Science.gov

Sample records for allergenic proteins sdap

  1. Characteristic motifs for families of allergenic proteins

    PubMed Central

    Ivanciuc, Ovidiu; Garcia, Tzintzuni; Torres, Miguel; Schein, Catherine H.; Braun, Werner

    2008-01-01

    The identification of potential allergenic proteins is usually done by scanning a database of allergenic proteins and locating known allergens with a high sequence similarity. However, there is no universally accepted cut-off value for sequence similarity to indicate potential IgE cross-reactivity. Further, overall sequence similarity may be less important than discrete areas of similarity in proteins with homologous structure. To identify such areas, we first classified all allergens and their subdomains in the Structural Database of Allergenic Proteins (SDAP, http://fermi.utmb.edu/SDAP/) to their closest protein families as defined in Pfam, and identified conserved physicochemical property motifs characteristic of each group of sequences. Allergens populate only a small subset of all known Pfam families, as all allergenic proteins in SDAP could be grouped to only 130 (of 9318 total) Pfams, and 31 families contain more than four allergens. Conserved physicochemical property motifs for the aligned sequences of the most populated Pfam families were identified with the PCPMer program suite and catalogued in the webserver Motif-Mate (http://born.utmb.edu/motifmate/summary.php). We also determined specific motifs for allergenic members of a family that could distinguish them from non-allergenic ones. These allergen specific motifs should be most useful in database searches for potential allergens. We found that sequence motifs unique to the allergens in three families (seed storage proteins, Bet v 1, and tropomyosin) overlap with known IgE epitopes, thus providing evidence that our motif based approach can be used to assess the potential allergenicity of novel proteins. PMID:18951633

  2. AllerML: markup language for allergens.

    PubMed

    Ivanciuc, Ovidiu; Gendel, Steven M; Power, Trevor D; Schein, Catherine H; Braun, Werner

    2011-06-01

    Many concerns have been raised about the potential allergenicity of novel, recombinant proteins into food crops. Guidelines, proposed by WHO/FAO and EFSA, include the use of bioinformatics screening to assess the risk of potential allergenicity or cross-reactivities of all proteins introduced, for example, to improve nutritional value or promote crop resistance. However, there are no universally accepted standards that can be used to encode data on the biology of allergens to facilitate using data from multiple databases in this screening. Therefore, we developed AllerML a markup language for allergens to assist in the automated exchange of information between databases and in the integration of the bioinformatics tools that are used to investigate allergenicity and cross-reactivity. As proof of concept, AllerML was implemented using the Structural Database of Allergenic Proteins (SDAP; http://fermi.utmb.edu/SDAP/) database. General implementation of AllerML will promote automatic flow of validated data that will aid in allergy research and regulatory analysis.

  3. Allergen

    MedlinePlus

    Common allergens include: Animal proteins and animal dander Dust Drugs (such as antibiotics or medicines you put on your skin) Foods (such as egg, peanut, milk, nuts, soy, fish, animal meat, and wheat) Fungal spores ...

  4. Allergenic proteins of natural rubber latex.

    PubMed

    Yeang, H Y; Arif, Siti Arija M; Yusof, Faridah; Sunderasan, E

    2002-05-01

    As the living cytoplasm of laticiferous cells, Hevea brasiliensis latex is a rich blend of organic substances that include a mélange of proteins. A small number of these proteins have given rise to the problem of latex allergy. The salient characteristics of H. brasiliensis latex allergens that are recognized by the International Union of Immunological Societies (IUIS) are reviewed. These are the proteins associated with the rubber particles, the cytosolic C-serum proteins and the B-serum proteins that originate mainly from the lutoids. Procedures for the isolation and purification of latex allergens are discussed, from latex collection in the field to various preparative approaches adopted in the laboratory. As interest in recombinant latex allergens increases, there is a need to validate recombinant proteins to ascertain equivalence with their native counterparts when used in immunological studies, diagnostics, and immunotherapy.

  5. Toxicology of protein allergenicity: prediction and characterization.

    PubMed

    Kimber, I; Kerkvliet, N I; Taylor, S L; Astwood, J D; Sarlo, K; Dearman, R J

    1999-04-01

    The ability of exogenous proteins to cause respiratory and gastrointestinal allergy, and sometimes systemic anaphylactic reactions, is well known. What is not clear however, are the properties that confer on proteins the ability to induce allergic sensitization. With an expansion in the use of enzymes for industrial applications and consumer products, and a substantial and growing investment in the development of transgenic crop plants that express novel proteins introduced from other sources, the issue of protein allergenicity has assumed considerable toxicological significance. There is a need now for methods that will allow the accurate identification and characterization of potential protein allergens and for estimation of relative potency as a first step towards risk assessment. To address some of these issues, and to review progress that has been made in the toxicological investigation of respiratory and gastrointestinal allergy induced by proteins, a workshop, entitled the Toxicology of Protein Allergenicity: Prediction and Characterization, was convened at the 37th Annual Conference of the Society of Toxicology in Seattle, Washington (1998). The subject of protein allergenicity is considered here in the context of presentations made at that workshop.

  6. Protein and allergen content of various natural latex articles.

    PubMed

    Baur, X; Chen, Z; Raulf-Heimsoth, M; Degens, P

    1997-06-01

    Proteins remaining in products made of natural rubber latex are potential sensitizers. In the present work, we quantified the releasable protein and allergen contents in 37 brands of latex gloves and 26 other latex products. Our results demonstrate the presence of widely varied protein and allergen contents in various latex articles and the lack of a correlation between the protein and allergen values. These findings may assist hospital management and medical staff to take effective preventive measures.

  7. Current Overview of Allergens of Plant Pathogenesis Related Protein Families

    PubMed Central

    Sinha, Mau; Singh, Rashmi Prabha; Kushwaha, Gajraj Singh; Iqbal, Naseer; Singh, Avinash; Kaushik, Sanket; Sharma, Sujata; Singh, Tej P.

    2014-01-01

    Pathogenesis related (PR) proteins are one of the major sources of plant derived allergens. These proteins are induced by the plants as a defense response system in stress conditions like microbial and insect infections, wounding, exposure to harsh chemicals, and atmospheric conditions. However, some plant tissues that are more exposed to environmental conditions like UV irradiation and insect or fungal attacks express these proteins constitutively. These proteins are mostly resistant to proteases and most of them show considerable stability at low pH. Many of these plant pathogenesis related proteins are found to act as food allergens, latex allergens, and pollen allergens. Proteins having similar amino acid sequences among the members of PR proteins may be responsible for cross-reactivity among allergens from diverse plants. This review analyzes the different pathogenesis related protein families that have been reported as allergens. Proteins of these families have been characterized in regard to their biological functions, amino acid sequence, and cross-reactivity. The three-dimensional structures of some of these allergens have also been evaluated to elucidate the antigenic determinants of these molecules and to explain the cross-reactivity among the various allergens. PMID:24696647

  8. Allergenicity assessment strategy for novel food proteins and protein sources.

    PubMed

    Verhoeckx, Kitty; Broekman, Henrike; Knulst, André; Houben, Geert

    2016-08-01

    To solve the future food insecurity problem, alternative and sustainable protein sources (e.g. insects, rapeseed, fava bean and algae) are now being explored for the production of food and feed. To approve these novel protein sources for future food a comprehensive risk assessment is needed according to the European food legislation. Allergenicity risk assessment might pose some major difficulties, since detailed guidance on how to assess the allergenic potential of novel foods is not available. At present, the approach relies mostly on the guidance of allergenicity assessment for genetically modified (GM) plant foods. The most recent one was proposed by EFSA (2010 and 2011); "weight-of-evidence approach". However this guidance is difficult to interpret, not completely applicable or validated for novel foods and therefore needs some adjustments. In this paper we propose a conceptual strategy which is based on the "weight-of-evidence approach" for food derived from GM plants and other strategies that were previously published in the literature. This strategy will give more guidance on how to assess the allergenicity of novel food proteins and protein sources.

  9. Current codex guidelines for assessment of potential protein allergenicity.

    PubMed

    Ladics, G S

    2008-10-01

    A rigorous safety assessment process exists for GM crops. It includes evaluation of the introduced protein as well as the crop containing such protein with the goal of demonstrating the GM crop is "as-safe-as" non-transgenic crops in the food supply. One of the major issues for GM crops is the assessment of the expressed protein for allergenic potential. Currently, no single factor is recognized as an identifier for protein allergenicity. Therefore, a weight-of-evidence approach, which takes into account a variety of factors and approaches for an overall assessment of allergenic potential, is conducted [Codex Alimentarious Commission, 2003. Alinorm 03/34: Joint FAO/WHO Food Standard Programme, Codex Alimentarious Commission, Twenty-Fifth Session, Rome, Italy, 30 June-5 July, 2003. Appendix III, Guideline for the conduct of food safety assessment of foods derived from recombinant-DNA plants, and Appendix IV, Annex on the assessment of possible allergenicity, pp. 47-60]. This assessment is based on what is known about allergens, including the history of exposure and safety of the gene(s) source; protein structure (e.g., amino acid sequence identity to human allergens); stability to pepsin digestion in vitro [Thomas, K. et al., 2004. A multi-laboratory evaluation of a common in vitro pepsin digestion assay protocol used in assessing the safety of novel proteins. Regul. Toxicol. Pharmacol. 39, 87-98]; an estimate of exposure of the novel protein(s) to the gastrointestinal tract where absorption occurs (e.g., protein abundance in the crop, processing effects); and when appropriate, specific IgE binding studies or skin prick testing. Additional approaches may be considered (e.g., animal models; targeted sera screening) as the science evolves; however, such approaches have not been thoroughly evaluated or validated for predicting protein allergenicity.

  10. A Protein Allergen Microarray Detects Specific IgE to Pollen Surface, Cytoplasmic, and Commercial Allergen Extracts

    PubMed Central

    Vigh-Conrad, Katinka A.; Conrad, Donald F.; Preuss, Daphne

    2010-01-01

    Background Current diagnostics for allergies, such as skin prick and radioallergosorbent tests, do not allow for inexpensive, high-throughput screening of patients. Additionally, extracts used in these methods are made from washed pollen that lacks pollen surface materials that may contain allergens. Methodology/Principal Findings We sought to develop a high-throughput assay to rapidly measure allergen-specific IgE in sera and to explore the relative allergenicity of different pollen fractions (i.e. surface, cytoplasmic, commercial extracts). To do this, we generated a protein microarray containing surface, cytoplasmic, and commercial extracts from 22 pollen species, commercial extracts from nine non-pollen allergens, and five recombinant allergenic proteins. Pollen surface and cytoplasmic fractions were prepared by extraction into organic solvents and aqueous buffers, respectively. Arrays were incubated with <25 uL of serum from 176 individuals and bound IgE was detected by indirect immunofluorescence, providing a high-throughput measurement of IgE. We demonstrated that the allergen microarray is a reproducible method to measure allergen-specific IgE in small amounts of sera. Using this tool, we demonstrated that specific IgE clusters according to the phylogeny of the allergen source. We also showed that the pollen surface, which has been largely overlooked in the past, contained potent allergens. Although, as a class, cytoplasmic fractions obtained by our pulverization/precipitation method were comparable to commercial extracts, many individual allergens showed significant differences. Conclusions/Significance These results support the hypothesis that protein microarray technology is a useful tool for both research and in the clinic. It could provide a more efficient and less painful alternative to traditionally used skin prick tests, making it economically feasible to compare allergen sensitivity of different populations, monitor individual responses over time

  11. 2S Albumin Storage Proteins: What Makes them Food Allergens?

    PubMed Central

    Moreno, F. Javier; Clemente, Alfonso

    2008-01-01

    2S albumin storage proteins are becoming of increasing interest in nutritional and clinical studies as they have been reported as major food allergens in seeds of many mono- and di-cotyledonous plants. This review describes the main biochemical, structural and functional properties of these proteins thought to play a role in determining their potential allergenicity. 2S albumins are considered to sensitize directly via the gastrointestinal tract (GIT). The high stability of their intrinsic protein structure, dominated by a well-conserved skeleton of cysteine residues, to the harsh conditions present in the GIT suggests that these proteins are able to cross the gut mucosal barrier to sensitize the mucosal immune system and/or elicit an allergic response. The flexible and solvent-exposed hypervariable region of these proteins is immunodominant and has the ability to bind IgE from allergic patients´ sera. Several linear IgE-binding epitopes of 2S albumins spanning this region have been described to play a major role in allergenicity; the role of conformational epitopes of these proteins in food allergy is far from being understood and need to be investigated. Finally, the interaction of these proteins with other components of the food matrix might influence the absorption rates of immunologically reactive 2S albumins but also in their immune response. PMID:18949071

  12. Thresholds of allergenic proteins in foods

    SciTech Connect

    Hourihane, Jonathan O'B. . E-mail: J.Hourihane@soton.ac.uk; Knulst, Andre C.

    2005-09-01

    Threshold doses or Estimated Eliciting Doses (EEDs) represent an important new field of research in food allergy. Clinicians and regulators have embraced some toxicological concepts such as LOAEL and NOAEL and applied them to an area of significant clinical uncertainty and interest. The impact of intrinsic human factors (e.g., asthma and exercise) and extrinsic event factors (e.g., season, location and especially dose of allergen) on a future allergic reaction in the community needs to be considered carefully when interpreting results of clinical and research low-dose food challenges. The ongoing cooperation of food allergy research groups in medicine, food science and government will surely deliver results of the highest importance to the wider communities of allergology, food science and technology and the increasing number of allergic consumers.

  13. [Studies on the food allergenic proteins contained in pharmaceutical excipients].

    PubMed

    Sakai, Shinobu; Adachi, Reiko; Miyazaki, Tamaki; Aso, Yukio; Okuda, Haruhiro; Teshima, Reiko

    2012-01-01

    Most drugs contain pharmaceutical excipients. These are pharmacologically inactive substances used as vehicles for the active ingredients of a medication. Some of these pharmaceutical excipients are produced from allergenic foods (e.g., milk, egg, peanut, soybean, and sesame) and removing proteins completely from such excipients is difficult. Therefore, if individuals with food allergy consume drugs containing allergenic food-derived excipients, eliminating the risk of developing specific allergic symptoms induced by them may not be possible. We determined the levels of proteins in pharmaceutical excipients and ethical drugs (inhalants and injections) by spectrophotometric analyses. The level of protein in the pharmaceutical excipient lactose in each sample was approximately 1 mg/g. In the case of oils from soybeans, peanuts, and sesame in pharmaceutical excipients, proteins were detected in the range 7-9 microg/g sample. We also determined levels of allergenic proteins in pharmaceutical excipients and ethical drugs using commercial enzyme-linked immunosorbent assay systems. The milk proteins in lactose were detected in the range 1.39-13.07 microg/g. The results of this study suggest that physicians, patients with food allergies, pharmacists, and healthcare providers must pay attention to presence of potential impurities those may cause allergic symptoms in pharmaceutical products.

  14. Influence of thermal processing on the allergenicity of peanut proteins.

    PubMed

    Mondoulet, L; Paty, E; Drumare, M F; Ah-Leung, S; Scheinmann, P; Willemot, R M; Wal, J M; Bernard, H

    2005-06-01

    Peanuts are one of the most common and severe food allergens. Nevertheless, the occurrence of peanut allergy varies between countries and depends on both the exposure and the way peanuts are consumed. Processing is known to influence the allergenicity of peanut proteins. The aim of this study was to assess the effect of thermal processing on the IgE-binding capacity of whole peanut protein extracts and of the major peanut allergens Ara h 1 and Ara h 2. Whole proteins, Ara h 1, and Ara h 2 were extracted and purified from raw, roasted and boiled peanuts using selective precipitation and multiple chromatographic steps, and were then characterized by electrophoresis and mass spectrometry. The immunoreactivity of whole peanut extracts and purified proteins was analyzed by the enzyme allergosorbent test (EAST) and EAST inhibition using the sera of 37 peanut-allergic patients. The composition of the whole protein extracts was modified after heat processing, especially after boiling. The electrophoretic pattern showed protein bands of low molecular weight that were less marked in boiled than in raw and roasted peanuts. The same low-molecular-weight proteins were found in the cooking water of peanuts. Whole peanut protein extracts obtained after the different processes were all recognized by the IgE of the 37 patients. The IgE-binding capacity of the whole peanut protein extracts prepared from boiled peanuts was 2-fold lower than that of the extracts prepared from raw and roasted peanuts. No significant difference was observed between protein extracts from raw and roasted peanuts. It is noteworthy that the proteins present in the cooking water were also recognized by the IgE of peanut-allergic patients. IgE immunoreactivity of purified Ara h 1 and Ara h 2 prepared from roasted peanuts was higher than that of their counterparts prepared from raw and boiled peanuts. The IgE-binding capacity of purified Ara h 1 and Ara h 2 was altered by heat treatment and in particular was

  15. Computational allergenicity prediction of transgenic proteins expressed in genetically modified crops.

    PubMed

    Verma, Alok Kumar; Misra, Amita; Subash, Swarna; Das, Mukul; Dwivedi, Premendra D

    2011-09-01

    Development of genetically modified (GM) crops is on increase to improve food quality, increase harvest yields, and reduce the dependency on chemical pesticides. Before their release in marketplace, they should be scrutinized for their safety. Several guidelines of different regulatory agencies like ILSI, WHO Codex, OECD, and so on for allergenicity evaluation of transgenics are available and sequence homology analysis is the first test to determine the allergenic potential of inserted proteins. Therefore, to test and validate, 312 allergenic, 100 non-allergenic, and 48 inserted proteins were assessed for sequence similarity using 8-mer, 80-mer, and full FASTA search. On performing sequence homology studies, ~94% the allergenic proteins gave exact matches for 8-mer and 80-mer homology. However, 20 allergenic proteins showed non-allergenic behavior. Out of 100 non-allergenic proteins, seven qualified as allergens. None of the inserted proteins demonstrated allergenic behavior. In order to improve the predictability, proteins showing anomalous behavior were tested by Algpred and ADFS separately. Use of Algpred and ADFS softwares reduced the tendency of false prediction to a great extent (74-78%). In conclusion, routine sequence homology needs to be coupled with some other bioinformatic method like ADFS/Algpred to reduce false allergenicity prediction of novel proteins.

  16. The antigenicity and allergenicity of microparticulated proteins: Simplesse.

    PubMed

    Sampson, H A; Cooke, S

    1992-10-01

    New technologies are allowing the food industry to develop products from standard foods which may not be recognized in its modified form by food allergic patients. One such product, Simplesse, has been formulated by microparticulation of egg white and/or cows' milk proteins and is used as a fat substitute in many fat-laden foods. The purpose of this study was to determine whether the process of microparticulation altered the allergenicity/antigenicity of egg white and cows' milk proteins compared to the starting materials. Soluble protein fractions of Simplesse and its respective starting materials were compared to egg white, cows' milk protein, an ultra-filtered egg white/condensed milk mixture, and/or a whey concentrate by SDS-polyacrylamide gel electrophoresis. In addition, sera from 16 patients with documented egg and/or cows' milk hypersensitivity and two controls who were not allergic to egg or milk were used to assess potential allergenicity/antigenicity of these products by immunoblot (Western blot) analysis. There were heterogeneous IgE and IgG binding patterns to the food fractions among these food allergic patients suggesting differing sensitivity patterns among the individuals tested. However, utilizing both SDS-PAGE and immunoblot analyses, the major allergens in the microparticulated products were the same as those found in the starting materials, egg and cows' milk. In addition, there was no evidence of 'novel' protein fractions in the Simplesse test materials compared to the starting materials.

  17. Categorisation of protein respiratory allergens: the case of Subtilisin.

    PubMed

    Kimber, Ian; Basketter, David A

    2014-04-01

    Characterisation of the relative sensitizing potency of protein and chemical allergens remains challenging, particularly for materials causing allergic sensitization of the respiratory tract. There nevertheless remains an appetite, for priority setting and risk management, to develop paradigms that distinguish between individual respiratory allergens according to perceptions of the hazards and risks posed to human health. One manifestation thereof is recent listing of certain respiratory allergens as Substances of Very High Concern (SVHC) under the provisions of REACH (Registration, Evaluation, Authorisation and restriction of Chemicals). Although priority setting is a laudable ambition, it is important the process is predicated on evidence-based criteria that are transparent, understood and owned. The danger is that in the absence of rigorous criteria unwanted precedents can be created, and confidence in the process is compromised. A default categorisation of sensitisers as SVHC requiring assessment under the authorisation process is not desirable. We therefore consider here the value and limitations of selective assignment of certain respiratory allergens as being SVHC. The difficulties of sustaining such designations in a sound and equitable way is discussed in the context of the challenges that exist with respect to assessment of potency, and information available regarding the effectiveness of exposure-based risk management.

  18. Allergenicity of Peanut Proteins is Retained Following Enzymatic Hydrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rationale: Hydrolysis of peanut proteins by food-grade enzymes may reduce allergenicity and could lead to safer forms of immunotherapy. Methods: Light roasted peanut flour extracts were digested with pepsin (37°C, pH 2), Alcalase (60°C pH 8), or Flavourzyme (50°C, pH 7) up to 1 hr, or sequentially w...

  19. Animal models of protein allergenicity: potential benefits, pitfalls and challenges.

    PubMed

    Dearman, R J; Kimber, I

    2009-04-01

    Food allergy is an important health issue. With an increasing interest in novel foods derived from transgenic crop plants, there is a growing need for the development of approaches suitable for the characterization of the allergenic potential of proteins. There are methods available currently (such as homology searches and serological testing) that are very effective at identifying proteins that are likely to cross-react with known allergens. However, animal models may play a role in the identification of truly novel proteins, such as bacterial or fungal proteins, that have not been experienced previously in the diet. We consider here the potential benefits, pitfalls and challenges of the selection of various animal models, including the mouse, the rat, the dog and the neonatal swine. The advantages and disadvantages of various experimental end-points are discussed, including the measurement of specific IgE by ELISA, Western blotting or functional tests such as the passive cutaneous anaphylaxis assay, and the assessment of challenge-induced clinical symptoms in previously sensitized animals. The experimental variables of route of exposure to test proteins and the incorporation of adjuvant to increase the sensitivity of the responses are considered also. It is important to emphasize that currently none of these approaches has been validated for the purposes of hazard identification in the context of a safety assessment. However, the available evidence suggests that the judicious use of an accurate and robust animal model could provide important additional data that would contribute significantly to the assessment of the potential allergenicity of novel proteins.

  20. AlgPred: prediction of allergenic proteins and mapping of IgE epitopes

    PubMed Central

    Saha, Sudipto; Raghava, G. P. S.

    2006-01-01

    In this study a systematic attempt has been made to integrate various approaches in order to predict allergenic proteins with high accuracy. The dataset used for testing and training consists of 578 allergens and 700 non-allergens obtained from A. K. Bjorklund, D. Soeria-Atmadja, A. Zorzet, U. Hammerling and M. G. Gustafsson (2005) Bioinformatics, 21, 39–50. First, we developed methods based on support vector machine using amino acid and dipeptide composition and achieved an accuracy of 85.02 and 84.00%, respectively. Second, a motif-based method has been developed using MEME/MAST software that achieved sensitivity of 93.94 with 33.34% specificity. Third, a database of known IgE epitopes was searched and this predicted allergenic proteins with 17.47% sensitivity at specificity of 98.14%. Fourth, we predicted allergenic proteins by performing BLAST search against allergen representative peptides. Finally hybrid approaches have been developed, which combine two or more than two approaches. The performance of all these algorithms has been evaluated on an independent dataset of 323 allergens and on 101 725 non-allergens obtained from Swiss-Prot. A web server AlgPred has been developed for the predicting allergenic proteins and for mapping IgE epitopes on allergenic proteins (). AlgPred is available at . PMID:16844994

  1. Allergen profiles of natural rubber latex (NRL) proteins on gloves and glove powders.

    PubMed

    Tomazic-Jezic, Vesna J; Sanchez, B A

    2005-01-01

    The contributing role of glove powder in sensitization to natural rubber latex (NRL) proteins has been well documented in laboratory studies and through clinical evaluations. However, the quantitative relationship of the respiratory and topical exposures in the sensitization process remains unknown because the relative levels of protein on the glove powders in relation to the total levels of protein on NRL gloves have not been determined. In NRL allergens--Hev b 1, Hev b 3, Hev b 5, and Hev b 6.02--on randomly selected surgical and examination NRL gloves. We also examined the binding pattern of the four allergens to several glove powders that showed a different affinity to NRL proteins. The level of powder-bound protein was determined by the ELISA Inhibition Assay (ASTM D6499 standard method). Two cross-linked corn starch powders, one sample of cooking corn starch and one oat starch sample, were exposed to ammoniated (AL) or nonammoniated (NAL) raw NRL protein extracts. The levels of individual allergens were determined using the NRL allergen kit. In the NRL glove extracts we observed a wide range in the total allergen levels and a great diversity in the proportion of the four allergens. On the other hand, the evaluated starches had similar ratios of four individual allergens, regardless of the differences in their total allergen levels. The exposure of starches to NRL proteins with different allergen profiles did not affect the allergen ratio. All samples demonstrated a selective affinity for binding Hev b 1 and Hev b 5 allergens and a lesser affinity for the Hev b 6.02 allergen. Allergen Hev b 6.02 made up about 60% of the total allergen in the NAL extract, but only 12-30% of Hev b 6.02 was bound to starches. In contrast, there was only 3-7% of Hev b 1 allergen in the NAL extract, but powders had 35-45% of Hev b 1. These findings indicate that allergenic properties of NRL gloves and respective glove powders may be different.

  2. Evidence of a novel allergenic protein Narcin in the bulbs of Narcissus tazetta

    PubMed Central

    Sinha, Mau; Singh, Amar; Shokeen, Akshita; Sharma, Pradeep; Kaushik, Sanket; Mitra, Dipendra K; Kaur, Punit; Sharma, Sujata; Singh, Tej P

    2013-01-01

    Several plant-derived allergens have been identified which result in the formation of immunoglobulin E antibodies. Primarily, these allergens belong to the protein families including seed storage proteins, structural proteins and pathogenesis-related proteins. Several allergens are also reported from flower bulbs which cause contact dermatitis. Such symptoms are highly common with the bulb growers handling different species of Narcissus. Narcissus toxicity is also reported if the bulbs are consumed accidentally. The present study aimed to characterize the protein from the bulbs of Narcissus tazetta responsible for its allergenic response. A 13 kDa novel allergenic protein, Narcin was isolated from the bulbs of Narcissus tazetta. The protein was extracted using ammonium sulfate fractionation. The protein was further purified by anion exchange chromatography followed by gel filtration chromatography. The N-terminal sequence of the first 15 amino-acid residues was determined using Edman degradation. The allergenicity of the protein was measured by cytokine production using flow cytometry in peripheral blood mononuclear cells. Further estimation of total IgE was performed by ELISA method. This novel protein was found to induce pro-inflammatory cytokines and thus induce allergy by elevating total IgE level. The novel protein, Narcin isolated from Narcissus tazetta was found to exhibit allergenic properties. PMID:23936740

  3. Allergenic compounds on the inner and outer surfaces of natural latex gloves: MALDI mass spectrometry and imaging of proteinous allergens.

    PubMed

    Marchetti-Deschmann, Martina; Allmaier, Günter

    2009-01-01

    Natural latex gloves are the cause of a severe health problem to an increasing number of healthcare workers or patients due to the presence of protein allergens as Hevein or Rubber Elongation Factor (REF). One of the most challenging problems is the in situ localization of theses allergens in, e.g. gloves, to estimate the allergenic potential of the latex material. A sample preparation protocol applying a binary matrix-assisted laser desorption/ionization(MALDI) matrix containing alpha-cyano-4-hydroxy cinnamic acid (CHCA) and 2,5-dihydroxy benzoic acid (DHB) on trifluoro acetic acid (TFA) etched latex glove surfaces allowed the direct determination (exact molecular weight) of Hevein, REF and a truncated form of REF (tREF) within nine different brands of natural latex gloves by means of MALDI-TOF-MS in the linear mode. MALDI mass spectrometry demonstrated that Hevein, tREF and REF were present on the inner surfaces (in direct contact with the skin) of many, but not all, investigated gloves without any prior extraction procedure. Additionally, different isoforms of the allergen Hevein were detected (exhibiting ragged C-termini). tREF and REF could always be detected beside each other, but were not observed on every latex glove sample, which contained Hevein. It was also demonstrated that there is a significant difference in terms of proteins and polymers between inner and outer surfaces of gloves, which helps to explain the different allergenic potential of these.MALDI imaging allowed for the first time the unambiguous localization of all three allergens in parallel and showed that Hevein was present on 36% of the investigated area of a latex glove with a certain localization, whereupon, tREF and REF were only found on 25% of the investigated material.

  4. Beneficial Influence of Short-Term Germination on Decreasing Allergenicity of Peanut Proteins.

    PubMed

    Li, Yingchao; Sun, Xiulan; Ma, Zhezhe; Cui, Yan; Du, Chao; Xia, Xiuhua; Qian, He

    2016-01-01

    Most allergenic storage proteins in peanuts are degraded during seed germination. By altering this natural physiological process, it might be possible to reduce peanut protein allergenicity. However, little is known about the change in allergenic proteins and their corresponding immunocreactivity, and the effects of major environmental conditions on their allergenicity during germination. In this study, the influence of different germination conditions (temperature and light) on the degradation of Ara h1 and allergenicity changes of peanut seeds was evaluated by ELISA and Western blotting. The results showed that the 40- and 65-kDa proteins in peanut seeds degraded rapidly during the time course, beginning at 60 (at 25 °C) and 108 h (at 20 °C), and the corresponding immunocreactivity of Ara h1 decreased approximately one-third after 5 to 7 d of germination. Compared with the cotyledons, the embryonic axes had a higher proportion of Ara h1, which was then degraded relatively faster during germination, resulting in a significant reduction in its allergenicity. Although a higher temperature improved the seed germination rate, it affected sprout quality (as did light); therefore, 25 °C and dark surroundings were suitable conditions under which peanut sprouts were processed; neither factor significantly affected the allergenicity of Ara h1. These results provided a theoretical basis for studies using biological methods to reduce peanut allergenicity.

  5. Helminth infection alters IgE responses to allergens structurally related to parasite proteins.

    PubMed

    Santiago, Helton da Costa; Ribeiro-Gomes, Flávia L; Bennuru, Sasisekhar; Nutman, Thomas B

    2015-01-01

    Immunological cross-reactivity between environmental allergens and helminth proteins has been demonstrated, although the clinically related implications of this cross-reactivity have not been addressed. To investigate the impact of molecular similarity among allergens and cross-reactive homologous helminth proteins in IgE-based serologic assessment of allergic disorders in a helminth-infected population, we performed ImmunoCAP tests in filarial-infected and noninfected individuals for IgE measurements to allergen extracts that contained proteins with high levels of homology with helminth proteins as well as IgE against representative recombinant allergens with and without helminth homologs. The impact of helminth infection on the levels and function of the IgE to these specific homologous and nonhomologous allergens was corroborated in an animal model. We found that having a tissue-invasive filarial infection increased the serological prevalence of ImmunoCAP-identified IgE directed against house dust mite and cockroach, but not against timothy grass, the latter with few allergens with homologs in helminth infection. IgE ELISA confirmed that filaria-infected individuals had higher IgE prevalences to those recombinant allergens that had homologs in helminths. Mice infected with the helminth Heligmosomoides polygyrus displayed increased levels of IgE and positive skin tests to allergens with homologs in the parasite. These results show that cross-reactivity among allergens and helminth proteins can have practical implications, altering serologic approaches to allergen testing and bringing a new perspective to the "hygiene hypothesis."

  6. Murine models for evaluating the allergenicity of novel proteins and foods.

    PubMed

    Aldemir, Hatice; Bars, Rémi; Herouet-Guicheney, Corinne

    2009-08-01

    Genetically modified crops convey many benefits to world population. However, a rigorous safety assessment procedure, including an evaluation of the allergenic potential, is fundamental before their release into the food chain. As an integral part of the safety assessment process, regulatory authorities worldwide strongly recommend the use of tests that can predict the allergenic potential of the novel proteins. All guidance documents are based on an array of tests that have been proposed in 2003 by the Codex Alimentarius. Although the animal model is not a requirement of the Codex Alimentarius weight of evidence approach, allergenic hazard of novel proteins could only be evaluated by an in vivo model that can potentially identify and distinguish commonly allergenic proteins from rarely allergenic proteins. Therefore, food allergy experts encourage its development. During the 2007 International Life Science Institute (ILSI) workshop (Nice, France), worldwide experts shared their latest research results on rodent models to evaluate the allergenic potential of proteins and foods. This review presents the most promising rodent models for assessing food protein allergenicity that were evaluated during this ILSI workshop.

  7. The identification of allergen proteins in sugar beet (Beta vulgaris) pollen causing occupational allergy in greenhouses

    PubMed Central

    Luoto, Susanne; Lambert, Wietske; Blomqvist, Anna; Emanuelsson, Cecilia

    2008-01-01

    Background During production of sugar beet (Beta vulgaris) seeds in greenhouses, workers frequently develop allergic symptoms. The aim of this study was to identify and characterize possible allergens in sugar beet pollen. Methods Sera from individuals at a local sugar beet seed producing company, having positive SPT and specific IgE to sugar beet pollen extract, were used for immunoblotting. Proteins in sugar beet pollen extracts were separated by 1- and 2-dimensional electrophoresis, and IgE-reactive proteins analyzed by liquid chromatography tandem mass spectrometry. Results A 14 kDa protein was identified as an allergen, since IgE-binding was inhibited by the well-characterized allergen Che a 2, profilin, from the related species Chenopodium album. The presence of 17 kDa and 14 kDa protein homologues to both the allergens Che a 1 and Che a 2 were detected in an extract from sugar beet pollen, and partial amino acid sequences were determined, using inclusion lists for tandem mass spectrometry based on homologous sequences. Conclusion Two occupational allergens were identified in sugar beet pollen showing sequence similarity with Chenopodium allergens. Sequence data were obtained by mass spectrometry (70 and 25%, respectively for Beta v 1 and Beta v 2), and can be used for cloning and recombinant expression of the allergens. As for treatment of Chenopodium pollinosis, immunotherapy with sugar beet pollen extracts may be feasible. PMID:18694503

  8. Glycoproteomic Analysis of Seven Major Allergenic Proteins Reveals Novel Post-translational Modifications*

    PubMed Central

    Halim, Adnan; Carlsson, Michael C.; Madsen, Caroline Benedicte; Brand, Stephanie; Møller, Svenning Rune; Olsen, Carl Erik; Vakhrushev, Sergey Y.; Brimnes, Jens; Wurtzen, Peter Adler; Ipsen, Henrik; Petersen, Bent L.; Wandall, Hans H.

    2015-01-01

    Allergenic proteins such as grass pollen and house dust mite (HDM) proteins are known to trigger hypersensitivity reactions of the immune system, leading to what is commonly known as allergy. Key allergenic proteins including sequence variants have been identified but characterization of their post-translational modifications (PTMs) is still limited. Here, we present a detailed PTM1 characterization of a series of the main and clinically relevant allergens used in allergy tests and vaccines. We employ Orbitrap-based mass spectrometry with complementary fragmentation techniques (HCD/ETD) for site-specific PTM characterization by bottom-up analysis. In addition, top-down mass spectrometry is utilized for targeted analysis of individual proteins, revealing hitherto unknown PTMs of HDM allergens. We demonstrate the presence of lysine-linked polyhexose glycans and asparagine-linked N-acetylhexosamine glycans on HDM allergens. Moreover, we identified more complex glycan structures than previously reported on the major grass pollen group 1 and 5 allergens, implicating important roles for carbohydrates in allergen recognition and response by the immune system. The new findings are important for understanding basic disease-causing mechanisms at the cellular level, which ultimately may pave the way for instigating novel approaches for targeted desensitization strategies and improved allergy vaccines. PMID:25389185

  9. Workshop proceedings: challenges and opportunities in evaluating protein allergenicity across biotechnology industries.

    PubMed

    Stagg, Nicola J; Ghantous, Hanan N; Ladics, Gregory S; House, Robert V; Gendel, Steven M; Hastings, Kenneth L

    2013-01-01

    A workshop entitled "Challenges and Opportunities in Evaluating Protein Allergenicity across Biotechnology Industries" was held at the 51st Annual Meeting of the Society of Toxicology (SOT) in San Francisco, California. The workshop was sponsored by the Biotechnology Specialty Section of SOT and was designed to present the science-based approaches used in biotechnology industries to evaluate and regulate protein allergenicity. A panel of experts from industry and government highlighted the allergenicity testing requirements and research in the agricultural, pharmaceutical/biopharma, and vaccine biotechnology industries and addressed challenges and opportunities for advancing the science of protein allergenicity. The main learning from the workshop was that immunoglobulin E-mediated allergenicity of biotechnology-derived products is difficult to assess without human data. The approaches currently being used to evaluate potential for allergenicity across biotechnology industries are very different and range from bioinformatics, in vitro serology, in vivo animal testing, in vitro and in vivo functional assays, and "biosimilar" assessments (ie, biotherapeutic equivalents to innovator products). The challenge remains with regard to the different or lack of regulatory requirements for allergenicity testing across industries, but the novel approaches being used with bioinformatics and biosimilars may lead to opportunities in the future to collaborate across biotechnology industries.

  10. Evaluation of allergenic potential for rice seed protein components utilizing a rice proteome database and an allergen database in combination with IgE-binding of recombinant proteins.

    PubMed

    Hirano, Kana; Hino, Shingo; Oshima, Kenzi; Nadano, Daita; Urisu, Atsuo; Takaiwa, Fumio; Matsuda, Tsukasa

    2016-01-01

    Among 131 rice endosperm proteins previously identified by MS-based proteomics, most of the proteins showed low or almost no sequence similarity to known allergens in databases, whereas nine proteins did it significantly. The sequence of two proteins showed high overall identity with Hsp70-like hazel tree pollen allergen (Cor a 10) and barley α-amylase (Hor v 16), respectively, whereas the others showed low identity (28-58%) with lemon germin-like protein (Cit l 1), corn zein (Zea m 50 K), wheat chitinase-like xylanase inhibitor (Tri a XI), and kinase-like pollen allergen of Russian thistle (Sal k 1). Immuno-dot blot analysis showed that recombinant proteins for these rice seed homologs were positive in the IgE-binding, but not necessarily similarity dependent, from some allergic patients. These results suggest that utilization of proteome and sequence databases in combination with IgE-binding analysis was effective to screen and evaluate allergenic potential of rice seed protein components.

  11. Relationship between protein digestibility and allergenicity: comparisons of pepsin and cathepsin.

    PubMed

    Foster, Emily S; Kimber, Ian; Dearman, Rebecca J

    2013-07-05

    An association between protein allergenicity and resistance to pepsin digestion in the gastrointestinal tract has been proposed. However, although widely accepted, such an association is inconsistent with known labile allergens and resistant nonallergens. Given the central role of antigen presenting cells, and in particular dendritic cells (DC), in the development of allergic responses, the stability of allergens to intracellular processing may be more relevant than resistance to extracellular pepsin digestion. We have characterised the expression by DC of cathepsins (proteolytic enzymes), and compared the proteolytic activity of the most highly expressed cathepsin with pepsin for a range of 9 allergens and 4 putative nonallergens. Cathepsin expression in bone marrow-derived DC (BM-DC) derived from BALB/c strain mice was characterised by flow cytometry; cathepsins D, E and S were identified, with cathepsin D being the most highly expressed. Digestion studies revealed that the majority of allergens (5/9) were pepsin resistant, whereas non-allergens (3/4) were labile. If the generation of pepsin-resistant fragments was considered as a feature of allergenicity, this increased to 7/9 allergens and 4/4 nonallergens. In contrast, most of the proteins examined were resistant to cathepsin digestion, with significant digestion recorded for only 2/9 allergens and 2/4 non-allergens. Chemical reduction (to mimic intracellular reducing conditions) increased the susceptibility of proteins to digestion by cathepsins, but did not improve discrimination between allergens and nonallergens on this basis. These data confirm that there is a general relationship between resistance to digestion with pepsin and allergenicity. The relationship is not absolute, but the information gained from this characteristic does provide useful information in a weight of evidence approach for allergenicity assessment. The most abundant cathepsin detected in antigen processing BM-DC, cathepsin D, is not

  12. Effects of autoclaving and high pressure on allergenicity of hazelnut proteins

    PubMed Central

    2012-01-01

    Background Hazelnut is reported as a causative agent of allergic reactions. However it is also an edible nut with health benefits. The allergenic characteristics of hazelnut-samples after autoclaving (AC) and high-pressure (HHP) processing have been studied and are also presented here. Previous studies demonstrated that AC treatments were responsible for structural transformation of protein structure motifs. Thus, structural analyses of allergen proteins from hazelnut were carried out to observe what is occurring in relation to the specific-IgE recognition of the related allergenic proteins. The aims of this work are to evaluate the effect of AC and HHP processing on hazelnut in vitro allergenicity using human-sera and to analyse the complexity of hazelnut allergen-protein structures. Methods Hazelnut-samples were subjected to AC and HHP processing. The specific IgE- reactivity was studied in 15 allergic clinic-patients via western blotting analyses. A series of homology-based-bioinformatics 3D-models (Cora 1, Cora 8, Cora 9 and Cora 11) were generated for the antigens included in the study to analyse the co mplexity of their protein structure. This study is supported by the Declaration of Helsinki and subsequent ethical guidelines. Results A severe reduction in vitro in allergenicity to hazelnut after AC processing was observed in the allergic clinic-patients studied. The specific-IgE binding of some of the described immunoreactive hazelnut protein-bands: Cora 1 ~18KDa, Cora 8 ~9KDa, Cora 9 ~35-40KDa and Cora 11 ~47-48 KDa decreases. Furthermore a relevant glycosylation was assigned and visualized via structural analysis of proteins (3D-modelling) for the first time in the protein-allergen Cora 11 showing a new role which could open a new door for allergenicity-unravellings. Conclusion Hazelnut allergenicity-studies in vivo via Prick-Prick and other means using AC processing are crucial to verify the data we observed via in vitro analyses. Glycosylation studies

  13. Detection and release of allergenic proteins in Parietaria judaica pollen grains.

    PubMed

    Vega-Maray, A M; Fernández-González, D; Valencia-Barrera, R; Suárez-Cervera, M

    2006-08-01

    Rapid diffusion of allergenic proteins in isotonic media has been demonstrated for different pollen grains. Upon contact with stigmatic secretion or with the mucosa of sensitive individuals, pollen grains absorb water and release soluble low-molecular-weight proteins, these proteins enter in the secretory pathway in order to arrive at the cell surface. In this study we located allergenic proteins in mature and hydrated-activated pollen grains of Parietaria judaica L. (Urticaceae) and studied the diffusion of these proteins during the first 20 min of the hydration and activation processes. A combination of transmission electron microscopy and immunocytochemical methods was used to locate these proteins in mature pollen and in pollen grains after different periods of hydration and activation processes. Activated proteins reacting with antibodies in human serum from allergic patients were found in the cytoplasm, wall, and exudates from the pollen grains. The allergenic component of these pollen grains changes according to the pollen state; the presence of these proteins in the exine, the cytoplasm, and especially in the intine and in the material exuded from the pollen grains, is significant in the hydrated-activated studied times, whereas this presence is not significant in mature pollen grains. The rapid activation and release of allergenic proteins of P. judaica pollen appears to be the main cause of the allergenic activity of these pollen grains.

  14. IgE response to two new allergen proteins of Solanum melongena L. (eggplant).

    PubMed

    Hoseini-Alfatemi, Seyedeh Mahsan; Bayry, Jagadeesh; Sharifi-Rad, Javad

    2015-12-01

    A number of allergens from eggplant (Solanum melongena L.) have been previously identified. In this study, we could detect IgE reactivity of two allergic subjects' sera towards two protein bands of molecular mass of about 35 and 15 kDa. As IgE were reactive to both raw and cooked eggplant extracts, a heat-stable nature of these novel allergens is apparent.

  15. Advanced DNA- and Protein-based Methods for the Detection and Investigation of Food Allergens.

    PubMed

    Prado, M; Ortea, I; Vial, S; Rivas, J; Calo-Mata, P; Barros-Velázquez, J

    2016-11-17

    Currently, food allergies are an important health concern worldwide. The presence of undeclared allergenic ingredients or the presence of traces of allergens due to contamination during food processing poses a great health risk to sensitized individuals. Therefore, reliable analytical methods are required to detect and identify allergenic ingredients in food products. The present review addresses the recent developments regarding the application of DNA- and protein-based methods for the detection of allergenic ingredients in foods. The fitness-for-purpose of reviewed methodology will be discussed, and future trends will be highlighted. Special attention will be given to the evaluation of the potential of newly developed and promising technologies that can improve the detection and identification of allergenic ingredients in foods, such as the use of biosensors and/or nanomaterials to improve detection limits, specificity, ease of use, or to reduce the time of analysis. Such rapid food allergen test methods are required to facilitate the reliable detection of allergenic ingredients by control laboratories, to give the food industry the means to easily determine whether its product has been subjected to cross-contamination and, simultaneously, to identify how and when this cross-contamination occurred.

  16. A procedure for total protein determination with special application to allergenic extract standardization.

    PubMed

    Richman, P G; Cissel, D S

    1988-10-01

    A method for total protein determination of allergenic extracts has been developed and evaluated. Samples were hydrolyzed with 5 M NaOH followed by colorimetric determination with ninhydrin of the released amino acids using bovine serum albumin as the standard. The entire procedure was carried out in disposable plastic tubes. Substances (glycerol, phenol and mannitol) commonly present in allergenic extracts manufactured for human use did not affect the assay results. Analyses of four different pollen extracts by the method gave good agreement with amino acid analyses. Other methods of analysis (total N, protein N unit assay, Lowry) gave more variable results compared with amino acid analysis. Analysis of the total protein content of 53 different lots of allergenic extracts gave narrow ranges of values for each species. Standardized mite extracts analyzed for total protein by US FDA-licensed manufacturers using this assay showed a good correlation of biological activity with total protein.

  17. Comparisons of Allergenic and Metazoan Parasite Proteins: Allergy the Price of Immunity

    PubMed Central

    Tyagi, Nidhi; Farnell, Edward J; Fitzsimmons, Colin M; Ryan, Stephanie; Tukahebwa, Edridah; Maizels, Rick M; Dunne, David W; Thornton, Janet M; Furnham, Nicholas

    2015-01-01

    Allergic reactions can be considered as maladaptive IgE immune responses towards environmental antigens. Intriguingly, these mechanisms are observed to be very similar to those implicated in the acquisition of an important degree of immunity against metazoan parasites (helminths and arthropods) in mammalian hosts. Based on the hypothesis that IgE-mediated immune responses evolved in mammals to provide extra protection against metazoan parasites rather than to cause allergy, we predict that the environmental allergens will share key properties with the metazoan parasite antigens that are specifically targeted by IgE in infected human populations. We seek to test this prediction by examining if significant similarity exists between molecular features of allergens and helminth proteins that induce an IgE response in the human host. By employing various computational approaches, 2712 unique protein molecules that are known IgE antigens were searched against a dataset of proteins from helminths and parasitic arthropods, resulting in a comprehensive list of 2445 parasite proteins that show significant similarity through sequence and structure with allergenic proteins. Nearly half of these parasite proteins from 31 species fall within the 10 most abundant allergenic protein domain families (EF-hand, Tropomyosin, CAP, Profilin, Lipocalin, Trypsin-like serine protease, Cupin, BetV1, Expansin and Prolamin). We identified epitopic-like regions in 206 parasite proteins and present the first example of a plant protein (BetV1) that is the commonest allergen in pollen in a worm, and confirming it as the target of IgE in schistosomiasis infected humans. The identification of significant similarity, inclusive of the epitopic regions, between allergens and helminth proteins against which IgE is an observed marker of protective immunity explains the ‘off-target’ effects of the IgE-mediated immune system in allergy. All these findings can impact the discovery and design of

  18. In silico analyses of structural and allergenicity features of sapodilla (Manilkara zapota) acidic thaumatin-like protein in comparison with allergenic plant TLPs.

    PubMed

    Ashok Kumar, Hassan G; Venkatesh, Yeldur P

    2014-02-01

    Thaumatin-like proteins (TLPs) belong to the pathogenesis-related family (PR-5) of plant defense proteins. TLPs from only 32 plant genera have been identified as pollen or food allergens. IgE epitopes on allergens play a central role in food allergy by initiating cross-linking of specific IgE on basophils/mast cells. A comparative analysis of pollen- and food-allergenic TLPs is lacking. The main objective of this investigation was to study the structural and allergenicity features of sapodilla (Manilkara zapota) acidic TLP (TLP 1) by in silico methods. The allergenicity prediction of composite sequence of sapodilla TLP 1 (NCBI B3EWX8.1, G5DC91.1) was performed using FARRP, Allermatch and Evaller web tools. A homology model of the protein was generated using banana TLP template (1Z3Q) by HHPRED-MODELLER. B-cell linear epitope prediction was performed using BCpreds and BepiPred. Sapodilla TLP 1 matched significantly with allergenic TLPs from olive, kiwi, bell pepper and banana. IgE epitope prediction as performed using AlgPred indicated the presence of 2 epitopes (epitope 1: residues 36-48; epitope 2: residues 51-63), and a comprehensive analysis of all allergenic TLPs displayed up to 3 additional epitopes on other TLPs. It can be inferred from these analyses that plant allergenic TLPs generally carry 2-3 IgE epitopes. ClustalX alignments of allergenic TLPs indicate that IgE epitopes 1 and 2 are common in food allergenic TLPs, and IgE epitopes 2 and 3 are common in pollen allergenic TLPs; IgE epitope 2 overlaps with a portion of the thaumatin family signature. The secondary structural elements of TLPs vary markedly in regions 1 and 2 which harbor all the predicted IgE epitopes in all food and pollen TLPs in either of the region. Further, based on the number of IgE epitopes, food TLPs are grouped into rosid and non-rosid clades. The number and distribution of the predicted IgE epitopes among the allergenic TLPs may explain the specificity of food or pollen allergy as

  19. Evaluation of the Allergenicity Potential of TcPR-10 Protein from Theobroma cacao

    PubMed Central

    Cardoso, Thyago Hermylly Santana; Pirovani, Carlos Priminho; Micheli, Fabienne; Noronha, Fátima Soares Motta; Alves, Andréa Catão; Faria, Ana Maria Caetano; da Silva Gesteira, Abelmon

    2012-01-01

    Background The pathogenesis related protein PR10 (TcPR-10), obtained from the Theobroma cacao-Moniliophthora perniciosa interaction library, presents antifungal activity against M. perniciosa and acts in vitro as a ribonuclease. However, despite its biotechnological potential, the TcPR-10 has the P-loop motif similar to those of some allergenic proteins such as Bet v 1 (Betula verrucosa) and Pru av 1 (Prunus avium). The insertion of mutations in this motif can produce proteins with reduced allergenic power. The objective of the present work was to evaluate the allergenic potential of the wild type and mutant recombinant TcPR-10 using bioinformatics tools and immunological assays. Methodology/Principal Findings Mutant substitutions (T10P, I30V, H45S) were inserted in the TcPR-10 gene by site-directed mutagenesis, cloned into pET28a and expressed in Escherichia coli BL21(DE3) cells. Changes in molecular surface caused by the mutant substitutions was evaluated by comparative protein modeling using the three-dimensional structure of the major cherry allergen, Pru av 1 as a template. The immunological assays were carried out in 8–12 week old female BALB/c mice. The mice were sensitized with the proteins (wild type and mutants) via subcutaneous and challenged intranasal for induction of allergic airway inflammation. Conclusions/Significance We showed that the wild TcPR-10 protein has allergenic potential, whereas the insertion of mutations produced proteins with reduced capacity of IgE production and cellular infiltration in the lungs. On the other hand, in vitro assays show that the TcPR-10 mutants still present antifungal and ribonuclease activity against M. perniciosa RNA. In conclusion, the mutant proteins present less allergenic potential than the wild TcPR-10, without the loss of interesting biotechnological properties. PMID:22768037

  20. Characterization of the soluble allergenic proteins of cashew nut (Anacardium occidentale L.).

    PubMed

    Teuber, Suzanne S; Sathe, Shridhar K; Peterson, W Rich; Roux, Kenneth H

    2002-10-23

    The allergens associated with cashew food allergy have not been well-characterized. We sought to identify the major allergens in cashew nut by performing IgE immunoblots to dissociated and reduced or nonreduced cashew protein extracts, followed by sequencing of the peptides of interest. Sera from 15 subjects with life-threatening reactions to cashews and 8 subjects who tolerate cashews but have life-threatening reactions to other tree nuts were compared. An aqueous cashew protein extract containing albumin/globulin was separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and subjected to IgE immunoblotting using patient sera. Selected IgE reactive bands were subjected to N-terminal amino acid sequencing. Each of the 15 sera from cashew-allergic subjects showed IgE binding to the cashew protein extract. The dominant IgE-binding antigens in the reduced preparations included peptides in the 31-35 kD range, consistent with the large subunits of the major storage 13S globulin (legumin-like protein). Low-molecular-weight polypeptides of the 2S albumin family, with similarity to the major walnut allergen Jug r 1, also bound IgE. The sera from eight patients who tolerate cashew but displayed allergies to other tree nuts showed only minimal or no IgE binding to cashew. Cashew food allergy is associated with the presence of IgE directed against the major seed storage proteins in cashew, including the 13S globulin (legumin group) and 2S albumins, both of which represent major allergen classes in several plant seeds. Thus, the legumin-group proteins and 2S albumins are again identified as major food allergens, which will help further research into seed protein allergenicity.

  1. Inter-laboratory comparisons of assessment of the allergenic potential of proteins in mice.

    PubMed

    Herouet-Guicheney, C; Aldemir, H; Bars, R; de Barbeyrac, D; Kennel, P; Rouquié, D; Stahl, B U; Kimber, I; Dearman, R J

    2009-03-01

    Assessment of the potential allergenicity of novel proteins, including those expressed in genetically modified plants, is an important issue. In previous studies, we have shown that the IgE measurement induced by systemic exposure of BALB/c mice to a range of proteins correlates broadly with what is known of their allergenic potential in humans. The approach used a homologous passive cutaneous anaphylaxis (PCA) assay that reflects IgE-dependent biological activity and is of sufficient sensitivity to detect IgE production in the absence of adjuvant. In previous studies, the immunization phase was conducted independently in two separate facilities, and the subsequent analytical work (PCA) conducted in a single facility. The purpose here was to further evaluate the transferability of this approach. To this end, BALB/c mice were exposed to a range of doses of peanut agglutinin or ovalbumin, allergenic proteins of peanut and hen's egg, respectively, in two independent laboratories. Serial doubling dilutions of serum pooled for each treatment group were analyzed for specific IgE. At higher doses of allergen very similar, or identical, IgE titers were achieved in both laboratories, although at lower doses, responses were somewhat more variable. These data demonstrate that, although technically demanding, the measurement of protein allergen-induced IgE antibody production in mice using PCA is relatively robust and is transferable and reproducible between laboratories. This approach may provide a useful tool for the safety assessment of novel proteins and suggests that continued evaluation of the approach with a wider range of protein allergens and non-sensitising proteins is justified.

  2. Stability of major allergen tropomyosin and other food proteins of mud crab (Scylla serrata) by in vitro gastrointestinal digestion.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stability in simulated gastric fluid is regarded as an important parameter for the estimation of food allergenicity. In this study, the digestive stability of allergenic protein tropomyosin (TM) and other food proteins from mud crab in simulated gastric fluid (SGF), and simulated intestinal fluid (S...

  3. Potential allergenicity research of Cry1C protein from genetically modified rice.

    PubMed

    Cao, Sishuo; He, Xiaoyun; Xu, Wentao; Luo, Yunbo; Ran, Wenjun; Liang, Lixing; Dai, Yunqing; Huang, Kunlun

    2012-07-01

    With the development of genetically modified crops, there has been a growing interest in available approaches to assess the potential allergenicity of novel gene products. We were not sure whether Cry1C could induce allergy. We examined the protein with three other proteins to determine the potential allergenicity of Cry1C protein from genetically modified rice. Female Brown Norway (BN) rats received 0.1 mg peanut agglutinin (PNA), 1mg potato acid phosphatase (PAP), 1mg ovalbumin (OVA) or 5 mg purified Cry1C protein dissolved in 1 mL water by daily gavage for 42 days to test potential allergenicity. Ten days after the last gavage, rats were orally challenged with antigens, and physiologic and immunologic responses were studied. In contrast to sensitization with PNA, PAP and OVA Cry1C protein did not induce antigen-specific IgG2a in BN rats. Cytokine expression, serum IgE and histamine levels and the number of eosinophils and mast cells in the blood of Cry1C group rats were comparable to the control group rats, which were treated with water alone. As Cry1C did not show any allergenicity, we make the following conclusion that the protein could be safety used in rice or other plants.

  4. Multiplex Assay for Protein Profiling and Potency Measurement of German Cockroach Allergen Extracts

    PubMed Central

    Khurana, Taruna; Dobrovolskaia, Ekaterina; Shartouny, Jessica R.; Slater, Jay E.

    2015-01-01

    Background German cockroach (GCr) allergens induce IgE responses and may cause asthma. Commercial GCr allergen extracts are variable and existing assays may not be appropriate for determining extract composition and potency. Objective Our aim was to develop a multiplex antibody/bead-based assay for assessment of GCr allergen extracts. Methods Single chain fragment variable (scFv) antibodies against GCr were obtained by screening libraries derived from naïve human lymphocytes and hyperimmunized chicken splenocytes and bone marrow. Selected clones were sequenced and characterized by immunoblotting. Eighteen scFv antibodies (17 chicken, 1 human) coupled to polystyrene beads were used in this suspension assay; binding of targeted GCr allergens to antibody-coated beads was detected using rabbit antisera against GCr, and against specific allergens rBla g 1, rBla g 2, and rBla g 4. The assay was tested for specificity, accuracy, and precision. Extracts were also compared by IgE competition ELISA. Results Chicken scFv’s generated eight different binding patterns to GCr proteins from 14 to 150 kDa molecular weight. Human scFv’s recognized a 100 kDa GCr protein. The multiplex assay was found to be specific and reproducible with intra-assay coefficient of variation (CV) of 2.64% and inter-assay CV of 10.0%. Overall potencies of various GCr extracts were calculated using mean logEC50s for eight selected scFvs. Overall potency measures were also analyzed by assessing the contributions to potency of each target. Conclusions An scFv antibody-based multiplex assay has been developed capable of simultaneously measuring different proteins in a complex mixture, and to determine the potencies and compositions of allergen extracts. PMID:26444288

  5. Proteome mining for novel IgE-binding proteins from the German cockroach (Blattella germanica) and allergen profiling of patients.

    PubMed

    Chuang, Jiing-Guang; Su, Song-Nan; Chiang, Bor-Luen; Lee, How-Jing; Chow, Lu-Ping

    2010-11-01

    Although cockroaches are known to produce allergens that can cause IgE-mediated hypersensitivity reactions, including perennial rhinitis and asthma, the various cockroach allergens have not yet been fully studied. Many proteins from the German cockroach show high IgE reactivity, but have never been comprehensively characterized. To identify these potential allergens, proteins were separated by 2-DE and IgE-binding proteins were analyzed by nanoLC-MS/MS or N-terminal sequencing analysis. Using a combination of proteomic techniques and bioinformatic allergen database analysis, we identified a total of ten new B. germanica IgE-binding proteins. Of these, aldolase, arginine kinase, enolase, Hsp70, triosephosphate isomerase, and vitellogenin have been reported as allergens in species other than B. germanica. Analysis of the Food Allergy Research and Resource Program allergen database indicated that arginine kinase, enolase, and triosephosphate isomerase showed significant potential cross-reactivity with other related allergens. This study revealed that vitellogenin is an important novel B. germanica allergen. Personalized profiling and reactivity of IgE Abs against the panel of IgE-binding proteins varied between cockroach-allergic individuals. These findings make it possible to monitor the individual IgE reactivity profile of each patient and facilitate personalized immunotherapies for German cockroach allergy disorders.

  6. Identification of IgE-binding proteins from Lepidoglyphus destructor and production of monoclonal antibodies to a major allergen.

    PubMed

    Ventas, P; Carreira, J; Polo, F

    1991-08-01

    The allergen composition of one of the most important storage mites, Lepidoglyphus destructor, has been studied by immunodetection after SDS-PAGE with individual patient sera. An allergenic polypeptide of 14 kDa was identified with 95% of the sera. This major allergen was isolated in the supernatant of 60% ammonium sulfate salt precipitation of the whole extract, which was subsequently used to immunize BALB/c mice so as to produce monoclonal antibodies. Four mAbs recognizing molecules with IgE-binding ability were obtained. The specificity of the mAbs was assayed against different allergenic extracts, and the molecules recognized by them were characterized by immunoblotting. Two mAbs (Le5B5 and Le9E4) were directed to the 14-kDa allergen; the other two to several proteins of lesser allergenic significance.

  7. Identification of abundant proteins and potential allergens in Culicoides nubeculosus salivary glands.

    PubMed

    Wilson, A D; Heesom, K J; Mawby, W J; Mellor, P S; Russell, C L

    2008-03-15

    IgE-mediated type 1 hypersensitivity reactions to the bites of insects are a common cause of skin disease in horses. Insect bite hypersensitivity (IBH) is most frequently associated with bites of Culicoides spp. and occurs in all parts of the world where horses and Culicoides coexist. The main allergens that cause IBH are probably some of the abundant proteins in the saliva of Culicoides associated with blood feeding. Western blots of Culicoides proteins separated by 1D gel-electrophoresis detected strong IgE responses in all horses with IBH to antigens in protein extracts from wild caught Culicoides, but only weak responses to salivary antigens from captive bred C. nubeculosus which may reflect important differences among allergens from different species of Culicoides or differences between thorax and salivary gland antigens. 2D electrophoresis and mass spectrometry were used to identify several of the abundant proteins in the saliva of C. nubeculosus. These included maltase, members of the D7 family, and several small, basic proteins associated with blood feeding. The most frequently detected IgE-binding proteins were in a group of proteins with pI>8.5 and mass 40-50kDa. Mass spectrometry identified two of these allergenic proteins as similar to hyaluronidase and a heavily glycosylated protein of unknown function that have previously been identified in salivary glands of C. sonorensis.

  8. Characterization of Soybean Storage and Allergen Proteins Affected by Environmental and Genetic Factors.

    PubMed

    Natarajan, Savithiry; Khan, Farooq; Song, Qijian; Lakshman, Sukla; Cregan, Perry; Scott, Roy; Shipe, Emerson; Garrett, Wesley

    2016-02-17

    There is limited information on the influence of genetic and environmental variability on soybean protein composition. This study aimed to determine the role of genotype (G), environments (E), and the interrelationship of genotype and environment (G×E) on soybean seed protein. Three sets of nine soybean genotypes were grown in replicated trials at Maryland, South Carolina, and South Dakota. At each location, the nine genotypes were grown with two planting/sowing dates. We applied two-dimensional gel electrophoresis and mass spectrometry to study the variability of soybean storage and allergen proteins. Statistical analysis of 47 storage and 8 allergen proteins, in terms of differentially expressed protein spots significant at the p<0.005 level, was performed. We found more spots that showed statistically significant differences in expression among E compared to G and G×E interaction.

  9. Transgenic rice seeds accumulating recombinant hypoallergenic birch pollen allergen Bet v 1 generate giant protein bodies.

    PubMed

    Wang, Shuyi; Takahashi, Hideyuki; Kajiura, Hiroyuki; Kawakatsu, Taiji; Fujiyama, Kazuhito; Takaiwa, Fumio

    2013-06-01

    A versatile hypoallergenic allergen derivative against multiple allergens is an ideal tolerogen for allergen-specific immunotherapy. Such a tolerogen should exhibit high efficacy, without side effects, when administered at high doses and should be applicable to several allergens. Tree pollen chimera 7 (TPC7), a hypoallergenic Bet v 1 tolerogen against birch pollen allergy, was previously selected by DNA shuffling of 14 types of Fagales tree pollen allergens. In this study, transgenic rice seed accumulating TPC7 was generated as an oral vaccine against birch pollen allergy by expressing this protein as a secretory protein using the N-terminal signal peptide and the C-terminal KDEL tag under the control of an endosperm-specific glutelin promoter. The highest level of TPC7 accumulation was approximately 207 µg grain(-1). Recombinant TPC7 is a glycoprotein with high mannose-type N-glycan, but without β1,2-xylose or α1,3-fucose, suggesting that TPC7 is retained in the endoplasmic reticulum (ER). TPC7 is deposited as a novel, giant spherical ER-derived protein body, >20 µm in diameter, which is referred to as the TPC7 body. Removal of the KDEL retention signal or mutation of a cysteine residue resulted in an alteration of TPC7 body morphology, and deletion of the signal peptide prevented the accumulation of TPC7 in rice seeds. Therefore, the novel TPC7 bodies may have formed aggregates within the ER lumen, primarily due to the intrinsic physicochemical properties of the protein.

  10. Ole e 3, an olive-tree allergen, belongs to a widespread family of pollen proteins.

    PubMed

    Batanero, E; Villalba, M; Ledesma, A; Puente, X S; Rodríguez, R

    1996-11-01

    An allergen has been isolated from a saline extract of olive tree (Olea europaea) pollen. The protein consists of a single polypeptide chain of 9.2-kDa, as determined by mass spectrometry. It contains neither tryptophan nor tyrosine residues, and displays an acidic isoelectric point. The secondary structure of the protein, estimated from the analysis of the circular-dichroism spectrum in the peptide-bond region, is composed of 52% alpha-helix, 10% beta-strand, 29% beta-turn and 9% non-regular conformation. The N-terminal end of the protein is blocked. Amino-acid-sequence data have been obtained from peptides produced by CNBr treatment of the native allergen. A partial sequence of 36 amino acids has thus been elucidated. The protein exhibits sequence similarity with pollen allergens from Brassica species and contains a Ca(2+)-binding motif. The isolated protein displays IgE-binding activity against sera of patients allergic to olive-tree pollen. It has been named Ole e 3, according to the recommendations of the IUIS Nomenclature Committee. IgG ELISA inhibition assays with polyclonal antibodies specific for Ole e 3 reveal the presence of proteins similar to Ole e 3 in the pollen from non-related plant species, which may explain allergic cross-reactivity processes.

  11. Evaluation of microchip material and surface treatment options for IEF of allergenic milk proteins on microchips.

    PubMed

    Poitevin, Martine; Shakalisava, Yuliya; Miserere, Sandrine; Peltre, Gabriel; Viovy, Jean-Louis; Descroix, Stephanie

    2009-12-01

    The use of glass and PDMS microchips has been investigated to perform rapid and efficient separation of allergenic whey proteins by IEF. To decrease EOF and to limit protein adsorption, two coating procedures have been compared. The first one consists in immobilizing hydroxypropyl cellulose (HPC) and the second one poly(dimethylacrylamide-co-allyl glycidyl ether) (PDMA-AGE). EOF limitation has been evaluated using frontal electrophoresis of a fluorescent marker of known effective mobility. EOF velocity was decreased by a factor about 100 and 30, respectively. pH gradient formation has been evaluated for each microchip using fluorescent pI markers. It was demonstrated that as expected a coating was essential to avoid pH gradient drift. Both coatings were efficient on glass microchips, but only PDMA-AGE allowed satisfying focusing of pI markers on PDMS microchips. Fluorescent covalent and noncovalent labelings of milk proteins have been compared by IEF on slab-gels. IEF separation of three major allergenic whey proteins [beta-lactoglobulin A (pI 5.25) and B (pI 5.35) and alpha-lactalbumin (pI 4.2-4.5)] was performed in both microchips. Milk proteins were separated with better resolution and shorter analysis time than by classical CIEF. Finally, better resolutions for milk allergens separation were obtained on glass microchips.

  12. Fuzzy logic for personalized healthcare and diagnostics: FuzzyApp--a fuzzy logic based allergen-protein predictor.

    PubMed

    Saravanan, Vijayakumar; Lakshmi, P T V

    2014-09-01

    The path to personalized medicine demands the use of new and customized biopharmaceutical products containing modified proteins. Hence, assessment of these products for allergenicity becomes mandatory before they are introduced as therapeutics. Despite the availability of different tools to predict the allergenicity of proteins, it remains challenging to predict the allergens and nonallergens, when they share significant sequence similarity with known nonallergens and allergens, respectively. Hence, we propose "FuzzyApp," a novel fuzzy rule based system to evaluate the quality of the query protein to be an allergen. It measures the allergenicity of the protein based on the fuzzy IF-THEN rules derived from five different modules. On various datasets, FuzzyApp outperformed other existing methods and retained balance between sensitivity and specificity, with positive Mathew's correlation coefficient. The high specificity of allergen-like putative nonallergens (APN) revealed the FuzzyApp's capability in distinguishing the APN from allergens. In addition, the error analysis and whole proteome dataset analysis suggest the efficiency and consistency of the proposed method. Further, FuzzyApp predicted the Tropomyosin from various allergenic and nonallergenic sources accurately. The web service created allows batch sequence submission, and outputs the result as readable sentences rather than values alone, which assists the user in understanding why and what features are responsible for the prediction. FuzzyApp is implemented using PERL CGI and is freely accessible at http://fuzzyapp.bicpu.edu.in/predict.php . We suggest the use of Fuzzy logic has much potential in biomarker and personalized medicine research to enhance predictive capabilities of post-genomics diagnostics.

  13. Effects of enzymatic hydrolysis on the allergenicity of whey protein concentrates.

    PubMed

    Duan, Cuicui; Yang, Lijie; Li, Aili; Zhao, Rui; Huo, Guicheng

    2014-08-01

    Cow's milk whey consists of many protein components and some of them are antigens to human and known to modulate immune responses. Enzymatic hydrolysis is a useful method to modify proteins with allergenicity. The objective of this study was to identify whether the in vitro enzymatic hydrolysis could reduce the allergenicity of whey protein concentrates (WPC). In this study, WPC were hydrolyzed by trypsin and twenty-four BALB/c mice were divided into three groups and fed with WPC formula and WPC hydrolysates formula, while the control mice received milk-free diet. The results revealed that there was no significant difference between the body weights among all groups. WPC-fed mice produced an elevated spleen lymphocyte proliferation level than WPC hydrolysates-fed mice and also produced higher levels of WPC-specific IgE in intestinal tract and serum in comparison to WPC hydrolysates-fed mice and control group. Significant up-regulation of plasma histamine levels were also observed and showed the same trend with IgE. The secretions of IL-4 and IL-5 were significantly enhanced by WPC. WPC significantly suppressed the secretion of IFN-γ while hydrolysates of WPC significantly increased the secretion of IFN-γ compared to control group. These results suggest that hydrolysis may play a role to reduce the allergenicity of WPC.

  14. Isolation and full characterisation of a potentially allergenic lipid transfer protein (LTP) in almond.

    PubMed

    Buhler, Sofie; Tedeschi, Tullia; Faccini, Andrea; Garino, Cristiano; Arlorio, Marco; Dossena, Arnaldo; Sforza, Stefano

    2015-01-01

    Non-specific lipid transfer proteins (nsLTP) were shown to be among the most significant allergens, in particular in several fruits belonging to the Rosaceae family. The molecular features of LTPs, such as the presence of eight cysteine residues forming four disulfide bridges, confer a compact structure, decreasing the probability of degradation due to cooking or digestion, thereby increasing the chance of systemic absorption and severe allergic reactions. Few studies on LTP-induced allergies regarding almond (Prunus dulcis L) are available in the literature. In the present work, we describe for the first time the extraction and purification of an almond LTP, achieving its full characterisation by using liquid chromatography and exact mass spectrometry; the full sequence was identified by means of LC-ESI-Orbitrap-MS applying a bottom-up approach. The characterised protein consists of 92 amino acids and has a calculated exact MW of 9579.0. The presence of four disulfide bridges was confirmed after reduction, as shown by a mass increment of 8 Da. Finally, its potential allergenicity was confirmed via an in silico approach. The results presented here demonstrate the enormous potential of advanced MS techniques for obtaining high-quality structural and functional data of allergenic proteins in a short time.

