Sample records for allergic inflammatory response

  1. Inhibitory effects of bee venom on mast cell-mediated allergic inflammatory responses.

    PubMed

    Kang, Yun-Mi; Chung, Kyung-Sook; Kook, In-Hoon; Kook, Yoon-Bum; Bae, Hyunsu; Lee, Minho; An, Hyo-Jin

    2018-06-01

    Although bee venom (BV) is a toxin that causes bee stings to be painful, it has been widely used clinically for the treatment of certain immune‑associated diseases. BV has been used traditionally for the treatment of chronic inflammatory diseases. In this regard, the present study analyzed the effect of BV on the regulation of inflammatory mediator production by mast cells and their allergic inflammatory responses in an animal model. HMC‑1 cells were treated with BV prior to stimulation with phorbol‑12‑myristate 13‑acetate plus calcium ionophore A23187 (PMACI). The production of allergy‑associated pro‑inflammatory mediators was examined, and the underlying mechanisms were investigated. Furthermore, to investigate whether BV exhibits anti‑inflammatory effects associated with anti‑allergic effects in vivo, a compound 48/80‑induced anaphylaxis model was used. BV inhibited histamine release, mRNA expression and production of cytokines in the PMACI‑stimulated HMC‑1 cells. Furthermore, the inhibitory effects of BV on mitogen‑activated protein kinase (MAPK), MAPK kinase, signal transducer and activator of transcription 3 (STAT3) and Akt were demonstrated. The present study also investigated the ability of BV to inhibit compound 48/80‑induced systemic anaphylaxis in vivo. BV protected the mice against compound 48/80‑induced anaphylactic‑associated mortality. Furthermore, BV suppressed the mRNA expression levels of pro‑inflammatory cytokines, and suppressed the activation of MAPK and STAT3 in this model. These results provide novel insights into the possible role of BV as a modulator for mast cell‑mediated allergic inflammatory disorders.

  2. Eosinophil Activities Modulate the Immune/Inflammatory Character of Allergic Respiratory Responses in Mice

    PubMed Central

    Jacobsen, Elizabeth A.; LeSuer, William E.; Willetts, Lian; Zellner, Katie R.; Mazzolini, Kirea; Antonios, Nathalie; Beck, Brandon; Protheroe, Cheryl; Ochkur, Sergei I.; Colbert, Dana; Lacy, Paige; Moqbel, Redwan; Appleton, Judith; Lee, Nancy A.; Lee, James J.

    2014-01-01

    Background The importance and specific role(s) of eosinophils in modulating the immune/inflammatory phenotype of allergic pulmonary disease remain to be defined. Established animals models assessing the role(s) of eosinophils as contributors and/or causative agents of disease have relied on congenitally deficient mice where the developmental consequences of eosinophil depletion are unknown. Methods We developed a novel conditional eosinophil-deficient strain of mice (iPHIL) through a gene knock-in strategy inserting the human diphtheria toxin (DT) receptor (DTR) into the endogenous eosinophil peroxidase genomic locus. Results Expression of DTR rendered resistant mouse eosinophil progenitors sensitive to DT without affecting any other cell types. The presence of eosinophils was shown to be unnecessary during the sensitization phase of either ovalbumin (OVA) or house dust mite (HDM) acute asthma models. However, eosinophil ablation during airway challenge led to a predominantly neutrophilic phenotype (>15% neutrophils) accompanied by allergen-induced histopathologies and airway hyperresponsiveness in response to methacholine indistinguishable from eosinophilic wild type mice. Moreover, the iPHIL neutrophilic airway phenotype was shown to be a steroid-resistant allergic respiratory variant that was reversible upon restoration of peripheral eosinophils. Conclusions Eosinophil contributions to allergic immune/inflammatory responses appear to be limited to the airway challenge and not the sensitization phase of allergen provocation models. The reversible steroid-resistant character of the iPHIL neutrophilic airway variant suggests underappreciated mechanisms by which eosinophils shape the character of allergic respiratory responses. PMID:24266710

  3. Severe Vitamin E deficiency modulates airway allergic inflammatory responses in the murine asthma model

    PubMed Central

    LIM, YUNSOOK; VASU, VIHAS T.; VALACCHI, GIUSEPPE; LEONARD, SCOTT; AUNG, HNIN HNIN; SCHOCK, BETTINA C.; KENYON, NICHOLAS J.; LI, CHIN-SHANG; TRABER, MARET G.; CROSS, CARROLL E.

    2009-01-01

    Allergic asthma is a complex immunologically mediated disease associated with increased oxidative stress and altered antioxidant defenses. It was hypothesized that α-tocopherol (α-T) decreases oxidative stress and therefore its absence may influence allergic inflammatory process, a pathobiology known to be accompanied by oxidative stress. Therefore, selected parameters of allergic asthma sensitization and inflammation were evaluated following ovalbumin sensitization and re-challenge of α-T transfer protein (TTP) knock-out mice (TTP–/–) that have greatly reduced lung α-T levels (e.g. < 5%) compared to their litter mate controls (TTP+/+). Results showed that severe α-T deficiency result in a blunted lung expression of IL-5 mRNA and IL-5 protein and plasma IgE levels compared with TTP+/+ mice following immune sensitization and rechallenge, although lung lavage eosinophil levels were comparable in both genomic strains. It is concluded that the initial stimulation of immune responses by the TTP–/– mice were generally blunted compared to the TTP+/+ mice, thus diminishing some aspects of subsequent allergic inflammatory processes. PMID:18404538

  4. Role of histamine in the inhibitory effects of phycocyanin in experimental models of allergic inflammatory response.

    PubMed Central

    Remirez, D; Ledón, N; González, R

    2002-01-01

    It has recently been reported that phycocyanin, a biliprotein found in the blue-green microalgae Spirulina, exerts anti-inflammatory effects in some animal models of inflammation. Taking into account these findings, we decided to elucidate whether phycocyanin might exert also inhibitory effects in the induced allergic inflammatory response and on histamine release from isolated rat mast cells. In in vivo experiments, phycocyanin (100, 200 and 300mg/kg post-orally (p.o.)) was administered 1 h before the challenge with 1 microg of ovalbumin (OA) in the ear of mice previously sensitized with OA. One hour later, myeloperoxidase activity and ear edema were assessed. Phycocyanin significantly reduced both parameters. In separate experiments, phycocyanin (100 and 200 mg/kg p.o.) also reduced the blue spot area induced by intradermal injections of histamine, and the histamine releaser compound 48/80 in rat skin. In concordance with the former results, phycocyanin also significantly reduced histamine release induced by compound 48/80 from isolated peritoneal rat mast cells. The inhibitory effects of phycocyanin were dose dependent. Taken together, our results suggest that inhibition of allergic inflammatory response by phycocyanin is mediated, at least in part, by inhibition of histamine release from mast cells. PMID:12061428

  5. Allergic rhinitis and inflammatory airway disease: interactions within the unified airspace.

    PubMed

    Marple, Bradley F

    2010-01-01

    Allergic rhinitis (AR), the most common chronic allergic condition in outpatient medicine, is associated with immense health care costs and socioeconomic consequences. AR's impact may be partly from interacting of respiratory conditions via allergic inflammation. This study was designed to review potential interactive mechanisms of AR and associated conditions and consider the relevance of a bidirectional "unified airway" respiratory inflammation model on diagnosis and treatment of inflammatory airway disease. MEDLINE was searched for pathophysiology and pathophysiological and epidemiologic links between AR and diseases of the sinuses, lungs, middle ear, and nasopharynx. Allergic-related inflammatory responses or neural and systemic processes fostering inflammatory changes distant from initial allergen provocation may link AR and comorbidities. Treating AR may benefit associated respiratory tract comorbidities. Besides improving AR outcomes, treatment inhibiting eosinophil recruitment and migration, normalizing cytokine profiles, and reducing asthma-associated health care use in atopic subjects would likely ameliorate other upper airway diseases such as acute rhinosinusitis, chronic rhinosinusitis (CRS) with nasal polyposis (NP), adenoidal hypertrophy, and otitis media with effusion. Epidemiological concordance of AR with several airway diseases conforms to a bidirectional "unified airway" respiratory inflammation model based on anatomic and histological upper and lower airway connections. Epidemiology and current understanding of inflammatory, humoral, and neural processes make links between AR and disorders including asthma, otitis media, NP, and CRS plausible. Combining AR with associated conditions increases disease burden; worsened associated illness may accompany worsened AR. AR pharmacotherapies include antihistamines, leukotriene antagonists, intranasal corticosteroids, and immunotherapy; treatments attenuating proinflammatory responses may also benefit

  6. [Allergic and non-allergic hypersensitivity to non-opioid analgesics, antipyretics and nonsteroidal anti-inflammatory drugs in children: epidemiology, clinical aspects, pathophysiology, diagnosis and prevention].

    PubMed

    Ponvert, C

    2012-05-01

    Non-opioid analgesics, antipyretics and nonsteroidal anti-inflammatory drugs are widely used, but suspected allergic reactions to these drugs are rare, especially in children. Most frequent reactions are cutaneous (urticaria, angioedema) and respiratory (rhinitis, asthma). Other reactions (anaphylaxis, potentially harmful toxidermias) are rare. In a few patients, reactions may result from a specific (allergic) hypersensitivity, with positive responses in prick and intradermal tests (anaphylaxis, immediate urticaria and/or angioedema) and in intradermal and patch tests (non-immediate reactions). However, most reactions result from a non-specific (non-allergic) hypersensitivity (intolerance), with a frequent cross-reactivity between the various families of analgesics, antipyretics and nonsteroidal anti-inflammatory drugs, including paracetamol. Based on a convincing clinical history and/or positive responses in challenge tests, intolerance to non-opioid analgesics, antipyretics and nonsteroidal anti-inflammatory drugs has been diagnosed in 13 to 50% of the patients with allergic-like reactions to these drugs. Risk factors are a personal atopy and age. Prevention is based on administration of other (families of) analgesics, antipyretics and nonsteroidal anti-inflammatory drugs in patients with allergic hypersensitivity to these drugs. In patients with non-allergic hypersensitivity, prevention is based on administration of drugs with a low cyclo-oxygenase-1 inhibitory activity (if tolerated). Desensitization is efficient in patients with respiratory reactions, but does not work in patients with mucocutaneous reactions and anaphylaxis. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  7. Quercetin and Its Anti-Allergic Immune Response.

    PubMed

    Mlcek, Jiri; Jurikova, Tunde; Skrovankova, Sona; Sochor, Jiri

    2016-05-12

    Quercetin is the great representative of polyphenols, flavonoids subgroup, flavonols. Its main natural sources in foods are vegetables such as onions, the most studied quercetin containing foods, and broccoli; fruits (apples, berry crops, and grapes); some herbs; tea; and wine. Quercetin is known for its antioxidant activity in radical scavenging and anti-allergic properties characterized by stimulation of immune system, antiviral activity, inhibition of histamine release, decrease in pro-inflammatory cytokines, leukotrienes creation, and suppresses interleukin IL-4 production. It can improve the Th1/Th2 balance, and restrain antigen-specific IgE antibody formation. It is also effective in the inhibition of enzymes such as lipoxygenase, eosinophil and peroxidase and the suppression of inflammatory mediators. All mentioned mechanisms of action contribute to the anti-inflammatory and immunomodulating properties of quercetin that can be effectively utilized in treatment of late-phase, and late-late-phase bronchial asthma responses, allergic rhinitis and restricted peanut-induced anaphylactic reactions. Plant extract of quercetin is the main ingredient of many potential anti-allergic drugs, supplements and enriched products, which is more competent in inhibiting of IL-8 than cromolyn (anti-allergic drug disodium cromoglycate) and suppresses IL-6 and cytosolic calcium level increase.

  8. Characterization of inflammatory cell infiltration in feline allergic skin disease.

    PubMed

    Taglinger, K; Day, M J; Foster, A P

    2007-11-01

    Sixteen cats with allergic dermatitis and six control cats with no skin disease were examined. Lymphoid and histiocytic cells in skin sections were examined immunohistochemically and mast cells were identified by toluidine blue staining. The 16 allergic cats showed one or more of several features (alopecia, eosinophilic plaques or granulomas, papulocrusting lesions), and histopathological findings were diverse. In control cats there were no cells that expressed IgM or MAC387, a few that were immunolabelled for IgG, IgA or CD3, and moderate numbers of mast cells. In allergic cats, positively labelled inflammatory cells were generally more numerous in lesional than in non-lesional skin sections, and were particularly associated with the superficial dermis and perifollicular areas. There were low numbers of plasma cells expressing cytoplasmic immunoglobulin; moderate numbers of MHC II-, MAC387- and CD3-positive cells; and moderate to numerous mast cells. MHC class II expression was associated with inflammatory cells morphologically consistent with dermal dendritic cells and macrophages, and epidermal Langerhans cells. Dendritic cells expressing MHC class II were usually associated with an infiltrate of CD3 lymphocytes, suggesting that these cells participate in maintenance of the local immune response by presenting antigen to T lymphocytes. These findings confirm that feline allergic skin disease is characterized by infiltration of activated antigen-presenting cells and T lymphocytes in addition to increased numbers of dermal mast cells. This pattern mimics the dermal inflammation that occurs in the chronic phase of both canine and human atopic dermatitis.

  9. TRPA1 controls inflammation and pruritogen responses in allergic contact dermatitis

    PubMed Central

    Liu, Boyi; Escalera, Jasmine; Balakrishna, Shrilatha; Fan, Lu; Caceres, Ana I.; Robinson, Eve; Sui, Aiwei; McKay, M. Craig; McAlexander, M. Allen; Herrick, Christina A.; Jordt, Sven E.

    2013-01-01

    Allergic contact dermatitis is a common skin disease associated with inflammation and persistent pruritus. Transient receptor potential (TRP) ion channels in skin-innervating sensory neurons mediate acute inflammatory and pruritic responses following exogenous stimulation and may contribute to allergic responses. Genetic ablation or pharmacological inhibition of TRPA1, but not TRPV1, inhibited skin edema, keratinocyte hyperplasia, nerve growth, leukocyte infiltration, and antihistamine-resistant scratching behavior in mice exposed to the haptens, oxazolone and urushiol, the contact allergen of poison ivy. Hapten-challenged skin of TRPA1-deficient mice contained diminished levels of inflammatory cytokines, nerve growth factor, and endogenous pruritogens, such as substance P (SP) and serotonin. TRPA1-deficient sensory neurons were defective in SP signaling, and SP-induced scratching behavior was abolished in Trpa1−/− mice. SP receptor antagonists, such as aprepitant inhibited both hapten-induced cutaneous inflammation and scratching behavior. These findings support a central role for TRPA1 and SP in the integration of immune and neuronal mechanisms leading to chronic inflammatory responses and pruritus associated with contact dermatitis.—Liu, B., Escalera, J., Balakrishna, S., Fan, L., Caceres, A. I., Robinson, E., Sui, A., McKay, M. C., McAlexander, M. A., Herrick, C. A., Jordt, S. E. TRPA1 controls inflammation and pruritogen responses in allergic contact dermatitis. PMID:23722916

  10. Reduced IFN-γ and IL-10 responses to paternal antigens during and after pregnancy in allergic women.

    PubMed

    Persson, Marie; Ekerfelt, Christina; Ernerudh, Jan; Matthiesen, Leif; Abelius, Martina Sandberg; Jonsson, Yvonne; Berg, Göran; Jenmalm, Maria C

    2012-09-01

    Normal pregnancy and allergy are both characterized by a T helper (Th) 2 deviation. In the current study, we hypothesized that paternal antigen-induced cytokine responses during pregnancy would be deviated toward Th2 and an anti-inflammatory profile, and that the Th2 deviation would be more pronounced in allergic pregnant women. Blood samples were collected longitudinally on three occasions during pregnancy and two occasions post partum (pp). Of the 86 women initially included, 54 women had a normal pregnancy and completed the sampling procedures. Twelve women fulfilled the criteria for allergy (allergic symptoms and circulating immunoglobulin [Ig] E antibodies to inhalant allergens) and 20 were non-allergic (nonsensitized without symptoms). The levels of Th1- and Th2-associated cytokines and chemokines, the Th17 cytokine IL-17 and the anti-inflammatory cytokine IL-10 of the groups were compared. Paternal antigen-induced IL-4 and IL-10 responses increased between the first and the third trimester. Allergy was associated with decreased paternal antigen-induced IFN-γ and CXCL10 secretion in the nonpregnant state (one year pp) and also decreased IFN-γ/IL-4 and IFN-γ/IL-13 ratios during pregnancy. We also observed a decreased paternal antigen-induced IL-10 response in allergic compared with non-allergic women during pregnancy, along with a decreased IL-10/IL-13 ratio. In conclusion, our findings support the hypothesis of lower Th1 responses toward paternal antigens in allergic than in non-allergic women, but also indicate that allergy is associated with a lower capacity to induce anti-inflammatory IL-10 responses after paternal antigen stimulation during pregnancy. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  11. Recent Patents and Emerging Therapeutics in the Treatment of Allergic Conjunctivitis

    PubMed Central

    Mishra, Gyan P.; Tamboli, Viral; Jwala, Jwala; Mitra, Ashim K.

    2011-01-01

    Ocular allergy is an inflammatory response of the conjunctival mucosa that also affects the cornea and eyelids. Allergic conjunctivitis includes seasonal allergic conjunctivitis (SAC), perennial allergic conjunctivitis (PAC), vernal keratoconjunctivitis (VKC), atopic keratoconjunctivitis (AKC) and giant papillary conjunctivitis (GPC). In general, allergic conditions involve mast cell degranulation that leads to release of inflammatory mediators and activation of enzymatic cascades generating pro-inflammatory mediators. In chronic ocular inflammatory disorders associated with mast cell activation such as VKC and AKC constant inflammatory response is observed due to predominance of inflammatory mediators such as eosinophils and Th2-generated cytokines. Antihistamines, mast-cell stabilizers, non-steroidal anti-inflammatory agents, corticosteroids and immunomodulatory agents are commonly indicated for the treatment of acute and chronic allergic conjunctivitis. In recent years newer drug molecules have been introduced in the treatment of allergic conjunctivitis. This article reviews recent patents and emerging therapeutics in the treatment of allergic conjunctivitis. PMID:21171952

  12. ASSESSMENT OF ALLERGIC IMMUNE RESPONSES TO INDOOR AIR FUNGAL CONTAMINANTS

    EPA Science Inventory

    We are using a mouse model to assess immune and inflammatory responses as well as changes in respiratory function and pathology characteristic of allergic asthma to fungal extracts M. anisopliae (MACA), S. chartarum (SCE), and P. chrysogenum (PCE). This model will be useful to a...

  13. The Anti-Inflammatory Effects of Acupuncture and Their Relevance to Allergic Rhinitis: A Narrative Review and Proposed Model

    PubMed Central

    McDonald, John L.; Cripps, Allan W.; Smith, Peter K.; Smith, Caroline A.; Xue, Charlie C.; Golianu, Brenda

    2013-01-01

    Classical literature indicates that acupuncture has been used for millennia to treat numerous inflammatory conditions, including allergic rhinitis. Recent research has examined some of the mechanisms underpinning acupuncture's anti-inflammatory effects which include mediation by sympathetic and parasympathetic pathways. The hypothalamus-pituitary-adrenal (HPA) axis has been reported to mediate the antioedema effects of acupuncture, but not antihyperalgesic actions during inflammation. Other reported anti-inflammatory effects of acupuncture include an antihistamine action and downregulation of proinflammatory cytokines (such as TNF-α, IL-1β, IL-6, and IL-10), proinflammatory neuropeptides (such as SP, CGRP, and VIP), and neurotrophins (such as NGF and BDNF) which can enhance and prolong inflammatory response. Acupuncture has been reported to suppress the expression of COX-1, COX-2, and iNOS during experimentally induced inflammation. Downregulation of the expression and sensitivity of the transient receptor potential vallinoid 1 (TRPV1) after acupuncture has been reported. In summary, acupuncture may exert anti-inflammatory effects through a complex neuro-endocrino-immunological network of actions. Many of these generic anti-inflammatory effects of acupuncture are of direct relevance to allergic rhinitis; however, more research is needed to elucidate specifically how immune mechanisms might be modulated by acupuncture in allergic rhinitis, and to this end a proposed model is offered to guide further research. PMID:23476696

  14. Short-Term Hyperprolactinemia Reduces the Expression of Purinergic P2X7 Receptors during Allergic Inflammatory Response of the Lungs.

    PubMed

    Ochoa-Amaya, Julieta E; Queiroz-Hazarbassanov, Nicolle; Namazu, Lilian B; Calefi, Atilio S; Tobaruela, Carla N; Margatho, Rafael; Palermo-Neto, João; Ligeiro de Oliveira, Ana P; Felicio, Luciano F

    2018-06-06

    We have previously shown that domperidone-induced short-term hyperprolactinemia reduces the lung's allergic inflammatory response in an ovalbumin antigenic challenge model. Since purinergic receptor P2X7R activity leads to proinflammatory cytokine release and is possibly related to the pathogenesis of allergic respiratory conditions, the present study was designed to investigate a possible involvement of purinergic and prolactin receptors in this phenomenon. To induce hyperprolactinemia, domperidone was injected intraperitoneally in rats at a dose of 5.1 mg × kg-1 per day for 5 days. P2X7 expression was evaluated by lung immunohistochemistry while prolactin receptor expression in bronchoalveolar lavage leukocytes was analyzed through flow cytometry. Previous reports demonstrated that rats subjected to short-term hyperprolactinemia exhibited a decrease in leukocyte counts in bronchoalveolar lavage, especially granulocytes. Here, it is revealed that hyperprolactinemia promotes an increased expression of prolactin receptors in granulocytes. Also, increased expression of purinergic P2X7R observed in allergic animals was significantly reduced by hyperprolactinemia. Both purinergic and prolactin receptor expression changes occur during the anti-asthmatic effect of hyperprolactinemia. © 2018 S. Karger AG, Basel.

  15. Anti-inflammatory activities of Aller-7, a novel polyherbal formulation for allergic rhinitis.

    PubMed

    Pratibha, N; Saxena, V S; Amit, A; D'Souza, P; Bagchi, M; Bagchi, D

    2004-01-01

    Allergic rhinitis is an immunological disorder and an inflammatory response of nasal mucosal membranes. Allergic rhinitis, a state of hypersensitivity, occurs when the body overreacts to a substance such as pollens or dust. A novel, safe polyherbal formulation (Aller-7/NR-A2) has been developed for the treatment of allergic rhinitis using a unique combination of extracts from seven medicinal plants including Phyllanthus emblica, Terminalia chebula, Terminalia bellerica, Albizia lebbeck, Piper nigrum, Zingiber officinale and Piper longum. Since inflammation is an integral mechanistic component of allergy, the present study aimed to determine the anti-inflammatory activity of Aller-7 in various in vivo models. The efficacy of Aller-7 was investigated in compound 48/80-induced paw edema both in Balb/c mice and Swiss Albino mice, carrageenan-induced paw edema in Wistar Albino rats and Freund's adjuvant-induced arthritis in Wistar Albino rats. The trypsin inhibitory activity of Aller-7 was also determined and compared with ovomucoid. At a dose of 250 mg/kg, Aller-7 demonstrated 62.55% inhibition against compound 48/80-induced paw edema in Balb/c mice, while under the same conditions prednisolone at an oral dose of 14 mg/kg exhibited 44.7% inhibition. Aller-7 significantly inhibited compound 48/80-induced paw edema at all three doses of 175, 225 or 275 mg/kg in Swiss Albino mice, while the most potent effect was observed at 225 mg/kg. Aller-7 (120 mg/kg, p.o.) demonstrated 31.3% inhibition against carrageenan-induced acute inflammation in Wistar Albino rats, while ibuprofen (50 mg/kg, p.o.) exerted 68.1% inhibition. Aller-7 also exhibited a dose-dependent (150-350 mg/kg) anti-inflammatory effect against Freund's adjuvant-induced arthritis in Wistar Albino rats and an approximately 63% inhibitory effect was observed at a dose of 350 mg/kg. The trypsin inhibitory activity of Aller-7 was determined, using ovomucoid as a positive control. Ovomucoid and Aller-7 demonstrated

  16. Recent developments in the role of reactive oxygen species in allergic asthma

    PubMed Central

    Qu, Jingjing; Li, Yuanyuan; Zhong, Wen

    2017-01-01

    Allergic asthma has a global prevalence, morbidity, and mortality. Many environmental factors, such as pollutants and allergens, are highly relevant to allergic asthma. The most important pathological symptom of allergic asthma is airway inflammation. Accordingly, the unique role of reactive oxygen species (ROS) had been identified as a main reason for this respiratory inflammation. Many studies have shown that inhalation of different allergens can promote ROS generation. Recent studies have demonstrated that several pro-inflammatory mediators are responsible for the development of allergic asthma. Among these mediators, endogenous or exogenous ROS are responsible for the airway inflammation of allergic asthma. Furthermore, several inflammatory cells induce ROS and allergic asthma development. Airway inflammation, airway hyper-responsiveness, tissue injury, and remodeling can be induced by excessive ROS production in animal models. Based on investigations of allergic asthma and ROS formation mechanisms, we have identified several novel anti-inflammatory therapeutic treatments. This review describes the recent data linking ROS to the pathogenesis of allergic asthma. PMID:28203435

  17. Antileukotriene Reverts the Early Effects of Inflammatory Response of Distal Parenchyma in Experimental Chronic Allergic Inflammation

    PubMed Central

    Gobbato, Nathália Brandão; de Souza, Flávia Castro Ribas; Fumagalli, Stella Bruna Napolitano; Lopes, Fernanda Degobbi Tenório Quirino dos Santos; Prado, Carla Máximo; Martins, Milton Arruda; Tibério, Iolanda de Fátima Lopes Calvo; Leick, Edna Aparecida

    2013-01-01

    Aims. Compare the effects of montelukast or dexamethasone in distal lung parenchyma and airway walls of guinea pigs (GP) with chronic allergic inflammation. Methods. GP have inhaled ovalbumin (OVA group-2x/week/4weeks). After the 4th inhalation, GP were treated with montelukast or dexamethasone. After 72 hours of the 7th inhalation, GP were anesthetised, and lungs were removed and submitted to histopathological evaluation. Results. Montelukast and dexamethasone treatments reduced the number of eosinophils in airway wall and distal lung parenchyma compared to OVA group (P < 0.05). On distal parenchyma, both treatments were effective in reducing RANTES, NF-κB, and fibronectin positive cells compared to OVA group (P < 0.001). Montelukast was more effective in reducing eotaxin positive cells on distal parenchyma compared to dexamethasone treatment (P < 0.001), while there was a more expressive reduction of IGF-I positive cells in OVA-D group (P < 0.001). On airway walls, montelukast and dexamethasone were effective in reducing IGF-I, RANTES, and fibronectin positive cells compared to OVA group (P < 0.05). Dexamethasone was more effective in reducing the number of eotaxin and NF-κB positive cells than Montelukast (P < 0.05). Conclusions. In this animal model, both treatments were effective in modulating allergic inflammation and remodeling distal lung parenchyma and airway wall, contributing to a better control of the inflammatory response. PMID:24151607

  18. Non-pulmonary allergic diseases and inflammatory bowel disease: a qualitative review.

    PubMed

    Kotlyar, David S; Shum, Mili; Hsieh, Jennifer; Blonski, Wojciech; Greenwald, David A

    2014-08-28

    While the etiological underpinnings of inflammatory bowel disease (IBD) are highly complex, it has been noted that both clinical and pathophysiological similarities exist between IBD and both asthma and non-pulmonary allergic phenomena. In this review, several key points on common biomarkers, pathophysiology, clinical manifestations and nutritional and probiotic interventions for both IBD and non-pulmonary allergic diseases are discussed. Histamine and mast cell activity show common behaviors in both IBD and in certain allergic disorders. IgE also represents a key immunoglobulin involved in both IBD and in certain allergic pathologies, though these links require further study. Probiotics remain a critically important intervention for both IBD subtypes as well as multiple allergic phenomena. Linked clinical phenomena, especially sinonasal disease and IBD, are discussed. In addition, nutritional interventions remain an underutilized and promising therapy for modification of both allergic disorders and IBD. Recommending new mothers breastfeed their infants, and increasing the duration of breastfeeding may also help prevent both IBD and allergic diseases, but requires more investigation. While much remains to be discovered, it is clear that non-pulmonary allergic phenomena are connected to IBD in a myriad number of ways and that the discovery of common immunological pathways may usher in an era of vastly improved treatments for patients.

  19. Diesel Exhaust Exposure and Nasal Response to Attenuated Influenza in Normal and Allergic Volunteers

    PubMed Central

    Zhou, Haibo; Zhang, Hongtao; Horvath, Katie; Robinette, Carole; Kesic, Matthew; Meyer, Megan; Diaz-Sanchez, David; Jaspers, Ilona

    2012-01-01

    Rationale: Diesel exhaust enhances allergic inflammation, and pollutants are associated with heightened susceptibility to viral respiratory infections. The effects of combined diesel and virus exposure in humans are unknown. Objectives: Test whether acute exposure to diesel modifies inflammatory responses to influenza virus in normal humans and those with allergies. Methods: We conducted a double-blind, randomized, placebo-controlled study of nasal responses to live attenuated influenza virus in normal volunteers and those with allergic rhinitis exposed to diesel (100 μg/m3) or clean air for 2 hours, followed by standard dose of virus and serial nasal lavages. Endpoints were inflammatory mediators (ELISA) and virus quantity (quantitative reverse-transcriptase polymerase chain reaction). To test for exposure effect, we used multiple regression with exposure group (diesel vs. air) as the main explanatory variable and allergic status as an additional factor. Measurements and Main Results: Baseline levels of mediators did not differ among groups. For most postvirus nasal cytokine responses, there was no significant diesel effect, and no significant interaction with allergy. However, diesel was associated with significantly increased IFN-γ responses (P = 0.02), with no interaction with allergy in the regression model. Eotaxin-1 (P = 0.01), eosinophil cationic protein (P < 0.01), and influenza RNA sequences in nasal cells (P = 0.03) were significantly increased with diesel exposure, linked to allergy. Conclusions: Short-term exposure to diesel exhaust leads to increased eosinophil activation and increased virus quantity after virus inoculation in those with allergic rhinitis. This is consistent with previous literature suggesting a diesel “adjuvant” effect promoting allergic inflammation, and our data further suggest this change may be associated with reduced virus clearance. Clinical trial registered with www.clinicaltrials.gov (NCT00617110). PMID:22071326

  20. Cornuside inhibits mast cell-mediated allergic response by down-regulating MAPK and NF-κB signaling pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Liangchang; Jin, Guangyu; Jiang, Jingzhi

    Aims: The present study is to investigate the effect of cornuside on mast cell-mediated allergic response, as well as its possible mechanisms of action. Methods: To test the anti-allergic effects of cornuside in vivo, local extravasation was induced by local injection of anti-dinitrophenyl immunoglobulin E (IgE) followed by intravenous antigenic challenge in passive cutaneous anaphylaxis model rats. Mast cell viability was determined using MTT assay. Histamine content from rat peritoneal mast cells was measured by the radioenzymatic method. To investigate the mechanisms by which cornuside affects the reduction of histamine release, the levels of calcium uptake were measured. To examine whethermore » cornuside affects the expression of pro-inflammatory cytokines, Western blotting and ELISA were carried out. Results: Oral administration of cornuside inhibited passive cutaneous anaphylaxis in rats. Presence of cornuside attenuated IgE-induced histamine release from rat peritoneal mast cells. The inhibitory effect of cornuside on histamine release was mediated by the modulation of intracellular calcium. In addition, cornuside decreased phorbol 12-myristate 13-acetate (PMA) and calcium ionophore A23187-stimulated production and secretion of pro-inflammatory cytokines such as TNF-α and IL-6 in human mast cells. The inhibitory effect of cornuside on pro-inflammatory cytokines was dependent on nuclear factor-κB and p38 mitogen-activated protein kinase. Conclusions: The present study provides evidence that cornuside inhibits mast cell-derived inflammatory allergic reactions by blocking histamine release and pro-inflammatory cytokine expression. Furthermore, in vivo and in vitro anti-allergic effects of cornuside suggest a possible therapeutic application of this agent in inflammatory allergic diseases.« less

  1. Immunomodulatory and Inhibitory Effect of Immulina®, and Immunloges® in the Ig-E Mediated Activation of RBL-2H3 Cells. A New Role in Allergic Inflammatory Responses

    PubMed Central

    Appel, Kurt; Munoz, Eduardo; Navarrete, Carmen; Cruz-Teno, Cristina; Biller, Andreas

    2018-01-01

    Immulina®, a high-molecular-weight polysaccharide extract from the cyanobacterium Arthrospira platensis (Spirulina) is a potent activator of innate immune cells. On the other hand, it is well documented that Spirulina exerts anti-inflammatory effects and showed promising effects with respect to the relief of allergic rhinitis symptoms. Taking into account these findings, we decided to elucidate whether Immulina®, and immunLoges® (a commercial available multicomponent nutraceutical with Immulina® as a main ingredient) beyond immune-enhancing effects, might also exert inhibitory effects in the induced allergic inflammatory response and on histamine release from RBL-2H3 mast cells. Our findings show that Immulina® and immunLoges® inhibited the IgE-antigen complex-induced production of TNF-α, IL-4, leukotrienes and histamine. The compound 48/80 stimulated histamine release in RBL-2H3 cells was also inhibited. Taken together, our results showed that Immulina® and immunLoges® exhibit anti-inflammatory properties and inhibited the release of histamine from mast cells. PMID:29495393

  2. Immunomodulatory and Inhibitory Effect of Immulina®, and Immunloges® in the Ig-E Mediated Activation of RBL-2H3 Cells. A New Role in Allergic Inflammatory Responses.

    PubMed

    Appel, Kurt; Munoz, Eduardo; Navarrete, Carmen; Cruz-Teno, Cristina; Biller, Andreas; Thiemann, Eva

    2018-02-26

    Immulina ® , a high-molecular-weight polysaccharide extract from the cyanobacterium Arthrospira platensis ( Spirulina ) is a potent activator of innate immune cells. On the other hand, it is well documented that Spirulina exerts anti-inflammatory effects and showed promising effects with respect to the relief of allergic rhinitis symptoms. Taking into account these findings, we decided to elucidate whether Immulina ® , and immunLoges ® (a commercial available multicomponent nutraceutical with Immulina ® as a main ingredient) beyond immune-enhancing effects, might also exert inhibitory effects in the induced allergic inflammatory response and on histamine release from RBL-2H3 mast cells. Our findings show that Immulina ® and immunLoges ® inhibited the IgE-antigen complex-induced production of TNF-α, IL-4, leukotrienes and histamine. The compound 48/80 stimulated histamine release in RBL-2H3 cells was also inhibited. Taken together, our results showed that Immulina ® and immunLoges ® exhibit anti-inflammatory properties and inhibited the release of histamine from mast cells.

  3. Anti-inflammatory and anti-allergic properties of donkey's and goat's milk.

    PubMed

    Jirillo, Felicita; Magrone, Thea

    2014-03-01

    Nowadays, donkey's and goat's milk consumption has been reevaluated for its potential benefits to human health. For example, in infants with intolerance to cow's milk, donkey's milk represents a good alternative due to its chemical characteristics similar to those of human milk. On the other hand, goat's milk in virtue of its higher content in short chain, medium chain, mono and polyunsaturated fatty acids than that of cow's milk, is more digestible than the bovine counterpart. From an immunological point of view, donkey's milk is able to induce release of inflammatory and anti-inflammatory cytokines from normal human peripheral blood lymphomononuclear cells, thus maintaining a condition of immune homeostasis. Similarly, goat's milk has been shown to trigger innate and adaptive immune responses in an in vitro human system, also inhibiting the endotoxin-induced activation of monocytes. Finally, in these milks the presence of their own microbiota may normalize the human intestinal microbiota with a cascade of protective effects at intestinal mucosal sites, even including triggering of intestinal T regulatory cells. In the light of the above considerations, donkey's and goat's milk should be recommended as a dietary supplement in individuals with inflammatory and allergic conditions, even including elderly people.

  4. Interaction between allergic asthma and atherosclerosis

    PubMed Central

    Liu, Conglin; Zhang, Jingying; Shi, Guo-Ping

    2015-01-01

    Prior studies have established an essential role of mast cells in allergic asthma and atherosclerosis. Mast cell deficiency or inactivation protects mice from allergen-induced airway hyper-responsiveness and diet-induced atherosclerosis, suggesting that mast cells share pathologic activities in both diseases. Allergic asthma and atherosclerosis are inflammatory diseases that contain similar sets of elevated numbers of inflammatory cells in addition to mast cells in the airway and arterial wall, such as macrophages, monocytes, T cells, eosinophils, and smooth muscle cells. Emerging evidence from experimental models and human studies points to a potential interaction between the two seemingly unrelated diseases. Patients or mice with allergic asthma have a high risk of developing atherosclerosis or vice versa, despite the fact that asthma is a Th2-oriented disease, whereas Th1 immunity promotes atherosclerosis. In addition to the preferred Th1/Th2 responses that may differentiate the two diseases, mast cells and many other inflammatory cells also contribute to their pathogenesis by much more than just T cell immunity. Here we summarize the different roles of airway and arterial wall inflammatory cells and vascular cells in asthma and atherosclerosis, and propose an interaction between the two diseases, although limited investigations are available to delineate the molecular and cellular mechanisms by which one disease increases the risk of the other. Results from mouse allergic asthma and atherosclerosis models and from human population studies lead to the hypothesis that patients with atherosclerosis may benefit from anti-asthmatic medications, or that the therapeutic regimens targeting atherosclerosis may also alleviate allergic asthma. PMID:26608212

  5. IL-15-deficient mice develop enhanced allergic responses to airway allergen exposure

    PubMed Central

    Mathias, Clinton B.; Schramm, Craig M.; Guernsey, Linda A.; Wu, Carol A.; Polukort, Stephanie H.; Rovatti, Jeffrey; Ser-Dolansky, Jennifer; Secor, Eric; Schneider, Sallie S.; Thrall, Roger S.; Aguila, Hector L.

    2017-01-01

    Background Interleukin-15 is a pleiotropic cytokine that is critical for the development and survival of multiple hematopoietic lineages. Mice lacking IL-15 have selective defects in populations of several pro-allergic immune cells including natural killer (NK) cells, NKT cells, and memory CD8+T cells. We therefore hypothesized that IL-15−/− mice will have reduced inflammatory responses during the development of allergic airway disease (AAD). Objective To determine whether IL-15−/− mice have attenuated allergic responses in a mouse model of AAD. Methods C57BL/6 wild-type (WT) and IL-15−/− mice were sensitized and challenged with ovalbumin (OVA) and the development of AAD was ascertained by examining changes in airway inflammatory responses, Th2 responses, and lung histopathology. Results Here we report that IL-15−/− mice developed enhanced allergic responses in an OVA-induced model of AAD. In the absence of IL-15, OVA-challenged mice exhibited enhanced bronchial eosinophilic inflammation, elevated IL-13 production, and severe lung histopathology in comparison with WT mice. In addition, increased numbers of CD4+T and B cells in the spleens and broncholaveolar lavage (BAL) were also observed. Examination of OVA-challenged IL-15Rα−/− animals revealed a similar phenotype resulting in enhanced airway eosinophilia compared to WT mice. Adoptive transfer of splenic CD8+T cells from OVA-sensitized WT mice suppressed the enhancement of eosinophilia in IL-15−/− animals to levels observed in WT mice, but had no further effects. Conclusion and Clinical Relevance These data demonstrate that mice with an endogenous IL-15 deficiency are susceptible to the development of severe, enhanced Th2-mediated AAD, which can be regulated by CD8+T cells. Furthermore, the development of disease as well as allergen-specific Th2 responses occurs despite deficiencies in several IL-15-dependent cell types including NK, NKT, and γδ T cells, suggesting that these cells or

  6. Anti-allergic and anti-inflammatory effects of butanol extract from Arctium Lappa L.

    PubMed

    Sohn, Eun-Hwa; Jang, Seon-A; Joo, Haemi; Park, Sulkyoung; Kang, Se-Chan; Lee, Chul-Hoon; Kim, Sun-Young

    2011-02-08

    Atopic dermatitis is a chronic, allergic inflammatory skin disease that is accompanied by markedly increased levels of inflammatory cells, including eosinophils, mast cells, and T cells. Arctium lappa L. is a traditional medicine in Asia. This study examined whether a butanol extract of A. lappa (ALBE) had previously unreported anti-allergic or anti-inflammatory effects. This study examined the effect of ALBE on the release of β-hexosaminidase in antigen-stimulated-RBL-2H3 cells. We also evaluated the ConA-induced expression of IL-4, IL-5, mitogen-activated protein kinases (MAPKs), and nuclear factor (NF)-κB using RT-PCR, Western blotting, and ELISA in mouse splenocytes after ALBE treatment. We observed significant inhibition of β-hexosaminidase release in RBL-2H3 cells and suppressed mRNA expression and protein secretion of IL-4 and IL-5 induced by ConA-treated primary murine splenocytes after ALBE treatment. Additionally, ALBE (100 μg/mL) suppressed not only the transcriptional activation of NF-κB, but also the phosphorylation of MAPKs in ConA-treated primary splenocytes. These results suggest that ALBE inhibits the expression of IL-4 and IL-5 by downregulating MAPKs and NF-κB activation in ConA-treated splenocytes and supports the hypothesis that ALBE may have beneficial effects in the treatment of allergic diseases, including atopic dermatitis.

  7. Silkworm dropping extract ameliorate trimellitic anhydride-induced allergic contact dermatitis by regulating Th1/Th2 immune response.

    PubMed

    Choi, Dae Woon; Kwon, Da-Ae; Jung, Sung Keun; See, Hye-Jeong; Jung, Sun Young; Shon, Dong-Hwa; Shin, Hee Soon

    2018-05-26

    Allergic contact dermatitis (ACD) is an inflammatory skin disease caused by hapten-specific immune response. Silkworm droppings are known to exert beneficial effects during the treatment of inflammatory diseases. Here, we studied whether topical treatment and oral administration of silkworm dropping extract (SDE) ameliorate trimellitic anhydride (TMA)-induced ACD. In ACD mice model, SDE treatment significantly suppressed the increase in both ear thickness and serum IgE levels. Furthermore, IL-1β and TNF-α levels were reduced by SDE. In allergic responses, SDE treatment significantly attenuated the production of the Th2-associated cytokine IL-4 in both ear tissue and draining lymph nodes. However, it increased the production of the Th1-mediated cytokine IL-12. Thus, these results showed that SDE attenuated TMA-induced ACD symptoms through regulation of Th1/Th2 immune response. Taken together, we suggest that SDE treatment might be a potential agent in the prevention or therapy of Th2-mediated inflammatory skin diseases such as ACD and atopic dermatitis. ACD: allergic contact dermatitis; AD: atopic dermatitis; APC: antigen presenting cells; CCL: chemokine (C-C motif) ligand; CCR: C-C chemokine receptor; Dex: dexamethasone; ELISA: enzyme-linked immunosorbent assay; IFN: interferon; Ig: immunoglobulin; IL: interleukin; OVA: ovalbumin; PS: prednisolone; SDE: silkworm dropping extract; Th: T helper; TMA: trimellitic anhydride; TNF: tumor necrosis factor.

  8. Piper nigrum extract ameliorated allergic inflammation through inhibiting Th2/Th17 responses and mast cells activation.

    PubMed

    Bui, Thi Tho; Piao, Chun Hua; Song, Chang Ho; Shin, Hee Soon; Shon, Dong-Hwa; Chai, Ok Hee

    2017-12-01

    Piper nigrum (Piperaceae) is commonly used as a spice and traditional medicine in many countries. P. nigrum has been reported to have anti-oxidant, anti-bacterial, anti-tumor, anti-mutagenic, anti-diabetic, and anti-inflammatory properties. However, the effect of P. nigrum on allergic asthma has not been known. This study investigated the effect of P. nigrum ethanol extracts (PNE) on airway inflammation in asthmatic mice model. In the ovalbumin (OVA)-induced allergic asthma model, we analysed the number of inflammatory cells and cytokines production in bronchoalveolar lavage fluid (BALF) and lung tissue; histological structure; as well as the total immunoglobulin (Ig)E, anti-OVA IgE, anti-OVA IgG 1 and histamine levels in serum. The oral administration (200 mg/kg) of PNE reduced the accumulation of inflammatory cells (eosinophils, neutrophils in BALF and mast cells in lung tissue); regulated the balance of the cytokines production of Th1, Th2, Th17 and Treg cells, specifically, inhibited the expressions of GATA3, IL-4, IL-6, IL-1β, RORγt, IL-17A, TNF-α and increased the secretions of IL-10, INF-γ in BALF and lung homogenate. Moreover, PNE suppressed the levels of total IgE, anti-OVA IgE, anti-OVA IgG 1 and histamine release in serum. The histological analysis showed that the fibrosis and infiltration of inflammatory cells were also ameliorated in PNE treated mice. On the other hand, PNE inhibited the allergic responses via inactivation of rat peritoneal mast cells degranulation. These results suggest that PNE has therapeutic potential for treating allergic asthma through inhibiting Th2/Th17 responses and mast cells activation. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Anti-allergic and anti-inflammatory effects of butanol extract from Arctium Lappa L

    PubMed Central

    2011-01-01

    Background Atopic dermatitis is a chronic, allergic inflammatory skin disease that is accompanied by markedly increased levels of inflammatory cells, including eosinophils, mast cells, and T cells. Arctium lappa L. is a traditional medicine in Asia. This study examined whether a butanol extract of A. lappa (ALBE) had previously unreported anti-allergic or anti-inflammatory effects. Methods This study examined the effect of ALBE on the release of β-hexosaminidase in antigen-stimulated-RBL-2H3 cells. We also evaluated the ConA-induced expression of IL-4, IL-5, mitogen-activated protein kinases (MAPKs), and nuclear factor (NF)-κB using RT-PCR, Western blotting, and ELISA in mouse splenocytes after ALBE treatment. Results We observed significant inhibition of β-hexosaminidase release in RBL-2H3 cells and suppressed mRNA expression and protein secretion of IL-4 and IL-5 induced by ConA-treated primary murine splenocytes after ALBE treatment. Additionally, ALBE (100 μg/mL) suppressed not only the transcriptional activation of NF-κB, but also the phosphorylation of MAPKs in ConA-treated primary splenocytes. Conclusions These results suggest that ALBE inhibits the expression of IL-4 and IL-5 by downregulating MAPKs and NF-κB activation in ConA-treated splenocytes and supports the hypothesis that ALBE may have beneficial effects in the treatment of allergic diseases, including atopic dermatitis. PMID:21303540

  10. Comparative immunology of allergic responses.

    PubMed

    Gershwin, Laurel J

    2015-01-01

    Allergic responses occur in humans, rodents, non-human primates, avian species, and all of the domestic animals. These responses are mediated by immunoglobulin E (IgE) antibodies that bind to mast cells and cause release/synthesis of potent mediators. Clinical syndromes include naturally occurring asthma in humans and cats; atopic dermatitis in humans, dogs, horses, and several other species; food allergies; and anaphylactic shock. Experimental induction of asthma in mice, rats, monkeys, sheep, and cats has helped to reveal mechanisms of pathogenesis of asthma in humans. All of these species share the ability to develop a rapid and often fatal response to systemic administration of an allergen--anaphylactic shock. Genetic predisposition to development of allergic disease (atopy) has been demonstrated in humans, dogs, and horses. Application of mouse models of IgE-mediated allergic asthma has provided evidence for a role of air pollutants (ozone, diesel exhaust, environmental tobacco smoke) in enhanced sensitization to allergens.

  11. Mas-related G protein coupled receptor-X2: A potential new target for modulating mast cell-mediated allergic and inflammatory diseases.

    PubMed

    Ali, Hydar

    2016-12-01

    Mast cells (MCs) are tissue resident immune cells that are best known for their roles in allergic and inflammatory diseases. In addition to the high affinity IgE receptor (FcεRI), MCs express numerous G protein coupled receptors (GPCRs), which are the most common targets of drug therapy. Neurokinin 1 receptor (NK-1R) is expressed on MCs and contributes to IgE and non-IgE-mediated responses in mice. Although NK-1R antagonists are highly effective in modulating experimental allergic and inflammatory responses in mice they lack efficacy in humans. This article reviews recent findings that demonstrate that while neuropeptides (NPs) activate murine MCs via NK-1R and Mas related G protein coupled receptor B2 (MrgprB2), they activate human MCs via Mas-related G protein coupled receptor X2 (MRGPRX2). Interestingly, conventional NK-1R antagonists have off-target activity against mouse MrgprB2 but not human MRGPRX2. These findings suggest that the failure to translate studies with NK-1R antagonists from in vivo mouse studies to the clinic likely reflects their lack of effect on human MRGPRX2. A unique feature of MRGPRX2 that distinguishes it from other GPCRs is that it is activated by a diverse group of ligands that include; neuropeptides, cysteine proteases, antimicrobial peptides and cationic proteins released from activated eosinophils. Thus, the development of small molecule MRGPRX2-specific antagonists or neutralizing antibodies may provide new targets for the treatment of MC-mediated allergic and inflammatory diseases.

  12. Neutrophil recruitment by allergens contribute to allergic sensitization and allergic inflammation.

    PubMed

    Hosoki, Koa; Itazawa, Toshiko; Boldogh, Istvan; Sur, Sanjiv

    2016-02-01

    To discuss the presence and role of neutrophils in asthma and allergic diseases, and outline the importance of pollen and cat dander-induced innate neutrophil recruitment in induction of allergic sensitization and allergic inflammation. Uncontrolled asthma is associated with elevated numbers of neutrophils, and levels of neutrophil-attracting chemokine IL-8 and IL-17 in bronchoalveolar lavage fluids. These parameters negatively correlate with lung function. Pollen allergens and cat dander recruit neutrophils to the airways in a toll-like receptor 4, myeloid differentiation protein-2, and chemokine (C-X-C motif) receptor (CXCR) 2-dependent manner. Repeated recruitment of activated neutrophils by these allergens facilitates allergic sensitization and airway inflammation. Inhibition of neutrophil recruitment with CXCR2 inhibitor, disruption of toll-like receptor 4, or small interfering RNA against myeloid differentiation protein-2 also inhibits allergic inflammation. The molecular mechanisms by which innately recruited neutrophils contribute to shifting the airway inflammatory response induced by allergens from neutrophilic to an eosinophilic-allergic is an area of active research. Recent studies have revealed that neutrophil recruitment is important in the development of allergic sensitization and inflammation. Inhibition of neutrophils recruitment may be a strategy to control allergic inflammation.

  13. Formononetin ameliorates mast cell-mediated allergic inflammation via inhibition of histamine release and production of pro-inflammatory cytokines

    PubMed Central

    Xu, Ning; An, Jun

    2017-01-01

    Various allergic diseases cause allergic inflammation, which is mediated by mast cells. The current study investigated the anti-allergic inflammatory effects of formononetin and its mechanism of action in vitro using mast cells. Levels of histamine and pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6, were measured to assess the effects of formononetin on allergic inflammation. The activation of intracellular calcium and nuclear factor (NF)-κB, as well as the activity of caspase-1, were assessed to determine the mechanism of action. It was determined that difference concentrations of formononetin (0.1, 1 and 10 µM) suppressed histamine release and secretion of TNF-α, IL-1β and IL-6. Further investigations indicated that the effects of formononetin were associated with a reduction of intracellular calcium, suppression of NF-κB activation and upstream IκKα phosphorylation and inhibition of caspase-1 activity. Therefore, the results of the current study demonstrated that formononetin ameliorated mast cell-mediated allergic inflammation. PMID:29250144

  14. Formononetin ameliorates mast cell-mediated allergic inflammation via inhibition of histamine release and production of pro-inflammatory cytokines.

    PubMed

    Xu, Ning; An, Jun

    2017-12-01

    Various allergic diseases cause allergic inflammation, which is mediated by mast cells. The current study investigated the anti-allergic inflammatory effects of formononetin and its mechanism of action in vitro using mast cells. Levels of histamine and pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6, were measured to assess the effects of formononetin on allergic inflammation. The activation of intracellular calcium and nuclear factor (NF)-κB, as well as the activity of caspase-1, were assessed to determine the mechanism of action. It was determined that difference concentrations of formononetin (0.1, 1 and 10 µM) suppressed histamine release and secretion of TNF-α, IL-1β and IL-6. Further investigations indicated that the effects of formononetin were associated with a reduction of intracellular calcium, suppression of NF-κB activation and upstream IκKα phosphorylation and inhibition of caspase-1 activity. Therefore, the results of the current study demonstrated that formononetin ameliorated mast cell-mediated allergic inflammation.

  15. [Allergic inflammation in respiratory system].

    PubMed

    An, Lifeng; Wang, Yanshu; Li, Lin

    2015-02-01

    The pathophysiology of allergic disease such as asthma and allergic rhinitis tell the similar story: when the endogenous and exogenous inflammatory mechanisms occur disorder, the body may begin with inflammatory cell activation, namely through the release of cytokine and inflammatory mediator role in the corresponding target cells, activate the sensory nerve fiber, acting on the cell organ specificity effect, clinical symptoms. This article is divided into the following five parts focused on the research progress of allergic inflammatory diseases: (1) inflammatory cells; (2) staphylococcus aureus superantigen; (3) small molecules (cytokines, inflammatory mediators, lipid classes medium); (4) nerve fibers and effect cells; (5) genetic and epigenetic factors.

  16. DIESEL PARTICLE INSTILLATION ENHANCES INFLAMMATORY AND NEUROTROPHIN RESPONSES IN THE LUNGS OF ALLERGIC BALB/C MICE

    EPA Science Inventory

    Neurotrophins, including nerve growth factor (NGF) partially mediate many features of allergic airways disease including airways resistance and inflammation. Antibody blockade of NGF attenuates airways resistance associated with the allergen-specific airways responses in mice. ...

  17. Regulatory T cells in Allergic Diseases

    PubMed Central

    Rivas, Magali Noval; Chatila, Talal A.

    2016-01-01

    The pathogenesis of allergic diseases entails an ineffective tolerogenic immune response towards allergens. Regulatory T cells (TReg) cells play a key role in sustaining immune tolerance to allergens, yet mechanisms by which TReg cells fail to maintain tolerance in allergic diseases are not well understood. We review current concepts and established mechanisms regarding how TReg cells regulate different components of allergen-triggered immune responses to promote and maintain tolerance. We will also discuss more recent advances that emphasize the “dual” functionality of TReg cells in allergic diseases: how TReg cells are essential in promoting tolerance to allergens but also how a pro-allergic inflammatory environment can skew TReg cells towards a pathogenic phenotype that aggravates and perpetuates disease. These advances highlight opportunities for novel therapeutic strategies that aim to re-establish tolerance in chronic allergic diseases by promoting TReg cell and stability function. PMID:27596705

  18. DOSE-DEPENDENT ALLERGIC ASTHMA RESPONSES TO PENICILLIUM CHRYSOGENUM

    EPA Science Inventory

    ABSTRACT
    Indoor mold has been associated with development of allergic asthma. Penicillium chrysogenum, a common indoor mold, is known to have several allergens and its viable conidia can induce allergic responses in a mouse model of allergic penicilliosis. The hypothesis o...

  19. Mast Cells Limit the Exacerbation of Chronic Allergic Contact Dermatitis in Response to Repeated Allergen Exposure.

    PubMed

    Gimenez-Rivera, Vladimir-Andrey; Siebenhaar, Frank; Zimmermann, Carolin; Siiskonen, Hanna; Metz, Martin; Maurer, Marcus

    2016-12-01

    Allergic contact dermatitis is a chronic T cell-driven inflammatory skin disease that is caused by repeated exposure to contact allergens. Based on murine studies of acute contact hypersensitivity, mast cells (MCs) are believed to play a role in its pathogenesis. The role of MCs in chronic allergic contact dermatitis has not been investigated, in part because of the lack of murine models for chronic contact hypersensitivity. We developed and used a chronic contact hypersensitivity model in wild-type and MC-deficient mice and assessed skin inflammatory responses to identify and characterize the role of MCs in chronic allergic contact dermatitis. Ear swelling chronic contact hypersensitivity responses increased markedly, up to 4-fold, in MC-deficient Kit W-sh/W-sh (Sash) and MCPT5-Cre + iDTR + mice compared with wild-type mice. Local engraftment with MCs protected Sash mice from exacerbated ear swelling after repeated oxazolone challenge. Chronic contact hypersensitivity skin of Sash mice exhibited elevated levels of IFN-γ, IL-17α, and IL-23, as well as increased accumulation of Ag-specific IFN-γ-producing CD8 + tissue-resident memory T (T RM ) cells. The CD8 + T cell mitogen IL-15, which was increased in oxazolone-challenged skin of Sash mice during the accumulation of cutaneous T RM cells, was efficiently degraded by MCs in vitro. MCs protect from the exacerbated allergic skin inflammation induced by repeated allergen challenge, at least in part, via effects on CD8 + T RM cells. MCs may notably influence the course of chronic allergic contact dermatitis. A better understanding of their role and the underlying mechanisms may lead to better approaches for the treatment of this common, disabling, and costly condition. Copyright © 2016 by The American Association of Immunologists, Inc.

  20. Anti-inflammatory and anti-allergic effect of Agaricus blazei extract in bone marrow-derived mast cells.

    PubMed

    Song, Hyuk-Hwan; Chae, Hee-Sung; Oh, Sei-Ryang; Lee, Hyeong-Kyu; Chin, Young-Won

    2012-01-01

    In this study, the anti-inflammatory and anti-allergic effects of the chloroform-soluble extract of Agaricus blazei in mouse bone marrow-derived mast cells (BMMCs) were investigated. The chloroform-soluble extract inhibited IL-6 production in PMA plus A23187-stimulated BMMCs, and down-regulated the phosphorylation of Akt. In addition, this extract demonstrated inhibition of the degranulation of β-hexosaminidase and the production of IL-6, prostaglandin D(2) and leukotriene C(4) in PMA plus A23187-induced BMMCs. In conclusion, the chloroform-soluble extract of Agaricus blazei exerted anti-inflammatory and anti-allergic activities mediated by influencing IL-6, prostaglandin D(2), leukotriene C(4), and the phosphorylation of Akt.

  1. The antiprotease SPINK7 serves as an inhibitory checkpoint for esophageal epithelial inflammatory responses.

    PubMed

    Azouz, Nurit P; Ynga-Durand, Mario A; Caldwell, Julie M; Jain, Ayushi; Rochman, Mark; Fischesser, Demetria M; Ray, Leanne M; Bedard, Mary C; Mingler, Melissa K; Forney, Carmy; Eilerman, Matthew; Kuhl, Jonathan T; He, Hua; Biagini Myers, Jocelyn M; Mukkada, Vincent A; Putnam, Philip E; Khurana Hershey, Gurjit K; Kottyan, Leah C; Wen, Ting; Martin, Lisa J; Rothenberg, Marc E

    2018-06-06

    Loss of barrier integrity has an important role in eliciting type 2 immune responses, yet the molecular events that initiate and connect this with allergic inflammation remain unclear. We reveal an endogenous, homeostatic mechanism that controls barrier function and inflammatory responses in esophageal allergic inflammation. We show that a serine protease inhibitor, SPINK7 (serine peptidase inhibitor, kazal type 7), is part of the differentiation program of human esophageal epithelium and that SPINK7 depletion occurs in a human allergic, esophageal condition termed eosinophilic esophagitis. Experimental manipulation strategies reducing SPINK7 in an esophageal epithelial progenitor cell line and primary esophageal epithelial cells were sufficient to induce barrier dysfunction and transcriptional changes characterized by loss of cellular differentiation and altered gene expression known to stimulate allergic responses (for example, FLG and SPINK5 ). Epithelial silencing of SPINK7 promoted production of proinflammatory cytokines including thymic stromal lymphopoietin (TSLP). Loss of SPINK7 increased the activity of urokinase plasminogen-type activator (uPA), which in turn had the capacity to promote uPA receptor-dependent eosinophil activation. Treatment of epithelial cells with the broad-spectrum antiserine protease, α1 antitrypsin, reversed the pathologic features associated with SPINK7 silencing. The relevance of this pathway in vivo was supported by finding genetic epistasis between variants in TSLP and the uPA-encoding gene, PLAU We propose that the endogenous balance between SPINK7 and its target proteases is a key checkpoint in regulating mucosal differentiation, barrier function, and inflammatory responses and that protein replacement with antiproteases may be therapeutic for select allergic diseases. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U

  2. Innate Immune Responses to Engineered Nanomaterials During Allergic Airway Inflammation

    NASA Astrophysics Data System (ADS)

    Shipkowski, Kelly Anne

    disease would modulate the innate immune response to MWCNTs. We hypothesized that Th2 cytokines and the allergic asthmatic microenvironment would alter MWCNT-induced inflammasome activation and IL- 1beta secretion both in vitro and in vivo. In vitro, THP-1 cells, a human monocytic cell line, were differentiated into macrophages and exposed to MWCNTs and or recombinant Th2 cytokines, specifically IL-4 and/or IL-13. Exposure of THP-1 cells to MWCNTs alone caused dose-dependent secretion of IL-1beta, while co-exposure to IL-4 and/or IL-13 suppressed MWCNT-induced IL-1beta. Further analysis determined that IL-4 and IL-13 were phosphorylating the protein signal transducer and activator of transcription 6 (STAT6) and subsequently inhibiting inflammasome activation and function through suppression of caspase-1, a cysteine protease responsible for cleavage of pro-IL-1beta into an active, secretable form. In vivo, wild-type C57BL6 mice were sensitized intranasally with HDM allergen and exposed to MWCNTs via oropharyngeal aspiration. Treatment with MWCNTs alone induced secretion of IL-1beta in the bronchoalveolar lavage fluid (BALF) one day post-exposure, while sensitization with HDM prior to MWCNT exposure suppressed MWCNT-induced IL-1beta. Immunohistochemical (IHC) analysis of lung sections from exposed animals showed that HDM sensitization inhibited MWCNT-induced pro-casapse-1 protein expression, responsible for inflammasome activation, in the airway epithelium and macrophages. MWCNT exposure combined with HDM sensitization increased inflammatory cell infiltration and subsequent acute lung inflammation and chronic fibrosis. Analysis of the systemic effects of MWCNT exposure during allergic airway sensitization showed that MWCNTs and/or HDM allergen upregulated STAT3 mRNA expression in the lungs, liver, and spleen of exposed animals, and at the same induced mixed T helper (Th) responses in the different tissues. Collectively, these data suggest that the allergic microenvironment

  3. Silibinin attenuates allergic airway inflammation in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Yun Ho; Jin, Guang Yu; Guo, Hui Shu

    Highlights: Black-Right-Pointing-Pointer Silibinin diminishes ovalbumin-induced inflammatory reactions in the mouse lung. Black-Right-Pointing-Pointer Silibinin reduces the levels of various cytokines into the lung of allergic mice. Black-Right-Pointing-Pointer Silibinin prevents the development of airway hyperresponsiveness in allergic mice. Black-Right-Pointing-Pointer Silibinin suppresses NF-{kappa}B transcriptional activity. -- Abstract: Allergic asthma is a chronic inflammatory disease regulated by coordination of T-helper2 (Th2) type cytokines and inflammatory signal molecules. Silibinin is one of the main flavonoids produced by milk thistle, which is reported to inhibit the inflammatory response by suppressing the nuclear factor-kappa B (NF-{kappa}B) pathway. Because NF-{kappa}B activation plays a pivotal role in the pathogenesismore » of allergic inflammation, we have investigated the effect of silibinin on a mouse ovalbumin (OVA)-induced asthma model. Airway hyperresponsiveness, cytokines levels, and eosinophilic infiltration were analyzed in bronchoalveolar lavage fluid and lung tissue. Pretreatment of silibinin significantly inhibited airway inflammatory cell recruitment and peribronchiolar inflammation and reduced the production of various cytokines in bronchoalveolar fluid. In addition, silibinin prevented the development of airway hyperresponsiveness and attenuated the OVA challenge-induced NF-{kappa}B activation. These findings indicate that silibinin protects against OVA-induced airway inflammation, at least in part via downregulation of NF-{kappa}B activity. Our data support the utility of silibinin as a potential medicine for the treatment of asthma.« less

  4. Pinocembrin, a novel histidine decarboxylase inhibitor with anti-allergic potential in in vitro.

    PubMed

    Hanieh, Hamza; Hairul Islam, Villianur Ibrahim; Saravanan, Subramanian; Chellappandian, Muthiah; Ragul, Kessavane; Durga, Arumugam; Venugopal, Kaliyamoorthy; Senthilkumar, Venugopal; Senthilkumar, Palanisamy; Thirugnanasambantham, Krishnaraj

    2017-11-05

    Pinocembrin (5, 7- dihydroxy flavanone) is the most abundant chiral flavonoid found in propolis, exhibiting antioxidant, antimicrobial and anti-inflammatory properties. However, the effect of Pinocembrin on allergic response is unexplored. Thus, current study aimed at investigating the effects of Pinocembrin on IgE-mediated allergic response in vitro. A special emphasis was directed toward histidine decarboxylase (HDC) and other pro-allergic and pro-inflammatory mediators. Preliminary studies, using a microbiological model of Klebsiella pneumoniae, provided first evidences that suggest Pinocembrin as a potential thermal stable inhibitor for HDC. Applying docking analysis revealed possible interaction between Pinocembrin and mammalian HDC. In vitro studies validated the predicted interaction and showed that Pinocembrin inhibits HDC activity and histamine in IgE-sensitized RBL-2H3 in response to dinitrophenol (DNP)-bovine serum albumin (BSA) stimulation. In addition, Pinocembrin mitigated the damage in the mitochondrial membrane, formation of cytoplasmic granules and degranulation as indicated by lower β-hexoseaminidase level. Interestingly, it reduced range of pro-inflammatory mediators in the IgE-mediated allergic response including tumor necrosis factor (TNF)-α, interleukin (IL)-6, nitric oxide (NO), inducible NO synthase (iNOS), phosphorylation of inhibitory kappa B (IкB)-α, prostaglandin (PGE)-2 and cyclooxygenase (COX)-2. In conclusion, current study suggests Pinocembrin as a potential HDC inhibitor, and provides the first evidences it is in vitro anti-allergic properties, suggesting Pinocembrin as a new candidate for natural anti-allergic drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Females have stronger neurogenic response than males after non-specific nasal challenge in patients with seasonal allergic rhinitis.

    PubMed

    Tomljenovic, Dejan; Baudoin, Tomislav; Megla, Zeljka Bukovec; Geber, Goran; Scadding, Glenis; Kalogjera, Livije

    2018-07-01

    Epidemiological studies show female predominance in the prevalence of non- allergic rhinitis (NAR) and local allergic rhinitis (LAR). Experimental studies show female patients with allergic rhinitis (AR) demonstrate higher levels of sensitivity to irritants and airway hyperresponsiveness than males. Bronchial asthma shows female predominance in post-puberty patients, and gender interaction with severe asthma endotypes. Fibromyalgia, chronic fatigue syndrome, migraine and chronic cough, syndromes, which are commonly related to neurokinin substance P (SP) in the literature, also show strong female predominance. Studies have demonstrated that sex hormones, primarily oestrogens, affect mast cell activation. Mast cell proteases can amplify neurogenic inflammatory responses including the release of SP. Based on human epidemiological data and animal experimental data we hypothesized that female patients have different interaction between mast cell activation and neurogenic inflammation, i.e. substance P release, resulting in a different nasal symptom profile. To test the hypothesis we performed allergen and non-specific nasal challenges in patients with seasonal allergic rhinitis (SAR) out of season and looked for gender differences in subjective and objective responses. The interaction between subjective and objective reactivity was evaluated through the comparison of subjective symptom scores, concentrations of neurokinin substance P (SP) and cellular markers in nasal lavages after low doses of nasal allergen challenges. Female allergic subjects tended to have higher substance P (SP) concentrations both before and after non-specific challenges. The difference between post-allergen and post - hypertonic saline (HTS) challenge was highly significant in female patients (p = 0.001), while insignificant in male subjects (p = 0.14). Female patients had significantly stronger burning sensation after HTS challenge than male. These data indicate difference in the

  6. Airway Fibrinogenolysis and the Initiation of Allergic Inflammation

    PubMed Central

    Millien, Valentine Ongeri; Lu, Wen; Mak, Garbo; Yuan, Xiaoyi; Knight, J. Morgan; Porter, Paul; Kheradmand, Farrah

    2014-01-01

    The past 15 years of allergic disease research have produced extraordinary improvements in our understanding of the pathogenesis of airway allergic diseases such as asthma. Whereas it was previously viewed as largely an immunoglobulin E-mediated process, the gradual recognition that T cells, especially Type 2 T helper (Th2) cells and Th17 cells, play a major role in asthma and related afflictions has inspired clinical trials targeting cytokine-based inflammatory pathways that show great promise. What has yet to be clarified about the pathogenesis of allergic inflammatory disorders, however, are the fundamental initiating factors, both exogenous and endogenous, that drive and sustain B- and T-cell responses that underlie the expression of chronic disease. Here we review how proteinases derived from diverse sources drive allergic responses. A central discovery supporting the proteinase hypothesis of allergic disease pathophysiology is the role played by airway fibrinogen, which in part appears to serve as a sensor of unregulated proteinase activity and which, when cleaved, both participates in a novel allergic signaling pathway through Toll-like receptor 4 and forms fibrin clots that contribute to airway obstruction. Unresolved at present is the ultimate source of airway allergenic proteinases. From among many potential candidates, perhaps the most intriguing is the possibility such enzymes derive from airway fungi. Together, these new findings expand both our knowledge of allergic disease pathophysiology and options for therapeutic intervention. PMID:25525732

  7. Optimization of cell-based assays to quantify the anti-inflammatory/allergic potential of test substances in 96-well format.

    PubMed

    Chandrasekaran, C V; Edwin Jothie, R; Kapoor, Preeti; Gupta, Anumita; Agarwal, Amit

    2011-06-01

    There is an insistent need for robust, reliable, and optimized assays for screening novel drugs targeting the inflammatory/allergic markers. The present study describes about the optimization of eight cell-based assays utilizing mammalian cell lines in 96-well format for quantifying anti-inflammatory/allergic drug candidates. We estimated the inhibitory response of reference compounds: 1400 W dihydrochloride on LPS-induced NO release, celecoxib on LPS-induced PGE(2) production and dexamethasone on LPS-induced pro-inflammatory cytokines IL-1 beta, IL-6, and TNF-alpha production by J774A.1 murine macrophages. Response of acetylsalicylic acid and celecoxib was studied on A23187-induced TXB(2) production; captopril on A23187-stimulated LTB(4) production by HL-60 cells. Effect of ketotifen fumarate was evaluated on A23187-elicited histamine release by RBL-2H3 cells. Each experiment was repeated twice to assess the reproducibility and suitability of the assays by determining appropriate statistical tools viz. %CV, S/B and Z' factor. 1400 W dihydrochloride was capable of inhibiting LPS-induced NO levels (IC(50) = 10.7 μM). Dexamethasone attenuated LPS-induced IL-1 beta (IC(50) = 70 nM), IL-6 (IC(50) = 58 nM) and TNF-alpha (IC(50) = 44 nM) release, whereas celecoxib, a specific COX-2 inhibitor showed marked reduction in LPS-induced PGE(2) (IC(50) = 23 nM) production. Captopril (IC(50) = 48 μM) and ketotifen fumarate (IC(50) = 36.4 μM) demonstrated potent inhibitory effect against A23187-stimulated LTB(4) and histamine levels, respectively. Both acetylsalicylic acid (IC(50) = 5.5 μM) and celecoxib (IC(50) = 7.9 nM) exhibited concentration-dependent decrease in TXB(2) production. Results for all the cell assays from two experiments showed a Z' factor varying from 0.30 to 0.99; the S/B ratio ranged from 2.39 to 24.92; %CV ranged between 1.52 and 20.14. The results proclaim that these cell-based assays can act as ideal tools for screening new anti-inflammatory/anti-allergic

  8. Immunologic and metabolic effects of high-refined carbohydrate-containing diet in food allergic mice.

    PubMed

    Yamada, Letícia Tamie Paiva; de Oliveira, Marina Chaves; Batista, Nathália Vieira; Fonseca, Roberta Cristelli; Pereira, Rafaela Vaz Sousa; Perez, Denise Alves; Teixeira, Mauro Martins; Cara, Denise Carmona; Ferreira, Adaliene Versiani Matos

    2016-02-01

    Allergic mice show a reduction in body weight and adiposity with a higher inflammatory response in the adipose tissue similar to obese fat tissue. This study aimed to evaluate whether the low-grade inflammatory milieu of mice with diet-induced mild obesity interferes with the allergic response induced by ovalbumin (OVA). BALB/c mice were divided into four groups: 1) non-allergic (OVA-) mice fed chow diet, 2) allergic (OVA+) mice fed chow diet, 3) OVA- mice fed high-refined carbohydrate-containing (HC) diet, and 4) OVA+ mice fed HC diet. After 5 wk, allergic groups were sensitized with OVA and received a booster 14 d later. All groups received an oral OVA challenge 7 d after the booster. Allergic groups showed increased serum levels of total IgE, anti-OVA IgE, and IgG1; a high disease activity index score; aversion to OVA; and increased intestinal eosinophil infiltration. Non-allergic mild-obese mice also showed aversion to OVA and an increased number of eosinophils in the proximal jejunum. After the allergic challenge, OVA+ mice fed chow diet showed weight loss and lower adiposity in several adipose tissue depots. OVA+ mice fed HC diet showed a loss of fat mass only in the mesenteric adipose tissue. Furthermore, increased levels of TNF, IL-6, and IL-10 were observed in this tissue. Our data show that mild-obese allergic mice do not present severe pathologic features of food allergy similar to those exhibited by lean allergic mice. Mild obesity promoted by HC diet ingestion causes important intestinal disorders that appear to modulate the inflammatory response during the antigen challenge. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Alkylphenols--potential modulators of the allergic response.

    PubMed

    Suen, Jau-Ling; Hung, Chih-Hsin; Yu, Hsin-Su; Huang, Shau-Ku

    2012-07-01

    The prevalence of allergic diseases has increased in recent decades. Allergic diseases, particularly asthma, are complex diseases with strong gene-environment interactions. Epidemiological studies have identified a variety of risk factors for the development of allergic diseases. Among them, endocrine-disrupting chemicals (EDCs) play an important role in triggering or exacerbating these diseases. 4-Nonylphenol (NP) and 4-octylphenol (OP)--two major alkylphenols--have been recognized as common toxic and xenobiotic endocrine disrupters. Due to their low solubility, high hydrophobicity, and low estrogenic activity, they tend to accumulate in the human body and may be associated with the adverse effects of allergic diseases. Recently, new evidence has supported the importance of alkylphenols in the in vitro allergic response. This review focuses on the effects of alkylphenols on several key cell types in the context of allergic inflammation. Copyright © 2012. Published by Elsevier B.V.

  10. dNP2-ctCTLA-4 inhibits German cockroach extract-induced allergic airway inflammation and hyper-responsiveness via inhibition of Th2 responses

    PubMed Central

    Lim, Sangho; Ho Sohn, Jung; Koo, Ja-Hyun; Park, Jung-Won; Choi, Je-Min

    2017-01-01

    German cockroaches are major household allergens that can trigger allergic airway inflammatory diseases with sensitive T-cell responses. Although the use of immune modulatory biologics, such as antibodies, to mediate allergic responses has recently been examined, only systemic administration is available because of the size limitations on intranasal administration. Here we utilized a cell-permeable peptide, dNP2, to deliver the cytoplasmic domain of cytotoxic T-lymphocyte antigen-4 (ctCTLA-4) through the airway epithelium to modulate Th2 responses in a German cockroach extract (GCE)-induced allergic airway inflammation model. The intranasal delivery efficiency of the dNP2-dTomato protein to the lungs was higher in GCE-induced asthmatic lung parenchymal cells compared to the sham cells. Intranasal administration of the dNP2-ctCTLA-4 protein inhibited airway hyper-responsiveness and reduced airway inflammation and remodeling, including goblet cell metaplasia and collagen deposition around the bronchi. The number of infiltrated cells, including eosinophils, and the levels of IL-4, IL-5, IL-13 and IFN-γ in the lungs were significantly reduced, presumably owing to inhibition of Th2 differentiation. However, intranasal administration of CTLA4-Ig did not inhibit airway inflammation. These results collectively suggest that dNP2-ctCTLA-4 is an efficient intranasally applicable candidate biologic for treating allergic asthma. PMID:28775364

  11. dNP2-ctCTLA-4 inhibits German cockroach extract-induced allergic airway inflammation and hyper-responsiveness via inhibition of Th2 responses.

    PubMed

    Lim, Sangho; Ho Sohn, Jung; Koo, Ja-Hyun; Park, Jung-Won; Choi, Je-Min

    2017-08-04

    German cockroaches are major household allergens that can trigger allergic airway inflammatory diseases with sensitive T-cell responses. Although the use of immune modulatory biologics, such as antibodies, to mediate allergic responses has recently been examined, only systemic administration is available because of the size limitations on intranasal administration. Here we utilized a cell-permeable peptide, dNP2, to deliver the cytoplasmic domain of cytotoxic T-lymphocyte antigen-4 (ctCTLA-4) through the airway epithelium to modulate Th2 responses in a German cockroach extract (GCE)-induced allergic airway inflammation model. The intranasal delivery efficiency of the dNP2-dTomato protein to the lungs was higher in GCE-induced asthmatic lung parenchymal cells compared to the sham cells. Intranasal administration of the dNP2-ctCTLA-4 protein inhibited airway hyper-responsiveness and reduced airway inflammation and remodeling, including goblet cell metaplasia and collagen deposition around the bronchi. The number of infiltrated cells, including eosinophils, and the levels of IL-4, IL-5, IL-13 and IFN-γ in the lungs were significantly reduced, presumably owing to inhibition of Th2 differentiation. However, intranasal administration of CTLA4-Ig did not inhibit airway inflammation. These results collectively suggest that dNP2-ctCTLA-4 is an efficient intranasally applicable candidate biologic for treating allergic asthma.

