, few studies have assessed the role of the different physical characteristics of nanomaterials in allergic responses. Here, we examined whether intranasally administered silica particles of various sizes have the capacity to promote allergic immune responses in mice. We used nanosilica particles with diameters of 30 or 70 nm (nSP30 or nSP70, respectively), and conventional micro-sized silica particles with diameters of 300 or 1000 nm (nSP300 or mSP1000, respectively). Mice were intranasally exposed to ovalbumin (OVA) plus each silica particle, and the levels of OVA-specific antibodies (Abs) in the plasma were determined. Intranasal exposure to OVA plus smaller nanosilica particles tended to induce a higher level of OVA-specific immunoglobulin (Ig) E, IgG and IgG1 Abs than did exposure to OVA plus larger silica particles. Splenocytes from mice exposed to OVA plus nSP30 secreted higher levels of Th2-type cytokines than mice exposed to OVA alone. Taken together, these results indicate that nanosilica particles can induce allergen-specific Th2-type allergic immune responses in vivo. This study provides the foundations for the establishment of safe and effective forms of nanosilica particles.

  14. Sex-specific consequences of an induced immune response on reproduction in a moth.

    PubMed

    Barthel, Andrea; Staudacher, Heike; Schmaltz, Antje; Heckel, David G; Groot, Astrid T

    2015-12-16

    Immune response induction benefits insects in combatting infection by pathogens. However, organisms have a limited amount of resources available and face the dilemma of partitioning resources between immunity and other life-history traits. Since males and females differ in their life histories, sex-specific resource investment strategies to achieve an optimal immune response following an infection can be expected. We investigated immune response induction of females and males of Heliothis virescens in response to the entomopathogenic bacterium Serratia entomophila, and its effects on mating success and the female sexual signal. We found that females had higher expression levels of immune-related genes after bacterial challenge than males. However, males maintained a higher baseline expression of immune-related genes than females. The increased investment in immunity of female moths was negatively correlated with mating success and the female sexual signal. Male mating success was unaffected by bacterial challenge. Our results show that the sexes differed in their investment strategies: females invested in immune defense after a bacterial challenge, indicating facultative immune deployment, whereas males had higher baseline immunity than females, indicating immune maintenance. Interestingly, these differences in investment were reflected in the mate choice assays. As female moths are the sexual signallers, females need to invest resources in their attractiveness. However, female moths appeared to invest in immunity at the cost of reproductive effort.

  15. Eosinophil Activities Modulate the Immune/Inflammatory Character of Allergic Respiratory Responses in Mice

    PubMed Central

    Jacobsen, Elizabeth A.; LeSuer, William E.; Willetts, Lian; Zellner, Katie R.; Mazzolini, Kirea; Antonios, Nathalie; Beck, Brandon; Protheroe, Cheryl; Ochkur, Sergei I.; Colbert, Dana; Lacy, Paige; Moqbel, Redwan; Appleton, Judith; Lee, Nancy A.; Lee, James J.

    2014-01-01

    Background The importance and specific role(s) of eosinophils in modulating the immune/inflammatory phenotype of allergic pulmonary disease remain to be defined. Established animals models assessing the role(s) of eosinophils as contributors and/or causative agents of disease have relied on congenitally deficient mice where the developmental consequences of eosinophil depletion are unknown. Methods We developed a novel conditional eosinophil-deficient strain of mice (iPHIL) through a gene knock-in strategy inserting the human diphtheria toxin (DT) receptor (DTR) into the endogenous eosinophil peroxidase genomic locus. Results Expression of DTR rendered resistant mouse eosinophil progenitors sensitive to DT without affecting any other cell types. The presence of eosinophils was shown to be unnecessary during the sensitization phase of either ovalbumin (OVA) or house dust mite (HDM) acute asthma models. However, eosinophil ablation during airway challenge led to a predominantly neutrophilic phenotype (>15% neutrophils) accompanied by allergen-induced histopathologies and airway hyperresponsiveness in response to methacholine indistinguishable from eosinophilic wild type mice. Moreover, the iPHIL neutrophilic airway phenotype was shown to be a steroid-resistant allergic respiratory variant that was reversible upon restoration of peripheral eosinophils. Conclusions Eosinophil contributions to allergic immune/inflammatory responses appear to be limited to the airway challenge and not the sensitization phase of allergen provocation models. The reversible steroid-resistant character of the iPHIL neutrophilic airway variant suggests underappreciated mechanisms by which eosinophils shape the character of allergic respiratory responses. PMID:24266710

  16. Identification of allergens by IgE-specific testing improves outcomes in atopic dermatitis.

    PubMed

    Will, Brett M; Severino, Richard; Johnson, Douglas W

    2017-11-01

    IgE quantitative assaying of allergens (IgEQAA) has long been implemented by allergists in determining patients' reactivities for allergic rhinitis and asthma, two of the three diagnoses in atopic syndrome. This test operates by measuring the patient's IgE response to different allergens and can identify potential triggers for a patient's symptoms. Despite this, IgEQAA has yet to see the same widespread use in the field of dermatology, specifically in the treatment of patients with atopic dermatitis (AD). The affected body surface area (BSA) at first presentation, IgEQAA classes, and total immunoglobulin E (IgE) concentration were taken retrospectively for 54 patients with AD. Of the 54 patients observed, 41 had an abnormally high total IgE concentration (76%). Additionally, it was observed that nine (17%) of our patients significantly improved after making lifestyle changes. Knowledge of the identified specific antigens can guide patients to make lifestyle modifications that may improve disease outcomes. IgEQAA and avoidance of allergens may help some patients with AD. © 2017 The International Society of Dermatology.

  17. Human Neoplasms Elicit Multiple Specific Immune Responses in the Autologous Host

    NASA Astrophysics Data System (ADS)

    Sahin, Ugur; Tureci, Ozlem; Schmitt, Holger; Cochlovius, Bjorn; Johannes, Thomas; Schmits, Rudolf; Stenner, Frank; Luo, Guorong; Schobert, Ingrid; Pfreundschuh, Michael

    1995-12-01

    Expression of cDNA libraries from human melanoma, renal cancer, astrocytoma, and Hodgkin disease in Escherichia coli and screening for clones reactive with high-titer IgG antibodies in autologous patient serum lead to the discovery of at least four antigens with a restricted expression pattern in each tumor. Besides antigens known to elicit T-cell responses, such as MAGE-1 and tyrosinase, numerous additional antigens that were overexpressed or specifically expressed in tumors of the same type were identified. Sequence analyses suggest that many of these molecules, besides being the target of a specific immune response, might be of relevance for tumor growth. Antibodies to a given antigen were usually confined to patients with the same tumor type. The unexpected frequency of human tumor antigens, which can be readily defined at the molecular level by the serological analysis of autologous tumor cDNA expression cloning, indicates that human neoplasms elicit multiple specific immune responses in the autologous host and provides diagnostic and therapeutic approaches to human cancer.

  18. 484 Allergen Standardisation in Allergens and Allergoids—Challenges and Considerations

    PubMed Central

    Skinner, Murray; Bullimore, Alan; Hewings, Simon; Swan, Nicola

    2012-01-01

    Background The range of therapeutics and dosing schedules for allergen preparations and allergoids produced and used clinically are considerable. Standardisation of allergy immunotherapies is considered a positive step; however there are difficulties in identifying universal metrics for standardisation. Many advocate the use of major allergen content whilst others advocate total allergenicity. Additionally as a compounding argument, where major allergen is used, many disagree on what the major allergen is for certain species. Methods Major allergen content measurement allows a consistent recognised measure, and IgE responses of a serum pool are often dominated by IgE against major allergens. However issues such as specificity of different assays toward isoforms and other variants of single allergens often results in diverging allergen contents that can cause unexpected and misleading disparity. Other aspects that increase complication are the relevance to modified allergens, use of adjuvants and differing dosing regimes. Results The major allergen content of key products in different therapeutic formats has been measured. Conclusions This has been performed in conjunction with techniques such as total allergenicity, as allergy treatments and therapeutics require careful characterisation to allow supply of consistent, safe and efficacious products.

  19. Maternal immunity enhances systemic recall immune responses upon oral immunization of piglets with F4 fimbriae.

    PubMed

    Nguyen, Ut V; Melkebeek, Vesna; Devriendt, Bert; Goetstouwers, Tiphanie; Van Poucke, Mario; Peelman, Luc; Goddeeris, Bruno M; Cox, Eric

    2015-06-23

    F4 enterotoxigenic Escherichia coli (ETEC) cause diarrhoea and mortality in piglets leading to severe economic losses. Oral immunization of piglets with F4 fimbriae induces a protective intestinal immune response evidenced by an F4-specific serum and intestinal IgA response. However, successful oral immunization of pigs with F4 fimbriae in the presence of maternal immunity has not been demonstrated yet. In the present study we aimed to evaluate the effect of maternal immunity on the induction of a systemic immune response upon oral immunization of piglets. Whereas F4-specific IgG and IgA could be induced by oral immunization of pigs without maternal antibodies and by intramuscular immunization of pigs with maternal antibodies, no such response was seen in the orally immunized animals with maternal antibodies. Since maternal antibodies can mask an antibody response, we also looked by ELIspot assays for circulating F4-specific antibody secreting cells (ASCs). Enumerating the F4-specific ASCs within the circulating peripheral blood mononuclear cells, and the number of F4-specific IgA ASCs within the circulating IgA(+) B-cells revealed an F4-specific immune response in the orally immunized animals with maternal antibodies. Interestingly, results suggest a more robust IgA booster response by oral immunization of pigs with than without maternal antibodies. These results demonstrate that oral immunization of piglets with F4-specific maternal antibodies is feasible and that these maternal antibodies seem to enhance the secondary systemic immune response. Furthermore, our ELIspot assay on enriched IgA(+) B-cells could be used as a screening procedure to optimize mucosal immunization protocols in pigs with maternal immunity.

  20. Macrophages induce an allergen-specific and long-term suppression in a mouse asthma model.

    PubMed

    Vissers, J L M; van Esch, B C A M; Hofman, G A; van Oosterhout, A J M

    2005-12-01

    Increasing evidence suggests that macrophages (Mphi) play a crucial downregulatory role in the initiation and progression of allergic asthma. Recently, the current authors demonstrated that ovalbumin (OVA)-loaded Mphi (OVA-Mphi) suppress subsequent OVA-induced airway manifestations of asthma and that this effect could be potentiated upon selective activation. In the present study, the authors further delineated the underlying pathway by which Mphi exert this immunosuppressive effect. To examine the migration of OVA-Mphi, cells were labelled with 5'chloromethylfluorescein diacetate (CMFDA) and were administered (i.v.) into OVA-sensitised BALB/c mice. After 20 h, the relevant organs were dissected and analysed using fluorescent microscopy. Allergen-specificity was investigated by treating OVA-sensitised mice with keyhole limpet haemocyanin (KLH)-Mphi activated with immunostimulatory sequence oligodeoxynucleotide (ISS-ODN). By lengthening the period between treatment and challenge to 4 weeks it was examined whether OVA-Mphi exerted an immunosuppressive memory response. Strikingly, CMFDA-labelled Mphi were not trapped in the lungs, but migrated to the spleen. ISS-ODN-stimulated KLH-Mphi failed to suppress OVA-induced airway manifestations of asthma. Moreover, treatment with ISS-ODN-stimulated OVA-Mphi was still effective after lengthening the period between treatment and challenge. These data demonstrate that allergen-loaded macrophages can induce an indirect immunosuppressive response that is allergen-specific and long lasting, which are both hallmarks of a memory lymphocyte response.

  1. Influence of a cocoa-enriched diet on specific immune response in ovalbumin-sensitized rats.

    PubMed

    Pérez-Berezo, Teresa; Ramiro-Puig, Emma; Pérez-Cano, Francisco J; Castellote, Cristina; Permanyer, Joan; Franch, Angels; Castell, Margarida

    2009-03-01

    Previous studies in young rats have reported the impact of 3 weeks of high cocoa intake on healthy immune status. The present article describes the effects of a longer-term cocoa-enriched diet (9 weeks) on the specific immune response to ovalbumin (OVA) in adult Wistar rats. At 4 weeks after immunization, control rats produced anti-OVA antibodies, which, according their amount and isotype, were arranged as follows: IgG1 > IgG2a > IgM > IgG2b > IgG2c. Both cocoa diets studied (4% and 10%) down-modulated OVA-specific antibody levels of IgG1 (main subclass associated with the Th2 immune response in rats), IgG2a, IgG2c and IgM isotypes. Conversely, cocoa-fed rats presented equal or higher levels of anti-OVA IgG2b antibodies (subclass linked to the Th1 response). Spleen and lymph node cells from OVA-immunized control and cocoa-fed animals proliferated similarly under OVA stimulation. However, spleen cells from cocoa-fed animals showed decreased interleukin-4 secretion (main Th2 cytokine), and lymph node cells from the same rats displayed higher interferon-gamma secretion (main Th1 cytokine). These changes were accompanied by a reduction in the number of anti-OVA IgG-secreting cells in spleen. In conclusion, cocoa diets induced attenuation of antibody synthesis that may be attributable to specific down-regulation of the Th2 immune response.

  2. Patterns of IgE responses to multiple allergen components and clinical symptoms at age 11 years

    PubMed Central

    Simpson, Angela; Lazic, Nevena; Belgrave, Danielle C.M.; Johnson, Phil; Bishop, Christopher; Mills, Clare; Custovic, Adnan

    2015-01-01

    Background The relationship between sensitization to allergens and disease is complex. Objective We sought to identify patterns of response to a broad range of allergen components and investigate associations with asthma, eczema, and hay fever. Methods Serum specific IgE levels to 112 allergen components were measured by using a multiplex array (Immuno Solid-phase Allergen Chip) in a population-based birth cohort. Latent variable modeling was used to identify underlying patterns of component-specific IgE responses; these patterns were then related to asthma, eczema, and hay fever. Results Two hundred twenty-one of 461 children had IgE to 1 or more components. Seventy-one of the 112 components were recognized by 3 or more children. By using latent variable modeling, 61 allergen components clustered into 3 component groups (CG1, CG2, and CG3); protein families within each CG were exclusive to that group. CG1 comprised 27 components from 8 plant protein families. CG2 comprised 7 components of mite allergens from 3 protein families. CG3 included 27 components of plant, animal, and fungal origin from 12 protein families. Each CG included components from different biological sources with structural homology and also nonhomologous proteins arising from the same biological source. Sensitization to CG3 was most strongly associated with asthma (odds ratio [OR], 8.20; 95% CI, 3.49-19.24; P < .001) and lower FEV1 (P < .001). Sensitization to CG1 was associated with hay fever (OR, 12.79; 95% CI, 6.84-23.90; P < .001). Sensitization to CG2 was associated with both asthma (OR, 3.60; 95% CI, 2.05-6.29) and hay fever (OR, 2.52; 95% CI, 1.38-4.61). Conclusions Latent variable modeling with a large number of allergen components identified 3 patterns of IgE responses, each including different protein families. In 11-year-old children the pattern of response to components of multiple allergens appeared to be associated with current asthma and hay fever but not eczema. PMID

  3. Mechanisms of allergen immunotherapy for inhaled allergens and predictive biomarkers.

    PubMed

    Shamji, Mohamed H; Durham, Stephen R

    2017-12-01

    Allergen immunotherapy is effective in patients with IgE-dependent allergic rhinitis and asthma. When immunotherapy is given continuously for 3 years, there is persistent clinical benefit for several years after its discontinuation. This disease-modifying effect is both antigen-specific and antigen-driven. Clinical improvement is accompanied by decreases in numbers of effector cells in target organs, including mast cells, basophils, eosinophils, and type 2 innate lymphoid cells. Immunotherapy results in the production of blocking IgG/IgG 4 antibodies that can inhibit IgE-dependent activation mediated through both high-affinity IgE receptors (FcεRI) on mast cells and basophils and low-affinity IgE receptors (FcεRII) on B cells. Suppression of T H 2 immunity can occur as a consequence of either deletion or anergy of antigen-specific T cells; induction of antigen-specific regulatory T cells; or immune deviation in favor of T H 1 responses. It is not clear whether the altered long-term memory resides within the T-cell or the B-cell compartment. Recent data highlight the role of IL-10-producing regulatory B cells and "protective" antibodies that likely contribute to long-term tolerance. Understanding mechanisms underlying induction and persistence of tolerance should identify predictive biomarkers of clinical response and discover novel and more effective strategies for immunotherapy. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Newborn Mice Vaccination with BCG.HIVA222 + MVA.HIVA Enhances HIV-1-Specific Immune Responses: Influence of Age and Immunization Routes

    PubMed Central

    Saubi, Narcís; Im, Eung-Jun; Fernández-Lloris, Raquel; Gil, Olga; Cardona, Pere-Joan; Gatell, Josep Maria; Hanke, Tomáš; Joseph, Joan

    2011-01-01

    We have evaluated the influence of age and immunization routes for induction of HIV-1- and M. tuberculosis-specific immune responses after neonatal (7 days old) and adult (7 weeks old) BALB/c mice immunization with BCG.HIVA222 prime and MVA.HIVA boost. The specific HIV-1 cellular immune responses were analyzed in spleen cells. The body weight of the newborn mice was weekly recorded. The frequencies of HIV-specific CD8+ T cells producing IFN-γ were higher in adult mice vaccinated intradermally and lower in adult and newborn mice vaccinated subcutaneously. In all cases the IFN-γ production was significantly higher when mice were primed with BCG.HIVA222 compared with BCGwt. When the HIV-specific CTL activity was assessed, the frequencies of specific killing were higher in newborn mice than in adults. The prime-boost vaccination regimen which includes BCG.HIVA222 and MVA.HIVA was safe when inoculated to newborn mice. The administration of BCG.HIVA222 to newborn mice is safe and immunogenic and increased the HIV-specific responses induced by MVA.HIVA vaccine. It might be a good model for infant HIV and Tuberculosis bivalent vaccine. PMID:21603216

  5. Intralymphatic allergen-specific immunotherapy: an effective and safe alternative treatment route for pollen-induced allergic rhinitis.

    PubMed

    Hylander, Terese; Latif, Leith; Petersson-Westin, Ulla; Cardell, Lars Olaf

    2013-02-01

    Allergen-specific immunotherapy is the only causative treatment of IgE-mediated allergic disorders. The most common administration route is subcutaneous, which may necessitate more than 50 allergen injections during 3 to 5 years. Recent evidence suggests that direct intralymphatic injections could yield faster beneficial results with considerably lower allergen doses and markedly reduced numbers of injections. To evaluate the effects of intralymphatic allergen-specific immunotherapy in pollen-allergic patients. In an open pilot investigation followed by a double-blind, placebo-controlled study, patients with allergic rhinitis were treated with 3 intralymphatic inguinal injections of ALK Alutard (containing 1000 SQ-U birch pollen or grass pollen) or placebo (ALK diluent). Clinical pre- and posttreatment parameters were assessed, the inflammatory cell content in nasal lavage fluids estimated, and the activation pattern of peripheral T cells described. All patients tolerated the intralymphatic immunotherapy (ILIT) treatment well, and the injections did not elicit any severe adverse event. Patients receiving active treatment displayed an initial increase in allergen-specific IgE level and peripheral T-cell activation. A clinical improvement in nasal allergic symptoms upon challenge was recorded along with a decreased inflammatory response in the nose. In addition, these patients reported an improvement in their seasonal allergic disease. No such changes were seen in the placebo group. Although this study is based on a limited number of patients, ILIT with grass-pollen or birch-pollen extracts appears to reduce nasal allergic symptoms without causing any safety problems. Hence, ILIT might constitute a less time-consuming and more cost-effective alternative to conventional subcutaneous allergen-specific immunotherapy. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  6. Lifelong memory responses perpetuate humoral TH2 immunity and anaphylaxis in food allergy.

    PubMed

    Jiménez-Saiz, Rodrigo; Chu, Derek K; Mandur, Talveer S; Walker, Tina D; Gordon, Melissa E; Chaudhary, Roopali; Koenig, Joshua; Saliba, Sarah; Galipeau, Heather J; Utley, Adam; King, Irah L; Lee, Kelvin; Ettinger, Rachel; Waserman, Susan; Kolbeck, Roland; Jordana, Manel

    2017-12-01

    A number of food allergies (eg, fish, shellfish, and nuts) are lifelong, without any disease-transforming therapies, and unclear in their underlying immunology. Clinical manifestations of food allergy are largely mediated by IgE. Although persistent IgE titers have been attributed conventionally to long-lived IgE + plasma cells (PCs), this has not been directly and comprehensively tested. We sought to evaluate mechanisms underlying persistent IgE and allergic responses to food allergens. We used a model of peanut allergy and anaphylaxis, various knockout mice, adoptive transfer experiments, and in vitro assays to identify mechanisms underlying persistent IgE humoral immunity over almost the entire lifespan of the mouse (18-20 months). Contrary to conventional paradigms, our data show that clinically relevant lifelong IgE titers are not sustained by long-lived IgE + PCs. Instead, lifelong reactivity is conferred by allergen-specific long-lived memory B cells that replenish the IgE + PC compartment. B-cell reactivation requires allergen re-exposure and IL-4 production by CD4 T cells. We define the half-lives of antigen-specific germinal centers (23.3 days), IgE + and IgG 1 + PCs (60 and 234.4 days, respectively), and clinically relevant cell-bound IgE (67.3 days). These findings can explain lifelong food allergies observed in human subjects as the consequence of allergen exposures that recurrently activate memory B cells and identify these as a therapeutic target with disease-transforming potential. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Allergen-specific IgG and IgA in serum and bronchoalveolar lavage fluid in a model of experimental feline asthma.

    PubMed

    Norris, C R; Byerly, J R; Decile, K C; Berghaus, R D; Walby, W F; Schelegle, E S; Hyde, D M; Gershwin, L J

    2003-12-15

    Allergic asthma, a Th2 cell driven response to inhaled allergens, has classically been thought of as predominantly mediated by IgE antibodies. To investigate the role of other immunoglobulin classes (e.g., IgG and IgA) in the immunopathogenesis of allergic asthma, levels of these allergen-specific immunoglobulins were measured in serum and mucosal fluids. Bermuda grass allergen (BGA)-specific IgG and IgA ELISAs in serum and bronchoalveolar lavage fluid (BALF) were developed and optimized in an experimental model of BGA-induced feline asthma. Levels of BGA-specific IgG and IgA significantly increased over time in serum and BALF after allergen sensitization. Additionally, these elevated levels of BGA-specific IgG and IgA were seen in conjunction with the development of an asthmatic phenotype indicated by positive intradermal skin tests, enhanced airways hyperreactivity, and increased eosinophil percentages in the BALF.

  8. Allergen-specific Th1 cells fail to counterbalance Th2 cell-induced airway hyperreactivity but cause severe airway inflammation.

    PubMed

    Hansen, G; Berry, G; DeKruyff, R H; Umetsu, D T

    1999-01-01

    Allergic asthma, which is present in as many as 10% of individuals in industrialized nations, is characterized by chronic airway inflammation and hyperreactivity induced by allergen-specific Th2 cells secreting interleukin-4 (IL-4) and IL-5. Because Th1 cells antagonize Th2 cell functions, it has been proposed that immune deviation toward Th1 can protect against asthma and allergies. Using an adoptive transfer system, we assessed the roles of Th1, Th2, and Th0 cells in a mouse model of asthma and examined the capacity of Th1 cells to counterbalance the proasthmatic effects of Th2 cells. Th1, Th2, and Th0 lines were generated from ovalbumin (OVA)-specific T-cell receptor (TCR) transgenic mice and transferred into lymphocyte-deficient, OVA-treated severe combined immunodeficiency (SCID) mice. OVA-specific Th2 and Th0 cells induced significant airway hyperreactivity and inflammation. Surprisingly, Th1 cells did not attenuate Th2 cell-induced airway hyperreactivity and inflammation in either SCID mice or in OVA-immunized immunocompetent BALB/c mice, but rather caused severe airway inflammation. These results indicate that antigen-specific Th1 cells may not protect or prevent Th2-mediated allergic disease, but rather may cause acute lung pathology. These findings have significant implications with regard to current therapeutic goals in asthma and allergy and suggest that conversion of Th2-dominated allergic inflammatory responses into Th1-dominated responses may lead to further problems.

  9. Adjuvant effects of aluminium hydroxide-adsorbed allergens and allergoids - differences in vivo and in vitro.

    PubMed

    Heydenreich, B; Bellinghausen, I; Lund, L; Henmar, H; Lund, G; Adler Würtzen, P; Saloga, J

    2014-06-01

    Allergen-specific immunotherapy (SIT) is a clinically effective therapy for immunoglobulin (Ig)E-mediated allergic diseases. To reduce the risk of IgE-mediated side effects, chemically modified allergoids have been introduced. Furthermore, adsorbance of allergens to aluminium hydroxide (alum) is widely used to enhance the immune response. The mechanisms behind the adjuvant effect of alum are still not completely understood. In the present study we analysed the effects of alum-adsorbed allergens and allergoids on their immunogenicity in vitro and in vivo and their ability to activate basophils of allergic donors. Human monocyte derived dendritic cells (DC) were incubated with native Phleum pratense or Betula verrucosa allergen extract or formaldehyde- or glutaraldehyde-modified allergoids, adsorbed or unadsorbed to alum. After maturation, DC were co-cultivated with autologous CD4(+) T cells. Allergenicity was tested by leukotriene and histamine release of human basophils. Finally, in-vivo immunogenicity was analysed by IgG production of immunized mice. T cell proliferation as well as interleukin (IL)-4, IL-13, IL-10 and interferon (IFN)-γ production were strongly decreased using glutaraldehyde-modified allergoids, but did not differ between alum-adsorbed allergens or allergoids and the corresponding unadsorbed preparations. Glutaraldehyde modification also led to a decreased leukotriene and histamine release compared to native allergens, being further decreased by adsorption to alum. In vivo, immunogenicity was reduced for allergoids which could be partly restored by adsorption to alum. Our results suggest that adsorption of native allergens or modified allergoids to alum had no consistent adjuvant effect but led to a reduced allergenicity in vitro, while we observed an adjuvant effect regarding IgG production in vivo. © 2014 British Society for Immunology.

  10. Total serum immunoglobulin E level and specific allergens in adults with skin diseases.

    PubMed

    Choi, Byung Gon; Lee, Yang Won; Choe, Yong Beom; Ahn, Kyu Joong

    2018-01-01

    Immunoglobulin E (IgE) plays an important role in allergic diseases. Although several studies have shown the association of serum total IgE and allergen-specific IgE levels with allergic dermatological diseases such as atopic dermatitis, there are few studies addressing this association for skin diseases in general. We sought to evaluate IgE levels in skin diseases and investigate the differences based on the disease type and clinical factors such as gender and age. Data from 2836 patients who visited the dermatologic clinic of the Konkuk University Hospital, Seoul, Republic of Korea for 4 years were reviewed to document IgE levels and clinical information. IgE levels were collated with the type of skin disease, gender, and age. Patients with atopic dermatitis had a much higher total IgE level and were more susceptible to allergens as compared to other disease groups. Patients in other disease groups showed no significant differences in IgE levels. Men showed higher total IgE levels but the gender differences decreased with increasing age. The data were collected from patients at a referral centre and thus may not represent the general population of dermatologic patients. There was a lack of information regarding factors that could potentially influence IgE levels such as smoking history and disease severity. The results suggest that there are physiological or environmental differences in IgE-mediated immune responses between males and females. Also, except for atopic dermatitis, there were no clinical differences in the IgE levels among various skin diseases.

  11. Effect of controlled human exposure to diesel exhaust and allergen on airway surfactant protein D, myeloperoxidase and club (Clara) cell secretory protein 16.

    PubMed

    Biagioni, B J; Tam, S; Chen, Y-W R; Sin, D D; Carlsten, C

    2016-09-01

    Air pollution is a major cause of global morbidity and mortality. Air pollution and aeroallergens aggravate respiratory illness, but the variable effects of air pollutants and allergens in the lung are poorly understood. To determine the effects of diesel exhaust (DE) and bronchial allergen challenge as single and dual exposures on aspects of innate immunity in the airway as reflected by surfactant protein D (SPD), myeloperoxidase (MPO) and club (Clara) cell secretory protein 16 (CC16) in 18 atopic individuals. In this double-blind, randomized crossover study, atopic individuals were exposed to DE or filtered air, followed by endobronchial allergen or saline 1 hour after inhalational exposure. Bronchoalveolar lavage, bronchial washings, nasal lavage and blood samples were obtained 48 hours after exposures and assayed for CC16, MPO and SPD by ELISA. In bronchial samples, the concentration of SPD increased from 53.3 to 91.8 ng/mL after endobronchial allergen, with no additional contribution from DE. MPO also increased significantly in response to allergen (6.8 to 14.7 ng/mL), and there was a small additional contribution from exposure to DE. The concentration of CC16 decreased from 340.7 to 151.0 ng/mL in response to DE, with minor contribution from allergen. These changes were not reflected in nasal lavage fluid or plasma samples. These findings suggest that allergen and DE variably influence different aspects of the innate immune response of the lung. SPD and MPO, known markers of allergic inflammation in the lung, are strongly increased by allergen while DE has a minor effect therein. DE induces a loss of CC16, a protective protein, while allergen has a minor effect therein. Results support site- and exposure-specific responses in the human lung upon multiple exposures. © 2016 John Wiley & Sons Ltd.

  12. Navigating through the Jungle of Allergens: Features and Applications of Allergen Databases.

    PubMed

    Radauer, Christian

    2017-01-01

    The increasing number of available data on allergenic proteins demanded the establishment of structured, freely accessible allergen databases. In this review article, features and applications of 6 of the most widely used allergen databases are discussed. The WHO/IUIS Allergen Nomenclature Database is the official resource of allergen designations. Allergome is the most comprehensive collection of data on allergens and allergen sources. AllergenOnline is aimed at providing a peer-reviewed database of allergen sequences for prediction of allergenicity of proteins, such as those planned to be inserted into genetically modified crops. The Structural Database of Allergenic Proteins (SDAP) provides a database of allergen sequences, structures, and epitopes linked to bioinformatics tools for sequence analysis and comparison. The Immune Epitope Database (IEDB) is the largest repository of T-cell, B-cell, and major histocompatibility complex protein epitopes including epitopes of allergens. AllFam classifies allergens into families of evolutionarily related proteins using definitions from the Pfam protein family database. These databases contain mostly overlapping data, but also show differences in terms of their targeted users, the criteria for including allergens, data shown for each allergen, and the availability of bioinformatics tools. © 2017 S. Karger AG, Basel.

  13. Balance between early life tolerance and sensitization in allergy: dependence on the timing and intensity of prenatal and postnatal allergen exposure of the mother.

    PubMed

    Fusaro, Ana Elisa; de Brito, Cyro Alves; Taniguchi, Eliana Futata; Muniz, Bruno Pacola; Victor, Jefferson Russo; Orii, Noemia Mie; Duarte, Alberto José da Silva; Sato, Maria Notomi

    2009-09-01

    Allergens can be maternally transferred to the fetus or neonate, though it is uncertain how this initial allergen exposure may impact the development of allergy responses. To evaluate the roles of timing and level of maternal allergen exposure in the early life sensitization of progeny, female BALB/c mice were given ovalbumin (OVA) orally during pregnancy, lactation or weekly at each stage to investigate the immunoglobulin E (IgE) antibody production and cellular responsiveness of their offspring. Exposure to OVA during pregnancy was also evaluated in OVA-specific T-cell receptor (TCR) transgenic (DO11.10) mice. The effect of prenatal antigen exposure on offspring sensitization was dependent on antigen intake, with low-dose OVA inducing tolerance followed by neonatal immunization that was sustained even when pups were immunized when 3 weeks old. These offspring received high levels of transforming growth factor-beta via breastfeeding. High-dose exposure during the first week of pregnancy or perinatal period induced transient inhibition of IgE production following neonatal immunization; although for later immunization IgE production was enhanced in these offspring. Postnatal maternal antigen exposure provided OVA transference via breastfeeding, which consequently induced increased offspring susceptibility to IgE antibody production according to week post-birth. The effect of low-dose maternal exposure during pregnancy was further evaluated using OVA transgenic TCR dams as a model. These progeny presented pronounced entry of CD4(+) T cells into the S phase of the cell cycle with a skewed T helper type 2 response early in life, revealing the occurrence of allergen priming in utero. The balance between tolerance and sensitization depended on the amount and timing of maternal allergen intake during pregnancy.

  14. Fungal Allergen β-Glucans Trigger p38 Mitogen-Activated Protein Kinase–Mediated IL-6 Translation in Lung Epithelial Cells

    PubMed Central

    Neveu, Wendy A.; Bernardo, Edgar; Allard, Jenna L.; Nagaleekar, Viswas; Wargo, Matthew J.; Davis, Roger J.; Iwakura, Yoichiro; Whittaker, Laurie A.

    2011-01-01

    In addition to immune cells, airway epithelial cells can contribute to and shape the immune response in the lung by secreting specific cytokines. IL-6 is a key factor in determining the effector fate of CD4+ T cells. Here we show that under basal conditions, the IL-6 gene is already highly expressed in lung epithelial cells, but not in immune cells resident in the lung. However, upon exposure of the lungs to fungal allergens, the direct contact of β-glucans present in the fungus cell wall with lung epithelial cells is sufficient to trigger the rapid synthesis and secretion of IL-6 protein. This posttranscriptional regulation of IL-6 in response to fungal extracts is mediated by the p38 mitogen-activated protein kinase pathway. The inhalation of β-glucans with a nonallergenic antigen is sufficient to provide an adjuvant effect that leads to mucous hyperplasia in the airways. Thus, β-glucans may constitute a common determinant of the fungal and plant-derived allergens responsible for some of the pathological features in allergic asthma. PMID:21642586

  15. Allergen-specific oral immunotherapy for peanut allergy.

    PubMed

    Nurmatov, Ulugbek; Venderbosch, Iris; Devereux, Graham; Simons, F Estelle R; Sheikh, Aziz

    2012-09-12

    desensitisation in children, and that this is associated with evidence of underlying immune-modulation. However, this treatment approach was associated with a substantial risk of adverse events, although the majority of these were mild.  In view of the risk of adverse events and the lack of evidence of long-term benefits, allergen-specific peanut OIT cannot currently be recommended as a treatment for the management of patients with IgE-mediated peanut allergy.  Larger RCTs are needed to investigate the acceptability, long-term effectiveness and cost-effectiveness of safer treatment regimens, particularly in relation to the induction of clinical and immunological tolerance.

  16. Specific Immunoglobulin (Ig) G Reference Intervals for Common Food, Insect, and Mold Allergens.

    PubMed

    Martins, Thomas B; Bandhauer, Michael E; Wilcock, Diane M; Hill, Harry R; Slev, Patricia R

    2016-12-01

    The clinical utility of serum IgG measurement in the diagnosis of allergy and food-induced hypersensitivity has been largely discredited. Recent studies, however, have shown that specific IgG can inhibit IgE mediated allergies, and may play a role in allergen specific desensitization. Accurate reference intervals for IgG specific allergens have not been widely established and are needed for better interpretation of serum antibody concentrations. In this study we established 64 IgG reference intervals for 48 common food allergens, 5 venoms, and 11 molds. Specific IgG concentrations were determined employing an automated fluorescent enzyme immunoassay on serum samples from 130 normal adults (65 males and 65 females), age range 18-69 y, mean 37.3 y. The lower reference interval limit for all allergens tested (n=64) was <2 mcg/mL. The median upper reference interval value for all 64 allergens was 12.9 mcg/mL, with Tuna (f40) having the lowest upper interval limit at 3.8 mcg/mL, and the mold Setomelanomma rostrate (m8) demonstrating the highest upper interval limit at 131 mcg/L. The considerable variation observed among the upper reference interval limits emphasizes the need for the establishment of allergen specific ranges for IgG. These newly established ranges should be a useful aid for clinicians in the interpretation of laboratory serum IgG results. © 2016 by the Association of Clinical Scientists, Inc.

  17. Adjuvant effects of aluminium hydroxide-adsorbed allergens and allergoids – differences in vivo and in vitro

    PubMed Central

    Heydenreich, B; Bellinghausen, I; Lund, L; Henmar, H; Lund, G; Adler Würtzen, P; Saloga, J

    2014-01-01

    Allergen-specific immunotherapy (SIT) is a clinically effective therapy for immunoglobulin (Ig)E-mediated allergic diseases. To reduce the risk of IgE-mediated side effects, chemically modified allergoids have been introduced. Furthermore, adsorbance of allergens to aluminium hydroxide (alum) is widely used to enhance the immune response. The mechanisms behind the adjuvant effect of alum are still not completely understood. In the present study we analysed the effects of alum-adsorbed allergens and allergoids on their immunogenicity in vitro and in vivo and their ability to activate basophils of allergic donors. Human monocyte derived dendritic cells (DC) were incubated with native Phleum pratense or Betula verrucosa allergen extract or formaldehyde-or glutaraldehyde-modified allergoids, adsorbed or unadsorbed to alum. After maturation, DC were co-cultivated with autologous CD4+ T cells. Allergenicity was tested by leukotriene and histamine release of human basophils. Finally, in-vivo immunogenicity was analysed by IgG production of immunized mice. T cell proliferation as well as interleukin (IL)-4, IL-13, IL-10 and interferon (IFN)-γ production were strongly decreased using glutaraldehyde-modified allergoids, but did not differ between alum-adsorbed allergens or allergoids and the corresponding unadsorbed preparations. Glutaraldehyde modification also led to a decreased leukotriene and histamine release compared to native allergens, being further decreased by adsorption to alum. In vivo, immunogenicity was reduced for allergoids which could be partly restored by adsorption to alum. Our results suggest that adsorption of native allergens or modified allergoids to alum had no consistent adjuvant effect but led to a reduced allergenicity in vitro, while we observed an adjuvant effect regarding IgG production in vivo. PMID:24528247

  18. Bee venom phospholipase A2 induces a primary type 2 response that is dependent on the receptor ST2 and confers protective immunity

    PubMed Central

    Palm, Noah W.; Rosenstein, Rachel K.; Yu, Shuang; Schenten, Dominik; Florsheim, Esther; Medzhitov, Ruslan

    2013-01-01

    SUMMARY Venoms consist of toxic components that are delivered to their victims via bites or stings. Venoms also represent a major class of allergens in humans. Phospholipase A2 (PLA2) is a conserved component of venoms from multiple species and is the major allergen in bee venom. Here we examined how bee venom PLA2 is sensed by the innate immune system and induces a type 2 immune response in mice. We found that bee venom PLA2 induced a T helper type 2 (Th2) cell-type response and group 2 innate lymphoid cell activation via the enzymatic cleavage of membrane phospholipids and release of interleukin-33. Furthermore, we showed that the IgE response to PLA2 could protect mice from future challenge with a near-lethal dose of PLA2. These data suggest that the innate immune system can detect the activity of a conserved component of venoms and induce a protective immune response against a venom toxin. PMID:24210353

  19. Specific allergen immunotherapy for the treatment of atopic eczema.

    PubMed

    Tam, Herman; Calderon, Moises A; Manikam, Logan; Nankervis, Helen; García Núñez, Ignacio; Williams, Hywel C; Durham, Stephen; Boyle, Robert J

    2016-02-12

    Specific allergen immunotherapy (SIT) is a treatment that may improve disease severity in people with atopic eczema (AE) by inducing immune tolerance to the relevant allergen. A high quality systematic review has not previously assessed the efficacy and safety of this treatment. To assess the effects of specific allergen immunotherapy (SIT), including subcutaneous, sublingual, intradermal, and oral routes, compared with placebo or a standard treatment in people with atopic eczema. We searched the following databases up to July 2015: the Cochrane Skin Group Specialised Register, CENTRAL in the Cochrane Library (Issue 7, 2015), MEDLINE (from 1946), EMBASE (from 1974), LILACS (from 1982), Web of Science™ (from 2005), the Global Resource of EczemA Trials (GREAT database), and five trials databases. We searched abstracts from recent European and North American allergy meetings and checked the references of included studies and review articles for further references to relevant trials. Randomised controlled trials (RCTs) of specific allergen immunotherapy that used standardised allergen extracts in people with AE. Two authors independently undertook study selection, data extraction (including adverse effects), assessment of risk of bias, and analyses. We used standard methodological procedures expected by Cochrane. We identified 12 RCTs for inclusion in this review; the total number of participants was 733. The interventions included SIT in children and adults allergic to either house dust mite (10 trials), grass pollen, or other inhalant allergens (two trials). They were administered subcutaneously (six trials), sublingually (four trials), orally, or intradermally (two trials). Overall, the risk of bias was moderate, with high loss to follow up and lack of blinding as the main methodological concern.Our primary outcomes were 'Participant- or parent-reported global assessment of disease severity at the end of treatment'; 'Participant- or parent-reported specific

  20. Compendium of Immune Signatures Identifies Conserved and Species-Specific Biology in Response to Inflammation.

    PubMed

    Godec, Jernej; Tan, Yan; Liberzon, Arthur; Tamayo, Pablo; Bhattacharya, Sanchita; Butte, Atul J; Mesirov, Jill P; Haining, W Nicholas

    2016-01-19

    Gene-expression profiling has become a mainstay in immunology, but subtle changes in gene networks related to biological processes are hard to discern when comparing various datasets. For instance, conservation of the transcriptional response to sepsis in mouse models and human disease remains controversial. To improve transcriptional analysis in immunology, we created ImmuneSigDB: a manually annotated compendium of ∼5,000 gene-sets from diverse cell states, experimental manipulations, and genetic perturbations in immunology. Analysis using ImmuneSigDB identified signatures induced in activated myeloid cells and differentiating lymphocytes that were highly conserved between humans and mice. Sepsis triggered conserved patterns of gene expression in humans and mouse models. However, we also identified species-specific biological processes in the sepsis transcriptional response: although both species upregulated phagocytosis-related genes, a mitosis signature was specific to humans. ImmuneSigDB enables granular analysis of transcriptomic data to improve biological understanding of immune processes of the human and mouse immune systems. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Allergen specific nasal challenge to latex in children with latex allergy: clinical and immunological evaluation.

    PubMed

    Bernardini, R; Pucci, N; Rossi, M E; Lombardi, E; De Martino, M; Mori, F; Ciprandi, G; Novembre, E; Marcucci, F; Massai, C; Azzari, C; Vierucci, A

    2008-01-01

    There are no data concerning the significance of allergen specific nasal challenge to latex (ASNCL) in the pediatric population and the effect of mometasone furoate nasal spray (MFNS), topic corticosteroid exerting a potent anti-inflammatory activity in children with latex allergic rhinitis. The aims of this study are: to investigate the clinical and immune pathological effects of ASNCL in children with latex allergy; to study the effects of MFNS pre-medication on the clinical and immune pathological effects of ASNCL in children with latex allergy. Thirteen children: 6 male and 7 female, mean (SD) age 9.6 (2.9) years, with latex allergy and seven children: 3 male and 4 female, mean (SD) age 9.9 (3.8) years, without latex allergy underwent ASNCL. Nasal symptoms were recorded, nasal lavage fluid was collected to measure tryptase, eosinophil cationic protein (ECP), interleukin-5, interferon-gamma levels, and spirometric test was performed for each patient without or with premedication with MFNS. ASNCL induced a clinical allergic response and increased tryptase levels only in children with latex allergy. No serious adverse events occurred after ASNCL. MFNS premedication reduced both tryptase and ECP levels only in children with latex allergy. ASNCL is a simple, reliable and useful tool to make or confirm the diagnosis of nasal symptoms due to latex; it allows us to study both clinical symptoms and local immunological changes. MFNS premedication before an ASNCL may prevent some immunological responses induced by ASNCL without clinical allergic modifications.

  2. Known Allergen Structures Predict Schistosoma mansoni IgE-Binding Antigens in Human Infection

    PubMed Central

    Farnell, Edward J.; Tyagi, Nidhi; Ryan, Stephanie; Chalmers, Iain W.; Pinot de Moira, Angela; Jones, Frances M.; Wawrzyniak, Jakub; Fitzsimmons, Colin M.; Tukahebwa, Edridah M.; Furnham, Nicholas; Maizels, Rick M.; Dunne, David W.

    2015-01-01

    The IgE response has been associated with both allergic reactions and immunity to metazoan parasites. Recently, we hypothesized that all environmental allergens bear structural homology to IgE-binding antigens from metazoan parasites and that this homology defines the relatively small number of protein families containing allergenic targets. In this study, known allergen structures (Pfam domains) from major environmental allergen families were used to predict allergen-like (SmProfilin, SmVAL-6, SmLipocalin, SmHSP20, Sm triosephosphate isomerase, SmThioredoxin, Sm superoxide dismutase, SmCyclophilin, and Sm phosphoglycerate kinase) and non-allergen-like [Sm dynein light chain (SmDLC), SmAldolase SmAK, SmUbiquitin, and Sm14-3-3] proteins in Schistosoma mansoni. Recombinant antigens were produced in Escherichia coli and IgG1, IgG4, and IgE responses against them measured in a cohort of people (n = 222) infected with S. mansoni. All allergen-like antigens were targeted by IgE responses in infected subjects, whilst IgE responses to the non-allergen-like antigens, SmAK, SmUbiquitin, and Sm14-3-3 were essentially absent being of both low prevalence and magnitude. Two new IgE-binding Pfam domain families, not previously described in allergen family databases, were also found, with prevalent IgE responses against SmDLC (PF01221) and SmAldolase (PF00274). Finally, it was demonstrated that immunoregulatory serological processes typically associated with allergens also occurred in responses to allergen-like proteins in S. mansoni infections, including the production of IgG4 in people responding with IgE and the down-regulation of IgE in response to increased antigen exposure from S. mansoni eggs. This study establishes that structures of known allergens can be used to predict IgE responses against homologous parasite allergen-like molecules (parallergens) and that serological responses with IgE/IgG4 to parallergens mirror those seen against allergens, supporting our

  3. Pineal-adrenal-immune system relationship under thermal stress: effect on physiological, endocrine, and non-specific immune response in goats.

    PubMed

    Sejian, Veerasamy; Srivastava, Rajendra Swaroop

    2010-12-01

    The purpose of the investigation was to observe the pineal-adrenal-immune system relationships and their influence on non-specific immune response in female goats under short-term thermal stress. Six female goats had been exposed to 40°C and 60% relative humidity in the psychrometric chamber for 17 days. Blood samples were obtained on days 0 and 10 to establish control and thermal stress effects, respectively. Chemical adrenalectomy was achieved by injecting metyrapone (100 mg/kg body weight) followed by exogenous melatonin treatment (0.1 mg/kg body weight) from 11th to 17th day of experiment. Thermal stress significantly (P≤0.05) altered the physiological responses. Metyrapone and melatonin treatment significantly (P≤0.05) reduced the thermal-stress-induced increase in plasma concentrations of cortisol and corticosterone while significantly (P≤0.05) increased the plasma melatonin on days 11 and 17. Furthermore, these treatments significantly (P<0.05) increased the phagocytic activity of neutrophils as compared to both control and thermal exposure values from 11-17 days of experiment. The data generated from this study help us to understand the functional relationship between pineal, adrenal, and immune system, and how this relationship modifies the non-specific immune response for the well being of goats during thermal stress.

  4. Allergic contact dermatitis to nickel: modified in vitro test protocols for better detection of allergen-specific response.

    PubMed

    Spiewak, Radoslaw; Moed, Heleen; von Blomberg, Brigitta Mary E; Bruynzeel, Derk P; Scheper, Rik J; Gibbs, Susan; Rustemeyer, Thomas

    2007-02-01

    To date, no in vitro test is suitable for routine diagnosis of contact allergy. The aim of our study was to establish improved in vitro test protocol for the detection of antigen-specific responses of lymphocytes from patients with allergic contact dermatitis to nickel (Ni-ACD). Blood leucocytes from 14 Ni-ACD patients and 14 controls were cultured in the presence of 'cytokine cocktails' skewing lymphocytes towards 'type 1' [interferon-gamma (IFN-gamma)-secreting] or 'type 2' [interleukin (IL)-5 and IL-13-secreting] phenotypes. The cocktails consisted of IL-7 and, respectively, either IL-12 or IL-4. Cell responses to nickel were measured with enzyme-linked immunospot assay (ELISpot), enzyme-linked immunosorbent assay (ELISA), and lymphocyte proliferation test (LPT). Significant differences between patients with Ni-ACD and controls were found for the 'type 2' cytokines IL-13 and IL-5, with further increase of allergen-specific responses occurring when cultures were supplemented with IL-7 and IL-4. No significant differences were found for IFN-gamma. The best correlate to clinical diagnosis was LPT with 'type 2' skewing (r= 0.739, P < 0.001), followed by IL-13 ELISpot with 'type 2' skewing (r= 0.654, P < 0.001). The non-radioactive method that correlated best with LPT was IL-2 ELISpot (r= 0.809, P < 0.001). Overall, we conclude that combining ELISpot assay with proposed modifications of culture conditions improves detection of specific lymphocyte responses in contact allergy to nickel.

  5. Neutrophil infiltration is implicated in the sustained thermal hyperalgesic response evoked by allergen provocation in actively sensitized rats.

    PubMed

    Lavich, Tatiana Ramos; Siqueira, Rodrigo de Azeredo; Farias-Filho, Francisco Alves; Cordeiro, Renato Sérgio Balão; Rodrigues e Silva, Patrícia Machado; Martins, Marco Aurélio

    2006-11-01

    It has been proposed that allergen provocation induces hyperalgesia but the involvement of immunoglobulin E and leukocytes remains poorly understood. Here, we have compared the profile of allergen-evoked thermal hyperalgesic response in both passively and actively sensitized rats, and investigated the role of leukocytes in allergen-evoked nociception. Wistar rats were passively sensitized with an intraplantar injection of immunoglobulin E anti-dinitrophenylated bovine serum albumin monoclonal antibody (0.5 microg/paw), and challenged with dinitrophenylated bovine serum albumin (0.5 microg/paw) 24 h later. Alternatively, the animals were actively sensitized with a mixture of Al(OH)3 and ovalbumin and challenged intraplantarly with ovalbumin (12 microg/paw) 14 days later. We found that the thermal hyperalgesic responses set in very rapidly and with comparable intensity in both passively and actively sensitized rats. However, while in the former group the response was shorter, peaking within 1 h and reducing thereafter, a marked plateau was observed from 1 to 6 h post-challenge in the latter group. Actively sensitized rats also had higher neutrophil influx in the plantar tissue, as attested by both myeloperoxidase activity and histological analysis. Treatment of actively sensitized rats with either fucoidin (10 mg/kg, i.v) or anti-rat neutrophil antiserum (i.p.) reduced neutrophil accumulation and the late hyperalgesic response noted from 3 to 6 h post-challenge. Thus, we conclude that though immunoglobulin E-mediated mechanisms can cause thermal hyperalgesia, components of the cellular immune reaction are crucial in order to amplify and sustain the immediate hyperalgesic response triggered by allergen, in a process dependent on neutrophil recruitment.

  6. House dust exposure mediates gut microbiome Lactobacillus enrichment and airway immune defense against allergens and virus infection.

    PubMed

    Fujimura, Kei E; Demoor, Tine; Rauch, Marcus; Faruqi, Ali A; Jang, Sihyug; Johnson, Christine C; Boushey, Homer A; Zoratti, Edward; Ownby, Dennis; Lukacs, Nicholas W; Lynch, Susan V

    2014-01-14

    Exposure to dogs in early infancy has been shown to reduce the risk of childhood allergic disease development, and dog ownership is associated with a distinct house dust microbial exposure. Here, we demonstrate, using murine models, that exposure of mice to dog-associated house dust protects against ovalbumin or cockroach allergen-mediated airway pathology. Protected animals exhibited significant reduction in the total number of airway T cells, down-regulation of Th2-related airway responses, as well as mucin secretion. Following dog-associated dust exposure, the cecal microbiome of protected animals was extensively restructured with significant enrichment of, amongst others, Lactobacillus johnsonii. Supplementation of wild-type animals with L. johnsonii protected them against both airway allergen challenge or infection with respiratory syncytial virus. L. johnsonii-mediated protection was associated with significant reductions in the total number and proportion of activated CD11c(+)/CD11b(+) and CD11c(+)/CD8(+) cells, as well as significantly reduced airway Th2 cytokine expression. Our results reveal that exposure to dog-associated household dust results in protection against airway allergen challenge and a distinct gastrointestinal microbiome composition. Moreover, the study identifies L. johnsonii as a pivotal species within the gastrointestinal tract capable of influencing adaptive immunity at remote mucosal surfaces in a manner that is protective against a variety of respiratory insults.

  7. House dust exposure mediates gut microbiome Lactobacillus enrichment and airway immune defense against allergens and virus infection

    PubMed Central

    Fujimura, Kei E.; Demoor, Tine; Rauch, Marcus; Faruqi, Ali A.; Jang, Sihyug; Johnson, Christine C.; Boushey, Homer A.; Zoratti, Edward; Ownby, Dennis; Lukacs, Nicholas W.; Lynch, Susan V.

    2014-01-01

    Exposure to dogs in early infancy has been shown to reduce the risk of childhood allergic disease development, and dog ownership is associated with a distinct house dust microbial exposure. Here, we demonstrate, using murine models, that exposure of mice to dog-associated house dust protects against ovalbumin or cockroach allergen-mediated airway pathology. Protected animals exhibited significant reduction in the total number of airway T cells, down-regulation of Th2-related airway responses, as well as mucin secretion. Following dog-associated dust exposure, the cecal microbiome of protected animals was extensively restructured with significant enrichment of, amongst others, Lactobacillus johnsonii. Supplementation of wild-type animals with L. johnsonii protected them against both airway allergen challenge or infection with respiratory syncytial virus. L. johnsonii-mediated protection was associated with significant reductions in the total number and proportion of activated CD11c+/CD11b+ and CD11c+/CD8+ cells, as well as significantly reduced airway Th2 cytokine expression. Our results reveal that exposure to dog-associated household dust results in protection against airway allergen challenge and a distinct gastrointestinal microbiome composition. Moreover, the study identifies L. johnsonii as a pivotal species within the gastrointestinal tract capable of influencing adaptive immunity at remote mucosal surfaces in a manner that is protective against a variety of respiratory insults. PMID:24344318

  8. Stressor-Specific Alterations in Corticosterone and Immune Responses in Mice

    PubMed Central

    Bowers, Stephanie L.; Bilbo, Staci D.; Dhabhar, Firdaus S.; Nelson, Randy J.

    2007-01-01

    Different stressors likely elicit different physiological and behavioral responses. Previously reported differences in the effects of stressors on immune function may reflect qualitatively different physiological responses to stressors; alternatively, both large and subtle differences in testing protocols and methods among laboratories may make direct comparisons among studies difficult. Here we examine the effects of chronic stressors on plasma corticosterone concentrations, leukocyte redistribution, and skin delayed-type hypersensitivity (DTH) and the effects of acute stressors on plasma corticosterone and leukocyte redistribution. The effects of several commonly used laboratory stressors including restraint, forced swim, isolation, and low ambient temperatures (4°C) were examined. Exposure to each stressor elevated corticosterone concentrations, with restraint (a putative psychological stressor) evoking a significantly higher glucocorticoid response than other stressors. Chronic restraint and forced swim enhanced the DTH response compared to the handled, low temperature, or isolation conditions. Restraint, low temperature, and isolation significantly increased trafficking of lymphocytes and monocytes compared to forced swim or handling. Generally, acute restraint, low temperature, isolation, and handling increased trafficking of lymphocytes and monocytes. Considered together, our results suggest that the different stressors commonly used in psychoneuroimmunology research may not activate the physiological stress response to the same extent. The variation observed in the measured immune responses may reflect differential glucocorticoid activation, differential metabolic adjustments, or both processes in response to specific stressors. PMID:17890050

  9. High Degree of Overlap between Responses to a Virus and to the House Dust Mite Allergen in Airway Epithelial Cells

    PubMed Central

    Golebski, Korneliusz; Luiten, Silvia; van Egmond, Danielle; de Groot, Esther; Röschmann, Kristina Irene Lisolette; Fokkens, Wytske Johanna; van Drunen, Cornelis Maria

    2014-01-01

    Background Airway epithelium is widely considered to play an active role in immune responses through its ability to detect changes in the environment and to generate a microenvironment for immune competent cells. Therefore, besides its role as a physical barrier, epithelium affects the outcome of the immune response by the production of various pro-inflammatory mediators. Methods We stimulated airway epithelial cells with viral double stranded RNA analogue poly(I:C) or with house dust mite in a time course of 24 hours. In order to determine cytokines production by stimulated cells, we performed multiplex enzyme linked immunosorbant assay (ELISA). Results We demonstrate that the temporal pattern of the genes that respond to virus exposure in airway epithelium resembles to a significant degree their pattern of response to HDM. The gene expression pattern of EGR1, DUSP1, FOSL1, JUN, MYC, and IL6 is rather similar after viral (poly(I:C)) and HDM exposure. However, both triggers also induce a specific response (e.g. ATF3, FOS, and NFKB1). We confirmed these data by showing that epithelial cells produce a variety of similar mediators in response to both poly(I:C) and HDM challenge (IL1-RA, IL-17, IFN-α and MIP1-α), sometimes with a quantitative difference in response (IL2-R, IL-6, IL-8, MCP-1, MIG, and HGF). Interestingly, only four mediators (IL-12, IP-10, RANTES and VEGF) where up-regulated specifically by poly(I:C) and not by HDM. Additionally, we report that pre-exposure to HDM deregulates production of cytokines and mediators in response to poly(I:C). Conclusions Epithelial cells responses to the HDM-allergen and a virus strongly resemble both in gene expression and in protein level explaining why these two responses may affect each other. PMID:24498371

  10. High degree of overlap between responses to a virus and to the house dust mite allergen in airway epithelial cells.

    PubMed

    Golebski, Korneliusz; Luiten, Silvia; van Egmond, Danielle; de Groot, Esther; Röschmann, Kristina Irene Lisolette; Fokkens, Wytske Johanna; van Drunen, Cornelis Maria

    2014-01-01

    Airway epithelium is widely considered to play an active role in immune responses through its ability to detect changes in the environment and to generate a microenvironment for immune competent cells. Therefore, besides its role as a physical barrier, epithelium affects the outcome of the immune response by the production of various pro-inflammatory mediators. We stimulated airway epithelial cells with viral double stranded RNA analogue poly(I:C) or with house dust mite in a time course of 24 hours. In order to determine cytokines production by stimulated cells, we performed multiplex enzyme linked immunosorbant assay (ELISA). We demonstrate that the temporal pattern of the genes that respond to virus exposure in airway epithelium resembles to a significant degree their pattern of response to HDM. The gene expression pattern of EGR1, DUSP1, FOSL1, JUN, MYC, and IL6 is rather similar after viral (poly(I:C)) and HDM exposure. However, both triggers also induce a specific response (e.g. ATF3, FOS, and NFKB1). We confirmed these data by showing that epithelial cells produce a variety of similar mediators in response to both poly(I:C) and HDM challenge (IL1-RA, IL-17, IFN-α and MIP1-α), sometimes with a quantitative difference in response (IL2-R, IL-6, IL-8, MCP-1, MIG, and HGF). Interestingly, only four mediators (IL-12, IP-10, RANTES and VEGF) where up-regulated specifically by poly(I:C) and not by HDM. Additionally, we report that pre-exposure to HDM deregulates production of cytokines and mediators in response to poly(I:C). Epithelial cells responses to the HDM-allergen and a virus strongly resemble both in gene expression and in protein level explaining why these two responses may affect each other.

  11. Conventional and monocyte-derived CD11b(+) dendritic cells initiate and maintain T helper 2 cell-mediated immunity to house dust mite allergen.

    PubMed

    Plantinga, Maud; Guilliams, Martin; Vanheerswynghels, Manon; Deswarte, Kim; Branco-Madeira, Filipe; Toussaint, Wendy; Vanhoutte, Leen; Neyt, Katrijn; Killeen, Nigel; Malissen, Bernard; Hammad, Hamida; Lambrecht, Bart N

    2013-02-21

    Dendritic cells (DCs) are crucial for mounting allergic airway inflammation, but it is unclear which subset of DCs performs this task. By using CD64 and MAR-1 staining, we reliably separated CD11b(+) monocyte-derived DCs (moDCs) from conventional DCs (cDCs) and studied antigen uptake, migration, and presentation assays of lung and lymph node (LN) DCs in response to inhaled house dust mite (HDM). Mainly CD11b(+) cDCs but not CD103(+) cDCs induced T helper 2 (Th2) cell immunity in HDM-specific T cells in vitro and asthma in vivo. Studies in Flt3l(-/-) mice, lacking all cDCs, revealed that moDCs were also sufficient to induce Th2 cell-mediated immunity but only when high-dose HDM was given. The main function of moDCs was the production of proinflammatory chemokines and allergen presentation in the lung during challenge. Thus, we have identified migratory CD11b(+) cDCs as the principal subset inducing Th2 cell-mediated immunity in the LN, whereas moDCs orchestrate allergic inflammation in the lung. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Parasite-specific immune response in adult Drosophila melanogaster: a genomic study

    PubMed Central

    Roxström-Lindquist, Katarina; Terenius, Olle; Faye, Ingrid

    2004-01-01

    Insects of the order Diptera are vectors for parasitic diseases such as malaria, sleeping sickness and leishmania. In the search for genes encoding proteins involved in the antiparasitic response, we have used the protozoan parasite Octosporea muscaedomesticae for oral infections of adult Drosophila melanogaster. To identify parasite-specific response molecules, other flies were exposed to virus, bacteria or fungi in parallel. Analysis of gene expression patterns after 24 h of microbial challenge, using Affymetrix oligonucleotide microarrays, revealed a high degree of microbe specificity. Many serine proteases, key intermediates in the induction of insect immune responses, were uniquely expressed following infection of the different organisms. Several lysozyme genes were induced in response to Octosporea infection, while in other treatments they were not induced or downregulated. This suggests that lysozymes are important in antiparasitic defence. PMID:14749722

  13. Manipulating the antigen-specific immune response by the hydrophobicity of amphiphilic poly(γ-glutamic acid) nanoparticles.

    PubMed

    Shima, Fumiaki; Akagi, Takami; Uto, Tomofumi; Akashi, Mitsuru

    2013-12-01

    The new generation vaccines are safe but poorly immunogenic, and thus they require the use of adjuvants. However, conventional vaccine adjuvants fail to induce potent cellular immunity, and their toxicity and side-effects hinder the clinical use. Therefore, a vaccine adjuvant which is safe and can induce an antigen-specific cellular immunity-biased immune response is urgently required. In the development of nanoparticle-based vaccine adjuvants, the hydrophobicity is one of the most important factors. It could control the interaction between the encapsulated antigens and/or nanoparticles with immune cells. In this study, nanoparticles (NPs) composed of amphiphilic poly(γ-glutamic acid)-graft-L-phenylalanine ethyl ester (γ-PGA-Phe) with various grafting degrees of hydrophobic side chains were prepared to evaluate the effect of hydrophobicity of vaccine carriers on the antigen encapsulation behavior, cellular uptake, activation of dendritic cells (DCs), and induction of antigen-specific cellular immunity-biased immune responses. These NPs could efficiently encapsulate antigens, and the uptake amount of the encapsulated antigen by DCs was dependent on the hydrophobicity of γ-PGA-Phe NPs. Moreover, the activation potential of the DCs and the induction of antigen-specific cellular immunity were correlated with the hydrophobicity of γ-PGA-Phe NPs. By controlling the hydrophobicity of antigen-encapsulated γ-PGA-Phe NPs, the activation potential of DCs was able to manipulate about 5 to 30-hold than the conventional vaccine, and the cellular immunity was about 10 to 40-hold. These results suggest that the hydrophobicity of NPs is a key factor for changing the interaction between NPs and immune cells, and thus the induction of cellular immunity-biased immune response could be achieved by controlling the hydrophobicity of them. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. EAACI: A European Declaration on Immunotherapy. Designing the future of allergen specific immunotherapy

    PubMed Central

    2012-01-01

    Allergy today is a public health concern of pandemic proportions, affecting more than 150 million people in Europe alone. In view of epidemiological trends, the European Academy of Allergy and Clinical Immunology (EAACI) predicts that within the next few decades, more than half of the European population may at some point in their lives experience some type of allergy. Not only do allergic patients suffer from a debilitating disease, with the potential for major impact on their quality of life, career progression, personal development and lifestyle choices, but they also constitute a significant burden on health economics and macroeconomics due to the days of lost productivity and underperformance. Given that allergy triggers, including urbanization, industrialization, pollution and climate change, are not expected to change in the foreseeable future, it is imperative that steps are taken to develop, strengthen and optimize preventive and treatment strategies. Allergen specific immunotherapy is the only currently available medical intervention that has the potential to affect the natural course of the disease. Years of basic science research, clinical trials, and systematic reviews and meta-analyses have convincingly shown that allergen specific immunotherapy can achieve substantial results for patients, improving the allergic individuals’ quality of life, reducing the long-term costs and burden of allergies, and changing the course of the disease. Allergen specific immunotherapy not only effectively alleviates allergy symptoms, but it has a long-term effect after conclusion of the treatment and can prevent the progression of allergic diseases. Unfortunately, allergen specific immunotherapy has not yet received adequate attention from European institutions, including research funding bodies, even though this could be a most rewarding field in terms of return on investments, translational value and European integration and, a field in which Europe is recognized as

  15. EAACI: A European Declaration on Immunotherapy. Designing the future of allergen specific immunotherapy.

    PubMed

    Calderon, Moises A; Demoly, Pascal; Gerth van Wijk, Roy; Bousquet, Jean; Sheikh, Aziz; Frew, Anthony; Scadding, Glenis; Bachert, Claus; Malling, Hans J; Valenta, Rudolph; Bilo, Beatrice; Nieto, Antonio; Akdis, Cezmi; Just, Jocelyne; Vidal, Carmen; Varga, Eva M; Alvarez-Cuesta, Emilio; Bohle, Barbara; Bufe, Albrecht; Canonica, Walter G; Cardona, Victoria; Dahl, Ronald; Didier, Alain; Durham, Stephen R; Eng, Peter; Fernandez-Rivas, Montserrat; Jacobsen, Lars; Jutel, Marek; Kleine-Tebbe, Jörg; Klimek, Ludger; Lötvall, Jan; Moreno, Carmen; Mosges, Ralph; Muraro, Antonella; Niggemann, Bodo; Pajno, Giovanni; Passalacqua, Giovanni; Pfaar, Oliver; Rak, Sabina; Senna, Gianenrico; Senti, Gabriela; Valovirta, Erkka; van Hage, Marianne; Virchow, Johannes C; Wahn, Ulrich; Papadopoulos, Nikolaos

    2012-10-30

    Allergy today is a public health concern of pandemic proportions, affecting more than 150 million people in Europe alone. In view of epidemiological trends, the European Academy of Allergy and Clinical Immunology (EAACI) predicts that within the next few decades, more than half of the European population may at some point in their lives experience some type of allergy.Not only do allergic patients suffer from a debilitating disease, with the potential for major impact on their quality of life, career progression, personal development and lifestyle choices, but they also constitute a significant burden on health economics and macroeconomics due to the days of lost productivity and underperformance. Given that allergy triggers, including urbanization, industrialization, pollution and climate change, are not expected to change in the foreseeable future, it is imperative that steps are taken to develop, strengthen and optimize preventive and treatment strategies.Allergen specific immunotherapy is the only currently available medical intervention that has the potential to affect the natural course of the disease. Years of basic science research, clinical trials, and systematic reviews and meta-analyses have convincingly shown that allergen specific immunotherapy can achieve substantial results for patients, improving the allergic individuals' quality of life, reducing the long-term costs and burden of allergies, and changing the course of the disease. Allergen specific immunotherapy not only effectively alleviates allergy symptoms, but it has a long-term effect after conclusion of the treatment and can prevent the progression of allergic diseases.Unfortunately, allergen specific immunotherapy has not yet received adequate attention from European institutions, including research funding bodies, even though this could be a most rewarding field in terms of return on investments, translational value and European integration and, a field in which Europe is recognized as a

  16. MicroRNA Regulation of Host Immune Responses following Fungal Exposure.

    PubMed

    Croston, Tara L; Lemons, Angela R; Beezhold, Donald H; Green, Brett J

    2018-01-01

    Fungal bioaerosols are ubiquitous in the environment and human exposure can result in a variety of health effects ranging from systemic, subcutaneous, and cutaneous infections to respiratory morbidity including allergy, asthma, and hypersensitivity pneumonitis. Recent research has focused on the role of microRNAs (miRNAs) following fungal exposure and is overlooked, yet important, group of regulators capable of influencing fungal immune responses through a variety of cellular mechanisms. These small non-coding ribose nucleic acids function to regulate gene expression at the post-transcriptional level and have been shown to participate in multiple disease pathways including cancer, heart disease, apoptosis, as well as immune responses to microbial hazards and occupational allergens. Recent animal model studies have characterized miRNAs following the exposure to inflammatory stimuli. Studies focused on microbial exposure, including bacterial infections, as well as exposure to different allergens have shown miRNAs, such as miR-21, miR-146, miR-132, miR-155, and the let-7 family members, to be involved in immune and inflammatory responses. Interestingly, the few studies have assessed that the miRNA profiles following fungal exposure have identified the same critical miRNAs that have been characterized in other inflammatory-mediated and allergy-induced experimental models. Review of available in vitro , animal and human studies of exposures to Aspergillus fumigatus, Candida albicans, Cryptococcus neoformans, Paracoccidioides brasiliensis , and Stachybotrys chartarum identified several miRNAs that were shared between responses to these species including miR-125 a/b (macrophage polarization/activation), miR-132 [toll-like receptor (TLR)2-mediated signaling], miR-146a (TLR mediated signaling, alternative macrophage activation), and miR-29a/b (natural killer cell function, C-leptin signaling, inhibition of Th1 immune response). Although these datasets provide preliminary

  17. Antibody response and maternal immunity upon boosting PRRSV-immune sows with experimental farm-specific and commercial PRRSV vaccines.