  15. An odorant-binding protein as a new allergen from Siberian hamster (Phodopus sungorus).

    PubMed

    Torres, J A; Pastor-Vargas, C; de las Heras, M; Vivanco, F; Cuesta, Javier; Sastre, J

    2012-01-01

    A case of anaphylaxis following a bite from a Siberian hamster (SH; Phodopus sungorus) is described. Skin prick tests with hair, urine and salivary gland extracts from SH were positive, while the tests were negative for hair extracts from other rodents. IgE immunoblotting with the patient serum revealed 3 IgE-binding bands of about 18, 21 and 23 kDa. When the patient's serum was preincubated with rabbit, mouse and gerbil hair extracts, no inhibition of the 3 SH IgE-binding bands was demonstrated. Proteins extracted from the 3 bands were analyzed by N-terminal sequencing and matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry, and peptides were sequenced. IgE-binding bands were identified as being an odorant-binding protein belonging to the lipocalin family. Analysis of the 3 IgE-binding bands found in the hair, urine and salivary glands of SH showed a new allergenic protein lacking cross-reactivity with allergens from other rodents. The 3 bands likely correspond to isoforms of a single allergen.

  16. New tree nut allergens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The 7S vicilin and 11S legumin seed storage globulins belong to the cupin protein superfamily and are major food allergens in many of the “big eight” food allergen groups. Korean pine vicilin and pecan vicilin are thus predicted to be food allergens. Recombinant vicilins were expressed in E. coli an...

  17. Expression of the immunoreactive buckwheat major allergenic storage protein in Lactococcus lactis.

    PubMed

    Shigemori, Suguru; Yonekura, Shinichi; Sato, Takashi; Otani, Hajime; Shimosato, Takeshi

    2013-04-01

    Proteins from buckwheat (Fagopyrum esculentum) are strong allergens that can cause serious symptoms, including anaphylaxis, in patients with hypersensitivity. In this study, we successfully developed a modified lactic acid bacterial vector (pNSH) and a recombinant strain of Lactococcus lactis NZ9000 (NZ9000) that produced a major allergenic storage protein of buckwheat, Fagag1 (61.2 kDa, GenBank accession number AF152003), with or without a green fluorescent protein (GFP) tag. GFP fluorescence allows for rapid, simple, and accurate measurement of target protein expression by microscopy or fluorimetry. We describe a convenient method for production of rGFP-Fagag1 fusion and rFagag1 proteins with a good yield in an advantageous probiotic host. We found that in vitro treatment of splenocytes isolated from buckwheat crude protein-immunized mice with rFagag1 increased the expression of allergic inflammation cytokines such as IL-4, IL-13, and IL-17 F. Because it was less antigenic, rGFP-Fagag1 protein from NZ9000 might be of limited use; however, rFagag1 from NZ9000 evoked a robust response as measured by induction of IL-4 and IL-17 F expression levels. The observed allergic activity is indicative of a Th2 cell-mediated immune response and is similar to the effects induced by exposure to buckwheat crude protein. Our results suggest that expression of rFagag1 in NZ9000 may facilitate in vivo applications of this system aimed at improving the specificity of immunological responses to buckwheat allergens.

  18. Genomic and transcriptional analysis of protein heterogeneity of the honeybee venom allergen Api m 6.

    PubMed

    Peiren, N; de Graaf, D C; Evans, J D; Jacobs, F J

    2006-10-01

    Several components of honeybee venom are known to cause allergenic responses in humans and other vertebrates. One such component, the minor allergen Api m 6, has been known to show amino acid variation but the genetic mechanism for this variation is unknown. Here we show that Api m 6 is derived from a single locus, and that substantial protein-level variation has a simple genome-level cause, without the need to invoke multiple loci or alternatively spliced exons. Api m 6 sits near a misassembled section of the honeybee genome sequence, and we propose that a substantial number of indels at and near Api m 6 might be the root cause of this misassembly. We suggest that genes such as Api m 6 with coding-region or untranslated region indels might have had a strong effect on the assembly of this draft of the honeybee genome.

  19. The balance between caseins and whey proteins in cow's milk determines its allergenicity.

    PubMed

    Lara-Villoslada, F; Olivares, M; Xaus, J

    2005-05-01

    Cow's milk allergy is quite common in the first years of human life. Protein composition plays an important role in this pathology, particularly the casein/whey protein ratio. It is known that milks from different species have different sensitization capacities although their protein sources are quite similar. Thus, the objective of this work was to compare the allergenicity of native cow's milk and milk with a modified ratio of casein and whey proteins in a murine model of atopy. Twenty-four Balb/c mice were orally sensitized to native cow's milk or modified cow's milk with a casein/whey protein ratio of 40:60. During the sensitization period, the number of mice suffering from diarrhea was significantly higher in the native cow's milk-sensitized group than in the modified milk-sensitized group. Once mice were killed, plasma histamine levels were shown to be significantly higher in native cow's milk-sensitized mice. In addition, cow's milk proteins induced a higher lymphocyte sensitization in the native milk-sensitized mice, with a significant increase in the specific proliferation ratio of these cells. These results suggest that the balance between caseins and whey proteins plays an important role in the sensitization capacity of cow's milk, and its modification might be a way to reduce the allergenicity of cow's milk.

  20. Effects of CO₂ on Acer negundo pollen fertility, protein content, allergenic properties, and carbohydrates.

    PubMed

    Silva, M; Ribeiro, H; Abreu, I; Cruz, A; Esteves da Silva, J C G

    2015-05-01

    Atmospheric gaseous pollutants can induce qualitative and quantitative changes in airborne pollen characteristics. In this work, it was investigated the effects of carbon dioxide (CO2) on Acer negundo pollen fertility, protein content, allergenic properties, and carbohydrates. Pollen was collected directly from the anthers and in vitro exposed to three CO2 levels (500, 1000, and 3000 ppm) for 6 and 24 h in an environmental chamber. Pollen fertility was determined using viability and germination assays, total soluble protein was determined with Coomassie Protein Assay Reagent, and the antigenic and allergenic properties were investigated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and immunological techniques using patients' sera. Also, pollen fructose, sucrose, and glucose values were determined. Carbon dioxide exposure affected negatively pollen fertility, total soluble protein content, and fructose content. The patient sera revealed increased IgE reactivity to proteins of A. negundo pollen exposed to increasing levels of the pollutant. No changes were detected in the SDS-PAGE protein profiles and in sucrose and glucose levels. Our results indicate that increase in atmospheric CO2 concentrations can have a negative influence of some features of A. negundo airborne pollen that can influence the reproductive processes as well as respiratory pollen allergies in the future.

  1. Purification, identification and preliminary crystallographic studies of Pru du amandin, an allergenic protein from Prunus dulcis

    SciTech Connect

    Gaur, Vineet; Sethi, Dhruv K.; Salunke, Dinakar M.

    2008-01-01

    The purification, identification, crystallization and preliminary crystallographic studies of an allergy-related protein, Pru du amandin, from P. dulcis nuts are reported. Food allergies appear to be one of the foremost causes of hypersensitivity reactions. Nut allergies account for most food allergies and are often permanent. The 360 kDa hexameric protein Pru du amandin, a known allergen, was purified from almonds (Prunus dulcis) by ammonium sulfate fractionation and ion-exchange chromatography. The protein was identified by a BLAST homology search against the nonredundant sequence database. Pru du amandin belongs to the 11S legumin family of seed storage proteins characterized by the presence of a cupin motif. Crystals were obtained by the hanging-drop vapour-diffusion method. The crystals belong to space group P4{sub 1} (or P4{sub 3}), with unit-cell parameters a = b = 150.7, c = 164.9 Å.

  2. Detection of trace amounts of hidden allergens: hazelnut and almond proteins in chocolate.

    PubMed

    Scheibe, B; Weiss, W; Ruëff, F; Przybilla, B; Görg, A

    2001-05-25

    Many patients with immediate type allergy to tree pollen also suffer from intolerance to hazelnuts and almonds. Since rather low levels of hazelnut and almond proteins can provoke an allergic reaction in sensitized individuals, an immunoblot technique has been developed for the detection of potentially allergenic hazelnut and almond proteins in chocolate. Initially, IgE binding hazelnut and almond proteins were detected by immunoprobing with allergic patients' sera. For routine analysis, patients' sera were substituted with polyclonal rabbit antisera, and sensitivity was enhanced by the use of a chemiluminescent detection method. This technique allowed the detection of less than 0.5 mg of hazelnut or almond proteins per 100 g of chocolate (= 5 ppm). It was applied for routine screening purposes in product quality control as well as for optimization of cleaning steps of filling facilities to minimize cross contamination during production.

  3. Development of a strategy for the total chemical synthesis of an allergenic protein: the peach LTP Pru p 3.

    PubMed

    Buhler, Sofie; Akkerdaas, Jaap H; A Pertinhez, Thelma; Van Ree, Ronald; Dossena, Arnaldo; Sforza, Stefano; Tedeschi, Tullia

    2017-02-10

    The possibility to obtain allergenic proteins by means of total chemical synthesis would be a big step forward in the development of cures to food allergy and in the study of the mechanism of allergic reactions, because this would allow to achieve control at the molecular level over the structure of the product and to study its relationship with the allergenic activity in fine details. This is instead not possible by using allergens produced by extraction from natural sources or by recombinant DNA techniques. In this work, we aimed to test for the first time the feasibility of the total chemical synthesis of an allergenic protein. Pru p 3, the most studied member of the family of lipid transfer proteins, relevant plant food pan-allergens, was used as model target. Strategies for the convergent assembly of the target protein, starting from five peptide fragments to be bound by means of either native chemical ligation or peptide hydrazide ligation, followed by desulfurization, to achieve ligations at alanine, were developed and tested. All the reaction conditions were set up and optimized. Two large peptides covering the two halves of the protein sequence were synthesized and structurally characterized by means of circular dichroism, and their immunogenicity was proved by means of immunoblot, using antibodies against Pru p 3, and immunoCAP inhibition tests. Finally, the five peptides were bound together to produce the whole protein stretch. The obtained results demonstrate the feasibility of total chemical synthesis as a new way to obtain pure allergens. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.

  4. Purification, identification and preliminary crystallographic studies of Pru du amandin, an allergenic protein from Prunus dulcis.

    PubMed

    Gaur, Vineet; Sethi, Dhruv K; Salunke, Dinakar M

    2008-01-01

    Food allergies appear to be one of the foremost causes of hypersensitivity reactions. Nut allergies account for most food allergies and are often permanent. The 360 kDa hexameric protein Pru du amandin, a known allergen, was purified from almonds (Prunus dulcis) by ammonium sulfate fractionation and ion-exchange chromatography. The protein was identified by a BLAST homology search against the nonredundant sequence database. Pru du amandin belongs to the 11S legumin family of seed storage proteins characterized by the presence of a cupin motif. Crystals were obtained by the hanging-drop vapour-diffusion method. The crystals belong to space group P4(1) (or P4(3)), with unit-cell parameters a = b = 150.7, c = 164.9 A.

  5. Low-dose gamma irradiation of food protein increases its allergenicity in a chronic oral challenge.

    PubMed

    Vaz, A F M; Souza, M P; Medeiros, P L; Melo, A M M A; Silva-Lucca, R A; Santana, L A; Oliva, M L V; Perez, K R; Cuccovia, I M; Correia, M T S

    2013-01-01

    Few chronic food protein models have described the relationship between allergenicity and the molecular structure of food protein after physical processing. The effect of γ-radiation on the structure of food protein was measured by fluorescence, circular dichroism and microcalorimetry. BALB/c mice were intraperitoneally sensitized and then given non-irradiated and irradiated Con-A by daily gavage for 28days. The tendency to form insoluble amorphous aggregates and partially unfolded species was observed after irradiation. The administration of non-irradiated and irradiated samples at low-dose significantly increased weight loss as well as plasma levels of eotaxin in animals repeatedly exposed to Con-A. Significant lymphocytic infiltrate filling completely the stroma of microvilli and tubular glands was observed in the small intestinal of the group given Con-A irradiated at a low dose. This phenotype was not observed in animals treated with Con-A irradiated at a high dose.

  6. cDNA Cloning, expression and characterization of an allergenic 60s ribosomal protein of almond (prunus dulcis).

    PubMed

    Abolhassani, Mohsen; Roux, Kenneth H

    2009-06-01

    Tree nuts, including almond (prunus dulcis) are a source of food allergens often associated with life-threatening allergic reactions in susceptible individuals. Although the proteins in almonds have been biochemically characterized, relatively little has been reported regarding the identity of the allergens involved in almond sensitivity. The present study was undertaken to identify the allergens of the almond by cDNA library approach. cDNA library of almond seeds was constructed in Uni-Zap XR lamda vector and expressed in E. coli XL-1 blue. Plaques were immunoscreened with pooled sera of allergic patients. The cDNA clone reacting significantly with specific IgE antibodies was selected and subcloned and subsequently expressed in E. coli. The amino acids deducted from PCR product of clone showed homology to 60s acidic ribosomal protein of almond. The expressed protein was 11,450 Dalton without leader sequence. Immunoreactivity of the recombinant 60s ribosomal protein (r60sRP) was evaluated with dot blot analysis using pooled and individual sera of allergic patients. The data showed that r60sRP and almond extract (as positive control) possess the ability to bind the IgE antibodies. The results showed that expressed protein is an almond allergen.Whether this r60sRP represents a major allergen of almond needs to be further studied which requires a large number of sera from the almond atopic patients and also need to determine the IgE-reactive frequencies of each individual allergen.

  7. Evidence for novel tomato seed allergens: IgE-reactive legumin and vicilin proteins identified by multidimensional protein fractionation-mass spectrometry and in silico epitope modeling.

    PubMed

    Bässler, Olivia Y; Weiss, Julia; Wienkoop, Stefanie; Lehmann, Karola; Scheler, Christian; Dölle, Sabine; Schwarz, Dietmar; Franken, Philipp; George, Eckhard; Worm, Margitta; Weckwerth, Wolfram

    2009-03-01

    Tomato fruit and seed allergens were detected by IgE-immunoblotting using sera from 18 adult tomato-sensitized patients selected based on a positive history skin prick test (SPT) and specific Immunglobulin (Ig) E-levels. Isolated tomato seed total protein showed high SPT activity comparable or even higher than tomato fruit protein. For the molecular characterization of tomato seed allergens, a multidimensional protein fractionation strategy and LC-MS/MS was used. Two legumin- and vicilin-proteins were purified and showed strong IgE-reactivity in immunoblots. Individual patient sera exhibited varying IgE-sensitivity against the purified proteins. In silico structural modeling indicates high homology between epitopes of known walnut allergens and the detected IgE-crossreactive tomato proteins.

  8. Hazardous components and health effects of atmospheric aerosol particles: reactive oxygen species, soot, polycyclic aromatic compounds and allergenic proteins.

    PubMed

    Shiraiwa, Manabu; Selzle, Kathrin; Pöschl, Ulrich

    2012-08-01

    This review outlines recent advances in the investigation of the chemical properties, molecular interactions and health effects of hazardous compounds in atmospheric aerosols, in particular reactive oxygen species (ROS), soot, polycyclic aromatic compounds (PACs) and allergenic proteins. Epidemiological studies show correlations between air particulate matter and adverse health effects of air pollution including allergy, asthma, cardiovascular and respiratory diseases, but the causative relations and mechanisms of interaction on the molecular level are still unclear. ROS generated by photochemical and heterogeneous reactions in the atmosphere seem to play a key role in aerosol health effects and provide a direct link between atmospheric and physiological multiphase processes. Soot and PACs can trigger formation of ROS in vivo, leading to inflammation and cellular damage. PACs as well as allergenic proteins are efficiently oxygenated and nitrated upon exposure to ozone and nitrogen dioxide, which leads to an enhancement of their toxicity and allergenicity.

  9. Experiences from Occupational Exposure Limits Set on Aerosols Containing Allergenic Proteins

    PubMed Central

    Nielsen, Gunnar D.

    2012-01-01

    Occupational exposure limits (OELs) together with determined airborne exposures are used in risk assessment based managements of occupational exposures to prevent occupational diseases. In most countries, OELs have only been set for few protein-containing aerosols causing IgE-mediated allergies. They comprise aerosols of flour dust, grain dust, wood dust, natural rubber latex, and the subtilisins, which are proteolytic enzymes. These aerosols show dose-dependent effects and levels have been established, where nearly all workers may be exposed without adverse health effects, which are required for setting OELs. Our aim is to analyse prerequisites for setting OELs for the allergenic protein-containing aerosols. Opposite to the key effect of toxicological reactions, two thresholds, one for the sensitization phase and one for elicitation of IgE-mediated symptoms in sensitized individuals, are used in the OEL settings. For example, this was the case for flour dust, where OELs were based on dust levels due to linearity between flour dust and its allergen levels. The critical effects for flour and grain dust OELs were different, which indicates that conclusion by analogy (read-across) must be scientifically well founded. Except for subtilisins, no OEL have been set for other industrial enzymes, where many of which are high volume chemicals. For several of these, OELs have been proposed in the scientific literature during the last two decades. It is apparent that the scientific methodology is available for setting OELs for proteins and protein-containing aerosols where the critical effect is IgE sensitization and IgE-mediated airway diseases. PMID:22843406

  10. Olive (Olea europea) and privet (Ligustrum vulgare) pollen allergens. Identification and cross-reactivity with grass pollen proteins.

    PubMed

    Baldo, B A; Panzani, R C; Bass, D; Zerboni, R

    1992-10-01

    Protein blotting studies showed that three olive pollen components with mol. wts approximately 18-19, 20 and 40 kD can be considered to be major allergens. For privet pollen, the highest recognition frequencies were for allergens of mol. wts approximately 20, approximately 19, approximately 40 and approximately 70 kD. When results with the 62 subjects examined were separated into groups corresponding to their geographical locations, viz. Italy, France and Australia, subjects sensitized to olive, but not other pollens (some Italian subjects), were found to show higher frequencies of recognition of major olive allergens than subjects sensitized to olive pollen via cross-reacting allergens from unrelated pollen sources (the Australian and French subjects). Blotting, adsorption and elution and inhibition studies clearly demonstrated allergenic cross-reactivity (that is, antigenic cross-reactivity detected by IgE antibodies) between olive, privet, ryegrass (Lolium perenne) and couch grass (Bermuda grass: Cynodon dactylon) pollen components. As with our previous findings with birch pollen, we conclude that the presence of pollen-reactive IgE antibodies may not necessarily be a true reflection of the sensitizing pollen species.

  11. Allergen nomenclature*

    PubMed Central

    1994-01-01

    The revised nomenclature for allergens is presented together with proposed nomenclatures for (a) allergen genes, mRNAs and cDNAs, and (b) recombinant and synthetic peptides of allergenic interest. PMID:7955031

  12. Structural glycobiology of the major allergen of Artemisia vulgaris pollen, Art v 1: O-glycosylation influence on the protein dynamics and allergenicity.

    PubMed

    Pol-Fachin, Laercio; Verli, Hugo

    2012-06-01

    Art v 1 is the major allergen of mugwort (Artemisia vulgaris) pollen. It is formed by an N-terminal globular defensin-like part and a C-terminal proline-rich domain. As the structure and the dynamics of Art v 1 have been mostly described for its recombinant, non-glycosylated form, which does not occur in normal plant physiology, the present work intends to obtain a three-dimensional model for Art v 1 native O-glycosylation structure and to evaluate the influence of such glycans over the protein dynamics and allergenicity through molecular dynamics simulations in triplicates. Structural insights into the mutual recognition of Art v 1 protein and carbohydrate moieties recognition by antibodies were obtained, in which glycan chains remained close to the previously identified epitopes in the defensin-like domain, thus pointing to potential interferences with antibodies recognition. To our knowledge, this is the first structural report of an entire furanose-containing glycoprotein. As well, together with the previously determined NMR structures, the obtained results contribute in the comprehension of the effect of glycosylation over both proline-rich and defensin-like domains, providing an atomic representation of such alterations.

  13. The lipid transfer proteins (LTP) essentially concentrate in the skin of Rosaceae fruits as cell surface exposed allergens.

    PubMed

    Borges, J-P; Jauneau, A; Brulé, C; Culerrier, R; Barre, A; Didier, A; Rougé, P

    2006-10-01

    The localization and distribution of non-specific lipid transfer proteins (nsLTP) allergens in the skin and pulp of Rosaceae fruits (apple, peach, apricot, plum) has been investigated. nsLTP essentially concentrate in the pericarp of the fruits whereas the pulp contains lower amounts of allergens. Immunolocalization showed they are primarily located in the cytosol but are subsequently excreted and finally accumulate at the plasmalemma-cell wall interface and in the cell wall. However, high discrepancies were observed in the content of allergens among, e.g. different cultivars of apple. As a consequence, the consumption of peeled-off fruits is recommended to reduce the risk of severe allergic reactions (anaphylactic shock) in individuals sensitized to Rosaceae fruits.

  14. Multi-allergen screening immunoassay for the detection of protein markers of peanut and four tree nuts in chocolate.

    PubMed

    Ben Rejeb, S; Abbott, M; Davies, D; Cléroux, C; Delahaut, P

    2005-08-01

    A multiresidue enzyme immunoassay was developed to check for the presence of markers of peanut, hazelnut, almond, cashew and Brazil nuts in a single run. The assay was designed under the competitive indirect format and adapted for screening purposes applied to chocolate samples. The limit of detection for this assay was below 1 microg g-1 protein for each allergenic food. In most cases, the high specificity of the antibodies used allowed the identification of each particular allergenic food with no possible confusion. This assay was proven to be useful as part of an analytical procedure involving the identification of the unknown allergenic food among peanut and other tree nuts in recalled samples before the application of a quantitative technique to determine the level of cross-contamination.

  15. An adjuvant-free mouse model to evaluate the allergenicity of milk whey protein.

    PubMed

    Gonipeta, B; Parvataneni, S; Tempelman, R J; Gangur, V

    2009-10-01

    Milk allergy is the most common type of food allergy in humans with the potential for fatality. An adjuvant-free mouse model would be highly desirable as a preclinical research tool to develop novel hypoallergenic or nonallergenic milk products. Here we describe an adjuvant-free mouse model of milk allergy that uses transdermal sensitization followed by oral challenge with milk protein. Groups of BALB/c mice were exposed to milk whey protein via a transdermal route, without adjuvant. Systemic IgG1 and IgE antibody responses to transdermal exposure as well as systemic anaphylaxis and hypothermia response to oral protein challenge were studied. Transdermal exposure resulted in a time- and dose-dependent induction of significant IgE and IgG1 antibody responses. Furthermore, oral challenge of sensitized mice resulted in significant clinical symptoms of systemic anaphylaxis within 1 h and significant hypothermia at 30 min postchallenge. To study the underlying mechanism, we examined allergen-driven spleen cell T-helper 2 cytokine (IL-4) responses. There was a robust dose- and time-dependent activation of memory IL-4 responses in allergic mice but not in healthy control mice. These data demonstrate for the first time a novel transdermal sensitization followed by oral challenge mouse model of milk allergy that does not use adjuvant. It is expected that this model may be used not only to study mechanisms of milk allergy, but also to evaluate novel milk products for allergenic potential and aid in the production of hypo- or nonallergenic milk products.

  16. Apoplastic Venom Allergen-like Proteins of Cyst Nematodes Modulate the Activation of Basal Plant Innate Immunity by Cell Surface Receptors

    PubMed Central

    Lozano-Torres, Jose L.; Wilbers, Ruud H. P.; Warmerdam, Sonja; Finkers-Tomczak, Anna; Diaz-Granados, Amalia; van Schaik, Casper C.; Helder, Johannes; Bakker, Jaap; Goverse, Aska; Schots, Arjen; Smant, Geert

    2014-01-01

    Despite causing considerable damage to host tissue during the onset of parasitism, nematodes establish remarkably persistent infections in both animals and plants. It is thought that an elaborate repertoire of effector proteins in nematode secretions suppresses damage-triggered immune responses of the host. However, the nature and mode of action of most immunomodulatory compounds in nematode secretions are not well understood. Here, we show that venom allergen-like proteins of plant-parasitic nematodes selectively suppress host immunity mediated by surface-localized immune receptors. Venom allergen-like proteins are uniquely conserved in secretions of all animal- and plant-parasitic nematodes studied to date, but their role during the onset of parasitism has thus far remained elusive. Knocking-down the expression of the venom allergen-like protein Gr-VAP1 severely hampered the infectivity of the potato cyst nematode Globodera rostochiensis. By contrast, heterologous expression of Gr-VAP1 and two other venom allergen-like proteins from the beet cyst nematode Heterodera schachtii in plants resulted in the loss of basal immunity to multiple unrelated pathogens. The modulation of basal immunity by ectopic venom allergen-like proteins in Arabidopsis thaliana involved extracellular protease-based host defenses and non-photochemical quenching in chloroplasts. Non-photochemical quenching regulates the initiation of the defense-related programmed cell death, the onset of which was commonly suppressed by venom allergen-like proteins from G. rostochiensis, H. schachtii, and the root-knot nematode Meloidogyne incognita. Surprisingly, these venom allergen-like proteins only affected the programmed cell death mediated by surface-localized immune receptors. Furthermore, the delivery of venom allergen-like proteins into host tissue coincides with the enzymatic breakdown of plant cell walls by migratory nematodes. We, therefore, conclude that parasitic nematodes most likely utilize

  17. Isoform identification, recombinant production and characterization of the allergen lipid transfer protein 1 from pear (Pyr c 3).

    PubMed

    Ramazzina, Ileana; Amato, Stefano; Passera, Elisabetta; Sforza, Stefano; Mistrello, Gianni; Berni, Rodolfo; Folli, Claudia

    2012-01-10

    Non-specific lipid transfer proteins belonging to LTP1 family represent the most important allergens for non pollen-related allergies to Rosaceae fruits in the Mediterranean area. Peach LTP1 (Pru p 3) is a major allergen and is considered the prototypic allergenic LTP. On the contrary, pear allergy without pollinosis seems to be under-reported when compared to other Rosaceae fruits suggesting that the as-yet-uncharacterized pear LTP1 (Pyr c 3) has in vivo a low allergenicity. We report here on the identification of four cDNAs encoding for LTP1 in pear fruits. The two isoforms exhibiting amino acid sequences most similar to those of peach and apple homologues were obtained as recombinant proteins. Such isoforms exhibited CD spectra and lipid binding ability typical of LTP1 family. Moreover, pear LTP1 mRNA was mainly found in the peel, as previously shown for other Rosaceae fruits. By means of IgE ELISA assays a considerable immunoreactivity of these proteins to LTP-sensitive patient sera was detected, even though allergic reactions after ingestion of pear were not reported in the clinical history of the patients. Finally, the abundance of LTP1 in protein extracts from pear peel, in which LTP1 from Rosaceae fruits is mainly confined, was estimated to be much lower as compared to peach peel. Our data suggest that the two isoforms of pear LTP1 characterized in this study possess biochemical features and IgE-binding ability similar to allergenic LTPs. Their low concentrations in pear might be the cause of the low frequency of LTP-mediated pear allergy.

  18. Salt-soluble proteins from wheat-derived foodstuffs show lower allergenic potency than those from raw flour.

    PubMed

    de Gregorio, Marta; Armentia, Alicia; Díaz-Perales, Araceli; Palacín, Arantxa; Dueñas-Laita, Antonio; Martín, Blanca; Salcedo, Gabriel; Sánchez-Monge, Rosa

    2009-04-22

    Salt-soluble proteins from wheat flour have been described as main allergens associated with both baker's asthma and food allergy. However, most studies have used raw flour as starting material, thus not considering potential changes in allergenic properties induced by the heat treatment and other industrial processing to produce wheat-derived foodstuffs. Salt extracts from different commercial wheat-derived products were obtained and their allergenic properties investigated by IgE-immunodetection, ELISA assays, and skin prick test. The IgE-binding capacity of salt-soluble proteins from commercial breads and cooked pastas was reduced around 50% compared with that of raw flour, the reduction being less dramatic in noncooked pastas and biscuits. Several wheat-derived foodstuffs showed major IgE-binding components of 20 and 35 kDa, identified as avenin-like and globulin proteins, respectively. These proteins, as well as most flour and bread salt-soluble proteins, were hydrolyzed when subjected to simulated gastrointestinal digestion. However, the digested products still exhibited a residual IgE-binding capacity. Therefore, processing of wheat flour to obtain derived foodstuffs decreases the IgE binding-capacity of the major salt-soluble wheat proteins. Moreover, simulated gastric fluid digestion further inactivates some heat-resistant IgE-binding proteins.

  19. Proteolytic activity of Enterococcus faecalis VB63F for reduction of allergenicity of bovine milk proteins.

    PubMed

    Biscola, V; Tulini, F L; Choiset, Y; Rabesona, H; Ivanova, I; Chobert, J-M; Todorov, S D; Haertlé, T; Franco, B D G M

    2016-07-01

    With the aim of screening proteolytic strains of lactic acid bacteria to evaluate their potential for the reduction of allergenicity of the major bovine milk proteins, we isolated a new proteolytic strain of Enterococcus faecalis (Ent. faecalis VB63F) from raw bovine milk. The proteases produced by this strain had strong activity against caseins (αS1-, αS2-, and β-casein), in both skim milk and sodium caseinate. However, only partial hydrolysis of whey proteins was observed. Proteolysis of Na-caseinate and whey proteins, observed after sodium dodecyl sulfate-PAGE, was confirmed by analysis of peptide profiles by reversed-phase HPLC. Inhibition of proteolysis with EDTA indicated that the proteases produced by Ent. faecalis VB63F belonged to the group of metalloproteases. The optimal conditions for their activity were 42°C and pH 6.5. The majority of assessed virulence genes were absent in Ent. faecalis VB63F. The obtained results suggest that Ent. faecalis VB63F could be efficient in reducing the immunoreactivity of bovine milk proteins.

  20. Production of the Allergenic Protein Alt a 1 by Alternaria Isolates from Working Environments

    PubMed Central

    Skóra, Justyna; Otlewska, Anna; Gutarowska, Beata; Leszczyńska, Joanna; Majak, Iwona; Stępień, Łukasz

    2015-01-01

    The aim of the study was to evaluate the ability of Alternaria isolates from workplaces to produce Alt a 1 allergenic protein, and to analyze whether technical materials (cellulose, compost, leather) present within the working environment stimulate or inhibit Alt a 1 production (ELISA test). Studies included identification of the isolated molds by nucleotide sequences analyzing of the ITS1/ITS2 regions, actin, calmodulin and Alt a 1 genes. It has been shown that Alternaria molds are significant part of microbiocenosis in the archive, museum, library, composting plant and tannery (14%–16% frequency in the air). The presence of the gene encoding the Alt a 1 protein has been detected for the strains: Alternaria alternata, A. lini, A. limoniasperae A. nobilis and A. tenuissima. Environmental strains produced Alt a 1 at higher concentrations (1.103–6.528 ng/mL) than a ATCC strain (0.551–0.975 ng/mL). It has been shown that the homogenization of the mycelium and the use of ultrafiltration allow a considerable increase of Alt a 1 concentration. Variations in the production of Alt a 1 protein, depend on the strain and extraction methods. These studies revealed no impact of the technical material from the workplaces on the production of Alt a 1 protein. PMID:25689994

  1. Production of the allergenic protein Alt a 1 by Alternaria isolates from working environments.

    PubMed

    Skóra, Justyna; Otlewska, Anna; Gutarowska, Beata; Leszczyńska, Joanna; Majak, Iwona; Stępień, Łukasz

    2015-02-16

    The aim of the study was to evaluate the ability of Alternaria isolates from workplaces to produce Alt a 1 allergenic protein, and to analyze whether technical materials (cellulose, compost, leather) present within the working environment stimulate or inhibit Alt a 1 production (ELISA test). Studies included identification of the isolated molds by nucleotide sequences analyzing of the ITS1/ITS2 regions, actin, calmodulin and Alt a 1 genes. It has been shown that Alternaria molds are significant part of microbiocenosis in the archive, museum, library, composting plant and tannery (14%-16% frequency in the air). The presence of the gene encoding the Alt a 1 protein has been detected for the strains: Alternaria alternata, A. lini, A. limoniasperae A. nobilis and A. tenuissima. Environmental strains produced Alt a 1 at higher concentrations (1.103-6.528 ng/mL) than a ATCC strain (0.551-0.975 ng/mL). It has been shown that the homogenization of the mycelium and the use of ultrafiltration allow a considerable increase of Alt a 1 concentration. Variations in the production of Alt a 1 protein, depend on the strain and extraction methods. These studies revealed no impact of the technical material from the workplaces on the production of Alt a 1 protein.

  2. Allergenicity Assessment of Allium sativum Leaf Agglutinin, a Potential Candidate Protein for Developing Sap Sucking Insect Resistant Food Crops

    PubMed Central

    Mondal, Hossain Ali; Chakraborti, Dipankar; Majumder, Pralay; Roy, Pampa; Roy, Amit; Bhattacharya, Swati Gupta; Das, Sampa

    2011-01-01

    Background Mannose-binding Allium sativum leaf agglutinin (ASAL) is highly antinutritional and toxic to various phloem-feeding hemipteran insects. ASAL has been expressed in a number of agriculturally important crops to develop resistance against those insects. Awareness of the safety aspect of ASAL is absolutely essential for developing ASAL transgenic plants. Methodology/Principal Findings Following the guidelines framed by the Food and Agriculture Organization/World Health Organization, the source of the gene, its sequence homology with potent allergens, clinical tests on mammalian systems, and the pepsin resistance and thermostability of the protein were considered to address the issue. No significant homology to the ASAL sequence was detected when compared to known allergenic proteins. The ELISA of blood sera collected from known allergy patients also failed to show significant evidence of cross-reactivity. In vitro and in vivo assays both indicated the digestibility of ASAL in the presence of pepsin in a minimum time period. Conclusions/Significance With these experiments, we concluded that ASAL does not possess any apparent features of an allergen. This is the first report regarding the monitoring of the allergenicity of any mannose-binding monocot lectin having insecticidal efficacy against hemipteran insects. PMID:22110739

  3. Characterization of mutants of a highly cross-reactive calcium-binding protein from Brassica pollen for allergen-specific immunotherapy.

    PubMed

    Garmatiuk, Tetiana; Swoboda, Ines; Twardosz-Kropfmüller, Anna; Dall'antonia, Fabio; Keller, Walter; Singh, Mohan B; Bhalla, Prem L; Okada, Takashi; Toriyama, Kinya; Weber, Milena; Ghannadan, Minoo; Sperr, Wolfgang R; Blatt, Katharina; Valent, Peter; Klein, Brigitte; Niederberger, Verena; Curin, Mirela; Balic, Nadja; Spitzauer, Susanne; Valenta, Rudolf

    2013-09-01

    The major turnip (Brassica rapa) pollen allergen, belongs to a family of calcium-binding proteins (i.e., two EF-hand proteins), which occur as highly cross-reactive allergens in pollen of weeds, grasses and trees. In this study, the IgE binding capacity and allergenic activity of three recombinant allergen variants containing mutations in their calcium-binding sites were analyzed in sensitized patients with the aim to identify the most suitable hypoallergenic molecule for specific immunotherapy. Analysis of the wildtype allergen and the mutants regarding IgE reactivity and activation of basophils in allergic patients indicated that the allergen derivative mutated in both calcium-binding domains had the lowest allergenic activity. Gel filtration and circular dichroism experiments showed that both, the wildtype and the double mutant, occurred as dimers in solution and assumed alpha-helical fold, respectively. However, both fold and thermal stability were considerably reduced in the double mutant. The use of bioinformatic tools for evaluation of the solvent accessibility and charge distribution suggested that the reduced IgE reactivity and different structural properties of the double mutant may be due to a loss of negatively charged amino acids on the surface. Interestingly, immunization of rabbits showed that only the double mutant but not the wildtype allergen induced IgG antibodies which recognized the allergen and blocked binding of allergic patients IgE. Due to the extensive structural similarity and cross-reactivity between calcium-binding pollen allergens the hypoallergenic double mutant may be useful not only for immunotherapy of turnip pollen allergy, but also for the treatment of allergies to other two EF-hand pollen allergens.

  4. Allergen nomenclature.

    PubMed Central

    Marsh, D. G.; Goodfriend, L.; King, T. P.; Lowenstein, H.; Platts-Mills, T. A.

    1986-01-01

    This article presents a nomenclature system for allergens which has been officially recommended by the International Union of Immunological Societies (IUIS). The nomenclature is based on proposals of the IUIS Sub-Committee for Allergen Nomenclature and is applicable to highly purified, well-characterized allergens and to non-purified or partially purified allergenic extracts. PMID:3492310

  5. Proteomic analysis of peanut seed storage proteins and genetic variation in a potential peanut allergen

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut allergy is one of the most severe food allergies. One effort to alleviate this problem is to identify peanut germplasm with lower levels of allergens which could be used in conventional breeding to produce a less allergenic peanut cultivar. In this study, we identified one peanut line, GT-C9,...

  6. Tree nut allergens.

    PubMed

    Roux, Kenneth H; Teuber, Suzanne S; Sathe, Shridhar K

    2003-08-01

    Allergic reactions to tree nuts can be serious and life threatening. Considerable research has been conducted in recent years in an attempt to characterize those allergens that are most responsible for allergy sensitization and triggering. Both native and recombinant nut allergens have been identified and characterized and, for some, the IgE-reactive epitopes described. Some allergens, such as lipid transfer proteins, profilins, and members of the Bet v 1-related family, represent minor constituents in tree nuts. These allergens are frequently cross-reactive with other food and pollen homologues, and are considered panallergens. Others, such as legumins, vicilins, and 2S albumins, represent major seed storage protein constituents of the nuts. The allergenic tree nuts discussed in this review include those most commonly responsible for allergic reactions such as hazelnut, walnut, cashew, and almond as well as those less frequently associated with allergies including pecan, chestnut, Brazil nut, pine nut, macadamia nut, pistachio, coconut, Nangai nut, and acorn.

  7. Emerging pollen allergens.

    PubMed

    Rodríguez, Rosalía; Villalba, Mayte; Batanero, Eva; Palomares, Oscar; Salamanca, Guillermo

    2007-01-01

    Numerous pollen allergens have been reported over the last few years. Most of them belong to well-known families of proteins but some others constitute the first member of new allergenic families. Some of the factors that can contribute to the detection and identification of new pollen allergens are: a) advances in the technology tools for molecular analysis; and b) the deep knowledge of many allergenic sources. The combination of these factors has provided vast information on the olive pollen allergogram and the identification of minor allergens that become major ones for a significant population. The close taxonomical relationship between olive tree and ash -both Oleaceae- has permitted to identify Fra e 1 (the Ole e 1-like allergen) in ash pollen and to detect the presence of protein homologues of Ole e 3 and Ole e 6. In the other hand, extensive areas of south Europe are suffering an increasing desertification. As a consequence of this, new botanical species are spontaneously growing in these areas or being used in greening ground programs: Chenopodium album and Salsola kali are some examples recently recognized as allergenic woods. The identification of the complete panel of allergens from the hypersensitizing sources might help to develop more accurate diagnosis, and efficient and safer therapy tools for Type-I allergic diseases.

  8. NMR Structure of Francisella tularensis Virulence Determinant Reveals Structural Homology to Bet v1 Allergen Proteins.

    PubMed

    Zook, James; Mo, Gina; Sisco, Nicholas J; Craciunescu, Felicia M; Hansen, Debra T; Baravati, Bobby; Cherry, Brian R; Sykes, Kathryn; Wachter, Rebekka; Van Horn, Wade D; Fromme, Petra

    2015-06-02

    Tularemia is a potentially fatal bacterial infection caused by Francisella tularensis, and is endemic to North America and many parts of northern Europe and Asia. The outer membrane lipoprotein, Flpp3, has been identified as a virulence determinant as well as a potential subunit template for vaccine development. Here we present the first structure for the soluble domain of Flpp3 from the highly infectious Type A SCHU S4 strain, derived through high-resolution solution nuclear magnetic resonance (NMR) spectroscopy; the first structure of a lipoprotein from the genus Francisella. The Flpp3 structure demonstrates a globular protein with an electrostatically polarized surface containing an internal cavity-a putative binding site based on the structurally homologous Bet v1 protein family of allergens. NMR-based relaxation studies suggest loop regions that potentially modulate access to the internal cavity. The Flpp3 structure may add to the understanding of F. tularensis virulence and contribute to the development of effective vaccines.

  9. Identification of Der p 23, a peritrophin-like protein, as a new major Dermatophagoides pteronyssinus allergen associated with the peritrophic matrix of mite fecal pellets.

    PubMed

    Weghofer, Margit; Grote, Monika; Resch, Yvonne; Casset, Anne; Kneidinger, Michael; Kopec, Jolanta; Thomas, Wayne R; Fernández-Caldas, Enrique; Kabesch, Michael; Ferrara, Rosetta; Mari, Adriano; Purohit, Ashok; Pauli, Gabrielle; Horak, Friedrich; Keller, Walter; Valent, Peter; Valenta, Rudolf; Vrtala, Susanne

    2013-04-01

    The house dust mite (HDM) Dermatophagoides pteronyssinus is one of most important allergen sources and a major elicitor of allergic asthma. We screened a D. pteronyssinus expression cDNA library with IgE Abs from HDM allergic patients. A cDNA coding for a new major allergen was isolated, which showed sequence homology to peritrophins, which contain chitin-binding domains and are part of the peritrophic matrix lining the gut of arthropods. The mature Der p 23 allergen was expressed in Escherichia coli as an 8-kDa protein without its hydrophobic leader sequence and purified to homogeneity. It reacted with IgE Abs from 74% of D. pteronyssinus allergic patients (n = 347) at levels comparable to the two major HDM allergens, Der p 1 and Der p 2. Thus, Der p 23 represents a new major D. pteronyssinus allergen. Furthermore, rDer p 23 exhibited high allergenic activity as demonstrated by upregulation of CD203c expression on basophils from D. pteronyssinus allergic patients. Immunogold electron microscopy localized the allergen in the peritrophic matrix lining the midgut of D. pteronyssinus as well as on the surface of the fecal pellets. Thus, we identified a new major D. pteronyssinus allergen as peritrophin-like protein. The high allergenic activity of Der p 23 and its frequent recognition as respiratory allergen may be explained by the fact that it becomes airborne and respirable through its association with mite feces. Der p 23 may be an essential component for diagnosis and specific immunotherapy of HDM allergy.

  10. Identification of Der p 23, a Peritrophin-like Protein, as a New Major Dermatophagoides pteronyssinus Allergen Associated with the Peritrophic Matrix of Mite Fecal Pellets

    PubMed Central

    Weghofer, Margit; Grote, Monika; Resch, Yvonne; Casset, Anne; Kneidinger, Michael; Kopec, Jolanta; Thomas, Wayne R.; Fernández-Caldas, Enrique; Kabesch, Michael; Ferrara, Rosetta; Mari, Adriano; Purohit, Ashok; Pauli, Gabrielle; Horak, Friedrich; Keller, Walter; Valent, Peter; Valenta, Rudolf; Vrtala, Susanne

    2015-01-01

    The house dust mite (HDM) Dermatophagoides pteronyssinus is one of most important allergen sources and a major elicitor of allergic asthma. We screened a D. pteronyssinus expression cDNA library with IgE Abs from HDM allergic patients. A cDNA coding for a new major allergen was isolated, which showed sequence homology to peritrophins, which contain chitin-binding domains and are part of the peritrophic matrix lining the gut of arthropods. The mature Der p 23 allergen was expressed in Escherichia coli as an 8-kDa protein without its hydrophobic leader sequence and purified to homogeneity. It reacted with IgE Abs from 74% of D. pteronyssinus allergic patients (n = 347) at levels comparable to the two major HDM allergens, Der p 1 and Der p 2. Thus, Der p 23 represents a new major D. pteronyssinus allergen. Furthermore, rDer p 23 exhibited high allergenic activity as demonstrated by upregulation of CD203c expression on basophils from D. pteronyssinus allergic patients. Immunogold electron microscopy localized the allergen in the peritrophic matrix lining the midgut of D. pteronyssinus as well as on the surface of the fecal pellets. Thus, we identified a new major D. pteronyssinus allergen as peritrophin-like protein. The high allergenic activity of Der p 23 and its frequent recognition as respiratory allergen may be explained by the fact that it becomes airborne and respirable through its association with mite feces. Der p 23 may be an essential component for diagnosis and specific immunotherapy of HDM allergy. PMID:23460742

  11. MALDI based identification of soybean protein markers--possible analytical targets for allergen detection in processed foods.

    PubMed

    Cucu, Tatiana; De Meulenaer, Bruno; Devreese, Bart

    2012-02-01

    Soybean (Glycine max) is extensively used all over the world due to its nutritional qualities. However, soybean is included in the "big eight" list of food allergens. According to the EU directive 2007/68/EC, food products containing soybeans have to be labeled in order to protect the allergic consumers. Nevertheless, soybeans can still inadvertently be present in food products. The development of analytical methods for the detection of traces of allergens is important for the protection of allergic consumers. Mass spectrometry of marker proteolytical fragments of protein allergens is growingly recognized as a detection method in food control. However, quantification of soybean at the peptide level is hindered due to limited information regarding specific stable markers derived after proteolytic digestion. The aim of this study was to use MALDI-TOF/MS and MS/MS as a fast screening tool for the identification of stable soybean derived tryptic markers which were still identifiable even if the proteins were subjected to various changes at the molecular level through a number of reactions typically occurring during food processing (denaturation, the Maillard reaction and oxidation). The peptides (401)Val-Arg(410) from the G1 glycinin (Gly m 6) and the (518)Gln-Arg(528) from the α' chain of the β-conglycinin (Gly m 5) proved to be the most stable. These peptides hold potential to be used as targets for the development of new analytical methods for the detection of soybean protein traces in processed foods.

  12. Immunochemical investigation of allergenic residues in experimental and commercially-available wines fined with egg white proteins.

    PubMed

    Uberti, Francesca; Danzi, Roberta; Stockley, Creina; Peñas, Elena; Ballabio, Cinzia; Di Lorenzo, Chiara; Tarantino, Chiara; Restani, Patrizia

    2014-09-15

    Proteinaceous egg whites are widely used as a fining agent during the production of red wines. Residues of egg white in the final wine could present a risk for individuals allergic to eggs. This study investigated the presence of allergenic residues in both red and white wines fined with egg whites. Experimental and commercially available wines fined with egg whites, with or without subsequent bentonite fining, were studied. Unfined wines were used as negative controls. The physicochemical characteristics of each wine were determined to assess their possible role in enhancing or hindering the elimination of allergenic residues from wine. The amount of egg white protein residues was investigated both by a specifically developed/validated ELISA test and by immunoblotting. Both immunochemical tests used the same anti-total egg white protein antibody and were highly sensitive to the allergen. No egg white protein was detected in the wines studied in either immunochemical test, irrespective of the physicochemical characteristics of the wine, the type and dosage of the fining agent and the oenological process used. The risk of adverse reactions in egg-allergic individuals should therefore be considered negligible, but the exemption from labelling should be allowed only when the absence of residues is confirmed by analytical controls.

  13. [New aero-allergens].

    PubMed

    De Blay, F; Bessot, J C; Pauli, G

    1996-01-01

    As the number of proteins recognized as causing allergic respiratory diseases increases, new aero allergens have appeared in the animal and vegetable realms, both in home and professional environments. Lepidoglyphus destructor and Blomia tropicalis, two mites found in storage areas, are particularly important in agricultural areas and in homes. Over the last ten years, the frequency of reactions to cockroaches has also increased in several countries. The allergenicity of non-biting insects is a frequent cause of allergy in certain countries including Japan. Chironomides cause respiratory diseases in professional and outdoor environments. The important role of Alternaria, a mold, in producing severe asthma has also been demonstrated. The pathophysiology of pollen-induced asthma has been shown to result from pollen allergens carried by particles less than 5 microns in diameter. Cyprus and ash tree pollen also cause an increasing number of pollinoses and flowers can cause rhinitis and asthma. Respiratory allergy to Ficus benjamina inaugurated a new type of allergies caused airborne allergens from non-pollinating plants. Allergy to latex raises a particular problem for health care workers. The immunochemical structures of the major and minor airborne allergens are now better known and the homologous structures of different allergens largely explains certain cross-reactions. In the future, recombinant allergens will probably be used to better understand the role of allergens in inducing and maintaining the allergic reaction and should help in our approach to diagnosis and therapy.

  14. Ligand binding to an allergenic lipid transfer protein enhances conformational flexibility resulting in an increase in susceptibility to gastroduodenal proteolysis

    DOE PAGES

    Abdullah, Syed Umer; Alexeev, Yuri; Johnson, Philip E.; ...

    2016-07-26

    Non-specific lipid transfer proteins (LTPs) are a family of lipid-binding molecules that are widely distributed across flowering plant species, many of which have been identified as allergens. They are highly resistant to simulated gastroduodenal proteolysis, a property that may play a role in determining their allergenicity and it has been suggested that lipid binding may further increase stability to proteolysis. It is demonstrated that LTPs from wheat and peach bind a range of lipids in a variety of conditions, including those found in the gastroduodenal tract. Both LTPs are initially cleaved during gastroduodenal proteolysis at three major sites between residuesmore » 39–40, 56–57 and 79–80, with wheat LTP being more resistant to cleavage than its peach ortholog. The susceptibility of wheat LTP to proteolyic cleavage increases significantly upon lipid binding. This enhanced digestibility is likely to be due to the displacement of Tyr79 and surrounding residues from the internal hydrophobic cavity upon ligand binding to the solvent exposed exterior of the LTP, facilitating proteolysis. As a result, such knowledge contributes to our understanding as to how resistance to digestion can be used in allergenicity risk assessment of novel food proteins, including GMOs.« less

  15. Ligand binding to an Allergenic Lipid Transfer Protein Enhances Conformational Flexibility resulting in an Increase in Susceptibility to Gastroduodenal Proteolysis

    NASA Astrophysics Data System (ADS)

    Abdullah, Syed Umer; Alexeev, Yuri; Johnson, Philip E.; Rigby, Neil M.; Mackie, Alan R.; Dhaliwal, Balvinder; Mills, E. N. Clare

    2016-07-01

    Non-specific lipid transfer proteins (LTPs) are a family of lipid-binding molecules that are widely distributed across flowering plant species, many of which have been identified as allergens. They are highly resistant to simulated gastroduodenal proteolysis, a property that may play a role in determining their allergenicity and it has been suggested that lipid binding may further increase stability to proteolysis. It is demonstrated that LTPs from wheat and peach bind a range of lipids in a variety of conditions, including those found in the gastroduodenal tract. Both LTPs are initially cleaved during gastroduodenal proteolysis at three major sites between residues 39–40, 56–57 and 79–80, with wheat LTP being more resistant to cleavage than its peach ortholog. The susceptibility of wheat LTP to proteolyic cleavage increases significantly upon lipid binding. This enhanced digestibility is likely to be due to the displacement of Tyr79 and surrounding residues from the internal hydrophobic cavity upon ligand binding to the solvent exposed exterior of the LTP, facilitating proteolysis. Such knowledge contributes to our understanding as to how resistance to digestion can be used in allergenicity risk assessment of novel food proteins, including GMOs.

  16. Graph Based Study of Allergen Cross-Reactivity of Plant Lipid Transfer Proteins (LTPs) Using Microarray in a Multicenter Study

    PubMed Central

    Palacín, Arantxa; Gómez-Casado, Cristina; Rivas, Luis A.; Aguirre, Jacobo; Tordesillas, Leticia; Bartra, Joan; Blanco, Carlos; Carrillo, Teresa; Cuesta-Herranz, Javier; de Frutos, Consolación; Álvarez-Eire, Genoveva García; Fernández, Francisco J.; Gamboa, Pedro; Muñoz, Rosa; Sánchez-Monge, Rosa; Sirvent, Sofía; Torres, María J.; Varela-Losada, Susana; Rodríguez, Rosalía; Parro, Victor; Blanca, Miguel; Salcedo, Gabriel; Díaz-Perales, Araceli

    2012-01-01

    The study of cross-reactivity in allergy is key to both understanding. the allergic response of many patients and providing them with a rational treatment In the present study, protein microarrays and a co-sensitization graph approach were used in conjunction with an allergen microarray immunoassay. This enabled us to include a wide number of proteins and a large number of patients, and to study sensitization profiles among members of the LTP family. Fourteen LTPs from the most frequent plant food-induced allergies in the geographical area studied were printed into a microarray specifically designed for this research. 212 patients with fruit allergy and 117 food-tolerant pollen allergic subjects were recruited from seven regions of Spain with different pollen profiles, and their sera were tested with allergen microarray. This approach has proven itself to be a good tool to study cross-reactivity between members of LTP family, and could become a useful strategy to analyze other families of allergens. PMID:23272072

  17. Ligand binding to an Allergenic Lipid Transfer Protein Enhances Conformational Flexibility resulting in an Increase in Susceptibility to Gastroduodenal Proteolysis

    PubMed Central

    Abdullah, Syed Umer; Alexeev, Yuri; Johnson, Philip E.; Rigby, Neil M.; Mackie, Alan R.; Dhaliwal, Balvinder; Mills, E. N. Clare

    2016-01-01

    Non-specific lipid transfer proteins (LTPs) are a family of lipid-binding molecules that are widely distributed across flowering plant species, many of which have been identified as allergens. They are highly resistant to simulated gastroduodenal proteolysis, a property that may play a role in determining their allergenicity and it has been suggested that lipid binding may further increase stability to proteolysis. It is demonstrated that LTPs from wheat and peach bind a range of lipids in a variety of conditions, including those found in the gastroduodenal tract. Both LTPs are initially cleaved during gastroduodenal proteolysis at three major sites between residues 39–40, 56–57 and 79–80, with wheat LTP being more resistant to cleavage than its peach ortholog. The susceptibility of wheat LTP to proteolyic cleavage increases significantly upon lipid binding. This enhanced digestibility is likely to be due to the displacement of Tyr79 and surrounding residues from the internal hydrophobic cavity upon ligand binding to the solvent exposed exterior of the LTP, facilitating proteolysis. Such knowledge contributes to our understanding as to how resistance to digestion can be used in allergenicity risk assessment of novel food proteins, including GMOs. PMID:27458082

  18. Ligand binding to an Allergenic Lipid Transfer Protein Enhances Conformational Flexibility resulting in an Increase in Susceptibility to Gastroduodenal Proteolysis.

    PubMed

    Abdullah, Syed Umer; Alexeev, Yuri; Johnson, Philip E; Rigby, Neil M; Mackie, Alan R; Dhaliwal, Balvinder; Mills, E N Clare

    2016-07-26

    Non-specific lipid transfer proteins (LTPs) are a family of lipid-binding molecules that are widely distributed across flowering plant species, many of which have been identified as allergens. They are highly resistant to simulated gastroduodenal proteolysis, a property that may play a role in determining their allergenicity and it has been suggested that lipid binding may further increase stability to proteolysis. It is demonstrated that LTPs from wheat and peach bind a range of lipids in a variety of conditions, including those found in the gastroduodenal tract. Both LTPs are initially cleaved during gastroduodenal proteolysis at three major sites between residues 39-40, 56-57 and 79-80, with wheat LTP being more resistant to cleavage than its peach ortholog. The susceptibility of wheat LTP to proteolyic cleavage increases significantly upon lipid binding. This enhanced digestibility is likely to be due to the displacement of Tyr79 and surrounding residues from the internal hydrophobic cavity upon ligand binding to the solvent exposed exterior of the LTP, facilitating proteolysis. Such knowledge contributes to our understanding as to how resistance to digestion can be used in allergenicity risk assessment of novel food proteins, including GMOs.

  19. Ligand binding to an allergenic lipid transfer protein enhances conformational flexibility resulting in an increase in susceptibility to gastroduodenal proteolysis

    SciTech Connect

    Abdullah, Syed Umer; Alexeev, Yuri; Johnson, Philip E.; Rigby, Neil M.; Mackie, Alan R.; Dhaliwal, Balvinder; Mills, E. N. Clare

    2016-07-26

    Non-specific lipid transfer proteins (LTPs) are a family of lipid-binding molecules that are widely distributed across flowering plant species, many of which have been identified as allergens. They are highly resistant to simulated gastroduodenal proteolysis, a property that may play a role in determining their allergenicity and it has been suggested that lipid binding may further increase stability to proteolysis. It is demonstrated that LTPs from wheat and peach bind a range of lipids in a variety of conditions, including those found in the gastroduodenal tract. Both LTPs are initially cleaved during gastroduodenal proteolysis at three major sites between residues 39–40, 56–57 and 79–80, with wheat LTP being more resistant to cleavage than its peach ortholog. The susceptibility of wheat LTP to proteolyic cleavage increases significantly upon lipid binding. This enhanced digestibility is likely to be due to the displacement of Tyr79 and surrounding residues from the internal hydrophobic cavity upon ligand binding to the solvent exposed exterior of the LTP, facilitating proteolysis. As a result, such knowledge contributes to our understanding as to how resistance to digestion can be used in allergenicity risk assessment of novel food proteins, including GMOs.

  20. Purification and characterisation of sarcoplasmic calcium-binding protein, a novel allergen of red swamp crayfish (Procambarus clarkii).

    PubMed

    Chen, Heng-Li; Cao, Min-Jie; Cai, Qiu-Feng; Su, Wen-Jin; Mao, Hai-Yan; Liu, Guang-Ming

    2013-08-15

    Crayfish sarcoplasmic calcium-binding protein (SCP) was purified. The physicochemical and polymorphic characterisations were also analysed. SCP was purified by column chromatography to reveal a single band with molecular mass of 22 kDa and further confirmed by mass spectrometry. The results of physicochemical characterisation showed that SCP was stable in the processes of thermal or acid/alkali treatment, and could be digested by simulate gastrointestinal fluid. Importantly, the comparison of SCP polymorphism using sera from crustacean-allergic patients demonstrated SCP-II had a weaker IgE-binding activity. The isoelectric points of SCP subunits a, b and c were 4.6, 4.7, and 4.8, respectively, as determined by two-dimensional electrophoresis and IgE immunoblotting analysis showed that patients' sera reacted to three subunits of SCP. Finally, it can be concluded that SCP is a stable polymorphic allergen in crayfish, and all of its isotypes and subunits have allergenicity.

  1. Cloning and sequencing of Lol pI, the major allergenic protein of rye-grass pollen.

    PubMed

    Griffith, I J; Smith, P M; Pollock, J; Theerakulpisut, P; Avjioglu, A; Davies, S; Hough, T; Singh, M B; Simpson, R J; Ward, L D

    1991-02-25

    We have isolated a full length cDNA clone encoding the major glycoprotein allergen Lol pI. The clone was selected using a combination of immunological screening of a cDNA expression library and PCR amplification of Lol pI-specific transcripts. Lol pI expressed in bacteria as a fusion protein shows recognition by specific IgE antibodies present in sera of grass pollen-allergic subjects. Northern analysis has shown that the Lol pI transcripts are expressed only in pollen of rye-grass. Molecular cloning of Lol pI provides a molecular genetic approach to study the structure-function relationship of allergens.

  2. Assessment of the Sensitizing Potential of Processed Peanut Proteins in Brown Norway Rats: Roasting Does Not Enhance Allergenicity

    PubMed Central

    Kroghsbo, Stine; Rigby, Neil M.; Johnson, Philip E.; Adel-Patient, Karine; Bøgh, Katrine L.; Salt, Louise J.; Mills, E. N. Clare; Madsen, Charlotte B.

    2014-01-01

    Background IgE-binding of process-modified foods or proteins is the most common method for examination of how food processing affects allergenicity of food allergens. How processing affects sensitization capacity is generally studied by administration of purified food proteins or food extracts and not allergens present in their natural food matrix. Objectives The aim was to investigate if thermal processing increases sensitization potential of whole peanuts via the oral route. In parallel, the effect of heating on sensitization potential of the major peanut allergen Ara h 1 was assessed via the intraperitoneal route. Methods Sensitization potential of processed peanut products and Ara h 1 was examined in Brown Norway (BN) rats by oral administration of blanched or oil-roasted peanuts or peanut butter or by intraperitoneal immunization of purified native (N-), heated (H-) or heat glycated (G-)Ara h 1. Levels of specific IgG and IgE were determined by ELISA and IgE functionality was examined by rat basophilic leukemia (RBL) cell assay. Results In rats dosed orally, roasted peanuts induced significant higher levels of specific IgE to NAra h 1 and 2 than blanched peanuts or peanut butter but with the lowest level of RBL degranulation. However, extract from roasted peanuts was found to be a superior elicitor of RBL degranulation. Process-modified Ara h 1 had similar sensitizing capacity as NAra h 1 but specific IgE reacted more readily with process-modified Ara h 1 than with native. Conclusions Peanut products induce functional specific IgE when dosed orally to BN rats. Roasted peanuts do not have a higher sensitizing capacity than blanched peanuts. In spite of this, extract from roasted peanuts is a superior elicitor of RBL cell degranulation irrespectively of the peanut product used for sensitization. The results also suggest that new epitopes are formed or disclosed by heating Ara h 1 without glucose. PMID:24805813

  3. Redefining the major peanut allergens

    PubMed Central

    Zhuang, Yonghua

    2015-01-01

    Food allergy has become a major public health concern in westernized countries, and allergic reactions to peanuts are particularly common and severe. Allergens are defined as antigens that elicit an IgE response, and most allergenic materials (e.g., pollens, danders, and foods) contain multiple allergenic proteins. This has led to the concept that there are “major” allergens and allergens of less importance. “Major allergens” have been defined as allergens that bind a large amount of IgE from the majority of patients and have biologic activity. However, the ability of an allergen to cross-link complexes of IgE and its high-affinity receptor FcεRI (IgE/FcεRI), which we have termed its allergic effector activity, does not correlate well with assays of IgE binding. To identify the proteins that are the most active allergens in peanuts, we and others have employed in vitro model assays of allergen-mediated cross-linking of IgE/FcεRI complexes and have demonstrated that the most potent allergens are not necessarily those that bind the most IgE. The importance of a specific allergen can be determined by measuring the allergic effector activity of that allergen following purification under non-denaturing conditions and by specifically removing the allergen from a complex allergenic extract either by chromatography or by specific immunodepletion. In our studies of peanut allergens, our laboratory has found that two related allergens, Ara h 2 and Ara h 6, together account for the majority of the effector activity in a crude peanut extract. Furthermore, murine studies demonstrated that Ara h 2 and Ara h 6 are not only the major elicitors of anaphylaxis in this system, but also can effectively desensitize peanut-allergic mice. As a result of these observations, we propose that the definition of a major allergen should be based on the potency of that allergen in assays of allergic effector activity and demonstration that removal of that allergen from an extract

  4. [Molecular aspects of allergy to plant products. Part II. Pathogenesis-related proteins (PRs), apple allergenicity governed by Mal d 1 gene].

    PubMed

    Bokszczanin, Kamila Ł; Przybyła, Andrzej A

    2012-03-01

    Of the plant allergens listed in the Official Allergen Database of the International Union of Immunological Societies, approximately 25% belong to the group of pathogenesis-related proteins (PRs). They have been classified into 17 PR families based on similarities in their amino acid sequence, enzymatic activities, or other functional properties. Plant-derived allergens have been identified with sequence similarities to PR families 2, 3, 4, 5, 8, 10, and 14. The main birch allergen in northern Europe is a class 10 (PR-10) protein from the European white birch (Betula pendula) termed Bet v 1. Pollen of other Fagales species contains PR-10 homologues that share epitopes with Bet v 1, as do several fruits, nuts and vegetables. Among the plant food fruits of the Rosaceae family are the most frequently responsible for allergenic reactions. It is documented, that approximately 2% of European population is allergic to apples. The article presents molecular characterization of PR-10 proteins with regard to their structure and function as well as apple Mal d 1 gene-determined allergenicity.

  5. Posttranslational modification of Birch and Ragweed allergen proteins by common gas phase pollutants, NO2 and O3

    NASA Astrophysics Data System (ADS)

    Mahmood, M. A.; Pope, F.; Bloss, W.

    2015-12-01

    The global incidence of hay fever has been rising for decades, however, the underlying reasons behind this rise remain unclear. It is hypothesized that exposure of pollen to common gas phase pollutants, such as nitrogen dioxide (NO2) and ozone (O3), increases the allergenicity of the pollen and thus increases hay fever incidence. Since atmospheric pollutants tend to have greater concentrations within urban areas (in particular NO2) the hypothesis suggests that greater allergenicity should occur in urban areas. Indeed, several studies do suggest higher hay fever incidence within urban areas compared to rural areas. Previous published work suggests a link between increased allergies with changes in the chemical composition of the pollen protein via posttranslational modification of the protein. This study investigates the posttranslational modification of two highly allergenic pollen species (Birch and Ragweed) that are common in Europe. Within the laboratory, we expose pollen grains to atmospherically relevant exposures of gas phase NO2, O3 and other common gas phase oxidants under a range of environmentally relevant conditions. The effects of the environmentally relevant exposures on the biochemistry of the pollen grains were probed using a proteomic approach (liquid chromatography coupled ultra-high resolution spectrometer). Our findings indicate the interaction between gas phase pollutants and pollen cause protein specific modifications; in particular, nitration occurs upon tyrosine residues and nitrosylation on cysteine residues. Possibly, these modifications may affect the immune response of the pollen protein, which may suggest a possible reason for increased allergies in reaction to such biologically altered protein. The laboratory-derived results will be supported with a time series analysis of asthma incidence rates for the London area, which take into account the pollen count, and pollutant concentrations. The implications of the results will be discussed

  6. Recombinant allergens

    PubMed Central

    Jutel, Marek; Solarewicz-Madejek, Katarzyna; Smolinska, Sylwia

    2012-01-01

    Allergen specific immunotherapy (SIT) is the only known causative treatment of allergic diseases. Recombinant allergen-based vaccination strategies arose from a strong need to both to improve safety and enhance efficacy of SIT. In addition, new vaccines can be effective in allergies including food allergy or atopic dermatitis, which poorly respond to the current treatment with allergen extracts. A number of successful clinical studies with both wild-type and hypoallergenic derivatives of recombinant allergens vaccines have been reported for the last decade. They showed high efficacy and safety profile as well as very strong modulation of T and B cell responses to specific allergens. PMID:23095874

  7. Analysis of crude protein and allergen abundance in peanuts (Arachis hypogaea cv. Walter) from three growing regions in Australia.

    PubMed

    Walczyk, Nicole E; Smith, Penelope M C; Tovey, Euan; Wright, Graeme C; Fleischfresser, Dayle B; Roberts, Thomas H

    2013-04-17

    The effects of plant growth conditions on concentrations of proteins, including allergens, in peanut ( Arachis hypogaea L.) kernels are largely unknown. Peanuts (cv. Walter) were grown at five sites (Taabinga, Redvale, Childers, Bundaberg, and Kairi) covering three commercial growing regions in Queensland, Australia. Differences in temperature, rainfall, and solar radiation during the growing season were evaluated. Kernel yield varied from 2.3 t/ha (Kairi) to 3.9 t/ha (Childers), probably due to differences in solar radiation. Crude protein appeared to vary only between Kairi and Childers, whereas Ara h 1 and 2 concentrations were similar in all locations. 2D-DIGE revealed significant differences in spot volumes for only two minor protein spots from peanuts grown in the five locations. Western blotting using peanut-allergic serum revealed no qualitative differences in recognition of antigens. It was concluded that peanuts grown in different growing regions in Queensland, Australia, had similar protein compositions and therefore were unlikely to show differences in allergenicity.

  8. Cloning, expression and characterization of mugwort pollen allergen Art v 2, a pathogenesis-related protein from family group 1.

    PubMed

    Arilla, M C; Ibarrola, I; Puente, Y; Daza, J C; Martínez, A; Asturias, J A

    2007-07-01

    Mugwort (Artemisia vulgaris) belongs to the Compositae family, and is one of the main causes of allergy in late summer and autumn. The aim of the study was to characterize the allergen Art v 2 from mugwort pollen. Skin prick tests, performed in 19 patients allergic to mugwort and 10 control patients, showed an Art v 2 sensitization prevalence of 58%, whereas none false-positives were detected among control patients. Art v 2 was purified by standard chromatography and binding to Concanavalin A column and had an apparent molecular mass of 33 and 20 kDa, calculated by gel permeation and SDS-PAGE under denaturing conditions, respectively, showing that the allergen is composed of two identical subunits. Art v 2-encoding cDNA was amplified by PCR using degenerate primers based on reported partial amino acid sequences. Cloned cDNA encoding Art v 2 contains 140 bp that codify for a polypeptide of 15.8 kDa, with a predicted pI value of 5.2, and one potential N-glycosylation site. Protein homology search demonstrated that Art v 2 share 55-42% identical residues with pathogenesis-related protein PR-1 of tomato, potato, rape, wheat and rice. Homology was also found to Ves v 5 (41% identical residues). Bacterial-expressed recombinant Art v 2 was recognized only by 21% of mugwort-allergic patients. In conclusion, Art v 2 from mugwort is the first weed pollen allergen that belongs to the pathogenesis-related protein PR-1 and its recombinant form could help molecular diagnosis of mugwort associated allergy.

  9. Evaluation of global sequence comparison and one-to-one FASTA local alignment in regulatory allergenicity assessment of transgenic proteins in food crops.

    PubMed

    Song, Ping; Herman, Rod A; Kumpatla, Siva

    2014-09-01

    To address the high false positive rate using >35% identity over 80 amino acids in the regulatory assessment of transgenic proteins for potential allergenicity and the change of E-value with database size, the Needleman-Wunsch global sequence alignment and a one-to-one (1:1) local FASTA search (one protein in the target database at a time) using FASTA were evaluated by comparing proteins randomly selected from Arabidopsis, rice, corn, and soybean with known allergens in a peer-reviewed allergen database (http://www.allergenonline.org/). Compared with the approach of searching >35%/80aa+, the false positive rate measured by specificity rate for identification of true allergens was reduced by a 1:1 global sequence alignment with a cut-off threshold of ≧30% identity and a 1:1 FASTA local alignment with a cut-off E-value of ≦1.0E-09 while maintaining the same sensitivity. Hence, a 1:1 sequence comparison, especially using the FASTA local alignment tool with a biological relevant E-value of 1.0E-09 as a threshold, is recommended for the regulatory assessment of sequence identities between transgenic proteins in food crops and known allergens.

  10. Structural and bioinformatic analysis of the kiwifruit allergen Act d 11, a member of the family of ripening-related proteins.

    PubMed

    Chruszcz, Maksymilian; Ciardiello, Maria Antonietta; Osinski, Tomasz; Majorek, Karolina A; Giangrieco, Ivana; Font, Jose; Breiteneder, Heimo; Thalassinos, Konstantinos; Minor, Wladek

    2013-12-01

    The allergen Act d 11, also known as kirola, is a 17 kDa protein expressed in large amounts in ripe green and yellow-fleshed kiwifruit. Ten percent of all kiwifruit-allergic individuals produce IgE specific for the protein. Using X-ray crystallography, we determined the first three-dimensional structures of Act d 11, produced from both recombinant expression in Escherichia coli and from the natural source (kiwifruit). While Act d 11 is immunologically correlated with the birch pollen allergen Bet v 1 and other members of the pathogenesis-related protein family 10 (PR-10), it has low sequence similarity to PR-10 proteins. By sequence Act d 11 appears instead to belong to the major latex/ripening-related (MLP/RRP) family, but analysis of the crystal structures shows that Act d 11 has a fold very similar to that of Bet v 1 and other PR-10 related allergens regardless of the low sequence identity. The structures of both the natural and recombinant protein include an unidentified ligand, which is relatively small (about 250 Da by mass spectrometry experiments) and most likely contains an aromatic ring. The ligand-binding cavity in Act d 11 is also significantly smaller than those in PR-10 proteins. The binding of the ligand, which we were not able to unambiguously identify, results in conformational changes in the protein that may have physiological and immunological implications. Interestingly, the residue corresponding to Glu45 in Bet v 1 (Glu46), which is important for IgE binding to the birch pollen allergen, is conserved in Act d 11, even though it is not in other allergens with significantly higher sequence identity to Bet v 1. We suggest that the so-called Gly-rich loop (or P-loop), which is conserved in all PR-10 allergens, may be responsible for IgE cross-reactivity between Bet v 1 and Act d 11.