  12. Tyrosol Suppresses Allergic Inflammation by Inhibiting the Activation of Phosphoinositide 3-Kinase in Mast Cells.

    PubMed

    Je, In-Gyu; Kim, Duk-Sil; Kim, Sung-Wan; Lee, Soyoung; Lee, Hyun-Shik; Park, Eui Kyun; Khang, Dongwoo; Kim, Sang-Hyun

    2015-01-01

    Allergic diseases such as atopic dermatitis, rhinitis, asthma, and anaphylaxis are attractive research areas. Tyrosol (2-(4-hydroxyphenyl)ethanol) is a polyphenolic compound with diverse biological activities. In this study, we investigated whether tyrosol has anti-allergic inflammatory effects. Ovalbumin-induced active systemic anaphylaxis and immunoglobulin E-mediated passive cutaneous anaphylaxis models were used for the immediate-type allergic responses. Oral administration of tyrosol reduced the allergic symptoms of hypothermia and pigmentation in both animal models. Mast cells that secrete allergic mediators are key regulators on allergic inflammation. Tyrosol dose-dependently decreased mast cell degranulation and expression of inflammatory cytokines. Intracellular calcium levels and activation of inhibitor of κB kinase (IKK) regulate cytokine expression and degranulation. Tyrosol blocked calcium influx and phosphorylation of the IKK complex. To define the molecular target for tyrosol, various signaling proteins involved in mast cell activation such as Lyn, Syk, phosphoinositide 3-kinase (PI3K), and Akt were examined. Our results showed that PI3K could be a molecular target for tyrosol in mast cells. Taken together, these findings indicated that tyrosol has anti-allergic inflammatory effects by inhibiting the degranulation of mast cells and expression of inflammatory cytokines; these effects are mediated via PI3K. Therefore, we expect tyrosol become a potential therapeutic candidate for allergic inflammatory disorders.

  13. γ-Tocopherol supplementation of allergic female mice augments development of CD11c+CD11b+ dendritic cells in utero and allergic inflammation in neonates

    PubMed Central

    Abdala-Valencia, Hiam; Soveg, Frank

    2016-01-01

    γ-Tocopherol increases responses to allergen challenge in allergic adult mice, but it is not known whether γ-tocopherol regulates the development of allergic disease. Development of allergic disease often occurs early in life. In clinical studies and animal models, offspring of allergic mothers have increased responsiveness to allergen challenge. Therefore, we determined whether γ-tocopherol augments development of allergic responses in offspring of allergic female mice. Allergic female mice were supplemented with γ-tocopherol starting at mating. The pups from allergic mothers developed allergic lung responses, whereas pups from saline-treated mothers did not respond to allergen challenge. The γ-tocopherol supplementation of allergic female mice increased the numbers of eosinophils twofold in the pup bronchoalveolar lavage and lungs after allergen challenge. There was also about a twofold increase in pup lung CD11b+ subsets of CD11c+ dendritic cells and in numbers of these dendritic cells expressing the transcription factor IRF4. There was no change in several CD11b− dendritic cell subsets. Furthermore, maternal supplementation with γ-tocopherol increased the number of fetal liver CD11b+CD11c+ dendritic cells twofold in utero. In the pups, γ-tocopherol increased lung expression of the inflammatory mediators CCL11, amphiregulin, activin A, and IL-5. In conclusion, maternal supplementation with γ-tocopherol increased fetal development of subsets of dendritic cells that are critical for allergic responses and increased development of allergic responses in pups from allergic mothers. These results have implications for supplementation of allergic mothers with γ-tocopherol in prenatal vitamins. PMID:26801566

  14. Role of M2 Muscarinic Receptor in the Airway Response to Methacholine of Mice Selected for Minimal or Maximal Acute Inflammatory Response

    PubMed Central

    Castro, Juciane Maria de Andrade; Resende, Rodrigo R.; Florsheim, Esther; Albuquerque, Layra Lucy; Lino-dos-Santos-Franco, Adriana; Gomes, Eliane; Tavares de Lima, Wothan; de Franco, Marcelo; Ribeiro, Orlando Garcia

    2013-01-01

    Airway smooth muscle constriction induced by cholinergic agonists such as methacholine (MCh), which is typically increased in asthmatic patients, is regulated mainly by muscle muscarinic M3 receptors and negatively by vagal muscarinic M2 receptors. Here we evaluated basal (intrinsic) and allergen-induced (extrinsic) airway responses to MCh. We used two mouse lines selected to respond maximally (AIRmax) or minimally (AIRmin) to innate inflammatory stimuli. We found that in basal condition AIRmin mice responded more vigorously to MCh than AIRmax. Treatment with a specific M2 antagonist increased airway response of AIRmax but not of AIRmin mice. The expression of M2 receptors in the lung was significantly lower in AIRmin compared to AIRmax animals. AIRmax mice developed a more intense allergic inflammation than AIRmin, and both allergic mouse lines increased airway responses to MCh. However, gallamine treatment of allergic groups did not affect the responses to MCh. Our results confirm that low or dysfunctional M2 receptor activity is associated with increased airway responsiveness to MCh and that this trait was inherited during the selective breeding of AIRmin mice and was acquired by AIRmax mice during allergic lung inflammation. PMID:23691511

  15. Secondary allergic T cell responses are regulated by dendritic cell-derived thrombospondin-1 in the setting of allergic eye disease

    PubMed Central

    Smith, R. E.; Reyes, N. J.; Khandelwal, P.; Schlereth, S. L.; Lee, H. S.; Masli, S.; Saban, D. R.

    2016-01-01

    Allergic eye disease, as in most forms of atopy, ranges in severity among individuals from immediate hypersensitivity to a severe and debilitating chronic disease. Dendritic cells play a key role in stimulating pathogenic T cells in allergen re-exposure, or secondary responses. However, molecular cues by dendritic cells underpinning allergic T cell response levels and the impact that this control has on consequent severity of allergic disease are poorly understood. Here, we show that a deficiency in thrombospondin-1, a matricellular protein known to affect immune function, has subsequent effects on downstream T cell responses during allergy, as revealed in an established mouse model of allergic eye disease. More specifically, we demonstrate that a thrombospondin-1 deficiency specific to dendritic cells leads to heightened secondary T cell responses and consequent clinical disease. Interestingly, whereas thrombospondin-1-deficient dendritic cells augmented activity of allergen-primed T cells, this increase was not recapitulated with naïve T cells in vitro. The role of dendritic cell-derived thrombospondin-1 in regulating secondary allergic T cell responses was confirmed in vivo, as local transfer of thrombospondin-1-sufficient dendritic cells to the ocular mucosa of thrombospondin-1 null hosts prevented the development of augmented secondary T cell responses and heightened allergic eye disease clinical responses. Finally, we demonstrate that topical instillation of thrombospondin-1-derived peptide reduces T cell activity and clinical progression of allergic eye disease. Taken together, this study reveals an important modulatory role of dendritic cell-derived thrombospondin-1 on secondary allergic T cell responses and suggests the possible dysregulation of dendritic cell-derived thrombospondin-1 expression as a factor in allergic eye disease severity. PMID:26856994

  16. Curine inhibits eosinophil activation and airway hyper-responsiveness in a mouse model of allergic asthma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ribeiro-Filho, Jaime; Laboratório de Imunofarmacologia, Departamento de Fisiologia e Patologia, UFPB, João Pessoa, Paraíba; Calheiros, Andrea Surrage

    Allergic asthma is a chronic inflammatory airway disease with increasing prevalence around the world. Current asthma therapy includes drugs that usually cause significant side effects, justifying the search for new anti-asthmatic drugs. Curine is a bisbenzylisoquinoline alkaloid that modulates calcium influx in many cell types; however, its anti-allergic and putative toxic effects remain to be elucidated. Our aim was to investigate the effects of curine on eosinophil activation and airway hyper-responsiveness (AHR) and to characterize its potential toxic effects. We used a mouse model of allergic asthma induced by sensitization and challenge with ovalbumin (OVA) to evaluate the anti-allergic effectsmore » of oral treatment with curine. The oral administration of curine significantly inhibited eosinophilic inflammation, eosinophil lipid body formation and AHR in animals challenged with OVA compared with animals in the untreated group. The curine treatment also reduced eotaxin and IL-13 production triggered by OVA. Verapamil, a calcium channel antagonist, had similar anti-allergic properties, and curine pre-treatment inhibited the calcium-induced tracheal contractile response ex-vivo, suggesting that the mechanism by which curine exerts its effects is through the inhibition of a calcium-dependent response. A toxicological evaluation showed that orally administered curine did not significantly alter the biochemical, hematological, behavioral and physical parameters measured in the experimental animals compared with saline-treated animals. In conclusion, curine showed anti-allergic activity through mechanisms that involve inhibition of IL-13 and eotaxin and of Ca{sup ++} influx, without inducing evident toxicity and as such, has the potential for the development of anti-asthmatic drugs. - Highlights: • Curine is a bisbenzylisoquinoline alkaloid from Chondrodendron platyphyllum. • Curine inhibits eosinophil influx and activation and airway hyper-responsiveness.

  17. Synthesis of Gallic Acid Analogs as Histamine and Pro-Inflammatory Cytokine Inhibitors for Treatment of Mast Cell-Mediated Allergic Inflammation.

    PubMed

    Fei, Xiang; Je, In-Gyu; Shin, Tae-Yong; Kim, Sang-Hyun; Seo, Seung-Yong

    2017-05-29

    Gallic acid (3,4,5-trihydroxybenzoic acid), is a natural product found in various foods and herbs that are well known as powerful antioxidants. Our previous report demonstrated that it inhibits mast cell-derived inflammatory allergic reactions by blocking histamine release and pro-inflammatory cytokine expression. In this report, various amide analogs of gallic acid have been synthesized by introducing different amines through carbodiimide-mediated amide coupling and Pd/C-catalyzed hydrogenation. These compounds showed a modest to high inhibitory effect on histamine release and pro-inflammatory cytokine expression. Among them, the amide bearing ( S )-phenylglycine methyl ester 3d was found to be more active than natural gallic acid. Further optimization yielded several ( S )- and ( R )-phenylglycine analogs that inhibited histamine release in vitro. Our findings suggest that some gallamides could be used as a treatment for allergic inflammatory diseases.

  18. Secondary allergic T cell responses are regulated by dendritic cell-derived thrombospondin-1 in the setting of allergic eye disease.

    PubMed

    Smith, R E; Reyes, N J; Khandelwal, P; Schlereth, S L; Lee, H S; Masli, S; Saban, D R

    2016-08-01

    Allergic eye disease, as in most forms of atopy, ranges in severity among individuals from immediate hypersensitivity to a severe and debilitating chronic disease. Dendritic cells play a key role in stimulating pathogenic T cells in allergen re-exposure, or secondary responses. However, molecular cues by dendritic cells underpinning allergic T cell response levels and the impact that this control has on consequent severity of allergic disease are poorly understood. Here, we show that a deficiency in thrombospondin-1, a matricellular protein known to affect immune function, has subsequent effects on downstream T cell responses during allergy, as revealed in an established mouse model of allergic eye disease. More specifically, we demonstrate that a thrombospondin-1 deficiency specific to dendritic cells leads to heightened secondary T cell responses and consequent clinical disease. Interestingly, whereas thrombospondin-1-deficient dendritic cells augmented activity of allergen-primed T cells, this increase was not recapitulated with naïve T cells in vitro. The role of dendritic cell-derived thrombospondin-1 in regulating secondary allergic T cell responses was confirmed in vivo, as local transfer of thrombospondin-1-sufficient dendritic cells to the ocular mucosa of thrombospondin-1 null hosts prevented the development of augmented secondary T cell responses and heightened allergic eye disease clinical responses. Finally, we demonstrate that topical instillation of thrombospondin-1-derived peptide reduces T cell activity and clinical progression of allergic eye disease. Taken together, this study reveals an important modulatory role of dendritic cell-derived thrombospondin-1 on secondary allergic T cell responses and suggests the possible dysregulation of dendritic cell-derived thrombospondin-1 expression as a factor in allergic eye disease severity. © Society for Leukocyte Biology.

  19. Arctigenin, a phenylpropanoid dibenzylbutyrolactone lignan, inhibits type I-IV allergic inflammation and pro-inflammatory enzymes.

    PubMed

    Lee, Ji Yun; Kim, Chang Jong

    2010-06-01

    We previously reported that arctigenin, a phenylpropanoid dibenzylbutyrolactone lignan isolated from Forsythia koreana, exhibits anti-inflammatory, antioxidant, and analgesic effects in animal models. In addition, arctigenin inhibited eosinophil peroxidase and activated myeloperoxidase in inflamed tissues. In this study, we tested the effects of arctigenin on type I-IV allergic inflammation and pro-inflammatory enzymes in vitro and in vivo. Arctigenin significantly inhibited the heterologous passive cutaneous anaphylaxis induced by ovalbumin in mice at 15 mg/kg, p.o., and compound 48/80-induced histamine release from rat peritoneal mast cells at 10 microM. Arctigenin (15 mg/kg, p.o.) significantly inhibited reversed cutaneous anaphylaxis. Further, arctigenin (15 mg/kg, p.o.) significantly inhibited the Arthus reaction to sheep's red blood cells, decreasing the hemolysis titer, the hemagglutination titer, and the plaque-forming cell number for SRBCs. In addition, arctigenin significantly inhibited delayed type hypersensitivity at 15 mg/kg, p.o. and the formation of rosette-forming cells at 45 mg/kg, p.o. Contact dermatitis induced by picrylchloride and dinitrofluorobenzene was significantly (p < 0.05) inhibited by surface treatment with arctigenin (0.3 mg/ear). Furthermore, arctigenin dose-dependently inhibited pro-inflammatory enzymes, such as cyclooxygenase-1 and 2, 5-lipoxygenase, phospholipase A2, and phosphodiesterase. Our results show that arctigenin significantly inhibited B- and T-cell mediated allergic inflammation as well as pro-inflammatory enzymes.

  20. Mast Cell Interactions and Crosstalk in Regulating Allergic Inflammation.

    PubMed

    Velez, Tania E; Bryce, Paul J; Hulse, Kathryn E

    2018-04-17

    This review summarizes recent findings on mast cell biology with a focus on IgE-independent roles of mast cells in regulating allergic responses. Recent studies have described novel mast cell-derived molecules, both secreted and membrane-bound, that facilitate cross-talk with a variety of immune effector cells to mediate type 2 inflammatory responses. Mast cells are complex and dynamic cells that are persistent in allergy and are capable of providing signals that lead to the initiation and persistence of allergic mechanisms.

  1. Hypnosis and the allergic response.

    PubMed

    Wyler-Harper, J; Bircher, A J; Langewitz, W; Kiss, A

    1994-01-01

    In recent years our knowledge of the immune system and the pathogenesis of immune disorders has increased. There has been much research on the complex connections between the psyche, the central nervous system and the immune system and the effect of mood on disease processes. This paper reviews the evidence on the effects of hypnosis on the allergic skin test reaction, on allergies, particularly respiratory allergies and hayfever, and on bronchial hyperreactivity and asthma. Hypnosis, which is generally regarded as an altered state of consciousness associated with concentration, relaxation and imagination, and amongst other characteristics an enhanced responsiveness to suggestion, has long been thought to be effective in the amelioration of various bodily disorders. It has seemed that the state of hypnosis is capable of a bridging or mediating function in the supposed dualism between mind and body. There has been great variation in the experimental and clinical procedures such as type of hypnotic intervention employed, the training of subjects and the timing of the intervention. Also, variability in the type of allergen used and its mode of application is evident. But despite these limitations, many of the studies have shown a link between the use of hypnosis and a changed response to an allergic stimulus or to a lessened bronchial hyperreactivity. There is as yet no clear explanation for the effectiveness of hypnosis, but there is some evidence for an influence on the neurovascular component of the allergic response.

  2. Mosla dianthera inhibits mast cell-mediated allergic reactions through the inhibition of histamine release and inflammatory cytokine production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Dong-Hee; Kim, Sang-Hyun; Eun, Jae-Soon

    2006-11-01

    In this study, we investigated the effect of the aqueous extract of Mosla dianthera (Maxim.) (AEMD) on the mast cell-mediated allergy model and studied the possible mechanism of action. Mast cell-mediated allergic disease is involved in many diseases such as asthma, sinusitis and rheumatoid arthritis. The discovery of drugs for the treatment of allergic disease is an important subject in human health. AEMD inhibited compound 48/80-induced systemic reactions in mice. AEMD decreased immunoglobulin E-mediated local allergic reactions, passive cutaneous anaphylaxis. AEMD attenuated intracellular calcium level and release of histamine from rat peritoneal mast cells activated by compound 48/80. Furthermore, AEMDmore » attenuated the phorbol 12-myristate 13-acetate (PMA) and calcium ionophore A23187-stimulated TNF-{alpha}, IL-8 and IL-6 secretion in human mast cells. The inhibitory effect of AEMD on the pro-inflammatory cytokines was nuclear factor-{kappa}B (NF-{kappa}B) dependent. AEMD decreased PMA and A23187-induced degradation of I{kappa}B{alpha} and nuclear translocation of NF-{kappa}B. Our findings provide evidence that AEMD inhibits mast cell-derived immediate-type allergic reactions and involvement of pro-inflammatory cytokines and NF-{kappa}B in these effects.« less

  3. Food and Natural Materials Target Mechanisms to Effectively Regulate Allergic Responses.

    PubMed

    Shin, Hee Soon; Shon, Dong-Hwa

    2015-01-01

    An immune hypersensitivity disorder called allergy is caused by diverse allergens entering the body via skin contact, injection, ingestion, and/or inhalation. These allergic responses may develop into allergic disorders, including inflammations such as atopic dermatitis, asthma, anaphylaxis, food allergies, and allergic rhinitis. Several drugs have been developed to treat these allergic disorders; however, long-term intake of these drugs could have adverse effects. As an alternative to these medicines, food and natural materials that ameliorate allergic disorder symptoms without producing any side effects can be consumed. Food and natural materials can effectively regulate successive allergic responses in an allergic chain-reaction mechanism in the following ways: [1] Inhibition of allergen permeation via paracellular diffusion into epithelial cells, [2] suppression of type 2 T-helper (Th) cell-related cytokine production by regulating Th1/Th2 balance, [3] inhibition of pathogenic effector CD4(+) T cell differentiation by inducing regulatory T cells (Treg), and [4] inhibition of degranulation in mast cells. The immunomodulatory effects of food and natural materials on each target mechanism were scientifically verified and shown to alleviate allergic disorder symptoms. Furthermore, consumption of certain food and natural materials such as fenugreek, skullcap, chitin/chitosan, and cheonggukjang as anti-allergics have merits such as safety (no adverse side effects), multiple suppressive effects (as a mixture would contain various components that are active against allergic responses), and ease of consumption when required. These merits and anti-allergic properties of food and natural materials help control various allergic disorders.

  4. Augmentation of antigen-stimulated allergic responses by a small amount of trichloroethylene ingestion from drinking water.

    PubMed

    Seo, Makoto; Yamagiwa, Takeo; Kobayashi, Ryo; Ikeda, Koji; Satoh, Masahiko; Inagaki, Naoki; Nagai, Hiroichi; Nagase, Hisamitsu

    2008-11-01

    In previous report, we have shown that trichloroethylene (TCE) increases histamine release and inflammatory cytokine production from antigen-stimulated mast cells. In this study, we examined the enhancing effect of a small amount of TCE ingestion from drinking water on antigen-stimulated allergic responses. After exposure of Wistar rats to TCE ingestion for 2 or 4 weeks, we performed a passive cutaneous anaphylaxis (PCA) reaction. TCE ingestion for 2 and 4 weeks enhanced PCA reaction in a dose-dependent manner. On histological examination, TCE ingestion for 2 weeks exacerbated inflammation characterized by infiltration of lymphocytes and accumulation of mast cells around the vessel in the skin. After TCE ingestion for 4 weeks, the mesenteric lymph nodes (MLNs) showed increase of the size and wet weight, and germinal centers changed distinctly. The interleukin-4 (IL-4) mRNA levels on spleen, MLNs and leukocytes were increased. Moreover, serum total IgE levels of TCE ingestion increased in a time-dependent manner. Our results suggest that TCE ingestion induces pro-inflammatory responses and causes Th1/Th2-type helper T-cell imbalance. And more, a small amount of TCE ingestion may lead to the initiation and acceleration of type I allergic reaction.

  5. Therapeutic strategies for allergic diseases

    NASA Astrophysics Data System (ADS)

    Barnes, Peter J.

    1999-11-01

    Many drugs are now in development for the treatment of atopic diseases, including asthma, allergic rhinitis and atopic dermatitis. These treatments are based on improvements in existing therapies or on a better understanding of the cellular and molecular mechanisms involved in atopic diseases. Although most attention has been focused on asthma, treatments that inhibit the atopic disease process would have application to all atopic diseases, as they often coincide. Most of the many new therapies in development are aimed at inhibiting components of the allergic inflammatory response, but in the future there are real possibilities for the development of preventative and even curative treatments.

  6. Toxocara canis and the allergic process

    PubMed Central

    Zaia, Mauricio Grecco; de Oliveira, Sandra Regina Pereira; de Castro, Cynthia Aparecida; Soares, Edson Garcia; Afonso, Ana; Monnazzi, Luis Gustavo S; Peitl, Oscar; Faccioli, Lúcia Helena; Anibal, Fernanda de Freitas

    2015-01-01

    The protective effect of infectious agents against allergic reactions has been thoroughly investigated. Current studies have demonstrated the ability of some helminths to modulate the immune response of infected hosts. The objective of the present study was to investigate the relationship between Toxocara canis infection and the development of an allergic response in mice immunised with ovalbumin (OVA). We determined the total and differential blood and bronchoalveolar lavage fluid cells using BALB/c mice as a model. To this end, the levels of interleukin (IL)-4, IL-5 and IL-10 and anti-OVA-IgE were measured using an ELISA. The inflammatory process in the lungs was observed using histology slides stained with haematoxylin and eosin. The results showed an increase in the total number of leukocytes and eosinophils in the blood of infected and immunised animals at 18 days after infection. We observed a slight lymphocytic inflammatory infiltrate in the portal space in all infected mice. Anti-OVA-IgE levels were detected in smaller proportions in the plasma of immunised and infected mice compared with mice that were only infected. Therefore, we concluded that T. canis potentiates inflammation in the lungs in response to OVA, although anti-OVA-IgE levels suggest a potential reduction of the inflammatory process through this mechanism. PMID:26517650

  7. Antigen-Specific Induction of Osteopontin Contributes to the Chronification of Allergic Contact Dermatitis

    PubMed Central

    Seier, Anne M.; Renkl, Andreas C.; Schulz, Guido; Uebele, Tanja; Sindrilaru, Anca; Iben, Sebastian; Liaw, Lucy; Kon, Shigeyuki; Uede, Toshimitsu; Weiss, Johannes M.

    2010-01-01

    Allergic contact dermatitis is a T cell-mediated immune response, which in its relapsing chronic form is of high socioeconomic impact. The phosphoglycoprotein osteopontin (OPN) has chemotactic and Th1 cytokine functions and in various models is essential for robust T cell-mediated immunity. Here we demonstrate that OPN is abundantly expressed by both effector T cells and keratinocytes in allergic contact dermatitis lesions. T cells from nickel-allergic donors secrete high levels of OPN following antigen-specific stimulation. OPN may substitute for missing IFN-γ secretion in T effector cells because low IFN-γ-producing T cell clones secrete high levels of OPN, and OPN down-modulates their interleukin-4 expression. Furthermore, interferon-γ from T effector cells augments OPN in allergic contact dermatitis by inducing OPN in keratinocytes, which in turn polarizes dendritic cells and attracts inflammatory cells. In the murine contact hypersensitivity (CHS) model for allergic contact dermatitis, OPN is strongly induced in antigen-specific proliferating T cells, and OPN null mice display a reduced chronic CHS inflammatory response due to a decreased influx of effector T cells. Importantly, because of its function for chronic allergic contact dermatitis, OPN may well be a therapeutic target, because anti-OPN antibody treatment in part suppresses established chronic CHS. PMID:20008129

  8. Soy biodiesel emissions have reduced inflammatory effects compared to diesel emissions in healthy and allergic mice.

    PubMed

    Gavett, Stephen H; Wood, Charles E; Williams, Marc A; Cyphert, Jaime M; Boykin, Elizabeth H; Daniels, Mary J; Copeland, Lisa B; King, Charly; Krantz, Todd Q; Richards, Judy H; Andrews, Debora L; Jaskot, Richard H; Gilmour, M Ian

    2015-01-01

    Toxicity of exhaust from combustion of petroleum diesel (B0), soy-based biodiesel (B100), or a 20% biodiesel/80% petrodiesel mix (B20) was compared in healthy and house dust mite (HDM)-allergic mice. Fuel emissions were diluted to target fine particulate matter (PM(2.5)) concentrations of 50, 150, or 500 μg/m(3). Studies in healthy mice showed greater levels of neutrophils and MIP-2 in bronchoalveolar lavage (BAL) fluid 2 h after a single 4-h exposure to B0 compared with mice exposed to B20 or B100. No consistent differences in BAL cells and biochemistry, or hematological parameters, were observed after 5 d or 4 weeks of exposure to any of the emissions. Air-exposed HDM-allergic mice had significantly increased responsiveness to methacholine aerosol challenge compared with non-allergic mice. Exposure to any of the emissions for 4 weeks did not further increase responsiveness in either non-allergic or HDM-allergic mice, and few parameters of allergic inflammation in BAL fluid were altered. Lung and nasal pathology were not significantly different among B0-, B20-, or B100-exposed groups. In HDM-allergic mice, exposure to B0, but not B20 or B100, significantly increased resting peribronchiolar lymph node cell proliferation and production of T(H)2 cytokines (IL-4, IL-5, and IL-13) and IL-17 in comparison with air-exposed allergic mice. These results suggest that diesel exhaust at a relatively high concentration (500 μg/m(3)) can induce inflammation acutely in healthy mice and exacerbate some components of allergic responses, while comparable concentrations of B20 or B100 soy biodiesel fuels did not elicit responses different from those caused by air exposure alone.

  9. Real-time assessment of inflammation and treatment response in a mouse model of allergic airway inflammation

    PubMed Central

    Cortez-Retamozo, Virna; Swirski, Filip K.; Waterman, Peter; Yuan, Hushan; Figueiredo, Jose Luiz; Newton, Andita P.; Upadhyay, Rabi; Vinegoni, Claudio; Kohler, Rainer; Blois, Joseph; Smith, Adam; Nahrendorf, Matthias; Josephson, Lee; Weissleder, Ralph; Pittet, Mikael J.

    2008-01-01

    Eosinophils are multifunctional leukocytes that degrade and remodel tissue extracellular matrix through production of proteolytic enzymes, release of proinflammatory factors to initiate and propagate inflammatory responses, and direct activation of mucus secretion and smooth muscle cell constriction. Thus, eosinophils are central effector cells during allergic airway inflammation and an important clinical therapeutic target. Here we describe the use of an injectable MMP-targeted optical sensor that specifically and quantitatively resolves eosinophil activity in the lungs of mice with experimental allergic airway inflammation. Through the use of real-time molecular imaging methods, we report the visualization of eosinophil responses in vivo and at different scales. Eosinophil responses were seen at single-cell resolution in conducting airways using near-infrared fluorescence fiberoptic bronchoscopy, in lung parenchyma using intravital microscopy, and in the whole body using fluorescence-mediated molecular tomography. Using these real-time imaging methods, we confirmed the immunosuppressive effects of the glucocorticoid drug dexamethasone in the mouse model of allergic airway inflammation and identified a viridin-derived prodrug that potently inhibited the accumulation and enzyme activity of eosinophils in the lungs. The combination of sensitive enzyme-targeted sensors with noninvasive molecular imaging approaches permitted evaluation of airway inflammation severity and was used as a model to rapidly screen for new drug effects. Both fluorescence-mediated tomography and fiberoptic bronchoscopy techniques have the potential to be translated into the clinic. PMID:19033674

  10. Antigen-specific Treg cells in immunological tolerance: implications for allergic diseases

    PubMed Central

    Abdel-Gadir, Azza; Massoud, Amir H.; Chatila, Talal A.

    2018-01-01

    Allergic diseases are chronic inflammatory disorders in which there is failure to mount effective tolerogenic immune responses to inciting allergens. The alarming rise in the prevalence of allergic diseases in recent decades has spurred investigations to elucidate the mechanisms of breakdown in tolerance in these disorders and means of restoring it. Tolerance to allergens is critically dependent on the generation of allergen-specific regulatory T (Treg) cells, which mediate a state of sustained non-responsiveness to the offending allergen. In this review, we summarize recent advances in our understanding of mechanisms governing the generation and function of allergen-specific Treg cells and their subversion in allergic diseases. We will also outline approaches to harness allergen-specific Treg cell responses to restore tolerance in these disorders. PMID:29375821

  11. Adjuvant treatment with a symbiotic in patients with inflammatory non-allergic rhinitis.

    PubMed

    Gelardi, M; De Luca, C; Taliente, S; Fiorella, M L; Quaranta, N; Russo, C; Ciofalo, A; Macchi, A; Mancini, M; Rosso, P; Seccia, V; Guagnini, F; Ciprandi, G

    2017-01-01

    Inflammatory non-allergic rhinitis (INAR) is characterized by the presence of an inflammatory infiltrate and a non-IgE-mediated pathogenesis. This retrospective, controlled, multicentre study investigated whether a symbiotic, containing Lactobacillus acidophilus NCFM, Bifidobacterium lactis, and fructo-oligosaccharides (Pollagen®, Allergy Therapeutics, Italy), prescribed as adjunctive therapy to a standard pharmacological treatment, was able to reduce symptom severity, endoscopic features, and nasal cytology in 93 patients (49 males and 44 females, mean age 36.3±7.1 years) with INAR. The patients were treated with nasal corticosteroid, oral antihistamine, and isotonic saline. At randomization, 52 patients were treated also with symbiotic as adjunctive therapy, whereas the remaining 41 patients served as controls. Treatment lasted for 4 weeks. Patients were visited at baseline, after treatment, and after 4-week follow-up. Adjunctive symbiotic treatment significantly reduced the percentages of patients with symptoms and endoscopic signs, and diminished inflammatory cells. In conclusion, the present study demonstrates that a symbiotic was able, as adjuvant treatment, to significantly improve symptoms, endoscopic feature, and cytology in patients with INAR, and its effect may be long lasting.

  12. EGR-1 and DUSP-1 are important negative regulators of pro-allergic responses in airway epithelium.

    PubMed

    Golebski, Korneliusz; van Egmond, Danielle; de Groot, Esther J; Roschmann, Kristina I L; Fokkens, Wytske J; van Drunen, Cornelis M

    2015-05-01

    Primary nasal epithelium of house dust mite allergic individuals is in a permanently activated inflammatory transcriptional state. To investigate whether a deregulated expression of EGR-1 and/or DUSP-1, two potential negative regulators of pro-inflammatory responses, could contribute to the activation of the inflammatory state. We silenced the expression of EGR-1 or DUSP-1 in the airway epithelial cell line NCI-H292. The cell lines were stimulated in a 24-h time course with the house dust mite allergen or poly(I:C). RNA expression profiles of cytokines were established using q-PCR and protein levels were determined in supernatants with ELISA. The shRNA-mediated gene silencing reduced expression levels of EGR-1 by 92% (p<0.0001) and of DUSP-1 by 76% (p<0.0001). Both mutant cells lines showed an increased and prolonged response to the HDM allergen. The mRNA induction of IL-6 was 4.6 fold (p=0.02) and 2.4 fold higher (p=0.01) in the EGR-1 and DUSP-1 knock-down, respectively when compared to the induced levels in the control cell line. For IL-8, the induction levels were 4.6 fold (p=0.01) and 13.0 (p=0.001) fold higher. The outcome was largely similar, yet not identical at the secreted protein levels. Furthermore, steroids were able to suppress the poly(I:C) induced cytokine levels by 70-95%. Deregulation of EGR-1 and/or DUSP-1 in nasal epithelium could be responsible for the prolonged activated transcriptional state observed in vivo in allergic disease. This could have clinical consequences as cytokine levels after the steroid treatment in EGR-1 or DUSP-1 knock-down remained higher than in the control cell line. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Otitis media with effusion in an allergic animal model: A functional and morphological study.

    PubMed

    Kim, Dong-Kee; Park, Hyu Eun; Back, Sang-A; Park, Hyang Rim; Kim, Soo Whan; Park, Yooyeon; Yeo, Sang Won; Park, Shi-Nae

    2016-05-01

    Allergy is considered as one of important etiologic factor of otitis media with effusion (OME). In present study, we evaluated the causal effect of allergy on OME in an animal model, and investigated the secondary effect of bacterial infection. Allergy and control animals were subdivided into groups with and without intratympanic injection of lipopolysaccharide (IT-LPS). Allergic otitis media was induced via intraperitoneal ovo-albumin injection with intranasal challenge. We assessed the occurrence of OME in allergic animals and the effect of IT-LPS on allergic otitis media. We also investigated the Th1 and Th2 responses in the middle-ear mucosa. Hearing of the animals was measured by ABR and DPOAE. OME was observed in 75% of the allergic animals. After IT-LPS, 100% of the control and allergy groups showed otitis media. Light microscopy revealed that the middle-ear mucosa of animals of both groups also was significantly increased after IT-LPS, and the Th1 response (IL-2 and IFN-γ) and Th2 response (IL-5 and IL-13) cytokines were expressed at higher levels in the allergy group with IT-LPS than in control group with IT-LPS. Hearing tests between the allergy and control group with IT-LPS did not reveal any differences. Our findings may be direct evidence of an allergic causal effect on OME. Th2 response cytokines were strongly expressed in allergic OME, and the inflammatory reaction to LPS was more intense in the allergic group, which indicates that otitis media related to allergy can be severely aggravated by an inflammatory reaction to bacterial infection. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Emotion with tears decreases allergic responses to latex in atopic eczema patients with latex allergy.

    PubMed

    Kimata, Hajime

    2006-07-01

    Allergic responses are enhanced by stress, whereas they are reduced by laughter in atopic eczema patients. Emotion with tears decreases plasma IL-6 levels in patients with rheumatoid arthritis. Thus, the effect of emotion with tears on allergic responses in patients with atopic eczema was studied. Sixty patients with atopic eczema having latex allergy viewed both the weather information video and the heart-warming movie, Kramer vs. Kramer. Just before and immediately after viewing each video, allergic responses to latex were measured. Viewing the weather information video did not cause emotion with tears in any patients, and it failed to modulate allergic responses. In contrast, viewing Kramer vs. Kramer caused emotion with tears in 44 of 60 patients, and it reduced allergic skin wheal responses to latex and latex-specific IgE production in them. Emotion with tears reduced allergic responses, and it may be useful in the treatment of allergic diseases.

  15. Inflammatory Bowel Disease.

    PubMed

    2016-01-01

    Inflammation response plays an important role in host survival, and it also leads to acute and chronic inflammatory diseases such as rheumatoid arthritis, bowel diseases, allergic rhinitis, asthma, atopic dermatitis and various neurodegenerative diseases. During the course of inflammation, the ROS level increases. In addition to ROS, several inflammatory mediators produced at the site lead to numerous cell-mediated damages. Inflammatory bowel disease (IBD), including ulcerative colitis and Crohn's disease, is a chronic intestinal disorder resulting from a dysfunctional epithelial, innate and adaptive immune response to intestinal microorganisms. The methods involving indomethacin-induced enterocolitis in rats with macroscopic changes of IBD, myeloperoxidase assay, microscopic (histologic) characters and biochemical parameters are discussed.

  16. Discovery of a potent nanoparticle P-selectin antagonist with anti-inflammatory effects in allergic airway disease

    PubMed Central

    John, Alison E.; Lukacs, Nicholas W.; Berlin, Aaron A.; Palecanda, Aiyappa; Bargatze, Robert F.; Stoolman, Lloyd M.; Nagy, Jon O.

    2010-01-01

    The severity of allergic asthma is dependent, in part, on the intensity of peribronchial inflammation. P-selectin is known to play a role in the development of allergen-induced peribronchial inflammation and airway hyperreactivity. Selective inhibitors of P-selectin-mediated leukocyte endothelial-cell interactions may therefore attenuate the inflammatory processes associated with allergic airway disease. Novel P-selectin inhibitors were created using a polyvalent polymer nanoparticle capable of displaying multiple synthetic, low molecular weight ligands. By assembling a particle that presents an array of groups, which as monomers interact with only low affinity, we created a construct that binds extremely efficiently to P-selectin. The ligands acted as mimetics of the key binding elements responsible for the high-avidity adhesion of P-selectin to the physiologic ligand, PSGL-1. The inhibitors were initially evaluated using an in vitro shear assay system in which interactions between circulating cells and P-selectin-coated capillary tubes were measured. The nanoparticles were shown to preferentially bind to selectins expressed on activated endothelial cells. We subsequently demonstrated that nanoparticles displaying P-selectin blocking arrays were functionally active in vivo, significantly reducing allergen-induced airway hyperreactivity and peribronchial eosinophilic inflammation in a murine model of asthma. PMID:14563683

  17. Anti-inflammatory and anti-allergic properties of the essential oil and active compounds from Cordia verbenacea.

    PubMed

    Passos, Giselle F; Fernandes, Elizabeth S; da Cunha, Fernanda M; Ferreira, Juliano; Pianowski, Luiz F; Campos, Maria M; Calixto, João B

    2007-03-21

    The anti-inflammatory and anti-allergic effects of the essential oil of Cordia verbenacea (Boraginaceae) and some of its active compounds were evaluated. Systemic treatment with the essential oil of Cordia verbenacea (300-600mg/kg, p.o.) reduced carrageenan-induced rat paw oedema, myeloperoxidase activity and the mouse oedema elicited by carrageenan, bradykinin, substance P, histamine and platelet-activating factor. It also prevented carrageenan-evoked exudation and the neutrophil influx to the rat pleura and the neutrophil migration into carrageenan-stimulated mouse air pouches. Moreover, Cordia verbenacea oil inhibited the oedema caused by Apis mellifera venom or ovalbumin in sensitized rats and ovalbumin-evoked allergic pleurisy. The essential oil significantly decreased TNFalpha, without affecting IL-1beta production, in carrageenan-injected rat paws. Neither the PGE(2) formation after intrapleural injection of carrageenan nor the COX-1 or COX-2 activities in vitro were affected by the essential oil. Of high interest, the paw edema induced by carrageenan in mice was markedly inhibited by both sesquiterpenic compounds obtained from the essential oil: alpha-humulene and trans-caryophyllene (50mg/kg, p.o.). Collectively, the present results showed marked anti-inflammatory effects for the essential oil of Cordia verbenacea and some active compounds, probably by interfering with TNFalpha production. Cordia verbenacea essential oil or its constituents might represent new therapeutic options for the treatment of inflammatory diseases.

  18. Induction of Oral Tolerance with Transgenic Plants Expressing Antigens for Prevention/Treatment of Autoimmune, Allergic and Inflammatory Diseases.

    PubMed

    Ma, Shengwu; Liao, Yu-Cai; Jevnikar, Anthony M

    2015-01-01

    The prevalence and incidence of autoimmune and allergic diseases have increased dramatically over the last several decades, especially in the developed world. The treatment of autoimmune and allergic diseases is typically with the use of non-specific immunosuppressive agents that compromise the integrity of the host immune system and therefore, increase the risk of infections. Antigenspecific immunotherapy by reinstating immunological tolerance towards self antigens without compromising immune functions is a much desired goal for the treatment of autoimmune and allergic diseases. Mucosal administration of antigen is a long-recognized method of inducing antigen-specific immune tolerance known as oral tolerance, which is viewed as having promising potential in the treatment of autoimmune and allergic diseases. Plant-based expression and delivery of recombinant antigens provide a promising new platform to induce oral tolerance, having considerable advantages including reduced cost and increased safety. Indeed, in recent years the use of tolerogenic plants for oral tolerance induction has attracted increasing attention, and considerable progress has been made. This review summarizes recent advances in using plants to deliver tolerogens for induction of oral tolerance in the treatment of autoimmune, allergic and inflammatory diseases.

  19. How Stress and Anxiety Can Alter Immediate and Late Phase Skin Test Responses in Allergic Rhinitis

    PubMed Central

    Kiecolt-Glaser, Janice K.; Heffner, Kathi L.; Glaser, Ronald; Malarkey, William B.; Porter, Kyle; Atkinson, Cathie; Laskowski, Bryon; Lemeshow, Stanley; Marshall, Gailen D.

    2010-01-01

    Summary Allergic rhinitis (AR) is the fifth most common chronic disease, and the association between allergic disorders and anxiety is well-documented. To investigate how anxiety and stressors modulate skin prick test (SPT) responses and associated inflammatory responses, 28 men and women with AR were selected by clinical history and skin test responses. The participants were admitted twice to a hospital research unit for 4 hours in a crossover trial. Changes in SPT wheals were assessed before and after a standardized laboratory speech stressor, as well as again the following morning; skin responses assessed twice during a lab session without a stressor and again the following morning served as the contrast condition. Anxiety heightened the magnitude of allergen-induced wheals following the stressor. As anxiety increased, SPT wheal diameters increased after the stressor, compared to a slight decrease following the control task. Anxiety also substantially enhanced the effects of stress on late phase responses: even skin tests performed the day after the stressor reflected the continuing impact of the speech stressor among the more anxious participants. Greater anxiety was associated with more IL-6 production by Con A-stimulated leukocytes following the stressor compared to the control visit. The data suggest that stress and anxiety can enhance and prolong AR symptoms. PMID:19150180

  20. Transcription and translation of the chemokines RANTES and MCP-1 in nasal polyps and mucosa in allergic and non-allergic rhinopathies.

    PubMed

    Marcella, Reale; Croce, Adelchi; Moretti, Antonio; Barbacane, Renato C; Di Giocchino, Mario; Conti, Pio

    2003-12-15

    The pathogenetic findings of rhinopathies show an increase in infiltrating cells including eosinophils. RANTES is a beta chemokine in which the cysteines are adjacent (C-C), and it attracts and activates eosinophil. We hypothesize that RANTES is locally produced within the nasal polyp microenvironment and is responsible for the inflammatory cell recruitment present in nasal polyposis. To test this hypothesis, we evaluated nasal polyps and mucosa from allergic and control, non-allergic patients for RANTES content. The relative levels of RANTES and MCP-1 protein in tissue homogenates were quantified using enzyme-linked immunosorbent assay technology, and quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) tests for RANTES and MCP-1 mRNA expression were performed. The results indicate that RANTES expression and production increase in nasal mucosa (septal and turbinate portions) of allergic patients compared to the same mucosa in non-allergic patients. In allergic patients, RANTES levels of nasal polyp homogenates were nearly 12-fold higher than the RANTES levels in mucosa homogenate. In this study, we hypothesize that the particular anatomic structure and physiologic function of the turbinates are more involved in the pathogenesis of rhinitis and may undergo polypoid degeneration in allergic rhinitis than any other anatomical structure of the nose. Our data suggest that RANTES is more involved than MCP-1 in recruiting inflammatory cells in rhinological disease and may reflect the degree of local inflammation as consequence of the specific chemoattractant properties of RANTES. The level of RANTES in nasal polyps could be important in the development of the pathological state.

  1. Emerging drugs for allergic conjunctivitis.

    PubMed

    Ridolo, Erminia; Montagni, Marcello; Caminati, Marco; Senna, Gianenrico; Incorvaia, Cristoforo; Canonica, Giorgio Walter

    2014-06-01

    Allergic conjunctivitis (AC) is a very common disease, especially in association with allergic rhinitis but may also occur in isolated presentation. The treatment of AC has long been based on antihistamines, cromones and topical corticosteroids, but none of these drugs completely abolishes the clinical expression of AC. The development of new drugs for AC is analyzed highlighting the recent insights into the pathophysiological mechanisms of the disease. The major aim of development of drugs for AC is to have agents able to prevent the inflammatory effects of the interaction between the allergen and the specific IgE antibodies on mast cell surface. This may be obtained by blocking the effects of histamine (the main mediator of early allergic response) by H1-receptor antagonists, inhibiting the release of soluble factors able to recruit inflammatory cells (that sustain prolonged inflammation) by mast-cell stabilizers, inhibiting the effects of single mediators, inducing tolerance to the allergen by specific immunotherapy or even acting on factors related to activation and differentiation of T lymphocytes such as the toll-like receptors. AC is an underestimated disease for which there is a search of more effective treatments. The availability of the drugs under current evaluation will allow more refined therapeutic strategies to apply according to the characteristics and the clinical severity of AC.

  2. Black seed oil ameliorates allergic airway inflammation by inhibiting T-cell proliferation in rats.

    PubMed

    Shahzad, Muhammad; Yang, Xudong; Raza Asim, M B; Sun, Qingzhu; Han, Yan; Zhang, Fujun; Cao, Yongxiao; Lu, Shemin

    2009-02-01

    The black seeds, from the Ranunculaceae family, have been traditionally used by various cultures as a natural remedy for several ailments. In this study, we examined the effect of black seed oil as an immunomodulator in a rat model of allergic airway inflammation. Rats sensitized to ovalbumin and challenged intranasally with ovalbumin to induce an allergic inflammatory response were compared to ovalbumin-sensitized, intranasally ovalbumin-exposed rats pretreated with intraperitoneally administered black seed oil and to control rats. The levels of IgE, IgG1 and ova-specific T-cell proliferation in spleen were measured by ELISA. The pro-inflammatory cytokine IL-4, IL-5, IL-6 and TGF-beta1 mRNA expression levels were measured by reverse transcription polymerase chain reaction. The intraperitoneal administration of black seed oil inhibited the Th2 type immune response in rats by preventing inflammatory cell infiltration and pathological lesions in the lungs. It significantly decreased the nitric oxide production in BALF, total serum IgE, IgG1 and OVA-specific IgG1 along with IL-4, IL-5, IL-6 and TGF-beta1 mRNA expression. Black seed oil treatment resulted in decreased T-cell response evident by lesser delayed type hypersensitivity and lower T-cell proliferation in spleen. In conclusion, black seed oil exhibited a significant reduction in all the markers of allergic inflammation mainly by inhibiting the delayed type hypersensitivity and T-cell proliferation. The data suggests that inhibition of T-cell response may be responsible for immunomodulatory effect of black seed oil in the rat model of allergic airway inflammation.

  3. No Adjuvant Effect of Bacillus thuringiensis-Maize on Allergic Responses in Mice

    PubMed Central

    Dekan, Gerhard; Epstein, Michelle M.

    2014-01-01

    Genetically modified (GM) foods are evaluated carefully for their ability to induce allergic disease. However, few studies have tested the capacity of a GM food to act as an adjuvant, i.e. influencing allergic responses to other unrelated allergens at acute onset and in individuals with pre-existing allergy. We sought to evaluate the effect of short-term feeding of GM Bacillus thuringiensis (Bt)-maize (MON810) on the initiation and relapse of allergic asthma in mice. BALB/c mice were provided a diet containing 33% GM or non-GM maize for up to 34 days either before ovalbumin (OVA)-induced experimental allergic asthma or disease relapse in mice with pre-existing allergy. We observed that GM-maize feeding did not affect OVA-induced eosinophilic airway and lung inflammation, mucus hypersecretion or OVA-specific antibody production at initiation or relapse of allergic asthma. There was no adjuvant effect upon GM-maize consumption on the onset or severity of allergic responses in a mouse model of allergic asthma. PMID:25084284

  4. Effectiveness and response predictors of omalizumab in a severe allergic asthma population with a high prevalence of comorbidities: the Australian Xolair Registry.

    PubMed

    Gibson, P G; Reddel, H; McDonald, V M; Marks, G; Jenkins, C; Gillman, A; Upham, J; Sutherland, M; Rimmer, J; Thien, F; Katsoulotos, G P; Cook, M; Yang, I; Katelaris, C; Bowler, S; Langton, D; Robinson, P; Wright, C; Yozghatlian, V; Burgess, S; Sivakumaran, P; Jaffe, A; Bowden, J; Wark, P A B; Yan, K Y; Kritikos, V; Peters, M; Hew, M; Aminazad, A; Bint, M; Guo, M

    2016-09-01

    Severe asthma is a high impact disease. Omalizumab targets the allergic inflammatory pathway; however, effectiveness data in a population with significant comorbidities are limited. To describe severe allergic asthma, omalizumab treatment outcomes and predictors of response among the Australian Xolair Registry participants. A web-based post-marketing surveillance registry was established to characterise the use, effectiveness and adverse effects of omalizumab (Xolair) for severe allergic asthma. Participants (n = 192) (mean age 51 years, 118 female) with severe allergic asthma from 21 clinics in Australia were assessed, and 180 received omalizumab therapy. They had poor asthma control (Asthma Control Questionnaire, ACQ-5, mean score 3.56) and significant quality of life impairment (Asthma-related Quality of Life Questionnaire score 3.57), and 52% were using daily oral corticosteroid (OCS). Overall, 95% had one or more comorbidities (rhinitis 48%, obesity 45%, cardiovascular disease 23%). The omalizumab responder rate, assessed by an improvement of at least 0.5 in ACQ-5, was high at 83%. OCS use was significantly reduced. The response in participants with comorbid obesity and cardiovascular disease was similar to those without these conditions. Baseline ACQ-5 ≥ 2.0 (P = 0.002) and older age (P = 0.05) predicted the magnitude of change in ACQ-5 in response to omalizumab. Drug-related adverse events included anaphylactoid reactions (n = 4), headache (n = 2) and chest pains (n = 1). Australian patients with severe allergic asthma report a high disease burden and have extensive comorbidity. Symptomatic response to omalizumab was high despite significant comorbid disease. Omalizumab is an effective targeted therapy for severe allergic asthma with comorbidity in a real-life setting. © 2016 Royal Australasian College of Physicians.

  5. Electrophilic nitro-fatty acids suppress allergic contact dermatitis in mice.

    PubMed

    Mathers, A R; Carey, C D; Killeen, M E; Diaz-Perez, J A; Salvatore, S R; Schopfer, F J; Freeman, B A; Falo, L D

    2017-04-01

    Reactions between nitric oxide (NO), nitrite (NO2-), and unsaturated fatty acids give rise to electrophilic nitro-fatty acids (NO 2 -FAs), such as nitro oleic acid (OA-NO 2 ) and nitro linoleic acid (LNO 2 ). Endogenous electrophilic fatty acids (EFAs) mediate anti-inflammatory responses by modulating metabolic and inflammatory signal transduction reactions. Hence, there is considerable interest in employing NO 2 -FAs and other EFAs for the prevention and treatment of inflammatory disorders. Thus, we sought to determine whether OA-NO 2 , an exemplary nitro-fatty acid, has the capacity to inhibit cutaneous inflammation. We evaluated the effect of OA-NO 2 on allergic contact dermatitis (ACD) using an established model of contact hypersensitivity in C57Bl/6 mice utilizing 2,4-dinitrofluorobenzene as the hapten. We found that subcutaneous (SC) OA-NO 2 injections administered 18 h prior to sensitization and elicitation suppresses ACD in both preventative and therapeutic models. In vivo SC OA-NO 2 significantly inhibits pathways that lead to inflammatory cell infiltration and the production of inflammatory cytokines in the skin. Moreover, OA-NO 2 is capable of enhancing regulatory T-cell activity. Thus, OA-NO 2 treatment results in anti-inflammatory effects capable of inhibiting ACD by inducing immunosuppressive responses. Overall, these results support the development of OA-NO 2 as a promising therapeutic for ACD and provides new insights into the role of electrophilic fatty acids in the control of cutaneous immune responses potentially relevant to a broad range of allergic and inflammatory skin diseases. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Anti-allergic properties of Mangifera indica L. extract (Vimang) and contribution of its glucosylxanthone mangiferin.

    PubMed

    Rivera, Dagmar García; Balmaseda, Ivones Hernández; León, Alina Alvarez; Hernández, Belkis Cancio; Montiel, Lucía Márquez; Garrido, Gabino Garrido; Cuzzocrea, Salvatore; Hernández, René Delgado

    2006-03-01

    Vimang is the brand name of formulations containing an extract of Mangifera indica L., ethnopharmacologically used in Cuba for the treatment of some immunopathological disorders, including bronchial asthma, atopic dermatitis and other allergic diseases. However, the effects of Vimang on allergic response have not been reported until now. In this study, the effects of Vimang and mangiferin, a C-glucosylxanthone isolated from the extract, on different parameters of allergic response are reported. Vimang and mangiferin showed a significant dose-dependent inhibition of IgE production in mice and anaphylaxis reaction in rats, histamine-induced vascular permeability and the histamine release induced by compound 48/80 from rat mast cells, and of lymphocyte proliferative response as evidence of the reduction of the amount of B and T lymphocytes able to contribute to allergic response. In these experiments, ketotifen, promethazine and disodium cromoglicate were used as reference drugs. Furthermore, we demonstrated that Vimang had an effect on an in-vivo model of inflammatory allergy mediated by mast cells. These results constitute the first report of the anti-allergic properties of Vimang on allergic models, as well as suggesting that this natural extract could be successfully used in the treatment of allergic disorders. Mangiferin, the major compound of Vimang, contributes to the anti-allergic effects of the extract.

  7. Irritancy and Allergic Responses Induced by Exposure to the Indoor Air Chemical 4-Oxopentanal

    PubMed Central

    Anderson, Stacey E.; Franko, Jennifer; Jackson, Laurel G.; Wells, J. R.; Ham, Jason E.; Meade, B. J.

    2012-01-01

    Over the last two decades, there has been an increasing awareness regarding the potential impact of indoor air pollution on human health. People working in an indoor environment often experience symptoms such as eye, nose, and throat irritation. Investigations into these complaints have ascribed the effects, in part, to compounds emitted from building materials, cleaning/consumer products, and indoor chemistry. One suspect indoor air contaminant that has been identified is the dicarbonyl 4-oxopentanal (4-OPA). 4-OPA is generated through the ozonolysis of squalene and several high-volume production compounds that are commonly found indoors. Following preliminary workplace sampling that identified the presence of 4-OPA, these studies examined the inflammatory and allergic responses to 4-OPA following both dermal and pulmonary exposure using a murine model. 4-OPA was tested in a combined local lymph node assay and identified to be an irritant and sensitizer. A Th1-mediated hypersensitivity response was supported by a positive response in the mouse ear swelling test. Pulmonary exposure to 4-OPA caused a significant elevation in nonspecific airway hyperreactivity, increased numbers of lung-associated lymphocytes and neutrophils, and increased interferon-γ production by lung-associated lymph nodes. These results suggest that both dermal and pulmonary exposure to 4-OPA may elicit irritant and allergic responses and may help to explain some of the adverse health effects associated with poor indoor air quality. PMID:22403157

  8. Multi-Walled Carbon Nanotubes Augment Allergic Airway Eosinophilic Inflammation by Promoting Cysteinyl Leukotriene Production.

    PubMed

    Carvalho, Sophia; Ferrini, Maria; Herritt, Lou; Holian, Andrij; Jaffar, Zeina; Roberts, Kevan

    2018-01-01

    Multi-walled carbon nanotubes (MWCNT) have been reported to promote lung inflammation and fibrosis. The commercial demand for nanoparticle-based materials has expanded rapidly and as demand for nanomaterials grows, so does the urgency of establishing an appreciation of the degree of health risk associated with their increased production and exposure. In this study, we examined whether MWCNT inhalation elicited pulmonary eosinophilic inflammation and influenced the development of allergic airway inflammatory responses. Our data revealed that instillation of FA21 MWCNT into the airways of mice resulted in a rapid increase, within 24 h, in the number of eosinophils present in the lungs. The inflammatory response elicited was also associated with an increase in the level of cysteinyl leukotrienes (cysLTs) present in the bronchoalveolar lavage fluid. CysLTs were implicated in the airway inflammatory response since pharmacological inhibition of their biosynthesis using the 5-lipoxygenase inhibitor Zileuton resulted in a marked reduction in the severity of inflammation observed. Moreover, FA21 MWCNT entering the airways of mice suffering from house dust mite (HDM)-elicited allergic lung inflammation markedly exacerbated the intensity of the airway inflammation. This response was characterized by a pulmonary eosinophilia, lymphocyte infiltration, and raised cysLT levels. The severity of pulmonary inflammation caused by either inhalation of MWCNT alone or in conjunction with HDM allergen correlated with the level of nickel present in the material, since preparations that contained higher levels of nickel (FA21, 5.54% Ni by weight) were extremely effective at eliciting or exacerbating inflammatory or allergic responses while preparations containing lower amounts of nickel (FA04, 2.54% Ni by weight) failed to initiate or exacerbate pulmonary inflammation. In summary, instillation of high nickel MWCNT into the lungs promoted eosinophilic inflammation and caused an intense

  9. Inhibitory effect of phloretin and biochanin A on IgE-mediated allergic responses in rat basophilic leukemia RBL-2H3 cells.

    PubMed

    Chung, Mi Ja; Sohng, Jae Kyung; Choi, Doo Jin; Park, Yong Il

    2013-09-17

    Anti-allergic effects and action mechanism of phloretin (Phl) and biochanin A (BioA) on the IgE-antigen complex-mediated allergic responses in rat basophilic leukemia RBL-2H3 cells were investigated. Cell viability, formation of reactive oxygen species (ROS), DPPH radical-scavenging activity, β-hexosaminidase release, production of interleukin (IL)-4, IL-13, and tumor necrosis factor-alpha (TNF-α) and phosphorylation of Akt and mitogen-activated protein kinase (MAPK) were determined by MTT assay, 2,7-dichlorofluorescein diacetate (DCF-DA) assay, DPPH radical-scavenging assay, reverse transcriptase polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA) and western blot analysis, respectively. Ph1 and BioA dose-dependently inhibited the formation of ROS and the release of β-hexosaminidase from the RBL-2H3 cells and also showed DPPH radical-scavenging activity. Ph1 and BioA suppressed the antigen-induced phosphorylation of the downstream signaling intermediates, including MAPK and Akt, which are critical for the production of pro-inflammatory cytokines, and also significantly attenuated the production of IgE-mediated pro-inflammatory cytokines, such as IL-4, IL-13, and TNF-α. Phloretin and biochanin A attenuate the degranulation and allergic cytokine production through inhibition of intracellular ROS production and the phosphorylation of Akt and the MAPKs, such as ERK1/2, p38, and JNK. The results of this study suggested that these two plant flavonoids may have potent anti-allergic activity in vitro. © 2013.

  10. DOSE-DEPENDENT ALLERGIC RESPONSES TO AN EXTRACT OF PENICILLIUM CHRYSOGENUM IN BALB/MICE

    EPA Science Inventory

    Indoor mold has been associated with the development of allergic asthma. Penicillium chrysogenum, a common indoor mold, is known to have several allergens and can induce allergic responses in a mouse model of allergic penicilliosis. Our hypothesis is that soluble components of ...

  11. AN EXTRACT OF PENICILLIUM CHRYSOGENUM INDUCES DOSE-DEPENDENT ALLERGIC ASTHMA RESPONSES IN MICE

    EPA Science Inventory

    Rationale: Penicillium chrysogenum, a common indoor mold, is known to have several allergens and can induce allergic responses in a mouse model of allergic penicilliosis. Our hypothesis is that soluble components of P. chrysogenum (PCE) can dose-dependently induce responses typ...

  12. Inhibition of Mast Cell-Mediated Allergic Responses by Arctii Fructus Extracts and Its Main Compound Arctigenin.

    PubMed

    Kee, Ji-Ye; Hong, Seung-Heon

    2017-11-01

    The Arctium lappa seeds (Arctii Fructus) and its major active compound, arctigenin (ARC), are known to have anticancer, antiobesity, antiosteoporosis, and anti-inflammatory activities. However, the effect of Arctii Fructus and ARC on mast cell-mediated allergic inflammation and its associated mechanism have not been elucidated. Therefore, we attempted to investigate the antiallergic activity of Arctii Fructus and ARC on mast cells and experimental mouse models. Arctii Fructus water extract (AFW) or ethanol extract (AFE) and ARC reduced the production of histamine and pro-inflammatory cytokines such as interleukin (IL)-1β, IL-6, IL-8, and TNF-α in mast cells. AFW, AFE, and ARC inhibited phosphorylation of MAPKs and NF-κB in activated mast cells. Moreover, IgE-mediated passive cutaneous anaphylaxis and compound 48/80-induced anaphylactic shock were suppressed by AFW, AFE, and ARC administration. These results suggest that Arctii Fructus and ARC are potential therapeutic agents against allergic inflammatory diseases.

  13. Allergic reactions to indoor air pollutants.

    PubMed Central

    Karol, M H

    1991-01-01

    Inhalation of airborne chemicals can result in allergic sensitization with episodic pulmonary responses occurring on subsequent exposures. Responses may occur in the upper respiratory tract (rhinitis), the lower respiratory tract (wheeze, bronchospasm) or systemically, for example, a febrile response. The mechanisms underlying these responses are not always clear but include production of reaginic antibody, activation of T-lymphocyte subsets, and release of spasmogenic and inflammatory mediators from pulmonary cell populations. A variety of agents have been associated with elicitation of these reactions including chemical vapors, dusts and particulates, and microbial organisms. As a result of the widespread occurrence of allergy in indoor environments, conditions conducive to development of allergy have received close attention. Agent-related factors include the nature of the chemical, its concentration, and the frequency and length of exposure to the agent. Host-related factors include the sex, age, and race of the host, as well as the general physical well being. The interactive nature of the host's immune system with the environment is the ultimate determinant of allergic disease. PMID:1821377

  14. Targeting congestion in allergic rhinitis: the importance of intranasal corticosteroids.

    PubMed

    Marple, Bradley F

    2008-01-01

    The cardinal nasal symptoms of allergic rhinitis (AR) are sustained by an underlying inflammatory process. Congestion is one of the most prominent and distressing symptoms for patients and is strongly associated with a broadly deteriorated quality of life and significant losses in productivity. The purpose of this study was to explore the role of intranasal corticosteroids (INSs) in down-regulating the inflammatory response to allergen and their clinical efficacy on AR symptoms, particularly congestion. AR is characterized by an influx of inflammatory cells and mediators into the nasal mucosa after antigen exposure. The response is biphasic, encompassing an early and a late phase. Antigen exposure has a priming effect, decreasing the threshold for subsequent allergic reaction on rechallenge and increasing the responsiveness of the nasal mucosa. INSs are a mainstay of therapy for AR and the most effective intervention for nasal congestion and other nasal symptoms, with established superiority to antihistamines, decongestants, and leukotriene antagonists. In addition to symptom relief, INSs suppress numerous stages of the inflammatory cascade, inhibiting the influx of inflammatory cells and mediators. Topical nasal corticosteroids have a low incidence of local adverse effects, negligible systemic absorption, and excellent safety. Congestion is one of the most bothersome symptoms of AR. INS therapy improves AR symptoms, with particular efficacy in relieving congestion, by attenuating nasal hyperresponsiveness. Pretreatment with INSs has been shown to relieve early and late-phase clinical symptoms of AR. Modification of the disease process results in significant relief of symptoms and leads to fewer disease exacerbations.

  15. Bakery flour dust exposure causes non-allergic inflammation and enhances allergic airway inflammation in mice

    PubMed Central

    Marraccini, Paolo; Brass, David M.; Hollingsworth, John W.; Maruoka, Shuichiro; Garantziotis, Stavros; Schwartz, David A.

    2014-01-01

    Background Baker’s asthma is one of the most commonly reported occupational lung diseases in countries where fresh bread is baked daily in large quantities, and is characterized by rhinitis, bronchial hyperresponsiveness, and reversible airflow obstruction. Epidemiological studies have identified pre-existing atopy as an important risk factor for developing baker’s asthma, yet the etiology and pathogenesis of baker’s asthma remain poorly understood. Objective We sought to develop a mouse model of baker’s asthma that could be used to characterize the development and progression of baker’s asthma. Methods We were unable to sensitize mice to bakery flour dust or flour dust extract. We assessed total inflammatory cells, cellular differential, total serum IgE and the pro-inflammatory cytokine response to oropharyngeally instilled bakery flour dust or flour dust extract by itself or in the context of OVA sensitization and challenge. Results Both bakery flour dust and flour dust extract consistently elicited a neutrophilic inflammation in a tlr4-independent manner; suggesting that endotoxin is not playing a role in the inflammatory response to flour dust. Moreover, bakery flour dust and dust extract significantly enhance the inflammatory response in OVA sensitized and challenged mice. Conclusions Bakery flour dust and flour dust extract are strongly pro-inflammatory and can cause non-allergic airway inflammation and can enhance allergen-mediated airway inflammation. PMID:18564331

  16. Bilirubin nanoparticles ameliorate allergic lung inflammation in a mouse model of asthma.

    PubMed

    Kim, Dong Eon; Lee, Yonghyun; Kim, MinGyo; Lee, Soyoung; Jon, Sangyong; Lee, Seung-Hyo

    2017-09-01

    Although asthma, a chronic inflammatory airway disease, is relatively well-managed by inhaled corticosteroids, the side effects associated with the long-term use of these agents precipitate the need for alternative therapeutic options based on differing modes of action. Bilirubin, a potent endogenous antioxidant, and anti-inflammatory molecule have been shown to ameliorate asthmatic symptoms; however, its clinical translation has been limited owing to its water insolubility and associated potential toxicity. Here we report the first application of bilirubin-based nanoparticles (BRNPs) as a nanomedicine for the treatment of allergic lung inflammatory disease. BRNPs were prepared directly from self-assembly of PEGylated bilirubin in aqueous solution and had a hydrodynamic diameter of ∼100 nm. Because allergen-specific type 2 T-helper (Th2) cells play a key role in the pathogenesis and progression of allergic asthma, the effects of BRNPs on Th2 immune responses were investigated both in vivo and in vitro. BRNPs after intravenous injection (i.v.) showed much higher serum concentration and a longer circulation time of bilirubin than the intraperitoneal injection (i.p.) of BRNPs or unconjugated bilirubin (UCB). The anti-asthmatic effects of BRNPs were assessed in a mouse model of allergen-induced asthma. Compared with UCB, treatment with BRNPs suppressed the symptoms of experimental allergic asthma and dramatically ameliorated Th2-related allergic lung inflammation. Consistent with these results, BRNPs caused a reduction of Th2 cell populations and the expression of related cytokines by antibody-stimulated CD4 + T cells in vitro. Therefore, our results establish BRNPs as an important immunomodulatory agent that may be useful as a therapeutic for allergic lung inflammatory disease and other immune-mediated disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Association of rheumatoid arthritis with allergic diseases: A nationwide population-based cohort study.

    PubMed

    Lai, Ning-Sheng; Tsai, Tzung-Yi; Koo, Malcolm; Lu, Ming-Chi

    2015-01-01

    Low-grade inflammation conditions, e.g., type 2 diabetes, have been shown to be associated with an increased risk of rheumatoid arthritis (RA). However, the association between other chronic inflammatory conditions, e.g., asthma, allergic rhinitis, and atopic dermatitis, is still unclear. To investigate the risk of RA in patients with allergic diseases, including asthma, allergic rhinitis, and atopic dermatitis, by using a nationwide health claims database. The Taiwan National Health Insurance Research Database was used to assemble a cohort of 170,570 patients ages 20 years old and older diagnosed with allergic diseases, including asthma, allergic rhinitis, or atopic dermatitis. A comparison cohort of 170,238 patients was constructed from the same data base, with frequency matching for sex, 10-year age group, and year of insurance enrollment. Cox proportional hazards regression analyses were conducted to assess the association between the allergic diseases and incident RA. Asthma (adjusted hazard ratio [AHR] 1.67, [95% confidence interval {CI}], 1.32-2.62) and allergic rhinitis (AHR 1.62 [95% CI, 1.33-1.98]) were significantly associated with the incident RA. These associations remained significant even after excluding patients who had concurrent diagnoses of asthma and allergic rhinitis. Patients with more than one allergic disease had an increased risk of developing RA (AHR 1.98 [95% CI, 1.50-2.62]). Subgroup analysis further indicated that middle-aged and elderly female patients with more than one allergic disease exhibited a high risk of developing RA. Significant associations between common allergic diseases and incident RA was found in this population-based cohort study. Our findings provided support to the hypothesis that allergic diseases and RA might share a similar underlying etiologic pathway related to chronic inflammatory responses.

  18. NEUROTROPHIN MEDIATION OF ALLERGIC AIRWAYS RESPONSES TO INHALED DIESEL PARTICLES IN MICE

    EPA Science Inventory

    Neurotrophins, including nerve growth factor (NGF) partially mediate many features of allergic airways disease including airway hyper-responsiveness. Diesel exhaust particulates (DEP) associated with the combustion of diesel fuel exacerbate many of these allergic airways respons...

  19. FABP4 regulates eosinophil recruitment and activation in allergic airway inflammation.

    PubMed

    Ge, Xiao Na; Bastan, Idil; Dileepan, Mythili; Greenberg, Yana; Ha, Sung Gil; Steen, Kaylee A; Bernlohr, David A; Rao, Savita P; Sriramarao, P

    2018-04-26

    Fatty acid binding protein 4 (FABP4), a member of a family of lipid-binding proteins, is known to play a role in inflammation by virtue of its ability to regulate intracellular events such as lipid fluxes and signaling. Studies have indicated a pro-inflammatory role for FABP4 in allergic asthma, although its expression and function in eosinophils, the predominant inflammatory cells recruited to allergic airways, was not investigated. We examined expression of FABP4 in murine eosinophils and its role in regulating cell recruitment in vitro as well as in cockroach antigen (CRA)-induced allergic airway inflammation. CRA exposure led to airway recruitment of FABP4-expressing inflammatory cells, specifically eosinophils, in wild type (WT) mice. FABP4 expression in eosinophils was induced by TNF-α as well as IL-4 and IL-13. FABP4-deficient eosinophils exhibited markedly decreased cell spreading/formation of leading edges on vascular cell adhesion molecule-1 and significantly decreased adhesion to intercellular adhesion molecule-1 associated with reduced β2 integrin expression relative to WT cells. Further, FABP4-deficient eosinophils exhibited decreased migration, F-actin polymerization, calcium flux and ERK (1/2) phosphorylation in response to eotaxin-1. In vivo, CRA-challenged FABP4-deficient mice exhibited attenuated eosinophilia and significantly reduced airway inflammation (improved airway reactivity, lower IL-5, IL-13, TNFα and LTC4 levels, decreased airway structural changes) compared to WT mice. In conclusion, expression of FABP4 in eosinophils is induced during conditions of inflammation and plays a pro-inflammatory role in the development of allergic asthma by promoting eosinophil adhesion and migration and contributing to the development of various aspects of airway inflammation.

  20. Anti-inflammatory activity of topical THC in DNFB-mediated mouse allergic contact dermatitis independent of CB1 and CB2 receptors.

    PubMed

    Gaffal, E; Cron, M; Glodde, N; Tüting, T

    2013-08-01

    ∆(9) -Tetrahydrocannabinol (THC), the active constituent of Cannabis sativa, exerts its biological effects in part through the G-protein-coupled CB1 and CB2 receptors, which were initially discovered in brain and spleen tissue, respectively. However, THC also has CB1/2 receptor-independent effects. Because of its immune-inhibitory potential, THC and related cannabinoids are being considered for the treatment of inflammatory skin diseases. Here we investigated the mechanism of the anti-inflammatory activity of THC and the role of CB1 and CB2 receptors. We evaluated the impact of topically applied THC on DNFB-mediated allergic contact dermatitis in wild-type and CB1/2 receptor-deficient mice. We performed immunohistochemical analyses for infiltrating immune cells and studied the influence of THC on the interaction between T cells, keratinocytes and myeloid immune cells in vitro. Topical THC application effectively decreased contact allergic ear swelling and myeloid immune cell infiltration not only in wild-type but also in CB1/2 receptor-deficient mice. We found that THC (1) inhibited the production of IFNγ by T cells, (2) decreased the production of CCL2 and of IFNγ-induced CCL8 and CXL10 by epidermal keratinocytes and (3) thereby limited the recruitment of myeloid immune cells in vitro in a CB1/2 receptor-independent manner. Topically applied THC can effectively attenuate contact allergic inflammation by decreasing keratinocyte-derived pro-inflammatory mediators that orchestrate myeloid immune cell infiltration independent of CB1/2 receptors. This has important implications for the future development of strategies to harness cannabinoids for the treatment of inflammatory skin diseases. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. DOSE-DEPENDENT ALLERGIC RESPONSES TO AN EXTRACT OF PENICILLIUM CHRYSOGENUM IN BAL/C MICE

    EPA Science Inventory

    Indoor mold has been associated with the development of allergic asthma. Penicillium chrysogenum, a common indoor mold, is known to have several allergens and can induce allergic responses in a mouse model of allergic penicilliosis. Our hypothesis is that soluble components of ...

  2. Inhibitory effect of 1,2,4,5-tetramethoxybenzene on mast cell-mediated allergic inflammation through suppression of IκB kinase complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Je, In-Gyu; Choi, Hyun Gyu; Kim, Hui-Hun

    As the importance of allergic disorders such as atopic dermatitis and allergic asthma, research on potential drug candidates becomes more necessary. Mast cells play an important role as initiators of allergic responses through the release of histamine; therefore, they should be the target of pharmaceutical development for the management of allergic inflammation. In our previous study, anti-allergic effect of extracts of Amomum xanthioides was demonstrated. To further investigate improved candidates, 1,2,4,5-tetramethoxybenzene (TMB) was isolated from methanol extracts of A. xanthioides. TMB dose-dependently attenuated the degranulation of mast cells without cytotoxicity by inhibiting calcium influx. TMB decreased the expression of pro-inflammatorymore » cytokines such as tumor necrosis factor-α and interleukin (IL)-4 at both the transcriptional and translational levels. Increased expression of these cytokines was caused by translocation of nuclear factor-κB into the nucleus, and it was hindered by suppressing activation of IκB kinase complex. To confirm the effect of TMB in vivo, the ovalbumin (OVA)-induced active systemic anaphylaxis (ASA) and IgE-mediated passive cutaneous anaphylaxis (PCA) models were used. In the ASA model, hypothermia was decreased by oral administration of TMB, which attenuated serum histamine, OVA-specific IgE, and IL-4 levels. Increased pigmentation of Evans blue was reduced by TMB in a dose-dependent manner in the PCA model. Our results suggest that TMB is a possible therapeutic candidate for allergic inflammatory diseases that acts through the inhibition of mast cell degranulation and expression of pro-inflammatory cytokines. - Highlights: • TMB reduced the degranulation of mast cells. • TMB inhibited the production of pro-inflammatory cytokines. • TMB suppressed both active and passive anaphylaxis. • Anti-allergic inflammatory effects of TMB might be due to the blocking IKK complex. • TMB might be a candidate for the

  3. Exposure to Particulate Hexavalent Chromium Exacerbates Allergic Asthma Pathology

    PubMed Central

    Schneider, Brent C.; Constant, Stephanie L.; Patierno, Steven R.; Jurjus, Rosalyn A.; Ceryak, Susan M.

    2011-01-01

    Airborne hexavalent chromate, Cr(VI), has been identified by the Environmental Protection Agency as a possible health threat in urban areas, due to the carcinogenic potential of some of its forms. Particulate chromates are produced in many different industrial settings, with high levels of aerosolized forms historically documented. Along with an increased risk of lung cancer, a high incidence of allergic asthma has been reported in workers exposed to certain inhaled particulate Cr(VI) compounds. However, a direct causal association between Cr(VI) and allergic asthma has not been established. We recently showed that inhaled particulate Cr(VI) induces an innate neutrophilic inflammatory response in BALB/c mice. In the current studies we investigated how the inflammation induced by inhaled particulate Cr(VI) might alter the pathology of an allergic asthmatic response. We used a well-established mouse model of allergic asthma. Groups of ovalbumin protein (OVA)-primed mice were challenged either with OVA alone, or with a combination of OVA and particulate zinc chromate, and various parameters associated with asthmatic responses were measured. Co-exposure to particulate Cr(VI) and OVA mediated a mixed form of asthma in which both eosinophils and neutrophils are present in airways, tissue pathology is markedly exacerbated, and airway hyperresponsiveness is significantly increased. Taken together these findings suggest that inhalation of particulate forms of Cr(VI) may augment the severity of ongoing allergic asthma, as well as alter its phenotype. Such findings may have implications for asthmatics in settings in which airborne particulate Cr(VI) compounds are present at high levels. PMID:22178736

  4. Anti-inflammatory Properties of Cannabidiol, a Nonpsychotropic Cannabinoid, in Experimental Allergic Contact Dermatitis.