    PubMed

    Geldhof, Marc F; Van Breedam, Wander; De Jong, Ellen; Lopez Rodriguez, Alfonso; Karniychuk, Uladzimir U; Vanhee, Merijn; Van Doorsselaere, Jan; Maes, Dominiek; Nauwynck, Hans J

    2013-12-27

    The porcine reproductive and respiratory syndrome virus (PRRSV) causes reproductive failure in sows and respiratory disease in pigs of all ages. Despite the frequent use of vaccines to maintain PRRSV immunity in sows, little is known on how the currently used vaccines affect the immunity against currently circulating and genetically divergent PRRSV variants in PRRSV-immune sows, i.e. sows that have a pre-existing PRRSV-specific immunity due to previous infection with or vaccination against the virus. Therefore, this study aimed to assess the capacity of commercially available attenuated/inactivated PRRSV vaccines and autogenous inactivated PRRSV vaccines - prepared according to a previously optimized in-house protocol - to boost the antibody immunity against currently circulating PRRSV variants in PRRSV-immune sows. PRRSV isolates were obtained from 3 different swine herds experiencing PRRSV-related problems, despite regular vaccination of gilts and sows against the virus. In a first part of the study, the PRRSV-specific antibody response upon booster vaccination with commercial PRRSV vaccines and inactivated farm-specific PRRSV vaccines was evaluated in PRRSV-immune, non-pregnant replacement sows from the 3 herds. A boost in virus-neutralizing antibodies against the farm-specific isolate was observed in all sow groups vaccinated with the corresponding farm-specific inactivated vaccines. Use of the commercial attenuated EU type vaccine boosted neutralizing antibodies against the farm-specific isolate in sows derived from 2 farms, while use of the commercial attenuated NA type vaccine did not boost farm-specific virus-neutralizing antibodies in any of the sow groups. Interestingly, the commercial inactivated EU type vaccine boosted farm-specific virus-neutralizing antibodies in sows from 1 farm. In the second part of the study, a field trial was performed at one of the farms to evaluate the booster effect of an inactivated farm-specific vaccine and a commercial

  18. Profiling Humoral Immune Responses to Clostridium difficile-Specific Antigens by Protein Microarray Analysis

    PubMed Central

    Negm, Ola H.; Hamed, Mohamed R.; Dilnot, Elizabeth M.; Shone, Clifford C.; Marszalowska, Izabela; Lynch, Mark; Loscher, Christine E.; Edwards, Laura J.; Tighe, Patrick J.; Wilcox, Mark H.

    2015-01-01

    Clostridium difficile is an anaerobic, Gram-positive, and spore-forming bacterium that is the leading worldwide infective cause of hospital-acquired and antibiotic-associated diarrhea. Several studies have reported associations between humoral immunity and the clinical course of C. difficile infection (CDI). Host humoral immune responses are determined using conventional enzyme-linked immunosorbent assay (ELISA) techniques. Herein, we report the first use of a novel protein microarray assay to determine systemic IgG antibody responses against a panel of highly purified C. difficile-specific antigens, including native toxins A and B (TcdA and TcdB, respectively), recombinant fragments of toxins A and B (TxA4 and TxB4, respectively), ribotype-specific surface layer proteins (SLPs; 001, 002, 027), and control proteins (tetanus toxoid and Candida albicans). Microarrays were probed with sera from a total of 327 individuals with CDI, cystic fibrosis without diarrhea, and healthy controls. For all antigens, precision profiles demonstrated <10% coefficient of variation (CV). Significant correlation was observed between microarray and ELISA in the quantification of antitoxin A and antitoxin B IgG. These results indicate that microarray is a suitable assay for defining humoral immune responses to C. difficile protein antigens and may have potential advantages in throughput, convenience, and cost. PMID:26178385

  19. [The clinical efficacy of allergen-specific immunotherapy with water-salt extracts and adjuvant allergens for atopic asthma with household sensitization].

    PubMed

    Ushakova, D V; Nikonov, E L

    To evaluate the clinical and economic efficiency of allergen-specific immunotherapy (ASIT); to comparatively analyze the efficiency of various therapy regimens for atopic asthma. The clinical and economic efficiency of asthma therapy using ASIT with water-salt allergen extracts or the adjuvant drug alustal 'mite allergen' and only with medicines were comparatively analyzed. The investigation enrolled 156 patients with mild and moderate atopic asthma, household allergy. In Group 1 (n = 57), ASIT was performed using the classical scheme by subcutaneous injection of house dust mite allergen (JSC 'I.I. Mechnikov Biomed', Russia). In Group 2 (n = 43), ASIT was conducted using the alustal 'mite allergen' (Stallergenes, France). Group 3 (n = 56) received only medical therapy. ASIT with both water-salt allergen extracts and the adjuvant allergen alustal is an effective treatment for mild and moderate atopic asthma. ASIT greatly reduces the need for anti-inflammatory treatment and the use of symptomatic drugs and improves the physical and psychoemotional indicators of quality of life in patients. The economic benefit of ASIT is delayed, but its use significantly reduces financing costs. ASIT is a reasonable, highly effective and ultimately cost-effective treatment in patients with atopic asthma. A variety of drugs for ASIT can choose schemes that are convenient and acceptable for each patient, which allows wider use of this treatment.

  20. Mimotopes for Api g 5, a Relevant Cross-reactive Allergen, in the Celery-Mugwort-Birch-Spice Syndrome.

    PubMed

    Lukschal, Anna; Wallmann, Julia; Bublin, Merima; Hofstetter, Gerlinde; Mothes-Luksch, Nadine; Breiteneder, Heimo; Pali-Schöll, Isabella; Jensen-Jarolim, Erika

    2016-03-01

    In the celery-mugwort-birch-spice syndrome, a significant proportion of IgE is directed against high molecular weight (HMW) glycoproteins, including the celery allergen Api g 5. BIP3, a monoclonal antibody originally raised against birch pollen, recognizes HMW allergens in birch and mugwort pollens, celery, and Apiaceae spices. Our aim was to generate mimotopes using BIP3 for immunization against the HMW allergens relevant in the celery-mugwort-birch-spice cross reactivity syndrome. Mimotopes were selected from a random-peptide display library by BIP3 and applied in IgE inhibition assays. The 3 phage clones with the highest inhibitory capacity were chosen for immunization of BALB/c mice. Mouse immune sera were tested for IgG binding to blotted birch pollen extract and used for inhibiting patients' IgE binding. Furthermore, sera were tested for binding to Api g 5, to horseradish peroxidase (HRP) as a second glycoprotein, or to non-glycosylated control allergen Phl p 5 in ELISA, and the specific Api g 5-specific IgG titers were determined. Three rounds of biopanning resulted in phage clones exhibiting 7 different sequences including 1 dominant, 1-6-cyclo-CHKLRCDKAIA. Three phage clones had the capacity to inhibit human IgE binding and induced IgG to the HMW antigen when used for immunizing BALB/c mice. The induced BIP3-mimotope IgG reached titers of 1:500 specifically to Api g 5, but hardly reacted to glycoprotein HRP, revealing a minor role of carbohydrates in their epitope. The mimotopes characterized in this study mimic the epitope of BIP3 relevant for Api g 5, one of the cross-reactive HMW allergens relevant in the celery-mugwort-birch-spice syndrome. BIP3 mimotopes may be used in the future for hyposensitization in this clinical syndrome by virtue of good and specific immunogenicity.

  1. Allergen-specific immunotherapy in horses with insect bite hypersensitivity: a double-blind, randomized, placebo-controlled study.

    PubMed

    Ginel, Pedro J; Hernández, Eduardo; Lucena, Rosario; Blanco, Beatriz; Novales, Manuel; Mozos, Elena

    2014-02-01

    Insect bite hypersensitivity (IBH) is a common cause of pruritus in horses, but there are few controlled studies on the efficacy of allergen-specific immunotherapy (ASIT). Atopic dermatitis and IBH can present with overlapping clinical signs; multiple insect and environmental allergens could be indicated in these horses to achieve effective hyposensitization. Although the success of ASIT using Culicoides spp. whole-body extracts is controversial, there are no controlled studies published that clearly show benefit from this form of therapy. The objective was to evaluate the efficacy of ASIT in horses with IBH using commercially available extracts and tests. Twenty horses with seasonal pruritus and positive intradermal reactions to a whole Culicoides extract. An enzyme-linked immunosorbent assay test (Allercept(®) ) was used to detect concurrent allergen-specific IgE for other insects and environmental allergens. The ASIT was formulated by adding the relevant serologically positive allergens to the Culicoides extract. After randomization, 10 horses received ASIT and the rest a placebo solution. Clinical response was assessed every 4 months during 1 year using a clinical scoring system based on the severity of four clinical signs at 10 different body regions. Horses were not stabled and, to minimize dropouts, an insect repellent was used weekly in both groups. Differences in clinical scores between groups were nonsignificant at any re-evaluation, while both groups improved to a similar extent, probably due to the insecticide treatment. Using commercially available extracts and tests, we could not demonstrate a beneficial effect of 1 year multiple ASIT in nonstabled horses with IBH. © 2013 ESVD and ACVD.

  2. Zinc enhances the number of regulatory T cells in allergen-stimulated cells from atopic subjects.

    PubMed

    Rosenkranz, Eva; Hilgers, Ralf-Dieter; Uciechowski, Peter; Petersen, Arnd; Plümäkers, Birgit; Rink, Lothar

    2017-03-01

    The trace element zinc is essential for immune function and its regulation. Since zinc deficiency and allergic hyperresponsive reactions are often accompanied, the influence of zinc on allergen-induced cell growth, CD4+ regulatory T (Treg) cell numbers and cytokine expression during allergic immune reactions was investigated. Peripheral blood mononuclear cells (PBMCs) from non-atopic and atopic subjects were treated with timothy grass allergen pre-incubated with or without zinc. Proliferation was determined by analyzing the incorporation of 3 H-thymidine. Intracellular zinc and Foxp3 levels and cell surface antigens were measured by FACS, cytokine expression by ELISA and real-time PCR. Incubation with 50 μM zinc sulfate (Zn50) enhances cytosolic zinc concentrations in CD3+ T cells. The data also reveal that the combination of Zn50 plus allergen significantly reduces PBMC proliferation of atopic subjects. Additionally, Zn50 plus allergen enhances Th1 cytokine responses shown by increased interferon (IFN)-γ/interleukin (IL)-10 ratios as well as enhanced tumor necrosis factor-α release. In response to allergen, zinc increases Treg cells and upregulates the mRNA expression of cytotoxic T-lymphocyte antigen-4 in atopic subjects. Interestingly, Zn50 alone leads to an increase of CD4+CD25high(hi)+ cells in atopic and non-atopic subjects. Zinc may regulate unwanted hyperresponsive immune reactions by suppressing proliferation through a significant shift from IL-10 to the Th1 cytokine IFN-γ, and enhanced regulatory T cell numbers. Therefore, zinc supplementation may be a promising tool for the therapy of allergies, without negatively affecting the immune system.

  3. Ambient ultrafine particles provide a strong adjuvant effect in the secondary immune response: implication for traffic-related asthma flares

    PubMed Central

    Li, Ning; Harkema, Jack R.; Lewandowski, Ryan P.; Wang, Meiying; Bramble, Lori A.; Gookin, Glenn R.; Ning, Zhi; Kleinman, Michael T.; Sioutas, Constantinos

    2010-01-01

    We have previously demonstrated that intranasal administration of ambient ultrafine particles (UFP) acts as an adjuvant for primary allergic sensitization to ovalbumin (OVA) in Balb/c mice. It is important to find out whether inhaled UFP exert the same effect on the secondary immune response as a way of explaining asthma flares in already-sensitized individuals due to traffic exposure near a freeway. The objective of this study is to determine whether inhalation exposure to ambient UFP near an urban freeway could enhance the secondary immune response to OVA in already-sensitized mice. Prior OVA-sensitized animals were exposed to concentrated ambient UFP at the time of secondary OVA challenge in our mobile animal laboratory in Los Angeles. OVA-specific antibody production, airway morphometry, allergic airway inflammation, cytokine gene expression, and oxidative stress marker were assessed. As few as five ambient UFP exposures were sufficient to promote the OVA recall immune response, including generating allergic airway inflammation in smaller and more distal airways compared with the adjuvant effect of intranasally instilled UFP on the primary immune response. The secondary immune response was characterized by the T helper 2 and IL-17 cytokine gene expression in the lung. In summary, our results demonstrated that inhalation of prooxidative ambient UFP could effectively boost the secondary immune response to an experimental allergen, indicating that vehicular traffic exposure could exacerbate allergic inflammation in already-sensitized subjects. PMID:20562226

  4. A nonallergenic birch pollen allergy vaccine consisting of hepatitis PreS-fused Bet v 1 peptides focuses blocking IgG toward IgE epitopes and shifts immune responses to a tolerogenic and Th1 phenotype.

    PubMed

    Marth, Katharina; Breyer, Isabella; Focke-Tejkl, Margarete; Blatt, Katharina; Shamji, Mohamed H; Layhadi, Janice; Gieras, Anna; Swoboda, Ines; Zafred, Domen; Keller, Walter; Valent, Peter; Durham, Stephen R; Valenta, Rudolf

    2013-04-01

    Allergen-specific immunotherapy is the only allergen-specific and disease-modifying treatment for allergy. The construction and characterization of a vaccine for birch pollen allergy is reported. Two nonallergenic peptides, PA and PB, derived from the IgE-reactive areas of the major birch pollen allergen Bet v 1 were fused to the hepatitis B surface protein, PreS, in four recombinant fusion proteins containing different numbers and combinations of the peptides. Fusion proteins expressed in Escherichia coli and purified to homogeneity showed a lack of IgE reactivity and allergenic activity when tested with sera and basophils from patients allergic to birch pollen. Compared to Bet v 1 allergen, peptides PA and PB showed reduced T cell activation in PBMCs from allergic patients, whereas PreS fusion proteins induced less IL-5 and more IL-10 and IFN-γ. Immunization of rabbits with the fusion proteins, in particular with a PreS fusion protein 2PAPB-PreS, containing two copies of each peptide, induced high levels of IgG Abs against the major IgE-reactive site on Bet v 1 and related allergens. These IgG Abs inhibited allergic patients' IgE binding to Bet v 1 better than did IgG induced by immunization with complete Bet v 1. Furthermore, 2PAPB-PreS-induced IgG inhibited Bet v 1-induced basophil activation in allergic patients and CD23-facilitated allergen presentation. Our study exemplifies novel beneficial features for a PreS carrier-based peptide vaccine for birch pollen, which, in addition to the established reduction in allergenic activity, include the enhanced focusing of blocking Ab responses toward IgE epitopes, immunomodulatory activity, and reduction of CD23-facilitated allergen presentation.

  5. A Nonallergenic Birch Pollen Allergy Vaccine Consisting of Hepatitis PreS–Fused Bet v 1 Peptides Focuses Blocking IgG toward IgE Epitopes and Shifts Immune Responses to a Tolerogenic and Th1 Phenotype

    PubMed Central

    Marth, Katharina; Breyer, Isabella; Focke-Tejkl, Margarete; Blatt, Katharina; Shamji, Mohamed H.; Layhadi, Janice; Gieras, Anna; Swoboda, Ines; Zafred, Domen; Keller, Walter; Valent, Peter; Durham, Stephen R.; Valenta, Rudolf

    2014-01-01

    Allergen-specific immunotherapy is the only allergen-specific and disease-modifying treatment for allergy. The construction and characterization of a vaccine for birch pollen allergy is reported. Two nonallergenic peptides, PA and PB, derived from the IgE-reactive areas of the major birch pollen allergen Bet v 1 were fused to the hepatitis B surface protein, PreS, in four recombinant fusion proteins containing different numbers and combinations of the peptides. Fusion proteins expressed in Escherichia coli and purified to homogeneity showed a lack of IgE reactivity and allergenic activity when tested with sera and basophils from patients allergic to birch pollen. Compared to Bet v 1 allergen, peptides PA and PB showed reduced T cell activation in PBMCs from allergic patients, whereas PreS fusion proteins induced less IL-5 and more IL-10 and IFN-γ. Immunization of rabbits with the fusion proteins, in particular with a PreS fusion protein 2PAPB-PreS, containing two copies of each peptide, induced high levels of IgG Abs against the major IgE-reactive site on Bet v 1 and related allergens. These IgG Abs inhibited allergic patients’ IgE binding to Bet v 1 better than did IgG induced by immunization with complete Bet v 1. Furthermore, 2PAPB-PreS–induced IgG inhibited Bet v 1–induced basophil activation in allergic patients and CD23-facilitated allergen presentation. Our study exemplifies novel beneficial features for a PreS carrier–based peptide vaccine for birch pollen, which, in addition to the established reduction in allergenic activity, include the enhanced focusing of blocking Ab responses toward IgE epitopes, immunomodulatory activity, and reduction of CD23-facilitated allergen presentation. PMID:23440415

  6. Dendritic Cell Immune Responses in HIV-1 Controllers.

    PubMed

    Martin-Gayo, Enrique; Yu, Xu G

    2017-02-01

    Robust HIV-1-specific CD8 T cell responses are currently regarded as the main correlate of immune defense in rare individuals who achieve natural, drug-free control of HIV-1; however, the mechanisms that support evolution of such powerful immune responses are not well understood. Dendritic cells (DCs) are specialized innate immune cells critical for immune recognition, immune regulation, and immune induction, but their possible contribution to HIV-1 immune defense in controllers remains ill-defined. Recent studies suggest that myeloid DCs from controllers have improved abilities to recognize HIV-1 through cytoplasmic immune sensors, resulting in more potent, cell-intrinsic type I interferon secretion in response to viral infection. This innate immune response may facilitate DC-mediated induction of highly potent antiviral HIV-1-specific T cells. Moreover, protective HLA class I isotypes restricting HIV-1-specific CD8 T cells may influence DC function through specific interactions with innate myelomonocytic MHC class I receptors from the leukocyte immunoglobulin-like receptor family. Bi-directional interactions between dendritic cells and HIV-1-specific T cells may contribute to natural HIV-1 immune control, highlighting the importance of a fine-tuned interplay between innate and adaptive immune activities for effective antiviral immune defense.

  7. Component-resolved evaluation of the content of major allergens in therapeutic extracts for specific immunotherapy of honeybee venom allergy

    PubMed Central

    Blank, Simon; Etzold, Stefanie; Darsow, Ulf; Schiener, Maximilian; Eberlein, Bernadette; Russkamp, Dennis; Wolf, Sara; Graessel, Anke; Biedermann, Tilo; Ollert, Markus; Schmidt-Weber, Carsten B.

    2017-01-01

    ABSTRACT Allergen-specific immunotherapy is the only curative treatment of honeybee venom (HBV) allergy, which is able to protect against further anaphylactic sting reactions. Recent analyses on a molecular level have demonstrated that HBV represents a complex allergen source that contains more relevant major allergens than formerly anticipated. Moreover, allergic patients show very diverse sensitization profiles with the different allergens. HBV-specific immunotherapy is conducted with HBV extracts which are derived from pure venom. The allergen content of these therapeutic extracts might differ due to natural variations of the source material or different down-stream processing strategies of the manufacturers. Since variations of the allergen content of therapeutic HBV extracts might be associated with therapeutic failure, we adressed the component-resolved allergen composition of different therapeutic grade HBV extracts which are approved for immunotherapy in numerous countries. The extracts were analyzed for their content of the major allergens Api m 1, Api m 2, Api m 3, Api m 5 and Api m 10. Using allergen-specific antibodies we were able to demonstrate the underrepresentation of relevant major allergens such as Api m 3, Api m 5 and Api m 10 in particular therapeutic extracts. Taken together, standardization of therapeutic extracts by determination of the total allergenic potency might imply the intrinsic pitfall of losing information about particular major allergens. Moreover, the variable allergen composition of different therapeutic HBV extracts might have an impact on therapy outcome and the clinical management of HBV-allergic patients with specific IgE to particular allergens. PMID:28494206

  8. Adjuvants in the Driver’s Seat: How Magnitude, Type, Fine Specificity and Longevity of Immune Responses Are Driven by Distinct Classes of Immune Potentiators

    PubMed Central

    Bergmann-Leitner, Elke S.; Leitner, Wolfgang W.

    2014-01-01

    The mechanism by which vaccine adjuvants enhance immune responses has historically been considered to be the creation of an antigen depot. From here, the antigen is slowly released and provided to immune cells over an extended period of time. This “depot” was formed by associating the antigen with substances able to persist at the injection site, such as aluminum salts or emulsions. The identification of Pathogen-Associated Molecular Patterns (PAMPs) has greatly advanced our understanding of how adjuvants work beyond the simple concept of extended antigen release and has accelerated the development of novel adjuvants. This review focuses on the mode of action of different adjuvant classes in regards to the stimulation of specific immune cell subsets, the biasing of immune responses towards cellular or humoral immune response, the ability to mediate epitope spreading and the induction of persistent immunological memory. A better understanding of how particular adjuvants mediate their biological effects will eventually allow them to be selected for specific vaccines in a targeted and rational manner. PMID:26344620

  9. Profiling Humoral Immune Responses to Clostridium difficile-Specific Antigens by Protein Microarray Analysis.

    PubMed

    Negm, Ola H; Hamed, Mohamed R; Dilnot, Elizabeth M; Shone, Clifford C; Marszalowska, Izabela; Lynch, Mark; Loscher, Christine E; Edwards, Laura J; Tighe, Patrick J; Wilcox, Mark H; Monaghan, Tanya M

    2015-09-01

    Clostridium difficile is an anaerobic, Gram-positive, and spore-forming bacterium that is the leading worldwide infective cause of hospital-acquired and antibiotic-associated diarrhea. Several studies have reported associations between humoral immunity and the clinical course of C. difficile infection (CDI). Host humoral immune responses are determined using conventional enzyme-linked immunosorbent assay (ELISA) techniques. Herein, we report the first use of a novel protein microarray assay to determine systemic IgG antibody responses against a panel of highly purified C. difficile-specific antigens, including native toxins A and B (TcdA and TcdB, respectively), recombinant fragments of toxins A and B (TxA4 and TxB4, respectively), ribotype-specific surface layer proteins (SLPs; 001, 002, 027), and control proteins (tetanus toxoid and Candida albicans). Microarrays were probed with sera from a total of 327 individuals with CDI, cystic fibrosis without diarrhea, and healthy controls. For all antigens, precision profiles demonstrated <10% coefficient of variation (CV). Significant correlation was observed between microarray and ELISA in the quantification of antitoxin A and antitoxin B IgG. These results indicate that microarray is a suitable assay for defining humoral immune responses to C. difficile protein antigens and may have potential advantages in throughput, convenience, and cost. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Chemical allergens stimulate human epidermal keratinocytes to produce lymphangiogenic vascular endothelial growth factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bae, Ok-Nam; Ahn, Seyeon; Jin, Sun Hee

    2015-03-01

    Allergic contact dermatitis (ACD) is a cell-mediated immune response that involves skin sensitization in response to contact with various allergens. Angiogenesis and lymphangiogenesis both play roles in the allergic sensitization process. Epidermal keratinocytes can produce vascular endothelial growth factor (VEGF) in response to UV irradiation and during wound healing. However, the effect of haptenic chemical allergens on the VEGF production of human keratinocytes, which is the primary contact site of toxic allergens, has not been thoroughly researched. We systematically investigated whether immune-regulatory cytokines and chemical allergens would lead to the production of VEGF in normal human keratinocytes (NHKs) in culture.more » VEGF production significantly increased when NHKs were treated with IFNγ, IL-1α, IL-4, IL-6, IL-17A, IL-22 or TNFα. Among the human sensitizers listed in the OECD Test Guideline (TG) 429, we found that CMI/MI, DNCB, 4-phenylenediamine, cobalt chloride, 2-mercaptobenzothiazole, citral, HCA, cinnamic alcohol, imidazolidinyl urea and nickel chloride all significantly upregulated VEGF production in NHKs. In addition, common human haptenic allergens such as avobenzone, formaldehyde and urushiol, also induced the keratinocyte-derived VEGF production. VEGF upregulation by pro-inflammatory stimuli, IFNγ, DNCB or formaldehyde is preceded by the production of IL-8, an acute inflammatory phase cytokine. Lymphangiogenic VEGF-C gene transcription was significantly increased when NHKs were treated with formaldehyde, DNCB or urushiol, while transcription of VEGF-A and VEGF-B did not change. Therefore, the chemical allergen-induced VEGF upregulation is mainly due to the increase in lymphangiogenic VEGF-C transcription in NHKs. These results suggest that keratinocyte-derived VEGF may regulate the lymphangiogenic process during the skin sensitization process of ACD. - Highlights: • Pro-inflammatory cytokines induced VEGF production in normal

  11. Abnormal IgG4 antibody response to aeroallergens in allergic patients.

    PubMed

    Jeannin, P; Delneste, Y; Tillie-Leblond, I; Wallaert, B; carlier, A; Pestel, J; Tonnel, A B

    1994-01-01

    Various studies have suggested the involvement of immunoglobulin G4 (IgG4) antibodies (Ab) in the physiopathology of allergic disorders. Recently, an abnormal IgG4 Ab production in response to immunization has been reported in some atopic patients. Thus, in order to evidence in allergic patients, a potential abnormal IgG4 Ab response to aeroallergens following natural exposure, we compared, in 34 patients sensitive to Dermatophagoides pteronyssinus and in 16 healthy subjects, the IgG4 Ab response to D. pteronyssinus, grass pollen and cat dander, using a solid-phase radioimmunoassay. Since some patients were also sensitive to grass pollen and/or to cat dander, we analyzed, in all patients, the IgG4 Ab responses both towards the allergen(s) they were sensitive to (sensitizing allergen) or not (unrelated allergen). The results showed that 90% of the patients produced levels of antisensitizing allergen(s) IgG4 Ab significantly higher than the controls; this IgG4 Ab response was correlated with the corresponding specific IgE Ab level. In addition, among these patients, around 40% presented high levels of IgG4 Ab to the unrelated allergen(s). Thus, in allergic patients, while specific IgE Ab define the nature of the sensitizing allergen, the presence of IgG4 Ab directed against various allergens seems in relation with an abnormal isotype regulation associated with atopic disorders.

  12. Cockroach allergen exposure and plasma cytokines among children in a tropical environment.

    PubMed

    Medsker, Brock H; Forno, Erick; Han, Yueh-Ying; Acosta-Pérez, Edna; Colón-Semidey, Angel; Alvarez, Maria; Alcorn, John F; Canino, Glorisa J; Celedón, Juan C

    2017-07-01

    Little is known about the effects of socioeconomic status or cockroach allergen on immune responses in school-age children, particularly in tropical environments. To examine whether cockroach allergen and/or socioeconomic status is associated with plasma cytokine levels in Puerto Rican children. This was a cross-sectional study of 532 children (6-14 years old) with (n = 272) and without (n = 260) asthma in San Juan (Puerto Rico). House dust allergens (cockroach [Bla g 2], dust mite [Der p 1], cat dander [Fel d 1], dog dander [Can f 1], and mouse urinary protein [Mus m 1]) were quantified using monoclonal antibody arrays. A panel of 14 cytokines (interleukin [IL]-1β, IL-4, IL-6, IL-10, IL-17A, IL-17F, IL-21, IL-22, IL-23, IL-25, IL-31, IL-33, interferon-γ, and tumor necrosis factor-α) was measured in plasma samples. Low household income was defined as less than $15,000 per year (below the median income for Puerto Rico in 2008-2009). Linear regression was used for the analysis of cockroach allergen and plasma cytokines. In a multivariable analysis adjusting for low income and other allergen levels, cockroach allergen was significantly associated with decreased IL-17A and with increased levels of 8 cytokines (IL-4, IL-10, IL-17F, IL-21, IL-25, IL-31, interferon-γ, and tumor necrosis factor-α). After stratifying this analysis by cockroach allergy (ie, having a cockroach positive immunoglobulin E reaction), our findings remained largely unchanged for children sensitized to cockroach but became weaker and statistically nonsignificant for non-sensitized children. Cockroach allergen has broad effects on adaptive immune responses in school-age children in a tropical environment, particularly in those sensitized to cockroach. Copyright © 2017 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  13. Poliovirus intrahost evolution is required to overcome tissue-specific innate immune responses.

    PubMed

    Xiao, Yinghong; Dolan, Patrick Timothy; Goldstein, Elizabeth Faul; Li, Min; Farkov, Mikhail; Brodsky, Leonid; Andino, Raul

    2017-08-29

    RNA viruses, such as poliovirus, have a great evolutionary capacity, allowing them to quickly adapt and overcome challenges encountered during infection. Here we show that poliovirus infection in immune-competent mice requires adaptation to tissue-specific innate immune microenvironments. The ability of the virus to establish robust infection and virulence correlates with its evolutionary capacity. We further identify a region in the multi-functional poliovirus protein 2B as a hotspot for the accumulation of minor alleles that facilitate a more effective suppression of the interferon response. We propose that population genetic dynamics enables poliovirus spread between tissues through optimization of the genetic composition of low frequency variants, which together cooperate to circumvent tissue-specific challenges. Thus, intrahost virus evolution determines pathogenesis, allowing a dynamic regulation of viral functions required to overcome barriers to infection.RNA viruses, such as polioviruses, have a great evolutionary capacity and can adapt quickly during infection. Here, the authors show that poliovirus infection in mice requires adaptation to innate immune microenvironments encountered in different tissues.

  14. A Functional Toll-Interacting Protein Variant Is Associated with Bacillus Calmette-Guérin-Specific Immune Responses and Tuberculosis.

    PubMed

    Shah, Javeed A; Musvosvi, Munyaradzi; Shey, Muki; Horne, David J; Wells, Richard D; Peterson, Glenna J; Cox, Jeffery S; Daya, Michelle; Hoal, Eileen G; Lin, Lin; Gottardo, Raphael; Hanekom, Willem A; Scriba, Thomas J; Hatherill, Mark; Hawn, Thomas R

    2017-08-15

    The molecular mechanisms that regulate tuberculosis susceptibility and bacillus Calmette-Guérin (BCG)-induced immunity are mostly unknown. However, induction of the adaptive immune response is a critical step in host control of Mycobacterium tuberculosis. Toll-interacting protein (TOLLIP) is a ubiquitin-binding protein that regulates innate immune responses, including Toll-like receptor signaling, which initiate adaptive immunity. TOLLIP variation is associated with susceptibility to tuberculosis, but the mechanism by which it regulates tuberculosis immunity is poorly understood. To identify functional TOLLIP variants and evaluate the role of TOLLIP variation on innate and adaptive immune responses to mycobacteria and susceptibility to tuberculosis. We used human cellular immunology approaches to characterize the role of a functional TOLLIP variant on monocyte mRNA expression and M. tuberculosis-induced monocyte immune functions. We also examined the association of TOLLIP variation with BCG-induced T-cell responses and susceptibility to latent tuberculosis infection. We identified a functional TOLLIP promoter region single-nucleotide polymorphism, rs5743854, which was associated with decreased TOLLIP mRNA expression in infant monocytes. After M. tuberculosis infection, TOLLIP-deficient monocytes demonstrated increased IL-6, increased nitrite, and decreased bacterial replication. The TOLLIP-deficiency G/G genotype was associated with decreased BCG-specific IL-2 + CD4 + T-cell frequency and proliferation. This genotype was also associated with increased susceptibility to latent tuberculosis infection. TOLLIP deficiency is associated with decreased BCG-specific T-cell responses and increased susceptibility to tuberculosis. We hypothesize that the heightened antibacterial monocyte responses after vaccination of TOLLIP-deficient infants are responsible for decreased BCG-specific T-cell responses. Activating TOLLIP may provide a novel adjuvant strategy for BCG

  15. Exposure-response relationships of occupational inhalative allergens.

    PubMed

    Baur, X; Chen, Z; Liebers, V

    1998-05-01

    Only a few threshold limit values exist at present for allergens in the workplace known to cause bronchial asthma. This contrasts with the great number of occupational asthma cases observed in industrialized countries. Recently published studies provide clear evidence for exposure intensity response relationships of occupational allergens of plant, microbiological, animal or man-made origin. If allergen exposure levels fall short of determined limit values, they are not associated with an increased risk of occupational asthma. Corresponding data are available for wheat flour (1-2.4 mg/m3), fungal alpha-amylase (0.25 ng/m3), natural rubber latex (0.6 ng/m3), western red cedar (0.4 mg/m3) and rat allergens (0.7 microg/m3). It is suggested to stipulate legally binding threshold limit values (TLV/TWA) on this basis in order to induce more effective primary preventive measures. If no reliable data on the health risk of an occupational airborne noxa exist, the lowest reasonably practicable exposure level has to be achieved. Appropriate secondary preventive measures have to be initiated in all workplaces contaminated with airborne allergens. Verified exposure-response relationships provide the basis for risk assessment and for targeted interventions to reduce the incidence of occupational asthma also in consideration of cost benefit aspects. 'Occupational asthma is a disease characterized by variable airflow limitation and/or airway hyperresponsiveness due to causes in a working environment. These causes can give rise to asthma through immunological or non-immunological mechanisms. Up to 15% of all asthma cases are of occupational origin or have at least a significant causal occupational factor. According to the New Zealand part of the European Respiratory Health Survey, an increased risk of asthma prevalence was found for several occupations such as laboratory technicians, food producers, chemical workers, plastic and rubber workers. The Spain part of this study

  16. Immune and clinical response to honeybee venom in beekeepers.

    PubMed

    Matysiak, Jan; Matysiak, Joanna; Bręborowicz, Anna; Kycler, Zdzisława; Dereziński, Paweł; Kokot, Zenon J

    2016-01-01

    The aim of the study was to assess immune response to honeybee venom in relation to the degree of exposure, time after a sting and clinical symptoms. Fifty-four volunteers were divided into 2 groups: beekeepers and a control group. The serum levels of total IgE (tIgE), bee venom-specific IgE (venom sIgE), phospholipase A2-specific IgE (phospholipase A2 sIgE), tryptase and venom-specific IgG4 (venom sIgG4) were determined. In beekeepers, diagnostic tests were performed within 3 hours following a sting and were repeated after a minimum of 6 weeks from the last sting. In individuals from the control group, the tests were performed only once, without a sting. The tests showed significant differences in venom sIgE (beekeepers' median = 0.34 kUA/l, control group median = 0.29 kUA/l), baseline serum tryptase (beekeepers' median = 4.25 µg/l, control group median = 2.74 µg/l) and sIgG4 (beekeepers' median = 21.2 mgA/l, control group median = 0.14 mgA/l), confirming higher levels of the tested substances in the beekeepers than in the control group. A significant positive correlation was observed between phospholipase A2 sIgE concentration and severity of clinical symptoms after a sting in the group of beekeepers. It was also demonstrated that the clinical symptoms after a sting became less severe with increasing age of the beekeepers. The differences in the immune response to a bee sting between the beekeepers and individuals not exposed to bees were probably due to the high exposure of the beekeepers to honeybee venom allergens. This may suggest a different approach to the bee venom allergy diagnostic tests in this occupational group.

  17. Innate Immune Responses to Engineered Nanomaterials During Allergic Airway Inflammation

    NASA Astrophysics Data System (ADS)

    Shipkowski, Kelly Anne

    The field of nanotechnology is continually advancing, and increasing amounts of consumer goods are being produced using engineered nanomaterials (ENMs). The health risks of occupational and/or consumer exposure to ENMs are not completely understood, although significant research indicates that pulmonary exposure to nanomaterials induces toxic effects in the lungs of exposed animals. Multi-walled carbon nanotubes (MWCNTs) are a specific category of ENMs and consist of sheets of graphene rolled into cylinders that are multiple layers thick in order to strengthen their rigidity. MWCNTs have a fiber-like shape, similar to that of asbestos, which allows for a high aspect ratio and makes them difficult to clear from the lung. Studies with rodent models have demonstrated that pulmonary exposure to ENMs, in particular MWCNTs, results in acute lung inflammation and the subsequent development of chronic fibrosis, suggesting a potential human health risk to individuals involved in the manufacturing of products utilizing these nanomaterials. Induction of IL-1beta secretion via activation of the inflammasome is a prime mechanism of MWCNT-induced inflammation. The inflammasome is a multi-protein scaffold found in a variety of cell types that forms in response to a variety of immune signals, including particulates. Sensitization with allergens, such as house dust mite (HDM), increases levels of the T helper 2 (Th2) cytokines IL-4 and IL-13 in mice and in humans, and there is particular cause for concern in cases of MWCNT exposure in individuals with pre-existing allergic airway disease, such as asthma. MWCNT exposure exacerbates airway inflammation and fibrosis in animal models of pre-existing allergic asthma, suggesting that individuals suffering from asthma are more susceptible to the toxic pulmonary effects of MWCNT exposure. Asthma is an exceptionally prominent human disease, and therefore the goal of this research was to better understand how pre-existing allergic airway

  18. Allergen-specific IgE measurement with the IMMULITE 2000 system: intermethod comparison of detection performance for allergen-specific IgE antibodies from Korean allergic patients.

    PubMed

    Lee, Yong Won; Sohn, Jung Ho; Lee, Jae-Hyun; Hong, Chein-Soo; Park, Jung-Won

    2009-03-01

    Intermethod comparison between IMMULITE 2000 chemiluminescent enzyme immunoassay (CLEIA) and the established CAP test for allergen-specific IgE (sIgE) has only been evaluated by a few studies. We performed such an interassay comparison using 283 Korean allergic patients with the following: asthma (18.4%), allergic rhinitis (18.4%), both asthma and allergic rhinitis (14.5%), atopic dermatitis (21.9%), and others (26.8%). We compared the sIgE detection performance of both systems for 10 major inhalant allergens (Dermatophagoides pteronyssinus, Dermatophagoides farinae, Blattela germanica, cat dander, dog hair, alder, birch, oak, ragweed, and mugwort) and four food allergens (egg white, cow milk, peanut, and shrimp). After 645 paired comparison tests, close association and significant correlation were observed between the results of both assays for most of these allergens (r=0.525-0.979, p<0.05, respectively), except for shrimp. Intermethod agreement based on sIgE detection was fair to good (74.1-100%, kappa=0.514-1.000, p<0.05, respectively) for most allergens except for B. germanica, ragweed, and shrimp. Although both assays showed good accuracy in ROC curve analysis, some minor differences were noted. IMMULITE 2000 CLEIA for sIgE detection showed fair to good intermethod correlation, association, agreement, and accuracy in comparison to the established CAP assay among Korean allergic patients. However, we should take into account the intermethod differences between both assays for clinical applications.

  19. Evaluation of a spontaneous canine model of immunoglobulin E-mediated food hypersensitivity: dynamic changes in serum and fecal allergen-specific immunoglobulin E values relative to dietary change.

    PubMed

    Jackson, Hilary A; Hammerberg, Bruce

    2002-08-01

    The purpose of the pilot study reported here was to evaluate serum and fecal total and allergen-specific immunoglobulin E (IgE) responses to dietary change in five Maltese x beagle dogs with suspected food hypersensitivity, compared with those of five clinically normal dogs. Clinical parameters (pruritus, otitis, and diarrhea) improved in the Maltese x beagle dogs during feeding of a novel diet, and signs were exacerbated by oral allergen provocation. Relative concentrations of serum and fecal wheat-, corn-, and milk-specific IgE were determined by use of an ELISA. The onset of clinical signs of disease was accompanied by an increase in serum allergen-specific IgE concentrations. In contrast, changes in clinical signs of disease or allergen-specific IgE values were not seen in the control group undergoing the same regimen. Total serum IgE concentration was measured by use of the ELISA, and comparison with known quantities of a monoclonal IgE allowed absolute values to be reported. Values were high in the Maltese x beagle colony (7 to 34 microg/ml), compared with those in the control dogs (0.7 to 6 microg/ml). Total serum and total fecal IgE concentrations did not change in either group during the study. Although allergen-specific IgE was detected in the feces of both groups, significant interassay variability made interpretation of the results difficult. The authors concluded that these Maltese x beagle dogs satisfied the currently recognized clinical criteria for the diagnosis of canine food hypersensitivity. Furthermore, the clinical and serologic responses seen in these dogs in response to oral allergen provocation suggest that this may be a useful model for the study of spontaneous food hypersensitivity.

  20. Quality requirements for allergen extracts and allergoids for allergen immunotherapy.

    PubMed

    Zimmer, J; Bonertz, A; Vieths, S

    2017-12-01

    All allergen products for allergen immunotherapy currently marketed in the European Union are pharmaceutical preparations derived from allergen-containing source materials like pollens, mites and moulds. Especially this natural origin results in particular demands for the regulatory requirements governing allergen products. Furthermore, the development of regulatory requirements is complicated by the so far missing universal link between certain quality parameters, in particular biological potency, on the one hand and clinical efficacy on the other hand. As a consequence, each allergen product for specific immunotherapy has to be assessed individually for its quality, safety and efficacy. At the same time, biological potency of allergen products is most commonly determined using IgE inhibition assays based on human sera relative to product-specific in house references, ruling out full comparability of products from different manufacturers. This review article aims to summarize the current quality requirements for allergen products including the special requirements implemented for control of chemically modified allergen extracts (allergoids). Copyright © 2017 SEICAP. Published by Elsevier España, S.L.U. All rights reserved.

  1. Zymosan-induced immune challenge modifies the stress response of hypoxic air-breathing fish (Anabas testudineus Bloch): Evidence for reversed patterns of cortisol and thyroid hormone interaction, differential ion transporter functions and non-specific immune response.

    PubMed

    Simi, S; Peter, Valsa S; Peter, M C Subhash

    2017-09-15

    Fishes have evolved physiological mechanisms to exhibit stress response, where hormonal signals interact with an array of ion transporters and regulate homeostasis. As major ion transport regulators in fish, cortisol and thyroid hormones have been shown to interact and fine-tune the stress response. Likewise, in fishes many interactions have been identified between stress and immune components, but the physiological basis of such interaction has not yet delineated particularly in air-breathing fish. We, therefore, investigated the responses of thyroid hormones and cortisol, ion transporter functions and non-specific immune response of an obligate air-breathing fish Anabas testudineus Bloch to zymosan treatment or hypoxia stress or both, to understand how immune challenge modifies the pattern of stress response in this fish. Induction of experimental peritonitis in these fish by zymosan treatment (200ngg -1 ) for 24h produced rise in respiratory burst and lysozomal activities in head kidney phagocytes. In contrast, hypoxia stress for 30min in immune-challenged fish reversed these non-specific responses of head kidney phagocytes. The decline in plasma cortisol in zymosan-treated fish and its further suppression by hypoxia stress indicate that immune challenge suppresses the cortisol-driven stress response of this fish. Likewise, the decline in plasma T 3 and T 4 after zymosan-treatment and the rise in plasma T 4 after hypoxia stress in immune-challenged fish indicate a critical role for thyroid hormone in immune-stress response due to its differential sensitivity to both immune and stress challenges. Further, analysis of the activity pattern of ion-dependent ATPases viz. Na + /K + -ATPase, H + /K + -ATPase and Na + /NH 4 + -ATPase indicates a functional interaction of ion transport system with the immune response as evident in its differential and spatial modifications after hypoxia stress in immune-challenged fish. The immune-challenge that produced differential

  2. Effects of dietary L-glutamine supplementation on specific and general defense responses in mice immunized with inactivated Pasteurella multocida vaccine.

    PubMed

    Chen, Shuai; Liu, Shuping; Zhang, Fengmei; Ren, Wenkai; Li, Nengzhang; Yin, Jie; Duan, Jielin; Peng, Yuanyi; Liu, Gang; Yin, Yulong; Wu, Guoyao

    2014-10-01

    Little is known about effects of dietary glutamine supplementation on specific and general defense responses in a vaccine-immunized animal model. Thus, this study determined roles for dietary glutamine supplementation in specific and general defense responses in mice immunized with inactivated Pasteurella multocida vaccine. The measured variables included: (1) the production of pathogen-specific antibodies; (2) mRNA levels for pro-inflammatory cytokines, toll-like receptors and anti-oxidative factors; and (3) the distribution of P. multocida in tissues and the expression of its major virulence factors in vivo. Dietary supplementation with 0.5 % glutamine had a better protective role than 1 or 2 % glutamine against P. multocida infection in vaccine-immunized mice, at least partly resulting from its effects in modulation of general defense responses. Dietary glutamine supplementation had little effects on the production of P. multocida-specific antibodies. Compared to the non-supplemented group, dietary supplementation with 0.5 % glutamine had no effect on bacterial burden in vivo but decreased the expression of major virulence factors in the spleen. Collectively, supplementing 0.5 % glutamine to a conventional diet provides benefits in vaccine-immunized mice by enhancing general defense responses and decreasing expression of specific virulence factors.

  3. Allergen-Induced Dermatitis Causes Alterations in Cutaneous Retinoid-Mediated Signaling in Mice

    PubMed Central

    Gericke, Janine; Ittensohn, Jan; Mihály, Johanna; Dubrac, Sandrine; Rühl, Ralph

    2013-01-01

    Nuclear receptor-mediated signaling via RARs and PPARδ is involved in the regulation of skin homeostasis. Moreover, activation of both RAR and PPARδ was shown to alter skin inflammation. Endogenous all-trans retinoic acid (ATRA) can activate both receptors depending on specific transport proteins: Fabp5 initiates PPARδ signaling whereas Crabp2 promotes RAR signaling. Repetitive topical applications of ovalbumin (OVA) in combination with intraperitoneal injections of OVA or only intraperitoneal OVA applications were used to induce allergic dermatitis. In our mouse model, expression of IL-4, and Hbegf increased whereas expression of involucrin, Abca12 and Spink5 decreased in inflamed skin, demonstrating altered immune response and epidermal barrier homeostasis. Comprehensive gene expression analysis showed alterations of the cutaneous retinoid metabolism and retinoid-mediated signaling in allergic skin immune response. Notably, ATRA synthesis was increased as indicated by the elevated expression of retinaldehyde dehydrogenases and increased levels of ATRA. Consequently, the expression pattern of genes downstream to RAR was altered. Furthermore, the increased ratio of Fabp5 vs. Crabp2 may indicate an up-regulation of the PPARδ pathway in allergen-induced dermatitis in addition to the altered RAR signaling. Thus, our findings suggest that ATRA levels, RAR-mediated signaling and signaling involved in PPARδ pathways are mainly increased in allergen-induced dermatitis and may contribute to the development and/or maintenance of allergic skin diseases. PMID:23977003

  4. Allergen-induced dermatitis causes alterations in cutaneous retinoid-mediated signaling in mice.

    PubMed

    Gericke, Janine; Ittensohn, Jan; Mihály, Johanna; Dubrac, Sandrine; Rühl, Ralph

    2013-01-01

    Nuclear receptor-mediated signaling via RARs and PPARδ is involved in the regulation of skin homeostasis. Moreover, activation of both RAR and PPARδ was shown to alter skin inflammation. Endogenous all-trans retinoic acid (ATRA) can activate both receptors depending on specific transport proteins: Fabp5 initiates PPARδ signaling whereas Crabp2 promotes RAR signaling. Repetitive topical applications of ovalbumin (OVA) in combination with intraperitoneal injections of OVA or only intraperitoneal OVA applications were used to induce allergic dermatitis. In our mouse model, expression of IL-4, and Hbegf increased whereas expression of involucrin, Abca12 and Spink5 decreased in inflamed skin, demonstrating altered immune response and epidermal barrier homeostasis. Comprehensive gene expression analysis showed alterations of the cutaneous retinoid metabolism and retinoid-mediated signaling in allergic skin immune response. Notably, ATRA synthesis was increased as indicated by the elevated expression of retinaldehyde dehydrogenases and increased levels of ATRA. Consequently, the expression pattern of genes downstream to RAR was altered. Furthermore, the increased ratio of Fabp5 vs. Crabp2 may indicate an up-regulation of the PPARδ pathway in allergen-induced dermatitis in addition to the altered RAR signaling. Thus, our findings suggest that ATRA levels, RAR-mediated signaling and signaling involved in PPARδ pathways are mainly increased in allergen-induced dermatitis and may contribute to the development and/or maintenance of allergic skin diseases.

  5. Host-Specific Response to HCV Infection in the Chimeric SCID-beige/Alb-uPA Mouse Model: Role of the Innate Antiviral Immune Response

    PubMed Central

    Thompson, Jill C; Smith, Maria W; Yeh, Matthew M; Proll, Sean; Zhu, Lin-Fu; Gao, T. J; Kneteman, Norman M; Tyrrell, D. Lorne; Katze, Michael G

    2006-01-01

    The severe combined immunodeficiency disorder (SCID)-beige/albumin (Alb)-urokinase plasminogen activator (uPA) mouse containing a human-mouse chimeric liver is currently the only small animal model capable of supporting hepatitis C virus (HCV) infection. This model was utilized to characterize the host transcriptional response to HCV infection. The purpose of these studies was to investigate the genetic component of the host response to HCV infection and also to distinguish virus-induced gene expression changes from adaptive HCV-specific immune-mediated effects. Gene expression profiles from HCV-infected mice were also compared to those from HCV-infected patients. Analyses of the gene expression data demonstrate that host factors regulate the response to HCV infection, including the nature of the innate antiviral immune response. They also indicate that HCV mediates gene expression changes, including regulation of lipid metabolism genes, which have the potential to be directly cytopathic, indicating that liver pathology may not be exclusively mediated by HCV-specific adaptive immune responses. This effect appears to be inversely related to the activation of the innate antiviral immune response. In summary, the nature of the initial interferon response to HCV infection may determine the extent of viral-mediated effects on host gene expression. PMID:16789836

  6. CryJ-LAMP DNA Vaccines for Japanese Red Cedar Allergy Induce Robust Th1-Type Immune Responses in Murine Model

    PubMed Central

    Connolly, Michael; Marketon, Anthony

    2016-01-01

    Allergies caused by Japanese Red Cedar (JRC) pollen affect up to a third of Japanese people, necessitating development of an effective therapeutic. We utilized the lysosomal targeting property of lysosomal-associated membrane protein-1 (LAMP-1) to make DNA vaccines that encode LAMP-1 and the sequences of immunodominant allergen CryJ1 or CryJ2 from the JRC pollen. This novel strategy is designed to skew the CD4 T cell responses to the target allergens towards a nonallergenic Th1 response. CryJ1-LAMP and CryJ2-LAMP were administrated to BALB/c mice and antigen-specific Th1-type IgG2a and Th2-type IgG1 antibodies, as well as IgE antibodies, were assayed longitudinally. We also isolated different T cell populations from immunized mice and adoptively transferred them into naïve mice followed by CryJ1/CryJ2 protein boosts. We demonstrated that CryJ-LAMP immunized mice produce high levels of IFN-γ and anti-CryJ1 or anti-CryJ2 IgG2a antibodies and low levels of IgE antibodies, suggesting that a Th1 response was induced. In addition, we found that CD4+ T cells are the immunological effectors of DNA vaccination in this allergy model. Together, our results suggest the CryJ-LAMP Vaccine has a potential as an effective therapeutic for JRC induced allergy by skewing Th1/Th2 responses. PMID:27239481

  7. Asp f6, an Aspergillus allergen specifically recognized by IgE from patients with allergic bronchopulmonary aspergillosis, is differentially expressed during germination.

    PubMed

    Schwienbacher, M; Israel, L; Heesemann, J; Ebel, F

    2005-11-01

    Aspergillus fumigatus is a pathogenic mould causing allergic and invasive respiratory diseases. Allergic bronchopulmonary Aspergillosis (ABPA) is a severe pulmonary complication resulting from hypersensitivity to A. fumigatus proteins. Aspergillus allergen Asp f6 is recognized by IgE from ABPA patients, but not from sensitized individuals, a fact that can be used to differentiate between these two groups of allergic patients. Proteins from hyphae, resting and germinating conidia of A. fumigatus were compared by SDS-PAGE. Protein identification was performed using MALDI-TOF mass spectrometry. Recombinant A. fumigatus allergens were used to isolate specific monoclonal antibodies (mab) from a hybridoma bank generated against Aspergillus proteins. A hyphae-specific 23 kDa A. fumigatus protein was identified as the allergen Asp f6/manganese-dependent superoxide dismutase (MnSOD). Differential expression of MnSOD was confirmed by immunoblot using a specific mab. In contrast, Asp f8 another intracellular, but not ABPA-specific allergen, was detected in hyphae and conidia. Aspergillus fumigatus is able to colonize its environment by the formation of hyphae. Hyphae are found in the lung of ABPA patients, but not in patients suffering from atopic asthma. Our finding that Asp f6 is specifically expressed in hyphae might explain why an IgE response to Asp f6 is specific for ABPA patients.

  8. Allergen immunotherapy in allergic rhinitis: current use and future trends.

    PubMed

    Klimek, Ludger; Pfaar, Oliver; Bousquet, Jean; Senti, Gabriela; Kündig, Thomas

    2017-09-01

    Type-1 allergies are among the most chronic common diseases of humans. Allergen immunotherapy (AIT) is the only causative and disease-modifying treatment option besides allergen avoidance. Severe systemic adverse allergic reactions may be induced by every AIT treatment. Different approaches have been used to provide safer AIT preparations to lower or even totally overcome this risk. Areas covered: A structured literature recherche in Medline and Pubmed under inclusion of national and international guidelines and Cochrane meta-analyses has been performed aiming at reviewing clinical use of such approaches in AIT. New allergen preparations may include allergoids, recombinant allergens (recA) and modified recombinant allergens (recA) in subcutaneous as well as in mucosal immunotherapies (application e.g. using bronchial, nasal, oral and sublingual application) with sublingual being the established mucosal application route and new ways of application like intralymphatic and epicutaneous immunotherapy. Expert commentary: Immune-modifying agents like Virus-like particles and CpG-motifs, adjuvants like MPL and aluminum hydroxide are evaluated and found to increase and direct the immunological response toward immunological tolerance. New forms of allergen extracts can improve safety and efficacy of AIT and may change our way of performing allergen immunotherapy in the future.

  9. Polyomavirus Reactivation and Immune Responses to Kidney-Specific Self-Antigens in Transplantation.

    PubMed

    Seifert, Michael E; Gunasekaran, Muthukumar; Horwedel, Timothy A; Daloul, Reem; Storch, Gregory A; Mohanakumar, Thalachallour; Brennan, Daniel C

    2017-04-01

    Humoral immune responses against donor antigens are important determinants of long-term transplant outcomes. Reactivation of the polyomavirus BK has been associated with de novo antibodies against mismatched donor HLA antigens in kidney transplantation. The effect of polyomavirus reactivation (BK viremia or JC viruria) on antibodies to kidney-specific self-antigens is unknown. We previously reported excellent 5-year outcomes after minimization of immunosuppression for BK viremia and after no intervention for JC viruria. Here, we report the 10-year results of this trial ( n =193) along with a nested case-control study ( n =40) to explore associations between polyomavirus reactivation and immune responses to the self-antigens fibronectin (FN) and collagen type-IV (Col-IV). Consistent with 5-year findings, subjects taking tacrolimus, compared with those taking cyclosporin, had less acute rejection (11% versus 22%, P =0.05) and graft loss (9% versus 22%, P =0.01) along with better transplant function (eGFR 65±19 versus 50±24 ml/min per 1.73 m 2 , P <0.001) at 10 years. Subjects undergoing immunosuppression reduction for BK viremia had 10-year outcomes similar to those without viremia. In the case-control study, antibodies to FN/Col-IV were more prevalent during year 1 in subjects with polyomavirus reactivation than in those without reactivation (48% versus 11%, P= 0.04). Subjects with antibodies to FN/Col-IV had more acute rejection than did those without these antibodies (38% versus 8%, P =0.02). These data demonstrate the long-term safety and effectiveness of minimizing immunosuppression to treat BK viremia. Furthermore, these results indicate that polyomavirus reactivation associates with immune responses to kidney-specific self-antigens that may increase the risk for acute rejection through unclear mechanisms. Copyright © 2017 by the American Society of Nephrology.

  10. Plant food allergy: Influence of chemicals on plant allergens.

    PubMed

    Shahali, Youcef; Dadar, Maryam

    2018-05-01

    Plant-derived foods are the most common allergenic sources in adulthood. Owing to the rapidly increasing prevalence of plant food allergies in industrialized countries, the environmental factors are suspected to play a key role in development of allergic sensitization. The present article provides an overview of ways by which chemicals may influence the development and severity of allergic reactions to plant foods, with especial focus on plant allergens up-regulated under chemical stress. In plants, a substantial part of allergens have defense-related function and their expression is highly influenced by environmental stress and diseases. Pathogenesis-related proteins (PR) account for about 25% of plant food allergens and some are responsible for extensive cross-reactions between plant-derived foods, pollen and latex allergens. Chemicals released by anthropogenic sources such as agriculture, industrial activities and traffic-related air pollutants are potential drivers of the increasing sensitization to allergenic PRs by elevating their expression and by altering their immunogenicity through post-translational modifications. In addition, some orally-taken chemicals may act as immune adjuvants or directly trigger non-IgE mediated food allergy. Taken together, the current literature provides an overwhelming body of evidence supporting the fact that plant chemical exposure and chemicals in diet may enhance the allergenic properties of certain plant-derived foods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. [Immune response in therapy with allergens and allergoids].

    PubMed

    Kalveram, C M; Kalveram, K J; Kästner, H; Forck, G

    1986-02-01

    We report on the patterns of specific IgE, IgG, and IgA antibodies during different kinds of hyposensitization. Whereas sIgE antibodies may even be influenced by environmental stimulants, the production of sIgG antibodies depends on the amount of antigens injected for therapy. There is some evidence that patients who do not reveal sIgG response have increased sIgA antibody titers, instead.

  12. Reactivity of IgE to the allergen hyaluronidase from Polybia paulista (Hymenoptera, Vespidae) venom.

    PubMed

    Justo Jacomini, Débora Laís; Gomes Moreira, Susana Margarida; Campos Pereira, Franco Dani; Zollner, Ricardo de Lima; Brochetto Braga, Márcia Regina

    2014-05-01

    To date, there are no allergenic extracts or components available in Brazil to diagnosis and treatment of patients with venom allergy from social wasp (Vespidae Family; Polistinae Subfamily) despite of the great number of existing species. We evaluated the immunogenic potential of the Hyal recombinant protein (Pp-Hyal-rec) which was expressed in an insoluble form in comparison with the allergenic native protein (Pp-Hyal-nat) for recognition of immunoglobulin E (IgE) in the serum of allergic patients to venom of the endemic social wasp Polybia paulista from São Paulo State, Brazil. Hyal cDNA from the venom of the social wasp P. paulista (Pp-Hyal) (GI: 302201582) was cloned into the expression vector pET-28a in Escherichia coli DE3 (BL21) cells. Solubilization and purification of Pp-Hyal-rec from inclusion bodies were performed using Ni(2+) affinity chromatography (Ni-NTA-Agarose) under denaturing conditions. Both the native (Pp-Hyal-nat) and the recombinant (Pp-Hyal-rec) purified allergens were used for Western blotting to assess the levels of Pp-Hyal-IgE specific in the serum of 10 patients exclusively reactive to the venom of the social wasp P. paulista. The immune sera specifically recognized the band corresponding to the Pp-Hyal-rec protein (40 kDa) at a higher intensity than the native allergen (39 kDa). The sera recognized other proteins in P. paulista crude venom extract to a lesser extent, likely corresponding to other venom allergens such as phospholipase (34 kDa), Antigen 5 (25 kDa), and proteases. The recognition pattern of the immune sera to the Pp-Hyal-rec allergen strongly suggests that this recombinant antigen could be used for developing a diagnostic allergy test as well as for specific immunotherapy (IT). Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. 2S Albumin Storage Proteins: What Makes them Food Allergens?

    PubMed

    Moreno, F Javier; Clemente, Alfonso

    2008-01-01

    2S albumin storage proteins are becoming of increasing interest in nutritional and clinical studies as they have been reported as major food allergens in seeds of many mono- and di-cotyledonous plants. This review describes the main biochemical, structural and functional properties of these proteins thought to play a role in determining their potential allergenicity. 2S albumins are considered to sensitize directly via the gastrointestinal tract (GIT). The high stability of their intrinsic protein structure, dominated by a well-conserved skeleton of cysteine residues, to the harsh conditions present in the GIT suggests that these proteins are able to cross the gut mucosal barrier to sensitize the mucosal immune system and/or elicit an allergic response. The flexible and solvent-exposed hypervariable region of these proteins is immunodominant and has the ability to bind IgE from allergic patients sera. Several linear IgE-binding epitopes of 2S albumins spanning this region have been described to play a major role in allergenicity; the role of conformational epitopes of these proteins in food allergy is far from being understood and need to be investigated. Finally, the interaction of these proteins with other components of the food matrix might influence the absorption rates of immunologically reactive 2S albumins but also in their immune response.

  14. 2S Albumin Storage Proteins: What Makes them Food Allergens?

    PubMed Central

    Moreno, F. Javier; Clemente, Alfonso

    2008-01-01

    2S albumin storage proteins are becoming of increasing interest in nutritional and clinical studies as they have been reported as major food allergens in seeds of many mono- and di-cotyledonous plants. This review describes the main biochemical, structural and functional properties of these proteins thought to play a role in determining their potential allergenicity. 2S albumins are considered to sensitize directly via the gastrointestinal tract (GIT). The high stability of their intrinsic protein structure, dominated by a well-conserved skeleton of cysteine residues, to the harsh conditions present in the GIT suggests that these proteins are able to cross the gut mucosal barrier to sensitize the mucosal immune system and/or elicit an allergic response. The flexible and solvent-exposed hypervariable region of these proteins is immunodominant and has the ability to bind IgE from allergic patients´ sera. Several linear IgE-binding epitopes of 2S albumins spanning this region have been described to play a major role in allergenicity; the role of conformational epitopes of these proteins in food allergy is far from being understood and need to be investigated. Finally, the interaction of these proteins with other components of the food matrix might influence the absorption rates of immunologically reactive 2S albumins but also in their immune response. PMID:18949071

  15. Cross-reactivity among non-specific lipid-transfer proteins from food and pollen allergenic sources.

    PubMed

    Morales, María; López-Matas, M Ángeles; Moya, Raquel; Carnés, Jerónimo

    2014-12-15

    Non-specific lipid-transfer proteins (nsLTPs) are a family of pan-allergens present in foods and pollen. However, sequence homology among them is limited. The objective of this study was to evaluate the IgE-mediated cross-reactivity between nsLTPs from different sources and evaluate the allergenic properties of LTPs from peach (Pru p 3) and pellitory (Par j 1/Par j 2), major fruit and pollen allergens. Both proteins were purified and characterised. Cross-reactivity studies among nsLTPs from different foods and pollens were performed by immunoblot inhibition using sera specific to peach or pellitory pollen. Cross-reactivity with Pru p 3 was observed in hazelnut, onion, corn, peanut and apple while in pollens, none of the extracts was inhibited with Par j 1/2. In conclusion, Pru p 3 did not inhibit LTPs from most fruits. Therefore, although Pru p 3 covers the largest number of epitopes, diagnosis with only this allergen may not detect all LTP sensitivities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Molecular features of grass allergens and development of biotechnological approaches for allergy prevention.

    PubMed

    Devis, Deborah L; Davies, Janet M; Zhang, Dabing

    2017-09-01

    Allergic diseases are characterized by elevated allergen-specific IgE and excessive inflammatory cell responses. Among the reported plant allergens, grass pollen and grain allergens, derived from agriculturally important members of the Poaceae family such as rice, wheat and barley, are the most dominant and difficult to prevent. Although many allergen homologs have been predicted from species such as wheat and timothy grass, fundamental aspects such as the evolution and function of plant pollen allergens remain largely unclear. With the development of genetic engineering and genomics, more primary sequences, functions and structures of plant allergens have been uncovered, and molecular component-based allergen-specific immunotherapies are being developed. In this review, we aim to provide an update on (i) the distribution and importance of pollen and grain allergens of the Poaceae family, (ii) the origin and evolution, and functional aspects of plant pollen allergens, (iii) developments of allergen-specific immunotherapy for pollen allergy using biotechnology and (iv) development of less allergenic plants using gene engineering techniques. We also discuss future trends in revealing fundamental aspects of grass pollen allergens and possible biotechnological approaches to reduce the amount of pollen allergens in grasses. Copyright © 2017. Published by Elsevier Inc.

  17. Allergen-induced cytokine production, atopic disease, IgE, and wheeze in children.

    PubMed

    Contreras, J Paola; Ly, Ngoc P; Gold, Diane R; He, Hongzhen; Wand, Mathew; Weiss, Scott T; Perkins, David L; Platts-Mills, Thomas A E; Finn, Patricia W

    2003-12-01

    The early childhood allergen-induced immune responses associated with atopic disease and IgE production in early life are not well understood. We assessed the relationship of allergen-induced cytokine production by PBMCs to both atopic disease and to IgE increase in a cohort of children with a parental history of allergy or asthma (n = 112) at a median of 2 years of age. We examined cockroach (Bla g 1)-induced, house dust mite (Der f 1)-induced, and cat (Fel d 1)-induced cytokine secretion, including secretion of IFN-gamma, IL-13, IL-10, and TNF-alpha. We investigated whether distinct cytokine patterns associated with atopic disease can be detected in immune responses of children. PBMCs were isolated, and allergen-induced cytokine secretion was analyzed by means of ELISA. Atopic disease was defined as physician- or nurse-diagnosed eczema or hay fever. Increased IgE was defined as an IgE level of greater than 35 U/mL to dust mite, cockroach, cat, and egg white or a total IgE level of 60 U/mL or greater. Compared with children without atopic disease, children with atopic disease had lower Der f 1 (P =.005) and Bla g 2 (P =.03) allergen-induced IFN-gamma levels. Compared with children without increased IgE (n = 95), those with increased IgE (n = 16) had higher Der f 1-induced (P =.006) and Fel d 1-induced (P =.005) IL-13 levels and lower Bla g 2-induced (P =.03) IFN-gamma levels. Compared with children with neither atopic disease nor repeated wheeze, children with both atopic disease and repeated wheeze had lower levels of allergen-induced IFN-gamma (P =.01 for Der f 1 and P =.02 for Bla g 2) cytokine secretion. In young children at risk for asthma or allergy, decreased allergen-induced IFN-gamma secretion is associated with atopic disease and, in some cases, with increased IgE levels. Increased allergen-induced IL-13 secretion is most strongly associated with early life increase of IgE.

  18. Effects of routine prophylactic vaccination or administration of aluminum adjuvant alone on allergen-specific serum IgE and IgG responses in allergic dogs.

    PubMed

    Tater, Kathy C; Jackson, Hilary A; Paps, Judy; Hammerberg, Bruce

    2005-09-01

    To determine the acute corn-specific serum IgE and IgG, total serum IgE, and clinical responses to s.c. administration of prophylactic vaccines and aluminum adjuvant in corn-allergic dogs. 20 allergic and 8 nonallergic dogs. 17 corn-allergic dogs were vaccinated. Eight clinically normal dogs also were vaccinated as a control group. Serum corn-specific IgE, corn-specific IgG, and total IgE concentrations were measured in each dog before vaccination and 1 and 3 weeks after vaccination by use of an ELISA. The corn-allergic dogs also had serum immunoglobulin concentrations measured at 8 and 9 weeks after vaccination. Twenty allergic dogs received a s.c. injection of aluminum adjuvant, and serum immunoglobulin concentrations were measured in each dog 1, 2, 3, 4, and 8 weeks after injection. The allergic dogs were examined during the 8 weeks after aluminum administration for clinical signs of allergic disease. The allergic dogs had significant increases in serum corn-specific IgE and IgG concentrations 1 and 3 weeks after vaccination but not 8 or 9 weeks after vaccination. Control dogs did not have a significant change in serum immunoglobulin concentrations after vaccination. After injection of aluminum adjuvant, the allergic dogs did not have a significant change in serum immunoglobulin concentrations or clinical signs. Allergen-specific IgE and IgG concentrations increase after prophylactic vaccination in allergic dogs but not in clinically normal dogs. Prophylactic vaccination of dogs with food allergies may affect results of serologic allergen-specific immunoglobulin testing performed within 8 weeks after vaccination.

  19. A differing pattern of association between dietary fish and allergen-specific subgroups of atopy.

    PubMed

    Andreasyan, K; Ponsonby, A-L; Dwyer, T; Kemp, A; Dear, K; Cochrane, J; Carmichael, A

    2005-05-01

    We examined the role of fish intake in the development of atopic disease with particular reference to the possibility of differential effects on allergen-specific subgroups of sensitization. The exposure of interest was parental report of fish intake by children aged 8 years at the 1997 Childhood Allergy and Respiratory Health Study (n = 499). The outcomes of interest were subgroups of atopy: house dust mite (HDM)-pure sensitization [a positive skin-prick test (SPT) > or = 2 mm to Der p or Der f only], ryegrass-pure sensitization (a positive SPT > or = 2 mm to ryegrass only); asthma and hay fever by allergen-specific sensitization. A significant association between fish intake and ryegrass-pure [adjusted odds ratio (AOR) 0.37 (0.15-0.90)] but not HDM-pure sensitization [AOR 0.87 (0.36-2.13)] was found. Fish consumption significantly decreased the risk for ryegrass-pure sensitization in comparison with HDM-pure sensitization [AOR 0.20 (0.05-0.79)]. We have demonstrated a differential effect of fish intake for sensitization to different aeroallergens. This may be due to the different timing of allergen exposure during early life. Further investigation of the causes of atopic disease should take into account allergen-specific subgroups.

  20. Grass pollen allergens globally: the contribution of subtropical grasses to burden of allergic respiratory diseases.

    PubMed

    Davies, J M

    2014-06-01

    Grass pollens of the temperate (Pooideae) subfamily and subtropical subfamilies of grasses are major aeroallergen sources worldwide. The subtropical Chloridoideae (e.g. Cynodon dactylon; Bermuda grass) and Panicoideae (e.g. Paspalum notatum; Bahia grass) species are abundant in parts of Africa, India, Asia, Australia and the Americas, where a large and increasing proportion of the world's population abide. These grasses are phylogenetically and ecologically distinct from temperate grasses. With the advent of global warming, it is conceivable that the geographic distribution of subtropical grasses and the contribution of their pollen to the burden of allergic rhinitis and asthma will increase. This review aims to provide a comprehensive synthesis of the current global knowledge of (i) regional variation in allergic sensitivity to subtropical grass pollens, (ii) molecular allergenic components of subtropical grass pollens and (iii) allergic responses to subtropical grass pollen allergens in relevant populations. Patients from subtropical regions of the world show higher allergic sensitivity to grass pollens of Chloridoideae and Panicoideae grasses, than to temperate grass pollens. The group 1 allergens are amongst the allergen components of subtropical grass pollens, but the group 5 allergens, by which temperate grass pollen extracts are standardized for allergen content, appear to be absent from both subfamilies of subtropical grasses. Whilst there are shared allergenic components and antigenic determinants, there are additional clinically relevant subfamily-specific differences, at T- and B-cell levels, between pollen allergens of subtropical and temperate grasses. Differential immune recognition of subtropical grass pollens is likely to impact upon the efficacy of allergen immunotherapy of patients who are primarily sensitized to subtropical grass pollens. The literature reviewed herein highlights the clinical need to standardize allergen preparations for both

  1. Microwave ablation combined with OK-432 induces Th1-type response and specific antitumor immunity in a murine model of breast cancer.