  11. Major house dust mite allergens Dermatophagoides pteronyssinus 1 and Dermatophagoides farinae 1 degrade and inactivate lung surfactant proteins A and D.

    PubMed

    Deb, Roona; Shakib, Farouk; Reid, Kenneth; Clark, Howard

    2007-12-21

    Lung surfactant proteins (SP) A and D are calcium-dependent carbohydrate-binding proteins. In addition to playing multiple roles in innate immune defense such as bacterial aggregation and modulation of leukocyte function, SP-A and SP-D have also been implicated in the allergic response. They interact with a wide range of inhaled allergens, competing with their binding to cell-sequestered IgE resulting in inhibition of mast cell degranulation, and exogenous administration of SP-A and SP-D diminishes allergic hypersensitivity in vivo. House dust mite allergens are a major cause of allergic asthma in the western world, and here we confirm the interaction of SP-A and SP-D with two major mite allergens, Dermatophagoides pteronyssinus 1 and Dermatophagoides farinae 1, and show that the cysteine protease activity of these allergens results in the degradation of SP-A and SP-D under physiological conditions, with multiple sites of cleavage. A recombinant fragment of SP-D that is effective in diminishing allergic hypersensitivity in mouse models of dust mite allergy was more susceptible to degradation than the native full-length protein. Degradation was enhanced in the absence of calcium, with different sites of cleavage, indicating that the calcium associated with SP-A and SP-D influences accessibility to the allergens. Degradation of SP-A and SP-D was associated with diminished binding to carbohydrates and to D. pteronyssinus 1 itself and diminished capacity to agglutinate bacteria. Thus, the degradation and consequent inactivation of SP-A and SP-D may be a novel mechanism to account for the potent allergenicity of these common dust mite allergens.

  12. Effects of NO2 and Ozone on Pollen Allergenicity

    PubMed Central

    Frank, Ulrike; Ernst, Dieter

    2016-01-01

    This mini-review summarizes the available data of the air pollutants NO2 and ozone on allergenic pollen from different plant species, focusing on potentially allergenic components of the pollen, such as allergen content, protein release, IgE-binding, or protein modification. Various in vivo and in vitro studies on allergenic pollen are shown and discussed. PMID:26870080

  13. Sensory evaluation by gamma radiation effect on protein allergen of laying hen eggs

    NASA Astrophysics Data System (ADS)

    Harder, M. N. C.; Arthur, V.; Perina, V. C. S.; Silva, L. C. A. S.; Bortoleto, G. G.

    2012-08-01

    Although considered the most complete food and nutritionally shown to be part of a healthy diet, the egg is the source of many eating disorders, especially for infants. Irradiation has been used in studies not only as a means of microbiological control, but also on its structural action in the substances molecules and has been used to reduce the allergenic effects. The aim of this study was to evaluate the sensory effects of Co60 gamma radiation on proteins, enabling the acceptability of allergy food for genetically intolerant people. Eggs commercial fresh and freeze-dried and subjected to gamma irradiation by Co60 source at doses 0 (control), 10 kGy; 20 kGy and 30 kGy and rates of doses of 19.4 kGy/h and 31.8 kGy/h. Acceptability test was used by the hedonic scale, since it is necessary to know the "affective status" of consumers for the product, implying a preference, i.e. the most preferred samples are the most accepted and vice versa. The samples were presented as the habit of consumption (cooked) to a group of 41 adults panelists of both gender, aged from 21 to 40 years, and served under complete block design balanced with respect to the order of presentation. The evaluated attributes was flavor, appearance and overall acceptability. In general, for boiled eggs and freeze-dried, it was observed that the control sample was the most acceptable, followed by the sample irradiated with 10 kGy in both dose rates. In addition, panelists presented in testimony that they found interesting changes due to irradiation; also said they would not buy the product because of the marked change in appearance and smell, which at one point he ended up in disgust and detract from sales of the product, but they would buy irradiated with 10 kGy in both dose rate and dose of 20 kGy at a dose rate of 19.4 kGy/h.

  14. Lack of Detectable Allergenicity in Genetically Modified Maize Containing “Cry” Proteins as Compared to Native Maize Based on In Silico & In Vitro Analysis

    PubMed Central

    Mathur, Chandni; Kathuria, Pooran C.; Dahiya, Pushpa; Singh, Anand B.

    2015-01-01

    Background Genetically modified, (GM) crops with potential allergens must be evaluated for safety and endogenous IgE binding pattern compared to native variety, prior to market release. Objective To compare endogenous IgE binding proteins of three GM maize seeds containing Cry 1Ab,1Ac,1C transgenic proteins with non GM maize. Methods An integrated approach of in silico & in vitro methods was employed. Cry proteins were tested for presence of allergen sequence by FASTA in allergen databases. Biochemical assays for maize extracts were performed. Specific IgE (sIgE) and Immunoblot using food sensitized patients sera (n = 39) to non GM and GM maize antigens was performed. Results In silico approaches, confirmed for non sequence similarity of stated transgenic proteins in allergen databases. An insignificant (p> 0.05) variation in protein content between GM and non GM maize was observed. Simulated Gastric Fluid (SGF) revealed reduced number of stable protein fractions in GM then non GM maize which might be due to shift of constituent protein expression. Specific IgE values from patients showed insignificant difference in non GM and GM maize extracts. Five maize sensitized cases, recognized same 7 protein fractions of 88-28 kD as IgE bindng in both GM and non-GM maize, signifying absence of variation. Four of the reported IgE binding proteins were also found to be stable by SGF. Conclusion Cry proteins did not indicate any significant similarity of >35% in allergen databases. Immunoassays also did not identify appreciable differences in endogenous IgE binding in GM and non GM maize. PMID:25706412

  15. Differential analyses of major allergen proteins in wild-type rice and rice producing a fragment of anti-rotavirus antibody.

    PubMed

    Yuki, Yoshikazu; Kurokawa, Shiho; Kozuka-Hata, Hiroko; Tokuhara, Daisuke; Mejima, Mio; Kuroda, Masaharu; Oyama, Masaaki; Nishimaki-Mogami, Tomoko; Teshima, Reiko; Kiyono, Hiroshi

    2016-04-01

    To develop oral antibody therapy against rotavirus infection, we previously produced a recombinant fragment of llama heavy-chain antibody to rotavirus (ARP1) in rice seeds (MucoRice-ARP1). We intend to use a purification-free rice powder for clinical application but needed to check whether MucoRice-ARP1 had increased levels of known allergen proteins. For this purpose, we used two-dimensional fluorescence difference gel electrophoresis to compare the allergen protein levels in MucoRice-ARP1 and wild-type rice. We detected no notable differences, except in the levels of α-amylase/trypsin inhibitor-like family proteins. Because by this approach we could not completely separate ARP1 from the proteins of this family, we confirmed the absence of changes in the levels of these allergens by using shotgun mass spectrometry as well as immunoblot. By using immunoelectron microscopy, we also showed that RAG2, a member of the α-amylase/trypsin inhibitor-like protein family, was relocated from protein bodies II to the plasma membrane or cell wall in MucoRice-ARP1 seed. The relocation did not affect the level of RAG2. We demonstrated that most of the known rice allergens were not considerably upregulated by the genetic modification in MucoRice-ARP1. Our data suggest that MucoRice-ARP1 is a potentially safe oral antibody for clinical application.

  16. Structural aspects of fungal allergens.

    PubMed

    Crameri, Reto

    2015-03-01

    Despite the increasing number of solved crystal structures of allergens, the key question why some proteins are allergenic and the vast majority is not remains unanswered. The situation is not different for fungal allergens which cover a wide variety of proteins with different chemical properties and biological functions. They cover enzymes, cell wall, secreted, and intracellular proteins which, except cross-reactive allergens, does not show any evidence for structural similarities at least at the three-dimensional level. However, from a diagnostic point of view, pure allergens biotechnologically produced by recombinant technology can provide us, in contrast to fungal extracts which are hardly producible as standardized reagents, with highly pure perfectly standardized diagnostic reagents.

  17. Removing peanut allergens by tannic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tannic acid (TA) is known to bind and form insoluble complexes with proteins, including peanut allergens; however, whether such complexes would dissociate and release the allergens at pH 2 and 8 (i.e., gastric and intestinal pH) is not clear. Release of the allergens in the gut could lead to absorpt...

  18. Nasal allergen challenge and mediators release.

    PubMed

    Carlos, A G; Carlos, M L; Ferreira, M B; Santos, A S; Santos, M C; Pedro, E

    1997-11-01

    Nasal allergen challenges, despite not reproducing exactly natural allergen exposure, are a very useful method to understand the complex cellular kinetics and cellular interactions that occur in allergic rhinitis. Cell-specific soluble mediator measurements can give useful diagnostic information. In this paper we present data concerning eosinophil cationic protein (ECP) and tryptase measurements after nasal allergen challenge.

  19. Platyhelminth Venom Allergen-Like (VAL) proteins: revealing structural diversity, class-specific features and biological associations across the phylum

    PubMed Central

    CHALMERS, IAIN W.; HOFFMANN, KARL F.

    2012-01-01

    SUMMARY During platyhelminth infection, a cocktail of proteins is released by the parasite to aid invasion, initiate feeding, facilitate adaptation and mediate modulation of the host immune response. Included amongst these proteins is the Venom Allergen-Like (VAL) family, part of the larger sperm coating protein/Tpx-1/Ag5/PR-1/Sc7 (SCP/TAPS) superfamily. To explore the significance of this protein family during Platyhelminthes development and host interactions, we systematically summarize all published proteomic, genomic and immunological investigations of the VAL protein family to date. By conducting new genomic and transcriptomic interrogations to identify over 200 VAL proteins (228) from species in all 4 traditional taxonomic classes (Trematoda, Cestoda, Monogenea and Turbellaria), we further expand our knowledge related to platyhelminth VAL diversity across the phylum. Subsequent phylogenetic and tertiary structural analyses reveal several class-specific VAL features, which likely indicate a range of roles mediated by this protein family. Our comprehensive analysis of platyhelminth VALs represents a unifying synopsis for understanding diversity within this protein family and a firm context in which to initiate future functional characterization of these enigmatic members. PMID:22717097

  20. Cloning, expression and characterization of a novel four EF-hand Ca(2+)-binding protein from olive pollen with allergenic activity.

    PubMed

    Ledesma, A; Villalba, M; Rodríguez, R

    2000-01-21

    A novel allergenic member of the family of Ca(2+)-binding proteins has been cloned from olive tree pollen. The isolated DNA codes for a protein of 171 amino acid residues, which displays four EF-hand sequence motifs. The encoded protein was overproduced in Escherichia coli and purified. The protein (18¿ omitted¿795 Da), which binds Ca(2+) and IgE antibodies from patients allergic to olive pollen, undergoes Ca(2+)-dependent conformational changes. It is retained on a phenyl-Sepharose column, which indicates the existence of regulatory EF-hand domains. This fact suggests its involvement in Ca(2+)-dependent signal transduction events of the pollen grain. This allergen could be considered as a member of a new subfamily of EF-hand Ca(2+)-binding proteins since it displays a low amino acid sequence similarity with the so far known proteins.

  1. Respiratory allergenic potential of plant-derived proteins: Understanding the relationship between exposure and potency for risk assessments.

    PubMed

    Blackburn, Karen; N'jai, Alhaji U; Dearman, Rebecca J; Kimber, Ian; Gerberick, G Frank

    2015-01-01

    Botanical ingredients (ingredients derived from plants) are finding increasing application in personal care products and the public perceives these ingredients to be safe. However, some proteins in botanicals have the potential to cause immediate-type (IgE-mediated) respiratory allergic reactions. Although reports of such reactions are uncommon, when they do occur, they can be severe. Experience with soap containing wheat proteins illustrated that under certain specific conditions, consumers may be affected. Establishing safe exposure levels for botanical proteins has been challenging. Industrial enzymes provide a rich reference dataset based on their historical association with allergic reactions among workers, which includes robust dose-response information. In the absence of similar data on the potency of plant proteins, a conservative default approach has historically been applied based on information derived from allergenic enzymes. In this article we review the historical default approach and dataset for setting limits for plant proteins in botanical ingredients based on analogy to industrial enzymes followed by a synthesis of literature data on allergic reactions following inhalation exposure to plant-derived proteins. The aim is to share relevant background information and display the relationship between exposure and potency as a first step in the development of a strategy for the development of an improved approach to support the risk assessment of plant-derived proteins.

  2. Update of the WHO/IUIS Allergen Nomenclature Database based on analysis of allergen sequences.

    PubMed

    Radauer, C; Nandy, A; Ferreira, F; Goodman, R E; Larsen, J N; Lidholm, J; Pomés, A; Raulf-Heimsoth, M; Rozynek, P; Thomas, W R; Breiteneder, H

    2014-04-01

    The IUIS Allergen Nomenclature Sub-Committee, under the auspices of the World Health Organization and the International Union of Immunological Societies, maintains the systematic nomenclature of allergenic proteins and publishes a database of approved allergen names on its Web site, www.allergen.org. In this paper, we summarize updates of allergen names approved at the meetings of the committee in 2011 through 2013. These changes reflect recent progress in identification, cloning, and sequencing of allergens. The goals of this update were to increase consistency in the classification of allergens, isoallergens, and variants and in the incorporation of the evolutionary classification of proteins into allergen nomenclature, while keeping changes of established names to a minimum in the interest of continuity. Allergens for which names have been updated include respiratory allergens from birch and ragweed pollen, midge larvae, and horse dander; food allergens from peanut, cow's milk, and tomato; and cereal grain allergens. The IUIS Allergen Nomenclature Sub-Committee encourages researchers to use these updated allergen names in future publications.

  3. Fungal allergens.

    PubMed Central

    Horner, W E; Helbling, A; Salvaggio, J E; Lehrer, S B

    1995-01-01

    Airborne fungal spores occur widely and often in far greater concentrations than pollen grains. Immunoglobulin E-specific antigens (allergens) on airborne fungal spores induce type I hypersensitivity (allergic) respiratory reactions in sensitized atopic subjects, causing rhinitis and/or asthma. The prevalence of respiratory allergy to fungi is imprecisely known but is estimated at 20 to 30% of atopic (allergy-predisposed) individuals or up to 6% of the general population. Diagnosis and immunotherapy of allergy to fungi require well-characterized or standardized extracts that contain the relevant allergen(s) of the appropriate fungus. Production of standardized extracts is difficult since fungal extracts are complex mixtures and a variety of fungi are allergenic. Thus, the currently available extracts are largely nonstandardized, even uncharacterized, crude extracts. Recent significant progress in isolating and characterizing relevant fungal allergens is summarized in the present review. Particularly, some allergens from the genera Alternaria, Aspergillus, and Cladosporium are now thoroughly characterized, and allergens from several other genera, including some basidiomycetes, have also been purified. The availability of these extracts will facilitate definitive studies of fungal allergy prevalence and immunotherapy efficacy as well as enhance both the diagnosis and therapy of fungal allergy. PMID:7621398

  4. Food Allergens: Is There a Correlation between Stability to Digestion and Allergenicity?

    PubMed

    Bøgh, Katrine Lindholm; Madsen, Charlotte Bernhard

    2016-07-03

    Food allergy is a major health problem in the Western countries, affecting 3-8% of the population. It has not yet been established what makes a dietary protein a food allergen. Several characteristics have been proposed to be shared by food allergens. One of these is resistance to digestion. This paper reviews data from digestibility studies on purified food allergens and evaluates the predictive value of digestibility tests on the allergenic potential. We point out that food allergens do not necessarily resist digestion. We discuss how the choice of in vitro digestibility assay condition and the method used for detection of residual intact protein as well as fragments hereof may greatly influence the outcome as well as the interpretation of results. The finding that digests from food allergens may retain allergenicity, stresses the importance of using immunological assays for evaluating the allergenic potential of food allergen digestion products. Studies assessing the allergenicity of digestion products, by either IgE-binding, elicitation or sensitizing capacity, shows that digestion may abolish, decrease, have no effect, or even increase the allergenicity of food allergens. Therefore, the predictive value of the pepsin resistance test for assessing the allergenic potential of novel proteins can be questioned.

  5. A major allergen from pollen defines a novel family of plant proteins and shows intra- and interspecies [correction of interspecie] cross-reactivity.

    PubMed

    Barral, Patricia; Batanero, Eva; Palomares, Oscar; Quiralte, Joaquín; Villalba, Mayte; Rodríguez, Rosalía

    2004-03-15

    Olive tree (Olea europaea) pollen is a main cause of allergy associated with extensive areas of Europe and North America. Ole e 10, a small (10.8 kDa) and acidic (pI 5.8) protein, has been identified as a major allergen from the olive pollen, isolated, and characterized. Circular dichroism analysis gave 17% alpha helix, 33% beta sheet, and 21% beta turn for its secondary structure. Based on amino acid sequences of tryptic peptides, the protein was cloned and sequenced. The allergen consists of a single polypeptide chain of 102 aa, with a signal peptide of 21 residues. Ole e 10 showed homology with the C-terminal domain of another olive allergen, Ole e 9 (1,3-beta-glucanase, 53% identity), with deduced sequences from Arabidopsis thaliana genes (42-46% identity) and with polypeptide segments (Cys boxes) of proteins involved in yeast development (Epd1/Gas-1p/Phr2 families; 42-43% similarity). Ole e 10 showed 55% prevalence for olive-allergic patients and exhibited an IgE response dependent on its conformation. Remarkable IgE cross-reactivity was detected with Ole e 9, but no correlation was observed between the individual IgE responses to both allergens. Ole e 10 shares IgE B cell epitopes with proteins from Oleaceae, Gramineae, Betulaceae, Chenopodiaceae, Cupressaceae, Ambrosia, and Parietaria pollens, latex, and vegetable foods, such as tomato, kiwi, potato, and peach. These data indicate that Ole e 10 is a new pan-allergenic plant protein that shows notable intra- and interspecie IgE cross-reactivity and is a powerful candidate to be involved in pollen-latex-fruit syndrome.

  6. Outdoor allergens.

    PubMed Central

    Burge, H A; Rogers, C A

    2000-01-01

    Outdoor allergens are an important part of the exposures that lead to allergic disease. Understanding the role of outdoor allergens requires a knowledge of the nature of outdoor allergen-bearing particles, the distributions of their source, and the nature of the aerosols (particle types, sizes, dynamics of concentrations). Primary sources for outdoor allergens include vascular plants (pollen, fern spores, soy dust), and fungi (spores, hyphae). Nonvascular plants, algae, and arthropods contribute small numbers of allergen-bearing particles. Particles are released from sources into the air by wind, rain, mechanical disturbance, or active discharge mechanisms. Once airborne, they follow the physical laws that apply to all airborne particles. Although some outdoor allergens penetrate indoor spaces, exposure occurs mostly outdoors. Even short-term peak outdoor exposures can be important in eliciting acute symptoms. Monitoring of airborne biological particles is usually by particle impaction and microscopic examination. Centrally located monitoring stations give regional-scale measurements for aeroallergen levels. Evidence for the role of outdoor allergens in allergic rhinitis is strong and is rapidly increasing for a role in asthma. Pollen and fungal spore exposures have both been implicated in acute exacerbations of asthma, and sensitivity to some fungal spores predicts the existence of asthma. Synergism and/or antagonism probably occurs with other outdoor air particles and gases. Control involves avoidance of exposure (staying indoors, preventing entry of outdoor aerosols) as well as immunotherapy, which is effective for pollen but of limited effect for spores. Outdoor allergens have been the subject of only limited studies with respect to the epidemiology of asthma. Much remains to be studied with respect to prevalence patterns, exposure and disease relationships, and control. PMID:10931783

  7. Plant pathogenesis-related proteins PR-10 and PR-14 as components of innate immunity system and ubiquitous allergens.

    PubMed

    Ovchinnikova, Tatiana V; Finkina, Ekaterina I; Melnikova, Daria N; Bogdanov, Ivan V

    2016-10-26

    Pathogenesis-related (PR) proteins are components of innate immunity system in plants. They play an important role in plant defense against pathogens. Lipid transfer proteins (LTPs) and Bet v 1 homologues comprise two separate families of PR-proteins. Both LTPs (PR-14) and Bet v 1 homologues (PR-10) are multifunctional small proteins involving in plant response to abiotic and biotic stress conditions. The representatives of these PR-protein families do not show any sequence similarity but have other common biochemical features such as low molecular masses, the presence of hydrophobic cavities, ligand binding properties, and antimicrobial activities. Besides, many members of PR-10 and PR-14 families are ubiquitous plant panallergens which are able to cause sensitization of human immune system and cross-reactive allergic reactions to plant food and pollen. This review is aimed at comparative analysis of structure-functional and allergenic properties of the PR-10 and PR-14 families, as well as prospects for their medicinal application.

  8. The allergenic protein Tha p 2 of processionary moths of the genus Thaumetopoea (Thaumetopoeinae, Notodontidae, Lepidoptera): Characterization and evolution.

    PubMed

    Berardi, Laura; Battisti, Andrea; Negrisolo, Enrico

    2015-12-15

    The allergenic Tha p 2 protein has been extracted recently from the urticating setae of the pine processionary moth Thaumetopoea pityocampa. In the present paper, we test for the occurrence of this protein in other Thaumetopoeinae, with a particular focus on members of the genus Thaumetopoea, as well as unrelated moth species, to better understand the physicochemical properties of the protein, the nature of encoding genes and their evolutionary history. Tha p 2 is encoded by the intronless gene Tha p 2 that is restricted to the processionary moths (Thaumetopoeinae, Notodontidae, Lepidoptera). Most of the species present two isoforms of Tha p 2 that can be interpreted as the result of heterozygosity in the single gene. The only exception is represented by Thaumetopoea wilkinsoni, in which 20 different isoforms occur in a single specimen, leading to the conclusion that, at least in this species, multiple copies of Tha p 2 exist. Serine, glycine, cysteine and leucine are abundant in Tha p 2, a protein well conserved among processionary moths. The predicted secondary structures of Tha p 2 indicate the presence of 3 α-helices and six β-barrels. Finally, the evolution of the gene and the protein was characterized by a combination of positive and negative selection, with the latter being more evident.

  9. Pichia pastoris is superior to E. coli for the production of recombinant allergenic non-specific lipid-transfer proteins.

    PubMed

    Pokoj, Sven; Lauer, Iris; Fötisch, Kay; Himly, Martin; Mari, Adriano; Enrique, Ernesto; Miguel-Moncin, Maria Del Mar San; Lidholm, Jonas; Vieths, Stefan; Scheurer, Stephan

    2010-01-01

    Non-specific lipid-transfer proteins (nsLTP) from food and pollen are clinically important allergens, especially in patients recruited from the Mediterranean area. For the use of recombinant nsLTPs in allergy diagnosis and preclinical allergy studies the preparation of nsLTPs in a properly folded and biologically active form is required. Using hazelnut nsLTP (Cor a 8) as a model allergen, heterologous over-expression in Escherichia coli and Pichia pastoris was compared. Recombinant Cor a 8 derived from E. coli and P. pastoris was purified by IMAC and SEC or ammonium sulphate precipitation followed by IEC and SEC, respectively. The recombinant proteins were characterized with regard to IgE-binding by immunoblotting and ELISA, structure by N-terminal sequencing, CD-spectroscopy and LS and to their biological activity using an in vitro basophil histamine release assay. Purification of hazelnut nsLTP from bacterial lysate under native conditions resulted in a low yield of Cor a 8. In addition, the preparation contained non-IgE-reactive aggregations besides the IgE-reactive monomer. In contrast, the yield of rCor a 8 produced in P. pastoris was approximately 270-fold higher and impurities with oligomers have not been detected. Purified monomeric Cor a 8 from bacteria and yeast showed similar IgE-antibody reactivity and secondary structures, and both were capable of inducing histamine release from basophils. In summary, P. pastoris is superior to E. coli as expression system for the production of large quantities of soluble, properly folded, and biologically active rCor a 8.

  10. Polysensitisation to pollen due to profilin and calcium-binding protein: distribution of IgE antibodies to marker allergens in grass and birch pollen allergic rhinitis patients in southern Germany.

    PubMed

    Muehlmeier, G; Maier, H

    2014-04-01

    Allergen-specific immunotherapy for grass pollen allergy has been reported to be effective in up to 85% of patients. Sensitisation to profilin and calcium-binding protein (CBP) can possibly influence treatment results and may thus be a reason for treatment failures. During a study period of 3 years, the distribution patterns of antibodies to marker allergens were continuously investigated in all blood serum samples with a level of immunoglobulin E antibodies to timothy and birch pollen higher than 0.7 kUA/l (n = 556). Sensitisation to timothy grass pollen alone was found in 33% of the cases, to birch pollen alone in 19%, and to both in 48%. The group of polysensitised patients showed an inhomogenous distribution of antibodies to marker allergens. IgE against minor allergens was detected in 40%. Sensitisation to major allergens, especially to the major birch allergen, was not present in 13% of the polysensitised patients. Of the patients who were sensitised to minor allergens, 82% were sensitised to profilin, 11% to CBP, and 8% to both profilin and CBP. Profilin and CBP frequently cause polysensitisations to pollen. The data obtained justify the measurement of serum levels of antibodies to marker allergens in patients who are sensitised to more than one group of allergens.

  11. Schistosoma mansoni venom allergen-like protein 4 (SmVAL4) is a novel lipid-binding SCP/TAPS protein that lacks the prototypical CAP motifs

    SciTech Connect

    Kelleher, Alan; Darwiche, Rabih; Rezende, Wanderson C.; Farias, Leonardo P.; Leite, Luciana C. C.; Schneiter, Roger; Asojo, Oluwatoyin A.

    2014-08-01

    The first structure of an S. mansoni venom allergen-like protein is presented. Schistosomiasis is a parasitic disease that affects over 200 million people. Vaccine candidates have been identified, including Schistosoma mansoni venom allergen-like proteins (SmVALs) from the SCP/TAPS (sperm-coating protein/Tpx/antigen 5/pathogenesis related-1/Sc7) superfamily. The first SmVAL structure, SmVAL4, was refined to a resolution limit of 2.16 Å. SmVAL4 has a unique structure that could not be predicted from homologous structures, with longer loops and an unusual C-terminal extension. SmVAL4 has the characteristic α/β-sandwich and central SCP/TAPS cavity. Furthermore, SmVAL4 has only one of the signature CAP cavity tetrad amino-acid residues and is missing the histidines that coordinate divalent cations such as Zn{sup 2+} in other SCP/TAPS proteins. SmVAL4 has a cavity between α-helices 1 and 4 that was observed to bind lipids in tablysin-15, suggesting the ability to bind lipids. Subsequently, SmVAL4 was shown to bind cholesterol in vitro. Additionally, SmVAL4 was shown to complement the in vivo sterol-export phenotype of yeast mutants lacking their endogenous CAP proteins. Expression of SmVAL4 in yeast cells lacking endogenous CAP function restores the block in sterol export. These studies suggest an evolutionarily conserved lipid-binding function shared by CAP proteins such as SmVAL4 and yeast CAP proteins such as Pry1.

  12. Emergent and unusual allergens in cosmetics.

    PubMed

    Pascoe, David; Moreau, Linda; Sasseville, Denis

    2010-01-01

    Allergic contact dermatitis from cosmetics is a common problem that is occasionally caused by new or rare allergens. When a patient has a positive patch test to a cosmetic product but to none of the common or commercially available allergens, it is important to further patch-test this patient to the ingredients of the product. Thorough testing with the breakdown of ingredients, usually obtained through cooperation with the manufacturer, often allows identification of the culprit allergen in the cosmetic product. In this article, we discuss emerging or rare allergens discovered by this method, including nail lacquer and lipstick allergens, copolymers, shellac, alkyl glucosides, glycols, protein derivatives, idebenone, and octocrylene.

  13. Food allergens: molecular and immunological aspects, allergen databases and cross-reactivity.

    PubMed

    Lorenz, Anne-Regine; Scheurer, Stephan; Vieths, Stefan

    2015-01-01

    The currently known food allergens are assigned to a relatively small number of protein families. Food allergens grouped into protein families share common functional and structural features that can be attributed to the allergenic potency and potential cross-reactivity of certain proteins. Molecular data, in terms of structural information, biochemical characteristics and clinical relevance for each known allergen, including isoforms and variants, are mainly compiled into four open-access databases. Allergens are designated according to defined criteria by the World Health Organization and the International Union of Immunological Societies Allergen Nomenclature Sub-committee. Food allergies are caused by primary sensitisation to the disease-eliciting food allergens (class I food allergen), or they can be elicited as a consequence of a primary sensitisation to inhalant allergens and subsequent IgE cross-reaction to homologous proteins in food (class II food allergens). Class I and class II allergens display different clinical significance in children and adults and are characterised by different molecular features. In line with this, high stability when exposed to gastrointestinal digestion and heat treatment is attributed to many class I food allergens that frequently induce severe reactions. The stability of a food allergen is determined by its molecular characteristics and can be influenced by structural (chemical) modifications due to thermal processing. Moreover, the immunogenicity and allergenicity of food allergens further depends on specific T cell and B cell epitopes. Although the T cell epitope pattern can be highly diverse for individual patients, several immuno-prominent T cell epitopes have been identified. Such conserved T cell epitopes and IgE cross-reactive B cell epitopes contribute to cross-reactivity between food allergens of the same family and to clinical cross-reactivity, similar to the birch pollen-food syndrome.

  14. The disulphide mapping, folding and characterisation of recombinant Ber e 1, an allergenic protein, and SFA8, two sulphur-rich 2S plant albumins.

    PubMed

    Alcocer, Marcos J C; Murtagh, Gareth J; Bailey, Kevin; Dumoulin, Mireille; Meseguer, Amparo Sarabia; Parker, Martin J; Archer, David B

    2002-11-15

    We have cloned and expressed genes encoding the allergenic brazil nut 2S albumin (Ber e 1) and the sunflower albumin 8 (SFA8) in the methylotrophic yeast Pichia pastoris. We show that both proteins were secreted at high levels and that the purified proteins were properly folded. We also showed that Ber e 1 is glycosylated during secretion and that the glycan does not interfere with the folding or immunoreactivity. The disulphide map of the Ber e 1 protein was experimentally established and is in agreement with the conserved disulphide structure of other members of the 2S albumin family. A model three-dimensional structure of the allergen was generated. During the expression studies and through mutation we have also shown that alteration of the sequences around the Kex2 endoproteolytic processing site in the expressed fusion protein can compromise the secretion by targeting part of the protein for possible degradation. The secreted production of these properly folded sulphur-rich plant albumins presents an opportunity to delineate the attributes that make an allergen and to facilitate the diagnosis and therapy of type I allergy.

  15. Detection of potentially allergenic hazelnut (Corylus avellana) residues in food: a comparative study with DNA PCR-ELISA and protein sandwich-ELISA.

    PubMed

    Holzhauser, Thomas; Stephan, Oliver; Vieths, Stefan

    2002-10-09

    Allergen detection is of increasing interest for food labeling purposes. A comparative study with a commercial hazelnut-specific PCR-ELISA and a sandwich-type ELISA detecting hazelnut protein was performed to investigate to what extent immunochemical and DNA-based techniques would correlate in the detection of trace amounts of potentially allergenic hazelnut residues. Both methods were highly sensitive and allowed the detection of even <10 ppm of hazelnut in complex food matrixes. The protein-ELISA was highly specific for hazelnut. However, some foods could lead to false-positive results at the 10 ppm level. The PCR-ELISA did not show any cross-reactions with non-hazelnut foods, thus reducing the probability of having false positives at the trace level. Forty-one commercial food products with and without hazelnut components on their labels were analyzed for the presence of hazelnut. Of the 27 products in which hazelnut components were detected, two samples were not identified by the protein-ELISA, and only one sample, namely one white chocolate having <1 ppm of hazelnut protein, was not detected by PCR-ELISA. The good correlation of the results of PCR-ELISA and protein-ELISA suggested that both PCR-based and immunochemical techniques are suitable for reliable detection of potentially allergenic hazelnut residues in foods at the trace level.

  16. Serum albumins - unusual allergens

    PubMed Central

    Chruszcz, Maksymilian; Mikolajczak, Katarzyna; Mank, Nicholas; Majorek, Karolina A.; Porebski, Przemyslaw J.; Minor, Wladek

    2015-01-01

    Background Albumins are multifunctional proteins present in the blood serum of animals. They can bind and transport a wide variety of ligands which they accommodate due to their conformational flexibility. Serum albumins are highly conserved both in amino acid sequence and three-dimensional structure. Several mammalian and avian serum albumins (SAs) are also allergens. Sensitization to one of the SAs coupled with the high degree of conservation between SAs may result in cross-reactive antibodies in allergic individuals. Sensitivity to SA generally begins with exposure to an aeroallergen, which can then lead to cross-sensitization to serum albumins present in food. Scope of Review This review focuses on the allergenicity of SAs presented in a structural context. Major Conclusions SA allergenicity is unusual taking into account the high sequence identity and similarity between SA from different species and human serum albumin. Cross-reactivity of human antibodies towards different SAs is one of the most important characteristics of these allergens. General Significance Establishing a relationship between sequence and structure of different SAs and their interactions with antibodies is crucial for understanding the mechanisms of cross-sensitization of atopic individuals. Structural information can also lead to better design and production of recombinant SAs to replace natural proteins in allergy testing and desensitization. Therefore, structural analyses are important for diagnostic and treatment purposes. PMID:23811341

  17. New insights into ragweed pollen allergens.

    PubMed

    Bordas-Le Floch, Véronique; Groeme, Rachel; Chabre, Henri; Baron-Bodo, Véronique; Nony, Emmanuel; Mascarell, Laurent; Moingeon, Philippe

    2015-11-01

    Pollen allergens from short ragweed (Ambrosia artemisiifolia) cause severe respiratory allergies in North America and Europe. To date, ten short ragweed pollen allergens belonging to eight protein families, including the recently discovered novel major allergen Amb a 11, have been recorded in the International Union of Immunological Societies (IUIS) allergen database. With evidence that other components may further contribute to short ragweed pollen allergenicity, a better understanding of the allergen repertoire is a requisite for the design of proper diagnostic tools and efficient immunotherapies. This review provides an update on both known as well as novel candidate allergens from short ragweed pollen, identified through a comprehensive characterization of the ragweed pollen transcriptome and proteome.

  18. Sequential extractions: A new way for protein quantification-data from peanut allergens.

    PubMed

    Zhou, Ningling; Li, Wenying; Wu, Zhihua; Li, Xin; Yang, Anshu; Tong, Ping; Chen, Hongbing

    2015-09-01

    Quantification of certain protein contents in the matrix is essential in protein analyses. The amount of total protein in the matrix can be determined by the Kjeldahl method. However, few methods can quantify certain protein contents in the matrix without extracting all of them in solution. Extracting all of the contents is difficult for proteins, especially relatively insoluble ones. A five-step sequential extraction method was developed for the quantification of certain proteins in defatted peanut flour based on the relationship between the extracted protein contents and the extraction times. The extracted proteins (i.e., total protein, Ara h 1, and Ara h 2) were quantitatively analyzed in each extraction of the same condition. An exponential equation was obtained between the extraction times and the respective amount of extracted protein as well as both the total protein and a particular protein. In particular, the amount of protein extracted each time can be a geometric sequence. If all proteins can be extracted with sufficient extraction times, the protein contents in the peanut matrix can be calculated using a mathematical summation formula. This sum should be all proteins in the matrix. The five-step sequential extraction method can provide a means to quantify certain proteins in the matrix.

  19. Impact of thermal processing on legume allergens.

    PubMed

    Verma, Alok Kumar; Kumar, Sandeep; Das, Mukul; Dwivedi, Premendra D

    2012-12-01

    Food induced allergic manifestations are reported from several parts of the world. Food proteins exert their allergenic potential by absorption through the gastrointestinal tract and can even induce life threatening anaphylaxis reactions. Among all food allergens, legume allergens play an important role in induction of allergy because legumes are a major source of protein for vegetarians. Most of the legumes are cooked either by boiling, roasting or frying before consumption, which can be considered a form of thermal treatment. Thermal processing may also include autoclaving, microwave heating, blanching, pasteurization, canning, or steaming. Thermal processing of legumes may reduce, eliminate or enhance the allergenic potential of a respective legume. In most of the cases, minimization of allergenic potential on thermal treatment has generally been reported. Thus, thermal processing can be considered an important tool by indirectly prevent allergenicity in susceptible individuals, thereby reducing treatment costs and reducing industry/office/school absence in case of working population/school going children. The present review attempts to explore various possibilities of reducing or eliminating allergenicity of leguminous food using different methods of thermal processing. Further, this review summarizes different methods of food processing, major legumes and their predominant allergenic proteins, thermal treatment and its relation with antigenicity, effect of thermal processing on legume allergens; also suggests a path that may be taken for future research to reduce the allergenicity using conventional/nonconventional methods.

  20. Allergen Peptides, Recombinant Allergens and Hypoallergens for Allergen-Specific Immunotherapy.

    PubMed

    Marth, Katharina; Focke-Tejkl, Margarete; Lupinek, Christian; Valenta, Rudolf; Niederberger, Verena

    2014-01-01

    Allergic diseases are among the most common health issues worldwide. Specific immunotherapy has remained the only disease-modifying treatment, but it is not effective in all patients and may cause side effects. Over the last 25 years, allergen molecules from most prevalent allergen sources have been isolated and produced as recombinant proteins. Not only are these molecules useful in improved allergy diagnosis, but they also have the potential to revolutionize the treatment of allergic disease by means of immunotherapy. Panels of unmodified recombinant allergens have already been shown to effectively replace natural allergen extracts in therapy. Through genetic engineering, several molecules have been designed with modified immunological properties. Hypoallergens have been produced that have reduced IgE binding capacity but retained T cell reactivity and T cell peptides which stimulate allergen-specific T cells, and these have already been investigated in clinical trials. New vaccines have been recently created with both reduced IgE and T cell reactivity but retained ability to induce protective allergen-specific IgG antibodies. The latter approach works by fusing per se non-IgE reactive peptides derived from IgE binding sites of the allergens to a virus protein, which acts as a carrier and provides the T-cell help necessary for immune stimulation and protective antibody production. In this review, we will highlight the different novel approaches for immunotherapy and will report on prior and ongoing clinical studies.

  1. New structural information on food allergens (abstract)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A small number of protein families are responsible for food allergies suffered by the majority of allergy patients. What properties of these proteins make them allergens is not clear at present. Reliable methods for allergen prediction and mitigation are lacking. Most the immediate type of food alle...

  2. Grass Pollen Allergens

    PubMed Central

    Augustin, Rosa

    1959-01-01

    Grass pollen allergens are shown to remain associated with protein material and a yellow pigment during paper chromatography and during dialyses and ultrafiltrations of various types. Dialysable* allergens comprise only a fraction of 1 per cent of the total activity and the amount of activity extractable by diethylene glycol (DEG) and similar solvents is of the same order. Besides the allergens, the DEG and aqueous extracts contain large amounts of inositol, glucose and fructose, also some yellow pigments and phosphates. Larger amounts of free and combined amino acids are found in the aqueous than in the DEG extracts, but the reverse is true for sucrose. In addition the DEG extracts contain a yellow glucoside different from the dactylen of the aqueous extracts, a glucosan and an arabinose-galactose-pigment complex, only the latter being associated with any activity. The spontaneous release of the crystalline dactylen from originally clear aqueous pollen extracts is found not to be caused by enzymes. The washed crystals are found to be chromatographically and electrophoretically homogeneous and devoid of allergenic activity. ImagesFIG. 1FIG. 2FIG. 3FIG. 4FIG. 5FIG. 6FIG. 7 PMID:13640676

  3. Production of recombinant allergens in plants

    PubMed Central

    2010-01-01

    A large percentage of allergenic proteins are of plant origin. Hence, plant-based expression systems are considered ideal for the recombinant production of certain allergens. First attempts to establish production of plant-derived allergens in plants focused on transient expression in Nicotiana benthamiana infected with recombinant viral vectors. Accordingly, allergens from birch and mugwort pollen, as well as from apple have been expressed in plants. Production of house dust mite allergens has been achieved by Agrobacterium-mediated transformation of tobacco plants. Beside the use of plants as production systems, other approaches have focused on the development of edible vaccines expressing allergens or epitopes thereof, which bypasses the need of allergen purification. The potential of this approach has been convincingly demonstrated for transgenic rice seeds expressing seven dominant human T cell epitopes derived from Japanese cedar pollen allergens. Parallel to efforts in developing recombinant-based diagnostic and therapeutic reagents, different gene-silencing approaches have been used to decrease the expression of allergenic proteins in allergen sources. In this way hypoallergenic ryegrass, soybean, rice, apple, and tomato were developed. PMID:21258627

  4. Protein-bound Vaccinium fruit polyphenols decrease IgE binding to peanut allergens and RBL-2H3 mast cell degranulation in vitro.

    PubMed

    Plundrich, Nathalie J; Bansode, Rishipal R; Foegeding, E Allen; Williams, Leonard L; Lila, Mary Ann

    2017-03-15

    Peanut allergy is a worldwide health concern. In this study, the natural binding properties of plant-derived polyphenols to proteins was leveraged to produce stable protein-polyphenol complexes comprised of peanut proteins and cranberry (Vaccinium macrocarpon Ait.) or lowbush blueberry (Vaccinium angustifolium Ait.) pomace polyphenols. Protein-bound and free polyphenols were characterized and quantified by multistep extraction of polyphenols from protein-polyphenol complexes. Immunoblotting was performed with peanut-allergic plasma to determine peanut protein-specific IgE binding to unmodified peanut protein, or to peanut protein-polyphenol complexes. In an allergen model system, RBL-2H3 mast cells were exposed to peanut protein-polyphenol complexes and evaluated for their inhibitory activity on ionomycin-induced degranulation (β-hexosaminidase and histamine). Among the evaluated polyphenolic compounds from protein-polyphenol complex eluates, quercetin, - in aglycone or glycosidic form - was the main phytochemical identified to be covalently bound to peanut proteins. Peanut protein-bound cranberry and blueberry polyphenols significantly decreased IgE binding to peanut proteins at p < 0.05 (38% and 31% decrease, respectively). Sensitized RBL-2H3 cells challenged with antigen and ionomycin in the presence of protein-cranberry and blueberry polyphenol complexes showed a significant (p < 0.05) reduction in histamine and β-hexosaminidase release (histamine: 65.5% and 65.8% decrease; β-hexosaminidase: 60.7% and 45.4% decrease, respectively). The modification of peanut proteins with cranberry or blueberry polyphenols led to the formation of peanut protein-polyphenol complexes with significantly reduced allergenic potential. Future trials are warranted to investigate the immunomodulatory mechanisms of these protein-polyphenol complexes and the role of quercetin in their hypoallergenic potential.

  5. A revisit to cockroach allergens.

    PubMed

    Sookrung, Nitat; Chaicumpa, Wanpen

    2010-01-01

    Among cockroaches (CR) that live in people's homes, two species, i.e., German CR (Blattella germanica) and American CR (Periplaneta americana) predominate in temperate and tropical areas, respectively. CR is an important source of inhalant indoor allergens that sensitize atopic subjects to (localized) type I hypersensitivity or atopy including allergic rhinitis and atopic asthma. In Thailand the predominant CR species is P. americana. CR allergens are found throughout CR infested houses; the number found in kitchens correlates with the degree of CR infestation while sensitization and reactivation of the allergic morbidity are likely to occur in the living room and bedroom. Levels of the CR allergens in homes of CR allergic Thais, measured by using locally made quantification test kits, revealed that the highest levels occur in dust samples collected from the wooden houses of urban slums and in the cool and dry season. CR allergens are proteins that may be derived from any anatomical part of the insect at any developmental stage. The allergens may be also from CR secretions, excretions, body washes or frass. The proteins may be the insect structural proteins, enzymes or hormones. They may exist as dimers/multimers and/or in different isoforms. Exposure to CR allergens in infancy leads to allergic morbidity later in life. Clinical symptoms of CR allergy are usually more severe and prolonged than those caused by other indoor allergens. The mechanisms of acute and chronic airway inflammation and airway hyper-responsiveness (AHR) have been addressed including specific IgE- and non-IgE-mediated mechanisms, i.e., role of protease-activated receptor-2 (PAR2). Participation of various allergen activated-CD4+ T cells of different sublineages, i.e., Th2, Th17, Th22, Th9, Th25, Tregs/Th3 as well as invariant NKT cells, in asthma pathogenesis have been mentioned. The diagnosis of CR allergy and the allergy intervention by CR population control are also discussed.

  6. The Use of Peptide Markers of Carp and Herring Allergens as an Example of Detection of Sequenced and Non-Sequenced Proteins

    PubMed Central

    Minkiewicz, Piotr

    2016-01-01

    Summary The objective of this study is to identify fish protein markers for detecting multiple species based on a comparative proteomic approach that relies on fragments with identical sequences. The possibilities and challenges of the use of peptides obtained from carp (Cyprinus carpio) and herring (Clupea harengus) proteins are discussed. A bioinformatic analysis was followed by an LC-MS/MS experiment to identify markers predicting the presence of fish allergenic proteins. Selected myosin peptides were found in carp protein hydrolysates with known sequences and in herring protein hydrolysates with unknown sequences. The results obtained for carp and herring proteins myosin and parvalbumin indicate that proteins with unknown sequences can be identified by peptide markers. Such markers can be designed by disregarding the principle that peptides should be unique (present in one sequence). The challenge is to determine a group of proteins that can be detected by peptide identification. PMID:27956857

  7. Will genetically modified foods be allergenic?

    PubMed

    Taylor, S L; Hefle, S L

    2001-05-01

    Foods produced through agricultural biotechnology, including such staples as corn, soybeans, canola, and potatoes, are already reaching the consumer marketplace. Agricultural biotechnology offers the promise to produce crops with improved agronomic characteristics (eg, insect resistance, herbicide tolerance, disease resistance, and climatic tolerance) and enhanced consumer benefits (eg, better taste and texture, longer shelf life, and more nutritious). Certainly, the products of agricultural biotechnology should be subjected to a careful and complete safety assessment before commercialization. Because the genetic modification ultimately results in the introduction of new proteins into the food plant, the safety, including the potential allergenicity, of the newly introduced proteins must be assessed. Although most allergens are proteins, only a few of the many proteins found in foods are allergenic under the typical circumstances of exposure. The potential allergenicity of the introduced proteins can be evaluated by focusing on the source of the gene, the sequence homology of the newly introduced protein to known allergens, the expression level of the novel protein in the modified crop, the functional classification of the novel protein, the reactivity of the novel protein with IgE from the serum of individuals with known allergies to the source of the transferred genetic material, and various physicochemical properties of the newly introduced protein, such as heat stability and digestive stability. Few products of agricultural biotechnology (and none of the current products) will involve the transfer of genes from known allergenic sources. Applying such criteria provides reasonable assurance that the newly introduced protein has limited capability to become an allergen.

  8. Amino acid sequence similarity of Hev b 3 to two previously reported 27- and 23-kDa latex proteins allergenic to spina bifida patients.

    PubMed

    Yeang, H Y; Ward, M A; Zamri, A S; Dennis, M S; Light, D R

    1998-05-01

    Separate studies have reported spina bifida patients to be especially allergic to proteins of 27 and 23 kDa found in the serum of centrifuged natural rubber latex. An insoluble latex protein located on the surface of small rubber particles, Hev b 3, has similarly been found to be allergenic to spina bifida patients. In this study, internal amino acid sequences of Hev b 3 showed similarity to the published sequences for the 27- and 23-kDa latex proteins. The latter allergens are hence identified as Hev b 3. Determination of the molecular weight of Hev b 3 revealed various species of 22-23 kDa. The consistent gaps of about 266 Da observed between various forms of the intact protein suggest that the protein undergoes post-translational modification. To determine whether Hev b 3 also occurs in a soluble form in the latex serum, its presence in molecular-filtered serum was checked by ELISA and Western blot. The results showed Hev b 3 to be largely absent in the C-serum from fresh latex. The protein is therefore insoluble in its native state. However, a small amount of the solubilized protein was detected in ammonia-stabilized latex (commonly used in the manufacture of latex products).

  9. New contact allergens and allergen sources.

    PubMed

    Rudzki, E; Grzywa, Z; Krajewska, D; Kozłowska, A; Czerwińska-Dihm, I

    1978-01-01

    In the report new contact allergens and allergen sources detected in Warsaw in the period 1975-1977 are described. They are divided into 3 groups: industrial allergens, remaining occupational allergens and cosmetics. There are given some data concerning the substances present in industrial oils, hardeners and epoxy resin solvents, drugs sensitizing nurses, several new sources of chromium allergens, essential oils and synthetic flavours. Results obtained with various star anise oil samples are described. Essential oils and synthetic flavours. Results obtained with various star anise oil samples are described. Essential oils and synthetic flavours are discussed as the main allergens in cosmetics.

  10. Purification, identification and preliminary crystallographic studies of an allergenic protein from Lathyrus sativus.

    PubMed

    Qureshi, Insaf A; Sethi, Dhruv K; Salunke, Dinakar M

    2006-09-01

    A 24 kDa protein was purified from the seeds of Lathyrus sativus by ammonium sulfate fractionation and ion-exchange chromatography. The N-terminal amino-acid sequence showed significant homology with the 2S albumin class of seed storage proteins. The protein showed 85% sequence homology with the seed albumin of Pisum sativum within the 40 N-terminal residues. Crystals were obtained by the hanging-drop vapour-diffusion method. The crystals belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 43.5, b = 82.7, c = 153.4 A.

  11. Purification, identification and preliminary crystallographic studies of an allergenic protein from Lathyrus sativus

    SciTech Connect

    Qureshi, Insaf A.; Sethi, Dhruv K.; Salunke, Dinakar M.

    2006-09-01

    A 24 kDa protein was purified from the seeds of L. sativus by ammonium sulfate fractionation and ion-exchange chromatography. Crystals were obtained by the hanging-drop vapour-diffusion method. A 24 kDa protein was purified from the seeds of Lathyrus sativus by ammonium sulfate fractionation and ion-exchange chromatography. The N-terminal amino-acid sequence showed significant homology with the 2S albumin class of seed storage proteins. The protein showed 85% sequence homology with the seed albumin of Pisum sativum within the 40 N-terminal residues. Crystals were obtained by the hanging-drop vapour-diffusion method. The crystals belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 43.5, b = 82.7, c = 153.4 Å.

  12. Influence of ultrasonic treatment on the allergenic properties of Shrimp ( Penaeus vannamei) Allergen

    NASA Astrophysics Data System (ADS)

    Li, Zhenxing; Lin, Hong; Cao, Limin

    2006-04-01

    The present study was undertaken to determine whether high intensity ultrasound could reduce the allergic properties of shrimp allergens. Reducing the allergenic properties of these allergens will be beneficial to allergic individuals. Samples of shrimp protein extract and shrimp muscle were treated by high-intensity ultrasound with water bathing at 0°C or 50°C for different time periods. The treated and untreated samples were then analyzed by SDS-PAGE, Western blots and competitive inhibition ELISA (Ci-ELISA) to determine the shrimp allergenicity. The results show that high-intensity ultrasound has no effect on allergenicity when the extracts were treated at 0°C. However, a significant decrease was observed in the level of the major shrimp allergen, Pen a 1, when the samples were treated at 50°C. In the determination of allergenicity with Ci-ELISA, a reduction in IgE binding was also observed.

  13. Assessment of the potential allergenicity of ice structuring protein type III HPLC 12 using the FAO/WHO 2001 decision tree for novel foods.

    PubMed

    Bindslev-Jensen, C; Sten, E; Earl, L K; Crevel, R W R; Bindslev-Jensen, U; Hansen, T K; Stahl Skov, P; Poulsen, L K

    2003-01-01

    The introduction of novel proteins into foods carries a risk of eliciting allergic reactions in individuals sensitive to the introduced protein. Therefore, decision trees for evaluation of the risk have been developed, the latest being proposed by WHO/FAO early in 2001. Proteins developed using modern biotechnology and derived from fish are being considered for use in food and other applications, and since allergy to fish is well established, a potential risk from such proteins to susceptible human beings exists. The overall aim of the study was to investigate the potential allergenicity of an Ice Structuring Protein (ISP) originating from an arctic fish (the ocean pout, Macrozoarces americanus) using the newly developed decision tree proposed by FAO/WHO. The methods used were those proposed by FAO/WHO including amino acid sequence analysis for sequence similarity to known allergens, methods for assessing degradability under standardised conditions, assays for detection of specific IgE against the protein (Maxisorb RAST) and histamine release from human basophils. In the present paper we describe the serum screening phase of the study and discuss the overall application of the decision tree to the assessment of the potential allergenicity of ISP Type III. In an accompanying paper [Food Chem. Toxicol. 40 (2002) 965], we detail the specific methodology used for the sequence analysis and assessment of resistance to pepsin-catalysed proteolysis of this protein. The ISP showed no sequence similarity to known allergens nor was it stable to proteolytic degradation using standardised methods. Using sera from 20 patients with a well-documented clinical history of fish allergy, positive in skin prick tests to ocean pout, eel pout and eel were used, positive IgE-binding in vitro to extracts of the same fish was confirmed. The sera also elicited histamine release in vitro in the presence of the same extracts. The ISP was negative in all cases in the same experiments. Using the

  14. Food allergy and the potential allergenicity-antigenicity of microparticulated egg and cow's milk proteins.

    PubMed

    Sampson, H A; Cooke, S K

    1990-08-01

    Approximately 3-4 million Americans experience food allergic reactions at some time in their lives. In the pediatric population, eggs and milk are most frequently implicated in food allergic reactions. The most well-understood adverse reactions to foods are secondary to the development of IgE antibodies to specific food antigens. Once an individual becomes sensitized (i.e., makes specific IgE antibodies), ingestion of the food may lead to a variety of cutaneous, respiratory, and/or gastrointestinal symptoms, and anaphylactic shock. The use of SDS-PAGE and immunoblot analyses with sera from documented food allergic patients provide a very sensitive indicator of the antigenic/allergic composition of various foods. As demonstrated in a study of infant formulas of hydrolyzed cow's milk protein, the absence of demonstrable bands on SDS-PAGE gels and immunoblots correlates with an inability to provoke an allergic response. In addition, it was demonstrated that SDS-PAGE with silver staining could detect protein fractions at a concentration of 50-100 ng/ml, a concentration below which allergic individuals are unlikely to react. These studies confirmed that patients clinically allergic to egg and/or cow's milk possess IgE and IgG antibodies to protein fractions in egg and cow's milk, as well as the microparticulated egg/cow's milk proteins, Simplesse and Beta IL. Compared to egg and cow's milk, there is no evidence that the Simplesse or Beta IL test materials possess any "novel" protein fractions or antigens. In addition, there is no evidence that these microparticulated proteins result in increased immunologic activity, as determined by the intensity of protein band staining.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Characterization of a novel allergenic protein from the octocoral Scleronephthya gracillima (Kuekenthal) that corresponds to a new GFP-like family named Akane.

    PubMed

    Kato, Yuko; Jimbo, Mitsuru; Sakakibara, Youichi; Onizuka, Reiko; Takahashi, Tatsuya; Matsuhashi, Sachiko; Mita, Hajime; Amada, Kei; Imahara, Yukimitsu; Tanabe, Kimiko; Toda, Akihisa; Kamiya, Hisao

    2017-04-05

    Certain marine organisms have been known to cause allergic reactions among occupational fishermen. We have previously reported that bronchial asthma among the workers engaged in spiny lobster fishing in Japan was caused by octocorals such as Dendronephthya sp. and Scleronephthya gracillima (previously named Alcyonium gracillimum). Now we have found another octocoral, Scleronephthya gracillima (Kuekenthal), which causes the allergic disease in fishermen. The octocoral was characterized as a new green fluorescent protein (GFP)-like family. The new allergen has a molecular mass of 27 kDa in 1D and 2D SDS-PAGE under reduced conditions. The 27 kDa component was determined to be an allergen by western blotting, ECL immune staining method and absorption of patient sera with the antigen. Furthermore, the combination of analysis with LC-ESI-MS/MS and MASCOT search in the NCBInr database concluded the 27 kDa component had the sequence YPADI/LPDYFK, and that the 22 kDa component had the sequence QSFPEGFSWER, which both matched a GFP-like protein in Acropora aculeus and in Montastraea annularis. Further analysis by MALDI-TOF/MS/MS and MASCOT search in the NCBInr database of all 27 kDa eight spot components from 2D SDS-PAGE indicated that the sequence QSFPEGFSWER also matched as GFP-like protein in Lobophyllia hemprichii and Scleractinia sp. To our knowledge, this is the first report of the new allergenic protein that corresponds to a new GFP-like protein named Akane, and which has fluorescent emissions in the red and green part of the spectra at 628 nm and 508 nm, respectively.

  16. Purification, identification and preliminary crystallographic studies of an allergenic protein from Solanum melongena.

    PubMed

    Jain, Abha; Salunke, Dinakar Masanu

    2015-02-01

    Solanum melongena (eggplant), a member of the Solanaceae family, is a widely cultivated vegetable crop and is commonly used as a food throughout the world. Allergic reactions caused by members of this family are well known. However, mechanistic analyses to understand their molecular basis have not been adequately explored. In order to address this issue, the 7S vicilin protein (SM80.1) of size 45 kDa was purified from seeds of S. melongena by ammonium sulfate fractionation and size-exclusion chromatography. Significant homology of SM80.1 to an allergy-related protein from S. lycopersicum was identified through a BLAST search. Crystallization attempts with purified protein using the hanging-drop vapour-diffusion method led to hexagonal-shaped crystals. The crystals diffracted to 2.21 Å resolution and belonged to space group P6322, with unit-cell parameters a = 117.9, c = 123.5 Å.

  17. Screening of transgenic proteins expressed in transgenic food crops for the presence of short amino acid sequences identical to potential, IgE – binding linear epitopes of allergens

    PubMed Central

    Kleter, Gijs A; Peijnenburg, Ad ACM

    2002-01-01

    Background Transgenic proteins expressed by genetically modified food crops are evaluated for their potential allergenic properties prior to marketing, among others by identification of short identical amino acid sequences that occur both in the transgenic protein and allergenic proteins. A strategy is proposed, in which the positive outcomes of the sequence comparison with a minimal length of six amino acids are further screened for the presence of potential linear IgE-epitopes. This double track approach involves the use of literature data on IgE-epitopes and an antigenicity prediction algorithm. Results Thirty-three transgenic proteins have been screened for identities of at least six contiguous amino acids shared with allergenic proteins. Twenty-two transgenic proteins showed positive results of six- or seven-contiguous amino acids length. Only a limited number of identical stretches shared by transgenic proteins (papaya ringspot virus coat protein, acetolactate synthase GH50, and glyphosate oxidoreductase) and allergenic proteins could be identified as (part of) potential linear epitopes. Conclusion Many transgenic proteins have identical stretches of six or seven amino acids in common with allergenic proteins. Most identical stretches are likely to be false positives. As shown in this study, identical stretches can be further screened for relevance by comparison with linear IgE-binding epitopes described in literature. In the absence of literature data on epitopes, antigenicity prediction by computer aids to select potential antibody binding sites that will need verification of IgE binding by sera binding tests. Finally, the positive outcomes of this approach warrant further clinical testing for potential allergenicity. PMID:12477382

  18. Characterization of soybean storage and allergen protein affected by environmental and genetic factors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge of the impact of genetic variability and diverse environments on the protein composition of crop seed is of value for the comparative safety assessments in the development of genetically engineered (GMO) crops. The objective of this study was to determine the role of genotype (G), environ...

  19. Evaluating variability of allergens in commodity crops.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crops with significant food allergen issues, include legumes, peanut and soybean, cereal grains, such as wheat and maize, and tree nuts (walnut, Brazil nut, among other phylogenetically diverse species) (Teuber et al. 2006). Officially recognized allergenic proteins may include one or multiple prot...

  20. Fish Allergens at a Glance: Variable Allergenicity of Parvalbumins, the Major Fish Allergens

    PubMed Central

    Kuehn, Annette; Swoboda, Ines; Arumugam, Karthik; Hilger, Christiane; Hentges, François

    2014-01-01

    Fish is a common trigger of severe, food-allergic reactions. Only a limited number of proteins induce specific IgE-mediated immune reactions. The major fish allergens are the parvalbumins. They are members of the calcium-binding EF-hand protein family characterized by a conserved protein structure. They represent highly cross-reactive allergens for patients with specific IgE to conserved epitopes. These patients might experience clinical reactions with various fish species. On the other hand, some individuals have IgE antibodies directed against unique, species-specific parvalbumin epitopes, and these patients show clinical symptoms only with certain fish species. Furthermore, different parvalbumin isoforms and isoallergens are present in the same fish and might display variable allergenicity. This was shown for salmon homologs, where only a single parvalbumin (beta-1) isoform was identified as allergen in specific patients. In addition to the parvalbumins, several other fish proteins, enolases, aldolases, and fish gelatin, seem to be important allergens. New clinical and molecular insights advanced the knowledge and understanding of fish allergy in the last years. These findings were useful for the advancement of the IgE-based diagnosis and also for the management of fish allergies consisting of advice and treatment of fish-allergic patients. PMID:24795722

  1. Fish allergens at a glance: variable allergenicity of parvalbumins, the major fish allergens.

    PubMed

    Kuehn, Annette; Swoboda, Ines; Arumugam, Karthik; Hilger, Christiane; Hentges, François

    2014-01-01

    Fish is a common trigger of severe, food-allergic reactions. Only a limited number of proteins induce specific IgE-mediated immune reactions. The major fish allergens are the parvalbumins. They are members of the calcium-binding EF-hand protein family characterized by a conserved protein structure. They represent highly cross-reactive allergens for patients with specific IgE to conserved epitopes. These patients might experience clinical reactions with various fish species. On the other hand, some individuals have IgE antibodies directed against unique, species-specific parvalbumin epitopes, and these patients show clinical symptoms only with certain fish species. Furthermore, different parvalbumin isoforms and isoallergens are present in the same fish and might display variable allergenicity. This was shown for salmon homologs, where only a single parvalbumin (beta-1) isoform was identified as allergen in specific patients. In addition to the parvalbumins, several other fish proteins, enolases, aldolases, and fish gelatin, seem to be important allergens. New clinical and molecular insights advanced the knowledge and understanding of fish allergy in the last years. These findings were useful for the advancement of the IgE-based diagnosis and also for the management of fish allergies consisting of advice and treatment of fish-allergic patients.

  2. Effects of treatment on IgE responses against parasite allergen-like proteins and immunity to reinfection in childhood schistosome and hookworm coinfections.

    PubMed

    Pinot de Moira, Angela; Jones, Frances M; Wilson, Shona; Tukahebwa, Edridah; Fitzsimmons, Colin M; Mwatha, Joseph K; Bethony, Jeffrey M; Kabatereine, Narcis B; Dunne, David W

    2013-01-01

    Naturally occurring human immunity to both schistosomiasis and hookworm infection has been associated with IgE responses against parasite allergen-like proteins. Since the two helminths frequently coinfect the same individuals, there is growing advocacy for their concurrent treatment. However, both helminths are known to exert strong immunomodulatory effects; therefore, coinfected individuals could have immune responses different from those characteristically seen in monoinfected individuals. In this study, we measured changes in IgE, IgG1, and IgG4 responses to schistosome and hookworm antigens, including the allergen-like proteins Schistosoma mansoni tegumental-allergen-like 1 protein (SmTAL1), SmTAL2, and Necator americanus Ancylostoma-secreted protein-2 (Na-ASP-2), following concurrent treatment of schoolchildren coinfected with Schistosoma mansoni and hookworm. Antibody responses to schistosome egg (soluble egg antigen and SmTAL2) or somatic adult hookworm (AHW) antigens either decreased after treatment or were unchanged, whereas those to schistosome worm antigens (soluble worm antigen and SmTAL1) increased. The observed different effects of treatment likely reflect the different modes of drug action and sites of infection for these two helminths. Importantly, there was no evidence that the simultaneous treatment of coinfected children with praziquantel and albendazole affected schistosome- and hookworm-specific humoral responses differently from those characteristic of populations in which only one organism is endemic; schistosome- and hookworm-specific responses were not associated, and there was no evidence for cross-regulation. Posttreatment increases in the levels of IgE to schistosome worm antigens were associated with lower Schistosoma mansoni reinfection intensity, while no associations between humoral responses to AHW antigen and protection from hookworm reinfection were observed in this sample of school-aged children.

  3. Effect of oleic acid on the allergenic properties of peanut and cashew allergens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oleic acid is the major fatty acid in peanuts and cashews. There is limited information about its effect on peanut and cashew allergens during heating. The objective was to determine if heat treatment with oleic acid changes the allergenic properties of these nut proteins. Peanut and cashew protein...

  4. Cockroach allergen exposure and risk of asthma.

    PubMed

    Do, D C; Zhao, Y; Gao, P

    2016-04-01

    Cockroach sensitization is an important risk factor for the development of asthma. However, its underlying immune mechanisms and the genetic etiology for differences in allergic responses remain unclear. Cockroach allergens identification and their expression as biologically active recombinant proteins have provided a basis for studying the mechanisms regarding cockroach allergen-induced allergic sensitization and asthma. Glycans in allergens may play a crucial role in the immunogenicity of allergic diseases. Protease-activated receptor (PAR)-2, Toll-like receptor (TLR), and C-type lectin receptors have been suggested to be important for the penetration of cockroach allergens through epithelial cells to mediate allergen uptake, dendritic cell maturation, antigen-presenting cell (APC) function in T-cell polarization, and cytokine production. Environmental pollutants, which often coexist with the allergen, could synergistically elicit allergic inflammation, and aryl hydrocarbon receptor (AhR) activation and signaling may serve as a link between these two elements. Genetic factors may also play an important role in conferring the susceptibility to cockroach sensitization. Several genes have been associated with cockroach sensitization and asthma-related phenotypes. In this review, we will discuss the epidemiological evidence for cockroach allergen-induced asthma, cockroach allergens, the mechanisms regarding cockroach allergen-induced innate immune responses, and the genetic basis for cockroach sensitization.

  5. Mammalian-derived respiratory allergens - implications for diagnosis and therapy of individuals allergic to furry animals.

    PubMed

    Nilsson, Ola B; van Hage, Marianne; Grönlund, Hans

    2014-03-01

    Furry animals cause respiratory allergies in a significant proportion of the population. A majority of all mammalian allergens are spread as airborne particles, and several have been detected in environments where furry animals are not normally kept. The repertoire of allergens from each source belongs to a restricted number of allergen families. Classification of allergen families is particularly important for the characterization of allergenicity and cross-reactivity of allergens. In fact, major mammalian allergens are taken from only three protein families, i.e. the secretoglobin, lipocalin and kallikrein families. In particular, the lipocalin superfamily harbours major allergens in all important mammalian allergen sources, and cross-reactivity between lipocalin allergens may explain cross-species sensitization between mammals. The identification of single allergen components is of importance to improve diagnosis and therapy of allergic patients using component-resolved diagnostics and allergen-specific immunotherapy (ASIT) respectively. Major disadvantages with crude allergen extracts for these applications emphasize the benefits of careful characterization of individual allergens. Furthermore, detailed knowledge of the characteristics of an allergen is crucial to formulate attenuated allergy vaccines, e.g. hypoallergens. The diverse repertoires of individual allergens from different mammalian species influence the diagnostic potential and clinical efficacy of ASIT to furry animals. As such, detailed knowledge of individual allergens is essential for adequate clinical evaluation. This review compiles current knowledge of the allergen families of mammalian species, and discusses how this information may be used for improved diagnosis and therapy of individuals allergic to mammals.

  6. COMPARISON OF SUBCUTANEOUS AND ORAL ROUTES OF EXPOSURE FOR EVALUATING ALLERGENICITY OF FOOD EXTRACTS

    EPA Science Inventory

    Evaluation of the potential for food allergenicity of any given protein is limited by the lack of an appropriate animal model. In this study we examined the intrinsic allergenicity of foods known to be allergenic (peanut, egg) or non-allergenic (spinach) by exposing mice either s...

  7. Defining occupational and consumer exposure limits for enzyme protein respiratory allergens under REACH.

    PubMed

    Basketter, D A; Broekhuizen, C; Fieldsend, M; Kirkwood, S; Mascarenhas, R; Maurer, K; Pedersen, C; Rodriguez, C; Schiff, H-E

    2010-02-09

    A wide range of substances have been recognized as sensitizing, either to the skin and/or to the respiratory tract. Many of these are useful materials, so to ensure that they can be used safely it is necessary to characterize the hazards and establish appropriate exposure limits. Under new EU legislation (REACH), there is a requirement to define a derived no effect level (DNEL). Where a DNEL cannot be established, e.g. for sensitizing substances, then a derived minimal effect level (DMEL) is recommended. For the bacterial and fungal enzymes which are well recognized respiratory sensitizers and have widespread use industrially as well as in a range of consumer products, a DMEL can be established by thorough retrospective review of occupational and consumer experience. In particular, setting the validated employee medical surveillance data against exposure records generated over an extended period of time is vital in informing the occupational DMEL. This experience shows that a long established limit of 60 ng/m(3) for pure enzyme protein has been a successful starting point for the definition of occupational health limits for sensitization in the detergent industry. Application to this of adjustment factors has limited sensitization induction, avoided any meaningful risk of the elicitation of symptoms with known enzymes and provided an appropriate level of security for new enzymes whose potency has not been fully characterized. For example, in the detergent industry, this has led to general use of occupational exposure limits 3-10 times lower than the 60 ng/m(3) starting point. In contrast, consumer exposure limits vary because the types of exposure themselves cover a wide range. The highest levels shown to be safe in use, 15 ng/m(3), are associated with laundry trigger sprays, but very much lower levels (e.g. 0.01 ng/m(3)) are commonly associated with other types of safe exposure. Consumer limits typically will lie between these values and depend on the actual

  8. Subchronic toxicity study in vivo and allergenicity study in vitro for genetically modified rice that expresses pharmaceutical protein (human serum albumin).

    PubMed

    Sheng, Yao; Qi, Xiaozhe; Liu, Yifei; Guo, Mingzhang; Chen, Siyuan; He, Xiaoyun; Huang, Kunlun; Xu, Wentao

    2014-10-01

    Genetically modified (GM) crops that express pharmaceutical proteins have become an important focus of recent genetic engineering research. Food safety assessment is necessary for the commercial development of these crops. Subchronic toxicity study in vivo and allergenicity study in vitro were designed to evaluate the food safety of the rice variety expressing human serum albumin (HSA). Animals were fed rodent diets containing 12.5%, 25.0% and 50.0% GM or non-GM rice for 90 days. The composition analysis of the GM rice demonstrated several significant differences. However, most of the differences remained within the ranges reported in the literature. In the animal study, a range of indexes including clinical observation, feed efficiency, hematology, serum chemistry, organ weights and histopathology were examined. Random changes unrelated to the GM rice exposure, within the range of historical control values and not associated with any signs of illness were observed. The results of heat stability and in vitro digestion of HSA indicated no evidence of potential allergenicity of the protein. Overall, the results of these studies suggest that the GM rice appears to be safe as a dietary ingredient when it is used at up to 50% in the diet on a subchronic basis.

  9. Shellfish allergens: tropomyosin and beyond.

    PubMed

    Faber, M A; Pascal, M; El Kharbouchi, O; Sabato, V; Hagendorens, M M; Decuyper, I I; Bridts, C H; Ebo, D G

    2016-12-27

    IgE-mediated shellfish allergy constitutes an important cause of food-related adverse reactions. Shellfish are classified into mollusks and crustaceans, the latter belonging to the class of arthropoda. Among crustaceans, shrimps are the most predominant cause of allergic reactions and thus more extensively studied. Several major and minor allergens have been identified and cloned. Among them, invertebrate tropomyosin, arginine kinase, myosin light chain, sarcoplasmic calcium-binding protein, and hemocyanin are the most relevant. This review summarizes our current knowledge about these allergens.