    PubMed

    Petrosino, Stefania; Verde, Roberta; Vaia, Massimo; Allarà, Marco; Iuvone, Teresa; Di Marzo, Vincenzo

    2018-06-01

    Phytocannabinoids modulate inflammatory responses by regulating the production of cytokines in several experimental models of inflammation. Cannabinoid type-2 (CB 2 ) receptor activation was shown to reduce the production of the monocyte chemotactic protein-2 (MCP-2) chemokine in polyinosinic-polycytidylic acid [poly-(I:C)]-stimulated human keratinocyte (HaCaT) cells, an in vitro model of allergic contact dermatitis (ACD). We investigated if nonpsychotropic cannabinoids, such as cannabidiol (CBD), produced similar effects in this experimental model of ACD. HaCaT cells were stimulated with poly-(I:C), and the release of chemokines and cytokines was measured in the presence of CBD or other phytocannabinoids (such as cannabidiol acid, cannabidivarin, cannabidivarinic acid, cannabichromene, cannabigerol, cannabigerolic acid, cannabigevarin, tetrahydrocannabivarin, and tetrahydrocannabivarinic acid) and antagonists of CB 1 , CB 2 , or transient receptor potential vanilloid type-1 (TRPV1) receptors. HaCaT cell viability following phytocannabinoid treatment was also measured. The cellular levels of endocannabinoids [anandamide (AEA), 2-arachidonoylglycerol] and related molecules (palmitoylethanolamide, oleoylethanolamide) were quantified in poly-(I:C)-stimulated HaCaT cells treated with CBD. We show that in poly-(I:C)-stimulated HaCaT cells, CBD elevates the levels of AEA and dose-dependently inhibits poly-(I:C)-induced release of MCP-2, interleukin-6 (IL-6), IL-8, and tumor necrosis factor- α in a manner reversed by CB 2 and TRPV1 antagonists 6-iodopravadoline (AM630) and 5'-iodio-resiniferatoxin (I-RTX), respectively, with no cytotoxic effect. This is the first demonstration of the anti-inflammatory properties of CBD in an experimental model of ACD. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  5. Chrysin suppresses mast cell-mediated allergic inflammation: Involvement of calcium, caspase-1 and nuclear factor-{kappa}B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bae, Yunju; Lee, Soyoung; Kim, Sang-Hyun, E-mail: shkim72@knu.ac.kr

    A great number of people are suffering from allergic inflammatory diseases such as asthma, atopic dermatitis, and sinusitis. Therefore discovery of drugs for the treatment of these diseases is an important subject in human health. Chrysin (5,7-dihydroxyflavone) is a natural flavonoid contained in propolis, blue passion flower, and fruits. Several studies reported that chrysin has beneficial effects including anti-tumor and anti-oxidant activities. The aim of the present study was to elucidate whether chrysin modulates the allergic inflammatory reaction and to study its possible mechanisms of action using mast cell-based in vitro and in vivo models. Chrysin inhibited immediate-type systemic hypersensitivitymore » and serum histamine release. Chrysin attenuated immunoglobulin E-mediated local anaphylaxis. These inhibitory effects of chrysin on the systemic and local allergic reaction were more potent than cromolyn, a known anti-allergic drug. Chrysin reduced histamine release from mast cells. The inhibitory effect of chrysin on the histamine release was mediated by the modulation of intracellular calcium. In addition, chrysin decreased gene expression of pro-inflammatory cytokines such as, tumor necrosis factor-{alpha}, IL (interleukin)-1{beta}, IL-4, and IL-6 in mast cells. The inhibitory effect of chrysin on the pro-inflammatory cytokine was nuclear factor-{kappa}B and caspase-1 dependent. Our findings provide evidence that chrysin inhibits mast cell-derived allergic inflammatory reactions by blocking histamine release and pro-inflammatory cytokine expression, and suggest the mechanisms of action. Furthermore, in vivo and in vitro anti-allergic inflammatory effect of chrysin suggests a possible therapeutic application of this agent in allergic inflammatory diseases. - Research Highlights: > Discovery of drugs for the allergic inflammation is important in human health. > Chrysin is a natural flavonoid contained in propolis, blue passion flower, and fruits

  6. Limonene and its ozone-initiated reaction products attenuate allergic lung inflammation in mice.

    PubMed

    Hansen, Jitka S; Nørgaard, Asger W; Koponen, Ismo K; Sørli, Jorid B; Paidi, Maya D; Hansen, Søren W K; Clausen, Per Axel; Nielsen, Gunnar D; Wolkoff, Peder; Larsen, Søren Thor

    2016-11-01

    Inhalation of indoor air pollutants may cause airway irritation and inflammation and is suspected to worsen allergic reactions. Inflammation may be due to mucosal damage, upper (sensory) and lower (pulmonary) airway irritation due to activation of the trigeminal and vagal nerves, respectively, and to neurogenic inflammation. The terpene, d-limonene, is used as a fragrance in numerous consumer products. When limonene reacts with the pulmonary irritant ozone, a complex mixture of gas and particle phase products is formed, which causes sensory irritation. This study investigated whether limonene, ozone or the reaction mixture can exacerbate allergic lung inflammation and whether airway irritation is enhanced in allergic BALB/cJ mice. Naïve and allergic (ovalbumin sensitized) mice were exposed via inhalation for three consecutive days to clean air, ozone, limonene or an ozone-limonene reaction mixture. Sensory and pulmonary irritation was investigated in addition to ovalbumin-specific antibodies, inflammatory cells, total protein and surfactant protein D in bronchoalveolar lavage fluid and hemeoxygenase-1 and cytokines in lung tissue. Overall, airway allergy was not exacerbated by any of the exposures. In contrast, it was found that limonene and the ozone-limonene reaction mixture reduced allergic inflammation possibly due to antioxidant properties. Ozone induced sensory irritation in both naïve and allergic mice. However, allergic but not naïve mice were protected from pulmonary irritation induced by ozone. This study showed that irritation responses might be modulated by airway allergy. However, aggravation of allergic symptoms was observed by neither exposure to ozone nor exposure to ozone-initiated limonene reaction products. In contrast, anti-inflammatory properties of the tested limonene-containing pollutants might attenuate airway allergy.

  7. NEUROTROPHIN RECEPTOR BLOCKADE ATTENUATES DIESEL EXHAUST PARTICULATE MATTER (DEP) ENHANCEMENT OF ALLERGIC RESPONSES

    EPA Science Inventory

    ABSTRACT BODY:
    Recent investigations have linked neurotrophins including NGF, NT-3, and BDNF to allergic airways diseases. Antibody blockade of NGF attenuates airway resistance associated with allergic airway responses in mice. Mice administered an antibody against the low aff...

  8. Modification of acute and late-phase allergic responses to ovalbumin with lipopolysaccharide.

    PubMed

    Tulic, Mark K; Holt, Patrick G; Sly, Peter D

    2002-10-01

    We have previously shown that lipopolysaccharide (LPS) exposure in sensitised animals 18 h after ovalbumin (OVA) challenge inhibits OVA-induced airway hyper-responsiveness (AHR). In the present study, we investigated the effect of LPS on OVA-induced acute and late-phase allergic responses in sensitised rats when challenged with OVA. Rats were sensitised with OVA and 11 days later challenged with 1% OVA in the presence or absence of LPS (0.5-50 microg/ml) given in the same nebulizer. Acute responses to OVA were measured each minute for 30 min after challenge. In a separate group of animals, late-phase responses to OVA were determined at 24 h. At the end of each study, Evans blue dye was injected and animals sacrificed 30 min later. Bronchoalveolar lavage was obtained to monitor inflammatory cell migration and microvascular leakage. OVA challenge in sensitised animals produced an acute response with changes in lung mechanics peaking 10.0 +/- 0.9 min after OVA and returning to baseline within 30 min. This was followed 24 h later by increased responses to methacholine chloride (MCh), inflammatory cell influx and increased Evans blue leakage into the lungs. Presence of 5 or 50 microg/ml LPS in the nebulizer during OVA challenge altered the kinetics of the acute-phase response, with an immediate decrease in lung function (time to peak decreased from 10.3 +/- 1.2 to 1.8 +/- 0.2 and 2.2 +/- 0.3 min, respectively: p < 0.001, n = 6) and a dose-dependent attenuation of late-phase AHR, cellular influx (n = 5, p < 0.001) and Evans blue leakage (n = 5, p < 0.001) at 24 h. In summary, co-administration of OVA with LPS modifies both the acute and late-phase responses to the allergen, inducing an earlier acute change in lung function and a dose-dependent inhibition of late-phase responses to the allergen. Copyright 2002 S. Karger AG, Basel

  9. Can helminths or helminth-derived products be used in humans to prevent or treat allergic diseases?

    PubMed

    Erb, Klaus J

    2009-02-01

    Recent epidemiological and experimental data indicate that infection with helminths can protect humans from the development of allergic disorders by immunosuppressive mechanisms that involve the induction of IL-10 and/or regulatory T cells. Furthermore, helminth-derived immune modulators suppress allergic responses in mice. Trichuris suis therapy has been shown to be safe and efficacious in treating inflammatory bowel disease in humans. Has the time come to treat patients who have allergic diseases or healthy humans who are at risk of developing these diseases with helminths or helminth-derived products? Here, I discuss the pros and cons of such an approach.

  10. A small amount of tetrachloroethylene ingestion from drinking water accelerates antigen-stimulated allergic responses.

    PubMed

    Seo, Makoto; Yamagiwa, Takeo; Kobayashi, Ryo; Ikeda, Koji; Satoh, Masahiko; Inagaki, Naoki; Nagai, Hiroichi; Nagase, Hisamitsu

    2008-01-01

    Previously, we observed that tetrachloroethylene (perchloroethylene, PCE) increased histamine release and inflammatory mediator production from antigen-stimulated mast cells. In this study, we examined the enhancing effect of low concentrations of PCE in drinking water on antigen-stimulated allergic responses. After exposure of Wistar rats to PCE in drinking water for 2 or 4 weeks, we performed a passive cutaneous anaphylaxis (PCA) reaction. PCE exposure for 4 weeks enhanced PCA reaction in a dose-dependent manner. In pathological studies, PCE exposure for 2 weeks exacerbated inflammation characterized by infiltration of lymphocytes and accumulation of mast cells around the vessel. Non-purified mast cells (NPMCs) from rats treated with 1mg/L PCE in drinking water for 2 weeks increased antigen-stimulated histamine release. Furthermore, the leukocytes of rats treated with PCE in drinking water for 4 weeks showed increased interleukin (IL)-4 expression. The mechanism of enhancing the PCA reaction is assumed to be that PCE increases IL-4 production and PCE causes T helper (Th) 1/Th2-type helper T-cell imbalance and increases histamine release from excessively accumulated mast cells. The results suggest that the intake of PCE in drinking water, even at a low concentration, leads to the initiation and acceleration of allergic diseases.

  11. Inhibitory effect of putranjivain A on allergic inflammation through suppression of mast cell activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hui-Hun; Park, Seung-Bin; Lee, Soyoung

    2014-02-01

    A great number of people are suffering from allergic inflammatory disease such as asthma, atopic dermatitis, and sinusitis. Therefore discovery of drugs for the treatment of these diseases is an important subject in human health. Putranjivain A (PJA), member of ellagitannin, is known to possess beneficial effects including anti-cancer and anti-viral activities. The aim of the present study was to elucidate whether PJA modulates the allergic inflammatory reaction and to study its possible mechanisms of action using mast cell-based in vitro and in vivo models. The study was performed in anaphylaxis mouse model and cultured mast cells. PJA inhibited themore » expression of pro-inflammatory cytokines in immunoglobulin E-stimulated mast cells. PJA reduced this expression by inhibiting nuclear factor (NF)-κB and nuclear factor of activated T cell. The oral administration of PJA reduced systemic and cutaneous anaphylaxis, the release of serum histamine, and the expression of the histamine H{sub 1} receptor. In addition, PJA attenuated the activation of mast cells. PJA inhibited the release of histamine from various types of mast cells by the suppression of intracellular calcium. The inhibitory activity of PJA on the allergic reaction was similar to that of disodium cromoglycate, a known anti-allergic drug. These results suggest that PJA can facilitate the prevention or treatment of allergic inflammatory diseases mediated by mast cells. - Highlights: • PJA reduced the degranulation of mast cells. • PJA inhibited the production of inflammatory cytokines. • The effect of PJA on allergic reaction was comparable to the DSCG. • PJA might be a candidate for the treatment of allergic inflammatory diseases.« less

  12. The active contribution of Toll-like receptors to allergic airway inflammation.

    PubMed

    Chen, Keqiang; Xiang, Yi; Yao, Xiaohong; Liu, Ying; Gong, Wanghua; Yoshimura, Teizo; Wang, Ji Ming

    2011-10-01

    Epithelia lining the respiratory tract represent a major portal of entry for microorganisms and allergens and are equipped with innate and adaptive immune signaling receptors for host protection. These include Toll-like receptors (TLRs) that recognize microbial components and evoke diverse responses in cells of the respiratory system. TLR stimulation by microorganism-derived molecules activates antigen presenting cells, control T helper (Th) 1, Th2, and Th17 immune cell differentiation, cytokine production by mast cells, and activation of eosinophils. It is clear that TLR are involved in the pathophysiology of allergic airway diseases such as asthma. Dendritic cells (DCs), a kind of antigen presenting cells, which play a key role in the induction of allergic airway inflammation, are privileged targets for pathogen associated molecular patterns (PAMPs). During the allergic responses, engagement of TLRs on DCs determines the Th2 polarization of the T cells. TLR signaling in mast cells increases the release of IL-5, and TLR activation of airway epithelial cells forces the generation of proallergic Th2 type of cytokines. Although these responses aim to protect the host, they may also result in inflammatory tissue damage in the airway. Under certain conditions, stimulation of TLRs, in particular, TLR9, may reduce Th2-dependent allergic inflammation by induction of Th1 responses. Therefore, understanding the complex regulatory roles of TLRs in the pathogenesis of allergic airway inflammation should facilitate the development of preventive and therapeutic measures for asthmatic patients. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. [Allergic rhinitis and ashtma: 2 illnesses. The same disease?].

    PubMed

    González Díaz, Sandra N; Arias Cruz, Alfredo

    2002-01-01

    Disturbances of the upper and lower airways frequently coexist, and the association between allergic rhinitis and asthma is an example of that. The relationship between allergic rhinitis and asthma probably occurs because both, nasal and bronchial mucosas are elements of a "united airway", and on the other hand, allergic rhinitis and asthma are manifestations of a common allergic disease. Allergic rhinitis and asthma are not only statistically associated, but have pathophysiological and clinical similarities. Allergic rhinitis is itself a risk factor for the development of asthma, but additionally may confound the diagnosis of asthma and may exacerbate coexisting asthma. The management of allergic rhinitis, mainly with the use of intranasal corticosteroids, improve asthma symptoms and lung function in asthmatic patients. Several mechanisms have been proposed to link the nose and bronchi, which include: postnasal drip of inflammatory cells and pro-inflammatory molecules; a possible nasobronchial neural reflex; an increased exposure of the lower airways to dry and cold air as well as aeroallergens because the mouth breathing secondary to nasal obstruction; and an increased susceptibility to rhinovirus infection secondary to an increased ICAM-1 expression in the nasal mucosa of patients with allergic rhinitis. A better understanding of the rhinitis-asthma relationship nature might allow the creation of better strategies for the integral treatment of patients with these diseases.

  14. GARP inhibits allergic airway inflammation in a humanized mouse model.

    PubMed

    Meyer-Martin, H; Hahn, S A; Beckert, H; Belz, C; Heinz, A; Jonuleit, H; Becker, C; Taube, C; Korn, S; Buhl, R; Reuter, S; Tuettenberg, A

    2016-09-01

    Regulatory T cells (Treg) represent a promising target for novel treatment strategies in patients with inflammatory/allergic diseases. A soluble derivate of the Treg surface molecule glycoprotein A repetitions predominant (sGARP) has strong anti-inflammatory and regulatory effects on human cells in vitro as well as in vivo through de novo induction of peripheral Treg. The aim of this study was to investigate the immunomodulatory function of sGARP and its possible role as a new therapeutic option in allergic diseases using a humanized mouse model. To analyze the therapeutic effects of sGARP, adult NOD/Scidγc(-/-) (NSG) mice received peripheral blood mononuclear cells (PBMC) derived from allergic patients with sensitization against birch allergen. Subsequently, allergic inflammation was induced in the presence of Treg alone or in combination with sGARP. In comparison with mice that received Treg alone, additional treatment with sGARP reduced airway hyperresponsiveness (AHR), influx of neutrophils and macrophages into the bronchoalveolar lavage (BAL), and human CD45(+) cells in the lungs. Furthermore, the numbers of mucus-producing goblet cells and inflammatory cell infiltrates were reduced. To elucidate whether the mechanism of action of sGARP involves the TGF-β receptor pathway, mice additionally received anti-TGF-β receptor II (TGF-βRII) antibodies. Blocking the signaling of TGF-β through TGF-βRII abrogated the anti-inflammatory effects of sGARP, confirming its essential role in inhibiting the allergic inflammation. Induction of peripheral tolerance via sGARP is a promising potential approach to treat allergic airway diseases. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Accumulation mode particles and LPS exposure induce TLR-4 dependent and independent inflammatory responses in the lung.

    PubMed

    Fonceca, Angela M; Zosky, Graeme R; Bozanich, Elizabeth M; Sutanto, Erika N; Kicic, Anthony; McNamara, Paul S; Knight, Darryl A; Sly, Peter D; Turner, Debra J; Stick, Stephen M

    2018-01-22

    Accumulation mode particles (AMP) are formed from engine combustion and make up the inhalable vapour cloud of ambient particulate matter pollution. Their small size facilitates dispersal and subsequent exposure far from their original source, as well as the ability to penetrate alveolar spaces and capillary walls of the lung when inhaled. A significant immuno-stimulatory component of AMP is lipopolysaccharide (LPS), a product of Gram negative bacteria breakdown. As LPS is implicated in the onset and exacerbation of asthma, the presence or absence of LPS in ambient particulate matter (PM) may explain the onset of asthmatic exacerbations to PM exposure. This study aimed to delineate the effects of LPS and AMP on airway inflammation, and potential contribution to airways disease by measuring airway inflammatory responses induced via activation of the LPS cellular receptor, Toll-like receptor 4 (TLR-4). The effects of nebulized AMP, LPS and AMP administered with LPS on lung function, cellular inflammatory infiltrate and cytokine responses were compared between wildtype mice and mice not expressing TLR-4. The presence of LPS administered with AMP appeared to drive elevated airway resistance and sensitivity via TLR-4. Augmented TLR4 driven eosinophilia and greater TNF-α responses observed in AMP-LPS treated mice independent of TLR-4 expression, suggests activation of allergic responses by TLR4 and non-TLR4 pathways larger than those induced by LPS administered alone. Treatment with AMP induced macrophage recruitment independent of TLR-4 expression. These findings suggest AMP-LPS as a stronger stimulus for allergic inflammation in the airways then LPS alone.

  16. Effects of gasoline engine emissions on preexisting allergic airway responses in mice.

    PubMed

    Day, Kimberly C; Reed, Matthew D; McDonald, Jacob D; Seilkop, Steven K; Barrett, Edward G

    2008-10-01

    Gasoline-powered vehicle emissions contribute significantly to ambient air pollution. We hypothesized that exposure to gasoline engine emissions (GEE) may exacerbate preexisting allergic airway responses. Male BALB/c mice were sensitized by injection with ovalbumin (OVA) and then received a 10-min aerosolized OVA challenge. Parallel groups were sham-sensitized with saline. Mice were exposed 6 h/day to air (control, C) or GEE containing particulate matter (PM) at low (L), medium (M), or high (H) concentrations, or to the H level with PM removed by filtration (high-filtered, HF). Immediately after GEE exposure mice received another 10-min aerosol OVA challenge (pre-OVA protocol). In a second (post-OVA) protocol, mice were similarly sensitized but only challenged to OVA before air or GEE exposure. Measurements of airway hyperresponsiveness (AHR), bronchoalveolar lavage (BAL), and blood collection were performed approximately 24 h after the last exposure. In both protocols, M, H, and HF GEE exposure significantly decreased BAL neutrophils from nonsensitized mice but had no significant effect on BAL cells from OVA-sensitized mice. In the pre-OVA protocol, GEE exposure increased OVA-specific IgG(1) but had no effect on BAL interleukin (IL)-2, IL-4, IL-13, or interferon (IFN)-gamma in OVA-sensitized mice. Nonsensitized GEE-exposed mice had increased OVA-specific IgG(2a), IgE, and IL-2, but decreased total IgE. In the post-OVA protocol, GEE exposure reduced BAL IL-4, IL-5, and IFN-gamma in nonsensitized mice but had no effect on sensitized mice. These results suggest acute exposure to the gas-vapor phase of GEE suppressed inflammatory cells and cytokines from nonsensitized mice but did not substantially exacerbate allergic responses.

  17. The systemic inflammatory response syndrome.

    PubMed

    Robertson, Charles M; Coopersmith, Craig M

    2006-04-01

    The systemic inflammatory response syndrome (SIRS) is the body's response to an infectious or noninfectious insult. Although the definition of SIRS refers to it as an "inflammatory" response, it actually has pro- and anti-inflammatory components. This review outlines the pathophysiology of SIRS and highlights potential targets for future therapeutic intervention in patients with this complex entity.

  18. Differences in allergic inflammatory responses between urban PM2.5 and fine particle derived from desert-dust in murine lungs.

    PubMed

    He, Miao; Ichinose, Takamichi; Kobayashi, Makoto; Arashidani, Keiichi; Yoshida, Seiichi; Nishikawa, Masataka; Takano, Hirohisa; Sun, Guifan; Shibamoto, Takayuki

    2016-04-15

    The biological and chemical natures of materials adsorbed onto fine particulate matter (PM2.5) vary by origin and passage routes. The exacerbating effects of the two samples-urban PM2.5 (U-PM2.5) collected during the hazy weather in a Chinese city and fine particles (ASD-PM2.5) collected during Asian sand dust (ASD) storm event days in Japan-on murine lung eosinophilia were compared to clarify the role of toxic materials in PM2.5. The amounts of β-glucan and mineral components were higher in ASD-PM2.5 than in U-PM2.5. On the other hand, organic chemicals, including polycyclic aromatic hydrocarbons (PAHs), were higher in U-PM2.5 than in ASD-PM2.5. When BALB/c mice were intratracheally instilled with U-PM2.5 and ASD-PM2.5 (total 0.4 mg/mouse) with or without ovalbumin (OVA), various biological effects were observed, including enhancement of eosinophil recruitment induced by OVA in the submucosa of the airway, goblet cell proliferation in the bronchial epithelium, synergic increase of OVA-induced eosinophil-relevant cytokines and a chemokine in bronchoalveolar lavage fluid, and increase of serum OVA-specific IgG1 and IgE. Data demonstrate that U-PM2.5 and ASD-PM2.5 induced allergic inflammatory changes and caused lung pathology. U-PM2.5 and ASD-PM2.5 increased F4/80(+) CD11b(+) cells, indicating that an influx of inflammatory and exudative macrophages in lung tissue had occurred. The ratio of CD206 positive F4/80(+) CD11b(+) cells (M2 macrophages) in lung tissue was higher in the OVA+ASD-PM2.5 treated mice than in the OVA+U-PM2.5 treated mice. These results suggest that the lung eosinophilia exacerbated by both PM2.5 is due to activation of a Th2-associated immune response along with induced M2 macrophages and the exacerbating effect is greater in microbial element (β-glucan)-rich ASD-PM2.5 than in organic chemical-rich U-PM2.5. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. TH17-induced neutrophils enhance the pulmonary allergic response following BALB/c exposure to house dust mite allergen and fine particulate matter from California and China.

    PubMed

    Zhang, Jingjing; Fulgar, Ciara C; Mar, Tiffany; Young, Dominique E; Zhang, Qi; Bein, Keith J; Cui, Liangliang; Castañeda, Alejandro; Vogel, Christoph F A; Sun, Xiaolin; Li, Wei; Smiley-Jewell, Suzette; Zhang, Zunzhen; Pinkerton, Kent E

    2018-05-28

    Asthma is a global and increasingly prevalent disease. According to the World Health Organization, approximately 235 million people suffer from asthma. Studies suggest that fine particulate matter (PM2.5) can induce innate immune responses, promote allergic sensitization, and exacerbate asthmatic symptoms and airway hyper-responsiveness. Recently, severe asthma and allergic sensitization have been associated with T-helper cell type 17 (TH17) activation. Few studies have investigated the links between PM2.5 exposure, allergic sensitization, asthma, and TH17 activation. This study aimed to determine whether 1) low-dose extracts of PM2.5 from California (PMCA) or China (PMCH) enhance allergic sensitization in mice following exposure to house dust mite (HDM) allergen; 2) eosinophilic or neutrophilic inflammatory responses result from PM and HDM exposure; and 3) TH17-associated cytokines are increased in the lung following exposure to PM and/or HDM.Ten-week old male BALB/c mice (n = 6-10/group) were intranasally instilled with phosphate-buffered saline (PBS), PM+PBS, HDM, or PM+HDM, on Days 1, 3, and 5 (sensitization experiments), and PBS or HDM on Days 12-14 (challenge experiments). Pulmonary function, bronchoalveolar lavage cell differentials, plasma immunoglobulin (Ig) protein levels, and lung tissue pathology, cyto-/chemo-kine proteins, and gene expression were assessed on Day 15.Results indicated low-dose PM2.5 extracts can enhance allergic sensitization and TH17-associated responses. While PMCA+HDM significantly decreased pulmonary function, and significantly increased neutrophils, Igs, and TH17-related protein and gene levels compared to HDM, there were no significant differences between HDM and PMCH+HDM treatments. This may result from greater copper and oxidized organic content in PMCA versus PMCH.

  20. Exposure to particulate hexavalent chromium exacerbates allergic asthma pathology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, Brent C.; Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037; Constant, Stephanie L.

    Airborne hexavalent chromate, Cr(VI), has been identified by the Environmental Protection Agency as a possible health threat in urban areas, due to the carcinogenic potential of some of its forms. Particulate chromates are produced in many different industrial settings, with high levels of aerosolized forms historically documented. Along with an increased risk of lung cancer, a high incidence of allergic asthma has been reported in workers exposed to certain inhaled particulate Cr(VI) compounds. However, a direct causal association between Cr(VI) and allergic asthma has not been established. We recently showed that inhaled particulate Cr(VI) induces an innate neutrophilic inflammatory responsemore » in BALB/c mice. In the current studies we investigated how the inflammation induced by inhaled particulate Cr(VI) might alter the pathology of an allergic asthmatic response. We used a well-established mouse model of allergic asthma. Groups of ovalbumin protein (OVA)-primed mice were challenged either with OVA alone, or with a combination of OVA and particulate zinc chromate, and various parameters associated with asthmatic responses were measured. Co-exposure to particulate Cr(VI) and OVA mediated a mixed form of asthma in which both eosinophils and neutrophils are present in airways, tissue pathology is markedly exacerbated, and airway hyperresponsiveness is significantly increased. Taken together these findings suggest that inhalation of particulate forms of Cr(VI) may augment the severity of ongoing allergic asthma, as well as alter its phenotype. Such findings may have implications for asthmatics in settings in which airborne particulate Cr(VI) compounds are present at high levels. -- Highlights: ► Allergic asthma correlated with exposure to certain inhaled particulate chromates. ► Direct causal association between Cr(VI) and allergic asthma not established. ► Cr exacerbated pathology and airway hyperresponsiveness in an OVA-challenged mouse.

  1. Multiple elements of the allergic arm of the immune response modulate autoimmune demyelination

    PubMed Central

    Pedotti, Rosetta; DeVoss, Jason J.; Youssef, Sawsan; Mitchell, Dennis; Wedemeyer, Jochen; Madanat, Rami; Garren, Hideki; Fontoura, Paulo; Tsai, Mindy; Galli, Stephen J.; Sobel, Raymond A.; Steinman, Lawrence

    2003-01-01

    Analysis of mRNA from multiple sclerosis lesions revealed increased amounts of transcripts for several genes encoding molecules traditionally associated with allergic responses, including prostaglandin D synthase, histamine receptor type 1 (H1R), platelet activating factor receptor, Ig Fc ɛ receptor 1 (FcɛRI), and tryptase. We now demonstrate that, in the animal model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), mediated by T helper 1 (Th1) T cells, histamine receptor 1 and 2 (H1R and H2R) are present on inflammatory cells in brain lesions. Th1 cells reactive to myelin proteolipid protein expressed more H1R and less H2R than Th2 cells. Pyrilamine, an H1R antagonist, blocked EAE, and the platelet activating factor receptor antagonist CV6209 reduced the severity of EAE. EAE severity was also decreased in mice with disruption of the genes encoding Ig FcγRIII or both FcγRIII and FcɛRI. Prostaglandin D synthase and tryptase transcripts were elevated in EAE brain. Taken together, these data reveal extensive involvement of elements of the immune response associated with allergy in autoimmune demyelination. The pathogenesis of demyelination must now be viewed as encompassing elements of both Th1 responses and “allergic” responses. PMID:12576552

  2. Allergic sensitization enhances anion current responsiveness of murine trachea to PAR-2 activation.

    PubMed

    Rievaj, Juraj; Davidson, Courtney; Nadeem, Ahmed; Hollenberg, Morley; Duszyk, Marek; Vliagoftis, Harissios

    2012-03-01

    Protease-activated receptor 2 (PAR-2) is a G protein-coupled receptor possibly involved in the pathogenesis of asthma. PAR-2 also modulates ion transport in cultured epithelial cells, but these effects in native airways are controversial. The influence of allergic inflammation on PAR-2-induced changes in ion transport has received little attention. Here, we studied immediate changes in transepithelial short circuit current (I (sc)) induced by PAR-2 activation in the tracheas of naive and allergic mice. Activation of PAR-2 with an apically added activation peptide (AP) induced a small increase in I (sc), while a much larger increase was observed following basolateral AP addition. In ovalbumin-sensitized and -challenged animals used as a model of allergic airway inflammation, the effect of basolateral AP addition was enhanced. Responses to basolateral AP in both naive and allergic mice were not decreased by blocking sodium absorption with amiloride or CFTR function with CFTR(inh)172 but were reduced by the cyclooxygenase inhibitor indomethacin and largely blocked (>80%) by niflumic acid, a calcium-activated chloride channels' (CaCC) blocker. Allergic mice also showed an enhanced response to ATP and thapsigargin. There was no change in mRNA expression of Par-2 or of the chloride channels Ano1 (Tmem16a) and Bestrophin 2 in tracheas from allergic mice, while mRNA levels of Bestrophin 1 were increased. In conclusion, basolateral PAR-2 activation in the mouse airways led to increased anion secretion through apical CaCC, which was more pronounced in allergic animals. This could be a protective mechanism aimed at clearing allergens and defending against mucus plugging.

  3. Dietary Fiber Intake Regulates Intestinal Microflora and Inhibits Ovalbumin-Induced Allergic Airway Inflammation in a Mouse Model

    PubMed Central

    Zhang, Zhiyu; Shi, Lei; Pang, Wenhui; Liu, Wenwen; Li, Jianfeng; Wang, Haibo; Shi, Guanggang

    2016-01-01

    Background Recently, academic studies suggest that global growth of airway allergic disease has a close association with dietary changes including reduced consumption of fiber. Therefore, appropriate dietary fiber supplementation might be potential to prevent airway allergic disease (AAD). Objective We investigated whether dietary fiber intake suppressed the induction of AAD and tried to elucidate the possible underlying mechanisms. Methods The control mice and AAD model mice fed with 4% standard-fiber chow, while low-fiber group of mice fed with a 1.75% low-fiber chow. The two fiber-intervened groups including mice, apart from a standard-fiber diet, were also intragastric (i.g.) administrated daily with poorly fermentable cellulose or readily fermentable pectin (0.4% of daily body weight), respectively. All animals except normal mice were sensitized and challenged with ovalbumin (OVA) to induce airway allergic inflammation. Hallmarks of AAD were examined by histological analysis and ELISA. The variation in intestinal bacterial composition was assessed by qualitative analysis of 16S ribosomal DNA (rDNA) content in fecal samples using real-time PCR. Results Low-fiber diet aggravated inflammatory response in ovalbumin-induced allergic mice, whereas dietary fiber intake significantly suppressed the allergic responses, attenuated allergic symptoms of nasal rubbing and sneezing, decreased the pathology of eosinophil infiltration and goblet cell metaplasia in the nasal mucosa and lung, inhibited serum OVA-specific IgE levels, and lowered the levels of Th2 cytokines in NALF and BALF, but, increased Th1 (IFN-γ) cytokines. Additionally, dietary fiber intake also increased the proportion of Bacteroidetes and Actinobacteria, and decreased Firmicutes and Proteobacteria. Levels of probiotic bacteria, such as Lactobacillus and Bifidobacterium, were upgraded significantly. Conclusion Long-term deficiency of dietary fiber intake increases the susceptibility to AAD, whereas proper

  4. Dietary Fiber Intake Regulates Intestinal Microflora and Inhibits Ovalbumin-Induced Allergic Airway Inflammation in a Mouse Model.

    PubMed

    Zhang, Zhiyu; Shi, Lei; Pang, Wenhui; Liu, Wenwen; Li, Jianfeng; Wang, Haibo; Shi, Guanggang

    2016-01-01

    Recently, academic studies suggest that global growth of airway allergic disease has a close association with dietary changes including reduced consumption of fiber. Therefore, appropriate dietary fiber supplementation might be potential to prevent airway allergic disease (AAD). We investigated whether dietary fiber intake suppressed the induction of AAD and tried to elucidate the possible underlying mechanisms. The control mice and AAD model mice fed with 4% standard-fiber chow, while low-fiber group of mice fed with a 1.75% low-fiber chow. The two fiber-intervened groups including mice, apart from a standard-fiber diet, were also intragastric (i.g.) administrated daily with poorly fermentable cellulose or readily fermentable pectin (0.4% of daily body weight), respectively. All animals except normal mice were sensitized and challenged with ovalbumin (OVA) to induce airway allergic inflammation. Hallmarks of AAD were examined by histological analysis and ELISA. The variation in intestinal bacterial composition was assessed by qualitative analysis of 16S ribosomal DNA (rDNA) content in fecal samples using real-time PCR. Low-fiber diet aggravated inflammatory response in ovalbumin-induced allergic mice, whereas dietary fiber intake significantly suppressed the allergic responses, attenuated allergic symptoms of nasal rubbing and sneezing, decreased the pathology of eosinophil infiltration and goblet cell metaplasia in the nasal mucosa and lung, inhibited serum OVA-specific IgE levels, and lowered the levels of Th2 cytokines in NALF and BALF, but, increased Th1 (IFN-γ) cytokines. Additionally, dietary fiber intake also increased the proportion of Bacteroidetes and Actinobacteria, and decreased Firmicutes and Proteobacteria. Levels of probiotic bacteria, such as Lactobacillus and Bifidobacterium, were upgraded significantly. Long-term deficiency of dietary fiber intake increases the susceptibility to AAD, whereas proper fiber supplementation promotes effectively the

  5. Effects of ZCR-2060 on allergic airway inflammation and cell activation in guinea-pigs.

    PubMed

    Abe, T; Yoshida, K; Omata, T; Segawa, Y; Matsuda, K; Nagai, H

    1994-11-01

    The effects of 2-(2-(4-(diphenylmethyl)-1-piperadinyl) ethoxy) benzoic acid malate (ZCR-2060) on allergic airway inflammation and inflammatory cell activation in guinea-pigs were studied. Allergic airway inflammation was induced by inhalation of antigen into actively-sensitized animals and the increase in inflammatory cells into bronchoalveolar lavage fluid (BALF) was measured. Aeroantigen-induced infiltration of inflammatory cells, especially eosinophils and neutrophils, in BALF gradually increased, and reached a peak at 6 or 9 h after the challenge. ZCR-2060 (1 mg kg-1 p.o.) clearly inhibited the increase of eosinophil numbers in BALF. Moreover, the effect of ZCR-2060 on inflammatory cell activation in terms of chemotaxis and superoxide generation in-vitro was studied. ZCR-2060 (10(-6)-10(-4) M) inhibited the platelet-activating factor (PAF)-induced chemotaxis of eosinophils and neutrophils, but did not inhibit the leukotriene B4-induced chemotaxis of eosinophils and the formyl-Met-Leu-Phe-induced chemotaxis of neutrophils. PAF-induced superoxide anion generation by eosinophils, neutrophils and alveolar macrophages was inhibited by ZCR-2060 (10(-6)-10(-4) M). However, ZCR-2060 did not affect phorbol myristate acetate-induced superoxide anion generation by eosinophils, neutrophils and alveolar macrophages. These results indicate that ZCR-2060 inhibits allergic airway inflammation, and PAF-induced inflammatory cell activation in guinea-pigs. ZCR-2060 may prove useful for the treatment of allergic airway inflammation or allergic disorders, especially inflammatory cell infiltration and activation.

  6. Allergic rhinitis: continuous or on demand antihistamine therapy?

    PubMed

    Montoro, J; Sastre, J; Jáuregui, I; Bartra, J; Dávila, I; del Cuvillo, A; Ferrer, M; Mullol, J; Valero, A

    2007-01-01

    Allergic rhinitis is an inflammatory disease of the nasal mucosa, caused by an IgE-mediated reaction after exposure to the allergen to which the patient is sensitized. Histamine is the most important preformed mediator released in the early stage of the allergic reaction, and also contributes to the late phase of the latter, exhibiting proinflammatory effects. Minimal persistent inflammation is a physiopathological phenomenon induced by the presence of an inflammatory cell infiltrate, together with ICAM-1 expression in the epithelial cells of the mucosa exposed to the allergen to which they are sensitized, in the absence of clinical symptoms. This molecule is considered to be an allergic inflammatory marker. The priming effect first described by Connell in 1968 consists of the reduction in the allergen concentration required to elicit a nasal hyper-response when performing a daily nasal exposure test. This implies that with natural exposure to inhaled allergens, small amounts of environmental allergen will maintain the patient symptoms, and thus of course minimal persistent inflammation. Considering the above, it is questionable whether antihistamines should be administered on a continuous basis or upon demand. The antihistamines, and fundamentally the second-generation drugs, have been shown to exert an antiinflammatory effect, and this effect is greater when the drug is administered continuously than when administered upon demand. Likewise, a reduction in treatment cost and an improvement in quality of life among patients treated on a continuous basis has been documented. However, no studies have been specifically designed to clarify the indication of treatment on a continuous basis or upon demand, as occurs in the GINA. As a result, the individualization of treatment according to the concrete characteristics of each patient seems to be the best approach, at least for the time being.

  7. Abnormal IgG4 antibody response to aeroallergens in allergic patients.

    PubMed

    Jeannin, P; Delneste, Y; Tillie-Leblond, I; Wallaert, B; carlier, A; Pestel, J; Tonnel, A B

    1994-01-01

    Various studies have suggested the involvement of immunoglobulin G4 (IgG4) antibodies (Ab) in the physiopathology of allergic disorders. Recently, an abnormal IgG4 Ab production in response to immunization has been reported in some atopic patients. Thus, in order to evidence in allergic patients, a potential abnormal IgG4 Ab response to aeroallergens following natural exposure, we compared, in 34 patients sensitive to Dermatophagoides pteronyssinus and in 16 healthy subjects, the IgG4 Ab response to D. pteronyssinus, grass pollen and cat dander, using a solid-phase radioimmunoassay. Since some patients were also sensitive to grass pollen and/or to cat dander, we analyzed, in all patients, the IgG4 Ab responses both towards the allergen(s) they were sensitive to (sensitizing allergen) or not (unrelated allergen). The results showed that 90% of the patients produced levels of antisensitizing allergen(s) IgG4 Ab significantly higher than the controls; this IgG4 Ab response was correlated with the corresponding specific IgE Ab level. In addition, among these patients, around 40% presented high levels of IgG4 Ab to the unrelated allergen(s). Thus, in allergic patients, while specific IgE Ab define the nature of the sensitizing allergen, the presence of IgG4 Ab directed against various allergens seems in relation with an abnormal isotype regulation associated with atopic disorders.

  8. Malassezia spp. overgrowth in allergic cats.

    PubMed

    Ordeix, Laura; Galeotti, Franca; Scarampella, Fabia; Dedola, Carla; Bardagí, Mar; Romano, Erica; Fondati, Alessandra

    2007-10-01

    A series of 18 allergic cats with multifocal Malassezia spp. overgrowth is reported: atopic dermatitis was diagnosed in 16, an adverse food reaction in another and one was euthanized 2 months after diagnosis of Malassezia overgrowth. All the cats were otherwise healthy and those tested (16 out of 18) for feline leukaemia or feline immunodeficiency virus infections were all negative. At dermatological examination, multifocal alopecia, erythema, crusting and greasy adherent brownish scales were variably distributed on all cats. Cytological examination revealed Malassezia spp. overgrowth with/without bacterial infection in facial skin (n = 11), ventral neck (n = 6), abdomen (n = 6), ear canal (n = 4), chin (n = 2), ear pinnae (n = 2), interdigital (n = 1) and claw folds skin (n = 1). Moreover, in two cats Malassezia pachydermatis was isolated in fungal cultures from lesional skin. Azoles therapy alone was prescribed in seven, azoles and antibacterial therapy in eight and azoles with both antibacterial and anti-inflammatory therapy in three of the cats. After 3-4 weeks of treatment, substantial reduction of pruritus and skin lesions was observed in all 11 cats treated with a combined therapy and in five of seven treated solely with azoles. Malassezia spp. overgrowth may represent a secondary cutaneous problem in allergic cats particularly in those presented for dermatological examination displaying greasy adherent brownish scales. The favourable response to treatment with antifungal treatments alone suggests that, as in dogs, Malassezia spp. may be partly responsible for both pruritus and cutaneous lesions in allergic cats.

  9. Differences in allergic inflammatory responses between urban PM2.5 and fine particle derived from desert-dust in murine lungs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Miao, E-mail: hemiao@mail.cmu.edu.cn; Department of Health Sciences, Oita University of Nursing and Health Sciences, Oita 870-1201; Ichinose, Takamichi, E-mail: ichinose@oita-nhs.ac.jp

    The biological and chemical natures of materials adsorbed onto fine particulate matter (PM2.5) vary by origin and passage routes. The exacerbating effects of the two samples—urban PM2.5 (U-PM2.5) collected during the hazy weather in a Chinese city and fine particles (ASD-PM2.5) collected during Asian sand dust (ASD) storm event days in Japan—on murine lung eosinophilia were compared to clarify the role of toxic materials in PM2.5. The amounts of β-glucan and mineral components were higher in ASD-PM2.5 than in U-PM2.5. On the other hand, organic chemicals, including polycyclic aromatic hydrocarbons (PAHs), were higher in U-PM2.5 than in ASD-PM2.5. When BALB/cmore » mice were intratracheally instilled with U-PM2.5 and ASD-PM2.5 (total 0.4 mg/mouse) with or without ovalbumin (OVA), various biological effects were observed, including enhancement of eosinophil recruitment induced by OVA in the submucosa of the airway, goblet cell proliferation in the bronchial epithelium, synergic increase of OVA-induced eosinophil-relevant cytokines and a chemokine in bronchoalveolar lavage fluid, and increase of serum OVA-specific IgG1 and IgE. Data demonstrate that U-PM2.5 and ASD-PM2.5 induced allergic inflammatory changes and caused lung pathology. U-PM2.5 and ASD-PM2.5 increased F4/80{sup +} CD11b{sup +} cells, indicating that an influx of inflammatory and exudative macrophages in lung tissue had occurred. The ratio of CD206 positive F4/80{sup +} CD11b{sup +} cells (M2 macrophages) in lung tissue was higher in the OVA + ASD-PM2.5 treated mice than in the OVA + U-PM2.5 treated mice. These results suggest that the lung eosinophilia exacerbated by both PM2.5 is due to activation of a Th2-associated immune response along with induced M2 macrophages and the exacerbating effect is greater in microbial element (β-glucan)-rich ASD-PM2.5 than in organic chemical-rich U-PM2.5. - Highlights: • The aggravating effects of urban-PM2.5 and desert-PM2.5 on lung eosinophilia were

  10. Inhibitory effect of fermented Arctium lappa fruit extract on the IgE-mediated allergic response in RBL‑2H3 cells.

    PubMed

    Yoo, Jae-Myung; Yang, Ju Hye; Yang, Hye Jin; Cho, Won-Kyung; Ma, Jin Yeul

    2016-02-01

    Arctium lappa fruit has been used in traditional medicine, and it is known to exert beneficial effects, such as antioxidant, anti-inflammatory and anticancer effects. However, the effects of the Arctium lappa fruit on the allergic response remain unknown. In this study, we evaluated the anti-allergic effects of Arctium lappa fruit extract (AFE) and its fermented form (F-AFE) using immunoglobulin E (IgE)-activated RBL‑2H3 cells. To investigate the anti-allergic effects of AFE or F-AFE, we examined the release of β-hexosaminidase, a key biomarker of degranulation during an allergic reaction, and the production of pro-inflammatory mediators, such as tumor necrosis factor-α (TNF-α) and prostaglandin E2 (PGE2) in the cells treated with or without the above-mentioned extracts. AFE weakly inhibited the release of β-hexosaminidase, whereas F-AFE significantly suppressed the release of β-hexosaminidase in a dose-dependent manner. Consistently, F-AFE suppressed the production of TNF-α and PGE2 in a dose-dependent manner. F-AFE exerted an inhibitory effect on the production of β-hexosaminidase, TNF-α and PGE2 with an IC50 value of 30.73, 46.96 and 36.27 µg/ml, respectively. Furthermore, F-AFE inhibited the phosphorylation of Lyn, Fyn and Syk, which are involved in the FcεRI signaling pathway, that of phosphoinositide phospholipase C (PLC)γ1/2 and protein kinase C (PKC)δ, which are associated with the degranulation process, as well as that of extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase 1/2 (JNK), p38 and Akt, which are associated with cytokine expression. In the late phase, F-AFE partially suppressed the phosphorylation of cytosolic phospholipase A2 (cPLA2), but not the expression of cyclooxygenase (COX)-2. To compare and identify the major components of the two extracts, we used high-performance liquid chromatography. The levels of arctigenin, one of the major compounds, were elevated 6-fold in F-AFE compared with AFE, whereas the

  11. Update: the role of FoxP3 in allergic disease.

    PubMed

    Paik, Young; Dahl, Matthew; Fang, Deyu; Calhoun, Karen

    2008-06-01

    T-regulatory cells play a key role in allergic and asthmatic inflammatory airway diseases. This review discusses the importance of a critical gene associated with T-regulatory cells. Forkhead box P3 is a forkhead-winged helix transcription factor gene involved in immune function in allergy and asthma. Recently, many functions of forkhead box P3 and its influence on the immune system have been elucidated. T-regulatory cells that are CD4+CD25+ and express forkhead box P3, influence the development and expression of atopy and allergic response. The exact mechanisms are not yet delineated, but multiple recent studies provide greater understanding of the mechanism of forkhead box P3 and its influence on these T-regulatory cells. Greater understanding of the molecular and immunological mechanisms underlying the T-regulatory cells and forkhead box P3 will permit the development of targeted treatment modalities to influence disease processes such as allergic rhinitis and bronchial asthma.

  12. Allergic responses and aryl hydrocarbon receptor novel pathway of mast cell activation.

    PubMed

    Sibilano, Riccardo; Pucillo, Carlo E; Gri, Giorgia

    2015-01-01

    The activation of the transcription factor aryl hydrocarbon receptor (AhR) is modulated by a wide variety of xenobiotics and ligands deriving from products of metabolism. The study of the contribution of AhR to allergic diseases has gained much interest in recent years. Here we discuss the role that environmental factors and metabolic products, particularly acting on AhR-expressing mast cells (MCs), could have in the development of local allergic/atopic response. Thus, this review will cover: a brief overview of the AhR mechanism of action in the immune system; a description of different AhR ligands and their effects to IgE-mediated MC activation in the allergic response, with particular attention to the role of IL-17; a discussion about the potential involvement of AhR in immune tolerance; and a conclusion on human diseases in which direct AhR activation of MC might have a major impact. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Clinical implications of mast cell involvement in allergic conjunctivitis.

    PubMed

    Elieh Ali Komi, D; Rambasek, T; Bielory, L

    2018-03-01

    The conjunctiva is a common site for the allergic inflammatory response due to it being highly vascularized, having constant exposure to environmental pollutants and allergenic pollens and having a unique conjunctival associated lymphoid tissue. The primary morbidity of anterior surface conjunctival disorders that include allergic conjunctivitis and tear film disorders is associated with its high frequency of involvement rather than its severity, although the more chronic forms can involve the cornea and lead to sight-threatening conditions. Ocular allergy is associated with IgE-mediated mast cell activation in conjunctival tissue leading to the release of preformed mediators including histamine and proteases and subsequent de novo formation of lipid-derived mediators and cytokines that trigger a cascade of cellular and molecular events leading to extensive migration and infiltration of inflammatory cells to the ocular surface. The trafficking of neutrophils, eosinophils, and lymphocytes to the ocular surface is due to establishing various chemokine gradients (mainly CCL11, CCL24, CCL5, MCP-3, and MCP-4), cell surface expression of adhesion molecules (such as VCAM-1 the ligand for VLA-4), and leukocyte adhesion to vascular endothelium. The release of preformed mediators underlies the acute ocular surface response while the secondary influx of inflammatory cells leading to the recruitment and activation of eosinophils and the subsequent activation of Th2 and Th1 lymphocytes at the level of the conjunctiva reflects the late-phase reaction. © 2017 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.

  14. Effects of Exposure to Ozone on the Ocular Surface in an Experimental Model of Allergic Conjunctivitis

    PubMed Central

    Lee, Hun; Kim, Eung Kweon; Kim, Hee Young; Kim, Tae-im

    2017-01-01

    Based on previous findings that ozone can induce an inflammatory response in the ocular surface of an animal model and in cultured human conjunctival epithelial cells, we investigated whether exposure to ozone exacerbates symptoms of allergic conjunctivitis. We evaluated the effects of exposure to ozone on conjunctival chemosis, conjunctival injection, corneal and conjunctival fluorescein staining scores, production of inflammatory cytokines in tears, and aqueous tear production in a mouse model of allergic conjunctivitis. To validate our in vivo results, we used interleukin (IL)-1α-pretreated conjunctival epithelial cells as an in vitro substitute for the mouse model. We evaluated whether exposure to ozone increased the inflammatory response and altered oxidative status and mitochondrial function in IL-1α-pretreated conjunctival epithelial cells. In the in vivo study, ozone induced increases in conjunctival chemosis, conjunctival injection, corneal and conjunctival fluorescein staining scores, and production of inflammatory cytokines, accompanied by a decrease in tear volume. In the in vitro study, exposure to ozone led to additional increases in IL-6 and tumor necrosis factor-α mRNA levels, which were already induced by treatment with IL-1α. Ozone did not induce any changes in cell viability. Pretreatment with IL-1α increased the expression of manganese superoxide dismutase, and exposure to ozone led to additional increments in the expression of this antioxidant enzyme. Ozone did not induce any changes in mitochondrial activity or expression of mitochondrial enzymes and proteins related to mitochondrial function, with the exception of phosphor-mammalian target of rapamycin. Treatment with butylated hydroxyanisole, a free radical scavenger, attenuated the ozone-induced increases in IL-6 expression in IL-1α-pretreated conjunctival epithelial cells. Therefore, we conclude that exposure to ozone exacerbates the detrimental effects on the integrity of the ocular

  15. Inhibition of neutrophil elastase attenuates airway hyperresponsiveness and inflammation in a mouse model of secondary allergen challenge: neutrophil elastase inhibition attenuates allergic airway responses

    PubMed Central

    2013-01-01

    Background Chronic asthma is often associated with neutrophilic infiltration in the airways. Neutrophils contain elastase, a potent secretagogue in the airways, nonetheless the role for neutrophil elastase as well as neutrophilic inflammation in allergen-induced airway responses is not well defined. In this study, we have investigated the impact of neutrophil elastase inhibition on the development of allergic airway inflammation and airway hyperresponsiveness (AHR) in previously sensitized and challenged mice. Methods BALB/c mice were sensitized and challenged (primary) with ovalbumin (OVA). Six weeks later, a single OVA aerosol (secondary challenge) was delivered and airway inflammation and airway responses were monitored 6 and 48 hrs later. An inhibitor of neutrophil elastase was administered prior to secondary challenge. Results Mice developed a two-phase airway inflammatory response after secondary allergen challenge, one neutrophilic at 6 hr and the other eosinophilic, at 48 hr. PAR-2 expression in the lung tissues was enhanced following secondary challenge, and that PAR-2 intracellular expression on peribronchial lymph node (PBLN) T cells was also increased following allergen challenge of sensitized mice. Inhibition of neutrophil elastase significantly attenuated AHR, goblet cell metaplasia, and inflammatory cell accumulation in the airways following secondary OVA challenge. Levels of IL-4, IL-5 and IL-13, and eotaxin in BAL fluid 6 hr after secondary allergen challenge were significantly suppressed by the treatment. At 48 hr, treatment with the neutrophil elastase inhibitor significantly reduced the levels of IL-13 and TGF-β1 in the BAL fluid. In parallel, in vitro IL-13 production was significantly inhibited in spleen cells from sensitized mice. Conclusion These data indicate that neutrophil elastase plays an important role in the development of allergic airway inflammation and hyperresponsiveness, and would suggest that the neutrophil elastase inhibitor

  16. SYNTHETIC COPPER-CONTAINING PARTICLES ENHANCE ALLERGIC AIRWAY RESPONSES IN MICE

    EPA Science Inventory

    SYNTHETIC COPPER-CONTAINING PARTICLES ENHANCE ALLERGIC AIRWAY RESPONSES IN MICE. SH Gavett, MI Gilmour, and N Haykal-Coates. National Health and Environ Effects Research Lab, USEPA, Res Triangle Park, NC USA
    Respiratory morbidity and mortality associated with increases in ...

  17. Effects of the phosphodiesterase type 4 inhibitor roflumilast on early and late allergic response and airway hyperresponsiveness in Aspergillus-fumigatus-sensitized mice.

    PubMed

    Hoymann, Heinz-Gerd; Wollin, Lutz; Muller, Meike; Korolewitz, Regina; Krug, Norbert; Braun, Armin; Beume, Rolf

    2009-01-01

    Inhibitory effects of roflumilast on responses characteristic of allergic asthma were investigated in a fungal asthma model in BALB/c mice. Mice were sensitized with Aspergillus antigen (Afu) and exposed to Afu or vehicle, and given roflumilast 1 or 5 mg/kg. Early airway response (EAR) and late airway hyperresponsiveness (AHR) to methacholine were measured via plethysmography. Bronchoalveolar lavage (BAL) was used to assess inflammatory cell count. In Afu-exposed mice, roflumilast dose-dependently reduced the EAR [26% at 1 mg/kg (NS) and 94% at 5 mg/kg (p < 0.01)] and AHR [46% at 1 mg/kg (NS) and 128% at 5 mg/kg (p < 0.05)]. Roflumilast 5 mg/kg reduced neutrophil, eosinophil and lymphocyte counts [87% (p < 0.01), 40% (NS) and 67% (p < 0.01), respectively] in BAL fluid versus controls. In this model, roflumilast inhibited the EAR, suppressed AHR and reduced inflammatory cell infiltration. 2009 S. Karger AG, Basel.

  18. Chapter 5: Allergic rhinitis.

    PubMed

    Uzzaman, Ashraf; Story, Rachel

    2012-01-01

    Rhinitis is a symptomatic inflammatory disorder of the nose with different causes such as allergic, nonallergic, infectious, hormonal, drug induced, and occupational and from conditions such as sarcoidosis and necrotizing antineutrophil cytoplasmic antibodies positive (Wegener's) granulomatosis. Allergic rhinitis affects up to 40% of the population and results in nasal (ocular, soft palate, and inner ear) itching, congestion, sneezing, and clear rhinorrhea. Allergic rhinitis causes extranasal untoward effects including decreased quality of life, decreased sleep quality, obstructive sleep apnea, absenteeism from work and school, and impaired performance at work and school termed "presenteeism." The nasal mucosa is extremely vascular and changes in blood supply can lead to obstruction. Parasympathetic stimulation promotes an increase in nasal cavity resistance and nasal gland secretion. Sympathetic stimulation leads to vasoconstriction and consequent decrease in nasal cavity resistance. The nasal mucosa also contains noradrenergic noncholinergic system, but the contribution to clinical symptoms of neuropeptides such as substance P remains unclear. Management of allergic rhinitis combines allergen avoidance measures with pharmacotherapy, allergen immunotherapy, and education. Medications used for the treatment of allergic rhinitis can be administered intranasally or orally and include oral and intranasal H(1)-receptor antagonists (antihistamines), intranasal and systemic corticosteroids, intranasal anticholinergic agents, and leukotriene receptor antagonists. For intermittent mild allergic rhinitis, an oral or intranasal antihistamine is recommended. In individuals with persistent moderate/severe allergic rhinitis, an intranasal corticosteroid is preferred. When used in combination, an intranasal H(1)-receptor antagonist and a nasal steroid provide greater symptomatic relief than monotherapy. Allergen immunotherapy is the only disease-modifying intervention available.

  19. Alterations of the Murine Gut Microbiome with Age and Allergic Airway Disease

    PubMed Central

    Vital, Marius; Harkema, Jack R.; Rizzo, Mike; Tiedje, James; Brandenberger, Christina

    2015-01-01

    The gut microbiota plays an important role in the development of asthma. With advanced age the microbiome and the immune system are changing and, currently, little is known about how these two factors contribute to the development of allergic asthma in the elderly. In this study we investigated the associations between the intestinal microbiome and allergic airway disease in young and old mice that were sensitized and challenged with house dust mite (HDM). After challenge, the animals were sacrificed, blood serum was collected for cytokine analysis, and the lungs were processed for histopathology. Fecal pellets were excised from the colon and subjected to 16S rRNA analysis. The microbial community structure changed with age and allergy development, where alterations in fecal communities from young to old mice resembled those after HDM challenge. Allergic mice had induced serum levels of IL-17A and old mice developed a greater allergic airway response compared to young mice. This study demonstrates that the intestinal bacterial community structure differs with age, possibly contributing to the exaggerated pulmonary inflammatory response in old mice. Furthermore, our results show that the composition of the gut microbiota changes with pulmonary allergy, indicating bidirectional gut-lung communications. PMID:26090504

  20. Trichuris suis ova therapy for allergic rhinitis does not affect allergen-specific cytokine responses despite a parasite-specific cytokine response.

    PubMed

    Bourke, C D; Mutapi, F; Nausch, N; Photiou, D M F; Poulsen, L K; Kristensen, B; Arnved, J; Rønborg, S; Roepstorff, A; Thamsborg, S; Kapel, C; Melbye, M; Bager, P

    2012-11-01

    Parasitic helminths have been shown to reduce inflammation in most experimental models of allergic disease, and this effect is mediated via cytokine responses. However, in humans, the effects of controlled helminth infection on cytokine responses during allergy have not been studied. The aim was to investigate whether infection with the nematode parasite Trichuris suis alters systemic cytokine levels, cellular cytokine responses to parasite antigens and pollen allergens and/or the cytokine profile of allergic individuals. In a randomized double-blinded placebo-controlled clinical trial (UMIN trial registry, Registration no. R000001298, Trial ID UMIN000001070, URL: http://www.umin.ac.jp/map/english), adults with grass pollen-induced allergic rhinitis received three weekly doses of 2500 Trichuris suis ova (n = 45) or placebo (n = 44) over 6 months. IFN-γ, TNF-α, IL-4, IL-5, IL-10 and IL-13 were quantified via cytometric bead array in plasma. Cytokines, including active TGF-β, were also quantified in supernatants from peripheral blood mononuclear cells cultured with parasite antigens or pollen allergens before, during and after the grass pollen season for a sub-cohort of randomized participants (T. suis ova-treated, n = 12, Placebo-treated, n = 10). Helminth infection induced a Th2-polarized cytokine response comprising elevated plasma IL-5 and parasite-specific IL-4, IL-5 and IL-13, and a global shift in the profile of systemic cytokine responses. Infection also elicited high levels of the regulatory cytokine IL-10 in response to T. suis antigens. Despite increased production of T. suis-specific cytokines in T. suis ova-treated participants, allergen-specific cytokine responses during the grass pollen season and the global profile of PBMC cytokine responses were not affected by T. suis ova treatment. This study suggests that cytokines induced by Trichuris suis ova treatment do not alter allergic reactivity to pollen during the peak of allergic rhinitis

  1. Pidotimod exacerbates allergic pulmonary infection in an OVA mouse model of asthma.

    PubMed

    Fu, Luo-Qin; Li, Ya-Li; Fu, Ai-Kun; Wu, Yan-Ping; Wang, Yuan-Yuan; Hu, Sheng-Lan; Li, Wei-Fen

    2017-10-01

    Pidotimod is a synthetic dipeptide with biological and immuno‑modulatory properties. It has been widely used for treatment and prevention of recurrent respiratory infections. However, its impact on the regulation of allergic pulmonary inflammation is still not clear. In the current study, an ovalbumin (OVA)‑induced allergic asthma model was used to investigate the immune‑modulating effects of pidotimod on airway eosinophilia, mucus metaplasia and inflammatory factor expression compared with dexamethasone (positive control). The authors determined that treatment with pidotimod exacerbated pulmonary inflammation as demonstrated by significantly increased eosinophil infiltration, dramatically elevated immunoglobulin E production, and enhanced T helper 2 response. Moreover, treatment failed to attenuate mucus production in lung tissue, and did not reduce OVA‑induced high levels of FIZZ1 and Arg1 expression in asthmatic mice. In contrast, administration of dexamethasone was efficient in alleviating allergic airway inflammation in OVA‑induced asthmatic mice. These data indicated that pidotimod as an immunotherapeutic agent should be used cautiously and the effectiveness for controlling allergic asthma needs further evaluation and research.

  2. Effects of Isoprene- and Toluene-Generated Smog on Allergic ...

    EPA Pesticide Factsheets

    Reactions of organic compounds with nitric oxide (NO) and sunlight produce complex mixtures of pollutants including secondary organic aerosol (SOA), ozone (O3), nitrogen dioxide (NO2), and reactive aldehydes. The health effects of these photochemical smog mixtures in susceptible populations including asthmatics are unclear. We assessed effects of smog generated from mixtures of NO with isoprene (IS) or toluene (TL) on allergic inflammatory responses in Balb/cJ mice. House dust mite (HDM)-sensitized or control mice were all challenged with HDM intranasally 1 d prior to whole-body inhalation exposure to IS (chamber average 509 ppb NO2, 246 ppb O3, and 160 g/m3 SOA), TL (217 ppb NO2, 129 ppb O3, and 376 g/m3 SOA), or HEPA-filtered air (4 h/d for 2 days). Mice were necropsied within 3 h after the second exposure (2 d post-HDM challenge). Assessment of breathing parameters during exposure with double-chamber plethysmography showed a trend for increased specific airway resistance and decreased minute volume during the second day of TL exposure in both non-allergic and HDM-allergic mice. HDM-allergic air-exposed mice had significant increases in numbers of bronchoalveolar lavage (BAL) alveolar macrophages (AM) and eosinophils (EO), and trends for increases in BAL indices of lung injury in comparison with non-allergic air-exposed mice. Exposure to either IS or TL attenuated the increases in AM, EO, and lung injury markers in HDM-allergic mice. The results of this

  3. IL-17 and TNF-α Are Key Mediators of Moraxella catarrhalis Triggered Exacerbation of Allergic Airway Inflammation

    PubMed Central

    Alnahas, Safa; Hagner, Stefanie; Raifer, Hartmann; Kilic, Ayse; Gasteiger, Georg; Mutters, Reinier; Hellhund, Anne; Prinz, Immo; Pinkenburg, Olaf; Visekruna, Alexander; Garn, Holger; Steinhoff, Ulrich

    2017-01-01

    Alterations of the airway microbiome are often associated with pulmonary diseases. For example, detection of the bacterial pathogen Moraxella catarrhalis in the upper airways is linked with an increased risk to develop or exacerbate asthma. However, the mechanisms by which M. catarrhalis augments allergic airway inflammation (AAI) remain unclear. We here characterized the cellular and soluble mediators of M. catarrhalis triggered excacerbation of AAI in wt and IL-17 deficient as well as in animals treated with TNF-α and IL-6 neutralizing antibodies. We compared the type of inflammatory response in M. catarrhalis infected, house dust mite (HDM)-allergic and animals infected with M. catarrhalis at different time points of HDM sensitization. We found that airway infection of mice with M. catarrhalis triggers a strong inflammatory response with massive neutrophilic infiltrates, high amounts of IL-6 and TNF-α and moderate levels of CD4+ T-cell-derived IFN-γ and IL-17. If bacterial infection occurred during HDM allergen sensitization, the allergic airway response was exacerbated, particularly by the expansion of Th17 cells and increased TNF-α levels. Neutralization of IL-17 or TNF-α but not IL-6 resulted in accelerated clearance of M. catarrhalis and effectively prevented infection-induced exacerbation of AAI. Taken together, our data demonstrate an essential role for TNF-α and IL-17 in infection-triggered exacerbation of AAI. PMID:29184554

  4. Helminth-induced regulatory T cells and suppression of allergic responses.

    PubMed

    Logan, Jayden; Navarro, Severine; Loukas, Alex; Giacomin, Paul

    2018-05-28

    Infection with helminths has been associated with lower rates of asthma and other allergic diseases. This has been attributed, in part, to the ability of helminths to induce regulatory T cells that suppress inappropriate immune responses to allergens. Recent compelling evidence suggests that helminths may promote regulatory T cell expansion or effector functions through either direct (secretion of excretory/secretory molecules) or indirect mechanisms (regulation of the microbiome). This review will discuss key findings from human immunoepidemiological observations, studies using animal models of disease, and clinical trials with live worm infections, discussing the therapeutic potential for worms and their secreted products for treating allergic inflammation. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  5. Promotion of allergic immune responses by intranasally-administrated nanosilica particles in mice

    NASA Astrophysics Data System (ADS)

    Yoshida, Tokuyuki; Yoshioka, Yasuo; Fujimura, Maho; Yamashita, Kohei; Higashisaka, Kazuma; Morishita, Yuki; Kayamuro, Hiroyuki; Nabeshi, Hiromi; Nagano, Kazuya; Abe, Yasuhiro; Kamada, Haruhiko; Tsunoda, Shin-Ichi; Itoh, Norio; Yoshikawa, Tomoaki; Tsutsumi, Yasuo

    2011-12-01

    With the increase in use of nanomaterials, there is growing concern regarding their potential health risks. However, few studies have assessed the role of the different physical characteristics of nanomaterials in allergic responses. Here, we examined whether intranasally administered silica particles of various sizes have the capacity to promote allergic immune responses in mice. We used nanosilica particles with diameters of 30 or 70 nm (nSP30 or nSP70, respectively), and conventional micro-sized silica particles with diameters of 300 or 1000 nm (nSP300 or mSP1000, respectively). Mice were intranasally exposed to ovalbumin (OVA) plus each silica particle, and the levels of OVA-specific antibodies (Abs) in the plasma were determined. Intranasal exposure to OVA plus smaller nanosilica particles tended to induce a higher level of OVA-specific immunoglobulin (Ig) E, IgG and IgG1 Abs than did exposure to OVA plus larger silica particles. Splenocytes from mice exposed to OVA plus nSP30 secreted higher levels of Th2-type cytokines than mice exposed to OVA alone. Taken together, these results indicate that nanosilica particles can induce allergen-specific Th2-type allergic immune responses in vivo. This study provides the foundations for the establishment of safe and effective forms of nanosilica particles.

  6. Systemic inflammatory response syndrome (SIRS)

    PubMed Central

    Balk, Robert A

    2014-01-01

    The concept of a systemic inflammatory response syndrome (SIRS) to describe the complex pathophysiologic response to an insult such as infection, trauma, burns, pancreatitis, or a variety of other injuries came from a 1991 consensus conference charged with the task of developing an easy-to-apply set of clinical parameters to aid in the early identification of potential candidates to enter into clinical trials to evaluate new treatments for sepsis. There was recognition that a diverse group of injuries produced a common inflammatory response in the host and provided attractive targets for new anti-inflammatory molecules designed to prevent further propagation and/or provide specific treatment. Effective application of these new anti-inflammatory strategies necessitated identification of early clinical markers that could be assessed in real-time and were likely to define a population of patients that would have a beneficial response to the targeted intervention. It was felt that early clinical manifestations might be more readily available to clinicians than more sophisticated and specific assays for inflammatory substances that were systemically released by the network of injurious inflammatory events. Therefore, the early definition of a systemic inflammatory response syndrome (SIRS) was built upon a foundation of basic clinical and laboratory abnormalities that were readily available in almost all clinical settings. With further refinement, it was hoped, that this definition would have a high degree of sensitivity, coupled with a reasonable degree of specificity. This manuscript reviews the derivation, application, utilization, potential benefits, and speculation regarding the future of the SIRS definition. PMID:24280933

  7. Effect of a chemical chaperone, tauroursodeoxycholic acid, on HDM-induced allergic airway disease

    PubMed Central

    Siddesha, Jalahalli M.; Nakada, Emily M.; Mihavics, Bethany R.; Hoffman, Sidra M.; Rattu, Gurkiranjit K.; Chamberlain, Nicolas; Cahoon, Jonathon M.; Lahue, Karolyn G.; Daphtary, Nirav; Aliyeva, Minara; Chapman, David G.; Desai, Dhimant H.; Poynter, Matthew E.

    2016-01-01

    Endoplasmic reticulum (ER) stress-induced unfolded protein response plays a critical role in inflammatory diseases, including allergic airway disease. However, the benefits of inhibiting ER stress in the treatment of allergic airway disease are not well known. Herein, we tested the therapeutic potential of a chemical chaperone, tauroursodeoxycholic acid (TUDCA), in combating allergic asthma, using a mouse model of house dust mite (HDM)-induced allergic airway disease. TUDCA was administered during the HDM-challenge phase (preventive regimen), after the HDM-challenge phase (therapeutic regimen), or therapeutically during a subsequent HDM rechallenge (rechallenge regimen). In the preventive regimen, TUDCA significantly decreased HDM-induced inflammation, markers of ER stress, airway hyperresponsiveness (AHR), and fibrosis. Similarly, in the therapeutic regimen, TUDCA administration efficiently decreased HDM-induced airway inflammation, mucus metaplasia, ER stress markers, and AHR, but not airway remodeling. Interestingly, TUDCA administered therapeutically in the HDM rechallenge regimen markedly attenuated HDM-induced airway inflammation, mucus metaplasia, ER stress markers, methacholine-induced AHR, and airway fibrotic remodeling. These results indicate that the inhibition of ER stress in the lungs through the administration of chemical chaperones could be a valuable strategy in the treatment of allergic airway diseases. PMID:27154200

  8. Pesticides are Associated with Allergic and Non-Allergic Wheeze among Male Farmers.

    PubMed

    Hoppin, Jane A; Umbach, David M; Long, Stuart; London, Stephanie J; Henneberger, Paul K; Blair, Aaron; Alavanja, Michael; Freeman, Laura E Beane; Sandler, Dale P

    2017-04-01

    Growing evidence suggests that pesticide use may contribute to respiratory symptoms. We evaluated the association of currently used pesticides with allergic and non-allergic wheeze among male farmers. Using the 2005-2010 interview data of the Agricultural Health Study, a prospective study of farmers in North Carolina and Iowa, we evaluated the association between allergic and non-allergic wheeze and self-reported use of 78 specific pesticides, reported by ≥ 1% of the 22,134 men interviewed. We used polytomous regression models adjusted for age, BMI, state, smoking, and current asthma, as well as for days applying pesticides and days driving diesel tractors. We defined allergic wheeze as reporting both wheeze and doctor-diagnosed hay fever ( n = 1,310, 6%) and non-allergic wheeze as reporting wheeze but not hay fever ( n = 3,939, 18%); men without wheeze were the referent. In models evaluating current use of specific pesticides, 19 pesticides were significantly associated ( p < 0.05) with allergic wheeze (18 positive, 1 negative) and 21 pesticides with non-allergic wheeze (19 positive, 2 negative); 11 pesticides were associated with both. Seven pesticides (herbicides: 2,4-D and simazine; insecticides: carbaryl, dimethoate, disulfoton, and zeta-cypermethrin; and fungicide pyraclostrobin) had significantly different associations for allergic and non-allergic wheeze. In exposure-response models with up to five exposure categories, we saw evidence of an exposure-response relationship for several pesticides including the commonly used herbicides 2,4-D and glyphosate, the insecticides permethrin and carbaryl, and the rodenticide warfarin. These results for farmers implicate several pesticides that are commonly used in agricultural and residential settings with adverse respiratory effects.

  9. T cell epitope immunotherapy ameliorates allergic responses in a murine model of shrimp allergy.

    PubMed

    Wai, C Y Y; Leung, N Y H; Leung, P S C; Chu, K H

    2016-03-01

    Shellfish allergy is one of the most common food hypersensitivities worldwide but allergen-specific immunotherapy for shellfish allergy is not yet available. We believe that T cell peptide-based immunotherapy holds the potential for modulating allergic responses without IgE cross-linking. We sought to identify the immunodominant T cell epitopes of tropomyosin, the major shrimp allergen of Metapenaeus ensis (Met e 1), and to evaluate their therapeutic effects in a Balb/c mouse model of Met e 1 hypersensitivity. T cell epitopes of Met e 1 were first identified based on the proliferation and cytokine responses of splenocytes isolated from Met e 1-sensitized Balb/c mice upon stimulation by 18 synthetic peptides that span the full-length Met e 1. The immunodominant T cell peptides identified were then fed orally to Met e 1-sensitized Balb/c mice twice a week for four weeks. Allergic responses, serological antibody levels, intestinal histology and systemic and local cytokine profiles were compared between the treated and the untreated groups. Six major Met e 1 T cell epitopes were identified. Mice treated with the T cell epitope peptide mixture demonstrated an amelioration of systemic allergic symptoms and a significant reduction in Th2-associated antibody and cytokine responses. These benefits were accompanied by a shift to a balanced Th1/Th2 response, induction of IgG2a antibodies possessing in vitro and in vivo blocking activities and the induction of regulatory T cell responses. T cell epitope-based oral immunotherapy is effective in reducing allergic responses towards shrimp tropomyosin. This is a novel strategy for clinical management of shellfish allergy and is a model for mechanistic studies of oral immunotherapy. © 2015 John Wiley & Sons Ltd.

  10. Changes in Bacteria Induce Inflammatory Skin Diseases | Center for Cancer Research

    Cancer.gov

    Atopic dermatitis (AD) is a chronic inflammatory skin disease that manifests as dry skin with a relentless itch and eczema. AD is considered an allergic disease in which the skin inflammation manifests in response to chronic exposure to contact allergens. However, identification of a responsible allergen is uncommon. Meanwhile, analyses have demonstrated that the surface of

  11. Chronic features of allergic asthma are enhanced in the absence of resistin-like molecule-beta.

    PubMed

    LeMessurier, Kim S; Palipane, Maneesha; Tiwary, Meenakshi; Gavin, Brian; Samarasinghe, Amali E

    2018-05-04

    Asthma is characterized by inflammation and architectural changes in the lungs. A number of immune cells and mediators are recognized as initiators of asthma, although therapeutics based on these are not always effective. The multifaceted nature of this syndrome necessitate continued exploration of immunomodulators that may play a role in pathogenesis. We investigated the role of resistin-like molecule-beta (RELM-β), a gut antibacterial, in the development and pathogenesis of Aspergillus-induced allergic airways disease. Age and gender matched C57BL/6J and Retnlb -/- mice rendered allergic to Aspergillus fumigatus were used to measure canonical markers of allergic asthma at early and late time points. Inflammatory cells in airways were similar, although Retnlb -/- mice had reduced tissue inflammation. The absence of RELM-β elevated serum IgA and pro-inflammatory cytokines in the lungs at homeostasis. Markers of chronic disease including goblet cell numbers, Muc genes, airway wall remodelling, and hyperresponsiveness were greater in the absence RELM-β. Specific inflammatory mediators important in antimicrobial defence in allergic asthma were also increased in the absence of RELM-β. These data suggest that while characteristics of allergic asthma develop in the absence of RELM-β, that RELM-β may reduce the development of chronic markers of allergic airways disease.

  12. Pesticides are Associated with Allergic and Non-Allergic Wheeze among Male Farmers

    PubMed Central

    Hoppin, Jane A.; Umbach, David M.; Long, Stuart; London, Stephanie J.; Henneberger, Paul K.; Blair, Aaron; Alavanja, Michael; Freeman, Laura E. Beane; Sandler, Dale P.

    2016-01-01

    Background: Growing evidence suggests that pesticide use may contribute to respiratory symptoms. Objective: We evaluated the association of currently used pesticides with allergic and non-allergic wheeze among male farmers. Methods: Using the 2005–2010 interview data of the Agricultural Health Study, a prospective study of farmers in North Carolina and Iowa, we evaluated the association between allergic and non-allergic wheeze and self-reported use of 78 specific pesticides, reported by ≥ 1% of the 22,134 men interviewed. We used polytomous regression models adjusted for age, BMI, state, smoking, and current asthma, as well as for days applying pesticides and days driving diesel tractors. We defined allergic wheeze as reporting both wheeze and doctor-diagnosed hay fever (n = 1,310, 6%) and non-allergic wheeze as reporting wheeze but not hay fever (n = 3,939, 18%); men without wheeze were the referent. Results: In models evaluating current use of specific pesticides, 19 pesticides were significantly associated (p < 0.05) with allergic wheeze (18 positive, 1 negative) and 21 pesticides with non-allergic wheeze (19 positive, 2 negative); 11 pesticides were associated with both. Seven pesticides (herbicides: 2,4-D and simazine; insecticides: carbaryl, dimethoate, disulfoton, and zeta-cypermethrin; and fungicide pyraclostrobin) had significantly different associations for allergic and non-allergic wheeze. In exposure–response models with up to five exposure categories, we saw evidence of an exposure–response relationship for several pesticides including the commonly used herbicides 2,4-D and glyphosate, the insecticides permethrin and carbaryl, and the rodenticide warfarin. Conclusions: These results for farmers implicate several pesticides that are commonly used in agricultural and residential settings with adverse respiratory effects. Citation: Hoppin JA, Umbach DM, Long S, London SJ, Henneberger PK, Blair A, Alavanja M, Beane Freeman LE, Sandler DP. 2017

  13. Effect of glucocorticosteroid treatment on ovalbumin-induced IgE-mediated immediate and late allergic response in guinea pig.

    PubMed

    Andersson, P; Brange, C; von Kogerer, B; Sonmark, B; Stahre, G

    1988-01-01

    The effect of glucocorticosteroid (GCS) treatment on ovalbumine-induced IgE-mediated immediate and late allergic response was studied in sensitized guinea pigs. The results show that the GCS budesonide (BUD) inhibits the allergen-induced IgE-mediated immediate and late bronchial obstruction. The effect on the early reaction is correlated to the inhibition of leukotrienes and histamine release. The importance of mediator release inhibition for the antianaphylactic effect of GCS is discussed. In examining the effect on the late reaction, it was found that BUD had to be present during the early reaction but did not inhibit the early reaction. Furthermore, the effect on the late reaction was correlated to the inhibition of vascular leakage but not to the infiltration of inflammatory cells as examined in bronchoalveolar lavage. The results indicate that some triggering factors important for the development of the late reaction are released during the early reaction. Inhibition of the release of that factor or the activation of inflammatory cells by that factor might be the mechanism behind the antiinflammatory activities of GCS.