    PubMed

    Li, Li; Wang, Wei; Pan, Hong; Ma, Ge; Shi, Xinyi; Xie, Hui; Liu, Xiaoan; Ding, Qiang; Zhou, Wenbin; Wang, Shui

    2017-01-31

    Minimally invasive therapies, such as microwave ablation (MWA), are widely used for the treatment of solid tumors. Previous studies suggest that MWA is feasible for the treatment of small breast cancer, and thermal ablation may induce adaptive antitumor immunity. However, the induced immune responses are mostly weak, and the immunomodulation effects of MWA in breast cancer are unclear. Immunostimulant OK-432 can induce tumor-specific T-cell responses and may augment the immunity induced by MWA. We treated 4T1 breast cancer bearing BALB/c mice with MWA, OK-432, MWA plus OK-432, or left without treatment. Survival time was evaluated with the Kaplan-Meyer method comparing survival curves by log-rank test. On day 25 after ablation, surviving mice received tumor rechallenge, and the rechallenged tumor volumes were calculated every 5 days. Immunohistochemistry and flow cytometry were used to evaluate the T-cell immune responses in ablated tissues and spleens. The tumor-specific immunity was assessed by enzyme-linked immunospot assays. Besides, the cytokine patterns were identified from enzyme-linked immunosorbent assay. Microwave ablation plus OK-432 resulted in longer survival than single treatment and protect most surviving mice from tumor rechallenge. Both local and systemic T-cell responses were induced by MWA and were further enhanced by subsequent administration of OK-432. Moreover, the combination of MWA and OK-432 induced stronger tumor-specific immune responses than MWA alone. In addition, OK-432 and MWA synergistically promoted the production of Th1-type but not Th2-type cytokines, and polarized T-cell responses to Th1-dominant state. The T-cell immune responses were activated by MWA in breast cancer. Furthermore, the combination of MWA and OK-432 induced Th1-type response and elicited specific antitumor immunity.

  2. A method for measuring mouse respiratory allergic reaction to low-dose chemical exposure to allergens: an environmental chemical of uncertain allergenicity, a typical contact allergen and a non-sensitizing irritant.

    PubMed

    Fukuyama, Tomoki; Tajima, Yukari; Ueda, Hideo; Hayashi, Koichi; Shutoh, Yasufumi; Harada, Takanori; Kosaka, Tadashi

    2010-05-19

    Our aim was to improve a method for detecting respiratory hypersensitivity by testing three confirmed respiratory allergens (trimellitic anhydride [TMA], phthalic anhydride [PA] and toluene diisocyanate [TDI]), an environmental chemical of uncertain allergenicity (2,4-d-butyl [DB]), a confirmed contact allergen (2,4-dinitrochlorobenzene [DNCB]) and a standard irritant (sodium dodecyl sulfate [SDS]). BALB/c mice were topically sensitized (nine times in 3 weeks) with these chemicals, then challenged via the trachea. One day post-challenge, samples were taken from the mice to assay for total immunoglobulin (IgE and IgG(1)) levels in serum and bronchoalveolar lavage fluid (BALF); differential cell counts and cytokine/chemokine levels in BALF; lymphocyte counts and surface antigen expression on B-cells within lung-associated lymph nodes (LNs); ex situ cytokine production by cells from these LNs; and gene expression in BALF (CCR3) and LNs (CCR4, STAT6 and GATA-3). The three confirmed respiratory allergens and DB induced immune response characteristic of immediate-type respiratory reactions, as evidenced by increased total IgE and IgG(1) levels; influx of eosinophils, neutrophils, chemokines and cytokines in BALF; increased surface antigen expression on B-cells in LNs; increased Th2 cytokine production in LNs; and increased respiratory allergy-related gene expression in both BALF and LNs. In contrast, DNCB and SDS treatments yielded, at most, insignificant increases in all respiratory allergic parameters. Thus, the protocol was equally suitable for use with an environmental chemical of unknown allergenicity and for typical respiratory allergens. Since the protocol differentiated respiratory allergens from contact allergens and irritants, it may be useful for detecting respiratory allergy related to environmental chemicals. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  3. The Specificity of Innate Immune Responses Is Enforced by Repression of Interferon Response Elements by NF-κB p50

    PubMed Central

    Cheng, Christine S.; Feldman, Kristyn E.; Lee, James; Verma, Shilpi; Huang, De-Bin; Huynh, Kim; Chang, Mikyoung; Ponomarenko, Julia V.; Sun, Shao-Cong; Benedict, Chris A.; Ghosh, Gourisankar; Hoffmann, Alexander

    2011-01-01

    The specific binding of transcription factors to cognate sequence elements is thought to be critical for the generation of specific gene expression programs. Members of the nuclear factor κB (NF-κB) and interferon (IFN) regulatory factor (IRF) transcription factor families bind to the κB site and the IFN response element (IRE), respectively, of target genes, and they are activated in macrophages after exposure to pathogens. However, how these factors produce pathogen-specific inflammatory and immune responses remains poorly understood. Combining top-down and bottom-up systems biology approaches, we have identified the NF-κB p50 homodimer as a regulator of IRF responses. Unbiased genome-wide expression and biochemical and structural analyses revealed that the p50 homodimer repressed a subset of IFN-inducible genes through a previously uncharacterized subclass of guanine-rich IRE (G-IRE) sequences. Mathematical modeling predicted that the p50 homodimer might enforce the stimulus specificity of composite promoters. Indeed, the production of the antiviral regulator IFN-β was rendered stimulus-specific by the binding of the p50 homodimer to the G-IRE–containing IFNβ enhancer to suppress cytotoxic IFN signaling. Specifically, a deficiency in p50 resulted in the inappropriate production of IFN-β in response to bacterial DNA sensed by Toll-like receptor 9. This role for the NF-κB p50 homodimer in enforcing the specificity of the cellular response to pathogens by binding to a subset of IRE sequences alters our understanding of how the NF-κB and IRF signaling systems cooperate to regulate antimicrobial immunity. PMID:21343618

  4. Food allergy in breastfeeding babies. Hidden allergens in human milk.

    PubMed

    Martín-Muñoz, M F; Pineda, F; García Parrado, G; Guillén, D; Rivero, D; Belver, T; Quirce, S

    2016-07-01

    Food allergy is a rare disorder among breastfeeding babies. Our aim was to identify responsible allergens in human milk. We studied babies developing allergic symptoms at the time they were breastfeeding. Skin prick tests (SPT) were performed with breast milk and food allergens. Specific IgE was assessed and IgE Immunoblotting experiments with breast milk were carried out to identify food allergens. Clinical evolution was evaluated after a maternal free diet. Five babies had confirmed breast milk allergy. Peanut, white egg and/or cow's milk were demonstrated as the hidden responsible allergens. No baby returned to develop symptoms once mother started a free diet. Three of these babies showed tolerance to other food allergens identified in human milk. A maternal free diet should be recommended only if food allergy is confirmed in breastfed babies.

  5. Characterization of oral immune cells in birch pollen-allergic patients: impact of the oral allergy syndrome and sublingual allergen immunotherapy on antigen-presenting cells.

    PubMed

    Mascarell, L; Rak, S; Worm, M; Melac, M; Soulie, S; Lescaille, G; Lemoine, F; Jospin, F; Paul, S; Caplier, L; Hasséus, B; Björhn, C; Zeldin, R K; Baron-Bodo, V; Moingeon, P

    2015-04-01

    A detailed characterization of human oral immune cells is needed to better understand local mechanisms associated with allergen capture following oral exposure. Oral immune cells were characterized by immunohistology and immunofluorescence in biopsies obtained from three healthy individuals and 23 birch pollen-allergic patients with/without oral allergy syndrome (OAS), at baseline and after 5 months of sublingual allergen immunotherapy (AIT). Similar cell subsets (i.e., dendritic cells, mast cells, and T lymphocytes) were detected in oral tissues from healthy and birch pollen-allergic individuals. CD207+ Langerhans cells (LCs) and CD11c+ myeloid dendritic cells (DCs) were found in both the epithelium and the papillary layer of the Lamina propria (LP), whereas CD68+ macrophages, CD117+ mast cells, and CD4+ /CD8+ T cells were rather located in both the papillary and reticular layers of the LP. Patterns of oral immune cells were identical in patients with/without OAS, except lower numbers of CD207+ LCs found in oral tissues from patients with OAS, when compared to OAS- patients (P < 0.05). A 5-month sublingual AIT had a limited impact on oral immune cells, with only a significant increase in IgE+ cells in patients from the active group. Colocalization experiments confirmed that such IgE-expressing cells mostly encompass CD68+ macrophages located in the LP, and to a lesser extent CD207+ LCs in the epithelium. Two cell subsets contribute to antigen/allergen uptake in human oral tissues, including (i) CD207+ LCs possibly involved in the physiopathology of OAS and (ii) CD68+ macrophages likely critical in allergen capture via IgE-facilitated mechanisms during sublingual AIT. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Vagal afferents contribute to exacerbated airway responses following ozone and allergen challenge

    PubMed Central

    Schelegle, Edward S.; Walby, William F.

    2012-01-01

    Brown-Norway rats (n = 113) sensitized and challenged with nDer f 1 allergen were used to examine the contribution of lung sensory nerves to ozone (O3) exacerbation of asthma. Prior to their third challenge rats inhaled 1.0 ppm O3 for 8 hours. There were three groups: 1) control; 2) vagus perineural capsaicin treatment (PCT) with or without hexamethonium; and 3) vagotomy. O3 inhalation resulted in a significant increase in lung resistance (RL) and an exaggerated response to subsequent allergen challenge. PCT abolished the O3-induced increase in RL and significantly reduced the increase in RL induced by a subsequent allergen challenge, while hexamethonium treatment reestablished bronchoconstriction induced by allergen challenge. Vagotomy resulted in a significant increase in the bronchoconstriction induced by O3 inhalation and subsequent challenge with allergen. In this model of O3 exacerbation of asthma, vagal C-fibers initiate reflex bronchoconstriction, vagal myelinated fibers initiate reflex bronchodilation, and mediators released within the airway initiate bronchoconstriction. PMID:22525484

  7. Immune response

    MedlinePlus

    Innate immunity; Humoral immunity; Cellular immunity; Immunity; Inflammatory response; Acquired (adaptive) immunity ... normal and usually does not react against them. INNATE IMMUNITY Innate, or nonspecific, immunity is the defense ...

  8. Plant Pathogenesis-Related Proteins PR-10 and PR-14 as Components of Innate Immunity System and Ubiquitous Allergens.

    PubMed

    Finkina, Ekaterina I; Melnikova, Daria N; Bogdanov, Ivan V; Ovchinnikova, Tatiana V

    2017-01-01

    Pathogenesis-related (PR) proteins are components of innate immunity system in plants. They play an important role in plant defense against pathogens. Lipid transfer proteins (LTPs) and Bet v 1 homologs comprise of two separate families of PR-proteins. Both LTPs (PR-14) and Bet v 1 homologs (PR-10) are multifunctional small proteins involving in plant response to abiotic and biotic stress conditions. The representatives of these PR-protein families do not show any sequence similarity but have other common biochemical features such as low molecular masses, the presence of hydrophobic cavities, ligand binding properties, and antimicrobial activities. Besides, many members of PR-10 and PR-14 families are ubiquitous plant panallergens which are able to cause sensitization of human immune system and crossreactive allergic reactions to plant food and pollen. This review is aimed at comparative analysis of structure-functional and allergenic properties of the PR-10 and PR-14 families, as well as prospects for their medicinal application. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Aryl Hydrocarbon Receptor Protects Lungs from Cockroach Allergen-Induced Inflammation by Modulating Mesenchymal Stem Cells.

    PubMed

    Xu, Ting; Zhou, Yufeng; Qiu, Lipeng; Do, Danh C; Zhao, Yilin; Cui, Zhuang; Wang, Heng; Liu, Xiaopeng; Saradna, Arjun; Cao, Xu; Wan, Mei; Gao, Peisong

    2015-12-15

    Exposure to cockroach allergen leads to allergic sensitization and increased risk of developing asthma. Aryl hydrocarbon receptor (AhR), a receptor for many common environmental contaminants, can sense not only environmental pollutants but also microbial insults. Mesenchymal stem cells (MSCs) are multipotent progenitor cells with the capacity to modulate immune responses. In this study, we investigated whether AhR can sense cockroach allergens and modulate allergen-induced lung inflammation through MSCs. We found that cockroach allergen-treated AhR-deficient (AhR(-/-)) mice showed exacerbation of lung inflammation when compared with wild-type (WT) mice. In contrast, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), an AhR agonist, significantly suppressed allergen-induced mouse lung inflammation. MSCs were significantly reduced in cockroach allergen-challenged AhR(-/-) mice as compared with WT mice, but increased in cockroach allergen-challenged WT mice when treated with TCDD. Moreover, MSCs express AhR, and AhR signaling can be activated by cockroach allergen with increased expression of its downstream genes cyp1a1 and cyp1b1. Furthermore, we tracked the migration of i.v.-injected GFP(+) MSCs and found that cockroach allergen-challenged AhR(-/-) mice displayed less migration of MSCs to the lungs compared with WT. The AhR-mediated MSC migration was further verified by an in vitro Transwell migration assay. Epithelial conditioned medium prepared from cockroach extract-challenged epithelial cells significantly induced MSC migration, which was further enhanced by TCDD. The administration of MSCs significantly attenuated cockroach allergen-induced inflammation, which was abolished by TGF-β1-neutralizing Ab. These results suggest that AhR plays an important role in protecting lungs from allergen-induced inflammation by modulating MSC recruitment and their immune-suppressive activity. Copyright © 2015 by The American Association of Immunologists, Inc.

  10. Depigmented and polymerised house dust mite allergoid: allergen content, induction of IgG4 and clinical response.

    PubMed

    Gallego, M T; Iraola, V; Himly, M; Robinson, D S; Badiola, C; García-Robaina, J C; Briza, P; Carnés, J

    2010-01-01

    Polymerised allergenic extracts (allergoids) are commonly used in allergen immunotherapy. Clinical efficacy and safety of these extracts have been demonstrated. Recently, allergen sequences have been identified by mass spectrometry in depigmented and polymerised (Dpg-Pol) extracts. The objectives of this study were to investigate the presence of allergens in Dpg-Pol extracts of house dust mite and to analyze the immunological changes induced by these extracts in asthmatic patients enrolled in a double-blind, placebo-controlled study. Dpg-Pol extracts were manufactured and vaccines with a composition of 50% Dermatophagoides pteronyssinus and 50% D. farinae (100 HEPL/ml) were prepared. Allergen composition was analyzed by mass spectrometry. Patients with asthma and rhinoconjunctivitis were treated in a 1-year, double-blind, placebo-controlled, parallel-group study with 6 up-dosing and monthly maintenance injections. Specific IgE and IgG4 titres to D. pteronyssinus, Der p 1 and Der p 2 were measured in patients' sera using the CAP system and direct ELISA experiments. Sequences from the major allergens Der p 1 and Der p 2 and from other allergens were identified in native and Dpg-Pol extracts. There was a statistically significant increase in specific IgG4, a decrease in the ratio of IgE/IgG4 to D. pteronyssinus and a significant increase in specific IgG4 to Der p 1 and Der p 2 in the patients allotted to active treatment. The detection of allergen sequences suggests preservation of major and minor allergens in Dpg-Pol allergoids from house dust mites. Efficacy in asthma treatment and the increase in specific IgG4 seem to be associated with the presence of major allergens in Dpg-Pol allergen extracts. Copyright (c) 2010 S. Karger AG, Basel.

  11. Stratum corneum profiles of inflammatory mediators in patch test reactions to common contact allergens and sodium lauryl sulfate.

    PubMed

    Koppes, S A; Ljubojevic Hadzavdic, S; Jakasa, I; Franceschi, N; Jurakić Tončić, R; Marinović, B; Brans, R; Gibbs, S; Frings-Dresen, M H W; Rustemeyer, T; Kezic, S

    2017-06-01

    Recent studies have demonstrated allergen-specific differences in the gene expression of inflammatory mediators in patch tested skin. To determine levels of various inflammatory mediators in the stratum corneum (SC) after patch testing with common contact allergens and the skin irritant sodium lauryl sulfate (SLS). In total, 27 individuals who had previously patch tested positive to nickel, chromium, methylchloroisothiazolinone/methylisothiazolinone (MCI/MI) or para-phenylenediamine were retested and then patch tested with SLS and petrolatum, with petrolatum serving as the patch test control. At 72 h, the test sites were clinically graded and the SC samples collected on adhesive tape. The levels of 18 of the 32 quantified mediators differed significantly from that of the control patches for at least one of the tested substances. SLS and MCI/MI induced the largest number of immunomediators. Interleukin (IL)-16 levels were significantly higher in patch test reactions in all allergens than they were in the controls, while no significant difference was detected for SLS. Furthermore, a strong negative correlation was found between strength of patch test reaction and IL-1α levels. Cytokine profiles in the SC of patch tested skin did not show a distinct allergen-specific pattern. However, MCI/MI induced a larger and wider immune response than the other allergens, perhaps due to its potency as an irritant. The levels of IL-16 were significantly increased in patch test reactions to allergens but not to SLS; thus, they may help clinicians to differentiate between allergic contact dermatitis and irritant contact dermatitis. © 2016 British Association of Dermatologists.

  12. Identification of allergens responsible for canine cutaneous adverse food reactions to lamb, beef and cow's milk.

    PubMed

    Martín, Aurea; Sierra, María-Paz; González, José L; Arévalo, María-Angeles

    2004-12-01

    Lamb, beef and cow's milk are common causes of cutaneous adverse food reactions in dogs. The aim of this study was to identify the proteins responsible for cutaneous adverse reactions to these foods. Ten dogs with allergen-specific serum immunoglobulin (Ig)E to lamb, beef and cow's milk were included in the study. These dogs had been diagnosed with cutaneous adverse food reactions by convincing clinical history and food-elimination diet trials followed by challenge exposure. Sera were analysed by enzyme-linked immunosorbent assay with bovine proteins and SDS-PAGE immunoblots with lamb, beef and cow's milk extracts. All the dogs had specific IgE against bovine IgG, and it was the only protein in the cow's milk extract that bound IgE from the sera studied. In the lamb and beef extracts, the major allergens recognized by the specific IgE of most sera had molecular masses between 51 and 58 kDa, which were identified as phosphoglucomutase and the IgG heavy chain. Other IgE-binding proteins with molecular masses of 27, 31, 33, 37 and 42 kDa were also detected with some sera. Our results indicate that bovine IgG is a major allergen in cow's milk and hence it appears to be a source of cross-reactivity with beef and probably with lamb because of the high homology with ovine immunoglobulins. These results are similar to those found for meat allergy in humans. However, this is the first time that phosphoglucomutase has been identified as an important allergen involved in allergic reactions to lamb and beef.

  13. Specific immune response genes of new inbred strains of guinea pigs.

    PubMed

    Chiba, J; Egashira, Y

    1978-01-01

    Distribution of specific immune-response (Ir) genes controlling responsiveness to synthetic polypeptide antigens, homopolymer of poly-L-lysine (PLL), copolymer of L-glutamic acid and L-alanine (GA) and copolymer of L-glutamic acid and L-tyrosine (GT), and limiting doses of 2,4-dinitrophenyl guinea pig serum albumin (DNP-GPA) was surveyed in new inbred strains of guinea pigs, JY 1, JY 2, JY 9 and JY 10, established in this Institute. The PLL gene was not found in any of the guinea pigs. The GA gene was found in JY 1 and JY 2 guinea pigs and the GT gene in all the guinea pigs. The gene controlling responsiveness to low doses (1 microgram) of DNP-GPA was found in JY 1, JY 9 and JY 10 guinea pigs. The associated (Ia) antigens was discussed.

  14. Comparing Proteolytic Fingerprints of Antigen-Presenting Cells during Allergen Processing.

    PubMed

    Hofer, Heidi; Weidinger, Tamara; Briza, Peter; Asam, Claudia; Wolf, Martin; Twaroch, Teresa E; Stolz, Frank; Neubauer, Angela; Dall, Elfriede; Hammerl, Peter; Jacquet, Alain; Wallner, Michael

    2017-06-08

    Endolysosomal processing has a critical influence on immunogenicity as well as immune polarization of protein antigens. In industrialized countries, allergies affect around 25% of the population. For the rational design of protein-based allergy therapeutics for immunotherapy, a good knowledge of T cell-reactive regions on allergens is required. Thus, we sought to analyze endolysosomal degradation patterns of inhalant allergens. Four major allergens from ragweed, birch, as well as house dust mites were produced as recombinant proteins. Endolysosomal proteases were purified by differential centrifugation from dendritic cells, macrophages, and B cells, and combined with allergens for proteolytic processing. Thereafter, endolysosomal proteolysis was monitored by protein gel electrophoresis and mass spectrometry. We found that the overall proteolytic activity of specific endolysosomal fractions differed substantially, whereas the degradation patterns of the four model allergens obtained with the different proteases were extremely similar. Moreover, previously identified T cell epitopes were assigned to endolysosomal peptides and indeed showed a good overlap with known T cell epitopes for all four candidate allergens. Thus, we propose that the degradome assay can be used as a predictor to determine antigenic peptides as potential T cell epitopes, which will help in the rational design of protein-based allergy vaccine candidates.

  15. Comparing Proteolytic Fingerprints of Antigen-Presenting Cells during Allergen Processing

    PubMed Central

    Hofer, Heidi; Weidinger, Tamara; Briza, Peter; Asam, Claudia; Wolf, Martin; Twaroch, Teresa E.; Stolz, Frank; Neubauer, Angela; Dall, Elfriede; Hammerl, Peter; Jacquet, Alain; Wallner, Michael

    2017-01-01

    Endolysosomal processing has a critical influence on immunogenicity as well as immune polarization of protein antigens. In industrialized countries, allergies affect around 25% of the population. For the rational design of protein-based allergy therapeutics for immunotherapy, a good knowledge of T cell-reactive regions on allergens is required. Thus, we sought to analyze endolysosomal degradation patterns of inhalant allergens. Four major allergens from ragweed, birch, as well as house dust mites were produced as recombinant proteins. Endolysosomal proteases were purified by differential centrifugation from dendritic cells, macrophages, and B cells, and combined with allergens for proteolytic processing. Thereafter, endolysosomal proteolysis was monitored by protein gel electrophoresis and mass spectrometry. We found that the overall proteolytic activity of specific endolysosomal fractions differed substantially, whereas the degradation patterns of the four model allergens obtained with the different proteases were extremely similar. Moreover, previously identified T cell epitopes were assigned to endolysosomal peptides and indeed showed a good overlap with known T cell epitopes for all four candidate allergens. Thus, we propose that the degradome assay can be used as a predictor to determine antigenic peptides as potential T cell epitopes, which will help in the rational design of protein-based allergy vaccine candidates. PMID:28594355

  16. Kill: boosting HIV-specific immune responses.

    PubMed

    Trautmann, Lydie

    2016-07-01

    Increasing evidence suggests that purging the latent HIV reservoir in virally suppressed individuals will require both the induction of viral replication from its latent state and the elimination of these reactivated HIV-infected cells ('Shock and Kill' strategy). Boosting potent HIV-specific CD8 T cells is a promising way to achieve an HIV cure. Recent studies provided the rationale for developing immune interventions to increase the numbers, function and location of HIV-specific CD8 T cells to purge HIV reservoirs. Multiple approaches are being evaluated including very early suppression of HIV replication in acute infection, adoptive cell transfer, therapeutic vaccination or use of immunomodulatory molecules. New assays to measure the killing and antiviral function of induced HIV-specific CD8 T cells have been developed to assess the efficacy of these new approaches. The strategies combining HIV reactivation and immunobased therapies to boost HIV-specific CD8 T cells can be tested in in-vivo and in-silico models to accelerate the design of new clinical trials. New immunobased strategies are explored to boost HIV-specific CD8 T cells able to purge the HIV-infected cells with the ultimate goal of achieving spontaneous control of viral replication without antiretroviral treatment.

  17. Kill: Boosting HIV-specific immune responses

    PubMed Central

    Trautmann, Lydie

    2016-01-01

    Purpose of review Increasing evidences suggest that purging the latent HIV reservoir in virally-suppressed individuals will require both the induction of viral replication from its latent state and the elimination of these reactivated HIV infected cells (“Shock and Kill” strategy). Boosting potent HIV-specific CD8 T cells is a promising way to achieve an HIV cure. Recent findings Recent studies provided the rationale for developing immune interventions to increase the numbers, function and location of HIV-specific CD8 T cells to purge HIV reservoirs. Multiple approaches are being evaluated including very early suppression of HIV replication in acute infection, adoptive cell transfer, therapeutic vaccination or use of immunomodulatory molecules. New assays to measure the killing and antiviral function of induced HIV-specific CD8 T cells have been developed to assess the efficacy of these new approaches. The strategies combining HIV reactivation and immunobased therapies to boost HIV-specific CD8 T cells can be tested in in vivo and in silico models to accelerate the design of new clinical trials. Summary New immunobased strategies are explored to boost HIV-specific CD8 T cells able to purge the HIV-infected cells with the ultimate goal of achieving spontaneous control of viral replication without antiretroviral treatment. PMID:27054280

  18. Multicolor flow-cytometric analysis of milk allergen-specific T-helper type 2 cells revealed coexpression of interleukin-4 with Foxp3.

    PubMed

    Yamawaki, Kazuo; Inuo, Chisato; Nomura, Takayasu; Tanaka, Kenichi; Nakajima, Yoichi; Kondo, Yasuto; Yoshikawa, Tetsushi; Urisu, Atsuo; Tsuge, Ikuya

    2015-12-01

    Allergen-specific T-helper type 2 (TH2) cells play an important role in the development of allergic inflammation; however, investigations of the properties of allergen-specific T cells have been challenging in humans. Despite clear evidence that forkhead box p3 (Foxp3) is expressed in conventional effector T cells, its function has remained unknown. To characterize allergen-specific TH2 cells in milk allergy, with particular focus on the expression of Foxp3. Twenty-one children with milk allergy and 11 children without milk allergy were studied. Peripheral blood mononuclear cells from subjects were stimulated with milk allergen for 6 hours and analyzed using multicolor flow cytometry to identify CD154(+) allergen-specific T-helper cells. Simultaneously, the expression of intracellular cytokines and Foxp3 was analyzed. The milk allergy group had significantly larger numbers of milk allergen-specific interleukin (IL)-4- and IL-5-producing CD4(+) T cells than the control group. Subjects in the milk allergy group had significantly more CD154(+)CD4(+) IL-10-producing cells and CD154(+)Foxp3(+)CD4(+) cells than those in the control group. In addition, the number of milk allergen-specific CD154(+)Foxp3(+)CD4(+) cells strongly correlated with that of CD154(+)IL4(+)CD4(+) cells. Bcl-2 expression in CD154(+)IL-4(+)Foxp3(+) T-helper cells was significantly lower compared with that in total CD4 cells. Increased numbers of IL-4-producing allergen-specific T-helper cells were found in patients with milk allergy. In addition, Foxp3 was coexpressed with IL-4 in allergen-specific TH2 cells from patients. This coexpression was associated with lower Bcl-2 levels and could contribute to the phenotype and function of TH2 cells. Copyright © 2015 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  19. Modulation of immune response to Lol p I by pretreatment with anti-idiotypic antibody is not restricted to the idiotypic expression.

    PubMed Central

    Boutin, Y; Hébert, J

    1994-01-01

    To study the role of anti-idiotypic antibodies in the regulation of the immune response to Lol p I (the major allergenic component of rye grass pollen), we have recently generated a panel of three MoAbs directed against distinct epitopes of Lolp I and an anti-idiotypic MoAb directed against the idiotype borne by one of the anti-Lol p I MoAbs (290A-167). The effects of pretreatment with this anti-idiotypic MoAb in BALB/c mice before immunization with the antigen have been examined. The anti-idiotypic MoAb or unrelated MoAb were given weekly for 8 weeks intraperitoneally. Mice then received the antigen (2 micrograms) adsorbed with alum (2 mg) at weeks 9, 11 and 13. Serum anti-Lol p I antibodies (IgG or IgE) and specific idiotypic responses were measured. Anti-Lol p I IgG antibodies could be detected before immunization with Lol p I only in mice pretreated with anti-idiotypic MoAb. Immunization with Lol p I induced an anti-Lol p I IgG response in both groups, but this response was higher in mice that received anti-idiotypic MoAb. Similar profiles were seen for specific IgE antibodies and idiotypic responses. Surprisingly, idiotypes borne by other anti-Lol p I MoAbs (539A-6 and 348A-6) had also been enhanced after pretreatment with the anti-290A-167 MoAb. These observations suggested that the pretreatment with this anti-idiotypic MoAb modulates not only the expression of the respective idiotype, but also affects other idiotype responses. PMID:7514517

  20. Modulation of Specific and Allergy-Related Immune Responses by Helminths

    PubMed Central

    Daniłowicz-Luebert, Emilia; O'Regan, Noëlle L.; Steinfelder, Svenja; Hartmann, Susanne

    2011-01-01

    Helminths are master regulators of host immune responses utilising complex mechanisms to dampen host protective Th2-type responses and favour long-term persistence. Such evasion mechanisms ensure mutual survival of both the parasite and the host. In this paper, we present recent findings on the cells that are targeted by helminths and the molecules and mechanisms that are induced during infection. We discuss the impact of these factors on the host response as well as their effect in preventing the development of aberrant allergic inflammation. We also examine recent findings on helminth-derived molecules that can be used as tools to pinpoint the underlying mechanisms of immune regulation or to determine new anti-inflammatory therapeutics. PMID:22219659

  1. Cellular Immune Response to Cytomegalovirus Infection After Renal Transplantation

    PubMed Central

    Linnemann, Calvin C.; Kauffman, Carol A.; First, M. Roy; Schiff, Gilbert M.; Phair, John P.

    1978-01-01

    A prospective study of 15 patients who received renal transplants defined the effect of renal transplantation on the cellular immune response to cytomegalovirus infection. Of 15 patients, 14 developed cytomegalovirus infection, usually in the first 2 months after transplantation, and all infections were accompanied by a normal humoral immune response. After the initiation of immunosuppressive therapy and transplantation, there was a general depression of lymphocyte transformation, as reflected in the response to phytohemagglutinin, accompanied by a specific defect in cellular immunity, as indicated by lymphocyte transformation to cytomegalovirus antigen. Eleven patients had cellular immunity to cytomegalovirus before transplantation, and all of these became negative in the first month after transplantation. In subsequent months, only 6 of the 14 study patients with cytomegalovirus infection developed specific cellular immune responses to cytomegalovirus. This occurred most often in patients who had severe febrile illnesses in association with infection. The specific cellular immune response which developed in the posttransplant period did not persist in three of the patients. This study demonstrates the dissociation of the humoral and cellular immune response to cytomegalovirus infection in renal transplant patients and indicates the importance of the loss of cellular immunity in the appearance of infection. Previously infected patients lost their cell-mediated immunity and had reactivation infections despite the presence of serum antibody. PMID:215541

  2. Investigations of immunogenic, allergenic and adjuvant properties of Cry1Ab protein after intragastric exposure in a food allergy model in mice.

    PubMed

    Andreassen, Monica; Bøhn, Thomas; Wikmark, Odd-Gunnar; Bodin, Johanna; Traavik, Terje; Løvik, Martinus; Nygaard, Unni Cecilie

    2016-05-04

    In genetically modified (GM) crops there is a risk that the inserted genes may introduce new allergens and/or adjuvants into the food and feed chain. The MON810 maize, expressing the insecticidal Cry1Ab toxin, is grown in many countries worldwide. In animal models, intranasal and intraperitoneal immunisations with the purified Cry1Ab proteins have induced immune responses, and feeding trials with Cry1Ab-containing feed have revealed some altered immune responses. Previous investigations have primarily measured antibody responses to the protein, while investigations of clinical food allergy symptoms, or allergy promotion (adjuvant effect) associated with the Cry1Ab protein are largely missing. We aimed to investigate immunogenic, allergenic and adjuvant properties of purified Cry1Ab toxin (trypCry1Ab, i.e., trypsin activated Cry1Ab) in a mouse model of food allergy. Female C3H/HeJ mice were immunized by intragastric gavage of 10 μg purified, trypsin activated Cry1Ab toxin (trypCry1Ab) alone or together with the food allergen lupin. Cholera toxin was added as a positive control for adjuvant effect to break oral tolerance. Clinical symptoms (anaphylaxis) as well as humoral and cellular responses were assessed. In contrast to results from previous airway investigations, we observed no indication of immunogenic properties of trypCry1Ab protein after repeated intragastric exposures to one dose, with or without CT as adjuvant. Moreover, the results indicated that trypCry1Ab given by the intragastric route was not able to promote allergic responses or anaphylactic reactions against the co-administered allergen lupin at the given dose. The study suggests no immunogenic, allergenic or adjuvant capacity of the given dose of trypCry1Ab protein after intragastric exposure of prime aged mice.

  3. Blocking antibodies induced by immunization with a hypoallergenic parvalbumin mutant reduce allergic symptoms in a mouse model of fish allergy

    PubMed Central

    Freidl, Raphaela; Gstoettner, Antonia; Baranyi, Ulrike; Swoboda, Ines; Stolz, Frank; Focke-Tejkl, Margarete; Wekerle, Thomas; van Ree, Ronald; Valenta, Rudolf; Linhart, Birgit

    2017-01-01

    Background Fish is a frequent elicitor of severe IgE-mediated allergic reactions. Beside avoidance, there is currently no allergen-specific therapy available. Hypoallergenic variants of the major fish allergen, parvalbumin, for specific immunotherapy based on mutation of the 2 calcium-binding sites have been developed. Objectives This study sought to establish a mouse model of fish allergy resembling human disease and to investigate whether mouse and rabbit IgG antibodies induced by immunization with a hypoallergenic mutant of the major carp allergen protect against allergic symptoms in sensitized mice. Methods C3H/HeJ mice were sensitized with recombinant wildtype Cyp c 1 or carp extract by intragastric gavage. Antibody, cellular immune responses, and epitope specificity in sensitized mice were investigated by ELISA, rat basophil leukemia assay, T-cell proliferation experiments using recombinant wildtype Cyp c 1, and overlapping peptides spanning the Cyp c 1 sequence. Anti-hypoallergenic Cyp c 1 mutant mouse and rabbit sera were tested for their ability to inhibit IgE recognition of Cyp c 1, Cyp c 1–specific basophil degranulation, and Cyp c 1–induced allergic symptoms in the mouse model. Results A mouse model of fish allergy mimicking human disease regarding IgE epitope recognition and symptoms as close as possible was established. Administration of antisera generated in mice and rabbits by immunization with a hypoallergenic Cyp c 1 mutant inhibited IgE binding to Cyp c 1, Cyp c 1–induced basophil degranulation, and allergic symptoms caused by allergen challenge in sensitized mice. Conclusions Antibodies induced by immunization with a hypoallergenic Cyp c 1 mutant protect against allergic reactions in a murine model of fish allergy. PMID:27876628

  4. Blocking antibodies induced by immunization with a hypoallergenic parvalbumin mutant reduce allergic symptoms in a mouse model of fish allergy.

    PubMed

    Freidl, Raphaela; Gstoettner, Antonia; Baranyi, Ulrike; Swoboda, Ines; Stolz, Frank; Focke-Tejkl, Margarete; Wekerle, Thomas; van Ree, Ronald; Valenta, Rudolf; Linhart, Birgit

    2017-06-01

    Fish is a frequent elicitor of severe IgE-mediated allergic reactions. Beside avoidance, there is currently no allergen-specific therapy available. Hypoallergenic variants of the major fish allergen, parvalbumin, for specific immunotherapy based on mutation of the 2 calcium-binding sites have been developed. This study sought to establish a mouse model of fish allergy resembling human disease and to investigate whether mouse and rabbit IgG antibodies induced by immunization with a hypoallergenic mutant of the major carp allergen protect against allergic symptoms in sensitized mice. C3H/HeJ mice were sensitized with recombinant wildtype Cyp c 1 or carp extract by intragastric gavage. Antibody, cellular immune responses, and epitope specificity in sensitized mice were investigated by ELISA, rat basophil leukemia assay, T-cell proliferation experiments using recombinant wildtype Cyp c 1, and overlapping peptides spanning the Cyp c 1 sequence. Anti-hypoallergenic Cyp c 1 mutant mouse and rabbit sera were tested for their ability to inhibit IgE recognition of Cyp c 1, Cyp c 1-specific basophil degranulation, and Cyp c 1-induced allergic symptoms in the mouse model. A mouse model of fish allergy mimicking human disease regarding IgE epitope recognition and symptoms as close as possible was established. Administration of antisera generated in mice and rabbits by immunization with a hypoallergenic Cyp c 1 mutant inhibited IgE binding to Cyp c 1, Cyp c 1-induced basophil degranulation, and allergic symptoms caused by allergen challenge in sensitized mice. Antibodies induced by immunization with a hypoallergenic Cyp c 1 mutant protect against allergic reactions in a murine model of fish allergy. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Indoor allergens, environmental avoidance, and allergic respiratory disease.

    PubMed

    Bush, Robert K

    2008-01-01

    Indoor allergen exposure to sources such as house-dust mites, pets, fungi, and insects plays a significant role in patients with allergic rhinitis and asthma. The identification of the major allergens has led to methods that can quantitate exposure, e.g., immunoassays for Der p 1 in settled dust samples. Sensitization and the development of allergic respiratory disease result from complex genetic and environmental interactions. New paradigms that examine the role of other environmental factors, including exposure to proteases that can activate eosinophils and initiate Th2 responses, and epigenetics, are being explored. Recommendations for specific environmental allergen avoidance measures are discussed for house-dust mites, cockroaches, animal dander, and fungi. Specific measures to reduce indoor allergen exposure when vigorously applied may reduce the risk of sensitization and symptoms of allergic respiratory disease, although further research will be necessary to establish cost-effective approaches.

  6. Vagal afferents contribute to exacerbated airway responses following ozone and allergen challenge.

    PubMed

    Schelegle, Edward S; Walby, William F

    2012-05-31

    Brown-Norway rats (n=113) sensitized and challenged with nDer f 1 allergen were used to examine the contribution of lung sensory nerves to ozone (O(3)) exacerbation of asthma. Prior to their third challenge rats inhaled 1.0ppm O(3) for 8h. There were three groups: (1) control; (2) vagus perineural capsaicin treatment (PCT) with or without hexamethonium; and (3) vagotomy. O(3) inhalation resulted in a significant increase in lung resistance (R(L)) and an exaggerated response to subsequent allergen challenge. PCT abolished the O(3)-induced increase in R(L) and significantly reduced the increase in R(L) induced by a subsequent allergen challenge, while hexamethonium treatment reestablished bronchoconstriction induced by allergen challenge. Vagotomy resulted in a significant increase in the bronchoconstriction induced by O(3) inhalation and subsequent challenge with allergen. In this model of O(3) exacerbation of asthma, vagal C-fibers initiate reflex bronchoconstriction, vagal myelinated fibers initiate reflex bronchodilation, and mediators released within the airway initiate bronchoconstriction. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Phleum pratense pollen starch granules induce humoral and cell-mediated immune responses in a rat model of allergy.

    PubMed

    Motta, A; Peltre, G; Dormans, J A M A; Withagen, C E T; Lacroix, G; Bois, F; Steerenberg, P A

    2004-02-01

    Timothy grass (Phleum pratense) pollen allergens are an important cause of allergic symptoms. However, pollen grains are too large to penetrate the deeper airways. Grass pollen is known to release allergen-bearing starch granules (SG) upon contact with water. These granules can create an inhalable allergenic aerosol capable of triggering an early asthmatic response and are implicated in thunderstorm-associated asthma. We studied the humoral (IgE) and bronchial lymph node cells reactivities to SG from timothy grass pollen in pollen-sensitized rats. Brown-Norway rats were sensitized (day 0) and challenged (day 21) intratracheally with intact pollen and kept immunized by pollen intranasal instillation by 4 weeks intervals during 3 months. Blood and bronchial lymph nodes were collected 7 days after the last intranasal challenge. SG were purified from fresh timothy grass pollen using 5 microm mesh filters. To determine the humoral response (IgE) to SG, we developed an original ELISA inhibition test, based on competition between pollen allergens and purified SG. The cell-mediated response to SG in the bronchial lymph node cells was determined by measuring the uptake of [3H]thymidine in a proliferation assay. An antibody response to SG was induced, and purified SG were able to inhibit the IgE ELISA absorbance by 45%. Pollen extract and intact pollen gave inhibitions of 55% and 52%, respectively. A cell-mediated response was also found, as pollen extract, intact pollen and SG triggered proliferation of bronchial lymph node cells. It was confirmed that timothy grass pollen contains allergen-loaded SG, which are released upon contact with water. These granules were shown to be recognized by pollen-sensitized rats sera and to trigger lymph node cell proliferation in these rats. These data provide new arguments supporting the implication of grass pollen SG in allergic asthma.

  8. Changes in skin reactivity and associated factors in patients sensitized to house dust mites after 1 year of allergen-specific immunotherapy.

    PubMed

    Son, Jeong-Yeop; Jung, Mann-Hong; Koh, Kwang-Wook; Park, Eun-Kee; Heo, Jeong-Hoon; Choi, Gil-Soon; Kim, Hee-Kyoo

    2017-04-01

    Allergen-specific immunotherapy (SIT) can significantly improve symptoms and reduce the need for symptomatic medication. The aim of this study was to investigate changes in skin reactivity to house dust mites (HDMs) as an immunologic response and associated factors after 1 year of immunotherapy. A total of 80 patients with allergic airway diseases who received subcutaneous SIT with HDMs from 2009 to 2014 were evaluated. The investigated parameters were basic demographic characteristics, skin reactivity and specific IgE for HDM, serum total IgE level, blood eosinophil counts, and medication score. The mean levels of skin reactivity to HDMs, blood eosinophil counts, and medication scores after 1 year were significantly reduced from baseline. In univariate comparison of the changes in skin reactivity to HDMs, age ≤30 years, HDMs only as target of immunotherapy, and high initial skin reactivity (≥2) to HDMs were significantly associated with the reduction in skin test reactivity. In multivariate analysis, high initial skin reactivity and HDMs only as target allergens were significantly associated with changes in skin reactivity to HDMs. In the receiver operating characteristic curve of the initial mean skin reactivity to HDMs for more than 50% reduction, the optimal cutoff value was 2.14. This study showed significant reductions in allergen skin reactivity to HDMs after 1 year of immunotherapy in patients sensitized to HDMs. The extent of initial allergen skin reactivity and only HDMs as target allergen were important predictive factors for changes in skin reactivity.

  9. Inhibition of neutrophil elastase attenuates airway hyperresponsiveness and inflammation in a mouse model of secondary allergen challenge: neutrophil elastase inhibition attenuates allergic airway responses

    PubMed Central

    2013-01-01

    reduced AHR to inhaled methacholine indicating the potential for its use as a modulator of the immune/inflammatory response in both the neutrophil- and eosinophil-dominant phases of the response to secondary allergen challenge. PMID:23347423

  10. [A comparative evaluation of the biological action of allergens and allergoids prepared from plant pollen by the double radial immunodiffusion method].

    PubMed

    Lavrenchik, E I; Korytina, O L

    1989-09-01

    Antisera to allergens and allergoids prepared from timothy, orchard grass, birch and wormwood pollen have been obtained and used in the double radial immunodiffusion test. The preparations of the allergoid row have been found capable of inducing immune response in laboratory animals (rabbits). Both forms of pollen preparations, allergens and allergoids, have been shown to possess common antigenic determinants reacting with antibodies present in antisera to allergens and allergoids. The absence of identity in the ratio of manifestations of gel precipitation reactions for allergoid with respect to the initial forms of allergens of individual pollen preparation has been noted.

  11. New paradigms in type 2 immunity.

    PubMed

    Pulendran, Bali; Artis, David

    2012-07-27

    Nearly half of the world's population harbors helminth infections or suffers from allergic disorders. A common feature of this population is the so-called "type 2 immune response," which confers protection against helminths, but also promotes pathologic responses associated with allergic inflammation. However, the mechanisms that initiate and control type 2 responses remain enigmatic. Recent advances have revealed a role for the innate immune system in orchestrating type 2 responses against a bewildering array of stimuli, from nanometer-sized allergens to 20-meter-long helminth parasites. Here, we review these advances and suggest that the human immune system has evolved multiple mechanisms of sensing such stimuli, from recognition of molecular patterns via innate immune receptors to detecting metabolic changes and tissue damage caused by these stimuli.

  12. Allergen-specific immunotherapy prescription patterns in veterinary practice: a US population-based cohort study.

    PubMed

    Tater, Kathy Chu; Cole, William Elliott; Pion, Paul David

    2017-08-01

    Poor adherence to continuing allergen-specific immunotherapy treatment (ASIT) may be an issue in veterinary medicine. No studies describe how allergen tests are used in general veterinary practice, including the percentage of patients that receive ASIT after allergen testing. Assess veterinary ASIT patterns in United States general practices. Dogs (n = 2,557) and 121 cats allergen-tested at 177 hospitals (173 general practice and four specialty practices) in 44 states. Invoiced service descriptions of allergen tests and ASIT orders were retrieved from an aggregated database of veterinary practices. In general practice, 42% (992 of 2,360) of patients did not begin ASIT after allergen testing. ASIT was not refilled for 29% (398 of 1,368) of patients after the initial order. ASIT was initiated and refilled more often in dogs (56.6%, 71.4%, respectively) than cats (38%, 67.4%). Specialty practice patients had the highest ASIT initiation (94.4%) and refill (92.7%) percentages in comparison to general practices (P < 0.001). Size, age, geographical region and type of practice were associated with whether dogs were started on ASIT. Geographical region was also associated with refilling a prescription for ASIT, which was considered to be evidence of adherence to continuing treatment. Almost one third of clients failed to continue ASIT beyond the initial order, which is a much shorter duration of therapy than the 12 months recommended for determining ASIT efficacy. A large number of general practice patients did not begin ASIT after allergen testing, likely due to differences in how clinicians in general and dermatology practices use allergen tests. © 2017 ESVD and ACVD.

  13. B cell function in the immune response to helminths

    PubMed Central

    Harris, Nicola

    2010-01-01

    Similar T helper (Th)2-type immune responses are generated against different helminths parasites, but the mechanisms that initiate Th2 immunity, and the specific immune components that mediate protection against these parasites, can vary greatly. B cells are increasingly recognized as important during the Th2-type immune response to helminths, and B cell activation might be a target for effective vaccine development. Antibody production is a function of B cells during helminth infection and understanding how polyclonal and antigen-specific antibodies contribute should provide important insights into how protective immunity develops. In addition, B cells might also contribute to the host response against helminths through antibody-independent functions including, antigen-presentation, as well as regulatory and effector activity. In this review, we examine the role of B cells during Th2-type immune response to these multicellular parasites. PMID:21159556

  14. Identification of IgE-binding proteins from Lepidoglyphus destructor and production of monoclonal antibodies to a major allergen.

    PubMed

    Ventas, P; Carreira, J; Polo, F

    1991-08-01

    The allergen composition of one of the most important storage mites, Lepidoglyphus destructor, has been studied by immunodetection after SDS-PAGE with individual patient sera. An allergenic polypeptide of 14 kDa was identified with 95% of the sera. This major allergen was isolated in the supernatant of 60% ammonium sulfate salt precipitation of the whole extract, which was subsequently used to immunize BALB/c mice so as to produce monoclonal antibodies. Four mAbs recognizing molecules with IgE-binding ability were obtained. The specificity of the mAbs was assayed against different allergenic extracts, and the molecules recognized by them were characterized by immunoblotting. Two mAbs (Le5B5 and Le9E4) were directed to the 14-kDa allergen; the other two to several proteins of lesser allergenic significance.

  15. Peanut allergens are rapidly transferred in human breast milk and can prevent sensitization in mice.

    PubMed

    Bernard, H; Ah-Leung, S; Drumare, M-F; Feraudet-Tarisse, C; Verhasselt, V; Wal, J-M; Créminon, C; Adel-Patient, K

    2014-07-01

    Food allergens have been evidenced in breast milk under physiological conditions, but the kinetic and the role of this passage in food allergies are still unclear. We then aimed to analyze the passage of peanut allergens in human breast milk and their allergenicity/immunomodulatory properties. Human breast milk was collected from two non-atopic peanut-tolerant mothers before and at different time points after ingestion of 30 g of commercial roasted peanut. Ara h 6, Ara h 6 immune complexes, and the IgE binding capacity of breast milk samples were measured using specific immunoassays. Their allergenic functionality was then assessed using cell-based assay. Finally, human breast milk obtained before or after peanut ingestion was administered intragastrically to BALB/c mice at different ages, and mice were further experimentally sensitized to peanut using cholera toxin. Ara h 6 is detected as soon as 10 min after peanut ingestion, with peak values observed within the first hour after ingestion. The transfer is long-lasting, small quantities of peanut allergens being detected over a 24-h period. IgG-Ara h 6 and IgA-Ara h 6 immune complexes are evidenced, following a different kinetic of excretion than free allergens. Peanut allergens transferred in milk are IgE reactive and can induce an allergic reaction in vitro. However, administration of human breast milk to young mice, notably before weaning, does not lead to sensitization, but instead to partial oral tolerance. The low quantities of immunologically active allergens transferred through breast milk may prevent instead of priming allergic sensitization to peanut. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Immunization with the conjugate vaccine Vi-CRM₁₉₇ against Salmonella typhi induces Vi-specific mucosal and systemic immune responses in mice.

    PubMed

    Fiorino, Fabio; Ciabattini, Annalisa; Rondini, Simona; Pozzi, Gianni; Martin, Laura B; Medaglini, Donata

    2012-09-21

    Typhoid fever is a public health problem, especially among young children in developing countries. To address this need, a glycoconjugate vaccine Vi-CRM₁₉₇, composed of the polysaccharide antigen Vi covalently conjugated to the non-toxic mutant of diphtheria toxin CRM₁₉₇, is under development. Here, we assessed the antibody and cellular responses, both local and systemic, following subcutaneous injection of Vi-CRM₁₉₇. The glycoconjugate elicited Vi-specific serum IgG titers significantly higher than unconjugated Vi, with prevalence of IgG1 that persisted for at least 60 days after immunization. Vi-specific IgG, but not IgA, were present in intestinal washes. Lymphocytes proliferation after restimulation with Vi-CRM₁₉₇ was observed in spleen and mesenteric lymph nodes. These data confirm the immunogenicity of Vi-CRM₁₉₇ and demonstrate that the vaccine-specific antibody and cellular immune responses are present also in the intestinal tract, thus strengthening the suitability of Vi-CRM₁₉₇ as a promising candidate vaccine against Salmonella Typhi. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Negative Regulation of Type 2 Immunity

    PubMed Central

    de Kouchkovsky, Dimitri A.; Ghosh, Sourav; Rothlin, Carla V.

    2017-01-01

    Type 2 immunity encompasses the mechanisms through which the immune system responds to helminths and an array of environmental substances such as allergens. In the developing world, billions of individuals are chronically infected with endemic parasitic helminths. In comparison, in the industrialized world, millions of individuals suffer from dysregulated type 2 immunity, referred to clinically as atopic diseases including asthma, allergic rhinitis and atopic dermatitis. Thus, type 2 immunity must be carefully regulated to mount protective host response yet avoid inappropriate activation and immunopathology. In this review, we describe the keys players and connections at play in type 2 responses and focus on the emerging mechanisms involved in the negative regulation of type 2 immunity. PMID:28082101

  18. Induction of IgE-mediated immediate hypersensitivity to Group I rye grass pollen allergen and allergoids in non-allergic man

    PubMed Central

    Marsh, D. G.; Lichtenstein, L. M.; Norman, P. S.

    1972-01-01

    The major (Group I) allergen of rye grass pollen and two of its allergoids, adsorbed on alumina gel, were injected into three groups of non-allergic humans. In addition to inducing the anticipated blocking antibody (IgG) response, all individuals developed immediate skin hypersensitivity to the allergen and its allergoids characteristic of reaginic antibody-(IgE-)mediated reactions. At some time during the course of the study, virtually every individual's peripheral blood leucocytes were also found to release histamine when challenged in vitro with low concentrations of allergen and allergoids. Quantitatively, each person's skin and leucocyte sensitivities were not as well correlated as in naturally allergic people. Leucocyte responsiveness was generally shortlived, but could be restored by antigenic restimulation. Allergoid: allergen sensitivity ratios were greater in allergen-than allergoid-immunized individuals, but less than in naturally allergic individuals. Unexpectedly, allergoid-immunized individuals' leucocytes were more sensitive to allergen than allergoid. Despite the observed skin and leucocyte reactivities, none of the people showed clinical manifestations of hay fever following natural exposure to pollen. The skin sensitivity of the artificially sensitized individuals could be passively transferred to non-allergic humans by intradermal injection of serum (P-K Test), thereby implicating the involvement of IgE antibody. Further proof of the role of IgE was obtained by blocking the P-K test, either by heating the serum or by adsorbing it using an anti-IgE immunosorbent. PMID:4113385

  19. Differences in Kaposi sarcoma-associated herpesvirus-specific and herpesvirus-non-specific immune responses in classic Kaposi sarcoma cases and matched controls in Sicily.

    PubMed

    Amodio, Emanuele; Goedert, James J; Barozzi, Patrizia; Riva, Giovanni; Firenze, Alberto; Bonura, Filippa; Viviano, Enza; Romano, Nino; Luppi, Mario

    2011-10-01

    Kaposi sarcoma (KS) might develop because of incompetent immune responses, both non-specifically and specifically against the KS-associated herpesvirus (KSHV). Peripheral blood mononuclear cells from 15 classic (non-AIDS) KS cases, 13 KSHV seropositives (without KS) and 15 KSHV-seronegative controls were tested for interferon-γ T-cell (enzyme-linked immunospot [Elispot]) responses to KSHV-latency-associated nuclear antigen (LANA), KSHV-K8.1 and CMV/Epstein-Barr virus (EBV) peptide pools. The forearm and thigh of each participant was also tested for delayed-type hypersensitivity (DTH) against common recall antigens. Groups were compared with Fisher exact test and multinomial logistic regression to calculate odds ratios (OR) and 95% confidence intervals (CI). A KSHV Elispot response was detected in 10 (67%) classic KS cases, 11 (85%) KSHV seropositives (without KS) and two (13%) seronegative controls. All four cases with KSHV-LANA responses had current KS lesions, whereas five of six cases with KSHV-K8.1 responses had no lesions (P = 0.048). No case responded to both LANA and K8.1. Compared with the seronegative controls, the risk for classic KS was inversely related to DTH in the thigh (OR 0.71, 95% CI 0.55-0.94, P = 0.01), directly associated with DTH in the forearm (OR 1.35, 95% CI 1.02-1.80, P = 0.04) and tended to be increased fivefold per KSHV Elispot response (OR 5.13, 95% CI 0.86-30.77, P = 0.07). Compared with KSHV seropositives (without KS), the risk for classic KS was reduced fivefold (OR 0.20, CI 0.03-0.77, P = 0.04) per KSHV response. The CMV/EBV Elispot responses were irrelevant. Deficiency of both KSHV-specific and KSHV-non-specific immunity is associated with classic KS. This might clarify why Kaposi sarcoma responds to immune reconstitution. © 2011 Japanese Cancer Association and this article is a US Government work and is in the public domain in the USA.

  20. Allergen-induced Increases in Sputum Levels of Group 2 Innate Lymphoid Cells in Subjects with Asthma.

    PubMed

    Chen, Ruchong; Smith, Steven G; Salter, Brittany; El-Gammal, Amani; Oliveria, John Paul; Obminski, Caitlin; Watson, Rick; O'Byrne, Paul M; Gauvreau, Gail M; Sehmi, Roma

    2017-09-15

    Group 2 innate lymphoid cells (ILC2), a major source of type 2 cytokines, initiate eosinophilic inflammatory responses in murine models of asthma. To investigate the role of ILC2 in allergen-induced airway eosinophilic responses in subjects with atopy and asthma. Using a diluent-controlled allergen challenge crossover study, where all subjects (n = 10) developed allergen-induced early and late responses, airway eosinophilia, and increased methacholine airway responsiveness, bone marrow, blood, and sputum samples were collected before and after inhalation challenge. ILC2 (lin - FcεRI - CD45 + CD127 + ST2 + ) and CD4 + T lymphocytes were enumerated by flow cytometry, as well as intracellular IL-5 and IL-13 expression. Steroid sensitivity of ILC2 and CD4 + T cells was investigated in vitro. A significant increase in total, IL-5 + , IL-13 + , and CRTH2 + ILC2 was found in sputum, 24 hours after allergen, coincident with a significant decrease in blood ILC2. Total, IL-5 + , and IL-13 + , but not CRTH2 + , CD4 + T cells significantly increased at 24 and 48 hours after allergen in sputum. In blood and bone marrow, only CD4 + cells demonstrated increased activation after allergen. Airway eosinophilia correlated with IL-5 + ILC2 at all time points and allergen-induced changes in IL-5 + CD4 + cells at 48 hours after allergen. Dexamethasone significantly attenuated IL-2- and IL-33-stimulated IL-5 and IL-13 production by both cell types. Innate and adaptive immune cells are increased in the airways associated with allergic asthmatic responses. Total and type 2 cytokine-positive ILC2 are increased only within the airways, whereas CD4 + T lymphocytes demonstrated local and systemic increases. Steroid sensitivity of both cells may explain effectiveness of this therapy in those with mild asthma.

  1. Characterization of Specific Immune Responses to Different Aspergillus Antigens during the Course of Invasive Aspergillosis in Hematologic Patients

    PubMed Central

    Beauvais, Anne; Beau, Remi; Candoni, Anna; Maertens, Johan; Rossi, Giulio; Morselli, Monica; Zanetti, Eleonora; Quadrelli, Chiara; Codeluppi, Mauro; Guaraldi, Giovanni; Pagano, Livio; Caira, Morena; Giovane, Cinzia Del; Maccaferri, Monica; Stefani, Alessandro; Morandi, Uliano; Tazzioli, Giovanni; Girardis, Massimo; Delia, Mario; Specchia, Giorgina; Longo, Giuseppe; Marasca, Roberto; Narni, Franco; Merli, Francesco; Imovilli, Annalisa; Apolone, Giovanni; Carvalho, Agostinho; Comoli, Patrizia; Romani, Luigina; Latgè, Jean Paul; Luppi, Mario

    2013-01-01

    Several studies in mouse model of invasive aspergillosis (IA) and in healthy donors have shown that different Aspergillus antigens may stimulate different adaptive immune responses. However, the occurrence of Aspergillus-specific T cells have not yet been reported in patients with the disease. In patients with IA, we have investigated during the infection: a) whether and how specific T-cell responses to different Aspergillus antigens occur and develop; b) which antigens elicit the highest frequencies of protective immune responses and, c) whether such protective T cells could be expanded ex-vivo. Forty hematologic patients have been studied, including 22 patients with IA and 18 controls. Specific T cells producing IL-10, IFN-γ, IL-4 and IL-17A have been characterized through enzyme linked immunospot and cytokine secretion assays on 88 peripheral blood (PB) samples, by using the following recombinant antigens: GEL1p, CRF1p, PEP1p, SOD1p, α1–3glucan, β1–3glucan, galactomannan. Specific T cells were expanded through short term culture. Aspergillus-specific T cells producing non-protective interleukin-10 (IL-10) and protective interferon-gamma (IFN-γ) have been detected to all the antigens only in IA patients. Lower numbers of specific T cells producing IL-4 and IL-17A have also been shown. Protective T cells targeted predominantly Aspergillus cell wall antigens, tended to increase during the IA course and to be associated with a better clinical outcome. Aspergillus-specific T cells could be successfully generated from the PB of 8 out of 8 patients with IA and included cytotoxic subsets able to lyse Aspergillus hyphae. Aspergillus specific T-cell responses contribute to the clearance of the pathogen in immunosuppressed patients with IA and Aspergillus cell wall antigens are those mainly targeted by protective immune responses. Cytotoxic specific T cells can be expanded from immunosuppressed patients even during the infection by using the above mentioned

  2. Occupational Exposure to High Molecular Weight Allergens and Lymphoma Risk Among Italian Adults

    PubMed Central

    Mirabelli, Maria C.; Zock, Jan-Paul; D'Errico, Angelo; Kogevinas, Manolis; de Sanjosé, Silvia; Miligi, Lucia; Costantini, Adele Seniori; Vineis, Paolo

    2009-01-01

    Objectives Exposure to high molecular weight (HMW) allergens that provoke immune reactivity through an immunoglobulin E (IgE)-mediated pathway has been associated with a decreased risk of B-cell lymphoma. The present analysis was conducted to assess the associations between occupational exposure to specific HMW allergens and the risk of B-cell, T-cell, and Hodgkin's lymphomas. Methods We analyzed data from 2290 incident lymphoma cases and 1771 population-based controls enrolled in a multi-center study of hematolymphopoietic malignancies conducted in Italy between 1991 and 1993. All cases were histologically or cytologically confirmed. Controls were frequency-matched to cases based on age, sex, and study center. An industrial hygienist evaluated HMW occupational exposure classifications after an asthma-specific job exposure matrix was applied to participants' job histories. Unconditional logistic regression was used to assess associations between occupational exposures that occurred ≥10 years before the date of lymphoma diagnosis and B-cell, T-cell, and Hodgkin's lymphomas. Results Ten percent of cases and 11 percent of controls were occupationally exposed to HMW allergens. Exposed individuals had a decreased risk for all lymphomas combined (odds ratio (OR): 0.78, 95% confidence interval (CI): 0.63, 0.97), particularly for B-cell lymphomas (OR: 0.75, 95% CI: 0.59, 0.94). The decreased risks for all lymphomas were also observed when HMW allergen exposure was limited to animal and latex allergens. Conclusions These findings support the hypothesis that occupational exposure to immunologically active HMW allergens is inversely associated with the risk for lymphoma. The effect of exposure to specific allergens warrants further assessment. PMID:19755650

  3. An overview of fruit allergy and the causative allergens.

    PubMed

    Hassan, A K G; Venkatesh, Y P

    2015-11-01

    Plant allergens, being one of the most widespread allergenic substances, are hard to avoid. Hence, their identification and characterization are of prime importance for the diagnosis and treatment of food allergy. The reported allergies to fruits mainly evoke oral allergy syndrome caused by the presence of cross-reactive IgE to certain pollens and thus, allergy to fruits has also been linked to particular pollens. Many fruit allergies are being studied for their causative allergens, and are being characterized. Some tropical or exotic fruits are responsible for region-specific allergies for which only limited information is available, and generally lack allergen characterization. From a survey of the literature on fruit allergy, it is clear that some common fruits (apple, peach, musk melon, kiwi fruit, cherry, grape, strawberry, banana, custard apple, mango and pomegranate) and their allergens appear to be at the center of current research on food allergy. The present review focuses on common fruits reported as allergenic and their identified allergens; a brief description of allergens from six rare/tropical fruits is also covered.

  4. Platyhelminth Venom Allergen-Like (VAL) proteins: revealing structural diversity, class-specific features and biological associations across the phylum

    PubMed Central

    CHALMERS, IAIN W.; HOFFMANN, KARL F.

    2012-01-01

    SUMMARY During platyhelminth infection, a cocktail of proteins is released by the parasite to aid invasion, initiate feeding, facilitate adaptation and mediate modulation of the host immune response. Included amongst these proteins is the Venom Allergen-Like (VAL) family, part of the larger sperm coating protein/Tpx-1/Ag5/PR-1/Sc7 (SCP/TAPS) superfamily. To explore the significance of this protein family during Platyhelminthes development and host interactions, we systematically summarize all published proteomic, genomic and immunological investigations of the VAL protein family to date. By conducting new genomic and transcriptomic interrogations to identify over 200 VAL proteins (228) from species in all 4 traditional taxonomic classes (Trematoda, Cestoda, Monogenea and Turbellaria), we further expand our knowledge related to platyhelminth VAL diversity across the phylum. Subsequent phylogenetic and tertiary structural analyses reveal several class-specific VAL features, which likely indicate a range of roles mediated by this protein family. Our comprehensive analysis of platyhelminth VALs represents a unifying synopsis for understanding diversity within this protein family and a firm context in which to initiate future functional characterization of these enigmatic members. PMID:22717097

  5. Host Immune Response to Influenza A Virus Infection.

    PubMed

    Chen, Xiaoyong; Liu, Shasha; Goraya, Mohsan Ullah; Maarouf, Mohamed; Huang, Shile; Chen, Ji-Long

    2018-01-01

    Influenza A viruses (IAVs) are contagious pathogens responsible for severe respiratory infection in humans and animals worldwide. Upon detection of IAV infection, host immune system aims to defend against and clear the viral infection. Innate immune system is comprised of physical barriers (mucus and collectins), various phagocytic cells, group of cytokines, interferons (IFNs), and IFN-stimulated genes, which provide first line of defense against IAV infection. The adaptive immunity is mediated by B cells and T cells, characterized with antigen-specific memory cells, capturing and neutralizing the pathogen. The humoral immune response functions through hemagglutinin-specific circulating antibodies to neutralize IAV. In addition, antibodies can bind to the surface of infected cells and induce antibody-dependent cell-mediated cytotoxicity or complement activation. Although there are neutralizing antibodies against the virus, cellular immunity also plays a crucial role in the fight against IAVs. On the other hand, IAVs have developed multiple strategies to escape from host immune surveillance for successful replication. In this review, we discuss how immune system, especially innate immune system and critical molecules are involved in the antiviral defense against IAVs. In addition, we highlight how IAVs antagonize different immune responses to achieve a successful infection.

  6. Adaptive Evolution as a Predictor of Species-Specific Innate Immune Response.

    PubMed

    Webb, Andrew E; Gerek, Z Nevin; Morgan, Claire C; Walsh, Thomas A; Loscher, Christine E; Edwards, Scott V; O'Connell, Mary J

    2015-07-01

    It has been proposed that positive selection may be associated with protein functional change. For example, human and macaque have different outcomes to HIV infection and it has been shown that residues under positive selection in the macaque TRIM5α receptor locate to the region known to influence species-specific response to HIV. In general, however, the relationship between sequence and function has proven difficult to fully elucidate, and it is the role of large-scale studies to help bridge this gap in our understanding by revealing major patterns in the data that correlate genotype with function or phenotype. In this study, we investigate the level of species-specific positive selection in innate immune genes from human and mouse. In total, we analyzed 456 innate immune genes using codon-based models of evolution, comparing human, mouse, and 19 other vertebrate species to identify putative species-specific positive selection. Then we used population genomic data from the recently completed Neanderthal genome project, the 1000 human genomes project, and the 17 laboratory mouse genomes project to determine whether the residues that were putatively positively selected are fixed or variable in these populations. We find evidence of species-specific positive selection on both the human and the mouse branches and we show that the classes of genes under positive selection cluster by function and by interaction. Data from this study provide us with targets to test the relationship between positive selection and protein function and ultimately to test the relationship between positive selection and discordant phenotypes. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  7. Allergens in veterinary medicine.

    PubMed

    Mueller, R S; Janda, J; Jensen-Jarolim, E; Rhyner, C; Marti, E

    2016-01-01

    Allergic diseases in animals are increasingly gaining importance in veterinary practice and as research models. For intradermal testing and allergen immunotherapy, a good knowledge of relevant allergens for the individual species is of great importance. Currently, the knowledge about relevant veterinary allergens is based on sensitization rates identified by intradermal testing or serum testing for allergen-specific IgE; crude extracts are the basis for most evaluations. Only a few studies provide evidence about the molecular structure of (particularly) dust mite, insect and mould allergens in dogs and horses, respectively. In those species, some major allergens differ from those in humans. This position paper summarizes the current knowledge about relevant allergens in dogs, cats and horses. © 2015 The Authors Allergy Published by John Wiley & Sons Ltd.

  8. Microneedle-mediated immunization of an adenovirus-based malaria vaccine enhances antigen-specific antibody immunity and reduces anti-vector responses compared to the intradermal route.

    PubMed

    Carey, John B; Vrdoljak, Anto; O'Mahony, Conor; Hill, Adrian V S; Draper, Simon J; Moore, Anne C

    2014-08-21

    Substantial effort has been placed in developing efficacious recombinant attenuated adenovirus-based vaccines. However induction of immunity to the vector is a significant obstacle to its repeated use. Here we demonstrate that skin-based delivery of an adenovirus-based malaria vaccine, HAdV5-PyMSP1₄₂, to mice using silicon microneedles induces equivalent or enhanced antibody responses to the encoded antigen, however it results in decreased anti-vector responses, compared to intradermal delivery. Microneedle-mediated vaccine priming and resultant induction of low anti-vector antibody titres permitted repeated use of the same adenovirus vaccine vector. This resulted in significantly increased antigen-specific antibody responses in these mice compared to ID-treated mice. Boosting with a heterologous vaccine; MVA-PyMSP1₄₂ also resulted in significantly greater antibody responses in mice primed with HAdV5-PyMSP1₄₂ using MN compared to the ID route. The highest protection against blood-stage malaria challenge was observed when a heterologous route of immunization (MN/ID) was used. Therefore, microneedle-mediated immunization has potential to both overcome some of the logistic obstacles surrounding needle-and-syringe-based immunization as well as to facilitate the repeated use of the same adenovirus vaccine thereby potentially reducing manufacturing costs of multiple vaccines. This could have important benefits in the clinical ease of use of adenovirus-based immunization strategies.

  9. Microneedle-mediated immunization of an adenovirus-based malaria vaccine enhances antigen-specific antibody immunity and reduces anti-vector responses compared to the intradermal route

    PubMed Central

    Carey, John B.; Vrdoljak, Anto; O'Mahony, Conor; Hill, Adrian V. S.; Draper, Simon J.; Moore, Anne C.