  10. Grass Pollen Allergens

    PubMed Central

    Augustin, Rosa

    1959-01-01

    Heat and pH stability studies and experiments with organic solvents show that the A-antigens discussed in the preceding paper (Augustin, 1959c) are much more labile than the I- (`inner ring') antigens. Breakdown products and/or aggregates are produced which no longer precipitate with antisera to the original extracts, but act as inhibitors. Solutions of pollen allergens, on the other hand, are found to withstand even autoclaving for 15 min. at 20 atm. and vigorous boiling over the naked flame of a bunsen burner. None of the carbohydrates tested has a demonstrable effect on skin reactivity which is, however, destroyed by crystalline pepsin, crystalline trypsin, a crystalline mould protease and a tissue protease (a partially purified extract from rabbit spleen). It follows that the bulk of the allergens—if not all—are proteins. The relation of skin reactivity, immuno-electrophoretic patterns, carbohydrate and protein reactions to the selective destruction of the pollen antigens is investigated. Pollen components prove to have a somewhat wider range of electrophoretic mobilities than serum proteins and are probably as complicated a mixture. The most and least highly negatively charged components are without skin reactivity in allergic subjects. The skin reactive allergens appear to have the mobilities of α- and β-globulins. Not all the hay fever subjects react equally to all the components, and Cocksfoot and Timothy activity patterns vary in different subjects. ImagesFIG. 5 PMID:13795119

  11. Safety of engineered allergen-specific immunotherapy vaccines

    PubMed Central

    Focke-Tejkl, Margarete; Valenta, Rudolf

    2015-01-01

    Purpose of review The purpose of the review is to summarize and comment on recent developments regarding the safety of engineered immunotherapy vaccines. Recent findings In the last 2 years, several studies were published in which allergy vaccines were developed on the basis of chemical modification of natural allergen extracts, the engineering of allergen molecules by recombinant DNA technology and synthetic peptide chemistry, allergen genes, new application routes and conjugation with immune modulatory molecules. Several studies exemplified the general applicability of hypoallergenic vaccines on the basis of recombinant fusion proteins consisting of nonallergenic allergen-derived peptides fused to allergen-unrelated carrier molecules. These vaccines are engineered to reduce both, immunoglobulin E (IgE) as well as allergen-specific T cell epitopes in the vaccines, and thus should provoke less IgE and T-cell-mediated side-effects. They are made to induce allergen-specific IgG antibodies against the IgE-binding sites of allergens with the T-cell help of the carrier molecule. Summary Several interesting examples of allergy vaccines with potentially increased safety profiles have been published. The concept of fusion proteins consisting of allergen-derived hypoallergenic peptides fused to allergen-unrelated proteins that seems to be broadly applicable for a variety of allergens appears to be of particular interest because it promises not only to reduce side-effects but also to increase efficacy and convenience of allergy vaccines. PMID:22885888

  12. Assessing hazelnut allergens by protein- and DNA-based approaches: LC-MS/MS, ELISA and real-time PCR.

    PubMed

    Costa, Joana; Ansari, Parisa; Mafra, Isabel; Oliveira, M Beatriz P P; Baumgartner, Sabine

    2014-04-01

    Hazelnut (Corylus avellana L.) is responsible for a significant part of the allergies related to nuts. Still, it is a very much appreciated nut and as consequence is widely used in all types of processed foods, such as chocolates. Correct food labelling is currently the most effective means of preventing the consumption of allergenic ingredients, namely hazelnut, by the sensitised/allergic individuals. Thus, to verify labelling compliance and to ensure allergic patient protection, the development of highly sensitive methodologies is of extreme importance. In this study, three major methodologies, namely enzyme-linked immunosorbent assays (ELISA), liquid chromatography coupled with mass spectrometry and real-time polymerase chain reaction, were evaluated for their performance regarding the detection of hazelnut allergens in model chocolates. The sandwich ELISA and respective antibodies were in-house developed and produced. With sensitivity levels of approximately 1 mg kg(-1) and limits of quantification of 50-100 mg kg(-1), all the performed methods were considered appropriate for the identification of hazelnut in complex foods such as chocolates. To our knowledge, this was the first successful attempt to develop and compare three independent approaches for the detection of allergens in foods.

  13. Inhibiting Peanut Allergen Digestion with p-Aminobenzamidine Attached to the Allergens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut allergens can be digested into peptide fragments despite being known as resistant proteins. Once absorbed, the peptide fragments from digested allergens could bind to immunoglobulin E (IgE) antibodies and cause an allergic reaction in allergic individuals. To reduce peanut allergy, one approa...

  14. Hypoallergens for allergen-specific immunotherapy by directed molecular evolution of mite group 2 allergens.

    PubMed

    Gafvelin, Guro; Parmley, Stephen; Neimert-Andersson, Theresa; Blank, Ulrich; Eriksson, Tove L J; van Hage, Marianne; Punnonen, Juha

    2007-02-09

    Allergen-specific immunotherapy is the only treatment that provides long lasting relief of allergic symptoms. Currently, it is based on repeated administration of allergen extracts. To improve the safety and efficacy of allergen extract-based immunotherapy, application of hypoallergens, i.e. modified allergens with reduced IgE binding capacity but retained T-cell reactivity, has been proposed. It may, however, be difficult to predict how to modify an allergen to create a hypoallergen. Directed molecular evolution by DNA shuffling and screening provides a means by which to evolve proteins having novel or improved functional properties without knowledge of structure-function relationships of the target molecules. With the aim to generate hypoallergens we applied multigene DNA shuffling on three group 2 dust mite allergen genes, two isoforms of Lep d 2 and Gly d 2. DNA shuffling yielded a library of genes from which encoded shuffled allergens were expressed and screened. A positive selection was made for full-length, high-expressing clones, and screening for low binding to IgE from mite allergic patients was performed using an IgE bead-based binding assay. Nine selected shuffled allergens revealed 80-fold reduced to completely abolished IgE binding compared with the parental allergens in IgE binding competition experiments. Two hypoallergen candidates stimulated allergen-specific T-cell proliferation and cytokine production at comparable levels as the wild-type allergens in patient peripheral blood mononuclear cell cultures. The two candidates also induced blocking Lep d 2-specific IgG antibodies in immunized mice. We conclude that directed molecular evolution is a powerful approach to generate hypoallergens for potential use in allergen-specific immunotherapy.

  15. MucoRice-cholera toxin B-subunit, a rice-based oral cholera vaccine, down-regulates the expression of α-amylase/trypsin inhibitor-like protein family as major rice allergens.

    PubMed

    Kurokawa, Shiho; Nakamura, Rika; Mejima, Mio; Kozuka-Hata, Hiroko; Kuroda, Masaharu; Takeyama, Natsumi; Oyama, Masaaki; Satoh, Shigeru; Kiyono, Hiroshi; Masumura, Takehiro; Teshima, Reiko; Yuki, Yoshikazu

    2013-07-05

    To develop a cold chain- and needle/syringe-free rice-based cholera vaccine (MucoRice-CTB) for human use, we previously advanced the MucoRice system by introducing antisense genes specific for endogenous rice storage proteins and produced a molecularly uniform, human-applicable, high-yield MucoRice-CTB devoid of plant-associated sugar. To maintain the cold chain-free property of this vaccine for clinical application, we wanted to use a polished rice powder preparation of MucoRice-CTB without further purification but wondered whether this might cause an unexpected increase in rice allergen protein expression levels in MucoRice-CTB and prompt safety concerns. Therefore, we used two-dimensional fluorescence difference gel electrophoresis and shotgun MS/MS proteomics to compare rice allergen protein expression levels in MucoRice-CTB and wild-type (WT) rice. Both proteomics analyses showed that the only notable change in the expression levels of rice allergen protein in MucoRice-CTB, compared with those in WT rice, was a decrease in the expression levels of α-amylase/trypsin inhibitor-like protein family such as the seed allergen protein RAG2. Real-time PCR analysis showed mRNA of RAG2 reduced in MucoRice-CTB seed. These results demonstrate that no known rice allergens appear to be up-reregulated by genetic modification of MucoRice-CTB, suggesting that MucoRice-CTB has potential as a safe oral cholera vaccine for clinical application.

  16. Protocol for simultaneous isolation of three important banana allergens.

    PubMed

    Nikolic, Jasna; Mrkic, Ivan; Grozdanovic, Milica; Popovic, Milica; Petersen, Arnd; Jappe, Uta; Gavrovic-Jankulovic, Marija

    2014-07-01

    Banana fruit (Musa acuminata) has become an important food allergen source in recent years. So far, 5 IgE reactive banana proteins have been identified, and the major allergens are: Mus a 2 (a class I chitinase, 31kDa), Mus a 4 (thaumatin-like protein, 21kDa), and Mus a 5 (β-1,3-glucanase, 33kDa). Due to variations in allergen expression levels, diagnostic reagents for food allergy can be improved by using individual allergen components instead of banana allergen extracts. The purpose of this study was to optimize the purification protocol of the three major allergens present in banana fruit: Mus a 2, Mus a 4 and Mus a 5. By employing a three-step purification protocol (a combination of anion-exchange, cation-exchange and reversed-phase chromatography) three important banana allergens were obtained in sufficient yield and high purity. Characterization of the purified proteins was performed by both biochemical (2-D PAGE, mass fingerprint and N-terminal sequencing) and immunochemical (immunoblot) methods. IgE reactivity to the purified allergens was tested by employing sera of five allergic patients. The purified allergens displayed higher sensitivity in IgE detection than the routinely used extracts. The three purified allergens are good candidates for reagents in component-based diagnosis of banana allergy.

  17. Molecular cloning and expression of active Ole e 3, a major allergen from olive-tree pollen and member of a novel family of Ca2+-binding proteins (polcalcins) involved in allergy.

    PubMed

    Ledesma, A; Villalba, M; Batanero, E; Rodríguez, R

    1998-12-01

    A cDNA encoding Ole e 3, a major allergen from olive-tree pollen, has been cloned and sequenced. A strategy based on two-step PCR amplification towards the 5' end and 3' end, with an internal specific primer, has been used. The isolated cDNA contains an open reading frame coding for a polypeptide of 84 amino acids, which is in agreement with the composition and molecular mass of the natural allergen, exhibiting two 12-residue segments homologous to Ca2+-binding sites of EF-hand type. The cDNA was inserted into the pET-11b expression vector and over-expressed in Escherichia coli. The purified recombinant protein shows identical secondary structure to that of the natural allergen and is able to bind both IgE from sera of patients allergic to olive pollen and polyclonal antibodies raised against olive-pollen Ole e 3. The capacity of binding Ca2+ has been demonstrated for both natural and recombinant allergens. RNA transcripts of Ole e 3 were only detected in pollen tissue. Northern-blot and Western-blot analyses of poly(A)+ RNA and protein extracts, respectively, obtained from a variety of olive-tree-related and nonrelated mature pollens demonstrated the presence of Ole e 3 homologous proteins. This indicates a sequence conservation and widespread distribution for this family of Ca2+-binding proteins that can be responsible for allergenic cross-reactivity. We suggest the tentative generic name of polcalcins for the members of this family of Ca2+-binding proteins from pollen.

  18. Proteomic analysis of wheat flour allergens.

    PubMed

    Akagawa, Mitsugu; Handoyo, Tri; Ishii, Takeshi; Kumazawa, Shigenori; Morita, Naofumi; Suyama, Kyozo

    2007-08-22

    Wheat can cause severe IgE-mediated systematic reactions, but knowledge on relevant wheat allergens at the molecular level is scanty. The aim of the present study was to achieve a more detailed and comprehensive characterization of the wheat allergens involved in food allergy to wheat using proteomic strategies, referred to as "allergenomics". Whole flour proteins were separated by two-dimensional gel electrophoresis with isoelectric focusing and lithium dodecyl sulfate-polyacrylamide gel electrophoresis. Then, IgE-binding proteins were detected by immunoblotting with sera of patients with a food allergy to wheat. After tryptic digestion, the peptides of IgE-binding proteins were analyzed by matrix-assisted laser desorption ionization tandem time-of-flight mass spectrometry. In this study, we identified four previously reported wheat allergens or their sequentially homologous proteins [serpin, alpha-amylase inhibitor, gamma-gliadin, and low molecular weight (LMW) glutenin] by a database search. As a result of the high resolution of two-dimensional gel electrophoresis, nine subunits of LMW glutenins were identified as the most predominant IgE-binding antigens. The two-dimensional allergen map can be beneficial in many ways. It could be used, for example, for precise diagnosis of wheat-allergic patients and assessment of wheat allergens in food. Additionally, we compared allergenomics to conventional biochemical methods and evaluated the usefulness of a proteomic strategy for identifying putative allergens to wheat allergy.

  19. Allergens in veterinary medicine.

    PubMed

    Mueller, R S; Janda, J; Jensen-Jarolim, E; Rhyner, C; Marti, E

    2016-01-01

    Allergic diseases in animals are increasingly gaining importance in veterinary practice and as research models. For intradermal testing and allergen immunotherapy, a good knowledge of relevant allergens for the individual species is of great importance. Currently, the knowledge about relevant veterinary allergens is based on sensitization rates identified by intradermal testing or serum testing for allergen-specific IgE; crude extracts are the basis for most evaluations. Only a few studies provide evidence about the molecular structure of (particularly) dust mite, insect and mould allergens in dogs and horses, respectively. In those species, some major allergens differ from those in humans. This position paper summarizes the current knowledge about relevant allergens in dogs, cats and horses.

  20. Spectrum of allergens for Japanese cedar pollinosis and impact of component-resolved diagnosis on allergen-specific immunotherapy.

    PubMed

    Fujimura, Takashi; Kawamoto, Seiji

    2015-10-01

    The high prevalence of Japanese cedar pollinosis in Japan is associated with a negative impact on the quality of life of patients, as well as significant loss of productivity among the workforce in early spring, thus representing a serious social problem. Furthermore, the prevalence is increasing, and has risen by more than 10% in this decade. Cry j 1 and Cry j 2 were identified as the major allergens in Japanese cedar pollen (JCP), and in 2004, the existence of other major and minor allergens were revealed by a combination of two-dimensional electrophoresis and immunoblotting analysis. Allergenome analysis identified a chitinase, a lipid transfer protein, a serine protease, and an aspartic protease as novel IgE-reactive allergens in patients with JCP allergy. Thaumatin-like protein (Cry j 3) was shown to be homologous to Jun a 3, a major allergen from mountain cedar pollen. Isoflavone reductase-like protein was also characterized in a study of a JCP cDNA library. The characterization of component allergens is required to clarify the sensitizer or cross-reactive elicitor allergens for component-resolved diagnosis (CRD). Increasing evidence from numerous clinical trials indicates that CRD can be used to design effective allergen-specific immunotherapy. In this review, we summarize the eight characterized JCP allergens and discuss the impact of CRD and characterization of novel allergens on allergen-specific immunotherapy.

  1. Identification and characterization of a new pecan [Cara illinoinensis (Wangenh.) K. Koch] allergen, Car i 2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The 7S and 11S seed storage globulins belong to the cupin protein superfamily and are major food allergens in many foods that are constitutors to the “big eight” groups of food allergen sources. Here, pecan vicilin was found to be a new food allergen. The vicilin protein consists a low-complexity re...

  2. Cross-reactivity among peanuts and tree nuts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Approximately 30% of peanut allergic individuals also have allergies to tree nuts and vise versa. Our previous work has shown that the structural data base for allergic proteins (SDAP) can identify similar IgE binding areas that may be important for cross-reactivity between allergens. Using SPOTs me...

  3. Allergenic potential and enzymatic resistance of buckwheat

    PubMed Central

    Lee, Sujin; Han, Youngshin; Do, Jeong-Ryong

    2013-01-01

    Buckwheat is known as a health food but is one of the major food allergens triggering potentially fatal anaphylaxis in Asia, especially in Japan and Korea. This study was conducted to investigate the characteristic of enzymatic resistance of buckwheat protein and allergenic potential. Enzymatic resistance of buckwheat protein was performed with in vitro digestibility test in simulated gastric fluid (SGF), pH 1.2, using pepsin and simulated intestinal fluid (SIF) using chymotrypsin. Reactivity of buckwheat proteins to human IgE was performed using six allergic patients sensitized to buckwheat. Buckwheat's IgE levels were measured using the Phadia UniCAP-system. Buckwheat protein, 16 kDa, still remained after 30 min treatment of pepsin on SDS-PAGE. Even though 16 kDa almost disappeared after 60 min treatment, two out of the six buckwheat patients' sera showed reactivity to hydrolysate after 60 min treatment, indicating that allergenicity still remained. In simulated intestinal fluid (SIF) using chymotrypsin, buckwheat protein, 24 kDa, showed resistance to hydrolysis with chymotrypsin on SDS-PAGE, and still had allergenicity based on the result of ELISA. Our results suggest that buckwheat proteins have strong resistance to enzyme degradation. This may be attributed in part to the allergenic potential of buckwheat. Further study should be continued regarding buckwheat allergy. PMID:23423876

  4. Analysis of olive allergens.

    PubMed

    Esteve, C; Montealegre, C; Marina, M L; García, M C

    2012-04-15

    Olive pollen is one of the most important causes of seasonal respiratory allergy in Mediterranean countries, where this tree is intensely cultivated. Besides this, some cases of contact dermatitis and food allergy to the olive fruit and olive oil have been also described. Several scientific studies dealing with olive allergens has been reported, being the information available about them constantly increasing. Up to date, twelve allergens have been identified in olive pollen while just one allergen has been identified in olive fruit. This review article describes considerations about allergen extraction and production, also describing the different methodologies employed in the physicochemical and immunological characterization of olive allergens. Finally, a revision of the most relevant studies in the analysis of both olive pollen and olive fruit allergens is carried out.

  5. The spectrum of olive pollen allergens.

    PubMed

    Rodríguez, R; Villalba, M; Monsalve, R I; Batanero, E

    2001-07-01

    Olive pollen is one of the most important causes of seasonal respiratory allergy in Mediterranean countries, where this tree is intensely cultivated. Among the high number of protein allergens detected in this pollen, 8 - Ole e 1 to Ole e 8 - have been isolated and characterized. Ole e 1 is the most frequent sensitizing agent, affecting more than 70% of the patients suffering of olive pollinosis, although others, such as Ole e 4 and Ole e 7, have also been shown to be major allergens. In this context, the prevalence of many olive pollen allergens seems to be dependent on the geographical area where the sensitized patients live. Some of the olive allergens have been revealed as members of known protein families: profilin (Ole e 2), Ca(2+)-binding proteins (Ole e 3 and Ole e 8), superoxide dismutase (Ole e 5) and lipid transfer protein (Ole e 7). No biological function has been demonstrated for Ole e 1, whereas Ole e 4 and Ole e 6 are new proteins without homology to known sequences from databases. cDNAs encoding for Ole e 1, Ole e 3 and Ole e 8 have been overproduced in heterologous systems. The recombinant products were correctly folded and exhibited the functional activities of the natural allergens. In addition to the Oleaceae family, other species, such as Gramineae or Betulaceae, contain pollen allergens structurally or immunologically related to those of the olive tree. This fact allows to detect and evaluate antigenic cross-reactivities involving olive allergens. The aim of this research is the development of new diagnostic tools for olive pollinosis and new approaches to improve the classical immunotherapy.

  6. Immunoproteomic tools are used to identify masked allergens: Ole e 12, an allergenic isoflavone reductase from olive (Olea europaea) pollen.

    PubMed

    Castro, Lourdes; Crespo, Jesús F; Rodríguez, Julia; Rodríguez, Rosalía; Villalba, Mayte

    2015-12-01

    Proteins performing important biochemical activities in the olive tree (Olea europaea) pollen have been identified as allergens. One novel 37-kDa protein seems to be associated to the IgE-binding profile of a group of patients suffering allergy to peach and olive pollen. Three previously described olive pollen allergens exhibit very similar molecular mass. Our objective was to identify this allergen by using immunoproteomic approaches. After 2D-electrophoresis and mass spectrometry, peptide sequences from several IgE-binding spots, allowed identifying this new allergen, as well as cloning and DNA sequencing of the corresponding gene. The allergen, named Ole e 12, is a polymorphic isoflavone reductase-like protein of 308 amino acids showing 80% and 74% identity with birch and pear allergens, Bet v 6 and Pyr c 5, respectively. A prevalence of 33% in the selected population is in contrast to 4%-10% in groups of subjects suffering from pollinosis. Recombinant allergen was produced in Escherichia coli, and deeply characterised. Immunoblotting and ELISA detection as well as inhibition experiments were performed with polyclonal antisera and allergic patients' sera. The recombinant allergen retains the IgE reactivity of its natural counterpart. Close structural and immunological relationships between members of this protein family were supported by their IgG recognition in vegetable species. In summary, Ole e 12 is a minor olive pollen allergen, which gains relevance in patients allergic to peach with olive pollinosis. Proteomic approaches used to analyse this allergen provide useful tools to identify hidden allergens, relevant for several allergic populations and thus complete allergenic panels.

  7. Tree pollen allergens-an update from a molecular perspective.

    PubMed

    Asam, C; Hofer, H; Wolf, M; Aglas, L; Wallner, M

    2015-10-01

    It is estimated that pollen allergies affect approximately 40% of allergic individuals. In general, tree pollen allergies are mainly elicited by allergenic trees belonging to the orders Fagales, Lamiales, Proteales, and Pinales. Over 25 years ago, the gene encoding the major birch pollen allergen Bet v 1 was the first such gene to be cloned and its product characterized. Since that time, 53 tree pollen allergens have been identified and acknowledged by the WHO/IUIS allergen nomenclature subcommittee. Molecule-based profiling of allergic sensitization has helped to elucidate the immunological connections of allergen cross-reactivity, whereas advances in biochemistry have revealed structural and functional aspects of allergenic proteins. In this review, we provide a comprehensive overview of the present knowledge of the molecular aspects of tree pollen allergens. We analyze the geographic distribution of allergenic trees, discuss factors pivotal for allergic sensitization, and describe the role of tree pollen panallergens. Novel allergenic tree species as well as tree pollen allergens are continually being identified, making research in this field highly competitive and instrumental for clinical applications.

  8. Allergenicity and allergens of amphipods found in nori (dried laver).

    PubMed

    Motoyama, Kanna; Hamada, Yuki; Nagashima, Yuji; Shiomi, Kazuo

    2007-09-01

    Gammaridean and caprellid amphipods, crustaceans of the order Amphipoda, inhabit laver culture platforms and, hence, are occasionally found in nori (dried laver) sheets. Amphipods mixed in nori may cause allergic reactions in sensitized patients, as is the case with other crustaceans, such as shrimp and crab, members of the order Decapoda. In this study, dried samples of amphipods (unidentified) found in nori and fresh samples of gammaridean amphipod (Gammarus sp., not accurately identified) and caprellid amphipod (Caprella equilibra) were examined for allergenicity and allergens using two species of decapods (black tiger prawn and spiny lobster) as references. When analyzed by ELISA, sera from crustacean-allergic patients reacted to extracts from amphipod samples, although less potently than to the extracts from decapods. In IgE-immunoblotting, a 37-kDa protein was found to be the major allergen in amphipods. Based on the molecular mass and the cross-reactivity with decapod tropomyosin evidenced by inhibition ELISA and inhibition immunoblotting, the 37-kDa protein was identified as amphipod tropomyosin.

  9. A B Cell Epitope Peptide Derived from the Major Grass Pollen Allergen Phl p 1 Boosts Allergen-Specific Secondary Antibody Responses without Allergen-Specific T Cell Help

    PubMed Central

    Narayanan, Meena; Freidl, Raphaela; Focke-Tejkl, Margarete; Baranyi, Ulrike; Wekerle, Thomas; Valenta, Rudolf

    2017-01-01

    More than 40% of allergic patients suffer from grass pollen allergy. Phl p 1, the major timothy grass pollen allergen, belongs to the cross-reactive group 1 grass pollen allergens that are thought to initiate allergic sensitization to grass pollen. Repeated allergen encounter boosts allergen-specific IgE production and enhances clinical sensitivity in patients. To investigate immunological mechanisms underlying the boosting of allergen-specific secondary IgE Ab responses and the allergen epitopes involved, a murine model for Phl p 1 was established. A B cell epitope–derived peptide of Phl p 1 devoid of allergen-specific T cell epitopes, as recognized by BALB/c mice, was fused to an allergen-unrelated carrier in the form of a recombinant fusion protein and used for sensitization. This fusion protein allowed the induction of allergen-specific IgE Ab responses without allergen-specific T cell help. Allergen-specific Ab responses were subsequently boosted with molecules containing the B cell epitope–derived peptide without carrier or linked to other allergen-unrelated carriers. Oligomeric peptide bound to a carrier different from that which had been used for sensitization boosted allergen-specific secondary IgE responses without a detectable allergen-specific T cell response. Our results indicate that allergen-specific secondary IgE Ab responses can be boosted by repetitive B cell epitopes without allergen-specific T cell help by cross-linking of the B cell epitope receptor. This finding has important implications for the design of new allergy vaccines. PMID:28093528

  10. A B Cell Epitope Peptide Derived from the Major Grass Pollen Allergen Phl p 1 Boosts Allergen-Specific Secondary Antibody Responses without Allergen-Specific T Cell Help.

    PubMed

    Narayanan, Meena; Freidl, Raphaela; Focke-Tejkl, Margarete; Baranyi, Ulrike; Wekerle, Thomas; Valenta, Rudolf; Linhart, Birgit

    2017-02-15

    More than 40% of allergic patients suffer from grass pollen allergy. Phl p 1, the major timothy grass pollen allergen, belongs to the cross-reactive group 1 grass pollen allergens that are thought to initiate allergic sensitization to grass pollen. Repeated allergen encounter boosts allergen-specific IgE production and enhances clinical sensitivity in patients. To investigate immunological mechanisms underlying the boosting of allergen-specific secondary IgE Ab responses and the allergen epitopes involved, a murine model for Phl p 1 was established. A B cell epitope-derived peptide of Phl p 1 devoid of allergen-specific T cell epitopes, as recognized by BALB/c mice, was fused to an allergen-unrelated carrier in the form of a recombinant fusion protein and used for sensitization. This fusion protein allowed the induction of allergen-specific IgE Ab responses without allergen-specific T cell help. Allergen-specific Ab responses were subsequently boosted with molecules containing the B cell epitope-derived peptide without carrier or linked to other allergen-unrelated carriers. Oligomeric peptide bound to a carrier different from that which had been used for sensitization boosted allergen-specific secondary IgE responses without a detectable allergen-specific T cell response. Our results indicate that allergen-specific secondary IgE Ab responses can be boosted by repetitive B cell epitopes without allergen-specific T cell help by cross-linking of the B cell epitope receptor. This finding has important implications for the design of new allergy vaccines.

  11. Allergens of the entomopathogenic fungus Beauveria bassiana.

    PubMed

    Westwood, Greg S; Huang, Shih-Wen; Keyhani, Nemat O

    2005-01-11

    BACKGROUND: Beauveria bassiana is an important entomopathogenic fungus currently under development as a bio-control agent for a variety of insect pests. Although reported to be non-toxic to vertebrates, the potential allergenicity of Beauveria species has not been widely studied. METHODS: IgE-reactivity studies were performed using sera from patients displaying mould hypersensitivity by immunoblot and immunoblot inhibition. Skin reactivity to B. bassiana extracts was measured using intradermal skin testing. RESULTS: Immunoblots of fungal extracts with pooled as well as individual sera showed a distribution of IgE reactive proteins present in B. bassiana crude extracts. Proteinase K digestion of extracts resulted in loss of IgE reactive epitopes, whereas EndoH and PNGaseF (glycosidase) treatments resulted in minor changes in IgE reactive banding patterns as determined by Western blots. Immunoblot inhibitions experiments showed complete loss of IgE-binding using self protein, and partial inhibition using extracts from common allergenic fungi including; Alternaria alternata, Aspergillus fumigatus, Cladosporium herbarum, Candida albicans, Epicoccum purpurascens, and Penicillium notatum. Several proteins including a strongly reactive band with an approximate molecular mass of 35 kDa was uninhibited by any of the tested extracts, and may represent B. bassiana specific allergens. Intradermal skin testing confirmed the in vitro results, demonstrating allergenic reactions in a number of individuals, including those who have had occupational exposure to B. bassiana. CONCLUSIONS: Beauveria bassiana possesses numerous IgE reactive proteins, some of which are cross-reactive among allergens from other fungi. A strongly reactive potential B. bassiana specific allergen (35 kDa) was identified. Intradermal skin testing confirmed the allergenic potential of B. bassiana.

  12. First National Survey of Lead and Allergens in Housing: survey design and methods for the allergen and endotoxin components.

    PubMed Central

    Vojta, Patrick J; Friedman, Warren; Marker, David A; Clickner, Robert; Rogers, John W; Viet, Susan M; Muilenberg, Michael L; Thorne, Peter S; Arbes, Samuel J; Zeldin, Darryl C

    2002-01-01

    From July 1998 to August 1999, the U.S. Department of Housing and Urban Development and the National Institute of Environmental Health Sciences conducted the first National Survey of Lead and Allergens in Housing. The purpose of the survey was to assess children's potential household exposure to lead, allergens, and bacterial endotoxins. We surveyed a sample of 831 homes, representing 96 million permanently occupied, noninstitutional housing units that permit resident children. We administered questionnaires to household members, made home observations, and took environmental samples. This article provides general background information on the survey, an overview of the survey design, and a description of the data collection and laboratory methods pertaining to the allergen and endotoxin components. We collected dust samples from a bed, the bedroom floor, a sofa or chair, the living room floor, the kitchen floor, and a basement floor and analyzed them for cockroach allergen Bla g 1, the dust mite allergens Der f 1 and Der p 1, the cat allergen Fel d 1, the dog allergen Can f 1, the rodent allergens Rat n 1 and mouse urinary protein, allergens of the fungus Alternaria alternata, and endotoxin. This article provides the essential context for subsequent reports that will describe the prevalence of allergens and endotoxin in U.S. households, their distribution by various housing characteristics, and their associations with allergic diseases such as asthma and rhinitis. PMID:12003758

  13. New Trends in Food Allergens Detection: Toward Biosensing Strategies.

    PubMed

    Alves, Rita C; Barroso, M Fátima; González-García, María Begoña; Oliveira, M Beatriz P P; Delerue-Matos, Cristina

    2016-10-25

    Food allergens are a real threat to sensitized individuals. Although food labeling is crucial to provide information to consumers with food allergies, accidental exposure to allergenic proteins may result from undeclared allergenic substances by means of food adulteration, fraud or uncontrolled cross-contamination. Allergens detection in foodstuffs can be a very hard task, due to their presence usually in trace amounts, together with the natural interference of the matrix. Methods for allergens analysis can be mainly divided in two large groups: the immunological assays and the DNA-based ones. Mass spectrometry has also been used as a confirmatory tool. Recently, biosensors appeared as innovative, sensitive, selective, environmentally friendly, cheaper and fast techniques (especially when automated and/or miniaturized), able to effectively replace the classical methodologies. In this review, we present the advances in the field of food allergens detection toward the biosensing strategies and discuss the challenges and future perspectives of this technology.

  14. 21 CFR 680.2 - Manufacture of Allergenic Products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Cultures derived from microorganisms. Culture media into which organisms are inoculated for the manufacture... requirement. Neither horse protein nor any allergenic derivative of horse protein shall be used in...

  15. 21 CFR 680.2 - Manufacture of Allergenic Products.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) Cultures derived from microorganisms. Culture media into which organisms are inoculated for the manufacture... requirement. Neither horse protein nor any allergenic derivative of horse protein shall be used in...

  16. 21 CFR 680.2 - Manufacture of Allergenic Products.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) Cultures derived from microorganisms. Culture media into which organisms are inoculated for the manufacture... requirement. Neither horse protein nor any allergenic derivative of horse protein shall be used in...

  17. 21 CFR 680.2 - Manufacture of Allergenic Products.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) Cultures derived from microorganisms. Culture media into which organisms are inoculated for the manufacture... requirement. Neither horse protein nor any allergenic derivative of horse protein shall be used in...

  18. 21 CFR 680.2 - Manufacture of Allergenic Products.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) Cultures derived from microorganisms. Culture media into which organisms are inoculated for the manufacture... requirement. Neither horse protein nor any allergenic derivative of horse protein shall be used in...

  19. Modifications of allergenicity linked to food technologies.

    PubMed

    Moneret-Vautrin, D A

    1998-01-01

    The prevalence of food allergies (FA) has increased over the past fifteen years. The reasons suggested are changes in dietary behaviour and the evolution of food technologies. New cases of FA have been described with chayote, rambutan, arguta, pumpkin seeds, custard apple, and with mycoproteins from Fusarium.... Additives using food proteins are at high risk: caseinates, lysozyme, cochineal red, papaïn, alpha-amylase, lactase etc. Heating can reduce allergenicity or create neo-allergens, as well as storage, inducing the synthesis of allergenic stress or PR proteins. Aeroallergens (miles, moulds) contaminate foods and can induce allergic reactions. Involuntary contamination by peanut proteins on production lines is a problem which is not yet solved. Genetically modified plants are at risk of allergenicity, requiring methodological steps of investigations: the comparison of the amino-acid sequence of the transferred protein with the sequence of known allergens, the evaluation of thermo degradability and of the denaturation by pepsin and trypsin are required, as well as the study with sera from patients allergic to the plant producing the gene. The combination of enzymatic hydrolysis, heating, or the development of genetically modified plants may offer new alternatives towards hypoallergenic foods (57 references).

  20. Levels of house dust mite allergen in cars.

    PubMed

    Mason, Howard J; Smith, Ian; Anua, Siti Marwanis; Tagiyeva, Nargiz; Semple, Sean; Devereux, Graham

    2015-09-01

    This small study investigated house dust mite (HDM) allergen levels in cars and their owners' homes in north-east Scotland. Dust samples from twelve households and cars were collected in a standardised manner. The dust samples were extracted and measured for the Dermatophagoides group 2 allergens (Der p 2 and Der f 2) and total soluble protein. Allergen levels at homes tended to be higher than in the cars, but not significantly. However, they significantly correlated with paired car dust samples expressed either per unit weight of dust or soluble protein (rho=0.657; p=0.02 and 0.769; p=0.003, respectively). This points to house-to-car allergen transfer, with the car allergen levels largely reflecting levels in the owner's home. Car HDM allergen levels were lower than those reported in Brazil and the USA. Twenty-five percent of the houses and none of the cars had allergen levels in dust greater than 2000 ng g(-1). This value is often quoted as a threshold for the risk of sensitisation, although a number of studies report increased risk of sensitisation at lower levels. This small study does not allow for characterisation of the distribution of HDM allergen in vehicles in this geographic area, or of the likely levels in other warmer and more humid areas of the UK. Cars and other vehicles are an under-investigated micro-environment for exposure to allergenic material.

  1. Breed-specific dog-dandruff allergens.

    PubMed

    Lindgren, S; Belin, L; Dreborg, S; Einarsson, R; Påhlman, I

    1988-08-01

    Fifty-one patients with clinical history of dog allergy were skin prick tested with eight individual standardized dog breed-allergen preparations, one mixed breed-allergen preparation (Poodle/Alsatian), dog-serum albumin, and histamine hydrochloride, 1 mg/ml. All extracts were characterized by crossed immunoelectrophoresis and crossed radioimmunoelectrophoresis with a pool of sera from patients clinically sensitive to dog. The dog-breed extracts contained common antigens/allergens, as well as components represented only in one or two dog-breed extracts. The concentration corresponding 1000 BU/ml varied from 16 to 100 micrograms of protein per milliliter. The sensitivity of skin prick test was 67% to 88% for the various dog breed-allergen preparations, but only 18% for dog-serum albumin. Significant difference between the skin test response to different dog breed-allergen preparations indicating dog breed-specific allergens was obtained in 15% of the patients. There was no significant correlation between skin prick test results and symptoms related to a specific dog breed.

  2. Recombinant allergens for diagnosis of cockroach allergy.

    PubMed

    Arruda, L Karla; Barbosa, Michelle C R; Santos, Ana Beatriz R; Moreno, Adriana S; Chapman, Martin D; Pomés, Anna

    2014-04-01

    Molecular cloning of cockroach allergens and their expression as recombinant proteins have allowed a better understanding of the mechanisms of cockroach allergic disease. Recombinant cockroach allergens have been used for skin testing or in vitro methods to measure IgE antibody levels in serum. Early studies evaluating selected U.S. patients revealed that a cocktail of four cockroach allergens, Bla g 1, Bla g 2, Bla g 4, and Bla g 5, would identify 95 % of cockroach allergic patients. More recent studies pointed to an important role of sensitization to tropomyosin among certain populations, and suggested that a cocktail of five allergens Bla g 1 and/or Per a 1, Bla g 2, Bla g 4, Bla g 5, and Bla g 7, and/or Per a 7, would be expected to diagnose 50- 64 % of cockroach-allergic patients worldwide. Variation in IgE reactivity profiles could be in part due to IgE responses to cross-reactive homologous allergens from different origins. The availability of purified natural or recombinant cockroach allergens provides the capacity to improve diagnosis of cockroach allergy and to develop novel forms of immunotherapy for cockroach-allergic patients.

  3. Hierarchy and molecular properties of house dust mite allergens.

    PubMed

    Thomas, Wayne R

    2015-10-01

    The allergenic load of house dust mite allergy is largely constituted by a few proteins with a hierarchical pattern of allergenicity. The serodominant specificities are the group 1&2 and the group 23 faecal allergens. The collective IgE binding to the group 1&2 allergens can measure unequivocal HDM sensitisation better than HDM extracts although discrepancies have been found in regions with complex acarofauna suggesting a need to investigate the specificity with allergen components. The group 4, 5, 7&21 allergens that each induce responses in about 40% of subjects are mid-tier allergens accounting for most of the remaining IgE binding. Their titres are proportional to the concomitant responses to Der p1&2. Group 2 allergen variants have different antibody binding. Body proteins only occasionally induce sensitisation although a higher prevalence of binding by atopic dermatitis patients provides a new avenue of research. A broad spectrum of IgE binding has been associated with diverse symptoms but not with the severity of asthma which is associated with low IgG antibody. Some allergens such as the group 14 large lipid binding proteins and the recently described proteins Der f 24-33, need further investigation but with the cognoscence that other denominated allergens have been found to be minor sensitisers by comparative quantitative analyses. Scabies is a confounder for diagnosis with extracts, inducing cross-reactive antibodies with Der p 4&20 as is seafood allergy with cross reactivity to Der p 10 a minor HDM allergen. The HDM genome sequence can now be used to verify allelic and paralogous variations.

  4. 27 CFR 7.22b - Petitions for exemption from major food allergen labeling.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... from major food allergen labeling. 7.22b Section 7.22b Alcohol, Tobacco Products and Firearms ALCOHOL... BEVERAGES Labeling Requirements for Malt Beverages § 7.22b Petitions for exemption from major food allergen... contain allergenic protein derived from one of the foods identified in § 7.22(a)(1)(i), even though...

  5. 27 CFR 5.32b - Petitions for exemption from major food allergen labeling.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... from major food allergen labeling. 5.32b Section 5.32b Alcohol, Tobacco Products and Firearms ALCOHOL... food allergen labeling. (a) Submission of petition. Any person may petition the appropriate TTB officer... human health; or (2) Does not contain allergenic protein derived from one of the foods identified in §...

  6. 27 CFR 5.32b - Petitions for exemption from major food allergen labeling.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... from major food allergen labeling. 5.32b Section 5.32b Alcohol, Tobacco Products and Firearms ALCOHOL... food allergen labeling. (a) Submission of petition. Any person may petition the appropriate TTB officer... human health; or (2) Does not contain allergenic protein derived from one of the foods identified in §...

  7. 27 CFR 7.22b - Petitions for exemption from major food allergen labeling.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... from major food allergen labeling. 7.22b Section 7.22b Alcohol, Tobacco Products and Firearms ALCOHOL... BEVERAGES Labeling Requirements for Malt Beverages § 7.22b Petitions for exemption from major food allergen... contain allergenic protein derived from one of the foods identified in § 7.22(a)(1)(i), even though...

  8. 27 CFR 7.22b - Petitions for exemption from major food allergen labeling.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... from major food allergen labeling. 7.22b Section 7.22b Alcohol, Tobacco Products and Firearms ALCOHOL... BEVERAGES Labeling Requirements for Malt Beverages § 7.22b Petitions for exemption from major food allergen... contain allergenic protein derived from one of the foods identified in § 7.22(a)(1)(i), even though...

  9. 27 CFR 7.22b - Petitions for exemption from major food allergen labeling.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... from major food allergen labeling. 7.22b Section 7.22b Alcohol, Tobacco Products and Firearms ALCOHOL... BEVERAGES Labeling Requirements for Malt Beverages § 7.22b Petitions for exemption from major food allergen... contain allergenic protein derived from one of the foods identified in § 7.22(a)(1)(i), even though...

  10. 27 CFR 5.32b - Petitions for exemption from major food allergen labeling.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... from major food allergen labeling. 5.32b Section 5.32b Alcohol, Tobacco Products and Firearms ALCOHOL... food allergen labeling. (a) Submission of petition. Any person may petition the appropriate TTB officer... human health; or (2) Does not contain allergenic protein derived from one of the foods identified in §...

  11. 27 CFR 5.32b - Petitions for exemption from major food allergen labeling.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... from major food allergen labeling. 5.32b Section 5.32b Alcohol, Tobacco Products and Firearms ALCOHOL... food allergen labeling. (a) Submission of petition. Any person may petition the appropriate TTB officer... human health; or (2) Does not contain allergenic protein derived from one of the foods identified in §...

  12. Treatment with oleic acid reduces IgE binding to peanut and cashew allergens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oleic acid (OA) is known to bind and change the bioactivities of proteins, such as a-lactalbumin and ß-lactoglobulin in vitro. The objective of this study was to determine if OA binds to allergens from a peanut extract or cashew allergen and changes their allergenic properties. Peanut extract or c...

  13. Characterization of maize chitinase-A, a tough allergenic molecule

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Food allergy is recognized as a major health concern with a steady increasing trend in Western countries. Food allergens are proteins belonging to a small group of about 30 families, with restricted biochemical functions. This leads to the assumption that allergens must meet specific, but not yet co...

  14. Computational study of pH-dependent oligomerization and ligand binding in Alt a 1, a highly allergenic protein with a unique fold

    NASA Astrophysics Data System (ADS)

    Garrido-Arandia, María; Bretones, Jorge; Gómez-Casado, Cristina; Cubells, Nuria; Díaz-Perales, Araceli; Pacios, Luis F.

    2016-05-01

    Alt a 1 is a highly allergenic protein from Alternaria fungi responsible for several respiratory diseases. Its crystal structure revealed a unique β-barrel fold that defines a new family exclusive to fungi and forms a symmetrical dimer in a butterfly-like shape as well as tetramers. Its biological function is as yet unknown but its localization in cell wall of Alternaria spores and its interactions in the onset of allergy reactions point to a function to transport ligands. However, at odds with binding features in β-barrel proteins, monomeric Alt a 1 seems unable to harbor ligands because the barrel is too narrow. Tetrameric Alt a 1 is able to bind the flavonoid quercetin, yet the stability of the aggregate and the own ligand binding are pH-dependent. At pH 6.5, which Alt a 1 would meet when secreted by spores in bronchial epithelium, tetramer-quercetin complex is stable. At pH 5.5, which Alt a 1 would meet in apoplast when infecting plants, the complex breaks down. By means of a combined computational study that includes docking calculations, empirical p Ka estimates, Poisson-Boltzmann electrostatic potentials, and Molecular Dynamics simulations, we identified a putative binding site at the dimeric interface between subunits in tetramer. We propose an explanation on the pH-dependence of both oligomerization states and protein-ligand affinity of Alt a 1 in terms of electrostatic variations associated to distinct protonation states at different pHs. The uniqueness of this singular protein can thus be tracked in the combination of all these features.

  15. Structure and function of milk allergens.

    PubMed

    Wal, J M

    2001-01-01

    Proteins (CMP) involved in milk allergy are numerous and heterogeneous, with very few structural or functional common features. This heterogeneity is complicated by their genetic polymorphism, resulting in several variants for each protein. These variants are characterized by point substitutions of amino acids or by deletions of peptide fragments of varying size or by post-translational modifications such as phosphorylation or glycosylation. All of these modifications may affect allergenicity. No common molecular structure can be associated with allergenicity, although some homologous regions such as casein phospho-peptides can explain an IgE cross-reactivity. Three-dimensional structure is an important feature in CMP allergenicity but denatured and linear epitopes are also involved. Epitopes are numerous and widely spread along the CMP molecule. They may be located in hydrophobic parts of the molecule where they are inaccessible for IgE antibodies in the native conformation of the protein but become bioavailable after digestive processes. Peptides as short as ca. 12-14 amino acid residues may account for a significant part of the allergenicity of the whole molecule, which justifies the need to be careful before proposing any CMP hydrolysate for highly allergenic children.

  16. Stability of food allergens to digestion in vitro.

    PubMed

    Astwood, J D; Leach, J N; Fuchs, R L

    1996-10-01

    An integral part of the safety assessment of genetically modified plants is consideration of possible human health effects, especially food allergy. Prospective testing for allergenicity of proteins obtained from sources with no prior history of causing allergy has been difficult because of the absence of valid methods and models. Food allergens may share physicochemical properties that distinguish them from nonallergens, properties that may be used as a tool to predict the inherent allergenicity of proteins newly introduced into the food supply by genetic engineering. One candidate property is stability to digestion. We have systematically evaluated the stability of food allergens that are active via the gastrointestinal tract in a simple model of gastric digestion, emphasizing the major allergens of plant-derived foods such as legumes (peanuts and soybean). Important food allergens were stable to digestion in the gastric model (simulated gastric fluid). For example, soybean beta-conglycinin was stable for 60 min. In contrast, nonallergenic food proteins, such as spinach ribulose bis-phosphate carboxylase/oxygenase, were digested in simulated gastric fluid within 15 sec. The data are consistent with the hypothesis that food allergens must exhibit sufficient gastric stability to reach the intestinal mucosa where absorption and sensitization (development of atopy) can occur. Thus, the stability to digestion is a significant and valid parameter that distinguishes food allergens from nonallergens.

  17. P39, a Novel Soybean Protein Allergen Belongs to a Plant-Specific Protein Family, and is Present in Protein Storage Vacuoles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean lecithins are seeing increasing use in industry as an emulsifier and food additive. They are also a growing source of human food allergies, which arise principally from the proteins fractionating with the lecithin fraction during manufacture. In a previous study (Gu et al., (2001) Identific...

  18. An extensively hydrolysed casein-based formula for infants with cows' milk protein allergy: tolerance/hypo-allergenicity and growth catch-up.

    PubMed

    Dupont, Christophe; Hol, Jeroen; Nieuwenhuis, Edward E S

    2015-04-14

    Children with cows' milk protein allergy (CMPA) are at risk of insufficient length and weight gain, and the nutritional efficacy of hypo-allergenic formulas should be carefully assessed. In 2008, a trial assessed the impact of probiotic supplementation of an extensively hydrolysed casein-based formula (eHCF) on acquisition of tolerance in 119 infants with CMPA. First analysis of the study results showed that the studied formula allowed improvement of food-related symptoms. The scoring of atopic dermatitis (SCORAD) index was assessed at randomisation and after 6 months of feeding. A post hoc analysis was performed using WHO growth software's nutritional survey module (WHO Anthro version 3.2.2). All infants who were fed the study formula tolerated it well. The SCORAD index significantly improved from randomisation to 6 months of feeding with the study formula. Anthropometric data indicated a significant improvement in the weight-for-age, length-for-age and weight-for-length z scores, as well as in the restoration of normal BMI. The probiotic supplementation did not show any impact on these parameters. The present data showed that this eHCF was clinically tolerated and significantly improved the SCORAD index and growth indices.

  19. Expression of Jug r 1, the 2S albumin allergen from walnut (Juglans regia), as a correctly folded and functional recombinant protein.

    PubMed

    Sordet, Camille; Culerrier, Raphaël; Granier, Claude; Rancé, Fabienne; Didier, Alain; Barre, Annick; Rougé, Pierre

    2009-07-01

    Jug r 1, the 2S albumin allergen from walnut, was isolated from ripe nuts as a native allergen and expressed in Escherichia coli using the Gateway technology as a recombinant allergen. The recombinant Jug r 1 (15 kDa) differs from the native allergen by the absence of cleavage of the polypeptide chain in two covalently associated light (3.5 kDa) and heavy (8 kDa) chains. Recombinant rJug r 1 adopts the canonical alpha-helical fold of plant 2S albumins as checked on CD spectra. Four IgE-binding epitopic stretches were identified along the amino acid sequence of Jug r 1 and localized on the molecular surface of the modeled allergen. Both native and recombinant allergens exhibit similar IgE-binding activity and similarly trigger the degranulation of a FcepsilonRI-expressing rat basophilic leukaemia cell line previously treated by IgE-containing sera. Native Jug r 1 resists to heat denaturation and to the proteolytic attack of trypsin and chymotrypsin but is readily hydrolyzed in the presence of pepsin at acidic pH after 1 h of incubation at 37 degrees C in vitro. Recombinant Jug r 1 could be used for a component-resolved diagnosis of food-allergy.

  20. Allergen-induced asthma

    PubMed Central

    Cockcroft, Donald W

    2014-01-01

    It was only in the late 19th century that specific allergens, pollen, animal antigens and, later, house dust mite, were identified to cause upper and lower airway disease. Early allergen challenge studies, crudely monitored before measurement of forced expiratory volume in 1 s became widespread in the 1950s, focused on the immediate effects but noted in passing prolonged and/or recurrent asthma symptoms. The late asthmatic response, recurrent bronchoconstriction after spontaneous resolution of the early responses occurring 3 h to 8 h or more postchallenge, has been identified and well characterized over the past 50 years. The associated allergen-induced airway hyper-responsiveness (1977) and allergen-induced airway inflammation (1985) indicate that these late sequelae are important in the mechanism of allergen-induced asthma. Allergens are now recognized to be the most important cause of asthma. A standardized allergen inhalation challenge model has been developed and is proving to be a valuable research tool in the investigation of asthma pathophysiology and of potential new pharmacological agents for the treatment of asthma. PMID:24791256

  1. Cockroach allergens: function, structure and allergenicity.

    PubMed

    Pomés, A; Wünschmann, S; Hindley, J; Vailes, L D; Chapman, M D

    2007-01-01

    Cockroach allergy is a widespread health problem in the world, associated with the development of asthma. The German and American cockroach species are important producers of a wide variety of allergens. Knowledge of their structure and function contributes to understand their role in allergy and to design tools for diagnosis and immunotherapy.

  2. Pepino mosaic virus Infection of Tomato Affects Allergen Expression, but Not the Allergenic Potential of Fruits

    PubMed Central

    Welter, Saskia; Dölle, Sabine; Lehmann, Karola; Schwarz, Dietmar; Weckwerth, Wolfram; Worm, Margitta; Franken, Philipp

    2013-01-01

    The plant pathogen Pepino mosaic virus (PepMV) is a major disease of greenhouse tomato crops worldwide. Plant pathogens can induce expression of defence- or pathogenesis-related proteins, including identified allergens. Therefore we hypothesised that PepMV infection results in the expression of allergens leading to a higher allergenic potential of tomato fruits. Transcript level analyses showed differential expression of 17 known and putative tomato fruit allergen encoding genes at early and late time points after PepMV inoculation, but no general induction was detected. Immunoblot analyses were conducted and IgEs from a serum pool of tomato allergic subjects reacted with 20 proteins, of which ten have not yet been described. In parallel, skin prick tests with a group of tomato allergic subjects did not show a general difference between PepMV infected and non-infected tomato fruits and basophil activation tests confirmed these results. In summary, PepMV infection of tomato plants can lead to long-lasting up-regulation of particular allergens in fruits, but the hypothesis that this results in a higher allergenic potential of the fruits proved invalid. PMID:23762294

  3. Pepino mosaic virus infection of tomato affects allergen expression, but not the allergenic potential of fruits.

    PubMed

    Welter, Saskia; Dölle, Sabine; Lehmann, Karola; Schwarz, Dietmar; Weckwerth, Wolfram; Worm, Margitta; Franken, Philipp

    2013-01-01

    The plant pathogen Pepino mosaic virus (PepMV) is a major disease of greenhouse tomato crops worldwide. Plant pathogens can induce expression of defence- or pathogenesis-related proteins, including identified allergens. Therefore we hypothesised that PepMV infection results in the expression of allergens leading to a higher allergenic potential of tomato fruits. Transcript level analyses showed differential expression of 17 known and putative tomato fruit allergen encoding genes at early and late time points after PepMV inoculation, but no general induction was detected. Immunoblot analyses were conducted and IgEs from a serum pool of tomato allergic subjects reacted with 20 proteins, of which ten have not yet been described. In parallel, skin prick tests with a group of tomato allergic subjects did not show a general difference between PepMV infected and non-infected tomato fruits and basophil activation tests confirmed these results. In summary, PepMV infection of tomato plants can lead to long-lasting up-regulation of particular allergens in fruits, but the hypothesis that this results in a higher allergenic potential of the fruits proved invalid.

  4. Guilt by intimate association: what makes an allergen an allergen?

    PubMed

    Karp, Christopher L

    2010-05-01

    Why specific, ubiquitous, otherwise innocuous environmental proteins tend to provoke maladaptive, T(H)2-polarized immune responses in susceptible hosts is a fundamental mechanistic question for those interested in the pathogenesis, therapy, and prevention of allergic disease. The current renaissance in the study of innate immunity has provided important insights into this question. The theme emerging from recent studies is that direct (dys)functional interactions with pathways of innate immune activation that evolved to signal the presence of microbial infection are central to the molecular basis for allergenicity. This article reviews these data.

  5. [Nasal allergenic provocation test].

    PubMed

    Becerril Angeles, M H; Pérez López, A; Azuara Pliego, E

    2000-01-01

    This is a method to evaluate both specific sensitivity to allergens in the nasal mucosa, IgE-mediated hypersensitivity, and antiinflammatory and antiallergic drugs efficacy, whose objectives are for research in diagnosis and treatment. The method is based in allergen extracts delivery in the nasal mucosa and the post-challenge measurement of rhinitis symptoms, vasoactive mediators release quantification and nasal obstruction degree evaluated by rhinomanometry. Nasal allergen challenge is a procedure of diagnostic and therapeutic evaluation usefulness, that must be performed in selected patients, in adequate facilities, by experts physicians, with standardised allergen dosages, in an specific nasal area, with objective measurements (rhinomanometry, mediators and secretions of the allergic response) and symptoms scoring that allow get reliable results in patients with allergic rhinitis under study.

  6. Allergens and thunderstorm asthma.

    PubMed

    Nasser, Shuaib M; Pulimood, Thomas B

    2009-09-01

    Thunderstorm-related asthma is increasingly recognized in many parts of the world. This review focuses on important advances in the understanding of the mechanism of the role of allergens, in particular fungal spores such as Alternaria, in asthma epidemics associated with thunderstorms. From our observations, we have proposed that the prerequisites for this phenomenon are as follows: 1) a sensitized, atopic, asthmatic individual; 2) prior airway hyperresponsiveness before a sudden, large allergen exposure; 3) a large-scale thunderstorm with cold outflow occurring at a time and location during an allergen season in which large numbers of asthmatics are outdoors; and 4) sudden release of large amounts of respirable allergenic fragments, particularly fungal spores such as Alternaria.

  7. Allergens in the Lab.

    ERIC Educational Resources Information Center

    Fisher, Thomas M.

    1987-01-01

    Points out the health and legal implications related to laboratory substances that could cause allergic reactions. Presents a list of potential cosmetic allergens and irritants. Includes precautionary measures dealing with allergy situations. (ML)

  8. Challenges in testing genetically modified crops for potential increases in endogenous allergen expression for safety.

    PubMed

    Panda, R; Ariyarathna, H; Amnuaycheewa, P; Tetteh, A; Pramod, S N; Taylor, S L; Ballmer-Weber, B K; Goodman, R E

    2013-02-01

    Premarket, genetically modified (GM) plants are assessed for potential risks of food allergy. The major risk would be transfer of a gene encoding an allergen or protein nearly identical to an allergen into a different food source, which can be assessed by specific serum testing. The potential that a newly expressed protein might become an allergen is evaluated based on resistance to digestion in pepsin and abundance in food fractions. If the modified plant is a common allergenic source (e.g. soybean), regulatory guidelines suggest testing for increases in the expression of endogenous allergens. Some regulators request evaluating endogenous allergens for rarely allergenic plants (e.g. maize and rice). Since allergic individuals must avoid foods containing their allergen (e.g. peanut, soybean, maize, or rice), the relevance of the tests is unclear. Furthermore, no acceptance criteria are established and little is known about the natural variation in allergen concentrations in these crops. Our results demonstrate a 15-fold difference in the major maize allergen, lipid transfer protein between nine varieties, and complex variation in IgE binding to various soybean varieties. We question the value of evaluating endogenous allergens in GM plants unless the intent of the modification was production of a hypoallergenic crop.

  9. Aspects of food processing and its effect on allergen structure.

    PubMed

    Paschke, Angelika

    2009-08-01

    The article summarizes current physical and chemical methods in food processing as storage, preparation, separation, isolation or purification and thermal application on the one hand as well as enzymatic treatment on the other and their impact on the properties of food proteins. Novel methods of food processing like high pressure, electric field application or irradiation and their impact on food allergens are presented. The EU project REDALL (Reduced Allergenicity of Processed Foods, Containing Animal Allergens: QLK1-CT-2002-02687) showed that by a combination of enzyme and heat treatment the allergic potential of hen's egg decreased about 100 fold. Clinical reactions do not appear anymore. An AiF-FV 12024 N project worked with fruits like mango, lychee and apple. Processed mango and lychee had no change in allergenic potential during heating while e. g. canning. Apple almost lost its allergenic potential after pasteurization in juice production.

  10. Paprika rhinoconjunctivitis case reveals new occupational Capsicum allergens.

    PubMed

    Airaksinen, Liisa; Riekki, Riitta; Vuokko, Aki; Puustinen, Anne

    2015-07-01

    No allergens related to paprika or cayenne respiratory allergy have been identified thus far. We describe a previously healthy 28-year woman who developed work-related rhinoconjunctivitis after four years of kebab-restaurant work. The allergy was studied using skin prick tests, serum specific IgE and nasal provocation tests. Specific IgE protein reactions were studied by Western blot analysis. Paprika, cayenne and curry allergens were identified from the strongest immunoblot bands using tandem mass spectrometry. A positive skin prick test, high specific IgE and positive nasal provocation test confirmed occupational rhinoconjunctivitis from Capsicum spices. Defensin J1 and Vicilin were identified as major paprika and cayenne allergens in this case. Vicilin was detected also from the curry ingredients. Two new occupational respiratory allergens from the Capsicum species were identified. These differ from previously reported bell pepper allergens. We emphasize that substantial spice handling at work poses an allergy risk.

  11. Origin and Functional Prediction of Pollen Allergens in Plants1[OPEN

    PubMed Central

    Chen, Miaolin; Xu, Jie; Ren, Kang; Searle, Iain

    2016-01-01

    Pollen allergies have long been a major pandemic health problem for human. However, the evolutionary events and biological function of pollen allergens in plants remain largely unknown. Here, we report the genome-wide prediction of pollen allergens and their biological function in the dicotyledonous model plant Arabidopsis (Arabidopsis thaliana) and the monocotyledonous model plant rice (Oryza sativa). In total, 145 and 107 pollen allergens were predicted from rice and Arabidopsis, respectively. These pollen allergens are putatively involved in stress responses and metabolic processes such as cell wall metabolism during pollen development. Interestingly, these putative pollen allergen genes were derived from large gene families and became diversified during evolution. Sequence analysis across 25 plant species from green alga to angiosperms suggest that about 40% of putative pollen allergenic proteins existed in both lower and higher plants, while other allergens emerged during evolution. Although a high proportion of gene duplication has been observed among allergen-coding genes, our data show that these genes might have undergone purifying selection during evolution. We also observed that epitopes of an allergen might have a biological function, as revealed by comprehensive analysis of two known allergens, expansin and profilin. This implies a crucial role of conserved amino acid residues in both in planta biological function and allergenicity. Finally, a model explaining how pollen allergens were generated and maintained in plants is proposed. Prediction and systematic analysis of pollen allergens in model plants suggest that pollen allergens were evolved by gene duplication and then functional specification. This study provides insight into the phylogenetic and evolutionary scenario of pollen allergens that will be helpful to future characterization and epitope screening of pollen allergens. PMID:27436829

  12. Update on hidden food allergens and food labeling.

    PubMed

    Puglisi, Gregory; Frieri, Marianne

    2007-01-01

    This article is intended to review the current literature on "hidden" food allergens and the various ways in which sensitized individuals may be exposed to these allergens. A focus on advances in food labeling, and the Food Allergen Labeling and Consumer Protection Act (FALCPA) is also included, because it assists food-allergic consumers in the strict avoidance of specific foods. Article information was gathered primarily through a computer search of relevant data relating to human subjects. Our findings indicate that sensitized individuals can unknowingly be exposed to allergenic proteins in foods through cross-contact, food containing allergenic nonfood products, food additives, and cross-reactivity. Furthermore, food packaging and formulation errors, ingredient switching, and foods not covered under the FALCPA were also found to be sources of hidden food allergens. There are many ways in which hypersensitive individuals can be exposed to potentially dangerous allergens despite careful avoidance. Furthermore, health care providers should consider various sources of hidden allergens in food-allergic individuals with an unclear etiology. Food hypersensitivity has been identified as a significant medical dilemma in our society. Recent efforts to increase public awareness and strides made in labeling of food products are encouraging.

  13. Emerging food allergens: Identification of polyphenol oxidase as an important allergen in eggplant (Solanum melongena L.).

    PubMed

    Harish Babu, Bheemanapalli N; Wilfred, Anthony; Venkatesh, Yeldur P

    2017-02-01

    Although many allergens have been detected in eggplant (Solanum melongena L.), their identity have not been elucidated. The aim of this study was to investigate whether polyphenol oxidase (PPO), an important eggplant enzyme, acts as an allergen. The proteins of eggplant peel extract were separated on phenyl-Sepharose (PS), and analyzed by skin prick test (SPT), ELISA and IgE-immunoblotting; the components were analyzed for PPO activity, presence of protein-bound copper, and recognition by rabbit polyclonal anti-sweet potato PPO antiserum. LC-MS/MS and in silico analysis were employed to identify the separated allergens and prediction of IgE epitopes. Eggplant allergens were separated into 5 components (PS1-PS5), of which component PS2 exhibited high specific PPO activity. SPT and ELISA with PPO-rich pool (PS2) were positive in all 6 eggplant-allergic subjects; the 43, 64 and 71kDa proteins displayed strong IgE-binding ability. The 64 and 71kDa IgE-binding proteins show PPO activity, presence of copper, and recognition by anti-sweet potato PPO antiserum, clearly identifying them as PPOs; the 43kDa protein appears to be a degradation product of the 64 or 71kDa proteins based on enzymic activity and recognition by PPO antiserum. The 64kDa protein upon further resolution by SDS-PAGE displayed two components (identified as eggplant PPO1 and PPO4 by LC-MS/MS). Based on bioinformatics approaches, PPO4 has been identified as an allergen since it harbors an IgE epitope. This study clearly demonstrates that the 64 and 71kDa allergens in eggplant peel are PPOs based on enzymic activity and recognition by PPO antiserum; the 64kDa copper-containing protein is identified as one of the several eggplant allergens (Sola m PPO4). This is the first instance of polyphenol oxidase being identified as a new food allergen.

  14. Positive reaction to allergen (image)

    MedlinePlus

    Allergic reaction is a sensitivity to a specific substance, called an allergen, that is contacted through the skin, inhaled into the lungs, swallowed or injected. The body's reaction to an allergen can be mild, such as ...

  15. Crystal structure of cocosin, a potential food allergen from coconut (Cocos nucifera) (abstract)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    RATIONALE: Coconut allergy cases have been reported, but only one coconut allergen has been identified. The 11S seed storage proteins belong to one of a few protein families that contain known food allergens in many food of plant sources. Cocosin, the 11S protein from cocosin remains to be character...

  16. Mining Novel Allergens from Coconut Pollen Employing Manual De Novo Sequencing and Homology-Driven Proteomics.

    PubMed

    Saha, Bodhisattwa; Sircar, Gaurab; Pandey, Naren; Gupta Bhattacharya, Swati

    2015-11-06

    Coconut pollen, one of the major palm pollen grains is an important constituent among vectors of inhalant allergens in India and a major sensitizer for respiratory allergy in susceptible patients. To gain insight into its allergenic components, pollen proteins were analyzed by two-dimensional electrophoresis, immunoblotted with coconut pollen sensitive patient sera, followed by mass spectrometry of IgE reactive proteins. Coconut being largely unsequenced, a proteomic workflow has been devised that combines the conventional database-dependent analysis of tandem mass spectral data and manual de novo sequencing followed by a homology-based search for identifying the allergenic proteins. N-terminal acetylation helped to distinguish "b" ions from others, facilitating reliable sequencing. This led to the identification of 12 allergenic proteins. Cluster analysis with individual patient sera recognized vicilin-like protein as a major allergen, which was purified to assess its in vitro allergenicity and then partially sequenced. Other IgE-sensitive spots showed significant homology with well-known allergenic proteins such as 11S globulin, enolase, and isoflavone reductase along with a few which are reported as novel allergens. The allergens identified can be used as potential candidates to develop hypoallergenic vaccines, to design specific immunotherapy trials, and to enrich the repertoire of existing IgE reactive proteins.

  17. Capillary electrophoresis with noncovalently bilayer-coated capillaries for stability study of allergenic proteins in simulated gastrointestinal fluids.

    PubMed

    Zheng, Chang; Liu, Youping; Zhou, Qiuhong; Di, Xin

    2010-10-15

    A novel noncovalently bilayer-coated capillary using cationic polymer polybrene (PB) and anionic polymer (sodium 4-styrenesulfonate) (PSS) as coatings was prepared. This PB-PSS coating showed good migration-time reproducibility for proteins and high stability in the range of pH 2-10 and in the presence of 1M NaOH, acetonitrile and methanol. Capillary electrophoresis with PB-PSS coated capillaries was successfully applied to quantitatively investigate the stability of bovine serum albumin, ovomucoid, β-lactoglobulin and lysozyme in simulated gastrointestinal fluids. β-lactoglobulin A and β-lactoglobulin B were both stable in simulated gastric fluid with degradation percentages of 34.3% and 17.2% after 60min of incubation, respectively. Bovine serum albumin, ovomucoid and lysozyme were stable in simulated intestinal fluid with degradation percentages of 17.7%, 23.4% and 22.8% after 60min of incubation, respectively. The superiority of the proposed method over sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and capillary electrophoresis with untreated fused silica capillaries was demonstrated and emphasized.

  18. Allergens of weed pollen: an overview on recombinant and natural molecules.

    PubMed

    Gadermaier, Gabriele; Hauser, Michael; Ferreira, Fatima

    2014-03-01

    Weeds represent a botanically unrelated group of plants that usually lack commercial or aesthetical value. Pollen of allergenic weeds are able to trigger type I reactions in allergic patients and can be found in the plant families of Asteraceae, Amaranthaceae, Plantaginaceae, Urticaceae, and Euphorbiaceae. To date, 34 weed pollen allergens are listed in the IUIS allergen nomenclature database, which were physicochemically and immunologically characterized to varying degrees. Relevant allergens of weeds belong to the pectate lyase family, defensin-like family, Ole e 1-like family, non-specific lipid transfer protein 1 family and the pan-allergens profilin and polcalcins. This review provides an overview on weed pollen allergens primarily focusing on the molecular level. In particular, the characteristics and properties of purified recombinant allergens and hypoallergenic derivatives are described and their potential use in diagnosis and therapy of weed pollen allergy is discussed.

  19. Exposure to multiple indoor allergens in US homes and relationship to asthma

    PubMed Central

    Salo, Päivi M.; Arbes, Samuel J.; Crockett, Patrick W.; Thorne, Peter S.; Cohn, Richard D.; Zeldin, Darryl C.

    2008-01-01

    Background The National Survey of Lead and Allergens in Housing was the first population-based study to measure indoor allergen levels in US homes. Objective We characterized the overall burden to multiple allergens and examined whether elevated allergen levels were associated with occupants’ asthma status. Methods This cross-sectional study surveyed a nationally representative sample of 831 housing units in 75 different locations throughout the US. Information was collected by questionnaire and environmental assessments. Allergen concentrations in dust samples were assessed by immunoassays. The following cut points were used to define elevated allergen levels: 10 μg/g for Der p 1, Der f 1, and Can f 1; 8 μg/g for Fel d 1; 8 U/g Bla g 1; 1.6 μg/g for mouse urinary protein; and 7 μg/g for Alternaria antigens. Allergen burden was considered high when 4 or more allergens exceeded elevated levels in any of the sampling locations. Results Exposure to multiple allergens was common in US homes. Of the surveyed homes, 51.5% had at least 6 detectable allergens and 45.8% had at least 3 allergens exceeding elevated levels. Occupants’ race, income, housing type, absence of children, and presence of smokers, pets, cockroaches, rodents and mold/moisture related problems were independent predictors of high allergen burden. Among atopics, high allergen burden increased the odds of having asthma symptoms (OR=1.81, 95% CI: 1.04-3.15). Conclusion Elevated allergen levels in the home are associated with asthma symptoms in allergic individuals. Clinical implication In allergic asthma, indoor allergen exposures play an important role in asthma exacerbations. PMID:18255132

  20. Allergenicity of two Anisakis simplex allergens evaluated in vivo using an experimental mouse model.

    PubMed

    Cho, Min Kyoung; Park, Mi Kyung; Kang, Shin Ae; Caballero, Maria Luisa; Perez-Pinar, Teresa; Rodriguez-Perez, Rosa; Ock, Mee Sun; Cha, Hee Jae; Hong, Yeon Chul; Yu, Hak Sun

    2014-11-01

    Anisakis (Anisakidae) is one of the most important causes of helminth-induced allergic reactions and elicits clinical responses that include urticaria, rhinitis, bronco-constriction, cough, and/or gastrointestinal symptoms. More than 13 reactive allergens have been identified in the serum of Anisakis allergy patients, but the allergenicity of only a few of these have been evaluated in vivo using a mouse model. To evaluate the allergenicity of two important allergens, Ani s 1 and Ani s 9, we induced experimental allergic airway inflammation in a mouse model by repeated intranasal administration of the allergens. Both recombinant proteins (rAni s 1 and rAni s 9) elicited increased airway hyperresponsivity, airway infiltration by inflammatory cells (especially eosinophils), bronchial epithelial cell hyperplasia, all of which are characteristic of allergic airway inflammation. These allergens significantly increased the levels of Th2-related cytokines (IL-4, IL-5, IL-13, and IL-25) and Th17 related cytokines (IL-6 and IL-17) in both splenocytes and airway (except IL-17 in airway by rAni s 9). OVA-specific IgE and total IgE were increased in rAni s 1 and rAni s 9 treated mice as compared with controls treated with OVA alone. In addition, these two allergens induced gene expression of thymic stromal lymphopoietin (TSLP) and IL-25 (initiators of the Th2 response), as well as CXCL1 (initiator of the Th17 response) in mouse lung epithelial cells. In conclusion, repeated intranasal treatments with rAni s 1 and rAni s 9 induced airway inflammation in mice by elevating of Th2 and Th17 responses in the lung.