  14. Aspergillus fumigatus viability drives allergic responses to inhaled conidia.

    PubMed

    Nayak, Ajay P; Croston, Tara L; Lemons, Angela R; Goldsmith, W T; Marshall, Nikki B; Kashon, Michael L; Germolec, Dori R; Beezhold, Donald H; Green, Brett J

    2018-04-13

    Aspergillus fumigatus induced allergic airway disease has been shown to involve conidial germination in vivo but the immunological mechanisms remain uncharacterized. A subchronic murine exposure model was used to examine the immunological mediators that are regulated in response to either culturable or non-culturable A. fumigatus conidia. Female B6C3F1/N mice were repeatedly dosed via inhalation with 1 x 105 viable or heat inactivated conidia (HIC), twice a week for 13 weeks (26 exposures). Control mice inhaled HEPA-filtered air. The influence of A. fumigatus conidial germination on the pulmonary immunopathological outcomes was evaluated by flow cytometry analysis of cellular infiltration in the airways, assessment of lung mRNA expression, and quantitative proteomics and histopathology of whole lung tissue. Repeated inhalation of viable conidia, but not HIC, resulted in allergic inflammation marked by vascular remodeling, extensive eosinophilia, and accumulation of alternatively activated macrophages (AAMs) in the murine airways. More specifically, mice that inhaled viable conidia resulted in a mixed TH1 and TH2 (IL-13) cytokine response. Recruitment of eosinophils corresponded with increased Ccl11 transcripts. Furthermore, genes associated with M2 or alternatively activated macrophage polarization (e.g. Arg1, Chil3 and Retnla) were significantly upregulated in viable A. fumigatus exposed mice. In mice inhaling HIC, CD4+ T cells expressing IFN-γ (TH1) dominated the lymphocytic infiltration. Quantitative proteomics of the lung revealed metabolic reprogramming accompanied by mitochondrial dysfunction and endoplasmic reticulum stress stimulated by oxidative stress from repetitive microbial insult. Our studies demonstrate that A. fumigatus conidial viability in vivo is critical to the immunopathological presentation of chronic fungal allergic disease. Copyright © 2018. Published by Elsevier Inc.

  15. Anti-allergic effects of Lycopus lucidus on mast cell-mediated allergy model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Tae-Yong; Kim, Sang-Hyun; Suk, Kyoungho

    2005-12-15

    The current study characterizes the mechanism by which the aqueous extract of Lycopus lucidus Turcz. (Labiatae) (LAE) decreases mast cell-mediated immediate-type allergic reaction. The immediate-type allergic reaction is involved in many allergic diseases such as asthma and allergic rhinitis. LAE has been used as a traditional medicine in Korea and is known to have an anti-inflammatory effect. However, its specific mechanism of action is still unknown. LAE was anally administered to mice for high and fast absorption. LAE inhibited compound 48/80-induced systemic reactions in mice. LAE decreased the local allergic reaction, passive cutaneous anaphylaxis, activated by anti-dinitrophenyl (DNP) IgE antibody.more » LAE dose-dependently reduced histamine release from rat peritoneal mast cells activated by compound 48/80 or anti-DNP IgE. Furthermore, LAE decreased the secretion of TNF-{alpha} and IL-6 in phorbol 12-myristate 13-acetate (PMA) plus calcium ionophore A23187-stimulated human mast cells. The inhibitory effect of LAE on the pro-inflammatory cytokine was p38 mitogen-activated protein kinase (MAPK) and nuclear factor-{kappa}B (NF-{kappa}B) dependent. LAE attenuated PMA plus A23187-induced degradation of I{kappa}B{alpha} and nuclear translocation of NF-{kappa}B, and specifically blocked activation of p38 MAPK, but not that of c-jun N-terminal kinase and extracellular signal-regulated kinase. Our findings provide evidence that LAE inhibits mast cell-derived immediate-type allergic reactions and involvement of pro-inflammatory cytokines, p38 MAPK, and NF-{kappa}B in these effects.« less

  16. [Prevalence of rhinitis allergic in populations of several states of Mexico].

    PubMed

    Mancilla-Hernández, Eleazar; Medina-Ávalos, Miguel Alejandro; Barnica-Alvarado, Raúl Humberto; Soto-Candia, Diego; Guerrero-Venegas, Rosario; Zecua-Nájera, Yahvéh

    2015-01-01

    Allergic rhinitis is an inflammatory disorder of the nasal mucosa, characterized by symptoms of itching, rhinorrhea, nasal congestion and sneezing induced by an IgE-mediated response. In Mexico we have reports of prevalence, with fluctuations of 5.5% to 47.7% with the question of rhinitis symptoms the past 12 months. To determine the prevalence of allergic rhinitis in schoolchildren from various states of Mexico. A descriptive study of prevalence in which a questionnaire was applied to preschool, elementary-, middle- and high-school population. It was performed in four cities in four states of Mexico: Puebla, Puebla, Tulancingo, Hidalgo, Tlaxcala, Tlaxcala and Cancun, Quintana Roo. Parents answered questionnaires of preschool and elementary school and middle- and high-school students answered their questionnaires. The study was conducted from June 2014 to January 2015. The instrument used was: questionnaire diagnosis of allergic rhinitis for epidemiological studies. Of the surveys, 8,159 completed questionnaires were obtained, in the city of Puebla: 2,267, Tulancingo, Hidalgo: 2,478, Tlaxcala, Tlaxcala: 2,574, Cancun, Quintana Roo: 840; total male: 4,190 (51%). The overall average rate of prevalence of allergic rhinitis among four states including all respondents ages was 15%. With the use of the questionnaire diagnosis of allergic rhinitis for epidemiological studies in the four cities in four different states, we found a prevalence of allergic rhinitis of 15% in ≥13 yearpopulation and 13% in ≤12 year-old children.

  17. Role of Rho kinase isoforms in murine allergic airway responses.

    PubMed

    Zhu, M; Liu, P-Y; Kasahara, D I; Williams, A S; Verbout, N G; Halayko, A J; Fedulov, A; Shoji, T; Williams, E S; Noma, K; Shore, S A; Liao, J K

    2011-10-01

    Inhibition of Rho-associated coiled-coil forming kinases (ROCKs) reduces allergic airway responses in mice. The purpose of this study was to determine the roles of the two ROCK isoforms, ROCK1 and ROCK2, in these responses. Wildtype (WT) mice and heterozygous ROCK1 and ROCK2 knockout mice (ROCK1(+/-) and ROCK2(+/-), respectively) were sensitised and challenged with ovalbumin. ROCK expression and activation were assessed by western blotting. Airway responsiveness was measured by forced oscillation. Bronchoalveolar lavage was performed and the lungs were fixed for histological assessment. Compared with WT mice, ROCK1 and ROCK2 expression were 50% lower in lungs of ROCK1(+/-) and ROCK2(+/-) mice, respectively, without changes in the other isoform. In WT lungs, ROCK activation increased after ovalbumin challenge and was sustained for several hours. This activation was reduced in ROCK1(+/-) and ROCK2(+/-) lungs. Airway responsiveness was comparable in WT, ROCK1(+/-), and ROCK2(+/-) mice challenged with PBS. Ovalbumin challenge caused airway hyperresponsiveness in WT, but not ROCK1(+/-) or ROCK2(+/-) mice. Lavage eosinophils and goblet cell hyperplasia were significantly reduced in ovalbumin-challenged ROCK1(+/-) and ROCK2(+/-) versus WT mice. Ovalbumin-induced changes in lavage interleukin-13, interleukin-5 and lymphocytes were also reduced in ROCK1(+/-) mice. In conclusion, both ROCK1 and ROCK2 are important in regulating allergic airway responses.

  18. Maternal allergic disease does not affect the phenotype of T and B cells or the immune response to allergens in neonates.

    PubMed

    Rindsjö, E; Joerink, M; Johansson, C; Bremme, K; Malmström, V; Scheynius, A

    2010-07-01

    It is hypothesized that the in utero environment in allergic mothers can affect the neonatal immune responses. The aim of this study was to analyse the effect of maternal allergic disease on cord blood mononuclear cell (CBMC) phenotype and proliferative responses upon allergen stimulation. Peripheral blood mononuclear cells (PBMC) from 12 allergic and 14 nonallergic mothers and CBMC from their children were analysed. In the mothers, we determined cell proliferation, production of IL-4 and expression of FOXP3 in response to allergen stimulation. In the children, we evaluated cell proliferation and FOXP3 expression following allergen stimulation. Furthermore, expression of different homing markers on T cells and regulatory T cells and maturity of the T cells and B cell subsets were evaluated directly ex vivo. The timothy- and birch-allergic mothers responded with increased proliferation and/or IL-4 production towards timothy and birch extract, respectively, when compared to nonallergic mothers. This could not be explained by impairment of FOXP3(+) regulatory T cells in the allergic mothers. CBMC proliferation and FOXP3 expression in response to allergens were not affected by the allergic status of the mother. Also, phenotype of T cells, FOXP3(+) regulatory T cells and B cells was not affected by the allergic status of the mother. Our results suggest that maternal allergic disease has no effect on the neonatal response to allergens or the phenotype of neonatal lymphocytes. The factors studied here could, however, still affect later development of allergy.

  19. Cockroach protease allergen induces allergic airway inflammation via epithelial cell activation

    PubMed Central

    Kale, Sagar L.; Agrawal, Komal; Gaur, Shailendra Nath; Arora, Naveen

    2017-01-01

    Protease allergens are known to enhance allergic inflammation but their exact role in initiation of allergic reactions at mucosal surfaces still remains elusive. This study was aimed at deciphering the role of serine protease activity of Per a 10, a major cockroach allergen in initiation of allergic inflammation at mucosal surfaces. We demonstrate that Per a 10 increases epithelial permeability by disruption of tight junction proteins, ZO-1 and occludin, and enhances the migration of Monocyte derived dendritic cell precursors towards epithelial layer as exhibited by trans-well studies. Per a 10 exposure also leads to secretion of IL-33, TSLP and intracellular Ca2+ dependent increase in ATP levels. Further, in vivo experiments revealed that Per a 10 administration in mice elevated allergic inflammatory parameters along with high levels of IL-33, TSLP, IL-1α and uric acid in the mice lungs. We next demonstrated that Per a 10 cleaves CD23 (low affinity IgE receptor) from the surface of PBMCs and purified B cells and CD25 (IL-2 receptor) from the surface of PBMCs and purified T cells in an activity dependent manner, which might favour Th2 responses. In conclusion, protease activity of Per a 10 plays a significant role in initiation of allergic airway inflammation at the mucosal surfaces. PMID:28198394

  20. Intralymphatic allergen-specific immunotherapy: an effective and safe alternative treatment route for pollen-induced allergic rhinitis.

    PubMed

    Hylander, Terese; Latif, Leith; Petersson-Westin, Ulla; Cardell, Lars Olaf

    2013-02-01

    Allergen-specific immunotherapy is the only causative treatment of IgE-mediated allergic disorders. The most common administration route is subcutaneous, which may necessitate more than 50 allergen injections during 3 to 5 years. Recent evidence suggests that direct intralymphatic injections could yield faster beneficial results with considerably lower allergen doses and markedly reduced numbers of injections. To evaluate the effects of intralymphatic allergen-specific immunotherapy in pollen-allergic patients. In an open pilot investigation followed by a double-blind, placebo-controlled study, patients with allergic rhinitis were treated with 3 intralymphatic inguinal injections of ALK Alutard (containing 1000 SQ-U birch pollen or grass pollen) or placebo (ALK diluent). Clinical pre- and posttreatment parameters were assessed, the inflammatory cell content in nasal lavage fluids estimated, and the activation pattern of peripheral T cells described. All patients tolerated the intralymphatic immunotherapy (ILIT) treatment well, and the injections did not elicit any severe adverse event. Patients receiving active treatment displayed an initial increase in allergen-specific IgE level and peripheral T-cell activation. A clinical improvement in nasal allergic symptoms upon challenge was recorded along with a decreased inflammatory response in the nose. In addition, these patients reported an improvement in their seasonal allergic disease. No such changes were seen in the placebo group. Although this study is based on a limited number of patients, ILIT with grass-pollen or birch-pollen extracts appears to reduce nasal allergic symptoms without causing any safety problems. Hence, ILIT might constitute a less time-consuming and more cost-effective alternative to conventional subcutaneous allergen-specific immunotherapy. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  1. The Pro- and Anti-Inflammatory Cytokine Response to Exercise in Adolescent Swimmers

    PubMed Central

    Wilson, Lori D.; Zaldivar, Frank P.; Schwindt, Christina D.; Cooper, Dan M.

    2014-01-01

    Objective Whether or not individuals with allergy and asthma experience different patterns of change in the balance of both pro- and anti-inflammatory mediators with acute exercise is not known. We hypothesized that adolescent swimmers with a clinical diagnosis of respiratory allergy would have an exaggerated proinflammatory response to laboratory exercise relative to a no-allergy comparison group. Methods Adolescent swimmers (17 with clinical symptoms of respiratory allergy (CSRA) and 17 in comparison group) completed the American Thoracic Society (ATS) exercise challenge on cycle ergometer. Blood was collected at baseline and immediately post-exercise. All study tests were conducted at the Institute for Clinical Translational Science at the University of California, Irvine. Circulating cytokines, growth factors, and adhesion molecules were measured using ELISAs including transforming growth factor-β1 (TGF-β1), tumor necrosis factor-α (TNF-α), interleukin-4 (IL-4), IL-6, IL-10, P-selectin, and immunoglobulin E (IgE). Results There was a trend toward higher resting levels of TNF-α in the CSRA group (P = 0.076). Exercise induced a significant increase in P-selectin and TGF-β1 in both groups. TNF-α increased significantly (17%) in the comparison group (pre = 0.6, post = 0.7 pg/mL), but not in the CSRA group. IL-6 increased significantly in the CSRA group (pre = 0.7, post = 0.8 pg/mL), but not in the comparison group. Circulating levels of IL-4 and IL-10 were not altered immediately post-exercise in either group. Conclusions A short bout of intense exercise increased inflammatory growth factors and adhesion molecules, namely TGF-β1 and P-selectin, both of which are known to be involved in allergic airway diseases. Differences in resting IL-6 and TNF-α and exercise alterations in these cytokines may also contribute to allergic disease in adolescent elite swimmers. PMID:25414542

  2. CARMA3 Is Critical for the Initiation of Allergic Airway Inflammation

    PubMed Central

    Causton, Benjamin; Ramadas, Ravisankar A.; Cho, Josalyn L.; Jones, Khristianna; Pardo-Saganta, Ana; Rajagopal, Jayaraj; Xavier, Ramnik J.

    2015-01-01

    Innate immune responses to allergens by airway epithelial cells (AECs) help initiate and propagate the adaptive immune response associated with allergic airway inflammation in asthma. Activation of the transcription factor NF-κB in AECs by allergens or secondary mediators via G protein–coupled receptors (GPCRs) is an important component of this multifaceted inflammatory cascade. Members of the caspase recruitment domain family of proteins display tissue-specific expression and help mediate NF-κB activity in response to numerous stimuli. We have previously shown that caspase recruitment domain–containing membrane-associated guanylate kinase protein (CARMA)3 is specifically expressed in AECs and mediates NF-κB activation in these cells in response to stimulation with the GPCR agonist lysophosphatidic acid. In this study, we demonstrate that reduced levels of CARMA3 in normal human bronchial epithelial cells decreases the production of proasthmatic mediators in response to a panel of asthma-relevant GPCR ligands such as lysophosphatidic acid, adenosine triphosphate, and allergens that activate GPCRs such as Alternaria alternata and house dust mite. We then show that genetically modified mice with CARMA3-deficient AECs have reduced airway eosinophilia and proinflammatory cytokine production in a murine model of allergic airway inflammation. Additionally, we demonstrate that these mice have impaired dendritic cell maturation in the lung and that dendritic cells from mice with CARMA3-deficient AECs have impaired Ag processing. In conclusion, we show that AEC CARMA3 helps mediate allergic airway inflammation, and that CARMA3 is a critical signaling molecule bridging the innate and adaptive immune responses in the lung. PMID:26041536

  3. Butyrate protects against disruption of the blood-milk barrier and moderates inflammatory responses in a model of mastitis induced by lipopolysaccharide.

    PubMed

    Wang, Jing-Jing; Wei, Zheng-Kai; Zhang, Xu; Wang, Ya-Nan; Fu, Yun-He; Yang, Zheng-Tao

    2017-11-01

    Short-chain fatty acids are fermentation end products produced by gut bacteria, which have been shown to ameliorate inflammatory bowel diseases and allergic asthma. However, the mechanism involved remains largely unknown. Here, we investigate the protective effects and mechanisms of sodium butyrate (SB) on LPS-induced mastitis model. Effects of increasing doses of SB on blood-milk barrier function and inflammation are studied in BALB/c mice with LPS-induced mastitis. The underlying mechanisms of anti-inflammatory effects of SB were further investigated in LPS-stimulated mouse mammary epithelial cells (mMECs). The results show that SB decreased LPS-induced disruption in mammary tissues, infiltration of inflammatory cells and the levels of TNF-α, IL-6 and IL-1β. SB up-regulated the tight junction proteins occludin and claudin-3 and reduced blood-milk barrier permeability in LPS-induced mastitis. Studies in vitro revealed that SB inhibited LPS-induced inflammatory response by inhibition of the NF-κB signalling pathway and histone deacetylases in LPS-stimulated mMECs. In our model, SB protected against LPS-induced mastitis by preserving blood-milk barrier function and depressing pro-inflammatory responses, suggesting the potential use of SB as a prophylactic agent to protect blood-milk barrier function in mastitis. © 2017 The British Pharmacological Society.

  4. Stress and anxiety effects on positive skin test responses in young adults with allergic rhinitis.

    PubMed

    Heffner, Kathi L; Kiecolt-Glaser, Janice K; Glaser, Ronald; Malarkey, William B; Marshall, Gailen D

    2014-07-01

    Anxiety and psychological stress affect allergy-related immune function. How these relations influence the evaluations of patients with allergic rhinitis is unknown. To examine whether anxiety and stress exposure affect skin prick test (SPT) responses to common allergens for which patients with atopy showed no prior positive SPT response. Patients with allergic rhinitis, evidenced by clinical history and SPT results, were admitted twice to a hospital research unit for 4 hours. In a crossover design, SPT wheals were assessed before and after the Trier Social Stress Test and then the following morning; for comparison, SPT wheals were assessed before and after a laboratory session without a stressor. Analyses focused on wheal responses for common allergens that tested negative (wheal size <3 mm larger than saline) from SPTs performed at multiple baseline assessments. After the Trier Social Stress Test, more anxious patients with atopy had a higher incidence of positive SPT reactions to antigens that previously tested negative. Anxiety was unrelated to positive SPT incidence under nonstressful conditions. Based on clinical symptom reports, newly positive SPT reactions after the stressor were apparently corrections of previously false-negative SPT reactions. The SPT wheal responses for allergens previously testing negative were enhanced after a stressor. Histamine (positive control) or saline (negative control) SPT responses were not affected. A laboratory stressor affected allergen SPT responses in more anxious patients with allergic rhinitis. In addition to clinical history, assessment of anxiety and current stress at the time of the SPT may provide valuable information about a patient's allergic status and aid in clinical decision making. Copyright © 2014 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  5. Proanthocyanidins from the bark of Metasequoia glyptostroboides ameliorate allergic contact dermatitis through directly inhibiting T cells activation and Th1/Th17 responses.

    PubMed

    Chen, Fengyang; Ye, Xiaodi; Yang, Yadong; Teng, Tianli; Li, Xiaoyu; Xu, Shifang; Ye, Yiping

    2015-04-15

    The leaves and bark of Metasequoia glyptostroboides are used as anti-microbic, analgesic and anti-inflammatory drug for dermatic diseases in Chinese folk medicine. However, the pharmacological effects and material basis responsible for the therapeutic use of this herb have not yet been well studied. The objectives of this study were to evaluate the anti-inflammatory effects of the proanthocyanidin fraction from the bark of M. glyptostroboides (MGEB) and to elucidate its immunological mechanisms. The anti-inflammatory activity of MGEB was evaluated using 2,4-dinitrofluorobenzene (DNFB)-induced allergic contact dermatitis (ACD) in mice. Its potential mechanisms were further investigated by determining its effects on Con A-induced T cell activation and Th1/Th17 responses in vitro. Both intraperitoneal injection and oral administration of MGEB significantly reduced the ear swelling in DNFB-induced ACD mice. MGEB inhibited Con A-induced proliferation and the expression levels of cell surface molecules CD69 and CD25 of T cells in vitro. MGEB also significantly decreased the production of Th1/Th17 specific cytokines (IL-2, IFN-γ and IL-17) and down-regulated their mRNA expression levels in activated T-cells. MGEB could ameliorate ACD, at least in part, through directly inhibiting T cells activation and Th1/Th17 responses. Copyright © 2015 Elsevier GmbH. All rights reserved.

  6. Regulatory B-cell induction by helminths: implications for allergic disease.

    PubMed

    Hussaarts, Leonie; van der Vlugt, Luciën E P M; Yazdanbakhsh, Maria; Smits, Hermelijn H

    2011-10-01

    Chronic helminth infections are often associated with a reduced prevalence of inflammatory disorders, including allergic diseases. Helminths influence the host immune system by downregulating T-cell responses; the cytokine IL-10 appears to play a central role in this process. Over the last decade, evidence has emerged toward a new regulatory cell type: IL-10-producing B cells, capable of regulating immunity and therefore termed regulatory B cells. Initially, regulatory B cells have been described in autoimmunity models where they dampen inflammation, but recently they were also found in several helminth infection models. Importantly, regulatory B cells have recently been identified in humans, and it has been suggested that patients suffering from autoimmunity have an impaired regulatory B-cell function. As such, it is of therapeutic interest to study the conditions in which IL-10-producing B cells can be induced. Chronic helminth infections appear to hold promise in this context as emerging evidence suggests that helminth-induced regulatory B cells strongly suppress allergic inflammation. In this review, we will discuss the conditions under which regulatory B cells are present, leading to a state of tolerance, as well as the conditions where their absence or functional impairment leads to exacerbated disease. We will summarize their phenotypic characteristics and their mechanisms of action and elaborate on possible mechanisms whereby regulatory B cells can be induced or expanded, as this may open novel avenues for the treatment of inflammatory diseases, such as allergic asthma. Copyright © 2011 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  7. Houttuynia cordata water extract suppresses anaphylactic reaction and IgE-mediated allergic response by inhibiting multiple steps of FcepsilonRI signaling in mast cells.

    PubMed

    Han, Eun Hee; Park, Jin Hee; Kim, Ji Young; Jeong, Hye Gwang

    2009-07-01

    Houttuynia cordata has been used as a traditional medicine in Korea and is known to have antioxidant, anti-cancer and anti-allergic activities. The precise effect of H. cordata, however, remains unknown. In this study, we investigated the effects of H. cordata water extract (HCWE) on passive cutaneous anaphylaxis (PCA) in mice and on IgE-mediated allergic response in rat mast RBL-2H3 cells. Oral administration of HCWE inhibited IgE-mediated systemic PCA in mice. HCWE also reduced antigen (DNP-BSA)-induced release of beta-hexosaminidase, histamine, and reactive oxygen species in IgE-sensitized RBL-2H3 cells. In addition, HCWE inhibited antigen-induced IL-4 and TNF-alpha production and expression in IgE-sensitized RBL-2H3 cells. HCWE inhibited antigen-induced activation of NF-kappaB and degradation of IkappaB-alpha. To investigate the inhibitory mechanism of HCWE on degranulation and cytokine production, we examined the activation of intracellular FcepsilonRI signaling molecules. HCWE suppressed antigen-induced phosphorylation of Syk, Lyn, LAT, Gab2, and PLC gamma2. Further downstream, antigen-induced phosphorylation of Akt and MAP kinases (ERK1/2 and JNK1/2 but not p38 MAP kinase) were inhibited by HCWE. Taken together, the in vivo/in vitro anti-allergic effect of HCWE suggests possible therapeutic applications of this agent in inflammatory allergic diseases through inhibition of cytokines and multiple events of FcepsilonRI-dependent signaling cascades in mast cells.

  8. Psoriatic inflammation enhances allergic airway inflammation through IL-23/STAT3 signaling in a murine model.

    PubMed

    Nadeem, Ahmed; Al-Harbi, Naif O; Ansari, Mushtaq A; Al-Harbi, Mohammed M; El-Sherbeeny, Ahmed M; Zoheir, Khairy M A; Attia, Sabry M; Hafez, Mohamed M; Al-Shabanah, Othman A; Ahmad, Sheikh F

    2017-01-15

    Psoriasis is an autoimmune inflammatory skin disease characterized by activated IL-23/STAT3/Th17 axis. Recently psoriatic inflammation has been shown to be associated with asthma. However, no study has previously explored how psoriatic inflammation affects airway inflammation. Therefore, this study investigated the effect of imiquimod (IMQ)-induced psoriatic inflammation on cockroach extract (CE)-induced airway inflammation in murine models. Mice were subjected to topical and intranasal administration of IMQ and CE to develop psoriatic and airway inflammation respectively. Various analyses in lung/spleen related to inflammation, Th17/Th2/Th1 cell immune responses, and their signature cytokines/transcription factors were carried out. Psoriatic inflammation in allergic mice was associated with increased airway inflammation with concurrent increase in Th2/Th17 cells/signature cytokines/transcription factors. Splenic CD4+ T and CD11c+ dendritic cells in psoriatic mice had increased STAT3/RORC and IL-23 mRNA expression respectively. This led us to explore the effect of systemic IL-23/STAT3 signaling on airway inflammation. Topical application of STA-21, a small molecule STAT3 inhibitor significantly reduced airway inflammation in allergic mice having psoriatic inflammation. On the other hand, adoptive transfer of IL-23-treated splenic CD4+ T cells from allergic mice into naive recipient mice produced mixed neutrophilic/eosinophilic airway inflammation similar to allergic mice with psoriatic inflammation. Our data suggest that systemic IL-23/STAT3 axis is responsible for enhanced airway inflammation during psoriasis. The current study also suggests that only anti-asthma therapy may not be sufficient to alleviate airway inflammatory burden in asthmatics with psoriasis. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. [Allergic responses to date palm and pecan pollen in Israel].

    PubMed

    Waisel, Y; Keynan, N; Gil, T; Tayar, D; Bezerano, A; Goldberg, A; Geller-Bernstein, C; Dolev, Z; Tamir, R; Levy, I

    1994-03-15

    Date palm (Phoenix dactylifera) and pecan (Carya illinoensis) trees are commonly planted in Israel for fruit, for shade, or as ornamental plants. Pollen grains of both species are allergenic; however, the extent of exposure to such pollen and the incidence of allergic response have not been studied here. We therefore investigated skin-test responses to pollen extracts of 12 varieties of palm and 9 of pecan in 705 allergic patients living in 3 cities and 19 rural settlements. Sensitivity to the pollen extracts of both species was much higher among residents of rural than of urban communities. Moreover, there was a definite relationship between the abundance of these trees in a region and the incidence of skin responders to their pollen. Sensitivity was frequent in settlements rich in these 2 species, such as those with nearby commercial date or pecan plantations. In general, sensitivity to date pollen extracts was lower than to pecan. However, differences in skin responses to pollen extracts of various clones were substantiated. Air sampling revealed that pollen pollution decreased considerably with distance from the trees. At approximately 100 m from a source concentrations of airborne pollen were low. Since planting of male palm and pecan trees in population centers would increase pollen pollution, it should be avoided.

  10. METALS, PARTICLES AND IMPACT UPON PULMONARY ALLERGIC RESPONSES

    EPA Science Inventory


    The increase in allergic asthma over the past few decades has prompted investigations into whether air pollution may affect either the incidence or severity of allergic lung disease. Population studies have demonstrated that as air pollution rises, symptoms, medication use a...

  11. Measuring T cell cytokines in allergic upper and lower airway inflammation: can we move to the clinic?

    PubMed

    Bullens, Dominique M A

    2007-06-01

    Recent insights regarding the development of allergic diseases such as allergic rhinitis, asthma and atopic eczema are based on the functional diversity of T helper (Th)1 and Th2 lymphocytes. Th2 cells (secreting Interleukin (IL)-4, IL-5, IL-9 and IL-13) are considered to be responsible for the induction and for many of the manifestations of atopic diseases. Local overproduction of Th2 cytokines at the site of allergic inflammation, and an intrinsic defect in the production of IFN-gamma by Th1 cells in atopic individuals, have now been reported by several authors. Both IFN-gamma and IL-10 have been suggested to play a modulatory role in the induction and maintenance of allergen-specific tolerance in healthy individuals. However, recent studies indicate that Th1 cells, secreting IFN-gamma might cause severe airway inflammation. On the other hand, 'inflammatory T cells' or Th17 cells, producing IL-17, could represent a link between T cell inflammation and granulocytic influx as observed in allergic airway inflammation. We focus in this review on local (at the side of inflammation) T cell cytokine production and cytokine production by circulating T cells (after in vitro restimulation) from individuals with allergic airway disease, rhinitis and/or asthma. We furthermore review the changes in local T cell cytokine production and/or cytokine production by circulating T cells (after restimulation in vitro) from allergic/asthmatic individuals after treatment with anti-inflammatory agents or immunotherapy. Finally, we discuss whether measuring these T cell cytokines in the airways might be of diagnostic importance or could help to follow-up patients with allergy/asthma.

  12. Eosinophils as a novel cell source of prostaglandin D2: autocrine role in allergic inflammation

    PubMed Central

    Luna-Gomes, Tatiana; Magalhães, Kelly G; Mesquita-Santos, Fabio P.; Bakker-Abreu, Ilka; Samico, Rafaela F.; Molinaro, Raphael; Calheiros, Andrea S.; Diaz, Bruno L.; Bozza, Patrícia T.

    2011-01-01

    Prostaglandin (PG)D2 is a key mediator of allergic inflammatory diseases that is mainly synthesized by mast cells, which constitutively express high levels of the terminal enzyme involved in PGD2 synthesis, the hematopoietic PGD synthase (H-PGDS). Here, we investigated whether eosinophils are also able to synthesize, and therefore, supply biologically active PGD2. PGD2 synthesis was evaluated within human blood eosinophils, in vitro-differentiated mouse eosinophils, and eosinophils infiltrating inflammatory site of mouse allergic reaction. Biological function of eosinophil-derived PGD2 was studied by employing inhibitors of synthesis and activity. Constitutive expression of H-PGDS was found within non-stimulated human circulating eosinophils. Acute stimulation of human eosinophils with A23187 (0.1 – 5 μM) evoked PGD2 synthesis, which was located at the nuclear envelope and was inhibited by pre-treatment with HQL-79 (10 μM), a specific H-PGDS inhibitor. Pre-stimulation of human eosinophils with arachidonic acid (AA; 10 μM) or human eotaxin (6 nM) also enhanced HQL-79-sensitive PGD2 synthesis, which, by acting on membrane-expressed specific receptors (DP1 and DP2), displayed an autocrine/paracrine ability to trigger leukotriene (LT)C4 synthesis and lipid body biogenesis, hallmark events of eosinophil activation. In vitro-differentiated mouse eosinophils also synthesized paracrine/autocrine active PGD2 in response to AA stimulation. In vivo, at late time point of the allergic reaction, infiltrating eosinophils found at the inflammatory site appeared as an auxiliary PGD2-synthesizing cell population. Our findings reveal that eosinophils are indeed able to synthesize and secrete PGD2, hence representing during allergic inflammation an extra cell source of PGD2, which functions as an autocrine signal for eosinophil activation. PMID:22102725

  13. Elevated and cross‐responsive CD1a‐reactive T cells in bee and wasp venom allergic individuals

    PubMed Central

    Subramaniam, Sumithra; Aslam, Aamir; Misbah, Siraj A.; Salio, Mariolina; Cerundolo, Vincenzo; Moody, D Branch

    2015-01-01

    The role of CD1a‐reactive T cells in human allergic disease is unknown. We have previously shown that circulating CD1a‐reactive T cells recognize neolipid antigens generated by bee and wasp venom phospholipase, and here tested the hypothesis that venom‐responsive CD1a‐reactive T cells associate with venom allergy. Circulating T cells from bee and wasp venom allergic individuals, before and during immunotherapy, were exposed to CD1a‐transfected K562 cells in the presence of wasp or bee venom. T‐cell response was evaluated based on IFNγ, GM‐CSF, and IL‐13 cytokine production. Venom allergic individuals showed significantly higher frequencies of IFN‐γ, GM‐CSF, and IL‐13 producing CD1a‐reactive T cells responsive to venom and venom‐derived phospholipase than healthy individuals. Venom‐responsive CD1a‐reactive T cells were cross‐responsive between wasp and bee suggesting shared pathways of allergenicity. Frequencies of CD1a‐reactive T cells were initially induced during subcutaneous immunotherapy, peaking by weeks 5, but then reduced despite escalation of antigen dose. Our current understanding of venom allergy and immunotherapy is largely based on peptide and protein‐specific T cell and antibody responses. Here, we show that lipid antigens and CD1a‐reactive T cells associate with the allergic response. These data have implications for mechanisms of allergy and approaches to immunotherapy. PMID:26518614

  14. Neutral endopeptidase terminates substance P-induced inflammation in allergic contact dermatitis.

    PubMed

    Scholzen, T E; Steinhoff, M; Bonaccorsi, P; Klein, R; Amadesi, S; Geppetti, P; Lu, B; Gerard, N P; Olerud, J E; Luger, T A; Bunnett, N W; Grady, E F; Armstrong, C A; Ansel, J C

    2001-01-15

    Sensory nerve-derived neuropeptides such as substance P demonstrate a number of proinflammatory bioactivities, but less is known about their role in inflammatory skin disease. The cell surface metalloprotease neutral endopeptidase (NEP) is the principal proteolytic substance P-degrading enzyme. This study tests the hypothesis that the absence of NEP results in dysregulated inflammatory skin responses. The effector phase of allergic contact dermatitis (ACD) responses was examined in NEP(-/-) knockout and NEP(+/+) wild-type mice and compared with the irritant contact dermatitis response in these animals. NEP was found to be normally immunolocalized in epidermal keratinocytes and dermal blood vessels. The ACD ear swelling response was 2.5-fold higher in animals lacking NEP and was accompanied by a significant increase in plasma extravasation and infiltration of inflammatory leukocytes. The augmented ACD response in NEP(-/-) animals was abrogated by either administration of a neurokinin receptor 1 antagonist or by repeated pretreatment with topical capsaicin. Similar to NEP(-/-) mice, the acute inhibition of NEP in NEP(+/+) animals resulted in an augmented ACD response. In contrast to the ACD responses, little differences were observed in the irritant contact dermatitis response of NEP(-/-) compared with NEP(+/+) animals after epicutaneous application of the skin irritants croton oil or SDS. Thus, these results indicate that NEP and cutaneous neuropeptides have a significant role in the pathogenesis of ACD.

  15. Ultraviolet A photosensitivity profile of dexchlorpheniramine maleate and promethazine-based creams: Anti-inflammatory, antihistaminic, and skin barrier protection properties.

    PubMed

    Facchini, Gustavo; Eberlin, Samara; Clerici, Stefano Piatto; Alves Pinheiro, Ana Lucia Tabarini; Costa, Adilson

    2017-12-01

    Unwanted side effects such as dryness, hypersensitivity, and cutaneous photosensitivity are challenge for adherence and therapeutical success for patients using treatments for inflammatory and allergic skin response. In this study, we compared the effects of two dermatological formulations, which are used in inflammatory and/or allergic skin conditions: dexchlorpheniramine maleate (DCP; 10 mg/g) and promethazine (PTZ; 20 mg/g). We evaluated both formulations for phototoxicity potential, skin irritation, anti-inflammatory and antihistaminic abilities, and skin barrier repair in vitro and ex vivo using the standard OECD test guideline n° 432, the ECVAM protocol n° 78, and cultured skin explants from a healthy patient. Ultraviolet A was chosen as exogenous agent to induce allergic and inflammatory response. Both PTZ and DCP promoted increases in interleukin-1 (IL-1) synthesis in response to ultraviolet A (UVA) radiation compared to control. However, the increase observed with PTZ was significantly greater than the DCP, indicating that the latter has a lower irritant potential. DCP also demonstrated a protective effect on UVA-induced leukotriene B4 and nuclear factor kappa B (NF-κB) synthesis. Conversely, PTZ demonstrates more robust UVA antihistaminic activity. Likewise, PTZ promoted a significantly greater increase in the production of involucrin and keratin 14, both associated with protective skin barrier property. In conclusion, these data suggest possible diverging UVA response mechanisms of DCP and PTZ, which gives greater insight into the contrasting photosensitizing potential between DCP and PTZ observed in the patients. © 2017 Wiley Periodicals, Inc.

  16. Immunomodulation: the future cure for allergic diseases.

    PubMed

    Tsitoura, Daphne C; Tassios, Yannis

    2006-11-01

    Allergies are the result of aberrant immune reactivity against common innocuous environmental proteins (allergens). A pivotal component of allergic pathogenesis is the generation of allergen-specific Th cells with an effector phenotype. These Th cells activate a complex immune cascade that triggers the release of potent mediators and enhances the mobilization of several inflammatory cells types, which in turn elicit the acute allergic reactions and promote the development of chronic inflammation. The current therapies for allergic diseases focus primarily on pharmacological control of symptoms and suppression of inflammation. This approach is beneficial, but not curative, since the underlying immune pathology is not inhibited. In an attempt to develop more effective therapeutic strategies, the scientific interest has been directed toward methods down-modulating the immune mechanisms that initiate and maintain the allergic cascade. Today, the only widely used disease-modifying form of allergy treatment is the specific immunotherapy with allergen extracts. More recently the use of anti-IgE has been approved for patients with allergic asthma. Other immunomodulatory methods being currently explored are the administration of microbial adjuvants that inhibit Th2 reactivity and the design of molecules that interrupt the activity of key allergic cytokines, chemokines, or other Th2 effector mediators.

  17. Probiotics in Curing Allergic and Inflammatory Conditions - Research Progress and Futuristic Vision.

    PubMed

    Dhama, Kuldeep; Latheef, Shyma K; Munjal, Ashok K; Khandia, Rekha; Samad, Hari A; Iqbal, Hafiz M N; Joshi, Sunil K

    2017-01-01

    Probiotics constitute the viable and beneficial microbes, which offer a dietary means to sustain the balance of gastro-intestinal (GI) microflora. Owing to their multiple health benefits, these have recently gained wide attention among researchers for exploring their potential in safeguarding the health of humans and animals. Probiotics could also modulate host-immune responses, thereby help in counteracting the immunological dysfunctions. Probiotics can inhibit the systemic invasion of pathogens entering through the GI mucosa/ oral cavity and have been found to possess effective prophylactic and therapeutic utilities against various infectious pathogens as well as non-infectious diseases and disorders. The present review expedites the role of probiotics in curing the ailments related to allergic and inflammatory disease conditions. A thorough reviewing of the literature and patents available on probiotics and their role in countering inflammation and allergy was conducted using authentic published resources available on Medline, PubMed, PubMed Central, Science Direct and other scientific databases. The information retrieved has been compiled and analysed pertaining to the theme of the study. Various micro-organisms have been evaluated for their probiotic efficacy, among these, the lactic acid bacteria viz. Lactobacillus sp. and Bifidobacterium sp. have extensively been studied and widely exploited. In the current post-globalized era of self and complementary medicines, the concept of probiotics and their therapeutic as well as prophylactic usage is gaining wide acceptance. As more and more bacterial strains are being proven for their pronounced influence on down regulation of immune regulation, atopic, inflammatory conditions, the use of probiotics is getting increased especially in the developed countries where such indications are high in prevalence. Apart from usage in immune related disorders, probiotics have been found to be effective in treating pouchitis

  18. Dysregulation of type 2 innate lymphoid cells and TH2 cells impairs pollutant-induced allergic airway responses.

    PubMed

    De Grove, Katrien C; Provoost, Sharen; Hendriks, Rudi W; McKenzie, Andrew N J; Seys, Leen J M; Kumar, Smitha; Maes, Tania; Brusselle, Guy G; Joos, Guy F

    2017-01-01

    Although the prominent role of T H 2 cells in type 2 immune responses is well established, the newly identified type 2 innate lymphoid cells (ILC2s) can also contribute to orchestration of allergic responses. Several experimental and epidemiologic studies have provided evidence that allergen-induced airway responses can be further enhanced on exposure to environmental pollutants, such as diesel exhaust particles (DEPs). However, the components and pathways responsible remain incompletely known. We sought to investigate the relative contribution of ILC2 and adaptive T H 2 cell responses in a murine model of DEP-enhanced allergic airway inflammation. Wild-type, Gata-3 +/nlslacZ (Gata-3-haploinsufficient), RAR-related orphan receptor α (RORα) fl/fl IL7R Cre (ILC2-deficient), and recombination-activating gene (Rag) 2 -/- mice were challenged with saline, DEPs, or house dust mite (HDM) or DEP+HDM. Airway hyperresponsiveness, as well as inflammation, and intracellular cytokine expression in ILC2s and T H 2 cells in the bronchoalveolar lavage fluid and lung tissue were assessed. Concomitant DEP+HDM exposure significantly enhanced allergic airway inflammation, as characterized by increased airway eosinophilia, goblet cell metaplasia, accumulation of ILC2s and T H 2 cells, type 2 cytokine production, and airway hyperresponsiveness compared with sole DEPs or HDM. Reduced Gata-3 expression decreased the number of functional ILC2s and T H 2 cells in DEP+HDM-exposed mice, resulting in an impaired DEP-enhanced allergic airway inflammation. Interestingly, although the DEP-enhanced allergic inflammation was marginally reduced in ILC2-deficient mice that received combined DEP+HDM, it was abolished in DEP+HDM-exposed Rag2 -/- mice. These data indicate that dysregulation of ILC2s and T H 2 cells attenuates DEP-enhanced allergic airway inflammation. In addition, a crucial role for the adaptive immune system was shown on concomitant DEP+HDM exposure. Copyright © 2016 American

  19. Triclosan Induces Thymic Stromal Lymphopoietin in Skin Promoting Th2 Allergic Responses

    PubMed Central

    Marshall, Nikki B.; Lukomska, Ewa; Long, Carrie M.; Kashon, Michael L.; Sharpnack, Douglas D.; Nayak, Ajay P.; Anderson, Katie L.; Meade, B. Jean; Anderson, Stacey E.

    2016-01-01

    Triclosan is an antimicrobial chemical incorporated into many personal, medical and household products. Approximately, 75% of the U.S. population has detectable levels of triclosan in their urine, and although it is not typically considered a contact sensitizer, recent studies have begun to link triclosan exposure with augmented allergic disease. We examined the effects of dermal triclosan exposure on the skin and lymph nodes of mice and in a human skin model to identify mechanisms for augmenting allergic responses. Triclosan (0%–3%) was applied topically at 24-h intervals to the ear pinnae of OVA-sensitized BALB/c mice. Skin and draining lymph nodes were evaluated for cellular responses and cytokine expression over time. The effects of triclosan (0%–0.75%) on cytokine expression in a human skin tissue model were also examined. Exposure to triclosan increased the expression of TSLP, IL-1β, and TNF-α in the skin with concomitant decreases in IL-25, IL-33, and IL-1α. Similar changes in TSLP, IL1B, and IL33 expression occurred in human skin. Topical application of triclosan also increased draining lymph node cellularity consisting of activated CD86+GL-7+ B cells, CD80+CD86+ dendritic cells, GATA-3+OX-40+IL-4+IL-13+ Th2 cells and IL-17 A+ CD4 T cells. In vivo antibody blockade of TSLP reduced skin irritation, IL-1β expression, lymph node cellularity, and Th2 responses augmented by triclosan. Repeated dermal exposure to triclosan induces TSLP expression in skin tissue as a potential mechanism for augmenting allergic responses. PMID:26048654

  20. CARMA3 Is Critical for the Initiation of Allergic Airway Inflammation.

    PubMed

    Causton, Benjamin; Ramadas, Ravisankar A; Cho, Josalyn L; Jones, Khristianna; Pardo-Saganta, Ana; Rajagopal, Jayaraj; Xavier, Ramnik J; Medoff, Benjamin D

    2015-07-15

    Innate immune responses to allergens by airway epithelial cells (AECs) help initiate and propagate the adaptive immune response associated with allergic airway inflammation in asthma. Activation of the transcription factor NF-κB in AECs by allergens or secondary mediators via G protein-coupled receptors (GPCRs) is an important component of this multifaceted inflammatory cascade. Members of the caspase recruitment domain family of proteins display tissue-specific expression and help mediate NF-κB activity in response to numerous stimuli. We have previously shown that caspase recruitment domain-containing membrane-associated guanylate kinase protein (CARMA)3 is specifically expressed in AECs and mediates NF-κB activation in these cells in response to stimulation with the GPCR agonist lysophosphatidic acid. In this study, we demonstrate that reduced levels of CARMA3 in normal human bronchial epithelial cells decreases the production of proasthmatic mediators in response to a panel of asthma-relevant GPCR ligands such as lysophosphatidic acid, adenosine triphosphate, and allergens that activate GPCRs such as Alternaria alternata and house dust mite. We then show that genetically modified mice with CARMA3-deficient AECs have reduced airway eosinophilia and proinflammatory cytokine production in a murine model of allergic airway inflammation. Additionally, we demonstrate that these mice have impaired dendritic cell maturation in the lung and that dendritic cells from mice with CARMA3-deficient AECs have impaired Ag processing. In conclusion, we show that AEC CARMA3 helps mediate allergic airway inflammation, and that CARMA3 is a critical signaling molecule bridging the innate and adaptive immune responses in the lung. Copyright © 2015 by The American Association of Immunologists, Inc.

  1. Systemic inflammatory response following acute myocardial infarction

    PubMed Central

    Fang, Lu; Moore, Xiao-Lei; Dart, Anthony M; Wang, Le-Min

    2015-01-01

    Acute cardiomyocyte necrosis in the infarcted heart generates damage-associated molecular patterns, activating complement and toll-like receptor/interleukin-1 signaling, and triggering an intense inflammatory response. Inflammasomes also recognize danger signals and mediate sterile inflammatory response following acute myocardial infarction (AMI). Inflammatory response serves to repair the heart, but excessive inflammation leads to adverse left ventricular remodeling and heart failure. In addition to local inflammation, profound systemic inflammation response has been documented in patients with AMI, which includes elevation of circulating inflammatory cytokines, chemokines and cell adhesion molecules, and activation of peripheral leukocytes and platelets. The excessive inflammatory response could be caused by a deregulated immune system. AMI is also associated with bone marrow activation and spleen monocytopoiesis, which sustains a continuous supply of monocytes at the site of inflammation. Accumulating evidence has shown that systemic inflammation aggravates atherosclerosis and markers for systemic inflammation are predictors of adverse clinical outcomes (such as death, recurrent myocardial infarction, and heart failure) in patients with AMI. PMID:26089856

  2. Effect of heat-inactivated kefir-isolated Lactobacillus kefiranofaciens M1 on preventing an allergic airway response in mice.

    PubMed

    Hong, Wei-Sheng; Chen, Yen-Po; Dai, Ting-Yeu; Huang, I-Nung; Chen, Ming-Ju

    2011-08-24

    In this study, we assessed the anti-asthmatic effects of heat-inactivated Lactobacillus kefiranofaciens M1 (HI-M1) and its fermented milk using different feeding procedures and at various dosage levels. The possible mechanisms whereby HI-M1 has anti-allergic asthmatic effects were also evaluated. Ovalbumin (OVA)-allergic asthma mice that have been orally administrated the HI-M1 samples showed strong inhibition of production of T helper cell (Th) 2 cytokines, pro-inflammatory cytokines, and Th17 cytokines in splenocytes and bronchoalveolar fluid compared to control mice. An increase in regulatory T cell population in splenocytes in the allergic asthma mice after oral administration of H1-M1 was also observed. In addition, all of the features of the asthmatic phenotype, including specific IgE production, airway inflammation, and development of airway hyperresponsiveness, were depressed in a dose-dependent manner by treatment. These findings support the possibility that oral feeding of H1-M1 may be an effective way of alleviating asthmatic symptoms in humans.

  3. Scope and impact of allergic rhinitis.

    PubMed

    D'Alonzo, Gilbert E

    2002-06-01

    Allergic rhinitis is estimated to affect as many as 40 million people in the United States on a regular basis, and even more individuals who have occasional symptoms. The disease is associated with a considerable burden on the healthcare system, accounting for a total of $7.9 billion in direct and indirect costs in 1997, and with significant adverse effects on patients' quality of life, including disturbed sleep and impaired function at work and school. The pathophysiology of allergic rhinitis is complex, involving inflammatory mediators and immune cells that produce allergy symptoms via multiple mechanisms. The first principle of clinical management of patients with allergic rhinitis is avoidance of exposure to allergens, but this measure can be very difficult, and most patients require pharmacotherapy. Allergy vaccine therapy may be an appropriate and necessary option in selected patients with allergies refractory to other treatment modalities.

  4. Innate lymphoid cells contribute to allergic airway disease exacerbation by obesity.

    PubMed

    Everaere, Laetitia; Ait-Yahia, Saliha; Molendi-Coste, Olivier; Vorng, Han; Quemener, Sandrine; LeVu, Pauline; Fleury, Sebastien; Bouchaert, Emmanuel; Fan, Ying; Duez, Catherine; de Nadai, Patricia; Staels, Bart; Dombrowicz, David; Tsicopoulos, Anne

    2016-11-01

    Epidemiologic and clinical observations identify obesity as an important risk factor for asthma exacerbation, but the underlying mechanisms remain poorly understood. Type 2 innate lymphoid cells (ILC2s) and type 3 innate lymphoid cells (ILC3s) have been implicated, respectively, in asthma and adipose tissue homeostasis and in obesity-associated airway hyperresponsiveness (AHR). We sought to determine the potential involvement of innate lymphoid cells (ILCs) in allergic airway disease exacerbation caused by high-fat diet (HFD)-induced obesity. Obesity was induced by means of HFD feeding, and allergic airway inflammation was subsequently induced by means of intranasal administration of house dust mite (HDM) extract. AHR, lung and visceral adipose tissue inflammation, humoral response, cytokines, and innate and adaptive lymphoid populations were analyzed in the presence or absence of ILCs. HFD feeding exacerbated allergic airway disease features, including humoral response, airway and tissue eosinophilia, AHR, and T H 2 and T H 17 pulmonary profiles. Notably, nonsensitized obese mice already exhibited increased lung ILC counts and tissue eosinophil infiltration compared with values in lean mice in the absence of AHR. The numbers of total and cytokine-expressing lung ILC2s and ILC3s further increased in HDM-challenged obese mice compared with those in HDM-challenged lean mice, and this was accompanied by high IL-33 and IL-1β levels and decreased ILC markers in visceral adipose tissue. Furthermore, depletion of ILCs with an anti-CD90 antibody, followed by T-cell reconstitution, led to a profound decrease in allergic airway inflammatory features in obese mice, including T H 2 and T H 17 infiltration. These results indicate that HFD-induced obesity might exacerbate allergic airway inflammation through mechanisms involving ILC2s and ILC3s. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  5. CDIP-2, a synthetic peptide derived from chemokine (C-C motif) ligand 13 (CCL13), ameliorates allergic airway inflammation

    PubMed Central

    Mendez-Enriquez, E; Melendez, Y; Martinez, F; Baay, G; Huerta-Yepez, S; Gonzalez-Bonilla, C; Fortoul, T I; Soldevila, G; García-Zepeda, E A

    2008-01-01

    Airway inflammation is characterized by selective recruitment of mononuclear and granulocytic cells. This recruitment is mediated by the action of chemotactic cytokines, such as chemokines. A number of chemokines and their receptors have been identified and proposed as potential therapeutic agents in allergic airway inflammation. One of these chemokines is chemokine (C-C motif) ligand 13 (CCL13), a CC chemokine that has been associated with allergic inflammatory diseases such as asthma and allergic rhinitis. To investigate alternative therapeutic agents to alleviate allergic inflammatory diseases, a number of chemokine-derived synthetic peptides were designed and tested for their ability to modulate in vitro and in vivo chemokine-mediated functions. Our results show that one of these peptides, CDIP-2, displayed antagonist functions in in vitro chemotaxis assays using monocytic cell lines. In addition, we found that CDIP-2 significantly reduced peribronchial, perivascular infiltrate and mucus overproduction in an ovalbumin-induced allergic lung inflammation murine model. Thus, CDIP-2 may be considered as part of a novel group of anti-inflammatory agents based on chemokine-derived synthetic peptides. PMID:18336592

  6. CDIP-2, a synthetic peptide derived from chemokine (C-C motif) ligand 13 (CCL13), ameliorates allergic airway inflammation.

    PubMed

    Mendez-Enriquez, E; Melendez, Y; Martinez, F; Baay, G; Huerta-Yepez, S; Gonzalez-Bonilla, C; Fortoul, T I; Soldevila, G; García-Zepeda, E A

    2008-05-01

    Airway inflammation is characterized by selective recruitment of mononuclear and granulocytic cells. This recruitment is mediated by the action of chemotactic cytokines, such as chemokines. A number of chemokines and their receptors have been identified and proposed as potential therapeutic agents in allergic airway inflammation. One of these chemokines is chemokine (C-C motif) ligand 13 (CCL13), a CC chemokine that has been associated with allergic inflammatory diseases such as asthma and allergic rhinitis. To investigate alternative therapeutic agents to alleviate allergic inflammatory diseases, a number of chemokine-derived synthetic peptides were designed and tested for their ability to modulate in vitro and in vivo chemokine-mediated functions. Our results show that one of these peptides, CDIP-2, displayed antagonist functions in in vitro chemotaxis assays using monocytic cell lines. In addition, we found that CDIP-2 significantly reduced peribronchial, perivascular infiltrate and mucus overproduction in an ovalbumin-induced allergic lung inflammation murine model. Thus, CDIP-2 may be considered as part of a novel group of anti-inflammatory agents based on chemokine-derived synthetic peptides.

  7. CTAB-coated gold nanorods elicit allergic response through degranulation and cell death in human basophils

    NASA Astrophysics Data System (ADS)

    Cheung, Ka Lun; Chen, Huanjun; Chen, Qiulan; Wang, Jianfang; Ho, Ho Pui; Wong, Chun Kwok; Kong, Siu Kai

    2012-07-01

    The effect of CTAB (cetyltrimethylammonium bromide)- or PEG (polyethylene glycol)-coated gold-nanorods (Au-NRs) on the non-IgE mediated allergic response was studied. We found that the CTAB-Au-NRs released more allergic mediators such as histamine and β-hexosaminidase from human basophil KU812, a common model for studying allergy, after 20 min incubation. Also, the CTAB-Au-NRs induced more apoptosis than the PEG-Au-NRs in KU812 24 h after treatment. These short- and long-term effects were not solely due to the CTAB residues in the supernatant desorbed from the Au-NRs.The effect of CTAB (cetyltrimethylammonium bromide)- or PEG (polyethylene glycol)-coated gold-nanorods (Au-NRs) on the non-IgE mediated allergic response was studied. We found that the CTAB-Au-NRs released more allergic mediators such as histamine and β-hexosaminidase from human basophil KU812, a common model for studying allergy, after 20 min incubation. Also, the CTAB-Au-NRs induced more apoptosis than the PEG-Au-NRs in KU812 24 h after treatment. These short- and long-term effects were not solely due to the CTAB residues in the supernatant desorbed from the Au-NRs. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr30435j

  8. EFFECTS OF PARTICLES FROM TWO GERMAN CITIES ON ALLERGIC RESPONSES IN MICE

    EPA Science Inventory

    EFFECTS OF PARTICLES FROM TWO GERMAN CITIES ON ALLERGIC RESPONSES IN MICE. S. H. Gavett, L. R. Bishop, N. Haykal-Coates, J. Heinrich*, and M. I. Gilmour. Experimental Toxicology Division, ORD/NHEERL, U.S. EPA, Research Triangle Park, NC, USA, *GSF, Neuherberg, Germany.
    Chi...

  9. Mechanistic impact of outdoor air pollution on asthma and allergic diseases

    PubMed Central

    Zhang, Qingling; Qiu, Zhiming; Chung, Kian Fan

    2015-01-01

    Over the past decades, asthma and allergic diseases, such as allergic rhinitis and eczema, have become increasingly common, but the reason for this increased prevalence is still unclear. It has become apparent that genetic variation alone is not sufficient to account for the observed changes; rather, the changing environment, together with alterations in lifestyle and eating habits, are likely to have driven the increase in prevalence, and in some cases, severity of disease. This is particularly highlighted by recent awareness of, and concern about, the exposure to ubiquitous environmental pollutants, including chemicals with oxidant-generating capacities, and their impact on the human respiratory and immune systems. Indeed, several epidemiological studies have identified a variety of risk factors, including ambient pollutant gases and airborne particles, for the prevalence and the exacerbation of allergic diseases. However, the responsible pollutants remain unclear and the causal relationship has not been established. Recent studies of cellular and animal models have suggested several plausible mechanisms, with the most consistent observation being the direct effects of particle components on the generation of reactive oxygen species (ROS) and the resultant oxidative stress and inflammatory responses. This review attempts to highlight the experimental findings, with particular emphasis on several major mechanistic events initiated by exposure to particulate matters (PMs) in the exposure-disease relationship. PMID:25694815

  10. Nanoparticle-allergen interactions mediate human allergic responses: protein corona characterization and cellular responses.

    PubMed

    Radauer-Preiml, Isabella; Andosch, Ancuela; Hawranek, Thomas; Luetz-Meindl, Ursula; Wiederstein, Markus; Horejs-Hoeck, Jutta; Himly, Martin; Boyles, Matthew; Duschl, Albert

    2016-01-16

    Engineered nanomaterials (ENMs) interact with different biomolecules as soon as they are in contact, resulting in the formation of a biomolecule 'corona'. Hence, the 'corona' defines the biological identity of the ENMs and could affect the response of the immune system to ENM exposure. With up to 40 % of the world population suffering from type I allergy, a possible modulation of allergen effects by binding to ENMs is highly relevant with respect to work place and consumer safety. Therefore, the aim of this present study was to gain an insight into the interactions of gold nanoparticles with different seasonally and perennially occurring outdoor and indoor allergens. Gold nanoparticles (AuNPs) were conjugated with the major allergens of birch pollen (Bet v 1), timothy grass pollen (Phl p 5) and house dust mite (Der p 1). The AuNP-allergen conjugates were characterized by means of TEM negative staining, dynamic light scattering (DLS), z-potential measurements and hyperspectral imaging. Furthermore, 3D models were constructed, based on the characterization data, to visualize the interaction between the allergens and the AuNPs surface. Differences in the activation of human basophil cells derived from birch/grass pollen- and house dust mite-allergic patients in response to free allergen and AuNP-allergen conjugates were determined using the basophil activation assay (BAT). Potential allergen corona replacement during BAT was controlled for using Western blotting. The protease activity of AuNP-Der p 1 conjugates compared to free Der p 1 was assessed, by an enzymatic activity assay and a cellular assay pertaining to lung type II alveolar epithelial cell tight junction integrity. The formation of a stable corona was found for all three allergens used. Our data suggest, that depending on the allergen, different effects are observed after binding to ENMs, including enhanced allergic responses against Der p 1 and also, for some patients, against Bet v 1. Moreover elevated

  11. Sesquiterpene lactone mix patch testing supplemented with dandelion extract in patients with allergic contact dermatitis, atopic dermatitis and non-allergic chronic inflammatory skin diseases.

    PubMed

    Jovanović, M; Poljacki, M; Mimica-Dukić, N; Boza, P; Vujanović, Lj; Duran, V; Stojanović, S

    2004-09-01

    We investigated the value of patch testing with dandelion (Compositae) extract in addition to sesquiterpene lactone (SL) mix in selected patients. After we detected a case of contact erythema multiforme after patch testing with dandelion and common chickweed (Caryophyllaceae), additional testing with common chickweed extract was performed. A total of 235 adults with a mean age of 52.3 years were tested. There were 66 men and 169 women: 53 consecutive patients with allergic contact dermatitis (ACD); 43 with atopic dermatitis (AD); 90 non-atopics suffering from non-allergic chronic inflammatory skin diseases; 49 healthy volunteers. All were tested with SL mix 0.1% petrolatum (pet.) and diethyl ether extracts from Taraxacum officinale (dandelion) 0.1 and 3.0% pet. and from Stellaria media (common chickweed) 0.1 and 3% pet. A total of 14 individuals (5.9%) showed allergic reaction (AR) to at least 1 of the plant allergens, 4 (28.6%) to common chickweed extract, and 11 (78.6%) to Compositae allergens. These 11 persons made the overall prevalence of 4.7%: 8 (3.4%) were SL-positive and 3 (1.3%) reacted to dandelion extract. 5 persons (45.5%) had AD, 2 had ACD, 2 had psoriasis and 2 were healthy controls. The Compositae allergy was relevant in 8 cases (72.7%). The highest frequency of SL mix sensitivity (9.3%) was among those with AD. Half the SL mix-sensitive individuals had AD. ARs to dandelion extract were obtained only among patients with eczema. A total of 9 irritant reactions (IRs) in 9 individuals (3.8%) were recorded, 8 to SL mix and 1 to common chickweed extract 3.0% pet. No IR was recorded to dandelion extract (P = 0.007). Among those with relevant Compositae allergy, 50.0% had AR to fragrance mix and balsam of Peru (Myroxylon pereirae resin) and colophonium. SLs were detected in dandelion but not in common chickweed. Our study confirmed the importance of 1 positive reaction for emerging, not fully established, Compositae allergy. In conclusion, the overall

  12. Anti-pruritic and anti-inflammatory effects of oxymatrine in a mouse model of allergic contact dermatitis.

    PubMed

    Xu, Xiaoyun; Xiao, Wei; Zhang, Zhe; Pan, Jianhao; Yan, Yixi; Zhu, Tao; Tang, Dan; Ye, Kaihe; Paranjpe, Manish; Qu, Lintao; Nie, Hong

    2018-05-31

    Allergic contact dermatitis (ACD) is a highly prevalent inflammatory disease of the skin. As a result of the complex etiology in ACD, therapeutic compounds targeting refractory pruritus in ACD lack efficacy and lead to numerous side effects. In this study, we investigated the anti-pruritic effects of oxymatrine (OMT) and explored its mechanism of action in a mouse model of ACD. 72 male SPF C57BL/6 mice were randomly divided into control group, ACD model group, dexamethasone positive control group (0.08 mg kg -1 ) and 3 OMT groups (80, 40, 20 mg kg -1 ). OMT was administrated by intraperitoneal injection 1 h before video recording on day 10, 24 h after 2nd challenge with SADBE. Cheek skin fold thickness was measured before treatment and after recording. H&E staining was used for pathological observation. RT-qPCR, Immunohistochemistry and LEGENDplexTM assay were used to detect cytokines levels. The population of Treg cells in peripheral blood were detected via flow cytometry. OMT treatment significantly decreases the skin inflammation and scratching bouts. It rescues defects in epidermal keratinization and inflammatory cell infiltration in ACD mice. Administration of OMT significantly reduced levels of IFN-γ, IL-13, IL-17A, TNF-α, IL-22 and mRNA expression of TNF-α and IL-1β. Furthermore, it increased the percentage of Treg cells in peripheral blood of ACD mice. We have demonstrated that OMT exhibits anti-pruritic and anti-inflammatory effects in ACD mice by regulating inflammatory mediators. OMT might emerge as a potential drug for the treatment of pruritus and skin inflammation in the setting of ACD. Copyright © 2018. Published by Elsevier B.V.

  13. Effect of Gamiseunggal-Tang on immediate type allergic reaction in mice.

    PubMed

    Jeong, Hyun-Ja; Moon, Phil-Dong; Um, Jae-Young; Park, Jinhan; Leem, Kang-Hyun; Kim, Chang-Ju; Kim, Hyung-Min; Hong, Seung-Heon

    2007-04-01

    The herbal formulation, Gamiseunggal-Tang (G-Tang) has long been used for various allergic diseases. The mechanism of its action is largely unknown. We carried out this study to determine the effect of G-Tang on the mast cell-mediated anaphylactic reactions in vivo and in vitro murine models. In this study, the effects of G-Tang on the mast cell-mediated anaphylactic reactions were examined by using the ear swelling, histamine assay, and ELISA method in murine model. Anal administration of G-Tang showed dose-dependent inhibitory activity on the compound 48/80-induced ear swelling response (P<0.05) and histamine release (P<0.01). G-Tang (0.001-0.1 g/kg) significantly inhibited passive cutaneous anaphylaxis (P<0.05) in mice. The production of tumour necrosis factor-alpha (TNF-alpha) was also significantly inhibited (about 47.4%, at 0.1 mg/ml, P<0.01) by treatment of G-tang in anti-dinitrophenyl IgE antibodystimulated mast cells. Findings of our study showed that G-Tang inhibited immediate type allergic reaction in a murine model and may be beneficial in the treatment of allergic inflammatory diseases.

  14. Toxoplasma gondii infection induces suppression in a mouse model of allergic airway inflammation.

    PubMed

    Fenoy, Ignacio M; Chiurazzi, Romina; Sánchez, Vanesa R; Argenziano, Mariana A; Soto, Ariadna; Picchio, Mariano S; Martin, Valentina; Goldman, Alejandra

    2012-01-01

    Allergic asthma is an inflammatory disorder characterized by infiltration of the airway wall with inflammatory cells driven mostly by activation of Th2-lymphocytes, eosinophils and mast cells. There is a link between increased allergy and a reduction of some infections in Western countries. Epidemiological data also show that respiratory allergy is less frequent in people exposed to orofecal and foodborne microbes such as Toxoplasma gondii. We previously showed that both acute and chronic parasite T. gondii infection substantially blocked development of airway inflammation in adult BALB/c mice. Based on the high levels of IFN-γ along with the reduction of Th2 phenotype, we hypothesized that the protective effect might be related to the strong Th1 immune response elicited against the parasite. However, other mechanisms could also be implicated. The possibility that regulatory T cells inhibit allergic diseases has received growing support from both animal and human studies. Here we investigated the cellular mechanisms involved in T. gondii induced protection against allergy. Our results show for the first time that thoracic lymph node cells from mice sensitized during chronic T. gondii infection have suppressor activity. Suppression was detected both in vitro, on allergen specific T cell proliferation and in vivo, on allergic lung inflammation after adoptive transference from infected/sensitized mice to previously sensitized animals. This ability was found to be contact-independent and correlated with high levels of TGF-β and CD4(+)FoxP3(+) cells.

  15. Immune response phenotype of allergic versus clinically tolerant pigs in a neonatal swine model of allergy.

    PubMed

    Schmied, Julie; Rupa, Prithy; Garvie, Sarah; Wilkie, Bruce

    2013-07-15

    The prevalence of childhood food allergy and the duration of these allergies, particularly those considered to be transient, like egg and milk allergy, are increasing. The identification of allergic individuals using minimally invasive, non-anaphylaxis-threatening methods is therefore of increasing importance. In this experiment, correlates were sought of an allergic immune response (IR) phenotype in pigs. Using pigs pre-treated with heat-killed bacteria or bacterial components before allergic sensitization with the egg white protein ovomucoid (Ovm), differences were determined in IR phenotype of pigs in the categories treated-allergic, treated-tolerant, control-allergic (CA) and control-tolerant. Phenotype was established by measuring immunoglobulin (Ig)-associated antibody activity (AbA), cytokine profiles and the proportion of blood T-regulatory cells (T-regs) and observing late-phase allergen-specific skin tests (ST). Although 100% of pigs became sensitized to Ovm, only 33% of pigs had clinical signs of allergy after oral challenge with egg white. Pigs without clinical signs were classified as clinically tolerant. Sixty-seven percent of allergic pigs had a positive, late-phase ST classified as very strong or strong, while 84% of clinically tolerant pigs did not have late-phase ST. Treated-allergic pigs and CA pigs had greater total antibody IgG (H+L), IgE and IgG1 AbA than clinically tolerant pigs. Cytokine profiles of allergic pigs and the proportion of circulating T-regs, did not differ significantly between allergic and clinically tolerant pigs. Therefore, measurement of allergen-specific IgG, IgG1 and/or IgE activity and evaluation of late-phase ID ST may be useful in identifying allergic IR phenotypes in swine models of food allergy, which may be extended toward human use. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Th2 Allergic Immune Response to Inhaled Fungal Antigens is Modulated By TLR-4-Independent Bacterial Products

    PubMed Central

    Allard, Jenna B.; Rinaldi, Lisa; Wargo, Matt; Allen, Gilman; Akira, Shizuo; Uematsu, Satoshi; Poynter, Matthew E.; Hogan, Deborah A.; Rincon, Mercedes; Whittaker, Laurie A.

    2009-01-01

    SUMMARY Allergic airway disease is characterized by eosinophilic inflammation, mucus hypersecretion and increased airway resistance. Fungal antigens are ubiquitous within the environment and are well know triggers of allergic disease. Bacterial products are also frequently encountered within the environment and may alter the immune response to certain antigens. The consequence of simultaneous exposure to bacterial and fungal products on the lung adaptive immune response has not been explored. Here we show that oropharyngeal aspiration of fungal lysates (Candida albicans, Aspergillus fumigatus) promotes airway eosinophilia, secretion of Th2 cytokines and mucus cell metaplasia. In contrast, oropharyngeal exposure to bacterial lysates (Pseudomonas aeruginosa) promotes airway inflammation characterized by neutrophils, Th1 cytokine secretion and no mucus production. More importantly, administration of bacterial lysates together with fungal lysates deviates the adaptive immune response to a Th1 type associated with neutrophilia and diminished mucus production. The immunomodulatory effect that bacterial lysates have on the response to fungi is TLR4-independent but MyD88 dependent. Thus, different types of microbial products within the airway can alter the host's adaptive immune response, and potentially impact the development of allergic airway disease to environmental fungal antigens. PMID:19224641

  17. Downregulation of CXCR6 and CXCR3 in lymphocytes from birch-allergic patients.

    PubMed

    Casas, R; Lindau, C; Zetterström, O; Duchén, K

    2008-09-01

    Preferential expression of chemokine receptors on Th1 or Th2 T-helper cells has mostly been studied in cell lines generated in vitro or in animal models; however, results are less well characterized in humans. We determined T-cell responses through chemokine receptor expression on lymphocytes, and cytokine secretion in plasma from birch-allergic and healthy subjects. The expression of CCR2, CCR3, CCR4, CCR5, CCR7, CXCR3, CXCR4, CXCR6, IL-12 and IL-18R receptors was studied on CD4(+) and CD8(+) cells from birch-allergic (n = 14) and healthy (n = 14) subjects by flow cytometry. The concentration of IL-4, IL-5, IL-10, IL-12, IFN-gamma and TNF-alpha cytokines was measured in plasma from the same individuals using a cytometric bead array human cytokines kit. The similar expression of CCR4 in T cells from atopic and healthy individuals argues against the use of the receptor as an in vivo marker of Th2 immune responses. Reduced percentages of CD4(+) cells expressing IL-18R, CXCR6 and CXCR3 were found in the same group of samples. TNF-alpha, IFN-gamma, IL-10, IL-5, IL-4 and IL-12 cytokines were elevated in samples from allergic individuals. Reduced expression of Th1-associated chemokine receptors together with higher levels of Th1, Th2 and anti-inflammatory cytokines in samples from allergic patients indicate that immune responses in peripheral blood in atopic diseases are complex and cannot be simplified to the Th1/Th2 paradigm. Not only the clinical picture of atopic diseases but also the clinical state at different time points of the disease might influence the results of studies including immunological markers associated with Th1- or Th2-type immune responses.

  18. Food-allergic infants have impaired regulatory T-cell responses following in vivo allergen exposure.

    PubMed

    Dang, Thanh D; Allen, Katrina J; J Martino, David; Koplin, Jennifer J; Licciardi, Paul V; Tang, Mimi L K

    2016-02-01

    Regulatory T cells (Tregs) are critical for development of oral tolerance, and studies suggest that dysfunction of Tregs may lead to food allergy. However, to date, no study has investigated Treg responses following in vivo exposure to peanut or egg allergens in humans. To examine changes in peripheral blood CD4(+) CD25(+) Foxp3(+) Treg populations (total, activated and naive) in food-allergic, food-sensitized but tolerant, and healthy (non-sensitized non-allergic) patients over time following in vivo allergen exposure. A subset of infants from the HealthNuts study with egg or peanut allergy (n = 37), egg or peanut sensitization (n = 35), or who were non-sensitized non-allergic (n = 15) were studied. All subjects underwent oral food challenge (OFC) to egg or peanut. PBMCs were obtained within 1 h of OFC (in vivo allergen exposure), and Treg populations enumerated ex vivo on day 0, and after 2 and 6 days rest in vitro. Non-allergic infants showed stable total Treg frequencies over time; food-sensitized infants had a transient fall in Treg percentage with recovery to baseline by day 6 (6.87% day 0, 5.27% day 2, 6.5% day 6); and food-allergic infants showed persistent reduction in Treg (6.85% day 0, 5.4% day 2, 6.2% day 6) following in vivo allergen exposure. Furthermore, food-allergic infants had a significantly lower ratio of activated Treg:activated T cells (10.5 ± 0.77) at day 0 compared to food-sensitized (14.6 ± 1.24) and non-allergic subjects (16.2 ± 1.23). Our data suggest that the state of allergen sensitization is associated with depletion of Treg following allergen exposure. Impaired capacity to regenerate the Treg pool following allergen exposure may be an important factor that determines clinical allergy vs. sensitization without allergic reaction. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Oral supplementation with areca-derived polyphenols attenuates food allergic responses in ovalbumin-sensitized mice

    PubMed Central

    2013-01-01

    Background Arecae semen, the dried slice of areca nuts, is a traditional Chinese medicine used to treat intestinal parasitosis, rectal tenesmus and diarrhea. Areca nuts contain a rich amount of polyphenols that have been shown to modulate the functionality of mast cells and T cells. The objective of this study is to investigate the effect of polyphenol-enriched areca nut extracts (PANE) against food allergy, a T cell-mediated immune disorder. Methods BALB/c mice were left untreated or administered with PANE (0.05% and 0.1%) via drinking water throughout the entire experiment. The mice were sensitized with ovalbumin (OVA) twice by intraperitoneal injection, and then repeatedly challenged with OVA by gavage to induce food allergic responses. Results PANE administration attenuated OVA-induced allergic responses, including the occurrence of diarrhea and the infiltration and degranulation of mast cells in the duodenum. The serum level of OVA-specific IgE and the expression of interleukin-4 in the duodenum were suppressed by PANE treatment. In addition, PANE administration induced Gr-1+, IL-10+ and Gr-1+IL-10+ cells in the duodenum. Conclusion These results demonstrate that oral intake of areca-derived polyphenols attenuates food allergic responses accompanied with a decreased Th2 immunity and an enhanced induction of functional myeloid-derived suppressor cells. PMID:23816049

  20. External exposome and allergic respiratory and skin diseases.

    PubMed

    Cecchi, Lorenzo; D'Amato, Gennaro; Annesi-Maesano, Isabella

    2018-03-01

    Allergies are complex diseases that result from interactions between multiple genetic and environmental factors. However, the increase in allergies observed in the past decades is explained exclusively by environmental changes occurring in the same period. Presently, the exposome, the totality of specific and nonspecific external environmental exposures (external exposome) to which a subject is exposed from preconception onward and their consequences at the organ and cell levels (internal exposome), is being considered to explain the inception, development, and exacerbations of allergic diseases. Among the best-studied environmental factors of the specific external exposome, indoor and outdoor aeroallergens and air pollutants play a key role in the etiopathogenesis of the inflammatory response to allergens and in clinical manifestations of allergic disease. Climate change, urbanization, and loss of biodiversity affect sources, emissions, and concentrations of main aeroallergens and air pollutants and are among the most critical challenges facing the health and quality of life of the still increasing number of allergic patients today and in the coming decades. Thunderstorm-related asthma is a dramatic example of the effects of combined environmental factors and an in vivo model for understanding the mechanisms at work in respiratory allergy. Environment- or lifestyle-driven aberrancies in the gut and skin microbiome composition represent key mediators of allergic diseases. A better knowledge of the effect of the external exposome on allergy development is crucial for urging patients, health professionals, and policymakers to take actions to mitigate the effect of environmental changes and to adapt to them. Copyright © 2018 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  1. Cytokine-targeting biologics for allergic diseases.

    PubMed

    Lawrence, Monica G; Steinke, John W; Borish, Larry

    2018-04-01

    Asthma and allergic diseases continue to increase in prevalence, creating a financial burden on the health care system and affecting the quality of life for those who have these diseases. Many intrinsic and extrinsic factors are involved in the initiation and maintenance of the allergic response. Cytokines are proteins with growth, differentiation, and activation functions that regulate and direct the nature of immune responses. clinicaltrials.gov and PubMed. Relevant clinical trials and recent basic science studies were chosen for discussion. Many cytokines have been implicated in the development and perpetuation of the allergic response. Biologics have been and are continuing to be developed that target these molecules for use in patients with asthma and atopic dermatitis where standard treatment options fail. The current state of cytokine-targeting therapies is discussed. This review focused on cytokines involved in the allergic response with an emphasis on those for which therapies are being or have been developed. Copyright © 2018 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  2. [Allergic fungal rhinosinusitis caused by Curvularia sp.].

    PubMed

    Alvarez, Verónica C; Guelfand, Liliana; Pidone, Juan Carlos; Soloaga, Rolando; Ontivero, Paula; Margari, Alejandra; López Daneri, Gabriela

    2011-01-01

    Allergic fungal rhinosinusitis is a benign and non-invasive sinusal disease related to a hypersensitivity reaction to fungal antigens. This process can cause tissue edema with chronic inflammatory disturbances of the respiratory mucosa. We present the case of a 17 year-old immunocompetent male, with history of seasonal allergic rhinosinusitis, nasal polyps and previous surgery for mucocele of the frontal sinus. Sticky material was removed in the last surgery that revealed pigmented and septed filaments on direct examination, and yielded Curvularia on Sabouraud dextrose agar. After a course of amphotericin B, treatment was switched to itraconazole, with good tolerance and favorable clinical outcome. Copyright © 2011. Published by Elsevier Espana.

  3. Effects of examination stress on psychological responses, sleep and allergic symptoms in atopic and non-atopic students.