    2014-01-01

    Substantial effort has been placed in developing efficacious recombinant attenuated adenovirus-based vaccines. However induction of immunity to the vector is a significant obstacle to its repeated use. Here we demonstrate that skin-based delivery of an adenovirus-based malaria vaccine, HAdV5-PyMSP142, to mice using silicon microneedles induces equivalent or enhanced antibody responses to the encoded antigen, however it results in decreased anti-vector responses, compared to intradermal delivery. Microneedle-mediated vaccine priming and resultant induction of low anti-vector antibody titres permitted repeated use of the same adenovirus vaccine vector. This resulted in significantly increased antigen-specific antibody responses in these mice compared to ID-treated mice. Boosting with a heterologous vaccine; MVA-PyMSP142 also resulted in significantly greater antibody responses in mice primed with HAdV5-PyMSP142 using MN compared to the ID route. The highest protection against blood-stage malaria challenge was observed when a heterologous route of immunization (MN/ID) was used. Therefore, microneedle-mediated immunization has potential to both overcome some of the logistic obstacles surrounding needle-and-syringe-based immunization as well as to facilitate the repeated use of the same adenovirus vaccine thereby potentially reducing manufacturing costs of multiple vaccines. This could have important benefits in the clinical ease of use of adenovirus-based immunization strategies. PMID:25142082

  10. Memory and Specificity in the Insect Immune System: Current Perspectives and Future Challenges.

    PubMed

    Cooper, Dustin; Eleftherianos, Ioannis

    2017-01-01

    The immune response of a host to a pathogen is typically described as either innate or adaptive. The innate form of the immune response is conserved across all organisms, including insects. Previous and recent research has focused on the nature of the insect immune system and the results imply that the innate immune response of insects is more robust and specific than previously thought. Priming of the insect innate immune system involves the exposure of insects to dead or a sublethal dose of microbes in order to elicit an initial response. Comparing subsequent infections in primed insects to non-primed individuals indicates that the insect innate immune response may possess some of the qualities of an adaptive immune system. Although some studies demonstrate that the protective effects of priming are due to a "loitering" innate immune response, others have presented more convincing elements of adaptivity. While an immune mechanism capable of producing the same degree of recognition specificity as seen in vertebrates has yet to be discovered in insects, a few interesting cases have been identified and discussed.

  11. Mold Allergens in Respiratory Allergy: From Structure to Therapy

    PubMed Central

    Twaroch, Teresa E; Curin, Mirela; Swoboda, Ines

    2015-01-01

    Allergic reactions to fungi were described 300 years ago, but the importance of allergy to fungi has been underestimated for a long time. Allergens from fungi mainly cause respiratory and skin symptoms in sensitized patients. In this review, we will focus on fungi and fungal allergens involved in respiratory forms of allergy, such as allergic rhinitis and asthma. Fungi can act as indoor and outdoor respiratory allergen sources, and depending on climate conditions, the rates of sensitization in individuals attending allergy clinics range from 5% to 20%. Due to the poor quality of natural fungal allergen extracts, diagnosis of fungal allergy is hampered, and allergen-specific immunotherapy is rarely given. Several factors are responsible for the poor quality of natural fungal extracts, among which the influence of culture conditions on allergen contents. However, molecular cloning techniques have allowed us to isolate DNAs coding for fungal allergens and to produce a continuously growing panel of recombinant allergens for the diagnosis of fungal allergy. Moreover, technologies are now available for the preparation of recombinant and synthetic fungal allergen derivatives which can be used to develop safe vaccines for the treatment of fungal allergy. PMID:25840710

  12. Isolation of Mal d 1 and Api g 1 - specific recombinant antibodies from mouse IgG Fab fragment libraries - Mal d 1-specific antibody exhibits cross-reactivity against Bet v 1.

    PubMed

    Haka, Jaana; Niemi, Merja H; Iljin, Kristiina; Reddy, Vanga Siva; Takkinen, Kristiina; Laukkanen, Marja-Leena

    2015-05-27

    Around 3-5% of the population suffer from IgE-mediated food allergies in Western countries and the number of food-allergenic people is increasing. Individuals with certain pollen allergies may also suffer from a sensitisation to proteins in the food products. As an example a person sensitised to the major birch pollen allergen, Bet v 1, is often sensitised to its homologues, such as the major allergens of apple, Mal d 1, and celery, Api g 1, as well. Development of tools for the reliable, sensitive and quick detection of allergens present in various food products is essential for allergic persons to prevent the consumption of substances causing mild and even life-threatening immune responses. The use of monoclonal antibodies would ensure the specific detection of the harmful food content for a sensitised person. Mouse IgG antibody libraries were constructed from immunised mice and specific recombinant antibodies for Mal d 1 and Api g 1 were isolated from the libraries by phage display. More detailed characterisation of the resulting antibodies was carried out using ELISA, SPR experiments and immunoprecipitation assays. The allergen-specific Fab fragments exhibited high affinity towards the target recombinant allergens. Furthermore, the Fab fragments also recognised native allergens from natural sources. Interestingly, isolated Mal d 1-specific antibody bound also to Bet v 1, the main allergen eliciting the cross-reactivity syndrome between the birch pollen and apple. Despite the similarities in Api g 1 and Bet v 1 tertiary structures, the isolated Api g 1-specific antibodies showed no cross-reactivity to Bet v 1. Here, high-affinity allergen-specific recombinant antibodies were isolated with interesting binding properties. With further development, these antibodies can be utilised as tools for the specific and reliable detection of allergens from different consumable products. This study gives new preliminary insights to elucidate the mechanism behind the pollen

  13. The prevalence of dogs with lymphocyte proliferative responses to food allergens in canine allergic dermatitis.

    PubMed

    Kawano, K; Oumi, K; Ashida, Y; Horiuchi, Y; Mizuno, T

    2013-01-01

    The aim of the present study was to examine the correlation between the results of lymphocyte proliferative test (LPT) specific to food allergens and allergic skin diseases in dogs. Investigations were performed in 138 dogs with allergic skin diseases diagnosed in a private animal hospital. Of the 138 animals, 97 cases had positive reactions in LPT specific to food allergens. Of these 97 dogs, 67 animals were diagnosed with canine atopic dermatitis (CAD), but 30 dogs did not have IgE antibodies to environmental allergens. As 14 dogs out of 30 animals showed a positive result, 12 dogs underwent elimination diet trial based on the test results and all of them showed improvement in the pruritus score. Therefore, we conclude that LPT is an effective diagnostic test for allergic skin disease. Results of the lymphocyte test are useful in the identification of food allergens for the elimination diet trial.

  14. Assessing humoral and cell-mediated immune response in Hawaiian green turtles, Chelonia mydas

    USGS Publications Warehouse

    Work, Thierry M.; Balazs, George H.; Rameyer, Robert; Chang, S.P.; Berestecky, J.

    2000-01-01

    Seven immature green turtles, Chelonia mydas, captured from Kaneohe Bay on the island of Oahu were used to evaluate methods for assessing their immune response. Two turtles each were immunized intramuscularly with egg white lysozyme (EWL) in Freund’s complete adjuvant, Gerbu, or ISA-70; a seventh turtle was immunized with saline only and served as a control. Humoral immune response was measured with an indirect enzyme linked immunosorbent assay (ELISA). Cell-mediated immune response was measured using in vitro cell proliferation assays (CPA) using whole blood or peripheral blood mononuclear cells (PBM) cultured with concanavalin A (ConA), phytohaemagglutinin (PHA), or soluble egg EWL antigen. All turtles, except for one immunized with Gerbu and the control, produced a detectable humoral immune response by 6 weeks which persisted for at least 14 weeks after a single immunization. All turtles produced an anamnestic humoral immune response after secondary immunization. Antigen specific cell-mediated immune response in PBM was seen in all turtles either after primary or secondary immunization, but it was not as consistent as humoral immune response; antigen specific cell-mediated immune response in whole blood was rarely seen. Mononuclear cells had significantly higher stimulation indices than whole blood regardless of adjuvant, however, results with whole blood had lower variability. Both Gerbu and ISA-70 appeared to potentiate the cell-mediated immune response when PBM or whole blood were cultured with PHA. This is the first time cell proliferation assays have been compared between whole blood and PBM for reptiles. This is also the first demonstration of antigen specific cell-mediated response in reptiles. Cell proliferation assays allowed us to evaluate the cell-mediated immune response of green turtles. However, CPA may be less reliable than ELISA for detecting antigen specific immune response. Either of the three adjuvants appears suitable to safely elicit a

  15. Minor allergen patterns in birch pollen allergen products-A question of pollen?

    PubMed

    Zimmer, J; Döring, S; Strecker, D; Trösemeier, J H; Hanschmann, K M; Führer, F; Vieths, S; Kaul, S

    2017-08-01

    Contrary to the scientific differentiation between major and minor allergens, the regulatory framework controlling allergen products in the EU distinguishes relevant and non-relevant allergens. Given the lack of knowledge on their clinical relevance, minor allergens are usually not controlled by allergen product specifications. Especially, in birch pollen (BP) allergen products, minor allergens are commonly disregarded. To quantify three minor allergens in BP allergen products from different manufacturers and to assess the influence of the utilized BP on minor allergen patterns. Apart from common quality parameters such as Bet v 1 content, Bet v 4, Bet v 6 and Bet v 7 were quantified in 70 BP allergen product batches from six manufacturers, using ELISA systems developed in-house. Batch-to-batch variability was checked for agreement with a variability margin of 50%-200% from mean of the given batches for individual allergen content. Subsequently, minor allergen patterns were generated via multidimensional scaling and related to information on the pollen lots used in production of the respective product batches. Like the already established Bet v 4 ELISA, the ELISA systems for quantification of Bet v 6 and Bet v 7 were successfully validated. Differences in minor allergen content between products and batch-to-batch consistency were observed. Correlations between minor and major allergen content were low to moderate. About 20% of batches exceeded the variability margin for at least one minor allergen. Interestingly, these fluctuations could not in all cases be linked to the use of certain BP lots. The impact of the observed minor allergen variability on safety and efficacy of BP allergen products can currently not be estimated. As the described differences could only in few cases be related to the used pollen lots, it is evident that additional factors influence minor allergens in BP allergen products. © 2017 John Wiley & Sons Ltd.

  16. Endotoxin Exposure during Sensitization to Blomia tropicalis Allergens Shifts TH2 Immunity Towards a TH17-Mediated Airway Neutrophilic Inflammation: Role of TLR4 and TLR2

    PubMed Central

    Barboza, Renato; Câmara, Niels Olsen Saraiva; Gomes, Eliane; Sá-Nunes, Anderson; Florsheim, Esther; Mirotti, Luciana; Labrada, Alexis; Alcântara-Neves, Neuza Maria; Russo, Momtchilo

    2013-01-01

    Experimental evidence and epidemiological studies indicate that exposure to endotoxin lipopolysaccharide (eLPS) or other TLR agonists prevent asthma. We have previously shown in the OVA-model of asthma that eLPS administration during alum-based allergen sensitization blocked the development of lung TH2 immune responses via MyD88 pathway and IL-12/IFN-γ axis. In the present work we determined the effect of eLPS exposure during sensitization to a natural airborne allergen extract derived from the house dust mite Blomia tropicalis (Bt). Mice were subcutaneously sensitized with Bt allergens co-adsorbed onto alum with or without eLPS and challenged twice intranasally with Bt. Cellular and molecular parameters of allergic lung inflammation were evaluated 24 h after the last Bt challenge. Exposure to eLPS but not to ultrapure LPS (upLPS) preparation during sensitization to Bt allergens decreased the influx of eosinophils and increased the influx of neutrophils to the airways. Inhibition of airway eosinophilia was not observed in IFN-γdeficient mice while airway neutrophilia was not observed in IL-17RA-deficient mice as well in mice lacking MyD88, CD14, TLR4 and, surprisingly, TLR2 molecules. Notably, exposure to a synthetic TLR2 agonist (PamCSK4) also induced airway neutrophilia that was dependent on TLR2 and TLR4 molecules. In the OVA model, exposure to eLPS or PamCSK4 suppressed OVA-induced airway inflammation. Our results suggest that B. tropicalis allergens engage TLR4 that potentiates TLR2 signaling. This dual TLR activation during sensitization results in airway neutrophilic inflammation associated with increased frequency of lung TH17 cells. Our work highlight the complex interplay between bacterial products, house dust mite allergens and TLR signaling in the induction of different phenotypes of airway inflammation. PMID:23805294

  17. Food allergens: molecular and immunological aspects, allergen databases and cross-reactivity.

    PubMed

    Lorenz, Anne-Regine; Scheurer, Stephan; Vieths, Stefan

    2015-01-01

    The currently known food allergens are assigned to a relatively small number of protein families. Food allergens grouped into protein families share common functional and structural features that can be attributed to the allergenic potency and potential cross-reactivity of certain proteins. Molecular data, in terms of structural information, biochemical characteristics and clinical relevance for each known allergen, including isoforms and variants, are mainly compiled into four open-access databases. Allergens are designated according to defined criteria by the World Health Organization and the International Union of Immunological Societies Allergen Nomenclature Sub-committee. Food allergies are caused by primary sensitisation to the disease-eliciting food allergens (class I food allergen), or they can be elicited as a consequence of a primary sensitisation to inhalant allergens and subsequent IgE cross-reaction to homologous proteins in food (class II food allergens). Class I and class II allergens display different clinical significance in children and adults and are characterised by different molecular features. In line with this, high stability when exposed to gastrointestinal digestion and heat treatment is attributed to many class I food allergens that frequently induce severe reactions. The stability of a food allergen is determined by its molecular characteristics and can be influenced by structural (chemical) modifications due to thermal processing. Moreover, the immunogenicity and allergenicity of food allergens further depends on specific T cell and B cell epitopes. Although the T cell epitope pattern can be highly diverse for individual patients, several immuno-prominent T cell epitopes have been identified. Such conserved T cell epitopes and IgE cross-reactive B cell epitopes contribute to cross-reactivity between food allergens of the same family and to clinical cross-reactivity, similar to the birch pollen-food syndrome. © 2015 S. Karger AG, Basel.

  18. Characterization of host immune responses in Ebola virus infections.

    PubMed

    Wong, Gary; Kobinger, Gary P; Qiu, Xiangguo

    2014-06-01

    Ebola causes highly lethal hemorrhagic fever in humans with no licensed countermeasures. Its virulence can be attributed to several immunoevasion mechanisms: an early inhibition of innate immunity started by the downregulation of type I interferon, epitope masking and subversion of the adaptive humoural immunity by secreting a truncated form of the viral glycoprotein. Deficiencies in specific and non-specific antiviral responses result in unrestricted viral replication and dissemination in the host, causing death typically within 10 days after the appearance of symptoms. This review summarizes the host immune response to Ebola infection, and highlights the short- and long-term immune responses crucial for protection, which holds implications for the design of future vaccines and therapeutics.

  19. Immunization with Brucella VirB Proteins Reduces Organ Colonization in Mice through a Th1-Type Immune Response and Elicits a Similar Immune Response in Dogs

    PubMed Central

    Pollak, Cora N.; Wanke, María Magdalena; Estein, Silvia M.; Delpino, M. Victoria; Monachesi, Norma E.; Comercio, Elida A.; Fossati, Carlos A.

    2014-01-01

    VirB proteins from Brucella spp. constitute the type IV secretion system, a key virulence factor mediating the intracellular survival of these bacteria. Here, we assessed whether a Th1-type immune response against VirB proteins may protect mice from Brucella infection and whether this response can be induced in the dog, a natural host for Brucella. Splenocytes from mice immunized with VirB7 or VirB9 responded to their respective antigens with significant and specific production of gamma interferon (IFN-γ), whereas interleukin-4 (IL-4) was not detected. Thirty days after an intraperitoneal challenge with live Brucella abortus, the spleen load of bacteria was almost 1 log lower in mice immunized with VirB proteins than in unvaccinated animals. As colonization reduction seemed to correlate with a Th1-type immune response against VirB proteins, we decided to assess whether such a response could be elicited in the dog. Peripheral blood mononuclear cells (PBMCs) from dogs immunized with VirB proteins (three subcutaneous doses in QuilA adjuvant) produced significantly higher levels of IFN-γ than cells from control animals upon in vitro stimulation with VirB proteins. A skin test to assess specific delayed-type hypersensitivity was positive in 4 out of 5 dogs immunized with either VirB7 or VirB9. As both proteins are predicted to locate in the outer membrane of Brucella organisms, the ability of anti-VirB antibodies to mediate complement-dependent bacteriolysis of B. canis was assessed in vitro. Sera from dogs immunized with either VirB7 or VirB9, but not from those receiving phosphate-buffered saline (PBS), produced significant bacteriolysis. These results suggest that VirB-specific responses that reduce organ colonization by Brucella in mice can be also elicited in dogs. PMID:25540276

  20. Immunization with Brucella VirB proteins reduces organ colonization in mice through a Th1-type immune response and elicits a similar immune response in dogs.

    PubMed

    Pollak, Cora N; Wanke, María Magdalena; Estein, Silvia M; Delpino, M Victoria; Monachesi, Norma E; Comercio, Elida A; Fossati, Carlos A; Baldi, Pablo C

    2015-03-01

    VirB proteins from Brucella spp. constitute the type IV secretion system, a key virulence factor mediating the intracellular survival of these bacteria. Here, we assessed whether a Th1-type immune response against VirB proteins may protect mice from Brucella infection and whether this response can be induced in the dog, a natural host for Brucella. Splenocytes from mice immunized with VirB7 or VirB9 responded to their respective antigens with significant and specific production of gamma interferon (IFN-γ), whereas interleukin-4 (IL-4) was not detected. Thirty days after an intraperitoneal challenge with live Brucella abortus, the spleen load of bacteria was almost 1 log lower in mice immunized with VirB proteins than in unvaccinated animals. As colonization reduction seemed to correlate with a Th1-type immune response against VirB proteins, we decided to assess whether such a response could be elicited in the dog. Peripheral blood mononuclear cells (PBMCs) from dogs immunized with VirB proteins (three subcutaneous doses in QuilA adjuvant) produced significantly higher levels of IFN-γ than cells from control animals upon in vitro stimulation with VirB proteins. A skin test to assess specific delayed-type hypersensitivity was positive in 4 out of 5 dogs immunized with either VirB7 or VirB9. As both proteins are predicted to locate in the outer membrane of Brucella organisms, the ability of anti-VirB antibodies to mediate complement-dependent bacteriolysis of B. canis was assessed in vitro. Sera from dogs immunized with either VirB7 or VirB9, but not from those receiving phosphate-buffered saline (PBS), produced significant bacteriolysis. These results suggest that VirB-specific responses that reduce organ colonization by Brucella in mice can be also elicited in dogs. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. PHENOTYPIC COMPARISON OF ALLERGIC AIRWAY RESPONSES TO HOUSE DUST MITE IN THREE RAT STRAINS

    EPA Science Inventory

    Abstract
    Brown Norway (BN) rats develop a robust response to antigens in the lung characterized by a large increase in allergen-specific immune function and pulmonary eosinophilia. The objective of this study was to investigate alternative models by determining if other rat s...

  2. Innate immunity and effector and regulatory mechanisms involved in allergic contact dermatitis*

    PubMed Central

    Silvestre, Marilene Chaves; Sato, Maria Notomi; dos Reis, Vitor Manoel Silva

    2018-01-01

    Skin's innate immunity is the initial activator of immune response mechanisms, influencing the development of adaptive immunity. Some contact allergens are detected by Toll-like receptors (TLRs) and inflammasome NLR3. Keratinocytes participate in innate immunity and, in addition to functioning as an anatomical barrier, secrete cytokines, such as TNF, IL-1β, and IL-18, contributing to the development of Allergic Contact Dermatitis. Dendritic cells recognize and process antigenic peptides into T cells. Neutrophils cause pro-inflammatory reactions, mast cells induce migration/maturation of skin DCs, the natural killer cells have natural cytotoxic capacity, the γδ T cells favor contact with hapten during the sensitization phase, and the innate lymphoid cells act in the early stages by secreting cytokines, as well as act in inflammation and tissue homeostasis. The antigen-specific inflammation is mediated by T cells, and each subtype of T cells (Th1/Tc1, Th2/Tc2, and Th17/Tc17) activates resident skin cells, thus contributing to inflammation. Skin's regulatory T cells have a strong ability to inhibit the proliferation of hapten-specific T cells, acting at the end of the Allergic Contact Dermatitis response and in the control of systemic immune responses. In this review, we report how cutaneous innate immunity is the first line of defense and focus its role in the activation of the adaptive immune response, with effector response induction and its regulation. PMID:29723367

  3. Innate immunity and effector and regulatory mechanisms involved in allergic contact dermatitis.

    PubMed

    Silvestre, Marilene Chaves; Sato, Maria Notomi; Reis, Vitor Manoel Silva Dos

    2018-03-01

    Skin's innate immunity is the initial activator of immune response mechanisms, influencing the development of adaptive immunity. Some contact allergens are detected by Toll-like receptors (TLRs) and inflammasome NLR3. Keratinocytes participate in innate immunity and, in addition to functioning as an anatomical barrier, secrete cytokines, such as TNF, IL-1β, and IL-18, contributing to the development of Allergic Contact Dermatitis. Dendritic cells recognize and process antigenic peptides into T cells. Neutrophils cause pro-inflammatory reactions, mast cells induce migration/maturation of skin DCs, the natural killer cells have natural cytotoxic capacity, the γδ T cells favor contact with hapten during the sensitization phase, and the innate lymphoid cells act in the early stages by secreting cytokines, as well as act in inflammation and tissue homeostasis. The antigen-specific inflammation is mediated by T cells, and each subtype of T cells (Th1/Tc1, Th2/Tc2, and Th17/Tc17) activates resident skin cells, thus contributing to inflammation. Skin's regulatory T cells have a strong ability to inhibit the proliferation of hapten-specific T cells, acting at the end of the Allergic Contact Dermatitis response and in the control of systemic immune responses. In this review, we report how cutaneous innate immunity is the first line of defense and focus its role in the activation of the adaptive immune response, with effector response induction and its regulation.

  4. Trafficking receptor signatures define blood plasmablasts responding to tissue-specific immune challenge

    PubMed Central

    Seong, Yekyung; Lazarus, Nicole H.; Sutherland, Lusijah; Habtezion, Aida; Abramson, Tzvia; He, Xiao-Song; Greenberg, Harry B.

    2017-01-01

    Antibody-secreting cells are generated in regional lymphoid tissues and traffic as plasmablasts (PBs) via lymph and blood to target sites for local immunity. We used multiparameter flow cytometry to define PB trafficking programs (TPs, combinations of adhesion molecules and chemoattractant receptors) and their imprinting in patients in response to localized infection or immune insults. TPs enriched after infection or autoimmune inflammation of mucosae correlate with sites of immune response or symptoms, with different TPs imprinted during small intestinal, colon, throat, and upper respiratory immune challenge. PBs induced after intramuscular or intradermal influenza vaccination, including flu-specific antibody–secreting cells, display TPs characterized by the lack of mucosal homing receptors. PBs of healthy donors display diverse mucosa-associated TPs, consistent with homeostatic immune activity. Identification of TP signatures of PBs may facilitate noninvasive monitoring of organ-specific immune responses. PMID:28352656

  5. Close Positive Correlation between the Lymphocyte Response to Hen Egg White and House Dust Mites in Infants with Atopic Dermatitis.

    PubMed

    Kimura, Mitsuaki; Meguro, Takaaki; Ito, Yasunori; Tokunaga, Fumika; Hashiguchi, Akihiko; Seto, Shiro

    2015-01-01

    It was recently hypothesized that food allergens sensitize infants with atopic dermatitis (AD) via the skin. If this is the case, an intimate positive correlation should be observed between immune responses to both food and indoor allergens. One hundred and seven infants with AD and 32 controls were enrolled. The proliferation of lymphocytes stimulated with hen egg white (EW) or house dust mite (HDM) allergens was measured by means of an allergen-specific lymphocyte stimulation test (ALST). Cytokine production was measured in 13 patients and 4 controls. ALST responses for EW (EW-ALST) were significantly higher in AD infants than in control subjects (stimulation index: 7.98 vs. 2.54, p < 0.0001). HDM-ALST responses were also significantly higher in AD infants than in controls (stimulation index: 5.09 vs. 1.44, p < 0.0001). A significant positive correlation was seen between HDM-ALST and EW-ALST responses in AD infants aged 5-6 months (rs = 0.77, p < 0.000001). Serum levels of EW-specific IgE (EW-IgE) were significantly correlated with both EW-ALST (rs = 0.43, p < 0.05) and HDM-ALST levels (rs = 0.47, p < 0.05) in AD patients aged 3-4 months. Serum EW-IgE levels in AD infants were significantly correlated with the ratio of IL-4/IFN-γ production from lymphocytes stimulated with EW (rs = 0.62, p < 0.01) and with HDM (rs = 0.67, p < 0.005). This study describes the close positive correlation between EW- and HDM-specific immune responses in infants with AD. These results may support the hypothesis that both food and indoor allergens concurrently sensitize infants via the skin. © 2015 S. Karger AG, Basel.

  6. Immune Response in Thyroid Cancer: Widening the Boundaries

    PubMed Central

    Ward, Laura Sterian

    2014-01-01

    The association between thyroid cancer and thyroid inflammation has been repeatedly reported and highly debated in the literature. In fact, both molecular and epidemiological data suggest that these diseases are closely related and this association reinforces that the immune system is important for thyroid cancer progression. Innate immunity is the first line of defensive response. Unlike innate immune responses, adaptive responses are highly specific to the particular antigen that induced them. Both branches of the immune system may interact in antitumor immune response. Major effector cells of the immune system that directly target thyroid cancer cells include dendritic cells, macrophages, polymorphonuclear leukocytes, mast cells, and lymphocytes. A mixture of immune cells may infiltrate thyroid cancer microenvironment and the balance of protumor and antitumor activity of these cells may be associated with prognosis. Herein, we describe some evidences that immune response may be important for thyroid cancer progression and may help us identify more aggressive tumors, sparing the vast majority of patients from costly unnecessary invasive procedures. The future trend in thyroid cancer is an individualized therapy. PMID:25328756

  7. Challenges and Path Forward on Mandatory Allergen Labeling and Voluntary Precautionary Allergen Labeling for a Global Company.

    PubMed

    Yeung, Jupiter; Robert, Marie-Claude

    2018-01-01

    For food manufacturers, the label on a food package is a tool meant to alert consumers to the presence of specific allergens, allowing consumers to make informed decisions and not unnecessarily limit their food choices. Mandatory allergen labeling is used when the allergen is an intentionally added ingredient, whereas voluntary allergen labeling is used when the presence of the allergen is unintentional and may be in the finished product as a result of cross-contact. In a globalized economy, ensuring food safety is a growing challenge for manufacturers. When ingredients and technologies are sourced worldwide from multiple business partners, complexity rises, which can increase the chance for errors, leading to potential harm. Threshold science, Voluntary Incidental Trace Allergen Labelling (VITAL) reference doses, fit-for-purpose analytical technology, and common sense enable us to optimize allergen management for the benefit of allergic consumers. This is a good strategy because all stakeholders share the common goal of making foods safe and wholesome for all. Herein, we recommend that (1) senior management make science-based thresholds a priority for both regulatory authorities and the food industry; (2) VITAL 2.0 be adopted as a risk assessment and risk management tool for precautionary allergen labeling (PAL); (3) a standardized message for PAL, i.e., "may contain x," be used to make it easily understandable to allergic consumers so they can make informed food choices; and (4) validated fit-for-purpose allergen methods be used to meet analytical needs. This is an opportunity for us to speak with one voice and demonstrate that food safety is not a competitive issue, but a shared responsibility. This approach could significantly improve allergic consumers' lives.

  8. Immune Responses and Protection of Aotus Monkeys Immunized with Irradiated Plasmodium vivax Sporozoites

    PubMed Central

    Jordán-Villegas, Alejandro; Perdomo, Anilza Bonelo; Epstein, Judith E.; López, Jesús; Castellanos, Alejandro; Manzano, María R.; Hernández, Miguel A.; Soto, Liliana; Méndez, Fabián; Richie, Thomas L.; Hoffman, Stephen L.; Arévalo-Herrera, Myriam; Herrera, Sócrates

    2011-01-01

    A non-human primate model for the induction of protective immunity against the pre-erythrocytic stages of Plasmodium vivax malaria using radiation-attenuated P. vivax sporozoites may help to characterize protective immune mechanisms and identify novel malaria vaccine candidates. Immune responses and protective efficacy induced by vaccination with irradiated P. vivax sporozoites were evaluated in malaria-naive Aotus monkeys. Three groups of six monkeys received two, five, or ten intravenous inoculations, respectively, of 100,000 irradiated P. vivax sporozoites; control groups received either 10 doses of uninfected salivary gland extract or no inoculations. Immunization resulted in the production low levels of antibodies that specifically recognized P. vivax sporozoites and the circumsporozoite protein. Additionally, immunization induced low levels of antigen-specific IFN-γ responses. Intravenous challenge with viable sporozoites resulted in partial protection in a dose-dependent manner. These findings suggest that the Aotus monkey model may be able to play a role in preclinical development of P. vivax pre-erythrocytic stage vaccines. PMID:21292877

  9. Review: The role of antibodies, autoantigens and food allergens in canine atopic dermatitis.

    PubMed

    Pucheu-Haston, Cherie M; Bizikova, Petra; Eisenschenk, Melissa N C; Santoro, Domenico; Nuttall, Tim; Marsella, Rosanna

    2015-04-01

    Canine atopic dermatitis (AD) is considered to be an immunoglobulin E (IgE)-mediated hypersensitivity response to environmental allergens. The role of other antibody isotypes and nonenvironmental allergens in disease pathogenesis remains unclear. The objective of this review is to provide an update on advances in the understanding of the relevance of specific antibody isotypes, autoallergens and nonenvironmental allergens in the pathogenesis of canine AD. Citation databases, abstracts and proceedings from international meetings published between 2001 and 2013 were reviewed. Where necessary, older articles were included for background information. Neither total nor allergen-specific IgE necessarily correlates with clinical disease in canine AD. Some dogs exhibit clinical signs that are indistinguishable from AD but have no demonstrable allergen-specific IgE (atopic-like dermatitis). Allergen-specific immunoglobulin G may be demonstrated in canine AD, but there is no evidence that this isotype plays a role in disease development. Although humans with AD may develop serum IgE against autoallergens, this finding has not been substantiated in the dog. In contrast, adverse food reactions are frequently co-associated with AD in the dog. Ingestion of food and environmental allergens may trigger exacerbations of AD. Determination of the role of IgE in the pathogenesis of canine AD still requires clarification. Clinical trials and research studies must distinguish atopic dogs with allergen-specific IgE or skin test reactivity from those without. There is no convincing evidence demonstrating a pathogenic role for either allergen-specific immunoglobulin G or autoallergens in canine AD, but food items may be triggers for disease flares in certain individuals. © 2015 ESVD and ACVD.

  10. DNA and protein co-immunization improves the magnitude and longevity of humoral immune responses in macaques.

    PubMed

    Jalah, Rashmi; Kulkarni, Viraj; Patel, Vainav; Rosati, Margherita; Alicea, Candido; Bear, Jenifer; Yu, Lei; Guan, Yongjun; Shen, Xiaoying; Tomaras, Georgia D; LaBranche, Celia; Montefiori, David C; Prattipati, Rajasekhar; Pinter, Abraham; Bess, Julian; Lifson, Jeffrey D; Reed, Steven G; Sardesai, Niranjan Y; Venzon, David J; Valentin, Antonio; Pavlakis, George N; Felber, Barbara K

    2014-01-01

    We tested the concept of combining DNA with protein to improve anti-HIV Env systemic and mucosal humoral immune responses. Rhesus macaques were vaccinated with DNA, DNA&protein co-immunization or DNA prime followed by protein boost, and the magnitude and mucosal dissemination of the antibody responses were monitored in both plasma and mucosal secretions. We achieved induction of robust humoral responses by optimized DNA vaccination delivered by in vivo electroporation. These responses were greatly increased upon administration of a protein boost. Importantly, a co-immunization regimen of DNA&protein injected in the same muscle at the same time induced the highest systemic binding and neutralizing antibodies to homologous or heterologous Env as well as the highest Env-specific IgG in saliva. Inclusion of protein in the vaccine resulted in more immunized animals with Env-specific IgG in rectal fluids. Inclusion of DNA in the vaccine significantly increased the longevity of systemic humoral immune responses, whereas protein immunization, either as the only vaccine component or as boost after DNA prime, was followed by a great decline of humoral immune responses overtime. We conclude that DNA&protein co-delivery in a simple vaccine regimen combines the strength of each vaccine component, resulting in improved magnitude, extended longevity and increased mucosal dissemination of the induced antibodies in immunized rhesus macaques.

  11. Screening Immunomodulators To Skew the Antigen-Specific Autoimmune Response.

    PubMed

    Northrup, Laura; Sullivan, Bradley P; Hartwell, Brittany L; Garza, Aaron; Berkland, Cory

    2017-01-03

    Current therapies to treat autoimmune diseases often result in side effects such as nonspecific immunosuppression. Therapies that can induce antigen-specific immune tolerance provide an opportunity to reverse autoimmunity and mitigate the risks associated with global immunosuppression. In an effort to induce antigen-specific immune tolerance, co-administration of immunomodulators with autoantigens has been investigated in an effort to reprogram autoimmunity. To date, identifying immunomodulators that may skew the antigen-specific immune response has been ad hoc at best. To address this need, we utilized splenocytes obtained from mice with experimental autoimmune encephalomyelitis (EAE) in order to determine if certain immunomodulators may induce markers of immune tolerance following antigen rechallenge. Of the immunomodulatory compounds investigated, only dexamethasone modified the antigen-specific immune response by skewing the cytokine response and decreasing T-cell populations at a concentration corresponding to a relevant in vivo dose. Thus, antigen-educated EAE splenocytes provide an ex vivo screen for investigating compounds capable of skewing the antigen-specific immune response, and this approach could be extrapolated to antigen-educated cells from other diseases or human tissues.

  12. Sulforaphane inhibits the Th2 immune response in ovalbumin-induced asthma.

    PubMed

    Park, Jun Ho; Kim, Jong Won; Lee, Chang-Min; Kim, Yeong Dae; Chung, Sung Woon; Jung, In Duk; Noh, Kyung Tae; Park, Jin Wook; Heo, Deok Rim; Shin, Yong Kyoo; Seo, Jong Keun; Park, Yeong-Min

    2012-05-01

    Sulforaphane (1-isothiocyanato-4-(methylsulfinyl)-butane), belonging to a family of natural compounds that are abundant in broccoli, has received significant therapeutic interest in recent years. However, the molecular basis of its effects remains to be elucidated. In this study, we attempt to determine whether sulforaphane regulates the inflammatory response in an ovalbumin (OVA)-induced murine asthma model. Mice were sensitized with OVA, treated with sulforaphane, and then challenged with OVA. Sulforaphane administration significantly alleviated the OVA-induced airway hyperresponsiveness to inhaled methacholine. Additionally, sulforaphane suppressed the increase in the levels of SOCS-3 and GATA-3 and IL-4 expression in the OVA-challenged mice. Collectively, our results demonstrate that sulforaphane regulates Th2 immune responses. This sutdy provides novel insights into the regulatory role of sulforaphane in allergen-induced Th2 inflammation and airway responses, which indicates its therapeutic potential for asthma and other allergic diseases.

  13. Virus-like nanostructures for tuning immune response

    NASA Astrophysics Data System (ADS)

    Mammadov, Rashad; Cinar, Goksu; Gunduz, Nuray; Goktas, Melis; Kayhan, Handan; Tohumeken, Sehmus; Topal, Ahmet E.; Orujalipoor, Ilghar; Delibasi, Tuncay; Dana, Aykutlu; Ide, Semra; Tekinay, Ayse B.; Guler, Mustafa O.

    2015-11-01

    Synthetic vaccines utilize viral signatures to trigger immune responses. Although the immune responses raised against the biochemical signatures of viruses are well characterized, the mechanism of how they affect immune response in the context of physical signatures is not well studied. In this work, we investigated the ability of zero- and one-dimensional self-assembled peptide nanostructures carrying unmethylated CpG motifs (signature of viral DNA) for tuning immune response. These nanostructures represent the two most common viral shapes, spheres and rods. The nanofibrous structures were found to direct immune response towards Th1 phenotype, which is responsible for acting against intracellular pathogens such as viruses, to a greater extent than nanospheres and CpG ODN alone. In addition, nanofibers exhibited enhanced uptake into dendritic cells compared to nanospheres or the ODN itself. The chemical stability of the ODN against nuclease-mediated degradation was also observed to be enhanced when complexed with the peptide nanostructures. In vivo studies showed that nanofibers promoted antigen-specific IgG production over 10-fold better than CpG ODN alone. To the best of our knowledge, this is the first report showing the modulation of the nature of an immune response through the shape of the carrier system.

  14. The minor house dust mite allergen Der p 13 is a fatty acid-binding protein and an activator of a TLR2-mediated innate immune response.

    PubMed

    Satitsuksanoa, P; Kennedy, M; Gilis, D; Le Mignon, M; Suratannon, N; Soh, W T; Wongpiyabovorn, J; Chatchatee, P; Vangveravong, M; Rerkpattanapipat, T; Sangasapaviliya, A; Piboonpocanun, S; Nony, E; Ruxrungtham, K; Jacquet, A

    2016-10-01

    The house dust mite (HDM) allergen Der p 13 could be a lipid-binding protein able to activate key innate signaling pathways in the initiation of the allergic response. We investigated the IgE reactivity of recombinant Der p 13 (rDer p 13), its lipid-binding activities, and its capacity to stimulate airway epithelium cells. Purified rDer p 13 was characterized by mass spectrometry, circular dichroism, fluorescence-based lipid-binding assays, and in silico structural prediction. IgE-binding activity and allergenic potential of Der p 13 were examined by ELISA, basophil degranulation assays, and in vitro airway epithelial cell activation assays. Protein modeling and biophysical analysis indicated that Der p 13 adopts a β-barrel structure with a predominately apolar pocket representing a potential binding site for hydrophobic ligands. Fluorescent lipid-binding assays confirmed that the protein is highly selective for ligands and that it binds a fatty acid with a dissociation constant typical of lipid transporter proteins. The low IgE-binding frequency (7%, n = 224) in Thai HDM-allergic patients as well as the limited propensity to activate basophil degranulation classifies Der p 13 as a minor HDM allergen. Nevertheless, the protein with its presumptively associated lipid(s) triggered the production of IL-8 and GM-CSF in respiratory epithelial cells through a TLR2-, MyD88-, NF-kB-, and MAPK-dependent signaling pathway. Although a minor allergen, Der p 13 may, through its lipid-binding capacity, play a role in the initiation of the HDM-allergic response through TLR2 activation. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. The Ocular Conjunctiva as a Mucosal Immunization Route: A Profile of the Immune Response to the Model Antigen Tetanus Toxoid

    PubMed Central

    Belij, Sandra; Marinkovic, Emilija; Stojicevic, Ivana; Montanaro, Jacqueline; Stein, Elisabeth; Bintner, Nora; Stojanovic, Marijana

    2013-01-01

    Background In a quest for a needle-free vaccine administration strategy, we evaluated the ocular conjunctiva as an alternative mucosal immunization route by profiling and comparing the local and systemic immune responses to the subcutaneous or conjunctival administration of tetanus toxoid (TTd), a model antigen. Materials and methods BALB/c and C57BL/6 mice were immunized either subcutaneously with TTd alone or via the conjunctiva with TTd alone, TTd mixed with 2% glycerol or TTd with merthiolate-inactivated whole-cell B. pertussis (wBP) as adjuvants. Mice were immunized on days 0, 7 and 14 via both routes, and an evaluation of the local and systemic immune responses was performed two weeks after the last immunization. Four weeks after the last immunization, the mice were challenged with a lethal dose (2 × LD50) of tetanus toxin. Results The conjunctival application of TTd in BALB/c mice induced TTd-specific secretory IgA production and skewed the TTd-specific immune response toward a Th1/Th17 profile, as determined by the stimulation of IFNγ and IL-17A secretion and/or the concurrent pronounced reduction of IL-4 secretion, irrespective of the adjuvant. In conjunctivaly immunized C57BL/6 mice, only TTd administered with wBP promoted the establishment of a mixed Th1/Th17 TTd-specific immune response, whereas TTd alone or TTd in conjunction with glycerol initiated a dominant Th1 response against TTd. Immunization via the conjunctiva with TTd plus wBP adjuvant resulted in a 33% survival rate of challenged mice compared to a 0% survival rate in non-immunized animals (p<0.05). Conclusion Conjunctival immunization with TTd alone or with various adjuvants induced TTd-specific local and systemic immune responses, predominantly of the Th1 type. The strongest immune responses developed in mice that received TTd together with wBP, which implies that this alternative route might tailor the immune response to fight intracellular bacteria or viruses more effectively. PMID

  16. The ocular conjunctiva as a mucosal immunization route: a profile of the immune response to the model antigen tetanus toxoid.

    PubMed

    Barisani-Asenbauer, Talin; Inic-Kanada, Aleksandra; Belij, Sandra; Marinkovic, Emilija; Stojicevic, Ivana; Montanaro, Jacqueline; Stein, Elisabeth; Bintner, Nora; Stojanovic, Marijana

    2013-01-01

    In a quest for a needle-free vaccine administration strategy, we evaluated the ocular conjunctiva as an alternative mucosal immunization route by profiling and comparing the local and systemic immune responses to the subcutaneous or conjunctival administration of tetanus toxoid (TTd), a model antigen. BALB/c and C57BL/6 mice were immunized either subcutaneously with TTd alone or via the conjunctiva with TTd alone, TTd mixed with 2% glycerol or TTd with merthiolate-inactivated whole-cell B. pertussis (wBP) as adjuvants. Mice were immunized on days 0, 7 and 14 via both routes, and an evaluation of the local and systemic immune responses was performed two weeks after the last immunization. Four weeks after the last immunization, the mice were challenged with a lethal dose (2 × LD50) of tetanus toxin. The conjunctival application of TTd in BALB/c mice induced TTd-specific secretory IgA production and skewed the TTd-specific immune response toward a Th1/Th17 profile, as determined by the stimulation of IFNγ and IL-17A secretion and/or the concurrent pronounced reduction of IL-4 secretion, irrespective of the adjuvant. In conjunctivaly immunized C57BL/6 mice, only TTd administered with wBP promoted the establishment of a mixed Th1/Th17 TTd-specific immune response, whereas TTd alone or TTd in conjunction with glycerol initiated a dominant Th1 response against TTd. Immunization via the conjunctiva with TTd plus wBP adjuvant resulted in a 33% survival rate of challenged mice compared to a 0% survival rate in non-immunized animals (p<0.05). Conjunctival immunization with TTd alone or with various adjuvants induced TTd-specific local and systemic immune responses, predominantly of the Th1 type. The strongest immune responses developed in mice that received TTd together with wBP, which implies that this alternative route might tailor the immune response to fight intracellular bacteria or viruses more effectively.

  17. Allergen endotoxins induce T-cell-dependent and non-IgE-mediated nasal hypersensitivity in mice.

    PubMed

    Iwasaki, Naruhito; Matsushita, Kazufumi; Fukuoka, Ayumi; Nakahira, Masakiyo; Matsumoto, Makoto; Akasaki, Shoko; Yasuda, Koubun; Shimizu, Takeshi; Yoshimoto, Tomohiro

    2017-01-01

    Allergen-mediated cross-linking of IgE on mast cells/basophils is a well-recognized trigger for type 1 allergic diseases such as allergic rhinitis (AR). However, allergens may not be the sole trigger for AR, and several allergic-like reactions are induced by non-IgE-mediated mechanisms. We sought to describe a novel non-IgE-mediated, endotoxin-triggered nasal type-1-hypersensitivity-like reaction in mice. To investigate whether endotoxin affects sneezing responses, mice were intraperitoneally immunized with ovalbumin (OVA), then nasally challenged with endotoxin-free or endotoxin-containing OVA. To investigate the role of T cells and mechanisms of the endotoxin-induced response, mice were adoptively transferred with in vitro-differentiated OVA-specific T H 2 cells, then nasally challenged with endotoxin-free or endotoxin-containing OVA. Endotoxin-containing, but not endotoxin-free, OVA elicited sneezing responses in mice independent from IgE-mediated signaling. OVA-specific T H 2 cell adoptive transfer to mice demonstrated that local activation of antigen-specific T H 2 cells was required for the response. The Toll-like receptor 4-myeloid differentiation factor 88 signaling pathway was indispensable for endotoxin-containing OVA-elicited rhinitis. In addition, LPS directly triggered sneezing responses in OVA-specific T H 2-transferred and nasally endotoxin-free OVA-primed mice. Although antihistamines suppressed sneezing responses, mast-cell/basophil-depleted mice had normal sneezing responses to endotoxin-containing OVA. Clodronate treatment abrogated endotoxin-containing OVA-elicited rhinitis, suggesting the involvement of monocytes/macrophages in this response. Antigen-specific nasal activation of CD4 + T cells followed by endotoxin exposure induces mast cell/basophil-independent histamine release in the nose that elicits sneezing responses. Thus, environmental or nasal residential bacteria may exacerbate AR symptoms. In addition, this novel phenomenon might

  18. Strong and frequent T-cell responses to the minor allergen Phl p 12 in Spanish patients IgE-sensitized to Profilins.

    PubMed

    Lund, G; Brand, S; Ramos, T; Jimeno, L; Boissy, P; Vega, F; Arina, M; Christensen, L H; Hoof, I; Meno, K H; Barber, D; Blanco, C; Würtzen, P A; Andersen, P S

    2018-05-01

    Profilins are dominant pan-allergens known to cause cross-sensitization, leading to clinical symptoms such as pollen-food syndrome. This study aimed to determine the T-cell response to Phl p 12 in profilin-sensitized patients, by measuring the prevalence, strength and cross-reactivity to clinically relevant profilins. The release of Phl p allergens from pollen was determined by mass spectrometry and immunochemistry. T-cell responses, epitope mapping and cross-reactivity to profilins (Phl p 12, Ole e 2, Bet v 2 and Mal d 4) were measured in vitro using PBMCs from 26 Spanish grass-allergic donors IgE-sensitized to profilin. Cross-reactivity was addressed in vivo using 2 different mouse strains (BALB/c and C3H). Phl p 12 and Phl p 1 are released from pollen simultaneously and in similar amounts. Both T-cell response frequency (17/26 donors) and strength were comparable between Phl p 12 and Phl p 1. T-cell cross-reactivity to other profilins correlated with overall sequence homology, and 2 immunodominant epitope regions of Phl p 12 were identified. Data from mice immunized with Phl p 12 showed that cross-reactivity to Bet v 2 was mediated by conserved epitopes and further influenced by additional genetic factors, likely to be MHC II. The strength, prevalence and cross-reactivity of T-cell responses towards Phl p 12 are comparable to the major allergen Phl p 1, which supports the hypothesis that T cells to Phl p 12 can play an important role in development of allergic symptoms, such as those associated with pollen-food syndrome. © 2017 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.

  19. Flow cytometric analysis of lymphocyte proliferative responses to food allergens in dogs with food allergy.

    PubMed

    Fujimura, Masato; Masuda, Kenichi; Hayashiya, Makio; Okayama, Taro

    2011-10-01

    Two different allergy tests, antigen-specific immunoglobulin E quantification (IgE test) and flow cytometric analysis of antigen-specific proliferation of peripheral lymphocytes (lymphocyte proliferation test), were performed to examine differences in allergic reactions to food allergens in dogs with food allergy (FA). Thirteen dogs were diagnosed as FA based on clinical findings and elimination diet trials. Seven dogs clinically diagnosed with canine atopic dermatitis (CAD) were used as a disease control group, and 5 healthy dogs were used as a negative control group. In the FA group, 19 and 33 allergen reactions were identified using the serum IgE test and the lymphocyte proliferation test, respectively. Likewise, in the CAD group, 12 and 6 allergen reactions and in the healthy dogs 3 and 0 allergen reactions were identified by each test, respectively. A significant difference was found between FA and healthy dogs in terms of positive allergen detection by the lymphocyte proliferation test, suggesting that the test can be useful to differentiate FA from healthy dogs but not from CAD. Both tests were repeated in 6 of the dogs with FA after a 1.5- to 5-month elimination diet trial. The IgE concentrations in 9 of 11 of the positive reactions decreased by 20-80%, whereas all the positive reactions in the lymphocyte proliferation test decreased to nearly zero (P<0.05), suggesting that lymphocytes against food allergens may be involved in the pathogenesis of canine FA.

  20. Varicella-Zoster Virus-Specific Cellular Immune Responses to the Live Attenuated Zoster Vaccine in Young and Older Adults.

    PubMed

    Weinberg, Adriana; Canniff, Jennifer; Rouphael, Nadine; Mehta, Aneesh; Mulligan, Mark; Whitaker, Jennifer A; Levin, Myron J

    2017-07-15

    The incidence and severity of herpes zoster (HZ) increases with age. The live attenuated zoster vaccine generates immune responses similar to HZ. We compared the immune responses to zoster vaccine in young and older to adults to increase our understanding of the immune characteristics that may contribute to the increased susceptibility to HZ in older adults. Young (25-40 y; n = 25) and older (60-80 y; n = 33) adults had similar magnitude memory responses to varicella-zoster virus (VZV) ex vivo restimulation measured by responder cell-frequency and flow cytometry, but the responses were delayed in older compared with young adults. Only young adults had an increase in dual-function VZV-specific CD4 + and CD8 + T cell effectors defined by coexpression of IFN-γ, IL-2, and CD107a after vaccination. In contrast, older adults showed marginal increases in VZV-specific CD8 + CD57 + senescent T cells after vaccination, which were already higher than those of young adults before vaccination. An increase in VZV-stimulated CD4 + CD69 + CD57 + PD1 + and CD8 + CD69 + CD57 + PD1 + T cells from baseline to postvaccination was associated with concurrent decreased VZV-memory and CD8 + effector responses, respectively, in older adults. Blocking the PD1 pathway during ex vivo VZV restimulation increased the CD4 + and CD8 + proliferation, but not the effector cytokine production, which modestly increased with TIM-3 blockade. We conclude that high proportions of senescent and exhausted VZV-specific T cells in the older adults contribute to their poor effector responses to a VZV challenge. This may underlie their inability to contain VZV reactivation and prevent the development of HZ. Copyright © 2017 by The American Association of Immunologists, Inc.

  1. Kinetic of the CMV-specific T-cell immune response and CMV infection in CMV-seropositive kidney transplant recipients receiving rabbit anti-thymocyte globulin induction therapy: A pilot study.

    PubMed

    Martín-Gandul, Cecilia; Pérez-Romero, Pilar; Mena-Romo, Damián; Molina-Ortega, Alejandro; González-Roncero, Francisco M; Suñer, Marta; Bernal, Gabriel; Cordero, Elisa

    2018-03-23

    Some studies have suggested that rATG treatment may be associated with an increased incidence of CMV infection and delayed CMV immune response. However, the evidences supporting this matter are scarce. This study aims to characterize the kinetic of the CMV-specific T-cell immune response before and after rATG induction therapy and the relationship with the development of CMV infection in CMV-seropositive kidney transplant recipients. An observational prospective study of CMV-seropositive kidney transplant patients that received rATG induction therapy was performed. A pretransplant sample was obtained before the surgery to determine the CMV-specific immunity. CMV viral load (by PCR) and CMV-specific T-cell immune response (by flow cytometry) were determined during the follow-up at 0.5, 1, 2, 3, 6, and 12 months post transplantation. A total of 23 patients were included in the study. CMV prophylaxis was administrated for a media of 90 days after transplantation. At the end of follow-up, 18 (78.3%) patients had CMV-specific immunity with a median value of 0.31% CD8 + CD69 + INF-γ + T cells at a median of 16 weeks post transplantation. Five patients never acquired CMV-specific immunity. No statistically significant association between CMV infection and CMV-specific T-cell immune response (P = .086) was observed. However, patients with positive pretransplant CMV-specific immunity developed earlier immunity and achieved higher levels of CD8 + CD69 + INF-γ+ T-cell post-transplantation than patients with negative pretransplant immunity. CMV-specific immune monitoring in addition to CMV-serology may be useful to stratify patient's risk of CMV infection before transplantation. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Engineering HIV-Specific Immunity with Chimeric Antigen Receptors.

    PubMed

    Kitchen, Scott G; Zack, Jerome A

    2016-12-01

    HIV remains a highly important public health and clinical issue despite many recent advances in attempting to develop a cure, which has remained elusive for most people infected with HIV. HIV disease can be controlled with pharmacologic therapies; however, these treatments are expensive, may have severe side effects, and are not curative. Consequently, an improved means to control or eliminate HIV replication is needed. Cytotoxic T lymphocytes (CTLs) play a critical role in controlling viral replication and are an important part in the ability of the immune response to eradicate most viral infections. There are considerable efforts to enhance CTL responses in HIV-infected individuals in hopes of providing the immune response with armaments to more effectively control viral replication. In this review, we discuss some of these efforts and focus on the development of a gene therapy-based approach to engineer hematopoietic stem cells with an HIV-1-specific chimeric antigen receptor, which seeks to provide an inexhaustible source of HIV-1-specific immune cells that are MHC unrestricted and superior to natural antiviral T cell responses. These efforts provide the basis for further development of T cell functional enhancement to target and treat chronic HIV infection in hopes of eradicating the virus from the body.

  3. Infant milk formulas differ regarding their allergenic activity and induction of T-cell and cytokine responses.

    PubMed

    Hochwallner, H; Schulmeister, U; Swoboda, I; Focke-Tejkl, M; Reininger, R; Civaj, V; Campana, R; Thalhamer, J; Scheiblhofer, S; Balic, N; Horak, F; Ollert, M; Papadopoulos, N G; Quirce, S; Szepfalusi, Z; Herz, U; van Tol, E A F; Spitzauer, S; Valenta, R

    2017-03-01

    Several hydrolyzed cow's milk (CM) formulas are available for avoidance of allergic reactions in CM-allergic children and for prevention of allergy development in high-risk infants. Our aim was to compare CM formulas regarding the presence of immunoreactive CM components, IgE reactivity, allergenic activity, ability to induce T-cell proliferation, and cytokine secretion. A blinded analysis of eight CM formulas, one nonhydrolyzed, two partially hydrolyzed (PH), four extensively hydrolyzed (EH), and one amino acid formula, using biochemical techniques and specific antibody probes was conducted. IgE reactivity and allergenic activity of the formulas were tested with sera from CM-allergic patients (n = 26) in RAST-based assays and with rat basophils transfected with the human FcεRI, respectively. The induction of T-cell proliferation and the secretion of cytokines in Peripheral blood mononuclear cell (PBMC) culture from CM allergic patients and nonallergic individuals were assessed. Immune-reactive α-lactalbumin and β-lactoglobulin were found in the two PH formulas and casein components in one of the EH formulas. One PH formula and the EH formula containing casein components showed remaining IgE reactivity, whereas the other hydrolyzed formulas lacked IgE reactivity. Only two EH formulas and the amino acid formula did not induce T-cell proliferation and proinflammatory cytokine release. The remaining formulas varied regarding the induction of Th2, Th1, and proinflammatory cytokines. Our results show that certain CM formulas without allergenic and low proinflammatory properties can be identified and they may also explain different outcomes obtained in clinical studies using CM formulas. © 2016 The Authors. Allergy Published by John Wiley & Sons Ltd.

  4. Allergen cross reactions: a problem greater than ever thought?

    PubMed

    Pfiffner, P; Truffer, R; Matsson, P; Rasi, C; Mari, A; Stadler, B M

    2010-12-01

    Cross reactions are an often observed phenomenon in patients with allergy. Sensitization against some allergens may cause reactions against other seemingly unrelated allergens. Today, cross reactions are being investigated on a per-case basis, analyzing blood serum specific IgE (sIgE) levels and clinical features of patients suffering from cross reactions. In this study, we evaluated the level of sIgE compared to patients' total IgE assuming epitope specificity is a consequence of sequence similarity. Our objective was to evaluate our recently published model of molecular sequence similarities underlying cross reactivity using serum-derived data from IgE determinations of standard laboratory tests. We calculated the probabilities of protein cross reactivity based on conserved sequence motifs and compared these in silico predictions to a database consisting of 5362 sera with sIgE determinations. Cumulating sIgE values of a patient resulted in a median of 25-30% total IgE. Comparing motif cross reactivity predictions to sIgE levels showed that on average three times fewer motifs than extracts were recognized in a given serum (correlation coefficient: 0.967). Extracts belonging to the same motif group co-reacted in a high percentage of sera (up to 80% for some motifs). Cumulated sIgE levels are exaggerated because of a high level of observed cross reactions. Thus, not only bioinformatic prediction of allergenic motifs, but also serological routine testing of allergic patients implies that the immune system may recognize only a small number of allergenic structures. © 2010 John Wiley & Sons A/S.

  5. Q fever in pregnant goats: humoral and cellular immune responses

    PubMed Central

    2013-01-01

    Q fever is a zoonosis caused by the intracellular bacterium Coxiella burnetii. Both humoral and cellular immunity are important in the host defence against intracellular bacteria. Little is known about the immune response to C. burnetii infections in domestic ruminants even though these species are the major source of Q fever in humans. To investigate the goat’s immune response we inoculated groups of pregnant goats via inhalation with a Dutch outbreak isolate of C. burnetii. All animals were successfully infected. Phase 1 and Phase 2 IgM- and IgG-specific antibodies were measured. Cellular immune responses were investigated by interferon-gamma, enzyme-linked immunosorbent spot test (IFN-γ Elispot), lymphocyte proliferation test (LPT) and systemic cytokines. After two weeks post inoculation (wpi), a strong anti-C. burnetii Phase 2 IgM and IgG antibody response was observed while the increase in IgM anti-Phase 1 antibodies was less pronounced. IgG anti-Phase 1 antibodies started to rise at 6 wpi. Cellular immune responses were observed after parturition. Our results demonstrated humoral and cellular immune responses to C. burnetii infection in pregnant goats. Cell-mediated immune responses did not differ enough to distinguish between Coxiella-infected and non-infected pregnant animals, whereas a strong-phase specific antibody response is detected after 2 wpi. This humoral immune response may be useful in the early detection of C. burnetii-infected pregnant goats. PMID:23915213

  6. Molecular determinants of T cell epitope recognition to the common Timothy grass allergen.

    PubMed

    Oseroff, Carla; Sidney, John; Kotturi, Maya F; Kolla, Ravi; Alam, Rafeul; Broide, David H; Wasserman, Stephen I; Weiskopf, Daniela; McKinney, Denise M; Chung, Jo L; Petersen, Arnd; Grey, Howard; Peters, Bjoern; Sette, Alessandro

    2010-07-15

    We investigated the molecular determinants of allergen-derived T cell epitopes in humans utilizing the Phleum pratense (Timothy grass) allergens (Phl p). PBMCs from allergic individuals were tested in ELISPOT assays with overlapping peptides spanning known Phl p allergens. A total of 43 distinct antigenic regions were recognized, illustrating the large breadth of grass-specific T cell epitopes. Th2 cytokines (as represented by IL-5) were predominant, whereas IFN-gamma, IL-10, and IL-17 were detected less frequently. Responses from specific immunotherapy treatment individuals were weaker and less consistent, yet similar in epitope specificity and cytokine pattern to allergic donors, whereas nonallergic individuals were essentially nonreactive. Despite the large breadth of recognition, nine dominant antigenic regions were defined, each recognized by multiple donors, accounting for 51% of the total response. Multiple HLA molecules and loci restricted the dominant regions, and the immunodominant epitopes could be predicted using bioinformatic algorithms specific for 23 common HLA-DR, DP, and DQ molecules. Immunodominance was also apparent at the Phl p Ag level. It was found that 52, 19, and 14% of the total response was directed to Phl p 5, 1, and 3, respectively. Interestingly, little or no correlation between Phl p-specific IgE levels and T cell responses was found. Thus, certain intrinsic features of the allergen protein might influence immunogenicity at the level of T cell reactivity. Consistent with this notion, different Phl p Ags were associated with distinct patterns of IL-5, IFN-gamma, IL-10, and IL-17 production.

  7. Origin and Functional Prediction of Pollen Allergens in Plants.

    PubMed

    Chen, Miaolin; Xu, Jie; Devis, Deborah; Shi, Jianxin; Ren, Kang; Searle, Iain; Zhang, Dabing

    2016-09-01

    Pollen allergies have long been a major pandemic health problem for human. However, the evolutionary events and biological function of pollen allergens in plants remain largely unknown. Here, we report the genome-wide prediction of pollen allergens and their biological function in the dicotyledonous model plant Arabidopsis (Arabidopsis thaliana) and the monocotyledonous model plant rice (Oryza sativa). In total, 145 and 107 pollen allergens were predicted from rice and Arabidopsis, respectively. These pollen allergens are putatively involved in stress responses and metabolic processes such as cell wall metabolism during pollen development. Interestingly, these putative pollen allergen genes were derived from large gene families and became diversified during evolution. Sequence analysis across 25 plant species from green alga to angiosperms suggest that about 40% of putative pollen allergenic proteins existed in both lower and higher plants, while other allergens emerged during evolution. Although a high proportion of gene duplication has been observed among allergen-coding genes, our data show that these genes might have undergone purifying selection during evolution. We also observed that epitopes of an allergen might have a biological function, as revealed by comprehensive analysis of two known allergens, expansin and profilin. This implies a crucial role of conserved amino acid residues in both in planta biological function and allergenicity. Finally, a model explaining how pollen allergens were generated and maintained in plants is proposed. Prediction and systematic analysis of pollen allergens in model plants suggest that pollen allergens were evolved by gene duplication and then functional specification. This study provides insight into the phylogenetic and evolutionary scenario of pollen allergens that will be helpful to future characterization and epitope screening of pollen allergens. © 2016 American Society of Plant Biologists. All rights reserved.

  8. Gelatin-specific humoral and cellular immune responses in children with immediate- and nonimmediate-type reactions to live measles, mumps, rubella, and varicella vaccines.

    PubMed

    Kumagai, T; Yamanaka, T; Wataya, Y; Umetsu, A; Kawamura, N; Ikeda, K; Furukawa, H; Kimura, K; Chiba, S; Saito, S; Sugawara, N; Kurimoto, F; Sakaguchi, M; Inouye, S

    1997-07-01

    This study was designed to investigate the development of both cellular and humoral immune responses to gelatin in patients with vaccine-related immediate and nonimmediate reactions. Our purpose was to define the nature of the responses in the different clinical states. Six patients with immediate reactions and 21 patients with nonimmediate reactions after inoculation of various live vaccines were studied. Measurement of gelatin-specific IgE was performed in all subjects. Gelatin-specific T-cell responses detected by an in vitro lymphocyte proliferation assay and by an assay for IL-2 responsiveness were investigated to compare the immune response in patients with the two types of reaction. All six patients with immediate reactions had IgE responses to gelatin, whereas none of the 21 patients with nonimmediate reactions had any anti-gelatin IgE. All of the six patients with immediate reactions and 17 of the 21 patients with nonimmediate reactions exhibited positive T-lymphocyte responses specific to gelatin. Immediate and nonimmediate reactions are caused by different types of allergy to gelatin, and cell-mediated immunity to gelatin may play an important role in the pathogenesis of nonimmediate reactions.

  9. Specific B-cell Epitope of Per a 1: A Major Allergen of American Cockroach (Periplaneta americana) and Anatomical Localization.

    PubMed

    Sookrung, Nitat; Khetsuphan, Thanyathon; Chaisri, Urai; Indrawattana, Nitaya; Reamtong, Onrapak; Chaicumpa, Wanpen; Tungtrongchitr, Anchalee

    2014-07-01

    Cockroach (CR) is a common source of indoor allergens, and Per a 1 is a major American CR (Periplaneta americana) allergen; however, several attributes of this protein remain unknown. This study identifies a novel specific B cell epitope and anatomical locations of Per a 1.0105. Recombinant Per a 1.0105 (rPer a 1.0105) was used as BALB/c mouse immunogen for the production of monoclonal antibodies (MAb). The MAb specific B cell epitope was identified by determining phage mimotopic peptides and pair-wise alignment of the peptides with the rPer a 1.0105 amino acid sequence. Locations of the Per a 1.0105 in P. americana were investigated by immunohistochemical staining. The rPer a 1.0105 (~13 kDa) had 100%, 98% and ≥90% identity to Per a 1.0105, Per a 1.0101, and Cr-PII, respectively. The B-cell epitope of the Per a 1.0105 specific-MAb was located at residues(99) QDLLLQLRDKGV(110) contained in all 5 Per a 1.01 isoforms and Per a 1.02. The epitope was analogous to the Bla g 1.02 epitope; however, this B-cell epitope was not an IgE inducer. Per a 1.0105 was found in the midgut and intestinal content of American CR but not in the other organs. The amount of the Per a 1 was ~544 ℃g per gram of feces. The novel Per a 1 B-cell epitope described in this study is a useful target for allergen quantification in samples; however, the specific MAb can be used as an allergen detection reagent. The MAb based-affinity resin can be made for allergen purification, and the so-purified protein can serve as a standard and diagnostic allergen as well as a therapeutic vaccine component. The finding that the Per a 1 is contained in the midgut and feces is useful to increase yield and purity when preparing this allergen.

  10. Specific B-cell Epitope of Per a 1: A Major Allergen of American Cockroach (Periplaneta americana) and Anatomical Localization

    PubMed Central

    Sookrung, Nitat; Khetsuphan, Thanyathon; Chaisri, Urai; Indrawattana, Nitaya; Reamtong, Onrapak; Chaicumpa, Wanpen

    2014-01-01

    Purpose Cockroach (CR) is a common source of indoor allergens, and Per a 1 is a major American CR (Periplaneta americana) allergen; however, several attributes of this protein remain unknown. This study identifies a novel specific B cell epitope and anatomical locations of Per a 1.0105. Methods Recombinant Per a 1.0105 (rPer a 1.0105) was used as BALB/c mouse immunogen for the production of monoclonal antibodies (MAb). The MAb specific B cell epitope was identified by determining phage mimotopic peptides and pair-wise alignment of the peptides with the rPer a 1.0105 amino acid sequence. Locations of the Per a 1.0105 in P. americana were investigated by immunohistochemical staining. Results The rPer a 1.0105 (~13 kDa) had 100%, 98% and ≥90% identity to Per a 1.0105, Per a 1.0101, and Cr-PII, respectively. The B-cell epitope of the Per a 1.0105 specific-MAb was located at residues99 QDLLLQLRDKGV110 contained in all 5 Per a 1.01 isoforms and Per a 1.02. The epitope was analogous to the Bla g 1.02 epitope; however, this B-cell epitope was not an IgE inducer. Per a 1.0105 was found in the midgut and intestinal content of American CR but not in the other organs. The amount of the Per a 1 was ~544 ℃g per gram of feces. Conclusions The novel Per a 1 B-cell epitope described in this study is a useful target for allergen quantification in samples; however, the specific MAb can be used as an allergen detection reagent. The MAb based-affinity resin can be made for allergen purification, and the so-purified protein can serve as a standard and diagnostic allergen as well as a therapeutic vaccine component. The finding that the Per a 1 is contained in the midgut and feces is useful to increase yield and purity when preparing this allergen. PMID:24991456

  11. Mechanism for initiation of food allergy: Dependence on skin barrier mutations and environmental allergen costimulation.

    PubMed

    Walker, Matthew T; Green, Jeremy E; Ferrie, Ryan P; Queener, Ashley M; Kaplan, Mark H; Cook-Mills, Joan M

    2018-05-01

    Mechanisms for the development of food allergy in neonates are unknown but clearly linked in patient populations to a genetic predisposition to skin barrier defects. Whether skin barrier defects contribute functionally to development of food allergy is unknown. The purpose of the study was to determine whether skin barrier mutations, which are primarily heterozygous in patient populations, contribute to the development of food allergy. Mice heterozygous for the filaggrin (Flg) ft and Tmem79 ma mutations were skin sensitized with environmental and food allergens. After sensitization, mice received oral challenge with food allergen, and then inflammation, inflammatory mediators, and anaphylaxis were measured. We define development of inflammation, inflammatory mediators, and food allergen-induced anaphylaxis in neonatal mice with skin barrier mutations after brief concurrent cutaneous exposure to food and environmental allergens. Moreover, neonates of allergic mothers have increased responses to suboptimal sensitization with food allergens. Importantly, responses to food allergens by these neonatal mice were dependent on genetic defects in skin barrier function and on exposure to environmental allergens. ST2 blockade during skin sensitization inhibited the development of anaphylaxis, antigen-specific IgE, and inflammatory mediators. Neonatal anaphylactic responses and antigen-specific IgE were also inhibited by oral pre-exposure to food allergen, but interestingly, this was blunted by concurrent pre-exposure of the skin to environmental allergen. These studies uncover mechanisms for food allergy sensitization and anaphylaxis in neonatal mice that are consistent with features of human early-life exposures and genetics in patients with clinical food allergy and demonstrate that changes in barrier function drive development of anaphylaxis to food allergen. Copyright © 2018 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  12. The sickle-cell trait modifies the intensity and specificity of the immune response against P. falciparum malaria and leads to acquired protective immunity.

    PubMed

    Bayoumi, R A

    1987-03-01

    It is proposed that the in vivo mechanism of protection against falciparum malaria in individuals of the Hb AS genotype is not due solely to the adverse influence of Hb AS erythrocytes on the intraerythrocytic growth and development of P. falciparum. Instead, the simple physiological effect of Hb S on parasite growth appears to trigger an in vivo process of enhancement of the intensity and/or specificity of the host immune response, leading to acquired protective immunity, in a process simulating vaccination. Testing the hypothesis may lead to the identification of plasmodial antigens that induce protective responses in the human host and distinguish them from non-protective, immunosuppressive or decoy antigens that promote parasite survival. This may ultimately help in the selection of candidate antigens for a malaria blood-stage vaccine.