  1. Structure of allergens and structure based epitope predictions☆

    PubMed Central

    Dall’Antonia, Fabio; Pavkov-Keller, Tea; Zangger, Klaus; Keller, Walter

    2014-01-01

    The structure determination of major allergens is a prerequisite for analyzing surface exposed areas of the allergen and for mapping conformational epitopes. These may be determined by experimental methods including crystallographic and NMR-based approaches or predicted by computational methods. In this review we summarize the existing structural information on allergens and their classification in protein fold families. The currently available allergen-antibody complexes are described and the experimentally obtained epitopes compared. Furthermore we discuss established methods for linear and conformational epitope mapping, putting special emphasis on a recently developed approach, which uses the structural similarity of proteins in combination with the experimental cross-reactivity data for epitope prediction. PMID:23891546

  2. Relative immunogenicity of commonly allergenic foods versus rarely allergenic and nonallergenic foods in mice.

    PubMed

    Birmingham, Neil; Thanesvorakul, Sirinart; Gangur, Venu

    2002-12-01

    Food allergies affect 6 to 8% of children and 2% of adults in the United States. For reasons that are not clear, eight types of food account for a vast majority (approximately 90%) of food-induced hypersensitivity reactions. In this study, C57Bl/6 mice were used to test the hypothesis that commonly allergenic foods are intrinsically more immunogenic than rarely allergenic or nonallergenic foods in allergy-susceptible hosts. Groups of mice (n = 4 to 5) were injected intraperitoneally with the protein extracts (plus alum as an adjuvant) from chicken eggs, peanuts, almonds, filberts-hazelnuts, walnuts, soybeans, and wheat (commonly allergenic foods) and coffee, sweet potatoes, carrots, white potatoes, cherries, lettuce, and spinach (rarely allergenic and nonallergenic foods). Primary and secondary immune responses (as measured by specific IgG1 antibody serum levels) were measured by an enzyme-linked immunosorbent assay. Proteins from peanuts, almonds, filberts, sweet potatoes, cherries, and spinach elicited robust primary and/or secondary immune responses. Proteins from eggs, walnuts, and lettuce elicited poor primary responses but significant secondary responses. In contrast, wheat, soybeans, coffee, carrots, and white potatoes elicited barely detectable to poor primary and secondary immune responses. The order of the immunogenicity levels of these foods in mice is as follows: almonds = filberts > spinach (Rubisco) > peanuts > or = sweet potatoes > cherries > lettuce > walnuts > chicken eggs > carrots > or = white potatoes > wheat = coffee = soybeans. In summary, these data demonstrate for the first time that: (i) foods vary widely with regard to their relative immunogenicity in allergy-susceptible hosts and (ii) intrinsic immunogenicity in mice does not distinguish commonly allergenic foods from rarely allergenic or nonallergenic foods.

  3. Analysis of U.S. Food and Drug Administration food allergen recalls after implementation of the food allergen labeling and consumer protection act.

    PubMed

    Gendel, Steven M; Zhu, Jianmei

    2013-11-01

    To avoid potentially life-threatening reactions, food allergic consumers rely on information on food labels to help them avoid exposure to a food or ingredient that could trigger a reaction. To help consumers in the United States obtain the information that they need, the Food Allergen Labeling and Consumer Protection Act of 2004 defined a major food allergen as being one of eight foods or food groups and any ingredient that contains protein from one of these foods or food groups. A food that contains an undeclared major food allergen is misbranded under the U.S. Food, Drug, and Cosmetic Act and is subject to recall. Food allergen labeling problems are the most common cause of recalls for U.S. Food and Drug Administration (FDA)-regulated food products. To help understand why food allergen recalls continue to occur at a high rate, information on each food allergen recall that occurred in fiscal years 2007 through 2012 was obtained from the FDA recall database. This information was analyzed to identify the food, allergen, root cause, and mode of discovery for each food allergen recall. Bakery products were the most frequently recalled food type, and milk was the most frequently undeclared major food allergen. Use of the wrong package or label was the most frequent problem leading to food allergen recalls. These data are the first reported that indicate the importance of label and package controls as public health measures.

  4. Allergenicity of processed food.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Food allergies have become a major public health issue in many countries. In the U.S. it is estimated that approximately 150 individuals die each year from accidental ingestion of an allergic food. As a result, the federal government recently passed the food allergen labeling law which went into ef...

  5. Bleach Neutralizes Mold Allergens

    ERIC Educational Resources Information Center

    Science Teacher, 2005

    2005-01-01

    Researchers at National Jewish Medical and Research Center have demonstrated that dilute bleach not only kills common household mold, but may also neutralize the mold allergens that cause most mold-related health complaints. The study, published in the Journal of Allergy and Clinical Immunology, is the first to test the effect on allergic…

  6. Walnut allergens: molecular characterization, detection and clinical relevance.

    PubMed

    Costa, J; Carrapatoso, I; Oliveira, M B P P; Mafra, I

    2014-03-01

    Food-induced allergies have been regarded as an emergent problem of public health. Classified as important allergenic ingredients, the presence of walnut and other nuts as hidden allergens in processed foods constitutes a risk for sensitized individuals, being a real problem of allergen management. Attending to the increasing importance dedicated to walnut allergy, this review intends to provide the relevant and up-to-date information on main issues such as the prevalence of walnut allergy, the clinical threshold levels, the molecular characterization of walnut allergens and their clinical relevance, as well as the methodologies for walnut allergen detection in foods. As the walnut used in human diet comes from Juglans regia and Juglans nigra, the molecular characterization of the allergens from both species included in the prolamins (Jug r 1, Jug n 1 and Jug r 3), cupins (Jug r 2, Jug n 2 and Jug r 4) and profilins (Jug r 5), together with respective clinical relevance, were compiled in this review. The most recent progresses on walnut allergen detection techniques (protein- and DNA-based) are described and critically compared, including the emergent multitarget approaches.

  7. Natural Variability of Allergen Levels in Conventional Soybeans: Assessing Variation across North and South America from Five Production Years.

    PubMed

    Geng, Tao; Stojšin, Duška; Liu, Kang; Schaalje, Bruce; Postin, Cody; Ward, Jason; Wang, Yongcheng; Liu, Zi Lucy; Li, Bin; Glenn, Kevin

    2017-01-18

    Soybean (Glycine max L. Merrill) is one of eight major allergenic foods with endogenous proteins identified as allergens. To better understand the natural variability of five soybean allergens (Gly m 4, Gly m 5, Gly m 6, Gly m Bd 28k, and Gly m Bd 30k), validated enzyme-linked immunosorbent assays (ELISAs) were developed. These ELISAs measured allergens in 604 soybean samples collected from locations in North and South America over five growing seasons (2009-2013/2014) and including 37 conventional varieties. Levels of these five allergens varied 5-19-fold. Multivariate statistical analyses and pairwise comparisons show that environmental factors have a larger effect on allergen levels than genetic factors. Therefore, from year to year, consumers are exposed to highly variable levels of allergens in soy-based foods, bringing into question whether quantitative comparison of endogenous allergen levels of new genetically modified soybean adds meaningful information to their overall safety risk assessment.

  8. Allergen extracts directly mobilize and activate human eosinophils.

    PubMed

    Svensson, Lena; Rudin, Anna; Wennerås, Christine

    2004-06-01

    Allergic diseases are characterized by the presence of eosinophils, which are recruited to the affected tissues by chemoattractants produced by T cells, mast cells and epithelium. Our objective was to evaluate if allergens can directly activate human eosinophils. The capacity of purified allergen extracts to elicit eosinophil chemotaxis, respiratory burst, degranulation and up-regulation of the adhesion molecule complement receptor 3 (CR3) was determined in eosinophils isolated from healthy blood donors. Eosinophils stimulated with an extract from house dust mite (HDM) released the granule protein major basic protein (MBP) and up-regulated the surface expression of CR3. Cat allergen extracts also induced the up-regulation of CR3, but not the release of MBP; instead cat, as well as birch and grass allergens, elicited the release of eosinophil peroxidase (EPO). In addition, grass pollen extract caused the secretion of MBP. None of the allergens stimulated eosinophilic cationic protein release, nor production of free oxygen radicals. Both HDM and birch extracts were chemotactic for eosinophils. These findings establish that common aeroallergens can directly activate eosinophils in vitro. We propose that eosinophil activation in vivo is not exclusively mediated by cytokines and chemokines of the allergic inflammatory reaction, but could partly be the result of direct interaction between allergens and eosinophils.

  9. Contact allergens for armpits--allergenic fragrances specified on deodorants.

    PubMed

    Klaschka, Ursula

    2012-11-01

    According to the so-called "26 allergens rule" 26 supposedly allergenic fragrances must be specified on the containers of cosmetic products if they are present above 0.001% in leave-on products and, 0.01% in rinse-off products. This declaration is meant to inform the consumers of potential risks of skin sensitizers in the products. As many consumers of deodorants suffer from allergic or irritant contact dermatitis in the axillae, the presence of allergens in deodorants deserves special attention. The objective of this study was to find answers to the following questions: Does compulsory labeling lead to omission of strong allergenic fragrances in deodorants? Is there a difference in the use patterns of strong and weak allergens? What is the quantitative exposure to fragrances by deodorants? Is the situation in Germany different from other European countries? Is there a difference between deodorants for men and for women? I tested the implementation of the "26 allergens rule" and compiled which allergenic fragrances are specified on the containers of deodorants. Three market studies were conducted in Germany in 2008, 2010 and 2011. The labels of a total number of 374 deodorants were analyzed as to whether any of the "26 allergens" were listed. The frequency of each allergen in the deodorants was compared with results from previous studies by other authors. It was found that up to 83% of the deodorants contain at least one of the "26 allergens" and that up to 30% of all products contain strong allergens above the threshold for labeling (0.001% in the product). The most frequently listed allergens are medium or weak allergens. In comparison with other authors, the frequency of the "26 allergens" in products is slightly smaller in these recent studies for the German market. There is no significant difference between deodorants for men and women, as far as the labeling of the "26 allergens" is concerned. The results show that the mandatory labeling procedure as designed

  10. [Evaluation of the total biological activity and allergenic composition of allergenic extracts].

    PubMed

    Lombardero, M; González, R; Duffort, O; Juan, F; Ayuso, R; Ventas, P; Cortés, C; Carreira, J

    1986-01-01

    In the present study, a complete procedure is presented in order to standardize allergenic extracts, the meaning of which is the measurement of the total allergenic activity and the determination of the allergenic composition. The measurement of the biological activity comprises 2 steps: Preparation of Reference Extracts and determination of their "in vivo" activity. Evaluation of the total allergenic activity of extracts for clinical use. Reference extracts were prepared from the main allergens and their "in vivo" biological activity was determined by a quantitative skin prick test in a sample of at least 30 allergic patients. By definition, the protein concentration of Reference Extract that produces, in the allergic population, a geometric mean wheal of 75 mm.2 has an activity of 100 biological units (BUs). The determination of the biological activity of a problem extract is made by RAST inhibition. The sample is compared with the corresponding Reference Extract by this technique and, from this comparison, it is possible to quantify the activity of the problem extract in biologic units (BUs) with clinical significance. Likewise, different techniques have been used to determine the allergenic composition of extracts. These techniques comprise 2 steps: Separation of the components of the extract. Identification of the components that bind specific human IgE. The separation of the components of the extract has been carried out by isoelectric focusing (IEF) and electrophoresis in the presence of sodium dodecyl sulphate (SDS-PAGE). In order to identify the allergenic components, an immunoblotting technique has been employed. The separated components in the IEF gel or SDS-PAGE gel are transferred to a nitrocellulose sheet and later on, this membrane is overlaid with a serum pool from allergic patients and a mouse monoclonal anti-human IgE, labelled with 125I. Finally, the autoradiography of the nitrocellulose membrane is obtained. In this way it is possible to compare

  11. Immunoproteomics of tree of heaven (Ailanthus atltissima) pollen allergens.

    PubMed

    Mousavi, Fateme; Majd, Ahmad; Shahali, Youcef; Ghahremaninejad, Farrokh; Shokouhi Shoormasti, Raheleh; Pourpak, Zahra

    2017-02-10

    Ailanthus altissima pollen (AAP) is considered as an emerging cause of respiratory allergy in United States, Italy and Iran. However, the allergenic composition of AAP is still unknown and has yet to be characterized. The present study aimed to identify AAP allergens using a proteomics-based approach. For this purpose, optimized AAP protein extracts were analyzed using 1D- and 2D- gel electrophoresis and confronted to twenty sera from individuals with respiratory allergy during the AAP season. Candidate allergens were detected using the serum from an allergic patient with clinical history of AAP pollinosis. IgE-binding spots were identified using MALDI-TOF/TOF mass spectrometry and database searching. According to our results, AAP extracts were rich in proteins (up to 16.25mg/ml) with a molecular-weight distribution ranging from 10 to 175kDa. Two-D electrophoresis of AAP extracts revealed 125 protein spots from which 13 were IgE reactive. These IgE-binding proteins were identified as enolase, calreticulin, probable pectate lyase 6, conserved hypothetical protein and ras-related protein RHN1-like. By our knowledge, this study is the first report identifying AAP allergens. These findings will open up further avenues for the diagnosis and immunotherapy of the AAP allergy as well as for the cloning and molecular characterization of relevant allergens.

  12. Effect of processing technologies on the allergenicity of food products.

    PubMed

    Jiménez-Saiz, Rodrigo; Benedé, Sara; Molina, Elena; López-Expósito, Iván

    2015-01-01

    Heat treatment has been used since ancient times for food processing, first to ensure the safety of food and its storage, but also to transform its characteristics (in its raw form) and obtain new textures, flavors, or novel foods. However, the transformation experienced by food components when heated, or processed, can dramatically affect the allergenicity of food, either reducing or increasing it. To date, most of the articles published dealing with the changes in the potential allergenicity of food are focused on heat treatment and the Maillard reaction. However, it is also important to give prominence to other group of new technologies developed nowadays, such as high-pressure processing, microwaves and food irradiation. These techniques are not likely to replace traditional processing methods, but they are becoming attractive for the food industry due to different reasons, and it is expected in the near future to have different products on the market processed with these new technologies at an affordable cost. Moreover, other biochemical modifications, particularly enzymatic cross-linking of proteins, have attracted wide-spread attention and will be considered as well in this review, because of its great opportunities to induce protein modification and thus affect food allergenicity. Together with the effect of processing of food allergens, this review will place special attention on gastroduodenal digestion of processed allergens, which directly affects their allergenicity.

  13. Endogenous allergens in the regulatory assessment of genetically engineered crops.

    PubMed

    Graf, Lynda; Hayder, Hikmat; Mueller, Utz

    2014-11-01

    A scientific approach to the assessment of foods derived from genetically engineered (GE) crops is critical to maintaining objectivity and public confidence in regulatory decisions. Principles developed at the international level support regulators and enable robust and transparent safety assessments. A comparison of key constituents in the GE crop with a suitable comparator is an important element of an assessment. In Europe, endogenous allergens would be included in the comparative analysis, however this approach has been hindered by technical limitations on the ability to accurately measure identified allergenic proteins. Over recent years, improved proteomic methods have enabled researchers to focus on major allergenic proteins in conventional food crops, as information on natural variability is largely lacking. Emerging data for soybean indicate that variability in levels of major allergens already in the food supply is broad. This raises questions about the biological interpretation of differences between a GE plant and its conventional counterpart, in particular, whether any conclusions about altered allergenicity could be inferred. This paper discusses the scientific justification for requiring proteomic analysis of endogenous allergens as part of the evaluation. Ongoing scientific review and corresponding international discussion are integral to ensuring that data requirements address legitimate risk assessment questions.

  14. Inhalant Allergens in Portugal.

    PubMed

    Gomes Câmara Camacho, Irene

    2017-02-23

    This review aims to present in a simple manner the work performed in Portugal regarding the identification of the most prevalent aeroallergens in the country and the sensitization levels in Portuguese patients. Much of the data was summarized in tables and illustrated on maps, enabling the community of clinicians, researchers, and patient organizations to access the knowledge about the research performed. This study provides an overview about the distribution of aeroallergens in Portugal, signaling regions and critical periods of exposure of the sensitized population. The illustrated data can help the community of allergy specialists to view the temporal and spatial distribution of aeroallergens across the country. In addition, this information can guide clinicians to select the most appropriate allergens for allergy diagnostic testing, treatment, and allergen avoidance.

  15. In silico Identification of Potential Peptides or Allergen Shot Candidates Against Aspergillus fumigatus

    PubMed Central

    Thakur, Raman; Shankar, Jata

    2016-01-01

    Abstract Aspergillus fumigatus is capable of causing invasive aspergillosis or acute bronchopulmonary aspergillosis, and the current situation is alarming. There are no vaccine or allergen shots available for Aspergillus-induced allergies. Thus, a novel approach in designing of an effective vaccine or allergen shot candidate against A. fumigatus is needed. Using immunoinformatics approaches from the characterized A. fumigatus allergens, we have mapped epitopic regions to predict potential peptides that elicit both Aspergillus-specific T cells and B cell immune response. Experimentally derived immunodominant allergens were retrieved from www.allergen.org. A total of 23 allergenic proteins of A. fumigatus were retrieved. Out of 23 allergenic proteins, 13 of them showed high sequence similarity to both human and mouse counterparts and thus were eliminated from analysis due to possible cross-reactivity. Remaining allergens were subjected to T cell (major histocompatibility complex class I and II alleles) and B cell epitope prediction using immune epitope database analysis resource. Only five allergens have shown a common B and T cell epitopic region between human and mouse. They are Asp f1 {147–156 region (RVIYTYPNKV); Mitogillin}, Asp f2 {5–19 region (LRLAVLLPLAAPLVA); Hypothetical protein}, Asp f5 {305–322 region (LNNYRPSSSSLSFKY); Metalloprotease}, Asp f17 {98–106 region (AANAGGTVY); Hypothetical protein}, and Asp f34 {74–82 region (YIQDGSLYL); PhiA cell wall protein}. The epitopic region from these five allergenic proteins showed potential for development of single peptide- or multipeptide-based vaccine or allergen shots for experimental prioritization. PMID:27872794

  16. Identification of autoclave-resistant Anisakis simplex allergens.

    PubMed

    Carballeda-Sangiao, Noelia; Olivares, Fabiola; Rodriguez-Mahillo, Ana I; Careche, Mercedes; Tejada, Margarita; Moneo, Ignacio; González-Muñoz, Miguel

    2014-04-01

    Anisakis simplex is a fish parasite able to induce allergic reactions in humans infected when eating raw or undercooked fish parasitized with viable third-stage larvae. Some authors claim that exposure to nonviable Anisakis material can result in allergic symptoms in previously sensitized patients, indicating that parasite allergens are resistant to the thermal treatments of usual cooking procedures. Furthermore, some patients report symptoms after eating canned fish. The aim of this work was the analysis of parasite allergen stability in heating to 121 °C in an autoclave to simulate the thermal process applied to canned fish. Third-stage larvae were subjected to autoclaving for 20, 40, and 80 min, and parasite crude extracts were analyzed by electrophoresis, immunoblotting, and a flow-cytometric basophil activation test. Allergens resistant to autoclaving were separated by reversed-phase high-performance liquid chromatography and identified by ion trap mass spectrometry. Protein analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that autoclaving considerably reduced the number and intensity of identifiable protein bands in a time-dependent manner. Several allergens were detected by immunoblotting with a pool of A. simplex allergic patients' sera after autoclaving. Allergens of 9 and 14 kDa resistant to autoclaving were identified as Ani s 4 and Ani s 1 allergens, respectively. Functional analysis showed that allergens retain their capacity to activate basophils even after autoclaving for 80 min. In conclusion, some relevant A. simplex allergens retain their capacity to bind immunoglobulin E and activate basophils after being subjected to autoclaving, which is a method equivalent to that used in industrial canning processes.

  17. Measurement of endogenous allergens in genetically modified soybeans--short communication.

    PubMed

    Ladics, Gregory S; Budziszewski, Gregory J; Herman, Rod A; Herouet-Guicheney, Corinne; Joshi, Saurabh; Lipscomb, Elizabeth A; McClain, Scott; Ward, Jason M

    2014-10-01

    The measurement of endogenous allergens is required by the European Commission (EC) as part of the compositional analysis for GM products from host plants that are common causes of food allergy, such as soybean (EC Implementing Regulation No. 503/2013). In each case, the EC Implementing Regulation indicates that analysis be conducted on identified allergens as specified in the Organization of Economic Cooperation and Development (OECD) consensus documents on compositional considerations for new plant varieties. This communication discusses the methods available to measure endogenous allergens as well as the endogenous soybean allergens that should be analyzed. It is suggested herein that in conjunction with the 2012 OECD consensus document on soybean, any list of soybean allergens should be based on clinically relevant data among publicly available allergen databases and peer-reviewed scientific publications, and the ability to measure the identified allergen. Based on a detailed analysis of the scientific literature, the following key points are recommended: (1) the acceptance of serum-free, quantitative analytical method data as an alternative to traditional IgE reactivity qualitative or semi-quantitative data for evaluation of endogenous soybean allergen content; (2) eight of the 15 potential allergens listed in the OECD soybean consensus document (Gly m 3, Gly m 4, Gly m Bd28K, Gly m Bd30K, Gly m 5, Gly m 6, Gly m 8, and Kunitz trypsin inhibitor) have both appropriate supporting clinical data and sufficient sequence information to be evaluated in comparative endogenous soybean allergen studies; and (3) the remaining seven proteins (Gly m 1, Gly m 2, unknown 50kDa protein, unknown 39kDa protein, P-22-25, lipoxygenase and lectin) lack sufficient data for clear classification as confirmed allergens and/or available sequence information and should not be currently included in the measurement of endogenous soybean allergens in the compositional analysis for the EU.

  18. Tropomyosin and Actin Identified as Major Allergens of the Carpet Clam (Paphia textile) and the Effect of Cooking on Their Allergenicity

    PubMed Central

    Mohamad Yadzir, Zailatul Hani; Misnan, Rosmilah; Bakhtiar, Faizal; Abdullah, Noormalin; Murad, Shahnaz

    2015-01-01

    Objectives. To identify the major allergenic proteins of clam (Paphia textile) and to investigate the effect of different cooking methods on the allergenicity of these identified proteins. Methods. Clam protein extracts were separated by denaturing polyacrylamide gel electrophoresis. IgE reactive proteins were then analyzed by immunoblotting with sera from patients with positive skin prick tests (SPT) to the raw clam extract. Mass spectrometry was used to identify the major allergenic proteins of this clam. Results. Raw extract showed 12 protein bands (18–150 kDa). In contrast, fewer protein bands were seen in the boiled extract; those ranging from 40 to 150 kDa were denatured. The protein profiles were similarly altered by frying or roasting. The immunoblots of raw and boiled extracts yielded 10 and 2 IgE-binding proteins, respectively. The fried and roasted extracts showed only a single IgE-binding protein at 37 kDa. Mass spectrometry analysis of the 37 and 42 kDa major allergens indicated that these spots were tropomyosin and actin, respectively. Conclusion. The two major allergens of Paphia textile were identified as the thermostable tropomyosin and a new thermolabile allergen actin. PMID:26413512

  19. Inactivation of allergens and toxins.

    PubMed

    Morandini, Piero

    2010-11-30

    Plants are replete with thousands of proteins and small molecules, many of which are species-specific, poisonous or dangerous. Over time humans have learned to avoid dangerous plants or inactivate many toxic components in food plants, but there is still room for ameliorating food crops (and plants in general) in terms of their allergens and toxins content, especially in their edible parts. Inactivation at the genetic rather than physical or chemical level has many advantages and classical genetic approaches have resulted in significant reduction of toxin content. The capacity, offered by genetic engineering, of turning off (inactivating) specific genes has opened up the possibility of altering the plant content in a far more precise manner than previously available. Different levels of intervention (genes coding for toxins/allergens or for enzymes, transporters or regulators involved in their metabolism) are possible and there are several tools for inactivating genes, both direct (using chemical and physical mutagens, insertion of transposons and other genetic elements) and indirect (antisense RNA, RNA interference, microRNA, eventually leading to gene silencing). Each level/strategy has specific advantages and disadvantages (speed, costs, selectivity, stability, reversibility, frequency of desired genotype and regulatory regime). Paradigmatic examples from classical and transgenic approaches are discussed to emphasize the need to revise the present regulatory process. Reducing the content of natural toxins is a trade-off process: the lesser the content of natural toxins, the higher the susceptibility of a plant to pests and therefore the stronger the need to protect plants. As a consequence, more specific pesticides like Bt are needed to substitute for general pesticides.

  20. Bioinformatic screening and detection of allergen cross-reactive IgE-binding epitopes.

    PubMed

    McClain, Scott

    2017-02-13

    Protein allergens can be related by cross-reactivity. Allergens that share relevant sequence can cross-react, those lacking similarity in their IgE antibody-binding epitopes do not cross-react. Cross-reactivity is based on shared epitopes which is due to shared sequence and higher level structure (charge and shape). Epitopes can be important in predicting cross-reactivity potential and may provide the potential to establish criteria that identify homology among allergens. Selected allergen's IgE binding epitope sequences were used to determine how the FASTA algorithm could be used to identify a threshold of significance. A statistical measure (E-value) was used to identify a threshold specific to identifying cross-reactivity potential. Peanut Ara h 1 and Ara h 2, shrimp tropomyosin Pen a 1, and Birch tree pollen allergen, Bet v 1 were sources of known epitopes. Each epitope or set of epitopes was inserted into random amino acid sequence to create hypothetical proteins used as queries to an allergen database. Alignments with allergens were noted for the ability to match the epitope's source allergen as well as any cross-reactive or other homologous allergens. A FASTA E-value range (1×10(-5) - 1×10(-6) ) was identified that could act as a threshold to help identify cross-reactivity potential. This article is protected by copyright. All rights reserved.

  1. Industrial Fungal Enzymes: An Occupational Allergen Perspective

    PubMed Central

    Green, Brett J.; Beezhold, Donald H.

    2011-01-01

    Occupational exposure to high-molecular-weight allergens is a risk factor for the development and pathogenesis of IgE-mediated respiratory disease. In some occupational environments, workers are at an increased risk of exposure to fungal enzymes used in industrial production. Fungal enzymes have been associated with adverse health effects in the work place, in particular in baking occupations. Exposure-response relationships have been demonstrated, and atopic workers directly handling fungal enzymes are at an increased risk for IgE-mediated disease and occupational asthma. The utilization of new and emerging fungal enzymes in industrial production will present new occupational exposures. The production of antibody-based immunoassays is necessary for the assessment of occupational exposure and the development of threshold limit values. Allergen avoidance strategies including personal protective equipment, engineering controls, protein encapsulation, and reduction of airborne enzyme concentrations are required to mitigate occupational exposure to fungal enzymes. PMID:21747869

  2. Hazelnut Allergens: Molecular Characterization, Detection, and Clinical Relevance.

    PubMed

    Costa, Joana; Mafra, Isabel; Carrapatoso, Isabel; Oliveira, Maria Beatriz P P

    2016-11-17

    In last few years, special attention has been given to food-induced allergies, in which hazelnut allergy is highlighted. Hazelnut is one of the most commonly consumed tree nuts, being largely used by the food industry in a variety of processed foods. It has been regarded as a food with potential health benefits, but also as a source of allergens capable of inducing mild to severe allergic reactions in sensitized individuals. Considering the great number of reports addressing hazelnut allergens, with an estimated increasing trend, this review intends to assemble all the relevant information available so far on the following main issues: prevalence of tree nut allergy, clinical threshold levels, molecular characterization of hazelnut allergens (Cor a 1, Cor a 2, Cor a 8, Cor a 9, Cor a 10, Cor a 11, Cor a 12, Cor a 14, and Cor a TLP) and their clinical relevance, and methodologies for detection of hazelnut allergens in foods. A comprehensive overview of the current data about the molecular characterization of hazelnut allergens is presented, relating to biochemical classification and biological function with clinical importance. Recent advances in hazelnut allergen detection methodologies are summarized and compared, including all the novel protein-based and DNA-based approaches.

  3. Facing Hymenoptera Venom Allergy: From Natural to Recombinant Allergens

    PubMed Central

    Perez-Riverol, Amilcar; Justo-Jacomini, Débora Lais; Zollner, Ricardo de Lima; Brochetto-Braga, Márcia Regina

    2015-01-01

    Along with food and drug allergic reactions, a Hymenoptera insect Sting (Apoidea, Vespidae, Formicidae) is one of the most common causes of anaphylaxis worldwide. Diagnoses of Hymenoptera venom allergy (HVA) and specific immunotherapy (SIT) have been based on the use of crude venom extracts. However, the incidence of cross-reactivity and low levels of sensibility during diagnosis, as well as the occurrence of nonspecific sensitization and undesired side effects during SIT, encourage the search for novel allergenic materials. Recombinant allergens are an interesting approach to improve allergy diagnosis and SIT because they circumvent major problems associated with the use of crude venom. Production of recombinant allergens depends on the profound molecular characterization of the natural counterpart by combining some “omics” approaches with high-throughput screening techniques and the selection of an appropriate system for heterologous expression. To date, several clinically relevant allergens and novel venom toxins have been identified, cloned and characterized, enabling a better understanding of the whole allergenic and envenoming processes. Here, we review recent findings on identification, molecular characterization and recombinant expression of Hymenoptera venom allergens and on the evaluation of these heterologous proteins as valuable tools for tackling remaining pitfalls on HVA diagnosis and immunotherapy. PMID:26184309

  4. Facing Hymenoptera Venom Allergy: From Natural to Recombinant Allergens.

    PubMed

    Perez-Riverol, Amilcar; Justo-Jacomini, Débora Lais; Zollner, Ricardo de Lima; Brochetto-Braga, Márcia Regina

    2015-07-09

    Along with food and drug allergic reactions, a Hymenoptera insect Sting (Apoidea, Vespidae, Formicidae) is one of the most common causes of anaphylaxis worldwide. Diagnoses of Hymenoptera venom allergy (HVA) and specific immunotherapy (SIT) have been based on the use of crude venom extracts. However, the incidence of cross-reactivity and low levels of sensibility during diagnosis, as well as the occurrence of nonspecific sensitization and undesired side effects during SIT, encourage the search for novel allergenic materials. Recombinant allergens are an interesting approach to improve allergy diagnosis and SIT because they circumvent major problems associated with the use of crude venom. Production of recombinant allergens depends on the profound molecular characterization of the natural counterpart by combining some "omics" approaches with high-throughput screening techniques and the selection of an appropriate system for heterologous expression. To date, several clinically relevant allergens and novel venom toxins have been identified, cloned and characterized, enabling a better understanding of the whole allergenic and envenoming processes. Here, we review recent findings on identification, molecular characterization and recombinant expression of Hymenoptera venom allergens and on the evaluation of these heterologous proteins as valuable tools for tackling remaining pitfalls on HVA diagnosis and immunotherapy.

  5. Stabilization of the Dimeric Birch Pollen Allergen Bet v 1 Impacts Its Immunological Properties*

    PubMed Central

    Kofler, Stefan; Ackaert, Chloé; Samonig, Martin; Asam, Claudia; Briza, Peter; Horejs-Hoeck, Jutta; Cabrele, Chiara; Ferreira, Fatima; Duschl, Albert; Huber, Christian; Brandstetter, Hans

    2014-01-01

    Many allergens share several biophysical characteristics, including the capability to undergo oligomerization. The dimerization mechanism in Bet v 1 and its allergenic properties are so far poorly understood. Here, we report crystal structures of dimeric Bet v 1, revealing a noncanonical incorporation of cysteine at position 5 instead of genetically encoded tyrosine. Cysteine polysulfide bridging stabilized different dimeric assemblies, depending on the polysulfide linker length. These dimers represent quaternary arrangements that are frequently observed in related proteins, reflecting their prevalence in unmodified Bet v 1. These conclusions were corroborated by characteristic immunologic properties of monomeric and dimeric allergen variants. Hereby, residue 5 could be identified as an allergenic hot spot in Bet v 1. The presented results refine fundamental principles in protein chemistry and emphasize the importance of protein modifications in understanding the molecular basis of allergenicity. PMID:24253036

  6. Effects of processing on the recovery of food allergens from a model dark chocolate matrix.

    PubMed

    Khuda, Sefat E; Jackson, Lauren S; Fu, Tong-Jen; Williams, Kristina M

    2015-02-01

    To alleviate the risk to allergic consumers, it is crucial to improve factors affecting the detection of food allergens in processed chocolate products. This study evaluated processing effects on (1) recovery of peanut, egg, and milk allergens using five different extraction buffers, and (2) identification of specific allergenic proteins from extracts of incurred chocolate using allergen-specific antibodies and human allergic sera. Immunochemical staining with polyclonal antibodies showed that the addition of detergent or reducing agent improved extraction efficiency of peanut proteins, but not of egg and milk proteins. Tempering decreased antibody binding regardless of extractant. Detection of IgE-reactive peanut, egg, and milk allergens was differentially affected by tempering and extractant. Detection problems associated with matrix and processing effects may be overcome by the choice of extraction buffer and detecting antibody.

  7. Stabilization of the dimeric birch pollen allergen Bet v 1 impacts its immunological properties.

    PubMed

    Kofler, Stefan; Ackaert, Chloé; Samonig, Martin; Asam, Claudia; Briza, Peter; Horejs-Hoeck, Jutta; Cabrele, Chiara; Ferreira, Fatima; Duschl, Albert; Huber, Christian; Brandstetter, Hans

    2014-01-03

    Many allergens share several biophysical characteristics, including the capability to undergo oligomerization. The dimerization mechanism in Bet v 1 and its allergenic properties are so far poorly understood. Here, we report crystal structures of dimeric Bet v 1, revealing a noncanonical incorporation of cysteine at position 5 instead of genetically encoded tyrosine. Cysteine polysulfide bridging stabilized different dimeric assemblies, depending on the polysulfide linker length. These dimers represent quaternary arrangements that are frequently observed in related proteins, reflecting their prevalence in unmodified Bet v 1. These conclusions were corroborated by characteristic immunologic properties of monomeric and dimeric allergen variants. Hereby, residue 5 could be identified as an allergenic hot spot in Bet v 1. The presented results refine fundamental principles in protein chemistry and emphasize the importance of protein modifications in understanding the molecular basis of allergenicity.

  8. Effects of reduction and proteolysis on cashew allergens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Allergic reaction to cashew ingestion is frequently more severe than reaction to peanut ingestion, and food allergens are commonly resistant to digestive proteases. The purpose of this study was to characterize the sensitivity of cashew proteins to proteolysis. Cashew protein extracts and purified c...

  9. Characterization of the effects of proteolysis and reduction on cashew allergens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resistance to digestive proteases is a common characteristic of food allergens. Among nut proteins, 2S albumins are refractory to digestion, and are potent food allergens. Allergic reactions to cashew have been described as more frequently severe than peanut reactions. The purpose of this study i...

  10. Using phenolic compounds to reduce the allergenic properties of peanut extracts and peanut butter slurries.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since phenolic compounds may form insoluble complexes with proteins, we determined that their interaction with peanut allergens leads to a reduction in the allergenic properties of peanut extracts and peanut butter slurries. Phenolics, such as, caffeic acid, chlorogenic acid, and ferulic acid were e...

  11. 27 CFR 4.32b - Petitions for exemption from major food allergen labeling.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... from major food allergen labeling. 4.32b Section 4.32b Alcohol, Tobacco Products and Firearms ALCOHOL... Labeling Requirements for Wine § 4.32b Petitions for exemption from major food allergen labeling. (a... protein derived from one of the foods identified in § 4.32a(a)(1)(i), even though a major food...

  12. 27 CFR 4.32b - Petitions for exemption from major food allergen labeling.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... from major food allergen labeling. 4.32b Section 4.32b Alcohol, Tobacco Products and Firearms ALCOHOL... Labeling Requirements for Wine § 4.32b Petitions for exemption from major food allergen labeling. (a... protein derived from one of the foods identified in § 4.32a(a)(1)(i), even though a major food...

  13. 27 CFR 4.32b - Petitions for exemption from major food allergen labeling.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... from major food allergen labeling. 4.32b Section 4.32b Alcohol, Tobacco Products and Firearms ALCOHOL... Labeling Requirements for Wine § 4.32b Petitions for exemption from major food allergen labeling. (a... protein derived from one of the foods identified in § 4.32a(a)(1)(i), even though a major food...

  14. 27 CFR 4.32b - Petitions for exemption from major food allergen labeling.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... from major food allergen labeling. 4.32b Section 4.32b Alcohol, Tobacco Products and Firearms ALCOHOL... Labeling Requirements for Wine § 4.32b Petitions for exemption from major food allergen labeling. (a... protein derived from one of the foods identified in § 4.32a(a)(1)(i), even though a major food...

  15. Chemical and Immunochemical Characteristics of the Whooping-Cough Allergen Obtained by Water-Ether Extraction,

    DTIC Science & Technology

    specific properties of the whooping cough allergen. However, in view of the low yield of the preparation, some changes in the original procedure were...immunochemical properties of the whooping cough allergen preparations showed that they are complexes of proteins and polysaccharides. Five antigenic components were detected in immunochemical reactions.

  16. Glycosylation site of the major allergen from olive tree pollen. Allergenic implications of the carbohydrate moiety.

    PubMed

    Batanero, E; Villalba, M; Rodríguez, R

    1994-01-01

    The electrophoretic analysis of purified Ole e I, the major allergen from Olea europaea pollen, reveals the presence of two main variants, glycosylated (20.0 kDa) and non-glycosylated (18.5 kDa) components. The glycosylated variant has been identified as a concanavalin A-binding glycoprotein. Its carbohydrate moiety has a molecular mass of about 1.3 kDa (5% weight of the glycosylated allergen), based on mass spectrometry analysis. Enzymatic treatment of native Ole e I with the specific glycosidase PNGase F accounts for an oligosaccharide N-linked to the polypeptide chain. This treatment does not sensibly modify the secondary structure of the protein but diminishes the affinity of the allergen for specific IgE antibodies. Tryptic digestion of Ole e I reveals the presence of a single carbohydrate-containing peptide. This peptide was recognized by the sera of hypersensitive individuals. The amino acid sequence of this peptide is Phe-Lys-Leu-Asn-Thr-Val-Asn-Gly-Thr-Thr-Arg, asparagine at the seventh being the carbohydrate attaching site. The obtained data are discussed in terms of the potential role of the sugar moiety in the allergenic activity of Ole e I.

  17. Eosinophils generate brominating oxidants in allergen-induced asthma

    PubMed Central

    Wu, Weijia; Samoszuk, Michael K.; Comhair, Suzy A.A.; Thomassen, Mary Jane; Farver, Carol F.; Dweik, Raed A.; Kavuru, Mani S.; Erzurum, Serpil C.; Hazen, Stanley L.

    2000-01-01

    Eosinophils promote tissue injury and contribute to the pathogenesis of allergen-triggered diseases like asthma, but the chemical basis of damage to eosinophil targets is unknown. We now demonstrate that eosinophil activation in vivo results in oxidative damage of proteins through bromination of tyrosine residues, a heretofore unrecognized pathway for covalent modification of biologic targets in human tissues. Mass spectrometric studies demonstrated that 3-bromotyrosine serves as a specific “molecular fingerprint” for proteins modified through the eosinophil peroxidase-H2O2 system in the presence of plasma levels of halides. We applied a localized allergen challenge to model the effects of eosinophils and brominating oxidants in human lung injury. Endobronchial biopsy specimens from allergen-challenged lung segments of asthmatic, but not healthy control, subjects demonstrated significant enrichments in eosinophils and eosinophil peroxidase. Baseline levels of 3-bromotyrosine in bronchoalveolar lavage (BAL) proteins from mildly allergic asthmatic individuals were modestly but not statistically significantly elevated over those in control subjects. After exposure to segmental allergen challenge, lung segments of asthmatics, but not healthy control subjects, exhibited a >10-fold increase in BAL 3-bromotyrosine content, but only two- to threefold increases in 3-chlorotyrosine, a specific oxidation product formed by neutrophil- and monocyte-derived myeloperoxidase. These results identify reactive brominating species produced by eosinophils as a distinct class of oxidants formed in vivo. They also reveal eosinophil peroxidase as a potential therapeutic target for allergen-triggered inflammatory tissue injury in humans. PMID:10811853

  18. [Immunoproteomics of non water-soluble allergens from 4 legumes flours: peanut, soybean, sesame and lentil].

    PubMed

    Bouakkadia, Hayette; Boutebba, Aissa; Haddad, Iman; Vinh, Joëlle; Guilloux, Laurence; Sutra, Jean-Pierre; Sénéchal, Hélène; Poncet, Pascal

    2015-01-01

    Peanut, soybean, sesame and lentil are members of legumes worldwide consumed by human that can induce food allergy in genetically predisposed individuals. Several protein allergens, mainly water-soluble, have been described. We studied the non water-soluble fraction from these 4 food sources using immunoproteomics tools and techniques. Flour extracts were solubilized in detergent and chaotropes and analysed in 1 and 2 dimensional gel electrophoresis (2D). Results showed numerous proteins exhibiting wide ranges of isoelectric points and relative molecular masses. When IgE immunoreactivities of 18 food allergy patients were individually tested in 1 and 2D western-blots, a very diversified IgE repertoire was observed, reflecting extensive cross-reactivities but also co-sensitizations. Besides already well known and characterized allergens, mass spectrometry analysis allowed the identification of 22 allergens undescribed until now: 10 in peanut, 2 in soybean, 3 in sesame and 7 in lentil. Three allergens are legume storage proteins and the others belong to transport proteins, nucleotide binding proteins and proteins involved in the regulation of metabolism. Seven proteins are potentially similar to allergens described in plants and fungi and 11 are not related to any known allergen. Our results contribute to increase the repertoire of legume allergens that may improve the diagnosis, categorize patients and thus provide a better treatment of patients.

  19. Biochemical and immunological characterization of recombinant allergen Lol p 1.

    PubMed

    Tamborini, E; Faccini, S; Lidholm, J; Svensson, M; Brandazza, A; Longhi, R; Groenlund, H; Sidoli, A; Arosio, P

    1997-11-01

    Pollen from perennial rye grass (Lolium perenne), a major cause of type-I allergy worldwide, contains a complex mixture of allergenic proteins among which Lol p 1 is one of the most important. We describe the expression, purification and characterization of a recombinant Lol p 1 overproduced in Escherichia coli. The recombinant allergen, expressed in high yields and purified in milligram amounts, bound to specific IgE antibodies from human sera, induced histamine release from sensitized human basophils, and elicited rabbit antisera that recognize specifically recombinant Lol p 1 and natural Lol p 1 of pollen extract. Recombinant Lol p 1 was used to develop ImmunoCAP assays for analysis of 150 sera that were Radioallergosorbent test positive to L. perenne pollen. In 130 of them (87%) the assay detected a significant level of IgE antibodies to Lol p 1, reaching on average 37% of the level obtained with a test for IgE to the whole grass pollen extract. To map epitopes on Lol p 1, we produced three deletion mutants [des-(116-240)-Lol p 1, des-(1-88)-Lol p 1 and des-(133-189)-Lol p 1], which were efficiently expressed in bacteria. These all showed a strong reactivity with the specific rabbit IgG antibodies, but lacked most or all the allergenic properties of recombinant Lol p 1. A study of the antigenic structure of Lol p 1 was performed using the three deletion mutants and a set of 17-18-residue overlapping synthetic peptides covering the whole allergen sequence. The results indicate that human IgE and rabbit IgG antibodies bind to distinct regions of Lol p 1, and that at least some important IgE epitopes are mainly conformational. The findings suggest that recombinant allergens constitute useful reagents for further development of serological diagnosis of allergy, and that it should be possible to produce immunogenic fragments of allergenic proteins without allergenic properties.

  20. [Allergenic pollens in Spain].

    PubMed

    Subiza Garrido-Lestache, J

    2004-01-01

    Allergenic pollens that cause rhinoconjuctivitis and/or asthma are those from trees or plants that pollinate through the air (anemophilic pollination) and not through insects (entomophilic pollination). Although pollen grains would seem to be too large to easily reach the intrapulmonary airways, the relationship between pollen counts and the presence of asthmatic symptoms is only too evident. This is probably because the allergens inducing seasonal asthma are not only found within pollen grains but also outside the grains in particles of less than 10 mm that are freely found in the atmosphere. The most important pollens producing pollinosis in Spain are those from cypress trees from January-March, birch trees in April (macizo galaico), Platanus hispanica (March-April), grasses and olive trees from April-June, Parietaria from April-July and Chenopodium and/or Salsola from July-September. By geographical areas, the main cause of pollinosis are grasses in the center and north of the peninsula, olive trees in the south (Jaén, Sevilla, Granada, Córdoba) and Parietaria in the Mediterranean coast (Barcelona, Murcia, Valencia).

  1. Markers of tolerance development to food allergens.

    PubMed

    Ponce, M; Diesner, S C; Szépfalusi, Z; Eiwegger, T

    2016-10-01

    IgE-mediated reactions to food allergens are the most common cause of anaphylaxis in childhood. Although allergies to cow's milk, egg, or soy proteins, in contrast to peanut and tree nut allergens, resolve within the first 6 years of life in up to 60% due to natural tolerance development, this process is not well understood. At present, there is no cure or treatment for food allergy that would result in an induction of tolerance to the symptom-eliciting food. Avoidance, providing an emergency plan and education, is the standard of treatment. Oral immunotherapeutic approaches have been proven reasonable efficacy; however, they are associated with high rates of side-effects and low numbers of patients achieving tolerance. Nevertheless, mechanisms that take place during oral immunotherapy may help to understand tolerance development. On the basis of these therapeutic interventions, events like loss of basophil activation and induction of regulatory lymphocyte subsets and of blocking antibodies have been described. Their functional importance at a clinical level, however, remains to be investigated in detail. Consequently, there is eminent need to understand the process of tolerance development to food allergens and define biomarkers to develop and monitor new treatment strategies for food allergy.

  2. Modified High-Molecular-Weight Hyaluronan Promotes Allergen-Specific Immune Tolerance.

    PubMed

    Gebe, John A; Yadava, Koshika; Ruppert, Shannon M; Marshall, Payton; Hill, Paul; Falk, Ben A; Sweere, Johanna M; Han, Hongwei; Kaber, Gernot; Medina, Carlos; Mikecz, Katalin; Ziegler, Steven F; Balaji, Swathi; Keswani, Sundeep G; Perez, Vinicio A de Jesus; Butte, Manish J; Nadeau, Kari; Altemeier, William A; Fanger, Neil; Bollyky, Paul L

    2017-01-01

    The extracellular matrix in asthmatic lungs contains abundant low-molecular-weight hyaluronan, and this is known to promote antigen presentation and allergic responses. Conversely, high-molecular-weight hyaluronan (HMW-HA), typical of uninflamed tissues, is known to suppress inflammation. We investigated whether HMW-HA can be adapted to promote tolerance to airway allergens. HMW-HA was thiolated to prevent its catabolism and was tethered to allergens via thiol linkages. This platform, which we call "XHA," delivers antigenic payloads in the context of antiinflammatory costimulation. Allergen/XHA was administered intranasally to mice that had been sensitized previously to these allergens. XHA prevents allergic airway inflammation in mice sensitized previously to either ovalbumin or cockroach proteins. Allergen/XHA treatment reduced inflammatory cell counts, airway hyperresponsiveness, allergen-specific IgE, and T helper type 2 cell cytokine production in comparison with allergen alone. These effects were allergen specific and IL-10 dependent. They were durable for weeks after the last challenge, providing a substantial advantage over the current desensitization protocols. Mechanistically, XHA promoted CD44-dependent inhibition of nuclear factor-κB signaling, diminished dendritic cell maturation, and reduced the induction of allergen-specific CD4 T-helper responses. XHA and other potential strategies that target CD44 are promising alternatives for the treatment of asthma and allergic sinusitis.

  3. Genetically engineered and synthetic allergen derivatives: candidates for vaccination against type I allergy.

    PubMed

    Valenta, R; Vrtala, S; Focke-Tejkl, M; Bugajska-Schretter; Ball, T; Twardosz, A; Spitzauer, S; Grönlund, H; Kraft, D

    1999-01-01

    Type I allergy, a hypersensitivity disease affecting almost 20% of the population worldwide, is based on the IgE recognition of otherwise harmless antigens (i.e., allergens). Allergen-induced crosslink of effector cell-bound IgE antibodies leads to the release of biological mediators and thus to immediate disease symptoms (allergic rhinitis, conjunctivitis and asthma). Specific immunotherapy, the only causative treatment of Type I allergy, is based on the administration of increasing doses of allergens to allergic patients in order to yield allergen-specific non-responsiveness. Major disadvantages are 1. that current forms of allergen immunotherapy are performed with allergens difficult to standardize which cannot be matched to the patients reactivity profile and 2. that the administration of active allergen preparations can cause anaphylactic side effects. Through the application of molecular biological techniques many relevant environmental allergens have been produced as active recombinant proteins which allow component-resolved allergy diagnosis and thus represent the basis for patient-tailored forms of immunotherapy. Here we review molecular strategies which have been recently applied to generate genetically engineered and synthetic hypoallergenic allergen derivatives for patient-tailored and safe vaccination against Type I allergy.

  4. Current understanding of cross-reactivity of food allergens and pollen.

    PubMed

    Vieths, Stefan; Scheurer, Stephan; Ballmer-Weber, Barbara

    2002-05-01

    Pollen-allergic patients frequently present allergic symptoms after ingestion of several kinds of plant-derived foods. The majority of these reactions is caused by four distinct cross-reactive structures that are present in birch pollen. Proteins that share common epitopes with Bet v 1, the major birch pollen allergen, occur in pollens of several tree species: apples, stone fruits, celery, carrot, nuts, and soybeans. Approximately 70% of our patients who are allergic to birch pollen may experience symptoms after consumption of foods from these groups. In contrast, two minor allergenic structures-profilins and cross-reactive carbohydrate determinants (CCD)-that sensitize approximately 10-20% of all pollen-allergic patients are also present in grass pollen and weed pollen. Moreover, IgE-binding proteins related to the birch pollen minor allergen Bet v 6 have been found in many vegetable foods such as apple, peach, orange, lychee fruit, strawberry, persimmon, zucchini, and carrot. Frequently, the occurrence of cross-reactive IgE antibodies is not correlated with the development of clinical food allergy. In particular, the clinical relevance of sensitization to CCD is doubtful. Generally, pollen-related allergens tend to be more labile during heating procedures and in the digestive tract compared to allergens from classical allergenic foods such as peanut. However, recent DBPCFC studies have shown that both cooked celery and roasted hazelnuts still pose an allergenic risk for pollen-sensitized subjects. Since pathogenesis-related proteins share several common features with allergens and both the Bet v 1 and the Bet v 6-related food allergens are defense-related proteins, approaches to introduce such proteins as a measure to protect plants against diseases should be performed with caution as they may increase the allergenicity of these crops.

  5. Allergen diagnosis microarray with high-density immobilization capacity using diamond-like carbon-coated chips for profiling allergen-specific IgE and other immunoglobulins.

    PubMed

    Suzuki, Koichi; Hiyoshi, Mineyoshi; Tada, Hitomi; Bando, Miwa; Ichioka, Takao; Kamemura, Norio; Kido, Hiroshi

    2011-11-14

    The diagnosis of antibody-mediated allergic disorders is based on clinical findings, skin prick tests and detection of allergen-specific IgE in serum. Here, we present a new microarray technique of high-density antigen immobilization using carboxylated arms on the surface of a diamond-like carbon (DLC)-coated chip. High immobilization capacity of antigen on DLC chip at (0.94-7.82)×10(9) molecules mm(-2) allowed the analysis of allergen-specific immunoglobulins against not only purified proteins but also natural allergen extracts with wide assay dynamic range. The higher sensitivity of the allergen-specific IgE detection on DLC chip was observed for comparison with the UniCAP system: the DLC chip allowed lowering the limit of dilution rate in UniCAP system to further dilution at 4-8-fold. High correlations (ρ>0.9-0.85) of allergen-specific IgE values determined by the DLC chip and UniCAP were found in most of 20 different allergens tested. The DLC chip was useful to determine allergen-induced antibodies of IgA, IgG, IgG1, and IgG4 in sera, apart from IgE, as well as secretory IgA in saliva against the same series of allergens on the chip in a minimal amount (1-2 μL) of sample.

  6. Allergome: the characterization of allergens based on a 2D gel electrophoresis approach.

    PubMed

    Chardin, Hélène; Peltre, Gabriel

    2005-10-01

    Type I hypersensitivity reactions are in constant progression in industrialized countries. The physiopathologic mechanism of these diseases implicates the production of specific immunoglobulin (Ig)E to allergenic molecules, their binding to the Fcepsilon receptor on the surface of mast cells and basophils, and the release of inflammatory mediators when allergens are introduced into the body and crosslink with the IgE bound to the cell surface. An allergen is defined as a molecule that induces the production of, and binds to, IgE. The identification of the allergenic molecules is an important goal to improve diagnosis and treatment of allergy. This characterization aims to extract proteins from the allergenic source, to analyze IgE specificity by immunoblotting and to identify the proteins that bind IgE.

  7. Association analysis of food allergens.

    PubMed

    Kanagawa, Yoshiyuki; Matsumoto, Shinya; Koike, Soichi; Imamura, Tomoaki

    2009-06-01

    Food allergy patients are known to present with allergic reactions to multiple allergens, but extrapolating these associations is difficult. Data mining, a procedure that analyzes characteristic combinations among large amounts of information, is often used to analyze and predict consumer purchasing behaviour. We applied this technique to the extrapolation of food allergen associations in allergy patients. We sent 1510 families our 'Questionnaire survey for the prevention of food allergies'. Responses noting 6549 allergens came from 878 families with 1383 patients, including 402 with anaphylaxis. Some results of the survey have already been published and here we presented the results of our association analysis of combinations of food allergens. Egg, milk, wheat, peanuts, and buckwheat are the most common food allergens. The most common simultaneous combinations of these allergens were 'egg-milk', 'egg-wheat', and 'milk-wheat'. The occurrence probability of a combination (i.e. one person suffering from a certain allergen also suffers from another) is called 'confidence'. Confidence was higher for 'chicken-egg', 'abalone-salmon eggs', and 'matsutake mushroom-milk'. As well, the combinations of 'crab-shrimp', 'squid-shrimp', and 'squid-crab' also indicated higher values in a statistical examination of the occurrence probabilities of these allergen combinations (Z-score). From the results of the association analysis, we speculated that some food allergens, such as abalone, orange, salmon, chicken, pork, matsutake mushroom, peach and apple did not independently induce food allergies. We also found that combinations, such as 'crab-shrimp', 'squid-shrimp', 'squid-crab', 'chicken-beef', and 'salmon-mackerel' had strong associations.

  8. Identification of tropomyosin and arginine kinase as major allergens of Portunus pelagicus (blue swimming crab).

    PubMed

    Rosmilah, M; Shahnaz, M; Zailatul, H M Y; Noormalin, A; Normilah, I

    2012-09-01

    Crab is an important source of food allergen. Tropomyosin represents the main crab allergen and is responsible for IgE cross-reactivity between various species of crustaceans. Recently, other new crab allergens including arginine kinase have been identified. However, information on allergens of the local Portunidcrab is not available. Thus, the aim of this study was to identify the major allergens of Portunus pelagicus (blue swimming crab) using the allergenomics approach. Raw and cooked extracts of the crab were prepared from the crab meat. Protein profile and IgE binding pattern were demonstrated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting using sera from 30 patients with crab allergy. The major allergens of the crab were then identified by two-dimensional electrophoresis (2-DE), followed by mass spectrometry analysis of the peptide digests. The SDS-PAGE of raw extract revealed approximately 20 protein fractions over a wide molecular weight range, while cooked extract demonstrated fewer protein bands. The raw extract also demonstrated a higher number of IgE reactive bands than the cooked extract. A heat-resistant protein of 36 kDa has been identified as the major allergen in both raw and cooked extracts. In addition, a heat-sensitive protein of 41 kDa was also recognized as a major allergen in raw crab. The 2-DE gel profile of the raw extract demonstrated about >100 distinct proteins spots and immunoblotting of the 2-DE profile demonstrated at least 12 different major IgE reactive spots with molecular masses between 13 to 250 kDa and isoelectric point (pI) values ranging from 4.0 to 7.0. The 36 and 41 kDa proteins were identified as the crab tropomyosin and arginine kinase, respectively by mass spectrometry. Therefore, this study confirmed that tropomyosin and arginine kinase are the major allergens of the local Portunid crab, P. pelagicus.

  9. Characterization of a new oriental-mustard (Brassica juncea) allergen, Bra j IE: detection of an allergenic epitope.

    PubMed Central

    Monsalve, R I; Gonzalez de la Peña, M A; Menendez-Arias, L; Lopez-Otin, C; Villalba, M; Rodriguez, R

    1993-01-01

    Bra j IE, a major allergen from oriental-mustard (Brassica juncea) seeds, has been isolated and characterized. Its primary structure has been elucidated. This protein is composed of two chains (37 and 92 amino acids) linked by disulphide bridges. The amino acid sequence obtained is closely related to that previously determined for Sin a I, an allergen isolated from yellow mustard (Sinapis alba). A common epitope has been detected in the large chain of both Bra j IE and Sin a I by means of electroblotting and immunodetection with 2B3, which is a monoclonal antibody raised against the yellow-mustard allergen. A histidine residue of the large chain of both mustard allergens has been found to be essential for the recognition by 2B3 antibody. A synthetic multiantigenic peptide containing this His was recognized by 2B3 as well as by sera of mustard-hypersensitive individuals. Therefore this antigenic determinant must be involved in the allergenicity of these proteins. Images Figure 3 Figure 7 Figure 8 PMID:7688955

  10. Comparison of different extraction solutions for the analysis of allergens in hen's egg.

    PubMed

    Hildebrandt, S; Steinhart, H; Paschke, A

    2008-06-01

    An important requirement for the correct procedure of allergen analysis in hen's egg is to obtain complete and unaltered protein extracts. Besides the aim of a quantitative extraction of the allergens from the matrix, it is equally important not to alter their allergenic potential during the extraction process. This paper describes and compares six extraction solutions for the analysis of whole-egg proteins and allergens. These requirements were examined via protein determination according to Bradford [Bradford, M. M. (1976). Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Analytical Biochemistry, 72, 248-254] and Kjeldahl [Meyer, A. H. (2006). Lebensmittelrecht, Verlag C.H. Beck München, Stand: 1. February 2006, § 64, Lebensmittel- und Futtermittelgesetzbuch, Amtliche Sammlung von Untersuchungsmethoden, Nr. L 06.00-7] as well as the EAST-inhibition method. It could be demonstrated that the extraction with a urea solution (8M) led to significant interferences during the protein determination, and substantially reduced the allergenic potential of egg proteins. With all other extraction solutions adequate protein contents could be extracted. The highest protein content was achieved by the extraction with phosphate buffered saline followed by a Tween 20 solution, physiological saline, water, and acetate buffer. The results show that none of these extracts - except for the urea solution (8M) - was altered in its' allergenic potential.

  11. High-resolution crystal structure and IgE recognition of the major grass pollen allergen Phl p 3

    PubMed Central

    Devanaboyina, S. C.; Cornelius, C.; Lupinek, C.; Fauland, K.; Dall’Antonia, F.; Nandy, A.; Hagen, S.; Flicker, S.; Valenta, R.; Keller, W.

    2017-01-01

    Background Group 2 and 3 grass pollen allergens are major allergens with high allergenic activity and exhibit structural similarity with the C-terminal portion of major group 1 allergens. In this study, we aimed to determine the crystal structure of timothy grass pollen allergen, Phl p 3, and to study its IgE recognition and cross-reactivity with group 2 and group 1 allergens. Methods The three-dimensional structure of Phl p 3 was solved by X-ray crystallography and compared with the structures of group 1 and 2 grass pollen allergens. Cross-reactivity was studied using a human monoclonal antibody which inhibits allergic patients’ IgE binding and by IgE inhibition experiments with patients’ sera. Conformational Phl p 3 IgE epitopes were predicted with the algorithm SPADE, and Phl p 3 variants containing single point mutations in the predicted IgE binding sites were produced to analyze allergic patients’ IgE binding. Results Phl p 3 is a globular β-sandwich protein showing structural similarity to Phl p 2 and the Phl p 1–C-terminal domain. Phl p 3 showed IgE cross-reactivity with group 2 allergens but not with group 1 allergens. SPADE identified two conformational IgE epitope-containing areas, of which one overlaps with the epitope defined by the monoclonal antibody. The mutation of arginine 68 to alanine completely abolished binding of the blocking antibody. This mutation and a mutation of D13 in the predicted second IgE epitope area also reduced allergic patients’ IgE binding. Conclusion Group 3 and group 2 grass pollen allergens are cross-reactive allergens containing conformational IgE epitopes. They lack relevant IgE cross-reactivity with group 1 allergens and therefore need to be included in diagnostic tests and allergen-specific treatments in addition to group 1 allergens. PMID:25123586

  12. Pollen Allergens for Molecular Diagnosis.

    PubMed

    Pablos, Isabel; Wildner, Sabrina; Asam, Claudia; Wallner, Michael; Gadermaier, Gabriele

    2016-04-01

    Pollen allergens are one of the main causes of type I allergies affecting up to 30% of the population in industrialized countries. Climatic changes affect the duration and intensity of pollen seasons and may together with pollution contribute to increased incidences of respiratory allergy and asthma. Allergenic grasses, trees, and weeds often present similar habitats and flowering periods compromising clinical anamnesis. Molecule-based approaches enable distinction between genuine sensitization and clinically mostly irrelevant IgE cross-reactivity due to, e. g., panallergens or carbohydrate determinants. In addition, sensitivity as well as specificity can be improved and lead to identification of the primary sensitizing source which is particularly beneficial regarding polysensitized patients. This review gives an overview on relevant pollen allergens and their usefulness in daily practice. Appropriate allergy diagnosis is directly influencing decisions for therapeutic interventions, and thus, reliable biomarkers are pivotal when considering allergen immunotherapy in the context of precision medicine.

  13. Immunochemical Characterization of Acacia Pollen Allergens and Evaluation of Cross-Reactivity Pattern with the Common Allergenic Pollens

    PubMed Central

    Shamsbiranvand, Mohammad-Hosein; Khodadadi, Ali; Assarehzadegan, Mohammad-Ali; Borsi, Seyed Hamid; Amini, Akram

    2014-01-01

    Pollen from the Acacia has been reported as an important source of pollinosis in tropical and subtropical regions of the world. The aim of this study was to characterize the IgE binding protein of Acacia farnesiana pollen extract and evaluate cross-reactivity with the most allergenic pollens. In this study, pollen extract was fractionated by SDS-PAGE and the allergenic profile was determined by IgE-immunoblotting and specific ELISA using forty-two Acacia allergic patients. Potential cross-reactivity among Acacia and selected allergenic plants was evaluated with ELISA and immunoblotting inhibition experiments. There were several resolved protein fractions on SDS-PAGE which ranged from 12 to 85 kDa. Several allergenic protein bands with molecular weights approximately between 12 and 85 kDa were recognized by IgE-specific antibodies from Acacia allergic patients in the immunoblot assay. The inhibition by the Prosopis juliflora pollen extract was more than those by other pollen extracts. Moreover, the wheal diameters generated by the Acacia pollen extract were highly correlated with those of P. juliflora pollen extracts. The findings suggest that several proteins such as 15, 23, 45, and 50 kDa proteins could be used as diagnostic and therapeutic reagents for patients allergic to A. farnesiana and P. juliflora. PMID:24949020

  14. Label-free Protein Detection Based on the Heat-Transfer Method--A Case Study with the Peanut Allergen Ara h 1 and Aptamer-Based Synthetic Receptors.

    PubMed

    Peeters, Marloes; van Grinsven, Bart; Cleij, Thomas J; Jiménez-Monroy, Kathia Lorena; Cornelis, Peter; Pérez-Ruiz, Elena; Wackers, Gideon; Thoelen, Ronald; De Ceuninck, Ward; Lammertyn, Jeroen; Wagner, Patrick

    2015-05-20

    Aptamers are an emerging class of molecules that, because of the development of the systematic evolution of ligands by exponential enrichment (SELEX) process, can recognize virtually every target ranging from ions, to proteins, and even whole cells. Although there are many techniques capable of detecting template molecules with aptamer-based systems with high specificity and selectivity, they lack the possibility of integrating them into a compact and portable biosensor setup. Therefore, we will present the heat-transfer method (HTM) as an interesting alternative because this offers detection in a fast and low-cost manner and has the possibility of performing experiments with a fully integrated device. This concept has been demonstrated for a variety of applications including DNA mutation analysis and screening of cancer cells. To the best our knowledge, this is the first report on HTM-based detection of proteins, in this case specifically with aptamer-type receptors. For proof-of-principle purposes, measurements will be performed with the peanut allergen Ara h 1 and results indicate detection limits in the lower nanomolar regime in buffer liquid. As a first proof-of-application, spiked Ara h 1 solutions will be studied in a food matrix of dissolved peanut butter. Reference experiments with the quartz-crystal microbalance will allow for an estimate of the areal density of aptamer molecules on the sensor-chip surface.

  15. Alternaria alternata allergens: Markers of exposure, phylogeny and risk of fungi-induced respiratory allergy.

    PubMed

    Gabriel, Marta F; Postigo, Idoia; Tomaz, Cândida T; Martínez, Jorge

    2016-01-01

    Alternaria alternata spores are considered a well-known biological contaminant and a very common potent aeroallergen source that is found in environmental samples. The most intense exposure to A. alternata allergens is likely to occur outdoors; however, Alternaria and other allergenic fungi can colonize in indoor environments and thereby increase the fungal aeroallergen exposure levels. A consequence of human exposure to fungal aeroallergens, sensitization to A. alternata, has been unequivocally associated with increased asthma severity. Among allergenic proteins described in this fungal specie, the major allergen, Alt a 1, has been reported as the main elicitor of airborne allergies in patients affected by a mold allergy and considered a marker of primary sensitization to A. alternata. Moreover, A. alternata sensitization seems to be a triggering factor in the development of poly-sensitization, most likely because of the capability of A. alternata to produce, in addition to Alt a 1, a broad and complex array of cross-reactive allergens that present homologs in several other allergenic sources. The study and understanding of A. alternata allergen information may be the key to explaining why sensitization to A. alternata is a risk factor for asthma and also why the severity of asthma is associated to this mold. Compared to other common environmental allergenic sources, such as pollens and dust mites, fungi are reported to be neglected and underestimated. The rise of the A. alternata allergy has enabled more research into the role of this fungal specie and its allergenic components in the induction of IgE-mediated respiratory diseases. Indeed, recent research on the identification and characterization of A. alternata allergens has allowed for the consideration of new perspectives in the categorization of allergenic molds, assessment of exposure and diagnosis of fungi-induced allergies.

  16. Two new types of allergens from the cockroach, Periplaneta americana.

    PubMed

    Fang, Y; Long, C; Bai, X; Liu, W; Rong, M; Lai, R; An, S

    2015-12-01

    Periplaneta americana cockroach is an important source of inhalant indoor allergen resource, and there are more than twenty IgE-binding components identified in P. americana, but only nine allergens were characterized. Our knowledge about cockroach allergens remains poor. In this work, two novel allergen proteins Per a 11 (alpha-amylase) and Per a 12 (chitinase) with molecular weight around 55 and 45 kDa, respectively, were purified and characterized from the midgut of cockroaches. Their primary sequences were determined by Edman degradation, mass spectrometry, and cDNA cloning. Sera from 39 and 30 of 47 (83.0% and 63.8%) patients reacted to Per a 11 and Per a 12 on immunoblots, respectively. The allergenicity of Per a 11 and Per a 12 was further confirmed by competitive ELISA, basophil activation test (BAT), and skin prick test (SPT). They appear to be of importance for the allergic reactions induced by cockroach and have a potential for component-based diagnosis of allergy.

  17. Enzymatic activity of allergenic house dust and storage mite extracts.

    PubMed

    Morales, Maria; Iraola, Víctor; Leonor, Jose R; Carnés, Jerónimo

    2013-01-01

    Proteases are involved in the pathogenicity of allergy, increasing epithelial permeability and acting as adjuvants. Enzymatic activity is therefore important for the allergenicity of an extract and also affects its stability and safety. However, the enzymatic activity of extracts is not usually evaluated. The objective of this study was to evaluate the enzymatic activity of the most allergenic mite extracts and to investigate their allergenic properties. Extracts from nine allergenic mite species (Dermatophagoides pteronyssinus, Dermatophagoides farinae Hughes, Euroglyphus maynei, Lepidoglyphus destructor, Tyrophagus putrescentiae (Schrank), Glycyphagus domesticus (DeGeer), Acarus siro L., Chortoglyphus arcuatus, and Blomia tropicalis) were characterized. Protein and allergen profiles were characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and western-blot, respectively. Gelatinolytic activity was evaluated with a zymogram and the activity of other enzymes (cysteine, serine proteases, and esterases) was evaluated individually or with the API-ZYM system. The main differences in protease activity were found between house dust mites and storage mites. House dust mites presented higher cysteine protease activity while storage mites presented higher serine protease activity. These differences are in line with their trophic specialization. A wide range of different activities was found in all the extracts analyzed, reflecting the fact that the extracts preserve the activity of many enzymes, this being necessary for a correct diagnosis. However, enzymes may act as adjuvants and, therefore, could lead to undesirable effects in immunotherapies, making this activity not suitable for treatment products. Modified extracts with lower enzymatic activity could be more appropriate for immunotherapy.

  18. Almond allergens: molecular characterization, detection, and clinical relevance.

    PubMed

    Costa, Joana; Mafra, Isabel; Carrapatoso, Isabel; Oliveira, Maria Beatriz P P

    2012-02-15

    Almond ( Prunus dulcis ) has been widely used in all sorts of food products (bakery, pastry, snacks), mostly due to its pleasant flavor and health benefits. However, it is also classified as a potential allergenic seed known to be responsible for triggering several mild to life-threatening immune reactions in sensitized and allergic individuals. Presently, eight groups of allergenic proteins have been identified and characterized in almond, namely, PR-10 (Pru du 1), TLP (Pru du 2), prolamins (Pru du 2S albumin, Pru du 3), profilins (Pru du 4), 60sRP (Pru du 5), and cupin (Pru du 6, Pru du γ-conglutin), although only a few of them have been tested for reactivity with almond-allergic sera. To protect sensitized individuals, labeling regulations have been implemented for foods containing potential allergenic ingredients, impelling the development of adequate analytical methods. This work aims to present an updated and critical overview of the molecular characterization and clinical relevance of almond allergens, as well as review the main methodologies used to detect and quantitate food allergens with special emphasis on almond.

  19. Ole e 13 is the unique food allergen in olive: Structure-functional, substrates docking, and molecular allergenicity comparative analysis.

    PubMed

    Jimenez-Lopez, J C; Robles-Bolivar, P; Lopez-Valverde, F J; Lima-Cabello, E; Kotchoni, S O; Alché, J D

    2016-05-01

    Thaumatin-like proteins (TLPs) are enzymes with important functions in pathogens defense and in the response to biotic and abiotic stresses. Last identified olive allergen (Ole e 13) is a TLP, which may also importantly contribute to food allergy and cross-allergenicity to pollen allergen proteins. The goals of this study are the characterization of the structural-functionality of Ole e 13 with a focus in its catalytic mechanism, and its molecular allergenicity by extensive analysis using different molecular computer-aided approaches covering a) functional-regulatory motifs, b) comparative study of linear sequence, 2-D and 3D structural homology modeling, c) molecular docking with two different β-D-glucans, d) conservational and evolutionary analysis, e) catalytic mechanism modeling, and f) IgE-binding, B- and T-cell epitopes identification and comparison to other allergenic TLPs. Sequence comparison, structure-based features, and phylogenetic analysis identified Ole e 13 as a thaumatin-like protein. 3D structural characterization revealed a conserved overall folding among plants TLPs, with mayor differences in the acidic (catalytic) cleft. Molecular docking analysis using two β-(1,3)-glucans allowed to identify fundamental residues involved in the endo-1,3-β-glucanase activity, and defining E84 as one of the conserved residues of the TLPs responsible of the nucleophilic attack to initiate the enzymatic reaction and D107 as proton donor, thus proposing a catalytic mechanism for Ole e 13. Identification of IgE-binding, B- and T-cell epitopes may help designing strategies to improve diagnosis and immunotherapy to food allergy and cross-allergenic pollen TLPs.