    PubMed

    Jernelöv, Susanna; Höglund, Caroline Olgart; Axelsson, John; Axén, Jennie; Grönneberg, Reidar; Grunewald, Johan; Stierna, Pontus; Lekander, Mats

    2009-01-01

    Recent findings indicate that atopics may be more vulnerable to stress than non-atopics. However, the roles of psychological well-being and sleep in this presumed increased sensitivity are not known. To investigate the effects of a brief naturalistic stressor on psychological responses, sleep, and allergic symptoms and to compare those responses between atopic and non-atopic individuals. We assessed atopic and non-atopic students during a period without and during a period with examinations. For both atopic and non-atopic students, tension, anxiety, and depression deteriorated in response to examination, as did sleep latency and sleep quality. Overall, atopics were more tense, had more anxiety, longer sleep latencies, and were less well rested than non-atopics. Non-atopic students rose from bed later during the examination period. In response to examination, atopic students reported increased frequency of stress behaviors (e.g., eating fast), while decreased stress behaviors were reported by non-atopic students. Allergic symptoms were not affected. Atopic students were worse off in aspects of psychological well-being and sleep, but displayed only partly stronger responses to a stressor compared to non-atopic students. In spite of a broad negative response to examination, allergic symptoms were not affected.

  4. Iron Supplementation Decreases Severity of Allergic Inflammation in Murine Lung

    PubMed Central

    Hale, Laura P.; Kant, Erin Potts; Greer, Paula K.; Foster, W. Michael

    2012-01-01

    The incidence and severity of allergic asthma have increased over the last century, particularly in the United States and other developed countries. This time frame was characterized by marked environmental changes, including enhanced hygiene, decreased pathogen exposure, increased exposure to inhaled pollutants, and changes in diet. Although iron is well-known to participate in critical biologic processes such as oxygen transport, energy generation, and host defense, iron deficiency remains common in the United States and world-wide. The purpose of these studies was to determine how dietary iron supplementation affected the severity of allergic inflammation in the lungs, using a classic model of IgE-mediated allergy in mice. Results showed that mice fed an iron-supplemented diet had markedly decreased allergen-induced airway hyperreactivity, eosinophil infiltration, and production of pro-inflammatory cytokines, compared with control mice on an unsupplemented diet that generated mild iron deficiency but not anemia. In vitro, iron supplementation decreased mast cell granule content, IgE-triggered degranulation, and production of pro-inflammatory cytokines post-degranulation. Taken together, these studies show that iron supplementation can decrease the severity of allergic inflammation in the lung, potentially via multiple mechanisms that affect mast cell activity. Further studies are indicated to determine the potential of iron supplementation to modulate the clinical severity of allergic diseases in humans. PMID:23029172

  5. CD24(hi)CD27(+) B cells from patients with allergic asthma have impaired regulatory activity in response to lipopolysaccharide.

    PubMed

    van der Vlugt, L E P M; Mlejnek, E; Ozir-Fazalalikhan, A; Janssen Bonas, M; Dijksman, T R; Labuda, L A; Schot, R; Guigas, B; Möller, G M; Hiemstra, P S; Yazdanbakhsh, M; Smits, H H

    2014-04-01

    Regulatory B cells have been identified that strongly reduce allergic and auto-immune inflammation in experimental models by producing IL-10. Recently, several human regulatory B-cell subsets with an impaired function in auto-immunity have been described, but there is no information on regulatory B cells in allergic asthma. In this study, the frequency and function of IL-10 producing B-cell subsets in allergic asthma were investigated. Isolated peripheral blood B cells from 13 patients with allergic asthma and matched healthy controls were analyzed for the expression of different regulatory B-cell markers. Next, the B cells were activated by lipopolysaccharide (LPS), CpG or through the B-cell receptor, followed by co-culture with endogenous memory CD4(+) T cells and house dust mite allergen DerP1. Lower number of IL-10 producing B cells were found in patients in response to LPS, however, this was not the case when B cells were activated through the B-cell receptor or by CpG. Further dissection showed that only the CD24(hi)CD27(+) B-cell subset was reduced in number and IL-10 production to LPS. In response to DerP1, CD4(+) T cells from patients co-cultured with LPS-primed total B cells produced less IL-10 compared to similar cultures from controls. These results are in line with the finding that sorted CD24(hi)CD27(+) B cells are responsible for the induction of IL-10(+) CD4(+) T cells. Taken together, these data indicate that CD24(hi)CD27(+) B cells from allergic asthma patients produce less IL-10 in response to LPS leading to a weaker IL-10 induction in T cells in response to DerP1, which may play a role in allergic asthma. © 2013 John Wiley & Sons Ltd.

  6. Risk of Allergic Rhinitis, Allergic Conjunctivitis, and Eczema in Children Born to Mothers with Gum Inflammation during Pregnancy.

    PubMed

    Hsieh, Vivian Chia-Rong; Liu, Chin-Chen; Hsiao, Yu-Chen; Wu, Trong-Neng

    2016-01-01

    Despite links between maternal and child health status, evidence on the association between gum infection in pregnant mothers and childhood allergies is scarce. We aim to evaluate the risk of developing allergy in children born to periodontal mothers in a nationwide study. We conducted a 9-year population-based, retrospective cohort study using Taiwan's National Health Insurance database. A study cohort of 42,217 newborns born to mothers with periodontal disease during pregnancy was identified in 2001 and matched with 42,334 babies born to mothers without any infection (control) by mother's age at delivery and baby sex. With a follow-up period from 2001 to 2010, we observed the incidence of allergic rhinitis (AR), allergic conjunctivitis (AC), and eczema in these children. Cox proportional hazards regression models were performed with premature deaths as competing risk for the estimation of allergic disease risks. Nine-year cumulative incidences were the highest among children born to periodontal mothers; they reached 46.8%, 24.2%, and 40.4% (vs. 39.5%, 18.3% and 34.8% in control) for AR, AC, and eczema, respectively. Our results showed moderately increased risks for the allergies in children born to periodontal mothers relative to their matched non-inflammatory control (adjusted HRs: 1.17, 95% CI: 1.15-1.20; 1.27, 1.24-1.31; 1.14, 1.12-1.17, respectively). Because the impact of food consumption and living environment cannot be considered using insurance data, we attempted to control it by adjusting for parental income and mother's residential area. Overall cumulative incidence and risks of children born to periodontal mothers for AR, AC, and eczema are significantly higher than those born to non-inflammatory mothers. Gum infection in women during pregnancy is an independent risk factor for allergic diseases in children, thus its intergenerational consequences should be considered in gestational care.

  7. Probiotics and down-regulation of the allergic response.

    PubMed

    Kalliomäki, Marko A; Isolauri, Erika

    2004-11-01

    The first clinical trials with probiotics, especially in the treatment of atopic eczema, have yielded encouraging results. Experimental studies have found that probiotics exert strain-specific effects in the intestinal lumen and on epithelial cells and immune cells with anti-allergic potential. These effects include enhancement in antigen degradation and gut barrier function and induction of regulatory and proinflammatory immune responses, the latter of which occurs more likely beyond the intestinal epithelium. Future studies should address more accurately how these and other possible mechanisms operate in the complex gastrointestinal macroenvironment in vivo and how these mechanisms are related to the clinical effects in a dose-dependent manner.

  8. The Role of TNF Family Molecules Light in Cellular Interaction Between Airway Smooth Muscle Cells and T Cells During Chronic Allergic Inflammation.

    PubMed

    Shi, Fei; Xiong, Yi; Zhang, Yarui; Qiu, Chen; Li, Manhui; Shan, Aijun; Yang, Ying; Li, Binbin

    2018-06-01

    Interaction between T cells and airway smooth muscle (ASM) cells has been identified as an important factor in the development of asthma. LIGHT (known as TNFSF14) -mediated signaling likely contributes to various inflammatory disorders and airway remodeling. The objective of this study was to investigate the roles of LIGHT-mediated pathways in the interaction between ASM cells and T cells during chronic allergic inflammation. Mice were sensitized and challenged by ovalbumin (OVA) to induce chronic airway allergic inflammation. The control group received PBS only. The histological features and LIGHT expressions in lungs were assessed in vivo. Furthermore, T cells and ASM cells derived from the model mice were co-cultured both in the presence and absence of anti-LIGHT Ab for 72 h. The effects of LIGHT blockade on expressions of downstream signaling molecules, proliferation, and apoptosis of ASM cells, differentiation of T cells, and inflammatory cytokines release were evaluated. We demonstrated that LIGHT blockade strikingly inhibited the mRNA and protein expressions of HVEM, c-JUN, and NFκB. Additionally, LIGHT blockade resulted in decreased proliferation and increased apoptosis of ASM cells. Moreover, depletion of LIGHT dramatically reduced the differentiation of CD4 + T cells into Th1, Th2, and Th17 cells, as well as inhibited inflammatory cytokines release including IL-13, TGF-β, and IFN-γ, which are associated with CD4 + T cell differentiation and ASM cell proliferation. LIGHT plays an important role in the interaction between T cells and ASM cells in chronic allergic asthma. Blockade of LIGHT markedly suppressed ASM hyperplasia and inflammatory responses, which might be modulated through HVEM-NFκB or c-JUN pathways. Therefore, targeting LIGHT is a promising therapeutic strategy for airway inflammation and remodeling in chronic allergic asthma.

  9. Secretoglobin Superfamily Protein SCGB3A2 Alleviates House Dust Mite-Induced Allergic Airway Inflammation in Mice.

    PubMed

    Yoneda, Mitsuhiro; Xu, Lei; Kajiyama, Hiroaki; Kawabe, Shuko; Paiz, Jorge; Ward, Jerrold M; Kimura, Shioko

    2016-01-01

    Secretoglobin (SCGB) 3A2, a novel, lung-enriched, cytokine-like, secreted protein of small molecular weight, was demonstrated to exhibit various biological functions including anti-inflammatory, antifibrotic and growth-factor activities. Anti-inflammatory activity was uncovered using the ovalbumin-induced allergic airway inflammation model. However, further validation of this activity using knockout mice in a different allergic inflammation model is necessary in order to establish the antiallergic inflammatory role for this protein. Scgb3a2-null (Scgb3a2-/-) mice were subjected to nasal inhalation of Dermatophagoides pteronyssinus extract for 5 days/week for 5 consecutive weeks; control mice received nasal inhalation of saline as a comparator. Airway inflammation was assessed by histological analysis, the number of inflammatory cells and various Th2-type cytokine levels in the lungs and bronchoalveolar lavage fluids by qRT-PCR and ELISA, respectively. Exacerbated inflammation was found in the airway of Scgb3a2-/- mice subjected to house dust mite (HDM)-induced allergic airway inflammation compared with saline-treated control groups. All the inflammation end points were increased in the Scgb3a2-/- mice. The Ccr4 and Ccl17 mRNA levels were higher in HDM-treated lungs of Scgb3a2-/- mice than wild-type mice or saline-treated Scgb3a2-/- mice, whereas no changes were observed for Ccr3 and Ccl11 mRNA levels. These results demonstrate that SCGB3A2 has an anti-inflammatory activity in the HDM-induced allergic airway inflammation model, in which SCGB3A2 may modulate the CCR4-CCL17 pathway. SCGB3A2 may provide a useful tool to treat allergic airway inflammation, and further studies on the levels and function of SCGB3A2 in asthmatic patients are warranted. © 2016 S. Karger AG, Basel.

  10. NEUROTROPHINS OPERATE AT DIFFERENT LEVELS OF THE RESPIRATORY TRACT IN RESPONSES OF ALLERGIC MICE TO DIESEL EXHAUST PARTICLES (DEP)

    EPA Science Inventory

    Neurotrophins including NGF, NT-3, and BDNF are linked to allergic responses. Treatment with anti-p75 (pan-neurotrophin receptor) prevents the increase in airflow obstruction caused by exposure to DEP in ovalbumin (OVA)-allergic mice (Toxicol Sci 84(S1):91, 2005). Our present goa...

  11. Receptor for advanced glycation end products and its ligand high-mobility group box-1 mediate allergic airway sensitization and airway inflammation.

    PubMed

    Ullah, Md Ashik; Loh, Zhixuan; Gan, Wan Jun; Zhang, Vivian; Yang, Huan; Li, Jian Hua; Yamamoto, Yasuhiko; Schmidt, Ann Marie; Armour, Carol L; Hughes, J Margaret; Phipps, Simon; Sukkar, Maria B

    2014-08-01

    The receptor for advanced glycation end products (RAGE) shares common ligands and signaling pathways with TLR4, a key mediator of house dust mite (Dermatophagoides pteronyssinus) (HDM) sensitization. We hypothesized that RAGE and its ligand high-mobility group box-1 (HMGB1) cooperate with TLR4 to mediate HDM sensitization. To determine the requirement for HMGB1 and RAGE, and their relationship with TLR4, in airway sensitization. TLR4(-/-), RAGE(-/-), and RAGE-TLR4(-/-) mice were intranasally exposed to HDM or cockroach (Blatella germanica) extracts, and features of allergic inflammation were measured during the sensitization or challenge phase. Anti-HMGB1 antibody and the IL-1 receptor antagonist Anakinra were used to inhibit HMGB1 and the IL-1 receptor, respectively. The magnitude of allergic airway inflammation in response to either HDM or cockroach sensitization and/or challenge was significantly reduced in the absence of RAGE but not further diminished in the absence of both RAGE and TLR4. HDM sensitization induced the release of HMGB1 from the airway epithelium in a biphasic manner, which corresponded to the sequential activation of TLR4 then RAGE. Release of HMGB1 in response to cockroach sensitization also was RAGE dependent. Significantly, HMGB1 release occurred downstream of TLR4-induced IL-1α, and upstream of IL-25 and IL-33 production. Adoptive transfer of HDM-pulsed RAGE(+/+)dendritic cells to RAGE(-/-) mice recapitulated the allergic responses after HDM challenge. Immunoneutralization of HMGB1 attenuated HDM-induced allergic airway inflammation. The HMGB1-RAGE axis mediates allergic airway sensitization and airway inflammation. Activation of this axis in response to different allergens acts to amplify the allergic inflammatory response, which exposes it as an attractive target for therapeutic intervention. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  12. Human dendritic cells in the severe combined immunodeficiency mouse model: their potentiating role in the allergic reaction.

    PubMed

    Hammad, H; Duez, C; Fahy, O; Tsicopoulos, A; André, C; Wallaert, B; Lebecque, S; Tonnel, A B; Pestel, J

    2000-04-01

    Dendritic cells (DCs) are present in the lungs and airways of healthy and allergic subjects where they are exposed to inhaled antigens. After the uptake of antigens, DCs migrate to lymphoid organs where T cells initiate and control the immune response. The migratory properties of DCs are an essential component of their function but remain unclear in the situation of allergic diseases. To better understand the role of DCs in response to allergens, we first investigated their presence in an original experimental model of allergic asthma: the humanized severe combined immunodeficiency (SCID) mouse reconstituted with peripheral blood mononuclear cells from patients sensitive to Dermatophagoides pteronyssinus (Dpt). Human DCs were detected in lungs of mice developing an inflammatory pulmonary infiltrate and appeared to be mainly located in the alveolar spaces. In a second step, human DCs were generated in vitro from monocytes and injected into naive SCID mice exposed or not exposed to Dpt aerosols. Their migratory behavior was explored, as well as their potential role in modulating the IgE production after exposure to Dpt. After exposure to Dpt, the number of DCs present in airways decreased, while it increased into the spleen and thymus of the mice. The IgE production increased in the presence of DCs as compared with mice not injected with DCs. These results suggest that DCs may play a role in the pulmonary allergic reaction developed in response to Dpt in SCID mice.

  13. Facilitation of Allergic Sensitization and Allergic Airway Inflammation by Pollen-Induced Innate Neutrophil Recruitment.

    PubMed

    Hosoki, Koa; Aguilera-Aguirre, Leopoldo; Brasier, Allan R; Kurosky, Alexander; Boldogh, Istvan; Sur, Sanjiv

    2016-01-01

    Neutrophil recruitment is a hallmark of rapid innate immune responses. Exposure of airways of naive mice to pollens rapidly induces neutrophil recruitment. The innate mechanisms that regulate pollen-induced neutrophil recruitment and the contribution of this neutrophilic response to subsequent induction of allergic sensitization and inflammation need to be elucidated. Here we show that ragweed pollen extract (RWPE) challenge in naive mice induces C-X-C motif ligand (CXCL) chemokine synthesis, which stimulates chemokine (C-X-C motif) receptor 2 (CXCR2)-dependent recruitment of neutrophils into the airways. Deletion of Toll-like receptor 4 (TLR4) abolishes CXCL chemokine secretion and neutrophil recruitment induced by a single RWPE challenge and inhibits induction of allergic sensitization and airway inflammation after repeated exposures to RWPE. Forced induction of CXCL chemokine secretion and neutrophil recruitment in mice lacking TLR4 also reconstitutes the ability of multiple challenges of RWPE to induce allergic airway inflammation. Blocking RWPE-induced neutrophil recruitment in wild-type mice by administration of a CXCR2 inhibitor inhibits the ability of repeated exposures to RWPE to stimulate allergic sensitization and airway inflammation. Administration of neutrophils derived from naive donor mice into the airways of Tlr4 knockout recipient mice after each repeated RWPE challenge reconstitutes allergic sensitization and inflammation in these mice. Together these observations indicate that pollen-induced recruitment of neutrophils is TLR4 and CXCR2 dependent and that recruitment of neutrophils is a critical rate-limiting event that stimulates induction of allergic sensitization and airway inflammation. Inhibiting pollen-induced recruitment of neutrophils, such as by administration of CXCR2 antagonists, may be a novel strategy to prevent initiation of pollen-induced allergic airway inflammation.

  14. Expression of the protein serum amyloid A in response to Aspergillus fumigatus in murine models of allergic airway inflammation.

    PubMed

    Moran, Gabriel; Carcamo, Carolina; Concha, Margarita; Folch, Hugo

    2015-01-01

    Serum amyloid A (SAA) is an acute phase protein that is elevated in blood during inflammation. The role of this protein in allergic diseases of airways remains unclear. The objective of this study was to evaluate the SAA in blood, lung and bronchial cells in a murine model of bronchial hypersensitivity to Aspergillus fumigatus. To achieve this purpose, different groups of 5-month-old mice were housed in cages containing hay bedding that was contaminated with A. fumigatus and were kept in an isolation room for 16 days to allow for the induction of allergic airway inflammation. Subsequently, the mice were then exposed once again to Aspergillus spores at 0, 2, 8, 24 and 72 h, and they were bled to acquire serum and sacrificed to obtain bronchoalveolar lavage fluid (BALF) or lung tissues for analysis. SAA levels were measured in lung, serum and BALF by dot blot assay and RT-PCR (reverse transcription polymerase chain reaction). The results indicated that SAA protein levels increased in both serum and lung within 2-24h after mice were exposed to Aspergillus spores. Moreover, the SAA mRNA expression levels in the lungs and BALF cells demonstrated the same trend that was observed for the protein levels through the dot blot assay; in particular, SAA mRNA levels increased within the first hour after mice were exposed to A. fumigatus. In this allergic airway model, we conclude that A. fumigatus can induce an acute inflammatory response in the airways through the stimulation of the SAA protein, increasing its levels in serum, lung tissue and BALF samples during the early hours of exposure of mice that have been sensitised for this fungus. Copyright © 2012 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  15. Regulation of Eosinophil Recruitment and Activation by Galectins in Allergic Asthma.

    PubMed

    Rao, Savita P; Ge, Xiao Na; Sriramarao, P

    2017-01-01

    Eosinophils are differentiated granulocytes that are recruited from the bone marrow to sites of inflammation via the vascular system. Allergic asthma is characterized by the presence of large numbers of eosinophils in the lungs and airways. Due to their capacity to rapidly release inflammatory mediators such as cytokines, chemokines, growth factors, and cytotoxic granule proteins upon stimulation, eosinophils play a critical role in pro-inflammatory processes in allergen-exposed lungs. Identifying key players and understanding the molecular mechanisms directing eosinophil trafficking and recruitment to inflamed airways is a key to developing therapeutic strategies to limit their influx. Recent studies have brought to light the important role of glycans and glycan binding proteins in regulating recruitment of eosinophils. In addition to the role of previously identified eosinophil- and endothelial-expressed adhesion molecules in mediating eosinophil trafficking and recruitment to the inflamed airways, studies have also indicated a role for galectins (galectin-3) in this process. Galectins are mammalian lectins expressed by various cell types including eosinophils. Intracellularly, they can regulate biological processes such as cell motility. Extracellularly, galectins interact with β-galactosides in cell surface-expressed glycans to regulate cellular responses like production of inflammatory mediators, cell adhesion, migration, and apoptosis. Eosinophils express galectins intracellularly or on the cell surface where they interact with cell surface glycoconjugate receptors. Depending on the type (galectin-1, -3, etc.) and location (extracellular or intracellular, endogenous or exogenously delivered), galectins differentially regulate eosinophil recruitment, activation, and apoptosis and thus exert a pro- or anti-inflammatory outcome. Here, we have reviewed information pertaining to galectins (galectin-1, -3 -9, and -10) that are expressed by eosinophils themselves

  16. Increase of Frequency and Modulation of Phenotype of Regulatory T Cells by Atorvastatin Is Associated with Decreased Lung Inflammatory Cell Infiltration in a Murine Model of Acute Allergic Asthma

    PubMed Central

    Blanquiceth, Yurany; Rodríguez-Perea, Ana Lucia; Tabares Guevara, Jorge H.; Correa, Luis Alfonso; Sánchez, María Dulfary; Ramírez-Pineda, José Robinson; Velilla, Paula Andrea

    2016-01-01

    Regulatory T cells (Tregs) play an important role by controlling allergic inflammation of airways. Recently, it has been shown that statins have immunomodulatory properties, probably mediated by their effects on Tregs. Therefore, we evaluated the in vivo effect of atorvastatin (ATV) on Tregs and its association with the inflammatory process in a model of allergic asthma. BALB/c mice were sensitized with ovalbumin (OVA) and then challenged with intranasal OVA. ATV (40 mg/kg) was delivered by daily intraperitoneal injection for 7 or 15 days before each OVA challenge. ATV treatment for 7 days increased the frequency of Tregs in mediastinal lymph nodes (MLN) and the interleukin (IL)-10 in lungs. After 15 days of treatment, ATV increased the percentage of glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR+) and programmed cell death protein 1 (PD-1+) Tregs in the lung, without enhancing their suppressive activity, but also increased the percentage of conventional T cells expressing GITR+, PD1+, and OX-40 (tumor necrosis factor receptor superfamily member 4). Although no significant changes were observed in the number of inflammatory cells in the bronchoalveolar lavage (BAL), OVA-specific immunoglobulin E in the serum, and type 2 helper (Th2) cytokines in the lungs, there was a significant decrease of peribronchial inflammation that negatively correlated with the Tregs in MLN and the concentration of IL-10 in the lung. These results suggest that ATV has an immunomodulatory role possibly mediated by their effects on Tregs, which could contribute to the control of inflammation during allergic asthma. Further studies are necessary to elucidate the contribution of Treg to immunomodulatory action of statins in the context of allergic asthma. PMID:28066430

  17. Unlipidated Outer Membrane Protein Omp16 (U-Omp16) from Brucella spp. as Nasal Adjuvant Induces a Th1 Immune Response and Modulates the Th2 Allergic Response to Cow’s Milk Proteins

    PubMed Central

    Ibañez, Andrés E.; Smaldini, Paola; Coria, Lorena M.; Delpino, María V.; Pacífico, Lucila G. G.; Oliveira, Sergio C.; Risso, Gabriela S.; Pasquevich, Karina A.; Fossati, Carlos Alberto; Giambartolomei, Guillermo H.; Docena, Guillermo H.; Cassataro, Juliana

    2013-01-01

    The discovery of novel mucosal adjuvants will help to develop new formulations to control infectious and allergic diseases. In this work we demonstrate that U-Omp16 from Brucella spp. delivered by the nasal route (i.n.) induced an inflammatory immune response in bronchoalveolar lavage (BAL) and lung tissues. Nasal co-administration of U-Omp16 with the model antigen (Ag) ovalbumin (OVA) increased the amount of Ag in lung tissues and induced OVA-specific systemic IgG and T helper (Th) 1 immune responses. The usefulness of U-Omp16 was also assessed in a mouse model of food allergy. U-Omp16 i.n. administration during sensitization ameliorated the hypersensitivity responses of sensitized mice upon oral exposure to Cow’s Milk Protein (CMP), decreased clinical signs, reduced anti-CMP IgE serum antibodies and modulated the Th2 response in favor of Th1 immunity. Thus, U-Omp16 could be used as a broad Th1 mucosal adjuvant for different Ag formulations. PMID:23861971

  18. Chemokine Signaling in Allergic Contact Dermatitis: Toward Targeted Therapies.

    PubMed

    Smith, Jeffrey S; Rajagopal, Sudarshan; Atwater, Amber Reck

    2018-06-22

    Allergic contact dermatitis (ACD) is a common skin disease that results in significant cost and morbidity. Despite its high prevalence, therapeutic options are limited. Allergic contact dermatitis is regulated primarily by T cells within the adaptive immune system, but also by natural killer and innate lymphoid cells within the innate immune system. The chemokine receptor system, consisting of chemokine peptides and chemokine G protein-coupled receptors, is a critical regulator of inflammatory processes such as ACD. Specific chemokine signaling pathways are selectively up-regulated in ACD, most prominently CXCR3 and its endogenous chemokines CXCL9, CXCL10, and CXCL11. Recent research demonstrates that these 3 chemokines are not redundant and indeed activate distinct intracellular signaling profiles such as those activated by heterotrimeric G proteins and β-arrestin adapter proteins. Such differential signaling provides an attractive therapeutic target for novel ACD therapies and other inflammatory diseases.

  19. [Allergic asthma and interleukins 2, 4, 5, 6 and 12 and gamma interferon levels].

    PubMed

    Bastida Segura, Diana Lyzbeth; López Velásquez, Benjamin; Castrejón Vázquez, María Isabel; Galicia Tapía, Jorge; Cano Altamirano, Silvia; Miranda Feria, Alfonso Javier

    2004-01-01

    Asthma is an inflammatory chronic illness, in which mastocyt cells, basophils, T lymphocytes, eosinophils and cytokines play a role. Its association with the production of TH2 cytokines is not well known, but it is considered an aberrant immune response, yielding the activation and recruitment of a number of effector cells (mastocyts/eosinophils) and the appearance of clinical symptoms. To determine the serum values of the interleukins 2, 4, 5, 6 and 12 and gamma interferon in relation to the severity degree of asthma and the time of immunotherapy in patients with stable chronic allergic bronchial asthma. Clinical records of allergic asthmatic patients from the external consultation at Servicio de Alergia e Immunología Clínica were reviewed in a period of 12 months (1st January 2002 to 1st January 2003) and those of healthy volunteers, forming three groups: Group 1, allergic asthmatics with immunotherapy less than 24 months; Group 2, allergic asthmatics with more than 24 months of immunotherapy, and Group 3, healthy volunteers (control group). Previous informed consent, a serum sample was taken of all subjects. Ninety-two subjects were included: 41 (45%) allergic asthmatics and 51 (55%) healthy volunteers. Significant differences were found in interleukins 2, 4, 5, 6 and 12 levels between healthy volunteers and asthmatics without relating the immunotherapy time. In the total group gamma interferon levels were not found. A relation of interleukins Th2 levels with the severity degree of asthma was not found. Differences of serum interleukins Th1 and Th2 in allergic patients related to immunotherapy time were not significant; even though, irrespective of immunotherapy time, IgG levels were always high. Patients with allergic asthma have a predominance of serum interleukins Th2 and, despite of the immunotherapy, in the maintaining phase, these continue high, which may be due to an immune system dysregulation maybe including other factors. Immunotherapy continues

  20. Inflammatory Response in Islet Transplantation

    PubMed Central

    Kanak, Mazhar A.; Kunnathodi, Faisal; Lawrence, Michael C.; Levy, Marlon F.

    2014-01-01

    Islet cell transplantation is a promising beta cell replacement therapy for patients with brittle type 1 diabetes as well as refractory chronic pancreatitis. Despite the vast advancements made in this field, challenges still remain in achieving high frequency and long-term successful transplant outcomes. Here we review recent advances in understanding the role of inflammation in islet transplantation and development of strategies to prevent damage to islets from inflammation. The inflammatory response associated with islets has been recognized as the primary cause of early damage to islets and graft loss after transplantation. Details on cell signaling pathways in islets triggered by cytokines and harmful inflammatory events during pancreas procurement, pancreas preservation, islet isolation, and islet infusion are presented. Robust control of pre- and peritransplant islet inflammation could improve posttransplant islet survival and in turn enhance the benefits of islet cell transplantation for patients who are insulin dependent. We discuss several potent anti-inflammatory strategies that show promise for improving islet engraftment. Further understanding of molecular mechanisms involved in the inflammatory response will provide the basis for developing potent therapeutic strategies for enhancing the quality and success of islet transplantation. PMID:24883060

  1. Lipoxin A4 stable analogs reduce allergic airway responses via mechanisms distinct from CysLT1 receptor antagonism.

    PubMed

    Levy, Bruce D; Lukacs, Nicholas W; Berlin, Aaron A; Schmidt, Birgitta; Guilford, William J; Serhan, Charles N; Parkinson, John F

    2007-12-01

    Cellular recruitment during inflammatory/immune responses is tightly regulated. The ability to dampen inflammation is imperative for prevention of chronic immune responses, as in asthma. Here we investigated the ability of lipoxin A4 (LXA4) stable analogs to regulate airway responses in two allergen-driven models of inflammation. A 15-epi-LXA4 analog (ATLa) and a 3-oxa-15-epi-LXA4 analog (ZK-994) prevented excessive eosinophil and T lymphocyte accumulation and activation after mice were sensitized and aerosol-challenged with ovalbumin. At <0.5 mg/kg, these LXA4 analogs reduced leukocyte trafficking into the lung by >50% and to a greater extent than equivalent doses of the CysLT1 receptor antagonist montelukast. Distinct from montelukast, ATLa treatment led to marked reductions in cysteinyl leukotrienes, interleukin-4 (IL-4), and IL-10, and both ATLa and ZK-994 inhibited levels of IL-13. In cockroach allergen-induced airway responses, both intraperitoneal and oral administration of ZK-994 significantly reduced parameters of airway inflammation and hyper-responsiveness in a dose-dependent manner. ZK-994 also significantly changed the balance of Th1/Th2-specific cytokine levels. Thus, the ATLa/LXA4 analog actions are distinct from CysLT1 antagonism and potently block both allergic airway inflammation and hyper-reactivity. Moreover, these results demonstrate these analogs' therapeutic potential as new agonists for the resolution of inflammation.

  2. VARIATIONS IN PEAK EXPIRATORY FLOW MEASUREMENTS ASSOCIATED TO AIR POLLUTION AND ALLERGIC SENSITIZATION IN CHILDREN IN SAO PAULO, BRAZIL

    PubMed Central

    de M Correia-Deur, Joya Emilie; Claudio, Luz; Imazawa, Alice Takimoto; Eluf-Neto, Jose

    2012-01-01

    Background In the last 20 years, there has been an increase in the incidence of allergic respiratory diseases worldwide and exposure to air pollution has been discussed as one of the factors associated with this increase. The objective of this study was to investigate the effects of air pollution on peak expiratory flow (PEF) and FEV1 in children with and without allergic sensitization. Methods Ninety-six children were followed from April to July, 2004 with spirometry measurements. They were tested for allergic sensitization (IgE, skin prick test, eosinophilia) and asked about allergic symptoms. Air pollution, temperature and relative humidity data were available. Results Decrements in PEF were observed with previous 24-h average exposure to air pollution, as well as with 3 to 10 day average exposure and were associated mainly with PM10, NO2 and O3. in all three categories of allergic sensitization. Even though allergic sensitized children tended to present larger decrements in the PEF measurements they were not statistically different from the non-allergic sensitized. Decrements in FEV1 were observed mainly with previous 24-h average exposure and 3-day moving average. Conclusions Decrements in PEF associated with air pollution were observed in children independent from their allergic sensitization status. Their daily exposure to air pollution can be responsible for a chronic inflammatory process that might impair their lung growth and later their lung function in adulthood. PMID:22544523

  3. Helminths: Immunoregulation and Inflammatory Diseases—Which Side Are Trichinella spp. and Toxocara spp. on?

    PubMed Central

    Aranzamendi, Carmen; Sofronic-Milosavljevic, Ljiljana; Pinelli, Elena

    2013-01-01

    Macropathogens, such as multicellular helminths, are considered masters of immunoregulation due to their ability to escape host defense and establish chronic infections. Molecular crosstalk between the host and the parasite starts immediately after their encounter, which influences the course and development of both the innate and adaptive arms of the immune response. Helminths can modulate dendritic cells (DCs) function and induce immunosuppression which is mediated by a regulatory network that includes regulatory T (Treg) cells, regulatory B (Breg) cells, and alternatively activated macrophages (AAMs). In this way, helminths suppress and control both parasite-specific and unrelated immunopathology in the host such as Th1-mediated autoimmune and Th2-mediated allergic diseases. However, certain helminths favour the development or exacerbation of allergic responses. In this paper, the cell types that play an essential role in helminth-induced immunoregulation, the consequences for inflammatory diseases, and the contrasting effects of Toxocara and Trichinella infection on allergic manifestations are discussed. PMID:23365718

  4. BLOCKADE OF TRKA OR P75 NEUROTROPHIN RECEPTORS ATTENUATES DIESEL PARTICULATE-INDUCED ENHANCEMENT OF ALLERGIC AIRWAYS RESPONSES IN BALB/C MICE

    EPA Science Inventory

    Neurotrophins, including nerve growth factor (NGF) partially mediate many features of allergic airways disease including airway resistance. Exposure to diesel exhaust particles (DEP) associated with the combustion of diesel fuel exacerbates allergic airways responses. We tested t...

  5. Facilitation of Allergic Sensitization and Allergic Airway Inflammation by Pollen-Induced Innate Neutrophil Recruitment

    PubMed Central

    Hosoki, Koa; Aguilera-Aguirre, Leopoldo; Brasier, Allan R.; Kurosky, Alexander; Boldogh, Istvan

    2016-01-01

    Neutrophil recruitment is a hallmark of rapid innate immune responses. Exposure of airways of naive mice to pollens rapidly induces neutrophil recruitment. The innate mechanisms that regulate pollen-induced neutrophil recruitment and the contribution of this neutrophilic response to subsequent induction of allergic sensitization and inflammation need to be elucidated. Here we show that ragweed pollen extract (RWPE) challenge in naive mice induces C-X-C motif ligand (CXCL) chemokine synthesis, which stimulates chemokine (C-X-C motif) receptor 2 (CXCR2)-dependent recruitment of neutrophils into the airways. Deletion of Toll-like receptor 4 (TLR4) abolishes CXCL chemokine secretion and neutrophil recruitment induced by a single RWPE challenge and inhibits induction of allergic sensitization and airway inflammation after repeated exposures to RWPE. Forced induction of CXCL chemokine secretion and neutrophil recruitment in mice lacking TLR4 also reconstitutes the ability of multiple challenges of RWPE to induce allergic airway inflammation. Blocking RWPE-induced neutrophil recruitment in wild-type mice by administration of a CXCR2 inhibitor inhibits the ability of repeated exposures to RWPE to stimulate allergic sensitization and airway inflammation. Administration of neutrophils derived from naive donor mice into the airways of Tlr4 knockout recipient mice after each repeated RWPE challenge reconstitutes allergic sensitization and inflammation in these mice. Together these observations indicate that pollen-induced recruitment of neutrophils is TLR4 and CXCR2 dependent and that recruitment of neutrophils is a critical rate-limiting event that stimulates induction of allergic sensitization and airway inflammation. Inhibiting pollen-induced recruitment of neutrophils, such as by administration of CXCR2 antagonists, may be a novel strategy to prevent initiation of pollen-induced allergic airway inflammation. PMID:26086549

  6. Differential Activation of Airway Eosinophils Induces IL-13 Mediated Allergic Th2 Pulmonary Responses in Mice

    PubMed Central

    Jacobsen, EA; Doyle, AD; Colbert, DC; Zellner, KR; Protheroe, CA; LeSuer, WE; Lee, NA.; Lee, JJ

    2015-01-01

    Background Eosinophils are hallmark cells of allergic Th2 respiratory inflammation. However, the relative importance of eosinophil activation and the induction of effector functions such as the expression of IL-13 to allergic Th2 pulmonary disease remain to be defined. Methods Wild type or cytokine deficient (IL-13−/− or IL-4−/−) eosinophils treated with cytokines (GM-CSF, IL-4, IL-33) were adoptively transferred into eosinophil-deficient recipient mice subjected to allergen provocation using established models of respiratory inflammation. Allergen-induced pulmonary changes were assessed. Results In contrast to the transfer of untreated blood eosinophils to the lungs of recipient eosinophildeficient mice, which induced no immune/inflammatory changes either in the lung or lung draining lymph nodes (LDLNs), pretreatment of blood eosinophils with GM-CSF prior to transfer elicited trafficking of these eosinophils to LDLNs. In turn, these LDLN eosinophils elicited the accumulation of dendritic cells and CD4+ T cells to these same LDLNs without inducing pulmonary inflammation. However, exposure of eosinophils to GM-CSF, IL-4 and IL-33 prior to transfer induced not only immune events in the LDLN, but also allergen-mediated increases in airway Th2 cytokine/chemokine levels, the subsequent accumulation of CD4+ T cells as well as alternatively activated (M2) macrophages, and the induction of pulmonary histopathologies. Significantly, this allergic respiratory inflammation was dependent on eosinophil-derived IL-13 whereas IL-4 expression by eosinophils had no significant role. Conclusion The data demonstrate the differential activation of eosinophils as a function of cytokine exposure and suggest that eosinophil-specific IL-13 expression by activated cells is a necessary component of the subsequent allergic Th2 pulmonary pathologies. PMID:26009788

  7. Differential activation of airway eosinophils induces IL-13-mediated allergic Th2 pulmonary responses in mice.

    PubMed

    Jacobsen, E A; Doyle, A D; Colbert, D C; Zellner, K R; Protheroe, C A; LeSuer, W E; Lee, N A; Lee, J J

    2015-09-01

    Eosinophils are hallmark cells of allergic Th2 respiratory inflammation. However, the relative importance of eosinophil activation and the induction of effector functions such as the expression of IL-13 to allergic Th2 pulmonary disease remain to be defined. Wild-type or cytokine-deficient (IL-13(-/-) or IL-4(-/-) ) eosinophils treated with cytokines (GM-CSF, IL-4, IL-33) were adoptively transferred into eosinophil-deficient recipient mice subjected to allergen provocation using established models of respiratory inflammation. Allergen-induced pulmonary changes were assessed. In contrast to the transfer of untreated blood eosinophils to the lungs of recipient eosinophil deficient mice, which induced no immune/inflammatory changes either in the lung or in the lung draining lymph nodes (LDLN), pretreatment of blood eosinophils with GM-CSF prior to transfer elicited trafficking of these eosinophils to LDLN. In turn, these LDLN eosinophils elicited the accumulation of dendritic cells and CD4(+) T cells to these same LDLNs without inducing pulmonary inflammation. However, exposure of eosinophils to GM-CSF, IL-4, and IL-33 prior to transfer induced not only immune events in the LDLN, but also allergen-mediated increases in airway Th2 cytokine/chemokine levels, the subsequent accumulation of CD4(+) T cells as well as alternatively activated (M2) macrophages, and the induction of pulmonary histopathologies. Significantly, this allergic respiratory inflammation was dependent on eosinophil-derived IL-13, whereas IL-4 expression by eosinophils had no significant role. The data demonstrate the differential activation of eosinophils as a function of cytokine exposure and suggest that eosinophil-specific IL-13 expression by activated cells is a necessary component of the subsequent allergic Th2 pulmonary pathologies. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Current knowledge on biomarkers for contact sensitization and allergic contact dermatitis.

    PubMed

    Koppes, Sjors A; Engebretsen, Kristiane A; Agner, Tove; Angelova-Fischer, Irena; Berents, Teresa; Brandner, Johanna; Brans, Richard; Clausen, Maja-Lisa; Hummler, Edith; Jakasa, Ivone; Jurakić-Tončic, Ružica; John, Swen M; Khnykin, Denis; Molin, Sonja; Holm, Jan O; Suomela, Sari; Thierse, Hermann-Josef; Kezic, Sanja; Martin, Stefan F; Thyssen, Jacob P

    2017-07-01

    Contact sensitization is common and affects up to 20% of the general population. The clinical manifestation of contact sensitization is allergic contact dermatitis. This is a clinical expression that is sometimes difficult to distinguish from other types of dermatitis, for example irritant and atopic dermatitis. Several studies have examined the pathogenesis and severity of allergic contact dermatitis by measuring the absence or presence of various biomarkers. In this review, we provide a non-systematic overview of biomarkers that have been studied in allergic contact dermatitis. These include genetic variations and mutations, inflammatory mediators, alarmins, proteases, immunoproteomics, lipids, natural moisturizing factors, tight junctions, and antimicrobial peptides. We conclude that, despite the enormous amount of data, convincing specific biomarkers for allergic contact dermatitis are yet to be described. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Emerging roles of basophils in allergic inflammation.

    PubMed

    Miyake, Kensuke; Karasuyama, Hajime

    2017-07-01

    Basophils have long been neglected in immunological studies because they were regarded as only minor relatives of mast cells. However, recent advances in analytical tools for basophils have clarified the non-redundant roles of basophils in allergic inflammation. Basophils play crucial roles in both IgE-dependent and -independent allergic inflammation, through their migration to the site of inflammation and secretion of various mediators, including cytokines, chemokines, and proteases. Basophils are known to produce large amounts of IL-4 in response to various stimuli. Basophil-derived IL-4 has recently been shown to play versatile roles in allergic inflammation by acting on various cell types, including macrophages, innate lymphoid cells, fibroblasts, and endothelial cells. Basophil-derived serine proteases are also crucial for the aggravation of allergic inflammation. Moreover, recent reports suggest the roles of basophils in modulating adaptive immune responses, particularly in the induction of Th2 differentiation and enhancement of humoral memory responses. In this review, we will discuss recent advances in understanding the roles of basophils in allergic inflammation. Copyright © 2017 Japanese Society of Allergology. Production and hosting by Elsevier B.V. All rights reserved.

  10. Blister fluid cytokines in cutaneous inflammatory bullous disorders.

    PubMed

    Rhodes, L E; Hashim, I A; McLaughlin, P J; Friedmann, P S

    1999-07-01

    Cytokines are important regulators of immune and inflammatory reactions in the skin, and may contribute to inflammatory blister induction. We examined the profiles of interleukin-6 (IL-6) and tumour necrosis factor-alpha (TNF-alpha) in fluid of spontaneous blisters in the immune-based inflammatory disorders bullous pemphigoid (8 patients), allergic contact dermatitis (5 patients) and toxic epidermal necrolysis (5 patients). These were compared with levels in 9 patients with burns, i.e. inflammatory blisters of non-immune aetiology, and 4 patients with blisters of physical origin. Very high levels of IL-6 were found in bullous pemphigoid and toxic epidermal necrolysis (p<0.001) compared with non-inflammatory and burn blisters. TNF-alpha levels were high in bullous pemphigoid and burns, but undetectable in non-inflammatory blisters. The pattern in bullous pemphigoid (very high IL-6, high TNF-alpha) differed substantially from toxic epidermal necrolysis (very high IL-6, low TNF-alpha), while burns and allergic contact dermatitis showed lesser elevation of both cytokines. Hence, differences in cytokine profiles were identified, although the relevance to underlying pathomechanisms is uncertain.

  11. Inflammatory response and extracorporeal circulation.

    PubMed

    Kraft, Florian; Schmidt, Christoph; Van Aken, Hugo; Zarbock, Alexander

    2015-06-01

    Patients undergoing cardiac surgery with extracorporeal circulation (EC) frequently develop a systemic inflammatory response syndrome. Surgical trauma, ischaemia-reperfusion injury, endotoxaemia and blood contact to nonendothelial circuit compounds promote the activation of coagulation pathways, complement factors and a cellular immune response. This review discusses the multiple pathways leading to endothelial cell activation, neutrophil recruitment and production of reactive oxygen species and nitric oxide. All these factors may induce cellular damage and subsequent organ injury. Multiple organ dysfunction after cardiac surgery with EC is associated with an increased morbidity and mortality. In addition to the pathogenesis of organ dysfunction after EC, this review deals with different therapeutic interventions aiming to alleviate the inflammatory response and consequently multiple organ dysfunction after cardiac surgery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Topical ivermectin improves allergic skin inflammation.

    PubMed

    Ventre, E; Rozières, A; Lenief, V; Albert, F; Rossio, P; Laoubi, L; Dombrowicz, D; Staels, B; Ulmann, L; Julia, V; Vial, E; Jomard, A; Hacini-Rachinel, F; Nicolas, J-F; Vocanson, M

    2017-08-01

    Ivermectin (IVM) is widely used in both human and veterinary medicine to treat parasitic infections. Recent reports have suggested that IVM could also have anti-inflammatory properties. Here, we investigated the activity of IVM in a murine model of atopic dermatitis (AD) induced by repeated exposure to the allergen Dermatophagoides farinae, and in standard cellular immunological assays. Our results show that topical IVM improved allergic skin inflammation by reducing the priming and activation of allergen-specific T cells, as well as the production of inflammatory cytokines. While IVM had no major impact on the functions of dendritic cells in vivo and in vitro, IVM impaired T-cell activation, proliferation, and cytokine production following polyclonal and antigen-specific stimulation. Altogether, our results show that IVM is endowed with topical anti-inflammatory properties that could have important applications for the treatment of T-cell-mediated skin inflammatory diseases. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Natural Products: Insights into Leishmaniasis Inflammatory Response

    PubMed Central

    Rodrigues, Igor A.; Mazotto, Ana Maria; Cardoso, Verônica; Alves, Renan L.; Amaral, Ana Claudia F.; Silva, Jefferson Rocha de Andrade; Pinheiro, Anderson S.; Vermelho, Alane B.

    2015-01-01

    Leishmaniasis is a vector-borne disease that affects several populations worldwide, against which there are no vaccines available and the chemotherapy is highly toxic. Depending on the species causing the infection, the disease is characterized by commitment of tissues, including the skin, mucous membranes, and internal organs. Despite the relevance of host inflammatory mediators on parasite burden control, Leishmania and host immune cells interaction may generate an exacerbated proinflammatory response that plays an important role in the development of leishmaniasis clinical manifestations. Plant-derived natural products have been recognized as bioactive agents with several properties, including anti-protozoal and anti-inflammatory activities. The present review focuses on the antileishmanial activity of plant-derived natural products that are able to modulate the inflammatory response in vitro and in vivo. The capability of crude extracts and some isolated substances in promoting an anti-inflammatory response during Leishmania infection may be used as part of an effective strategy to fight the disease. PMID:26538837

  14. Dysbiosis of Inferior Turbinate Microbiota Is Associated with High Total IgE Levels in Patients with Allergic Rhinitis.

    PubMed

    Hyun, Dong-Wook; Min, Hyun Jin; Kim, Min-Soo; Whon, Tae Woong; Shin, Na-Ri; Kim, Pil Soo; Kim, Hyun Sik; Lee, June Young; Kang, Woorim; Choi, Augustine M K; Yoon, Joo-Heon; Bae, Jin-Woo

    2018-04-01

    Abnormalities in the human microbiota are associated with the etiology of allergic diseases. Although disease site-specific microbiota may be associated with disease pathophysiology, the role of the nasal microbiota is unclear. We sought to characterize the microbiota of the site of allergic rhinitis, the inferior turbinate, in subjects with allergic rhinitis ( n = 20) and healthy controls ( n = 12) and to examine the relationship of mucosal microbiota with disease occurrence, sensitized allergen number, and allergen-specific and total IgE levels. Microbial dysbiosis correlated significantly with total IgE levels representing combined allergic responses but not with disease occurrence, the number of sensitized allergens, or house dust mite allergen-specific IgE levels. Compared to the populations in individuals with low total IgE levels (group IgE low ), low microbial biodiversity with a high relative abundance of Firmicutes phylum ( Staphylococcus aureus ) and a low relative abundance of Actinobacteria phylum ( Propionibacterium acnes ) was observed in individuals with high total serum IgE levels (group IgE high ). Phylogeny-based microbial functional potential predicted by the 16S rRNA gene indicated an increase in signal transduction-related genes and a decrease in energy metabolism-related genes in group IgE high as shown in the microbial features with atopic and/or inflammatory diseases. Thus, dysbiosis of the inferior turbinate mucosa microbiota, particularly an increase in S. aureus and a decrease in P. acnes , is linked to high total IgE levels in allergic rhinitis, suggesting that inferior turbinate microbiota may be affected by accumulated allergic responses against sensitized allergens and that site-specific microbial alterations play a potential role in disease pathophysiology. Copyright © 2018 American Society for Microbiology.

  15. The Intestinal Microbiota Contributes to the Ability of Helminths to Modulate Allergic Inflammation

    PubMed Central

    Zaiss, Mario M.; Rapin, Alexis; Lebon, Luc; Dubey, Lalit Kumar; Mosconi, Ilaria; Sarter, Kerstin; Piersigilli, Alessandra; Menin, Laure; Walker, Alan W.; Rougemont, Jacques; Paerewijck, Oonagh; Geldhof, Peter; McCoy, Kathleen D.; Macpherson, Andrew J.; Croese, John; Giacomin, Paul R.; Loukas, Alex; Junt, Tobias; Marsland, Benjamin J.; Harris, Nicola L.

    2015-01-01

    Summary Intestinal helminths are potent regulators of their host’s immune system and can ameliorate inflammatory diseases such as allergic asthma. In the present study we have assessed whether this anti-inflammatory activity was purely intrinsic to helminths, or whether it also involved crosstalk with the local microbiota. We report that chronic infection with the murine helminth Heligmosomoides polygyrus bakeri (Hpb) altered the intestinal habitat, allowing increased short chain fatty acid (SCFA) production. Transfer of the Hpb-modified microbiota alone was sufficient to mediate protection against allergic asthma. The helminth-induced anti-inflammatory cytokine secretion and regulatory T cell suppressor activity that mediated the protection required the G protein-coupled receptor (GPR)-41. A similar alteration in the metabolic potential of intestinal bacterial communities was observed with diverse parasitic and host species, suggesting that this represents an evolutionary conserved mechanism of host-microbe-helminth interactions. PMID:26522986

  16. Pharmacology and Immunological Mechanisms of an Herbal Medicine, ASHMI™ on Allergic Asthma

    PubMed Central

    Zhang, Tengfei; Srivastava, Kamal; Wen, Ming-Chun; Yang, Nan; Cao, Jing; Busse, Paula; Birmingham, Neil; Goldfarb, Joseph; Li, Xiu-Min

    2015-01-01

    Allergic asthma is a chronic and progressive inflammatory disease for which there is no satisfactory treatment. Studies reported tolerability and efficacy of an anti-asthma herbal medicine intervention (ASHMI) for asthma patients, developed from traditional Chinese medicine. To investigate the pharmacological actions of ASHMI on early- and late-phase airway responses (EAR and LAR), Ovalbumin (OVA)-sensitized mice received 6 weeks of ASHMI treatment beginning 24 h following the first intra tracheal OVA challenge. EAR were determined 30 min following the fourth challenge and LAR 48 h following the last challenge. ASHMI effects on cytokine secretion, murine tracheal ring contraction and human bronchial smooth muscle cell prostaglandin (PG) production were also determined. ASHMI abolished EAR, which was associated with significantly reduced histamine, leukotriene C4, and OVA-specific IgE levels, as well as LAR, which was associated with significantly reduced bronchoalveolar lavage fluid (BALF) eosinophils, decreased airway remodeling, and lower Th2 cytokine levels in BALF and splenocyte cultures. Furthermore, ASHMI inhibited contraction of murine tracheal rings and increased production of the potent smooth muscle relaxer PGI2. ASHMI abrogation of allergic airway responses is associated with broad effects on asthma pathological mechanisms. PMID:19998324

  17. Thiolated chitosan nanoparticles enhance anti-inflammatory effects of intranasally delivered theophylline

    PubMed Central

    Lee, Dong-Won; Shirley, Shawna A; Lockey, Richard F; Mohapatra, Shyam S

    2006-01-01

    Background Chitosan, a polymer derived from chitin, has been used for nasal drug delivery because of its biocompatibility, biodegradability and bioadhesiveness. Theophylline is a drug that reduces the inflammatory effects of allergic asthma but is difficult to administer at an appropriate dosage without causing adverse side effects. It was hypothesized that adsorption of theophylline to chitosan nanoparticles modified by the addition of thiol groups would improve theophylline absorption by the bronchial epithelium and enhance its anti-inflammatory effects. Objectives We sought to develop an improved drug-delivery matrix for theophylline based on thiolated chitosan, and to investigate whether thiolated chitosan nanoparticles (TCNs) can enhance theophylline's capacity to alleviate allergic asthma. Methods A mouse model of allergic asthma was used to test the effects of theophylline in vivo. BALB/c mice were sensitized to ovalbumin (OVA) and OVA-challenged to produce an inflammatory allergic condition. They were then treated intranasally with theophylline alone, chitosan nanoparticles alone or theophylline adsorbed to TCNs. The effects of theophylline on cellular infiltration in bronchoalveolar lavage (BAL) fluid, histopathology of lung sections, and apoptosis of lung cells were investigated to determine the effectiveness of TCNs as a drug-delivery vehicle for theophylline. Results Theophylline alone exerts a moderate anti-inflammatory effect, as evidenced by the decrease in eosinophils in BAL fluid, the reduction of bronchial damage, inhibition of mucus hypersecretion and increased apoptosis of lung cells. The effects of theophylline were significantly enhanced when the drug was delivered by TCNs. Conclusion Intranasal delivery of theophylline complexed with TCNs augmented the anti-inflammatory effects of the drug compared to theophylline administered alone in a mouse model of allergic asthma. The beneficial effects of theophylline in treating asthma may be enhanced

  18. Thiolated chitosan nanoparticles enhance anti-inflammatory effects of intranasally delivered theophylline.

    PubMed

    Lee, Dong-Won; Shirley, Shawna A; Lockey, Richard F; Mohapatra, Shyam S

    2006-08-24

    Chitosan, a polymer derived from chitin, has been used for nasal drug delivery because of its biocompatibility, biodegradability and bioadhesiveness. Theophylline is a drug that reduces the inflammatory effects of allergic asthma but is difficult to administer at an appropriate dosage without causing adverse side effects. It was hypothesized that adsorption of theophylline to chitosan nanoparticles modified by the addition of thiol groups would improve theophylline absorption by the bronchial epithelium and enhance its anti-inflammatory effects. We sought to develop an improved drug-delivery matrix for theophylline based on thiolated chitosan, and to investigate whether thiolated chitosan nanoparticles (TCNs) can enhance theophylline's capacity to alleviate allergic asthma. A mouse model of allergic asthma was used to test the effects of theophylline in vivo. BALB/c mice were sensitized to ovalbumin (OVA) and OVA-challenged to produce an inflammatory allergic condition. They were then treated intranasally with theophylline alone, chitosan nanoparticles alone or theophylline adsorbed to TCNs. The effects of theophylline on cellular infiltration in bronchoalveolar lavage (BAL) fluid, histopathology of lung sections, and apoptosis of lung cells were investigated to determine the effectiveness of TCNs as a drug-delivery vehicle for theophylline. Theophylline alone exerts a moderate anti-inflammatory effect, as evidenced by the decrease in eosinophils in BAL fluid, the reduction of bronchial damage, inhibition of mucus hypersecretion and increased apoptosis of lung cells. The effects of theophylline were significantly enhanced when the drug was delivered by TCNs. Intranasal delivery of theophylline complexed with TCNs augmented the anti-inflammatory effects of the drug compared to theophylline administered alone in a mouse model of allergic asthma. The beneficial effects of theophylline in treating asthma may be enhanced through the use of this novel drug delivery

  19. Cytokine-induced immune deviation as a therapy for inflammatory autoimmune disease.

    PubMed

    Racke, M K; Bonomo, A; Scott, D E; Cannella, B; Levine, A; Raine, C S; Shevach, E M; Röcken, M

    1994-11-01

    The properties and outcome of an immune response are best predicted by the lymphokine phenotype of the responding T cells. Cytokines produced by CD4+ T helper type 1 (Th1) T cells mediate delayed type hypersensitivity (DTH) and inflammatory responses, whereas cytokines produced by Th2 T cells mediate helper T cell functions for antibody production. To determine whether induction of Th2-like cells would modulate an inflammatory response, interleukin 4 (IL-4) was administered to animals with experimental allergic encephalomyelitis (EAE), a prototypic autoimmune disease produced by Th1-like T cells specific for myelin basic protein (MBP). IL-4 treatment resulted in amelioration of clinical disease, the induction of MBP-specific Th2 cells, diminished demyelination, and inhibition of the synthesis of inflammatory cytokines in the central nervous system (CNS). Modulation of an immune response from one dominated by excessive activity of Th1-like T cells to one dominated by the protective cytokines produced by Th2-like T cells may have applicability to the therapy of certain human autoimmune diseases.

  20. Ionotropic and metabotropic proton-sensing receptors involved in airway inflammation in allergic asthma.

    PubMed

    Aoki, Haruka; Mogi, Chihiro; Okajima, Fumikazu

    2014-01-01

    An acidic microenvironment has been shown to evoke a variety of airway responses, including cough, bronchoconstriction, airway hyperresponsiveness (AHR), infiltration of inflammatory cells in the lung, and stimulation of mucus hyperproduction. Except for the participation of transient receptor potential vanilloid-1 (TRPV1) and acid-sensing ion channels (ASICs) in severe acidic pH (of less than 6.0)-induced cough and bronchoconstriction through sensory neurons, the molecular mechanisms underlying extracellular acidic pH-induced actions in the airways have not been fully understood. Recent studies have revealed that ovarian cancer G protein-coupled receptor 1 (OGR1)-family G protein-coupled receptors, which sense pH of more than 6.0, are expressed in structural cells, such as airway smooth muscle cells and epithelial cells, and in inflammatory and immune cells, such as eosinophils and dendritic cells. They function in a variety of airway responses related to the pathophysiology of inflammatory diseases, including allergic asthma. In the present review, we discuss the roles of ionotropic TRPV1 and ASICs and metabotropic OGR1-family G protein-coupled receptors in the airway inflammation and AHR in asthma and respiratory diseases.

  1. Allergy and allergic mediators in tears.

    PubMed

    Leonardi, Andrea

    2013-12-01

    The identification of inflammatory mediators in the tear fluid have been extensively used in ocular allergy to find either a 'disease marker', to better understand the immune mechanisms involved in the ocular surface inflammation, or to identify potential targets for therapeutic interventions. While the clinical characteristics allow a relatively convincing diagnosis of ocular allergic diseases, in the initial, non active phases, or in the chronic stages, the diagnosis may not be clear. Although not highly specific, total tear IgE can be measured with local tests by inserting a paper strip in the lower meniscus. The measurement of tear specific inflammatory markers, such as histamine, tryptase, ECP, IL-4, IL-5 and eotaxin, may be useful for the diagnosis or monitoring ocular allergy. New technologies such as multiplex bead assays, membrane-bound antibody array and proteomic techniques can characterize the distribution of a wide range of bioactive trace proteins in tears. Dozens of mediators, cytokines, chemokines, growth factors, angiogenic modulators, enzymes and inhibitors were thus identified in small tear samples using these techniques, providing the possible identification of specific biomarker for either specific disease or disease activity. However, to date, there is no a single specific laboratory test suitable for the diagnosis and monitoring of allergic conjunctivitis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Suppression of allergic airway inflammation in a mouse model by Der p2 recombined BCG.

    PubMed

    Ou-Yang, Hai-Feng; Hu, Xing-Bin; Ti, Xin-Yu; Shi, Jie-Ran; Li, Shu-Jun; Qi, Hao-Wen; Wu, Chang-Gui

    2009-09-01

    Allergic asthma is a chronic inflammatory disease mediated by T helper (Th)2 cell immune responses. Currently, immunotherapies based on both immune deviation and immune suppression, including the development of recombinant mycobacteria as immunoregulatory vaccines, are attractive treatment strategies for asthma. In our previous studies, we created a genetically recombinant form of bacille Calmette-Guerin (rBCG) that expressed Der p2 of house dust mites and established that it induced a shift from a Th2 response to a Th1 response in naive mice. However, it is unclear whether rBCG could suppress allergic airway inflammation in a mouse model. In this article we report that rBCG dramatically inhibited airway inflammation, eosinophilia, mucus production and mast cell degranulation in allergic mice. Analysis of interferon-gamma (IFN-gamma) and interleukin-4 (IL-4) levels in bronchoalveolar lavage fluid (BALF) and lung tissue revealed that the suppression was associated with a shift from a Th2 response to a Th1 response. At the same time, rBCG induced a CD4(+) CD25(+) Foxp3(+) T-cell subtype that could suppress the proliferation of Th2 effector cells in vitro in an antigen-specific manner. Moreover, suppression of CD4(+) CD25(+) T cells could be adoptively transferred. Thus, our results demonstrate that rBCG induces both generic and specific immune responses. The generic immune response is associated with a shift from a Th2 to a Th1 cytokine response, whereas the specific immune response against Der p2 appears to be related to the expansion of transforming growth factor-beta (TGF-beta)-producing CD4(+) CD25(+) Foxp3(+) regulatory T cells. rBCG can suppress asthmatic airway inflammation through both immune deviation and immune suppression and may be a feasible, efficient immunotherapy for asthma.

  3. Anti-allergic Hydroxy Fatty Acids from Typhonium blumei Explored through ChemGPS-NP

    PubMed Central

    Korinek, Michal; Tsai, Yi-Hong; El-Shazly, Mohamed; Lai, Kuei-Hung; Backlund, Anders; Wu, Shou-Fang; Lai, Wan-Chun; Wu, Tung-Ying; Chen, Shu-Li; Wu, Yang-Chang; Cheng, Yuan-Bin; Hwang, Tsong-Long; Chen, Bing-Hung; Chang, Fang-Rong

    2017-01-01

    Increasing prevalence of allergic diseases with an inadequate variety of treatment drives forward search for new alternative drugs. Fatty acids, abundant in nature, are regarded as important bioactive compounds and powerful nutrients playing an important role in lipid homeostasis and inflammation. Phytochemical study on Typhonium blumei Nicolson and Sivadasan (Araceae), a folk anti-cancer and anti-inflammatory medicine, yielded four oxygenated fatty acids, 12R-hydroxyoctadec-9Z,13E-dienoic acid methyl ester (1) and 10R-hydroxyoctadec-8E,12Z-dienoic acid methyl ester (2), 9R-hydroxy-10E-octadecenoic acid methyl ester (3), and 12R*-hydroxy-10E-octadecenoic acid methyl ester (4). Isolated compounds were identified by spectroscopic methods along with GC-MS analysis. Isolated fatty acids together with a series of saturated, unsaturated and oxygenated fatty acids were evaluated for their anti-inflammatory and anti-allergic activities in vitro. Unsaturated (including docosahexaenoic and eicosapentaenoic acids) as well as hydroxylated unsaturated fatty acids exerted strong anti-inflammatory activity in superoxide anion generation (IC50 2.14–3.73 μM) and elastase release (IC50 1.26–4.57 μM) assays. On the other hand, in the anti-allergic assays, the unsaturated fatty acids were inactive, while hydroxylated fatty acids showed promising inhibitory activity in A23187- and antigen-induced degranulation assays (e.g., 9S-hydroxy-10E,12Z-octadecadienoic acid, IC50 92.4 and 49.7 μM, respectively). According to our results, the presence of a hydroxy group in the long chain did not influence the potent anti-inflammatory activity of free unsaturated acids. Nevertheless, hydroxylation of fatty acids (or their methyl esters) seems to be a key factor for the anti-allergic activity observed in the current study. Moreover, ChemGPS-NP was explored to predict the structure-activity relationship of fatty acids. The anti-allergic fatty acids formed different cluster distant from

  4. Risk of Allergic Rhinitis, Allergic Conjunctivitis, and Eczema in Children Born to Mothers with Gum Inflammation during Pregnancy

    PubMed Central

    Hsieh, Vivian Chia-Rong; Liu, Chin-Chen; Hsiao, Yu-Chen; Wu, Trong-Neng

    2016-01-01

    Purpose Despite links between maternal and child health status, evidence on the association between gum infection in pregnant mothers and childhood allergies is scarce. We aim to evaluate the risk of developing allergy in children born to periodontal mothers in a nationwide study. Methods We conducted a 9-year population-based, retrospective cohort study using Taiwan’s National Health Insurance database. A study cohort of 42,217 newborns born to mothers with periodontal disease during pregnancy was identified in 2001 and matched with 42,334 babies born to mothers without any infection (control) by mother’s age at delivery and baby sex. With a follow-up period from 2001 to 2010, we observed the incidence of allergic rhinitis (AR), allergic conjunctivitis (AC), and eczema in these children. Cox proportional hazards regression models were performed with premature deaths as competing risk for the estimation of allergic disease risks. Results Nine-year cumulative incidences were the highest among children born to periodontal mothers; they reached 46.8%, 24.2%, and 40.4% (vs. 39.5%, 18.3% and 34.8% in control) for AR, AC, and eczema, respectively. Our results showed moderately increased risks for the allergies in children born to periodontal mothers relative to their matched non-inflammatory control (adjusted HRs: 1.17, 95% CI: 1.15–1.20; 1.27, 1.24–1.31; 1.14, 1.12–1.17, respectively). Because the impact of food consumption and living environment cannot be considered using insurance data, we attempted to control it by adjusting for parental income and mother’s residential area. Conclusions Overall cumulative incidence and risks of children born to periodontal mothers for AR, AC, and eczema are significantly higher than those born to non-inflammatory mothers. Gum infection in women during pregnancy is an independent risk factor for allergic diseases in children, thus its intergenerational consequences should be considered in gestational care. PMID:27224053

  5. [Application of basic research to development of diagnostics and therapeutic agents against inflammatory diseases].

    PubMed

    Izuhara, Kenji; Ohta, Shoichiro; Arima, Kazuhiko; Suzuki, Shoichi; Inamitsu, Masako; Yamamoto, Ken-ichi

    2013-10-01

    Biomarkers are generally important for the treatment of patients from the points of diagnosis of disease, assessment of cure, assessment of prognosis such as metastasis or recurrence, prevention of disease, and prediction of drug efficacy. Currently it is well accepted that allergic diseases such as bronchial asthma and atopic dermatitis are not single diseases, but syndromes encompassing different diseases entities. Therefore, it is important to cluster allergic disease patients to assess prognosis or the choice of therapeutic drugs, and useful biomarkers are required for these purposes. Periostin, an extracellular matrix protein, has recently emerged as a biomarker useful for clustering asthma patients. We further found that periostin plays an important role in allergic inflammation and based on this finding we are now developing therapeutic agents targeting periostin against allergic diseases. Since periostin is involved in the pathogenesis of various inflammatory diseases in addition to allergic diseases, such diagnostics and therapeutic agents can be applied to many inflammatory diseases. In this article, we describe the history of periostin research and our application of basic research to the development of diagnostics and therapeutic agents against inflammatory diseases.

  6. A critical role of Gas6/Axl signal in allergic airway responses during RSV vaccine-enhanced disease.

    PubMed

    Shibata, Takehiko; Ato, Manabu

    2017-11-01

    Respiratory syncytial virus (RSV) is a common virus that causes lower respiratory infections across a wide range of ages. A licensed RSV vaccine is not available because vaccination with formalin-inactivated RSV (FI-RSV) and the subsequent RSV infection cause not only insufficient induction of neutralizing antibodies but also severe allergic airway responses, termed FI-RSV vaccine-enhanced disease (FI-RSV VED). However, the underlying mechanism has not been identified, although a Th2-biased immune response is known to be a hallmark of this disease. Our previous studies have shown that growth arrest-specific 6 (Gas6)/Axl signaling leads to Th2-biased immune responses during fungus-induced allergic airway inflammation. Here, we show that Gas6/Axl signaling also leads to FI-RSV VED and partially identify the mechanism in mice. Inhibiting Gas6/Axl signaling using Gas6-deficient mice, neutralizing antibodies, and a specific inhibitor of Axl attenuated allergic airway hyperresponsiveness, including airway inflammation, goblet cell hyperplasia, and Th2 cytokine production, in addition to increasing interferon-γ levels and the production of RSV-neutralizing IgG2a in FI-RSV VED. Gas6 was produced in lymph nodes during immunization with FI-RSV. Lymph node cells derived from immunized mice produced high levels of Gas6 and Th2 cytokines, but not IFN-γ, after restimulation with RSV. Finally, we found that dendritic cells stimulated with RSV-glycoprotein (G protein) produced Gas6 and that Axl signaling suppressed DC maturation and the induction of IL-12 production by the toll-like receptor 4 agonist RSV-fusion protein. Taken together, these results indicate that RSV-G protein-induced Gas6/Axl signaling causes allergic airway responses during FI-RSV VED.

  7. Type 2 innate lymphoid cells: at the cross-roads in allergic asthma.

    PubMed

    van Rijt, Leonie; von Richthofen, Helen; van Ree, Ronald

    2016-07-01

    Allergic asthma is a chronic inflammatory disease of the lower airways that affects millions of people worldwide. Allergic asthma is a T helper 2 cell (Th2)-mediated disease, in which Th2 cytokines interleukin (IL)-4, IL-5, and IL-13 are closely associated with the symptoms. IL-4 is needed by B cells to switch toward an IgE response, IL-5 recruits and activates eosinophils while IL-13 increases mucus production. The identification of type 2 innate lymphoid cells (ILC2), which are able to rapidly produce large amounts of IL-5 and IL-13 in response to epithelial derived cytokines, implicated a new key player besides Th2 cells. ILCs constitute a family of innate lymphocytes distinct from T and B cells. ILC2s are located in various epithelial compartments in mice and human, including the lung. The recent finding of increased numbers of ILC2s in the airways of severe asthma patients prompts further research to clarify their immunological function. Murine studies have shown that ILC2s are an early innate source of IL-5 and IL-13 after allergen exposure, which induce airway eosinophilic infiltration, mucus hyperproduction, and airway hyperresponsiveness but not allergen-specific IgE production. ILC2s contribute to the initiation as well as to the maintenance of the adaptive type 2 immune response. Here, we review the recent progress on our understanding of the role of ILC2s in the immunopathology of allergic asthma, in particular by studies using murine models which have elucidated fundamental mechanisms by which ILC2s act.

  8. Functional Roles of Syk in Macrophage-Mediated Inflammatory Responses

    PubMed Central

    Yi, Young-Su; Son, Young-Jin; Ryou, Chongsuk; Sung, Gi-Ho; Kim, Jong-Hoon; Cho, Jae Youl

    2014-01-01

    Inflammation is a series of complex biological responses to protect the host from pathogen invasion. Chronic inflammation is considered a major cause of diseases, such as various types of inflammatory/autoimmune diseases and cancers. Spleen tyrosine kinase (Syk) was initially found to be highly expressed in hematopoietic cells and has been known to play crucial roles in adaptive immune responses. However, recent studies have reported that Syk is also involved in other biological functions, especially in innate immune responses. Although Syk has been extensively studied in adaptive immune responses, numerous studies have recently presented evidence that Syk has critical functions in macrophage-mediated inflammatory responses and is closely related to innate immune response. This review describes the characteristics of Syk-mediated signaling pathways, summarizes the recent findings supporting the crucial roles of Syk in macrophage-mediated inflammatory responses and diseases, and discusses Syk-targeted drug development for the therapy of inflammatory diseases. PMID:25045209

  9. Hyperoside attenuates OVA-induced allergic airway inflammation by activating Nrf2.

    PubMed

    Ye, Peng; Yang, Xi-Liang; Chen, Xing; Shi, Cai

    2017-03-01

    Allergic airways disease (AAD) is one of the most common medical illnesses that is associated with an increased allergic airway inflammation. Hyperoside, an active compound isolated from Rhododendron brachycarpum G. Don, has been reported to have anti-inflammatory effect. The aim of this study was to analyze the protective effect of hyperoside on OVA-induced allergic airway inflammation in mice. In the present study, the mouse asthma model was induced by given OVA and hyperoside was administrated 1h before OVA challenge. The levels of IL-4, IL-5, IL-13, and IgE were detected by ELISA. H&E staining was used to assess lung histopathological changes. The expression of NF-κB p65, IκB, HO-1, and Nf-E2 related factor 2 (Nrf2) were measured by western blot analysis. The results showed that hyperoside significantly reduced the inflammatory cells infiltration and the levels of IL-4, IL-5, IL-13, and IgE. Hyperoside significantly inhibited OVA-induced oxidative stress as demonstrated by decreased MDA, and increased GSH and SOD levels. Treatment of hyperoside also inhibited OVA-induced airway hyperresponsiveness (AHR). Furthermore, the results showed that treatment of hyperoside significantly inhibited LPS-induced NF-κB activation. In addition, hyperoside was found to activate Nrf2/HO-1 signaling pathway. In conclusion, these results suggest that hyperoside ameliorates OVA-induced allergic airway inflammation by activating Nrf2 signaling pathway. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. 8-oxoguanine DNA Glycosylase 1-Deficiency Modifies Allergic Airway Inflammation by Regulating STAT6 and IL-4 in Cells and in Mice

    PubMed Central

    Li, Guoping; Yuan, Kefei; Yan, Chunguang; Fox, John; Gaid, Madeleine; Breitwieser, Wayne; Bansal, Arvind K.; Zeng, Huawei; Gao, Hongwei; Wu, Min

    2013-01-01

    8-oxoguanine-DNA glycosylase (OGG-1) is a base excision DNA repair enzyme; however, its function in modulating allergic diseases remains undefined. Using OGG-1 knockout (KO) mice, we show that this protein impacts allergic airway inflammation following sensitization and challenge by ovalbumin (OVA). OGG-1 KO mice exhibited less inflammatory cell infiltration and reduced oxidative stress in the lungs after OVA challenge compared to WT mice. The KO phenotype included decreased IL-4, IL-6, IL-10, and IL-17 in lung tissues. In addition, OGG-1 KO mice showed decreased expression and phosphorylation of STAT6 as well as NF-κB. Down-regulation of OGG-1 by siRNA lowered ROS and IL-4 levels but increased INF-γ production in cultured epithelial cells following exposure to house dust mite (HDM) extracts. OGG-1 may affect the levels of oxidative stress and proinflammatory cytokines during asthmatic conditions. OGG-1-deficiency negatively regulates allergen-induced airway inflammatory response. PMID:22100973

  11. The Intestinal Microbiota Contributes to the Ability of Helminths to Modulate Allergic Inflammation.

    PubMed

    Zaiss, Mario M; Rapin, Alexis; Lebon, Luc; Dubey, Lalit Kumar; Mosconi, Ilaria; Sarter, Kerstin; Piersigilli, Alessandra; Menin, Laure; Walker, Alan W; Rougemont, Jacques; Paerewijck, Oonagh; Geldhof, Peter; McCoy, Kathleen D; Macpherson, Andrew J; Croese, John; Giacomin, Paul R; Loukas, Alex; Junt, Tobias; Marsland, Benjamin J; Harris, Nicola L

    2015-11-17

    Intestinal helminths are potent regulators of their host's immune system and can ameliorate inflammatory diseases such as allergic asthma. In the present study we have assessed whether this anti-inflammatory activity was purely intrinsic to helminths, or whether it also involved crosstalk with the local microbiota. We report that chronic infection with the murine helminth Heligmosomoides polygyrus bakeri (Hpb) altered the intestinal habitat, allowing increased short chain fatty acid (SCFA) production. Transfer of the Hpb-modified microbiota alone was sufficient to mediate protection against allergic asthma. The helminth-induced anti-inflammatory cytokine secretion and regulatory T cell suppressor activity that mediated the protection required the G protein-coupled receptor (GPR)-41. A similar alteration in the metabolic potential of intestinal bacterial communities was observed with diverse parasitic and host species, suggesting that this represents an evolutionary conserved mechanism of host-microbe-helminth interactions. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Induction of cyclooxygenase-2 expression by allergens in lymphocytes from allergic patients.

    PubMed

    Chacón, Pedro; Vega, Antonio; Monteseirín, Javier; El Bekay, Rajaa; Alba, Gonzalo; Pérez-Formoso, José Luis; Msartínez, Alberto; Asturias, Juan A; Pérez-Cano, Ramón; Sobrino, Francisco; Conde, José

    2005-08-01

    Cyclooxygenase (COX) is a key enzyme in prostaglandin (PG) synthesis. Up-regulation of COX-2 expression is responsible for increased PG release during inflammatory conditions and is thought to be also involved in allergic states. In this study, we demonstrate that in human T, B and natural killer lymphocytes from allergic patients, COX-2 expression became induced upon cell challenge with specific allergens and that this process is presumably IgE dependent and occurs after CD23 receptor ligation. This induction took place at both mRNA and protein levels and was accompanied by PGD2 release. IgE-dependent lymphocyte treatment elicited, in parallel, an activation of the MAPK p38 and extracellular signal-regulated kinase 1/2, an enhancement of calcineurin (CaN) activity, and an increase of the DNA-binding activity of the nuclear factor of activated T cells and of NF-kappaB, with a concomitant decrease in the levels of the cytosolic inhibitor of kappaB, IkappaB. In addition, specific chemical inhibitors of MAPK, such as PD098059 and SB203580, as well as MG-132, an inhibitor of proteasomal activity, abolished allergen-induced COX-2 up-regulation, suggesting that this process is mediated by MAPK and NF-kappaB. However, induction of COX-2 expression was not hampered by the CaN inhibitor cyclosporin A. We also examined the effect of a selective COX-2 inhibitor, NS-398, on cytokine production by human lymphocytes. Treatment with NS-398 severely diminished the IgE-dependently induced production of IL-8 and TNF-alpha. These results underscore the relevant role of lymphocyte COX-2 in allergy and suggest that COX-2 inhibitors may contribute to the improvement of allergic inflammation through the reduction of inflammatory mediator production by human lymphocytes.