  13. Antitumor immune responses mediated by dendritic cells

    PubMed Central

    Spel, Lotte; Boelens, Jaap-Jan; Nierkens, Stefan; Boes, Marianne

    2013-01-01

    Dendritic cells (DCs) are essential for the induction of adaptive immune responses against malignant cells by virtue of their capacity to effectively cross-present exogenous antigens to T lymphocytes. Dying cancer cells are indeed a rich source of antigens that may be harnessed for the development of DC-based vaccines. In particular, malignant cells succumbing to apoptosis, rather than necrosis, appear to release antigens in a manner that allows for the elicitation of adaptive immune responses. In this review, we describe the processes that mediate the cross-presentation of antigens released by apoptotic cancer cells to CD8+ T lymphocytes, resulting in the activation of protective tumor-specific immune responses. PMID:24482744

  14. Outstanding animal studies in allergy II. From atopic barrier and microbiome to allergen-specific immunotherapy.

    PubMed

    Jensen-Jarolim, Erika; Pali-Schöll, Isabella; Roth-Walter, Franziska

    2017-06-01

    Animal studies published within the past 18 months were assessed, focusing on innate and specific immunomodulation, providing knowledge of high translational relevance for human atopic and allergic diseases. Allergic companion animals represent alternative models, but most studies were done in mice. Atopic dermatitis mouse models were refined by the utilization of cytokines like IL-23 and relevant skin allergens or enzymes. A novel IL-6 reporter mouse allows biomonitoring of inflammation. Both skin pH and the (transferable) microflora have a pivotal role in modulating the skin barrier. The microflora of the gastrointestinal mucosa maintains tolerance to dietary compounds and can be disturbed by antiacid drugs. A key mouse study evidenced that dust from Amish households, but not from Hutterites protected mice against asthma. In studies on subcutaneous and sublingual allergen-specific immunotherapy, much focus was given on delivery and adjuvants, using poly-lacto-co-glycolic particles, CpGs, probiotics or Vitamin D3. The epicutaneous and intralymphatic routes showed promising results in mice and horses in terms of prophylactic and therapeutic allergy treatment. In atopic dermatitis, food allergies and asthma, environmental factors, together with the resident microflora and barrier status, decide on sensitization versus tolerance. Also allergen-specific immunotherapy operates with immunomodulatory principles.

  15. Outstanding animal studies in allergy II. From atopic barrier and microbiome to allergen-specific immunotherapy

    PubMed Central

    Jensen-Jarolim, Erika; Pali-Schöll, Isabella; Roth-Walter, Franziska

    2017-01-01

    Purpose of review Animal studies published within the past 18 months were assessed, focusing on innate and specific immunomodulation, providing knowledge of high translational relevance for human atopic and allergic diseases. Recent findings Allergic companion animals represent alternative models, but most studies were done in mice. Atopic dermatitis mouse models were refined by the utilization of cytokines like IL-23 and relevant skin allergens or enzymes. A novel IL-6 reporter mouse allows biomonitoring of inflammation. Both skin pH and the (transferable) microflora have a pivotal role in modulating the skin barrier. The microflora of the gastrointestinal mucosa maintains tolerance to dietary compounds and can be disturbed by antiacid drugs. A key mouse study evidenced that dust from Amish households, but not from Hutterites protected mice against asthma. In studies on subcutaneous and sublingual allergen-specific immunotherapy, much focus was given on delivery and adjuvants, using poly-lacto-co-glycolic particles, CpGs, probiotics or Vitamin D3. The epicutaneous and intralymphatic routes showed promising results in mice and horses in terms of prophylactic and therapeutic allergy treatment. Summary In atopic dermatitis, food allergies and asthma, environmental factors, together with the resident microflora and barrier status, decide on sensitization versus tolerance. Also allergen-specific immunotherapy operates with immunomodulatory principles. PMID:28375932

  16. Diesel exhaust augments allergen-induced lower airway inflammation in allergic individuals: a controlled human exposure study.

    PubMed

    Carlsten, Chris; Blomberg, Anders; Pui, Mandy; Sandstrom, Thomas; Wong, Sze Wing; Alexis, Neil; Hirota, Jeremy

    2016-01-01

    Traffic-related air pollution has been shown to augment allergy and airway disease. However, the enhancement of allergenic effects by diesel exhaust in particular is unproven in vivo in the human lung, and underlying details of this apparent synergy are poorly understood. To test the hypothesis that a 2 h inhalation of diesel exhaust augments lower airway inflammation and immune cell activation following segmental allergen challenge in atopic subjects. 18 blinded atopic volunteers were exposed to filtered air or 300 µg PM(2.5)/m(3) of diesel exhaust in random fashion. 1 h post-exposure, diluent-controlled segmental allergen challenge was performed; 2 days later, samples from the challenged segments were obtained by bronchoscopic lavage. Samples were analysed for markers and modifiers of allergic inflammation (eosinophils, Th2 cytokines) and adaptive immune cell activation. Mixed effects models with ordinal contrasts compared effects of single and combined exposures on these end points. Diesel exhaust augmented the allergen-induced increase in airway eosinophils, interleukin 5 (IL-5) and eosinophil cationic protein (ECP) and the GSTT1 null genotype was significantly associated with the augmented IL-5 response. Diesel exhaust alone also augmented markers of non-allergic inflammation and monocyte chemotactic protein (MCP)-1 and suppressed activity of macrophages and myeloid dendritic cells. Inhalation of diesel exhaust at environmentally relevant concentrations augments allergen-induced allergic inflammation in the lower airways of atopic individuals and the GSTT1 genotype enhances this response. Allergic individuals are a susceptible population to the deleterious airway effects of diesel exhaust. NCT01792232. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  17. Qualitative analysis of a stochastic epidemic model with specific functional response and temporary immunity

    NASA Astrophysics Data System (ADS)

    Hattaf, Khalid; Mahrouf, Marouane; Adnani, Jihad; Yousfi, Noura

    2018-01-01

    In this paper, we propose a stochastic delayed epidemic model with specific functional response. The time delay represents temporary immunity period, i.e., time from recovery to becoming susceptible again. We first show that the proposed model is mathematically and biologically well-posed. Moreover, the extinction of the disease and the persistence in the mean are established in the terms of a threshold value R0S which is smaller than the basic reproduction number R0 of the corresponding deterministic system.

  18. Epstein-Barr Virus-Specific Humoral Immune Responses in Health and Disease.

    PubMed

    Middeldorp, Jaap M

    2015-01-01

    Epstein-Barr virus (EBV) is widely distributed in the world and associated with a still increasing number of acute, chronic, malignant and autoimmune disease syndromes. Humoral immune responses to EBV have been studied for diagnostic, pathogenic and protective (vaccine) purposes. These studies use a range of methodologies, from cell-based immunofluorescence testing to antibody-diversity analysis using immunoblot and epitope analysis using recombinant or synthetic peptide-scanning. First, the individual EBV antigen complexes (VCA , MA, EA(D), EA(R) and EBNA) are defined at cellular and molecular levels, providing a historic overview. The characteristic antibody responses to these complexes in health and disease are described, and differences are highlighted by clinical examples. Options for EBV vaccination are briefly addressed. For a selected number of immunodominant proteins, in particular EBNA1, the interaction with human antibodies is further detailed at the epitope level, revealing interesting insights for structure, function and immunological aspects, not considered previously. Humoral immune responses against EBV-encoded tumour antigens LMP1, LMP2 and BARF1 are addressed, which provide novel options for targeted immunotherapy. Finally, some considerations on EBV-linked autoimmune diseases are given, and mechanisms of antigen mimicry are briefly discussed. Further analysis of humoral immune responses against EBV in health and disease in carefully selected patient cohorts will open new options for understanding pathogenesis of individual EBV-linked diseases and developing targeted diagnostic and therapeutic approaches.

  19. Food allergy: immune mechanisms, diagnosis and immunotherapy

    PubMed Central

    Nadeau, Kari C.

    2016-01-01

    Food allergy is a pathological, potentially deadly, immune reaction triggered by normally innocuous food protein antigens. The prevalence of food allergies is rising and the standard of care is not optimal, consisting of food-allergen avoidance and treatment of allergen-induced systemic reactions with adrenaline. Thus, accurate diagnosis, prevention and treatment are pressing needs, research into which has been catalysed by technological advances that are enabling a mechanistic understanding of food allergy at the cellular and molecular levels. We discuss the diagnosis and treatment of IgE-mediated food allergy in the context of the immune mechanisms associated with healthy tolerance to common foods, the inflammatory response underlying most food allergies, and immunotherapy-induced desensitization. We highlight promising research advances, therapeutic innovations and the challenges that remain. PMID:27795547

  20. The 'traveling salesman problem': a new approach for identification of differences among pollen allergens.

    PubMed

    Kosman, E; Eshel, A; Waisel, Y

    1997-04-01

    It is not easy to identify the specific plant species that causes an allergic response in a certain patient at a certain time. This is further complicated by the fact that closely related plant species cause similar allergic responses. A novel mathematical technique is used for analysis of skin responses of a large number of patients to several groups of allergens for improvement of the understanding of their similarity or dissimilarity and their status regarding cross-reactivity. The responses of 153 atopic patients to 42 different pollen extracts were tested by skin prick tests. Among the responses of patients to various extracts, a measure of dissimilarity was introduced and calculated for all pairs of allergens. A matrix-structuring technique, based on a solution of the 'Travelling Salesman Problem', was used for clustering of the investigated allergens into groups according to patients' responses. The discrimination among clusters was confirmed by statistical analysis. Sub groups can be discerned even among allergens of closely related plants, i.e. allergens that are usually regarded as fully cross-reactive. A few such cases are demonstrated for various cultivars of olives and pecans and for various sources of date palms, turf grasses, three wild chenopods and an amaranth. The usefulness of the proposed approach for the understanding of similarity and dissimilarity among various pollen allergens is demonstrated.

  1. Modification to the Capsid of the Adenovirus Vector That Enhances Dendritic Cell Infection and Transgene-Specific Cellular Immune Responses

    PubMed Central

    Worgall, Stefan; Busch, Annette; Rivara, Michael; Bonnyay, David; Leopold, Philip L.; Merritt, Robert; Hackett, Neil R.; Rovelink, Peter W.; Bruder, Joseph T.; Wickham, Thomas J.; Kovesdi, Imi; Crystal, Ronald G.

    2004-01-01

    Adenovirus (Ad) gene transfer vectors can be used to transfer and express antigens and function as strong adjuvants and thus are useful platforms for the development of genetic vaccines. Based on the hypothesis that Ad vectors with enhanced infectibility of dendritic cells (DC) may be able to evoke enhanced immune responses against antigens encoded by the vector in vivo, the present study analyzes the vaccine potential of an Ad vector expressing β-galactosidase as a model antigen and genetically modified with RGD on the fiber knob [AdZ.F(RGD)] to more selectively infect DC and consequently enhance immunity against the β-galactosidase antigen. Infection of murine DC in vitro with AdZ.F(RGD) showed an eightfold-increased transgene expression following infection compared to AdZ (also expressing β-galactosidase, but with a wild-type capsid). Binding, cellular uptake, and trafficking in DC were also increased with AdZ.F(RGD) compared to AdZ. To determine whether AdZ.F(RGD) could evoke enhanced immune responses to β-galactosidase in vivo, C57BL/6 mice were immunized with AdZ.F(RGD) or AdZ subcutaneously via the footpad. Humoral responses with both vectors were comparable, with similar anti-β-galactosidase antibody levels following vector administration. However, cellular responses to β-galactosidase were significantly enhanced, with the frequency of CD4+ as well as the CD8+ β-galactosidase-specific gamma interferon response in cells isolated from the draining lymph nodes increased following immunization with AdZ.F(RGD) compared to Ad.Z (P < 0.01). Importantly, this enhanced cellular immune response of the AdZ.F(RGD) vector was sufficient to evoke enhanced inhibition of the growth of preexisting tumors expressing β-galactosidase: BALB/c mice implanted with the CT26 syngeneic β-galactosidase-expressing colon carcinoma cell line and subsequently immunized with AdZ.F(RGD) showed decreased tumor growth and improved survival compared to mice immunized with AdZ. These

  2. Towards Defining Molecular Determinants Recognized by Adaptive Immunity in Allergic Disease: An Inventory of the Available Data

    PubMed Central

    Vaughan, Kerrie; Greenbaum, Jason; Kim, Yohan; Vita, Randi; Chung, Jo; Peters, Bjoern; Broide, David; Goodman, Richard; Grey, Howard; Sette, Alessandro

    2010-01-01

    Adaptive immune responses associated with allergic reactions recognize antigens from a broad spectrum of plants and animals. Herein a meta-analysis was performed on allergy-related data from the immune epitope database (IEDB) to provide a current inventory and highlight knowledge gaps and areas for future work. The analysis identified over 4,500 allergy-related epitopes derived from 270 different allergens. Overall, the distribution of the data followed expectations based on the nature of allergic responses. Namely, the majority of epitopes were defined for B cells/antibodies and IgE-mediated reactivity, and relatively fewer T-cell epitopes, mostly CD4+/class II. Interestingly, the majority of food allergen epitopes were B-cells epitopes whereas a fairly even number of B- and T-cell epitopes were defined for airborne allergens. In addition, epitopes from nonhumans hosts were mostly T-cell epitopes. Overall, coverage of known allergens is sparse with data available for only ~17% of all allergens listed by the IUIS database. Thus, further research would be required to provide a more balanced representation across different allergen categories. Furthermore, inclusion of nonpeptidic epitopes in the IEDB also allows for inventory and analysis of immunological data associated with drug and contact allergen epitopes. Finally, our analysis also underscores that only a handful of epitopes have thus far been investigated for their immunotherapeutic potential. PMID:21403821

  3. IL-15-deficient mice develop enhanced allergic responses to airway allergen exposure

    PubMed Central

    Mathias, Clinton B.; Schramm, Craig M.; Guernsey, Linda A.; Wu, Carol A.; Polukort, Stephanie H.; Rovatti, Jeffrey; Ser-Dolansky, Jennifer; Secor, Eric; Schneider, Sallie S.; Thrall, Roger S.; Aguila, Hector L.

    2017-01-01

    Background Interleukin-15 is a pleiotropic cytokine that is critical for the development and survival of multiple hematopoietic lineages. Mice lacking IL-15 have selective defects in populations of several pro-allergic immune cells including natural killer (NK) cells, NKT cells, and memory CD8+T cells. We therefore hypothesized that IL-15−/− mice will have reduced inflammatory responses during the development of allergic airway disease (AAD). Objective To determine whether IL-15−/− mice have attenuated allergic responses in a mouse model of AAD. Methods C57BL/6 wild-type (WT) and IL-15−/− mice were sensitized and challenged with ovalbumin (OVA) and the development of AAD was ascertained by examining changes in airway inflammatory responses, Th2 responses, and lung histopathology. Results Here we report that IL-15−/− mice developed enhanced allergic responses in an OVA-induced model of AAD. In the absence of IL-15, OVA-challenged mice exhibited enhanced bronchial eosinophilic inflammation, elevated IL-13 production, and severe lung histopathology in comparison with WT mice. In addition, increased numbers of CD4+T and B cells in the spleens and broncholaveolar lavage (BAL) were also observed. Examination of OVA-challenged IL-15Rα−/− animals revealed a similar phenotype resulting in enhanced airway eosinophilia compared to WT mice. Adoptive transfer of splenic CD8+T cells from OVA-sensitized WT mice suppressed the enhancement of eosinophilia in IL-15−/− animals to levels observed in WT mice, but had no further effects. Conclusion and Clinical Relevance These data demonstrate that mice with an endogenous IL-15 deficiency are susceptible to the development of severe, enhanced Th2-mediated AAD, which can be regulated by CD8+T cells. Furthermore, the development of disease as well as allergen-specific Th2 responses occurs despite deficiencies in several IL-15-dependent cell types including NK, NKT, and γδ T cells, suggesting that these cells or

  4. Allergen Sensitization Pattern by Sex: A Cluster Analysis in Korea.

    PubMed

    Ohn, Jungyoon; Paik, Seung Hwan; Doh, Eun Jin; Park, Hyun-Sun; Yoon, Hyun-Sun; Cho, Soyun

    2017-12-01

    Allergens tend to sensitize simultaneously. Etiology of this phenomenon has been suggested to be allergen cross-reactivity or concurrent exposure. However, little is known about specific allergen sensitization patterns. To investigate the allergen sensitization characteristics according to gender. Multiple allergen simultaneous test (MAST) is widely used as a screening tool for detecting allergen sensitization in dermatologic clinics. We retrospectively reviewed the medical records of patients with MAST results between 2008 and 2014 in our Department of Dermatology. A cluster analysis was performed to elucidate the allergen-specific immunoglobulin (Ig)E cluster pattern. The results of MAST (39 allergen-specific IgEs) from 4,360 cases were analyzed. By cluster analysis, 39items were grouped into 8 clusters. Each cluster had characteristic features. When compared with female, the male group tended to be sensitized more frequently to all tested allergens, except for fungus allergens cluster. The cluster and comparative analysis results demonstrate that the allergen sensitization is clustered, manifesting allergen similarity or co-exposure. Only the fungus cluster allergens tend to sensitize female group more frequently than male group.

  5. Effects of traditional medical herbs "minor bupleurum decoction" on the non-specific immune responses of white shrimp (Litopenaeus vannamei).

    PubMed

    Wu, Yu-Sheng; Lee, Meng-Chou; Huang, Cheng-Ting; Kung, Tzu-Chi; Huang, Chih-Yang; Nan, Fan-Hua

    2017-05-01

    This study is investigating the effect of minor bupleurum decoction (Xiao-Chai-Hu decoction) on the non-specific immune response of white shrimp (Litopenaeus vannamei). To determine prophenoloxidase activity (proPO), reactive oxygen species production (ROS), superoxide anion production (O 2 - ), nitric oxide production (NO), phagocytic rate (PR), phagocytic index (PI), superoxide dismutase activity (SOD), total haemocyte count (THC) and differential haemocyte count (DHC). In this experiment, treating with different dosages (0, 0.25, 0.5 and, 1%) of minor bupleurum decoction to detect immune parameters on day 0, 1, 2, 4, 7, 14, 21 and 28. Result is shown that 0.25% treatment significantly enhanced the superoxide dismutase (SOD) activity and, 0.25 and 1% treatment significantly increased the ROS production, nitric oxide (NO) production and phagocytic rate (PR) moreover, 0.5 and 1% treatment induced the proPO activity and superoxide anion (O 2 - ) production. Evidence exactly indicated that minor bupleurum decoction is able to enhance the non-specific immunity responses of white shrimp via in vivo examination. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Combined Chromatin and Expression Analysis Reveals Specific Regulatory Mechanisms within Cytokine Genes in the Macrophage Early Immune Response

    PubMed Central

    Emanuelsson, Olof; Sennblad, Bengt; Pirmoradian Najafabadi, Mohammad; Folkersen, Lasse; Mälarstig, Anders; Lagergren, Jens; Eriksson, Per; Hamsten, Anders; Odeberg, Jacob

    2012-01-01

    Macrophages play a critical role in innate immunity, and the expression of early response genes orchestrate much of the initial response of the immune system. Macrophages undergo extensive transcriptional reprogramming in response to inflammatory stimuli such as Lipopolysaccharide (LPS). To identify gene transcription regulation patterns involved in early innate immune responses, we used two genome-wide approaches - gene expression profiling and chromatin immunoprecipitation-sequencing (ChIP-seq) analysis. We examined the effect of 2 hrs LPS stimulation on early gene expression and its relation to chromatin remodeling (H3 acetylation; H3Ac) and promoter binding of Sp1 and RNA polymerase II phosphorylated at serine 5 (S5P RNAPII), which is a marker for transcriptional initiation. Our results indicate novel and alternative gene regulatory mechanisms for certain proinflammatory genes. We identified two groups of up-regulated inflammatory genes with respect to chromatin modification and promoter features. One group, including highly up-regulated genes such as tumor necrosis factor (TNF), was characterized by H3Ac, high CpG content and lack of TATA boxes. The second group, containing inflammatory mediators (interleukins and CCL chemokines), was up-regulated upon LPS stimulation despite lacking H3Ac in their annotated promoters, which were low in CpG content but did contain TATA boxes. Genome-wide analysis showed that few H3Ac peaks were unique to either +/−LPS condition. However, within these, an unpacking/expansion of already existing H3Ac peaks was observed upon LPS stimulation. In contrast, a significant proportion of S5P RNAPII peaks (approx 40%) was unique to either condition. Furthermore, data indicated a large portion of previously unannotated TSSs, particularly in LPS-stimulated macrophages, where only 28% of unique S5P RNAPII peaks overlap annotated promoters. The regulation of the inflammatory response appears to occur in a very specific manner at the

  7. A role for Waldeyer's ring in immunological response to allergens.

    PubMed

    Masieri, Simonetta; Trabattoni, Daria; Incorvaia, Cristoforo; De Luca, Maria Cristina; Dell'Albani, Ilaria; Leo, Gualtiero; Frati, Franco

    2014-02-01

    Adenoids, tubal tonsil, palatine tonsil, and lingual tonsil are immunological organs included in the Waldeyer's ring, the basic function of which is the antibody production to common environmental antigens. Adenoidal hypertrophy (AH) is a major medical issue in children, and adenoidectomy is still the most used treatment worldwide. The response of adenoids to allergens is a good model to evaluate their immunological function. This report assessed the immunological changes in adenoid tissues from children with allergic rhinitis (AR) undergoing sublingual immunotherapy (SLIT). Adenoid samples from 16 children (seven males, nine females, mean age 7.12 years) with AH and clinical indication to adenoidectomy were collected. Of them, five children were not allergic and 11 had house dust mite and grass pollen-induced AR. Among allergic children, in four AR was treated by antihistamines while in seven AR was treated by high-dose SLIT during 4-6 months. The evaluation addressed the T helper 1 (Th1), Th2, and Th3 cells by performing a PCR array on mRNA extracted from adenoid samples. In non-allergic children, a typical Th1 pattern was found. SLIT induced a strong down-regulation of genes involved in Th2 and Th1 activation and function. In particular, in SLIT-treated allergic children IL-4, CCR2, CCR3, and PTGDR2 (Th2 related genes) and CD28, IL-2, and INHA (Th1 related genes) expression was reduced, compared with children treated with antihistamines. These preliminary findings warrant investigation in trials including larger numbers of patients, but indicate that hypertrophic adenoids of allergic children have the typical response to the specific allergen administered by SLIT. This should suggest that one should reconsider the immunological role of adenoids.

  8. Amyloid Form of Ovalbumin Evokes Native Antigen-specific Immune Response in the Host

    PubMed Central

    Tufail, Saba; Owais, Mohammad; Kazmi, Shadab; Balyan, Renu; Kaur Khalsa, Jasneet; Faisal, Syed Mohd.; Sherwani, Mohd. Asif; Gatoo, Manzoor Ahmad; Umar, Mohd. Saad; Zubair, Swaleha

    2015-01-01

    Amyloids are highly organized protein aggregates that arise from inappropriately folded versions of proteins or polypeptides under both physiological as well as simulated ambiences. Once thought to be irreversible assemblies, amyloids have begun to expose their more dynamic and reversible attributes depending upon the intrinsic properties of the precursor protein/peptide and experimental conditions such as temperature, pressure, structural modifications in proteins, or presence of chemicals in the reaction mixture. It has been repeatedly proposed that amyloids undergo transformation to the bioactive peptide/protein forms under specific conditions. In the present study, amyloids assembled from the model protein ovalbumin (OVA) were found to release the precursor protein in a slow and steady manner over an extended time period. Interestingly, the released OVA from amyloid depot was found to exhibit biophysical characteristics of native protein and reacted with native-OVA specific monoclonal as well as polyclonal antibodies. Moreover, antibodies generated upon immunization of OVA amyloidal aggregates or fibrils were found to recognize the native form of OVA. The study suggests that amyloids may act as depots for the native form of the protein and therefore can be exploited as vaccine candidates, where slow antigen release over extended time periods is a pre-requisite for the development of desired immune response. PMID:25512377

  9. A protocol for a systematic review to identify allergenic tree nuts and the molecules responsible for their allergenic properties.

    PubMed

    Javed, Bushra; Padfield, Philip; Sperrin, Matthew; Simpson, Angela; Mills, E N Clare

    2017-08-01

    Food regulations require that tree nuts and derived ingredients are included on food labels in order to help individuals with IgE-mediated allergies to avoid them. However, there is no consensus regarding which tree nut species should be included in this definition and specified on food labels. Allergen detection methods used for monitoring foods target allergen molecules, but it not clear which are the most relevant molecules to choose. A modified population-exposure-comparators-outcome (PECO) approach has been developed to systematically review the evidence regarding (1) which allergenic tree nuts should be included in food allergen labelling lists and (2) which are the clinically relevant allergens which should be used as analytical targets. A search strategy and criteria against which the evidence will be evaluated have been developed. The resulting evidence will be used to rank tree nuts with regards their ability to cause IgE-mediated allergies, and allergen molecules regarding their capacity to elicit an allergic reaction. The results of the systematic review will enable risk assessors and managers to identify tree nut species that should be included in food allergen labelling lists and ensure analytical methods for determination of allergens in foods are targeting appropriate molecules. Copyright © 2017. Published by Elsevier Ltd.

  10. Concentrated Protein Body Product Derived from Rice Endosperm as an Oral Tolerogen for Allergen-Specific Immunotherapy—A New Mucosal Vaccine Formulation against Japanese Cedar Pollen Allergy

    PubMed Central

    Wakasa, Yuhya; Takagi, Hidenori; Watanabe, Nobumasa; Kitamura, Noriko; Fujiwara, Yoshihiro; Ogo, Yuko; Hayashi, Shimpei; Yang, Lijun; Ohta, Masaru; Thet Tin, Wai Wai; Sekikawa, Kenji; Takano, Makoto; Ozawa, Kenjirou; Hiroi, Takachika; Takaiwa, Fumio

    2015-01-01

    The endoplasmic reticulum-derived type-I protein body (PB-I) from rice endosperm cells is an ideal candidate formulation for the oral delivery of bioencapsulated peptides as tolerogens for allergen-specific immunotherapy. In the present study, PBs containing the deconstructed Japanese cedar pollen allergens Cryptomeria japonica 1 (Cry j 1) and Cry j 2 were concentrated by treatment with thermostable α-amylase at 90°C to remove the starch from milled rice powder, which resulted in a 12.5-fold reduction of dry weight compared to the starting material. The modified Cry j 1 and Cry j 2 antigens in this concentrated PB product were more resistant to enzymatic digestion than those in the milled seed powder despite the absence of intact cell wall and starch, and remained stable for at least 10 months at room temperature without detectable loss or degradation. The high resistance of these allergens could be attributed to changes in protein physicochemical properties induced by the high temperature concentration process, as suggested by the decreased solubility of the antigens and seed proteins in PBs in step-wise-extraction experiments. Confocal microscopy showed that the morphology of antigen-containing PB-Is was preserved in the concentrated PB product. The concentrated PB product induced specific immune tolerance against Cry j 1 and Cry j 2 in mice when orally administered, supporting its potential use as a novel oral tolerogen formulation. PMID:25774686

  11. Use of Humanized RS-ATL8 Reporter System for Detection of Allergen-Specific IgE Sensitization in Human Food Allergy.

    PubMed

    Ali, Eman Ali; Nakamura, Ryosuke; Falcone, Franco H

    2017-01-01

    Allergen-specific Immunoglobulin E (IgE) determination lies at the heart of diagnosis of sensitization to food and other allergens. In the past few years, reporter systems capable of detecting the presence of allergen-specific IgE have been developed by several labs. These rely on humanized rat basophil leukemia cell lines stably transfected with reporter genes such as firefly luciferase. In this chapter, we describe protocols for the use of the RS-ATL8 cell line (IgE cross-linking-induced luciferase expression; EXiLE) in 96-well and 384-well formats. We also describe optional treatment steps for enveloped virus and complement inactivation.

  12. Immunotherapy with Allergen Peptides

    PubMed Central

    2007-01-01

    Specific allergen immunotherapy (SIT) is disease-modifying and efficacious. However, the use of whole allergen preparations is associated with frequent allergic adverse events during treatment. Many novel approaches are being designed to reduce the allergenicity of immunotherapy preparations whilst maintaining immunogenicity. One approach is the use of short synthetic peptides which representing dominant T cell epitopes of the allergen. Short peptides exhibit markedly reduced capacity to cross link IgE and activate mast cells and basophils, due to lack of tertiary structure. Murine pre-clinical studies have established the feasibility of this approach and clinical studies are currently in progress in both allergic and autoimmune diseases. PMID:20525144

  13. Agreement between allergen-specific IgE assays and ensuing immunotherapy recommendations from four commercial laboratories in the USA

    PubMed Central

    Plant, Jon D; Neradelik, Moni B; Polissar, Nayak L; Fadok, Valerie A; Scott, Brian A

    2014-01-01

    Background Canine allergen-specific IgE assays in the USA are not subjected to an independent laboratory reliability monitoring programme. Hypothesis/Objectives The aim of this study was to evaluate the agreement of diagnostic results and treatment recommendations of four serum IgE assays commercially available in the USA. Methods Replicate serum samples from 10 atopic dogs were submitted to each of four laboratories for allergen-specific IgE assays (ACTT®, VARL Liquid Gold, ALLERCEPT® and Greer® Aller-g-complete®). The interlaboratory agreement of standard, regional panels and ensuing treatment recommendations were analysed with the kappa statistic (κ) to account for agreement that might occur merely by chance. Six comparisons of pairs of laboratories and overall agreement among laboratories were analysed for ungrouped allergens (as tested) and also with allergens grouped according to reported cross-reactivity and taxonomy. Results The overall chance-corrected agreement of the positive/negative test results for ungrouped and grouped allergens was slight (κ = 0.14 and 0.13, respectively). Subset analysis of the laboratory pair with the highest level of diagnostic agreement (κ = 0.36) found slight agreement (κ = 0.13) for ungrouped plants and fungi, but substantial agreement (κ = 0.71) for ungrouped mites. The overall agreement of the treatment recommendations was slight (κ = 0.11). Altogether, 85.1% of ungrouped allergen treatment recommendations were unique to one laboratory or another. Conclusions and clinical importance Our study indicated that the choice of IgE assay may have a major influence on the positive/negative results and ensuing treatment recommendations. PMID:24461034

  14. RNA-Seq Reveals an Integrated Immune Response in Nucleated Erythrocytes

    PubMed Central

    Morera, Davinia; Roher, Nerea; Ribas, Laia; Balasch, Joan Carles; Doñate, Carmen; Callol, Agnes; Boltaña, Sebastian; Roberts, Steven; Goetz, Giles; Goetz, Frederick W.; MacKenzie, Simon A.

    2011-01-01

    Background Throughout the primary literature and within textbooks, the erythrocyte has been tacitly accepted to have maintained a unique physiological role; namely gas transport and exchange. In non-mammalian vertebrates, nucleated erythrocytes are present in circulation throughout the life cycle and a fragmented series of observations in mammals support a potential role in non-respiratory biological processes. We hypothesised that nucleated erythrocytes could actively participate via ligand-induced transcriptional re-programming in the immune response. Methodology/Principal Findings Nucleated erythrocytes from both fish and birds express and regulate specific pattern recognition receptor (PRR) mRNAs and, thus, are capable of specific pathogen associated molecular pattern (PAMP) detection that is central to the innate immune response. In vitro challenge with diverse PAMPs led to de novo specific mRNA synthesis of both receptors and response factors including interferon-alpha (IFNα) that exhibit a stimulus-specific polysomal shift supporting active translation. RNA-Seq analysis of the PAMP (Poly (I∶C), polyinosinic∶polycytidylic acid)-erythrocyte response uncovered diverse cohorts of differentially expressed mRNA transcripts related to multiple physiological systems including the endocrine, reproductive and immune. Moreover, erythrocyte-derived conditioned mediums induced a type-1 interferon response in macrophages thus supporting an integrative role for the erythrocytes in the immune response. Conclusions/Significance We demonstrate that nucleated erythrocytes in non-mammalian vertebrates spanning significant phylogenetic distance participate in the immune response. RNA-Seq studies highlight a mRNA repertoire that suggests a previously unrecognized integrative role for the erythrocytes in other physiological systems. PMID:22046430

  15. Total and Toxocara canis larval excretory/secretory antigen- and allergen-specific IgE in atopic and non-atopic dogs.

    PubMed

    Zwickl, Lena L M N; Joekel, Deborah E; Fischer, Nina M; Rostaher, Ana; Thamsborg, Kristian; Deplazes, Peter; Favrot, Claude

    2018-06-01

    Total IgE concentrations are higher in dogs than in humans. Persistent Toxocara canis larval infection is prevalent in dogs and is associated with substantial specific antibody reactions. A correlation, however, between total IgE and T. canis-specific antibody levels in dogs has not been evaluated. To determine the relationship between total IgE, T. canis-specific IgG and IgE, and allergen-specific IgE levels in atopic and non-atopic dogs, and to evaluate possible confounding factors. Sera of 30 atopic and 30 non-atopic client-owned dogs. Total IgE, T. canis-specific antibody and allergen-specific IgE levels were evaluated by ELISA. Total IgE, T. canis-specific antibody and allergen-specific IgE levels were significantly higher in non-atopic compared to atopic dogs. A positive correlation was demonstrated between T. canis-specific IgG and T. canis-specific IgE; T. canis-specific IgG and total IgE; T. canis-specific IgE and total IgE; and allergen-specific IgE and total IgE. No differences were detected on the basis of age, gender, vaccination status; deworming or season between atopic and non-atopic dogs. Previous immunomodulatory treatment and cause of atopy did not influence antibody levels of atopic dogs. Toxocara canis-specific IgE appears to be a major component of total IgE in dogs. Total and T. canis-specific IgE levels are higher in non-atopic compared to atopic dogs. It is speculated that T. canis infection may have a protective effect against the development of canine atopic dermatitis and/or that elevations in total serum IgE level are often not associated with atopic dermatitis. © 2018 ESVD and ACVD.

  16. Influence of bedding type on mucosal immune responses.

    PubMed

    Sanford, Amy N; Clark, Stephanie E; Talham, Gwen; Sidelsky, Michael G; Coffin, Susan E

    2002-10-01

    The mucosal immune system interacts with the external environment. In the study reported here, we found that bedding materials can influence the intestinal immune responses of mice. We observed that mice housed on wood, compared with cotton bedding, had increased numbers of Peyer's patches (PP) visible under a dissecting microscope. In addition, culture of lymphoid organs revealed increased production of total and virus-specific IgA by PP and mesenteric lymph node (MLN) lymphocytes from mice housed on wood, compared with cotton bedding. However, bedding type did not influence serum virus-specific antibody responses. These observations indicate that bedding type influences the intestinal immune system and suggest that this issue should be considered by mucosal immunologists and personnel at animal care facilities.

  17. New developments in allergen immunotherapy.

    PubMed

    Vadlamudi, Anusha; Shaker, Marcus

    2015-10-01

    Allergic rhinitis, conjunctivitis, and asthma impact quality of life and cost billions of dollars in lost wages, productivity, and medical expenditures. Allergen immunotherapy is the only therapy that alters the allergen immune response, resulting in fewer symptoms upon natural exposure. This review summarizes recent immunotherapy developments. Subcutaneous immunotherapy (SCIT) remains a disease modifying treatment for allergic rhinoconjunctivitis and asthma with rare complications of therapy. Recent evidence suggests that SCIT may be effective in select cases of atopic dermatitis, particularly for patients with dust mite sensitivity. Sublingual immunotherapy (SLIT) tablets are now commercially available for grass and ragweed allergy and appear to have a superior safety profile to SCIT with similar long-term effectiveness, because as with SCIT, symptom improvement persists after the SLIT course is completed. SLIT tablets are administered daily at home (after initial supervised dosing) and may be used shortly before and during the target pollen seasons in a precoseasonal fashion (instead of perennial dosing). Research continues into experimental approaches using oral food allergen immunotherapy (OIT) to modify the natural history of food allergies. Although a proportion of patients in OIT trials experience sustained unresponsiveness, many do not and current recommendations limit the use of OIT to research protocols. Patients have new well tolerated and effective options for more convenient treatment of asthma and allergic rhinoconjunctivitis associated with grass and ragweed allergy. SCIT remains effective for polysensitized patients and may be an option for some patients with atopic dermatitis. Research continues into novel food allergy treatments.

  18. High pressure effects on allergen food proteins.

    PubMed

    Somkuti, Judit; Smeller, László

    2013-12-15

    There are several proteins, which can cause allergic reaction if they are inhaled or ingested. Our everyday food can also contain such proteins. Food allergy is an IgE-mediated immune disorder, a growing health problem of great public concern. High pressure is known to affect the structure of proteins; typically few hundred MPa pressure can lead to denaturation. That is why several trials have been performed to alter the structure of the allergen proteins by high pressure, in order to reduce its allergenicity. Studies have been performed both on simple protein solutions and on complex food systems. Here we review those allergens which have been investigated under or after high pressure treatment by methods capable of detecting changes in the secondary and tertiary structure of the proteins. We focus on those allergenic proteins, whose structural changes were investigated by spectroscopic methods under pressure in correlation with the observed allergenicity (IgE binding) changes. According to this criterion we selected the following allergen proteins: Mal d 1 and Mal d 3 (apple), Bos d 5 (milk), Dau c 1 (carrot), Gal d 2 (egg), Ara h 2 and Ara h 6 (peanut), and Gad m 1 (cod). Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Epicutaneous challenge of orally immunized mice redirects antigen-specific gut-homing T cells to the skin.

    PubMed

    Oyoshi, Michiko K; Elkhal, Abdallah; Scott, Jordan E; Wurbel, Marc-Andre; Hornick, Jason L; Campbell, James J; Geha, Raif S

    2011-06-01

    Patients with atopic dermatitis (AD) often suffer from food allergy and develop flares upon skin contact with food allergens. However, it is unclear whether T cells sensitized to allergens in the gut promote this skin inflammation. To address this question, we orally immunized WT mice and mice lacking the skin-homing chemokine receptor Ccr4 (Ccr4-/- mice) with OVA and then challenged them epicutaneously with antigen. Allergic skin inflammation developed in the WT mice but not in the mutants and was characterized by epidermal thickening, dermal infiltration by eosinophils and CD4+ T cells, and upregulation of Th2 cytokines. T cells purified from mesenteric lymph nodes (MLNs) of orally immunized WT mice transferred allergic skin inflammation to naive recipients cutaneously challenged with antigen, but this effect was lost in T cells purified from Ccr4-/- mice. In addition, the ability of adoptively transferred OVA-activated T cells to home to the skin following cutaneous OVA challenge was ablated in mice that lacked lymph nodes. These results indicate that cutaneous exposure to food antigens can reprogram gut-homing effector T cells in LNs to express skin-homing receptors, eliciting skin lesions upon food allergen contact in orally sensitized AD patients.

  20. Specific immune response genes of the guinea pig. II. Relationship between the poly-L-lysine gene and the genes controlling immune responsiveness to copolymers of L-glutamic acid and L-alanine and L-glutamic acid and L-tyrosine in random-bred Hartley guinea pigs.

    PubMed

    Bluestein, H G; Green, I; Benacerraf, B

    1971-08-01

    The ability of guinea pigs to make immune responses to GA, a linear random copolymer of L-glutamic acid and L-alanine, GT, a random linear copolymer of L-glutamic acid and L-tyrosine, and PLL, a linear homopolymer of L-lysine, is controlled by different autosomal dominant genes specific for each of those polymers. We have investigated the relationship between the PLL gene and the GA and GT immune response genes by simultaneously immunizing random-bred Hartley strain guinea pigs with GA and PLL, GT and PLL, or GA and GT. In most Hartley guinea pigs the ability to respond immunologically to GA and to PLL is inherited together; that is, most animals responding to GA respond to PLL and vice versa. However, a few animals respond to either GA or to PLL but not both, demonstrating that the GA and PLL immune response genes are not identical but linked in most Hartley animals. Conversely, when simultaneously immunized with GT and PLL, most Hartley guinea pigs respond to either PLL or GT but not both, indicating that GT and PLL responsiveness tends to segregate away from each other. Thus, the GT and PLL immune response genes also are not inherited independently but, rather, behave as alleles or pseudoalleles. Similar results are observed when Hartley guinea pigs are simultaneously immunized with GA and GT. The ability to respond to GA segregates away from the ability to respond to GT. Our studies demonstrated that the specific immune response genes thus far identified in guinea pigs controlling the ability to respond to GA, GT, and PLL, respectively, are found on the same chromosome. In most Hartley animals, the GA and PLL immune response genes are often linked, i.e. occur on the same chromosome strand, and tend to behave as alleles or pseudoalleles to the GT immune response gene.

  1. Clinical relevance is associated with allergen-specific wheal size in skin prick testing

    PubMed Central

    Haahtela, T; Burbach, G J; Bachert, C; Bindslev-Jensen, C; Bonini, S; Bousquet, J; Bousquet-Rouanet, L; Bousquet, P J; Bresciani, M; Bruno, A; Canonica, G W; Darsow, U; Demoly, P; Durham, S R; Fokkens, W J; Giavi, S; Gjomarkaj, M; Gramiccioni, C; Kowalski, M L; Losonczy, G; Orosz, M; Papadopoulos, N G; Stingl, G; Todo-Bom, A; von Mutius, E; Köhli, A; Wöhrl, S; Järvenpää, S; Kautiainen, H; Petman, L; Selroos, O; Zuberbier, T; Heinzerling, L M

    2014-01-01

    Background Within a large prospective study, the Global Asthma and Allergy European Network (GA2LEN) has collected skin prick test (SPT) data throughout Europe to make recommendations for SPT in clinical settings. Objective To improve clinical interpretation of SPT results for inhalant allergens by providing quantitative decision points. Methods The GA2LEN SPT study with 3068 valid data sets was used to investigate the relationship between SPT results and patient-reported clinical relevance for each of the 18 inhalant allergens as well as SPT wheal size and physician-diagnosed allergy (rhinitis, asthma, atopic dermatitis, food allergy). The effects of age, gender, and geographical area on SPT results were assessed. For each allergen, the wheal size in mm with an 80% positive predictive value (PPV) for being clinically relevant was calculated. Results Depending on the allergen, from 40% (blatella) to 87–89% (grass, mites) of the positive SPT reactions (wheal size ≥ 3 mm) were associated with patient-reported clinical symptoms when exposed to the respective allergen. The risk of allergic symptoms increased significantly with larger wheal sizes for 17 of the 18 allergens tested. Children with positive SPT reactions had a smaller risk of sensitizations being clinically relevant compared with adults. The 80% PPV varied from 3 to 10 mm depending on the allergen. Conclusion These ‘reading keys’ for 18 inhalant allergens can help interpret SPT results with respect to their clinical significance. A SPT form with the standard allergens including mm decision points for each allergen is offered for clinical use. PMID:24283409

  2. Characteristic motifs for families of allergenic proteins

    PubMed Central

    Ivanciuc, Ovidiu; Garcia, Tzintzuni; Torres, Miguel; Schein, Catherine H.; Braun, Werner

    2008-01-01

    The identification of potential allergenic proteins is usually done by scanning a database of allergenic proteins and locating known allergens with a high sequence similarity. However, there is no universally accepted cut-off value for sequence similarity to indicate potential IgE cross-reactivity. Further, overall sequence similarity may be less important than discrete areas of similarity in proteins with homologous structure. To identify such areas, we first classified all allergens and their subdomains in the Structural Database of Allergenic Proteins (SDAP, http://fermi.utmb.edu/SDAP/) to their closest protein families as defined in Pfam, and identified conserved physicochemical property motifs characteristic of each group of sequences. Allergens populate only a small subset of all known Pfam families, as all allergenic proteins in SDAP could be grouped to only 130 (of 9318 total) Pfams, and 31 families contain more than four allergens. Conserved physicochemical property motifs for the aligned sequences of the most populated Pfam families were identified with the PCPMer program suite and catalogued in the webserver Motif-Mate (http://born.utmb.edu/motifmate/summary.php). We also determined specific motifs for allergenic members of a family that could distinguish them from non-allergenic ones. These allergen specific motifs should be most useful in database searches for potential allergens. We found that sequence motifs unique to the allergens in three families (seed storage proteins, Bet v 1, and tropomyosin) overlap with known IgE epitopes, thus providing evidence that our motif based approach can be used to assess the potential allergenicity of novel proteins. PMID:18951633

  3. Studies on `allergoids' prepared from naturally occurring allergens

    PubMed Central

    Marsh, D. G.; Lichtenstein, L. M.; Campbell, D. H.

    1970-01-01

    The highly purified major allergenic component of rye grass pollen (Group I) was used to investigate the possibility of destroying selectively the allergenic properties of an antigen, while largely retaining its original immunizing capacities. The allergen was treated under mild conditions with formalin alone or formalin plus a reactive low molecular weight additive. Certain derivatives (allergoids) showed well over 99 per cent reduction in allergenicity, determined by the histamine released from allergic human leucocytes in vitro, but were still able to combine with rabbit antibody against native antigen. Furthermore, the allergoids stimulated production (in guinea-pigs) of appreciable amounts of antibody able to inhibit native allergen-mediated human allergic histamine release in vitro and to cross-react with native antigen by PCA tests in normal guinea-pigs. Residual allergenicity and cross-immunogenicity (by the inhibition assay) of the different formalinized derivatives varied appreciably according to the additive used in formalinization, but the cross-reactivities of the different preparations in quantitative precipitin analysis against rabbit anti-native antigen serum were similar. The residual allergenicities of individual derivatives varied by up to 1000-fold in different cell preparations, suggesting a heterogeneity of allergenic determinants. Allergoid derivatives showed no hapten-like activity in that they were unable to inhibit allergen-mediated histamine release from leucocytes. The theoretical and practical application of allergoids is discussed, including their potential usefulness in improving the immunotheraphy of atopic humans. ImagesFIG. 2 PMID:4192674

  4. Bovine immune response to inoculation with Neospora caninum surface antigen SRS2 lipopeptides mimics immune response to infection with live parasites.

    PubMed

    Baszler, Timothy V; Shkap, Varda; Mwangi, Waithaka; Davies, Christopher J; Mathison, Bruce A; Mazuz, Monica; Resnikov, Dror; Fish, Lea; Leibovitch, Benjamin; Staska, Lauren M; Savitsky, Igor

    2008-04-01

    Infection of cattle with Neospora caninum protozoa, the causative agent of bovine protozoal abortion, results in robust cellular and humoral immune responses, particularly CD4(+) T-lymphocyte activation and gamma interferon (IFN-gamma) secretion. In the present study, N. caninum SRS2 (NcSRS2) T-lymphocyte-epitope-bearing subunits were incorporated into DNA and peptide preparations to assess CD4(+) cell proliferation and IFN-gamma T-lymphocyte-secretion immune responses in cattle with predetermined major histocompatibility complex (MHC) genotypes. In order to optimize dendritic-cell processing, NcSRS2 DNA vaccine was delivered with granulocyte macrophage-colony-stimulating factor and Flt3 ligand adjuvant. The synthesized NcSRS2 peptides were coupled with a palmitic acid molecule (lipopeptide) and delivered with Freund's adjuvant. Cattle vaccinated with NcSRS2 DNA vaccine alone did not induce T-lymphocyte activation or IFN-gamma secretion, whereas subsequent booster inoculation with NcSRS2-lipopeptides induced robust NcSRS2-specific immune responses. Compared to the response in control animals, NcSRS2-lipopeptide-immunized cattle had significantly increased NcSRS2-specific T-lymphocyte proliferation, numbers of IFN-gamma-secreting peripheral blood mononuclear cells, and immunoglobulin G1 (IgG1) and IgG2a antibody levels. The findings show that N. caninum NcSRS2 subunits bearing T-lymphocyte epitopes induced cell-mediated immune responses similar to the protective immune responses previously described against live parasite infection, namely T-lymphocyte activation and IFN-gamma secretion. The findings support the investigation of NcSRS2 immunogens for protection against N. caninum-induced fetal infection and abortion in cattle.

  5. Effect of adjuvants and route of immunizations on the immune response to recombinant plague antigens

    PubMed Central

    Uddowla, Sabena; Freytag, Lucy C.; Clements, John D.

    2007-01-01

    In this study, we compare four different adjuvants, LT(R192G), CpG ODN, MPL®TDM and alum, for their ability to affect the magnitude, distribution, and duration of antibody responses against F1-V, the lead-candidate antigen for the next generation vaccine against plague, in a murine model. In addition, three different routes of immunization – intranasal (IN), transcutaneous (TC), and subcutaneous (SC), were compared with each adjuvant. Since aerosol exposure to biological warfare agents is of primary concern, both serum and bronchioalveolar lavage (BAL) were analyzed for antigen-specific antibody responses. The most significant findings of the study reported here are that 1) the adjuvant influences the Type 1/Type 2 balance of the antibody response in both the serum and BAL, 2) mucosal immunization is not necessary to obtain F1-V-specific BAL responses, 3) non-traditional adjuvants such as LT(R192G) work when delivered SC, 4) the route of immunization affects the magnitude of the immune response, and 5) F1-V is highly immunogenic by some routes even in the absence of an exogenously applied adjuvant. These studies provide important insights into the influence of different classes of adjuvants on the immune outcome in biodefense vaccines and for development of new generation vaccines against other pathogens as well. PMID:17933440

  6. Recent development in recombinant food allergen production (abstract)

    USDA-ARS?s Scientific Manuscript database

    Whether for understanding the properties of food allergens or for manufacturing vaccines for allergen-specific immunotherapy, well characterized pure allergens are required. This often necessitate the use of recombinant technology in obtaining food allergens due to the very low amounts of their natu...

  7. Allergen-Specific Immunotherapy with Monomeric Allergoid in a Mouse Model of Atopic Dermatitis

    PubMed Central

    Babakhin, Alexander; Andreev, Sergey; Nikonova, Alexandra; Shilovsky, Igor; Buzuk, Andrey; Elisyutina, Olga; Fedenko, Elena; Khaitov, Musa

    2015-01-01

    Atopic dermatitis (AD) is a widespread and difficult to treat allergic skin disease and is a tough challenge for healthcare. In this study, we investigated whether allergen-specific immunotherapy (ASIT) with a monomeric allergoid obtained by succinylation of ovalbumin (sOVA) is effective in a mouse model of atopic dermatitis. An experimental model of AD was reproduced by epicutaneous sensitization with ovalbumin (OVA). ASIT was performed with subcutaneous (SC) administration of increasing doses of OVA or sOVA. The levels of anti-OVA antibodies, as well as cytokines, were detected by ELISA. Skin samples from patch areas were taken for histologic examination. ASIT with either OVA or sOVA resulted in a reduction of both the anti-OVA IgE level and the IgG1/IgG2a ratio. Moreover, ASIT with sOVA increased the IFN-γ level in supernatants after splenocyte stimulation with OVA. Histologic analysis of skin samples from the sites of allergen application showed that ASIT improved the histologic picture by decreasing allergic inflammation in comparison with untreated mice. These data suggest that ASIT with a succinylated allergen represents promising approach for the treatment of AD. PMID:26275152

  8. Comparative and Evolutionary Analysis of Grass Pollen Allergens Using Brachypodium distachyon as a Model System

    PubMed Central

    Sharma, Akanksha; Sharma, Niharika; Bhalla, Prem; Singh, Mohan

    2017-01-01

    Comparative genomics have facilitated the mining of biological information from a genome sequence, through the detection of similarities and differences with genomes of closely or more distantly related species. By using such comparative approaches, knowledge can be transferred from the model to non-model organisms and insights can be gained in the structural and evolutionary patterns of specific genes. In the absence of sequenced genomes for allergenic grasses, this study was aimed at understanding the structure, organisation and expression profiles of grass pollen allergens using the genomic data from Brachypodium distachyon as it is phylogenetically related to the allergenic grasses. Combining genomic data with the anther RNA-Seq dataset revealed 24 pollen allergen genes belonging to eight allergen groups mapping on the five chromosomes in B. distachyon. High levels of anther-specific expression profiles were observed for the 24 identified putative allergen-encoding genes in Brachypodium. The genomic evidence suggests that gene encoding the group 5 allergen, the most potent trigger of hay fever and allergic asthma originated as a pollen specific orphan gene in a common grass ancestor of Brachypodium and Triticiae clades. Gene structure analysis showed that the putative allergen-encoding genes in Brachypodium either lack or contain reduced number of introns. Promoter analysis of the identified Brachypodium genes revealed the presence of specific cis-regulatory sequences likely responsible for high anther/pollen-specific expression. With the identification of putative allergen-encoding genes in Brachypodium, this study has also described some important plant gene families (e.g. expansin superfamily, EF-Hand family, profilins etc) for the first time in the model plant Brachypodium. Altogether, the present study provides new insights into structural characterization and evolution of pollen allergens and will further serve as a base for their functional

  9. Comparative and Evolutionary Analysis of Grass Pollen Allergens Using Brachypodium distachyon as a Model System.

    PubMed

    Sharma, Akanksha; Sharma, Niharika; Bhalla, Prem; Singh, Mohan

    2017-01-01

    Comparative genomics have facilitated the mining of biological information from a genome sequence, through the detection of similarities and differences with genomes of closely or more distantly related species. By using such comparative approaches, knowledge can be transferred from the model to non-model organisms and insights can be gained in the structural and evolutionary patterns of specific genes. In the absence of sequenced genomes for allergenic grasses, this study was aimed at understanding the structure, organisation and expression profiles of grass pollen allergens using the genomic data from Brachypodium distachyon as it is phylogenetically related to the allergenic grasses. Combining genomic data with the anther RNA-Seq dataset revealed 24 pollen allergen genes belonging to eight allergen groups mapping on the five chromosomes in B. distachyon. High levels of anther-specific expression profiles were observed for the 24 identified putative allergen-encoding genes in Brachypodium. The genomic evidence suggests that gene encoding the group 5 allergen, the most potent trigger of hay fever and allergic asthma originated as a pollen specific orphan gene in a common grass ancestor of Brachypodium and Triticiae clades. Gene structure analysis showed that the putative allergen-encoding genes in Brachypodium either lack or contain reduced number of introns. Promoter analysis of the identified Brachypodium genes revealed the presence of specific cis-regulatory sequences likely responsible for high anther/pollen-specific expression. With the identification of putative allergen-encoding genes in Brachypodium, this study has also described some important plant gene families (e.g. expansin superfamily, EF-Hand family, profilins etc) for the first time in the model plant Brachypodium. Altogether, the present study provides new insights into structural characterization and evolution of pollen allergens and will further serve as a base for their functional

  10. Clinical relevance is associated with allergen-specific wheal size in skin prick testing.

    PubMed

    Haahtela, T; Burbach, G J; Bachert, C; Bindslev-Jensen, C; Bonini, S; Bousquet, J; Bousquet-Rouanet, L; Bousquet, P J; Bresciani, M; Bruno, A; Canonica, G W; Darsow, U; Demoly, P; Durham, S R; Fokkens, W J; Giavi, S; Gjomarkaj, M; Gramiccioni, C; Kowalski, M L; Losonczy, G; Orosz, M; Papadopoulos, N G; Stingl, G; Todo-Bom, A; von Mutius, E; Köhli, A; Wöhrl, S; Järvenpää, S; Kautiainen, H; Petman, L; Selroos, O; Zuberbier, T; Heinzerling, L M

    2014-03-01

    Within a large prospective study, the Global Asthma and Allergy European Network (GA(2) LEN) has collected skin prick test (SPT) data throughout Europe to make recommendations for SPT in clinical settings. To improve clinical interpretation of SPT results for inhalant allergens by providing quantitative decision points. The GA(2) LEN SPT study with 3068 valid data sets was used to investigate the relationship between SPT results and patient-reported clinical relevance for each of the 18 inhalant allergens as well as SPT wheal size and physician-diagnosed allergy (rhinitis, asthma, atopic dermatitis, food allergy). The effects of age, gender, and geographical area on SPT results were assessed. For each allergen, the wheal size in mm with an 80% positive predictive value (PPV) for being clinically relevant was calculated. Depending on the allergen, from 40% (blatella) to 87-89% (grass, mites) of the positive SPT reactions (wheal size ≥ 3 mm) were associated with patient-reported clinical symptoms when exposed to the respective allergen. The risk of allergic symptoms increased significantly with larger wheal sizes for 17 of the 18 allergens tested. Children with positive SPT reactions had a smaller risk of sensitizations being clinically relevant compared with adults. The 80% PPV varied from 3 to 10 mm depending on the allergen. These 'reading keys' for 18 inhalant allergens can help interpret SPT results with respect to their clinical significance. A SPT form with the standard allergens including mm decision points for each allergen is offered for clinical use. © 2013 The Authors. Clinical & Experimental Allergy published by John Wiley & Sons Ltd.

  11. Induction of antigen-specific immunity by pH-sensitive carbonate apatite as a potent vaccine carrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hebishima, Takehisa; Tada, Seiichi; Takeshima, Shin-nosuke

    Highlights: Black-Right-Pointing-Pointer To develop effective vaccine, we examined the effects of CO{sub 3}Ap as an antigen carrier. Black-Right-Pointing-Pointer OVA contained in CO{sub 3}Ap was taken up by BMDCs more effectively than free OVA. Black-Right-Pointing-Pointer OVA-immunized splenocytes was activated by OVA contained in CO{sub 3}Ap effectively. Black-Right-Pointing-Pointer OVA contained in CO{sub 3}Ap induced strong OVA-specific immune responses to C57BL/6 mice. Black-Right-Pointing-Pointer CO{sub 3}Ap is promising antigen carrier for the achievement of effective vaccine. -- Abstract: The ability of carbonate apatite (CO{sub 3}Ap) to enhance antigen-specific immunity was examined in vitro and in vivo to investigate its utility as a vaccine carrier.more » Murine bone marrow-derived dendritic cells took up ovalbumin (OVA) containing CO{sub 3}Ap more effectively than free OVA. Interestingly, mice immunized with OVA-containing CO{sub 3}Ap produced OVA-specific antibodies more effectively than mice immunized with free OVA. Furthermore, immunization of C57BL/6 mice with OVA-containing CO{sub 3}Ap induced the proliferation and antigen-specific production of IFN-{gamma} by splenocytes more strongly than immunization with free OVA. Moreover, no significant differences were detected in the induction of delayed-type hypersensitivity responses, an immune reaction involving an antigen-specific, cell-mediated immune response between OVA-containing CO{sub 3}Ap and OVA-containing alumina salt (Alum), suggesting that CO{sub 3}Ap induced cell-mediated immune response to the same degree as Alum, which is commonly used for clinical applications. This study is the first to demonstrate the induction of antigen-specific immune responses in vivo by CO{sub 3}Ap.« less

  12. Origin and Functional Prediction of Pollen Allergens in Plants1[OPEN

    PubMed Central

    Chen, Miaolin; Xu, Jie; Ren, Kang; Searle, Iain

    2016-01-01

    Pollen allergies have long been a major pandemic health problem for human. However, the evolutionary events and biological function of pollen allergens in plants remain largely unknown. Here, we report the genome-wide prediction of pollen allergens and their biological function in the dicotyledonous model plant Arabidopsis (Arabidopsis thaliana) and the monocotyledonous model plant rice (Oryza sativa). In total, 145 and 107 pollen allergens were predicted from rice and Arabidopsis, respectively. These pollen allergens are putatively involved in stress responses and metabolic processes such as cell wall metabolism during pollen development. Interestingly, these putative pollen allergen genes were derived from large gene families and became diversified during evolution. Sequence analysis across 25 plant species from green alga to angiosperms suggest that about 40% of putative pollen allergenic proteins existed in both lower and higher plants, while other allergens emerged during evolution. Although a high proportion of gene duplication has been observed among allergen-coding genes, our data show that these genes might have undergone purifying selection during evolution. We also observed that epitopes of an allergen might have a biological function, as revealed by comprehensive analysis of two known allergens, expansin and profilin. This implies a crucial role of conserved amino acid residues in both in planta biological function and allergenicity. Finally, a model explaining how pollen allergens were generated and maintained in plants is proposed. Prediction and systematic analysis of pollen allergens in model plants suggest that pollen allergens were evolved by gene duplication and then functional specification. This study provides insight into the phylogenetic and evolutionary scenario of pollen allergens that will be helpful to future characterization and epitope screening of pollen allergens. PMID:27436829

  13. Mitigation of Inflammatory Immune Responses with Hydrophilic Nanoparticles.

    PubMed

    Li, Bowen; Xie, Jingyi; Yuan, Zhefan; Jain, Priyesh; Lin, Xiaojie; Wu, Kan; Jiang, Shaoyi

    2018-04-16

    While hydrophobic nanoparticles (NPs) have been long recognized to boost the immune activation, whether hydrophilic NPs modulate an immune system challenged by immune stimulators and how their hydrophilic properties may affect the immune response is still unclear. To answer this question, three polymers, poly(ethylene glycol) (PEG), poly(sulfobetaine) (PSB) and poly(carboxybetaine) (PCB), which are commonly considered hydrophilic, are studied in this work. For comparison, nanogels with uniform size and homogeneous surface functionalities were made from these polymers. Peripheral blood mononuclear cells (PBMCs) stimulated by lipopolysaccharide (LPS) and an LPS-induced lung inflammation murine model were used to investigate the influence of nanogels on the immune system. Results show that the treatment of hydrophilic nanogels attenuated the immune responses elicited by LPS both in vitro and in vivo. Moreover, we found that PCB nanogels, which have the strongest hydration and the lowest non-specific protein binding, manifested the best performance in alleviating the immune activation, followed by PSB and PEG nanogels. This reveals that the immunomodulatory effect of hydrophilic materials is closely related to their hydration characteristics and their ability to resist non-specific binding in complex media. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Agreement between allergen-specific IgE assays and ensuing immunotherapy recommendations from four commercial laboratories in the USA.

    PubMed

    Plant, Jon D; Neradelik, Moni B; Polissar, Nayak L; Fadok, Valerie A; Scott, Brian A

    2014-02-01

    Canine allergen-specific IgE assays in the USA are not subjected to an independent laboratory reliability monitoring programme. The aim of this study was to evaluate the agreement of diagnostic results and treatment recommendations of four serum IgE assays commercially available in the USA. Replicate serum samples from 10 atopic dogs were submitted to each of four laboratories for allergen-specific IgE assays (ACTT(®) , VARL Liquid Gold, ALLERCEPT(®) and Greer(®) Aller-g-complete(®) ). The interlaboratory agreement of standard, regional panels and ensuing treatment recommendations were analysed with the kappa statistic (κ) to account for agreement that might occur merely by chance. Six comparisons of pairs of laboratories and overall agreement among laboratories were analysed for ungrouped allergens (as tested) and also with allergens grouped according to reported cross-reactivity and taxonomy. The overall chance-corrected agreement of the positive/negative test results for ungrouped and grouped allergens was slight (κ = 0.14 and 0.13, respectively). Subset analysis of the laboratory pair with the highest level of diagnostic agreement (κ = 0.36) found slight agreement (κ = 0.13) for ungrouped plants and fungi, but substantial agreement (κ = 0.71) for ungrouped mites. The overall agreement of the treatment recommendations was slight (κ = 0.11). Altogether, 85.1% of ungrouped allergen treatment recommendations were unique to one laboratory or another. Our study indicated that the choice of IgE assay may have a major influence on the positive/negative results and ensuing treatment recommendations. © 2014 The Authors. Veterinary Dermatology published by John Wiley & Sons Ltd on behalf of the ESVD and the ACVD.

  15. Specific Humoral Immune Response Induced by Propionibacterium acnes Can Prevent Actinobacillus pleuropneumoniae Infection in Mice

    PubMed Central

    Yang, Feng; Ma, Qiuyue; Huang, Jing; Ji, Qun; Zhai, Ruidong; Wang, Lei; Wang, Yu; Li, Linxi; Sun, Changjiang; Feng, Xin; Han, Wenyu

    2014-01-01

    Porcine contagious pleuropneumonia, caused by Actinobacillus pleuropneumoniae, has a major impact on economics, ecology, and animal welfare in the pig-rearing industry. Propionibacterium acnes, a facultative anaerobic Gram-positive corynebacterium, exists widely in normal healthy adult animals. We have shown previously that P. acnes can prevent A. pleuropneumoniae infections in mice and pigs. To elucidate the mechanism of this effect and to identify novel A. pleuropneumoniae vaccines, the role of anti-P. acnes antibodies in preventing infection was analyzed by indirect immunofluorescence and opsonophagocytosis assays in vitro. The role of the specific humoral immune response induced by P. acnes was confirmed in a B cell depletion mouse model. The survival rates of mice challenged with A. pleuropneumoniae exhibited a highly significant positive rank correlation with the levels of anti-P. acnes antibodies. The specific antibodies induced by P. acnes had the ability to combine with A. pleuropneumoniae and increase opsonization of A. pleuropneumoniae for phagocytosis. Furthermore, analysis in the murine B cell depletion model confirmed that the humoral immune response induced by P. acnes played an important role in resistance to A. pleuropneumoniae infection. In this study, we further elucidated the reasons that P. acnes can prevent A. pleuropneumoniae infection, which provides useful evidence for the development of heterologous vaccines for the control of porcine contagious pleuropneumonia. PMID:24429068

  16. The clinical efficacy of in vitro allergen-specific IgE antibody test in the diagnosis of allergic children with asthma.

    PubMed

    Chou, Tzn-Yu; Wu, Kuo-Yao; Shieh, Chi-Chang; Wang, Jiu-Yao

    2002-01-01

    Asthma is a very common respiratory allergic disease in Taiwan. The aims of this study were to investigate the allergen-sensitized profile and its relationship with serum total IgE levels in allergic asthmatic children in Taiwan. Moreover, the number of allergens to be tested for the most efficient and effective diagnosis of allergic diseases was also examined. Total IgE and IgE specific for a panel of common aeroallergens were assayed in 200 serum samples of asthmatic children using Pharmacia CAP system (Pharmacia, Uppsala, Sweden). House dust mites Der p (Dermatophagoides pteronyssinus), Der f (Dermatophagoides farinae), and Bt (Blomia Tropicalis) had the highest sensitized rates at 82.5%, 82.0%, and 72%, respectively. Candida albican (14.0%) and Bermuda grass (8.0%) were the most common sensitized fungus and pollen in our subjects, respectively. The accumulated sensitized rate (10%) for pollens was lower than those of fungus (21.5%) and house dust allergens (84%). The average serum total IgE of the allergen-negative asthmatic children (n=30) was significantly lower than that of children with at least one allergen sensitized asthma (n=170) (377.9 +/- 123.6 vs. 1117.8 +/- 235.7 IU/ml, p<0.05). The level of total IgE was significantly correlated with the concentrations of mite-specific IgE antibodies, but not with the numbers of allergen sensitized. In addition, the detection rate was 84% when the 4 most common allergens (Der p, Der f, Dog dander, and cockroach) were tested, similar to the result after testing for all 12.

  17. Biochemical and molecular biological aspects of silverfish allergens.

    PubMed

    Barletta, Bianca; Di Felice, Gabriella; Pini, Carlo

    2007-01-01

    Insects and insect-derived materials have been implicated as a risk factor for sensitization and subsequent elicitation of allergic rhinitis and allergic bronchial asthma. During the last decades, insects other than those known as allergenic, were investigated for their potential role in inducing and triggering an IgE immune response. Among these, the silverfish, an insect belonging to the Thysanura order, appeared to be of particular interest. Silverfish (Lepisma saccharina) is the most primitive living insect, and represents a descendent of the ancestral wingless insects. They are 3-12 mm long, have three tail feelers and are covered with shiny scales. They shun light and need a humid environment and their diet consists of carbohydrate materials such as paper and book-binding glue, crumbs of bread and flour. Because of these features, silverfish finds an optimal habitat both in dwellings and workplaces and in spite of its antiquity, silverfish has succeeded in exploiting the new opportunity created by man. Although its importance significantly increased when it has been demonstrated that house dust contains significant silverfish levels even in houses where the inhabitants were unaware of its presence, no silverfish extract for diagnosis of allergic diseases is commercially available yet. Identification of optimal extraction conditions and characterization of allergenic extracts are the first steps to obtain an effective allergen preparation suitable for diagnosis and therapy, and will be useful as a reference preparation for assessing silverfish exposure in different indoor environments. It has been cloned and characterized a silverfish tropomyosin, named Lep s 1, which represents the first allergen identified in silverfish extract and can be regarded as a molecule cross-reactive among inhalant and edible invertebrates allergenic sources. rLep s 1 displayed biological activity, suggesting that it could be regarded as a useful tool to study the role of silverfish

  18. Epicutaneous immunization with ovalbumin and CpG induces TH1/TH17 cytokines, which regulate IgE and IgG2a production

    PubMed Central

    Majewska-Szczepanik, Monika; Askenase, Philip W.; Lobo, Francis M.; Marcińska, Katarzyna; Wen, Li; Szczepanik, Marian

    2017-01-01

    Background Subcutaneous allergen-specific immunotherapy is a standard route for the immunotherapy of allergic diseases. It modulates the course of allergy and can generate long-term remission. However, subcutaneous allergen-specific immunotherapy can also induce anaphylaxis in some patients, and therefore additional routes of administration should be investigated to improve the safety and tolerability of immunotherapy. Objective We sought to determine whether epicutaneous treatment with antigen in the presence of a Toll-like receptor 9 agonist can suppress TH2-mediated responses in an antigen-specific manner. Methods Epicutaneous immunization was performed by applying a skin patch soaked with ovalbumin (OVA) plus CpG, and its suppressor activity was determined by using the mouse model of atopic dermatitis. Finally, adoptive cell transfers were implemented to characterize the regulatory cells that are induced by epicutaneous immunization. Results Epicutaneous immunization with OVA and CpG reduces the production of OVA-specific IgE and increases the synthesis of OVA-specific IgG2a antibodies in an antigen-specific manner. Moreover, eosinophil peroxidase activity in the skin and production of IL-4, IL-5, IL-10, and IL-13 are suppressed. The observed reduction of IgE synthesis is transferable with T-cell receptor (TCR) αβ+CD4+CD25− cells, whereas IgG2a production is dependent on both TCRαβ+ and TCRγδ+ T cells. Further experiments show that the described phenomenon is myeloid differentiation primary response 88, IFN-γ, and IL-17A dependent. Finally, the results suggest that epicutaneous immunization with OVA and CpG decreases the synthesis of OVA-specific IgE and skin eosinophil peroxidase activity in mice with ongoing skin allergy. Conclusion Epicutaneous application of protein antigen in the presence of adjuvant could be an attractive needle-free and self-administered immunotherapy for allergic diseases. PMID:26810716

  19. Link between epigenomic alterations and genome-wide aberrant transcriptional response to allergen in dendritic cells conveying maternal asthma risk.