  20. Characterization of major allergens of royal jelly Apis mellifera.

    PubMed

    Rosmilah, M; Shahnaz, M; Patel, G; Lock, J; Rahman, D; Masita, A; Noormalin, A

    2008-12-01

    Royal jelly is widely consumed in the community and has perceived benefits ranging from promoting growth in children and improvement of general health status to enhancement of longevity for the elderly. However, royal jelly consumption has been linked to contact dermatitis, acute asthma, anaphylaxis and death. High prevalence of positive skin tests to royal jelly have been reported among atopic populations in countries with a high rate of royal jelly consumption. The present study is aimed to identify the major allergens of royal jelly. Royal jelly extract was separated by sodium dodecyl polyacrylamide gel electrophoresis (SDS-PAGE) and 2-dimensional electrophoresis (2-D). Immunoblotting of the SDS-PAGE and 2-D profiles were performed to identify the allergenic spots. Spots were then excised from the 2-D gel, digested with trypsin and analyzed by mass spectrometry. The SDS-PAGE of royal jelly extract revealed 18 bands between 10 to 167 kD. Western blot of the fractionated proteins detected 15 IgE-binding bands between 14 to 127 kD with seven major allergens of 32, 40, 42, 49, 55, 60 and 67 kD using serum from 53 subjects with royal jelly allergy. The 2-D gel fractionated the royal jelly proteins to more than 50 different protein spots. Out of these, 30 spots demonstrated specific IgE affinity to the sera tested. Eight spots of the major royal jelly allergens were selected for mass-spectrometry analysis. Digested tryptic peptides of the spots were compared to the amino acid sequence search in protein databases which identified the fragments of royal jelly homologus to major royal jelly protein 1 (MRJ1) and major royal jelly protein 2 (MRJ2). In conclusion, the major allergens of royal jelly are MRJ1 and MRJ2 in our patients' population.

  1. Starch and natural rubber allergen interaction in the production of latex gloves: a hand-held aerosol.

    PubMed

    Swanson, Mark C; Ramalingam, Mohan

    2002-08-01

    Starch powders continue to be used as donning agents on natural rubber (NR) gloves. NR aeroallergens are an important aspect of human sensitivity to latex. Asthma, upper airway, and ocular symptoms are associated with these airborne proteins. These bioaerosols feature starch as the carrier. The association of NR allergen and starch is demonstrated in NR glove manufacturing, in laboratory simulation, and as occupational aeroallergens in health care environments. Four aspects of latex allergen affinity for starch powders were examined by using a competitive IgE immunoassay for NR latex. Allergen content was assessed in finished gloves before and after powder process points and related to the allergen content of the raw latex source material. In another manufacturing process, allergen uptake by two different starch powders was quantified. NR allergen affinity for the starches was also determined under laboratory conditions. Finally, NR aeroallergens carried by starch powder in production facilities were measured. This article outlines the sources, mechanisms, and conditions for NR allergens to interact with two different starches. The quantitative airborne allergen data are used to compare and contrast various occupational indices of NR allergen exposure. Powdered NR gloves continue to cause concern; however, the technology used for contemporary glove powder applications may be advanced and improved enough to consistently produce powdered gloves with a low allergen content.

  2. Cleaning and other control and validation strategies to prevent allergen cross-contact in food-processing operations.

    PubMed

    Jackson, Lauren S; Al-Taher, Fadwa M; Moorman, Mark; DeVries, Jonathan W; Tippett, Roger; Swanson, Katherine M J; Fu, Tong-Jen; Salter, Robert; Dunaif, George; Estes, Susan; Albillos, Silvia; Gendel, Steven M

    2008-02-01

    Food allergies affect an estimated 10 to 12 million people in the United States. Some of these individuals can develop life-threatening allergic reactions when exposed to allergenic proteins. At present, the only successful method to manage food allergies is to avoid foods containing allergens. Consumers with food allergies rely on food labels to disclose the presence of allergenic ingredients. However, undeclared allergens can be inadvertently introduced into a food via cross-contact during manufacturing. Although allergen removal through cleaning of shared equipment or processing lines has been identified as one of the critical points for effective allergen control, there is little published information on the effectiveness of cleaning procedures for removing allergenic materials from processing equipment. There also is no consensus on how to validate or verify the efficacy of cleaning procedures. The objectives of this review were (i) to study the incidence and cause of allergen cross-contact, (ii) to assess the science upon which the cleaning of food contact surfaces is based, (iii) to identify best practices for cleaning allergenic foods from food contact surfaces in wet and dry manufacturing environments, and (iv) to present best practices for validating and verifying the efficacy of allergen cleaning protocols.

  3. Crystal structure of peanut (Arachis hypogaea) allergen Ara h 5

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Profilins from numerous species are known to be allergens, including food allergens, such as peanut (Arachis hypogaea) allergen Ara h 5, and pollen allergens, such as birch allergen Bet v 2. Patients with pollen allergy can also cross-react to peanut. Structural characterization of allergens will al...

  4. Maillard reaction and enzymatic browning affect the allergenicity of Pru av 1, the major allergen from cherry (Prunus avium).

    PubMed

    Gruber, Patrick; Vieths, Stefan; Wangorsch, Andrea; Nerkamp, Jörg; Hofmann, Thomas

    2004-06-16

    The influence of thermal processing and nonenymatic as well as polyphenoloxidase-catalyzed browning reaction on the allergenicity of the major cherry allergen Pru av 1 was investigated. After thermal treatment of the recombinant protein rPru av 1 in the absence or presence of carbohydrates, SDS-PAGE, enzyme allergosorbent tests, and inhibition assays revealed that thermal treatment of rPru av 1 alone did not show any influence on the IgE-binding activity of the protein at least for 30 min, thus correlating well with the refolding of the allergen in buffer solution as demonstrated by CD spectroscopic experiments. Incubation of the protein with starch and maltose also showed no effect on IgE-binding activity, whereas reaction with glucose and ribose and, even more pronounced, with the carbohydrate breakdown products glyceraldehyde and glyoxal induced a strong decrease of the IgE-binding capacity of rPru av 1. In the second part of the study, the effect of polyphenoloxidase-catalyzed oxidation of polyphenols on food allergen activity was investigated. Incubation of rPru av 1 with epicatechin in the presence of tyrosinase led to a drastic decrease in IgE-binding activity of the protein. Variations of the phenolic compound revealed caffeic acid and epicatechin as the most active inhibitors of the IgE-binding activity of rPru av 1, followed by catechin and gallic acid, and, finally, by quercetin and rutin, showing significantly lower activity. On the basis of these data, reactive intermediates formed during thermal carbohydrate degradation as well as during enzymatic polyphenol oxidation are suggested as the active chemical species responsible for modifying nucleophilic amino acid side chains of proteins, thus inducing an irreversible change in the tertiary structure of the protein and resulting in a loss of conformational epitopes of the allergen.

  5. Assessment of endogenous allergenicity of genetically modified plants exemplified by soybean - Where do we stand?

    PubMed

    Selb, R; Wal, J M; Moreno, F J; Lovik, M; Mills, C; Hoffmann-Sommergruber, K; Fernandez, A

    2017-03-01

    According to EU regulation, genetically modified (GM) plants considered to be allergenic have to be assessed concerning their endogenous allergens before placement on the EU market, in line with the international standards described in Codex Alimentarius. Under such premises, a quantitative relevant increase in allergens might occur in GM plants as an unintended effect compared with conventionally produced crops, which could pose a risk to consumers. Currently, data showing a connection between dose and allergic sensitisation are scarce since the pathophysiological mechanisms of sensitisation are insufficiently understood. In contrast, data on population dose-distribution relationships acquired by oral food challenge are available showing a connection between quantity of allergenic protein consumed and the population of allergic individuals experiencing reactions. Soybean is currently the only recognised allergenic GM food by law for which EFSA has received applications and was therefore taken as an example for defining an assessment strategy. Identification of potential allergens, methodology for quantification as well as risk assessment considerations, are discussed. A strategy is proposed for the identification, assessment and evaluation of potential hazards/risks concerning endogenous allergenicity in food derived from plants developed by biotechnology. This approach could be expanded to other allergenic foods in the future, whenever required.

  6. Suggestions for the assessment of the allergenic potential of genetically modified organisms.

    PubMed

    Spök, Armin; Gaugitsch, Helmut; Laffer, Sylvia; Pauli, Gabrielle; Saito, Hirohisa; Sampson, Hugh; Sibanda, Elopy; Thomas, Wayne; van Hage, Marianne; Valenta, Rudolf

    2005-06-01

    The prevalence of allergic diseases has been increasing continuously and, accordingly, there is a great desire to evaluate the allergenic potential of components in our daily environment (e.g., food). Although there is almost no scientific evidence that genetically modified organisms (GMOs) exhibit increased allergenicity compared with the corresponding wild type significant concerns have been raised regarding this matter. In principle, it is possible that the allergenic potential of GMOs may be increased due to the introduction of potential foreign allergens, to potentially upregulated expression of allergenic components caused by the modification of the wild type organism or to different means of exposure. According to the current practice, the proteins to be introduced into a GMO are evaluated for their physiochemical properties, sequence homology with known allergens and occasionally regarding their allergenic activity. We discuss why these current rules and procedures cannot predict or exclude the allergenicity of a given GMO with certainty. As an alternative we suggest to improve the current evaluation by an experimental comparison of the wild-type organism with the whole GMO regarding their potential to elicit reactions in allergic individuals and to induce de novo sensitizations. We also recommend that the suggested assessment procedures be equally applied to GMOs as well as to natural cultivars in order to establish effective measures for allergy prevention.

  7. Investigating cockroach allergens: aiming to improve diagnosis and treatment of cockroach allergic patients

    PubMed Central

    Pomés, Anna; Arruda, L. Karla

    2013-01-01

    Cockroach allergy is an important health problem associated with the development of asthma, as a consequence of chronic exposure to low levels of allergens in susceptible individuals. In the last 20 years, progress in understanding the disease has been possible, thanks to the identification and molecular cloning of cockroach allergens and their expression as recombinant proteins. Assays for assessment of environmental allergen exposure have been developed and used to measure Bla g 1 and Bla g 2, as markers of cockroach exposure. IgE antibodies to cockroach extracts and to specific purified allergens have been measured to assess sensitization and analyze association with exposure and disease. With the development of the field of structural biology and the expression of recombinant cockroach allergens, insights into allergen structure, function, epitope mapping and allergen-antibody interactions have provided further understanding of mechanisms of cockroach allergic disease at the molecular level. This information will contribute to develop new approaches to allergen avoidance and to improve diagnosis and therapy of cockroach allergy. PMID:23916425

  8. Investigating cockroach allergens: aiming to improve diagnosis and treatment of cockroach allergic patients.

    PubMed

    Pomés, Anna; Arruda, Luisa Karla

    2014-03-01

    Cockroach allergy is an important health problem associated with the development of asthma, as a consequence of chronic exposure to low levels of allergens in susceptible individuals. In the last 20 years, progress in understanding the disease has been possible, thanks to the identification and molecular cloning of cockroach allergens and their expression as recombinant proteins. Assays for assessment of environmental allergen exposure have been developed and used to measure Bla g 1 and Bla g 2, as markers of cockroach exposure. IgE antibodies to cockroach extracts and to specific purified allergens have been measured to assess sensitization and analyze association with exposure and disease. With the development of the field of structural biology and the expression of recombinant cockroach allergens, insights into allergen structure, function, epitope mapping and allergen-antibody interactions have provided further understanding of mechanisms of cockroach allergic disease at the molecular level. This information will contribute to develop new approaches to allergen avoidance and to improve diagnosis and therapy of cockroach allergy.

  9. Changes in Atmospheric CO2 Influence the Allergenicity of Aspergillus fumigatus fungal spore

    NASA Astrophysics Data System (ADS)

    Lang-Yona, N.; Levin, Y.; Dannemoller, K. C.; Yarden, O.; Peccia, J.; Rudich, Y.

    2013-12-01

    Increased allergic susceptibility has been documented without a comprehensive understanding for its causes. Therefore understanding trends and mechanisms of allergy inducing agents is essential. In this study we investigated whether elevated atmospheric CO2 levels can affect the allergenicity of Aspergillus fumigatus, a common allergenic fungal species. Both direct exposure to changing CO2 levels during fungal growth, and indirect exposure through changes in the C:N ratios in the growth media were inspected. We determined the allergenicity of the spores through two types of immunoassays, accompanied with genes expression analysis, and proteins relative quantification. We show that fungi grown under present day CO2 levels (392 ppm) exhibit 8.5 and 3.5 fold higher allergenicity compared to fungi grown at preindustrial (280 ppm) and double (560 ppm) CO2 levels, respectively. A corresponding trend is observed in the expression of genes encoding for known allergenic proteins and in the major allergen Asp f1 concentrations, possibly due to physiological changes such as respiration rates and the nitrogen content of the fungus, influenced by the CO2 concentrations. Increased carbon and nitrogen levels in the growth medium also lead to a significant increase in the allergenicity, for which we propose two different biological mechanisms. We suggest that climatic changes such as increasing atmospheric CO2 levels and changes in the fungal growth medium may impact the ability of allergenic fungi such as Aspergillus fumigatus to induce allergies. The effect of changing CO2 concentrations on the total allergenicity per 10^7 spores of A. fumigatus (A), the major allergen Asp f1 concentration in ng per 10^7 spores (B), and the gene expression by RT-PCR (C). The error bars represent the standard error of the mean.

  10. Allergens in celery and zucchini.

    PubMed

    Vieths, Stefan; Lüttkopf, D; Reindl, J; Anliker, M D; Wüthrich, B; Ballmer-Weber, B K

    2002-01-01

    The aim of this study was to confirm allergy to celery tuber and to zucchini, for the first time, by DBPCFC, and to identify the allergens recognized by IgE from DBPCFC-positive patients. Therefore, raw vegetables were hidden in a broccoli drink, and a DBPCFC-procedure was developed that consisted of a spit and swallow protocol, making sure that the procedure was safe for the patients and that reactions strictly localized to the oral cavity as well as systemic reactions could be reproduced by DBPCFC. The allergens in celery and zucchini extract were identified by immunoblot inhibition using allergen extracts, recombinant allergens and purified N-glycans as inhibitors. Celery allergy was confirmed in 69% (22/32) of subjects with a positive case history. Four subjects with a history of allergic reactions to zucchini had a positive DBPCFC to this vegetable. During DBPCFC, systemic reactions were provoked in 50% (11/22) of the patients to celery, and in 3/4 of the zucchini-allergic patients. The Bet v 1-related major celery allergen was detected by IgE of 59% (13/22) of the patients. Cross-reactive carbohydrate epitopes (CCD) bound IgE of 55% (12/22) of the celery-allergic patients and in 2/4 of the subjects with zucchini allergy. Profilin was a food allergen in celery in 23% (5/22) and in zucchini in 2/4 of the cases. A zucchini-specific allergen was detected by IgE from one patient. We conclude that ubiquitous cross-reactive structures are important in allergy to both, celery and zucchini, and that a specific association to birch pollen allergy exists in allergy to celery (mediated by Api g 1), but not in zucchini allergy.

  11. Analyzing pepsin degradation assay conditions used for allergenicity assessments to ensure that pepsin susceptible and pepsin resistant dietary proteins are distinguishable

    PubMed Central

    Edrington, Thomas C.; Storrs, S. Bradley; Crowley, Kathleen S.; Ward, Jason M.; Lee, Thomas C.; Liu, Zi L.; Li, Bin; Glenn, Kevin C.

    2017-01-01

    The susceptibility of a dietary protein to proteolytic degradation by digestive enzymes, such as gastric pepsin, provides information on the likelihood of systemic exposure to a structurally intact and biologically active macromolecule, thus informing on the safety of proteins for human and animal consumption. Therefore, the purpose of standardized in vitro degradation studies that are performed during protein safety assessments is to distinguish whether proteins of interest are susceptible or resistant to pepsin degradation via a study design that enables study-to-study comparison. Attempting to assess pepsin degradation under a wide-range of possible physiological conditions poses a problem because of the lack of robust and consistent data collected under a large-range of sub-optimal conditions, which undermines the needs to harmonize in vitro degradation conditions. This report systematically compares the effects of pH, incubation time, and pepsin-to-substrate protein ratio on the relative degradation of five dietary proteins: three pepsin susceptible proteins [ribulose 1,5-bisphosphate carboxylase-oxygenase (Rubisco), horseradish peroxidase (HRP), hemoglobin (Hb)], and two pepsin resistant proteins [lipid transfer protein (LTP) and soybean trypsin inhibitor (STI)]. The results indicate that proteins susceptible to pepsin degradation are readily distinguishable from pepsin-resistant proteins when the reaction conditions are within the well-characterized optima for pepsin. The current standardized in vitro pepsin resistant assay with low pH and high pepsin-to-substrate ratio fits this purpose. Using non-optimal pH and/or pepsin-to-substrate protein ratios resulted in susceptible proteins no longer being reliably degraded by this stomach enzyme, which compromises the ability of this in vitro assay to distinguish between resistant and susceptible proteins and, therefore, no longer providing useful data to an overall weight-of-evidence approach to assessing safety

  12. Analyzing pepsin degradation assay conditions used for allergenicity assessments to ensure that pepsin susceptible and pepsin resistant dietary proteins are distinguishable.

    PubMed

    Wang, Rong; Edrington, Thomas C; Storrs, S Bradley; Crowley, Kathleen S; Ward, Jason M; Lee, Thomas C; Liu, Zi L; Li, Bin; Glenn, Kevin C

    2017-01-01

    The susceptibility of a dietary protein to proteolytic degradation by digestive enzymes, such as gastric pepsin, provides information on the likelihood of systemic exposure to a structurally intact and biologically active macromolecule, thus informing on the safety of proteins for human and animal consumption. Therefore, the purpose of standardized in vitro degradation studies that are performed during protein safety assessments is to distinguish whether proteins of interest are susceptible or resistant to pepsin degradation via a study design that enables study-to-study comparison. Attempting to assess pepsin degradation under a wide-range of possible physiological conditions poses a problem because of the lack of robust and consistent data collected under a large-range of sub-optimal conditions, which undermines the needs to harmonize in vitro degradation conditions. This report systematically compares the effects of pH, incubation time, and pepsin-to-substrate protein ratio on the relative degradation of five dietary proteins: three pepsin susceptible proteins [ribulose 1,5-bisphosphate carboxylase-oxygenase (Rubisco), horseradish peroxidase (HRP), hemoglobin (Hb)], and two pepsin resistant proteins [lipid transfer protein (LTP) and soybean trypsin inhibitor (STI)]. The results indicate that proteins susceptible to pepsin degradation are readily distinguishable from pepsin-resistant proteins when the reaction conditions are within the well-characterized optima for pepsin. The current standardized in vitro pepsin resistant assay with low pH and high pepsin-to-substrate ratio fits this purpose. Using non-optimal pH and/or pepsin-to-substrate protein ratios resulted in susceptible proteins no longer being reliably degraded by this stomach enzyme, which compromises the ability of this in vitro assay to distinguish between resistant and susceptible proteins and, therefore, no longer providing useful data to an overall weight-of-evidence approach to assessing safety

  13. Understanding allergic asthma from allergen inhalation tests

    PubMed Central

    Cockcroft, Donald W; Hargreave, Fredrick E; O’Byrne, Paul M; Boulet, Louis-Philippe

    2007-01-01

    The allergen challenge has evolved, in less than 150 years, from a crude tool used to document the etiology of allergen-induced disease to a well-controlled tool used today to investigate the pathophysiology and pharmacotherapy of asthma. Highlights of the authors’ involvement with the allergen challenge include confirmation of the immunoglobulin E-dependence of the late asthmatic response, importance of (nonallergic) airway hyper-responsiveness as a determinant of the airway response to allergen, identification of allergen-induced increase in airway hyper-responsiveness, documentation of beta2-agonist-induced increase in airway response to allergen (including eosinophilic inflammation), advances in understanding the pathophysiology and kinetics of allergen-induced airway responses, and development of a muticentre clinical trial group devoted to using the allergen challenge for investigating promising new therapeutic strategies for asthma. PMID:17948142

  14. Improving Marine Corps Assignment of SDAP Levels

    DTIC Science & Technology

    2013-03-01

    1304.27 ......................................6 3. Department of Defense Financial Management Regulation 7000.14R, Volume 7...CSO Critical Skills Operators CT Counter-Terrorism DA Direct Action DoD Department of Defense DODFMR Department of Defense Financial ...Marine’s decision to volunteer for a SDA program, such as financial incentive, promotion opportunity, travel opportunity, and the desire for a

  15. Simple, Rapid, and Selective Isolation of 2S Albumins from Allergenic Seeds and Nuts.

    PubMed

    Hummel, Marlene; Wigger, Tina; Höper, Tessa; Westkamp, Imke; Brockmeyer, Jens

    2015-07-08

    The 2S albumins belong to the group of seed storage proteins present in different seeds and nuts. Due to their pronounced allergenic potential, which is often associated with severe allergic reactions, this protein family is of special interest in the field of allergen research. Here we present a simple, rapid, and selective method for the purification of 2S albumins directly from allergenic seeds and nuts. We systematically optimized the parameters "buffer system", "extraction temperature", "buffer molarity", and "pH " and were able to achieve 2S albumin purities of about 99% without further purification and demonstrate transferability of this method to nine different allergenic food matrices. Compared to conventional isolation routines, significant reduction of hands-on time and required laboratory equipment is achieved, but nonetheless higher protein yields are obtained. The presented method allows for the rapid purification of different 2S albumins including the corresponding isoforms from natural material.

  16. Production of an egg yolk antibody against Parietaria judaica 2 allergen.

    PubMed

    Alessandro, R; Gallo, A; Barranca, M; Principe, S; Taverna, S; Duro, G; Cassata, G; Becchi, M; Fontana, S; De Leo, G

    2009-08-01

    Specific antibodies are essential tools for studying proteins as well as for diagnostic research in biomedicine. The egg yolk of immunized chicken is an inexpensive source of high-quality polyclonal antibodies. The 12-kDa Parietaria judaica 2 allergen was expressed as a fusion protein and was used to immunize Leghorn chickens. In this paper, we show, using 2-dimensional gel electrophoresis and immunoblotting, that chicken antibodies raised against a recombinant allergen can be used to recognize similar proteins from a pollen raw extract. Allergen identity was confirmed by nanoLC-nanospray-tandem mass spectrometry analysis. Our data demonstrate for the first time that a synergistic combination of molecular biology, 2-dimensional PAGE, and use of nonmammalian antibodies represents a powerful tool for reliable identification of allergens.

  17. Household Arthropod Allergens in Korea

    PubMed Central

    Jeong, Kyoung Yong

    2009-01-01

    Arthropods are important in human health, which can transmit pathogens to humans, parasitize, or produce important allergens. Allergy prevalence becomes higher in Korea recently as well as other developed countries in contrast to a decrease of infectious diseases. Allergic diseases caused by household arthropods have increased dramatically during the last few decades since human beings spend more their time for indoor activities in modernized life style. Household arthropods are one of the most common causes of allergic diseases. Biological characterization of household arthropods and researches on their allergens will provide better understanding of the pathogenesis of allergic diseases and suggest new therapeutic ways. Therefore, studies on arthropods of allergenic importance can be considered one of the major research areas in medical arthropodology and parasitology. Here, the biology of several household arthropods, including house dust mites and cockroaches, the 2 most well known arthropods living indoor together with humans worldwide, and characteristics of their allergens, especially the research activities on these allergens performed in Korea, are summarized. PMID:19885330

  18. Mystery of the disappearing allergen: published allergens rarely seen again.

    PubMed

    Zapolanski, Tamar; Maibach, Howard I

    2008-01-01

    Patch testing is an important tool in the diagnosis of allergic contact dermatitis. Although this technique can be accurate, occasionally the results may be inconclusive. A previously positive result to an allergen may become negative upon repeat testing, and this may complicate the process of achieving a definitive diagnosis. There are some potential explanations for such inconsistencies, including the Excited Skin Syndrome, irritant reactions, a need to repeat the diagnostic algorithm, "rogue" reactions, and "contact allergy." These explanations should be taken into account when interpreting these results. However, further knowledge is needed to solve the mystery of an allergen that subsequently disappears.

  19. Stability of transgene expression in reduced allergen peanut (Arachis hypogaea L.) across multiple generations, and at different soil sulfur levels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transgenic peanut (Arachis hypogaea L.) containing a gene designed for RNA interference (RNAi), showed stable complete silencing of Ara h 2 and partial silencing of Ara h 6, two potent peanut allergens/proteins, along with minimal collateral changes to other allergens, Ara h 1 and Ara h 3, across th...

  20. Dermatophagoides pteronyssinus major allergen 1 activates the innate immune response of the fruit fly Drosophila melanogaster.

    PubMed

    Warmbold, Christine; Uliczka, Karin; Rus, Fiorentina; Suck, Roland; Petersen, Arnd; Silverman, Neal; Ulmer, Artur J; Heine, Holger; Roeder, Thomas

    2013-01-01

    Some allergens with relevant protease activity have the potential to directly interact with host structures. It remains to be elucidated whether this activity is relevant for developing their allergenic properties. The major goal of this study was to elucidate whether allergens with a strong protease activity directly interact with modules of the innate immune system, thereby inducing an immune response. We chose Drosophila melanogaster for our experiments to prevent the results from being influenced by the adaptive immune system and used the armamentarium of methods available for the fly to study the underlying mechanisms. We show that Dermatophagoides pteronyssinus major allergen 1 (Der p 1), the major allergen of the house dust mite, efficiently activates various facets of the Drosophila innate-immune system, including both epithelial and systemic responses. These responses depend on the immune deficiency (IMD) pathway via activation of the NF-κB transcription factor Relish. In addition, the major pathogen associated molecular pattern recognizing receptor of the IMD pathway, peptidoglycan recognition protein-LC, was necessary for this response. We showed that Der p 1, which has cysteine protease activity, cleaves the ectodomain of peptidoglycan recognition protein-LC and, thus, activates the IMD pathway to induce a profound immune response. We conclude that the innate immune response to this allergen-mediated proteolytic cleavage represents an ancient type of danger signaling that may be highly relevant for the primary allergenicity of compounds such as Der p 1.

  1. A flow-cytometry-based method for detecting simultaneously five allergens in a complex food matrix.

    PubMed

    Otto, Gaetan; Lamote, Amandine; Deckers, Elise; Dumont, Valery; Delahaut, Philippe; Scippo, Marie-Louise; Pleck, Jessica; Hillairet, Caroline; Gillard, Nathalie

    2016-12-01

    To avoid carry-over contamination with allergens, food manufacturers implement quality control strategies relying primarily on detection of allergenic proteins by ELISA. Although sensitive and specific, this method allowed detection of only one allergen per analysis and effective control policies were thus based on multiplying the number of tests done in order to cover the whole range of allergens. We present in this work an immunoassay for the simultaneous detection of milk, egg, peanut, mustard and crustaceans in cookies samples. The method was based on a combination of flow cytometry with competitive ELISA where microbeads were used as sorbent surface. The test was able to detect the presence of the five allergens with median inhibitory concentrations (IC50) ranging from 2.5 to 15 mg/kg according to the allergen to be detected. The lowest concentrations of contaminants inducing a significant difference of signal between non-contaminated controls and test samples were 2 mg/kg of peanut, 5 mg/kg of crustaceans, 5 mg/kg of milk, 5 mg/kg of mustard and 10 mg/kg of egg. Assay sensitivity was influenced by the concentration of primary antibodies added to the sample extract for the competition and by the concentration of allergenic proteins bound to the surface of the microbeads.

  2. Proteomics analysis in mature seed of four peanut cultivars using two-dimensional gel electrophoresis reveals distinct differential expression of storage, anti-nutritive, and allergenic proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protein profiles of total seed proteins isolated from mature seeds of four peanut cultivars, New Mexico Valencia C (NM Valencia C), Tamspan 90, Georgia Green, and NC-7, were studied using two-dimensional gel electrophoresis coupled with nano electrospray ionization liquid chromatography tandem mass ...

  3. Deciphering the roles of specific wheat grain proteins in flour functionality, allergenic potential and the response of the grain to the growth environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Among the wheat gluten proteins, the omega-5 gliadins show some of the most notable changes in response to post-anthesis fertilizer or high temperatures during grain development. These proteins are also associated with the serious food allergy wheat-dependent exercise-induced anaphylaxis (WDEIA). RN...

  4. Production and analysis of recombinant tree nut allergens.

    PubMed

    Willison, Leanna N; Sathe, Shridhar K; Roux, Kenneth H

    2014-03-01

    Allergic reactions to tree nuts are a growing global concern as the number of affected individuals continues to rise. Unlike some food allergies, tree nuts can cause severe reactions that persist throughout life. The tree nuts discussed in this review include those most commonly responsible for allergic reactions: cashew, almond, hazelnut, walnut, pecan, Brazil nut, pistachio, and chestnut. The native allergenic proteins derived from tree nuts are frequently difficult to isolate and purify and may not be adequately represented in aqueous nut protein extracts. Consequently, defined recombinant allergens have become useful reagents in a variety of immunoassays aimed at the diagnosis of tree nut allergy, assessing cross-reactivity between various nuts and other seeds, mapping of IgE binding epitopes, and analyzing the effects of the food matrix, food processing, and gastric digestion on allergenicity. This review describes the approaches that can be used for the production of recombinant tree nut allergens and addresses key issues associated with their production and downstream applications.

  5. Allergenic Characterization of 27-kDa Glycoprotein, a Novel Heat Stable Allergen, from the Pupa of Silkworm, Bombyx mori.

    PubMed

    Jeong, Kyoung Yong; Son, Mina; Lee, June Yong; Park, Kyung Hee; Lee, Jae-Hyun; Park, Jung-Won

    2016-01-01

    Boiled silkworm pupa is a traditional food in Asia, and patients with silkworm pupa food allergy are common in these regions. Still now only one allergen from silkworm, arginine kinase, has been identified. The purpose of this study was to identify novel food allergens in silkworm pupa by analyzing a protein extract after heat treatment. Heat treated extracts were examined by proteomic analysis. A 27-kDa glycoprotein was identified, expressed in Escherichia coli, and purified. IgE reactivity of the recombinant protein was investigated by ELISA. High molecular weight proteins (above 100 kDa) elicited increased IgE binding after heat treatment compared to that before heat treatment. The molecular identities of these proteins, however, could not be determined. IgE reactivity toward a 27-kDa glycoprotein was also increased after heating the protein extract. The recombinant protein was recognized by IgE antibodies from allergic subjects (33.3%). Glycation or aggregation of protein by heating may create new IgE binding epitopes. Heat stable allergens are shown to be important in silkworm allergy. Sensitization to the 27-kDa glycoprotein from silkworm may contribute to elevation of IgE to silkworm.

  6. New and emerging cosmetic allergens.

    PubMed

    Davies, Rosie F; Johnston, Graham A

    2011-01-01

    Human skin is exposed to a large variety of cosmetic allergens. Most allergic contact dermatitis occurs after exposure to fragrance, preservatives, and hair dyes. Such reactions can often be occult. As a result, a high index of suspicion is needed in assessing the patient with facial or cosmetic dermatitis. This contribution looks at why such a large number of chemicals are in everyday usage, at how dermatologists monitor trends in allergy to cosmetics, and at a number of new and emerging allergens to consider in the assessment of suspected cosmetic allergy.

  7. Application of phage peptide display technology for the study of food allergen epitopes.

    PubMed

    Chen, Xueni; Dreskin, Stephen C

    2016-12-20

    Phage peptide display technology has been used to identify IgE-binding mimotopes (mimics of natural epitopes) that mimic conformational epitopes. This approach is effective in the characterization of those epitopes that are important for eliciting IgE-mediated allergic responses by food allergens and those that are responsible for cross-reactivity among allergenic food proteins. Application of this technology will increase our understanding of the mechanisms whereby food allergens elicit allergic reactions, will facilitate the discovery of diagnostic reagents and may lead to mimotope-based immunotherapy.

  8. Periplaneta americana arginine kinase as a major cockroach allergen among Thai patients with major cockroach allergies.

    PubMed

    Sookrung, Nitat; Chaicumpa, Wanpen; Tungtrongchitr, Anchalee; Vichyanond, Pakit; Bunnag, Chaweewan; Ramasoota, Pongrama; Tongtawe, Pongsri; Sakolvaree, Yuwaporn; Tapchaisri, Pramuan

    2006-06-01

    Periplaneta americana is the predominant cockroach (CR) species and a major source of indoor allergens in Thailand. Nevertheless, data on the nature and molecular characteristics of its allergenic components are rare. We conducted this study to identify and characterize the P. americana allergenic protein. A random heptapeptide phage display library and monoclonal antibody (MAb) specific to a the P. americana component previously shown to be an allergenic molecule were used to identify the MAb-bound mimotope and its phylogenic distribution. Two-dimensional gel electrophoresis, liquid chromatography, mass spectrometry, peptide mass fingerprinting, and BLAST search were used to identify the P. americana protein containing the MAb-specific epitope. We studied the allergenicity of the native protein using sera of CR-allergic Thai patients in immunoassays. The mimotope peptide that bound to the MAb specific to P. americana was LTPCRNK. The peptide has an 83-100% identity with proteins of Anopheles gambiae, notch homolog scalloped wings of Lucilia cuprina, delta protein of Apis mellifera; neu5Ac synthase and tyrosine phosphatase of Drosophila melanogaster, and a putative protein of Drosophila pseudoobscura. This finding implies that the mimotope-containing molecule of P. americana is a pan-insect protein. The MAb-bound protein of P. americana was shown to be arginine kinase that reacted to IgE in the sera of all of the CR-allergic Thai patients by immunoblotting, implying its high allergenicity. In conclusion, our results revealed that P. americana arginine kinase is a pan-insect protein and a major CR allergen for CR-allergic Thai patients.

  9. Electrochemical Affinity Biosensors Based on Disposable Screen-Printed Electrodes for Detection of Food Allergens

    PubMed Central

    Vasilescu, Alina; Nunes, Gilvanda; Hayat, Akhtar; Latif, Usman; Marty, Jean-Louis

    2016-01-01

    Food allergens are proteins from nuts and tree nuts, fish, shellfish, wheat, soy, eggs or milk which trigger severe adverse reactions in the human body, involving IgE-type antibodies. Sensitive detection of allergens in a large variety of food matrices has become increasingly important considering the emergence of functional foods and new food manufacturing technologies. For example, proteins such as casein from milk or lysozyme and ovalbumin from eggs are sometimes used as fining agents in the wine industry. Nonetheless, allergen detection in processed foods is a challenging endeavor, as allergen proteins are degraded during food processing steps involving heating or fermentation. Detection of food allergens was primarily achieved via Enzyme-Linked Immuno Assay (ELISA) or by chromatographic methods. With the advent of biosensors, electrochemical affinity-based biosensors such as those incorporating antibodies and aptamers as biorecognition elements were also reported in the literature. In this review paper, we highlight the success achieved in the design of electrochemical affinity biosensors based on disposable screen-printed electrodes towards detection of protein allergens. We will discuss the analytical figures of merit for various disposable screen-printed affinity sensors in relation to methodologies employed for immobilization of bioreceptors on transducer surface. PMID:27827963

  10. Allergens of Arachis hypogaea and the effect of processing on their detection by ELISA

    PubMed Central

    Iqbal, Amjad; Shah, Farooq; Hamayun, Muhammad; Ahmad, Ayaz; Hussain, Anwar; Waqas, Muhammad; Kang, Sang-Mo; Lee, In-Jung

    2016-01-01

    Food allergies are an emerging public health problem in industrialized areas of the world. They represent a considerable health problem in these areas because of the relatively high number of reported cases. Usually, food allergens are proteins or glycoproteins with a molecular mass ranging from 10 to 70 kDa. Among the food allergies, peanut is accounted to be responsible for more than 50% of the food allergy fatalities. Threshold doses for peanut allergenic reactions have been found to range from as low as 100 µg to 1 g of peanut protein, which equal to 400 µg to 4 g peanut meal. Allergens from peanut are mainly seed storage proteins that are composed of conglutin, vicilin, and glycinin families. Several peanut proteins have been identified to induce allergic reactions, particularly Ara h 1–11. This review is mainly focused on different classes of peanut allergens, the effect of thermal and chemical treatment of peanut allergens on the IgY binding and detectability of these allergens by enzyme linked immunosorbent assay (ELISA) to provide knowledge for food industry. PMID:26931300

  11. Dermatophagoides farinae allergens diversity identification by proteomics.

    PubMed

    An, Su; Chen, Lingling; Long, Chengbo; Liu, Xiaoyu; Xu, Xuemei; Lu, Xingre; Rong, Mingqiang; Liu, Zhigang; Lai, Ren

    2013-07-01

    The most important indoor allergens for humans are house dust mites (HDM). Fourteen Dermatophagoides farinae allergens (Der f 1-3, 6, 7, 10, 11, 13-18, and 22) are reported although more than 30 allergens have been estimated in D. farinae. Seventeen allergens belonging to 12 different groups were identified by a procedure of proteomics combined with two-dimensional immunoblotting from D. farina extracts. Their sequences were determined by Edman degradation, mass spectrometry analysis, and cDNA cloning. Their allergenicities were assayed by enzyme-linked immunosorbent assay inhibition tests, immunoblots, basophil activation test, and skin prick tests. Eight of them are the first report as D. farinae allergens. The procedure of using a proteomic approach combined with a purely discovery approach using sera of patients with broad IgE reactivity profiles to mite allergens was an effective method to investigate a more complete repertoire of D. farinae allergens. The identification of eight new D. farinae allergens will be helpful for HDM allergy diagnosis and therapy, especially for patients without response for HDM major allergens. In addition, the current work significantly extendedthe repertoire of D. farinae allergens.

  12. Recent advances using rodent models for predicting human allergenicity

    SciTech Connect

    Knippels, Leon M.J. . E-mail: Knippels@voeding.tno.nl; Penninks, Andre H.

    2005-09-01

    The potential allergenicity of newly introduced proteins in genetically engineered foods has become an important safety evaluation issue. However, to evaluate the potential allergenicity and the potency of new proteins in our food, there are still no widely accepted and reliable test systems. The best-known allergy assessment proposal for foods derived from genetically engineered plants was the careful stepwise process presented in the so-called ILSI/IFBC decision tree. A revision of this decision tree strategy was proposed by a FAO/WHO expert consultation. As prediction of the sensitizing potential of the novel introduced protein based on animal testing was considered to be very important, animal models were introduced as one of the new test items, despite the fact that non of the currently studied models has been widely accepted and validated yet. In this paper, recent results are summarized of promising models developed in rat and mouse.

  13. Influence of cultivar and processing on cherry (Prunus avium) allergenicity.

    PubMed

    Primavesi, L; Brenna, O V; Pompei, C; Pravettoni, V; Farioli, L; Pastorello, E A

    2006-12-27

    Oral allergy syndrome is an immediate food allergic event that affects lips, mouth, and pharynx, is often triggered by fruits and vegetables, and may be associated with pollinosis. Here, we report on the allergenic pattern of different varieties of cherry (Prunus avium) and results obtained by applying several technological processes to the selected varieties. Whole cherries were submitted to chemical peeling, thermal treatment, and syruping processes, and the relative protein extracts were analyzed by in vitro (sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting analysis) and in vivo tests (skin prick test). Electrophoretic analyses demonstrated that there was no marked difference among cherry cultivars. Chemical peeling successfully removed Pru av 3, a lipid transfer protein (LTP) responsible for oral allergy syndrome in patients without pollinosis, leading to the industrial production of cherry hypoallergenic derivatives. Furthermore, the syruping process removed almost all allergenic proteins to whom patients with pollinosis are responsive. In vivo tests confirmed electrophoretic results.

  14. House Dust Mite Allergy in Korea: The Most Important Inhalant Allergen in Current and Future

    PubMed Central

    Jeong, Kyoung Yong; Park, Jung-Won

    2012-01-01

    The house-dust mite (HDM), commonly found in human dwellings, is an important source of inhalant and contact allergens. In this report, the importance of HDM allergy in Korea and the characteristics of allergens from dust mite are reviewed with an emphasis on investigations performed in Korea. In Korea, Dermatophagoides farinae is the dominant species of HDM, followed by D. pteronyssinus. Tyrophagus putrescentiae is also found in Korea, but its role in respiratory allergic disease in Korea is controversial. The relatively low densities of mite populations and concentrations of mite major allergens in dust samples from Korean homes, compared to westernized countries, are thought to reflect not only different climatic conditions, but also cultural differences, such as the use of 'ondol' under-floor heating systems in Korean houses. HDM are found in more than 90% of Korean houses, and the level of exposure to HDM is clinically significant. About 40%-60% of Korean patients suffering from respiratory allergies, and more than 40% of patients suffering from atopic dermatitis, are sensitized to HDM. Mite allergens can be summarized according to their inherent auto-adjuvant activities and/or their binding affinities to the adjuvant-like substances: proteolytic enzymes, lipid binding proteins, chitin binding proteins, and allergens not associated with adjuvant-like activity. In general, allergens with a strong adjuvant-like activity or adjuvant-binding activity elicit potent IgE reactivity. In Korea, Der f 2 is the most potent allergen, followed by Der f 1. Immune responses are modulated by the properties of the allergen itself and by the adjuvant-like substances that are concomitantly administered with the antigens. Characterization of allergenic molecules and elucidation of mechanisms by which adjuvant-like molecules modulate allergic reactions, not only in Korea but also worldwide, will provide valuable information on allergic diseases, and are necessary for the

  15. Allergen Microarray Indicates Pooideae Sensitization in Brazilian Grass Pollen Allergic Patients

    PubMed Central

    Moreira, Priscila Ferreira de Sousa; Gangl, Katharina; Vieira, Francisco de Assis Machado; Ynoue, Leandro Hideki; Linhart, Birgit; Flicker, Sabine; Fiebig, Helmut; Swoboda, Ines; Focke-Tejkl, Margarete; Taketomi, Ernesto Akio; Valenta, Rudolf; Niederberger, Verena

    2015-01-01

    Background Grass pollen, in particular from Lolium multiflorum is a major allergen source in temperate climate zones of Southern Brazil. The IgE sensitization profile of Brazilian grass pollen allergic patients to individual allergen molecules has not been analyzed yet. Objective To analyze the IgE sensitization profile of a Brazilian grass pollen allergic population using individual allergen molecules. Methods We analyzed sera from 78 grass pollen allergic patients for the presence of IgE antibodies specific for 103 purified micro-arrayed natural and recombinant allergens by chip technology. IgE-ELISA inhibition experiments with Lolium multiflorum, Phleum pratense extracts and a recombinant fusion protein consisting of Phl p 1, Phl p 2, Phl p 5 and Phl p 6 were performed to investigate cross-reactivities. Results Within the Brazilian grass pollen allergic patients, the most frequently recognized allergens were Phl p 1 (95%), Phl p 5 (82%), Phl p 2 (76%) followed by Phl p 4 (64%), Phl p 6 (45%), Phl p 11 (18%) and Phl p 12 (18%). Most patients were sensitized only to grass pollen allergens but not to allergens from other sources. A high degree of IgE cross-reactivity between Phleum pratense, Lolium multiflorum and the recombinant timothy grass fusion protein was found. Conclusions Component-resolved analysis of sera from Brazilian grass pollen allergic patients reveals an IgE recognition profile compatible with a typical Pooideae sensitization. The high degree of cross-reactivity between Phleum pratense and Lolium multiflorum allergens suggests that diagnosis and immunotherapy can be achieved with timothy grass pollen allergens in the studied population. PMID:26067084

  16. Antibody reactivity to the major fish allergen parvalbumin is determined by isoforms and impact of thermal processing.

    PubMed

    Saptarshi, Shruti R; Sharp, Michael F; Kamath, Sandip D; Lopata, Andreas L

    2014-04-01

    The EF-hand calcium binding protein, parvalbumin, is a major fish allergen. Detection of this allergen is often difficult due to its structural diversity among various fish species. The aim of this study was to evaluate the cross-reactivity of parvalbumin in a comprehensive range of bony and cartilaginous fish, from the Asia-Pacific region, and conduct a molecular analysis of this highly allergenic protein. Using the monoclonal anti-parvalbumin antibody PARV-19, we demonstrated the presence of monomeric and oligomeric parvalbumin in all fish analysed, except for gummy shark a cartilaginous fish. Heat processing of this allergen greatly affected its antibody reactivity. While heating caused a reduction in antibody reactivity to multimeric forms of parvalbumins for most bony fish, a complete loss of reactivity was observed for cartilaginous fish. Molecular analysis demonstrated that parvalbumin cross-reactivity, among fish species, is due to the molecular phylogenetic association of this major fish allergen.

  17. Comparison of extraction conditions for milk and hen's egg allergens.

    PubMed

    Steinhoff, M; Fischer, M; Paschke-Kratzin, A

    2011-04-01

    The evaluation of recovery rates by extracting milk powder and egg powder using eleven different extractants gave approximately similar results for both foods. Compared with the other extraction solutions investigated, '1% Tween 20® and 0.4% Triton X-100®' and '4% SDS' are the most suitable extractants to isolate proteins of hen's egg or milk. When comparing calculated protein recovery rates of egg and milk powder extracts, the results clearly indicated that the choice of a suitable extractant is of particular importance. Qualitative investigation of the extracts via LDS-PAGE followed by silver staining as well as immunoblotting confirmed the results of protein quantification. Hence, the immunoblots showed that the extraction agents had no negative influence on the antigenicity of the extracted allergenic proteins. In this study, variation of extraction temperature led neither to any benefit in extraction quality nor to degradation. Changing pH did not reveal any trends, but progressive protein hydrolysis under strong alkaline conditions. Evaluation of recovery rates as well as results of unspecific and specific staining of the extracts showed that an extraction time of 1 h is sufficient for an appropriate sample preparation. For investigations with and without food matrix different results were obtained. In summary, wheat starch did not influence the extraction quality within all examined materials and different extractants. In contrast, using fat powder and dry cake mix, respectively, led to different results in the extraction procedure. When fat powder and dry cake mix were used as food matrices, some protein recovery rates decreased and some increased depending on the allergen material. These results highlight the fact that the suitability of the extractant not only depends on the properties of the allergen but furthermore on the type of matrix containing the allergen.

  18. An olive pollen protein with allergenic activity, Ole e 10, defines a novel family of carbohydrate-binding modules and is potentially implicated in pollen germination

    PubMed Central

    2005-01-01

    CBMs (carbohydrate-binding modules) are the most common non-catalytic modules associated with enzymes active in plant cell-wall hydrolysis. They have been frequently identified by amino acid sequence alignments, but only a few have been experimentally established to have a carbohydrate-binding activity. A small olive pollen protein, Ole e 10 (10 kDa), has been described as a major inducer of type I allergy in humans. In the present study, the ability of Ole e 10 to bind several polysaccharides has been analysed by affinity gel electrophoresis, which demonstrated that the protein bound 1,3-β-glucans preferentially. Analytical ultracentrifugation studies confirmed binding to laminarin, at a protein/ligand ratio of 1:1. The interaction of Ole e 10 with laminarin induced a conformational change in the protein, as detected by CD and fluorescence analyses, and an increase of 3.6 °C in the thermal denaturation temperature of Ole e 10 in the presence of the glycan. These results, and the absence of alignment of the sequence of Ole e 10 with that of any classified CBM, indicate that this pollen protein defines a novel family of CBMs, which we propose to name CBM43. Immunolocalization of Ole e 10 in mature and germinating pollen by transmission electron microscopy and confocal laser scanning microscopy demonstrated the co-localization of Ole e 10 and callose (1,3-β-glucan) in the growing pollen tube, suggesting a role for this protein in the metabolism of carbohydrates and in pollen tube wall re-formation during germination. PMID:15882149

  19. Identification and characterization of major cat allergen Fel d 1 mimotopes on filamentous phage carriers.

    PubMed

    Luzar, Jernej; Molek, Peter; Šilar, Mira; Korošec, Peter; Košnik, Mitja; Štrukelj, Borut; Lunder, Mojca

    2016-03-01

    Cat allergy is one of the most prevalent allergies worldwide and can lead to the development of rhinitis and asthma. Thus far, only allergen extracts from natural sources have been used for allergen-specific immunotherapy. However, extracts and whole allergens in immunotherapy present an anaphylaxis risk. Identification of allergen epitopes or mimotopes has an important role in development of safe and effective allergen-specific immunotherapy. Moreover, with a suitable immunogenic carrier, the absence of sufficient immune response elicited by short peptides could be surmounted. In this study, we identified five structural mimotopes of the major cat allergen Fel d 1 by immunoscreening with random peptide phage libraries. The mimotopes were computationally mapped to the allergen surface, and their IgE reactivity was confirmed using sera from cat-allergic patients. Importantly, the mimotopes showed no basophil activation of the corresponding cat-allergic patients, which makes them good candidates for the development of hypoallergenic vaccine. As bacteriophage particles are becoming increasingly recognized as immunogenic carriers, we constructed bacteriophage particles displaying multiple copies of each selected mimotope on major phage coat protein. These constructed phages elicited T cell-mediated immune response, which was predominated by the type 1 T cell response. Mimotopes alone contributed to the type 1 T cell response by promoting IL-2 production. Fel d 1 mimotopes, as well as their filamentous phage immunogenic carriers, represent promising candidates in the development of hypoallergenic vaccine against cat allergy.

  20. Pollen-Associated Microbiome Correlates with Pollution Parameters and the Allergenicity of Pollen.

    PubMed

    Obersteiner, Andrea; Gilles, Stefanie; Frank, Ulrike; Beck, Isabelle; Häring, Franziska; Ernst, Dietrich; Rothballer, Michael; Hartmann, Anton; Traidl-Hoffmann, Claudia; Schmid, Michael

    2016-01-01

    Pollen allergies have been rapidly increasing over the last decades. Many allergenic proteins and non-allergenic adjuvant compounds of pollen are involved in the plant defense against environmental or microbial stress. The first aim of this study was to analyze and compare the colonizing microbes on allergenic pollen. The second aim was to investigate detectable correlations between pollen microbiota and parameters of air pollution or pollen allergenicity. To reach these aims, bacterial and fungal DNA was isolated from pollen samples of timothy grass (Phleum pratense, n = 20) and birch trees (Betula pendula, n = 55). With this isolated DNA, a terminal restriction fragment length polymorphism analysis was performed. One result was that the microbial diversity on birch tree and timothy grass pollen samples (Shannon/Simpson diversity indices) was partly significantly correlated to allergenicity parameters (Bet v 1/Phl p 5, pollen-associated lipid mediators). Furthermore, the microbial diversity on birch pollen samples was correlated to on-site air pollution (nitrogen dioxide (NO2), ammonia (NH3), and ozone (O3)). What is more, a significant negative correlation was observed between the microbial diversity on birch pollen and the measured NO2 concentrations on the corresponding trees. Our results showed that the microbial composition of pollen was correlated to environmental exposure parameters alongside with a differential expression of allergen and pollen-associated lipid mediators. This might translate into altered allergenicity of pollen due to environmental and microbial stress.

  1. Pollen-Associated Microbiome Correlates with Pollution Parameters and the Allergenicity of Pollen

    PubMed Central

    Obersteiner, Andrea; Gilles, Stefanie; Frank, Ulrike; Beck, Isabelle; Häring, Franziska; Ernst, Dietrich; Rothballer, Michael; Hartmann, Anton; Traidl-Hoffmann, Claudia; Schmid, Michael

    2016-01-01

    Pollen allergies have been rapidly increasing over the last decades. Many allergenic proteins and non-allergenic adjuvant compounds of pollen are involved in the plant defense against environmental or microbial stress. The first aim of this study was to analyze and compare the colonizing microbes on allergenic pollen. The second aim was to investigate detectable correlations between pollen microbiota and parameters of air pollution or pollen allergenicity. To reach these aims, bacterial and fungal DNA was isolated from pollen samples of timothy grass (Phleum pratense, n = 20) and birch trees (Betula pendula, n = 55). With this isolated DNA, a terminal restriction fragment length polymorphism analysis was performed. One result was that the microbial diversity on birch tree and timothy grass pollen samples (Shannon/Simpson diversity indices) was partly significantly correlated to allergenicity parameters (Bet v 1/Phl p 5, pollen-associated lipid mediators). Furthermore, the microbial diversity on birch pollen samples was correlated to on-site air pollution (nitrogen dioxide (NO2), ammonia (NH3), and ozone (O3)). What is more, a significant negative correlation was observed between the microbial diversity on birch pollen and the measured NO2 concentrations on the corresponding trees. Our results showed that the microbial composition of pollen was correlated to environmental exposure parameters alongside with a differential expression of allergen and pollen-associated lipid mediators. This might translate into altered allergenicity of pollen due to environmental and microbial stress. PMID:26910418

  2. Several allergens from Anisakis simplex are highly resistant to heat and pepsin treatments.

    PubMed

    Caballero, María Luisa; Moneo, Ignacio

    2004-06-01

    Ingestion of raw or undercooked fish can lead to infection with Anisakis simplex. Sensitized patients show specific IgE to proteins from this parasite. The aim of this study was to assess the frequency of specific IgE recognition directed to heat and/or pepsin-resistant allergens from A. simplex among sensitized patients. Twenty-seven patients with positive specific IgE and immunoblotting with a crude parasite extract were included in the study. Specific IgE detection against allergens resistant to boiling for 30 min and/or a pepsin digestion of an A. simplex extract was performed by immunoblotting. A total of 81% of the patients showed specific IgE to pepsin-resistant allergens and 67% had specific IgE to heat-resistant allergens. Thirty percent of patients recognized allergens after both treatments, one being the allergen detected by 75% of the patients of this group. Heat- and/or pepsin-resistant allergens from A. simplex could explain reactions and symptoms after the ingestion of well-cooked or canned fish.

  3. Resolution and identification of major peanut allergens using a combination of fluorescence two-dimensional differential gel electrophoresis, western blotting and Q-TOF mass spectrometry.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut allergy is triggered by several proteins known as allergens. The matching resolution and identification of major peanut allergens in 2D protein maps, was accomplished by the use of fluorescence two-dimensional differential gel electrophoresis (2D DIGE), Western blotting and quadrupole time-of...

  4. Cashew Nut Allergy: Clinical Relevance and Allergen Characterisation.

    PubMed

    Mendes, Cíntia; Costa, Joana; Vicente, António A; Oliveira, Maria Beatriz P P; Mafra, Isabel

    2016-09-01

    Cashew plant (Anacardium occidentale L.) is the most relevant species of the Anacardium genus. It presents high economic value since it is widely used in human nutrition and in several industrial applications. Cashew nut is a well-appreciated food (belongs to the tree nut group), being widely consumed as snacks and in processed foods by the majority of world's population. However, cashew nut is also classified as a potent allergenic food known to be responsible for triggering severe and systemic immune reactions (e.g. anaphylaxis) in sensitised/allergic individuals that often demand epinephrine treatment and hospitalisation. So far, three groups of allergenic proteins have been identified and characterised in cashew nut: Ana o 1 and Ana o 2 (cupin superfamily) and Ana o 3 (prolamin superfamily), which are all classified as major allergens. The prevalence of cashew nut allergy seems to be rising in industrialised countries with the increasing consumption of this nut. There is still no cure for cashew nut allergy, as well as for other food allergies; thus, the allergic patients are advised to eliminate it from their diets. Accordingly, when carefully choosing processed foods that are commercially available, the allergic consumers have to rely on proper food labelling. In this sense, the control of labelling compliance is much needed, which has prompted the development of proficient analytical methods for allergen analysis. In the recent years, significant research advances in cashew nut allergy have been accomplished, which are highlighted and discussed in this review.

  5. Allergenicity assessment of genetically-modified tobacco expressing salt tolerance cbl gene.

    PubMed

    Verma, Alok Kumar; Kumar, Sandeep; Chaudhari, Bhushan P; Tuteja, Narendra; Das, Mukul; Dwivedi, Premendra D

    2014-09-01

    It is mandatory to assess the allergenic potential of genetically modified (GM) crops before their commercialization. Recently, a transgene [Calcineurin B-like (CBL) protein] has been introduced into tobacco plant to make the crop salt resistance. Therefore, it was felt necessary to assess the allergenic potential of the cbl gene product, which was introduced and expressed in Nicotiana tabacum (tobacco) plant and compared the allergenic effects with the wild-type (WT) counterpart. Bioinformatic analysis revealed that there was no significant sequence homology with known allergens. Also, no difference between the protein digestibility profiles of GM and WT tobacco was found. Rapid digestion of CBL protein (Mol Wt 35 kDa) by simulated gastric fluid (SGF) indicated reduced chances of this protein to induce allergenicity. In addition, BALB/c mice sensitized by intraperitoneal administration of WT and GM tobacco protein showed comparable levels of clinical score, specific IgE, IgG1, histamine level, similar effect on different organs as well as IgE binding proteins. These findings indicate that insertion of cbl gene in tobacco did not cause any additional allergic risk to consumer and the GM and native tobacco proteins behave similarly in both in vitro and in vivo situations even after genetic modification.

  6. Comparative study on the allergenicity of different Litopenaeus vannamei extract solutions

    NASA Astrophysics Data System (ADS)

    Wu, Lisha; Lin, Haixin; Wang, Guoying; Lu, Zongchao; Chen, Guanzhi; Lin, Hong; Li, Zhenxing

    2013-11-01

    Allergen extracts are widely used for allergy diagnosis and treatment. The application of shrimp extract is hampered due to the low protein concentration and the inconsistent allergenicity. Extracting solutions are considered to be the primary limiting factor of protein extraction from crustaceans. This study aimed to select an optimal solution for shrimp protein extraction by comparing the allergenicity of different shrimp extracts. The effect of 7 existing or modified extracting solutions were evaluated, including the glycerol-NaCl solution, the glycerol Cocaine's solution, the buffered saline solution, the Cocaine's solution, the Glucose leaching solution, 1 mol L-1 KCl solution, and 0.01 mol L-1 phosphate buffered saline solution with and without dithiothreitolor (DTT). The quantitative (protein concentration) and qualitative parameters (SDS-PAGE protein patterns and immuno-reactivity) were determined using the sodium dodecyl sulfate polyacrylamide gel electrophoresis, enzyme linked immunosorbent assay and immunoblotting assay. Results showed that the 1 mol L-1 KCl solution with DTT was optimal for shrimp protein extraction, which yielded high concentration and allergenicity in the protein extract, including major and minor allergens. The 1 mol L-1 KCl solution with DDT is proposed for preparation of shrimp extract and associated allergy diagnosis, as well as potential applications for other crustaceans.

  7. Indoor allergen exposure and asthma outcomes

    PubMed Central

    Sheehan, William J.; Phipatanakul, Wanda

    2016-01-01

    Purpose of review The aim of the present review is to discuss updates on research regarding the relationship between indoor allergen exposure and childhood asthma with a focus on clinical effects, locations of exposure, and novel treatments. Recent findings Recent data continue to demonstrate that early life sensitization to indoor allergens is a predictor of asthma development later in life. Furthermore, avoidance of exposure to these allergens continues to be important especially given that the vast majority of children with asthma are sensitized to at least one indoor allergen. New research suggests that mouse allergen, more so than cockroach allergen, may be the most relevant urban allergen. Recent evidence reminds us that children are exposed to clinically important levels of indoor allergens in locations away from their home, such as schools and daycare centers. Exposure to increased levels of indoor mold in childhood has been associated with asthma development and exacerbation of current asthma; however, emerging evidence suggests that early exposure to higher fungal diversity may actually be protective for asthma development. Novel treatments have been developed that target TH2 pathways thus decreasing asthmatic responses to allergens. These therapies show promise for the treatment of severe allergic asthma refractory to avoidance strategies and standard therapies. Summary Understanding the relationship between indoor allergens and asthma outcomes is a constantly evolving study of timing, location, and amount of exposure. PMID:27653703

  8. Allergenicity of bony and cartilaginous fish - molecular and immunological properties.

    PubMed

    Stephen, J N; Sharp, M F; Ruethers, T; Taki, A; Campbell, D E; Lopata, A L

    2017-03-01

    Allergy to bony fish is common and probably increasing world-wide. The major heat-stable pan-fish allergen, parvalbumin (PV), has been identified and characterized for numerous fish species. In contrast, there are very few reports of allergic reactions to cartilaginous fish despite widespread consumption. The molecular basis for this seemingly low clinical cross-reactivity between these two fish groups has not been elucidated. PV consists of two distinct protein lineages, α and β. The α-lineage of this protein is predominant in muscle tissue of cartilaginous fish (Chondrichthyes), while β-PV is abundant in muscle tissue of bony fish (Osteichthyes). The low incidence of allergic reactions to ingested rays and sharks is likely due to the lack of molecular similarity, resulting in reduced immunological cross-reactivity between the two PV lineages. Structurally and physiologically, both protein lineages are very similar; however, the amino acid homology is very low with 47-54%. Furthermore, PV from ancient fish species such as the coelacanth demonstrates 62% sequence homology to leopard shark α-PV and 70% to carp β-PV. This indicates the extent of conservation of the PV isoforms lineages across millennia. This review highlights prevalence data on fish allergy and sensitization to fish, and details the molecular diversity of the two protein lineages of the major fish allergen PV among different fish groups, emphasizing the immunological and clinical differences in allergenicity.

  9. Characterisation of potential novel allergens in the fish parasite Anisakis simplex

    PubMed Central

    Fæste, Christiane Kruse; Jonscher, Karen R.; Dooper, Maaike M.W.B.; Egge-Jacobsen, Wolfgang; Moen, Anders; Daschner, Alvaro; Egaas, Eliann; Christians, Uwe

    2016-01-01

    The parasitic nematode Anisakis simplex occurs in fish stocks in temperate seas. A. simplex contamination of fish products is unsavoury and a health concern considering human infection with live larvae (anisakiasis) and allergic reactions to anisakid proteins in seafood. Protein extracts of A. simplex produce complex band patterns in gel electrophoresis and IgE-immunostaining. In the present study potential allergens have been characterised using sera from A. simplex-sensitised patients and proteome data obtained by mass spectrometry. A. simplex proteins were homologous to allergens in other nematodes, insects, and shellfish indicating cross-reactivity. Characteristic marker peptides for relevant A. simplex proteins were described. PMID:27110489

  10. Molecular basis of IgE-recognition of Lol p 5, a major allergen of rye-grass pollen.

    PubMed

    Suphioglu, C; Blaher, B; Rolland, J M; McCluskey, J; Schäppi, G; Kenrick, J; Singh, M B; Knox, R B

    1998-04-01

    Grass pollen, especially of rye-grass (Lolium perenne). represents an important cause of type I allergy. Identification of IgE-binding (allergenic) epitopes of major grass pollen allergens is essential for understanding the molecular basis of interaction between allergens and human IgE antibodies and therefore facilitates the devising of safer and more effective diagnostic and immunotherapy reagents. The aim of this study was to identify the allergenic epitopes of Lol p 5, a major allergen of rye-grass pollen, immunodissect these epitopes further so that the amino acid residues critical for antibody binding can be determined and investigate the conservation and nature of these epitopes within the context of the natural grass pollen allergens. Peptides, 12-13 amino acid residues long and overlapping each other by 4 amino acid residues, based on the entire deduced amino acid sequence of the coding region of Lol p 5, were synthesised and assayed for IgE-binding. Two strong IgE-binding epitopes (Lol p 5 (49-60) and (265-276), referred to as peptides 7 and 34, respectively) were identified. These epitopes were further resolved by truncated peptides and amino acid replacement studies and the amino acid residues critical for IgE-binding determined (Lol p 5 (49-60) residue Lys57 and (265-276) residue Lys275). Sequences of these epitopes were conserved in related allergens and may form the conserved allergenic domains responsible for the cross-reactivity observed between pollen allergens of taxonomically related grasses. Furthermore, due to its strong IgE-reactivity, synthetic peptide Lol p 5 (265-276) was used to affinity-purify specific IgE antibodies which recognised proteins of other clinically important grass pollens. further indicating presence of allergenic cross-reactivity at the level of allergenic epitope. Moreover, Lol p 5 (265 276) demonstrated a strong capacity to inhibit IgE-binding to natural rye-grass pollen proteins highlighting the antibody accessibility

  11. [Exposition and sensitisation to indoor allergens, house dust mite allergen and cat allergens].

    PubMed

    Jovanovic, S; Felder-Kennel, A; Gabrio, T; Kouros, B; Link, B; Maisner, V; Piechotowski, I; Schick, K-H; Schrimpf, M; Schwenk, M; Weidner, U; Zöllner, I

    2003-07-01

    The study examined the exposure to biological indoor air agents and their possible role for allergies and respiratory tract illnesses of children. It was conducted as a case control study (atopic vs non-atopic children) at the four surveillance public health departments in Baden-Württemberg in the winter season 1999/2000 and included 379 children of the fourth class. The concentrations of the house dust mite antigens Der F1, Der p1, and Der Gr2 as well as cat allergen Fel d1 were determined in the children's bedrooms on the ground and in the mattress. Specific IgE-antibodies against allergens from house dust, mites and cat were determined in the serum of the children. For mite allergens the following medians ( micro g/g) were estimated in floor dust: Der p1 = 0.6, Der f1 = 2.3, Gr2 = 0.1; in mattresses: Der p1 = 1.2, Der f1 = 3.4, Gr2 = 0.3. The median of Fel d1 in floor dust was 0.2 microg/g, in mattresses 0.1 microg/g. Sensitisation to dust mite allergen was found to be more prevalent than sensitisation to cat. The distribution of sensitisation among the cases and controls is different. Among the cases, more subjects were sensitised to dust mites (32.9 %) and cat (13.1 %). Among the controls, 17.1 % were sensitised to dust mites and 4.1 % to cat. The results showed no direct association between the prevalence of allergies or respiratory tract illnesses and the indoor concentrations of the allergens. Possible reasons for these findings are discussed.

  12. Hazelnut (Corylus avellana) vicilin Cor a 11: molecular characterization of a glycoprotein and its allergenic activity

    PubMed Central

    2004-01-01

    In Europe, hazelnuts (Corylus avellana) are a frequent cause of food allergies. Several important hazelnut allergens have been previously identified and characterized. Specific N-glycans are known to induce strong IgE responses of uncertain clinical relevance, but so far the allergenic potential of glycoproteins from hazelnut has not been investigated. The aim of the study was the molecular characterization of the glycosylated vicilin Cor a 11 from hazelnut and the analysis of its allergenic activity. Although MALDI–TOF (matrix-assisted laser-desorption ionization–time-of-flight) MS showed that one of two potential glycosylation sites of Cor a 11 was glycosylated, CD spectroscopy indicated that recombinant and natural Cor a 11 share similar secondary structures. Thus to analyse the impact of the glycan residues of Cor a 11 on IgE binding, the allergenic activity of natural glycosylated Cor a 11 and recombinant Cor a 11 was compared. In addition, the IgE sensitization pattern to recombinant Cor a 11, Cor a 1, Cor a 2 and Cor a 8 of 65 hazelnut allergic patients was determined in vitro. The prevalence of IgE reactivity to hazelnut vicilin Cor a 11 was below 50%. Basophil histamine-release assays were used to determine the allergenic activity of both natural and recombinant Cor a 11 in comparison with Cor a 1, a birch (Betula verrucosa) pollen-related major hazelnut allergen. Both forms of Cor a 11 induced mediator release from basophils to a similar extent, indicating that the hazelnut allergic patients had cross-linking IgE antibodies binding to the protein backbone and not to carbohydrate structures. In comparison to Cor a 1, a 10000-fold higher concentration of Cor a 11 was required to induce similar basophil mediator release. In conclusion, the hazelnut vicilin Cor a 11 is a minor allergen both in regard to prevalence and allergenic potency, whereas its glycan does not contribute to its allergenic activity. PMID:15233621

  13. Hazelnut (Corylus avellana) vicilin Cor a 11: molecular characterization of a glycoprotein and its allergenic activity.

    PubMed

    Lauer, Iris; Foetisch, Kay; Kolarich, Daniel; Ballmer-Weber, Barbara K; Conti, Amedeo; Altmann, Friedrich; Vieths, Stefan; Scheurer, Stephan

    2004-10-15

    In Europe, hazelnuts (Corylus avellana) are a frequent cause of food allergies. Several important hazelnut allergens have been previously identified and characterized. Specific N-glycans are known to induce strong IgE responses of uncertain clinical relevance, but so far the allergenic potential of glycoproteins from hazelnut has not been investigated. The aim of the study was the molecular characterization of the glycosylated vicilin Cor a 11 from hazelnut and the analysis of its allergenic activity. Although MALDI-TOF (matrix-assisted laser-desorption ionization-time-of-flight) MS showed that one of two potential glycosylation sites of Cor a 11 was glycosylated, CD spectroscopy indicated that recombinant and natural Cor a 11 share similar secondary structures. Thus to analyse the impact of the glycan residues of Cor a 11 on IgE binding, the allergenic activity of natural glycosylated Cor a 11 and recombinant Cor a 11 was compared. In addition, the IgE sensitization pattern to recombinant Cor a 11, Cor a 1, Cor a 2 and Cor a 8 of 65 hazelnut allergic patients was determined in vitro. The prevalence of IgE reactivity to hazelnut vicilin Cor a 11 was below 50%. Basophil histamine-release assays were used to determine the allergenic activity of both natural and recombinant Cor a 11 in comparison with Cor a 1, a birch (Betula verrucosa) pollen-related major hazelnut allergen. Both forms of Cor a 11 induced mediator release from basophils to a similar extent, indicating that the hazelnut allergic patients had cross-linking IgE antibodies binding to the protein backbone and not to carbohydrate structures. In comparison to Cor a 1, a 10000-fold higher concentration of Cor a 11 was required to induce similar basophil mediator release. In conclusion, the hazelnut vicilin Cor a 11 is a minor allergen both in regard to prevalence and allergenic potency, whereas its glycan does not contribute to its allergenic activity.

  14. Molecular Cloning and Expression of Pro J 1: A New Allergen of Prosopis Juliflora Pollen.

    PubMed

    Dousti, Fatemeh; Assarehzadegan, Mohammad-Ali; Morakabati, Payam; Khosravi, Gholam Reza; Akbari, Bahareh

    2016-04-01

    Pollen from mesquite (Prosopis juliflora) is one of the important causes of immediate hypersensitivity reactions in the arid and semi-arid regions of the world. The aim of present study is to produce and purify the recombinant form of allergenic Ole e 1-like protein from the pollen of this allergenic tree. Immunological and cross-inhibition assays were performed for the evaluation of IgE-binding capacity of purified recombinant protein. For molecular cloning, the coding sequence of the mesquite Ole e 1-like protein was inserted into pTZ57R/T vector and expressed in Escherichia coli using the vector pET-21b(+). After purification of the recombinant protein, its immunoreactivity was analysed by in vitro assays using sera from twenty one patients with an allergy to mesquite pollen. The purified recombinant allergen was a member of Ole e 1-like protein family and consisted of 150 amino acid residues, with a predicted molecular mass of 16.5 kDa and a calculated isoelectric point (pI) of 4.75. Twelve patients (57.14%) had significant specific IgE levels for this recombinant allergen. Immunodetection and inhibition assays indicated that the purified recombinant allergen might be the same as that in the crude extract. Herein, we introduce an important new allergen from P. juliflora pollen (Pro j 1), which is a member of the Ole e 1-like protein family and exhibits significant identity and similarity to other allergenic members of this family.

  15. Allergenic Potential of Tomatoes Cultivated in Organic and Conventional Systems.

    PubMed

    Słowianek, Marta; Skorupa, Marta; Hallmann, Ewelina; Rembiałkowska, Ewa; Leszczyńska, Joanna

    2016-03-01

    Tomatoes (Lycopersicon esculentum Mill.) are a widely consumed vegetables and contain many health beneficial micronutrients. Unfortunately, they may also cause adverse allergic reactions in sensitized people. Many studies, conducted in recent years, indicate that organically produced vegetables have higher nutritional value, improved sensory quality and contain more health-enhancing bioactive compounds than vegetables grown under the conventional system. However, the relation between organic methods of cultivation and allergenic potential of tomatoes has received little scientific attention. This study analyzed samples of five tomato cultivars taken from organic and conventional systems over three consecutive years. The content of profilin, Bet v 1 and lipid transfer protein (LTP) analogues in tomato samples was determined using an indirect ELISA assay. Substantial quantities of these proteins were found in certain cultivars across all three years of cultivation. On the basis of these findings, organically grown tomatoes appear to offer little advantage over conventionally cultivated plants in terms of reduced allergenic potential.

  16. Enhanced approaches for identifying Amadori products: application to peanut allergens

    PubMed Central

    Johnson, Katina L.; Williams, Jason G.; Maleki, Soheila J.; Hurlburt, Barry K.; London, Robert E.; Mueller, Geoffrey A.