  13. The sterile inflammatory response

    PubMed Central

    Rock, Kenneth L.; Latz, Eicke; Ontiveros, Fernando; Kono, Hajime

    2015-01-01

    The acute inflammatory response is a double-edged sword. On the one hand it plays a key role in initial host defense particularly against many infections. On the other hand its aim is imprecise and as a consequence, when it is drawn into battle, it can cause collateral damage in tissues. In situations where the inciting stimulus is sterile, the cost-benefit ratio may be high; because of this, sterile inflammation underlies the pathogenesis of a number of diseases. While there have been major advances in our understanding of how microbes trigger inflammation, much less has been learned about this process in sterile situations. This review focuses on a subset of the many sterile stimuli that can induce inflammation – specifically dead cells and a variety of irritant particles, including crystals, minerals, and protein aggregates. Although this subset of stimuli is structurally very diverse and might appear to be unrelated, there is accumulating evidence that the innate immune system may recognize them in similar ways and stimulate the sterile inflammatory response via common pathways. Here we review established and emerging data about these responses. PMID:20307211

  14. Trauma-induced systemic inflammatory response versus exercise-induced immunomodulatory effects.

    PubMed

    Fehrenbach, Elvira; Schneider, Marion E

    2006-01-01

    Accidental trauma and heavy endurance exercise, both induce a kind of systemic inflammatory response, also called systemic inflammatory response syndrome (SIRS). Exercise-related SIRS is conditioned by hyperthermia and concomitant heat shock responses, whereas trauma-induced SIRS manifests concomitantly with tissue necrosis and immune activation, secondarily followed by fever. Inflammatory cytokines are common denominators in both trauma and exercise, although there are marked quantitative differences. Different anti-inflammatory cytokines may be involved in the control of inflammation in trauma- and exercise-induced stress. Exercise leads to a balanced equilibrium between inflammatory and anti-inflammatory responses. Intermittent states of rest, as well as anti-oxidant capacity, are lacking or minor in trauma but are high in exercising individuals. Regular training may enhance immune competence, whereas trauma-induced SIRS often paves the way for infectious complications, such as sepsis.

  15. Innate immunity and effector and regulatory mechanisms involved in allergic contact dermatitis*

    PubMed Central

    Silvestre, Marilene Chaves; Sato, Maria Notomi; dos Reis, Vitor Manoel Silva

    2018-01-01

    Skin's innate immunity is the initial activator of immune response mechanisms, influencing the development of adaptive immunity. Some contact allergens are detected by Toll-like receptors (TLRs) and inflammasome NLR3. Keratinocytes participate in innate immunity and, in addition to functioning as an anatomical barrier, secrete cytokines, such as TNF, IL-1β, and IL-18, contributing to the development of Allergic Contact Dermatitis. Dendritic cells recognize and process antigenic peptides into T cells. Neutrophils cause pro-inflammatory reactions, mast cells induce migration/maturation of skin DCs, the natural killer cells have natural cytotoxic capacity, the γδ T cells favor contact with hapten during the sensitization phase, and the innate lymphoid cells act in the early stages by secreting cytokines, as well as act in inflammation and tissue homeostasis. The antigen-specific inflammation is mediated by T cells, and each subtype of T cells (Th1/Tc1, Th2/Tc2, and Th17/Tc17) activates resident skin cells, thus contributing to inflammation. Skin's regulatory T cells have a strong ability to inhibit the proliferation of hapten-specific T cells, acting at the end of the Allergic Contact Dermatitis response and in the control of systemic immune responses. In this review, we report how cutaneous innate immunity is the first line of defense and focus its role in the activation of the adaptive immune response, with effector response induction and its regulation. PMID:29723367

  16. Innate immunity and effector and regulatory mechanisms involved in allergic contact dermatitis.

    PubMed

    Silvestre, Marilene Chaves; Sato, Maria Notomi; Reis, Vitor Manoel Silva Dos

    2018-03-01

    Skin's innate immunity is the initial activator of immune response mechanisms, influencing the development of adaptive immunity. Some contact allergens are detected by Toll-like receptors (TLRs) and inflammasome NLR3. Keratinocytes participate in innate immunity and, in addition to functioning as an anatomical barrier, secrete cytokines, such as TNF, IL-1β, and IL-18, contributing to the development of Allergic Contact Dermatitis. Dendritic cells recognize and process antigenic peptides into T cells. Neutrophils cause pro-inflammatory reactions, mast cells induce migration/maturation of skin DCs, the natural killer cells have natural cytotoxic capacity, the γδ T cells favor contact with hapten during the sensitization phase, and the innate lymphoid cells act in the early stages by secreting cytokines, as well as act in inflammation and tissue homeostasis. The antigen-specific inflammation is mediated by T cells, and each subtype of T cells (Th1/Tc1, Th2/Tc2, and Th17/Tc17) activates resident skin cells, thus contributing to inflammation. Skin's regulatory T cells have a strong ability to inhibit the proliferation of hapten-specific T cells, acting at the end of the Allergic Contact Dermatitis response and in the control of systemic immune responses. In this review, we report how cutaneous innate immunity is the first line of defense and focus its role in the activation of the adaptive immune response, with effector response induction and its regulation.

  17. EFFECT OF SHORT TERM DIESEL EXHAUST EXPOSURE ON NASAL RESPONSES TO INFLUENZA IN ALLERGIC RHINITICS.

    EPA Science Inventory

    Introduction: Recently published data suggest that diesel exhaust (DE) has special impact on allergic inflammation, suppressing Th1 and augmenting Th2 responses to allergen via oxidant stress effects on airway cells. Exposures to particulate air pollutants including DE are also a...

  18. [The expression and significance of chemokines eotaxin and RANTES in the rat model of allergic rhinitis].

    PubMed

    Tian, Cuiling; Lei, Xiaoping; Shui, Minhong; Zhang, Yanhong; Jia, Qianwei; Tu, Jing; Lian, Gang; Tang, Siquan

    2014-07-01

    To explore the expression and significance of Eotaxin and RANTES in the rat model of allergic rhinitis (AR). 20 female SD rats in 6-7 weeks were randomly divided into control group and AR group (n = 10, respectively). AR rat model was made with ovalbumin stimulation. To detect pathological changes in mucosa and chemokine Eotaxin, RANTES in their nasal and lung tissues after execution. Compared with the control group, Lung EOS cell counted higher in AR group and the difference was significant (P < 0.01); the AR rats nasal mucosa and lung tissue of Eotaxin, RANTES expression was significantly increased (P < 0.01). There exist high expression of Eotaxin, RANTES, infiltration of eosinophils in nasal and lung tissue of model rats with allergic rhinitis, inferring that the upper and lower respiratory tract inflammatory response has obvious consistency.

  19. Bromelain exerts anti-inflammatory effects in an ovalbumin-induced murine model of allergic airway disease ☆

    PubMed Central

    Secor, Eric R.; Carson, William F.; Cloutier, Michelle M.; Guernsey, Linda A.; Schramm, Craig M.; Wu, Carol A.; Thrall, Roger S.

    2008-01-01

    Objective Bromelain, a clinically used pineapple extract and natural product, has reported anti-inflammatory and immunomodulatory activities. The purpose of this study was to determine the effect of bromelain treatment in an ovalbumin (OVA)-induced murine model of allergic airway disease (AAD). Methods To establish AAD, mice were sensitized with intraperitoneal (i.p.) OVA/alum and challenged with daily OVA aerosols. Mice were treated i.p. with either saline, 2 or 6 mg/kg bromelain, twice daily for four consecutive days. Bronchoalveolar lavage leukocytes and cytokines, lung histology, airway hyperresponsiveness, and lymphocyte populations via flow cytometry were compared between groups. Results Bromelain treatment of AAD mice resulted in reduced total BAL leukocytes, eosinophils, CD4+ and CD8+ T lymphocytes, CD4+/CD8+ T cell ratio, and IL-13. Conclusion Bromelain attenuated development of AAD while altering CD4+ to CD8+ T lymphocyte populations. The reduction in AAD outcomes suggests that bromelain may have similar effects in the treatment of human asthma and hypersensitivity disorders. PMID:16337164

  20. Intrinsic functional defects of type 2 innate lymphoid cells impair innate allergic inflammation in promyelocytic leukemia zinc finger (PLZF)-deficient mice.

    PubMed

    Verhoef, Philip A; Constantinides, Michael G; McDonald, Benjamin D; Urban, Joseph F; Sperling, Anne I; Bendelac, Albert

    2016-02-01

    The transcription factor promyelocytic leukemia zinc finger (PLZF) is transiently expressed during development of type 2 innate lymphoid cells (ILC2s) but is not present at the mature stage. We hypothesized that PLZF-deficient ILC2s have functional defects in the innate allergic response and represent a tool for studying innate immunity in a mouse with a functional adaptive immune response. We determined the consequences of PLZF deficiency on ILC2 function in response to innate and adaptive immune stimuli by using PLZF(-/-) mice and mixed wild-type:PLZF(-/-) bone marrow chimeras. PLZF(-/-) mice, wild-type littermates, or mixed bone marrow chimeras were treated with the protease allergen papain or the cytokines IL-25 and IL-33 or infected with the helminth Nippostrongylus brasiliensis to induce innate type 2 allergic responses. Mice were sensitized with intraperitoneal ovalbumin-alum, followed by intranasal challenge with ovalbumin alone, to induce adaptive TH2 responses. Lungs were analyzed for immune cell subsets, and alveolar lavage fluid was analyzed for ILC2-derived cytokines. In addition, ILC2s were stimulated ex vivo for their capacity to release type 2 cytokines. PLZF-deficient lung ILC2s exhibit a cell-intrinsic defect in the secretion of IL-5 and IL-13 in response to innate stimuli, resulting in defective recruitment of eosinophils and goblet cell hyperplasia. In contrast, the adaptive allergic inflammatory response to ovalbumin and alum was unimpaired. PLZF expression at the innate lymphoid cell precursor stage has a long-range effect on the functional properties of mature ILC2s and highlights the importance of these cells for innate allergic responses in otherwise immunocompetent mice. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. All rights reserved.

  1. A study for characterization of IgE-mediated cutaneous immediate and late-phase reactions in non-allergic domestic cats.

    PubMed

    Seals, Shanna L; Kearney, Michael; Del Piero, Fabio; Hammerberg, Bruce; Pucheu-Haston, Cherie M

    2014-05-15

    Immunoglobulin-E (IgE) mediated reactions can be induced by intradermal injection of anti-IgE antibodies in both humans and dogs. These reactions grossly and histologically mimic changes seen in naturally occurring allergic dermatitis in these species. Similar studies have not been conducted in the cat. Purified polyclonal rabbit-origin IgG specific for canine IgE (anti-IgE) and rabbit immunoglobulin G (IgG) were injected intradermally in 7 non-allergic laboratory colony cats. Wheal measurements were obtained and biopsies collected before injection and at injection sites after 20 min, 6, 24, and 48 h. Injection of anti-IgE induced an immediate wheal response which was significantly larger than that seen after injection of rabbit IgG. Anti-IgE injected skin was also significantly thicker than IgG-injected skin. This corresponded with a significant increase in number of visibly degranulated mast cells in anti-IgE samples when compared to IgG samples. Injection of anti-IgE was associated with the rapid recruitment of inflammatory cells to the injected dermis. The number of inflammatory cells and mononuclear cells were significantly elevated after the injection of anti-IgE when compared to IgG-injected skin. Both eosinophils and neutrophils were significantly increased in anti-IgE samples relative to IgG, although neutrophils were only transiently increased. The high eosinophil and relatively low neutrophil cell counts in these samples were consistent with previously documented histologic features of naturally occurring feline allergic skin disease. Immunohistochemistry identified a significantly overall increased CD1a(+) cells after the intradermal injection of anti-IgE when compared to IgG and non-injected skin. CD3(+), CD8(+) and CD4(+) were also significantly increased overall in anti-IgE injected skin relative to IgG injected skin. These data document the gross and cellular response to injection of anti-IgE in the skin of healthy, non-allergic cats and support a

  2. SUPPRESSION OF ALLERGIC IMMUNE RESPONSES TO HOUSE DUST MITE (HDM) IN RATS EXPOSED TO 2,3,7,8-TCDD

    EPA Science Inventory

    Abstract
    Exposure to various xenobiotics, including oxidant gases, diesel exhaust and certain pesticides, has been reported to exacerbate pulmonary allergic hypersensitivity responses. Increased lymphocyte proliferative responses to parasite antigens or increased antibody r...

  3. Alveolar macrophages from allergic lungs are not committed to a pro-allergic response and can reduce airway hyperresponsiveness following ex vivo culture

    PubMed Central

    Pouliot, P.; Spahr, A.; Careau, É.; Turmel, V.; Bissonnette, E. Y.

    2016-01-01

    Summary Background We already demonstrated that adoptive transfer of alveolar macrophages (AMs) from non-allergic rats into AM-depleted allergic rats prevents airway hyperresponsiveness (AHR). We also showed that AMs from non-sensitized, but not from sensitized, allergy-prone rats can prevent AHR following allergen challenge in sensitized allergic animals, establishing the importance of rat immunological status on the modulation of AM functions and suggesting that an allergic lung environment alters AM functions. Objective We investigated how the activation of allergic AMs can be modulated to reinstitute them with their capacity to reduce AHR. Methods AMs from sensitized Brown Norway rats were cultured ex vivo for up to 18 h in culture media to deprogram them from the influence of the allergic lung before being reintroduced into the lung of AM-depleted sensitized recipient. AHR and cytokines in bronchoalveolar lavage (BAL) were measured following allergen challenge. AMs stimulated ex vivo with Bacillus Calmette-Guerin(BCG) were used as positive controls as BCG induces a T-helper type 1 activation in AMs. Results AMs ex vivo cultured for 4–18 h reduced AHR to normal level. Interestingly, pro-allergic functions of AMs were dampened by 18 h culture and they reduced AHR even after spending 48 h in an allergic lung microenvironment. Furthermore, transfer of cultured AMs caused an increase in the levels of IFN-γ and IL-12 in BAL when compared with their ovalbumin control. After 18 h of ex vivo culture, AMs expressed reduced levels of TNF, IL-1α, IL-6, and Arginase-2 mRNAs compared with freshly isolated AMs, suggesting that ex vivo culture exempted AMs from lung stimuli that affected their functions. Conclusions There is a significant crosstalk between lung microenvironment and AMs, affecting their functions. It is also the first report showing that sensitized AMs can be modulated ex vivo to reduce lung pro-allergic environment, opening the way to therapies targetting

  4. Comparison of non-invasive measures of cholinergic and allergic airway responsiveness in rats.

    PubMed

    Glaab, T; Hecker, H; Stephan, M; Baelder, R; Braun, A; Korolewitz, R; Krug, N; Hoymann, H G

    2006-04-01

    Non-invasive analysis of tidal expiratory flow parameters such as Tme/TE (time needed to reach peak expiratory flow divided by total expiratory time) or midexpiratory tidal flow (EF50) has been shown useful for phenotypic characterization of lung function in humans and animal models. In this study, we aimed to compare the utility of two non-invasive measures, EF50 and Tme/TE, to monitor bronchoconstriction to inhaled cholinergic and allergic challenges in Brown-Norway rats. Non-invasive measurements of Tme/TE and EF50 were paralleled by invasive recordings of Tme/TE, EF50 and pulmonary conductance (GL). First, dose-response studies with acetylcholine were performed in naive rats, showing that EF50 better than Tme/TE reflected the dose-related changes as observed with the classical invasive outcome parameter GL. The subsequent determination of allergen-specific early airway responsiveness (EAR) showed that ovalbumin-sensitized and -challenged rats exhibited airway inflammation and allergen-specific EAR. Again, EF50 was more sensitive than Tme/TE in detecting the allergen-specific EAR recorded with invasive and non-invasive lung function methods and agreed well with classical GL measurements. We conclude that non-invasive assessment of EF50 is significantly superior to Tme/TE and serves as a suitable and valid tool for phenotypic screening of cholinergic and allergic airway responsiveness in rats.

  5. The impact of nonsteroidal anti-inflammatory drugs on inflammatory response after aneurysmal subarachnoid hemorrhage.

    PubMed

    Muroi, Carl; Hugelshofer, Michael; Seule, Martin; Keller, Emanuela

    2014-04-01

    The degree of inflammatory response with cytokine release is associated with poor outcomes after aneurysmal subarachnoid hemorrhage (SAH). Previously, we reported on an association between systemic IL-6 levels and clinical outcome in patients with aneurysmal SAH. The intention was to assess the impact of nonsteroidal anti-inflammatory drugs (NSAIDs) and acetaminophen on the inflammatory response after SAH. Our method involved exploratory analysis of data and samples collected within a previous study. In 138 patients with SAH, systemic interleukin (IL-6) and c-reactive protein (CRP) were measured daily up to day 14 after SAH. The correlations among the cumulatively applied amount of NSAIDs, inflammatory parameters, and clinical outcome were calculated. An inverse correlation between cumulatively applied NSAIDs and both IL-6 and CRP levels was found (r = -0.437, p < 0.001 and r = -0.369, p < 0.001 respectively). Multivariable linear regression analysis showed a cumulative amount of NSAIDs to be independently predictive for systemic IL-6 and CRP levels. The cumulative amount of NSAIDs reduced the odds for unfavorable outcome, defined as Glasgow outcome scale 1-3. The results indicate a potential beneficial effect of NSAIDs in patients with SAH in terms of ameliorating inflammatory response, which might have an impact on outcome.

  6. Ultrafine particles affect the balance of endogenous pro- and anti-inflammatory lipid mediators in the lung: in-vitro and in-vivo studies

    PubMed Central

    2012-01-01

    Background Exposure to ultrafine particles exerts diverse harmful effects including aggravation of pulmonary diseases like asthma. Recently we demonstrated in a mouse model for allergic airway inflammation that particle-derived oxidative stress plays a crucial role during augmentation of allergen-induced lung inflammation by ultrafine carbon particle (UfCP) inhalation. The mechanisms how particle inhalation might change the inflammatory balance in the lungs, leading to accelerated inflammatory reactions, remain unclear. Lipid mediators, known to be immediately generated in response to tissue injury, might be strong candidates for priming this particle-triggered change of the inflammatory balance. Methods We hypothesize that inhalation of UfCP may disturb the balance of pro- and anti-inflammatory lipid mediators in: i) a model for acute allergic pulmonary inflammation, exposing mice for 24 h before allergen challenge to UfCP inhalation (51.7 nm, 507 μg/m3), and ii) an in-vitro model with primary rat alveolar macrophages (AM) incubated with UfCP (10 μg/1 x 106 cells/ml) for 1 h. Lungs and AM were analysed for pro- and anti-inflammatory lipid mediators, namely leukotriene B4 (LTB4), prostaglandin E2 (PGE2), 15(S)-hydroxy-eicosatetraenoic acid (15(S)-HETE), lipoxin A4 (LXA4) and oxidative stress marker 8-isoprostane by enzyme immunoassays and immunohistochemistry. Results In non-sensitized mice UfCP exposure induced a light non-significant increase of all lipid mediators. Similarly but significantly in rat AM all lipid mediators were induced already within 1 h of UfCP stimulation. Also sensitized and challenge mice exposed to filtered air showed a partially significant increase in all lipid mediators. In sensitized and challenged mice UfCP exposure induced highest significant levels of all lipid mediators in the lungs together with the peak of allergic airway inflammation on day 7 after UfCP inhalation. The levels of LTB4, 8-isoprostane and PGE2 were significantly

  7. Maternal immune response to helminth infection during pregnancy determines offspring susceptibility to allergic airway inflammation.

    PubMed

    Straubinger, Kathrin; Paul, Sabine; Prazeres da Costa, Olivia; Ritter, Manuel; Buch, Thorsten; Busch, Dirk H; Layland, Laura E; Prazeres da Costa, Clarissa U

    2014-12-01

    Schistosomiasis, a chronic helminth infection, elicits distinct immune responses within the host, ranging from an initial TH1 and subsequent TH2 phase to a regulatory state, and is associated with dampened allergic reactions within the host. We sought to evaluate whether non-transplacental helminth infection during pregnancy alters the offspring's susceptibility to allergy. Ovalbumin-induced allergic airway inflammation was analyzed in offspring from Schistosoma mansoni-infected mothers mated during the TH1, TH2, or regulatory phase of infection. Embryos derived from in vitro fertilized oocytes of acutely infected females were transferred into uninfected foster mice to determine the role of placental environment. The fetomaternal unit was further characterized by helminth-specific immune responses and microarray analyses. Eventually, IFN-γ-deficient mice were infected to evaluate the role of this predominant cytokine on the offspring's allergy phenotype. We demonstrate that offspring from schistosome-infected mothers that were mated in the TH1 and regulatory phases, but not the TH2 immune phase, are protected against the onset of allergic airway inflammation. Interestingly, these effects were associated with distinctly altered schistosome-specific cytokine and gene expression profiles within the fetomaternal interface. Furthermore, we identified that it is not the transfer of helminth antigens but rather maternally derived IFN-γ during the acute phase of infection that is essential for the progeny's protective immune phenotype. Overall, we present a novel immune phase-dependent coherency between the maternal immune responses during schistosomiasis and the progeny's predisposition to allergy. Therefore, we propose to include helminth-mediated transmaternal immune modulation into the expanded hygiene hypothesis. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  8. Comparison of Th17 cells mediated immunological response among asthmatic children with or without allergic rhinitis.

    PubMed

    Qing, Miao; Yongge, Liu; Wei, Xu; Yan, Wang; Zhen, Li; Yixin, Ren; Hui, Guan; Li, Xiang

    2018-03-31

    To investigate whether there were differences in Th17 cells mediated immunological responses among asthmatics with or without allergic rhinitis. A case-control comparison was conducted in a cohort of 67 children with asthma (AS), 50 children with allergic rhinitis (AR), 52 children with both AS and AR (ASR), 25 infectious rhinitis (IR), and 55 healthy controls (HC). The percentages of circulating Th17 cells were determined by flow cytometry. The Th2- and Th17-related cytokines in plasma and culture supernatants were measured by enzyme-linked immunosorbent assay. The effect of proinflammation cytokine IL-17E on Th2 cytokines production from human T helper (Th) lymphocytes was analyzed. (1) A inter-group comparison revealed that Th17 cells levels were highest in ASR group [(0.89% ± 0.27) %], following by AS group [(0.82 ± 0.29) %] and AR group[(0.78 ± 0.17) %] (P< 0.05). (2) After in-vitro stimulation with house dust mite (HDM) antigen, the levels of IL-4 and IL-17E in culture supernatants of PBMCs from allergic children (AS group, AR group and ASR group) were significantly enhanced. (3) The release of Th2 cytokines from IL-17E treated Th cells of allergic children (AS group, AR group and ASR group) were significantly induced, no similar result was observed in IR group and HC group. Our findings preliminarily revealed that Th17 cell and its related cytokines might be involved in pathogenesis of airway inflammation diseases, and also presenting varying immunological characteristics among asthmatic children with or without allergic rhinitis.

  9. Allergic rhinitis

    MedlinePlus

    ... allergic to, such as dust, animal dander, or pollen. Symptoms can also occur when you eat a ... article focuses on allergic rhinitis due to plant pollens. This type of allergic rhinitis is commonly called ...

  10. Modulation of allergic immune responses by mucosal application of recombinant lactic acid bacteria producing the major birch pollen allergen Bet v 1.

    PubMed

    Daniel, C; Repa, A; Wild, C; Pollak, A; Pot, B; Breiteneder, H; Wiedermann, U; Mercenier, A

    2006-07-01

    Probiotic lactic acid bacteria (LAB) are able to modulate the host immune system and clinical trials have demonstrated that specific strains have the capacity to reduce allergic symptoms. Therefore, we aimed to evaluate the potential of recombinant LAB producing the major birch pollen allergen Bet v 1 for mucosal vaccination against birch pollen allergy. Recombinant Bet v 1-producing Lactobacillus plantarum and Lactococcus lactis strains were constructed. Their immunogenicity was compared with purified Bet v 1 by subcutaneous immunization of mice. Intranasal application of the live recombinant strains was performed to test their immunomodulatory potency in a mouse model of birch pollen allergy. Bet v 1 produced by the LAB was recognized by monoclonal anti-Bet v 1 and IgE antibodies from birch pollen-allergic patients. Systemic immunization with the recombinant strains induced significantly lower IgG1/IgG2a ratios compared with purified Bet v 1. Intranasal pretreatment led to reduced allergen-specific IgE vs enhanced IgG2a levels and reduced interleukin (IL)-5 production of splenocytes in vitro, indicating a shift towards non-allergic T-helper-1 (Th1) responses. Airway inflammation, i.e. eosinophils and IL-5 in lung lavages, was reduced using either Bet v 1-producing or control strains. Allergen-specific secretory IgA responses were enhanced in lungs and intestines after pretreatment with only the Bet v 1-producing strains. Mucosal vaccination with live recombinant LAB, leading to a shift towards non-allergic immune responses along with enhanced allergen-specific mucosal IgA levels offers a promising approach to prevent systemic and local allergic immune responses.

  11. Fibrin(ogen) mediates acute inflammatory responses to biomaterials

    PubMed Central

    1993-01-01

    Although "biocompatible" polymeric elastomers are generally nontoxic, nonimmunogenic, and chemically inert, implants made of these materials may trigger acute and chronic inflammatory responses. Early interactions between implants and inflammatory cells are probably mediated by a layer of host proteins on the material surface. To evaluate the importance of this protein layer, we studied acute inflammatory responses of mice to samples of polyester terephthalate film (PET) that were implanted intraperitoneally for short periods. Material preincubated with albumin is "passivated," accumulating very few adherent neutrophils or macrophages, whereas uncoated or plasma- coated PET attracts large numbers of phagocytes. Neither IgG adsorption nor surface complement activation is necessary for this acute inflammation; phagocyte accumulation on uncoated implants is normal in hypogammaglobulinemic mice and in severely hypocomplementemic mice. Rather, spontaneous adsorption of fibrinogen appears to be critical: (a) PET coated with serum or hypofibrinogenemic plasma attracts as few phagocytes as does albumin-coated material; (b) in contrast, PET preincubated with serum or hypofibrinogenemic plasma containing physiologic amounts of fibrinogen elicits "normal" phagocyte recruitment; (c) most importantly, hypofibrinogenemic mice do not mount an inflammatory response to implanted PET unless the material is coated with fibrinogen or the animals are injected with fibrinogen before implantation. Thus, spontaneous adsorption of fibrinogen appears to initiate the acute inflammatory response to an implanted polymer, suggesting an interesting nexus between two major iatrogenic effects of biomaterials: clotting and inflammation. PMID:8245787

  12. Changes in Bacteria Induce Inflammatory Skin Diseases | Center for Cancer Research

    Cancer.gov

    Atopic dermatitis (AD) is a chronic inflammatory skin disease that manifests as dry skin with a relentless itch and eczema. AD is considered an allergic disease in which the skin inflammation manifests in response to chronic exposure to contact allergens. However, identification of a responsible allergen is uncommon. Meanwhile, analyses have demonstrated that the surface of the human body is colonized by large numbers of diverse bacteria. This observation has led researchers to examine the roles these bacteria play in healthy and diseased skin. In a variety of genetic and chronic inflammatory skin diseases, including in patients with AD or with cancer who receive epidermal growth factor receptor (EGFR) inhibitors, Staphylococcus aureus and Corynebacterium species are the predominant bacteria isolated from the skin. However, the cause-and-effect relationship between this microbial imbalance and skin inflammation has not been determined.

  13. Local Effect of Neurotrophin-3 in Neuronal Inflammation of Allergic Rhinitis: Preliminary Report.

    PubMed

    İsmi, Onur; Özcan, Cengiz; Karabacak, Tuba; Polat, Gürbüz; Vayisoğlu, Yusuf; Güçlütürk, Taylan; Görür, Kemal

    2015-10-01

    Allergic rhinitis is a common inflammatory nasal mucosal disease characterized by sneezing, watery nasal discharge, nasal obstruction and itching. Although allergen-specific antibodies play a main role in the allergic airway inflammation, neuronal inflammation may also contribute to the symptoms of allergic rhinitis. Neuronal inflammation is primarily caused by the stimulation of sensory nerve endings with histamine. It has been shown that neurotrophins may also have a role in allergic reactions and neuronal inflammation. Nerve growth factor, neurotrophin 3 (NT-3), neurotrophin 4/5 and brain-derived neurotrophic factor are members of the neurotrophin family. Although nerve growth factor and brain-derived neurotrophic factor are well studied in allergic rhinitis patients, the exact role of Neurotrophin-3 is not known. To investigate the possible roles of neurotrophin-3 in allergic rhinitis patients. Case-control study. Neurotrophin-3 levels were studied in the inferior turbinate and serum samples of 20 allergic rhinitis and 13 control patients. Neurotrophin-3 staining of nasal tissues was evaluated by immunohistochemistry and ELISA was used for the determination of serum Neurotrophin-3 levels. Neurotrophin-3 staining scores were statistically higher in the study group than in the control patients (p=0.001). Regarding serum Neurotrophin-3 levels, no statistically significant difference could be determined between allergic rhinitis and control patients (p=0.156). When comparing the serum NT-3 levels with tissue staining scores, there were no statistically significant differences in the allergic rhinitis and control groups (p=0.254 for allergic rhinitis and p=0.624 for control groups). We suggest that Neurotrophin-3 might affect the nasal mucosa locally without being released into the systemic circulation in allergic rhinitis patients.

  14. Therapeutic potential of larval excretory/secretory proteins of the pig whipworm Trichuris suis in allergic disease.

    PubMed

    Ebner, F; Hepworth, M R; Rausch, S; Janek, K; Niewienda, A; Kühl, A; Henklein, P; Lucius, R; Hamelmann, E; Hartmann, S

    2014-11-01

    Gastrointestinal nematodes are currently being evaluated as a novel therapeutic in the treatment of chronic human inflammatory disorders, due to their unique ability to induce immunoregulatory pathways in their hosts. In particular, administration of ova from the pig whipworm Trichuris suis (T. suis; TSO) has been proposed for the treatment of allergic, inflammatory and autoimmune disorders. Despite these advances, the biological pathways through which TSO therapy modulates the host immune system in the context of human disease remain undefined. We characterized the dominant proteins present in the excretory/secretory (E/S) products of first-stage (L1) T. suis larvae (Ts E/S) using LC-MS/MS analysis and examined the immunosuppressive properties of whole larval Ts E/S in vitro and in a murine model of allergic airway disease. Administration of larval Ts E/S proteins in vivo during the allergen sensitization phase was sufficient to suppress airway hyperreactivity, bronchiolar inflammatory infiltrate and allergen-specific IgE production. Three proteins in larval Ts E/S were unambiguously identified. The immunomodulatory function of larval Ts E/S was found to be partially dependent on the immunoregulatory cytokine IL-10. Taken together, these data demonstrate that the released proteins of larval T. suis have significant immunomodulatory capacities and efficiently dampen allergic airway hyperreactivity. Thus, the therapeutic potential of defined larval E/S proteins should be exploited for the treatment of human allergic disorders. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Human Helminths and Allergic Disease: The Hygiene Hypothesis and Beyond

    PubMed Central

    Santiago, Helton C.; Nutman, Thomas B.

    2016-01-01

    There is much debate about the interaction between helminths and allergic disease. The “Hygiene Hypothesis,” a very popular concept among scientists and the lay public, states that infections, especially during childhood, can protect against allergic diseases. Indeed, helminth infections are known to induce regulatory responses in the host that can help the control of inflammation (including allergic inflammation). However, these infections also induce type-2-associated immune responses including helminth-specific IgE that can cross-react against environmental allergens and mediate IgE-driven effector responses. Thus, it is the delicate balance between the parasites' anti- and pro-allergenic effects that define the helminth/allergy interface. PMID:27573628

  16. Memory and multitasking performance during acute allergic inflammation in seasonal allergic rhinitis.

    PubMed

    Trikojat, K; Buske-Kirschbaum, A; Plessow, F; Schmitt, J; Fischer, R

    2017-04-01

    In previous research, patients with seasonal allergic rhinitis (SAR) showed poorer school and work performance during periods of acute allergic inflammation, supporting the idea of an impact of SAR on cognitive functions. However, the specific cognitive domains particularly vulnerable to inflammatory processes are unclear. In this study, the influence of SAR on memory and multitasking performance, as two potentially vulnerable cognitive domains essential in everyday life functioning, was investigated in patients with SAR. Non-medicated patients with SAR (n = 41) and healthy non-allergic controls (n = 42) performed a dual-task paradigm and a verbal learning and memory test during and out of symptomatic allergy periods (pollen vs. non-pollen season). Disease-related factors (e.g. symptom severity, duration of symptoms, duration of disease) and allergy-related quality of life were evaluated as potential influences of cognitive performance. During the symptomatic allergy period, patients showed (1) poorer performance in word list-based learning (P = 0.028) and (2) a general slowing in processing speed (P < 0.001) and a shift in processing strategy (P < 0.001) in multitasking. Yet, typical parameters indicating specific multitasking costs were not affected. A significant negative association was found between learning performance and duration of disease (r = -0.451, P = 0.004), whereas symptom severity (r = 0.326; P = 0.037) and quality of life (r = 0.379; P = 0.015) were positively associated with multitasking strategy. Our findings suggest that SAR has a differentiated and complex impact on cognitive functions, which should be considered in the management of SAR symptoms. They also call attention to the importance of selecting sensitive measures and carefully interpreting cognitive outcomes. © 2017 John Wiley & Sons Ltd.

  17. Effect of Kuwanon G isolated from the root bark of Morus alba on ovalbumin-induced allergic response in a mouse model of asthma.

    PubMed

    Jung, Hyo Won; Kang, Seok Yong; Kang, Jong Seong; Kim, A Ryun; Woo, Eun-Rhan; Park, Yong-Ki

    2014-11-01

    The root bark of Morus alba L. (Mori Cortex Radicis; MCR) is traditionally used in Korean medicine for upper respiratory diseases. In this study, we investigated the antiasthmatic effect of kuwanon G isolated from MCR on ovalbumin (OVA)-induced allergic asthma in mice. Kuwanon G (1 and 10 mg/kg) was administered orally in mice once a day for 7 days during OVA airway challenge. We measured the levels of OVA-specific IgE and Th2 cytokines (IL-4, IL-5, and IL-13) in the sera or bronchoalveolar lavage (BAL) fluids and also counted the immune cells in BAL fluids. Histopathological changes in the lung tissues were analyzed. Kuwanon G significantly decreased the levels of OVA-specific IgE and IL-4, IL-5, and IL-13 in the sera and BAL fluids of asthma mice. Kuwanon G reduced the numbers of inflammatory cells in the BAL fluids of asthma mice. Furthermore, the pathological feature of lungs including infiltration of inflammatory cells, thickened epithelium of bronchioles, mucus, and collagen accumulation was inhibited by kuwanon G. These results indicate that kuwanon G prevents the pathological progression of allergic asthma through the inhibition of lung destruction by inflammation and immune stimulation. Copyright © 2014 John Wiley & Sons, Ltd.

  18. Genome-wide association analysis of eosinophilic esophagitis provides insight into the tissue specificity of this allergic disease.

    PubMed

    Kottyan, Leah C; Davis, Benjamin P; Sherrill, Joseph D; Liu, Kan; Rochman, Mark; Kaufman, Kenneth; Weirauch, Matthew T; Vaughn, Samuel; Lazaro, Sara; Rupert, Andrew M; Kohram, Mojtaba; Stucke, Emily M; Kemme, Katherine A; Magnusen, Albert; He, Hua; Dexheimer, Phillip; Chehade, Mirna; Wood, Robert A; Pesek, Robbie D; Vickery, Brian P; Fleischer, David M; Lindbad, Robert; Sampson, Hugh A; Mukkada, Vincent A; Putnam, Phil E; Abonia, J Pablo; Martin, Lisa J; Harley, John B; Rothenberg, Marc E

    2014-08-01

    Eosinophilic esophagitis (EoE) is a chronic inflammatory disorder associated with allergic hypersensitivity to food. We interrogated >1.5 million genetic variants in EoE cases of European ancestry and subsequently in a multi-site cohort with local and out-of-study control subjects. In addition to replicating association of the 5q22 locus (meta-analysis P=1.9×10(-16)), we identified an association at 2p23 spanning CAPN14 (P=2.5×10(-10)). CAPN14 was specifically expressed in the esophagus, was dynamically upregulated as a function of disease activity and genetic haplotype and after exposure of epithelial cells to interleukin (IL)-13, and was located in an epigenetic hotspot modified by IL-13. Genes neighboring the top 208 EoE-associated sequence variants were enriched for esophageal expression, and multiple loci for allergic sensitization were associated with EoE susceptibility (4.8×10(-2)allergic sensitization with an EoE-specific, IL-13-inducible esophageal response involving CAPN14.

  19. Genome-wide association analysis of eosinophilic esophagitis provides insight into the tissue specificity of this allergic disease

    PubMed Central

    Kottyan, Leah C.; Davis, Benjamin P.; Sherrill, Joseph D.; Liu, Kan; Rochman, Mark; Kaufman, Kenneth; Weirauch, Matthew T.; Vaughn, Samuel; Lazaro, Sara; Rupert, Andrew M.; Kohram, Mojtaba; Stucke, Emily M.; Kemme, Katherine A.; Magnusen, Albert; He, Hua; Dexheimer, Phillip; Chehade, Mirna; Wood, Robert A.; Pesek, Robbie D.; Vickery, Brian P.; Fleischer, David M.; Lindbad, Robert; Sampson, Hugh A.; Mukkada, Vince; Putnam, Phil E.; Abonia, J. Pablo; Martin, Lisa J.; Harley, John B.; Rothenberg, Marc E.

    2014-01-01

    Eosinophilic esophagitis (EoE) is a chronic inflammatory disorder associated with allergic hypersensitivity to food. We interrogated >1.5 million genetic variants in European EoE cases and subsequently in a multi-site cohort with local and out-of-study control subjects. In addition to replication of the 5q22 locus (meta-analysis p = 1.9×10−16), we identified association at 2p23 (encoding CAPN14, p = 2.5×10−10). CAPN14 was specifically expressed in the esophagus, dynamically upregulated as a function of disease activity and genetic haplotype and after exposure of epithelial cells to IL-13, and located in an epigenetic hotspot modified by IL-13. There was enriched esophageal expression for the genes neighboring the top 208 EoE sequence variants. Multiple allergic sensitization loci were associated with EoE susceptibility (4.8×10−2 < p < 5.1×10−11). We propose a model that elucidates the tissue specific nature of EoE that involves the interplay of allergic sensitization with an EoE-specific, IL-13–inducible esophageal response involving CAPN14. PMID:25017104

  20. Translation Control: A Multifaceted Regulator of Inflammatory Response

    PubMed Central

    Mazumder, Barsanjit; Li, Xiaoxia; Barik, Sailen

    2010-01-01

    A robust innate immune response is essential to the protection of all vertebrates from infection, but it often comes with the price tag of acute inflammation. If unchecked, a runaway inflammatory response can cause significant tissue damage, resulting in myriad disorders, such as dermatitis, toxicshock, cardiovascular disease, acute pelvic and arthritic inflammatory diseases, and various infections. To prevent such pathologies, cells have evolved mechanisms to rapidly and specifically shut off these beneficial inflammatory activities before they become detrimental. Our review of recent literature, including our own work, reveals that the most dominant and common mechanism is translational silencing, in which specific regulatory proteins or complexes are recruited to cis-acting RNA structures in the untranslated regions of single or multiple mRNAs that code for the inflammatory protein(s). Enhancement of the silencing function may constitute a novel pharmacological approach to prevent immunity-related inflammation. PMID:20304832

  1. Translation control: a multifaceted regulator of inflammatory response.

    PubMed

    Mazumder, Barsanjit; Li, Xiaoxia; Barik, Sailen

    2010-04-01

    A robust innate immune response is essential to the protection of all vertebrates from infection, but it often comes with the price tag of acute inflammation. If unchecked, a runaway inflammatory response can cause significant tissue damage, resulting in myriad disorders, such as dermatitis, toxic shock, cardiovascular disease, acute pelvic and arthritic inflammatory diseases, and various infections. To prevent such pathologies, cells have evolved mechanisms to rapidly and specifically shut off these beneficial inflammatory activities before they become detrimental. Our review of recent literature, including our own work, reveals that the most dominant and common mechanism is translational silencing, in which specific regulatory proteins or complexes are recruited to cis-acting RNA structures in the untranslated regions of single or multiple mRNAs that code for the inflammatory protein(s). Enhancement of the silencing function may constitute a novel pharmacological approach to prevent immunity-related inflammation.

  2. Suppression of ovalbumin-induced airway inflammatory responses in a mouse model of asthma by Mimosa pudica extract.

    PubMed

    Yang, Eun Ju; Lee, Ji-Sook; Yun, Chi-Young; Ryang, Yong Suk; Kim, Jong-Bae; Kim, In Sik

    2011-01-01

    Asthma is an inflammatory airway disease. The pathogenic mechanisms of asthma include the infiltration of leukocytes and release of cytokines. Mimosa pudica (Mp) has been used traditionally for the treatment of insomnia, diarrhea and inflammatory diseases. Although Mp extract has various therapeutic properties, the effect of this extract on asthma has not yet been reported. This study investigated the suppressive effects of Mp extract on asthmatic responses both in vitro and in vivo. Mp extract was acquired from dried and powdered whole plants of M. pudica using 80% ethanol. BALB/c mice were used for the mouse model of asthma induced by ovalbumin. Mp extract significantly inhibited the HMC-1 cell migration induced by stem cell factor and blocked the release of monocyte chemotactic protein-1 (MCP-1) and interleukin-6 (IL-6) in EoL-1 cells. Leukocytosis, eosinophilia and mucus hypersecretion in asthmatic lung were significantly suppressed by Mp extract. The release of ovalbumin-specific IgE in bronchoalveolar lavage fluid and serum was also decreased. Mp extract treatment resulted in no liver cytotoxicity. The Mp extract has inhibitory properties on asthma and may be used as a potent therapeutic agent for allergic lung inflammation. Copyright © 2010 John Wiley & Sons, Ltd.

  3. Rupatadine inhibits inflammatory mediator release from human laboratory of allergic diseases 2 cultured mast cells stimulated by platelet-activating factor.

    PubMed

    Alevizos, Michail; Karagkouni, Anna; Vasiadi, Magdalini; Sismanopoulos, Nikolaos; Makris, Michael; Kalogeromitros, Dimitrios; Theoharides, Theoharis C

    2013-12-01

    Mast cells are involved in allergy and inflammation by the secretion of multiple mediators, including histamine, cytokines, and platelet-activating factor (PAF), in response to different triggers, including emotional stress. PAF has been associated with allergic inflammation, but there are no clinically available PAF inhibitors. To investigate whether PAF could stimulate human mast cell mediator release and whether rupatadine (RUP), a dual histamine-1 and PAF receptor antagonist, could inhibit the effect of PAF on human mast cells. Laboratory of allergic diseases 2 cultured mast cells were stimulated with PAF (0.001, 0.01, and 0.1 μmol/L) and substance P (1 μmol/L) with or without pretreatment with RUP (2.5 and 25 μmol/L), which was added 10 minutes before stimulation. Release of β-hexosaminidase was measured in supernatant fluid by spectrophotoscopy, and histamine, interleukin-8, and tumor necrosis factor were measured by enzyme-linked immunosorbent assay. PAF stimulated a statistically significant release of histamine, interleukin-8, and tumor necrosis factor (0.001-0.1 μmol/L) that was comparable to that stimulated by substance P. Pretreatment with RUP (25 μmol/L) for 10 minutes inhibited this effect. In contrast, pretreatment of laboratory of allergic diseases 2 cells with diphenhydramine (25 μmol/L) did not inhibit mediator release, suggesting that the effect of RUP was not due to its antihistaminic effect. PAF stimulates human mast cell release of proinflammatory mediators that is inhibited by RUP. This action endows RUP with additional properties in treating allergic inflammation. Copyright © 2013 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  4. Inflammatory responses of stromal fibroblasts to inflammatory epithelial cells are involved in the pathogenesis of bovine mastitis.

    PubMed

    Zhang, Wenyao; Li, Xuezhong; Xu, Tong; Ma, Mengru; Zhang, Yong; Gao, Ming-Qing

    2016-11-15

    Hypernomic secretion of epithelial cytokines has several effects on stromal cells. The contributions of inflammatory epithelial cells to stromal fibroblasts in bovine mammary glands with mastitis remain poorly understood. Here, we established an inflammatory epithelial cell model of bovine mastitis with gram-negative lipopolysaccharide (LPS) and gram-positive lipoteichoic acid (LTA) bacterial cell wall components. We characterized immune responses of mammary stromal fibroblasts induced by inflammatory epithelial cells. Our results showed that inflammatory epithelial cells affected stromal fibroblast characteristics by increasing inflammatory mediator expression, elevating extracellular matrix protein deposition, decreasing proliferation capacity, and enhancing migration ability. The changes in stromal fibroblast proliferation and migration abilities were mediated by signal molecules, such as WNT signal pathway components. LPS- and LTA-induced inflammatory epithelial cells triggered different immune responses in stromal fibroblasts. Thus, in mastitis, bovine mammary gland stromal fibroblasts were affected by inflammatory epithelial cells and displayed inflammation-specific changes, suggesting that fibroblasts play crucial roles in bovine mastitis. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. The role of pseudoephedrine on daytime somnolence in patients suffering from perennial allergic rhinitis (PAR).

    PubMed

    Sherkat, Amir A; Sardana, Niti; Safaee, Sahar; Lehman, Erik B; Craig, Timothy J

    2011-02-01

    Allergic rhinitis is one of several inflammatory diseases affecting the nasal mucosa. Cellular inflammation of nasal mucosa is a hallmark of this disease and is characterized by the accumulation of eosinophils and the release of various chemical messengers such as chemokines, cytokines, and histamine. This inflammation of the nose leads to nasal congestion and a reduction in sleep quality, resulting in daytime somnolence. Drugs that significantly reduce the symptoms of nasal congestion also may help in alleviating sleep-related symptoms of allergic rhinitis. Pseudoephedrine is a sympathomimetic amine that is indicated for treatment of nasal congestion associated with allergic rhinitis. Despite relieving nasal congestion, we speculated that, because of pseudoephedrine's well-known stimulant profile, sleep would not be improved. Fourteen subjects who met the inclusion criteria were enrolled into a double-blind, placebo-controlled, randomized study to either pseudoephedrine or placebo once per day in the morning, using the traditional crossover design. Skin testing test was performed to ensure a positive response to a relevant perennial allergen and a negative response to a seasonal allergen. Several questionnaires were used to evaluate the patients' sleep-related symptoms, allergic rhinitis symptoms, and quality of life. Our results showed that pseudoephedrine did not have a positive or negative effect on quality of sleep, daytime sleepiness, or daytime fatigue as compared with placebo. Pseudoephedrine did show a statistical significance in improving stuffy nose (P = .0172). With respect to quality of life, pseudoephedrine led to a statistically significant decrease in intimate relationships and sexual activity as compared with the placebo group (P = .0310). Our research suggests that sleep quality is not significantly affected by pseudoephedrine. As expected, congestion is reduced, but side effects such as a decline of intimate relationships and sexual activity may

  6. Inflammatory Responses in Brain Ischemia

    PubMed Central

    Kawabori, Masahito; Yenari, Midori A.

    2017-01-01

    Brain infarction causes tissue death by ischemia due to occlusion of the cerebral vessels and recent work has shown that post stroke inflammation contributes significantly to the development of ischemic pathology. Because secondary damage by brain inflammation may have a longer therapeutic time window compared to the rescue of primary damage following arterial occlusion, controlling inflammation would be an obvious therapeutic target. A substantial amount of experimentall progress in this area has been made in recent years. However, it is difficult to elucidate the precise mechanisms of the inflammatory responses following ischemic stroke because inflammation is a complex series of interactions between inflammatory cells and molecules, all of which could be either detrimental or beneficial. We review recent advances in neuroinflammation and the modulation of inflammatory signaling pathways in brain ischemia. Potential targets for treatment of ischemic stroke will also be covered. The roles of the immune system and brain damage versus repair will help to clarify how immune modulation may treat stroke. PMID:25666795

  7. Inflammatory mediator profiles in tears accompanying keratoconjunctival responses induced by nasal allergy.

    PubMed

    Pelikan, Zdenek

    2013-07-01

    The allergic reaction taking place in the nasal mucosa can induce a secondary ocular (keratoconjunctival) response of an immediate (SIOR), late (SLOR) or delayed (SDYOR) type in some patients with keratoconjunctivitis (KC). To investigate the concentration changes of histamine, tryptase, eosinophil-derived neurotoxin (EDN), eosinophil cationic protein (ECP), eosinophilic peroxidase (EPO), leucotrienes (LTB₄, LTC₄, LTE₄), prostaglandins (PGD₂, PGE₂ and PGF₂α), thromboxane B₂ (TXB₂), myeloperoxidase (MPO), interferon-γ (IFN-γ) and interleukins (IL-2, IL-4 and IL-5) in tears during the SIOR, SLOR and SDYOR. 19 SIORs (p<0.001), 28 SLORs (p<0.001) and 10 SDYORs (p<0.05) recorded in 57 KC patients following nasal challenges with allergens (NPT) and 57 phosphate-buffered saline (PBS) control tests were repeated and supplemented with determination of the mediators in tears. The ocular response types were associated with significant changes (p<0.05) of mediators in tears as follows: (1) SIORs: histamine, tryptase, ECP, LTC₄, PGD₂, PGF₂α, IL-4 and IL-5; (2) SLORs: histamine, ECP, EDN, LTB₄, LTC₄, PGE₂, MPO, IL-4 and IL-5; (3) SDYORs: LTB4, TXB₂, MPO, IFN-γ and IL-2. No significant changes of these factors were measured in tears during the 57 PBS controls (p>0.1). These results demonstrate a causal involvement of nasal allergy in some KC patients, inducing a secondary keratoconjunctival response of an immediate (SIOR), late (SLOR) or delayed (SDYOR) type, associated with different inflammatory mediator profiles in the tears, suggesting participation of different hypersensitivity mechanisms. These results also emphasise the diagnostic value of nasal challenge with allergen combined with monitoring of ocular response in KC patients, responding insufficiently to the usual ophthalmologic therapy.

  8. In vitro and in vivo anti-allergic effects of Arctium lappa L.

    PubMed

    Knipping, Karen; van Esch, Elisabeth C A M; Wijering, Selva C; van der Heide, Sicco; Dubois, Anthony E; Garssen, Johan

    2008-11-01

    The discovery of drugs that can be used for the treatment of allergic disease is important in human health. Arctium lappa Linne (Compositae) (AL) has been used as a traditional medicine in Brazil and throughout Asia and is known to have an anti-inflammatory effect. In this study, the inhibitory effects of AL on degranulation and the release of mediators as well as on inhibition of cys-leukotriene biosynthesis by basophils were investigated. AL was selected out of 10,000 herbal extracts in a set-up for high throughput screening in which the degree of degranulation was monitored by the release of beta-hexosaminidase from rat basophil leukemia (RBL-2H3) cells. The AL extract significantly reduced degranulation and biosynthesis of cys-leukotrienes of human basophils in peripheral blood mono-nuclear cells (PBMCs) (50% inhibitory concentration [IC(50)] = 8.3 and 11.4 microg/ml, respectively). Viability and metabolic activity of the PBMCs were not affected. Although arctiin, the active component of AL that has been described in the literature, was not able to reduce degranulation in RBL-2H3 cells, a single high-performance liquid chromatography (HPLC) fraction from the AL extract inhibited beta-hexosaminidase release (IC(50) = 22.2 microg/ml). Topical administration of an aqueous extract of AL (5 mg/ear) on the ear of whey-sensitized mice 4 hrs before challenge with whey in the ear inhibited acute ear swelling by 50% in an in vivo cow's milk allergic model. The extract had no effect in this model when administered orally. In conclusion, the active component present in the active HPLC fraction of the AL extract was able to significantly reduce the release of inflammatory mediators through inhibition of degranulation and cys-leukotriene release in vitro. In addition, this active component was able to inhibit acute skin response in mice in vivo, indicating that AL is a very promising natural component for use in anti-allergic treatment.

  9. Involvement of Corneal Lymphangiogenesis in a Mouse Model of Allergic Eye Disease

    PubMed Central

    Lee, Hyun-Soo; Hos, Deniz; Blanco, Tomas; Bock, Felix; Reyes, Nancy J.; Mathew, Rose; Cursiefen, Claus; Dana, Reza; Saban, Daniel R.

    2015-01-01

    Purpose. The contribution of lymphangiogenesis (LA) to allergy has received considerable attention and therapeutic inhibition of this process via targeting VEGF has been considered. Likewise, certain inflammatory settings affecting the ocular mucosa can trigger pathogenic LA in the naturally avascular cornea. Chronic inflammation in allergic eye disease (AED) impacts the conjunctiva and cornea, leading to sight threatening conditions. However, whether corneal LA is involved is completely unknown. We addressed this using a validated mouse model of AED. Methods. Allergic eye disease was induced by ovalbumin (OVA) immunization and chronic OVA exposure. Confocal microscopy of LYVE-1–stained cornea allowed evaluation of corneal LA, and qRT-PCR was used to evaluate expression of VEGF-C, -D, and -R3 in these mice. Administration of VEGF receptor (R) inhibitor was incorporated to inhibit corneal LA in AED. Immune responses were evaluated by in vitro OVA recall responses of T cells, and IgE levels in the serum. Results. Confocal microscopy of LYVE-1–stained cornea revealed the distinct presence of corneal LA in AED, and corroborated by increased corneal expression of VEGF-C, -D, and -R3. Importantly, prevention of corneal LA in AED via VEGFR inhibition was associated with decreased T helper two responses and IgE production. Furthermore, VEGFR inhibition led a significant reduction in clinical signs of AED. Conclusions. Collectively, these data reveal that there is a distinct involvement of corneal LA in AED. Furthermore, VEGFR inhibition prevents corneal LA and consequent immune responses in AED. PMID:26024097

  10. Anti-inflammatory potential of alginic acid from Sargassum horneri against urban aerosol-induced inflammatory responses in keratinocytes and macrophages.

    PubMed

    Fernando, I P Shanura; Jayawardena, Thilina U; Sanjeewa, K K Asanka; Wang, Lei; Jeon, You-Jin; Lee, Won Woo

    2018-09-30

    The airborne particulate pollutants originating in the deserts of Mongolia and China which becomes contaminated with industrial effluents and traffic emissions while moving with the wind currents towards East Asia has recently become a serious environmental and health issue in the region. They cause asthma, collateral lung tissue damage, oxidative stress, allergic reactions, and inflammation. The current study was undertaken to evaluate the protective effects of alginate extracted from the invasive alga Sargassum horneri (SHA) against fine dust collected from Beijing, China (Chinese fine dust; CFD). It was found that CFD induces inflammation in HaCaT keratinocytes and inhibits macrophage activation. All of the particulate matter (PM) comprising CFD was < PM13 majority being < PM2.5 which is defined for mineral elements and polycyclic aromatic hydrocarbons. SHA attenuated PGE 2 levels in CFD-induced HaCaT keratinocytes. The IC 50 for SHA was 36.63 ± 4.11 µg mL -l . SHA also reduced the levels of COX-2, IL-6, and TNF-α, and inhibited certain key molecular mediators of the NF-κB and MAPK pathways in keratinocytes. SHA substantially reduced the levels of CFD-derived metal ions like Pb 2+ and Ca 2+ in keratinocytes attributable to its metal ion chelating properties. CFD-induced HaCaT keratinocyte culture media increased inflammatory responses in RAW 264.7 macrophages. These cells presented with increased levels of NO, iNOS, COX-2, PGE 2 , and pro-inflammatory cytokines. It was found that the aforementioned effects could be reversed in RAW 264.7 macrophages when keratinocytes were treated with SHA. Therefore, SHA could be used against fine dust-induced inflammation in keratinocytes. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. An evaluation of short-term corticosteroid response in perennial allergic rhinitis using histamine and adenosine monophosphate nasal challenge

    PubMed Central

    Wilson, Andrew M; Sims, Erika J; Orr, Linda C; Robb, Fiona; Lipworth, Brian J

    2003-01-01

    Aims To evaluate the role of AMP nasal challenge as a measure of short-term treatment response in patients receiving intranasal corticosteroids. Adenosine monophosphate (AMP) challenge has been shown to be a good inflammatory surrogate in the lower airways, but it has not been properly evaluated as a nasal challenge test. Methods Fourteen patients with perennial allergic rhinitis (PAR) were randomized to receive 2 weeks treatment with placebo (PL) or 200 µg intranasal mometasone furoate (MF) once daily in a randomized single-blind crossover study. AMP (25–800 mg ml−1) and histamine (0.25–8 mg ml−1) nasal challenge testing were performed after each treatment period with 30% decrease in minimal cross-sectional area (MCA). Domiciliary symptom data were collected. Results There was a significant (P < 0.05) improvement in PC30 MCA and nasal volume with AMP but not with histamine comparing MF vs PL. This amounted to a 2.8 (95% CI 1.5, 4.0) and 0.7 (95% CI −0.5, 1.9) doubling-dose change for AMP and histamine challenges, respectively. There were significant (P < 0.05) improvements in nasal symptoms and quality of life. Conclusions AMP nasal challenge using acoustic rhinometry may be a useful test to assess short-term treatment response in patient with PAR. PMID:12680883

  12. Allergic Colitis With Pneumatosis Intestinalis in an Infant.

    PubMed

    Liu, Helena; Turner, Troy W S

    2018-01-01

    Inflammatory causes of bloody diarrhea during infancy include necrotizing enterocolitis and allergic colitis, often due to cow's milk protein. We report this case of cow's milk protein allergy, managed successfully with elimination of dietary antigen, to highlight the unusual finding of pneumatosis intestinalis on abdominal x-ray, a radiographic hallmark associated with necrotizing enterocolitis. Detailed patient's history, clinical presentation, and physical examinations are discussed for cow's milk protein allergy and necrotizing enterocolitis.

  13. Human Helminths and Allergic Disease: The Hygiene Hypothesis and Beyond.

    PubMed

    Santiago, Helton C; Nutman, Thomas B

    2016-10-05

    There is much debate about the interaction between helminths and allergic disease. The "Hygiene Hypothesis," a very popular concept among scientists and the lay public, states that infections, especially during childhood, can protect against allergic diseases. Indeed, helminth infections are known to induce regulatory responses in the host that can help the control of inflammation (including allergic inflammation). However, these infections also induce type-2-associated immune responses including helminth-specific IgE that can cross-react against environmental allergens and mediate IgE-driven effector responses. Thus, it is the delicate balance between the parasites' anti- and pro-allergenic effects that define the helminth/allergy interface. © The American Society of Tropical Medicine and Hygiene.

  14. Saccharomyces cerevisiae-Derived Mannan Does Not Alter Immune Responses to Aspergillus Allergens.

    PubMed

    Lew, D Betty; LeMessurier, Kim S; Palipane, Maneesha; Lin, Yanyan; Samarasinghe, Amali E

    2018-01-01

    Severe asthma with fungal sensitization predominates in the population suffering from allergic asthma, to which there is no cure. While corticosteroids are the mainstay in current treatment, other means of controlling inflammation may be beneficial. Herein, we hypothesized that mannan from Saccharomyces cerevisiae would dampen the characteristics of fungal allergic asthma by altering the pulmonary immune responses. Using wild-type and transgenic mice expressing the human mannose receptor on smooth muscle cells, we explored the outcome of mannan administration during allergen exposure on the pathogenesis of fungal asthma through measurement of cardinal features of disease such as inflammation, goblet cell number, and airway hyperresponsiveness. Mannan treatment did not alter most hallmarks of allergic airways disease in wild-type mice. Transgenic mice treated with mannan during allergen exposure had an equivalent response to non-mannan-treated allergic mice except for a prominent granulocytic influx into airways and cytokine availability. Our studies suggest no role for mannan as an inflammatory regulator during fungal allergy.

  15. Modulation of neurological related allergic reaction in mice exposed to low-level toluene.

    PubMed

    Tin-Tin-Win-Shwe; Yamamoto, Shoji; Nakajima, Daisuke; Furuyama, Akiko; Fukushima, Atsushi; Ahmed, Sohel; Goto, Sumio; Fujimaki, Hidekazu

    2007-07-01

    The contributing role of indoor air pollution to the development of allergic disease has become increasingly evident in public health problems. It has been reported that extensive communication exists between neurons and immune cells, and neurotrophins are molecules potentially responsible for regulating and controlling this neuroimmune crosstalk. The adverse effects of volatile organic compounds which are main indoor pollutants on induction or augmentation of neuroimmune interaction have not been fully characterized yet. To investigate the effects of low-level toluene inhalation on the airway inflammatory responses, male C3H mice were exposed to filtered air (control), 9 ppm, and 90 ppm toluene for 30 min by nose-only inhalation on Days 0, 1, 2, 7, 14, 21, and 28. Some groups of mice were injected with ovalbumin intraperitoneally before starting exposure schedule and these mice were then challenged with aerosolized ovalbumin as booster dose. For analysis of airway inflammation, bronchoalveolar lavage (BAL) fluid were collected to determine inflammatory cell influx and lung tissue and blood samples were collected to determine cytokine and neurotrophin mRNA and protein expressions and plasma antibody titers using real-time RT-PCR and ELISA methods respectively. Exposure of the ovalbumin-immunized mice to low-level toluene resulted in (1) increased inflammatory cells infiltration in BAL fluid; (2) increased IL-5 mRNA, decreased nerve growth factor receptor tropomyosin-related kinase A and brain-derived neurotrophic factor mRNAs in lung; and (3) increased IgE and IgG(1) antibodies and nerve growth factor content in the plasma. These findings suggest that low-level toluene exposure aggravates the airway inflammatory responses in ovalbumin-immunized mice by modulating neuroimmune crosstalk.

  16. Desloratadine citrate disodium injection, a potent histamine H(1) receptor antagonist, inhibits chemokine production in ovalbumin-induced allergic rhinitis guinea pig model and histamine-induced human nasal epithelial cells via inhibiting the ERK1/2 and NF-kappa B signal cascades.

    PubMed

    Chen, Meiling; Xu, Shuhong; Zhou, Peipei; He, Guangwei; Jie, Qiong; Wu, Yulin

    2015-11-15

    Chemokines have chemotactic properties on leukocyte subsets whose modulation plays a pivotal role in allergic inflammatory processes. Our present study was designed to investigate the anti-allergic and anti-inflammatory properties of desloratadine citrate disodium injection (DLC) and elucidate the molecular mechanisms of its anti-inflammatory properties. The anti-allergic effects of DLC were evaluated based on allergic symptoms, serological marker production and histological changes of the nasal mucosa in guinea pigs model of allergic rhinitis. The anti-inflammatory properties and molecular mechanisms of DLC were explored by studying the regulation of a set of chemokines and extracellular signal-regulated kinase (ERK)1/2 and nuclear factor-kappa B (NF-κB) pathways, after DLC treatment in guinea pigs model of allergic rhinitis in vivo and histamine-activated human nasal epithelial cells (HNECs) in vitro. In vivo model in guinea pigs, DLC alleviated the rhinitis symptoms, inhibited inflammatory cells infiltration in nasal lavage fluid (NLF) and histamine, monocyte chemotactic protein (MCP)-1, regulated on activation normal T cell expressed, and presumably secreted (RANTEs) and interleukin (IL)-8 release in sera and P-ERK1/2 and NF-κB activation in nasal mucosa. In vitro, DLC markedly inhibited histamine-induced production of MCP-1, RANTEs and IL-8 and suppressed c-Raf, mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK) and ERK1/2 activation in HNECs. These results provide evidence that DLC possesses potent anti-allergic and anti-inflammatory properties. The mechanism of action underlying DLC in allergic inflammation appears to be inhibition of the phosphorylation of ERK1/2, in addition to blocking of the NF-κB pathway. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Platelet–Eosinophil Interactions As a Potential Therapeutic Target in Allergic Inflammation and Asthma

    PubMed Central

    Shah, Sajeel A.; Page, Clive P.; Pitchford, Simon C.

    2017-01-01

    The importance of platelet activation during hemostasis is well understood. An understanding of these mechanisms has led to the use of several classes of anti-platelet drugs to inhibit aggregation for the prevention of thrombi during cardiovascular disease. It is now also recognized that platelets can function very differently during inflammation, as part of their role in the innate immune response against pathogens. This dichotomy in platelet function occurs through distinct physiological processes and alternative signaling pathways compared to that of hemostasis (leading to platelet aggregation) and is manifested as increased rheological interactions with leukocytes, the ability to undergo chemotaxis, communication with antigen-presenting cells, and direct anti-pathogen responses. Mounting evidence suggests platelets are also critical in the pathogenesis of allergic diseases such as asthma, where they have been associated with antigen presentation, bronchoconstriction, bronchial hyperresponsiveness, airway inflammation, and airway remodeling in both clinical and experimental studies. In particular, platelets have been reported bound to eosinophils in the blood of patients with asthma and the incidence of these events increases after both spontaneous asthma attacks in a biphasic manner, or after allergen challenge in the clinic. Platelet depletion in animal models of allergic airway inflammation causes a profound reduction in eosinophil recruitment to the lung, suggesting that the association of platelets with eosinophils is indeed an important event during eosinophil activation. Furthermore, in cases of severe asthma, and in animal models of allergic airways inflammation, platelet–eosinophil complexes move into the lung through a platelet P-selectin-mediated, eosinophil β1-integrin activation-dependent process, while platelets increase adherence of eosinophils to the vascular endothelium in vitro, demonstrating a clear interaction between these cell types in

  18. Novel innate and adaptive lymphocytes: The new players in the pathogenesis of inflammatory upper airway diseases.

    PubMed

    Liu, Y; Yao, Y; Wang, Z-C; Ning, Q; Liu, Z

    2018-06-01

    Host immunity (innate and adaptive immunity) plays essential roles in the pathogenesis of inflammatory upper airway diseases, including allergic rhinitis and chronic rhinosinusitis. Recently, the discovery of novel innate immune cells, particularly innate lymphoid cells, has renewed our view on the role of innate immunity in inflammatory upper airway diseases. Meanwhile, the identification of new subsets of T helper (Th) cells, including Th22, Th9 and follicular Th cells, and regulatory B cells in the adaptive immunity, has broadened our knowledge on the complex immune networks in inflammatory upper airway diseases. In this review, we focus on these newly identified innate and adaptive lymphocytes with their contributions to the immunological disturbance in allergic rhinitis and chronic rhinosinusitis. We further discuss the perspective for future research and potential clinical utility of regulating these novel lymphocytes for the treatment of allergic rhinitis and chronic rhinosinusitis. © 2018 John Wiley & Sons Ltd.

  19. Birth by Cesarean Section, Allergic Rhinitis, and Allergic Sensitization among Children with Parental History of Atopy

    PubMed Central

    Pistiner, Michael; Gold, Diane R.; Abdulkerim, Hassen; Hoffman, Ellaine; Celedón, Juan C.

    2016-01-01

    Background Cesarean delivery may alter neonatal immune responses and increase the risk of atopy. Studies of the relation between cesarean delivery and allergic diseases in children not selected on the basis of a family history of atopy have yielded inconsistent findings. Objective To examine the relation between birth by cesarean delivery and atopy and allergic diseases in children at risk for atopy. Methods We examined the relation between mode of delivery and the development of atopy and allergic diseases among 432 children with parental history of atopy followed from birth to age 9 years. Asthma was defined as physician-diagnosed asthma and wheeze in the previous year and allergic rhinitis as physician-diagnosed allergic rhinitis and naso-ocular symptoms apart from colds in the previous year. Atopy was considered present at school age if there was >=1 positive skin test or specific IgE to common allergens. Stepwise logistic regression was used to study the relation between cesarean delivery and the outcomes of interest. Results After adjustment for other covariates, children born by cesarean section had twofold higher odds of atopy than those born by vaginal delivery (OR=2.1, 95% CI=1.1–3.9). In multivariate analyses, birth by cesarean section was significantly associated with increased odds of allergic rhinitis (OR=1.8, 95% CI=1.0–3.1) but not with asthma. Conclusions Our findings suggest that cesarean delivery is associated with allergic rhinitis and atopy among children with parental history of asthma or allergies. This could be explained by lack of contact with the maternal vaginal/fecal flora or reduced/absent labor during cesarean delivery. Clinical Implications Potential development of allergic diseases should be considered as a potential risk of cesarean delivery among children with parental history of atopy. Capsule Summary Cesarean delivery may lead to an increased risk of allergic rhinitis and atopy in children with parental history of atopy. PMID

  20. Der p 1-pulsed myeloid and plasmacytoid dendritic cells from house dust mite-sensitized allergic patients dysregulate the T cell response.

    PubMed

    Charbonnier, Anne-Sophie; Hammad, Hamida; Gosset, Philippe; Stewart, Geoffrey A; Alkan, Sefik; Tonnel, André-Bernard; Pestel, Joël

    2003-01-01

    Although reports suggest that dendritic cells (DC) are involved in the allergic reaction characterized by a T helper cell type 2 (Th2) profile, the role of myeloid (M-DC) and plasmacytoid DC (P-DC), controlling the balance Th1/Th2, remains unknown. Here, we showed that in Dermatophagoides pteronyssinus (Dpt)-sensitized allergic patients and in healthy donors, M-DC displayed a higher capacity to capture Der p 1, a major allergen of Dpt, than did P-DC. However, Der p 1-pulsed M-DC from healthy subjects overexpressed CD80 and secreted interleukin (IL)-10, whereas M-DC from allergic patients did not. In contrast, with Der p 1-pulsed P-DC from both groups, no increase in human leukocyte antigen-DR, CD80, and CD86 and no IL-10 secretion were detected. When cocultured with allogeneic naive CD4(+) T cells from healthy donors, Der p 1-pulsed M-DC from allergic patients favored a Th1 profile [interferon (IFN)-gamma(high)/IL-4(low)] and Der p 1-pulsed P-DC, a Th2 profile (IFN-gamma(low)/IL-4(high)). In healthy donors, no T cell polarization (IFN-gamma(low)/IL-4(low)) was induced by Der p 1-pulsed M-DC or P-DC, but in response to Der p 1-pulsed M-DC, T cells secreted IL-10. The neutralization of IL-10 produced by Der p 1-pulsed M-DC from healthy donors led to an inhibition of IL-10 production by T cells and a polarization toward a type 1. Thus, IL-10 produced by M-DC might be an essential mediator controlling the balance between tolerance and allergic status. In addition, P-DC could contribute to the steady state in healthy donors or to the development of a Th2 response in allergic donors.

  1. Inflammatory responses of stromal fibroblasts to inflammatory epithelial cells are involved in the pathogenesis of bovine mastitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wenyao; Li, Xuezhong; Xu, Tong

    Hypernomic secretion of epithelial cytokines has several effects on stromal cells. The contributions of inflammatory epithelial cells to stromal fibroblasts in bovine mammary glands with mastitis remain poorly understood. Here, we established an inflammatory epithelial cell model of bovine mastitis with gram-negative lipopolysaccharide (LPS) and gram-positive lipoteichoic acid (LTA) bacterial cell wall components. We characterized immune responses of mammary stromal fibroblasts induced by inflammatory epithelial cells. Our results showed that inflammatory epithelial cells affected stromal fibroblast characteristics by increasing inflammatory mediator expression, elevating extracellular matrix protein deposition, decreasing proliferation capacity, and enhancing migration ability. The changes in stromal fibroblast proliferationmore » and migration abilities were mediated by signal molecules, such as WNT signal pathway components. LPS- and LTA-induced inflammatory epithelial cells triggered different immune responses in stromal fibroblasts. Thus, in mastitis, bovine mammary gland stromal fibroblasts were affected by inflammatory epithelial cells and displayed inflammation-specific changes, suggesting that fibroblasts play crucial roles in bovine mastitis. - Highlights: • Inflammatory BMEs affect the properties of BMFs during mastitis. • BMEs inhibited the proliferation and promoted the migration of BMFs. • BMEs enhanced secretion of inflammatory mediators and deposition of ECM in BMFs. • Changes of the properties of BMFs were mediated by specific signal molecules.« less

  2. Epigenetic regulation in allergic diseases and related studies

    PubMed Central

    Kuo, Chang-Hung; Hsieh, Chong-Chao; Lee, Min-Sheng; Chang, Kai-Ting; Kuo, Hsuan-Fu

    2014-01-01

    Asthma, a chronic inflammatory disorder of the airway, has features of both heritability as well as environmental influences which can be introduced in utero exposures and modified through aging, and the features may attribute to epigenetic regulation. Epigenetic regulation explains the association between early prenatal maternal smoking and later asthma-related outcomes. Epigenetic marks (DNA methylation, modifications of histone tails or noncoding RNAs) work with other components of the cellular regulatory machinery to control the levels of expressed genes, and several allergy- and asthma-related genes have been found to be susceptible to epigenetic regulation, including genes important to T-effector pathways (IFN-γ, interleukin [IL] 4, IL-13, IL-17) and T-regulatory pathways (FoxP3). Therefore, the mechanism by which epigenetic regulation contributes to allergic diseases is a critical issue. In the past most published experimental work, with few exceptions, has only comprised small observational studies and models in cell systems and animals. However, very recently exciting and elegant experimental studies and novel translational research works were published with new and advanced technologies investigating epigenetic mark on a genomic scale and comprehensive approaches to data analysis. Interestingly, a potential link between exposure to environmental pollutants and the occurrence of allergic diseases is revealed recently, particular in developed and industrialized countries, and endocrine disrupting chemicals (EDCs) as environmental hormone may play a key role. This review addresses the important question of how EDCs (nonylphenol, 4 octylphenol, and phthalates) influences on asthma-related gene expression via epigenetic regulation in immune cells, and how anti-asthmatic agents prohibit expression of inflammatory genes via epigenetic modification. The discovery and validation of epigenetic biomarkers linking exposure to allergic diseases might lead to better

  3. Genetic Variation along the Histamine Pathway in Children with Allergic versus Nonallergic Asthma

    PubMed Central

    Anvari, Sara; Vyhlidal, Carrie A.; Dai, Hongying

    2015-01-01

    Histamine is an important mediator in the pathogenesis of asthma. Variation in genes along the histamine production, response, and degradation pathway may be important in predicting response to antihistamines. We hypothesize that differences exist among single-nucleotide polymorphisms (SNPs) in genes of the histamine pathway between children with allergic versus nonallergic asthma. Children (7–18 yr of age; n = 202) with asthma were classified as allergic or nonallergic based on allergy skin testing. Genotyping was performed to detect known SNPs (n = 10) among genes (HDC, HNMT, ABP1, HRH1, and HRH4) within the histamine pathway. Chi square tests and Cochran-Armitage Trend were used to identify associations between genetic variants and allergic or nonallergic asthma. Significance was determined by P < 0.05 and false-positive report probability. After correction for race differences in genotype were observed, HRH1-17 TT (6% allergic versus 0% nonallergic; P = 0.04), HNMT-464 TT (41% allergic versus 29% nonallergic; P = 0.04), and HNMT-1639 TT (30% allergic versus 20% nonallergic; P = 0.04) were overrepresented among children with allergic asthma. Genotype differences specifically among the African-American children were also observed: HRH1-17 TT (13% allergic versus 0% nonallergic; P = 0.04) and HNMT-1639 TT (23% allergic versus 3% nonallergic; P = 0.03) genotypes were overrepresented among African-American children with allergic asthma. Our study suggests that genetic variation within the histamine pathway may be associated with an allergic versus nonallergic asthma phenotype. Further studies are needed to determine the functional significance of identified SNPs and their impact on antihistamine response in patients with asthma and allergic disease. PMID:25909280

  4. Difference in the breast milk proteome between allergic and non-allergic mothers.

    PubMed

    Hettinga, Kasper A; Reina, Fabiola M; Boeren, Sjef; Zhang, Lina; Koppelman, Gerard H; Postma, Dirkje S; Vervoort, Jacques J M; Wijga, Alet H

    2015-01-01

    Breastfeeding has been linked to a reduction in the prevalence of allergy and asthma. However, studies on this relationship vary in outcome, which may partly be related to differences in breast milk composition. In particular breast milk composition may differ between allergic and non-allergic mothers. Important components that may be involved are breast milk proteins, as these are known to regulate immune development in the newborn. The objective of this study was therefore to explore differences in the proteins of breast milk from 20 allergic and non-allergic mothers. The results from this comparison may then be used to generate hypotheses on proteins associated with allergy in their offspring. Milk samples from allergic and non-allergic mothers were obtained from the PIAMA project, a prospective birth cohort study on incidence, risk factors, and prevention of asthma and inhalant allergy. Non-targeted proteomics technology, based on liquid chromatography and mass spectrometry, was used to compare breast milk from allergic and non-allergic mothers. Nineteen proteins, out of a total of 364 proteins identified in both groups, differed significantly in concentration between the breast milk of allergic and non-allergic mothers. Protease inhibitors and apolipoproteins were present in much higher concentrations in breast milk of allergic than non-allergic mothers. These proteins have been suggested to be linked to allergy and asthma. The non-targeted milk proteomic analysis employed has provided new targets for future studies on the relation between breast milk composition and allergy.

  5. Post-mating inflammatory responses of the uterus.

    PubMed

    Katila, T

    2012-08-01

    This review attempts to summarize the current knowledge on uterine inflammatory response after mating in horses, pigs and cattle. Post-mating endometritis has been extensively studied in horses as it has been considered to cause infertility. The inflammation is known to occur also in cattle, but it has not been investigated to a similar extent. There are a number of publications about mechanisms of post-mating uterine inflammation in pigs, which seem to resemble those in horses. The major focus of this review is the horse, but relevant literature is presented also on swine and cattle. Spermatozoa, seminal plasma and semen extenders play roles in the induction of inflammation. In addition, sperm numbers, concentration and viability, as well as the site of semen deposition may modulate the inflammatory response. Cytokines, polymorphonuclear leucocytes (PMN) and mononuclear cells represent the uterine inflammatory response to mating. Inflammation is the first line of defence against invasion and eliminates excess spermatozoa and bacteria. Semen deposition elicits a massive PMN invasion, followed by phagocytosis of sperm aided by the formation of neutrophil extracellular traps. Exposure of the female genital tract to semen is important also for endometrial receptivity and pre-implantation embryo development. Seminal plasma (SP) and inflammation elicit transient immune tolerance to antigens present in semen. SP contains immune-regulatory molecules that activate and control immune responses to antigens by stimulating expression of cytokines and growth factors and by initiating tissue remodelling. SP also regulates ovarian function. Effective elimination of excess sperm and inflammatory by-products and subsequent rapid return of the endometrium to the normal state is a prerequisite for pregnancy. Uterine backflow, driven by myometrial contractions and requiring a patent cervix, is an important physical tool in uterine drainage. © 2012 Blackwell Verlag GmbH.