    PubMed

    Mikhaylova, Lyudmila; Zhang, Yiming; Kobzik, Lester; Fedulov, Alexey V

    2013-01-01

    We investigated the link between epigenome-wide methylation aberrations at birth and genomic transcriptional changes upon allergen sensitization that occur in the neonatal dendritic cells (DC) due to maternal asthma. We previously demonstrated that neonates of asthmatic mothers are born with a functional skew in splenic DCs that can be seen even in allergen-naïve pups and can convey allergy responses to normal recipients. However, minimal-to-no transcriptional or phenotypic changes were found to explain this alteration. Here we provide in-depth analysis of genome-wide DNA methylation profiles and RNA transcriptional (microarray) profiles before and after allergen sensitization. We identified differentially methylated and differentially expressed loci and performed manually-curated matching of methylation status of the key regulatory sequences (promoters and CpG islands) to expression of their respective transcripts before and after sensitization. We found that while allergen-naive DCs from asthma-at-risk neonates have minimal transcriptional change compared to controls, the methylation changes are extensive. The substantial transcriptional change only becomes evident upon allergen sensitization, when it occurs in multiple genes with the pre-existing epigenetic alterations. We demonstrate that maternal asthma leads to both hyper- and hypomethylation in neonatal DCs, and that both types of events at various loci significantly overlap with transcriptional responses to allergen. Pathway analysis indicates that approximately 1/2 of differentially expressed and differentially methylated genes directly interact in known networks involved in allergy and asthma processes. We conclude that congenital epigenetic changes in DCs are strongly linked to altered transcriptional responses to allergen and to early-life asthma origin. The findings are consistent with the emerging paradigm that asthma is a disease with underlying epigenetic changes.

  20. The prevalence and diagnostic value of specific IgE antibodies to inhalant, animal and plant food, and ficus allergens in patients with natural rubber latex allergy.

    PubMed

    Ebo, D G; Bridts, C H; Hagendorens, M M; De Clerck, L S; Stevens, W J

    2003-01-01

    It is well recognised that natural rubber latex allergy can be associated with serological cross-reactivity to plant allergens, especially tropical fruits and Ficus. In contrast, data on the frequency and clinical value of specific IgE antibodies against these allergens remain rare. In addition, little is known about the prevalence and diagnostic value of specific IgE antibodies to classical inhalant and animal allergens in NRL allergic patients. The purpose of this study was to investigate the prevalence, the sensitivity, and the specificity of these different specific IgE antibodies in patients suffering from NRL allergy. Serum samples of 42 NRL allergic adults were investigated. All had a history of NRL allergy confirmed by a positive skin test for latex and a positive latex-specific IgE. Samples were analysed for IgE antibodies against 9 plant food allergens (avocado, banana, chestnut, fig, kiwi, papaya, peanut, pineapple and tomato) and Ficus benjamina. A specific IgE quantification for 3 animal food allergens (codfish, cow's milk, egg's white) and 8 common inhalant allergens (Dermatophagoïdes pteronyssinus, birch pollen, timothy grass pollen, mugwort pollen, cat and dog epithelium, Aspergillus fumigatus and Cladosporium herbarum) was also performed. Because double blind placebo-controlled challenges could not be considered, for ethical reasons, patient's food allergy or immediate hypersensitivity for Ficus and inhalant allergens was documented by a standardised questionnaire. Diagnosis of atopy was based on a relevant history and the presence of a specific IgE antibody to at least one classical inhalant allergen. For some IgE determinations presence or absence of cross-reactivity was investigated by CAP-inhibition tests. A specific IgE antibody to at least one of the investigated inhalant and animal food allergens was found in respectively 76% and 12% of the serum samples. A plant food-specific IgE antibody was observed in 88% of the serum samples, most

  1. Effects of autoclaving and high pressure on allergenicity of hazelnut proteins

    PubMed Central

    2012-01-01

    Background Hazelnut is reported as a causative agent of allergic reactions. However it is also an edible nut with health benefits. The allergenic characteristics of hazelnut-samples after autoclaving (AC) and high-pressure (HHP) processing have been studied and are also presented here. Previous studies demonstrated that AC treatments were responsible for structural transformation of protein structure motifs. Thus, structural analyses of allergen proteins from hazelnut were carried out to observe what is occurring in relation to the specific-IgE recognition of the related allergenic proteins. The aims of this work are to evaluate the effect of AC and HHP processing on hazelnut in vitro allergenicity using human-sera and to analyse the complexity of hazelnut allergen-protein structures. Methods Hazelnut-samples were subjected to AC and HHP processing. The specific IgE- reactivity was studied in 15 allergic clinic-patients via western blotting analyses. A series of homology-based-bioinformatics 3D-models (Cora 1, Cora 8, Cora 9 and Cora 11) were generated for the antigens included in the study to analyse the co mplexity of their protein structure. This study is supported by the Declaration of Helsinki and subsequent ethical guidelines. Results A severe reduction in vitro in allergenicity to hazelnut after AC processing was observed in the allergic clinic-patients studied. The specific-IgE binding of some of the described immunoreactive hazelnut protein-bands: Cora 1 ~18KDa, Cora 8 ~9KDa, Cora 9 ~35-40KDa and Cora 11 ~47-48 KDa decreases. Furthermore a relevant glycosylation was assigned and visualized via structural analysis of proteins (3D-modelling) for the first time in the protein-allergen Cora 11 showing a new role which could open a new door for allergenicity-unravellings. Conclusion Hazelnut allergenicity-studies in vivo via Prick-Prick and other means using AC processing are crucial to verify the data we observed via in vitro analyses. Glycosylation studies

  2. CELLS INVOLVED IN THE IMMUNE RESPONSE

    PubMed Central

    Singhal, Sharwan K.; Richter, Maxwell

    1968-01-01

    Cell suspensions of immune rabbit lymph nodes and spleen were capable of undergoing blastogenesis and mitosis and of incorporating tritiated thymidine when maintained in culture with the specific antigen in vitro. They did not respond to other, non-cross-reacting antigens. The blastogenic response obtained with immune lymph node cells could be correlated with the antibody synthesizing capacity of fragment cultures prepared from the same lymph nodes. Cell suspensions of immune bone marrow responded to non-cross-reacting antigens only whereas cell suspensions of immune thymus, sacculus rotundus, and appendix did not respond when exposed to any of the antigens tested. On the other hand, neither fragments nor cell suspensions prepared from lymph nodes, spleen, and thymus of normal, unimmunized rabbits responded with antibody formation and blastogenesis when exposed to any of the antigens. However, normal bone marrow cells responded with marked blastogenesis and tritiated thymidine uptake. The specificity of this in vitro bone marrow response was demonstrated by the fact that the injection of a protein antigen in vivo resulted in the loss of reactivity by the marrow cell to that particular antigen but not to the other, non-cross-reacting antigens. Furthermore, bone marrow cells of tolerant rabbits failed to respond to the specific antigen in vitro. It was also demonstrated that normal bone marrow cells incubated with antigen are capable of forming antibody which could be detected by the fluorescent antibody technique. This response of the bone marrow cells has been localized to the lymphocyte-rich fraction of the bone marrow. It is concluded that the bone marrow lymphocyte, by virtue of its capacity to react with blastogenesis and mitosis and with antibody formation upon initial exposure to the antigen, a capacity not possessed by lymphocytes of the other lymphoid organs, has a preeminent role in the sequence of cellular events culminating in antibody formation. PMID

  3. Cell-Specific Imd-NF-κB Responses Enable Simultaneous Antibacterial Immunity and Intestinal Epithelial Cell Shedding upon Bacterial Infection.

    PubMed

    Zhai, Zongzhao; Boquete, Jean-Philippe; Lemaitre, Bruno

    2018-05-03

    Intestinal infection triggers potent immune responses to combat pathogens and concomitantly drives epithelial renewal to maintain barrier integrity. Current models propose that epithelial renewal is primarily driven by damage caused by reactive oxygen species (ROS). Here we found that in Drosophila, the Imd-NF-κB pathway controlled enterocyte (EC) shedding upon infection, via a mechanism independent of ROS-associated apoptosis. Mechanistically, the Imd pathway synergized with JNK signaling to induce epithelial cell shedding specifically in the context of bacterial infection, requiring also the reduced expression of the transcription factor GATAe. Furthermore, cell-specific NF-κB responses enabled simultaneous production of antimicrobial peptides (AMPs) and epithelial shedding in different EC populations. Thus, the Imd-NF-κB pathway is central to the intestinal antibacterial response by mediating both AMP production and the maintenance of barrier integrity. Considering the similarities between Drosophila Imd signaling and mammalian TNFR pathway, our findings suggest the existence of an evolutionarily conserved genetic program in immunity-induced epithelial shedding. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Effect of gender and sex hormones on immune responses following shock.

    PubMed

    Angele, M K; Schwacha, M G; Ayala, A; Chaudry, I H

    2000-08-01

    Several clinical and experimental studies show a gender dimorphism of the immune and organ responsiveness in the susceptibility to and morbidity from shock, trauma, and sepsis. In this respect, cell-mediated immune responses are depressed in males after trauma-hemorrhage, whereas they are unchanged or enhanced in females. Sex hormones contribute to this gender-specific immune response after adverse circulatory conditions. Specifically, studies indicate that androgens are responsible for the immunodepression after trauma-hemorrhage in males. In contrast, female sex steroids seem to exhibit immunoprotective properties after trauma and severe blood loss, because administration of estrogen prevents the androgen-induced immunodepression in castrated male mice. Nonetheless, the precise underlying mechanisms for these immunomodulatory effects of sex steroids after shock remain unknown. Although testosterone depletion, testosterone receptor antagonism, or estrogen treatment has been shown to prevent the depression of immune functions after trauma-hemorrhage, it remains to be established whether differences in the testosterone-estradiol ratio are responsible for the immune dysfunction. Furthermore, sex hormone receptors have been identified on various immune cells, suggesting direct effects. Thus, the immunomodulatory properties of sex hormones after trauma-hemorrhage might represent novel therapeutic strategies for the treatment of immunodepression in trauma patients.

  5. High correlation of specific IgE sensitization between birch pollen, soy and apple allergens indicates pollen-food allergy syndrome among birch pollen allergic patients in northern China.

    PubMed

    Hao, Guo-Dong; Zheng, Yi-Wu; Wang, Zhi-Xiang; Kong, Xing-Ai; Song, Zhi-Jing; Lai, Xu-Xin; Spangfort, Michael D

    2016-05-01

    Birch pollen sensitization and associated pollen-food syndrome among Chinese allergic patients have not been investigated. Sera from 203 allergic patients from the northern part of China and collected during February to July 2014 were investigated. Specific immunoglobulin E (IgE) against birch pollen extract Bet v and major birch pollen allergen Bet v 1 were measured using the ADVIA Centaur. The presence of major apple allergen Mal d 1 and soy bean allergen Gly m 4 specific IgE was measured by ImmunoCAP 100. Among the 203 sera, 34 sera (16.7%) had specific IgE to Bet v and of these, 28 sera (82.4%) contained Bet v 1-specific IgE. Among the 28 sera with Bet v 1-specific IgE, 27 sera (96.4%) contained Mal d 1-specific IgE and 22 sera (78.6%) contained Gly m 4-specific IgE. Of the 34 Bet v-positive sera, 6 sera (17.6%) contained no specific IgE for Bet v 1, Mal d 1, or Gly m 4. Almost all Bet v-positive sera were donated during the birch pollen season. The prevalence of birch allergy among patients visiting health care during pollen season can be as high as 16.7% in Tangshan City. The majority of Chinese birch allergic patients are IgE-sensitized to the major birch pollen allergen Bet v 1 as well as to the major apple allergen Mal d 1 and soy bean allergen Gly m 4. A relatively high number of patients (17.6%) are IgE-sensitized to birch pollen allergen(s) other than Bet v 1. The high prevalence of specific IgE to Mal d 1 and Gly m 4 among Bet v 1-sensitized patients indicates that pollen-food allergy syndrome could be of clinical relevance in China.

  6. Malnutrition: Modulator of Immune Responses in Tuberculosis

    PubMed Central

    Chandrasekaran, Padmapriyadarsini; Saravanan, Natarajan; Bethunaickan, Ramalingam; Tripathy, Srikanth

    2017-01-01

    Nutrition plays a major role in the management of both acute and chronic diseases, in terms of body’s response to the pathogenic organism. An array of nutrients like macro- and micro-nutrients, vitamins, etc., are associated with boosting the host’s immune responses against intracellular pathogens including mycobacterium tuberculosis (M.tb). These nutrients have an immunomodulatory effects in controlling the infection and inflammation process and nutritional deficiency of any form, i.e., malnutrition may lead to nutritionally acquired immunodeficiency syndrome, which greatly increases an individual’s susceptibility to progression of infection to disease. This narrative review looks at the various mechanisms by which nutrition or its deficiency leads to impaired cell mediated and humoral immune responses, which in turn affects the ability of an individual to fight M.tb infection or disease. There is very little evidence in the literature that any specific food on its own or a specific quantity can alter the course of TB disease or be effective in the treatment of malnutrition. Further clinical trials or studies will be needed to recommend and to better understand the link between malnutrition, tuberculosis, and impaired immunity. PMID:29093710

  7. Allergenically active components of cat allergen extracts.

    PubMed

    Anderson, M C; Baer, H

    1981-09-01

    The allergens involved in cat allergy have been studied in pelt extracts, saliva, serum, and urine. Using crossed immunoelectrophoresis (CIE) to examine the antigenic content, and crossed radioimmunoelectrophoresis (CRIE) and RAST to examine the allergenic content, it was found that allergen 1 of Dr. Ohman is the most important allergenic component, whereas albumin and several unidentified proteins play a minor role. Allergen 1 was not detectable in serum and urine. The allergenic and nonallergenic proteins of pelt extract and saliva were identical by CIE, suggesting that pelt extract proteins are mainly of salivary origin.

  8. The effects of inhaled corticosteroids on intrinsic responsiveness and histology of airways from infant monkeys exposed to house dust mite allergen and ozone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joad, Jesse P.; Kott, Kayleen S.; Bric, John M.

    2008-01-15

    Inhaled corticosteroids (ICS) are recommended to treat infants with asthma, some with intermittent asthma. We previously showed that exposing infant monkeys to allergen/ozone resulted in asthma-like characteristics of their airways. We evaluated the effects of ICS on histology and intrinsic responsiveness of allergen/ozone-exposed and normal infant primate airways. Infant monkeys were exposed by inhalation to (1) filtered air and saline, (2) house dust mite allergen (HDMA) + ozone and saline, (3) filtered air and ICS (budesonide) or (4) HDMA + ozone and ICS. Allergen/ozone exposures started at 1 month and ICS at 3 months of age. At 6 months ofmore » age, methacholine-induced changes in luminal area of airways in proximal and distal lung slices were determined using videomicrometry, followed by histology of the same slices. Proximal airway responsiveness was increased by allergen/ozone and by ICS. Eosinophil profiles were increased by allergen/ozone in both proximal and distal airways, an effect that was decreased by ICS in distal airways. In both allergen/ozone- and air-exposed monkeys, ICS increased the number of alveolar attachments in distal airways, decreased mucin in proximal airways and decreased epithelial volume in both airways. ICS increased smooth muscle in air-exposed animals while decreasing it in allergen/ozone-exposed animals in both airways. In proximal airways, there was a small but significant positive correlation between smooth muscle and airway responsiveness, as well as between alveolar attachments and responsiveness. ICS change morphology and function in normal airways as well as allergen/ozone-exposed airways, suggesting that they should be reserved for infants with active symptoms.« less

  9. Transciptomic study of mucosal immune, antioxidant and growth related genes and non-specific immune response of common carp (Cyprinus carpio) fed dietary Ferula (Ferula assafoetida).

    PubMed

    Safari, Roghieh; Hoseinifar, Seyed Hossein; Nejadmoghadam, Shabnam; Jafar, Ali

    2016-08-01

    A 8-weeks feeding trial was conducted to examine the effects of different levels (0, 0.5, 1 and 2%) of dietary Ferula (Ferula assafoetida) on expression of antioxidant enzymes (GSR, GPX and GSTA), immune (TNF-alpha, IL1B, IL- 8 and LYZ) and growth (GH, IGF1 and Ghrl) genes as well as cutaneous mucus and serum non-specific immune response in common carp. The results revealed Ferula significantly increased antioxidant gene expression (GSR and GSTA) in a dose dependent manner (P < 0.05). The expression of immune growth related genes were significantly higher in Ferula fed fish compared control group (P < 0.05). The effects of Ferula on expression of genes was more pronounced in higher doses. Feeding on Ferula supplemented diet remarkably increased skin mucus lysozyme activity (P < 0.05). However, evaluation of mucus total Ig and protease activity revealed no significant difference between control and treated groups (P > 0.05). Regarding non-specific humoral response, serum total Ig, lysozyme and ACH50 showed no remarkable variation between Ferula fed carps and control group (P > 0.05). These results indicated up-regulation of growth and health related genes in Ferula fed common carp. Further studies using pathogen or stress challenge is required to conclude that transcriptional modulation is beneficial in common carp. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Preparation of studies on antibody production against food allergens in mice and effect of flavonoids in simultaneous injection into mouse skin.

    USDA-ARS?s Scientific Manuscript database

    We had tried to evaluate antibody production against food allergens in mouse models. Some food allergens, which were beta-lactoglobulin, ovalbumin, and peanut allergen Ara h 1, were used as immunoges in this experiment. Under the same conditions these allergens were immunized as emulsion with freund...

  11. Detection of herpes simplex virus type 2 (HSV-2) -specific cell-mediated immune responses in guinea pigs during latent HSV-2 genital infection.

    PubMed

    Perry, Clarice L; Banasik, Brianne N; Gorder, Summer R; Xia, Jingya; Auclair, Sarah; Bourne, Nigel; Milligan, Gregg N

    2016-12-01

    Genital infections with herpes simplex virus type 2 (HSV-2) are a source of considerable morbidity and are a health concern for newborns exposed to virus during vaginal delivery. Additionally, HSV-2 infection diminishes the integrity of the vaginal epithelium resulting in increased susceptibility of individuals to infection with other sexually transmitted pathogens. Understanding immune protection against HSV-2 primary infection and immune modulation of virus shedding events following reactivation of the virus from latency is important for the development of effective prophylactic and therapeutic vaccines. Although the murine model of HSV-2 infection is useful for understanding immunity following immunization, it is limited by the lack of spontaneous reactivation of HSV-2 from latency. Genital infection of guinea pigs with HSV-2 accurately models the disease of humans including the spontaneous reactivation of HSV-2 from latency and provides a unique opportunity to examine virus-host interactions during latency. Although the guinea pig represents an accurate model of many human infections, relatively few reagents are available to study the immunological response to infection. To analyze the cell-mediated immune response of guinea pigs at extended periods of time after establishment of HSV-2 latency, we have modified flow-cytometry based proliferation assays and IFN-γ ELISPOT assays to detect and quantify HSV-specific cell-mediated responses during latent infection of guinea pigs. Here we demonstrate that a combination of proliferation and ELISPOT assays can be used to quantify and characterize effecter function of virus-specific immune memory responses during HSV-latency. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Distinct Contributory Factors Determine Basophil-Allergen Sensitivity in Grass Pollen Rhinitis and in Anaphylactic Wasp Venom Allergy.

    PubMed

    Korošec, Peter; Šilar, Mira; Kopač, Peter; Eržen, Renato; Zidarn, Mihaela; Košnik, Mitja

    2016-01-01

    We sought to determine whether basophil-allergen sensitivity could be transferred to donor basophils by passive IgE sensitisation in allergic rhinitis and anaphylactic Hymenoptera venom hypersensitivity. We studied 15 wasp venom-, 19 grass pollen- and 2 house dust mite-allergic patients, 2 healthy donors, and 8 wasp venom-allergic donors. In all subjects, we first evaluated the initial basophil response to wasp venom, grass pollen, or house dust mite allergen. Donor basophils were then stripped, sensitised with the different patients' serum IgE, and challenged with the corresponding allergen. The CD63 response of donor basophils was then compared with initial basophil responses. In wasp venom-allergic subjects, the IgE transfer did not reflect the initial basophil-allergen sensitivity, because the venom IgE of subjects with high or low basophil sensitivity induced comparable responsiveness in healthy donor basophils. Furthermore, vice versa, when we sensitised the donor basophils of wasp venom-allergic individuals with different wasp venom or house dust mite IgE, we demonstrated that their response was predictable by their initial basophil allergen sensitivity. In the rhinitis allergy model, the IgE transfer correlated with the patients' initial basophil responsiveness because the grass pollen IgE of the subjects with high basophil allergen sensitivity induced significantly higher responsiveness of donor basophils than the IgE of subjects with initially low basophil allergen sensitivity. Our results suggest that basophil allergen sensitivity evaluated by flow-cytometric CD63 analysis depends on two distinct contribution factors. In anaphylactic Hymenoptera allergy, the major factor was intrinsic cellular sensitivity, whereas in pollen allergy, the major factor was allergen-specific IgE on the cell surface. © 2016 S. Karger AG, Basel.

  13. Effect of nanovaccine chemistry on humoral immune response kinetics and maturation

    NASA Astrophysics Data System (ADS)

    Haughney, Shannon L.; Ross, Kathleen A.; Boggiatto, Paola M.; Wannemuehler, Michael J.; Narasimhan, Balaji

    2014-10-01

    Acute respiratory infections represent a significant portion of global morbidity and mortality annually. There is a critical need for efficacious vaccines against respiratory pathogens. To vaccinate against respiratory disease, pulmonary delivery is an attractive route because it mimics the route of natural infection and can confer both mucosal and systemic immunity. We have previously demonstrated that a single dose, intranasal vaccine based on polyanhydride nanoparticles elicited a protective immune response against Yersinia pestis for at least 40 weeks after immunization with F1-V. Herein, we investigate the effect of nanoparticle chemistry and its attributes on the kinetics and maturation of the antigen-specific serum antibody response. We demonstrate that manipulation of polyanhydride nanoparticle chemistry facilitated differential kinetics of development of antibody titers, avidity, and epitope specificity. The results provide new insights into the underlying role(s) of nanoparticle chemistry in providing long-lived humoral immunity and aid in the rational design of nanovaccine formulations to induce long-lasting and mature antibody responses.Acute respiratory infections represent a significant portion of global morbidity and mortality annually. There is a critical need for efficacious vaccines against respiratory pathogens. To vaccinate against respiratory disease, pulmonary delivery is an attractive route because it mimics the route of natural infection and can confer both mucosal and systemic immunity. We have previously demonstrated that a single dose, intranasal vaccine based on polyanhydride nanoparticles elicited a protective immune response against Yersinia pestis for at least 40 weeks after immunization with F1-V. Herein, we investigate the effect of nanoparticle chemistry and its attributes on the kinetics and maturation of the antigen-specific serum antibody response. We demonstrate that manipulation of polyanhydride nanoparticle chemistry

  14. IgE, IgG4 and IgA specific to Bet v 1-related food allergens do not predict oral allergy syndrome.

    PubMed

    Guhsl, E E; Hofstetter, G; Lengger, N; Hemmer, W; Ebner, C; Fröschl, R; Bublin, M; Lupinek, C; Breiteneder, H; Radauer, C

    2015-01-01

    Birch pollen-associated plant food allergy is caused by Bet v 1-specific IgE, but presence of cross-reactive IgE to related allergens does not predict food allergy. The role of other immunoglobulin isotypes in the birch pollen-plant food syndrome has not been investigated in detail. Bet v 1-sensitized birch pollen-allergic patients (n = 35) were diagnosed for food allergy by standardized interviews, skin prick tests, prick-to-prick tests and ImmunoCAP. Concentrations of allergen-specific IgE, IgG1, IgG4 and IgA to seven Bet v 1-related food allergens were determined by ELISA. Bet v 1, Cor a 1, Mal d 1 and Pru p 1 bound IgE from all and IgG4 and IgA from the majority of sera. Immunoglobulins to Gly m 4, Vig r 1 and Api g 1.01 were detected in <65% of the sera. No significant correlation was observed between plant food allergy and increased or reduced levels of IgE, IgG1, IgG4 or IgA specific to most Bet v 1-related allergens. Api g 1-specific IgE was significantly (P = 0.01) elevated in celeriac-allergic compared with celeriac-tolerant patients. Likewise, frequencies of IgE (71% vs 15%; P = 0.01) and IgA (86% vs 38%; P = 0.04) binding to Api g 1.01 were increased. Measurements of allergen-specific immunoglobulins are not suitable for diagnosing Bet v 1-mediated plant food allergy to hazelnut and Rosaceae fruits. In contrast, IgE and IgA to the distantly related allergen Api g 1 correlate with allergy to celeriac. © 2014 The Authors. Allergy Published by John Wiley & Sons Ltd.

  15. Photodynamic therapy for cancer and activation of immune response

    NASA Astrophysics Data System (ADS)

    Mroz, Pawel; Huang, Ying-Ying; Hamblin, Michael R.

    2010-02-01

    Anti-tumor immunity is stimulated after PDT for cancer due to the acute inflammatory response, exposure and presentation of tumor-specific antigens, and induction of heat-shock proteins and other danger signals. Nevertheless effective, powerful tumor-specific immune response in both animal models and also in patients treated with PDT for cancer, is the exception rather than the rule. Research in our laboratory and also in others is geared towards identifying reasons for this sub-optimal immune response and discovering ways of maximizing it. Reasons why the immune response after PDT is less than optimal include the fact that tumor-antigens are considered to be self-like and poorly immunogenic, the tumor-mediated induction of CD4+CD25+foxP3+ regulatory T-cells (T-regs), that are able to inhibit both the priming and the effector phases of the cytotoxic CD8 T-cell anti-tumor response and the defects in dendritic cell maturation, activation and antigen-presentation that may also occur. Alternatively-activated macrophages (M2) have also been implicated. Strategies to overcome these immune escape mechanisms employed by different tumors include combination regimens using PDT and immunostimulating treatments such as products obtained from pathogenic microorganisms against which mammals have evolved recognition systems such as PAMPs and toll-like receptors (TLR). This paper will cover the use of CpG oligonucleotides (a TLR9 agonist found in bacterial DNA) to reverse dendritic cell dysfunction and methods to remove the immune suppressor effects of T-regs that are under active study.

  16. Identification of novel allergens of Aspergillus fumigatus using immunoproteomics approach.

    PubMed

    Gautam, P; Sundaram, C S; Madan, T; Gade, W N; Shah, A; Sirdeshmukh, R; Sarma, P U

    2007-08-01

    Approximately 20% of the world's asthmatics are suffering from Aspergillus fumigatus (Afu)-induced allergies. The characterization of specific IgE-inducing allergens in allergic aspergillosis patients is fundamental for clinical diagnosis and for immunotherapy. Immunoproteomics combined with mass spectrometric analysis was used to identify proteins of third-week culture filtrate (3wcf) potentially responsible for Afu-specific IgE immunoreactivity, using pooled sera from Afu-sensitized asthmatics. Their allergenic potential was also tested against patients with allergic bronchopulmonary aspergillosis (ABPA), by two-dimensional (2-D) gel electrophoresis immunoblotting of 3wcf proteins with individual sera from such patients. This helped us to establish a set of candidate allergens, which could be explored further for diagnostic application in allergic aspergillosis asthmatics including ABPA. Peptide mass fingerprint using matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS) and/or de novo sequencing by MS/MS analysis of the protein spots from 2-D gels led to the identification of a total of 16 allergens of Afu. Eleven of them are being reported as allergens for the first time and five had been reported earlier. Putative isoforms of the proteins Asp f 13 and chitosanase have been observed for the first time. When studied for reactivity of these proteins among patients with ABPA using their individual sera, these patients exhibited sensitization although the pattern was varying. Taken together, these proteins could thus be considered as potential allergens even among patients with ABPA. Three of these proteins viz. the hypothetical protein (# spot no. 5), extracellular arabinase (# spot no. 6) and chitosanase (# spot no. 11) could be major allergens with specific IgE immunoreactivity with six out of eight patients' sera. The immunoproteomic approach applied to the analysis of culture filtrate proteins resulted in the

  17. Defining thresholds of specific IgE levels to grass pollen and birch pollen allergens improves clinical interpretation.

    PubMed

    Van Hoeyveld, Erna; Nickmans, Silvie; Ceuppens, Jan L; Bossuyt, Xavier

    2015-10-23

    Cut-off values and predictive values are used for the clinical interpretation of specific IgE antibody results. However, cut-off levels are not well defined, and predictive values are dependent on the prevalence of disease. The objective of this study was to document clinically relevant diagnostic accuracy of specific IgE for inhalant allergens (grass pollen and birch pollen) based on test result interval-specific likelihood ratios. Likelihood ratios are independent of the prevalence and allow to provide diagnostic accuracy information for test result intervals. In a prospective study we included consecutive adult patients presenting at an allergy clinic with complaints of rhinitis or rhinoconjunctivitis. The standard for diagnosis was a suggestive clinical history of grass or birch pollen allergy and a positive skin test. Specific IgE was determined with the ImmunoCAP Fluorescence Enzyme Immuno-Assay. We established specific IgE test result interval related likelihood ratios for clinical allergy to inhalant allergens (grass pollen, rPhl p 1,5, birch pollen, rBet v 1). The likelihood ratios for allergy increased with increasing specific IgE antibody levels. The likelihood ratio was <0.03 for specific IgE <0.1 kU/L, between 0.1 and 1.4 for specific IgE between 0.1 kU/L and 0.35 kU/L, between 1.4 and 4.2 for specific IgE between 0.35 kU/L and 3.5 kU/L, >6.3 for specific IgE>0.7, and very high (∞) for specific IgE >3.5 kU/L. Test result interval specific likelihood ratios provide a useful tool for the interpretation of specific IgE test results for inhalant allergens. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. A zebrafish larval model reveals early tissue-specific innate immune responses to Mucor circinelloides.

    PubMed

    Voelz, Kerstin; Gratacap, Remi L; Wheeler, Robert T

    2015-11-01

    Mucormycosis is an emerging fungal infection that is clinically difficult to manage, with increasing incidence and extremely high mortality rates. Individuals with diabetes, suppressed immunity or traumatic injury are at increased risk of developing disease. These individuals often present with defects in phagocytic effector cell function. Research using mammalian models and phagocytic effector cell lines has attempted to decipher the importance of the innate immune system in host defence against mucormycosis. However, these model systems have not been satisfactory for direct analysis of the interaction between innate immune effector cells and infectious sporangiospores in vivo. Here, we report the first real-time in vivo analysis of the early innate immune response to mucormycete infection using a whole-animal zebrafish larval model system. We identified differential host susceptibility, dependent on the site of infection (hindbrain ventricle and swim bladder), as well as differential functions of the two major phagocyte effector cell types in response to viable and non-viable spores. Larval susceptibility to mucormycete spore infection was increased upon immunosuppressant treatment. We showed for the first time that macrophages and neutrophils were readily recruited in vivo to the site of infection in an intact host and that spore phagocytosis can be observed in real-time in vivo. While exploring innate immune effector recruitment dynamics, we discovered the formation of phagocyte clusters in response to fungal spores that potentially play a role in fungal spore dissemination. Spores failed to activate pro-inflammatory gene expression by 6 h post-infection in both infection models. After 24 h, induction of a pro-inflammatory response was observed only in hindbrain ventricle infections. Only a weak pro-inflammatory response was initiated after spore injection into the swim bladder during the same time frame. In the future, the zebrafish larva as a live whole

  19. A dendritic cell targeted vaccine induces long-term HIV-specific immunity within the gastrointestinal tract.

    PubMed

    Ruane, D; Do, Y; Brane, L; Garg, A; Bozzacco, L; Kraus, T; Caskey, M; Salazar, A; Trumpheller, C; Mehandru, S

    2016-09-01

    Despite significant therapeutic advances for HIV-1 infected individuals, a preventative HIV-1 vaccine remains elusive. Studies focusing on early transmission events, including the observation that there is a profound loss of gastrointestinal (GI) CD4(+) T cells during acute HIV-1 infection, highlight the importance of inducing HIV-specific immunity within the gut. Here we report on the generation of cellular and humoral immune responses in the intestines by a mucosally administered, dendritic cell (DC) targeted vaccine. Our results show that nasally delivered α-CD205-p24 vaccine in combination with polyICLC, induced polyfunctional immune responses within naso-pulmonary lymphoid sites that disseminated widely to systemic and mucosal (GI tract and the vaginal epithelium) sites. Qualitatively, while α-CD205-p24 prime-boost immunization generated CD4(+) T-cell responses, heterologous prime-boost immunization with α-CD205-p24 and NYVAC gag-p24 generated high levels of HIV-specific CD4(+) and CD8(+) T cells within the GI tract. Finally, DC-targeting enhanced the amplitude and longevity of vaccine-induced immune responses in the GI tract. This is the first report of a nasally delivered, DC-targeted vaccine to generate HIV-specific immune responses in the GI tract and will potentially inform the design of preventative approaches against HIV-1 and other mucosal infections.

  20. Immunotherapeutic efficacy of liposome-encapsulated refined allergen vaccines against Dermatophagoides pteronyssinus allergy.

    PubMed

    Chaisri, Urai; Tungtrongchitr, Anchalee; Indrawattana, Nitaya; Meechan, Panisara; Phurttikul, Watchara; Tasaniyananda, Natt; Saelim, Nawannaporn; Chaicumpa, Wanpen; Sookrung, Nitat

    2017-01-01

    Allergen specific immunotherapy (AIT) can modulate the allergic response causing a long-term symptom subsidence/abolishment which leads to reduced drug use and prevention of new sensitization. AIT of house dust mite allergy (HDM) using the mite crude extract (CE) as the therapeutic agent is not only less effective than the AIT for many other allergens, but also frequently causes adverse effects during the treatment course. In this study, mouse model of Dermatophagoides pteronyssinus (Dp) allergy was invented for testing therapeutic efficacies of intranasally administered liposome (L) encapsulated vaccines made of single Dp major allergens (L-Der p 1, L-Der p 2), combined allergens (L-Der p 1 and Der p 2), and crude Dp extract (L-CE). The allergen sparing intranasal route was chosen as it is known that the effective cells induced at the nasal-associated lymphoid tissue can exert their activities at the lower respiratory tissue due to the common mucosal traffic. Liposome was chosen as the vaccine delivery vehicle and adjuvant as the micelles could reduce toxicity of the entrapped cargo. The Dp-CE allergic mice received eight doses of individual vaccines/placebo on alternate days. All vaccine formulations caused reduction of the Th2 response of the Dp allergic mice. However, only the vaccines made of single refined allergens induced expressions of immunosuppressive cytokines (TGF-β, IL-35 and/or IL-10) which are the imperative signatures of successful AIT. The data emphasize the superior therapeutic efficacy of single refined major allergen vaccines than the crude allergenic extract vaccine.

  1. Setting Occupational Exposure Limits for Chemical Allergens—Understanding the Challenges

    PubMed Central

    Dotson, G. S.; Maier, A.; Siegel, P. D.; Anderson, S. E.; Green, B. J.; Stefaniak, A. B.; Codispoti, C. D.; Kimber, I.

    2015-01-01

    Chemical allergens represent a significant health burden in the workplace. Exposures to such chemicals can cause the onset of a diverse group of adverse health effects triggered by immune-mediated responses. Common responses associated with workplace exposures to low molecular weight (LMW) chemical allergens range from allergic contact dermatitis to life-threatening cases of asthma. Establishing occupational exposure limits (OELs) for chemical allergens presents numerous difficulties for occupational hygiene professionals. Few OELs have been developed for LMW allergens because of the unique biological mechanisms that govern the immune-mediated responses. The purpose of this article is to explore the primary challenges confronting the establishment of OELs for LMW allergens. Specific topics include: (1) understanding the biology of LMW chemical allergies as it applies to setting OELs; (2) selecting the appropriate immune-mediated response (i.e., sensitization versus elicitation); (3) characterizing the dose (concentration)-response relationship of immune-mediated responses; (4) determining the impact of temporal exposure patterns (i.e., cumulative versus acute exposures); and (5) understanding the role of individual susceptibility and exposure route. Additional information is presented on the importance of using alternative exposure recommendations and risk management practices, including medical surveillance, to aid in protecting workers from exposures to LMW allergens when OELs cannot be established. PMID:26583909

  2. The association of allergic sensitization in mother and child in breast-fed and formula-fed infants.

    PubMed

    Wright, A L; Stern, D A; Halonen, M

    2001-01-01

    Human milk contains immunologically active substances potentially capable of altering infant immune response. As part of the prospective Children's Respiratory Study, we assessed whether the association between maternal allergic status and allergic status of the child was altered by breast-feeding. Skin-prick tests for 7 common allergens were administered to 702 6-year-old children and their mothers. The percentage of children sensitized to specific allergens, maternal skin test response to that allergen, and whether or not the child was ever breast-fed was determined. Findings indicated that specific sensitization in the mother was associated with specific sensitization in the child only if the child was breast-fed. This indirectly supports the hypothesis that contents of milk differ with maternal allergic status, and appear to affect allergic status in the child. These results suggest that milk from allergic mothers either promotes a Th2 type immune response or suppresses Th1 immune response in the child.

  3. A comparison of nanoparticullate CpG immunotherapy with and without allergens in spontaneously equine asthma‐affected horses, an animal model

    PubMed Central

    Klier, John; Geis, Sabine; Steuer, Jeanette; Geh, Katharina; Reese, Sven; Fuchs, Sebastian; Mueller, Ralf S.; Winter, Gerhard

    2017-01-01

    Abstract Introduction New therapeutic strategies to modulate the immune response of human and equine allergic asthma are still under extensive investigation. Immunomodulating agents stimulating T‐regulatory cells offer new treatment options beyond conventional symptomatic treatment or specific immunotherapy for human and equine allergic airway diseases, with the goal of a homoeostatic T‐helper cell balance. The aim of this study was to evaluate the effects of a nebulized gelatin nanoparticle‐CpG formulation (CpG‐GNP) with and without specific allergens for the treatment of spontaneous allergic equine asthma as a model for human asthma. Methods Twenty equine asthma‐affected horses were treated either with CpG‐GNP alone or CpG‐GNP with allergens. Two specific allergens were selected for each horse based on history and an in‐vitro test. Each horse received seven administrations of the respective nebulized composition and was examined before treatment, immediately after and 6 weeks after the treatment course. Results Clinical parameters such as breathing rate, indirect interpleural measurement, arterial blood gases, amount of tracheal mucus and percentage of neutrophils and cytokines in tracheal washes and serum samples were evaluated. Treatment with CpG‐GNP alone as well as in combinations with relevant allergens resulted in clinical improvement of nasal discharge, breathing rate, amount of secretion and viscosity, neutrophil percentage and partial oxygen pressure directly after and 6 weeks after treatment. There were no significant differences between the two treatments in clinical parameters or local cytokine profiles in the tracheal wash fluid (IL‐10, IFN‐g, and IL‐17). IL‐4 concentrations decreased significantly in both groups. Conclusion Nonspecific CpG‐GNP‐based immunotherapy shows potential as a treatment for equine and possibly also human allergic asthma. PMID:29094511

  4. New routes of allergen immunotherapy.

    PubMed

    Aricigil, Mitat; Muluk, Nuray Bayar; Sakarya, Engin Umut; Sakalar, Emine Güven; Senturk, Mehmet; Reisacher, William R; Cingi, Cemal

    2016-11-01

    Allergen immunotherapy is the only cure for immunoglobulin E mediated type I respiratory allergies. Subcutaneous immunotherapy (SCIT) and sublingual immunotherapy (SLIT) are the most common treatments. In this article, we reviewed new routes of allergen immunotherapy. Data on alternative routes to allow intralymphatic immunotherapy (ILIT), epicutaneous immunotherapy (EPIT), local nasal immunotherapy (LNIT), oral immunotherapy (OIT), and oral mucosal immunotherapy (OMIT) were gathered from the literature and were discussed. ILIT features direct injection of allergens into lymph nodes. ILIT may be clinically effective after only a few injections and induces allergen-specific immunoglobulin G, similarly to SCIT. A limitation of ILIT is that intralymphatic injections are required. EPIT features allergen administration by using patches mounted on the skin. EPIT seeks to target epidermal antigen-presenting Langerhans cells rather than mast cells or the vasculature; this should reduce both local and systemic adverse effects. LNIT involves the spraying of allergen extracts into the nasal cavity. Natural or chemically modified allergens (the latter, termed allergoids, lack immunoglobulin E reactivity) are prepared in a soluble form. OIT involves the regular administration of small amounts of a food allergen by mouth and commences with low oral doses, which are then increased as tolerance develops. OMIT seeks to deliver allergenic proteins to an expanded population of Langerhans cells in the mucosa of the oral cavity. ILIT, EPIT, LNIT, OIT, and OMIT are new routes for allergen immunotherapy. They are safe and effective.

  5. Mechanism study of tumor-specific immune responses induced by laser immunotherapy

    NASA Astrophysics Data System (ADS)

    Li, Xiaosong; Zhou, Feifan; Le, Henry; Wolf, Roman F.; Howard, Eric; Nordquist, Robert E.; Hode, Tomas; Liu, Hong; Chen, Wei R.

    2011-03-01

    Laser immunotherapy (LIT) has shown its efficacy against late-stage, metastatic cancers, both in pre-clinical studies and clinical pilot trials. However, the possible mechanism of LIT is still not fully understood. In our previous studies, we have shown that LIT induces tumor-specific antibodies that strongly bind to the target tumors. Tumor resistance in cured animals demonstrated long-term immunological effect of LIT. Successful transfer of adoptive immunity using spleen cells from LIT-cured animals indicated a long-term immunological memory of the host system. In clinical trials for the treatment of late-stage melanoma patients and breast cancer patients, the similar long-term, systemic effects have also been observed. To further study the immunological mechanism of LIT, immuno-histochemical analysis of patient tumor samples has performed before and after LIT treatment. Our results showed strong evidence that LIT significantly increases the infiltration of immune cells in the target tumors. Specifically, LIT appeared to drive the infiltrating immune cell populations in the direction of CD4, CD8 and CD68 T-cells. It is possible that activation and enhancement of both humeral and cellular arms of the host immune system are achievable by the treatment of LIT. These special features of LIT have contributed to the success of patient treatment. The underlying mechanism of LIT appears to be an in-situ autologous whole-cell cancer vaccination, using all components of tumors as sources of tumor antigens. Our preliminary mechanistic studies and future in-depth studies will contribute to the understanding and development of LIT as an effective modality for the treatment of late stage cancer patients who are facing severely limited options.

  6. Mathematical modeling provides kinetic details of the human immune response to vaccination

    PubMed Central

    Le, Dustin; Miller, Joseph D.; Ganusov, Vitaly V.

    2015-01-01

    With major advances in experimental techniques to track antigen-specific immune responses many basic questions on the kinetics of virus-specific immunity in humans remain unanswered. To gain insights into kinetics of T and B cell responses in human volunteers we combined mathematical models and experimental data from recent studies employing vaccines against yellow fever and smallpox. Yellow fever virus-specific CD8 T cell population expanded slowly with the average doubling time of 2 days peaking 2.5 weeks post immunization. Interestingly, we found that the peak of the yellow fever-specific CD8 T cell response was determined by the rate of T cell proliferation and not by the precursor frequency of antigen-specific cells as has been suggested in several studies in mice. We also found that while the frequency of virus-specific T cells increased slowly, the slow increase could still accurately explain clearance of yellow fever virus in the blood. Our additional mathematical model described well the kinetics of virus-specific antibody-secreting cell and antibody response to vaccinia virus in vaccinated individuals suggesting that most of antibodies in 3 months post immunization were derived from the population of circulating antibody-secreting cells. Taken together, our analysis provided novel insights into mechanisms by which live vaccines induce immunity to viral infections and highlighted challenges of applying methods of mathematical modeling to the current, state-of-the-art yet limited immunological data. PMID:25621280

  7. Mathematical modeling provides kinetic details of the human immune response to vaccination.

    PubMed

    Le, Dustin; Miller, Joseph D; Ganusov, Vitaly V

    2014-01-01

    With major advances in experimental techniques to track antigen-specific immune responses many basic questions on the kinetics of virus-specific immunity in humans remain unanswered. To gain insights into kinetics of T and B cell responses in human volunteers we combined mathematical models and experimental data from recent studies employing vaccines against yellow fever and smallpox. Yellow fever virus-specific CD8 T cell population expanded slowly with the average doubling time of 2 days peaking 2.5 weeks post immunization. Interestingly, we found that the peak of the yellow fever-specific CD8 T cell response was determined by the rate of T cell proliferation and not by the precursor frequency of antigen-specific cells as has been suggested in several studies in mice. We also found that while the frequency of virus-specific T cells increased slowly, the slow increase could still accurately explain clearance of yellow fever virus in the blood. Our additional mathematical model described well the kinetics of virus-specific antibody-secreting cell and antibody response to vaccinia virus in vaccinated individuals suggesting that most of antibodies in 3 months post immunization were derived from the population of circulating antibody-secreting cells. Taken together, our analysis provided novel insights into mechanisms by which live vaccines induce immunity to viral infections and highlighted challenges of applying methods of mathematical modeling to the current, state-of-the-art yet limited immunological data.

  8. Proteomic analysis of the major birch allergen Bet v 1 predicts allergenicity for 15 birch species.

    PubMed

    Schenk, Martijn F; Cordewener, Jan H G; America, Antoine H P; Peters, Jeroen; Smulders, Marinus J M; Gilissen, Luud J W J

    2011-08-12

    Pollen of the European and Asian white birch (Betula pendula and B. platyphylla) causes hay fever in humans. The allergenic potency of other birch species is largely unknown. To identify birch trees with a reduced allergenicity, we assessed the immunochemical characteristics of 15 species and two hybrids, representing four subgenera within the genus Betula, while focusing on the major pollen allergen Bet v 1. Antigenic and allergenic profiles of pollen extracts from these species were evaluated by SDS-PAGE and Western blot using pooled sera of birch-allergic individuals. Tryptic digests of the Bet v 1 bands were analyzed by LC-MS(E) to determine the abundance of various Bet v 1 isoforms. Bet v 1 was the most abundant pollen protein across all birch species. LC-MS(E) confirmed that pollen of all species contained a mixture of multiple Bet v 1 isoforms. Considerable differences in Bet v 1 isoform composition exist between birch species. However, isoforms that are predicted to have a high IgE-reactivity prevailed in pollen of all species. Immunoblotting confirmed that all pollen extracts were similar in immune-reactivity, implying that pollen of all birch species is likely to evoke strong allergic reactions. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Pulmonary α-1,3-Glucan-Specific IgA-Secreting B Cells Suppress the Development of Cockroach Allergy1

    PubMed Central

    Patel, Preeyam S.; King, R. Glenn; Kearney, John F.

    2016-01-01

    There is a higher incidence of allergic conditions among children living in industrialized countries than those in developing regions. One explanation for this is reduced neonatal exposure to microbes and the consequent lack of immune stimulation. Sensitivity to cockroach allergen is highly correlated with the development of severe asthma. In this study, we determined that an antibody to microbial α-1,3-glucan binds an Enterobacter species and cockroach allergen. Neonatal, but not adult, mice immunized with this α-1,3-glucan-bearing Enterobacter (MK7) are protected against cockroach allergy. Following exposure to cockroach allergen, α-1,3-glucan-specific IgA-secreting cells are present in the lungs of mice immunized with MK7 as neonates, but not in the lungs of those immunized as adults. Mice that are unable to generate anti-α-1,3-glucan IgA antibodies were immunized with MK7 as neonates and were no longer protected against cockroach allergy. Thus, neonatal, but not adult, exposure to α-1,3-glucan results in suppressed development of cockroach allergy via pulmonary α-1,3-glucan-specific IgA-secreting cells. PMID:27581173

  10. Cord blood Streptococcus pneumoniae‐specific cellular immune responses predict early pneumococcal carriage in high‐risk infants in Papua New Guinea

    PubMed Central

    Francis, J. P.; Richmond, P. C.; Strickland, D.; Prescott, S. L.; Pomat, W. S.; Michael, A.; Nadal‐Sims, M. A.; Edwards‐Devitt, C. J.; Holt, P. G.; Lehmann, D.

    2016-01-01

    Summary In areas where Streptococcus pneumoniae is highly endemic, infants experience very early pneumococcal colonization of the upper respiratory tract, with carriage often persisting into adulthood. We aimed to explore whether newborns in high‐risk areas have pre‐existing pneumococcal‐specific cellular immune responses that may affect early pneumococcal acquisition. Cord blood mononuclear cells (CBMC) of 84 Papua New Guinean (PNG; high endemic) and 33 Australian (AUS; low endemic) newborns were stimulated in vitro with detoxified pneumolysin (dPly) or pneumococcal surface protein A (PspA; families 1 and 2) and compared for cytokine responses. Within the PNG cohort, associations between CBMC dPly and PspA‐induced responses and pneumococcal colonization within the first month of life were studied. Significantly higher PspA‐specific interferon (IFN)‐γ, tumour necrosis factor (TNF)‐α, interleukin (IL)‐5, IL‐6, IL‐10 and IL‐13 responses, and lower dPly‐IL‐6 responses were produced in CBMC cultures of PNG compared to AUS newborns. Higher CBMC PspA‐IL‐5 and PspA‐IL‐13 responses correlated with a higher proportion of cord CD4 T cells, and higher dPly‐IL‐6 responses with a higher frequency of cord antigen‐presenting cells. In the PNG cohort, higher PspA‐specific IL‐5 and IL‐6 CBMC responses were associated independently and significantly with increased risk of earlier pneumococcal colonization, while a significant protective effect was found for higher PspA‐IL‐10 CBMC responses. Pneumococcus‐specific cellular immune responses differ between children born in pneumococcal high versus low endemic settings, which may contribute to the higher risk of infants in high endemic settings for early pneumococcal colonization, and hence disease. PMID:27859014

  11. Chemokine-mediated immune responses in the female genital tract mucosa.

    PubMed

    Deruaz, Maud; Luster, Andrew D

    2015-04-01

    The genital tract mucosa is the site where sexually transmitted infections gain entry to the host. The immune response at this site is thus critical to provide innate protection against pathogens that are seen for the very first time as well as provide long-term pathogen-specific immunity, which would be required for an effective vaccine against sexually transmitted infection. A finely regulated immune response is therefore required to provide an effective barrier against pathogens without compromising the capacity of the genital tract to allow for successful conception and fetal development. We review recent developments in our understanding of the immune response in the female genital tract to infectious pathogens, using herpes simplex virus-2, human immunodeficiency virus-1 and Chlamydia trachomatis as examples, with a particular focus on the role of chemokines in orchestrating immune cell migration necessary to achieve effective innate and adaptive immune responses in the female genital tract.

  12. Strain-specific protective immunity following vaccination against experimental Trypanosoma cruzi infection.

    PubMed

    Haolla, Filipe A; Claser, Carla; de Alencar, Bruna C G; Tzelepis, Fanny; de Vasconcelos, José Ronnie; de Oliveira, Gabriel; Silvério, Jaline C; Machado, Alexandre V; Lannes-Vieira, Joseli; Bruna-Romero, Oscar; Gazzinelli, Ricardo T; dos Santos, Ricardo Ribeiro; Soares, Milena B P; Rodrigues, Mauricio M

    2009-09-18

    Immunisation with Amastigote Surface Protein 2 (asp-2) and trans-sialidase (ts) genes induces protective immunity in highly susceptible A/Sn mice, against infection with parasites of the Y strain of Trypanosoma cruzi. Based on immunological and biological strain variations in T. cruzi parasites, our goal was to validate our vaccination results using different parasite strains. Due to the importance of the CD8(+) T cells in protective immunity, we initially determined which strains expressed the immunodominant H-2K(k)-restricted epitope TEWETGQI. We tested eight strains, four of which elicited immune responses to this epitope (Y, G, Colombian and Colombia). We selected the Colombian and Colombia strains for our studies. A/Sn mice were immunised with different regimens using both T. cruzi genes (asp-2 and ts) simultaneously and subsequently challenged with blood trypomastigotes. Immune responses before the challenge were confirmed by the presence of specific antibodies and peptide-specific T cells. Genetic vaccination did not confer protective immunity against acute infection with a lethal dose of the Colombian strain. In contrast, we observed a drastic reduction in parasitemia and a significant increase in survival, following challenge with an otherwise lethal dose of the Colombia strain. In many surviving animals with late-stage chronic infection, we observed alterations in the heart's electrical conductivity, compared to naive mice. In summary, we concluded that immunity against T. cruzi antigens, similar to viruses and bacteria, may be strain-specific and have a negative impact on vaccine development.

  13. [Cross reactions between pollens and vegetable food allergens].

    PubMed

    Pauli, G; Metz-Favre, C

    2013-04-01

    The association of food allergies and pollinosis are numerous, implicating tree, grass and weed pollens on one hand and on the other, several plant foods which after ingestion can induce an oral syndrome or more severe reactions such as urticaria, Quincke's edema, asthma and even anaphylactic shock. The molecular basis of cross reactions between pollens and vegetable food allergens is increasingly understood. The principal allergens involved are those of the Bet v 1 family, and profilins found in all pollens as well as in many fruits and vegetables; these two groups of allergens are denatured by high temperatures and by gastric enzymes, in contrast to LTP, which is only found in weeds and some tree pollens. Other molecules can be involved in cross reactions such as Bet v 6 (an isoflavone reductase), 1 beta glucanases and thaumatine-like proteins. Inhibition experiments confirmed that the epitopes responsible for primary sensitization come mainly from pollen allergens; the cross-reactive molecular allergen is related to the geographic environment of the patients. The practical aspects of managing these patients are underlined: explanations of co-sensitization, explanations for the lack of efficacy of some extracts, usefulness of a molecular diagnosis obtained either by CAP or microarray, prediction of severe clinical reactions induced by specific molecular allergens and the effectiveness of pollen immunotherapy on the cross-related food allergy. Copyright © 2013 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  14. Novel structure of cockroach allergen Bla g 1 has implications for allergenicity and exposure assessment

    PubMed Central

    Mueller, Geoffrey A.; Pedersen, Lars C.; Lih, Fred B.; Glesner, Jill; Moon, Andrea F.; Chapman, Martin D.; Tomer, Kenneth B.; London, Robert E.; Pomés, Anna

    2013-01-01

    Background Sensitization to cockroach allergens is a major risk factor for asthma. The cockroach allergen Bla g 1 has multiple repeats of ~100 amino acids, but the fold of the protein and the biological function are unknown. Objective To determine the structure of Bla g 1, investigate the implications for allergic disease, and standardize cockroach exposure assays. Methods Natural Bla g 1 and recombinant constructs were compared by ELISA using specific murine IgG and human IgE. The structure of Bla g 1 was determined by X-ray crystallography. Mass spectrometry and NMR were utilized to examine ligand-binding properties of the allergen. Results The structure of a recombinant Bla g 1 construct with comparable IgE and IgG reactivity to the natural allergen was solved by X-ray crystallography. The Bla g 1 repeat forms a novel fold with 6 helices. Two repeats encapsulate a large and nearly spherical hydrophobic cavity, defining the basic structural unit. Lipids in the cavity varied depending on the allergen origin. Palmitic, oleic and stearic acids were associated with nBla g 1 from cockroach frass. One Unit of Bla g 1 was equivalent to 104 ng of allergen. Conclusions Bla g 1 has a novel fold with a capacity to bind various lipids, which suggests a digestive function associated with non-specific transport of lipid molecules in cockroaches. Defining the basic structural unit of Bla g 1 facilitates the standardization of assays in absolute units for the assessment of environmental allergen exposure. PMID:23915714

  15. Dietary Animal Plasma Proteins Improve the Intestinal Immune Response in Senescent Mice.

    PubMed

    Miró, Lluïsa; Garcia-Just, Alba; Amat, Concepció; Polo, Javier; Moretó, Miquel; Pérez-Bosque, Anna

    2017-12-11

    Increased life expectancy has promoted research on healthy aging. Aging is accompanied by increased non-specific immune activation (inflammaging) which favors the appearance of several disorders. Here, we study whether dietary supplementation with spray-dried animal plasma (SDP), which has been shown to reduce the activation of gut-associated lymphoid tissue (GALT) in rodents challenged by S. aureus enterotoxin B (SEB), and can also prevent the effects of aging on immune system homeostasis. We first characterized GALT in a mouse model of accelerated senescence (SAMP8) at different ages (compared to mice resistant to accelerated senescence; SAMR1). Second, we analyzed the SDP effects on GALT response to an SEB challenge in SAMP8 mice. In GALT characterization, aging increased the cell number and the percentage of activated Th lymphocytes in mesenteric lymph nodes and Peyer's patches (all, p < 0.05), as well as the expression of IL-6 and TNF-α in intestinal mucosa (both, p < 0.05). With respect to GALT response to the SEB challenge, young mice showed increased expression of intestinal IL-6 and TNF-α, as well as lymphocyte recruitment and activation (all, p < 0.05). However, the immune response of senescent mice to the SEB challenge was weak, since SEB did not change cell recruitment or the percentage of activated Th lymphocytes. Mice supplemented with SDP showed improved capacity to respond to the SEB challenge, similar to the response of the young mice. These results indicate that senescent mice have an impaired mucosal immune response characterized by unspecific GALT activation and a weak specific immune response. SDP supplementation reduces non-specific basal immune activation, allowing for the generation of specific responses.

  16. Modeling Systems-Level Regulation of Host Immune Responses

    PubMed Central

    Thakar, Juilee; Pilione, Mylisa; Kirimanjeswara, Girish; Harvill, Eric T; Albert, Réka

    2007-01-01

    Many pathogens are able to manipulate the signaling pathways responsible for the generation of host immune responses. Here we examine and model a respiratory infection system in which disruption of host immune functions or of bacterial factors changes the dynamics of the infection. We synthesize the network of interactions between host immune components and two closely related bacteria in the genus Bordetellae. We incorporate existing experimental information on the timing of immune regulatory events into a discrete dynamic model, and verify the model by comparing the effects of simulated disruptions to the experimental outcome of knockout mutations. Our model indicates that the infection time course of both Bordetellae can be separated into three distinct phases based on the most active immune processes. We compare and discuss the effect of the species-specific virulence factors on disrupting the immune response during their infection of naive, antibody-treated, diseased, or convalescent hosts. Our model offers predictions regarding cytokine regulation, key immune components, and clearance of secondary infections; we experimentally validate two of these predictions. This type of modeling provides new insights into the virulence, pathogenesis, and host adaptation of disease-causing microorganisms and allows systems-level analysis that is not always possible using traditional methods. PMID:17559300

  17. Intracellular IL-4, IL-5, and IFN-γ as the main characteristic of CD4+CD30+ T cells after allergen stimulation in patients with vernal keratoconjunctivitis

    PubMed Central

    Magaña, Diana; Aguilar, Gustavo; Linares, Marisela; Ayala-Balboa, Julio; Santacruz, Concepción; Chávez, Raúl; Estrada-Parra, Sergio; Garfias, Yonathan; Lascurain, Ricardo; Jiménez-Martínez, Maria C.

    2015-01-01

    Background Vernal keratoconjunctivitis (VKC) is a severe form of allergic conjunctivitis, in which inflammatory infiltrates of the conjunctiva are characterized by CD3+ and CD30+ cells. Until today, the functional involvement of CD30+ T cells in VKC was unclear. Our aim was to evaluate the functional characteristics of CD30+ T cells after allergen stimulation in peripheral blood mononuclear cells obtained from patients with VKC. Methods Seventeen consecutive patients at the Institute of Ophthalmology with active forms of VKC were included. Results After allergen stimulation, we observed the frequency of CD30+ T cells increased compared with non-stimulated cells (p<0.0001). The CD30+ T cells responded to the specific allergen-inducing expression of intracellular interleukin-4 (IL-4), IL-5, and interferon-gamma (IFN-γ) compared with the CD30- T cells (p<0.0001). Increased early secretion of soluble CD30 was observed in the supernatant of the cultured cells from patients with keratoconjunctivitis, compared with healthy controls (p=0.03). Blockage with IL-4 significantly diminished CD30 frequency in the allergen-stimulated cells. Conclusions Our results suggest that after allergenic stimulation, CD4+CD30+ cells are the most important source of IL-4, IL-5, and IFN-γ. IL-4 acts as an activation loop that increases CD30 expression on T cells after specific stimulation. These findings suggest that CD4+CD30+ T cells are effector cells and play a significant role in the immune pathogenic response in patients with vernal keratoconjunctivitis. PMID:25999672

  18. Oral immunization of mice with transgenic tomato fruit expressing respiratory syncytial virus-F protein induces a systemic immune response.

    PubMed

    Sandhu, J S; Krasnyanski, S F; Domier, L L; Korban, S S; Osadjan, M D; Buetow, D E

    2000-04-01

    Respiratory syncytial virus (RSV) is one of the most important pathogens of infancy and early childhood. Here a fruit-based edible subunit vaccine against RSV was developed by expressing the RSV fusion (F) protein gene in transgenic tomato plants. The F-gene was expressed in ripening tomato fruit under the control of the fruit-specific E8 promoter. Oral immunization of mice with ripe transgenic tomato fruits led to the induction of both serum and mucosal RSV-F specific antibodies. The ratio of immunoglobulin subclasses produced in response to immunization suggested that a type 1 T-helper cell immune response was preferentially induced. Serum antibodies showed an increased titer when the immunized mice were exposed to inactivated RSV antigen.

  19. Polyomavirus-Specific Cellular Immunity: From BK-Virus-Specific Cellular Immunity to BK-Virus-Associated Nephropathy?

    PubMed Central

    Dekeyser, Manon; François, Hélène; Beaudreuil, Séverine; Durrbach, Antoine

    2015-01-01

    In renal transplantation, BK-virus (BKV)-associated nephropathy has emerged as a major complication, with a prevalence of 1–10% and graft loss in >50% of cases. BKV is a member of the polyomavirus family and rarely induces apparent clinical disease in the general population. However, replication of polyomaviruses, associated with significant organ disease, is observed in patients with acquired immunosuppression. Monitoring of specific immunity combined with viral load could be used to individually assess the risk of viral reactivation and virus control. We review the current knowledge on BKV-specific cellular immunity and, more specifically, in immunocompromised patients. In the future, immune-based therapies could allow us to treat and prevent BKV-associated nephropathy. PMID:26136745

  20. Improved efficacy of allergen-specific immunotherapy by JAK inhibition in a murine model of allergic asthma

    PubMed Central

    Alessandrini, Francesca; Fuchs, Helmut; Gailus-Durner, Valerie; Hrabě de Angelis, Martin; Russkamp, Dennis; Chaker, Adam; Ollert, Markus; Gutermuth, Jan; Schmidt-Weber, Carsten B.

    2017-01-01

    Background Allergen-specific immunotherapy (AIT) is the only curative treatment for type-1 allergies, but sometimes shows limited therapeutic response as well as local and systemic side effects. Limited control of local inflammation and patient symptoms hampers its widespread use in severe allergic asthma. Objective Our aim was to evaluate whether AIT is more effective in suppression of local inflammation if performed under the umbrella of short-term non-specific immunomodulation using a small molecule inhibitor of JAK pathways. Methods In C57BL/6J mice, a model of ovalbumin (OVA)-induced allergic airway inflammation and allergen-specific immunotherapy was combined with the administration of Tofacitinib (TOFA, a FDA-approved JAK inhibitor) from 48 hours prior to 48 hours after therapeutic OVA-injection. The effect of TOFA on human FOXP3+CD4+ T cells was studied in vitro. Results AIT combined with short-term TOFA administration was significantly more effective in suppressing total cell and eosinophil infiltration into the lung, local cytokine production including IL-1β and CXCL1 and showed a trend for the reduction of IL-4, IL-13, TNF-α and IL-6 compared to AIT alone. Furthermore, TOFA co-administration significantly reduced systemic IL-6, IL-1β and OVA-specific IgE levels and induced IgG1 to the same extent as AIT alone. Additionally, TOFA enhanced the induction of human FOXP3+CD4+ T cells. Conclusions This proof of concept study shows that JAK inhibition did not inhibit tolerance induction, but improved experimental AIT at the level of local inflammation. The improved control of local inflammation might extend the use of AIT in more severe conditions such as polyallergy, asthma and high-risk patients suffering from mastocytosis or anaphylaxis. PMID:28570653

  1. Improved efficacy of allergen-specific immunotherapy by JAK inhibition in a murine model of allergic asthma.

    PubMed

    Aguilar-Pimentel, Antonio; Graessel, Anke; Alessandrini, Francesca; Fuchs, Helmut; Gailus-Durner, Valerie; Hrabě de Angelis, Martin; Russkamp, Dennis; Chaker, Adam; Ollert, Markus; Blank, Simon; Gutermuth, Jan; Schmidt-Weber, Carsten B

    2017-01-01

    Allergen-specific immunotherapy (AIT) is the only curative treatment for type-1 allergies, but sometimes shows limited therapeutic response as well as local and systemic side effects. Limited control of local inflammation and patient symptoms hampers its widespread use in severe allergic asthma. Our aim was to evaluate whether AIT is more effective in suppression of local inflammation if performed under the umbrella of short-term non-specific immunomodulation using a small molecule inhibitor of JAK pathways. In C57BL/6J mice, a model of ovalbumin (OVA)-induced allergic airway inflammation and allergen-specific immunotherapy was combined with the administration of Tofacitinib (TOFA, a FDA-approved JAK inhibitor) from 48 hours prior to 48 hours after therapeutic OVA-injection. The effect of TOFA on human FOXP3+CD4+ T cells was studied in vitro. AIT combined with short-term TOFA administration was significantly more effective in suppressing total cell and eosinophil infiltration into the lung, local cytokine production including IL-1β and CXCL1 and showed a trend for the reduction of IL-4, IL-13, TNF-α and IL-6 compared to AIT alone. Furthermore, TOFA co-administration significantly reduced systemic IL-6, IL-1β and OVA-specific IgE levels and induced IgG1 to the same extent as AIT alone. Additionally, TOFA enhanced the induction of human FOXP3+CD4+ T cells. This proof of concept study shows that JAK inhibition did not inhibit tolerance induction, but improved experimental AIT at the level of local inflammation. The improved control of local inflammation might extend the use of AIT in more severe conditions such as polyallergy, asthma and high-risk patients suffering from mastocytosis or anaphylaxis.

  2. Passive Antibody Administration (Immediate Immunity) as a Specific Defense Against Biological Weapons

    PubMed Central

    2002-01-01

    The potential threat of biological warfare with a specific agent is proportional to the susceptibility of the population to that agent. Preventing disease after exposure to a biological agent is partially a function of the immunity of the exposed individual. The only available countermeasure that can provide immediate immunity against a biological agent is passive antibody. Unlike vaccines, which require time to induce protective immunity and depend on the host’s ability to mount an immune response, passive antibody can theoretically confer protection regardless of the immune status of the host. Passive antibody therapy has substantial advantages over antimicrobial agents and other measures for postexposure prophylaxis, including low toxicity and high specific activity. Specific antibodies are active against the major agents of bioterrorism, including anthrax, smallpox, botulinum toxin, tularemia, and plague. This article proposes a biological defense initiative based on developing, producing, and stockpiling specific antibody reagents that can be used to protect the population against biological warfare threats. PMID:12141970

  3. Vaccine specific immune response to an inactivated oral cholera vaccine and EPI vaccines in a high and low arsenic area in Bangladeshi children.

    PubMed

    Saha, Amit; Chowdhury, Mohiul I; Nazim, Mohammad; Alam, Mohammad Murshid; Ahmed, Tanvir; Hossain, Mohammad Bakhtiar; Hore, Samar Kumar; Sultana, Gazi Nurun Nahar; Svennerholm, Ann-Mari; Qadri, Firdausi

    2013-01-11

    Immune responses to the inactivated oral whole cell cholera toxin B (CTB) subunit cholera vaccine, Dukoral(®), as well as three childhood vaccines in the national immunization system were compared in children living in high and low arsenic contaminated areas in Bangladesh. In addition, serum complement factors C3 and C4 levels were evaluated among children in the two areas. VACCINATIONS: Toddlers (2-5 years) were orally immunized with two doses of Dukoral 14 days apart. Study participants had also received diphtheria, tetanus and measles vaccines according to the Expanded Program on Immunization (EPI) in Bangladesh. The mean level of arsenic in the urine specimens in the children of the high arsenic area (HAA, Shahrasti, Chandpur) was 291.8μg/L while the level was 6.60μg/L in the low arsenic area (LAA, Mirpur, Dhaka). Cholera specific vibriocidal antibody responses were significantly increased in the HAA (87%, P<0.001) and the LAA (75%, P<0.001) children after vaccination with Dukoral, but no differences were found between the two groups. Levels of CTB specific IgA and IgG antibodies were comparable between the two groups, whereas LPS specific IgA and IgG were higher in the LAA group, although response rates were comparable. Diphtheria and tetanus vaccine specific IgG responses were significantly higher in the HAA compared to the LAA group (P<0.001, P=0.048 respectively), whereas there were no differences in the measles specific IgG responses between the groups. Complement C3 and C4 levels in sera were higher in participants from the HAA than the LAA groups (P<0.001, P=0.049 respectively). The study demonstrates that the oral cholera vaccine as well as the EPI vaccines studied are immunogenic in children in high and low arsenic areas in Bangladesh. The results are encouraging for the potential use of cholera vaccines as well as the EPI vaccines in arsenic endemic areas. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Improving Allergen Prediction in Main Crops Using a Weighted Integrative Method.

    PubMed

    Li, Jing; Wang, Jing; Li, Jing

    2017-12-01

    As a public health problem, food allergy is frequently caused by food allergy proteins, which trigger a type-I hypersensitivity reaction in the immune system of atopic individuals. The food allergens in our daily lives are mainly from crops including rice, wheat, soybean and maize. However, allergens in these main crops are far from fully uncovered. Although some bioinformatics tools or methods predicting the potential allergenicity of proteins have been proposed, each method has their limitation. In this paper, we built a novel algorithm PREAL W , which integrated PREAL, FAO/WHO criteria and motif-based method by a weighted average score, to benefit the advantages of different methods. Our results illustrated PREAL W has better performance significantly in the crops' allergen prediction. This integrative allergen prediction algorithm could be useful for critical food safety matters. The PREAL W could be accessed at http://lilab.life.sjtu.edu.cn:8080/prealw .

  5. Longitudinal analysis of Prototheca zopfii-specific immune responses: correlation with disease progression and carriage in dairy cows.