    2016-01-01

    The dry roasting of peanuts is suggested to influence allergenic sensitization due to formation of advanced glycation end products (AGE) on peanut proteins. Identifying AGEs is technically challenging. The AGEs of a peanut allergen were probed with nanoLC-ESI-MS and MS/MS analyses. Amadori product ions matched to expected peptides and yielded fragments that included a loss of 3 waters and HCHO. Due to the paucity of b- and y-ions in the MS/MS spectrum, standard search algorithms do not perform well. Reactions with isotopically labeled sugars confirmed that the peptides contained Amadori products. An algorithm was developed based upon information content (Shannon entropy) and the loss of water and HCHO. Results with test data show that the algorithm finds the correct spectra with high precision, reducing the time needed to manually inspect data. Computational and technical improvements allowed better identification of the chemical differences between modified and unmodified proteins. PMID:26811263

  17. [Animal models for assessment of GMO allergenicity: advantages and limitations].

    PubMed

    Adel-Patient, K; Wal, J M

    2004-03-01

    Incidence of IgE-mediated allergic reactions to foods is increasing as well as the severity of associated symptoms and numerous foods are now incriminated, probably in relation with modifications of dietary habits and increased exposure to new or modified food ingredients. Therefore, the introduction on the market of food composed of or derived from genetically modified organisms (GMOs) raised the question of their potential allergenicity. Particularly with regards to the allergenicity of a newly expressed protein, it is necessary to obtain, from several steps in the risk assessment process, a cumulative body of evidence which minimises any uncertainty. This may include the use of animal model despite no fully reliable validated model is available yet. Such animal models should allow to address 3 major issues: Is the novel protein a sensitizer, i.e. does it possess intrinsic properties that allow to sensitize a predisposed individual? Is the protein an elicitor i.e. is it able to elicit an allergic reaction in a sensitised individual? And is the protein an adjuvant, i.e. can it facilitate or enhance the sensitisation to an other protein? Animal models under investigation currently include mice, rats and guinea pigs but models such as dogs and swine also appeared a few years ago. The aim is to mimic the mechanism and characteristics of the sensitisation phase and/or the elicitation phase of the allergic reaction as it occurs in atopic humans. They are necessary because sensitisation studies can obviously not be done in human and because in vitro tests cannot reproduce the complexity of the immune system. We propose a mouse model which mimics both phases of the allergic reaction. It has permitted to evidence that biochemical and clinical manifestations occuring during the active phases of the allergic reaction differ according to the structure of the allergen used for the challenge. This may allow to compare the allergenic potential of a genetically modified protein

  18. Characterization of apple 18 and 31 kd allergens by microsequencing and evaluation of their content during storage and ripening.

    PubMed

    Hsieh, L S; Moos, M; Lin, Y

    1995-12-01

    Patients with tree pollinosis frequently report allergic reactions after ingestion of apples. The severity of apple allergy has been related to the variety of apples and their degree of maturity. To generate a serum pool that is representative of various IgE-binding patterns of apple-allergic sera, serum samples from 34 patients allergic to tree pollens were screened. Only 24 serum samples reacted to the apple extract. Pooled serum was used to identify allergens in apples. An efficient and consistent extraction method for apple fruits was used to compare the immunoreactivities of extracts of different varieties (McIntosh, Red Delicious, Granny Smith, and Golden Delicious) of freshly picked and store-purchased apples. We found that Golden Delicious apples had the greatest amount of the 18 kd allergen, which has been reported to be a potent IgE-binding apple allergen. Store-purchased apples contained higher concentrations of the 18 kd allergen than freshly picked apples. In our study only 37.5% of sera reacted to the 18 kd protein, whereas 75% of the sera reacted to a 31 kd allergen. Other immunoreactive bands in apple extracts included proteins of 50, 38, 16, 14, and 13 kd. The amino-terminal amino acid sequences of the two major allergens, 18 kd and 31 kd, were determined. These sequences shared approximately 50% identity with disease resistance proteins of various plants or Bet v 1 in birch tree pollens. The appearance of various allergens was also investigated in mature apples during storage. The amount of 18 kd allergen increased significantly when apples were stored at 4 degrees C. However, under controlled atmospheric conditions in which oxygen- and carbon dioxide-induced ripening were regulated, the amount of 18 kd allergen remained unaffected. Because ripening and maturation were not associated with increases in 18 kd allergen content, the observed changes might be induced by factors related to disease resistance.

  19. Identification of Aspergillus (A. flavus and A. niger) Allergens and Heterogeneity of Allergic Patients' IgE Response.

    PubMed

    Vermani, Maansi; Vijayan, Vannan Kandi; Agarwal, Mahendra Kumar

    2015-08-01

    Aspergillus species (A. flavus and A. niger) are important sources of inhalant allergens. Current diagnostic modalities employ crude Aspergillus extracts which only indicate the source to which the patient has been sensitized, without identifying the number and type of allergens in crude extracts. We report a study on the identification of major and minor allergens of the two common airborne Aspergillus species and heterogeneity of patients' IgE response to them. Skin prick tests were performed on 300 patients of bronchial asthma and/or allergic rhinitis and 20 healthy volunteers. Allergen specific IgE in patients' sera was estimated by enzyme allergosorbent test (EAST). Immunoblots were performed to identify major/minor allergens of Aspergillus extracts and to study heterogeneity of patients'IgE response to them. Positive cutaneous responses were observed in 17% and 14.7% of patients with A. flavus and A. niger extracts, respectively. Corresponding EAST positivity was 69.2% and 68.7%. In immunoblots, 5 allergenic proteins were identified in A. niger extract, major allergens being 49, 55.4 and 81.5 kDa. Twelve proteins bound patients' IgE in A. flavus extract, three being major allergens (13.3, 34 and 37 kDa). The position and slopes of EAST binding and inhibition curves obtained with individual sera varied from patient to patient. The number and molecular weight of IgE-binding proteins in both the Aspergillus extracts varied among patients. These results gave evidence of heterogeneity of patients' IgE response to major/minor Aspergillus allergens. This approach will be helpful to identify disease eliciting molecules in the individual patients (component resolved diagnosis) and may improve allergen-specific immunotherapy.

  20. First screening method for the simultaneous detection of seven allergens by liquid chromatography mass spectrometry.

    PubMed

    Heick, J; Fischer, M; Pöpping, B

    2011-02-18

    The development of a multi-method for the detection of seven allergens based on liquid chromatography and triple-quadrupole tandem mass spectrometry in multiple reaction mode is described. It is based on extraction of the allergenic proteins from a food matrix, followed by enzymatic digestion with trypsin. The chosen marker peptides were implemented into one method that is capable of the simultaneous detection of milk, egg, soy, hazelnut, peanut, walnut and almond. This method has been used to detect all seven allergenic commodities from incurred reference bread material, which was baked according to a standard recipe from the baking industry. Detected concentrations ranged from 10 to 1000 μg/g, demonstrating that the mass spectrometric based method is a useful tool for allergen screening.

  1. [Allergens causing respiratory allergy: the aeroallergens].

    PubMed

    Deschildre, A

    1999-01-01

    Aeroallergens play a major role in the pathogenesis of allergic diseases, particularly asthma and rhinitis. Indoor allergens, including house dust mites, domestic pets, cockroaches, and molds are of particular importance. Pollens are also recognized as a major source of allergens. The role of these different allergens varies with environment conditions, such as climatic factors, and degree of exposure. Knowledge about allergens has progressed, especially with recent molecular biology studies. Structure and function have been identified. These studies have provided explanations about the relationship between allergic sensitization, allergen exposure, and disease activity, about clinical observations such as allergic cross reactions, and improvement in the production of allergenic extracts (necessary to diagnosis and immunotherapy). Environmental control measures are of particular importance in the prevention and management of allergic diseases.

  2. Characterization of Allergen Exposure in Homes

    DTIC Science & Technology

    1991-01-17

    dust mixture.6 Dust mite allergens have been associated causatively with asthma, atopic dermatitis , and rhini- tis. 7 Studies from several countries...Asthma: A Controlled Trial. The Lancet 1976; ***:333-335. 10. Tuft L. Importance of Inhalant Allergens in Atopic Dermatitis . The Journal of Investigative...Monoclonal Antibodies to the Major Feline Allergen Fel d 1. 1I. Single Step Affinity Purification of Fel d 1, N-Terminal Sequence Analysis, and Development of

  3. Peanut Allergens Attached With p-Aminobenzamidine Are More Resistant to Digestion than Native Allergens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Undigested foods are excreted rather than absorbed and therefore, peanut allergens, if undigested, may not cause an allergic reaction in peanut-allergic individuals. Our objective was to make peanut allergens more resistant to digestion by preparing allergen conjugates and demonstrating that the con...

  4. Cloning and expression of Aca f 1: a new allergen of Acacia farnesiana pollen

    PubMed Central

    Khosravi, Gholam Reza; Morakabati, Payam; Akbari, Bahareh; Dousti, Fatemeh

    2016-01-01

    Acacia farnesiana is the main source of allergenic pollen and one of the most important causes of respiratory allergic disease in tropical and subtropical regions of the world. The purpose of this study was to produce a recombinant variety of allergenic Ole e 1-like protein from the pollen of this tree. To predict its allergenic cross-reactivity with other members of the Ole e 1-like protein family of common allergenic plants, the nucleotide sequence homology of the Acacia Ole e 1-like protein was evaluated. Amplification of cDNA strands encoding Acacia Ole e 1-like protein was performed by polymerase chain reaction (PCR) and sequenced. Following expression in Escherichia coli using the pET-21b(+) vector, the recombinant protein was purified using metal-affinity chromatography. IgE-binding competence of purified recombinant Ole e 1- like protein (rAca f 1) was analysed by immunoassay using 25 sera collected from Acacia pollen-sensitised patients. Nucleotide sequencing revealed an open reading frame of 453 bp encoding 150 amino acid residues that belonged to the Ole e 1-like protein family, and 11 patients (44%) had considerable specific IgE levels for the rAca f 1. Immunodetection and inhibition assays indicated that the purified rAca f 1 may be the same as that in the crude extract. Aca f 1, the second allergen from Acacia pollen, was identified as a member of the family of Ole e 1-like protein. A high degree of homology was found among amino acid sequences of Aca f 1 and several allergenic members of Ole e 1-like protein family. PMID:27833445

  5. Cloning and expression of Aca f 1: a new allergen of Acacia farnesiana pollen.

    PubMed

    Khosravi, Gholam Reza; Assarehzadegan, Mohammad-Ali; Morakabati, Payam; Akbari, Bahareh; Dousti, Fatemeh

    2016-01-01

    Acacia farnesiana is the main source of allergenic pollen and one of the most important causes of respiratory allergic disease in tropical and subtropical regions of the world. The purpose of this study was to produce a recombinant variety of allergenic Ole e 1-like protein from the pollen of this tree. To predict its allergenic cross-reactivity with other members of the Ole e 1-like protein family of common allergenic plants, the nucleotide sequence homology of the Acacia Ole e 1-like protein was evaluated. Amplification of cDNA strands encoding Acacia Ole e 1-like protein was performed by polymerase chain reaction (PCR) and sequenced. Following expression in Escherichia coli using the pET-21b(+) vector, the recombinant protein was purified using metal-affinity chromatography. IgE-binding competence of purified recombinant Ole e 1- like protein (rAca f 1) was analysed by immunoassay using 25 sera collected from Acacia pollen-sensitised patients. Nucleotide sequencing revealed an open reading frame of 453 bp encoding 150 amino acid residues that belonged to the Ole e 1-like protein family, and 11 patients (44%) had considerable specific IgE levels for the rAca f 1. Immunodetection and inhibition assays indicated that the purified rAca f 1 may be the same as that in the crude extract. Aca f 1, the second allergen from Acacia pollen, was identified as a member of the family of Ole e 1-like protein. A high degree of homology was found among amino acid sequences of Aca f 1 and several allergenic members of Ole e 1-like protein family.

  6. Allergenicity assessment of genetically modified cucumber mosaic virus (CMV) resistant tomato (Solanum lycopersicon).

    PubMed

    Lin, Chih-Hui; Sheu, Fuu; Lin, Hsin-Tang; Pan, Tzu-Ming

    2010-02-24

    Cucumber mosaic virus (CMV) has been identified as the causal agent of several disease epidemics in most countries of the world. Insect-mediated virus diseases, such as those caused by CMV, caused remarkable loss of tomato (Solanum lycopersicon) production in Taiwan. With expression of the CMV coat protein gene (Cmvcp) in a local popular tomato cultivar L4783, transgenic tomato line R8 has showed consistent CMV resistance through T(0) to T(8). In this report, the allergenicity of the CMV coat protein (CMV cp) expressed in transgenic tomato R8 was assessed by investigation of the expression of the transgene source of protein, sequence similarity with known allergens, and resistance to pepsin hydrolysis. There is no known account for either the CMV or its coat protein being an allergen. The result of a bioinformatic search also showed no significant homology between CMV cp and any known allergen. The pepsin-susceptible property of recombinant CMV cp was revealed by a simulated gastric fluid (SGF) assay. Following the most recent FAO/WHO decision tree, all results have indicated that CMV cp was a protein with low possibility to be an allergen and the transgenic tomato R8 should be considered as safe as its host.

  7. Identification of Novel Short Ragweed Pollen Allergens Using Combined Transcriptomic and Immunoproteomic Approaches

    PubMed Central

    Bouley, Julien; Groeme, Rachel; Jain, Karine; Baron-Bodo, Véronique; Nony, Emmanuel; Mascarell, Laurent; Moingeon, Philippe

    2015-01-01

    Background Allergy to short ragweed (Ambrosia artemisiifolia) pollen is a serious and expanding health problem in North America and Europe. Whereas only 10 short ragweed pollen allergens are officially recorded, patterns of IgE reactivity observed in ragweed allergic patients suggest that other allergens contribute to allergenicity. The objective of the present study was to identify novel allergens following extensive characterization of the transcriptome and proteome of short ragweed pollen. Methods Following a Proteomics-Informed-by-Transcriptomics approach, a comprehensive transcriptomic data set was built up from RNA-seq analysis of short ragweed pollen. Mass spectrometry-based proteomic analyses and IgE reactivity profiling after high resolution 2D-gel electrophoresis were then combined to identify novel allergens. Results Short ragweed pollen transcripts were assembled after deep RNA sequencing and used to inform proteomic analyses, thus leading to the identification of 573 proteins in the short ragweed pollen. Patterns of IgE reactivity of individual sera from 22 allergic patients were assessed using an aqueous short ragweed pollen extract resolved over 2D-gels. Combined with information derived from the annotated pollen proteome, those analyses revealed the presence of multiple unreported IgE reactive proteins, including new Amb a 1 and Amb a 3 isoallergens as well as 7 novel candidate allergens reacting with IgEs from 20–70% of patients. The latter encompass members of the carbonic anhydrase, enolase, galactose oxidase, GDP dissociation inhibitor, pathogenesis related-17, polygalacturonase and UDP-glucose pyrophosphorylase families. Conclusions We extended the list of allergens identified in short ragweed pollen. These findings have implications for both diagnosis and allergen immunotherapy purposes. PMID:26317427

  8. Structural aspects of dog allergies: the crystal structure of a dog dander allergen Can f 4.

    PubMed

    Niemi, Merja H; Rytkönen-Nissinen, Marja; Jänis, Janne; Virtanen, Tuomas; Rouvinen, Juha

    2014-09-01

    Four out of six officially recognized dog allergens are members of the lipocalin protein family. So far, a three-dimensional structure has been determined for only one dog allergen, Can f 2, which is a lipocalin protein. We present here the crystal structure of a second lipocalin allergen from dog, a variant of Can f 4. Moreover, we have compared and analyzed the structures of these two weakly homologous (amino acid identity 21%) dog allergens. The size and the amino acid composition of the ligand-binding pocket indicate that Can f 4 is capable of binding only relatively small hydrophobic molecules which are different from those that Can f 2 is able to bind. The crystal structure of Can f 4 contained both monomeric and dimeric forms of the allergen, suggesting that Can f 4 is able to form transient (weak) dimers. The existence of transient dimers in solution was confirmed by use of native mass spectrometry. The dimeric structure of Can f 4 is formed when the ends of four β-strands are packed against the same strands from the second monomer. The residues in the interface are mainly hydrophobic and the formation of the dimer is similar to the major horse allergen Equ c 1. Interestingly, the crystal structure of dog Can f 2 has been reported to show a different type of dimer formation. The capability of these allergens to form dimers may be important for the development of immediate allergic reaction (mast cell activation) because oligomeric allergens can effectively present multivalent epitopes.

  9. Cockroach-allergen study: allergen patterns of three common cockroach species probed by allergic sera collected in two cities.

    PubMed

    Kang, B C; Wilson, M; Price, K H; Kambara, T

    1991-06-01

    Antigens/allergens of three common cockroach extracts, crude whole body extract of the American cockroach (CRa-A), crude whole body extract of the German cockroach (CRa-G), and crude whole body extract of the Oriental cockroach (CRa-O), were studied with crossed immunoelectrophoresis, crossed radioimmunoelectrophoresis, and Western blot analysis. Sera of cockroach-allergic patients with asthma, 10 from Chicago, Ill. (C group) and six patients from Lexington, Ky. (L group), were used; results were then compared with sera of control subjects with asthma. Qualitative differences in protein bands were noted among CRa-A, CRa-G, and CRa-O by crossed immunoelectrophoresis and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Allergen bands on Western blot were analyzed for distribution by molecular weight (MW) with relative intensity scores. Results were compared by species and by geography. Two to 12 allergenic bands of variable MW (14 kd to greater than 116 kd) were identified by 13 of 16 individual sera from cockroach-allergic patients from all three extracts. CRa-A demonstrated 55 bands with an intensity score of 125; CRa-G, 58 bands with an intensity score of 100; and CRa-O, 51 bands with an intensity score of 108. Allergenic bands of CRa-A were identified by six sera of the C group and one sera of the L group, whereas bands of both CRa-G and CRa-O were noted by nine sera of the C group and four sera of the L group. All three species had an allergen band in MW range of 40 to 45 kd that reacted to most sera from cockroach-allergic patients with asthma.

  10. Extraction and analysis of coffee bean allergens.

    PubMed

    Lehrer, S B; Karr, R M; Salvaggio, J E

    1978-05-01

    Workers in the coffee industry can develop occupational allergic disease upon exposure to dust associated with coffee manufacturing. Since controversy exists as to the source or chemical nature of these allergens, the mouse model of reaginic antibody production was used to assess the potential sources of allergens in samples obtained from a local coffee manufacturing plant. Mice were immunized with extracts of coffee dust and beans and the resulting reaginic antibody response determined by the passive cutaneous anaphylaxis reaction. Cross-reacting allergens were detected in samples of coffee dust, cleaner can debris and green coffee beans, but not in chaff or roasted coffee beans. None of the allergens detected in coffee samples cross-reacted with extract of castor beans, although these extracts contained the potent castor bean allergen. Green coffee bean allergens partially purified by gel filtration were heterogeneous with respect to molecular size, although quite similar in their reactivity with reaginic antiserum. These results suggest that the green coffee bean is the major source of allergen in coffee manufacturing plants. This allergen is heterogeneous with respect to size and heat lability, and is immunochemically different from the castor bean allergen.

  11. Structural and functional characterization of the hazelnut allergen Cor a 8

    SciTech Connect

    Offermann, Lesa R.; Bublin, Merima; Perdue, Makenzie L.; Pfeifer, Sabine; Dubiela, Pawel; Borowski, Tomasz; Chruszcz, Maksymilian; Hoffmann-Sommergruber, Karin

    2015-09-28

    Nonspecific lipid transfer proteins (nsLTPs) are basic proteins, stabilized by four disulfide bonds, and are expressed throughout the plant kingdom. These proteins are also known as important allergens in fruits and tree nuts. In this study, the nsLTP from hazelnuts, Cor a 8, was purified and its crystal structure determined. The protein is stable at low pH and refolds after thermal denaturation. Molecular dynamics simulations were used to provide an insight into conformational changes of Cor a 8 upon ligand binding. When known epitope areas from Pru p 3 were compared to those of Cor a 8, differences were obvious, which may contribute to limited cross-reactivity between peach and hazelnut allergens. The differences in epitope regions may contribute to limited cross-reactivity between Cor a 8 and nsLTPs from other plant sources. The structure of Cor a 8 represents the first resolved structure of a hazelnut allergen.

  12. Structural and Functional Characterization of the Hazelnut Allergen Cor a 8.

    PubMed

    Offermann, Lesa R; Bublin, Merima; Perdue, Makenzie L; Pfeifer, Sabine; Dubiela, Pawel; Borowski, Tomasz; Chruszcz, Maksymilian; Hoffmann-Sommergruber, Karin

    2015-10-21

    Nonspecific lipid transfer proteins (nsLTPs) are basic proteins, stabilized by four disulfide bonds, and are expressed throughout the plant kingdom. These proteins are also known as important allergens in fruits and tree nuts. In this study, the nsLTP from hazelnuts, Cor a 8, was purified and its crystal structure determined. The protein is stable at low pH and refolds after thermal denaturation. Molecular dynamics simulations were used to provide an insight into conformational changes of Cor a 8 upon ligand binding. When known epitope areas from Pru p 3 were compared to those of Cor a 8, differences were obvious, which may contribute to limited cross-reactivity between peach and hazelnut allergens. Differences in epitope regions may contribute to limited cross-reactivity between Cor a 8 and nsLTPs from other plant sources. The structure of Cor a 8 represents the first resolved structure of a hazelnut allergen.

  13. 78 FR 54658 - Allergenic Products Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-05

    ... Kentucky Bluegrass Mixed Pollens Allergen Extract tablet for sublingual use, manufactured by Stallergenes... the safety and efficacy of Grastek, a Timothy Grass Pollen Allergen Extract tablet for sublingual...

  14. Immunosuppression in early postnatal days induces persistent and allergen-specific immune tolerance to asthma in adult mice.

    PubMed

    Chen, Yan; Zhang, Jin; Lu, Yong; Wang, Libo

    2015-01-01

    Bronchial asthma is a chronic airway inflammatory condition with high morbidity, and effective treatments for asthma are limited. Allergen-specific immunotherapy can only induce peripheral immune tolerance and is not sustainable. Exploring new therapeutic strategies is of great clinical importance. Recombinant adenovirus (rAdV) was used as a vector to make cells expressing cytotoxic T lymphocyte-associated antigen-4-immunoglobulin (CTLA4Ig) a soluble CTLA4 immunoglobulin fusion protein. Dendritic cells (DCs) were modified using the rAdVs together with allergens. Then these modified DCs were transplanted to mice before allergen sensitization. The persistence and specificity of immune tolerance were evaluated in mice challenged with asthma allergens at 3 and 7 months. DCs modified by CTLA4Ig showed increased IL-10 secretion, decreased IL-12 secretion, and T cell stimulation in vitro. Mice treated with these DCs in the early neonatal period developed tolerance against the allergens that were used to induce asthma in the adult stage. Asthma symptoms, lung damage, airway reactivity, and inflammatory response all improved. Humoral immunity indices showed that this therapeutic strategy strongly suppressed mice immune responses and was maintained for as long as 7 months. Furthermore, allergen cross-sensitization and challenge experiments demonstrated that this immune tolerance was allergen-specific. Treatment with CTLA4Ig modified DCs in the early neonatal period, inducing persistent and allergen-specific immune tolerance to asthma in adult mice. Our results suggest that it may be possible to develop a vaccine for asthma.

  15. Biomarkers of acute respiratory allergen exposure: Screening for sensitization potential

    SciTech Connect

    Pucheu-Haston, Cherie M.; Copeland, Lisa B.; Vallanat, Beena; Boykin, Elizabeth; Ward, Marsha D.W.

    2010-04-15

    Effective hazard screening will require the development of high-throughput or in vitro assays for the identification of potential sensitizers. The goal of this preliminary study was to identify potential biomarkers that differentiate the response to allergens vs non-allergens following an acute exposure in naive individuals. Female BALB/c mice received a single intratracheal aspiration exposure to Metarhizium anisopliae crude antigen (MACA) or bovine serum albumin (BSA) in Hank's Balanced Salt Solution (HBSS) or HBSS alone. Mice were terminated after 1, 3, 6, 12, 18 and 24 h. Bronchoalveolar lavage fluid (BALF) was evaluated to determine total and differential cellularity, total protein concentration and LDH activity. RNA was isolated from lung tissue for microarray analysis and qRT-PCR. MACA administration induced a rapid increase in BALF neutrophils, lymphocytes, eosinophils and total protein compared to BSA or HBSS. Microarray analysis demonstrated differential expression of genes involved in cytokine production, signaling, inflammatory cell recruitment, adhesion and activation in 3 and 12 h MACA-treated samples compared to BSA or HBSS. Further analyses allowed identification of approx 100 candidate biomarker genes. Eleven genes were selected for further assessment by qRT-PCR. Of these, 6 demonstrated persistently increased expression (Ccl17, Ccl22, Ccl7, Cxcl10, Cxcl2, Saa1), while C3ar1 increased from 6-24 h. In conclusion, a single respiratory exposure of mice to an allergenic mold extract induces an inflammatory response which is distinct in phenotype and gene transcription from the response to a control protein. Further validation of these biomarkers with additional allergens and irritants is needed. These biomarkers may facilitate improvements in screening methods.

  16. Molecular, Structural and Immunological Characterization of Der p 18, a Chitinase-Like House Dust Mite Allergen

    PubMed Central

    Resch, Yvonne; Blatt, Katharina; Malkus, Ursula; Fercher, Christian; Swoboda, Ines; Focke-Tejkl, Margit; Chen, Kuan-Wei; Seiberler, Susanne; Mittermann, Irene; Lupinek, Christian; Rodriguez-Dominguez, Azahara; Zieglmayer, Petra; Zieglmayer, René; Keller, Walter; Krzyzanek, Vladislav; Valent, Peter; Valenta, Rudolf; Vrtala, Susanne

    2016-01-01

    Background The house dust mite (HDM) allergen Der p 18 belongs to the glycoside hydrolase family 18 chitinases. The relevance of Der p 18 for house dust mite allergic patients has only been partly investigated. Objective To perform a detailed characterization of Der p 18 on a molecular, structural and immunological level. Methods Der p 18 was expressed in E. coli, purified to homogeneity, tested for chitin-binding activity and its secondary structure was analyzed by circular dichroism. Der p 18-specific IgG antibodies were produced in rabbits to localize the allergen in mites using immunogold electron microscopy and to search for cross-reactive allergens in other allergen sources (i.e. mites, crustacea, mollusca and insects). IgE reactivity of rDer p 18 was tested with sera from clinically well characterized HDM-allergic patients (n = 98) and its allergenic activity was analyzed in basophil activation experiments. Results Recombinant Der p 18 was expressed and purified as a folded, biologically active protein. It shows weak chitin-binding activity and partial cross-reactivity with Der f 18 from D. farinae but not with proteins from the other tested allergen sources. The allergen was mainly localized in the peritrophic matrix of the HDM gut and to a lower extent in fecal pellets. Der p 18 reacted with IgE from 10% of mite allergic patients from Austria and showed allergenic activity when tested for basophil activation in Der p 18-sensitized patients. Conclusion Der p 18 is a rather genus-specific minor allergen with weak chitin-binding activity but exhibits allergenic activity and therefore should be included in diagnostic test panels for HDM allergy. PMID:27548813

  17. Peach ( Prunus persica L. Batsch) allergen-encoding genes are developmentally regulated and affected by fruit load and light radiation.

    PubMed

    Botton, Alessandro; Andreotti, Carlo; Costa, Guglielmo; Ramina, Angelo

    2009-01-28

    The fruits of Rosaceae species may frequently induce allergic reactions in both adults and children, especially in the Mediterranean area. In peach, true allergens and cross-reactive proteins may cause hypersensitive reactions involving a wide diversity of symptoms. Three known classes of allergenic proteins, namely, Pru p 1, Pru p 3, and Pru p 4, have been reported to be mostly involved, but an exhaustive survey of the proteins determining the overall allergenic potential, their biological functions, and the factors affecting the expression of the related genes is still missing. In the present study, the expression profiles of some selected genes encoding peach allergen isoforms were studied during fruit growth and development and upon different fruit load and light radiation regimens. The results indicate that the majority of allergen-encoding genes are expressed at their maximum during the ripening stage, therefore representing a potential risk for peach consumers. Nevertheless, enhancing the light radiation and decreasing the fruit load achieved a reduction of the transcription rate of most genes and a possible decrease of the overall allergenic potential at harvest. According to these data, new growing practices could be set up to obtain hypoallergenic peach fruits and eventually combined with the cultivation of hypoallergenic genotypes to obtain a significant reduction of the allergenic potential.

  18. Proteome, Allergenome, and Novel Allergens of House Dust Mite, Dermatophagoides farinae.

    PubMed

    Choopong, Jintarat; Reamtong, Onrapak; Sookrung, Nitat; Seesuay, Watee; Indrawattana, Nitaya; Sakolvaree, Yuwaporn; Chaicumpa, Wanpen; Tungtrongchitr, Anchalee

    2016-02-05

    Dermatophagoides farinae mite is a predominant source of indoor allergens causing high incidence of allergy worldwide. People with different genetic background respond differently to the mite components, and thus the component-resolved diagnosis (CRD) is preferred to the conventional allergy test based on crude mite extract. In this study, proteome and culprit components in the D. farinae whole body extract that sensitized the allergic patients were studied by using SDS-PAGE (1DE) and 2DE-IgE immunoblotting followed by LC-MS/MS and database search for protein identification. From the 1DE, the mite extract revealed 105 proteins that could be classified into seven functionally different groups: allergens, structural components, enzymes, enzyme inhibitor, receptor proteins, transporters, and binding/regulatory/cell signaling proteins. From the 2DE, the mite extract produced 94 spots; 63 were bound by IgE in sera of 20 D. farinae allergic patients. One more protein that was not revealed by the 2DE and protein staining reacted with IgE in 2 allergic patients. Proteins in 40 spots could be identified as 35 different types. Three of them reacted to IgE of >50% of the allergic patients, and hence they are major allergens: tropomyosin or Der f 10 (75%), aconitate hydratase (70%), and one uncharacterized protein (55%). Aconitate hydratase is a novel D. farinae major allergen unraveled in this study. Several mite minor allergens that have never been previously reported are also identified. The data have clinical applications in the component-resolved diagnosis for tailor-designed allergen-specific immunotherapy.

  19. Display of wasp venom allergens on the cell surface of Saccharomyces cerevisiae

    PubMed Central

    2010-01-01

    Background Yeast surface display is a technique, where the proteins of interest are expressed as fusions with yeast surface proteins and thus remain attached to the yeast cell wall after expression. Our purpose was to study whether allergens expressed on the cell surface of baker's yeast Saccharomyces cerevisiae preserve their native allergenic properties and whether the yeast native surface glycoproteins interfere with IgE binding. We chose to use the major allergens from the common wasp Vespula vulgaris venom: phospholipase A1, hyaluronidase and antigen 5 as the model. Results The proteins were expressed on the surface as fusions with a-agglutinin complex protein AGA2. The expression was confirmed by fluorescent cytometry (FACS) after staining the cells with antibody against a C-tag attached to the C-terminal end of the allergens. Phospholipase A1 and hyaluronidase retained their enzymatic activities. Phospholipase A1 severely inhibited the growth of the yeast cells. Antigen 5 - expressing yeast cells bound IgE antibodies from wasp venom allergic patient sera but not from control sera as demonstrated by FACS. Moreover, antigen 5 - expressing yeast cells were capable of mediating allergen-specific histamine release from human basophils. Conclusions All the three major wasp venom allergens were expressed on the yeast surface. A high-level expression, which was observed only for antigen 5, was needed for detection of IgE binding by FACS and for induction of histamine release. The non-modified S. cerevisiae cells did not cause any unspecific reaction in FACS or histamine release assay despite the expression of high-mannose oligosaccharides. In perspective the yeast surface display may be used for allergen discovery from cDNA libraries and possibly for sublingual immunotherapy as the cells can serve as good adjuvant and can be produced in large amounts at a low price. PMID:20868475

  20. The group 10 allergen of Dermatophagoides farinae (Acari: Pyroglyphidae): cDNA cloning, sequence analysis, and expression in Escherichia coli BL21.

    PubMed

    Cui, Yubao; Zhou, Ying; Wang, Yungang; Ma, Guifang; Yang, Li

    2013-01-01

    Dermatophagoides farinae Hughes, American house dust mite, is highly allergenic, producing symptoms in people worldwide. Identifying and cloning the allergens in this species may enable better diagnostic and therapeutic approaches. Here, we cloned, sequenced, and expressed the full-length cDNA encoding D. farinae group 10 allergen (Der f 10) isolated from dust mites in China. Bioinformatic analysis indicated that the 888 bp sequence encoded a cytoskeleton protein 295 amino acids long, with a molecular weight of approximately equal 34 kDa. Sequence alignment with the group 10 allergens of Pyroglyphidae, Acaridae, and Glycyphagidae families revealed that the group 10 allergen from D. farinae is 95% similar to D. pteronyssinus Trouessart and Psoroptes ovis (Hering). These findings lay the groundwork for future studies, including large-scale production of recombinant Der f 10 allergen for diagnostic and therapeutic agents.

  1. Antisense-mediated silencing of a gene encoding a major ryegrass pollen allergen.

    PubMed

    Bhalla, P L; Swoboda, I; Singh, M B

    1999-09-28

    Type 1 allergic reactions, such as hay fever and allergic asthma, triggered by grass pollen allergens are a global health problem that affects approximately 20% of the population in cool, temperate climates. Ryegrass is the dominant source of allergens because of its prodigious production of airborne pollen. Lol p 5 is the major allergenic protein of ryegrass pollen, judging from the fact that almost all of the individuals allergic to grass pollen show presence of serum IgE antibodies against this protein. Moreover, nearly two-thirds of the IgE reactivity of ryegrass pollen has been attributed to this protein. Therefore, it can be expected that down-regulation of Lol p 5 production can significantly reduce the allergic potential of ryegrass pollen. Here, we report down-regulation of Lol p 5 with an antisense construct targeted to the Lol p 5 gene in ryegrass. The expression of antisense RNA was regulated by a pollen-specific promoter. Immunoblot analysis of proteins with allergen-specific antibodies did not detect Lol p 5 in the transgenic pollen. The transgenic pollen showed remarkably reduced allergenicity as reflected by low IgE-binding capacity of pollen extract as compared with that of control pollen. The transgenic ryegrass plants in which Lol p 5 gene expression is perturbed showed normal fertile pollen development, indicating that genetic engineering of hypoallergenic grass plants is possible.

  2. Effect of gamma-irradiation on the survival of Listeria monocytogenes and allergenicity of cherry tomatoes

    NASA Astrophysics Data System (ADS)

    Todoriki, Setsuko; Bari, Latiful; Kitta, Kazumi; Ohba, Mika; Ito, Yasuhiro; Tsujimoto, Yuka; Kanamori, Norihito; Yano, Erika; Moriyama, Tatsuya; Kawamura, Yukio; Kawamoto, Shinichi

    2009-07-01

    The presence of Listeria monocytogenes in fresh produce is a growing concern because of the possibility of food-borne illness. Ionizing radiation is an effective non-thermal means of eliminating pathogenic bacteria in fresh produce; however, the effect of ionizing irradiation on the allergenic properties of the host commodities remains unknown. This study aimed (i) to determine the effective dose of gamma-irradiation in eliminating L. monocytogenes on whole cherry tomatoes and (ii) to evaluate the effect of gamma-irradiation on the allergenic properties of tomato proteins. Cherry tomatoes that were inoculated with a mixture of five L. monocytogenes strains were treated with gamma-rays from a 60Co source. A 1.25 kGy dose of gamma-irradiation was found to be sufficient to eliminate L. monocytogenes on whole cherry tomatoes. The immunoblot profile of serum samples obtained from two patients with tomato allergy revealed that gamma-irradiation did not affect the allergenicity of tomato proteins for up to 7 days after irradiation when the tomatoes were stored at 20 °C. Additionally, the m-RNA levels of β-fructofuranosidase, polygalacturonase, pectin esterase, and superoxide dismutase, the main allergenic proteins in tomato, were not affected by the applied irradiation dose. Thus, this study demonstrated that a 1.25 kGy dose of gamma-irradiation effectively eliminates L. monocytogenes on cherry tomatoes without affecting the expression of allergenic proteins in the fruits.

  3. Reactivity measurement in estimation of benzoquinone and benzoquinone derivatives’ allergenicity

    PubMed Central

    Mbiya, Wilbes; Chipinda, Itai; Simoyi, Reuben H.; Siegel, Paul D.

    2015-01-01

    Benzoquinone (BQ) and benzoquinone derivatives (BQD) are used in the production of dyes and cosmetics. While BQ, an extreme skin sensitizer, is an electrophile known to covalently modify proteins via Michael Addition (MA) reaction whilst halogen substituted BQD undergo nucleophilic vinylic substitution (SNV) mechanism onto amine and thiol moieties on proteins, the allergenic effects of adding substituents on BQ have not been reported. The effects of inserting substituents on the BQ ring has not been studied in animal assays. However, mandated reduction/elimination of animals used in cosmetics testing in Europe has led to an increased need for alternatives for the prediction of skin sensitization potential. Electron withdrawing and electron donating substituents on BQ were assessed for effects on BQ reactivity toward nitrobenzene thiol (NBT). The NBT binding studies demonstrated that addition of EWG to BQ as exemplified by the chlorine substituted BQDs increased reactivity while addition of EDG as in the methyl substituted BQDs reduced reactivity. BQ and BQD skin allerginicity was evaluated in the murine local lymph node assay (LLNA). BQD with electron withdrawing groups had the highest chemical potency followed by unsubstituted BQ and the least potent were the BQD with electron donating groups. The BQD results demonstrate the impact of inductive effects on both BQ reactivity and allergenicity, and suggest the potential utility of chemical reactivity data for electrophilic allergen identification and potency ranking. PMID:26612505

  4. Allergy to Uncommon Pets: New Allergies but the Same Allergens

    PubMed Central

    Díaz-Perales, Araceli; González-de-Olano, David; Pérez-Gordo, Marina; Pastor-Vargas, Carlos

    2013-01-01

    The prevalence of exotic pet allergies has been increasing over the last decade. Years ago, the main allergy-causing domestic animals were dogs and cats, although nowadays there is an increasing number of allergic diseases related to insects, rodents, amphibians, fish, and birds, among others. The current socio-economic situation, in which more and more people have to live in small apartments, might be related to this tendency. The main allergic symptoms related to exotic pets are the same as those described for dog and cat allergy: respiratory symptoms. Animal allergens are therefore, important sensitizing agents and an important risk factor for asthma. There are three main protein families implicated in these allergies, which are the lipocalin superfamily, serum albumin family, and secretoglobin superfamily. Detailed knowledge of the characteristics of allergens is crucial to improvement treatment of uncommon-pet allergies. PMID:24416032

  5. High-pressure treatment with silver carp (Hypophthalmichthys molitrix) protein and its allergic analysis

    NASA Astrophysics Data System (ADS)

    Liu, Rong; Xue, Wentong

    2010-09-01

    The allergenicity and structural changes of silver carp allergens influenced by high-pressure treatment were studied. We treated the allergens at 100, 200 and 300 MPa for 10, 30 and 60 min at 20° C, used SDS-PAGE to separate the proteins and recognized the allergens by western blotting. Circular dichroism analysis was performed to characterize the structural change. From our study, we can determine that high-pressure treatment did not change the subunit composition, molecular weight or the allergenicity of silver carp allergens, but it did change the structure of the allergens.

  6. The allergenic significance of certain fungi rarely reported as allergens.

    PubMed

    Giannini, E H; Northey, W T; Leathers, C R

    1975-12-01

    The allergenic significance of seven different species of fungi was investigated. Included were Chlorophyllum molybdites, Podaxis pistillaris, Stemonitis ferruginea, Lycogala epidendrum, Fuligo septica, Ustilago maydis and Puccinia cynodontis. All of these fungi have wide distribution patterns and aerially disseminated spores but, because of their unique growth characteristics, are usually not reported in atmospheric fungal surveys. Seventy-eight patients were treated for dermal sensitivity to extracts of the organisms after the spores were extracted in 50% glycerinated Coca's solution. The results represent a six-month test period. Forty-four patients, representing 56% of the total number tested, demonstrated dermal reactivity toward one or more of the extracts.

  7. Summary of the ACS symposium on Advances in Food Allergen Detection.

    PubMed

    Ross, Mark M; Jackson, Lauren

    2013-06-19

    A symposium titled "Advances in Food Allergen Detection" was held at the 243rd National Meeting of the American Chemical Society (ACS) in March 2012 in San Diego, CA, and was sponsored by the ACS Division of Agricultural and Food Chemistry. The purpose of the symposium was to convene the leaders in the food allergen analysis field for presentations on, and discussions of, the state of the art, new developments, and critical challenges in the detection and quantitation of allergenic proteins in foods. Twenty-five presentations were delivered by speakers representing academic, government, and industrial institutions in 10 countries. The presentations covered all aspects of food allergens, including a historical progress review, regulatory policies, clinical practices, food-processing effects, food production equipment cross-contamination and cleaning, and the performance of several food allergen analytical strategies and technologies. This paper is intended to provide a brief summary of the presentations as well as a record of the proceedings of the symposium, which was deemed a great success in advancing food allergen analysis.

  8. The selective peptide reactivity of chemical respiratory allergens under competitive and non-competitive conditions.

    PubMed

    Lalko, Jon F; Kimber, Ian; Dearman, Rebecca J; Api, Anne Marie; Gerberick, G Frank

    2013-01-01

    It is well established that certain chemicals cause respiratory allergy. In common with contact allergens, chemicals that induce sensitization of the respiratory tract must form stable associations with host proteins to elicit an immune response. Measurement of the reactivity of chemical allergens to single nucleophilic peptides is increasingly well-described, and standardized assays have been developed for use in hazard assessment. This study employed standard and modified peptide reactivity assays to investigate the selectivity of chemical respiratory allergens for individual amino acids under competitive and non-competitive conditions. The reactivity of 20 known chemical respiratory sensitizers (including diisocyanates, anhydrides, and reactive dyes) were evaluated for reactivity towards individual peptides containing cysteine, lysine, histidine, arginine, or tyrosine. Respiratory allergens exhibited the common ability to deplete both lysine and cysteine peptides; however, reactivity for histidine, arginine, and tyrosine varied between chemicals, indicating differences in relative binding affinity toward each nucleophile. To evaluate amino acid selectivity for cysteine and lysine under competitive conditions a modified assay was used in which reaction mixtures contained different relative concentrations of the target peptides. Under these reaction conditions, the binding preferences of reference respiratory and contact allergens (dinitrochlorobenzene, dinitrofluorobenzene) were evaluated. Discrete patterns of reactivity were observed showing various levels of competitive selectivity between the two allergen classes.

  9. Ligand binding modulates the structural dynamics and compactness of the major birch pollen allergen.

    PubMed

    Grutsch, Sarina; Fuchs, Julian E; Freier, Regina; Kofler, Stefan; Bibi, Marium; Asam, Claudia; Wallner, Michael; Ferreira, Fátima; Brandstetter, Hans; Liedl, Klaus R; Tollinger, Martin

    2014-12-16

    Pathogenesis-related plant proteins of class-10 (PR-10) are essential for storage and transport of small molecules. A prominent member of the PR-10 family, the major birch pollen allergen Bet v 1, is the main cause of spring pollinosis in the temperate climate zone of the northern hemisphere. Bet v 1 binds various ligand molecules to its internal cavity, and immunologic effects of the presence of ligand have been discussed. However, the mechanism of binding has remained elusive. In this study, we show that in solution Bet v 1.0101 is conformationally heterogeneous and cannot be represented by a single structure. NMR relaxation data suggest that structural dynamics are fundamental for ligand access to the protein interior. Complex formation then leads to significant rigidification of the protein along with a compaction of its 3D structure. The data presented herein provide a structural basis for understanding the immunogenic and allergenic potential of ligand binding to Bet v 1 allergens.

  10. Impact of thermal processing on ELISA detection of peanut allergens.

    PubMed

    Fu, Tong-Jen; Maks, Nicole

    2013-06-19

    This study examined the effect of heat treatment on the solubility of peanut proteins and compared the performances of two commercial ELISA kits (Veratox Quantitative Peanut Allergen Test and BioKits Peanut Assay Kit) for quantitation of peanut residues as affected by different heat treatments (moist and dry heat) and detection targets (mixture of proteins vs specific protein). Both laboratory-prepared and commercial peanut flour preparations were used for the evaluation. The two ELISA kits tended to underestimate the levels of protein in samples that were subjected to elevated heat, respectively, by more than 60- or 400-fold lower for the autoclaved samples and by as much as 70- or 2000-fold lower for the dark-roast commercial flour samples. The BioKits test, which employs antibodies specific to a heat labile protein (Ara h 1), in general exhibited a greater degree of underestimation. These results suggest that commercial ELISA kits may not be able to accurately determine the amount of proteins present in thermally processed foods due to changes in the solubility and immunoreactivity of the target proteins. Users need to be aware of such limitations before applying ELISA kits for evaluation of food allergen control programs.

  11. Immunological cross-reactivity between olive and grass pollen: implication of major and minor allergens

    PubMed Central

    2014-01-01

    Background Grasses and olive trees are the most common sources of allergenic pollen worldwide. Although they share some allergens, there are few studies analyzing the in vitro cross-reactivity between them. The aim was to define the cross-reactivity between Olea europaea and Phleum pratense using well-characterized sera of allergic children from Madrid, Spain. Methods 66 patients (mean age 10.32+/−4.07 years) were included in the study. All suffered from rhinoconjuntivitis and/or asthma and had a positive skin test and/or specific IgE determination to olive and grass pollen. Serum sIgE to individual allergens was conducted and sIgE against different grass species and olive was also determined by ELISA. Inhibition assays were performed using two serum sources, containing, or not, sIgE to minor allergens. Mass spectrometry analysis was performed in both extracts. Results 59/66 (89.39%) children had a positive sIgE determination by ELISA to grasses and 57/66 (86.36%) to olive pollen. There was no significant correlation between sIgE levels to grass and olive. Inhibition assays demonstrated no cross-reactivity between P. pratense and olive pollen when using the pool containing mainly sIgE to major allergens, whereas minimal to moderate cross-reactivity was detected when the serum contained high sIgE titers to minor allergens. Proteomic analyses revealed the presence of 42 common proteins in grasses and olive pollens. Conclusion No in vitro cross-reactivity was observed when sIgE was mainly directed to major allergens. In our population, sensitization to olive and grasses is not due to cross-reactivity. The contribution of the major allergens seems to be determinant. PMID:24940475

  12. Analysis of properties and proinflammatory functions of cockroach allergens Per a 1.01s.

    PubMed

    He, S; Zhang, Z; Zhang, H; Wei, J; Yang, L; Yang, H; Sun, W; Zeng, X; Yang, P

    2011-09-01

    Cockroaches have been identified as one of the major indoor allergens inducing perennial rhinitis and asthma. Per a 1s are a group of the major allergens from American cockroach. Although Per a 1s are major allergens from American cockroach, factors contributing to the allergenicity of Per a 1s are still poorly defined. To investigate the effects of Per a 1s on the expression of PARs and the release of proinflammatory cytokines from mast cells. Per a 1.0101 and Per a 1.0104 were cloned from American cockroach and then expressed in Eschericia coli. The purified allergens were used to stimulate P815 mast cells, and the expression of protease-activated receptors (PARs) was determined by real-time RT-PCR and flow cytometry. The levels of IL-4 and IL-13 in culture media were detected with ELISA. Sera from 80 and 77.3% of cockroach allergy patients reacted to recombinant Per a (rPer a) 1.0101 and rPer a 1.0104, confirming they are major allergens. Both rPer a 1.0101 and rPer a 1.0104 had no enzymatic activity, but rPer a 1.0101 upregulated the expression of PAR-1 and PAR-2, and rPer a 1.0104 enhanced the expression of PAR-1 and PAR-4 proteins. Both recombinant allergens were able to increase the release of IL-4 and IL-13 from P815 mast cells. This is the first study aiming to investigate functions of group 1 allergens of American cockroach. rPer a 1.0101 and rPer a 1.0104 have the capacity to upregulate the expression of PARs and to enhance Th2 cytokine production in mast cells.

  13. Reducing food allergenicity at the molecular level.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Food allergens are a significant worldwide public health issue. Estimates for the prevalence of food allergies are around 1-2 % of the total population and up to 8 % of children; although, the prevalence may vary between populations and age groups. Peanuts are one of the most allergenic foods. The...

  14. Purification and characterization pecan (Carya Illinoinensis) vicilin, a putative food allergen (abstract)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pecan seed storage protein vicilin, a putative food allergen, was recombinantly expressed for and purified by a combination of metal affinity and gel filtration chromatography. The protein was crystallized and studied by crystallography. The obtained crystals belonged to space group P212121 with...

  15. All three subunits of soybean beta-conglycinin are potential food allergens.

    PubMed

    Krishnan, Hari B; Kim, Won-Seok; Jang, Sungchan; Kerley, Monty S

    2009-02-11

    Soybeans are recognized as one of the "big 8" food allergens. IgE antibodies from soybean-sensitive patients recognize more than 15 soybean proteins. Among these proteins only the alpha-subunit of beta-conglycinin, but not the highly homologous alpha'- and beta-subunits, has been shown to be a major allergenic protein. The objective of this study was to examine if the alpha'- and beta-subunits of beta-conglycinin can also serve as potential allergens. Immunoblot analysis using sera collected from soybean-allergic patients revealed the presence of IgE antibodies that recognized several soy proteins including 72, 70, 52, 34, and 21 kDa proteins. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF) analysis of trypsin-digested 72, 70, and 52 kDa proteins indicated that these proteins were the alpha'-, alpha-, and beta-subunits of beta-conglycinin, respectively. Additionally, purified alpha'-, alpha-, and beta-subunits of beta-conglycinin were recognized by IgE antibodies present in the soybean-allergic patients. The IgE reactivity to the beta-subunit of beta-conglycinin was not abolished when this glycoprotein was either deglycosylated using glycosidases or expressed as a recombinant protein in Escherichia coli . The results suggest that in addition to the previously recognized alpha-subunit of beta-conglycinin, the alpha'- and beta-subunits of beta-conglycinin also are potential food allergens.

  16. A new allergen from ragweed (Ambrosia artemisiifolia) with homology to art v 1 from mugwort.

    PubMed

    Léonard, Renaud; Wopfner, Nicole; Pabst, Martin; Stadlmann, Johannes; Petersen, Bent O; Duus, Jens Ø; Himly, Martin; Radauer, Christian; Gadermaier, Gabriele; Razzazi-Fazeli, Ebrahim; Ferreira, Fatima; Altmann, Friedrich

    2010-08-27

    Art v 1, the major pollen allergen of the composite plant mugwort (Artemisia vulgaris) has been identified recently as a thionin-like protein with a bulky arabinogalactan-protein moiety. A close relative of mugwort, ragweed (Ambrosia artemisiifolia) is an important allergen source in North America, and, since 1990, ragweed has become a growing health concern in Europe as well. Weed pollen-sensitized patients demonstrated IgE reactivity to a ragweed pollen protein of apparently 29-31 kDa. This reaction could be inhibited by the mugwort allergen Art v 1. The purified ragweed pollen protein consisted of a 57-amino acid-long defensin-like domain with high homology to Art v 1 and a C-terminal proline-rich domain. This part contained hydroxyproline-linked arabinogalactan chains with one galactose and 5 to 20 and more alpha-arabinofuranosyl residues with some beta-arabinoses in terminal positions as revealed by high field NMR. The ragweed protein contained only small amounts of the single hydroxyproline-linked beta-arabinosyl residues, which form an important IgE binding determinant in Art v 1. cDNA clones for this protein were obtained from ragweed flowers. Immunological characterization revealed that the recombinant ragweed protein reacted with >30% of the weed pollen allergic patients. Therefore, this protein from ragweed pollen constitutes a novel important ragweed allergen and has been designated Amb a 4.

  17. Enhanced approaches for identifying Amadori products:application to peanut allergens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The dry roasting of peanuts is suggested to influence allergenic sensitization due to formation of advanced glycation end products (AGE) on peanut proteins. Identifying AGEs is technically challenging. The AGE composition of peanut proteins was probed with nanoLC-ESI-MS and MS/MS analyses. Amadori ...

  18. In silico assessment of the potential allergenicity of transgenes used for the development of GM food crops.

    PubMed

    Mishra, Ankita; Gaur, S N; Singh, B P; Arora, Naveen

    2012-05-01

    Genetically modified (GM) crops require allergenicity and toxicity assessment of the novel protein(s) to ensure complete safety to the consumers. These assessments are performed in accordance with the guidelines proposed by Codex (2003) and ICMR (2008). The guidelines recommend sequence homology analysis as a preliminary step towards allergenicity prediction, later in vitro experiments may be performed to confirm allergenicity. In the present study, an in silico approach is employed to evaluate the allergenic potential of six transgenes routinely used for the development of GM food crops. Among the genes studied, manganese superoxide dismutase (MnSOD) and osmotin shares greater than 90% identity with Hev b 10 and Cap a 1w, respectively. Chitinase shares greater than 70% identity with allergens namely Pers a 1 and Hev b 11, and fungal chitinase showed significant IgE binding with 7 of 75 patients' sera positive to different food extracts. Glucanases (alfalfa, wheat) and glycine betaine aldehyde dehydrogenase gene share 50% homology with allergens like - Ole e 9, Cla h 10 and Alt a 10. The results demonstrate the allergenic potential of six genes and can serve as a guide for selection of transgenes to develop GM crops.

  19. Assessment of environmental cockroach allergen exposure.

    PubMed

    Chew, Ginger L

    2012-10-01

    In the past, cockroach allergen exposure assessment mainly focused on settled dust in homes in low-income urban cities in the United States. That choice was not wrong; without measureable levels of cockroach allergen, it is difficult to show associations with any home characteristics, much less with health outcomes (e.g., allergy, asthma). However, recent studies in other suburban areas, schools, and other countries have elucidated the importance of cockroach allergen in these environments too. In addition, characterizing the underlying factors that give rise to cockroach allergen exposure (or protect against it) can lead to more targeted public health interventions. This review discusses different approaches to sampling indoor environments, interprets recent asthma and allergy studies, compares cockroach allergen levels from past studies with those of recent studies, and describes strategies for decreasing exposures.

  20. Watermelon and ragweed share allergens.

    PubMed

    Enberg, R N; Leickly, F E; McCullough, J; Bailey, J; Ownby, D R

    1987-06-01

    A biotin-avidin amplified ELISA was used to measure antigen-specific IgE for ragweed, representative members of the gourd family (watermelon, cantaloupe, honeydew melon, zucchini, and cucumber), and banana in the sera of 192 allergic patients, each with an IgE greater than or equal to 180 microns/ml. Sixty-three percent (120/192) of the sera contained antiragweed IgE, and of these patients, 28% to 50% contained IgE specific for any single gourd family member. In contrast, no greater than 11% of the sera positive for a given gourd or banana were negative for ragweed. Correlations between ragweed and gourd-specific IgE levels were significant (p less than 0.001), and correlation coefficients between any two gourds exceeded 0.79. In an ELISA system, the extracts of watermelon and ragweed inhibited each other in a dose-dependent manner; the resulting nonparallel inhibition curves indicate that some, but not all, of the allergens in the two extracts are cross-reactive. Isoelectric focusing of watermelon and ragweed extracts in narrow range gel (pH 4 to 6) followed by immunoblotting demonstrated six watermelon allergen bands with isoelectric points identical to those of ragweed allergens. Several remaining bands in the two extracts had differing isoelectric points, however. Six of 26 patients interviewed with watermelon-specific IgE reported developing oropharyngeal symptoms (itching and/or swelling of the lips, tongue, or throat) after ingesting at least one of the study foods, whereas only one of 25 patients interviewed without detectable watermelon-specific IgE reported similar symptoms (p = 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Allergens might trigger migraine attacks.

    PubMed

    Bektas, Hesna; Karabulut, Hayriye; Doganay, Beyza; Acar, Baran

    2017-03-01

    Migraine is a common primary headache disorder. The mechanisms underlying the onset of a migraine attack are not completely understood. Environmental changes and a number of other factors could induce migraine attacks. The aim of this study was to investigate the relationship between the frequency of migraine attacks and allergens. Migraine patients without aura, and healthy individuals similar in age and gender without a history of headache and allergy were prospectively included in the study. The duration of migraine, the frequency of migraine attacks, the medication history, and the symptoms during attacks were questioned. Migraine disability assessment score (MIDAS) and visual analog scale (VAS) scores were obtained. Allergen extracts including dust, fungi, insect, animal epithelium, pollens, and food allergens were applied for allergy tests. 49 migraine patients and 49 healthy individuals were enrolled in the study. There was no significant difference in terms of age and gender. The median migraine disease duration, the number of attacks in a month, and the duration of attacks were, respectively, 5.5 years (1-44), 4 (1-10) day/month, and 24 (4-72) h. The mean MIDAS grade was 2.45 ± 0.14 (1-4), and mean VAS score was 7.89 ± 0.27 (4-10). The positivity of allergy tests was 55.1 % (27/49) in the migraine group and 32.7 % (16/49) in the control group (p < 0.05). The allergy tests were positive for house dust, red birch, hazel tree, olive tree, nettle, and wheat. The frequency of migraine attacks was higher in allergy-test-positive patients than in negative ones in the migraine group (p = 0.001). The migraine patients who had frequent attacks should be examined for allergies.

  2. The dominant 55 kDa allergen of the subtropical Bahia grass (Paspalum notatum) pollen is a group 13 pollen allergen, Pas n 13.

    PubMed

    Davies, Janet M; Voskamp, Astrid; Dang, Thanh D; Pettit, Benjamin; Loo, Dorothy; Petersen, Arnd; Hill, Michelle M; Upham, John W; Rolland, Jennifer M; O'Hehir, Robyn E

    2011-03-01

    Bahia grass, Paspalum notatum, is an important pollen allergen source with a long season of pollination and wide distribution in subtropical and temperate regions. We aimed to characterize the 55 kDa allergen of Bahia grass pollen (BaGP) and ascertain its clinical importance. BaGP extract was separated by 2D-PAGE and immunoblotted with serum IgE of a grass pollen-allergic patient. The amino-terminal protein sequence of the predominant allergen isoform at 55 kDa had similarity with the group 13 allergens of Timothy grass and maize pollen, Phl p 13 and Zea m 13. Four sequences obtained by rapid amplification of the allergen cDNA ends represented multiple isoforms of Pas n 13. The predicted full length cDNA for Pas n 13 encoded a 423 amino acid glycoprotein including a signal peptide of 28 residues and with a predicted pI of 7.0. Tandem mass spectrometry of tryptic peptides of 2D gel spots identified peptides specific to the deduced amino acid sequence for each of the four Pas n 13 cDNA, representing 47% of the predicted mature protein sequence of Pas n 13. There was 80.6% and 72.6% amino acid identity with Zea m 13 and Phl p 13, respectively. Reactivity with a Phl p 13-specific monoclonal antibody AF6 supported designation of this allergen as Pas n 13. The allergen was purified from BaGP extract by ammonium sulphate precipitation, hydrophobic interaction and size exclusion chromatography. Purified Pas n 13 reacted with serum IgE of 34 of 71 (48%) grass pollen-allergic patients and specifically inhibited IgE reactivity with the 55 kDa band of BaGP for two grass pollen-allergic donors. Four isoforms of Pas n 13 from pI 6.3-7.8 had IgE-reactivity with grass pollen allergic sera. The allergenic activity of purified Pas n 13 was demonstrated by activation of basophils from whole blood of three grass pollen-allergic donors tested but not control donors. Pas n 13 is thus a clinically relevant pollen allergen of the subtropical Bahia grass likely to be important in eliciting

  3. Olive cultivar origin is a major cause of polymorphism for Ole e 1 pollen allergen

    PubMed Central

    Hamman-Khalifa, AbdelMounim; Castro, Antonio Jesús; Jiménez-López, José Carlos; Rodríguez-García, María Isabel; Alché, Juan de Dios

    2008-01-01

    Background Pollens from different olive (Olea europaea L.) cultivars have been shown to differ significantly in their content in Ole e 1 and in their overall allergenicity. This allergen is, in addition, characterized by a high degree of polymorphism in its sequence. The purpose of this study is to evaluate the putative presence of divergences in Ole e 1 sequences from different olive cultivars. Results RNA from pollen individually collected from 10 olive cultivars was used to amplify Ole e 1 sequences by RT-PCR, and the sequences were analyzed by using different bioinformatics tools. Numerous nucleotide substitutions were detected throughout the sequences, many of which resulted in amino acid substitutions in the deduced protein sequences. In most cases variability within a single variety was much lower than among varieties. Key amino acid changes in comparison with "canonical" sequences previously described in the literature included: a) the substitution of C19-relevant to the disulphide bond structure of the protein-, b) the presence of an additional N-glycosylation motif, and c) point substitutions affecting regions of Ole e 1 already described like relevant for the immunogenicity/allergenicity of the protein. Conclusion Varietal origin of olive pollen is a major factor determining the diversity of Ole e 1 variants. We consider this information of capital importance for the optimal design of efficient and safe allergen formulations, and useful for the genetic engineering of modified forms of the allergen among other applications. PMID:18218146

  4. Structure-based modelling of hemocyanin allergenicity in squid and its response to high hydrostatic pressure

    PubMed Central

    Zhang, Yifeng; Deng, Yun; Zhao, Yanyun

    2017-01-01

    The secondary, tertiary, and quaternary structures of squid hemocyanin (Hc) were characterised, and the relationship between Hc structure and allergenicity responses to high hydrostatic pressure (HHP) was modelled. The Hc allergenicity varied with its protein structure. Electrophoresis analysis revealed that HHP treatment significantly decreased the band intensity of Hc when increasing pressure from 200 and 400 MPa to 600 MPa. The protein structure analysis of squid Hc showed that while HHP treatment decreased the α-helix content, free sulfhydryl content, and Rg, it increased the random coil content, surface hydrophobicity index (Ho), Guinier aggregation number (〈Nagg〉G) and average aggregation number (〈Nagg〉Q). The α-helix and random coil contents of the 600 MPa treated samples were 23.67% and 37.54%, respectively, compared to 32.37% and 32.02% in the control, respectively. HHP treatment decreased the IgE and IgG-binding capacities, indicating a significant decrease in the allergenicity (P< 0.05) of squid Hc. This study provided meaningful information of applying HHP to reduce allergenicity, and explained the responses of Hc protein structure to HHP for lowering the allergenicity of squid. PMID:28112159

  5. Identification and Characterization of a New Pecan [Carya illinoinensis (Wangenh.) K. Koch] Allergen, Car i 2.

    PubMed

    Zhang, Yuzhu; Lee, BoRam; Du, Wen-Xian; Lyu, Shu-Chen; Nadeau, Kari C; Grauke, Larry J; Zhang, Yan; Wang, Shuo; Fan, Yuting; Yi, Jiang; McHugh, Tara H

    2016-05-25

    The 7S vicilin and 11S legumin seed storage globulins belong to the cupin protein superfamily and are major food allergens in many foods from the "big eight" food allergen groups. Here, for the first time, pecan vicilin was found to be a food allergen. Western blot experiments revealed that 30% of 27 sera used in this study and 24% of the sera from 25 patients with double-blind, placebo controlled clinical pecan allergy contained IgE antibodies specific to pecan vicilin. This allergen consists of a low-complexity region at its N-terminal and a structured domain at the C-terminal that contains two cupin motifs and forms homotrimers. The crystal structure of recombinant pecan vicilin was determined. The refined structure gave R/Rfree values of 0.218/0.262 for all data to 2.65 Å. There were two trimeric biological units in the crystallographic asymmetric unit. Pecan vicilin is also a copper protein. These data may facilitate the understanding of the nutritional value and the allergenicity relevance of the copper binding property of seed storage proteins in tree nuts.

  6. Recent development in recombinant food allergen production (abstract)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whether for understanding the properties of food allergens or for manufacturing vaccines for allergen-specific immunotherapy, well characterized pure allergens are required. This often necessitate the use of recombinant technology in obtaining food allergens due to the very low amounts of their natu...

  7. Allergens from Brazil nut: immunochemical characterization.

    PubMed

    Bartolomé, B; Méndez, J D; Armentia, A; Vallverdú, A; Palacios, R

    1997-01-01

    The increase in the consumption of tropical nuts in the Northern Hemisphere during the last years, has evolved in a simultaneous enhancement of allergic IgE mediated (Hypersensitivity type 1) reported cases produced by this kind of food. The Brazil nut is the seed of the Bertholletia excelsa tree (Family Lecythidaceae) and, as in other seeds, proteins represent one of its major components making up 15-17% of its fresh weight and 50% of defatted flour. Of these, storage proteins are the most important ones, and the 12 S globulin legumin-like protein and the 2 S albumin have been described as the most representative. The 2 S protein, due to its high sulfur-rich amino acid content (3% cysteine and 18% methionine), is being studied, cloned and expressed in some important agronomic seeds (soybean, bean, oilseed rape) in order to enrich the nutritional quality of them. The case of a patient with serious clinical allergic symptoms (vomiting, diarrhoea and loss of consciousness) caused by oral contact with the Brazil nut, is presented. The patient gave a positive Skin Prick Test response to Brazil nut, kiwi and hazelnut extracts, and negative to regionally specific aeroallergens and other food extracts. The patient serum showed a high level of specific IgE by RAST to Brazil nut (> 17.5 PRU/ml, Class 4), and significative levels to hazelnut, and mustard. In vitro immunological studies (SDS-Immunoblotting and IEF-Immunoblotting) revealed IgE-binding proteins present in the extract. It was shown that not only the heavy (Mr 9) and light (Mr 4) subunits of the known allergenic 2 S albumin but also the alpha-subunits (Mr approximately 33.5 and 32) and at least one of the beta-subunits (Mr approximately 21) of the 12 S Brazil nut globulin, hitherto never involved in allergic problems, showed a strong IgE-binding capacity.

  8. Quality Control of Biomedicinal Allergen Products - Highly Complex Isoallergen Composition Challenges Standard MS Database Search and Requires Manual Data Analyses.

    PubMed

    Spiric, Jelena; Engin, Anna M; Karas, Michael; Reuter, Andreas

    2015-01-01

    Allergy against birch pollen is among the most common causes of spring pollinosis in Europe and is diagnosed and treated using extracts from natural sources. Quality control is crucial for safe and effective diagnosis and treatment. However, current methods are very difficult to standardize and do not address individual allergen or isoallergen composition. MS provides information regarding selected proteins or the entire proteome and could overcome the aforementioned limitations. We studied the proteome of birch pollen, focusing on allergens and isoallergens, to clarify which of the 93 published sequence variants of the major allergen, Bet v 1, are expressed as proteins within one source material in parallel. The unexpectedly complex Bet v 1 isoallergen composition required manual data interpretation and a specific design of databases, as current database search engines fail to unambiguously assign spectra to highly homologous, partially identical proteins. We identified 47 non-allergenic proteins and all 5 known birch pollen allergens, and unambiguously proved the existence of 18 Bet v 1 isoallergens and variants by manual data analysis. This highly complex isoallergen composition raises questions whether isoallergens can be ignored or must be included for the quality control of allergen products, and which data analysis strategies are to be applied.

  9. Molecular cloning, characterization, and expression of Cuc m 2, a major allergen in Cucumis melo

    PubMed Central

    Sankian, Mojtaba; Mahmoudi, Mahmoud; Varasteh, Abdol-Reza

    2013-01-01

    Background: Several studies reported the clinical features of IgE-mediated hypersensitivity after ingestion of melon. Melon allergy is a common IgE-mediated fruit allergy in Iran. This prompted us to investigate immunochemical and molecular properties of the major allergen in melon fruit, to compare the IgE-binding capacity of the natural protein with the recombinant allergen, and to determine cross-reactivity of the major allergen with closely-related allergens from other plants displaying clinical cross-reactivity with melon. Methods: Identification and molecular characterization of the major melon allergen were performed using IgE immunoblotting, allergen-specific ELISA, affinity-based purifications, cross-inhibition assays, cloning, and expression of the allergen in Escherichia coli. Results: Melon profilin was identified and isolated as a major IgE-binding component and designated as Cuc m 2. Sequencing corresponding cDNA revealed an open reading frame of 363 bp coding for 131 amino acid residues and two fragments of 171 bp and 383 bps for the 5’and 3’ UTRs, respectively. Significant cross-reactivity was found between melon profilin and Cynodon dactylon, tomato, peach, and grape profilins in cross-inhibition assays. Although the highest degree of amino acid identity was revealed with watermelon profilin, there was no significant cross-reactivity between melon and watermelon profilins. Conclusion: Melon profilin is the major IgE-binding component in melon extract, and the recombinant and natural forms exhibited similar IgE-binding capacities. A part of the fruit-fruit and pollen-fruit cross-reactions could be explained by the presence of this conserved protein; however, sequence homology provides insufficient information to predict IgE cross-reactivity of profilins. PMID:26989709

  10. Skin Barrier Function and Allergens.

    PubMed

    Engebretsen, Kristiane Aasen; Thyssen, Jacob Pontoppidan

    2016-01-01

    The skin is an important barrier protecting us from mechanical insults, microorganisms, chemicals and allergens, but, importantly, also reducing water loss. A common hallmark for many dermatoses is a compromised skin barrier function, and one could suspect an elevated risk of contact sensitization (CS) and allergy following increased penetration of potential allergens. However, the relationship between common dermatoses such as psoriasis, atopic dermatitis (AD) and irritant contact dermatitis (ICD) and the development of contact allergy (CA) is complex, and depends on immunologic responses and skin barrier status. Psoriasis has traditionally been regarded a Th1-dominated disease, but the discovery of Th17 cells and IL-17 provides new and interesting information regarding the pathogenesis of the disease. Research suggests an inverse relationship between psoriasis and CA, possibly due to increased levels of Th17 cells and its associated cytokines. As for AD, a positive association to CS has been established in epidemiological studies, but is still unresolved. Experimental studies show, however, an inverse relationship between AD and CS. The opposing and antagonistic influences of Th1 (CS) and Th2 (AD) have been proposed as an explanation. Finally, there is convincing evidence that exposure to irritants increases the risk of CS, and patients with ICD are, therefore, at great risk of developing CA. Skin irritation leads to the release of IL-1 and TNF-α, which affects the function of antigen-presenting cells and promotes their migration to local lymph nodes, thus increasing the probability of CS and ultimately the development of CA.

  11. Allergen avoidance approaches in food allergy management.

    PubMed

    Koletzko, Sibylle; Koletzko, Berthold

    2009-01-01

    Dietary elimination of causative food ingredients, usually food proteins, is the basis of treating food hypersensitivity. Proper diagnostic assessment is essential to avoid burdening children with unnecessary dietary restrictions with potential adverse effects. Diagnosis requires a detailed history, allergen elimination, and re-challenge with suspected foods. Complete elimination of causative food components depends on professional counseling and training of the patient and family, and transparent labeling of food products. Elimination diets carry the risk of inducing insufficient supplies of critical nutrients with adverse effects on health and wellbeing, particularly in children with exclusion of foods that provide a major part of dietary supply and patients with multiple food allergies. Infants and young children with cow's milk allergy, who have not been fully breastfed, require milk substitutes based on extensively hydrolyzed protein or amino acids. Elimination diets must be supervised and monitored to a similar degree as drug treatments, and the need for continued dietary elimination should be reviewed on a regular basis and re-challenges considered.

  12. Effect of transglutaminase-catalyzed glycosylation on the allergenicity and conformational structure of shrimp (Metapenaeus ensis) tropomyosin.

    PubMed

    Yuan, Fangzhou; Lv, Liangtao; Li, Zhenxing; Mi, Nasha; Chen, Hairong; Lin, Hong

    2017-03-15

    Tropomyosin (TM), a myofibrillar protein, is a major allergen in shrimp. The aim of this study was to evaluate the effect of transglutaminase (TGase)-catalyzed glycosylation on the potential allergenicity and conformational structure of TM in Metapenaeus ensis. Results showed that glycosylation of TM induced unfolding of the primary protein structure followed by loss of the secondary structure. Cleavage of certain free amino groups was observed during TGase-catalyzed glycosylation. The glycosylation rate correlated with reaction temperature. Western blotting and indirect ELISA with TM-specific polyclonal antibodies from rabbit and sera from patients allergic to shrimp demonstrated that antigenicity and potential allergenicity of TM decreased, which correlated well with the conformational changes in its structure. Considering TGase is widely utilized in the food industry, these results indicate that TGase-catalyzed glycosylation has the potential to serve as a mild method for reducing the allergenicity of shrimp products.