  6. Particles influence allergic responses in mice--role of gender and particle size.

    PubMed

    Alberg, Torunn; Hansen, Jitka Stilund; Lovik, Martinus; Nygaard, Unni Cecilie

    2014-01-01

    Epidemiological evidence suggesting that exposure to traffic air pollution may enhance sensitization to common allergens in children is increasing, and animal studies support biological plausibility and causality. The effect of air pollution on respiratory symptoms was suggested to be gender dependent. Previous studies showed that allergy-promoting activity of polystyrene particles (PSP) increased with decreasing particle size after footpad injection of mice. The primary aim of this study was to confirm the influence of particle size on the immunoglobulin E (IgE)-promoting capacity of particles in an airway allergy model. A second aim was to examine whether the allergy-promoting capacity of particles was influenced by gender. Female and male mice were intranasally exposed to the allergen ovalbumin (OVA) with or without ultrafine, fine, or coarse PSP modeling the core of ambient air particles. After intranasal booster immunizations with OVA, serum levels of OVA-specific IgE antibodies, and also markers of airway inflammation and cellular responses in the lung-draining mediastinal lymph nodes (MLN), were determined. PSP of all sizes promoted allergic responses, measured as increased serum concentrations of OVA-specific IgE antibodies. Further, PSP produced eosinophilic airway inflammation and elevated MLN cell numbers as well as numerically reducing the percentage of regulatory T cells. Ultrafine PSP produced stronger allergic responses to OVA than fine and coarse PSP. Although PSP enhanced sensitization in both female and male mice, significantly higher IgE levels and numbers of eosinophils were observed in females than males. However, the allergy-promoting effect of PSP was apparently independent of gender. Thus, our data support the notion that ambient air particle pollution may affect development of allergy in both female and male individuals.

  7. Risk factors associated with allergic and non-allergic asthma in adolescents.

    PubMed

    Janson, Christer; Kalm-Stephens, Pia; Foucard, Tony; Alving, Kjell; Nordvall, S Lennart

    2007-07-01

    Risk factors for asthma have been investigated in a large number of studies in adults and children, with little progress in the primary and secondary prevention of asthma. The aim of this investigation was to investigate risk factors associated with allergic and non-allergic asthma in adolescents. In this study, 959 schoolchildren (13-14 years old) answered a questionnaire and performed exhaled nitric oxide (NO) measurements. All children (n = 238) with reported asthma, asthma-related symptoms and/or increased NO levels were invited to a clinical follow-up which included a physician evaluation and skin-prick testing. Asthma was diagnosed in 96 adolescents, whereof half had allergic and half non-allergic asthma. Children with both allergic and non-allergic asthma had a significantly higher body mass index (BMI) (20.8 and 20.7 vs. 19.8 kg/m(2)) (p < 0.05) and a higher prevalence of parental asthma (30% and 32% vs. 16%) (p < 0.05). Early-life infection (otitis and croup) [adjusted odds ratio (OR) (95% confidence interval (CI)): 1.99 (1.02-3.88) and 2.80 (1.44-5.42), respectively], pets during the first year of life [2.17 (1.16-4.04)], window pane condensation [2.45 (1.11-5.40)] and unsatisfactory school cleaning [(2.50 (1.28-4.89)] was associated with non-allergic but not with allergic asthma. This study indicates the importance of distinguishing between subtypes of asthma when assessing the effect of different risk factors. While the risk of both allergic and non-allergic asthma increased with increasing BMI, associations between early-life and current environmental exposure were primarily found in relation to non-allergic asthma.

  8. Endothelial Response to Glucocorticoids in Inflammatory Diseases

    PubMed Central

    Zielińska, Karolina A.; Van Moortel, Laura; Opdenakker, Ghislain; De Bosscher, Karolien; Van den Steen, Philippe E.

    2016-01-01

    The endothelium plays a crucial role in inflammation. A balanced control of inflammation requires the action of glucocorticoids (GCs), steroidal hormones with potent cell-specific anti-inflammatory properties. Besides the classic anti-inflammatory effects of GCs on leukocytes, recent studies confirm that endothelial cells also represent an important target for GCs. GCs regulate different aspects of endothelial physiology including expression of adhesion molecules, production of pro-inflammatory cytokines and chemokines, and maintenance of endothelial barrier integrity. However, the regulation of endothelial GC sensitivity remains incompletely understood. In this review, we specifically examine the endothelial response to GCs in various inflammatory diseases ranging from multiple sclerosis, stroke, sepsis, and vasculitis to atherosclerosis. Shedding more light on the cross talk between GCs and endothelium will help to improve existing therapeutic strategies and develop new therapies better tailored to the needs of patients. PMID:28018358

  9. Cardiovascular disease management through restrained inflammatory responses.

    PubMed

    Jabir, Nasimudeen R; Tabrez, Shams

    2016-01-01

    Cardio vascular disease (CVD) is the end result of the accumulation of atheromatous plaques within the walls of the coronary arteries and remains the leading cause of death worldwide. Vascular inflammation and associated ongoing inflammatory responses have been considered as the critical culprits in the pathogenesis of CVD. Moreover, the activation of inflammatory pathways is not confined to coronary lesions only but involves the activation of neutrophils, monocytes and lymphocytes in peripheral blood. In view of high mortality rate associated with this devastated disease, it is essential that CVD and related complications should be taken care off at its earliest. To achieve that goal, some inflammatory mediators could be potentially targeted. In the current article, we will highlight targeting some inflammatory mediators viz. IL-1, IL-6, TNF-α etc for CVD management. As far as our knowledge goes, we are for the first time reporting the targeting inflammatory mediators especially IL-1, IL-6 and TNF-α together in a single article. Based on our review, we believe that scientific community will come up with certain anti-inflammatory agents against atherosclerosis in near future and hopefully that will be used for the successful management of CVD patients.

  10. Chitin and Its Effects on Inflammatory and Immune Responses.

    PubMed

    Elieh Ali Komi, Daniel; Sharma, Lokesh; Dela Cruz, Charles S

    2018-04-01

    Chitin, a potential allergy-promoting pathogen-associated molecular pattern (PAMP), is a linear polymer composed of N-acetylglucosamine residues which are linked by β-(1,4)-glycosidic bonds. Mammalians are potential hosts for chitin-containing protozoa, fungi, arthropods, and nematodes; however, mammalians themselves do not synthetize chitin and thus it is considered as a potential target for recognition by mammalian immune system. Chitin is sensed primarily in the lungs or gut where it activates a variety of innate (eosinophils, macrophages) and adaptive immune cells (IL-4/IL-13 expressing T helper type-2 lymphocytes). Chitin induces cytokine production, leukocyte recruitment, and alternative macrophage activation. Intranasal or intraperitoneal administration of chitin (varying in size, degree of acetylation and purity) to mice has been applied as a routine approach to investigate chitin's priming effects on innate and adaptive immunity. Structural chitin present in microorganisms is actively degraded by host true chitinases, including acidic mammalian chitinases and chitotriosidase into smaller fragments that can be sensed by mammalian receptors such as FIBCD1, NKR-P1, and RegIIIc. Immune recognition of chitin also involves pattern recognition receptors, mainly via TLR-2 and Dectin-1, to activate immune cells to induce cytokine production and creation of an immune network that results in inflammatory and allergic responses. In this review, we will focus on various immunological aspects of the interaction between chitin and host immune system such as sensing, interactions with immune cells, chitinases as chitin degrading enzymes, and immunologic applications of chitin.

  11. Coumarins from the roots of Angelica dahurica cause anti-allergic inflammation

    PubMed Central

    Li, Dong; Wu, Li

    2017-01-01

    Allergic inflammation is induced by allergens and leads to various allergic diseases, including rhinitis, asthma and conjunctivitis. Histamine is important in the pathogenesis of an immunoglobulin E-dependent allergic reaction and results in the secretion of cytokines associated with inflammation. Angelica dahurica (A. dahurica) is a medicinal plant widely used in China for the treatment of symptoms related to allergic inflammation. The present study investigated the chemical constituents from A. dahurica and evaluated their reductive effect on allergic inflammation. As a result, 15 compounds including 13 coumarins have been identified as isoimperatorin (1), imperatorin (2), oxypeucedanin (3), oxypeucedanin hydrate (4), bergapten (5), byakangelicin (6), phellopterin (7), byakangelicol (8), isopimpinellin (9), xanthotoxol (10), xanthotoxin (11), pimpinellin (12), scopoletin (13), β-sitosterol (14) and daucosterol (15). Compounds 1–13 were able to reduce the release of histamine, with compounds 4–6 exhibiting the most potent activity. Furthermore, compounds 1–12 were able to inhibit the secretion of tumor necrosis factor-α, interleukin (IL)-1β and IL-4, with compounds 5 and 7 exhibiting the strongest inhibitory effects. These compounds implemented the inhibitory effects on the expression of inflammatory cytokine genes through the inhibition of nuclear factor-κB activation. Virtual screening by a docking program indicated that compound 3 is a potent histamine H1 receptor antagonist. Additionally, the calculated physicochemical properties of these compounds support most furanocoumarins to be delivered to binding sites and permeate the cell membrane. The present findings contribute to understanding how A. dahurica attenuates allergic inflammation. PMID:28673013

  12. Enhancement of allergic responses in vivo and in vitro by butylated hydroxytoluene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamaki, Kouya; Taneda, Shinji; Yanagisawa, Rie

    2007-09-01

    The effect of butylated hydroxytoluene (BHT), which is used widely as an antioxidant, on IgE-dependent allergic responses in vivo and in vitro was investigated. For in vivo study, passive cutaneous anaphylaxis (PCA) was elicited in rats by i.d. injection of anti-DNP IgE and 48 h later by i.v. injection of DNP-HSA. BHT was i.p. given immediately after anti-DNP IgE injection. For in vitro studies, the rat mast cell line RBL2H3 sensitized with monoclonal anti-dinitrophenol (DNP) IgE was challenged with the multivalent antigen DNP-human serum albumin (DNP-HSA) in the presence or absence of BHT. {beta}-Hexosaminidase and histamine released from RBL2H3 cells,more » as indicators of degranulation of the cells, the concentration of intracellular Ca{sup 2+}, the level of phosphorylated-Akt, and global tyrosine phosphorylation as indicators of mast cell activation, were measured. The results showed that BHT given to anti-DNP IgE-sensitized rats augmented DNP-specific PCA in a dose-dependent manner. In the presence of BHT, IgE-induced releases of {beta}-hexosaminidase and histamine from RBL2H3 cells were increased. BHT also further elevated IgE-mediated increased concentrations of intracellular Ca{sup 2+} and the levels of phosphorylated-Akt, but did not affect global tyrosine phosphorylation, in RBL2H3 cells. Moreover, the PI3K inhibitor LY294002 inhibited IgE-dependent degranulation and its enhancement by BHT. These findings indicate that BHT may upregulate PCA by enhancing mast cell degranulation associated with enhancements of intracellular Ca{sup 2+} concentration and PI3K activation, suggesting that BHT might affect allergic diseases such as allergic rhinitis and asthma.« less

  13. Applications and mechanisms of immunotherapy in allergic rhinitis and asthma.

    PubMed

    Kappen, Jasper H; Durham, Stephen R; Veen, Hans In 't; Shamji, Mohamed H

    2017-01-01

    Clinical and immunologic tolerance are hallmarks of successful allergen immunotherapy (AIT). Clinical benefits such as reduced symptoms, pharmacotherapy intake and improvement of quality of life persist following cessation of treatment. Successful AIT is associated with suppression of allergic inflammatory cells such as mast cells, eosinophils and basophils in target organs. Furthermore, AIT down-regulates type 2 innate lymphoid cells and allergen-specific type 2 T-helper (Th2) cells. The immunologic tolerant state following AIT is associated with the induction of distinct phenotypes of regulatory T-cells (T-regs) including interleukin (IL)-10-, IL-35- and transforming growth factor (TGF)-β- producing T-regs and FoxP3 + T-regs. B-cell responses, including the induction of IL-10 + regulatory B-cells (B-regs) and the production of IgG4-associated blocking antibodies are also induced following successful AIT. These events are associated with the suppression of antigen-specific Th2 responses and delayed immune deviation in favour of Th1 type responses. Insight into the mechanisms of AIT has allowed identification of novel biomarkers with potential to predict the clinical response to AIT and also novel therapeutic strategies for more effective and safer AIT.

  14. Prevention and treatment of allergic asthma in pregnancy: from conventional drugs to new therapeutical approaches.

    PubMed

    Cadavid, Angela P; Bannenberg, Gérard L; Arck, Petra C; Fitzgerald, Justine S; Markert, Udo R

    2011-05-01

    Different conventional anti-asthmatic and anti-allergic drugs are commonly used in pregnancy, including inhaled corticosteroids, long- and short-acting β-agonists, leukotriene modifiers, cromolyn, and theophylline. Alternatively, immunotherapy with allergens before and during pregnancy is accepted as a causal treatment of allergies, but the allergy specifity and severity in combination with a variety of application protocols and procedures cause wide heterogenity of this treatment principle. Furthermore, the pharmacokinetic characteristics and the US Food and Drug Administration (FDA) classification of conventional anti-allergic drugs and immunological implications of immunotherapy are summarized in this review, and insights on fetal programming of allergies are introduced. We propose a potential perspective of treatment with anti-inflammatory and pro-resolving mediators, such as lipoxins, resolvins and protectins; these are lipid mediators physiologically generated during the immune response from arachidonic acid, eicosapentaenoic acid and docosahexaenoic acid. This proposal fits with the recently appreciated approaches to allergy prevention for the newborn child by a balanced maternal nutrition and omega-3 long-chain polyunsaturated fatty acid consumption.

  15. Oral tolerance in neonates: from basics to potential prevention of allergic disease.

    PubMed

    Verhasselt, V

    2010-07-01

    Oral tolerance refers to the observation that prior feeding of an antigen induces local and systemic immune tolerance to that antigen. Physiologically, this process is probably of central importance for preventing inflammatory responses to the numerous dietary and microbial antigens present in the gut. Defective oral tolerance can lead to gut inflammatory disease, food allergies, and celiac disease. In the last two cases, the diseases develop early in life, stressing the necessity of understanding how oral tolerance is set up in neonates. This article reviews the parameters that have been outlined in adult animal models as necessary for tolerance induction and assesses whether these factors operate in neonates. In addition, we highlight the factors that are specific for this period of life and discuss how they could have an impact on oral tolerance. We pay particular attention to maternal influence on early oral tolerance induction through breast-feeding and outline the major parameters that could be modified to optimize tolerance induction in early life and possibly prevent allergic diseases.

  16. Effects of routine prophylactic vaccination or administration of aluminum adjuvant alone on allergen-specific serum IgE and IgG responses in allergic dogs.

    PubMed

    Tater, Kathy C; Jackson, Hilary A; Paps, Judy; Hammerberg, Bruce

    2005-09-01

    To determine the acute corn-specific serum IgE and IgG, total serum IgE, and clinical responses to s.c. administration of prophylactic vaccines and aluminum adjuvant in corn-allergic dogs. 20 allergic and 8 nonallergic dogs. 17 corn-allergic dogs were vaccinated. Eight clinically normal dogs also were vaccinated as a control group. Serum corn-specific IgE, corn-specific IgG, and total IgE concentrations were measured in each dog before vaccination and 1 and 3 weeks after vaccination by use of an ELISA. The corn-allergic dogs also had serum immunoglobulin concentrations measured at 8 and 9 weeks after vaccination. Twenty allergic dogs received a s.c. injection of aluminum adjuvant, and serum immunoglobulin concentrations were measured in each dog 1, 2, 3, 4, and 8 weeks after injection. The allergic dogs were examined during the 8 weeks after aluminum administration for clinical signs of allergic disease. The allergic dogs had significant increases in serum corn-specific IgE and IgG concentrations 1 and 3 weeks after vaccination but not 8 or 9 weeks after vaccination. Control dogs did not have a significant change in serum immunoglobulin concentrations after vaccination. After injection of aluminum adjuvant, the allergic dogs did not have a significant change in serum immunoglobulin concentrations or clinical signs. Allergen-specific IgE and IgG concentrations increase after prophylactic vaccination in allergic dogs but not in clinically normal dogs. Prophylactic vaccination of dogs with food allergies may affect results of serologic allergen-specific immunoglobulin testing performed within 8 weeks after vaccination.

  17. RESPIRATORY PHYSIOLOGICAL AND ALLERGIC-TYPE RESPONSES TO AN EXTRACT OF STACHYBOTRYS CHARTARUM IN BALB/C MICE

    EPA Science Inventory

    RESPIRATORY PHYSIOLOGICAL AND ALLERGIC-TYPE RESPONSES TO AN EXTRACT OF Stachybotrys chartarum IN BALB/C MICE. ME Viana1, N Haykal-Coates2, S H Gavett2, MJ Selgrade2, and M D W Ward2. 1APR/CVM, NCSU, Raleigh, NC, USA. 2NHEERL, ORD, US EPA, RTP, NC, USA.
    Rationale: assess the ab...

  18. Cytokine expression in the colostral cells of healthy and allergic mothers.

    PubMed

    Hrdý, Jiří; Novotná, Olga; Kocourková, Ingrid; Prokešová, Ludmila

    2012-05-01

    There is no doubt about the beneficial effect of breastfeeding on the newborn's immune system. It is not fully elucidated what the differences are between the colostrum/milk of healthy and allergic mothers and how beneficial breastfeeding by an allergic mother is. The gene expression of selected cytokines was tested in cells isolated from colostra of healthy and allergic mothers using quantitative real-time PCR. Allergic phenotype was evident in colostral cells of allergic mothers: gene expressions of IL-4, IL-13 and EGF were increased and those of IFN-gamma decreased in comparison with colostral cells of healthy mothers. The allergic phenotype of the colostral cells of allergic mothers supporting the bias to a Th2 type response was found. It remains a question if a small number of these cells could influence the immature newborn immune system.

  19. Histologic Inflammatory Response to Transvaginal Polypropylene Mesh: A Systematic Review.

    PubMed

    Thomas, Dominique; Demetres, Michelle; Anger, Jennifer T; Chughtai, Bilal

    2018-01-01

    To evaluate the inflammatory response following transvaginal implantation of polypropylene (PP) mesh. A comprehensive literature search was performed in the following databases from inception in April 2017: Ovid MEDLINE, Ovid EMBASE, and The Cochrane Library (Wiley). The studies retrieved were screened for eligibility against predefined inclusion and exclusion criteria. Twenty-three articles were included in this review. Following the implantation of PP mesh, there are immediate and local inflammatory responses. PP mesh elicits an inflammatory response that decreases over time; however, no studies documented a complete resolution. Further studies are needed to determine if there is a complete resolution of inflammation or if it persists. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Allergic TH2 Response Governed by B-Cell Lymphoma 6 Function in Naturally Occurring Memory Phenotype CD4+ T Cells

    PubMed Central

    Ogasawara, Takashi; Kohashi, Yuko; Ikari, Jun; Taniguchi, Toshibumi; Tsuruoka, Nobuhide; Watanabe-Takano, Haruko; Fujimura, Lisa; Sakamoto, Akemi; Hatano, Masahiko; Hirata, Hirokuni; Fukushima, Yasutsugu; Fukuda, Takeshi; Kurasawa, Kazuhiro; Tatsumi, Koichiro; Tokuhisa, Takeshi; Arima, Masafumi

    2018-01-01

    Transcriptional repressor B-cell lymphoma 6 (Bcl6) appears to regulate TH2 immune responses in allergies, but its precise role is unclear. We previously reported that Bcl6 suppressed IL-4 production in naïve CD4+ T cell-derived memory TH2 cells. To investigate Bcl6 function in allergic responses in naturally occurring memory phenotype CD4+ T (MPT) cells and their derived TH2 (MPTH2) cells, Bcl6-manipulated mice, highly conserved intron enhancer (hcIE)-deficient mice, and reporter mice for conserved noncoding sequence 2 (CNS2) 3′ distal enhancer region were used to elucidate Bcl6 function in MPT cells. The molecular mechanisms of Bcl6-mediated TH2 cytokine gene regulation were elucidated using cellular and molecular approaches. Bcl6 function in MPT cells was determined using adoptive transfer to naïve mice, which were assessed for allergic airway inflammation. Bcl6 suppressed IL-4 production in MPT and MPTH2 cells by suppressing CNS2 enhancer activity. Bcl6 downregulated Il4 expression in MPTH2 cells, but not MPT cells, by suppressing hcIE activity. The inhibitory functions of Bcl6 in MPT and MPTH2 cells attenuated allergic responses. Bcl6 is a critical regulator of IL-4 production by MPT and MPTH2 cells in TH2 immune responses related to the pathogenesis of allergies. PMID:29696026

  1. Anti-allergic rhinitis effect of caffeoylxanthiazonoside isolated from fruits of Xanthium strumarium L. in rodent animals.

    PubMed

    Peng, Wei; Ming, Qian-Liang; Han, Ping; Zhang, Qiao-Yan; Jiang, Yi-Ping; Zheng, Cheng-Jian; Han, Ting; Qin, Lu-Ping

    2014-05-15

    The fruits of Xanthium strumarium L. (Asteraceae) have been used extensively in China for treatment of various diseases such as allergic rhinitis (AR), tympanitis, urticaria and arthritis or ozena. This study was designed to systemically investigate the effects of the caffeoylxanthiazonoside (CXT) isolated from fruits of X. strumarium on AR in rodent animals. Animals were orally administered with CXT. Anti-allergic activity of CXT was evaluated by passive cutaneous anaphylaxis test (PCA); acetic acid-induced writhing tests were used to evaluate the analgesic effects of CXT; acetic acid-induced vascular permeability tests were performed to evaluate anti-inflammatory effect of CXT. Then, the model AR in rats was established to evaluate the effects of CXT on AR with the following tests: the sneezing and nasal scratching frequencies, IgE level in serum, and histopathological examinations. Our results demonstrated that CXT had favorable anti-allergic, anti-inflammatory and analgesic effects. Additionally, we found that CXT was helpful to ameliorate the nasal symptoms and to down-regulate IgE levels in AR rats. Thus, we suggested that CXT can be treated as a candidate for treating AR. Copyright © 2014 Elsevier GmbH. All rights reserved.

  2. Preventative and Therapeutic Probiotic Use in Allergic Skin Conditions: Experimental and Clinical Findings

    PubMed Central

    Özdemir, Öner; Göksu Erol, Azize Yasemin

    2013-01-01

    Probiotics are ingested live microbes that can modify intestinal microbial populations in a way that benefits the host. The interest in probiotic preventative/therapeutic potential in allergic diseases stemmed from the fact that probiotics have been shown to improve intestinal dysbiosis and permeability and to reduce inflammatory cytokines in human and murine experimental models. Enhanced presence of probiotic bacteria in the intestinal microbiota is found to correlate with protection against allergy. Therefore, many studies have been recently designed to examine the efficacy of probiotics, but the literature on the allergic skin disorders is still very scarce. Here, our objective is to summarize and evaluate the available knowledge from randomized or nonrandomized controlled trials of probiotic use in allergic skin conditions. Clinical improvement especially in IgE-sensitized eczema and experimental models such as atopic dermatitis-like lesions (trinitrochlorobenzene and picryl chloride sensitizations) and allergic contact dermatitis (dinitrofluorobenzene sensitization) has been reported. Although there is a very promising evidence to recommend the addition of probiotics into foods, probiotics do not have a proven role in the prevention or the therapy of allergic skin disorders. Thus, being aware of possible measures, such as probiotics use, to prevent/heal atopic diseases is essential for the practicing allergy specialist. PMID:24078929

  3. Propofol inhibits NF-κB activation to ameliorate airway inflammation in ovalbumin (OVA)-induced allergic asthma mice.

    PubMed

    Zhang, Qiong; Wang, Liangrong; Chen, Baihui; Zhuo, Qian; Bao, Caiying; Lin, Lina

    2017-10-01

    Propofol, one of the most commonly used intravenous anesthetic agents, has been reported to have anti-inflammatory property. However, the anti-allergic inflammation effect of propofol and its underlying molecular mechanisms have not been elucidated. In the present study, we aim to investigate the roles of NF-kB activation in propofol anti-asthma effect on OVA-induced allergic airway inflammation in mice. In a standard experimental asthma model, Balb/c mice were sensitized with ovalbumin, treated with propofol (50,100,150mg/kg) or a vehicle control 1h before OVA challenge. Blood samples, bronchoalveolar lavage fluid (BALF) and lung tissues were harvested after measurement of airway hyperresponsiveness. Results revealed that propofol not only significantly inhibit airway hyperresponsiveness, but also inhibited the production of Th2 cytokines, NO, Ova-specific IgE and eotaxin. Histological studies indicated that propofol significantly attenuated OVA-induced inflammatory cell infiltration in the peribronchial areas and mucus hypersecretion. Meanwhile, our results indicated that propofol was found to inhibit NF-kB activation in OVA-Induced mice. Furthermore, propofol significantly reduced the TNF-α-induced NF-kB activation in A549 cells. In conclusion, our study suggested that propofol effectively reduced allergic airway inflammation by inhibiting NF-kB activation and could thus be used as a therapy for allergic asthma. Copyright © 2017. Published by Elsevier B.V.

  4. Inhibition of pan neurotrophin receptor p75 attenuates diesel particulate-induced enhancement of allergic airway responses in C57/B16J mice.

    PubMed

    Farraj, Aimen K; Haykal-Coates, Najwa; Ledbetter, Allen D; Evansky, Paul A; Gavett, Stephen H

    2006-06-01

    Recent investigations have linked neurotrophins, including nerve growth factor (NGF), neurotrophin-3 (NT-3), and brain-derived neurotrophic factor (BDNF), to allergic airways diseases. Antibody blockade of NGF attenuates airway resistance in allergic mice. Diesel exhaust particle (DEP) exposure has been linked to asthma exacerbation in many cities with vehicular traffic congestion. We tested the hypothesis that DEP-induced enhancement of the hallmark features of allergic airway disease in a murine model is dependent on the function of the pan neurotrophin receptor p75. Ovalbumin (OVA)-sensitized C57B1/6J mice were intranasally instilled with an antibody against the p75 receptor or saline alone 1 h before OVA challenge. The mice were then exposed nose-only to the PM2.5 fraction of SRM2975 DEP or air alone for 5 h beginning 1 h after OVA challenge. Two days later, air-exposed OVA-allergic mice developed a small but insignificant increase in methacholine-induced airflow obstruction relative to air-exposed, vehicle-sensitized mice. DEP-exposed OVA-allergic mice had a significantly greater degree of airway obstruction than all other groups. Instillation of anti-p75 significantly attenuated the DEP-induced increase in airway obstruction in OVA-allergic mice to levels similar to non-sensitized mice. The DEP-induced exacerbation of allergic airway responses may, in part, be mediated by neurotrophins.

  5. Bee Pollen Flavonoids as a Therapeutic Agent in Allergic and Immunological Disorders.

    PubMed

    Jannesar, Masoomeh; Sharif Shoushtari, Maryam; Majd, Ahmad; Pourpak, Zahra

    2017-06-01

    Bee pollen grains, as the male reproductive part of seed-bearing plants contain considerable concentrations of various phytochemicals and nutrients. Since antiquity, people throughout the world used pollens to cure colds, flu, ulcers, premature aging, anemia and colitis. It is now well-documented that some bee pollen secondary metabolites (e.g. flavonoid) may have positive health effects. In recent years, the flavonoids have attracted much interest because of their wide range of biological properties and their beneficial effects on human health. The current review, points out potential therapeutic effects of bee pollen flavonoids as one of the main bee pollen bioactive compounds in allergic and immunological diseases. Due to the fact that some types of flavonoid components in bee pollen have anti-allergic, anti-oxidant and anti-inflammatory properties, bee pollen flavonoids can be excellent candidates for future studies including phytotherapy, molecular pharmacology and substitutes for chemicals used in treating allergic and immunological disorders.

  6. Emerging therapies in allergic conjunctivitis and dry eye syndrome.

    PubMed

    Nye, Michael; Rudner, Shara; Bielory, Leonard

    2013-08-01

    Inflammatory disorders of the anterior surface of the eye consist of a spectrum of disorders that range from ocular allergy, dry eye syndrome (DES), and various infections. They exhibit similar pathological profiles, but have divergent immune mechanisms with some overlap. A number of novel treatments are currently being studied that capitalize on the growing understanding of underlying immunopathophysiology. The goal of this review is to examine the emerging pipeline for noninfectious inflammatory disorders of the anterior surface of the eye - primarily allergic conjunctivitis (AC) and DES - in light of the recent basic science discoveries that have fueled their development. Novel molecules for the treatment of AC and DES from clinicaltrials.gov as well as recently filed patents for new molecular entities were reviewed from PUBMED and OVID. Significant progress toward targeted treatments for AC and DES has become increasingly reliant on understanding the immunomodulatory and inflammatory mechanisms of the conjunctiva.

  7. Climate change and allergic disease.

    PubMed

    Shea, Katherine M; Truckner, Robert T; Weber, Richard W; Peden, David B

    2008-09-01

    Climate change is potentially the largest global threat to human health ever encountered. The earth is warming, the warming is accelerating, and human actions are largely responsible. If current emissions and land use trends continue unchecked, the next generations will face more injury, disease, and death related to natural disasters and heat waves, higher rates of climate-related infections, and wide-spread malnutrition, as well as more allergic and air pollution-related morbidity and mortality. This review highlights links between global climate change and anticipated increases in prevalence and severity of asthma and related allergic disease mediated through worsening ambient air pollution and altered local and regional pollen production. The pattern of change will vary regionally depending on latitude, altitude, rainfall and storms, land-use patterns, urbanization, transportation, and energy production. The magnitude of climate change and related increases in allergic disease will be affected by how aggressively greenhouse gas mitigation strategies are pursued, but at best an average warming of 1 to 2 degrees C is certain this century. Thus, anticipation of a higher allergic disease burden will affect clinical practice as well as public health planning. A number of practical primary and secondary prevention strategies are suggested at the end of the review to assist in meeting this unprecedented public health challenge.

  8. Formula milk feeding does not increase the release of the inflammatory marker calprotectin, compared to human milk.

    PubMed

    Rosti, L; Braga, M; Fulcieri, C; Sammarco, G; Manenti, B; Costa, E

    2011-01-01

    Calprotectin is a protein released into stools, used as a marker of inflammation in inflammatory bowel diseases. We tested the hypothesis that cow's milk protein in formula milk may increase the intestinal release of calprotectin, as a consequence of a subclinical inflammatory reaction. At 12 weeks of age, we measured fecal calprotectin by an immunoenzyme assay (Calprest, Eurospital, Trieste, Italy), in 38 exclusively breastfed and in 32 exclusively formula-fed infants. Fecal calprotectin levels were not different in the two groups (p = 0.09), although a trend to higher values in infants with colic, or with family history of allergies was noted. This suggest that, in general, formula milk does not promote activation of an intestinal inflammatory reaction, compared to human milk, although a subclinical activation of the inflammatory response in infants at risk for allergic diseases may be present.

  9. Effects of Air Pollutants on Development of Allergic Immune Responses in the Respiratory Tract

    PubMed Central

    Gershwin, Laurel J.

    2003-01-01

    The increased incidence of allergic asthma in the human population worldwide has stimulated many explanatory theories. A concomitant decrease in air quality leads to epidemiological and laboratory-based studies to demonstrate a link between air pollutants and asthma. Specifically, ozone, environmental tobacco smoke, and diesel exhaust are associated with enhancement of respiratory allergy to inhaled allergens. This review summarizes the state of the knowledge, both human epidemiology and laboratory animal experiments, linking air pollution to allergy. Critical issues involve development of the lung and the fetal immune response, and the potential for substances like ozone and ETS in the air to modulate early immune responses with lifelong consequences. PMID:14768942

  10. Time-of-Day Dictates Transcriptional Inflammatory Responses to Cytotoxic Chemotherapy

    PubMed Central

    Borniger, Jeremy C.; Walker II, William H.; Gaudier-Diaz, Monica M.; Stegman, Curtis J.; Zhang, Ning; Hollyfield, Jennifer L.; Nelson, Randy J.; DeVries, A. Courtney

    2017-01-01

    Many cytotoxic chemotherapeutics elicit a proinflammatory response which is often associated with chemotherapy-induced behavioral alterations. The immune system is under circadian influence; time-of-day may alter inflammatory responses to chemotherapeutics. We tested this hypothesis by administering cyclophosphamide and doxorubicin (Cyclo/Dox), a common treatment for breast cancer, to female BALB/c mice near the beginning of the light or dark phase. Mice were injected intravenously with Cyclo/Dox or the vehicle two hours after lights on (zeitgeber time (ZT2), or two hours after lights off (ZT14). Tissue was collected 1, 3, 9, and 24 hours later. Mice injected with Cyclo/Dox at ZT2 lost more body mass than mice injected at ZT14. Cyclo/Dox injected at ZT2 increased the expression of several pro-inflammatory genes within the spleen; this was not evident among mice treated at ZT14. Transcription of enzymes within the liver responsible for converting Cyclo/Dox into their toxic metabolites increased among mice injected at ZT2; furthermore, transcription of these enzymes correlated with splenic pro-inflammatory gene expression when treatment occurred at ZT2 but not ZT14. The pattern was reversed in the brain; pro-inflammatory gene expression increased among mice injected at ZT14. These data suggest that inflammatory responses to chemotherapy depend on time-of-day and are tissue specific. PMID:28117419

  11. Nasal mucus proteomic changes reflect altered immune responses and epithelial permeability in patients with allergic rhinitis.

    PubMed

    Tomazic, Peter Valentin; Birner-Gruenberger, Ruth; Leitner, Anita; Obrist, Britta; Spoerk, Stefan; Lang-Loidolt, Doris

    2014-03-01

    Nasal mucus is the first-line defense barrier against (aero-) allergens. However, its proteome and function have not been clearly investigated. The role of nasal mucus in the pathophysiology of allergic rhinitis was investigated by analyzing its proteome in patients with allergic rhinitis (n = 29) and healthy control subjects (n = 29). Nasal mucus was collected with a suction device, tryptically digested, and analyzed by using liquid chromatography-tandem mass spectrometry. Proteins were identified by searching the SwissProt database and annotated by collecting gene ontology data from databases and existing literature. Gene enrichment analysis was performed by using Cytoscape/BINGO software tools. Proteins were quantified with spectral counting, and selected proteins were confirmed by means of Western blotting. In total, 267 proteins were identified, with 20 (7.5%) found exclusively in patients with allergic rhinitis and 25 (9.5%) found exclusively in healthy control subjects. Five proteins were found to be significantly upregulated in patients with allergic rhinitis (apolipoprotein A-2 [APOA2], 9.7-fold; α2-macroglobulin [A2M], 4.5-fold; apolipoprotein A-1 [APOA1], 3.2-fold; α1-antitrypsin [SERPINA1], 2.5-fold; and complement C3 [C3], 2.3-fold) and 5 were found to be downregulated (antileukoproteinase [SLPI], 0.6-fold; WAP 4-disulfide core domain protein [WFDC2], 0.5-fold; haptoglobin [HP], 0.7-fold; IgJ chain [IGJ], 0.7-fold; and Ig hc V-III region BRO, 0.8-fold) compared with levels seen in healthy control subjects. The allergic rhinitis mucus proteome shows an enhanced immune response in which apolipoproteins might play an important role. Furthermore, an imbalance between cysteine proteases and antiproteases could be seen, which negatively affects epithelial integrity on exposure to pollen protease activity. This reflects the important role of mucus as the first-line defense barrier against allergens. Copyright © 2013 American Academy of Allergy, Asthma

  12. Analyzing inflammatory response as excitable media

    NASA Astrophysics Data System (ADS)

    Yde, Pernille; Høgh Jensen, Mogens; Trusina, Ala

    2011-11-01

    The regulatory system of the transcription factor NF-κB plays a great role in many cell functions, including inflammatory response. Interestingly, the NF-κB system is known to up-regulate production of its own triggering signal—namely, inflammatory cytokines such as TNF, IL-1, and IL-6. In this paper we investigate a previously presented model of the NF-κB, which includes both spatial effects and the positive feedback from cytokines. The model exhibits the properties of an excitable medium and has the ability to propagate waves of high cytokine concentration. These waves represent an optimal way of sending an inflammatory signal through the tissue as they create a chemotactic signal able to recruit neutrophils to the site of infection. The simple model displays three qualitatively different states; low stimuli leads to no or very little response. Intermediate stimuli leads to reoccurring waves of high cytokine concentration. Finally, high stimuli leads to a sustained high cytokine concentration, a scenario which is toxic for the tissue cells and corresponds to chronic inflammation. Due to the few variables of the simple model, we are able to perform a phase-space analysis leading to a detailed understanding of the functional form of the model and its limitations. The spatial effects of the model contribute to the robustness of the cytokine wave formation and propagation.

  13. The who, where, and when of IgE in allergic airway disease.

    PubMed

    Dullaers, Melissa; De Bruyne, Ruth; Ramadani, Faruk; Gould, Hannah J; Gevaert, Philippe; Lambrecht, Bart N

    2012-03-01

    Allergic asthma and allergic rhinitis/conjunctivitis are characterized by a T(H)2-dominated immune response associated with increased serum IgE levels in response to inhaled allergens. Because IgE is a key player in the induction and maintenance of allergic inflammation, it represents a prime target for therapeutic intervention. However, our understanding of IgE biology remains fragmentary. This article puts together our current knowledge on IgE in allergic airway diseases with a special focus on the identity of IgE-secreting cells ("who"), their location ("where"), and the circumstances in which they are induced ("when"). We further consider the therapeutic implications of the insights gained. Copyright © 2011 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  14. Regulation of mitochondrial biogenesis and its intersection with inflammatory responses.

    PubMed

    Cherry, Anne D; Piantadosi, Claude A

    2015-04-20

    Mitochondria play a vital role in cellular homeostasis and are susceptible to damage from inflammatory mediators released by the host defense. Cellular recovery depends, in part, on mitochondrial quality control programs, including mitochondrial biogenesis. Early-phase inflammatory mediator proteins interact with PRRs to activate NF-κB-, MAPK-, and PKB/Akt-dependent pathways, resulting in increased expression or activity of coactivators and transcription factors (e.g., PGC-1α, NRF-1, NRF-2, and Nfe2l2) that regulate mitochondrial biogenesis. Inflammatory upregulation of NOS2-induced NO causes mitochondrial dysfunction, but NO is also a signaling molecule upregulating mitochondrial biogenesis via PGC-1α, participating in Nfe2l2-mediated antioxidant gene expression and modulating inflammation. NO and reactive oxygen species generated by the host inflammatory response induce the redox-sensitive HO-1/CO system, causing simultaneous induction of mitochondrial biogenesis and antioxidant gene expression. Recent evidence suggests that mitochondrial biogenesis and mitophagy are coupled through redox pathways; for instance, parkin, which regulates mitophagy in chronic inflammation, may also modulate mitochondrial biogenesis and is upregulated through NF-κB. Further research on parkin in acute inflammation is ongoing. This highlights certain common features of the host response to acute and chronic inflammation, but caution is warranted in extrapolating findings across inflammatory conditions. Inflammatory mitochondrial dysfunction and oxidative stress initiate further inflammatory responses through DAMP/PRR interactions and by inflammasome activation, stimulating mitophagy. A deeper understanding of mitochondrial quality control programs' impact on intracellular inflammatory signaling will improve our approach to the restoration of mitochondrial homeostasis in the resolution of acute inflammation.

  15. Mast cell proteases as protective and inflammatory mediators.

    PubMed

    Caughey, George H

    2011-01-01

    Proteases are the most abundant class of proteins produced by mast cells. Many of these are stored in membrane-enclosed intracellular granules until liberated by degranulating stimuli, which include cross-linking of high affinity IgE receptor F(c)εRI by IgE bound to multivalent allergen. Understanding and separating the functions of the proteases is important because expression differs among mast cells in different tissue locations. Differences between laboratory animals and humans in protease expression also influence the degree of confidence with which results obtained in animal models of mast cell function can be extrapolated to humans. The inflammatory potential of mast cell proteases was the first aspect of their biology to be explored and has received the most attention, in part because some of them, notably tryptases and chymases, are biomarkers of local and systemic mast cell degranulation and anaphylaxis. Although some of the proteases indeed augment allergic inflammation and are potential targets for inhibition to treat asthma and related allergic disorders, they are protective and even anti-inflammatory in some settings. For example, mast cell tryptases may protect from serious bacterial lung infections and may limit the "rubor" component of inflammation caused by vasodilating neuropeptides in the skin. Chymases help to maintain intestinal barrier function and to expel parasitic worms and may support blood pressure during anaphylaxis by generating angiotensin II. In other life-or-death examples, carboxypeptidase A3 and other mast cell peptidases limit systemic toxicity of endogenous peptideslike endothelin and neurotensin during septic peritonitis and inactivate venom-associated peptides. On the other hand, mast cell peptidase-mediated destruction of protective cytokines, like IL-6, can enhance mortality from sepsis. Peptidases released from mast cells also influence nonmast cell proteases, such as by activating matrix metalloproteinase cascades, which

  16. Mast Cell Proteases as Protective and Inflammatory Mediators

    PubMed Central

    Caughey, George H.

    2014-01-01

    Proteases are the most abundant class of proteins produced by mast cells. Many of these are stored in membrane-enclosed intracellular granules until liberated by degranulating stimuli, which include cross-linking of high affinity IgE receptor FcεRI by IgE bound to multivalent allergen. Understanding and separating the functions of the proteases is important because expression differs among mast cells in different tissue locations. Differences between laboratory animals and humans in protease expression also influence the degree of confidence with which results obtained in animal models of mast cell function can be extrapolated to humans. The inflammatory potential of mast cell proteases was the first aspect of their biology to be explored and has received the most attention, in part because some of them—notably tryptases and chymases—are biomarkers of local and systemic mast cell degranulation and anaphylaxis. Although some of the proteases indeed augment allergic inflammation and are potential targets for inhibition to treat asthma and related allergic disorders, they are protective and even anti-inflammatory in some settings. For example, mast cell tryptases may protect from serious bacterial lung infections and may limit the “rubor” component of inflammation caused by vasodilating neuropeptides in the skin. Chymases help to maintain intestinal barrier function and to expel parasitic worms, and may support blood pressure during anaphylaxis by generating angiotensin II. In other life-or-death examples, carboxypeptidase A3 and other mast cell peptidases limit systemic toxicity of endogenous peptides like endothelin and neurotensin during septic peritonitis, and inactivate venom-associated peptides. On the other hand, mast cell peptidase-mediated destruction of protective cytokines, like IL-6, can enhance mortality from sepsis. Peptidases released from mast cells also influence non-mast cell proteases, such as by activating matrix metalloproteinase cascades

  17. EFFECTS OF ULTRAVIOLET RADIATION (UVR) ON THE RESPIRATORY ALLERGIC RESPONSES OF BALB/C MICE TO A FUNGAL ALLERGEN

    EPA Science Inventory

    EFFECTS OF ULTRAVIOLET RADIATION (UVR) ON THE RESPIRATORY ALLERGIC RESPONSES OF BALB/C MICE TO A FUNGAL ALLERGEN. M D W Ward, D M Sailstad, D L Andrews, E H Boykin, and MJ K Selgrade. National Health and Environmental Effects Research Laboratory, Office of Research and Developmen...

  18. Enhancement of allergic skin wheal responses in patients with atopic eczema/dermatitis syndrome by playing video games or by a frequently ringing mobile phone.

    PubMed

    Kimata, H

    2003-06-01

    Playing video games causes physical and psychological stress, including increased heart rate and blood pressure and aggression-related feelings. Use of mobile phones is very popular in Japan, and frequent ringing is a common and intrusive part of Japanese life. Atopic eczema/dermatitis syndrome is often exacerbated by stress. Stress increases serum IgE levels, skews cytokine pattern towards Th2 type, enhances allergen-induced skin wheal responses, and triggers mast cell degranulation via substance P, vasoactive intestinal peptide and nerve growth factor. (1). In the video game study, normal subjects (n = 25), patients with allergic rhinitis (n = 25) or atopic eczema/dermatitis syndrome (n = 25) played a video game (STREET FIGHTER II) for 2 h. Before and after the study, allergen-induced wheal responses, plasma levels of substance P, vasoactive intestinal peptide and nerve growth factor, and in vitro production of total IgE, antihouse dust mite IgE and cytokines were measured. (2). In the mobile phone study, normal subjects (n = 27), patients with allergic rhinitis (n = 27) or atopic eczema/dermatitis syndrome (n = 27) were exposed to 30 incidences of ringing mobile phones during 30 min. Before and after the study, allergen-induced wheal responses, plasma levels of substance P, vasoactive intestinal peptide and nerve growth factor were measured. Playing video games had no effect on the normal subjects or the patients with allergic rhinitis. In contrast, playing video games significantly enhanced allergen-induced skin wheal responses and increased plasma levels of substance P, vasoactive intestinal peptide and nerve growth factors in the patients with atopic eczema/dermatitis syndrome. Moreover, playing video games enhanced in vitro production of total IgE and anti-house dust mite IgE with concomitant increased production of IL-4, IL-10 and IL-13 and decreased production of IFN-gamma and IL-12 in the patients with atopic eczema/dermatitis syndrome. However, exposure

  19. Cytokines in tears during the secondary keratoconjunctival responses induced by allergic reaction in the nasal mucosa.

    PubMed

    Pelikan, Zdenek

    2014-01-01

    Allergic keratoconjunctivitis (KC) can occur in a primary form due to an allergic reaction taking place in the conjunctivae or in a secondary form induced by nasal allergy. To search for the cytokine changes in tears accompanying the secondary keratoconjunctival response types (SKCR), caused by the nasal allergy. In 43 KC patients developing 15 immediate (SIKCR), 16 late (SLKCR) and 12 delayed (SDYKCR) responses to nasal provocation tests with allergens (NPT), the NPTs were repeated with subsequent recording of cytokine concentrations in tears up to 72 h. The SIKCRs (p<0.001), occurring 10-120 min after the NPT, were accompanied by significant changes (p<0.05) of interleukin (IL)-4, IL-6, IL-10, IL-12p70 and granulocyte-macrophage colony-stimulating factor (GM-CSF). The SLKCRs (p<0.01), appearing 5-12 h after the NPT, were associated with significant changes (p<0.05) of IL-3, IL-4, IL-5, IL-8, IL-10, tumor necrosis factor (TNF)-α, GM-CSF and granulocyte colony-stimulating factor. The SDYKCRs (p<0.01), occurring 24-48 h after the NPT, were accompanied by significant changes (p<0.05) of IL-2, IL-8, IL-10, interferon-γ, transforming growth factor-β and TNF-α. The particular SKCR types, induced by an allergic reaction in the nasal mucosa, were accompanied by different cytokine profiles in the tears, suggesting involvement of different hypersensitivity mechanisms. These results also stress the diagnostic usefulness of NPTs combined with monitoring of ocular features in KC patients who did not respond satisfactorily to the topical ophthalmological treatment. © 2014 S. Karger AG, Basel.

  20. Allergic Reactions

    MedlinePlus

    ... is present. Severe Allergic Reactions Anaphylaxis (an-a-fi-LAK-sis) is a serious, life-threatening allergic ... Immunology 555 East Wells Street Suite 1100, Milwaukee , WI 53202-3823 (414) 272-6071 Additional Contact Information ...

  1. SP600125 promotes resolution of allergic airway inflammation via TLR9 in an OVA-induced murine acute asthma model.

    PubMed

    Wu, Hui-Mei; Fang, Lei; Shen, Qi-Ying; Liu, Rong-Yu

    2015-10-01

    c-Jun N-terminal kinase (JNK) relays extracellular stimuli through phosphorylation cascades that lead to various cell responses. In the present study, we aimed to investigate the effect of the JNK inhibitor SP600125 on the resolution of airway inflammation, and the underlying mechanism using a murine acute asthma model. Female C57BL/6 mice were sensitized with saline or ovalbumin (OVA) on day 0, and challenged with OVA on day 14-20. Meanwhile, some of the mice were treated with SP600125 (30 mg/kg) intraperitoneally 2 h before each challenge. The airway inflammation was evaluated by counting the numbers of various types of inflammatory cells in bronchoalveolar lavage fluid (BALF), histopathology, cytokines production and mucus secretion in individual mouse. In addition, we analyzed the protein levels of phosphorylated JNK and TLR9 in the lung tissues. SP600125 markedly reduced the invasion of inflammatory cells into the peribronchial regions, and decreased the numbers of eosinophils, monocytes, neutrophils and lymphocytes in BALF. SP600125 also reduced the level of plasma OVA-specific IgE, lowered the production of pro-inflammatory cytokines in BALF and alleviated mucus secretion. Meanwhile, SP600125 inhibited OVA-induced, increased expression of p-JNK and TLR9 in the lung tissues. Collectively, our data demonstrated that SP600125 promoted resolution of allergic airway inflammation via TLR9 in an OVA-induced murine acute asthma model. The JNK-TLR9 pathway may be a new therapeutic target in the treatment for the allergic asthma. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. EFFECTS OF DIESEL EXHAUST ON PULMONARY RESPONSES DURING ALLERGIC SENSITIZATION TO AEROSOLIZED OVALBUMIN IN BALB/C MICE

    EPA Science Inventory

    Effects of Diesel Exhaust on Pulmonary Responses During Allergic Sensitization to Aerosolized Ovalbumin in BALB/c Mice. P. Singh1, M.J. Daniels1, D. Andrews1, E. Boykin1, W. P. Linak2 and M.I. Gilmour1. 1USEPA, ORD, NHEERL, RTP, NC. 2 USEPA, ORD, NRMRL, RTP, NC.

    Inhala...

  3. Basophils and allergic inflammation

    PubMed Central

    Siracusa, Mark C.; Kim, Brian S.; Spergel, Jonathan M.; Artis, David

    2013-01-01

    Basophils were discovered by Paul Ehrlich in 1879 and represent the least abundant granulocyte population in mammals. The relative rarity of basophils and their phenotypic similarities with mast cells resulted in this cell lineage being historically overlooked, both clinically and experimentally. However, recent studies in humans and murine systems have shown that basophils perform non-redundant effector functions and significantly contribute to the development and progression of TH2 cytokine-mediated inflammation. Although the potential functions of murine and human basophils have provoked some controversy, recent genetic approaches indicate that basophils can migrate into lymphoid tissues and, in some circumstances, cooperate with other immune cells to promote optimal TH2 cytokine responses in vivo. This article provides a brief historical perspective on basophil-related research and discusses recent studies that have identified previously unappreciated molecules and pathways that regulate basophil development, activation and function in the context of allergic inflammation. Further, we highlight the unique effector functions of basophils and discuss their contributions to the development and pathogenesis of allergic inflammation in human disease. Finally, we discuss the therapeutic potential of targeting basophils in preventing or alleviating the development and progression of allergic inflammation. PMID:24075190

  4. Oroxylin A Inhibits Allergic Airway Inflammation in Ovalbumin (OVA)-Induced Asthma Murine Model.

    PubMed

    Zhou, De-Gang; Diao, Bao-Zhong; Zhou, Wen; Feng, Jia-Long

    2016-04-01

    Oroxylin A, a natural flavonoid isolated from the medicinal herb Scutellaria baicalensis Georgi, has been reported to have anti-inflammatory property. In this study, we aimed to investigate the protective effects and mechanism of oroxylin A on allergic inflammation in OVA-induced asthma murine model. BABL/c mice were sensitized and airway-challenged with OVA to induce asthma. Oroxylin A (15, 30, and 60 mg/kg) was administered by oral gavage 1 h before the OVA treatment on day 21 to 23. The results showed that oroxylin A attenuated OVA-induced lung histopathologic changes, airway hyperresponsiveness, and the number of inflammatory cells. Oroxylin A also inhibited the levels of IL-4, IL-5, IL-13, and OVA-specific IgE in BALF. Furthermore, oroxylin A significantly inhibited OVA-induced NF-κB activation. In conclusion, these results suggested that oroxylin A inhibited airway inflammation in OVA-induced asthma murine model by inhibiting NF-κB activation. These results suggested that oroxylin A was a potential therapeutic drug for treating allergic asthma.

  5. Ulcerative colitis patients with an inflammatory response upon mesalazine cannot be desensitized: a randomized study.

    PubMed

    Buurman, Dorien J; De Monchy, Jan G R; Schellekens, Reinout C A; van der Waaij, Laurens A; Kleibeuker, Jan H; Dijkstra, Gerard

    2015-04-01

    Mesalazine is a key drug in the treatment of ulcerative colitis (UC). Intolerance to mesalazine has been described, including fever and gastrointestinal symptoms. Several case reports reported successful desensitization of patients with mesalazine intolerance. The aim was to assess the number of UC patients who are persistently intolerant to mesalazine after single-blinded rechallenge and to test the effectiveness of a rapid desensitization protocol in UC patients demonstrated mesalazine intolerance. This is a prospective, single-blind randomized study in UC patients who discontinued mesalazine because of intolerance. Patients with severe reactions were excluded. Eligible patients underwent a skin patch test with mesalazine followed by a single-blinded randomized crossover rechallenge with 500 mg mesalazine or placebo. Patients with symptoms upon rechallenge were admitted to the hospital for 3 days oral desensitization. Nine of the 37 identified UC patients who discontinued mesalazine because of intolerance were included. All nine patients had negative patch tests, seven patients had symptoms (fever, nausea, vomiting and diarrhea) within 2 h upon rechallenge. Four of these seven patients participated in the desensitization protocol and in none a successful desensitization could be performed. All four had an inflammatory intolerance reaction with rise in C-reactive protein. There were no elevations in serum tryptase or urinary-methylhistamine levels observed and no signs of immediate type allergic reactions, like urticaria, bronchial obstruction or anaphylaxis. We recommend not to rechallenge UC patients with an inflammatory response upon mesalazine and these patients will not benefit from a rapid desensitization protocol.

  6. Monocyte-derived dendritic cells induce a house dust mite-specific Th2 allergic inflammation in the lung of humanized SCID mice: involvement of CCR7.

    PubMed

    Hammad, Hamida; Lambrecht, Bart N; Pochard, Pierre; Gosset, Philippe; Marquillies, Philippe; Tonnel, André-Bernard; Pestel, Joël

    2002-08-01

    In rodents, airway dendritic cells (DCs) capture inhaled Ag, undergo maturation, and migrate to the draining mediastinal lymph nodes (MLN) to initiate the Ag-specific T cell response. However, the role of human DCs in the pathogenesis of the Th2 cell-mediated disease asthma remains to be clarified. Here, by using SCID mice engrafted with T cells from either house dust mite (HDM)-allergic patients or healthy donors, we show that DCs pulsed with Der p 1, one of the major allergens of HDM, and injected intratracheally into naive animals migrated into the MLN. In the MLN, Der p 1-pulsed DCs from allergic patients induced the proliferation of IL-4-producing CD4(+) T cells, whereas those from healthy donors induced IFN-gamma-secreting cells. In reconstituted human PBMC-reconstituted SCID mice primed with pulsed DCs from allergic patients, repeated exposure to aerosols of HDM induced 1) a strong pulmonary inflammatory reaction rich in T cells and eosinophils, 2) an increase in IL-4 and IL-5 production in the lung lavage fluid, and 3) increased IgE production compared with that in mice primed with unpulsed DCs. All these effects were reduced following in vivo neutralization of the CCR7 ligand secondary lymphoid tissue chemokine. These data in human PBMC-reconstituted SCID mice show that monocyte-derived DCs might play a key role in the pathogenesis of the pulmonary allergic response by inducing Th2 effector function following migration to the MLN.

  7. Effects of ultrafine particles on the allergic inflammation in the lung of asthmatics: results of a double-blinded randomized cross-over clinical pilot study

    PubMed Central

    2014-01-01

    Background Epidemiological and experimental studies suggest that exposure to ultrafine particles (UFP) might aggravate the allergic inflammation of the lung in asthmatics. Methods We exposed 12 allergic asthmatics in two subgroups in a double-blinded randomized cross-over design, first to freshly generated ultrafine carbon particles (64 μg/m3; 6.1 ± 0.4 × 105 particles/cm3 for 2 h) and then to filtered air or vice versa with a 28-day recovery period in-between. Eighteen hours after each exposure, grass pollen was instilled into a lung lobe via bronchoscopy. Another 24 hours later, inflammatory cells were collected by means of bronchoalveolar lavage (BAL). (Trial registration: NCT00527462) Results For the entire study group, inhalation of UFP by itself had no significant effect on the allergen induced inflammatory response measured with total cell count as compared to exposure with filtered air (p = 0.188). However, the subgroup of subjects, which inhaled UFP during the first exposure, exhibited a significant increase in total BAL cells (p = 0.021), eosinophils (p = 0.031) and monocytes (p = 0.013) after filtered air exposure and subsequent allergen challenge 28 days later. Additionally, the potential of BAL cells to generate oxidant radicals was significantly elevated at that time point. The subgroup that was exposed first to filtered air and 28 days later to UFP did not reveal differences between sessions. Conclusions Our data demonstrate that pre-allergen exposure to UFP had no acute effect on the allergic inflammation. However, the subgroup analysis lead to the speculation that inhaled UFP particles might have a long-term effect on the inflammatory course in asthmatic patients. This should be reconfirmed in further studies with an appropriate study design and sufficient number of subjects. PMID:25204642

  8. An Overlook to the Characteristics and Roles Played by Eotaxin Network in the Pathophysiology of Food Allergies: Allergic Asthma and Atopic Dermatitis.

    PubMed

    Ahmadi, Zahra; Hassanshahi, Gholamhossein; Khorramdelazad, Hossein; Zainodini, Nahid; Koochakzadeh, Leila

    2016-06-01

    propose that eotaxins (CCL11, CCL24, and CCL26) play key role(s) during symptomatic inflammatory responses raised in response to allergic crisis of these two clinical states.

  9. Allergen-stimulated T lymphocytes from allergic patients induce vascular cell adhesion molecule-1 (VCAM-1) expression and IL-6 production by endothelial cells.

    PubMed Central

    Delneste, Y; Jeannin, P; Gosset, P; Lassalle, P; Cardot, E; Tillie-Leblond, I; Joseph, M; Pestel, J; Tonnel, A B

    1995-01-01

    Adhesion of inflammatory cells to endothelium is a critical step for their transvascular migration to inflammatory sites. To evaluate the relationship between T lymphocytes (TL) and vascular endothelium, supernatants from allergen-stimulated TL obtained from patients sensitive to Dermatophagoides pteronyssinus (Dpt) versus healthy subjects were added to endothelial cell (EC) cultures. TL were stimulated by autologous-activated antigen-presenting cells (APC) previously fixed in paraformaldehyde to prevent monokine secretion. Two parameters were measured: the expression of adhesion molecule and the production of IL-6. Related allergen-stimulated TL supernatants from allergic patients induced an increase of VCAM-1 and intercellular adhesion molecule-1 (ICAM-1) expression when supernatants of the control groups (TL exposed to an unrelated allergen or not stimulated or TL obtained from healthy subjects) did not. E-selectin expression was not modulated whatever the supernatant added to EC culture. IL-6 production by EC was significantly enhanced after activation with related allergen-stimulated TL supernatants from allergics compared with control supernatants. Induction of VCAM-1 expression was inhibited by adding neutralizing antibodies against IL-4, whereas IL-6 production and ICAM-1 expression were inhibited by anti-interferon-gamma (IFN-gamma) antibodies. Enhanced production of IL-4 and IFN-gamma was detected in related allergen-stimulated TL supernatants from allergic subjects compared with the different supernatants. These data suggest that allergen-specific TL present in the peripheral blood of allergic patients are of Th1 and Th2 subtypes. Their stimulation in allergic patients may lead to the activation of endothelial cells and thereby participate in leucocyte recruitment towards the inflammatory site. PMID:7542574

  10. Tobacco and e-cigarette products initiate Kupffer cell inflammatory responses.

    PubMed

    Rubenstein, David A; Hom, Sarah; Ghebrehiwet, Berhane; Yin, Wei

    2015-10-01

    Kupffer cells are liver resident macrophages that are responsible for screening and clearing blood of pathogens and foreign particles. It has recently been shown that Kupffer cells interact with platelets, through an adhesion based mechanism, to aid in pathogen clearance and then these platelets re-enter the general systemic circulation. Thus, a mechanism has been identified that relates liver inflammation to possible changes in the systemic circulation. However, the role that Kupffer cells play in cardiovascular disease initiation/progression has not been elucidated. Thus, our objective was to determine whether or not Kupffer cells are responsive to a classical cardiovascular risk factor and if these changes can be transmitted into the general systemic circulation. If Kupffer cells initiate inflammatory responses after exposure to classical cardiovascular risk factors, then this provides a potential alternative/synergistic pathway for cardiovascular disease initiation. We aimed to elucidate the prevalence of this potential pathway. We hypothesized that Kupffer cells would initiate a robust inflammatory response after exposure to tobacco cigarette or e-cigarette products and that the inflammatory response would have the potential to antagonize other salient cells for cardiovascular disease progression. To test this, Kupffer cells were incubated with tobacco smoke extracts, e-cigarette vapor extracts or pure nicotine. Complement deposition onto Kupffer cells, Kupffer cell complement receptor expression, oxidative stress production, cytokine release and viability and density were assessed after the exposure. We observed a robust inflammatory response, oxidative stress production and cytokine release after Kupffer cells were exposed to tobacco or e-cigarette extracts. We also observed a marginal decrease in cell viability coupled with a significant decrease in cell density. In general, this was not a function of the extract formulation (e.g. tobacco vs. e

  11. Clusterin Modulates Allergic Airway Inflammation by Attenuating CCL20-Mediated Dendritic Cell Recruitment.

    PubMed

    Hong, Gyong Hwa; Kwon, Hyouk-Soo; Moon, Keun-Ai; Park, So Young; Park, Sunjoo; Lee, Kyoung Young; Ha, Eun Hee; Kim, Tae-Bum; Moon, Hee-Bom; Lee, Heung Kyu; Cho, You Sook

    2016-03-01

    Recruitment and activation of dendritic cells (DCs) in the lungs are critical for Th2 responses in asthma, and CCL20 secreted from bronchial epithelial cells (BECs) is known to influence the recruitment of DCs. Because asthma is a disease that is closely associated with oxidative stress, we hypothesized that clusterin, an oxidative stress regulatory molecule, may have a role in the development of allergic airway inflammation. The aim of this study was to examine whether clusterin regulates CCL20 production from the BECs and the subsequent DC recruitment in the lungs. To verify the idea, clusterin knockout (Clu(-/-)), clusterin heterogeneous (Clu(+/-)), and wild-type mice were exposed intranasally to house dust mite (HDM) extract to induce allergic airway inflammation. We found that the total number of immune cells in bronchoalveolar lavage fluid and the lung was increased in Clu(-/-) and Clu(+/-) mice. Of these immune cells, inflammatory DCs (CD11b(+)CD11c(+)) and Ly6C(high) monocyte populations in the lung were significantly increased, which was accompanied by increased levels of various chemokines, including CCL20 in bronchoalveolar lavage fluid, and increased oxidative stress markers in the lung. Moreover, HDM-stimulated human BECs with either up- or downregulated clusterin expression showed that CCL20 secretion was negatively associated with clusterin expression. Interestingly, clusterin also reduced the level of intracellular reactive oxygen species, which is related to induction of CCL20 expression after HDM stimulation. Thus, the antioxidant property of clusterin is suggested to regulate the expression of CCL20 in BECs and the subsequent recruitment of inflammatory DCs in the airway. Copyright © 2016 by The American Association of Immunologists, Inc.

  12. A bacterial extract of OM-85 Broncho-Vaxom prevents allergic rhinitis in mice.

    PubMed

    Han, Ling; Zheng, Chao-Pan; Sun, Yue-Qi; Xu, Geng; Wen, Weiping; Fu, Qing-Ling

    2014-01-01

    According to the hygiene hypothesis, bacterial infections during early life contribute to a reduced incidence of asthma in animals. However, the effects of microbial products at a safe dose and within a rational time course on the prevention of allergic rhinitis (AR) have been inconclusive. This study investigated the immunomodulatory effects of oral administration of a bacterial extract, OM-85 Broncho-Vaxom (BV), with a low dose and general time course, which is currently used for respiratory infections in humans, on AR inflammation in mice. We developed a mouse model of ovalbumin (OVA)-induced AR allergic inflammation in the nose mucosa of mice. Low doses of OM-85 BV were orally administered for 3 months (long term) before sensitization. We evaluated nasal symptoms, pathology in the nose, inflammatory cells, and the levels of T helper 1 (Th1)/Th2 cytokines in the nasal lavage fluids, and the serum levels of specific IgE and IgG1. We also observed enhanced effects of OM-85 BV with 1 month (short term) of treatment. We found that long-term pretreatment with OM-85 BV protected the mice from the majority of allergy-specific symptoms; specifically, OM-85 BV suppressed nasal symptoms, inhibited eosinophil infiltration in the nose, inhibited inflammatory infiltrates and the Th2 response by reducing cytokines (IL-4, IL-5, or IL-13) in the nasal lavage fluids, and reduced IgE and IgG1 levels. Furthermore, short-term treatment with OM-85 BV decreased the levels of Th2 cytokines and IgE. Taken together, our data suggested that OM-85 BV is a low-cost alternative candidate to prevent AR with simple oral administration.

  13. A bacterial extract of OM-85 Broncho-Vaxom prevents allergic rhinitis in mice.

    PubMed

    Han, L; Zheng, C-P; Sun, Y-Q; Xu, G; Wen, W; Fu, Q-L

    2013-12-06

    According to the hygiene hypothesis, bacterial infections during early life contribute to a reduced incidence of asthma in animals. However, the effects of microbial products at a safe dose and within a rational time course on the prevention of allergic rhinitis (AR) have been inconclusive. This study investigated the immunomodulatory effects of oral administration of a bacterial extract, OM-85 Broncho-Vaxom (BV), with a low dose and general time course, which is currently used for respiratory infections in humans, on AR inflammation in mice. We developed a mouse model of ovalbumin (OVA)-induced AR allergic inflammation in the nose mucosa of mice. Low doses of OM-85 BV were orally administered for 3 months (long term) before sensitization. We evaluated nasal symptoms, pathology in the nose, inflammatory cells, and the levels of T helper 1 (Th1)/Th2 cytokines in the nasal lavage fluids, and the serum levels of specific IgE and IgG1. We also observed enhanced effects of OM-85BV with 1 month (short term) of treatment. We found that long-term pretreatment with OM-85 BV protected the mice from the majority of allergy-specific symptoms; specifically, OM-85 BV suppressed nasal symptoms, inhibited eosinophil infiltration in the nose, inhibited inflammatory infiltrates and the Th2 response by reducing cytokines (IL-4, IL-5, or IL-13) in the nasal lavage fluids, and reduced IgE and IgG1 levels. Furthermore, short-term treatment with OM-85 BV decreased the levels of Th2 cytokines and IgE. Taken together, our data suggested that OM-85 BV is a low-cost alternative candidate to prevent AR with simple oral administration.

  14. Role of muscarinic receptors in the regulation of immune and inflammatory responses

    PubMed Central

    Razani-Boroujerdi, Seddigheh; Behl, Muskaan; Hahn, Fletcher F.; Pena-Philippides, Juan Carlos; Hutt, Julie; Sopori, Mohan L.

    2008-01-01

    Leukocytes contain both nicotinic and muscarinic receptors, and while activation of nicotinic receptors suppresses immune/inflammatory responses, the role of muscarinic receptors in immunity is unclear. We examined the effects of a muscarinic receptor antagonist (atropine) and agonist (oxotremorine), administered chronically through miniosmotic pumps, on immune/inflammatory responses in the rat. Results show that while oxotremorine stimulated, atropine inhibited the antibody and T-cell proliferative responses. Moreover, atropine also suppressed the turpentine-induced leukocytic infiltration and tissue injury, and inhibited chemotaxis of leukocytes toward neutrophil and monocyte/lymphocyte chemoattractants. Thus, activation of nicotinic and muscarinic receptors has opposite effects on the immune/inflammatory responses. PMID:18190972

  15. The soft computing-based approach to investigate allergic diseases: a systematic review.

    PubMed

    Tartarisco, Gennaro; Tonacci, Alessandro; Minciullo, Paola Lucia; Billeci, Lucia; Pioggia, Giovanni; Incorvaia, Cristoforo; Gangemi, Sebastiano

    2017-01-01

    Early recognition of inflammatory markers and their relation to asthma, adverse drug reactions, allergic rhinitis, atopic dermatitis and other allergic diseases is an important goal in allergy. The vast majority of studies in the literature are based on classic statistical methods; however, developments in computational techniques such as soft computing-based approaches hold new promise in this field. The aim of this manuscript is to systematically review the main soft computing-based techniques such as artificial neural networks, support vector machines, bayesian networks and fuzzy logic to investigate their performances in the field of allergic diseases. The review was conducted following PRISMA guidelines and the protocol was registered within PROSPERO database (CRD42016038894). The research was performed on PubMed and ScienceDirect, covering the period starting from September 1, 1990 through April 19, 2016. The review included 27 studies related to allergic diseases and soft computing performances. We observed promising results with an overall accuracy of 86.5%, mainly focused on asthmatic disease. The review reveals that soft computing-based approaches are suitable for big data analysis and can be very powerful, especially when dealing with uncertainty and poorly characterized parameters. Furthermore, they can provide valuable support in case of lack of data and entangled cause-effect relationships, which make it difficult to assess the evolution of disease. Although most works deal with asthma, we believe the soft computing approach could be a real breakthrough and foster new insights into other allergic diseases as well.

  16. The association of allergic sensitization in mother and child in breast-fed and formula-fed infants.

    PubMed

    Wright, A L; Stern, D A; Halonen, M

    2001-01-01

    Human milk contains immunologically active substances potentially capable of altering infant immune response. As part of the prospective Children's Respiratory Study, we assessed whether the association between maternal allergic status and allergic status of the child was altered by breast-feeding. Skin-prick tests for 7 common allergens were administered to 702 6-year-old children and their mothers. The percentage of children sensitized to specific allergens, maternal skin test response to that allergen, and whether or not the child was ever breast-fed was determined. Findings indicated that specific sensitization in the mother was associated with specific sensitization in the child only if the child was breast-fed. This indirectly supports the hypothesis that contents of milk differ with maternal allergic status, and appear to affect allergic status in the child. These results suggest that milk from allergic mothers either promotes a Th2 type immune response or suppresses Th1 immune response in the child.

  17. Gender Difference in Bacteria Endotoxin-Induced Inflammatory and Anorexic Responses.

    PubMed

    Kuo, Shiu-Ming

    2016-01-01

    Inflammation-related anorexic response has been observed in systemic diseases as well as in localized infection and is an important issue in patient care. We tested the hypothesis that upon the same endotoxin exposure, males have more severe inflammatory responses and thus suffer from more negative effect on appetite. Ten-week old male and female mice were compared in their plasma levels of pro-inflammatory cytokines after a body weight-based i.p. injection of bacterial endotoxin lipopolysaccharide. Male mice consistently showed significantly higher levels of IL6 and TNFα than female mice. The difference was observed starting at 3 hours after the systemic endotoxin exposure. It was independent of the level of endotoxin dosage and of the genotype of the anti-inflammatory cytokine, IL10. Interestingly, endotoxin-injected male mice also had significantly higher plasma IL10 levels compared to the female mice. Pre-puberty young mice showed no gender differences in the plasma levels of IL6, TNFα and IL10. Their cytokine levels were mostly between that of the adult males and females. Consistent with the higher inflammatory response in male mice, the endotoxin exposure also led to significantly more appetite loss in male mice at a range of doses in two strains of mice. Saline injection in the absence of endotoxin affected neither the cytokine levels nor the appetite. Although a direct mechanistic link between inflammation parameters and appetite was not addressed here, the results support that male gender could be a risk factor for higher pro-inflammatory cytokines and anorexic response after the endotoxin exposure.

  18. Acute and chronic stress and the inflammatory response in hyperprolactinemic rats.

    PubMed

    Ochoa-Amaya, J E; Malucelli, B E; Cruz-Casallas, P E; Nasello, A G; Felicio, L F; Carvalho-Freitas, M I R

    2010-01-01

    Prolactin (PRL), a hormone produced by the pituitary gland, has multiple physiological functions, including immunoregulation. PRL can also be secreted in response to stressful stimuli. During stress, PRL has been suggested to oppose the immunosuppressive effects of inflammatory mediators. Therefore, the aim of the present study was to analyze the effects of short- and long-term hyperprolactinemia on the inflammatory response in rats subjected to acute or chronic cold stress. Inflammatory edema was induced by carrageenan in male rats, and hyperprolactinemia was induced by injections of the dopamine receptor antagonist domperidone. The volume of inflammatory edema was measured by plethysmography after carrageenan injection. Additionally, the effects of hyperprolactinemia on body weight and serum corticosterone levels were evaluated. Five days of domperidone-induced hyperprolactinemia increased the volume of inflammatory edema. No differences in serum corticosterone levels were observed between groups. No significant differences were found among 30 days domperidone-induced hyperprolactinemic animals subjected to acute stress and the inflammatory response observed in chronic hyperprolactinemic animals subjected to chronic stress. The results suggest that short-term hyperprolactinemia has pro-inflammatory effects. Because such an effect was not observed in long-term hyperprolactinemic animals, PRL-induced tolerance seems likely. We suggest that short-term hyperprolactinemia may act as a protective factor in rats subjected to acute stress. These data suggest that hyperprolactinemia and stress interact differentially according to the time period. Copyright 2010 S. Karger AG, Basel.

  19. Prevalence of Allergic Diseases and Risk Factors of Wheezing in Korean Military Personnel

    PubMed Central

    Lee, Sang Min; Ahn, Jong Seong; Noh, Chang Suk

    2011-01-01

    The objective of this study was to evaluate the prevalence of asthma, allergic rhinitis, and atopic dermatitis, as well as the risk factors of wheezing among young adults in the Korean military. Young military conscripts in five areas completed a modified International Study of Asthma and Allergies in Childhood (ISAAC) questionnaire. For subjects with current wheeze in one sample area, baseline spirometry and bronchodilator response were measured. For subjects without a significant response to bronchodilator (improvement in FEV1 of more than 200 mL and 12%), methacholine challenge tests (MCT) were also performed. Of 3,359 subjects that completed the questionnaire, 354 (10.5%) had current wheeze, 471 (14.0%) had current allergic rhinitis, and 326 (9.7%) had current eczema. Current wheeze was associated with family history of allergic disease, overweight, current smoking, allergic rhinitis, and atopic dermatitis. Of 36 subjects with current wheeze who underwent PFT with or without MCT in the Anyang area, 24 (66.7%) were confirmed to have current asthma. In conclusion, the prevalence of allergic disease in young adults of Korean military is not low, and the risk factors of wheezing include family history of allergic disease, overweight, current smoking, allergic rhinitis, and atopic dermatitis. PMID:21286010

  20. Differential expression of 11β-hydroxysteroid dehydrogenase type 1 and 2 in mild and moderate/severe persistent allergic nasal mucosa and regulation of their expression by Th2 cytokines: asthma and rhinitis.

    PubMed

    Jun, Y J; Park, S J; Hwang, J W; Kim, T H; Jung, K J; Jung, J Y; Hwang, G H; Lee, S H; Lee, S H

    2014-02-01

    Glucocorticoids are used to treat allergic rhinitis, but the mechanisms by which they induce disease remission are unclear. 11β-hydroxysteroid dehydrogenase (11β-HSD) is a tissue-specific regulator of glucocorticoid responses, inducing the interconversion of inactive and active glucocorticoids. We analysed the expression and distribution patterns of 11β-HSD1, 11β-HSD2, and steroidogenic enzymes in normal and allergic nasal mucosa, and cytokine-driven regulation of their expression. The production levels of cortisol in normal, allergic nasal mucosa and in cultured epithelial cells stimulated with cytokines were also determined. The expression levels of 11β-HSD1, 11β-HSD2, steroidogenic enzymes (CYP11B1, CYP11A1), and cortisol in normal, mild, and moderate/severe persistent allergic nasal mucosa were assessed by real-time PCR, Western blot, immunohistochemistry, and ELISA. The expression levels of 11β-HSD1, 11β-HSD2, CYP11B1, CYP11A1, and cortisol were also determined in cultured nasal epithelial cell treated with IL-4, IL-5, IL-13, IL-17A, and IFN-γ. Conversion ratio of cortisone to cortisol was evaluated using siRNA technique, 11β-HSD1 inhibitor, and the measurement of 11β-HSD1 activity. The expression levels of 11β-HSD1, CYP11B1, and cortisol were up-regulated in mild and moderate/severe persistent allergic nasal mucosa. By contrast, 11β-HSD2 expression was decreased in allergic nasal mucosa. In cultured epithelial cells treated with IL-4, IL-5, IL-13, and IL-17A, 11β-HSD1 expression and activity increased in parallel with the expression levels of CYP11B1 and cortisol, but the production of 11β-HSD2 decreased. CYP11A1 expression level was not changed in allergic nasal mucosa or in response to stimulation with cytokines. SiRNA technique or the measurement of 11β-HSD1 activity showed that nasal epithelium activates cortisone to cortisol in a 11β-HSD-dependent manner. These results indicate that the localized anti-inflammatory effects of

  1. RELATIVE POTENCY OF MOLD AND HOUSE DUST MITE EXTRACTS IN INDUCING ALLERGIC RESPONSES IN BALB/C MICE

    EPA Science Inventory

    Rationale: Mold has been associated with the exacerbation of allergic asthma. However, its role in induction of allergic asthma is not clear. Using a previously developed mouse model for allergic asthma, we compared potencies of two fungal extracts (Metarhizium anisop...

  2. [Allergic rhinosinusitis by Curvularia inaequalis (Shear) Boedijn].