    PubMed

    Roesler, Uwe; Hensel, Andreas

    2003-03-01

    In order to characterize the humoral and cellular immune responses to bovine mammary protothecosis, serum and whey samples obtained from 72 dairy cows assigned to four different clinical stages of infection were examined for specific antibodies by indirect enzyme-linked immunosorbent assay techniques. Milk samples were analyzed for the total numbers of excreted algal cells and somatic cells. After characterization of the course of immune induction in bovine protothecal mastitis, a long-term sentinel study was performed in an affected herd in order to investigate disease progression. A total of 61 dairy cows with protothecal mastitis were examined for shedding of algae cells and for local immune responses three times in 6-month intervals. During acute and chronic stages of protothecosis, significantly elevated specific antibody activities in sera were detected. A strong correlation of whey immunoglobulin A (IgA) and whey IgG1 antibody activity with the total counts of somatic cells in milk was observed, whereas only a weak correlation of whey IgA and whey IgG1 concentrations to the number of algal cells excreted with the milk was seen. Our results from the sentinel long-term study of infected cows revealed that 70.5% of the persistently infected animals were continuously shedding the pathogen. About 4.9% of the animals showed an intermittent shedding, whereas 18% of the cows were tested culturally negative throughout the study. It can be assumed that Prototheca zopfii mastitis in dairy cows is maintained on the herd level by subclinically infected alga-shedding cows.

  6. Longitudinal Analysis of Prototheca zopfii-Specific Immune Responses: Correlation with Disease Progression and Carriage in Dairy Cows

    PubMed Central

    Roesler, Uwe; Hensel, Andreas

    2003-01-01

    In order to characterize the humoral and cellular immune responses to bovine mammary protothecosis, serum and whey samples obtained from 72 dairy cows assigned to four different clinical stages of infection were examined for specific antibodies by indirect enzyme-linked immunosorbent assay techniques. Milk samples were analyzed for the total numbers of excreted algal cells and somatic cells. After characterization of the course of immune induction in bovine protothecal mastitis, a long-term sentinel study was performed in an affected herd in order to investigate disease progression. A total of 61 dairy cows with protothecal mastitis were examined for shedding of algae cells and for local immune responses three times in 6-month intervals. During acute and chronic stages of protothecosis, significantly elevated specific antibody activities in sera were detected. A strong correlation of whey immunoglobulin A (IgA) and whey IgG1 antibody activity with the total counts of somatic cells in milk was observed, whereas only a weak correlation of whey IgA and whey IgG1 concentrations to the number of algal cells excreted with the milk was seen. Our results from the sentinel long-term study of infected cows revealed that 70.5% of the persistently infected animals were continuously shedding the pathogen. About 4.9% of the animals showed an intermittent shedding, whereas 18% of the cows were tested culturally negative throughout the study. It can be assumed that Prototheca zopfii mastitis in dairy cows is maintained on the herd level by subclinically infected alga-shedding cows. PMID:12624049

  7. Application of immuno-PCR assay for the detection of serum IgE specific to Bermuda allergen.

    PubMed

    Rahmatpour, Samine; Khan, Amjad Hayat; Nasiri Kalmarzi, Rasoul; Rajabibazl, Masoumeh; Tavoosidana, Gholamreza; Motevaseli, Elahe; Zarghami, Nosratollah; Sadroddiny, Esmaeil

    2017-04-01

    In vivo and in vitro tests are the two major ways of identifying the triggering allergens in sensitized individuals with allergic symptoms. Both methods are equally significant in terms of sensitivity and specificity. However, in certain circumstances, in vitro methods are highly preferred because they circumvent the use of sensitizing drugs in patients. In current study, we described a highly sensitive immuno-PCR (iPCR) assay for serum IgE specific to Bermuda allergens. Using oligonucleotide-labelled antibody, we used iPCR for the sensitive detection of serum IgE. The nucleotide sequence was amplified using conventional PCR and the bands were visualized on 2.5% agarose gel. Results demonstrated a 100-fold enhancement in sensitivity of iPCR over commercially available enzyme-linked immunosorbent assay (ELISA) kit. Our iPCR method was highly sensitive for Bermuda-specific serum IgE and could be beneficial in allergy clinics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. House-dust mite allergy: mapping of Dermatophagoides pteronyssinus allergens for dogs by two-dimensional immunoblotting.

    PubMed

    Martins, Luís Miguel Lourenço; Marques, Andreia Grilo; Pereira, Luísa Maria Dotti Silva; Goicoa, Ana; Semião-Santos, Saul José; Bento, Ofélia Pereira

    2015-04-01

    Specific immunotherapy has shown to be very useful for allergy control in dogs, with a common success rate ranging from 65% to 70%. However, this efficacy could probably be improved and the identification of individual allergomes, with the choice of more adequate molecular allergen pools for specific immunotherapy, being the strategy. To map Dermatophagoides pteronyssinus (Der p) allergens for mite-sensitized atopic dogs, for better understanding how individual allergograms may influence the response to house-dust mite immunotherapy. To identify the Der p mite allergome for dogs, 20 individuals allergic to dust-mites and sensitized to Der p, were selected. The extract from Der p was submitted to isoelectric focusing (IEF), one-dimensional (1-D) and two-dimensional (2-D) sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Separated proteins were blotted onto polyvinylidene difluoride (PVDF) membranes and immunoblottings were performed with patient sera. Allergen-bound specific IgE was detected. Eleven allergens were identified from isoelectric focusing (IEF), as well as from 1-D SDS PAGE. From 2-D SDS-PAGE, 24 spots were identified. Several similarities were found between dog and human allergograms and no absolute correlation between sensitization and allergy was observed either. As in humans, different individual allergograms do not seem to implicate different clinical patterns, but may influence the response to specific immunotherapy. The molecular epidemiology approach in veterinary allergy management, by the characterization of individual patients' allergoms and by choosing the best molecular allergen pool for each patient could also improve the efficacy of allergy immunotherapy.

  9. The Immune Response in Measles: Virus Control, Clearance and Protective Immunity.

    PubMed

    Griffin, Diane E

    2016-10-12

    Measles is an acute systemic viral infection with immune system interactions that play essential roles in multiple stages of infection and disease. Measles virus (MeV) infection does not induce type 1 interferons, but leads to production of cytokines and chemokines associated with nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) signaling and activation of the NACHT, LRR and PYD domains-containing protein (NLRP3) inflammasome. This restricted response allows extensive virus replication and spread during a clinically silent latent period of 10-14 days. The first appearance of the disease is a 2-3 day prodrome of fever, runny nose, cough, and conjunctivitis that is followed by a characteristic maculopapular rash that spreads from the face and trunk to the extremities. The rash is a manifestation of the MeV-specific type 1 CD4⁺ and CD8⁺ T cell adaptive immune response with lymphocyte infiltration into tissue sites of MeV replication and coincides with clearance of infectious virus. However, clearance of viral RNA from blood and tissues occurs over weeks to months after resolution of the rash and is associated with a period of immunosuppression. However, during viral RNA clearance, MeV-specific antibody also matures in type and avidity and T cell functions evolve from type 1 to type 2 and 17 responses that promote B cell development. Recovery is associated with sustained levels of neutralizing antibody and life-long protective immunity.

  10. Modulation of Dendritic Cell Innate and Adaptive Immune Functions by Oral and Sublingual Immunotherapy

    PubMed Central

    Frischmeyer-Guerrerio, Pamela A.; Keet, Corinne A.; Guerrerio, Anthony L.; Chichester, Kristin L.; Bieneman, Anja P.; Hamilton, Robert G.; Wood, Robert A.; Schroeder, John T.

    2014-01-01

    Sublingual (SLIT) and oral immunotherapy (OIT) are promising treatments for food allergy, but underlying mechanisms are poorly understood. Dendritic cells (DC) induce and maintain Th2-type allergen-specific T cells, and also regulate innate immunity through their expression of Toll-like receptors (TLRs). We examined how SLIT and OIT influenced DC innate and adaptive immune responses in children with IgE-mediated cow's milk (CM) allergy. SLIT, but not OIT, decreased TLR-induced IL-6 secretion by myeloid DCs (mDCs). SLIT and OIT altered mDC IL-10 secretion, a potent inhibitor of FcεRI-dependent pro-inflammatory responses. OIT uniquely augmented IFN-α and decreased IL-6 secretion by plasmacytoid DCs (pDCs), which was associated with reduced TLR-induced IL-13 release in pDC-T cell co-cultures. Both SLIT and OIT decreased Th2 cytokine secretion to CM in pDC-T, but not mDC-T, co-cultures. Therefore, SLIT and OIT exert unique effects on DC-driven innate and adaptive immune responses, which may inhibit allergic inflammation and promote tolerance. PMID:25173802

  11. Food-allergic infants have impaired regulatory T-cell responses following in vivo allergen exposure.

    PubMed

    Dang, Thanh D; Allen, Katrina J; J Martino, David; Koplin, Jennifer J; Licciardi, Paul V; Tang, Mimi L K

    2016-02-01

    Regulatory T cells (Tregs) are critical for development of oral tolerance, and studies suggest that dysfunction of Tregs may lead to food allergy. However, to date, no study has investigated Treg responses following in vivo exposure to peanut or egg allergens in humans. To examine changes in peripheral blood CD4(+) CD25(+) Foxp3(+) Treg populations (total, activated and naive) in food-allergic, food-sensitized but tolerant, and healthy (non-sensitized non-allergic) patients over time following in vivo allergen exposure. A subset of infants from the HealthNuts study with egg or peanut allergy (n = 37), egg or peanut sensitization (n = 35), or who were non-sensitized non-allergic (n = 15) were studied. All subjects underwent oral food challenge (OFC) to egg or peanut. PBMCs were obtained within 1 h of OFC (in vivo allergen exposure), and Treg populations enumerated ex vivo on day 0, and after 2 and 6 days rest in vitro. Non-allergic infants showed stable total Treg frequencies over time; food-sensitized infants had a transient fall in Treg percentage with recovery to baseline by day 6 (6.87% day 0, 5.27% day 2, 6.5% day 6); and food-allergic infants showed persistent reduction in Treg (6.85% day 0, 5.4% day 2, 6.2% day 6) following in vivo allergen exposure. Furthermore, food-allergic infants had a significantly lower ratio of activated Treg:activated T cells (10.5 ± 0.77) at day 0 compared to food-sensitized (14.6 ± 1.24) and non-allergic subjects (16.2 ± 1.23). Our data suggest that the state of allergen sensitization is associated with depletion of Treg following allergen exposure. Impaired capacity to regenerate the Treg pool following allergen exposure may be an important factor that determines clinical allergy vs. sensitization without allergic reaction. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Neurotrophin Receptor p75NTR Regulates Immune Function of Plasmacytoid Dendritic Cells.

    PubMed

    Bandoła, Joanna; Richter, Cornelia; Ryser, Martin; Jamal, Arshad; Ashton, Michelle P; von Bonin, Malte; Kuhn, Matthias; Dorschner, Benjamin; Alexopoulou, Dimitra; Navratiel, Katrin; Roeder, Ingo; Dahl, Andreas; Hedrich, Christian M; Bonifacio, Ezio; Brenner, Sebastian; Thieme, Sebastian

    2017-01-01

    Plasmacytoid dendritic cells (pDCs) regulate innate and adaptive immunity. Neurotrophins and their receptors control the function of neuronal tissue. In addition, they have been demonstrated to be part of the immune response but little is known about the effector immune cells involved. We report, for the first time, the expression and immune-regulatory function of the low affinity neurotrophin receptor p75 neurotrophin receptor (p75NTR) by the antigen-presenting pDCs, mediated by toll-like receptor (TLR) 9 activation and differential phosphorylation of interferon regulatory factor 3 and 7. The modulation of p75NTR on pDCs significantly influences disease progression of asthma in an ovalbumin-induced mouse model mediated by the TLR9 signaling pathway. p75NTR activation of pDCs from patients with asthma increased allergen-specific T cell proliferation and cytokine secretion in nerve growth factor concentration-dependent manner. Further, p75NTR activation of pDCs delayed the onset of autoimmune diabetes in RIP-CD80GP mice and aggravated graft-versus-host disease in a xenotransplantation model. Thus, p75NTR signaling on pDCs constitutes a new and critical mechanism connecting neurotrophin signaling and immune response regulation with great therapeutic potential for a variety of immune disorders.

  13. Neurotrophin Receptor p75NTR Regulates Immune Function of Plasmacytoid Dendritic Cells

    PubMed Central

    Bandoła, Joanna; Richter, Cornelia; Ryser, Martin; Jamal, Arshad; Ashton, Michelle P.; von Bonin, Malte; Kuhn, Matthias; Dorschner, Benjamin; Alexopoulou, Dimitra; Navratiel, Katrin; Roeder, Ingo; Dahl, Andreas; Hedrich, Christian M.; Bonifacio, Ezio; Brenner, Sebastian; Thieme, Sebastian

    2017-01-01

    Plasmacytoid dendritic cells (pDCs) regulate innate and adaptive immunity. Neurotrophins and their receptors control the function of neuronal tissue. In addition, they have been demonstrated to be part of the immune response but little is known about the effector immune cells involved. We report, for the first time, the expression and immune-regulatory function of the low affinity neurotrophin receptor p75 neurotrophin receptor (p75NTR) by the antigen-presenting pDCs, mediated by toll-like receptor (TLR) 9 activation and differential phosphorylation of interferon regulatory factor 3 and 7. The modulation of p75NTR on pDCs significantly influences disease progression of asthma in an ovalbumin-induced mouse model mediated by the TLR9 signaling pathway. p75NTR activation of pDCs from patients with asthma increased allergen-specific T cell proliferation and cytokine secretion in nerve growth factor concentration-dependent manner. Further, p75NTR activation of pDCs delayed the onset of autoimmune diabetes in RIP-CD80GP mice and aggravated graft-versus-host disease in a xenotransplantation model. Thus, p75NTR signaling on pDCs constitutes a new and critical mechanism connecting neurotrophin signaling and immune response regulation with great therapeutic potential for a variety of immune disorders. PMID:28861085

  14. Specific IgE Antibodies in Young Children with Atopic Dermatitis--Correlation of Multiple Allergen Simultaneous Immunoblot Test and ImmunoCap System.

    PubMed

    Konopka, Ewa; Ceregra, Aldona; Maciorkowska, Elzbieta; Surowska, Barbara; Trojanowska, Ilona; Roszko-Kirpsza, Izabela; Cukrowska, Bozena

    2016-01-01

    Sensitization to food allergens is a common condition in pediatric atopic dermatitis (AD). Recently, the multiple allergen simultaneous test (MAST) allowing for a comprehensive assessment of atopy has been developed, but the usefulness in young AD children is not known. The aim of this study was to determine IgE specificity in AD children using MAST and to compare the results for selected food allergens with the reference ImmunoCap system. The study enrolled 50 children up to 2 years old with a diagnosis of AD. IgE antibodies were measured with the MAST-immunoblots. Children with specific IgE levels ≥ 0.35 kU/L were identified as sensitized to allergens. Most often children were sensitized to food allergens (egg white and yolk, hazelnuts, potato, cow's milk proteins, wheat flour, codfish, and soybean), but a high percentage of them also had IgE antibodies against house dust mites (12%), grass (10%), and birch (10%). Eight percent of children were sensitized to domestic animals (cats and dogs). Almost perfect (kappa index 0.8 - 1.0) and substantial (kappa index 0.6 - 0.8) agreement between MAST and ImmunoCap was found for food allergens except codfish. Pearson's analysis of antibody classes showed a very strong correlation between two methods (r = 0.8 - 1.0) for egg white, hazelnuts, potato, cow's milk proteins, wheat flour, and soybean, and a strong correlation (r = 0.6 - 0.79) was observed for peanut, egg yolk, and codfish. The study showed the frequent occurrence of IgE antibodies against food and airborne and animal allergens in young AD children and confirmed the usefulness of MAST-immunoblots for screening of sensitization in pediatric patients.

  15. A review of clinical efficacy, safety, new developments and adherence to allergen-specific immunotherapy in patients with allergic rhinitis caused by allergy to ragweed pollen (Ambrosia artemisiifolia).

    PubMed

    Turkalj, Mirjana; Banic, Ivana; Anzic, Srdjan Ante

    2017-01-01

    Allergic rhinitis is a common health problem in both children and adults. The number of patients allergic to ragweed ( Ambrosia artemisiifolia ) is on the rise throughout Europe, having a significant negative impact on the patients' and their family's quality of life. Allergen-specific immunotherapy (AIT) has disease-modifying effects and can induce immune tolerance to allergens. Both subcutaneous immunotherapy and sublingual immunotherapy with ragweed extracts/preparations have clear positive clinical efficacy, especially over pharmacological treatment, even years after the treatment has ended. AIT also has very good safety profiles with extremely rare side effects, and the extracts/preparations used in AIT are commonly well tolerated by patients. However, patient adherence to treatment with AIT seems to be quite low, mostly due to the fact that treatment with AIT is relatively time-demanding and, moreover, due to patients not receiving adequate information and education about the treatment before it starts. AIT is undergoing innovations and improvements in clinical efficacy, safety and patient adherence, especially with new approaches using new adjuvants, recombinant or modified allergens, synthetic peptides, novel routes of administration (epidermal or intralymphatic), and new protocols, which might make AIT more acceptable for a wider range of patients and novel indications. Patient education and support (eg, recall systems) is one of the most important goals for AIT in the future, to further enhance treatment success.

  16. A review of clinical efficacy, safety, new developments and adherence to allergen-specific immunotherapy in patients with allergic rhinitis caused by allergy to ragweed pollen (Ambrosia artemisiifolia)

    PubMed Central

    Turkalj, Mirjana; Banic, Ivana; Anzic, Srdjan Ante

    2017-01-01

    Allergic rhinitis is a common health problem in both children and adults. The number of patients allergic to ragweed (Ambrosia artemisiifolia) is on the rise throughout Europe, having a significant negative impact on the patients’ and their family’s quality of life. Allergen-specific immunotherapy (AIT) has disease-modifying effects and can induce immune tolerance to allergens. Both subcutaneous immunotherapy and sublingual immunotherapy with ragweed extracts/preparations have clear positive clinical efficacy, especially over pharmacological treatment, even years after the treatment has ended. AIT also has very good safety profiles with extremely rare side effects, and the extracts/preparations used in AIT are commonly well tolerated by patients. However, patient adherence to treatment with AIT seems to be quite low, mostly due to the fact that treatment with AIT is relatively time-demanding and, moreover, due to patients not receiving adequate information and education about the treatment before it starts. AIT is undergoing innovations and improvements in clinical efficacy, safety and patient adherence, especially with new approaches using new adjuvants, recombinant or modified allergens, synthetic peptides, novel routes of administration (epidermal or intralymphatic), and new protocols, which might make AIT more acceptable for a wider range of patients and novel indications. Patient education and support (eg, recall systems) is one of the most important goals for AIT in the future, to further enhance treatment success. PMID:28243068

  17. The major Alternaria alternata allergen, Alt a 1: A reliable and specific marker of fungal contamination in citrus fruits.

    PubMed

    Gabriel, M F; Uriel, N; Teifoori, F; Postigo, I; Suñén, E; Martínez, J

    2017-09-18

    The ubiquitously present spores of Alternaria alternata can spoil a wide variety of foodstuffs, including a variety of fruits belonging to the Citrus genus. The major allergenic protein of A. alternata, Alt a 1, is a species-specific molecular marker that has been strongly associated with allergenicity and phytopathogenicity of this fungal species. This study aimed to evaluate the potential of the detection of Alt a 1 as a reliable indicator of A. alternata contamination in citrus fruits. To accomplish this aim, sixty oranges were artificially infected with a spore suspension of A. alternata. Internal fruit material was collected at different incubation times (one, two and three weeks after the fungal inoculation) and used for both total RNA extraction and protein extraction. Alt a 1 detection was then performed by polymerase chain reaction (PCR) amplification using Alt a 1 specific primers and by enzyme-linked immunosorbent assay (ELISA). The experimental model presented in this work was effective to simulate the typical Alternaria black rot phenotype and its progression. Although both PCR and ELISA techniques have been successfully carried out for detecting Alt a 1 allergen in A. alternata infected oranges, the PCR method was found to be more sensitive than ELISA. Nevertheless, ELISA results were highly valuable to demonstrate that considerable amounts of Alt a 1 are produced during A. alternata fruit infection process, corroborating the recently proposed hypothesis that this protein plays a role in the pathogenicity and virulence of Alternaria species. Such evidence suggests that the detection of Alt a 1 by PCR-based assay may be used as a specific indicator of the presence of pathogenic and allergenic fungal species, A. alternata, in fruits. This knowledge can be employed to control the fungal infection and mitigate agricultural losses as well as human exposure to A. alternata allergens and toxins. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Sequence conservation predicts T cell reactivity against ragweed allergens.

    PubMed

    Pham, J; Oseroff, C; Hinz, D; Sidney, J; Paul, S; Greenbaum, J; Vita, R; Phillips, E; Mallal, S; Peters, B; Sette, A

    2016-09-01

    Ragweed is a major cause of seasonal allergy, affecting millions of people worldwide. Several allergens have been defined based on IgE reactivity, but their relative immunogenicity in terms of T cell responses has not been studied. We comprehensively characterized T cell responses from atopic, ragweed-allergic subjects to Amb a 1, Amb a 3, Amb a 4, Amb a 5, Amb a 6, Amb a 8, Amb a 9, Amb a 10, Amb a 11, and Amb p 5 and examined their correlation with serological reactivity and sequence conservation in other allergens. Peripheral blood mononuclear cells (PBMCs) from donors positive for IgE towards ragweed extracts after in vitro expansion for secretion of IL-5 (a representative Th2 cytokine) and IFN-γ (Th1) in response to a panel of overlapping peptides spanning the above-listed allergens were assessed. Three previously identified dominant T cell epitopes (Amb a 1 176-191, 200-215, and 344-359) were confirmed, and three novel dominant epitopes (Amb a 1 280-295, 304-319, and 320-335) were identified. Amb a 1, the dominant IgE allergen, was also the dominant T cell allergen, but dominance patterns for T cell and IgE responses for the other ragweed allergens did not correlate. Dominance for T cell responses correlated with conservation of ragweed epitopes with sequences of other well-known allergens. These results provide the first assessment of the hierarchy of T cell reactivity in ragweed allergens, which is distinct from that observed for IgE reactivity and influenced by T cell epitope sequence conservation. The results suggest that ragweed allergens associated with lesser IgE reactivity and significant T cell reactivity may be targeted for T cell immunotherapy, and further support the development of immunotherapies against epitopes conserved across species to generate broad reactivity against many common allergens. © 2016 John Wiley & Sons Ltd.

  19. Identifying risk factors for exposure to culturable allergenic moulds in energy efficient homes by using highly specific monoclonal antibodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharpe, Richard A.; Cocq, Kate Le; Nikolaou, Vasilis

    The aim of this study was to determine the accuracy of monoclonal antibodies (mAbs) in identifying culturable allergenic fungi present in visible mould growth in energy efficient homes, and to identify risk factors for exposure to these known allergenic fungi. Swabs were taken from fungal contaminated surfaces and culturable yeasts and moulds isolated by using mycological culture. Soluble antigens from cultures were tested by ELISA using mAbs specific to the culturable allergenic fungi Aspergillus and Penicillium spp., Ulocladium, Alternaria, and Epicoccum spp., Cladosporium spp., Fusarium spp., and Trichoderma spp. Diagnostic accuracies of the ELISA tests were determined by sequencing ofmore » the internally transcribed spacer 1 (ITS1)-5.8S-ITS2-encoding regions of recovered fungi following ELISA. There was 100% concordance between the two methods, with ELISAs providing genus-level identity and ITS sequencing providing species-level identities (210 out of 210 tested). Species of Aspergillus/Penicillium, Cladosporium, Ulocladium/Alternaria/Epicoccum, Fusarium and Trichoderma were detected in 82% of the samples. The presence of condensation was associated with an increased risk of surfaces being contaminated by Aspergillus/Penicillium spp. and Cladosporium spp., whereas moisture within the building fabric (water ingress/rising damp) was only associated with increased risk of Aspergillus/Penicillium spp. Property type and energy efficiency levels were found to moderate the risk of indoor surfaces becoming contaminated with Aspergillus/Penicillium and Cladosporium which in turn was modified by the presence of condensation, water ingress and rising damp, consistent with previous literature. - Highlights: • Monoclonal antibodies were used to track culturable allergenic moulds in homes. • Allergenic moulds were recovered from 82% of swabs from contaminated surfaces. • The mAbs were highly specific with 100% agreement to PCR of recovered fungi. • Improvements to

  20. The effect of granulocyte factor and grass pollen allergen on T-lymphocytes from atopic patients in vitro.

    PubMed

    Kocur, E; Zeman, K; Tchorzewski, H

    1993-01-01

    In allergy the immune response is significantly modified by inflammatory processes. Polymorphonuclear leukocytes (PMNLs) are involved in inflammatory processes. Activated PMNLs release many substances, including granulocyte factor (GF), which exerts immunomodulating effects. The present study was performed to determine the effects of allergens and/or GF on the expression of lymphocyte differentiation antigens in short-term cultures and to evaluate the production of migration inhibitory factor (MIF) under the influence of these substances. The studies were carried out on peripheral blood mononuclear cells isolated from patients with type I hypersensitivity, before and after the grass pollen season, and from healthy subjects. GF and allergens were found to increase the CD8 cell number, particularly in 7-day cultures and in patients before exposure to allergens, which correlated with MIF release in these patients under the influence of these factors. The results suggest that the PMNLs may participate in allergic inflammatory reactions.

  1. A proteomic study to identify soya allergens--the human response to transgenic versus non-transgenic soya samples.

    PubMed

    Batista, Rita; Martins, Isabel; Jeno, Paul; Ricardo, Cândido Pinto; Oliveira, Maria Margarida

    2007-01-01

    In spite of being among the main foods responsible for allergic reactions worldwide, soybean (Glycine max)-derived products continue to be increasingly widespread in a variety of food products due to their well-documented health benefits. Soybean also continues to be one of the elected target crops for genetic modification. The aim of this study was to characterize the soya proteome and, specifically, IgE-reactive proteins as well as to compare the IgE response in soya-allergic individuals to genetically modified Roundup Ready soya versus its non-transgenic control. We performed two-dimensional gel electrophoresis of protein extracts from a 5% genetically modified Roundup Ready flour sample and its non-transgenic control followed by Western blotting with plasma from 5 soya-sensitive individuals. We used peptide tandem mass spectrometry to identify soya proteins (55 protein matches), specifically IgE-binding ones, and to evaluate differences between transgenic and non-transgenic samples. We identified 2 new potential soybean allergens--one is maturation associated and seems to be part of the late embryogenesis abundant proteins group and the other is a cysteine proteinase inhibitor. None of the individuals tested reacted differentially to the transgenic versus non-transgenic samples under study. Soybean endogenous allergen expression does not seem to be altered after genetic modification. Proteomics should be considered a powerful tool for functional characterization of plants and for food safety assessment. Copyright (c) 2007 S. Karger AG, Basel.

  2. Differential and Site Specific Impact of B Cells in the Protective Immune Response to Mycobacterium tuberculosis in the Mouse

    PubMed Central

    Torrado, Egídio; Fountain, Jeffrey J.; Robinson, Richard T.; Martino, Cynthia A.; Pearl, John E.; Rangel-Moreno, Javier; Tighe, Michael; Dunn, Robert; Cooper, Andrea M.

    2013-01-01

    Cell-mediated immune responses are known to be critical for control of mycobacterial infections whereas the role of B cells and humoral immunity is unclear. B cells can modulate immune responses by secretion of immunoglobulin, production of cytokines and antigen-presentation. To define the impact of B cells in the absence of secreted immunoglobulin, we analyzed the progression of Mycobacterium tuberculosis (Mtb) infection in mice that have B cells but which lack secretory immunoglobulin (AID−/−µS−/−mice). AID−/−µS−/− mice accumulated a population of activated B cells in the lungs when infected and were more susceptible to aerosol Mtb when compared to wild type (C57BL/6) mice or indeed mice that totally lack B cells. The enhanced susceptibility of AID−/−µS−/− mice was not associated with defective T cell activation or expression of a type 1 immune response. While delivery of normal serum to AID−/−µS−/− mice did not reverse susceptibility, susceptibility in the spleen was dependent upon the presence of B cells and susceptibility in the lungs of AID−/−µS−/−mice was associated with elevated expression of the cytokines IL-6, GM-CSF, IL-10 and molecules made by alternatively activated macrophages. Blocking of IL-10 signaling resulted in reversal of susceptibility in the spleens and lungs of AID−/−µS−/− mice. These data support the hypothesis that B cells can modulate immunity to Mtb in an organ specific manner via the modulation of cytokine production and macrophage activation. PMID:23613902

  3. Ana o 1 and Ana o 2 cashew allergens share cross-reactive CD4+ T-cell epitopes with other tree nuts

    PubMed Central

    Archila, Luis Diego; Chow, I-Ting; McGinty, John W.; Renand, Amedee; Jeong, David; Robinson, David; Farrington, Mary L.; Kwok, William.W.

    2017-01-01

    Background Allergies to cashew are increasing in prevalence, with clinical symptoms ranging from oral pruritus to fatal anaphylactic reaction. Yet, cashew-specific T-cell epitopes and T-cell cross-reactivity amongst cashew and other tree nut allergens in humans remain uncharacterized. Objectives In this study, we characterized cashew specific T-cell responses in cashew allergic subjects and examined cross-reactivity of these cashew specific cells toward other tree nut allergens. Methods CD154 up-regulation assay was used to determine immunodominance hierarchy among cashew major allergens at the T cell level. The phenotype, magnitude and functionality of cashew-specific T-cells was determined by utilizing ex vivo staining with MHC class II tetramers. Dual tetramer staining and proliferation experiments were used to determine cross-reactivity to other tree nuts. Results CD4+ T-cell responses were directed towards cashew allergens Ana o 1 and Ana o 2. Multiple Ana o 1 and Ana o 2 T-cell epitopes were then identified. These epitopes elicited either TH2 or TH2/TH17 responses in allergic subjects, which were either cashew unique epitope or cross-reactive epitopes. For clones that recognized the cross-reactive epitope, T-cell clones responded robustly to cashew, hazelnut and/or pistachio but not to walnut. Conclusions Phylogenetically diverse tree nut allergens can activate cashew reactive T-cells and elicit a TH2 type response at an epitope specific level. Clinical relevance Lack of cross-reactivity between walnut and cashew suggest that cashew peptide immunotherapy approach may not be most effective for walnut. PMID:27129138

  4. Ana o 1 and Ana o 2 cashew allergens share cross-reactive CD4(+) T cell epitopes with other tree nuts.

    PubMed

    Archila, L D; Chow, I-T; McGinty, J W; Renand, A; Jeong, D; Robinson, D; Farrington, M L; Kwok, W W

    2016-06-01

    Allergies to cashew are increasing in prevalence, with clinical symptoms ranging from oral pruritus to fatal anaphylactic reaction. Yet, cashew-specific T cell epitopes and T cell cross-reactivity amongst cashew and other tree nut allergens in humans remain uncharacterized. In this study, we characterized cashew-specific T cell responses in cashew-allergic subjects and examined cross-reactivity of these cashew-specific cells towards other tree nut allergens. CD154 up-regulation assay was used to determine immunodominance hierarchy among cashew major allergens at the T cell level. The phenotype, magnitude and functionality of cashew-specific T cells were determined by utilizing ex vivo staining with MHC class II tetramers. Dual tetramer staining and proliferation experiments were used to determine cross-reactivity to other tree nuts. CD4(+) T cell responses were directed towards cashew allergens Ana o 1 and Ana o 2. Multiple Ana o 1 and Ana o 2 T cell epitopes were then identified. These epitopes elicited either TH 2 or TH 2/TH 17 responses in allergic subjects, which were either cashew unique epitope or cross-reactive epitopes. For clones that recognized the cross-reactive epitope, T cell clones responded robustly to cashew, hazelnut and/or pistachio but not to walnut. Phylogenetically diverse tree nut allergens can activate cashew-reactive T cells and elicit a TH 2-type response at an epitope-specific level. Lack of cross-reactivity between walnut and cashew suggests that cashew peptide immunotherapy approach may not be most effective for walnut. © 2016 John Wiley & Sons Ltd.

  5. Air-conditioner filters enriching dust mites allergen.

    PubMed

    Zhan, Xiaodong; Li, Chaopin; Xu, Haifeng; Xu, Pengfei; Zhu, Haibin; Diao, Jidong; Li, Na; Zhao, Beibei

    2015-01-01

    We detected the concentration of dust mites allergen (Der f1 & Der p1) in the air of different places before and after the starting of air-conditioners in Wuhu City, Anhui, China, and to discuss the relation between the dust mites allergen in air-conditioner filters and the asthma attack. The dust samples were collected from the air-conditioner filters in dining rooms, shopping malls, hotels and households respectively. Concentrations of dust mites major group allergen 1 (Der f 1, Der p1) were detected with enzyme linked immunosorbent assay (ELISA), and the dust mite immune activities were determined by dot-ELISA. The concentration of Der f1 in dining rooms, shopping malls, hotels and households was 1.52 μg/g, 1.24 μg/g, 1.31 μg/g and 1.46 μg/g respectively, and the concentration of Der p1 in above-mentioned places was 1.23 μg/g, 1.12 μg/g, 1.16 μg/g and 1.18 μg/g respectively. The concentration of Der f1 & Der p1 in air was higher after the air-conditioners starting one hours later, and the difference was significant (P<0.05, respectively). Additionally, dot-ELISA findings revealed that the allergen extracted from the dust was capable of reacting with IgE from the sera of asthma mice allergic to dust mites. The study concludes that air-conditioner filters can enrich dust mites major group allergen, and the allergens can induce asthma. The air-conditioner filters shall be cleaned or replaced regularly to prevent or reduce accumulation of the dust mites and its allergens.

  6. Air-conditioner filters enriching dust mites allergen

    PubMed Central

    Zhan, Xiaodong; Li, Chaopin; Xu, Haifeng; Xu, Pengfei; Zhu, Haibin; Diao, Jidong; Li, Na; Zhao, Beibei

    2015-01-01

    We detected the concentration of dust mites allergen (Der f1 & Der p1) in the air of different places before and after the starting of air-conditioners in Wuhu City, Anhui, China, and to discuss the relation between the dust mites allergen in air-conditioner filters and the asthma attack. The dust samples were collected from the air-conditioner filters in dining rooms, shopping malls, hotels and households respectively. Concentrations of dust mites major group allergen 1 (Der f 1, Der p1) were detected with enzyme linked immunosorbent assay (ELISA), and the dust mite immune activities were determined by dot-ELISA. The concentration of Der f1 in dining rooms, shopping malls, hotels and households was 1.52 μg/g, 1.24 μg/g, 1.31 μg/g and 1.46 μg/g respectively, and the concentration of Der p1 in above-mentioned places was 1.23 μg/g, 1.12 μg/g, 1.16 μg/g and 1.18 μg/g respectively. The concentration of Der f1 & Der p1 in air was higher after the air-conditioners starting one hours later, and the difference was significant (P<0.05, respectively). Additionally, dot-ELISA findings revealed that the allergen extracted from the dust was capable of reacting with IgE from the sera of asthma mice allergic to dust mites. The study concludes that air-conditioner filters can enrich dust mites major group allergen, and the allergens can induce asthma. The air-conditioner filters shall be cleaned or replaced regularly to prevent or reduce accumulation of the dust mites and its allergens. PMID:26064381

  7. Immunization of Aged Pigs with Attenuated Pseudorabies Virus Vaccine Combined with CpG Oligodeoxynucleotide Restores Defective Th1 Immune Responses

    PubMed Central

    Chu, Pinpin; Ma, Miaopeng; Shi, Juqing; Cai, Haiming; Huang, Chaoyuan; Li, Huazhou; Jiang, Zhenggu; Wang, Houguang; Wang, Weifang; Zhang, Shuiqing; Zhang, Linghua

    2013-01-01

    Background and Aims Attempts to immunize aged subjects often result in the failure to elicit a protective immune response. Murine model studies have shown that oligonucleotides containing CpG motifs (CpG ODN) can stimulate immune system in aged mice as effectively as in young mice. Since many physiological and pathophysiological data of pigs can be transferred to humans, research in pigs is important to confirm murine data. Here we investigated whether immunization of aged pig model with attenuated pseudorabies virus vaccine (PRV vaccine) formulated with CpG ODN could promote a successful development of immune responses that were comparable to those induced in young pigs in a similar manner. Methodology Young and aged pigs were immunized IM with PRV vaccine alone, or in combination with CpG ODN respectively. At days 3, 7, 14 post immunization sera were assayed by ELISA for IgG titres, at day 7 for IgG1 and IgG2 subtypes titres. All blood samples collected in evacuated test tubes with K-EDTA at day 7 were analyzed for flow cytometer assay. Blood samples at day 7 collected in evacuated test tubes with heparin were analysed for antigen-specific cytokines production and peripheral blood mononuclear cells (PBMCs) proliferative responses. Results CpG ODN could enhance Th1 responses (PRV-specific IgG2/IgG1 ratio, proliferative responses, Th1 cytokines production) when used as an adjuvant for the vaccination of aged pigs, which were correlated with enhanced CD4+ T cells percentage, decreased CD4+CD8+CD45RO+ T cells percentage and improved PRV-specific CD4+ T cells activation. Conclusions Our results demonstrate a utility for CpG ODN, as a safe vaccine adjuvant for promoting effective systemic immune responses in aged pig model. This agent could have important clinical uses in overcoming some of age-associated depressions in immune function that occur in response to vaccination. PMID:23785433

  8. SUMO-Enriched Proteome for Drosophila Innate Immune Response

    PubMed Central

    Handu, Mithila; Kaduskar, Bhagyashree; Ravindranathan, Ramya; Soory, Amarendranath; Giri, Ritika; Elango, Vijay Barathi; Gowda, Harsha; Ratnaparkhi, Girish S.

    2015-01-01

    Small ubiquitin-like modifier (SUMO) modification modulates the expression of defense genes in Drosophila, activated by the Toll/nuclear factor-κB and immune-deficient/nuclear factor-κB signaling networks. We have, however, limited understanding of the SUMO-modulated regulation of the immune response and lack information on SUMO targets in the immune system. In this study, we measured the changes to the SUMO proteome in S2 cells in response to a lipopolysaccharide challenge and identified 1619 unique proteins in SUMO-enriched lysates. A confident set of 710 proteins represents the immune-induced SUMO proteome and analysis suggests that specific protein domains, cellular pathways, and protein complexes respond to immune stress. A small subset of the confident set was validated by in-bacto SUMOylation and shown to be bona-fide SUMO targets. These include components of immune signaling pathways such as Caspar, Jra, Kay, cdc42, p38b, 14-3-3ε, as well as cellular proteins with diverse functions, many being components of protein complexes, such as prosß4, Rps10b, SmD3, Tango7, and Aats-arg. Caspar, a human FAF1 ortholog that negatively regulates immune-deficient signaling, is SUMOylated at K551 and responds to treatment with lipopolysaccharide in cultured cells. Our study is one of the first to describe SUMO proteome for the Drosophila immune response. Our data and analysis provide a global framework for the understanding of SUMO modification in the host response to pathogens. PMID:26290570

  9. SUMO-Enriched Proteome for Drosophila Innate Immune Response.

    PubMed

    Handu, Mithila; Kaduskar, Bhagyashree; Ravindranathan, Ramya; Soory, Amarendranath; Giri, Ritika; Elango, Vijay Barathi; Gowda, Harsha; Ratnaparkhi, Girish S

    2015-08-18

    Small ubiquitin-like modifier (SUMO) modification modulates the expression of defense genes in Drosophila, activated by the Toll/nuclear factor-κB and immune-deficient/nuclear factor-κB signaling networks. We have, however, limited understanding of the SUMO-modulated regulation of the immune response and lack information on SUMO targets in the immune system. In this study, we measured the changes to the SUMO proteome in S2 cells in response to a lipopolysaccharide challenge and identified 1619 unique proteins in SUMO-enriched lysates. A confident set of 710 proteins represents the immune-induced SUMO proteome and analysis suggests that specific protein domains, cellular pathways, and protein complexes respond to immune stress. A small subset of the confident set was validated by in-bacto SUMOylation and shown to be bona-fide SUMO targets. These include components of immune signaling pathways such as Caspar, Jra, Kay, cdc42, p38b, 14-3-3ε, as well as cellular proteins with diverse functions, many being components of protein complexes, such as prosß4, Rps10b, SmD3, Tango7, and Aats-arg. Caspar, a human FAF1 ortholog that negatively regulates immune-deficient signaling, is SUMOylated at K551 and responds to treatment with lipopolysaccharide in cultured cells. Our study is one of the first to describe SUMO proteome for the Drosophila immune response. Our data and analysis provide a global framework for the understanding of SUMO modification in the host response to pathogens. Copyright © 2015 Handu et al.

  10. Induction of complex immune responses and strong protection against retrovirus challenge by adenovirus-based immunization depends on the order of vaccine delivery.

    PubMed

    Kaulfuß, Meike; Wensing, Ina; Windmann, Sonja; Hrycak, Camilla Patrizia; Bayer, Wibke

    2017-02-06

    In the Friend retrovirus mouse model we developed potent adenovirus-based vaccines that were designed to induce either strong Friend virus GagL 85-93 -specific CD8 + T cell or antibody responses, respectively. To optimize the immunization outcome we evaluated vaccination strategies using combinations of these vaccines. While the vaccines on their own confer strong protection from a subsequent Friend virus challenge, the simple combination of the vaccines for the establishment of an optimized immunization protocol did not result in a further improvement of vaccine effectivity. We demonstrate that the co-immunization with GagL 85-93 /leader-gag encoding vectors together with envelope-encoding vectors abrogates the induction of GagL 85-93 -specific CD8 + T cells, and in successive immunization protocols the immunization with the GagL 85-93 /leader-gag encoding vector had to precede the immunization with an envelope encoding vector for the efficient induction of GagL 85-93 -specific CD8 + T cells. Importantly, the antibody response to envelope was in fact enhanced when the mice were adenovirus-experienced from a prior immunization, highlighting the expedience of this approach. To circumvent the immunosuppressive effect of envelope on immune responses to simultaneously or subsequently administered immunogens, we developed a two immunizations-based vaccination protocol that induces strong immune responses and confers robust protection of highly Friend virus-susceptible mice from a lethal Friend virus challenge.

  11. Staphylococcus aureus innate immune evasion is lineage-specific: a bioinfomatics study.

    PubMed

    McCarthy, Alex J; Lindsay, Jodi A

    2013-10-01

    Staphylococcus aureus is a major human pathogen, and is targeted by the host innate immune system. In response, S. aureus genomes encode dozens of secreted proteins that inhibit complement, chemotaxis and neutrophil activation resulting in successful evasion of innate immune responses. These proteins include immune evasion cluster proteins (IEC; Chp, Sak, Scn), staphylococcal superantigen-like proteins (SSLs), phenol soluble modulins (PSMs) and several leukocidins. Biochemical studies have indicated that genetic variants of these proteins can have unique functions. To ascertain the scale of genetic variation in secreted immune evasion proteins, whole genome sequences of 88 S. aureus isolates, representing 25 clonal complex (CC) lineages, in the public domain were analysed across 43 genes encoding 38 secreted innate immune evasion protein complexes. Twenty-three genes were variable, with between 2 and 15 variants, and the variants had lineage-specific distributions. They include genes encoding Eap, Ecb, Efb, Flipr/Flipr-like, Hla, Hld, Hlg, Sbi, Scin-B/C and 13 SSLs. Most of these protein complexes inhibit complement, chemotaxis and neutrophil activation suggesting that isolates from each S. aureus lineage respond to the innate immune system differently. In contrast, protein complexes that lyse neutrophils (LukSF-PVL, LukMF, LukED and PSMs) were highly conserved, but can be carried on mobile genetic elements (MGEs). MGEs also encode proteins with narrow host-specificities arguing that their acquisition has important roles in host/environmental adaptation. In conclusion, this data suggests that each lineage of S. aureus evades host immune responses differently, and that isolates can adapt to new host environments by acquiring MGEs and the immune evasion protein complexes that they encode. Cocktail therapeutics that targets multiple variant proteins may be the most appropriate strategy for controlling S. aureus infections. Copyright © 2013 Elsevier B.V. All rights

  12. Association of pediatric asthma severity with exposure to common household dust allergens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gent, Janneane F., E-mail: janneane.gent@yale.edu; Belanger, Kathleen; Triche, Elizabeth W.

    Background: Reducing exposure to household dust inhalant allergens has been proposed as one strategy to reduce asthma. Objective: To examine the dose-response relationships and health impact of five common household dust allergens on disease severity, quantified using both symptom frequency and medication use, in atopic and non-atopic asthmatic children. Methods: Asthmatic children (N=300) aged 4-12 years were followed for 1 year. Household dust samples from two indoor locations were analyzed for allergens including dust mite (Der p 1, Der f 1), cat (Fel d 1), dog (Can f 1), cockroach (Bla g 1). Daily symptoms and medication use were collectedmore » in monthly telephone interviews. Annual disease severity was examined in models including allergens, specific IgE sensitivity and adjusted for age, gender, atopy, ethnicity, and mother's education. Results: Der p 1 house dust mite allergen concentration of 2.0 {mu}g/g or more from the main room and the child's bed was related to increased asthma severity independent of allergic status (respectively, OR 2.93, 95% CI 1.37, 6.30 for 2.0-10.0 {mu}g/g and OR 2.55 95% CI 1.13, 5.73 for {>=}10.0 {mu}g/g). Higher pet allergen levels were associated with greater asthma severity, but only for those sensitized (cat OR 2.41 95% CI 1.19, 4.89; dog OR 2.06 95% CI 1.01, 4.22). Conclusion: Higher levels of Der p 1 and pet allergens were associated with asthma severity, but Der p 1 remained an independent risk factor after accounting for pet allergens and regardless of Der p 1 specific IgE status.« less

  13. An update on molecular cat allergens: Fel d 1 and what else? Chapter 1: Fel d 1, the major cat allergen.

    PubMed

    Bonnet, B; Messaoudi, K; Jacomet, F; Michaud, E; Fauquert, J L; Caillaud, D; Evrard, B

    2018-01-01

    Cats are the major source of indoor inhalant allergens after house dust mites. The global incidence of cat allergies is rising sharply, posing a major public health problem. Ten cat allergens have been identified. The major allergen responsible for symptoms is Fel d 1, a secretoglobin and not a lipocalin, making the cat a special case among mammals. Given its clinical predominance, it is essential to have a good knowledge of this allergenic fraction, including its basic structure, to understand the new exciting diagnostic and therapeutic applications currently in development. The recent arrival of the component-resolved diagnosis, which uses molecular allergens, represents a unique opportunity to improve our understanding of the disease. Recombinant Fel d 1 is now available for in vitro diagnosis by the anti-Fel d 1 specific IgE assay. The first part of the review will seek to describe the recent advances related to Fel d 1 in terms of positive diagnosis and assessment of disease severity. In daily practice, anti-Fel d 1 IgE tend to replace those directed against the overall extract but is this attitude justified? We will look at the most recent arguments to try to answer this question. In parallel, a second revolution is taking place thanks to molecular engineering, which has allowed the development of various forms of recombinant Fel d 1 and which seeks to modify the immunomodulatory properties of the molecule and thus the clinical history of the disease via various modalities of anti-Fel d 1-specific immunotherapy. We will endeavor to give a clear and practical overview of all these trends.

  14. Difference in immune response in vaccinated and unvaccinated Swedish individuals after the 2009 influenza pandemic

    PubMed Central

    2014-01-01

    Background Previous exposures to flu and subsequent immune responses may impact on 2009/2010 pandemic flu vaccine responses and clinical symptoms upon infection with the 2009 pandemic H1N1 influenza strain. Qualitative and quantitative differences in humoral and cellular immune responses associated with the flu vaccination in 2009/2010 (pandemic H1N1 vaccine) and natural infection have not yet been described in detail. We designed a longitudinal study to examine influenza- (flu-) specific immune responses and the association between pre-existing flu responses, symptoms of influenza-like illness (ILI), impact of pandemic flu infection, and pandemic flu vaccination in a cohort of 2,040 individuals in Sweden in 2009–2010. Methods Cellular flu-specific immune responses were assessed by whole-blood antigen stimulation assay, and humoral responses by a single radial hemolysis test. Results Previous seasonal flu vaccination was associated with significantly lower flu-specific IFN-γ responses (using a whole-blood assay) at study entry. Pandemic flu vaccination induced long-lived T-cell responses (measured by IFN-γ production) to influenza A strains, influenza B strains, and the matrix (M1) antigen. In contrast, individuals with pandemic flu infection (PCR positive) exhibited increased flu-specific T-cell responses shortly after onset of ILI symptoms but the immune response decreased after the flu season (spring 2010). We identified non-pandemic-flu vaccinated participants without ILI symptoms who showed an IFN-γ production profile similar to pandemic-flu infected participants, suggesting exposure without experiencing clinical symptoms. Conclusions Strong and long-lived flu-M1 specific immune responses, defined by IFN-γ production, in individuals after vaccination suggest that M1-responses may contribute to protective cellular immune responses. Silent flu infections appeared to be frequent in 2009/2010. The pandemic flu vaccine induced qualitatively and quantitatively

  15. Administration of sulfosuccinimidyl-4-[N-maleimidomethyl] cyclohexane-1-carboxylate conjugated GP100{sub 25–33} peptide-coupled spleen cells effectively mounts antigen-specific immune response against mouse melanoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Xiaoli; Xia, Chang-Qing, E-mail: cqx65@yahoo.com; Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL32610

    It remains a top research priority to develop immunotherapeutic approaches to induce potent antigen-specific immune responses against tumors. However, in spite of some promising results, most strategies are ineffective because they generate low numbers of tumor-reactive cytotoxic T lymphocytes (CTLs). Here we designed a strategy to enhance antigen-specific immune response via administering sulfosuccinimidyl-4-[N-maleimidomethyl] cyclohexane-1-carboxylate (sulfo-SMCC)-conjugated melanoma tumor antigen GP100{sub 25–33} peptide-coupled syngeneic spleen cells in a mouse model of melanoma. We found that infusion of GP100{sub 25–33} peptide-coupled spleen cells significantly attenuated the growth of melanoma in prophylactic and therapeutic immunizations. Consistent with these findings, the adoptive transfer of spleenmore » cells from immunized mice to naïve syngeneic mice was able to transfer anti-tumor effect, suggesting that GP100{sub 25–33} peptide-specific immune response was induced. Further studies showed that, CD8+ T cell proliferation and the frequency of interferon (IFN)-γ-producing CD8+ T cells upon ex vivo stimulation by GP100{sub 25–33} were significantly increased compared to control groups. Tumor antigen, GP100{sub 25–23} specific immune response was also confirmed by ELISpot and GP100-tetramer assays. This approach is simple, easy-handled, and efficiently delivering antigens to lymphoid tissues. Our study offers an opportunity for clinically translating this approach into tumor immunotherapy. - Highlights: • Infusion of GP100{sub 25–33}-coupled spleen cells leads to potent anti-melanoma immunity. • GP100{sub 25–33}-coupled spleen cell treatment induces antigen-specific IFN-γ-producing CD8 T cells. • This approach takes advantage of homing nature of immune cells.« less

  16. Enhancement of ovalbumin-specific Th1, Th2, and Th17 immune responses by amorphous silica nanoparticles

    PubMed Central

    Toda, Tsuguto; Yoshino, Shin

    2016-01-01

    Nanomaterials present in cosmetics and food additives are used for industrial applications. However, their safety profile is unclear. Amorphous silica nanoparticles (nSPs) are a widely used nanomaterial and have been shown to induce inflammatory cytokines following intratracheal administration in mice. The current study investigated the adjuvant effect of nSP30 (nSP with a diameter of 33 nm) on T helper (Th)1, Th2, and Th17 immune responses as well as immunoglobulin (Ig) levels in mice. BALB/c mice were intraperitoneally administered ovalbumin (OVA) with or without varying doses and varying sizes of nSPs. The adjuvant effect of nSPs was investigated by measuring OVA-specific IgG antibodies in sera, OVA-specific proliferative responses of splenocytes, and the production of Th1, Th2, and Th17 cytokines. Aluminum hydroxide was used as a positive adjuvant control. Anti-OVA IgG production, splenocyte proliferative responses, and secretion of IFN-γ, IL-2, IL-4, IL-5, and IL-17 were increased significantly in mice receiving a combined injection of nSP30 (30 or 300 µg) with OVA compared with OVA alone or a combined injection with nSP30 (3 µg). The responses were nSP30 dose-dependent. When different sized nSPs were used (with 30, 100, and 1000 nm diameters), the responses to OVA were enhanced and were size-dependent. The smaller sized nSP particles had a greater adjuvant effect. nSPs appear to exert a size-dependent adjuvant effect for Th1, Th2, and Th17 immune responses. Understanding the mechanisms of nSP adjuvanticity might lead to the development of novel vaccine adjuvants and therapies for allergic diseases caused by environmental factors. PMID:27343242

  17. Probiotics, antibiotics and the immune responses to vaccines

    PubMed Central

    Praharaj, Ira; John, Sushil M.; Bandyopadhyay, Rini; Kang, Gagandeep

    2015-01-01

    Orally delivered vaccines have been shown to perform poorly in developing countries. There are marked differences in the structure and the luminal environment of the gut in developing countries resulting in changes in immune and barrier function. Recent studies using newly developed technology and analytic methods have made it increasingly clear that the intestinal microbiota activate a multitude of pathways that control innate and adaptive immunity in the gut. Several hypotheses have been proposed for the underperformance of oral vaccines in developing countries, and modulation of the intestinal microbiota is now being tested in human clinical trials. Supplementation with specific strains of probiotics has been shown to have modulatory effects on intestinal and systemic immune responses in animal models and forms the basis for human studies with vaccines. However, most studies published so far that have evaluated the immune response to vaccines in children and adults have been small and results have varied by age, antigen, type of antibody response and probiotic strain. Use of anthelminthic drugs in children has been shown to possibly increase immunogenicity following oral cholera vaccination, lending further support to the rationale for modulation of the immune response to oral vaccination through the intestinal microbiome. PMID:25964456

  18. Probiotics, antibiotics and the immune responses to vaccines.

    PubMed

    Praharaj, Ira; John, Sushil M; Bandyopadhyay, Rini; Kang, Gagandeep

    2015-06-19

    Orally delivered vaccines have been shown to perform poorly in developing countries. There are marked differences in the structure and the luminal environment of the gut in developing countries resulting in changes in immune and barrier function. Recent studies using newly developed technology and analytic methods have made it increasingly clear that the intestinal microbiota activate a multitude of pathways that control innate and adaptive immunity in the gut. Several hypotheses have been proposed for the underperformance of oral vaccines in developing countries, and modulation of the intestinal microbiota is now being tested in human clinical trials. Supplementation with specific strains of probiotics has been shown to have modulatory effects on intestinal and systemic immune responses in animal models and forms the basis for human studies with vaccines. However, most studies published so far that have evaluated the immune response to vaccines in children and adults have been small and results have varied by age, antigen, type of antibody response and probiotic strain. Use of anthelminthic drugs in children has been shown to possibly increase immunogenicity following oral cholera vaccination, lending further support to the rationale for modulation of the immune response to oral vaccination through the intestinal microbiome. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  19. Effect of TEI-9874, an inhibitor of immunoglobulin E production, on allergen-induced asthmatic model in rats.

    PubMed

    Nonaka, T; Mitsuhashi, H; Takahashi, K; Sugiyama, H; Kishimoto, T

    2000-08-25

    As TEI-9874, 2-(4-(6-cyclohexyloxy-2-naphtyloxy)phenylacetamide)ben zoic acid reduces allergen-specific immunoglobulin E (IgE) production by human peripheral blood mononuclear cells in vitro, we evaluated its potency on an allergen-induced asthmatic model in Brown-Norway rats. Inhaled ovalbumin induced the immediate-phase asthmatic response, the late-phase asthmatic response, the infiltration of leukocytes into bronchoalveolar lavage fluid, and an increase of serum anti-ovalbumin IgE. These parameters were suppressed by the treatment with TEI-9874 (3, 10, and 30 mg/kg p.o.). The ovalbumin-induced airway hyperresponsiveness was prevented by TEI-9874 (30 mg/kg p.o.). Furthermore, the suppression of the immediate-phase asthmatic response and the late-phase asthmatic response by TEI-9874 was almost completely extinguished by the exogenous administration of rat anti-ovalbumin antiserum. These results indicate that the efficacy of TEI-9874 on the asthmatic response is mainly mediated by the suppression of allergen-specific IgE production and TEI-9874 appears to be a good candidate as therapy for IgE-mediated allergic asthma.

  20. Suppressive influences in the immune response to cancer.

    PubMed

    Bronte, Vincenzo; Mocellin, Simone

    2009-01-01

    Although much evidence has been gathered demonstrating that immune effectors can play a significant role in controlling tumor growth under natural conditions or in response to therapeutic manipulation, it is clear that malignant cells do evade immune surveillance in most cases. Considering that anticancer active specific immunotherapy seems to have reached a plateau of results and that currently no vaccination regimen is indicated as a standard anticancer therapy, the dissection of the molecular events underlying tumor immune escape is the necessary condition to make anticancer vaccines a therapeutic weapon effective enough to be implemented in the routine clinical setting. Recent years have witnessed significant advances in our understanding of the molecular mechanisms underlying tumor immune escape. These mechanistic insights are fostering the development of rationally designed therapeutics aimed to revert the immunosuppressive circuits that undermine an effective antitumor immune response. In this review, the best characterized mechanisms that allow cancer cells to evade immune surveillance are overviewed and the most debated controversies constellating this complex field are highlighted.

  1. Public protection - reliable allergen risk management

    NASA Astrophysics Data System (ADS)

    Janković, V.; Popov Raljić, J.; Đorđević, V.

    2017-09-01

    Consumers with potentially fatal food allergies are dependent on correct product labelling to protect their health. The food industry is responsible for providing every detail consumers need to make informed decisions. Considering public health, food suppliers have to monitor the presence of allergens, prevent cross-contamination and label products accurately. Allergen labelling of food products, drinks and non pre-packed food and drink products is clearly defined with legal regulations. To achieve this, a complete understanding of each product’s allergenic ingredients is needed and cross-contamination of food with allergens must be avoided. Raw materials need to be checked, every ingredient must be verified and every single allergen has to be stipulated. A mislabeled product could be recalled at potential cost, financially damaging business and at the same time, negatively impacting brand and reputation.

  2. Cluster Intradermal DNA Vaccination Rapidly Induces E7-specific CD8+ T Cell Immune Responses Leading to Therapeutic Antitumor Effects

    PubMed Central

    Peng, Shiwen; Trimble, Cornelia; Alvarez, Ronald D.; Huh, Warner K.; Lin, Zhenhua; Monie, Archana; Hung, Chien-Fu; Wu, T.-C.

    2010-01-01

    Intradermal administration of DNA vaccines via a gene gun represents a feasible strategy to deliver DNA directly into the professional antigen-presenting cells (APCs) in the skin. This helps to facilitate the enhancement of DNA vaccine potency via strategies that modify the properties of APCs. We have previously demonstrated that DNA vaccines encoding human papillomavirus type 16 (HPV-16) E7 antigen linked to calreticulin (CRT) are capable of enhancing the E7-specific CD8+ T cell immune responses and antitumor effects against E7-expressing tumors. It has also been shown that cluster (short-interval) DNA vaccination regimen generates potent immune responses in a minimal timeframe. Thus, in the current study we hypothesize that the cluster intradermal CRT/E7 DNA vaccination will generate significant antigen-specific CD8+ T cell infiltrates in E7-expressing tumors in tumor-bearing mice, leading to an increase in apoptotic tumor cell death. We found that cluster intradermal CRT/E7 DNA vaccination is capable of rapidly generating a significant number of E7-specific CD8+ T cells, resulting in significant therapeutic antitumor effects in vaccinated mice. We also observed that cluster intradermal CRT/E7 DNA vaccination in the presence of tumor generates significantly higher E7-specific CD8+ T cell immune responses in the systemic circulation as well as in the tumors. In addition, this vaccination regimen also led to significantly lower levels of CD4+Foxp3+ T regulatory cells and myeloid suppressor cells compared to vaccination with CRT DNA in peripheral blood and in tumor infiltrating lymphocytes, resulting in an increase in apoptotic tumor cell death. Thus, our study has significant potential for future clinical translation. PMID:18401437

  3. Transcriptomics of the Vaccine Immune Response: Priming With Adjuvant Modulates Recall Innate Responses After Boosting.

    PubMed

    Santoro, Francesco; Pettini, Elena; Kazmin, Dmitri; Ciabattini, Annalisa; Fiorino, Fabio; Gilfillan, Gregor D; Evenroed, Ida M; Andersen, Peter; Pozzi, Gianni; Medaglini, Donata

    2018-01-01

    Transcriptomic profiling of the immune response induced by vaccine adjuvants is of critical importance for the rational design of vaccination strategies. In this study, transcriptomics was employed to profile the effect of the vaccine adjuvant used for priming on the immune response following re-exposure to the vaccine antigen alone. Mice were primed with the chimeric vaccine antigen H56 of Mycobacterium tuberculosis administered alone or with the CAF01 adjuvant and boosted with the antigen alone. mRNA sequencing was performed on blood samples collected 1, 2, and 7 days after priming and after boosting. Gene expression analysis at day 2 after priming showed that the CAF01 adjuvanted vaccine induced a stronger upregulation of the innate immunity modules compared with the unadjuvanted formulation. The immunostimulant effect of the CAF01 adjuvant, used in the primary immunization, was clearly seen after a booster immunization with a low dose of antigen alone. One day after boost, we observed a strong upregulation of multiple genes in blood of mice primed with H56 + CAF01 compared with mice primed with the H56 alone. In particular, blood transcription modules related to innate immune response, such as monocyte and neutrophil recruitment, activation of antigen-presenting cells, and interferon response were activated. Seven days after boost, differential expression of innate response genes faded while a moderate differential expression of T cell activation modules was appreciable. Indeed, immunological analysis showed a higher frequency of H56-specific CD4+ T cells and germinal center B cells in draining lymph nodes, a strong H56-specific humoral response and a higher frequency of antibody-secreting cells in spleen of mice primed with H56 + CAF01. Taken together, these data indicate that the adjuvant used for priming strongly reprograms the immune response that, upon boosting, results in a stronger recall innate response essential for shaping the downstream

  4. Sex-specific life history responses to nymphal diet quality and immune status in a field cricket.

    PubMed

    Kelly, C D; Neyer, A A; Gress, B E

    2014-02-01

    Individual fitness is expected to benefit from earlier maturation at a larger body size and higher body condition. However, poor nutritional quality or high prevalence of disease make this difficult because individuals either cannot acquire sufficient resources or must divert resources to other fitness-related traits such as immunity. Under such conditions, individuals are expected to mature later at a smaller body size and in poorer body condition. Moreover, the juvenile environment can also produce longer-term effects on adult fitness by causing shifts in resource allocation strategies that could alter investment in immune function and affect adult lifespan. We manipulated diet quality and immune status of juvenile Texas field crickets, Gryllus texensis, to investigate how poor developmental conditions affect sex-specific investment in fitness-related traits. As predicted, a poor juvenile diet was related to smaller mass and body size at eclosion in both sexes. However, our results also reveal sexually dimorphic responses to different facets of the rearing environment: female life history decisions are affected more by diet quality, whereas males are affected more by immune status. We suggest that females respond to decreased nutritional income because this threatens their ability to achieve a large adult body size, whereas male fitness is more dependent on reaching adulthood and so they invest in immunity and survival to eclosion. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  5. Immune response phenotype of allergic versus clinically tolerant pigs in a neonatal swine model of allergy.

    PubMed

    Schmied, Julie; Rupa, Prithy; Garvie, Sarah; Wilkie, Bruce

    2013-07-15

    The prevalence of childhood food allergy and the duration of these allergies, particularly those considered to be transient, like egg and milk allergy, are increasing. The identification of allergic individuals using minimally invasive, non-anaphylaxis-threatening methods is therefore of increasing importance. In this experiment, correlates were sought of an allergic immune response (IR) phenotype in pigs. Using pigs pre-treated with heat-killed bacteria or bacterial components before allergic sensitization with the egg white protein ovomucoid (Ovm), differences were determined in IR phenotype of pigs in the categories treated-allergic, treated-tolerant, control-allergic (CA) and control-tolerant. Phenotype was established by measuring immunoglobulin (Ig)-associated antibody activity (AbA), cytokine profiles and the proportion of blood T-regulatory cells (T-regs) and observing late-phase allergen-specific skin tests (ST). Although 100% of pigs became sensitized to Ovm, only 33% of pigs had clinical signs of allergy after oral challenge with egg white. Pigs without clinical signs were classified as clinically tolerant. Sixty-seven percent of allergic pigs had a positive, late-phase ST classified as very strong or strong, while 84% of clinically tolerant pigs did not have late-phase ST. Treated-allergic pigs and CA pigs had greater total antibody IgG (H+L), IgE and IgG1 AbA than clinically tolerant pigs. Cytokine profiles of allergic pigs and the proportion of circulating T-regs, did not differ significantly between allergic and clinically tolerant pigs. Therefore, measurement of allergen-specific IgG, IgG1 and/or IgE activity and evaluation of late-phase ID ST may be useful in identifying allergic IR phenotypes in swine models of food allergy, which may be extended toward human use. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Transcriptomic analysis reveals tomato genes whose expression is induced specifically during effector-triggered immunity and identifies the Epk1 protein kinase which is required for the host response to three bacterial effector proteins.

    PubMed

    Pombo, Marina A; Zheng, Yi; Fernandez-Pozo, Noe; Dunham, Diane M; Fei, Zhangjun; Martin, Gregory B

    2014-01-01

    Plants have two related immune systems to defend themselves against pathogen attack. Initially,pattern-triggered immunity is activated upon recognition of microbe-associated molecular patterns by pattern recognition receptors. Pathogenic bacteria deliver effector proteins into the plant cell that interfere with this immune response and promote disease. However, some plants express resistance proteins that detect the presence of specific effectors leading to a robust defense response referred to as effector-triggered immunity. The interaction of tomato with Pseudomonas syringae pv. tomato is an established model system for understanding the molecular basis of these plant immune responses. We apply high-throughput RNA sequencing to this pathosystem to identify genes whose expression changes specifically during pattern-triggered or effector-triggered immunity. We then develop reporter genes for each of these responses that will enable characterization of the host response to the large collection of P. s. pv. tomato strains that express different combinations of effectors. Virus-induced gene silencing of 30 of the effector-triggered immunity-specific genes identifies Epk1 which encodes a predicted protein kinase from a family previously unknown to be involved in immunity. Knocked-down expression of Epk1 compromises effector-triggered immunity triggered by three bacterial effectors but not by effectors from non-bacterial pathogens. Epistasis experiments indicate that Epk1 acts upstream of effector-triggered immunity-associated MAP kinase signaling. Using RNA-seq technology we identify genes involved in specific immune responses. A functional genomics screen led to the discovery of Epk1, a novel predicted protein kinase required for plant defense activation upon recognition of three different bacterial effectors.

  7. Toll-like receptor-2 agonist-allergen coupling efficiently redirects Th2 cell responses and inhibits allergic airway eosinophilia.

    PubMed

    Krishnaswamy, Jayendra Kumar; Jirmo, Adan Chari; Baru, Abdul Mannan; Ebensen, Thomas; Guzmán, Carlos A; Sparwasser, Tim; Behrens, Georg M N

    2012-12-01

    Toll-like receptor (TLR) agonists beneficially modulate allergic airway inflammation. However, the efficiency of TLR agonists varies considerably, and their exact cellular mechanisms (especially of TLR 2/6 agonists) are incompletely understood. We investigated at a cellular level whether the administration of the pharmacologically improved TLR2/6 agonist S-[2,3-bispalmitoyiloxy-(2R)-propyl]-R-cysteinyl-amido-monomethoxy polyethylene glycol (BPP) conjugated to antigenic peptide (BPP-OVA) could divert an existing Th2 response and influence airway eosinophilia. The effects of BPP-OVA on airway inflammation were assessed in a classic murine sensitization/challenge model and an adoptive transfer model, which involved the adoptive transfer of in vitro differentiated ovalbumin (OVA)-specific Th2 cells. Functional T-cell stimulation by lung dendritic cells (DCs) was determined both in vitro and in vivo, combined with a cytokine secretion analysis. A single mucosal application of BPP-OVA efficiently delivered antigen, led to TLR2-mediated DC activation, and resulted in OVA-specific T-cell proliferation via lung DCs in vivo. In alternative models of allergic airway disease, a single administration of BPP-OVA before OVA challenge (but not BPP alone) significantly reduced airway eosinophilia, most likely through altered antigen-specific T-cell stimulation via DCs. Analyses of adoptively transferred Th2-biased cells after BPP-OVA administration in vivo suggested that BPP-OVA guides antigen-specific Th2 cells to produce significantly higher amounts of IFN-γ upon allergen challenge. In conclusion, our data show for the first time that a single mucosal administration of a TLR 2/6 agonist-allergen conjugate can provoke IFN-γ responses in Th2-biased cells and alleviate allergic airway inflammation.

  8. Pathogen recognition in the innate immune response.

    PubMed

    Kumar, Himanshu; Kawai, Taro; Akira, Shizuo

    2009-04-28

    Immunity against microbial pathogens primarily depends on the recognition of pathogen components by innate receptors expressed on immune and non-immune cells. Innate receptors are evolutionarily conserved germ-line-encoded proteins and include TLRs (Toll-like receptors), RLRs [RIG-I (retinoic acid-inducible gene-I)-like receptors] and NLRs (Nod-like receptors). These receptors recognize pathogens or pathogen-derived products in different cellular compartments, such as the plasma membrane, the endosomes or the cytoplasm, and induce the expression of cytokines, chemokines and co-stimulatory molecules to eliminate pathogens and instruct pathogen-specific adaptive immune responses. In the present review, we will discuss the recent progress in the study of pathogen recognition by TLRs, RLRs and NLRs and their signalling pathways.