  13. Allergens/Antigens, toxins and polyketides of important Aspergillus species.

    PubMed

    Bhetariya, Preetida J; Madan, Taruna; Basir, Seemi Farhat; Varma, Anupam; Usha, Sarma P

    2011-04-01

    The medical, agricultural and biotechnological importance of the primitive eukaryotic microorganisms, the Fungi was recognized way back in 1920. Among various groups of fungi, the Aspergillus species are studied in great detail using advances in genomics and proteomics to unravel biological and molecular mechanisms in these fungi. Aspergillus fumigatus, Aspergillus flavus, Aspergillus niger, Aspergillus parasiticus, Aspergillus nidulans and Aspergillus terreus are some of the important species relevant to human, agricultural and biotechnological applications. The potential of Aspergillus species to produce highly diversified complex biomolecules such as multifunctional proteins (allergens, antigens, enzymes) and polyketides is fascinating and demands greater insight into the understanding of these fungal species for application to human health. Recently a regulator gene for secondary metabolites, LaeA has been identified. Gene mining based on LaeA has facilitated new metabolites with antimicrobial activity such as emericellamides and antitumor activity such as terrequinone A from A. nidulans. Immunoproteomic approach was reported for identification of few novel allergens for A. fumigatus. In this context, the review is focused on recent developments in allergens, antigens, structural and functional diversity of the polyketide synthases that produce polyketides of pharmaceutical and biological importance. Possible antifungal drug targets for development of effective antifungal drugs and new strategies for development of molecular diagnostics are considered.

  14. Der f 21, a novel allergen from dermatophagoides farina.

    PubMed

    Wu, Yulan; Jiang, Congli; Li, Meng; Yu, Haiqiong; Xiao, Xiaojun; Fan, Xiaoqin; Lin, Jianli; Liu, Xiaoyu; Zhang, Min; Yang, Pingchang; Liu, Zhigang

    2016-01-01

    The Dermatophagoides farina (D. farina) allergens are an important factor contributing to allergic disease. To identify new allergens is important for diagnosis and treatment of allergic diseases. In this study, we sought to characterize the biological activity of Der f 21 of D. farina. The recombinant Der f 21 protein was characterized by western-blot, ELISA and Skin prick test using clinic patient's serum.An allergic asthma mouse model was established with the rDer f 21 as a specific antigen. The results showed that the sera from 28.9% in 38 dust mite allergic children displayed positive results in response to rDer f 21, and 42% in 98 dust mite allergic patients displayed positive response in skin prick test. In addition, Immune inhibition assays showed there was IgE cross-reactivity between rDer f 21 and rDer f 5. Moreover, an allergic asthma mouse model was established. Airway hyperresponsiveness, serum specific IgE, IgG1, eosinophil infiltration in the allergic mice, interleukin-4(IL-4) and interferon-γ (INF-γ) from spleen cells were markedly increased in the allergic mice. The results demonstrate that Der f 21 is a novel allergen.

  15. The hammock: a reservoir of allergens

    PubMed Central

    Rego, Francisca X M; Giavina-Bianchi, Pedro; Kalil, Jorge; Arruda, L. Karla; Toledo-Barros, Myrthes

    2011-01-01

    INTRODUCTION: Asthma affects approximately 10% of the world's population. Sensitization to allergens is an important risk factor, and exposure to allergens is associated with disease severity. METHODS: We performed skin tests to evaluate allergen sensitization to mites, cockroaches, cats, dogs, and molds in 73 asthmatic patients. Enzyme Linked Immunosorbent Assay was used to assay the mite and cockroach allergens found in dust from the bedding, hammocks, bedroom floors, living rooms, and kitchens of 29 patients and 14 controls. RESULTS: Fifty patients (68.5%) had positive skin test responses. There were positive responses to D. pteronyssinus (52.0%), B. tropicalis (53.4%), T. putrescentiae (15.0%), E. maynei (12.3%), L. destructor (8.2%), B. germanica (20.5%), P. americana (21.9%), Felis catus (10.9%), C. herbarium (2.7%), A. alternata (4.1%), and P. notatun (1.3%). The exposure to mite and cockroach allergens was similar in the patients and the controls. The Dermatophagoides pteronyssinus Group 1 levels were highest in the beds and hammocks. The Blattella germanica Group 1 levels were highest in the kitchens, living rooms and hammocks. DISCUSSION: The positive skin tests to mites, cockroaches and cats were consistent with previous studies. D pteronyssinus was the most prevalent home dust mite, and hammocks were a source of allergens. To improve asthma prophylaxis, it is important to determine its association with mite allergen exposure in hammocks. PMID:21876974

  16. Animal models to detect allergenicity to foods and genetically modified products: workshop summary.

    PubMed Central

    Tryphonas, Helen; Arvanitakis, George; Vavasour, Elizabeth; Bondy, Genevieve

    2003-01-01

    Respiratory allergy and allergy to foods continue to be important health issues. There is evidence to indicate that the incidence of food allergy around the world is on the rise. Current estimates indicate that approximately 5% of young children and 1-2% of adults suffer from true food allergy (Kagan 2003). Although a large number of in vivo and in vitro tests exist for the clinical diagnosis of allergy in humans, we lack validated animal models of allergenicity. This deficiency creates serious problems for regulatory agencies and industries that must define the potential allergenicity of foods before marketing. The emergence of several biotechnologically derived foods and industrial proteins, as well as their potential to sensitize genetically predisposed populations to develop allergy, has prompted health officials and regulatory agencies around the world to seek approaches and methodologies to screen novel proteins for allergenicity. PMID:12573909

  17. Animal models to detect allergenicity to foods and genetically modified products: workshop summary.

    PubMed

    Tryphonas, Helen; Arvanitakis, George; Vavasour, Elizabeth; Bondy, Genevieve

    2003-02-01

    Respiratory allergy and allergy to foods continue to be important health issues. There is evidence to indicate that the incidence of food allergy around the world is on the rise. Current estimates indicate that approximately 5% of young children and 1-2% of adults suffer from true food allergy (Kagan 2003). Although a large number of in vivo and in vitro tests exist for the clinical diagnosis of allergy in humans, we lack validated animal models of allergenicity. This deficiency creates serious problems for regulatory agencies and industries that must define the potential allergenicity of foods before marketing. The emergence of several biotechnologically derived foods and industrial proteins, as well as their potential to sensitize genetically predisposed populations to develop allergy, has prompted health officials and regulatory agencies around the world to seek approaches and methodologies to screen novel proteins for allergenicity.

  18. Differential allergenicity of mature and immature pollen grains in Shasta daisy (Chrysanthemum maximum Ramond).

    PubMed

    Sharif Shoushtari, Maryam; Majd, Ahmad; Pourpak, Zahra; Shahali, Youcef; Moin, Mostafa; Eslami, Mohammad Bagger

    2013-05-15

    Weed pollen grains belonging to the Asteraceae family contain a variety of allergens inducing type I and IV allergies in susceptible people. The aim of this research was to compare the allergenic properties of immature and mature Shasta daisy pollen grains (Chrysanthemum maximum Ramond) to define the potential role of the maturation process on the allergenicity of Asteraceae pollen grains. The immature (IP) and mature pollen (MP) grains were first studied by optical and scanning electron microscopand their protein contents were quantitatively and qualitatively analyzed. Pollen extracts were finally used to sensitize guinea pigs in order to obtain IP and MP specific antibodies. Nasal provocation tests using IP and MP crude extracts were also performed on pre-sensitized guinea pigs. The MP extract induced IgE and eosinophilia in blood and positive skin tests in sensitized guinea pigs. Moreover, high number of eosinophils was found in the nasal mucosa of MP sensitized guinea pigs. SDS-PAGE analysis of the IP and MP protein content showed seven and five apparent bands ranging from 7 to 66kDa respectively. According to immunoblot analysis, MP extract contained a single allergen of 66kDa. The overall results showed developmental processes of Shasta daisy pollen grains towards both morphological and molecular changes increasing their allergenic potency.

  19. Allergens, sources, particles, and molecules: Why do we make IgE responses?

    PubMed

    Woodfolk, Judith A; Commins, Scott P; Schuyler, Alexander J; Erwin, Elizabeth A; Platts-Mills, Thomas A E

    2015-10-01

    Allergens are foreign proteins or glycoproteins that are the target of IgE antibody responses in humans. The relationship between subsequent exposure and the allergic symptoms is often or usually obvious; however, there is increasing evidence that in asthma, atopic dermatitis and some forms of food allergy the induction of symptoms is delayed or chronic. The primary exposure to inhaled allergens is to the particles, which are capable of carrying allergens in the air. Thus, the response reflects not only the properties of the proteins, but also the biological properties of the other constituents of the particle. This is best understood in relation to the mite fecal particles in which the contents include many different immunologically active substances. Allergic disease first became a major problem over 100 years ago, and for many years sensitization to pollens was the dominant form of these diseases. The rise in pediatric asthma correlates best with the move of children indoors, which started in 1960 and was primarily driven by indoor entertainment for children. While the causes of the increase are not simple they include both a major increase in sensitization to indoor allergens and the complex consequences of inactivity. Most recently, there has also been an increase in food allergy. Understanding this has required a reappraisal of the importance of the skin as a route for sensitization. Overall, understanding allergic diseases requires knowing about the sources, the particles and the routes of exposure as well as the properties of the individual allergens.

  20. Kiwifruit Allergy in Children: Characterization of Main Allergens and Patterns of Recognition.

    PubMed

    Moreno Álvarez, Ana; Sexto, Leticia Vila; Bardina, Luda; Grishina, Galina; Sampson, Hugh A

    2015-10-19

    Kiwifruit allergy has been described mostly in the adult population, but immunoglobulin (Ig)E-mediated allergic reactions to kiwifruit appear to be occurring more frequently in children. To date, 13 allergens from kiwifruit have been identified. Our aim was to identify kiwifruit allergens in a kiwifruit allergic-pediatric population, describing clinical manifestations and patterns of recognition. Twenty-four children were included. Diagnosis of kiwifruit allergy was based on compatible clinical manifestations and demonstration of specific IgE by skin prick test (SPT) and/or serum-specific IgE determination. SDS-PAGE and immunoblotting were performed with kiwifruit extract, and proteins of interest were further analyzed by mass spectrometry/mass spectrometry. For component-resolved in vitro diagnosis, sera of kiwifruit-allergic patients were analyzed by an allergen microarray assay. Act d 1 and Act d 2 were bound by IgE from 15 of 24 children. Two children with systemic manifestations recognized a protein of 15 kDa, homologous to Act d 5. Act d 1 was the allergen with the highest frequency of recognition on microarray chip, followed by Act d 2 and Act d 8. Kiwifruit allergic children develop systemic reactions most frequently following ingestion compared to adults. Act d 1 and Act d 2 are major allergens in the pediatric age group.

  1. Characterization of low molecular weight allergens from English walnut (Juglans regia).

    PubMed

    Downs, Melanie L; Semic-Jusufagic, Aida; Simpson, Angela; Bartra, Joan; Fernandez-Rivas, Montserrat; Rigby, Neil M; Taylor, Steve L; Baumert, Joseph L; Mills, E N Clare

    2014-12-03

    Although English walnut is a commonly allergenic tree nut, walnut allergens have been poorly characterized to date. The objective of this work was to characterize the natural, low molecular weight (LMW) allergens from walnut. A protocol was developed to purify LMW allergens (specifically 2S albumins) from English walnuts. In addition to 2S albumins, a series of peptides from the N-terminal region of the 7S seed storage globulin proprotein were also identified and characterized. These peptides comprised a four-cysteine motif (C-X-X-X-C-X10-12-C-X-X-X-C) repeated throughout the 7S N-terminal region. Upon IgE immunoblotting, 3/11 and 5/11 sera from walnut-allergic subjects showed IgE reactivity to the 7S N-terminal fragments and 2S albumin, respectively. The mature 7S protein and the newly described 7S N-terminal peptides represent two distinct types of allergens. Because the proteolytic processing of 7S globulins has not been elucidated in many edible plant species, similar protein fragments may be present in other nuts and seeds.

  2. Purification and Characterization of a Black Walnut (Juglans nigra) Allergen, Jug n 4.

    PubMed

    Zhang, Yu-Zhu; Du, Wen-Xian; Fan, Yuting; Yi, Jiang; Lyu, Shu-Chen; Nadeau, Kari C; Thomas, Andrew L; McHugh, Tara

    2017-01-18

    Tree nuts as a group cause a significant number of fatal anaphylactic reactions to foods. Walnuts (Juglans spp.) are one of the leading causes of allergic reactions to tree nuts in the U.S. and Japan. The purpose of this study was to purify and characterize potential food allergens from black walnut. Here, we report the isolation of the black walnuts allergen Jug n 4 (an 11S globulin) by ammonium sulfate precipitation, hydrophobic interaction, and size exclusion chromatography. Reducing SDS-PAGE analysis indicated that purified Jug n 4 consists of three major bands. N-Terminal sequencing data of these bands indicated that they were the results of a post-transcriptional protease cleavage of the mature protein at a site that consists of a known conserved protease recognition motif, NGXEET. Western blot experiments revealed that 32% of the sera from 25 patients with double-blind, placebo-controlled clinical walnut allergy contained IgE antibodies that recognized Jug n 4, indicating that it is a walnut allergen. Identifying this and additional allergens may facilitate the understanding of the allergenicity of seed storage proteins in tree nuts and their cross-reactivity.

  3. Development of a Novel Strategy to Isolate Lipophilic Allergens (Oleosins) from Peanuts

    PubMed Central

    Schwager, Christian; Kull, Skadi; Krause, Susanne; Schocker, Frauke; Petersen, Arnd; Becker, Wolf-Meinhard; Jappe, Uta

    2015-01-01

    Background Peanut allergy is one of the most severe class I food allergies with increasing prevalence. Especially lipophilic allergens, such as oleosins, were found to be associated with severe symptoms, but are usually underrepresented in diagnostic extracts. Therefore, this study focused on isolation, molecular characterization and assessment of the allergenicity of peanut oleosins. Methods and Results A comprehensive method adapted for the isolation of peanut oil bodies of high purity was developed comprising a stepwise removal of seed storage proteins from oil bodies. Further separation of the oil body constituents, including the allergens Ara h 10, Ara h 11, the presumed allergen oleosin 3 and additional oleosin variants was achieved by a single run on a preparative electrophoresis cell. Protein identification realized by N-terminal sequencing, peptide mass fingerprinting and homology search revealed the presence of oleosins, steroleosins and a caleosin. Immunoblot analysis with sera of peanut-allergic individuals illustrated the IgE-binding capacity of peanut-derived oleosins. Conclusion Our method is a novel way to isolate all known immunologically distinct peanut oleosins simultaneously. Moreover, we were able to provide evidence for the allergenicity of oleosins and thus identified peanut oleosins as probable candidates for component-resolved allergy diagnosis. PMID:25860789

  4. Allergen expression in the European house dust mite Dermatophagoides pteronyssinus throughout development and response to environmental conditions.

    PubMed

    Vidal-Quist, J C; Ortego, F; Lombardero, M; Castañera, P; Hernández-Crespo, P

    2015-06-01

    House dust mites are a major source of allergy worldwide. While diagnosis and treatment based on mite extracts have remarkably advanced, little information exists on the expression of allergens in mites. We have studied gene expression of eight Dermatophagoides pteronyssinus (Trouessart) (Acari: Pyroglyphidae) allergens (Der p 1, 2, 3, 4, 5, 7, 10 and 21). All allergens showed higher transcription in nymphs compared with larvae or adults, with the only exception of Der p 10. The transcription of Der p 4 and Der p 10, together with the transcription and protein ratios Der p 1 to Der p 2, were higher in males than in females. One-week exposure of mite cultures to 16 or 35 °C (versus 24 °C) or low RH (44% versus 76%) significantly influenced the allergen gene transcription profile. Our results demonstrate that allergen expression is quantitatively and/or qualitatively influenced by mite development and sex, as well as by the environment. We suggest that monitoring allergen gene expression may be a useful tool to assist the optimization of mite cultures in the production of standardized allergenic extracts for clinical use.

  5. Allergen immunotherapy and allergic rhinitis: false beliefs

    PubMed Central

    2013-01-01

    Background Over the last 100 years, several persistent misconceptions or ‘false beliefs’ have built up around allergen immunotherapy and its use in allergic rhinitis. This is perhaps because enthusiastic physicians administered complex allergen extracts to a diverse population of patients suffering from heterogeneous atopic conditions. Here, we review evidence that counters seven of these ‘false beliefs.’ Discussion 1. The symptoms of allergic rhinitis can be more heterogeneous, more severe and more troublesome in everyday life than many physicians believe. Large-scale epidemiological surveys show that the majority of allergic rhinitis patients have at least one symptom severe enough to interfere with sleep quality, productivity and/or well-being. 2. Allergen immunotherapy is not necessarily suitable for all allergic rhinitis patients (notably those with mild symptoms). Recent evidence from double-blind, placebo-controlled, randomized clinical trials suggests that the more severe the disease, the greater the treatment effect. 3. Allergen immunotherapy is often accused of lack of efficacy (relative to pharmacotherapy, for example). However, there are now many meta-analyses, systematic reviews and high-quality clinical trials that find overwhelmingly in favor of the efficacy of allergen immunotherapy (including sublingual formulations) in allergic rhinitis induced by pollen and, increasingly, other allergens. 4. Natural-exposure and challenge-chamber trials have shown that symptom relief may become apparent within months or even weeks of the initiation of allergen immunotherapy. 5. In pollen-induced allergic rhinitis, several years of subcutaneous or sublingual allergen immunotherapy are associated with sustained clinical efficacy after subsequent treatment cessation – confirming the disease-modifying nature of this therapy. 6. Most patients seeking treatment for allergic rhinitis are polysensitized, and allergen immunotherapy has proven efficacy in large

  6. Latex allergens in tire dust and airborne particles.

    PubMed Central

    Miguel, A G; Cass, G R; Weiss, J; Glovsky, M M

    1996-01-01

    The prevalence and severity of latex allergy has increased dramatically in the last 15 years due to exposure to natural rubber products. Although historically this health risk has been elevated in hospital personnel and patients, a recent survey has indicated a significant potential risk for the general population. To obtain a wide-spread source for latex exposure, we have considered tire debris. We have searched for the presence of latex allergens in passenger car and truck tire tread, in debris deposited from the atmosphere near a freeway, and in airborne particulate matter samples representative of the entire year 1993 at two sites in the Los Angeles basin (California). After extraction of the samples with phosphate buffered saline, a modified-ELISA inhibition assay was used to measure relative allergen potency and Western blot analyses were used to identify latex allergens. The inhibition studies with the human IgE latex assay revealed inhibition by the tire tread source samples and ambient freeway dust, as well as by control latex sap and latex glove extracts. Levels of extractable latex allergen per unit of protein extracted were about two orders of magnitude lower for tire tread as compared to latex gloves. Western blot analyses using binding of human IgE from latex-sensitive patients showed a band at 34-36 kDa in all tire and ambient samples. Long Beach and Los Angeles, California, air samples showed four additional bands between 50 and 135 kDa. Alternative Western blot analyses using rabbit IgG raised against latex proteins showed a broad band at 30-50 kDa in all samples, with additional bands in the urban air samples similar to the IgE results. A latex cross-reactive material was identified in mountain cedar. In conclusion, the latex allergens or latex cross-reactive material present in sedimented and airborne particulate material, derived from tire debris, and generated by heavy urban vehicle traffic could be important factors in producing latex allergy

  7. Allergenic fragments of ryegrass (Lolium perenne) pollen allergen Lol p IV.

    PubMed

    Jaggi, K S; Ekramoddoullah, A K; Kisil, F T

    1989-01-01

    To facilitate studies on establishing the nature of structure/function relationships of allergens, ryegrass pollen allergen, Lol p IV, was cleaved into smaller fragments by cyanogen bromide (CNBr) and the resulting peptides were further digested with trypsin. The resulting peptides were then fractionated by high performance liquid chromatography (HPLC) on a C-18 reverse phase column. The allergenic activity of the HPLC fractions was evaluated in terms of their ability to inhibit the binding of 125I-Lol p IV to serum IgE antibodies of a grass-allergic patient. Many of these fractions inhibited the binding between the native allergen and IgE antibodies in a dose-dependent manner. The inhibitions were specific, i.e., the fractions did not inhibit the binding between 125I-Lol p I (a group-I ryegrass pollen allergen) and the IgE antibodies present in the allergic human serum. The possibility that the allergenic peptide fractions were contaminated by the native undegraded allergen, which might have accounted for the observed inhibition, was ruled out by the fact that the native allergen could not be detected by SDS-PAGE and the elution profiles of allergenically active peptides did not coincide with that of native allergen. One of the allergenic sites recognized by monoclonal antibody (Mab) 90, i.e., site A, was located in HPLC fractions 90-100 while another allergenic site B (recognized by Mab 12) appeared to be lost following the sequential digestion of Lol p IV with CNBr and trypsin.

  8. Reactivity of IgE to the allergen hyaluronidase from Polybia paulista (Hymenoptera, Vespidae) venom.

    PubMed

    Justo Jacomini, Débora Laís; Gomes Moreira, Susana Margarida; Campos Pereira, Franco Dani; Zollner, Ricardo de Lima; Brochetto Braga, Márcia Regina

    2014-05-01

    To date, there are no allergenic extracts or components available in Brazil to diagnosis and treatment of patients with venom allergy from social wasp (Vespidae Family; Polistinae Subfamily) despite of the great number of existing species. We evaluated the immunogenic potential of the Hyal recombinant protein (Pp-Hyal-rec) which was expressed in an insoluble form in comparison with the allergenic native protein (Pp-Hyal-nat) for recognition of immunoglobulin E (IgE) in the serum of allergic patients to venom of the endemic social wasp Polybia paulista from São Paulo State, Brazil. Hyal cDNA from the venom of the social wasp P. paulista (Pp-Hyal) (GI: 302201582) was cloned into the expression vector pET-28a in Escherichia coli DE3 (BL21) cells. Solubilization and purification of Pp-Hyal-rec from inclusion bodies were performed using Ni(2+) affinity chromatography (Ni-NTA-Agarose) under denaturing conditions. Both the native (Pp-Hyal-nat) and the recombinant (Pp-Hyal-rec) purified allergens were used for Western blotting to assess the levels of Pp-Hyal-IgE specific in the serum of 10 patients exclusively reactive to the venom of the social wasp P. paulista. The immune sera specifically recognized the band corresponding to the Pp-Hyal-rec protein (40 kDa) at a higher intensity than the native allergen (39 kDa). The sera recognized other proteins in P. paulista crude venom extract to a lesser extent, likely corresponding to other venom allergens such as phospholipase (34 kDa), Antigen 5 (25 kDa), and proteases. The recognition pattern of the immune sera to the Pp-Hyal-rec allergen strongly suggests that this recombinant antigen could be used for developing a diagnostic allergy test as well as for specific immunotherapy (IT).

  9. Beneficial cross-protection of allergen-specific immunotherapy on airway eosinophilia using unrelated or a partial repertoire of allergen(s) implicated in experimental feline asthma.

    PubMed

    Reinero, Carol; Lee-Fowler, Tekla; Chang, Chee-Hoon; Cohn, Leah; Declue, Amy

    2012-06-01

    The study hypothesis was that in experimentally asthmatic cats rush immunotherapy (RIT) using allergens not completely matched with sensitizing allergen(s) would at least partially attenuate the asthmatic phenotype and modulate the aberrant immune response. In phase I, cats sensitized to Bermuda grass allergen (BGA), house dust mite allergen (HDMA) or placebo received BGA RIT. In phase II, cats dually sensitized to BGA and HDMA received RIT using BGA, HDMA or placebo. Efficacy of RIT was assessed using percentage bronchoalveolar lavage fluid (BALF) eosinophils. Additionally, a variety of immunologic assays were performed. Eosinophilic airway inflammation significantly decreased over time in asthmatic cats given RIT using sensitizing allergen or unrelated allergen (P<0.001). In dually sensitized cats, single allergen RIT but not placebo reduced airway eosinophilia (P=0.038). Differences in allergen-specific lymphocyte proliferation, in the number of IL-10 producing cells and in the percentage T regulatory cells were detected between asthmatic cats getting RIT and controls. Cross-protection manifested by reduced airway eosinophilia was noted in cats treated with RIT allergens which did not completely match allergen used in asthma induction. However, the mechanism of immunologic tolerance may differ when improperly matched allergens to the sensitizing allergens are used in RIT.

  10. Creation of an engineered APC system to explore and optimize the presentation of immunodominant peptides of major allergens

    PubMed Central

    Rosskopf, Sandra; Jutz, Sabrina; Neunkirchner, Alina; Candia, Martín R.; Jahn-Schmid, Beatrice; Bohle, Barbara; Pickl, Winfried F.; Steinberger, Peter

    2016-01-01

    We have generated engineered APC to present immunodominant peptides derived from the major aero-allergens of birch and mugwort pollen, Bet v 1142–153 and Art v 125–36, respectively. Jurkat-based T cell reporter lines expressing the cognate allergen-specific T cell receptors were used to read out the presentation of allergenic peptides on the engineered APC. Different modalities of peptide loading and presentation on MHC class II molecules were compared. Upon exogenous loading with allergenic peptides, the engineered APC elicited a dose-dependent response in the reporter T cells and the presence of chemical loading enhancers strongly increased reporter activation. Invariant chain-based MHC class II targeting strategies of endogenously expressed peptides resulted in stronger activation of the reporters than exogenous loading. Moreover, we used Bet v 1 as model allergen to study the ability of K562 cells to present antigenic peptides derived from whole proteins either taken up or endogenously expressed as LAMP-1 fusion protein. In both cases the ability of these cells to process and present peptides derived from whole proteins critically depended on the expression of HLA-DM. We have identified strategies to achieve efficient presentation of allergenic peptides on engineered APC and demonstrate their use to stimulate T cells from allergic individuals. PMID:27539532

  11. Cloning and expression of candidate allergens from Culicoides obsoletus for diagnosis of insect bite hypersensitivity in horses.

    PubMed

    van der Meide, Nathalie M A; Roders, Nathalie; Sloet van Oldruitenborgh-Oosterbaan, Marianne M; Schaap, Peter J; van Oers, Monique M; Leibold, Wolfgang; Savelkoul, Huub F J; Tijhaar, Edwin

    2013-06-15

    Insect bite hypersensitivity (IBH) is an IgE-mediated (Type I) hypersensitivity reaction induced by allergens from biting midges of the Culicoides spp. The aim of the present study was to identify, clone and express recombinant allergens from C. obsoletus, the main species found feeding on horses in the Netherlands, by sequence homology searches on the C. obsoletus specific RNA database, with previously described allergens from C. nubeculosus and C. sonorensis. BLAST searches with these described allergens resulted in similarity hits with 7 genes coding for C. obsoletus allergens. These allergens were expressed as hexahistidine tagged recombinant proteins in E. coli. Allergens were termed Cul o 1-Cul o 7. A maltase (Cul o 1) plus Cul s 1 (maltase of C. sonorensis) were additionally expressed in insect cells using the baculovirus expression system to compare homologous allergens from different species produced with different expression systems in diagnostic in vitro and in vivo tests. We demonstrate that IBH affected horses in the Netherlands show higher IgE levels to Cul o 1 than to Cul s 1, as determined by an IgE ELISA. Furthermore, we show that Cul o 1 produced in E. coli is at least as suitable for in vitro diagnosis of IBH affected horses as Cul o 1 produced in the baculovirus/insect cell expression system. The resulting proteins were evaluated for their ability to discriminate IBH affected and healthy horses by ELISA and intradermal testing. The frequency of positive test results by ELISA within IBH affected horses ranged from 38% to 67% for the different allergens. When results of IgE-binding to Cul o 1-Cul o 7 were combined the test had a sensitivity of 92% and specificity of 85%. The capability of the allergens to induce Type I hypersensitivity reaction in IBH affected horses was demonstrated by an intradermal test. The results show that E. coli expressed recombinant allergens from C. obsoletus are valuable tools to determine the allergen specific

  12. Search for Allergens from the Pollen Proteome of Sunflower (Helianthus annuus L.): A Major Sensitizer for Respiratory Allergy Patients

    PubMed Central

    Saha, Bodhisattwa; Pandey, Naren; Gupta Bhattacharya, Swati

    2015-01-01

    Background Respiratory allergy triggered by pollen allergens is increasing at an alarming rate worldwide. Sunflower pollen is thought to be an important source of inhalant allergens. Present study aims to identify the prevalence of sunflower pollinosis among the Indian allergic population and characterizes the pollen allergens using immuno-proteomic tools. Methodology Clinico-immunological tests were performed to understand the prevalence of sensitivity towards sunflower pollen among the atopic population. Sera from selected sunflower positive patients were used as probe to detect the IgE-reactive proteins from the one and two dimensional electrophoretic separated proteome of sunflower pollen. The antigenic nature of the sugar moiety of the glycoallergens was studied by meta-periodate modification of IgE-immunoblot. Finally, these allergens were identified by mass-spectrometry. Results Prevalence of sunflower pollen sensitization was observed among 21% of the pollen allergic population and associated with elevated level of specific IgE and histamine in the sera of these patients. Immunoscreening of sunflower pollen proteome with patient sera detected seven IgE-reactive proteins with varying molecular weight and pI. Hierarchical clustering of 2D-immunoblot data highlighted three allergens characterized by a more frequent immuno-reactivity and increased levels of IgE antibodies in the sera of susceptible patients. These allergens were considered as the major allergens of sunflower pollen and were found to have their glycan moiety critical for inducing IgE response. Homology driven search of MS/MS data of these IgE-reactive proteins identified seven previously unreported allergens from sunflower pollen. Three major allergenic proteins were identified as two pectate lyases and a cysteine protease. Conclusion Novelty of the present report is the identification of a panel of seven sunflower pollen allergens for the first time at immuno-biochemical and proteomic level

  13. Recombinant allergen Lol p II: expression, purification and characterization.

    PubMed

    Tamborini, E; Brandazza, A; De Lalla, C; Musco, G; Siccardi, A G; Arosio, P; Sidoli, A

    1995-05-01

    Pollen from perennial rye grass (Lolium perenne) is a major cause of type I allergies worldwide. It contains complex mixtures of proteins, among which Lol p II is a major allergen. Previously, we have reported the cloning and sequencing of Lol p II and its expression in fusion with the heavy chain of human ferritin as carrier polypeptide (Sidoli et al., 1993, J. biol. Chem. 268, 21819-21825). Here, we describe the expression, purification and characterization of a recombinant Lol p II overproduced as a non-fusion protein in the periplasm of E. coli. The recombinant allergen was expressed in high yields and was easily purified in milligram amounts. It competed with the natural Lol p II for binding to specific IgE, and it induced allergic responses in skin prick tests, indicating to be immunologically analogous to the natural protein. Biochemical analyses indicate that recombinant Lol p II is a highly stable and soluble monomeric molecule which behaves like a small globular protein.

  14. Culture filtrate antigens and allergens of Epicoccum nigrum cultivated in modified semi-synthetic medium.

    PubMed

    Bisht, Vandana; Singh, Bhanu Pratap; Kumar, Raj; Arora, Naveen; Sridhara, Susheela

    2002-05-01

    Epicoccum nigrum (EN) is an important fungal allergen for nasobronchial allergy. Fungal extracts should contain all the relevant allergen components from spores, mycelium and culture medium for the purpose of allergy diagnosis and therapy. EN extract from spore-mycelial mass has been standardized, but the culture filtrate (CF) allergens of EN have not been studied as EN grows poorly in synthetic medium. The objective of the present study was to obtain a standard CF extract of EN by cultivating the source material in a modified semi-synthetic medium and to compare this with the EN cellular extract. Sabouraud's medium containing yeast extract (50 mg/l) was filtered using 10-kDa cut-off membrane and the lower molecular mass media components were used to cultivate EN. The CF obtained after removing the spore-mycelia was dialyzed to remove media components. The CF extract was characterized by sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblot. It was compared with EN spore-mycelial extract by enzyme-linked immunosorbent assay (ELISA), ELISA inhibition and by intradermal testing on allergy patients. The CF extract of EN resolved into 30 protein bands on SDS-PAGE. About 27 IgG bands were detected using anti-EN rabbit antibodies and 12 IgE bands by EN-sensitive pooled patients' sera. Periodate modification of CF proteins showed that the carbohydrate moieties are not important for IgE binding. Protein components of 26, 34 and 43 kDa were recognized as the major CF allergens. Three different batches of CF extract required 7.5-9 ng of self protein for 50% inhibition of binding to anti-EN rabbit antibodies in ELISA. Intradermal testing with CF extract showed comparable allergenic potency to standardized EN spore-mycelial extract, although it contained some allergenic proteins in higher amounts as compared to the spore-mycelial extract. In summary, the semi-synthetic medium has been suitably modified for obtaining EN CF antigens. This medium can

  15. Identification of Two Metallothioneins as Novel Inhalative Coffee Allergens Cof a 2 and Cof a 3

    PubMed Central

    Peters, Ulrike; Frenzel, Karsten; Brettschneider, Reinhold; Oldenburg, Marcus; Bittner, Cordula

    2015-01-01

    Background Dust of green coffee beans is known to be a relevant cause for occupational allergic disorders in coffee industry workers. Recently, we described the first coffee allergen (Cof a 1) establishing an allergenic potential of green coffee dust. Objective Our aim was to identify allergenic components of green coffee in order to enhance inhalative coffee allergy diagnosis. Methods A Coffea arabica pJuFo cDNA phage display library was created and screened for IgE binding with sera from allergic coffee workers. Two further coffee allergens were identified by sequence analysis, expressed in E. coli, and evaluated by Western blots. The prevalence of sensitization to recombinant Cof a 1, Cof a 2, and Cof a 3 and to commercially available extract was investigated by ELISA (enzyme-linked immunosorbent assay) respectively CAP (capacity test) screening in 18 sera of symptomatic coffee workers. Results In addition to the previously described chitinase Cof a 1, two Coffea arabica cysteine-rich metallothioneins of 9 and 7 kDa were identified and included in the IUIS Allergen Nomenclature as Cof a 2 and Cof a 3. Serum IgE antibodies to at least one of the recombinant allergens were found in 8 out of 18 symptomatic coffee workers (44%). Only 2 of the analysed sera (11%) had reacted previously to the commercial allergy test. Conclusions In addition to the previously described Cof a 1 we have identified two further coffee proteins to be type I coffee allergens (Cof a 2 and Cof a 3) which may have a relevant potential for the specific diagnosis and/or therapy of coffee allergy. PMID:25962169

  16. Genetic engineering of allergens for immunotherapy.

    PubMed

    Bonura, Angela; Colombo, Paolo

    2009-06-01

    Allergen-specific immunotherapy was introduced into clinical practice at the beginning of the 20(th) century and its efficacy in the treatment of seasonal allergic rhinitis has been confirmed in many clinical studies which have shown that it can prevent the onset of new sensitizations to different allergens and reduces the development of asthma in patients with allergic rhinitis. Progress in molecular cloning and characterization of allergens have made it possible to produce single recombinant allergens whose immunological properties have been tested in vitro and in vivo and have demonstrated that they retain properties resembling their natural counterpart. Several rational approaches are being developed to improve the efficacy of SIT by reducing immunoglobulin IgE-mediated adverse reactions. Some of these molecules have been tested in the clinic, demonstrating the feasibility of using biotechnology-derived products as new standardized, improved and safer therapeutic compositions.

  17. Allergen immunotherapy for allergic respiratory diseases.

    PubMed

    Cappella, Antonio; Durham, Stephen R

    2012-10-01

    Allergen specific immunotherapy involves the repeated administration of allergen products in order to induce clinical and immunologic tolerance to the offending allergen. Immunotherapy is the only etiology-based treatment that has the potential for disease modification, as reflected by longterm remission following its discontinuation and possibly prevention of disease progression and onset of new allergic sensitizations. Whereas subcutaneous immunotherapy is of proven value in allergic rhinitis and asthma there is a risk of untoward side effects including rarely anaphylaxis. Recently the sublingual route has emerged as an effective and safer alternative. Whereas the efficacy of SLIT in seasonal allergy is now well-documented in adults and children, the available data for perennial allergies and asthma is less reliable and particularly lacking in children. This review evaluates the efficacy, safety and longterm benefits of SCIT and SLIT and highlights new findings regarding mechanisms, potential biomarkers and recent novel approaches for allergen immunotherapy.

  18. Anterior rhinomanometry in nasal allergen challenges.

    PubMed

    Ferreira, M B; Carlos, A G

    1998-11-01

    Even simple and relatively safe provocation procedures like nasal allergen challenges, should aim to allow detection of positivity with the less possible discomfort to the patient. The objective of this work was to evaluate if the use of rhinomanometric measurements during nasal provocation procedures could allow a decrease in the total administered allergen dose, causing less symptoms to the patients but without increasing the number of false-negatives, comparatively to clinical scores or nasal peak-flow measurements. Our results showed that performing rhinomanometric measurements during nasal HDM challenge procedures can lead in many patients to a reduction in the total dose of allergen administered during the challenge, without loss of sensitivity or specificity. This allergen dose reduction translates in less time consumed during the provocation and less patients' discomfort.

  19. Allergen immunotherapy for allergic respiratory diseases

    PubMed Central

    Cappella, Antonio; Durham, Stephen R.

    2012-01-01

    Allergen specific immunotherapy involves the repeated administration of allergen products in order to induce clinical and immunologic tolerance to the offending allergen. Immunotherapy is the only etiology-based treatment that has the potential for disease modification, as reflected by longterm remission following its discontinuation and possibly prevention of disease progression and onset of new allergic sensitizations. Whereas subcutaneous immunotherapy is of proven value in allergic rhinitis and asthma there is a risk of untoward side effects including rarely anaphylaxis. Recently the sublingual route has emerged as an effective and safer alternative. Whereas the efficacy of SLIT in seasonal allergy is now well-documented in adults and children, the available data for perennial allergies and asthma is less reliable and particularly lacking in children. This review evaluates the efficacy, safety and longterm benefits of SCIT and SLIT and highlights new findings regarding mechanisms, potential biomarkers and recent novel approaches for allergen immunotherapy. PMID:23095870

  20. Identification of the antigenic determinants of the American cockroach allergen Per a 1 by error-prone PCR.

    PubMed

    Tsai, Wei-Jen; Liu, Ching-Hang; Chen, Shu-Tsung; Yang, Chiou-Ying

    2003-05-01

    The group I allergen of cockroach is found in both American and German cockroaches, designated as Per a 1 and Bla g 1, respectively. Members of these allergens so far identified are composed of tandem repeats that may cause the high allergenicity of Per a 1 allergen. In this study, we used monoclonal antibodies HW-8 and HW-19, which can inhibit the binding of patient IgE to Per a 1 allergen, to define the structure of the antigenic determinants in Per a 1.0103 (designated C3), an isoallergen of Per a 1 allergen. Two recognition sites are present, one in the N-terminus (aa 1-208) and the other in the C-terminus (aa 208-395). The N-terminal epitope is not accessible to antibody molecules on the pET-expressed C3 protein. The C-terminal epitope was further localized to the aa 267-354 region (C3E) by colony immunoscreening of the cDNA epitope library. By negative screening of the mutated C3E expression library generated by error-prone PCR (ER-PCR), an approach which has rarely been applied in epitope mapping, the functional epitope was identified to lie in aa 318-337 with aa 323-331 being the core motif. The minimal region of the functional epitope was further delineated, by sequence alignment, to be D-x-[I, L]-A-[I, L]-L-P-V-D-E-[L, I]-x-A-[L, I], where x represents any amino acids. This motif is found in all Per a 1 allergens and may serve as a basis for designing a peptide vaccine for allergen-specific immunotherapy. To our knowledge, this is the first report for (1) detailed mapping of the cockroach allergens and (2) use of error-prone PCR random mutagenesis and negative selection in molecular allergology.

  1. Enzymatic activities of allergen extracts from three species of dust mites and cockroaches commonly found in Korean home.

    PubMed

    Jeong, Kyoung Yong; Kim, Chungryul; Yong, Tai-Soon

    2010-06-01

    Allergen extracts from dust mites and cockroaches commonly found in Korean homes were used to evaluate their enzymatic activity as they are believed to influence allergenicity. Allergen extracts were prepared from 3 dust mite species (Dermatophagoides farinae, D. pteronyssinus, and Tyrophagus putrescentiae) and 3 cockroach species (Blattella germanica, Periplaneta americana, and P. fuliginosa) maintained in the Korea National Arthropods of Medical Importance Resource Bank. Proteins were extracted in PBS after homogenization using liquid nitrogen. The activities of various enzymes were investigated using the API Zym system. No significant difference in phosphatase, lipase, or glycosidase activity was observed among the 6 allergen extracts, but much difference was observed in protease activity. Protease activity was assessed in more detail by gelatin zymography and the EnzChek assay. Extract from T. putrescentiae showed the highest protease activity, followed by those of the cockroach extracts. Extracts from D. farinae and D. pteronyssinus showed only weak protease activity. Gelatinolytic activity was detected mainly in a 30-kDa protein in D. farinae, a 28-kDa protein in D. pteronyssinus, a > 26-kDa protein in T. putrescentiae, a > 20-kDa protein in B. germanica, and a > 23-kDa protein in P. americana and P. fuliginosa. The information on various enzymatic activities obtained in this study may be useful for future studies. In particular, the strong protease activity found in cockroach extracts could contribute to sensitization to cockroach allergens, which is known to be associated with the development of asthma.

  2. Next generation of food allergen quantification using mass spectrometric systems.

    PubMed

    Koeberl, Martina; Clarke, Dean; Lopata, Andreas L

    2014-08-01

    Food allergies are increasing worldwide and becoming a public health concern. Food legislation requires detailed declarations of potential allergens in food products and therefore an increased capability to analyze for the presence of food allergens. Currently, antibody-based methods are mainly utilized to quantify allergens; however, these methods have several disadvantages. Recently, mass spectrometry (MS) techniques have been developed and applied to food allergen analysis. At present, 46 allergens from 11 different food sources have been characterized using different MS approaches and some specific signature peptides have been published. However, quantification of allergens using MS is not routinely employed. This review compares the different aspects of food allergen quantification using advanced MS techniques including multiple reaction monitoring. The latter provides low limits of quantification for multiple allergens in simple or complex food matrices, while being robust and reproducible. This review provides an overview of current approaches to analyze food allergens, with specific focus on MS systems and applications.

  3. Criteria to determine food allergen priority.

    PubMed

    Yeung, J M; Applebaum, R S; Hildwine, R

    2000-07-01

    The emergent health issue of food allergens presents an important challenge to the food industry. More than 170 foods have been reported in the scientific literature as causing allergic reactions. Clearly, it would be impossible to deal with the presence of trace amounts of all these in the context of food labeling. If the decision to classify major allergens is based solely on the knowledge and experience of allergists and food scientists in the field, without scientifically defined criteria, it is likely to lead to a proliferation of lists. Such practices may lead to an unnecessary elimination of foods containing important nutrients. This paper defines food allergy, food intolerance, and food anaphylaxis and identifies criteria for classifying food allergens associated with frequent allergic reactions. A practical list of food allergens that may result in potentially life-threatening allergic reactions is provided. A mechanism-based (i.e., immunoglobulin E mediated), acute life-threatening anaphylaxis that is standardized and measurable and reflects the severity of health risk is proposed as the principal inclusion criterion for food allergen labeling. Where available, prevalence in the population and threshold levels of allergens should be used as an additional guide to identify possible future labeling needs.

  4. Comparison of Allergenicity at Gly m 4 and Gly m Bd 30K of Soybean after Genetic Modification.

    PubMed

    Tsai, Jaw-Ji; Chang, Ching-Yun; Liao, En-Chih

    2017-02-15

    Despite rapid growth of genetically modified (GM) crops, effective evaluations of genetic modification on allergenicity are still lacking. Gly m Bd 30K is cross-reactive with cow's milk protein casein, Gly m 4, and with birch pollen allergen Bet v 1. Here we compared the allergenicity between GM and non-GM soybeans with respect to the foci Gly m 4 and Gly m Bd 30K. Recombinant allergens of Gly m Bd 30K and Gly m 4 were generated and polyclonal antibodies raised to identify these two allergenic components in soybeans. GM soybean was first PCR-confirmed using 35S promoter. A total of 20 soybeans (half GM, half non-GM) obtained from a food market were used to assess their allergenicity based on IgE-binding and histamine release. The concentrations of Gly m Bd 30K and Gly m 4 in soybeans were then determined. Most soybean-allergic patients (9 of 10) showed IgE-positive reactions to the allergen of 30 kDa in molecular weight. That allergen turned out to be Glycine max Gly m Bd 30K based on LC-MS/MS analyses. Gly m Bd 30K is therefore the major allergen in the soybean. An increase in the transcription of both the Gly m 4 (stress-induced protein SAM22) and Gly m Bd 28K (soybean allergen precursor) was found after genetic modification. The protein concentrations of Gly m 4 and Gly m Bd 30K were not statistically significant different between non-GM and GM soybeans. There were also no statistical significances between them in the tests of IgE binding and histamine release. In conclusion, soybeans showed similar concentrations of Gly m Bd 30K and Gly m 4 regardless of genetic modification or absence thereof. The allergenicity of both Gly m Bd 30K and Gly m 4 was therefore not altered after genetic modification. Patients showing hypersensitivity to soybeans and who had pre-existing allergy to birch pollen and cow's milk casein might not further increase their allergic reactions following exposures to the GM soybeans.

  5. Purification, crystallization and initial crystallographic characterization of peanut major allergen Ara h 3

    SciTech Connect

    Jin, Tengchuan; Howard, Andrew; Zhang, Yu-Zhu

    2007-10-01

    The crystallization of peanut allergen Ara h 3 is reported. The peanut is a significant food source, but is responsible for many cases of anaphylaxis. The peanut 11S legumin-like seed storage protein Ara h 3 is one of the best characterized allergens. In this study, Ara h 3 was extracted from peanut kernels and purified by sequential anion-exchange, hydrophobic interaction and gel-filtration chromatography to very high purity to facilitate crystallization and structural studies. Well diffracting single crystals were obtained by the vapor-diffusion method. A molecular-replacement structural solution has been obtained and refinement of the structure is currently under way.

  6. Computationally predicted IgE epitopes of walnut allergens contribute to cross-reactivity with peanuts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cross reactivity between peanuts and tree nuts implies that similar IgE epitopes are present in their proteins. To determine whether walnut sequences similar to known peanut IgE binding sequences, according to the property distance (PD) scale implemented in the Structural Database of Allergenic Prot...

  7. Ferulic acid enhances IgE binding to peanut allergens in western blots.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phenolic compounds at high concentrations are known to form insoluble complexes with proteins. We hypothesized that this complex formation could interfere with Western blot and ELISA assays for peanut allergens. To verify this, three simple phenolic compounds (ferulic, caffeic, and chlorogenic acids...

  8. Ferulic acid enhances IgE binding to peanut allergens in western blots.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because phenolic compounds can precipitate or complex with proteins, we postulated that interactions of phenolics with IgE antibodies help enhance IgE binding to peanut allergens in Western blots. Three different phenolics, such as, ferulic, caffeic and chlorogenic acids were examined. Each was mixe...

  9. Treatment of cashew extracts with Aspergillopepsin reduces IgE binding to cashew allergens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cashew nuts can cause serious and sometimes life threatening reactions in people that suffer from food allergies. These reactions are mediated by immunoglobulin E binding (IgE) to allergenic cashew proteins. Enzymes from Aspergillus fungal species are used in many industrial and pharmaceutical appli...

  10. Prediction and identification of Korean Pine (Pinus koraiensis) vicilin as a food allergen (abstract)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    RATIONALE: Pine nut allergy cases have been reported, but pine nut allergens remain to be identified and characterized. Korean pine nut is one of the major varieties of pine nuts that are widely consumed. Vicilins belong to one of a few protein families that contain more than 85% of the known food a...

  11. Phospholipid interactions protect the milk allergen alpha-lactalbumin from proteolysis during in vitro digestion.

    PubMed

    Moreno, F Javier; Mackie, Alan R; Mills, E N Clare

    2005-12-14

    Interactions with food components may alter the resistance of food proteins to digestion, a property thought to play an important role in determining allergenic properties. The kinetics of breakdown of the bovine milk allergen alpha-lactalbumin during in vitro gastrointestinal digestion was found to be altered by interactions with physiologically relevant levels of phosphatidylcholine (PC), a surfactant that is abundant both in milk and is actively secreted by the stomach. Breakdown during gastric digestion was slowed in the presence of PC and accompanied by small alterations in the profile of resulting peptides, with little effect being observed during subsequent duodenal digestion. alpha-Lactalbumin was found to unfold at gastric (acid) pH, giving a CD spectrum similar to that obtained for the partially folded state it is known to adopt at pH values below its isoelectric point. Fluorescence polarization studies performed at low pH indicated that this partially unfolded form of the protein was able to penetrate into the PC vesicles. These interactions are probably responsible for the slowing of gastric digestion by reducing the accessibility of the protein to pepsin. These findings show that interactions with other food components, such as lipids, may alter the rate of breakdown of food proteins in the gastrointestinal tract. It underlines the importance of the food matrix in affecting patterns of food allergen digestion and hence presentation to the immune system and that in vitro digestion systems used for assessing digestibility of allergens must take account of surfactants.

  12. Simultaneous determination of four food allergens using compact disc immunoassaying technology.

    PubMed

    Badran, Ahmed Ali; Morais, Sergi; Maquieira, Ángel

    2017-03-01

    A multiplex competitive microimmunoassay for the simultaneous determination of gliadin, casein, β-lactoglobulin, and ovalbumin is presented. The assay in microarray format is performed on a DVD where the allergens are physisorbed on the polycarbonate surface of the disc. The immunointeraction is detected using a mixture of specific gold-labeled antibodies and the signal amplified with the silver enhancement method. The optical density of the precipitate, read by a DVD drive, is related to the concentration of the four allergens in sample. An optimized protocol for the simultaneous extraction of the allergen proteins from food samples is also addressed. The suitability of the method is demonstrated for the simultaneous quantitative extraction and determination of the targeted allergens in spiked baby foods, juices, and beers. The sensitivity (EC50) of the multiplexed assay was 0.04, 0.40, 0.08, and 0.16 mg L(-1) for gliadin, casein, β-lactoglobulin, and ovalbumin, respectively, and the recovery results from the analysis of food samples ranged from 72 to 117%. A portable, easy-to-use, array-based bioanalytical method is developed for quantification of food allergens with a limit of detection below the accepted levels of the international legislations, which allows promotion of food safety and quality. Graphical abstract GLI Gliadin, CAS Casein, β-LAC β-lactoglobulin, OVA Ovalbumin.

  13. Cloning, expression, and characterization of Der f 7, an allergen of Dermatophagoides farinae from China.

    PubMed

    Cui, Yu-bao; Cai, Hong-xing; Zhou, Ying; Gao, Cui-xiang; Shi, Wei-hong; Yu, Ming; Li, Li

    2010-09-01

    A full-length cDNA encoding house dust mite allergen Der f 7 from Dermatophagoides farina (Acari: Pyroglyphidae) from China was cloned, sequenced, and successfully expressed. A reference sequence (GenBank accession AY283292) was used to design polymerase chain reaction primers. Analysis revealed eight mismatched nucleotides in five Der f 7 cDNA clones, and the projected amino acid sequence contained six incompatible residues. These results suggest that the sequence of Der f 7 may be polymorphic. Further bioinformatic analysis revealed that the mature Der f 7 allergen had a molecular mass of approximately 21.88 kDa and a theoretical isoelectric point of 4.90. Der f 7 protein secondary structure was composed of a helix (56.63%), extended strand (5.10%), and random coil (38.27%). Group 7 allergens are present in Pyroglyphidae, Acaridae, and Glycyphagidae families, and homology analysis revealed a 86% similarity between Der f 7 and Der p 7. Furthermore, a phylogenetic tree constructed of group 7 allergens from different mite species revealed that Der f 7 and Der p 7 clustered with 100% bootstrap support. Bioinformatics-driven characterization of Der f 7 allergen as conducted in this study may contribute to diagnostic and therapeutic applications for dust mite allergies.

  14. Population growth and allergen accumulation of Dermatophagoides pteronyssinus cultured at 20 and 25 °C.

    PubMed

    Yella, Lakshmi; Morgan, Marjorie S; Arlian, Larry G

    2011-02-01

    The house dust mites, Dermatophagoides pteronyssinus and D. farinae are cultured commercially and in research laboratories and material is harvested from these cultures to make extracts that are used for diagnosis, immunotherapy and research. Temperature and other climatic conditions can influence population growth rates, dynamics of allergen production, and the associated endotoxin, enzyme and protein levels of the mite material harvested from these cultures. Here we determined how temperature affected these parameters. Dermatophagoides pteronyssinus was cultured at 20 and 25 °C at 75% relative humidity, and at 2-week intervals the concentrations of mites, Der p 1 and Der p 2 allergens, endotoxin, and selected enzymes were determined. Mite density increased exponentially but growth rate and final population density were greater at 25 °C compared to 20 °C. The combined allergen (Der p 1 + Der p 2) concentrations accumulated in the cultures at about the same rate at both temperatures. However, individual Der p 1 and Der p 2 accumulation rates varied independently at the two temperatures. Der p 1 accumulated faster at 20 °C whereas Der p 2 accumulated faster at 25 °C. The amount of Der p 1 in whole cultures was greater than the amount of Der p 2. The concentration of allergen for washed mites harvested from the cultures was much less than for the whole cultures. Our study demonstrated that temperature is an important factor in population growth and the dynamics of allergen production in cultured mites.

  15. Mass spectrometry-based identification of allergens from Curvularia pallescens, a prevalent aerospore in India.

    PubMed

    Dey, Debarati; Saha, Bodhisattwa; Sircar, Gaurab; Ghosal, Kavita; Bhattacharya, Swati Gupta

    2016-07-01

    The worldwide prevalence of fungal allergy in recent years has augmented mining allergens from yet unexplored ones. Curvularia pallescens (CP) being a dominant aerospore in India and a major sensitiser on a wide range of allergic population, pose a serious threat to human health. Therefore, we aimed to identify novel allergens from CP in our present study. A cohort of 22 CP-sensitised patients was selected by positive Skin prick grade. Individual sera exhibited elevated specific IgE level and significant histamine release on a challenge with antigenic extract of CP. First gel-based profiling of CP proteome was done by 1- and 2-dimensional gel. Parallel 1- and 2-dimensional immunoblot were performed applying individual as well as pooled patient sera. Identification of the sero-reactive spots from the 2-dimensional gel was found to be challenging as CP was not previously sequenced. Hence, mass spectrometry-based proteomic workflow consisting of conventional database search was not alone sufficient. Therefore, de novo sequencing preceded homology search was implemented for further identification. Altogether 11 allergenic proteins including Brn-1, vacuolar protease, and fructose-bis-phosphate aldolase were identified with high statistical confidence (p<0.05). This is the first study to report on any allergens from CP. This kind of proteome-based analysis provided a catalogue of CP allergens that would lead an improved way of diagnosis and therapy of CP-related allergy.

  16. The spectrum of olive pollen allergens. From structures to diagnosis and treatment.

    PubMed

    Villalba, Mayte; Rodríguez, Rosalía; Batanero, Eva

    2014-03-01

    Olive tree is one of the main allergy sources in Mediterranean countries. The identification of the allergenic repertoire from olive pollen has been essential for the development of rational strategies of standardization, diagnosis, and immunotherapy, all of them focused to increase the life quality of the patients. From its complex allergogram, twelve allergens - Ole e 1 to Ole e 12 - have been identified and characterized to date. Most of them have been cloned and produced as recombinant forms, whose availability have allowed analyzing their three-dimensional structures, mapping their T-cell and B-cell epitopes, and determining the precise allergenic profile of patients for a subsequent patient-tailored immunotherapy. Protein mutant, hypoallergenic derivatives, or recombinant fragments have been also useful experimental tools to analyze the immune recognition of allergens. To test these molecules before using them for clinic purposes, a mouse model of allergic sensitizations has been used. This model has been helpful for assaying different prophylactic approaches based on tolerance induction by intranasal administration of allergens or hypoallergens, used as free or integrated in different delivery systems, and their findings suggest a promising utilization as nasal vaccines. Exosomes - nanovesicles isolated from bronchoalveolar lavage fluid of tolerogenic mice - have shown immunomodulatory properties, being able to protect mice against sensitization to Ole e 1.

  17. Crystal structure of prunin-1, a major component of the almond (Prunus dulcis) allergen amandin.

    PubMed

    Jin, Tengchuan; Albillos, Silvia M; Guo, Feng; Howard, Andrew; Fu, Tong-Jen; Kothary, Mahendra H; Zhang, Yu-Zhu

    2009-09-23

    Seed storage proteins are accumulated during seed development and act as a reserve of nutrition for seed germination and young sprout growth. Plant seeds play an important role in human nutrition by providing a relatively inexpensive source of protein. However, many plant foods contain allergenic proteins, and the number of people suffering from food allergies has increased rapidly in recent years. The 11S globulins are the most widespread seed storage proteins, present in monocotyledonous and dicotyledonous seeds as well as in gymnosperms (conifers) and other spermatophytes. This family of proteins accounts for a number of known major food allergens. They are of interest to both the public and industry due to food safety concerns. Because of the interests in the structural basis of the allergenicity of food allergens, we sought to determine the crystal structure of Pru1, the major component of the 11 S storage protein from almonds. The structure was refined to 2.4 A, and the R/Rfree for the final refined structure is 17.2/22.9. Pru1 is a hexamer made of two trimers. Most of the back-to-back trimer-trimer association was contributed by monomer-monomer interactions. An alpha helix (helix 6) at the C-terminal end of the acidic domain of one of the interacting monomers lies at the cleft of the two protomers. The residues in this helix correspond to a flexible region in the peanut allergen Ara h 3 that encompasses a previously defined linear IgE epitope.

  18. Crystal Structure of Prunin-1, a Major Component of the Almond (Prunus dulcis) Allergen Amandin

    SciTech Connect

    Jin, Tengchuan; Albillos, Silvia M.; Guo, Feng; Howard, Andrew; Fu, Tong-Jen; Kothary, Mahendra H.; Zhang, Yu-Zhu

    2010-10-28

    Seed storage proteins are accumulated during seed development and act as a reserve of nutrition for seed germination and young sprout growth. Plant seeds play an important role in human nutrition by providing a relatively inexpensive source of protein. However, many plant foods contain allergenic proteins, and the number of people suffering from food allergies has increased rapidly in recent years. The 11S globulins are the most widespread seed storage proteins, present in monocotyledonous and dicotyledonous seeds as well as in gymnosperms (conifers) and other spermatophytes. This family of proteins accounts for a number of known major food allergens. They are of interest to both the public and industry due to food safety concerns. Because of the interests in the structural basis of the allergenicity of food allergens, we sought to determine the crystal structure of Pru1, the major component of the 11 S storage protein from almonds. The structure was refined to 2.4 {angstrom}, and the R/Rfree for the final refined structure is 17.2/22.9. Pru1 is a hexamer made of two trimers. Most of the back-to-back trimer-trimer association was contributed by monomer-monomer interactions. An {alpha} helix (helix 6) at the C-terminal end of the acidic domain of one of the interacting monomers lies at the cleft of the two protomers. The residues in this helix correspond to a flexible region in the peanut allergen Ara h 3 that encompasses a previously defined linear IgE epitope.

  19. The Role of Allergen Exposure and Avoidance in Asthma

    PubMed Central

    Baxi, Sachin N.; Phipatanakul, Wanda

    2010-01-01

    Allergy testing and avoidance of allergens plays an important role in asthma control. Increased allergen exposure, in genetically susceptible individuals, can lead to allergic sensitization. Continued allergen exposure can increase the risk of asthma and other allergic diseases. In a patient with persistent asthma, identification of indoor and outdoor allergens and subsequent avoidance can improve symptoms. Often times, a patient will have multiple allergies and the avoidance plan should target all positive allergens. Several studies have shown that successful allergen remediation includes a comprehensive approach including education, cleaning, physical barriers and maintaining these practices. PMID:20568555

  20. Interactions of epigallo-catechin 3-gallate and ovalbumin, the major allergen of egg white.

    PubMed

    Ognjenović, Jana; Stojadinović, Marija; Milčić, Miloš; Apostolović, Danijela; Vesić, Jelena; Stambolić, Ivan; Atanasković-Marković, Marina; Simonović, Miljan; Velickovic, Tanja Cirkovic

    2014-12-01

    Polyphenols, the potent plant secondary metabolites, have beneficial effects on human health, but the mechanism(s) by which these effects are exerted is not well understood. Here, we present the detailed analysis of the interactions between the major green tea catechin, epigallo-catechin 3-gallate (EGCG), and the major dietary protein and allergen, ovalbumin (OVA). We show that EGCG binds to the pocket that partly overlaps with the previously identified IgE-binding region in OVA, and that this interaction induces structural changes in the allergen. Moreover, our ex vivo studies reveal that OVA binds IgE and stimulates degranulation of basophils, and that its uptake by monocytes proceeds at a slower rate in the presence of EGCG. This study provides further evidence in support of the proposed mechanism by which EGCG interactions with the food allergens contribute to its diverse biological activities and may impair antigen uptake by antigen-presenting cells.

  1. Primary structure of Lep d I, the main Lepidoglyphus destructor allergen.

    PubMed

    Varela, J; Ventas, P; Carreira, J; Barbas, J A; Gimenez-Gallego, G; Polo, F

    1994-10-01

    The most relevant allergen of the storage mite Lepidoglyphus destructor (Lep d I) has been characterized. Lep d I is a monomer protein of 13273 Da. The primary structure of Lep d I was determined by N-terminal Edman degradation and partially confirmed by cDNA sequencing. Sequence polymorphism was observed at six positions, with non-conservative substitutions in three of them. No potential N-glycosylation site was revealed by peptide sequencing. The 125-residue sequence of Lep d I shows approximately 40% identity (including the six cysteines) with the overlapping regions of group II allergens from the genus Dermatophagoides, which, however, do not share common allergenic epitopes with Lep d I.

  2. Atopic donor status does not influence the uptake of the major grass pollen allergen, Phl p 5, by dendritic cells.

    PubMed

    Ashjaei, Kazem; Palmberger, Dieter; Bublin, Merima; Bajna, Erika; Breiteneder, Heimo; Grabherr, Reingard; Ellinger, Isabella; Hoffmann-Sommergruber, Karin

    2015-09-01

    Dendritic cells (DCs) are sentinels of the immune system for antigen recognition and uptake, as well as presentation to naïve T cells for stimulation or priming. Internalization and endocytic degradation of allergens by DCs are important steps required for T cell priming. In the current study we investigated binding and internalization of purified recombinant non-glycosylated grass pollen allergen, Phl p 5, and natural non-specific lipid transfer protein from sunflower, SF-nsLTP to human monocyte derived dendritic cells (MoDCs). Colocalization of Phl p 5 with low affinity (CD23) or high affinity receptor (FcεRI) was investigated by immunofluorescence staining. Likewise, localization of the allergens in early (EE) and late endosomes (LE) was detected by co-staining for early endosome antigen (EEA1) and lysosomal-associated membrane protein 1 (LAMP1). In our experimental setting we could demonstrate that Phl p 5 as well as SF-nsLTP bound to MoDCs from both, grass pollen allergic and non-allergic individuals. Competitive allergen uptake experiments demonstrated non-preferential and simultaneous uptake of Phl p 5 and SF-nsLTP by MoDCs. No overlap of signals from Phl p 5 and CD23 or FcεRI was detectable, excluding IgE-mediated uptake for this allergen. Both allergens, Phl p 5 and SF-nsLTP, were localized in early and late endosomes. The present study applied a set of methods to assess the allergen uptake by MoDCs in an in vitro model. No qualitative and quantitative differences in the allergen uptake of both, Phl p 5 and SF-nsLTP were detected in single and competitive assays.

  3. Expression, purification, and characterization of almond (Prunus dulcis) allergen Pru du 4

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biochemical characterizations of food allergens are required for understanding the allergenicity of food allergens. Such studies require a relatively large amount of highly purified allergens. Profilins from numerous species are known to be allergens, including food allergens, such as almond (Prunus...

  4. Endogenous allergens and compositional analysis in the allergenicity assessment of genetically modified plants.

    PubMed

    Fernandez, A; Mills, E N C; Lovik, M; Spoek, A; Germini, A; Mikalsen, A; Wal, J M

    2013-12-01

    Allergenicity assessment of genetically modified (GM) plants is one of the key pillars in the safety assessment process of these products. As part of this evaluation, one of the concerns is to assess that unintended effects (e.g. over-expression of endogenous allergens) relevant for the food safety have not occurred due to the genetic modification. Novel technologies are now available and could be used as complementary and/or alternative methods to those based on human sera for the assessment of endogenous allergenicity. In view of these developments and as a step forward in the allergenicity assessment of GM plants, it is recommended that known endogenous allergens are included in the compositional analysis as additional parameters to be measured.

  5. Sensitive detection of major food allergens in breast milk: first gateway for allergenic contact during breastfeeding.

    PubMed

    Pastor-Vargas, C; Maroto, A S; Díaz-Perales, A; Villaba, M; Casillas Diaz, N; Vivanco, F; Cuesta-Herranz, J

    2015-08-01

    Food allergy is recognized as a major public health issue, especially in early childhood. It has been hypothesized that early sensitization to food allergens maybe due to their ingestion as components dissolved in the milk during the breastfeeding, explaining reaction to a food, which has never been taken before. Thus, the aim of this work has been to detect the presence of the food allergens in breast milk by microarray technology. We produced a homemade microarray with antibodies produced against major food allergens. The antibody microarray was incubated with breast milk from 14 women collected from Fundación Jiménez Díaz Hospital. In this way, we demonstrated the presence of major foods allergens in breast milk. The analysis of allergens presented in breast milk could be a useful tool in allergy prevention and could provide us a key data on the role of this feeding in tolerance induction or sensitization in children.

  6. Is high pressure treatment able to modify the allergenicity of the largemouth bass allergens?

    NASA Astrophysics Data System (ADS)

    Liu, Chu-Yi; Tao, Sha; Liu, Rong; Chen, Fu-Sheng; Xue, Wen-Tong

    2012-12-01

    The aim of this paper is to study the influence of high pressure treatment on the structural changes and allergenicity of largemouth bass. We treated the allergens at 100, 200, 300 and 400 MPa for 15 min and at 300 MPa for 5, 10, 15, 20 and 30 min at 20 °C. The treated samples from largemouth bass were tested for their IgE-binding properties by combining Sodium dodecyl sulfate-Polyacrylamide gel electrophoresis (SDS-PAGE) with western blotting (WB) and enzyme-linked immunosorbent assay (ELISA). Circular dichroism analysis was performed to characterize the structural change. In summary, we can determine that the greatest structure changes were found for samples treated by 400 MPa for 15 min. High pressure treatment did change the structure, subunit composition and molecular weight of largemouth bass allergens, but it did not change the allergenicity of the allergens.

  7. Fraxinus pollen and allergen concentrations in Ourense (South-western Europe).

    PubMed

    Vara, A; Fernández-González, M; Aira, M J; Rodríguez-Rajo, F J

    2016-05-01

    In temperate zones of North-Central Europe the sensitization to ash pollen is a recognized problem, also extended to the Northern areas of the Mediterranean basin. Some observations in Switzerland suggest that ash pollen season could be as important as birch pollen period. The allergenic significance of this pollen has been poorly studied in Southern Europe as the amounts of ash pollen are low. Due to the high degree of family relationship with the olive pollen major allergen (backed by a sequence identity of 88%), the Fraxinus pollen could be a significant cause of early respiratory allergy in sensitized people to olive pollen as consequence of cross-reactivity processes. Ash tree flowers in the Northwestern Spain during the winter months. The atmospheric presence of Ole e 1-like proteins (which could be related with the Fra a 1 presence) can be accurately detected using Ole e 1 antibodies. The correlation analysis showed high Spearman correlation coefficients between pollen content and rainfall (R(2)=-0.333, p<0.01) or allergen concentration and maximum temperature (R(2)=-0.271, p<0.01). In addiction CCA analysis showed not significant differences (p<0.05) between the component 1 and 2 variables. PCFA analysis plots showed that the allergen concentrations are related to the presence of the Fraxinus pollen in the air, facilitating the wind speed its submicronic allergen proteins dispersion. In order to forecast the Fraxinus allergy risk periods, two regression equations were developed with Adjusted R(2) values around 0.48-0.49. The t-test for dependent samples shows no significant differences between the observed data and the estimated by the equations. The combination of the airborne pollen content and the allergen quantification must be assessed in the epidemiologic study of allergic respiratory diseases.

  8. High-Throughput NMR Assessment of the Tertiary Structure of Food Allergens

    PubMed Central

    Alessandri, Stefano; Sancho, Ana; Vieths, Stefan; Mills, Clare E. N.; Wal, Jean-Michel; Shewry, Peter R.; Rigby, Neil; Hoffmann-Sommergruber, Karin

    2012-01-01

    Background In vitro component-resolved diagnosis of food allergy requires purified allergens that have to meet high standards of quality. These include the authentication of their conformation, which is relevant for the recognition by specific IgE antibodies from allergic patients. Therefore, highly sensitive and reliable screening methods for the analysis of proteins/allergens are required to assess their structural integrity. In the present study one-dimensional 1H Nuclear Magnetic Resonance (1D 1H-NMR) analysis was adopted for the assessment of overall structural and dynamic properties and authentication of a set of relevant food allergens, including non-specific lipid transfer proteins from apple, peach and hazelnut, 7/8S seed storage globulins from hazelnut and peanut, 11S seed storage globulins from hazelnut and peanut, caseins from cows' and goats' milk and tropomyosin from shrimp. Methodology/Principal Findings Two sets of 1D 1H-NMR experiments, using 700 MHz and 600 MHz instruments at 298 K were carried out to determine the presence and the extent of tertiary structure. Structural similarity among members of the individual allergen families was also assessed and changes under thermal stress investigated. The nuclear magnetic resonance (NMR) results were compared with structural information available either from the literature, Protein Data Bank entries, or derived from molecular models. Conclusions/Significance 1D 1H-NMR analysis of food allergens allowed their classification into molecules with rigid, extended and ordered tertiary structures, molecules without a rigid tertiary structure and molecules which displayed both features. Differences in thermal stability were also detected. In summary, 1D 1H-NMR gives insights into molecular fold of proteins and offers an independent method for assessing structural properties of proteins. PMID:22768312

  9. Sensitive and specific detection of potentially allergenic almond (Prunus dulcis) in complex food matrices by Taqman(®) real-time polymerase chain reaction in comparison to commercially available protein-based enzyme-linked immunosorbent assay.

    PubMed

    Röder, Martin; Vieths, Stefan; Holzhauser, Thomas

    2011-01-24

    Currently, causative immunotherapies are lacking in food allergy. The only option to prevent allergic reactions in susceptible individuals is to strictly avoid the offending food. Thus, reliable labelling of allergenic constituents is of major importance, but can only be achieved if appropriate specific and sensitive detection techniques for foods with allergenic potential are available. Almond is an allergenic food that requires mandatory labelling on prepackaged foods and belongs to the genus Prunus. Species of this genus are phylogenetically closely related. We observed commercially available almond specific ELISA being highly cross-reactive with other foods of the Prunoideae family, resulting in a false-positive detection of up to 500,000 mg kg(-1) almond. Previously published PCR methods were reported to be cross-reactive with false positive results >1200 mg kg(-1). We describe the development of a novel almond specific real-time PCR, based on mutated mismatch primers and sequence specific Taqman(®) probe detection, in comparison with two quantitative commercially available ELISA. PCR sensitivity was investigated with chocolate, chocolate coating and cookies spiked between 5 and 100,000 mg kg(-1) almond. In all matrices almond was reproducibly detected by real-time PCR at the lowest spike level of 5 mg kg(-1). Further, between 100 and 100,000 mg kg(-1) spiked almond, the method featured good correlation between quantified copy numbers and the amount of spiked almond. Within this range a similar relation between detectable signal and amount of almond