  9. Clinical allergy to hazelnut and peanut: identification of T cell cross-reactive allergens.

    PubMed

    Glaspole, Ian N; de Leon, Maria P; Prickett, Sara R; O'Hehir, Robyn E; Rolland, Jennifer M

    2011-01-01

    Peanut and tree nut allergies are life-threatening conditions for many affected individuals worldwide. Currently there is no cure. While co-allergy to peanut and tree nuts is a common clinical observation, and IgE cross-reactivity between peanut and tree nuts is reported, T cell cross-reactivity is poorly defined. Hazelnut-specific T cell lines were established using peripheral blood mononuclear cells from 5 subjects with co-allergy to hazelnut and peanut. These lines were stimulated with hazelnut and peanut extracts and purified major peanut allergens, Ara h 1 and Ara h 2. Proliferation was determined by (3)H-thymidine incorporation and secretion of key Th1 (IFN-γ) and Th2 (IL-5) cytokines analysed by ELISA. Hazelnut-specific T cell lines from all 5 subjects proliferated upon stimulation with both hazelnut and peanut extracts and for 4 subjects, to Ara h 1 and/or Ara h 2. Proliferating cells were mainly CD4+ T cells and produced both IL-5 and IFN-γ in response to hazelnut and peanut stimulation. Mitogenicity of extracts and allergens was excluded by their lack of stimulation of house dust mite-specific T cells. Our finding that hazelnut and peanut co-allergy is associated with cross-reactive T cell responses, driven partly by cross-reactivity to the major peanut allergens Ara h 1 and Ara h 2, points to future development of allergen immunotherapy by targeting cross-reactive T cells. Copyright © 2011 S. Karger AG, Basel.

  10. Factors that deregulate the protective immune response in tuberculosis.

    PubMed

    Hernandez-Pando, Rogelio; Orozco, Hector; Aguilar, Diana

    2009-01-01

    Tuberculosis (TB) is a chronic infectious disease which essentially affects the lungs and produces profound abnormalities on the immune system. Although most people infected by the tubercle bacillus (90%) do not develop the disease during their lifetime, when there are alterations in the immune system, such as co-infection with HIV, malnutrition, or diabetes, the risk of developing active disease increases considerably. Interestingly, during the course of active disease, even in the absence of immunosuppressive conditions, there is a profound and prolonged suppression of Mycobacterium tuberculosis-specific protective immune responses. Several immune factors can contribute to downregulate the protective immunity, permitting disease progression. In general, many of these factors are potent anti-inflammatory molecules that are probably overproduced with the intention to protect against tissue damage, but the consequence of this response is a decline in protective immunity facilitating bacilli growth and disease progression. Here the most significant participants in protective immunity are reviewed, in particular the factors that deregulate protective immunity in TB. Their manipulation as novel forms of immunotherapy are also briefly commented.

  11. Can probiotics enhance vaccine-specific immunity in children and adults?

    PubMed

    Kwak, J Y; Lamousé-Smith, E S N

    2017-10-13

    The growing use of probiotics by the general public has heightened the interest in understanding the role of probiotics in promoting health and preventing disease. General practitioners and specialists often receive inquiries from their patients regarding probiotic products and their use to ward off systemic infection or intestinal maladies. Enhanced immune function is among the touted health benefits conferred by probiotics but has not yet been fully established. Results from recent clinical trials in adults suggest a potential role for probiotics in enhancing vaccine-specific immunity. Although almost all vaccinations are given during infancy and childhood, the numbers of and results from studies using probiotics in pediatric subjects are limited. This review evaluates recent clinical trials of probiotics used to enhance vaccine-specific immune responses in adults and infants. We highlight meaningful results and the implications of these findings for designing translational and clinical studies that will evaluate the potential clinical role for probiotics. We conclude that the touted health claims of probiotics for use in children to augment immunity warrant further investigation. In order to achieve this goal, a consensus should be reached on common study designs that apply similar treatment timelines, compare well-characterised probiotic strains and monitor effective responses against different classes of vaccines.

  12. Controlling indoor allergens.

    PubMed

    Custovic, Adnan; Murray, Clare S; Gore, Robin B; Woodcock, Ashley

    2002-05-01

    Reading of this article reinforces the reader's knowledge of the role of allergen exposure in relation to asthma and its severity, as well as the relevance of allergen avoidance in the treatment of asthma. Initial literature search for existing evidence-based guidelines, reviews, and meta-analyses was carried out, and further literature searches were performed to review individual randomized controlled trials. Evidence level was graded according to the Scottish Intercollegiate Guidelines Network recommendations. There is good evidence for the link between mite and cockroach allergen exposure and sensitization, and between sensitization and asthma. For pet allergens, some studies found that exposure to pets in early life was associated with specific immunoglobulin E sensitization and allergic disease later in childhood, whereas others reported a protective effect. The effectiveness of allergen reduction in the treatment of asthma is suggested by studies in which the patients improve substantially when moved into the low-allergen environment of hospitals or high-altitude sanatoria. Because of limitations in the design of the most clinical of studies, we do not yet have a conclusive answer on the effectiveness of domestic aeroallergen avoidance. Minimizing the impact of identified environmental risk factors is an important first step to reduce the severity of asthma. Although environmental control is difficult, it should be an integral part of the overall management of sensitized patients. However, what is unclear is which patients would benefit and by how much, and whether the intervention is cost-effective. These questions will be answered satisfactorily only by large randomized trials.

  13. Immune response in the lungs following oral immunization with bacterial lysates of respiratory pathogens.

    PubMed Central

    Ruedl, C; Frühwirth, M; Wick, G; Wolf, H

    1994-01-01

    We have investigated the local immune response of the BALB/c mouse respiratory tract after oral immunization with a bacterial lysate of seven common respiratory pathogens. After two immunization on five consecutive days, we examined the immunoglobulin (immunoglobulin G [IgG], IgM, and IgA) secretion rates of cells isolated from the lungs and compared them with those of spleen cells of orally immunized and nonimmunized animals by using a new test system based on time-resolved fluorescence. The procedure followed the principle of the classical ELISPOT test with nitrocellulose-bottomed microtiter plates, but europium (Eu3+)-linked streptavidin rather than enzyme-conjugated streptavidin was used, with the advantage of quantifying secreted immunoglobulins instead of detecting single antibody-secreting cells. Lymphocytes isolated from the lungs of treated animals revealed significant increases in total and antigen-specific IgA synthesis compared with the rates of the controls, whereas IgG and IgM production rates showed no remarkable differences. In addition, the sera of treated mice revealed higher antigen-specific IgA titers but not increased IgM and IgG levels. We conclude that priming the gut-associated lymphoid tissue with bacterial antigens of pneumotropic microorganisms can elicit an enhanced IgA response in a distant mucosal effector site, such as the respiratory tract, according to the concept of a common mucosa-associated immune system. PMID:7496936

  14. Immune response in the lungs following oral immunization with bacterial lysates of respiratory pathogens.

    PubMed

    Ruedl, C; Frühwirth, M; Wick, G; Wolf, H

    1994-03-01

    We have investigated the local immune response of the BALB/c mouse respiratory tract after oral immunization with a bacterial lysate of seven common respiratory pathogens. After two immunization on five consecutive days, we examined the immunoglobulin (immunoglobulin G [IgG], IgM, and IgA) secretion rates of cells isolated from the lungs and compared them with those of spleen cells of orally immunized and nonimmunized animals by using a new test system based on time-resolved fluorescence. The procedure followed the principle of the classical ELISPOT test with nitrocellulose-bottomed microtiter plates, but europium (Eu3+)-linked streptavidin rather than enzyme-conjugated streptavidin was used, with the advantage of quantifying secreted immunoglobulins instead of detecting single antibody-secreting cells. Lymphocytes isolated from the lungs of treated animals revealed significant increases in total and antigen-specific IgA synthesis compared with the rates of the controls, whereas IgG and IgM production rates showed no remarkable differences. In addition, the sera of treated mice revealed higher antigen-specific IgA titers but not increased IgM and IgG levels. We conclude that priming the gut-associated lymphoid tissue with bacterial antigens of pneumotropic microorganisms can elicit an enhanced IgA response in a distant mucosal effector site, such as the respiratory tract, according to the concept of a common mucosa-associated immune system.

  15. Regulatory environment for allergen-specific immunotherapy.

    PubMed

    Kaul, S; May, S; Lüttkopf, D; Vieths, Stefan

    2011-06-01

    Products for specific immunotherapy (SIT) are medicinal products according to the European Regulations. To obtain a marketing authorization (MA) within the European Community, the quality, safety and efficacy have to be proven. During the development phase of a medicinal product, applicants have the opportunity to apply for scientific advice by national competent authorities or the European Medicines Agency (EMA) to compile a suitable development plan for the examination of quality and performance of nonclinical and clinical trials. Moreover, a paediatric investigation plan has to be submitted to the Paediatric Committee of the EMA and has to be approved before submission of an application for MA. Several regulatory procedures exist for obtaining a MA in the European Community. The national procedure leads only to marketability in one country whereas the Mutual Recognition, the Decentralized and Centralized Procedures (CP) are intended for MA in several or all member states of the European Union. The CP is mandatory for certain medicinal products, for example for drug substances derived by biotechnological processes such as recombinant allergens. Named Patient Products for SIT are a specialty because they are manufactured on the basis of an individual prescription and marketed without a MA. © 2011 John Wiley & Sons A/S.

  16. Identification of novel allergen in edible insect, Gryllus bimaculatus and its cross-reactivity with Macrobrachium spp. allergens.

    PubMed

    Srinroch, Chutima; Srisomsap, Chantragan; Chokchaichamnankit, Daranee; Punyarit, Phaibul; Phiriyangkul, Pharima

    2015-10-01

    Edible insects have recently been promoted as a source of protein and have a high nutrition value. Identification of allergens and cross-reactivity between Macrobrachium spp. and the field cricket (Gryllus bimaculatus) is necessary for food safety control and to assist in the diagnosis and therapy of allergy symptoms. Denaturing polyacrylamide gel electrophoresis (SDS-PAGE) was used to separate proteins. Allergens were determined and identified by IgE-immunoblotting with pooled sera from prawn-allergic patients (n=16) and LC-MS/MS. Arginine kinase (AK) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) were determined as the important allergens in muscle of Macrobrachium rosenbergii whereas, hemocyanin (HC) was identified as an allergen in Macrobrachium spp. The allergens in Macrobrachium lanchesteri were identified as AK and HC. In addition, hexamerin1B (HEX1B) was identified as a novel and specific allergen in G. bimaculatus. The important allergen in G. bimaculatus and Macrobrachium spp. is AK and was found to cross-react between both species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Can exposure limitations for well-known contact allergens be simplified? An analysis of dose-response patch test data.

    PubMed

    Fischer, Louise Arup; Menné, Torkil; Voelund, Aage; Johansen, Jeanne Duus

    2011-06-01

    Allergic contact dermatitis is triggered by chemicals in the environment. Primary prevention is aimed at minimizing the risk of induction, whereas secondary and tertiary prevention are aimed at reducing elicitation. To identify the elicitation doses that will elicit an allergic reaction in 10% of allergic individuals under patch test conditions (ED(10) patch test) for different allergens, and to compare the results with those for different allergens and with animal data indicating sensitizing potency from the literature. The literature was searched for patch test elicitation studies that fulfilled six selected criteria. The elicitation doses were calculated, and fitted dose-response curves were drawn. Sixteen studies with eight different allergens-methylchloroisothiazolinone/ methylisothiazolinone, formaldehyde, nickel, cobalt, chromium, isoeugenol, hydroxyiso hexyl 3-cyclohexene carboxaldehyde, and methyldibromo glutaronitrile-were selected. The median ED(10) value was 0.835 µg/cm(2). The ED(10) patch test values were all within a factor of 7 from the lowest to the highest value, leaving out three outliers. No obvious patterns between the sensitization and elicitation doses for the allergens were found. We found a rather small variation in the ED(10) patch test between the allergens, and no clear relationship between induction potency and elicitation threshold of a range of allergens. This knowledge may stimulate thoughts on introducing a generic approach for limitations in exposure to well-known allergens. © 2011 John Wiley & Sons A/S.

  18. [Evaluation of the total biological activity and allergenic composition of allergenic extracts].

    PubMed

    Lombardero, M; González, R; Duffort, O; Juan, F; Ayuso, R; Ventas, P; Cortés, C; Carreira, J

    1986-01-01

    In the present study, a complete procedure is presented in order to standardize allergenic extracts, the meaning of which is the measurement of the total allergenic activity and the determination of the allergenic composition. The measurement of the biological activity comprises 2 steps: Preparation of Reference Extracts and determination of their "in vivo" activity. Evaluation of the total allergenic activity of extracts for clinical use. Reference extracts were prepared from the main allergens and their "in vivo" biological activity was determined by a quantitative skin prick test in a sample of at least 30 allergic patients. By definition, the protein concentration of Reference Extract that produces, in the allergic population, a geometric mean wheal of 75 mm.2 has an activity of 100 biological units (BUs). The determination of the biological activity of a problem extract is made by RAST inhibition. The sample is compared with the corresponding Reference Extract by this technique and, from this comparison, it is possible to quantify the activity of the problem extract in biologic units (BUs) with clinical significance. Likewise, different techniques have been used to determine the allergenic composition of extracts. These techniques comprise 2 steps: Separation of the components of the extract. Identification of the components that bind specific human IgE. The separation of the components of the extract has been carried out by isoelectric focusing (IEF) and electrophoresis in the presence of sodium dodecyl sulphate (SDS-PAGE). In order to identify the allergenic components, an immunoblotting technique has been employed. The separated components in the IEF gel or SDS-PAGE gel are transferred to a nitrocellulose sheet and later on, this membrane is overlaid with a serum pool from allergic patients and a mouse monoclonal anti-human IgE, labelled with 125I. Finally, the autoradiography of the nitrocellulose membrane is obtained. In this way it is possible to compare

  19. Effect of thermal processing on T cell reactivity of shellfish allergens - Discordance with IgE reactivity.

    PubMed

    Abramovitch, Jodie B; Lopata, Andreas L; O'Hehir, Robyn E; Rolland, Jennifer M

    2017-01-01

    Crustacean allergy is a major cause of food-induced anaphylaxis. We showed previously that heating increases IgE reactivity of crustacean allergens. Here we investigate the effects of thermal processing of crustacean extracts on cellular immune reactivity. Raw and cooked black tiger prawn, banana prawn, mud crab and blue swimmer crab extracts were prepared and IgE reactivity assessed by ELISA. Mass spectrometry revealed a mix of several allergens in the raw mud crab extract but predominant heat-stable tropomyosin in the cooked extract. PBMC from crustacean-allergic and non-atopic control subjects were cultured with the crab and prawn extracts and proliferation of lymphocyte subsets was analysed by CFSE labelling and flow cytometry. Effector responses were assessed by intracellular IL-4 and IFN-γ, and regulatory T (CD4+CD25+CD127loFoxp3+) cell proportions in cultures were also compared by flow cytometry. For each crustacean species, the cooked extract had greater IgE reactivity than the raw (mud crab p<0.05, other species p<0.01). In contrast, there was a trend for lower PBMC proliferative responses to cooked compared with raw extracts. In crustacean-stimulated PBMC cultures, dividing CD4+ and CD56+ lymphocytes showed higher IL-4+/IFN-γ+ ratios for crustacean-allergic subjects than for non-atopics (p<0.01), but there was no significant difference between raw and cooked extracts. The percentage IL-4+ of dividing CD4+ cells correlated with total and allergen-specific IgE levels (prawns p<0.01, crabs p<0.05). Regulatory T cell proportions were lower in cultures stimulated with cooked compared with raw extracts (mud crab p<0.001, banana prawn p<0.05). In conclusion, cooking did not substantially alter overall T cell proliferative or cytokine reactivity of crustacean extracts, but decreased induction of Tregs. In contrast, IgE reactivity of cooked extracts was increased markedly. These novel findings have important implications for improved diagnostics, managing

  20. House dust-mite allergen exposure is associated with serum specific IgE but not with respiratory outcomes.

    PubMed

    Bakolis, I; Heinrich, J; Zock, J P; Norbäck, D; Svanes, C; Chen, C M; Accordini, S; Verlato, G; Olivieri, M; Jarvis, D

    2015-06-01

    Exposure to house dust has been associated with asthma in adults, and this is commonly interpreted as a direct immunologic response to dust-mite allergens in those who are IgE sensitized to house dust-mite. Mattress house dust-mite concentrations were measured in a population-based sample of 2890 adults aged between 27 and 56 years living in 22 centers in 10 countries. Generalized linear mixed models were employed to explore the association of respiratory symptoms with house dust-mite concentrations, adjusting for individual and household confounders. There was no overall association of respiratory outcomes with measured house dust-mite concentrations, even in those who reported they had symptoms on exposure to dust and those who had physician-diagnosed asthma. However, there was a positive association of high serum specific IgE levels to HDM (>3.5 kUA /l) with mattress house dust-mite concentrations and a negative association of sensitization to cat with increasing house dust-mite concentrations. In conclusion, there was no evidence that respiratory symptoms in adults were associated with exposure to house dust-mite allergen in the mattress, but an association of house mite with strong sensitization was observed. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. [Allergens used in skin tests in Mexico].

    PubMed

    Larenas Linnemann, Désirée; Arias Cruz, Alfredo; Guidos Fogelbach, Guillermo Arturo; Cid del Prado, Mari Lou

    2009-01-01

    Immunotherapy is the only recognized causal treatment for allergies. It is prepared on an individual basis, based on the patient's clinical history and the result of the skin prick test (SPT). An adequate composition of the allergens with which to test the patient is crucial for an optimal diagnosis. To know allergens used in tests in allergy practices in Mexico. A national survey among all members of the Colegio Mexicano de Inmunología Clínica y Alergia (CMICA) and of the Colegio Mexicano de Pediatras Especialistas en Inmunología Clínica y Alergia (COMPEDIA) was carried out. In a second phase respondents were asked to send in the composition of a routine SPT in their clinic. The results are presented descriptively and the frequency is calculated by which certain allergen is tested in the interviewed practices. A survey response rate of 61 (17%) was obtained and 54% showed their SPT content. Weeds' representation in the SPT seems adequate; Atriplex is tested in all allergy practices. Some trees that show cross-reactivity might be eliminated from the SPT, but 20% doesn't test for Cynodon nor Holcus, and 25% doesn't for important allergens as cat, dog and cockroach. House dust and tobacco are still tested with certain frequency. The selection of which allergens to test in a SPT is based on multiple data, that change continuously with new investigations and discoveries. Our specialty is the most indicated--and obligated--to adjust constantly to these changes to have the best diagnostic tool to detect specific allergies.

  2. Antigen-specific T cell responses to BK polyomavirus antigens identify functional anti-viral immunity and may help to guide immunosuppression following renal transplantation

    PubMed Central

    Chakera, A; Bennett, S; Lawrence, S; Morteau, O; Mason, P D; O'Callaghan, C A; Cornall, R J

    2011-01-01

    Infection with the polyoma virus BK (BKV) is a major cause of morbidity following renal transplantation. Limited understanding of the anti-viral immune response has prevented the design of a strategy that balances treatment with the preservation of graft function. The proven utility of interferon-gamma enzyme-linked immunospot (ELISPOT) assays to measure T cell responses in immunocompetent hosts was the basis for trying to develop a rational approach to the management of BKV following renal transplantation. In a sample of transplant recipients and healthy controls, comparisons were made between T cell responses to the complete panel of BKV antigens, the Epstein–Barr virus (EBV) antigens, BZLF1 and EBNA1, and the mitogen phytohaemagglutinin (PHA). Correlations between responses to individual antigens and immunosuppressive regimens were also analysed. Antigen-specific T cell responses were a specific indicator of recent or ongoing recovery from BKV infection (P < 0·05), with responses to different BKV antigens being highly heterogeneous. Significant BKV immunity was undetectable in transplant patients with persistent viral replication or no history of BKV reactivation. Responses to EBV antigens and mitogen were reduced in patients with BKV reactivation, but these differences were not statistically significant. The T cell response to BKV antigens is a useful and specific guide to recovery from BKV reactivation in renal transplant recipients, provided that the full range of antigenic responses is measured. PMID:21671906

  3. Immune oncology, immune responsiveness and the theory of everything.

    PubMed

    Turan, Tolga; Kannan, Deepti; Patel, Maulik; Matthew Barnes, J; Tanlimco, Sonia G; Lu, Rongze; Halliwill, Kyle; Kongpachith, Sarah; Kline, Douglas E; Hendrickx, Wouter; Cesano, Alessandra; Butterfield, Lisa H; Kaufman, Howard L; Hudson, Thomas J; Bedognetti, Davide; Marincola, Francesco; Samayoa, Josue

    2018-06-05

    Anti-cancer immunotherapy is encountering its own checkpoint. Responses are dramatic and long lasting but occur in a subset of tumors and are largely dependent upon the pre-existing immune contexture of individual cancers. Available data suggest that three landscapes best define the cancer microenvironment: immune-active, immune-deserted and immune-excluded. This trichotomy is observable across most solid tumors (although the frequency of each landscape varies depending on tumor tissue of origin) and is associated with cancer prognosis and response to checkpoint inhibitor therapy (CIT). Various gene signatures (e.g. Immunological Constant of Rejection - ICR and Tumor Inflammation Signature - TIS) that delineate these landscapes have been described by different groups. In an effort to explain the mechanisms of cancer immune responsiveness or resistance to CIT, several models have been proposed that are loosely associated with the three landscapes. Here, we propose a strategy to integrate compelling data from various paradigms into a "Theory of Everything". Founded upon this unified theory, we also propose the creation of a task force led by the Society for Immunotherapy of Cancer (SITC) aimed at systematically addressing salient questions relevant to cancer immune responsiveness and immune evasion. This multidisciplinary effort will encompass aspects of genetics, tumor cell biology, and immunology that are pertinent to the understanding of this multifaceted problem.

  4. Polysaccharides from marine macroalga, Padina gymnospora improve the nonspecific and specific immune responses of Cyprinus carpio and protect it from different pathogens.

    PubMed

    Rajendran, Priyatharsini; Subramani, Parasuraman Aiya; Michael, Dinakaran

    2016-11-01

    Immunostimulation by plant-derived compounds presents a fascinating alternative to vaccines and antibiotics in aquaculture. Fish farmers are longing for immunostimulants that activate both specific and nonspecific immune responses of fish and protect fishes from all possible infections. In this study, we observed that polysaccharide fraction from marine macroalga, Padina gymnospora stimulated the immune response of common carp Cyprinus carpio (Filed for patent, Indian patent no. 201641027311 dated:10-Aug-2016). Our results indicate that fish fed with polysaccharides as feed supplement improved all the immune parameters tested which include serum lysozyme, myeloperoxidase activities and antibody response. Further, polysaccharide fraction protected the fish from its common bacterial pathogens namely Aeromonas hydrophila and Edwardsiella tarda with relative percent survival (RPS) values of 80 and 60 respectively. Gene expression studies, indicate that the immunostimulation by P. gymnospora might be at least in part due to the upregulation of the cytokine interleukin-1β (IL-1β) and antimicrobial peptide lysozyme-C. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Polymicrobial sepsis and non-specific immunization induce adaptive immunosuppression to a similar degree.

    PubMed

    Schmoeckel, Katrin; Mrochen, Daniel M; Hühn, Jochen; Pötschke, Christian; Bröker, Barbara M

    2018-01-01

    Sepsis is frequently complicated by a state of profound immunosuppression, in its extreme form known as immunoparalysis. We have studied the role of the adaptive immune system in the murine acute peritonitis model. To read out adaptive immunosuppression, we primed post-septic and control animals by immunization with the model antigen TNP-ovalbumin in alum, and measured the specific antibody-responses via ELISA and ELISpot assay as well as T-cell responses in a proliferation assay after restimulation. Specific antibody titers, antibody affinity and plasma cell counts in the bone marrow were reduced in post-septic animals. The antigen-induced splenic proliferation was also impaired. The adaptive immunosuppression was positively correlated with an overwhelming general antibody response to the septic insult. Remarkably, antigen "overload" by non-specific immunization induced a similar degree of adaptive immunosuppression in the absence of sepsis. In both settings, depletion of regulatory T cells before priming reversed some parameters of the immunosuppression. In conclusion, our data show that adaptive immunosuppression occurs independent of profound systemic inflammation and life-threatening illness.

  6. Polymicrobial sepsis and non-specific immunization induce adaptive immunosuppression to a similar degree

    PubMed Central

    Hühn, Jochen; Pötschke, Christian

    2018-01-01

    Sepsis is frequently complicated by a state of profound immunosuppression, in its extreme form known as immunoparalysis. We have studied the role of the adaptive immune system in the murine acute peritonitis model. To read out adaptive immunosuppression, we primed post-septic and control animals by immunization with the model antigen TNP-ovalbumin in alum, and measured the specific antibody-responses via ELISA and ELISpot assay as well as T-cell responses in a proliferation assay after restimulation. Specific antibody titers, antibody affinity and plasma cell counts in the bone marrow were reduced in post-septic animals. The antigen-induced splenic proliferation was also impaired. The adaptive immunosuppression was positively correlated with an overwhelming general antibody response to the septic insult. Remarkably, antigen “overload” by non-specific immunization induced a similar degree of adaptive immunosuppression in the absence of sepsis. In both settings, depletion of regulatory T cells before priming reversed some parameters of the immunosuppression. In conclusion, our data show that adaptive immunosuppression occurs independent of profound systemic inflammation and life-threatening illness. PMID:29415028

  7. [Practice patterns in Mexican allergologists about specific immunotherapy with allergens].

    PubMed

    Larenas Linnemann, Désirée; Guidos Fogelbach, Guillermo Arturo; Arias Cruz, Alfredo

    2008-01-01

    Immunotherapy has been practiced since over a hundred years. Since the first applications up today changes have occurred in the preparation, dose and duration of the treatment, as well as in the extracts used. Guidelines have been published in Mexico and other countries to try to unify these practice patterns of immunotherapy. By means of a questionnaire, sent in various occasions to all members of the Colegio Mexicano de Inmunología Clínica y Alergia (CMICA) and of the Colegio Mexicano de Pediatras, Especialistas en Inmunología y Alergia (CoMPedIA) we tried to get a picture of the daily practice patterns of immunotherapy in the allergist's office. Results will be presented in a descriptive manner. A response rate of 61 (17%) was obtained from the College members. For immunotherapy allergists use locally made and imported extracts, generally mixed in their office (20% over 10 allergens in one bottle). Eighty percent adds bacterial vaccine at some point and 60% uses sublingual immunotherapy. Most use Evans without albumin as diluent, don't routinely premedicate, reach maintenance treatment after more than six months and 46% recommends a maximum duration of immunotherapy of two years or less. We present a diagnosis on the current situation of practice patterns concerning allergen immunotherapy among the members of both Mexican colleges of allergists. The methods used by the allergists for indication, preparation and administration are quite diverse.

  8. Allergens in household dust and serological indicators of atopy and sensitization in Detroit children with history-based evidence of asthma.

    PubMed

    Williams, Ann Houston; Smith, James Travis; Hudgens, Edward E; Rhoney, Scott; Ozkaynak, Halûk; Hamilton, Robert G; Gallagher, Jane E

    2011-09-01

    Home exposure to allergens is an important factor in the development of sensitization and subsequent exacerbations of allergic asthma. We investigated linkages among allergen exposure, immunological measurements, and asthma by examining (1) reservoir dust allergen levels in homes, (2) associations between presence of allergens in homes and sensitization status of resident children, and (3) associations between asthma status and total IgE, atopy (by Phadiatop), and positive allergen-specific tests. The study protocol was approved by Institutional Review Boards (IRBs) of the University of North Carolina Chapel Hill; Westat, Inc.; and the US Environmental Protection Agency Human Research Protocol Office. Data were collected from questionnaires, serum analyses, and household vacuum dust. Children (n = 205) were predominately African American (AA) (85.4%) and 51.6% were asthmatic. Sera from 185 children and home dust samples (n = 141) were analyzed for total and specific IgE antibodies to allergens from cat and dog dander, cockroach, dust mites, mice, rats, and molds. Sixty percent of the homes had detectable levels of three or more dust allergens. The proportions of children with positive allergen-specific IgE tests were dust mite (32%), dog (28%), cat (23%), cockroach (18%), mouse (5%), rat (4%), and molds (24-36%). Children testing positive to a single allergen also had positive responses to other allergens. Those children with positive serum tests for cat, dog, and dust mite lived in homes with detectable levels of cat (51%), dog (90%), and dust mite (Der f 1) (92%) allergens. Correlations between children's specific IgE levels and dust levels were linearly related for dog (p < .04), but not for cat (p = .12) or dust mite (Der f 1) (p = .21). Odds ratios (95% CI) for the associations between asthma and serum-specific IgE were over 1.0 for cat, dog, dust mite (Der f 1), cockroach, and four types of molds. House dust allergen exposure levels, however, exhibited no

  9. Immunobiography and the Heterogeneity of Immune Responses in the Elderly: A Focus on Inflammaging and Trained Immunity

    PubMed Central

    Franceschi, Claudio; Salvioli, Stefano; Garagnani, Paolo; de Eguileor, Magda; Monti, Daniela; Capri, Miriam

    2017-01-01

    Owing to its memory and plasticity, the immune system (IS) is capable of recording all the immunological experiences and stimuli it was exposed to. The combination of type, dose, intensity, and temporal sequence of antigenic stimuli that each individual is exposed to has been named “immunobiography.” This immunological history induces a lifelong continuous adaptation of the IS, which is responsible for the capability to mount strong, weak or no response to specific antigens, thus determining the large heterogeneity of immunological responses. In the last years, it is becoming clear that memory is not solely a feature of adaptive immunity, as it has been observed that also innate immune cells are provided with a sort of memory, dubbed “trained immunity.” In this review, we discuss the main characteristics of trained immunity as a possible contributor to inflammaging within the perspective of immunobiography, with particular attention to the phenotypic changes of the cell populations known to be involved in trained immunity. In conclusion, immunobiography emerges as a pervasive and comprehensive concept that could help in understanding and interpret the individual heterogeneity of immune responses (to infections and vaccinations) that becomes particularly evident at old age and could affect immunosenescence and inflammaging. PMID:28861086

  10. Anisakis simplex: from Obscure Infectious Worm to Inducer of Immune Hypersensitivity

    PubMed Central

    Audicana, M. Teresa; Kennedy, Malcolm W.

    2008-01-01

    Summary: Infection of humans with the nematode worm parasite Anisakis simplex was first described in the 1960s in association with the consumption of raw or undercooked fish. During the 1990s it was realized that even the ingestion of dead worms in food fish can cause severe hypersensitivity reactions, that these may be more prevalent than infection itself, and that this outcome could be associated with food preparations previously considered safe. Not only may allergic symptoms arise from infection by the parasites (“gastroallergic anisakiasis”), but true anaphylactic reactions can also occur following exposure to allergens from dead worms by food-borne, airborne, or skin contact routes. This review discusses A. simplex pathogenesis in humans, covering immune hypersensitivity reactions both in the context of a living infection and in terms of exposure to its allergens by other routes. Over the last 20 years, several studies have concentrated on A. simplex antigen characterization and innate as well as adaptive immune response to this parasite. Molecular characterization of Anisakis allergens and isolation of their encoding cDNAs is now an active field of research that should provide improved diagnostic tools in addition to tools with which to enhance our understanding of pathogenesis and controversial aspects of A. simplex allergy. We also discuss the potential relevance of parasite products such as allergens, proteinases, and proteinase inhibitors and the activation of basophils, eosinophils, and mast cells in the induction of A. simplex-related immune hypersensitivity states induced by exposure to the parasite, dead or alive. PMID:18400801

  11. Immune and stress responses in oysters with insights on adaptation.

    PubMed

    Guo, Ximing; He, Yan; Zhang, Linlin; Lelong, Christophe; Jouaux, Aude

    2015-09-01

    Oysters are representative bivalve molluscs that are widely distributed in world oceans. As successful colonizers of estuaries and intertidal zones, oysters are remarkably resilient against harsh environmental conditions including wide fluctuations in temperature and salinity as well as prolonged air exposure. Oysters have no adaptive immunity but can thrive in microbe-rich estuaries as filter-feeders. These unique adaptations make oysters interesting models to study the evolution of host-defense systems. Recent advances in genomic studies including sequencing of the oyster genome have provided insights into oyster's immune and stress responses underlying their amazing resilience. Studies show that the oyster genomes are highly polymorphic and complex, which may be key to their resilience. The oyster genome has a large gene repertoire that is enriched for immune and stress response genes. Thousands of genes are involved in oyster's immune and stress responses, through complex interactions, with many gene families expanded showing high sequence, structural and functional diversity. The high diversity of immune receptors and effectors may provide oysters with enhanced specificity in immune recognition and response to cope with diverse pathogens in the absence of adaptive immunity. Some members of expanded immune gene families have diverged to function at different temperatures and salinities or assumed new roles in abiotic stress response. Most canonical innate immunity pathways are conserved in oysters and supported by a large number of diverse and often novel genes. The great diversity in immune and stress response genes exhibited by expanded gene families as well as high sequence and structural polymorphisms may be central to oyster's adaptation to highly stressful and widely changing environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Influences of Plant Traits on Immune Responses of Specialist and Generalist Herbivores

    PubMed Central

    Lampert, Evan

    2012-01-01

    Specialist and generalist insect herbivore species often differ in how they respond to host plant traits, particularly defensive traits, and these responses can include weakened or strengthened immune responses to pathogens and parasites. Accurate methods to measure immune response in the presence and absence of pathogens and parasites are necessary to determine whether susceptibility to these natural enemies is reduced or increased by host plant traits. Plant chemical traits are particularly important in that host plant metabolites may function as antioxidants beneficial to the immune response, or interfere with the immune response of both specialist and generalist herbivores. Specialist herbivores that are adapted to process and sometimes accumulate specific plant compounds may experience high metabolic demands that may decrease immune response, whereas the metabolic demands of generalist species differ due to more broad-substrate enzyme systems. However, the direct deleterious effects of plant compounds on generalist herbivores may weaken their immune responses. Further research in this area is important given that the ecological relevance of plant traits to herbivore immune responses is equally important in natural systems and agroecosystems, due to potential incompatibility of some host plant species and cultivars with biological control agents of herbivorous pests. PMID:26466545

  13. A recombinant isoform of the Ole e 7 olive pollen allergen assembled by de novo mass spectrometry retains the allergenic ability of the natural allergen.

    PubMed

    Oeo-Santos, Carmen; Mas, Salvador; Benedé, Sara; López-Lucendo, María; Quiralte, Joaquín; Blanca, Miguel; Mayorga, Cristobalina; Villalba, Mayte; Barderas, Rodrigo

    2018-06-05

    The allergenic non-specific lipid transfer protein Ole e 7 from olive pollen is a major allergen associated with severe symptoms in areas with high olive pollen levels. Despite its clinical importance, its cloning and recombinant production has been unable by classical approaches. This study aimed at determining by mass-spectrometry based proteomics its complete amino acid sequence for its subsequent expression and characterization. To this end, the natural protein was in-2D-gel tryptic digested, and CID and HCD fragmentation spectra obtained by nLC-MS/MS analyzed using PEAKS software. Thirteen out of the 457 de novo sequenced peptides obtained allowed assembling its full-length amino acid sequence. Then, Ole e 7-encoding cDNA was synthesized and cloned in pPICZαA vector for its expression in Pichia pastoris yeast. The analyses by Circular Dichroism, and WB, ELISA and cell-based tests using sera and blood from olive pollen-sensitized patients showed that rOle e 7 mostly retained the structural, allergenic and antigenic properties of the natural allergen. In summary, rOle e 7 allergen assembled by de novo peptide sequencing by MS behaved immunologically similar to the natural allergen scarcely isolated from pollen. Olive pollen is an important cause of allergy. The non-specific lipid binding protein Ole e 7 is a major allergen with a high incidence and a phenotype associated to severe clinical symptoms. Despite its relevance, its cloning and recombinant expression has been unable by classical techniques. Here, we have inferred the primary amino acid sequence of Ole e 7 by mass-spectrometry. We separated Ole e 7 isolated from pollen by 2DE. After in-gel digestion with trypsin and a direct analysis by nLC-MS/MS in an LTQ-Orbitrap Velos, we got the complete de novo sequenced peptides repertoire that allowed the assembling of the primary sequence of Ole e 7. After its protein expression, purification to homogeneity, and structural and immunological characterization

  14. Blockade of tumour necrosis factor-α in experimental autoimmune encephalomyelitis reveals differential effects on the antigen-specific immune response and central nervous system histopathology.

    PubMed

    Batoulis, H; Recks, M S; Holland, F O; Thomalla, F; Williams, R O; Kuerten, S

    2014-01-01

    In various autoimmune diseases, anti-tumour necrosis factor (TNF)-α treatment has been shown to reduce both clinical disease severity and T helper type 1 (Th1)1/Th17 responses. In experimental autoimmune encephalomyelitis (EAE), however, the role of TNF-α has remained unclear. Here, C57BL/6 mice were immunized with myelin oligodendrocyte glycoprotein (MOG) peptide 35-55 and treated with anti-TNF-α, control antibody or vehicle. The clinical disease course, incidence and severity were assessed. On day 20 after immunization the antigen-specific Th1/Th17 response was evaluated by enzyme-linked immunospot (ELISPOT) in spleen and central nervous system (CNS). Also, the extent of spinal cord histopathology was analysed on semi- and ultrathin sections. Our results demonstrate that anti-TNF-α treatment reduced the incidence and delayed the onset of EAE, but had no effect on disease severity once EAE had been established. Whereas anti-TNF-α treatment induced an increase in splenic Th1/Th17 responses, there was no effect on the number of antigen-specific Th1/Th17 cells in the spinal cord. Accordingly, the degree of CNS histopathology was comparable in control and anti-TNF-α-treated mice. In conclusion, while the anti-TNF-α treatment had neither immunosuppressive effects on the Th1/Th17 response in the CNS nor histoprotective properties in EAE, it enhanced the myelin-specific T cell response in the immune periphery. © 2013 British Society for Immunology.

  15. Nitric oxide and redox mechanisms in the immune response

    PubMed Central

    Wink, David A.; Hines, Harry B.; Cheng, Robert Y. S.; Switzer, Christopher H.; Flores-Santana, Wilmarie; Vitek, Michael P.; Ridnour, Lisa A.; Colton, Carol A.

    2011-01-01

    The role of redox molecules, such as NO and ROS, as key mediators of immunity has recently garnered renewed interest and appreciation. To regulate immune responses, these species trigger the eradication of pathogens on the one hand and modulate immunosuppression during tissue-restoration and wound-healing processes on the other. In the acidic environment of the phagosome, a variety of RNS and ROS is produced, thereby providing a cauldron of redox chemistry, which is the first line in fighting infection. Interestingly, fluctuations in the levels of these same reactive intermediates orchestrate other phases of the immune response. NO activates specific signal transduction pathways in tumor cells, endothelial cells, and monocytes in a concentration-dependent manner. As ROS can react directly with NO-forming RNS, NO bioavailability and therefore, NO response(s) are changed. The NO/ROS balance is also important during Th1 to Th2 transition. In this review, we discuss the chemistry of NO and ROS in the context of antipathogen activity and immune regulation and also discuss similarities and differences between murine and human production of these intermediates. PMID:21233414

  16. Contact allergens for armpits--allergenic fragrances specified on deodorants.

    PubMed

    Klaschka, Ursula

    2012-11-01

    According to the so-called "26 allergens rule" 26 supposedly allergenic fragrances must be specified on the containers of cosmetic products if they are present above 0.001% in leave-on products and, 0.01% in rinse-off products. This declaration is meant to inform the consumers of potential risks of skin sensitizers in the products. As many consumers of deodorants suffer from allergic or irritant contact dermatitis in the axillae, the presence of allergens in deodorants deserves special attention. The objective of this study was to find answers to the following questions: Does compulsory labeling lead to omission of strong allergenic fragrances in deodorants? Is there a difference in the use patterns of strong and weak allergens? What is the quantitative exposure to fragrances by deodorants? Is the situation in Germany different from other European countries? Is there a difference between deodorants for men and for women? I tested the implementation of the "26 allergens rule" and compiled which allergenic fragrances are specified on the containers of deodorants. Three market studies were conducted in Germany in 2008, 2010 and 2011. The labels of a total number of 374 deodorants were analyzed as to whether any of the "26 allergens" were listed. The frequency of each allergen in the deodorants was compared with results from previous studies by other authors. It was found that up to 83% of the deodorants contain at least one of the "26 allergens" and that up to 30% of all products contain strong allergens above the threshold for labeling (0.001% in the product). The most frequently listed allergens are medium or weak allergens. In comparison with other authors, the frequency of the "26 allergens" in products is slightly smaller in these recent studies for the German market. There is no significant difference between deodorants for men and women, as far as the labeling of the "26 allergens" is concerned. The results show that the mandatory labeling procedure as designed

  17. CARs: Driving T-cell specificity to enhance anti-tumor immunity

    PubMed Central

    Kebriaei, Partow; Kelly, Susan S.; Manuri, Pallavi; Jena, Bipulendu; Jackson, Rineka; Shpall, Elizabeth; Champlin, Richard; Cooper, Laurence J. N.

    2013-01-01

    Adoptive transfer of antigen-specific T cells is a compelling tool to treat cancer. To overcome issues of immune tolerance which limits the endogenous adaptive immune response to tumor-associated antigens, robust systems for the genetic modification and characterization of T cells expressing chimeric antigen receptors (CARs) to redirect specificity have been produced. Refinements with regards to persistence and trafficking of the genetically modified T cells are underway to help improve the potency of genetically modified T cells. Clinical trials utilizing this technology demonstrate feasibility, and increasingly, antitumor activity, paving the way for multi-center trials to establish the efficacy of this novel T-cell therapy. PMID:22202074

  18. Immunization of neonatal mice with LAMP/p55 HIV gag DNA elicits robust immune responses that last to adulthood

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ordonhez Rigato, Paula; Maciel, Milton; Goldoni, Adriana Leticia

    2010-10-10

    Successful T cell priming in early postnatal life that can generate effective long-lasting responses until adulthood is critical in HIV vaccination strategies because it prevents early sexual initiation and breastfeeding transmission of HIV. A chimeric DNA vaccine encoding p55 HIV gag associated with lysosome-associated membrane protein 1 (LAMP-1; which drives the antigen to the MIIC compartment), has been used to enhance cellular and humoral antigen-specific responses in adult mice and macaques. Herein, we investigated LAMP-1/gag vaccine immunogenicity in the neonatal period in mice and its ability to generate long-lasting effects. Neonatal vaccination with chimeric LAMP/gag generated stronger Gag-specific immune responses,more » as measured by the breadth of the Gag peptide-specific IFN-{gamma}, proliferative responsiveness, cytokine production and antibody production, all of which revealed activation of CD4+ T cells as well as the generation of a more robust CTL response compared to gag vaccine alone. To induce long-lived T and B cell memory responses, it was necessary to immunize neonates with the chimeric LAMP/gag DNA vaccine. The LAMP/gag DNA vaccine strategy could be particularly useful for generating an anti-HIV immune response in the early postnatal period capable of inducing long-term immunological memory.« less

  19. The allergens of Schistosoma mansoni

    PubMed Central

    Harris, W. G.

    1973-01-01

    Ten antigen fractions were prepared from adult Schistosoma mansoni by extraction into borate-buffered saline, precipitation at pH 4.6 and separation on Sephadex G-100. The allergic activity of these antigens was assayed by a modified Prausnitz—Kustner type reaction in rats; this test system was found to be sensitive and consistent, allowing differences in allergenicity between antigens to be accurately assessed. Skin-reactivity was detected in both acid-soluble and acid-insoluble fractions. Specific allergenicity was located in peak 3 of a G-100 separation of the acid-soluble fraction and in peaks 1 and 2 of a G-100 separation of the acid-insoluble fraction suggesting that the allergens of S. mansoni were of at least two types: (1) a protein of mol. wt above 150,000 precipitated at pH 4.6, and (2) a protein of mol. wt 20–30,000 remaining in solution at this pH. It is suggested that both these allergens are glycoproteins. Non-specific histamine-releasing agents were found in peak 1 of the G-100 separation of the acid-soluble material. ImagesFIG. 1 PMID:4122335

  20. Evaluation of humoral, mucosal, and cellular immune responses following co-immunization of HIV-1 Gag and Env proteins expressed by Newcastle disease virus

    PubMed Central

    Khattar, Sunil K; Palaniyandi, Senthilkumar; Samal, Sweety; LaBranche, Celia C; Montefiori, David C; Zhu, Xiaoping; Samal, Siba K

    2015-01-01

    The combination of multiple HIV antigens in a vaccine can broaden antiviral immune responses. In this study, we used NDV vaccine strain LaSota to generate rNDV (rLaSota/optGag) expressing human codon optimized p55 Gag protein of HIV-1. We examined the effect of co-immunization of rLaSota/optGag with rNDVs expressing different forms of Env protein gp160, gp120, gp140L [a version of gp140 that lacked cytoplasmic tail and contained complete membrane-proximal external region (MPER)] and gp140S (a version of gp140 that lacked cytoplasmic tail and distal half of MPER) on magnitude and breadth of humoral, mucosal and cellular immune responses in guinea pigs and mice. Our results showed that inclusion of rLaSota/optGag with rNDVs expressing different forms of Env HIV Gag did not affect the Env-specific humoral and mucosal immune responses in guinea pigs and that the potent immune responses generated against Env persisted for at least 13 weeks post immunization. The highest Env-specific humoral and mucosal immune responses were observed with gp140S+optGag group. The neutralizing antibody responses against HIV strains BaL.26 and MN.3 induced by gp140S+optGag and gp160+optGag were higher than those elicited by other groups. Inclusion of Gag with gp160, gp140S and gp140L enhanced the level of Env-specific IFN-γ-producing CD8+ T cells in mice. Inclusion of Gag with gp160 and gp140L also resulted in increased Env-specific CD4+ T cells. The level of Gag-specific CD8+ and CD4+ T cells was also enhanced in mice immunized with Gag along with gp140S and gp120. These results indicate lack of antigen interference in a vaccine containing rNDVs expressing Env and Gag proteins. PMID:25695657

  1. Bet v 1-specific T-cell receptor/forkhead box protein 3 transgenic T cells suppress Bet v 1-specific T-cell effector function in an activation-dependent manner.

    PubMed

    Schmetterer, Klaus G; Haiderer, Daniela; Leb-Reichl, Victoria M; Neunkirchner, Alina; Jahn-Schmid, Beatrice; Küng, Hans J; Schuch, Karina; Steinberger, Peter; Bohle, Barbara; Pickl, Winfried F

    2011-01-01

    Regulatory T (Treg) cells establish and maintain tolerance to self-antigens and many foreign antigens, such as allergens, by suppressing effector T-cell proliferation and function. We have previously shown that human T-cell receptor (TCR) αβ-chains specific for allergen-derived epitopes confer allergen specificity on peripheral blood T cells of individuals with and without allergy. To study the feasibility of generating allergen-specific human Treg cells by retroviral transduction of a transcription unit encoding forkhead box protein 3 (FOXP3) and allergen-specific TCR αβ-chains. cDNAs encoding the α and β-chains of a Bet v 1(142-153)-specific TCR (TCR alpha variable region 6/TCR beta variable region 20) and human FOXP3 were linked via picornaviral 2A sequences and expressed as single translational unit from an internal ribosomal entry site-green fluorescence protein-containing retroviral vector. Retrovirally transduced peripheral blood T cells were tested for expression of transgenes, Treg phenotype, and regulatory capacity toward allergen-specific effector T cells. Transduced T cells displayed a Treg phenotype with clear-cut upregulation of CD25, CD39, and cytotoxic T-lymphocyte antigen 4. The transduced cells were hyporesponsive in cytokine production and secretion and, like naturally occurring Treg cells, did not proliferate after antigen-specific or antigen-mimetic stimulation. However, proliferation was inducible upon exposure to exogenous IL-2. In coculture experiments, TRAV6(+)TRBV20(+)FOXP3(+) transgenic T cells, unlike FOXP3(+) single transgenic T cells or naturally occurring Treg cells, highly significantly suppressed T cell cytokine production and proliferation of corresponding allergen-specific effector T cells in an allergen-specific, dose-dependent manner. We demonstrate a transgenic approach to engineer human allergen-specific Treg cells that exert their regulatory function in an activation-dependent manner. Customized Treg cells might become

  2. Preserved immune functionality and high CMV-specific T-cell responses in HIV-infected individuals with poor CD4+ T-cell immune recovery.

    PubMed

    Gómez-Mora, Elisabet; García, Elisabet; Urrea, Victor; Massanella, Marta; Puig, Jordi; Negredo, Eugenia; Clotet, Bonaventura; Blanco, Julià; Cabrera, Cecilia

    2017-09-15

    Poor CD4 + T-cell recovery after cART has been associated with skewed T-cell maturation, inflammation and immunosenescence; however, T-cell functionality in those individuals has not been fully characterized. In the present study, we assessed T-cell function by assessing cytokine production after polyclonal, CMV and HIV stimulations of T-cells from ART-suppressed HIV-infected individuals with CD4 + T-cell counts >350 cells/μL (immunoconcordants) or <350 cells/μL (immunodiscordants). A group of HIV-uninfected individuals were also included as controls. Since CMV co-infection significantly affected T-cell maturation and polyfunctionality, only CMV + individuals were analyzed. Despite their reduced and skewed CD4 + T-cell compartment, immunodiscordant individuals showed preserved polyclonal and HIV-specific responses. However, CMV response in immunodiscordant participants was significantly different from immunoconcordant or HIV-seronegative individuals. In immunodiscordant subjects, the magnitude of IFN-γ + CD8 + and IL-2 + CD4 + T-cells in response to CMV was higher and differently associated with the CD4 + T-cell maturation profile., showing an increased frequency of naïve, central memory and EMRA CMV-specific CD4 + T-cells. In conclusion, CD4 + and CD8 + T-cell polyfunctionality was not reduced in immunodiscordant individuals, although heightened CMV-specific immune responses, likely related to subclinical CMV reactivations, may be contributing to the skewed T-cell maturation and the higher risk of clinical progression observed in those individuals.

  3. Leptospirosis in human: Biomarkers in host immune responses.

    PubMed

    Vk, Chin; Ty, Lee; Wf, Lim; Ywy, Wan Shahriman; An, Syafinaz; S, Zamberi; A, Maha

    2018-03-01

    Leptospirosis remains one of the most widespread zoonotic diseases caused by spirochetes of the genus Leptospira, which accounts for high morbidity and mortality globally. Leptospiral infections are often found in tropical and subtropical regions, with people exposed to contaminated environments or animal reservoirs are at high risk of getting the infection. Leptospirosis has a wide range of clinical manifestations with non-specific signs and symptoms and often misdiagnosed with other acute febrile illnesses at early stage of infection. Despite being one of the leading causes of zoonotic morbidity worldwide, there is still a gap between pathogenesis and human immune responses during leptospiral infection. It still remains obscure whether the severity of the infection is caused by the pathogenic properties of the Leptospira itself, or it is a consequence of imbalance host immune factors. Hence, in this review, we seek to summarize the past and present milestone findings on the biomarkers of host immune response aspects during human leptospiral infection, including cytokine and other immune mediators. A profound understanding of the interlink between virulence factors and host immune responses during human leptospirosis is imperative to identify potential biomarkers for diagnostic and prognostic applications as well as designing novel immunotherapeutic strategies in future. Copyright © 2017 Elsevier GmbH. All rights reserved.

  4. Strain difference in the immune response to hydralazine in inbred guinea-pigs

    PubMed Central

    Ellman, L.; Inman, J.; Green, Ira

    1971-01-01

    Guinea-pigs were immunized with hydralazine in Freund's complete adjuvant. A marked strain difference in the immune response involving both anti-hydralazine antibody and delayed hypersensitivity to hydralazine was observed in different strains of guinea-pigs: Hartley guinea-pigs and inbred strain 13 guinea-pigs were able to mount a vigorous immune response to the drug while inbred strain 2 guinea-pigs appeared to be `low or non-responders'. This difference could not be explained in terms of metabolism of the drug in that no differences in acetylation were observed. Breeding studies suggest that immune responsiveness to hydralazine is inherited in an autosomal dominant manner. The immune response to hydralazine may be controlled by a `specific immune response gene' which appears not to be linked to the major strain 13 histocompatibility gene. Anti-nuclear and anti-DNA antibodies could not be demonstrated at a time when the animals manifested a strong immune response to hydralazine. Thus, the development of auto-immune phenomena does not appear to be related to the development of an immune response to the drug in short term immunization. Hydralazine-protein conjugates were synthesized, radio-iodinated and used in a Farr technique for the measurement of anti-hydralazine antibody. These techniques for the assay of anti-hydralazine antibodies may be useful in clinical investigations. Imagesp933-a PMID:5316639

  5. Integrative proteomics, genomics, and translational immunology approaches reveal mutated forms of Proteolipid Protein 1 (PLP1) and mutant-specific immune response in multiple sclerosis.

    PubMed

    Qendro, Veneta; Bugos, Grace A; Lundgren, Debbie H; Glynn, John; Han, May H; Han, David K

    2017-03-01

    In order to gain mechanistic insights into multiple sclerosis (MS) pathogenesis, we utilized a multi-dimensional approach to test the hypothesis that mutations in myelin proteins lead to immune activation and central nervous system autoimmunity in MS. Mass spectrometry-based proteomic analysis of human MS brain lesions revealed seven unique mutations of PLP1; a key myelin protein that is known to be destroyed in MS. Surprisingly, in-depth genomic analysis of two MS patients at the genomic DNA and mRNA confirmed mutated PLP1 in RNA, but not in the genomic DNA. Quantification of wild type and mutant PLP RNA levels by qPCR further validated the presence of mutant PLP RNA in the MS patients. To seek evidence linking mutations in abundant myelin proteins and immune-mediated destruction of myelin, specific immune response against mutant PLP1 in MS patients was examined. Thus, we have designed paired, wild type and mutant peptide microarrays, and examined antibody response to multiple mutated PLP1 in sera from MS patients. Consistent with the idea of different patients exhibiting unique mutation profiles, we found that 13 out of 20 MS patients showed antibody responses against specific but not against all the mutant-PLP1 peptides. Interestingly, we found mutant PLP-directed antibody response against specific mutant peptides in the sera of pre-MS controls. The results from integrative proteomic, genomic, and immune analyses reveal a possible mechanism of mutation-driven pathogenesis in human MS. The study also highlights the need for integrative genomic and proteomic analyses for uncovering pathogenic mechanisms of human diseases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Toll immune signal activates cellular immune response via eicosanoids.

    PubMed

    Shafeeq, Tahir; Ahmed, Shabbir; Kim, Yonggyun

    2018-07-01

    Upon immune challenge, insects recognize nonself. The recognition signal will propagate to nearby immune effectors. It is well-known that Toll signal pathway induces antimicrobial peptide (AMP) gene expression. Eicosanoids play crucial roles in mediating the recognition signal to immune effectors by enhancing humoral immune response through activation of AMP synthesis as well as cellular immune responses, suggesting a functional cross-talk between Toll and eicosanoid signals. This study tested a cross-talk between these two signals. Two signal transducing factors (MyD88 and Pelle) of Toll immune pathway were identified in Spodoptera exigua. RNA interference (RNAi) of either SeMyD88 or SePelle expression interfered with the expression of AMP genes under Toll signal pathway. Bacterial challenge induced PLA 2 enzyme activity. However, RNAi of these two immune factors significantly suppressed the induction of PLA 2 enzyme activity. Furthermore, RNAi treatment prevented gene expression of cellular PLA 2 . Inhibition of PLA 2 activity reduced phenoloxidase activity and subsequent suppression in cellular immune response measured by hemocyte nodule formation. However, immunosuppression induced by RNAi of Toll signal molecules was significantly reversed by addition of arachidonic acid (AA), a catalytic product of PLA 2 . The addition also significantly reduced the enhanced fungal susceptibility of S. exigua treated by RNAi against two Toll signal molecules. These results indicate that there is a cross-talk between Toll and eicosanoid signals in insect immunity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Nasal Immunization Confers High Avidity Neutralizing Antibody Response and Immunity to Primary and Recurrent Genital Herpes in Guinea Pigs

    PubMed Central

    Persson, Josefine; Zhang, Yuan; Olafsdottir, Thorunn A.; Thörn, Karolina; Cairns, Tina M.; Wegmann, Frank; Sattentau, Quentin J.; Eisenberg, Roselyn J.; Cohen, Gary H.; Harandi, Ali M.

    2016-01-01

    Genital herpes is one of the most prevalent sexually transmitted infections in both the developing and developed world. Following infection, individuals experience life-long latency associated with sporadic ulcerative outbreaks. Despite many efforts, no vaccine has yet been licensed for human use. Herein, we demonstrated that nasal immunization with an adjuvanted HSV-2 gD envelope protein mounts significant protection to primary infection as well as the establishment of latency and recurrent genital herpes in guinea pigs. Nasal immunization was shown to elicit specific T cell proliferative and IFN-γ responses as well as systemic and vaginal gD-specific IgG antibody (Ab) responses. Furthermore, systemic IgG Abs displayed potent HSV-2 neutralizing properties and high avidity. By employing a competitive surface plasmon resonance (SPR) analysis combined with a battery of known gD-specific neutralizing monoclonal Abs (MAbs), we showed that nasal immunization generated IgG Abs directed to two major discontinuous neutralizing epitopes of gD. These results highlight the potential of nasal immunization with an adjuvanted HSV-2 envelope protein for induction of protective immunity to primary and recurrent genital herpes. PMID:28082979

  8. Nasal Immunization Confers High Avidity Neutralizing Antibody Response and Immunity to Primary and Recurrent Genital Herpes in Guinea Pigs.

    PubMed

    Persson, Josefine; Zhang, Yuan; Olafsdottir, Thorunn A; Thörn, Karolina; Cairns, Tina M; Wegmann, Frank; Sattentau, Quentin J; Eisenberg, Roselyn J; Cohen, Gary H; Harandi, Ali M

    2016-01-01

    Genital herpes is one of the most prevalent sexually transmitted infections in both the developing and developed world. Following infection, individuals experience life-long latency associated with sporadic ulcerative outbreaks. Despite many efforts, no vaccine has yet been licensed for human use. Herein, we demonstrated that nasal immunization with an adjuvanted HSV-2 gD envelope protein mounts significant protection to primary infection as well as the establishment of latency and recurrent genital herpes in guinea pigs. Nasal immunization was shown to elicit specific T cell proliferative and IFN-γ responses as well as systemic and vaginal gD-specific IgG antibody (Ab) responses. Furthermore, systemic IgG Abs displayed potent HSV-2 neutralizing properties and high avidity. By employing a competitive surface plasmon resonance (SPR) analysis combined with a battery of known gD-specific neutralizing monoclonal Abs (MAbs), we showed that nasal immunization generated IgG Abs directed to two major discontinuous neutralizing epitopes of gD. These results highlight the potential of nasal immunization with an adjuvanted HSV-2 envelope protein for induction of protective immunity to primary and recurrent genital herpes.

  9. Monitoring for airborne allergens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burge, H.A.

    1992-07-01

    Monitoring for allergens can provide some information on the kinds and levels of exposure experienced by local patient populations, providing volumetric methods are used for sample collection and analysis is accurate and consistent. Such data can also be used to develop standards for the specific environment and to begin to develop predictive models. Comparing outdoor allergen aerosols between different monitoring sites requires identical collection and analysis methods and some kind of rational standard, whether arbitrary, or based on recognized health effects.32 references.

  10. Effects of effluent from electoplating industry on the immune response in the freshwater fish, Cyprinus carpio.

    PubMed

    Borgia, V J Florence; Thatheyus, A J; Murugesan, A G; Alexander, S Catherine P; Geetha, I

    2018-08-01

    The present study was designed to assess the effect of sublethal concentrations of electoplating industry effluent (EIE) on the non-specific and specific immune responses in the freshwater fish, Cyprinus carpio. Sublethal concentrations of electroplating industry effluent such as 0.004, 0.007, 0.010 and 0.013% were chosen based on the LC 50 values. Experimental fish were exposed to these sublethal concentrations of EIE for 28 days. After 7, 14, 21 and 28 days of treatment, non-specific immune response by serum lysozyme activity, myeloperoxidase activity and antiprotease activity and specific immune response by antibody response to Aeromonas hydrophila using bacterial agglutination assay and ELISA were assessed. The results showed that chronic exposure of fish to 0.004, 0.007, 0.010 and 0.013% EIE, dose-dependently decreased the non-specific and specific immune responses on all the days tested compared to control fish whereas statistically significant suppressive effects were observed in fish exposed to 0.013% of EIE on all activities tested. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Respiratory tract immune response to microbial pathogens.

    PubMed

    Wilkie, B N

    1982-11-15

    Effective resistance to respiratory tract infection depends principally on specific immunity on mucosal surfaces of the upper or lower respiratory tract. Respiratory tract immune response comprises antibody and cell-mediated systems and may be induced most readily by surface presentation of replicating agents but can result from parenteral or local presentation of highly immunogenic antigens. Upper and lower respiratory tract systems differ in immunologic competence, with the lungs having a greater inventory of protective mechanisms than the trachea or nose. Several effective vaccines have been developed for prevention or modification of respiratory tract diseases.

  12. The dichotomy of pathogens and allergens in vaccination approaches

    PubMed Central

    Baird, Fiona J.; Lopata, Andreas L.

    2014-01-01

    Traditional prophylactic vaccination to prevent illness is the primary objective of many research activities worldwide. The golden age of vaccination began with an approach called variolation in ancient China and the evolution of vaccines still continues today with modern developments such as the production of GardasilTM against HPV and cervical cancer. The historical aspect of how different forms of vaccination have changed the face of medicine and communities is important as it dictates our future approaches on both a local and global scale. From the eradication of smallpox to the use of an experimental vaccine to save a species, this review will explore these successes in infectious disease vaccination and also discuss a few significant failures which have hampered our efforts to eradicate certain diseases. The second part of the review will explore designing a prophylactic vaccine for the growing global health concern that is allergy. Allergies are an emerging global health burden. Of particular concern is the rise of food allergies in developed countries where 1 in 10 children is currently affected. The formation of an allergic response results from the recognition of a foreign component by our immune system that is usually encountered on a regular basis. This may be a dust-mite or a prawn but this inappropriate immune response can result in a life-time of food avoidance and lifestyle restrictions. These foreign components are very similar to antigens derived from infectious pathogens. The question arises: should the allergy community be focussing on protective measures rather than ongoing therapeutic interventions to deal with these chronic inflammatory conditions? We will explore the difficulties and benefits of prophylactic vaccination against various allergens by means of genetic technology that will dictate how vaccination against allergens could be utilized in the near future. PMID:25076945

  13. Interactions between Innate Lymphoid Cells and Cells of the Innate and Adaptive Immune System

    PubMed Central

    Symowski, Cornelia; Voehringer, David

    2017-01-01

    Type 2 innate lymphoid cells (ILC2s) are a major source of cytokines, which are also produced by Th2 cells and several cell types of the innate immune system. Work over the past few years indicates that ILC2s play a central role in regulating type 2 immune responses against allergens and helminths. ILC2s can interact with a variety of cells types of the innate and adaptive immune system by cell–cell contacts or by communication via soluble factors. In this review, we provide an overview about recent advances in our understanding how ILC2s orchestrate type 2 immune responses with focus on direct interactions between ILC2s and other cells of the immune system. PMID:29163497

  14. Interactions between Innate Lymphoid Cells and Cells of the Innate and Adaptive Immune System.

    PubMed

    Symowski, Cornelia; Voehringer, David

    2017-01-01

    Type 2 innate lymphoid cells (ILC2s) are a major source of cytokines, which are also produced by Th2 cells and several cell types of the innate immune system. Work over the past few years indicates that ILC2s play a central role in regulating type 2 immune responses against allergens and helminths. ILC2s can interact with a variety of cells types of the innate and adaptive immune system by cell-cell contacts or by communication via soluble factors. In this review, we provide an overview about recent advances in our understanding how ILC2s orchestrate type 2 immune responses with focus on direct interactions between ILC2s and other cells of the immune system.

  15. Characterization of modified allergen extracts by in vitro beta-hexosaminidase release from rat basophils.

    PubMed

    Gehlhar, Kirsten; Peters, Marcus; Brockmann, Kirsten; van Schijndel, Hans; Bufe, Albrecht

    2005-04-01

    To date, there is no well-established test available that can be used to measure functional properties of modified allergens (allergoids). Due to the cross-linking process, the IgE-binding capacity of the allergens, normally necessary for their characterization, is lost. The aim of this study was to test whether the rat basophilic leukaemia (RBL) cell assay (beta-hexosaminidase release by rat basophils upon allergen stimulation) can be adopted to characterize allergoids and to evaluate the assay for testing allergoids and native allergens as well. Mice were immunized with native and modified Phleumpratense extracts in the presence of alum. Their sera were used to sensitize RBL-2H3 cells and measure basophil stimulation induced by different allergen extracts in the presence or absence of various additives. Sera containing specific IgE against both extract formulations were obtained. Native as well as modified extracts induced dose-dependent beta-hexosaminidase release from RBL cells. Both extracts were used to evaluate the characteristics of the assay, which showed high precision. Storage conditions were chosen to enhance extract degradation, which could be read directly from the altered stimulatory capacity of the extracts. Additives turned out to have diverse effects on the assay, whereas phenol had no measurable effect, alum had an inhibitory effect and glycerol elevated basophil activation. For the first time, a reliable, precise in vitro assay is available that is able to directly measure the properties of modified allergen extracts after their production process. The test is well evaluated and its advantages and limitations are discussed in this report. Copyright (c) 2005 S. Karger AG, Basel

  16. Intranasal immunization with protective antigen of Bacillus anthracis induces a long-term immunological memory response.

    PubMed

    Woo, Sun-Je; Kang, Seok-Seong; Park, Sung-Moo; Yang, Jae Seung; Song, Man Ki; Yun, Cheol-Heui; Han, Seung Hyun

    2015-10-01

    Although intranasal vaccination has been shown to be effective for the protection against inhalational anthrax, establishment of long-term immunity has yet to be achieved. Here, we investigated whether intranasal immunization with recombinant protective antigen (rPA) of Bacillus anthracis induces immunological memory responses in the mucosal and systemic compartments. Intranasal immunization with rPA plus cholera toxin (CT) sustained PA-specific antibody responses for 6 months in lung, nasal washes, and vaginal washes as well as serum. A significant induction of PA-specific memory B cells was observed in spleen, cervical lymph nodes (CLNs) and lung after booster immunization. Furthermore, intranasal immunization with rPA plus CT remarkably generated effector memory CD4(+) T cells in the lung. PA-specific CD4(+) T cells preferentially increased the expression of Th1- and Th17-type cytokines in lung, but not in spleen or CLNs. Collectively, the intranasal immunization with rPA plus CT promoted immunologic memory responses in the mucosal and systemic compartments, providing long-term immunity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. New structural information on food allergens (abstract)

    USDA-ARS?s Scientific Manuscript database

    A small number of protein families are responsible for food allergies suffered by the majority of allergy patients. What properties of these proteins make them allergens is not clear at present. Reliable methods for allergen prediction and mitigation are lacking. Most the immediate type of food alle...

  18. Current overview of allergens of plant pathogenesis related protein families.

    PubMed

    Sinha, Mau; Singh, Rashmi Prabha; Kushwaha, Gajraj Singh; Iqbal, Naseer; Singh, Avinash; Kaushik, Sanket; Kaur, Punit; Sharma, Sujata; Singh, Tej P

    2014-01-01

    Pathogenesis related (PR) proteins are one of the major sources of plant derived allergens. These proteins are induced by the plants as a defense response system in stress conditions like microbial and insect infections, wounding, exposure to harsh chemicals, and atmospheric conditions. However, some plant tissues that are more exposed to environmental conditions like UV irradiation and insect or fungal attacks express these proteins constitutively. These proteins are mostly resistant to proteases and most of them show considerable stability at low pH. Many of these plant pathogenesis related proteins are found to act as food allergens, latex allergens, and pollen allergens. Proteins having similar amino acid sequences among the members of PR proteins may be responsible for cross-reactivity among allergens from diverse plants. This review analyzes the different pathogenesis related protein families that have been reported as allergens. Proteins of these families have been characterized in regard to their biological functions, amino acid sequence, and cross-reactivity. The three-dimensional structures of some of these allergens have also been evaluated to elucidate the antigenic determinants of these molecules and to explain the cross-reactivity among the various allergens.

  19. Allergen screening bioassays: recent developments in lab-on-a-chip and lab-on-a-disc systems.

    PubMed

    Ho, Ho-pui; Lau, Pui-man; Kwok, Ho-chin; Wu, Shu-yuen; Gao, Minghui; Cheung, Anthony Ka-lun; Chen, Qiulan; Wang, Guanghui; Kwan, Yiu-wa; Wong, Chun-kwok; Kong, Siu-kai

    2014-01-01

    Allergies occur when a person's immune system mounts an abnormal response with or without IgE to a normally harmless substance called an allergen. The standard skin-prick test introduces suspected allergens into the skin with lancets in order to trigger allergic reactions. This test is annoying and sometimes life threatening. New tools such as lab-on-a-chip and lab-on-a-disc, which rely on microfabrication, are designed for allergy testing. These systems provide benefits such as short analysis times, enhanced sensitivity, simplified procedures, minimal consumption of sample and reagents and low cost. This article gives a summary of these systems. In particular, a cell-based assay detecting both the IgE- and non-IgE-type triggers through the study of degranulation in a centrifugal microfluidic system is highlighted.

  20. Acquired immunity to amyloodiniosis is associated with an antibody response.

    PubMed

    Cobb, C S; Levy, M G; Noga, E J

    1998-10-08

    The dinoflagellate Amyloodinium ocellatum, which causes amyloodiniosis or 'marine velvet disease', is one of the most serious ectoparasitic diseases plaguing warmwater marine fish culture worldwide. We report that tomato clownfish Amphiprion frenatus develop strong immunity to Amyloodinium ocellatum infection following repeated nonlethal challenges and that specific antibodies are associated with this response. Reaction of immune fish antisera against dinospore and trophont-derived antigens in Western blots indicated both shared and stage-specific antibody-antigen reactions. A mannan-binding-protein affinity column was used to isolate IgM-like antibody from A. frenatus serum. The reduced Ig consisted of one 70 kD heavy chain and one 32 kD light chain with an estimated molecular weight of 816 kD for the native molecule. Immunoglobulin (Ig) isolated from immune but not non-immune fish serum significantly inhibited parasite infectivity in vitro. An enzyme-linked immunosorbent assay (ELISA) was developed using polyclonal rabbit antibody produced against affinity-purified A. frenatus Ig. Anti-Amyloodinium serum antibody was not always detectable in immune fish, although serum antibody titers in immune fish increased after repeated exposure to the parasite. These results suggest that there may be a localized antibody response in skin/gill epithelial tissue, although antibody was rarely detected in skin mucus.