    PubMed

    Cruz, Rodrigo; Barthel, Elizabeth; Espinoza, Jaime

    2013-06-01

    Curvularia inaequalis (Shear) Boedijn is a fungus dematiaceo, saprophyte and plant pathogen found mainly in tropical and subtropical areas, associated with various organic substrates. Rarely been identified in systemic infections, skin and there is only one report of allergic rhinosinusitis described above. A case of allergic fungal rhinosinusitis by Curvularia inaequalis (Shear) Boedijn in which diagnosis was considered the signs and symptoms, sinus CT and cultivation of mucin.The patient was treated with endoscopic surgical toilet, plus use of inhaled steroids and itraconazole systemic. With good clinical response, is asymptomatic at one year.

  3. Heat-Induced Structural Changes Affect OVA-Antigen Processing and Reduce Allergic Response in Mouse Model of Food Allergy

    PubMed Central

    Wallner, Michael; Kverka, Miloslav; Kozakova, Hana; Srutkova, Dagmar; Klimesova, Klara; Sotkovsky, Petr; Palova-Jelinkova, Lenka; Ferreira, Fatima; Tuckova, Ludmila

    2012-01-01

    Background and Aims The egg protein ovalbumin (OVA) belongs to six most frequent food allergens. We investigated how thermal processing influences its ability to induce allergic symptoms and immune responses in mouse model of food allergy. Methodology/Principal Findings Effect of increased temperature (70°C and 95°C) on OVA secondary structure was characterized by circular dichroism and by the kinetics of pepsin digestion with subsequent HPLC. BALB/c mice were sensitized intraperitoneally and challenged with repeated gavages of OVA or OVA heated to 70°C (h-OVA). Levels of allergen-specific serum antibodies were determined by ELISA (IgA and IgGs) or by β-hexosaminidase release test (IgE). Specific activities of digestive enzymes were determined in brush border membrane vesicles of jejunal enterocytes. Cytokine production and changes in regulatory T cells in mesenteric lymph nodes and spleen were assessed by ELISA and FACS. Heating of OVA to 70°C caused mild irreversible changes in secondary structure compared to boiling to 95°C (b-OVA), but both OVA treatments led to markedly different digestion kinetics and Tregs induction ability in vitro, compared to native OVA. Heating of OVA significantly decreased clinical symptoms (allergic diarrhea) and immune allergic response on the level of IgE, IL-4, IL-5, IL-13. Furthermore, h-OVA induced lower activities of serum mast cell protease-1 and enterocyte brush border membrane alkaline phosphatase as compared to native OVA. On the other hand h-OVA stimulated higher IgG2a in sera and IFN-γ secretion by splenocytes. Conclusions Minor irreversible changes in OVA secondary structure caused by thermal processing changes both its digestion and antigenic epitopes formation, which leads to activation of different T cell subpopulations, induces shift towards Th1 response and ultimately reduces its allergenicity. PMID:22629361

  4. Modulation of the immune response by infection with Cryptosporidium spp. in children with allergic diseases.

    PubMed

    Guangorena-Gómez, J O; Maravilla-Domínguez, A; García-Arenas, G; Cervantes-Flores, M; Meza-Velázquez, R; Rivera-Guillén, M; Acosta-Saavedra, L C; Goytia-Acevedo, R C

    2016-08-01

    It has been demonstrated that the allergic response can be ameliorated by the administration of pathogen derivatives that activate Toll-like receptors and induce a Th1-type immune response (IR). Cryptosporidium is a parasite that promotes an IR via Toll-like receptors and elicits the production of Th1-type cytokines, which limit cryptosporidiosis. The aim of this study was to investigate allergy-related immune markers in children naturally infected with Cryptosporidium. In a cross-sectional study, 49 children with or without clinical diagnosis of allergies, oocysts of Cryptosporidium spp. in the faeces were screened microscopically. We microscopically screened for leucocytes, examined T and B cells for allergy-related activation markers using flow cytometry and evaluated serum for total IgE using chemiluminescence. Children with allergies and Cryptosporidium in the faeces had significantly lower levels of total IgE, B cells, CD19(+) CD23(+) and CD19(+) CD124(+) cells as well as a greater percentage of interferon-gamma (IFN-γ(+) ) and IL-4(+) CD4(+) cells than children with allergies without Cryptosporidium. This is the first description of the modulation of the IR in children with allergic diseases in the setting of natural Cryptosporidium infection. Our findings suggest the involvement of CD4(+) cells producing IL-4 and IFN-γ in the IR to Cryptosporidium in naturally infected children. © 2016 John Wiley & Sons Ltd.

  5. Fatty acid-binding protein 5 limits the anti-inflammatory response in murine macrophages.

    PubMed

    Moore, Sherri M; Holt, Vivian V; Malpass, Lillie R; Hines, Ian N; Wheeler, Michael D

    2015-10-01

    The beginning stages of liver damage induced by various etiologies (i.e. high fat diet, alcohol consumption, toxin exposure) are characterized by abnormal accumulation of lipid in liver. Alterations in intracellular lipid transport, storage, and metabolism accompanied by cellular insult within the liver play an important role in the pathogenesis of liver disease, often involving a sustained inflammatory response. The intracellular lipid transporter, fatty acid binding protein 5 (FABP5), is highly expressed in macrophages and may play an important role in the hepatic inflammatory response after endotoxin exposure in mice. This study tested the hypothesis that FABP5 regulates macrophage response to LPS in male C57bl/6 (wild type) and FABP5 knockout mice, both in vitro and in vivo. Treatment with LPS revealed that loss of FABP5 enhances the number of hepatic F4/80(+) macrophages in the liver despite limited liver injury. Conversely, FABP5 knock out mice display higher mRNA levels of anti-inflammatory cytokines IL-10, arginase, YM-1, and Fizz-1 in liver compared to wild type mice. Bone marrow derived macrophages stimulated with inflammatory (LPS and IFN-γ) or anti-inflammatory (IL-4) mediators also showed significantly higher expression of anti-inflammatory/regulatory factors. These findings reveal a regulatory role of FABP5 in the acute inflammatory response to LPS-induced liver injury, which is consistent with the principle finding that FABP5 is a regulator of macrophage phenotype. Specifically, these findings demonstrate that loss of FABP5 promotes a more anti-inflammatory response. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Intraepithelial lymphocyte eotaxin-2 expression and perineural mast cell degranulation differentiate allergic/eosinophilic colitis from classic IBD.

    PubMed

    Torrente, Franco; Barabino, Arrigo; Bellini, Tommaso; Murch, Simon H

    2014-09-01

    Allergic colitis shows overlap with classic inflammatory bowel disease (IBD). Clinically, allergic colitis is associated with dysmotility and abdominal pain, and mucosal eosinophilia is characteristic. We thus aimed to characterise mucosal changes in children with allergic colitis compared with normal tissue and classic IBD, focusing on potential interaction between eosinophils and mast cells with enteric neurones. A total of 15 children with allergic colitis, 10 with Crohn disease (CD), 10 with ulcerative colitis (UC), and 10 histologically normal controls were studied. Mucosal biopsies were stained for CD3 T cells, Ki-67, eotaxin-1, and eotaxin-2. Eotaxin-2, IgE, and tryptase were localised compared with mucosal nerves, using neuronal markers neurofilament protein, neuron-specific enolase, and nerve growth factor receptor. Overall inflammation was greater in patients with CD and UC than in patients with allergic colitis. CD3 T-cell density was increased in patients with allergic colitis, similar to that in patients with CD but lower than in patients with UC, whereas eosinophil density was higher than in all other groups. Eotaxin-1 and -2 were localised to basolateral crypt epithelium in all specimens, with eotaxin-1+ lamina propria cells found in all of the colitis groups. Eotaxin-2+ intraepithelial lymphocyte (IEL) density was significantly higher in allergic colitis specimens than in all other groups. Mast cell degranulation was strikingly increased in patients with allergic colitis (12/15) compared with that in patients with UC (1/10) and CD (0/1). Tryptase and IgE colocalised on enteric neurons in patients with allergic colitis but rarely in patients with IBD. Eotaxin-2+ IELs may contribute to the periepithelial eosinophil accumulation characteristic of allergic colitis. The colocalisation of IgE and tryptase with mucosal enteric nerves is likely to promote the dysmotility and visceral hyperalgesia classically seen in allergic gastrointestinal inflammation.

  7. Modeling TH 2 responses and airway inflammation to understand fundamental mechanisms regulating the pathogenesis of asthma.

    PubMed

    Foster, Paul S; Maltby, Steven; Rosenberg, Helene F; Tay, Hock L; Hogan, Simon P; Collison, Adam M; Yang, Ming; Kaiko, Gerard E; Hansbro, Philip M; Kumar, Rakesh K; Mattes, Joerg

    2017-07-01

    In this review, we highlight experiments conducted in our laboratories that have elucidated functional roles for CD4 + T-helper type-2 lymphocytes (T H 2 cells), their associated cytokines, and eosinophils in the regulation of hallmark features of allergic asthma. Notably, we consider the complexity of type-2 responses and studies that have explored integrated signaling among classical T H 2 cytokines (IL-4, IL-5, and IL-13), which together with CCL11 (eotaxin-1) regulate critical aspects of eosinophil recruitment, allergic inflammation, and airway hyper-responsiveness (AHR). Among our most important findings, we have provided evidence that the initiation of T H 2 responses is regulated by airway epithelial cell-derived factors, including TRAIL and MID1, which promote T H 2 cell development via STAT6-dependent pathways. Further, we highlight studies demonstrating that microRNAs are key regulators of allergic inflammation and potential targets for anti-inflammatory therapy. On the background of T H 2 inflammation, we have demonstrated that innate immune cells (notably, airway macrophages) play essential roles in the generation of steroid-resistant inflammation and AHR secondary to allergen- and pathogen-induced exacerbations. Our work clearly indicates that understanding the diversity and spatiotemporal role of the inflammatory response and its interactions with resident airway cells is critical to advancing knowledge on asthma pathogenesis and the development of new therapeutic approaches. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. NOS1 mediates AP1 nuclear translocation and inflammatory response.

    PubMed

    Srivastava, Mansi; Baig, Mirza S

    2018-06-01

    A hallmark of the AP1 functioning is its nuclear translocation, which induces proinflammatory cytokine expression and hence the inflammatory response. After endotoxin shock AP1 transcription factor, which comprises Jun, ATF2, and Fos family of proteins, translocates into the nucleus and induces proinflammatory cytokine expression. In the current study, we found, NOS1 inhibition prevents nuclear translocation of the AP1 transcription factor subunits. Pharmacological inhibition of NOS1 impedes translocation of subunits into the nucleus, suppressing the transcription of inflammatory genes causing a diminished inflammatory response. In conclusion, the study shows the novel mechanism of NOS1- mediated AP1 nuclear translocation, which needs to be further explored. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  9. Cross-contamination of foods and implications for food allergic patients.

    PubMed

    Taylor, Steve L; Baumert, Joseph L

    2010-07-01

    Cross-contamination presents a risk of unknown magnitude for food allergic consumers. Published cases likely represent the tip of a rather large iceberg. Cross-contamination can occur in homes, restaurants, food manufacturing plants, and on farms. The frequency of cross-contamination as the cause of accidental exposures to allergenic foods is unknown. Food allergic individuals can react to ingestion of trace levels of the offending food, although a highly variable range of threshold doses exist among populations of food allergic individuals. The magnitude of the risk posed to food allergic consumers by cross-contamination is characterized by the frequency of exposure to cross-contaminated foods, the dose of exposure, and the individual's threshold dose. The food and food service industry (and food preparers in homes as well) have the responsibility to provide and prepare foods that are safe for food allergic consumers, but quality of life may be improved with the recognition that safe (though very low) thresholds do exist.

  10. Immune responses to novel allergens and modulation of inflammation by vitamin K3 analogue: a ROS dependent mechanism.

    PubMed

    Kohli, Vineet; Sharma, Deepak; Sandur, Santosh Kumar; Suryavanshi, Shweta; Sainis, Krishna B

    2011-02-01

    The possibility of newer allergens being responsible for atopy needs to be explored at regional level due to environmental variables. Current studies were undertaken to identify common environmental allergens causing atopy in a defined population of India and to correlate the presence of various risk factors with the clinical presentation of allergy. Newer allergens like human dander and rice grain dust were identified and reported as the most common cause of atopy in this region. Atopy, elevated serum total IgE and familial tendency, was observed in 88%, 69% and 58% of allergic patients respectively. Further, allergen-specific immune responses like lymphocyte proliferation and cytokine secretion were studied in vitro using peripheral blood mononuclear cells (PBMC) isolated from both allergic and non-allergic individuals. Although, some allergens induced significant lymphocyte proliferation in vitro, allergen-induced cytokine secretion except that of TNF-α was not seen. Significantly higher ratio of secreted IL-4/IFN-γ cytokines was observed in PBMC isolated from allergic subjects in response to PHA. Plumbagin (vitamin K3 analogue) completely inhibited PHA-induced cytokine production in PBMC, in both allergic and non-allergic individuals. Plumbagin modulated the levels of intracellular reactive oxygen species and glutathione and suppressed PHA induced activation of NF-κB in human PBMC. The results thus show in human PMBC, for the first time, the anti-allergic and anti-inflammatory effects of plumbagin and underscore its therapeutic potential. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. VIP modulates the pro-inflammatory maternal response, inducing tolerance to trophoblast cells

    PubMed Central

    Fraccaroli, Laura; Alfieri, Julio; Larocca, Luciana; Calafat, Mario; Roca, Valeria; Lombardi, Eduardo; Ramhorst, Rosanna; Leirós, Claudia Pérez

    2009-01-01

    Background and purpose Successful embryo implantation is followed by a local pro-inflammatory and Th1 response, subsequently controlled by a Th2 response. Vasoactive intestinal peptide (VIP) has anti-inflammatory effects and promotes tolerogenic/Th2 responses while favouring embryonic development. We investigated the potential regulatory role of VIP on human trophoblast cells, maternal pro-inflammatory responses and trophoblast-maternal leukocyte interactions. Experimental approach We tested VIP effects directly on a trophoblast cell line (Swan 71 cells) and after co-culture with maternal peripheral blood mononuclear cells (PBMCs) as models of the feto-maternal dialogue. We also co-cultured maternal and paternal PBMCs to test effects of endogenous VIP on maternal alloresponses. Key results Swan 71 cells express VPAC1 receptors and VIP induced their proliferation and the expression of leukaemia inhibitor factor, a pro-implantatory marker. After interaction with trophoblast cells, VIP increased Foxp3, the proportion of CD4+CD25+Foxp3+ cells within maternal PBMCs and transforming growth factor β expression. Also, during the trophoblast-maternal PBMCs interaction, VIP reduced pro-inflammatory mediators [interleukin (IL)-6, monocyte chemoattractant protein 1, nitric oxide], while increasing IL-10. Trophoblast cells produced VIP which dose-dependently suppressed allomaternal responses, accompanied by reduced expression of the T cell transcription factor, T-bet. Conclusions and implications Vasoactive intestinal peptide induced pro-implantatory markers and trophoblast cell proliferation, while controlling the initial pro-inflammatory response, by increasing maternal regulatory T cells and anti-inflammatory cytokines. As an autocrine regulatory peptide VIP might contribute to fetal survival through two mechanisms; a direct trophic effect on trophoblast cells and an immunomodulatory effect that favours tolerance to fetal antigens. PMID:19133995

  12. In vitro induction of T regulatory cells by a methylated CpG DNA sequence in humans: Potential therapeutic applications in allergic and autoimmune diseases.

    PubMed

    Lawless, Oliver J; Bellanti, Joseph A; Brown, Milton L; Sandberg, Kathryn; Umans, Jason G; Zhou, Li; Chen, Weiqian; Wang, Julie; Wang, Kan; Zheng, Song Guo

    2018-03-01

    Allergic and autoimmune diseases comprise a group of inflammatory disorders caused by aberrant immune responses in which CD25+ Forkhead box P3-positive (FOXP3+) T regulatory (Treg) cells that normally suppress inflammatory events are often poorly functioning. This has stimulated an intensive investigative effort to find ways of increasing Tregs as a method of therapy for these conditions. One such line of investigation includes the study of how ligation of Toll-like receptors (TLRs) by CpG oligonucleotides (ODN) results in an immunostimulatory cascade that leads to induction of T-helper (Th) type 1 and Treg-type immune responses. The present study investigated the mechanisms by which calf thymus mammalian double-stranded DNA (CT-DNA) and a synthetic methylated DNA CpG ODN sequence suppress in vitro lymphoproliferative responses to antigens, mitogens, and alloantigens when measured by [3H]-thymidine incorporation and promote FoxP3 expression in human CD4+ T cells in the presence of transforming growth factor (TGF) beta and interleukin-2 (IL-2). Lymphoproliferative responses of peripheral blood mononuclear cells from four healthy subjects or nine subjects with systemic lupus erythematosus to CT-DNA or phytohemagglutinin (PHA) was measured by tritiated thymidine ([3H]-TdR) incorporation expressed as a stimulation index. Mechanisms of immunosuppressive effects of CT-DNA were evaluated by measurement of the degree of inhibition to lymphoproliferative responses to streptokinase-streptodornase, phytohemagglutinin (PHA), concanavalin A (Con A), pokeweed mitogen (PWM), or alloantigens by a Con A suppressor assay. The effects of CpG methylation on induction of FoxP3 expression in human T cells were measured by comparing inhibitory responses of synthetic methylated and nonmethylated 8-mer CpG ODN sequences by using cell sorting, in vitro stimulation, and suppressor assay. Here, we showed that CT-DNA and a synthetic methylated DNA 8-mer sequence could suppress antigen

  13. Manifestation of atopic dermatitis-like skin in TNCB-induced NC/Nga mice is ameliorated by topical treatment of substance P, possibly through blockade of allergic inflammation.

    PubMed

    Choi, Hyeongwon; Kim, Dong-Jin; Nam, Seungwoo; Lim, Sunki; Hwang, Jae-Sung; Park, Ki Sook; Hong, Hyun Sook; Shin, Min Kyung; Chung, Eunkyung; Son, Youngsook

    2018-04-01

    Atopic dermatitis (AD) is a chronic inflammatory skin disorder characterized by intense pruritus and eczematous lesion. In this study, topically applied substance P (SP) significantly alleviated AD-like clinical symptoms in 2, 4, 6-trinitrochlorobenzene (TNCB)-induced dermatitis in NC/Nga mice. This effect was nullified by pretreatment of the neurokinin-1 receptor (NK-1R) antagonist CP99994. SP treatment significantly reduced the infiltration of mast cells and CD3-positive T cells as well as inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and thymic stromal lymphopoietin (TSLP), in AD-like skin lesions and decreased the levels of IgE and thymus and activation-regulated chemokine in serum. This SP-induced alleviation of allergic inflammatory responses was also confirmed as reduced activation in the axillary lymph nodes (aLN) and spleen, suggesting the systemic effect of SP on immune responses in TNCB-induced NC/Nga mice. Furthermore, SP-mediated TSLP reduction was confirmed in human keratinocyte culture under pro-inflammatory TNF-α stimulation. Taken together, these results suggest that topically administered SP may have potential as a medication for atopic dermatitis. © 2017 The Authors. Experimental Dermatology Published by John Wiley & Sons Ltd.

  14. G Protein βγ-Subunit Signaling Mediates Airway Hyperresponsiveness and Inflammation in Allergic Asthma

    PubMed Central

    Grunstein, Judith S.; McDonough, Joseph; Kreiger, Portia A.; Josephson, Maureen B.; Choi, John K.; Grunstein, Michael M.

    2012-01-01

    Since the Gβγ subunit of Gi protein has been importantly implicated in regulating immune and inflammatory responses, this study investigated the potential role and mechanism of action of Gβγ signaling in regulating the induction of airway hyperresponsiveness (AHR) in a rabbit model of allergic asthma. Relative to non-sensitized animals, OVA-sensitized rabbits challenged with inhaled OVA exhibited AHR, lung inflammation, elevated BAL levels of IL-13, and increased airway phosphodiesterase-4 (PDE4) activity. These proasthmatic responses were suppressed by pretreatment with an inhaled membrane-permeable anti-Gβγ blocking peptide, similar to the suppressive effect of glucocorticoid pretreatment. Extended mechanistic studies demonstrated that: 1) corresponding proasthmatic changes in contractility exhibited in isolated airway smooth muscle (ASM) sensitized with serum from OVA-sensitized+challenged rabbits or IL-13 were also Gβγ-dependent and mediated by MAPK-upregulated PDE4 activity; and 2) the latter was attributed to Gβγ-induced direct stimulation of the non-receptor tyrosine kinase, c-Src, resulting in downstream activation of ERK1/2 and its consequent transcriptional upregulation of PDE4. Collectively, these data are the first to identify that a mechanism involving Gβγ-induced direct activation of c-Src, leading to ERK1/2-mediated upregulation of PDE4 activity, plays a decisive role in regulating the induction of AHR and inflammation in a rabbit model of allergic airway disease. PMID:22384144

  15. Restoring conjunctival tolerance by topical nuclear factor-κB inhibitors reduces preservative-facilitated allergic conjunctivitis in mice.

    PubMed

    Guzmán, Mauricio; Sabbione, Florencia; Gabelloni, María Laura; Vanzulli, Silvia; Trevani, Analía Silvina; Giordano, Mirta Nilda; Galletti, Jeremías Gastón

    2014-09-04

    To evaluate the role of nuclear factor-κB (NF-κB) activation in eye drop preservative toxicity and the effect of topical NF-κB inhibitors on preservative-facilitated allergic conjunctivitis. Balb/c mice were instilled ovalbumin (OVA) combined with benzalkonium chloride (BAK) and/or NF-κB inhibitors in both eyes. After immunization, T-cell responses and antigen-induced ocular inflammation were evaluated. Nuclear factor-κB activation and associated inflammatory changes also were assessed in murine eyes and in an epithelial cell line after BAK exposure. Benzalkonium chloride promoted allergic inflammation and leukocyte infiltration of the conjunctiva. Topical NF-κB inhibitors blocked the disruptive effect of BAK on conjunctival immunological tolerance and ameliorated subsequent ocular allergic reactions. In line with these findings, BAK induced NF-κB activation and the secretion of IL-6 and granulocyte-monocyte colony-stimulating factor in an epithelial cell line and in the conjunctiva of instilled mice. In addition, BAK favored major histocompatibility complex (MHC) II expression in cultured epithelial cells in an NF-κB-dependent fashion after interaction with T cells. Benzalkonium chloride triggers conjunctival epithelial NF-κB activation, which seems to mediate some of its immune side effects, such as proinflammatory cytokine release and increased MHC II expression. Breakdown of conjunctival tolerance by BAK favors allergic inflammation, and this effect can be prevented in mice by topical NF-κB inhibitors. These results suggest a new pharmacological target for preservative toxicity and highlight the importance of conjunctival tolerance in ocular surface homeostasis. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  16. Allergic Bronchopulmonary Aspergillosis: A Perplexing Clinical Entity

    PubMed Central

    Panjabi, Chandramani

    2016-01-01

    In susceptible individuals, inhalation of Aspergillus spores can affect the respiratory tract in many ways. These spores get trapped in the viscid sputum of asthmatic subjects which triggers a cascade of inflammatory reactions that can result in Aspergillus-induced asthma, allergic bronchopulmonary aspergillosis (ABPA), and allergic Aspergillus sinusitis (AAS). An immunologically mediated disease, ABPA, occurs predominantly in patients with asthma and cystic fibrosis (CF). A set of criteria, which is still evolving, is required for diagnosis. Imaging plays a compelling role in the diagnosis and monitoring of the disease. Demonstration of central bronchiectasis with normal tapering bronchi is still considered pathognomonic in patients without CF. Elevated serum IgE levels and Aspergillus-specific IgE and/or IgG are also vital for the diagnosis. Mucoid impaction occurring in the paranasal sinuses results in AAS, which also requires a set of diagnostic criteria. Demonstration of fungal elements in sinus material is the hallmark of AAS. In spite of similar histopathologic features, co-existence of ABPA and AAS is still uncommon. Oral corticosteroids continue to be the mainstay of management of allergic aspergillosis. Antifungal agents play an adjunctive role in ABPA as they help reduce the fungal load. Saprophytic colonization in cavitary ABPA may lead to aspergilloma formation, which could increase the severity of the disease. The presence of ABPA, AAS, and aspergilloma in the same patient has also been documented. All patients with Aspergillus-sensitized asthma must be screened for ABPA, and AAS should always be looked for. PMID:27126721

  17. Mast cell stabilization, lipoxygenase inhibition, hyaluronidase inhibition, antihistaminic and antispasmodic activities of Aller-7, a novel botanical formulation for allergic rhinitis.

    PubMed

    Amit, A; Saxena, V S; Pratibha, N; D'Souza, P; Bagchi, M; Bagchi, D; Stohs, S J

    2003-01-01

    Allergic rhinitis, also known as hay fever, rose fever or summer catarrh, is a major challenge to health professionals. A large number of the world's population, including approximately 40 million Americans, suffers from allergic rhinitis. A novel, botanical formulation (Aller-7) has been developed for the treatment of allergic rhinitis using a combination of extracts from seven medicinal plants, including Phyllanthus emblica, Terminalia chebula, T. bellerica, Albizia lebbeck, Piper nigrum, Zingiber officinale and P. longum, which have a proven history of efficacy and health benefits. The clinical manifestations of allergy are due to a number of mediators that are released from mast cells. The effect of Aller-7 on rat mesenteric mast cell degranulation was studied by incubating different concentrations of Aller-7 and challenging them with a degranulating agent, compound 48/80. The inhibitory activity of Aller-7 was determined against lipoxygenase and hyaluronidase, the key enzymes involved in the initiation and maintenance of inflammatory responses. Furthermore, most of these manifestations are due to histamine, which causes vasodilatation, increasing capillary permeability and leading to bronchoconstriction. Hence, the antihistaminic activity of Aller-7 was determined is isolated guinea pig ileum substrate using cetirizine as a positive control. The antispasmodic effect of Aller-7 on contractions of guinea pig tracheal chain was determined using papaverine and cetirizine as controls. Aller-7 exhibited potent activity in all these in vitro models tested, thus demonstrating the novel anti-allergic potential of Aller-7.

  18. Early, current and past pet ownership: associations with sensitization, bronchial responsiveness and allergic symptoms in school children.

    PubMed

    Anyo, G; Brunekreef, B; de Meer, G; Aarts, F; Janssen, N A H; van Vliet, P

    2002-03-01

    Studies have suggested that early contact with pets may prevent the development of allergy and asthma. To study the association between early, current and past pet ownership and sensitization, bronchial responsiveness and allergic symptoms in school children. A population of almost 3000 primary school children was investigated using protocols of the International Study on Asthma and Allergies in Childhood (ISAAC). Allergic symptoms were measured using the parent-completed ISAAC questionnaire. Sensitization to common allergens was measured using skin prick tests (SPT)s and/or serum immunoglobulin (Ig)E determinations. Bronchial responsiveness was tested using a hypertonic saline challenge. Pet ownership was investigated by questionnaire. Current, past and early exposure to pets was documented separately for cats, dogs, rodents and birds. The data on current, past and early pet exposure were then related to allergic symptoms, sensitization and bronchial responsiveness. Among children currently exposed to pets, there was significantly less sensitization to cat (odds ratio (OR) = 0.69) and dog (OR = 0.63) allergens, indoor allergens in general (OR = 0.64), and outdoor allergens (OR = 0.60) compared to children who never had pets in the home. There was also less hayfever (OR = 0.66) and rhinitis (OR = 0.76). In contrast, wheeze, asthma and bronchial responsiveness were not associated with current pet ownership. Odds ratios associated with past pet ownership were generally above unity, and significant for asthma in the adjusted analysis (OR = 1.85), suggesting selective avoidance in families with sensitized and/or symptomatic children. Pet ownership in the first two years of life only showed an inverse association with sensitization to pollen: OR = 0.71 for having had furry or feathery pets in general in the first two years of life, and OR = 0.73 for having had cats and/or dogs in the first two years of life, compared to not having had pets in the first two years of life

  19. Epigenomics and allergic disease

    PubMed Central

    Lockett, Gabrielle A; Patil, Veeresh K; Soto-Ramírez, Nelís; Ziyab, Ali H; Holloway, John W; Karmaus, Wilfried

    2014-01-01

    Allergic disease development is affected by both genes and the environment, and epigenetic mechanisms are hypothesized to mediate these environmental effects. In this article, we discuss the link between the environment, DNA methylation and allergic disease, as well as questions of causality inherent to analyses of DNA methylation. From the practical side, we describe characteristics of allergic phenotypes and contrast different epidemiologic study designs used in epigenetic research. We examine methodological considerations, how best to conduct preprocessing and analysis of DNA methylation data sets, and the latest methods, technologies and discoveries in this rapidly advancing field. DNA methylation and other epigenetic marks are firmly entwined with allergic disease, a link that may hold the basis for future allergic disease diagnosis and treatment. PMID:24283882

  20. Epigenomics and allergic disease.

    PubMed

    Lockett, Gabrielle A; Patil, Veeresh K; Soto-Ramírez, Nelís; Ziyab, Ali H; Holloway, John W; Karmaus, Wilfried

    2013-12-01

    Allergic disease development is affected by both genes and the environment, and epigenetic mechanisms are hypothesized to mediate these environmental effects. In this article, we discuss the link between the environment, DNA methylation and allergic disease, as well as questions of causality inherent to analyses of DNA methylation. From the practical side, we describe characteristics of allergic phenotypes and contrast different epidemiologic study designs used in epigenetic research. We examine methodological considerations, how best to conduct preprocessing and analysis of DNA methylation data sets, and the latest methods, technologies and discoveries in this rapidly advancing field. DNA methylation and other epigenetic marks are firmly entwined with allergic disease, a link that may hold the basis for future allergic disease diagnosis and treatment.

  1. Rhinoviruses, Allergic Inflammation, and Asthma

    PubMed Central

    Gavala, Monica; Bertics, Paul J.; Gern, James E.

    2011-01-01

    Summary Viral infections affect wheezing and asthma in children and adults of all ages. In infancy, wheezing illnesses are usually viral in origin, and children with more severe wheezing episodes are more likely to develop recurrent episodes of asthma and to develop asthma later in childhood. Children who develop allergen-specific immunoglobulin E (allergic sensitization), and those who wheeze with rhinoviruses (HRV) are at especially high risk for asthma. In older children and adults, HRV infections generally cause relatively mild respiratory illnesses and yet contribute to acute and potentially severe exacerbations in patients with asthma. These findings underline the importance of understanding the synergistic nature of allergic sensitization and infections with HRV in infants relative to the onset of asthma and in children and adults with respect to exacerbations of asthma. This review discusses clinical and experimental evidence of virus/allergen interactions and evaluates theories which relate immunologic responses to respiratory viruses and allergens to the pathogenesis and disease activity of asthma. Greater understanding of the relationship between viral respiratory infections, allergic inflammation, and asthma is likely to suggest new strategies for the prevention and treatment of asthma. PMID:21682739

  2. Stress-Induced Inflammatory Responses in Women: Effects of Race and Pregnancy

    PubMed Central

    Christian, Lisa M.; Glaser, Ronald; Porter, Kyle; Iams, Jay D.

    2013-01-01

    Objective African Americans experience preterm birth at nearly twice the rate of Whites. Chronic stress associated with minority status is implicated in this disparity. Inflammation is a key biological pathway by which stress may affect birth outcomes. This study examined effects of race and pregnancy on stress-induced inflammatory responses. Methods Thirty-nine women in the 2nd trimester of pregnancy (19 African American; 20 White) and 39 demographically similar nonpregnant women completed an acute stressor (Trier Social Stress Test). Psychosocial characteristics, health behaviors, and affective responses were assessed. Serum interleukin(IL)-6 was measured via high sensitivity ELISA at baseline, 45 minutes, and 120 minutes post-stressor. Results IL-6 responses at 120 minutes post-stressor were 46% higher in African Americans versus Whites (95%CI:8%-81%; t(72)=3.51, p=.001). This effect was present in pregnancy and nonpregnancy. IL-6 responses at 120 minutes post-stressor tended to be lower (15%) in pregnant versus nonpregnant women (95%CI:-5%-32%; p=0.14). Racial differences in inflammatory responses were not accounted for by demographics, psychological characteristics, health behaviors, or differences in salivary cortisol across the study session. Pregnant Whites showed lower negative affective responses than nonpregnant women of either race (ps≤.007). Conclusion This study provides novel evidence that stress-induced inflammatory responses are more robust among African American women versus Whites during pregnancy and nonpregnancy. The ultimate impact of stress on health is a function of stressor exposure and physiological responses. Individual differences in stress-induced inflammatory responses represent a clear target for continued research efforts in racial disparities in health during pregnancy and nonpregnancy. PMID:23873713

  3. Vitamin D in atopic dermatitis, asthma and allergic diseases.

    PubMed

    Searing, Daniel A; Leung, Donald Y M

    2010-08-01

    This review examines the scientific evidence behind the hypothesis that vitamin D plays a role in the pathogenesis of allergic diseases, along with a focus on emerging data regarding vitamin D and atopic dermatitis. Elucidated molecular interactions of vitamin D with components of the immune system and clinical data regarding vitamin D deficiency and atopic diseases are discussed. The rationale behind the sunshine hypothesis, laboratory evidence supporting links between vitamin D deficiency and allergic diseases, the clinical evidence for and against vitamin D playing a role in allergic diseases, and the emerging evidence regarding the potential use of vitamin D to augment the innate immune response in atopic dermatitis are reviewed. Copyright 2010 Elsevier Inc. All rights reserved.

  4. Leptin does not induce an inflammatory response in the murine placenta.

    PubMed

    Appel, S; Turnwald, E-M; Alejandre-Alcazar, M A; Ankerne, J; Rother, E; Janoschek, R; Wohlfarth, M; Vohlen, C; Schnare, M; Meißner, U; Dötsch, J

    2014-06-01

    Leptin is described as a pro-inflammatory signal in fat tissue, which is released from adipocytes and in turn activates immune cells. Also, leptin levels are known to be increased in pregnancies complicated with enhanced inflammatory processes in the placenta. Hence, we assumed that increased leptin amounts might contribute to inducing an inflammatory response in the placenta. To test this hypothesis, pregnant mice were continuously infused with recombinant murine leptin s. c. from day g13 to g16, resulting in a 3-fold increase of maternal circulating serum leptin levels. Dissected placentas were examined for the expression of pro-inflammatory cytokines IL-6 and TNF-alpha and the anti-inflammatory cytokine IL-10 using qPCR analysis. No changes were found except for TNF-alpha, which was slightly elevated upon leptin stimulation. However, TNF-alpha protein levels were not significantly higher in placentas from leptin treated mice. Also, leukocyte infiltration in the labyrinth section of placentas was not increased. In summary, our data demonstrate for the first time that elevated leptin levels alone do not induce an inflammatory response in the placenta. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Allergic rhinitis

    PubMed Central

    2011-01-01

    Allergic rhinitis is a common disorder that is strongly linked to asthma and conjunctivitis. It is usually a long-standing condition that often goes undetected in the primary-care setting. The classic symptoms of the disorder are nasal congestion, nasal itch, rhinorrhea and sneezing. A thorough history, physical examination and allergen skin testing are important for establishing the diagnosis of allergic rhinitis. Second-generation oral antihistamines and intranasal corticosteroids are the mainstay of treatment. Allergen immunotherapy is an effective immune-modulating treatment that should be recommended if pharmacologic therapy for allergic rhinitis is not effective or is not tolerated. This article provides an overview of the pathophysiology, diagnosis, and appropriate management of this disorder. PMID:22166009

  6. CROSS REACTIVITY IN ALLERGIC ASTHMA-LIKE RESPONSES BETWEEN MOLD AND HOUSE DUST MITE IN MICE

    EPA Science Inventory

    Molds are ubiquitous in the environment and exposures to molds contribute to various human diseases including allergic asthma. Some mold allergens have been implicated as the causal agent for allergic asthma. Western blot analysis demonstrated IgE-binding cross-reactivity among m...

  7. RELATIVE POTENCY OF FUNGAL EXTRACTS IN INDUCING ALLERGIC ASTHMA-LIKE RESPONSES IN BALB/C MICE

    EPA Science Inventory

    Indoor mold has been associated with the development of allergic asthma. However, relative potency of molds in the induction of allergic asthma is not clear. In this study, we tested the relative potency of fungal extracts (Metarizium anisophilae [MACA], Stachybotrys ...

  8. Dyadic confirmatory factor analysis of the inflammatory bowel disease family responsibility questionnaire.

    PubMed

    Greenley, Rachel Neff; Reed-Knight, Bonney; Blount, Ronald L; Wilson, Helen W

    2013-09-01

    Evaluate the factor structure of youth and maternal involvement ratings on the Inflammatory Bowel Disease Family Responsibility Questionnaire, a measure of family allocation of condition management responsibilities in pediatric inflammatory bowel disease. Participants included 251 youth aged 11-18 years with inflammatory bowel disease and their mothers. Item-level descriptive analyses, subscale internal consistency estimates, and confirmatory factor analyses of youth and maternal involvement were conducted using a dyadic data-analytic approach. Results supported the validity of 4 conceptually derived subscales including general health maintenance, social aspects, condition management tasks, and nutrition domains. Additionally, results indicated adequate support for the factor structure of a 21-item youth involvement measure and strong support for a 16-item maternal involvement measure. Additional empirical support for the validity of the Inflammatory Bowel Disease Family Responsibility Questionnaire was provided. Future research to replicate current findings and to examine the measure's clinical utility is warranted.

  9. Neutrophil Apoptosis: Relevance to the Innate Immune Response and Inflammatory Disease

    PubMed Central

    Fox, Sarah; Leitch, Andrew E.; Duffin, Rodger; Haslett, Christopher; Rossi, Adriano G.

    2010-01-01

    Neutrophils are the most abundant cell type involved in the innate immune response. They are rapidly recruited to sites of injury or infection where they engulf and kill invading microorganisms. Neutrophil apoptosis, the process of programmed cell death that prevents the release of neutrophil histotoxic contents, is tightly regulated and limits the destructive capacity of neutrophil products to surrounding tissue. The subsequent recognition and phagocytosis of apoptotic cells by phagocytic cells such as macrophages is central to the successful resolution of an inflammatory response and it is increasingly apparent that the dying neutrophil itself exerts an anti-inflammatory effect through modulation of surrounding cell responses, particularly macrophage inflammatory cytokine release. Apoptosis may be delayed, induced or enhanced by micro-organisms dependent on their immune evasion strategies and the health of the host they encounter. There is now an established field of research aimed at understanding the regulation of apoptosis and its potential as a target for therapeutic intervention in inflammatory and infective diseases. This review focuses on the physiological regulation of neutrophil apoptosis with respect to the innate immune system and highlights recent advances in mechanistic understanding of apoptotic pathways and their therapeutic manipulation in appropriate and excessive innate immune responses. PMID:20375550

  10. [Allergic contact dermatitis to cosmetics].

    PubMed

    Laguna, C; de la Cuadra, J; Martín-González, B; Zaragoza, V; Martínez-Casimiro, L; Alegre, V

    2009-01-01

    Contact dermatitis to cosmetics is a common problem in the general population, although its prevalence appears to be underestimated. We reviewed cases of allergic contact dermatitis to cosmetics diagnosed in our dermatology department over a 7-year period with a view to identifying the allergens responsible, the frequency of occurrence of these allergens, and the cosmetic products implicated. Using the database of the skin allergy department, we undertook a search of all cases of allergic contact dermatitis to cosmetics diagnosed in our department from January 2000 through October 2007. In this period, patch tests were carried out on 2,485 patients, of whom 740 were diagnosed with allergic contact dermatitis and the cause was cosmetics in 202 of these patients (170 women and 32 men), who accounted for 27.3 % of all cases. A total of 315 positive results were found for 46 different allergens. Allergens most often responsible for contact dermatitis in a cosmetics user were methylisothiazolinone (19 %), paraphenylenediamine (15.2 %), and fragrance mixtures (7.8 %). Acrylates were the most common allergens in cases of occupational disease. Half of the positive results were obtained with the standard battery of the Spanish Group for Research Into Dermatitis and Skin Allergies (GEIDAC). The cosmetic products most often implicated among cosmetics users were hair dyes (18.5 %), gels/soaps (15.7 %), and moisturizers (12.7 %). Most patients affected were women. Preservatives, paraphenylenediamine, and fragrances were the most frequently detected cosmetic allergens, in line with previous reports in the literature. Finally, in order to detect new cosmetic allergens, cooperation between physicians and cosmetics producers is needed.

  11. Nitro-oleic acid inhibits vascular endothelial inflammatory responses and the endothelial-mesenchymal transition.

    PubMed

    Ambrozova, Gabriela; Fidlerova, Tana; Verescakova, Hana; Koudelka, Adolf; Rudolph, Tanja K; Woodcock, Steven R; Freeman, Bruce A; Kubala, Lukas; Pekarova, Michaela

    2016-11-01

    Inflammatory-mediated pathological processes in the endothelium arise as a consequence of the dysregulation of vascular homeostasis. Of particular importance are mediators produced by stimulated monocytes/macrophages inducing activation of endothelial cells (ECs). This is manifested by excessive soluble pro-inflammatory mediator production and cell surface adhesion molecule expression. Nitro-fatty acids are endogenous products of metabolic and inflammatory reactions that display immuno-regulatory potential and may represent a novel therapeutic strategy to treat inflammatory diseases. The purpose of our study was to characterize the effects of nitro-oleic acid (OA-NO2) on inflammatory responses and the endothelial-mesenchymal transition (EndMT) in ECs that is a consequence of the altered healing phase of the immune response. The effect of OA-NO2 on inflammatory responses and EndMT was determined in murine macrophages and murine and human ECs using Western blotting, ELISA, immunostaining, and functional assays. OA-NO2 limited the activation of macrophages and ECs by reducing pro-inflammatory cytokine production and adhesion molecule expression through its modulation of STAT, MAPK and NF-κB-regulated signaling. OA-NO2 also decreased transforming growth factor-β-stimulated EndMT and pro-fibrotic phenotype of ECs. These effects are related to the downregulation of Smad2/3. The study shows the pleiotropic effect of OA-NO2 on regulating EC-macrophage interactions during the immune response and suggests a role for OA-NO2 in the regulation of vascular endothelial immune and fibrotic responses arising during chronic inflammation. These findings propose the OA-NO2 may be useful as a novel therapeutic agent for treatment of cardiovascular disorders associated with dysregulation of the endothelial immune response. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Polyhexamethylene guanidine phosphate aerosol particles induce pulmonary inflammatory and fibrotic responses.

    PubMed

    Kim, Ha Ryong; Lee, Kyuhong; Park, Chang We; Song, Jeong Ah; Shin, Da Young; Park, Yong Joo; Chung, Kyu Hyuck

    2016-03-01

    Polyhexamethylene guanidine (PHMG) phosphate was used as a disinfectant for the prevention of microorganism growth in humidifiers, without recognizing that a change of exposure route might cause significant health effects. Epidemiological studies reported that the use of humidifier disinfectant containing PHMG-phosphate can provoke pulmonary fibrosis. However, the pulmonary toxicity of PHMG-phosphate aerosol particles is unknown yet. This study aimed to elucidate the toxicological relationship between PHMG-phosphate aerosol particles and pulmonary fibrosis. An in vivo nose-only exposure system and an in vitro air-liquid interface (ALI) co-culture model were applied to confirm whether PHMG-phosphate induces inflammatory and fibrotic responses in the respiratory tract. Seven-week-old male Sprague-Dawley rats were exposed to PHMG-phosphate aerosol particles for 3 weeks and recovered for 3 weeks in a nose-only exposure chamber. In addition, three human lung cells (Calu-3, differentiated THP-1 and HMC-1 cells) were cultured at ALI condition for 12 days and were treated with PHMG-phosphate at set concentrations and times. The reactive oxygen species (ROS) generation, airway barrier injuries and inflammatory and fibrotic responses were evaluated in vivo and in vitro. The rats exposed to PHMG-phosphate aerosol particles in nanometer size showed pulmonary inflammation and fibrosis including inflammatory cytokines and fibronectin mRNA increase, as well as histopathological changes. In addition, PHMG-phosphate triggered the ROS generation, airway barrier injuries and inflammatory responses in a bronchial ALI co-culture model. Those results demonstrated that PHMG-phosphate aerosol particles cause pulmonary inflammatory and fibrotic responses. All features of fibrogenesis by PHMG-phosphate aerosol particles closely resembled the pathology of fibrosis that was reported in epidemiological studies. Finally, we expected that PHMG-phosphate infiltrated into the lungs in the form of

  13. Anti-inflammatory effects of ursodeoxycholic acid by lipopolysaccharide-stimulated inflammatory responses in RAW 264.7 macrophages

    PubMed Central

    Ko, Wan-Kyu; Lee, Soo-Hong; Kim, Sung Jun; Jo, Min-Jae; Kumar, Hemant; Han, In-Bo; Sohn, Seil

    2017-01-01

    Purpose The aim of this study was to investigate the anti-inflammatory effects of Ursodeoxycholic acid (UDCA) in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Methods We induced an inflammatory process in RAW 264.7 macrophages using LPS. The anti-inflammatory effects of UDCA on LPS-stimulated RAW 264.7 macrophages were analyzed using nitric oxide (NO). Pro-inflammatory and anti-inflammatory cytokines were analyzed by quantitative real time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). The phosphorylations of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 in mitogen-activated protein kinase (MAPK) signaling pathways and nuclear factor kappa-light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) signaling pathways were evaluated by western blot assays. Results UDCA decreased the LPS-stimulated release of the inflammatory mediator NO. UDCA also decreased the pro-inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin 1-α (IL-1α), interleukin 1-β (IL-1β), and interleukin 6 (IL-6) in mRNA and protein levels. In addition, UDCA increased an anti-inflammatory cytokine interleukin 10 (IL-10) in the LPS-stimulated RAW 264.7 macrophages. UDCA inhibited the expression of inflammatory transcription factor nuclear factor kappa B (NF-κB) in LPS-stimulated RAW 264.7 macrophages. Furthermore, UDCA suppressed the phosphorylation of ERK, JNK, and p38 signals related to inflammatory pathways. In addition, the phosphorylation of IκBα, the inhibitor of NF-κB, also inhibited by UDCA. Conclusion UDCA inhibits the pro-inflammatory responses by LPS in RAW 264.7 macrophages. UDCA also suppresses the phosphorylation by LPS on ERK, JNK, and p38 in MAPKs and NF-κB pathway. These results suggest that UDCA can serve as a useful anti-inflammatory drug. PMID:28665991

  14. Toll-like receptor-2 agonist-allergen coupling efficiently redirects Th2 cell responses and inhibits allergic airway eosinophilia.

    PubMed

    Krishnaswamy, Jayendra Kumar; Jirmo, Adan Chari; Baru, Abdul Mannan; Ebensen, Thomas; Guzmán, Carlos A; Sparwasser, Tim; Behrens, Georg M N

    2012-12-01

    Toll-like receptor (TLR) agonists beneficially modulate allergic airway inflammation. However, the efficiency of TLR agonists varies considerably, and their exact cellular mechanisms (especially of TLR 2/6 agonists) are incompletely understood. We investigated at a cellular level whether the administration of the pharmacologically improved TLR2/6 agonist S-[2,3-bispalmitoyiloxy-(2R)-propyl]-R-cysteinyl-amido-monomethoxy polyethylene glycol (BPP) conjugated to antigenic peptide (BPP-OVA) could divert an existing Th2 response and influence airway eosinophilia. The effects of BPP-OVA on airway inflammation were assessed in a classic murine sensitization/challenge model and an adoptive transfer model, which involved the adoptive transfer of in vitro differentiated ovalbumin (OVA)-specific Th2 cells. Functional T-cell stimulation by lung dendritic cells (DCs) was determined both in vitro and in vivo, combined with a cytokine secretion analysis. A single mucosal application of BPP-OVA efficiently delivered antigen, led to TLR2-mediated DC activation, and resulted in OVA-specific T-cell proliferation via lung DCs in vivo. In alternative models of allergic airway disease, a single administration of BPP-OVA before OVA challenge (but not BPP alone) significantly reduced airway eosinophilia, most likely through altered antigen-specific T-cell stimulation via DCs. Analyses of adoptively transferred Th2-biased cells after BPP-OVA administration in vivo suggested that BPP-OVA guides antigen-specific Th2 cells to produce significantly higher amounts of IFN-γ upon allergen challenge. In conclusion, our data show for the first time that a single mucosal administration of a TLR 2/6 agonist-allergen conjugate can provoke IFN-γ responses in Th2-biased cells and alleviate allergic airway inflammation.

  15. Investigations of anti-inflammatory and antinociceptive activities of Piper cubeba, Physalis angulata and Rosa hybrida.

    PubMed

    Choi, Eun-Mi; Hwang, Jae-Kwan

    2003-11-01

    The anti-inflammatory activities of Piper cubeba (fruit), Physalis angulata (flower) and Rosa hybrida (flower) were determined by carrageenan-induced paw edema, arachidonic acid-induced ear edema and formaldehyde-induced arthritis in mice. The anti-allergic and analgesic activities of these plants were also studied by using 2,4-dinitrofluorobenzene (DNFB)-induced contact hypersensitivity reaction (type IV) and hot plate test in mice, respectively. These plant extracts clearly exhibited inhibitory effects against acute and subacute inflammation by oral administration (200 mg/kg). Also, administration (200 mg/kg, p.o.) of plant extracts for 1 week significantly inhibited type IV allergic reaction in mice (P<0.05). Rosa hybrida showed an analgesic effect against hot plate-induced thermal stimulation at a dose of 200 mg/kg. These results provide support for the use of Rosa hybrida in relieving inflammatory pain, and insight into the development of new agents for treating inflammatory diseases.

  16. miR-122-SOCS1-JAK2 axis regulates allergic inflammation and allergic inflammation-promoted cellular interactions

    PubMed Central

    Kim, Hanearl; Kim, Hyuna; Byun, Jaehwan; Park, Yeongseo; Lee, Hansoo; Lee, Yun Sil; Choe, Jongseon; Kim, Young Myeong; Jeoung, Dooil

    2017-01-01

    The regulatory role of suppressor of cytokine signaling 1 (SOCS1) in inflammation has been reported. However, its role in allergic inflammation has not been previously reported. SOCS1 mediated in vitro and in vivo allergic inflammation. Histone deacetylase-3 (HDAC3), a mediator of allergic inflammation, interacted with SOCS1, and miR-384 inhibitor, a positive regulator of HDAC3, induced features of allergic inflammation in an SOCS1-dependent manner. miRNA array analysis showed that the expression of miR-122 was decreased by antigen-stimulation. TargetScan analysis predicted the binding of miR-122 to the 3′-UTR of SOCS1. miR-122 inhibitor induced in vitro and in vivo allergic features in SOCS1-dependent manner. SOCS1 was necessary for allergic inflammation-promoted enhanced tumorigenic and metastatic potential of cancer cells. SOCS1 and miR-122 regulated cellular interactions involving cancer cells, mast cells and macrophages during allergic inflammation. SOCS1 mimetic peptide, D-T-H-F-R-T-F-R-S-H-S-D-Y-R-R-I, inhibited in vitro and in vivo allergic inflammation, allergic inflammation-promoted enhanced tumorigenic and metastatic potential of cancer cells, and cellular interactions during allergic inflammation. Janus kinase 2 (JAK2) exhibited binding to SOCS1 mimetic peptide and mediated allergic inflammation. Transforming growth factor- Δ1 (TGF-Δ1) was decreased during allergic inflammation and showed an anti-allergic effect. SOCS1 and JAK2 regulated the production of anti-allergic TGF-Δ1. Taken together, our results show that miR-122-SOCS1 feedback loop can be employed as a target for the development of anti-allergic and anti-cancer drugs. PMID:28968979

  17. Vitamin D in Atopic Dermatitis, Asthma and Allergic Diseases

    PubMed Central

    Searing, Daniel A; Leung, Donald YM

    2010-01-01

    Synopsis This review examines the scientific evidence behind the hypothesis that vitamin D plays a role in the pathogenesis of allergic diseases, with a particular focus on emerging data regarding vitamin D and atopic dermatitis. Both elucidated molecular interactions of vitamin D with components of the immune system, as well as clinical data regarding vitamin D deficiency and atopic diseases are discussed. The rationale behind the “sunshine hypothesis,” laboratory evidence supporting links between vitamin D deficiency and allergic diseases, the clinical evidence for/and against vitamin D playing a role in allergic diseases, and the emerging evidence regarding the potential use of vitamin D in augmentation of the innate immune response in atopic dermatitis are reviewed. PMID:20670821

  18. Anti-allergic activity of the Morinda citrifolia extract and its constituents

    PubMed Central

    Murata, Kazuya; Abe, Yumi; Shinohara, Kaito; Futamura-Masuda, Megumi; Uwaya, Akemi; Isami, Fumiyuki; Matsuda, Hideaki

    2014-01-01

    Background: Morinda citrifolia (Rubiaceae), commonly known as noni is distributed throughout tropical and sub-tropical regions of the world. Anti-allergic effects of noni have not been reported despite the clinical usage as an anti-allergic agent. Materials and Methods: To investigate the anti-allergic effects of the 50% ethanolic extract of M. citrifolia fruits and leaves (MCF-ext and MCL-ext), dinitrofluorobenzene (DNFB)-induced triphasic cutaneous reaction and picryl chloride-induced contact dermatitis (PC-CD) tests were performed. Results: In DNFB-induced triphasic cutaneous reaction, oral administration of MCF-ext and MCL-ext exhibited dose-dependent inhibition of cutaneous reaction at 1 h (immediate phase response) after the DNFB challenge. MCF-ext also inhibited ear swelling at 24 h (late phase response) and 8 days (very late phase response) after the DNFB challenge. The effect of MCL-ext on the immediate phase response was attributed to the anti-degranulation from RBL-2H3 cells, while MCF-ext had no significant effect on degranulation. The active components of anti-degranulation activity in MCL-ext were determined to be ursolic acid, rutin and kaempferol-3-O-α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranoside. In the PC-CD test, both MCF-ext and MCL-ext showed an anti-swelling effect but the potency of MCF-ext was stronger than MCL-ext. Conclusion: These data suggest that noni fruits and leaves can be a daily consumable material for the prevention of allergic symptoms. PMID:25002809

  19. Impact of early life exposures to geohelminth infections on the development of vaccine immunity, allergic sensitization, and allergic inflammatory diseases in children living in tropical Ecuador: the ECUAVIDA birth cohort study

    PubMed Central

    2011-01-01

    Background Geohelminth infections are highly prevalent infectious diseases of childhood in many regions of the Tropics, and are associated with significant morbidity especially among pre-school and school-age children. There is growing concern that geohelminth infections, particularly exposures occurring during early life in utero through maternal infections or during infancy, may affect vaccine immunogenicity in populations among whom these infections are endemic. Further, the low prevalence of allergic disease in the rural Tropics has been attributed to the immune modulatory effects of these infections and there is concern that widespread use of anthelmintic treatment in high-risk groups may be associated with an increase in the prevalence of allergic diseases. Because the most widely used vaccines are administered during the first year of life and the antecedents of allergic disease are considered to occur in early childhood, the present study has been designed to investigate the impact of early exposures to geohelminths on the development of protective immunity to vaccines, allergic sensitization, and allergic disease. Methods/Design A cohort of 2,403 neonates followed up to 8 years of age. Primary exposures are infections with geohelminth parasites during the last trimester of pregnancy and the first 2 years of life. Primary study outcomes are the development of protective immunity to common childhood vaccines (i.e. rotavirus, Haemophilus influenzae type B, Hepatitis B, tetanus toxoid, and oral poliovirus type 3) during the first 5 years of life, the development of eczema by 3 years of age, the development of allergen skin test reactivity at 5 years of age, and the development of asthma at 5 and 8 years of age. Potential immunological mechanisms by which geohelminth infections may affect the study outcomes will be investigated also. Discussion The study will provide information on the potential effects of early exposures to geohelminths (during pregnancy and

  20. Isoliquiritigenin protects against sepsis-induced lung and liver injury by reducing inflammatory responses.

    PubMed

    Chen, Xiong; Cai, Xueding; Le, Rongrong; Zhang, Man; Gu, Xuemei; Shen, Feixia; Hong, Guangliang; Chen, Zimiao

    2018-02-05

    Sepsis, one of the most fatal diseases worldwide, often leads to multiple organ failure, mainly due to uncontrolled inflammatory responses. Despite accumulating knowledge obtained in recent years, effective drugs to treat sepsis in the clinic are still urgently needed. Isoliquiritigenin (ISL), a chalcone compound, has been reported to exert anti-inflammatory properties. However, little is known about the effects of ISL on sepsis and its related complications. In this study, we investigated the potential protective effects of ISL on lipopolysaccharide (LPS)-induced injuries and identified the mechanisms underlying these effects. ISL inhibited inflammatory cytokine expression in mouse primary peritoneal macrophages (MPMs) exposed to LPS. In an acute lung injury (ALI) mouse model, ISL prevented LPS-induced structural damage and inflammatory cell infiltration. Additionally, pretreatment with ISL attenuated sepsis-induced lung and liver injury, accompanied by a reduction in inflammatory responses. Moreover, these protective effects were mediated by the nuclear factor kappa B (NF-κB) pathway-mediated inhibition of inflammatory responses in vitro and in vivo. Our study suggests that ISL may be a potential therapeutic agent for sepsis-induced injuries. Copyright © 2017. Published by Elsevier Inc.

  1. Collective cell migration during inflammatory response

    NASA Astrophysics Data System (ADS)

    Wu, Di; Stroka, Kimberly; Aranda-Espinoza, Helim

    2012-02-01

    Wound scratch healing assays of endothelial cell monolayers is a simple model to study collective cell migration as a function of biological signals. A signal of particular interest is the immune response, which after initial wounding in vivo causes the release of various inflammatory factors such as tumor necrosis alpha (TNF-α). TNF-α is an innate inflammatory cytokine that can induce cell growth, cell necrosis, and change cell morphology. We studied the effects of TNF-α on collective cell migration using the wound healing assays and measured several migration metrics, such as rate of scratch closure, velocities of leading edge and bulk cells, closure index, and velocity correlation functions between migrating cells. We observed that TNF-α alters all migratory metrics as a function of the size of the scratch and TNF-α content. The changes observed in migration correlate with actin reorganization upon TNF-α exposure.

  2. SUPPRESSION OF ALLERGIC UVEITIS BY 6-MERCAPTOPURINE

    PubMed Central

    Wirostko, E.; Halbert, S. P.

    1962-01-01

    Experimental uveitis in rabbits was induced by single intraocular antigen injection. Treatment with 6-MP for 14 days suppressed the allergic inflammation and antibody response. A good correlation was demonstrated between the degree of uveitis and the antibody titer. PMID:14001284

  3. B-Glucan exacerbates allergic asthma independent of fungal ...

    EPA Pesticide Factsheets

    BackgroundAllergic sensitization to fungi has been associated with asthma severity. As a result, it has been largely assumed that the contribution of fungi to allergic disease is mediated through their potent antigenicity.ObjectiveWe sought to determine the mechanism by which fungi affect asthma development and severity.MethodsWe integrated epidemiologic and experimental asthma models to explore the effect of fungal exposure on asthma development and severity.ResultsWe report that fungal exposure enhances allergen-driven TH2 responses, promoting severe allergic asthma. This effect is independent of fungal sensitization and can be reconstituted with β-glucan and abrogated by neutralization of IL-17A. Furthermore, this severe asthma is resistant to steroids and characterized by mixed TH2 and TH17 responses, including IL-13+IL-17+CD4+ double-producing effector T cells. Steroid resistance is dependent on fungus-induced TH17 responses because steroid sensitivity was restored in IL-17rc−/− mice. Similarly, in children with asthma, fungal exposure was associated with increased serum IL-17A levels and asthma severity.ConclusionOur data demonstrate that fungi are potent immunomodulators and have powerful effects on asthma independent of their potential to act as antigens. Furthermore, our results provide a strong rationale for combination treatment strategies targeting IL-17A for this subgroup of fungus-exposed patients with difficult-to-treat asthma. To describe th

  4. MTOR Suppresses Environmental Particle-Induced Inflammatory Response in Macrophages.

    PubMed

    Li, Zhouyang; Wu, Yinfang; Chen, Hai-Pin; Zhu, Chen; Dong, Lingling; Wang, Yong; Liu, Huiwen; Xu, Xuchen; Zhou, Jiesen; Wu, Yanping; Li, Wen; Ying, Songmin; Shen, Huahao; Chen, Zhi-Hua

    2018-04-15

    Increasing toxicological and epidemiological studies have demonstrated that ambient particulate matter (PM) could cause adverse health effects including inflammation in the lung. Alveolar macrophages represent a major type of innate immune responses to foreign substances. However, the detailed mechanisms of inflammatory responses induced by PM exposure in macrophages are still unclear. We observed that coarse PM treatment rapidly activated mechanistic target of rapamycin (MTOR) in mouse alveolar macrophages in vivo, and in cultured mouse bone marrow-derived macrophages, mouse peritoneal macrophages, and RAW264.7 cells. Pharmacological inhibition or genetic knockdown of MTOR in bone marrow-derived macrophages leads to an amplified cytokine production upon PM exposure, and mice with specific knockdown of MTOR or ras homolog enriched in brain in myeloid cells exhibit significantly aggregated airway inflammation. Mechanistically, PM activated MTOR through modulation of ERK, AKT serine/threonine kinase 1, and tuberous sclerosis complex signals, whereas MTOR deficiency further enhanced the PM-induced necroptosis and activation of subsequent NF κ light-chain-enhancer of activated B cells (NFKB) signaling. Inhibition of necroptosis or NFKB pathways significantly ameliorated PM-induced inflammatory response in MTOR-deficient macrophages. The present study thus demonstrates that MTOR serves as an early adaptive signal that suppresses the PM-induced necroptosis, NFKB activation, and inflammatory response in lung macrophages, and suggests that activation of MTOR or inhibition of necroptosis in macrophages may represent novel therapeutic strategies for PM-related airway disorders. Copyright © 2018 by The American Association of Immunologists, Inc.

  5. Millworkers' Asthma: Allergic Responses to the Grain Weevil (Sitophilus granarius)

    PubMed Central

    Lunn, J. A.

    1966-01-01

    Two laboratory workers, who spent a considerable time each day handling grain infested by the grain weevil (Sitophilus granarius), developed allergic responses to this insect varying from rhinitis and pruritus to marked asthma. These findings suggested that weevil protein present in mill dust could result in sensitization in those exposed continuously. A pilot study was therefore undertaken on 75 volunteer millworkers to determine whether such sensitivity existed. A millworker was defined as anyone who worked in a flour mill or mill producing animal feed from mixed cereals, or who worked in grain-storing silos. Skin testing with weevil, mixed flour extracts, and a control was carried out on all 75 volunteers; 57% had a positive response to the weevil extract and 68% a positive response to the mixed flour extract. In a control group of 100 workers from two engineering firms matched for age and sex, 34% were positive to the weevil extract and 17% to mixed flour. From the initial 75 millworkers, 15 were selected for further study based on a positive skin response to the weevil and a history of a productive cough and chest tightness and wheezing when exposed to mill dust. The forced expiratory volume in one second (F.E.V.1·0) was measured after control inhalations and after weevil and mixed flour inhalations. Significant reductions of 20% and 15·4% were found in two subjects after inhalation of weevil extract. In one case wheezing and cough developed. The changes in F.E.V.1·0 were reversed after inhalation of a bronchodilator aerosol. Twenty-five of the control subjects with positive skin responses to the grain weevil were given similar provocation inhalations but none showed any significant change in F.E.V.1·0. This pilot study suggests that grain weevil sensitivity is an additional factor in millworkers' asthma. PMID:5929689

  6. Immunotherapy of allergic contact dermatitis.

    PubMed

    Spiewak, Radoslaw

    2011-08-01

    The term 'immunotherapy' refers to treating diseases by inducing, enhancing or suppressing immune responses. As allergy is an excessive, detrimental immune reaction to otherwise harmless environmental substances, immunotherapy of allergic disease is aimed at the induction of tolerance toward sensitizing antigens. This article focuses on the historical developments, present state and future outlook for immunotherapy with haptens as a therapeutic modality for allergic contact dermatitis. Inspired by the effectiveness of immunotherapy in respiratory allergies, attempts were undertaken at curing allergic contact dermatitis by means of controlled administration of the sensitizing haptens. Animal and human experiments confirmed that tolerance to haptens can be induced most effectively when the induction of tolerance precedes attempted sensitization. In real life, however, therapy is sought by people who are already sensitized and an effective reversal of hypersensitivity seems more difficult to achieve. Decades of research on Rhus hypersensitivity led to a conclusion that immunotherapy can suppress Rhus dermatitis, however, only to a limited degree, for a short period of time, and at a high risk of side effects, which makes this method therapeutically unprofitable. Methodological problems with most available studies of immunotherapy of contact allergy to nickel make any definite conclusions impossible at this stage.

  7. Affective and inflammatory responses among orchestra musicians in performance situation.

    PubMed

    Pilger, Alexander; Haslacher, Helmuth; Ponocny-Seliger, Elisabeth; Perkmann, Thomas; Böhm, Karl; Budinsky, Alexandra; Girard, Angelika; Klien, Katharina; Jordakieva, Galateja; Pezawas, Lukas; Wagner, Oswald; Godnic-Cvar, Jasminka; Winker, Robert

    2014-03-01

    A number of studies have shown that mental challenge under controlled experimental conditions is associated with elevations in inflammatory markers such as interleukin-6 (IL-6) and C-reactive protein (CRP). However, relatively little work has been done on the effects of 'naturalistic' stressors on acute changes in inflammatory markers. The present study examined whether perceived arousal, valence and dominance in musicians are associated with pro-inflammatory and oxidative responses to a concert situation. Blood and salivary samples obtained from 48 members of a symphony orchestra on the day of rehearsal (i.e., control situation) and on the following day of premiere concert (i.e., test situation) were used to determine changes in salivary cortisol, pro-inflammatory markers (plasma myeloperoxidase, serum CRP, plasma IL-6), oxidative stress markers (paraoxonase1 activity and malondialdehyde), and homocysteine, a risk factor for vascular disease. Results of regression analyses showed a significant trend to increased myeloperoxidase (MPO) response in individuals with low valence score. Both affective states, valence and arousal, were identified as significant predictors of cortisol response during concert. In addition, control levels of plasma malondialdehyde were positively correlated with differences in IL-6 levels between premiere and rehearsal (r=.38, p=.012), pointing to higher oxidative stress in individuals with pronounced IL-6 response. Our results indicate that stress of public performance leads to increased concentrations of plasma MPO (20%), IL-6 (27%) and salivary cortisol (44%) in musicians. The decreasing effect of pleasantness on the MPO response was highly pronounced in non-smokers (r=-.60, p<.001), suggesting a significant role of emotional valence in stress-induced secretion of MPO. Additional studies are needed to assess the generalizability of these findings to other 'naturalistic' stress situations. Copyright © 2013 Elsevier Inc. All rights

  8. Neuro-inflammatory response in rats chronically exposed to (137)Cesium.

    PubMed

    Lestaevel, Philippe; Grandcolas, Line; Paquet, François; Voisin, Philippe; Aigueperse, Jocelyne; Gourmelon, Patrick

    2008-03-01

    After the Chernobyl nuclear accident, behavioural disorders and central nervous system diseases were frequently observed in populations living in the areas contaminated by (137)Cs. Until now, these neurological disturbances were not elucidated, but the presence of a neuro-inflammatory response could be one explanation. Rats were exposed for 3 months to drinking water contaminated with (137)Cs at a dose of 400Bqkg(-1), which is similar to that ingested by the population living in contaminated areas in the former USSR countries. Pro-inflammatory and anti-inflammatory cytokine genes were assessed by real-time PCR in the frontal cortex and the hippocampus. At this level of exposure, gene expression of TNF-alpha and IL-6 increased in the hippocampus and gene expression of IL-10 increased in the frontal cortex. Concentration of TNF-alpha, measured by ELISA assays, was also increased in the hippocampus. The central NO-ergic pathway was also studied: iNOS gene expression and cNOS activity were significantly increased in the hippocampus. In conclusion, this study showed for the first time that sub-chronic exposure with post-accidental doses of (137)Cs leads to molecular modifications of pro- and anti-inflammatory cytokines and NO-ergic pathway in the brain. This neuro-inflammatory response could contribute to the electrophysiological and biochemical alterations observed after chronic exposure to (137)Cs.

  9. Differential eosinophil and mast cell regulation: Mast cell viability and accumulation in inflammatory tissue are independent of proton-sensing receptor GPR65

    PubMed Central

    Zhu, Xiang; Mose, Eucabeth; Hogan, Simon P.

    2014-01-01

    Extracellular acidification has been observed in allergic inflammatory diseases. Recently, we demonstrated that the proton-sensing receptor G protein-coupled receptor 65 (GPR65) regulates eosinophil survival in an acidic environment in vitro and eosinophil accumulation in an allergic lung inflammation model. For mast cells, another inflammatory cell type critical for allergic responses, it remains unknown whether GPR65 is expressed and/or regulates mast cell viability. Thus, in the present study, we employed in vitro experiments and an intestinal anaphylaxis model in which both mastocytosis and eosinophilia can be observed, particularly in the gastrointestinal tract, to enable us to directly compare the effect of GPR65 expression on these two cell types. We identified GPR65 expression on mast cells; however, unlike eosinophil viability, mast cell viability in vitro is not affected by acidification or GPR65 expression. Mechanistically, we determined that mast cells do not respond to extracellular acidification with increased cAMP levels. Furthermore, in the intestinal anaphylaxis model, we observed a significant reduction of eosinophils (59.1 ± 9.2% decrease) in the jejunum of allergen-challenged GPR65-deficient mice compared with allergen-challenged wild-type mice, despite the degree of antigen sensitization and the expression levels of Th2 cytokines (Il4, Il13) and eosinophil chemokines (Ccl11, Ccl24) in the jejunum being comparable. In contrast, the accumulation of mast cells in allergen-challenged mice was not affected by GPR65 deficiency. In conclusion, our study demonstrates differential regulation of eosinophils and mast cells in inflammatory tissue, with mast cell viability and accumulation being independent of GPR65. PMID:24742990

  10. What are the most promising strategies for the therapeutic immunomodulation of allergic diseases?

    PubMed

    Tokura, Y; Röcken, M; Clark, R A; Haliasos, E; Takigawa, M; Sinha, A A

    2001-04-01

    Specific immunotherapy and other immunomodulatory strategies have long been a stronghold in the management of allergic diseases. In particular, "immunodeviation-therapy" or "vaccination for allergies", i.e. the redirection of Th2-type immune responses towards a Th1-response pattern, has become an ever more popular concept. The present feature of CONTROVERSIES complements our previous discussion of atopy (Röcken et al., Exp Dermatol 7: 97--104, 1998), and is dedicated to a critical analysis of the general problems and limitations one faces with the main immunomodulatory strategies traditionally considered in this context. We also explore alternative approaches that appear promising in order to achieve both a more effective and/or a more specific immunotherapy of allergic diseases. Given that the mast cell remains a key protagonist in the pathogenesis of allergic diseases finally, this feature examines how innovative, more selectively mast cell-targeted strategies may be developed for the management of allergic diseases.

  11. Low-dose ethanol aggravates allergic dermatitis in mice.

    PubMed

    Sakazaki, Fumitoshi; Ogino, Hirofumi; Arakawa, Tomohiro; Okuno, Tomofumi; Ueno, Hitoshi

    2014-08-01

    Alcohol injures dendritic cells and suppresses cellular immunity, while some evidence indicates that drinking alcohol aggravates allergic asthma. This study investigated the effect of low doses of ethanol in enhancing allergic reactions in the skin of mice. Liquid food containing alcohol was administered to conventional NC/Nga mice to induce alcoholic hepatic steatosis, and spontaneous dermatitis was evaluated. BALB/c mice were administered approximately 1 g/kg body weight of ethanol by gavage, and contact hypersensitivity (CHS) or active cutaneous anaphylaxis (ACA) was induced. Spleens were collected 24 h after the elicitation of CHS and mRNA expressions of interferon (IFN)-γ, interleukin (IL)-4, IL-6, IL-10, and IL-18 were measured by quantitative RT-PCR. Alcohol-containing diet exaggerated spontaneous dermatitis in conventional NC/Nga mice and contact hypersensitivity in BALB/c mice. Ethanol administered by gavage for 5 days enhanced contact hypersensitivity in BALB/c mice. Ethanol administration with gavage also enhanced ACA of BALB/c mice. Ethanol did not affect mRNA expression of IFN-γ and IL-4, but did enhance IL-6, IL-10, and IL-18 mRNA expression. Histological evaluation revealed an absence of hepatic steatosis in mice administered ethanol by gavage for 5 days. In ethanol-administered mice, inflamed areas presented as lesions or a local extreme accumulation of mononuclear cells in the epidermis. These findings suggest that ethanol enhances the expression of inflammatory cytokines independently from T helper (Th)1/Th2 cytokine phenotypes, causing abnormalities in the epidermis resulting in exacerbated allergic reactivity. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Effects of resistance training on the inflammatory response

    PubMed Central

    Calle, Mariana C

    2010-01-01

    Resistance training (RT) is associated with reduced risk of low grade inflammation related diseases, such as cardiovascular disease and type 2 diabetes. The majority of the data studying cytokines and exercise comes from endurance exercise. In contrast, evidence establishing a relationship between RT and inflammation is more limited. This review focuses on the cytokine responses both following an acute bout, and after chronic RT. In addition, the effect of RT on low grade systemic inflammation such as individuals at risk for type 2 diabetes is reviewed. Cytokines are secreted proteins that influence the survival, proliferation, and differentiation of immune cells and other organ systems. Cytokines function as intracellular signals and almost all cells in the body either secrete them or have cytokine receptors. Thus, understanding cytokine role in a specific physiological situation such as a bout of RT can be exceedingly complex. The overall effect of long term RT appears to ameliorate inflammation, but the specific effects on the inflammatory cytokine, tumor necrosis factor alpha are not clear, requiring further research. Furthermore, it is critical to differentiate between chronically and acute Interleukin-6 levels and its sources. The intensity of the RT and the characteristics of the training protocol may exert singular cytokine responses and as a result different adaptations to exercise. More research is needed in the area of RT in healthy populations, specifically sorting out gender and age RT acute responses. More importantly, studies are needed in obese individuals who are at high risk of developing low grade systemic inflammatory related diseases. Assuring adherence to the RT program is essential to get the benefits after overcoming the first acute RT responses. Hence RT could be an effective way to prevent, and delay low grade systemic inflammatory related diseases. PMID:20827340

  13. Bilastine: in allergic rhinitis and urticaria.

    PubMed

    Carter, Natalie J

    2012-06-18

    Bilastine is an orally administered, second-generation antihistamine used in the symptomatic treatment of seasonal or perennial allergic rhinoconjunctivitis and urticaria. In two well designed phase III trials, 14 days' treatment with bilastine was associated with a significantly lower area under the effect curve (AUEC) for the reflective total symptom score (TSS) than placebo in patients with symptomatic seasonal allergic rhinitis. Additionally, reflective nasal symptom scores were significantly lower in bilastine than placebo recipients in patients with a history of seasonal allergic rhinitis who were challenged with grass pollen allergen in a single-centre, phase II study. Neither bilastine nor cetirizine was effective in the treatment of perennial allergic rhinitis with regard to the mean AUEC for reflective TSS in another well designed phase III trial. However, results may have been altered by differences in some baseline characteristics and placebo responses between study countries. In another well designed phase III trial, compared with placebo, bilastine was associated with a significantly greater change from baseline to day 28 in the mean reflective daily urticaria symptom score in patients with chronic urticaria. There were no significant differences in primary endpoint results between bilastine and any of the active comparators used in these trials (i.e. cetirizine, levocetirizine and desloratadine). Bilastine was generally well tolerated, with a tolerability profile that was generally similar to that of the other second-generation antihistamines included in phase III clinical trials.

  14. Management of Allergic Rhinitis

    PubMed Central

    Sausen, Verra O.; Marks, Katherine E.; Sausen, Kenneth P.; Self, Timothy H.

    2005-01-01

    Allergic rhinitis is the most common chronic childhood disease. Reduced quality of life is frequently caused by this IgE-mediated disease, including sleep disturbance with subsequent decreased school performance. Asthma and exercise-induced bronchospasm are commonly seen concurrently with allergic rhinitis, and poorly controlled allergic rhinitis negatively affects asthma outcomes. Nonsedating antihistamines or intranasal azelastine are effective agents to manage allergic rhinitis, often in combination with oral decongestants. For moderate to severe persistent disease, intranasal corticosteroids are the most effiective agents. Some patients require concomitant intranasal corticosteroids and nonsedating antihistamines for optimal management. Other available agents include leukotriene receptor antagonists, intranasal cromolyn, intranasal ipratropium, specific immunotherapy, and anti-IgE therapy. PMID:23118635

  15. Chagas disease: modulation of the inflammatory response by acetylcholinesterase in hematological cells and brain tissue.

    PubMed

    Silva, Aniélen D; Bottari, Nathieli B; do Carmo, Guilherme M; Baldissera, Matheus D; Souza, Carine F; Machado, Vanessa S; Morsch, Vera M; Schetinger, Maria Rosa C; Mendes, Ricardo E; Monteiro, Silvia G; Da Silva, Aleksandro S

    2018-01-01

    Chagas disease is an acute or chronic illness that causes severe inflammatory response, and consequently, it may activate the inflammatory cholinergic pathway, which is regulated by cholinesterases, including the acetylcholinesterase. This enzyme is responsible for the regulation of acetylcholine levels, an anti-inflammatory molecule linked to the inflammatory response during parasitic diseases. Thus, the aim of this study was to investigate whether Trypanosoma cruzi infection can alter the activity of acetylcholinesterase and acetylcholine levels in mice, and whether these alterations are linked to the inflammatory cholinergic signaling pathway. Twenty-four mice were divided into two groups: uninfected (control group, n = 12) and infected by T. cruzi, Y strain (n = 12). The animals developed acute disease with a peak of parasitemia on day 7 post-infection (PI). Blood, lymphocytes, and brain were analyzed on days 6 and 12 post-infection. In the brain, acetylcholine and nitric oxide levels, myeloperoxidase activity, and histopathology were analyzed. In total blood and brain, acetylcholinesterase activity decreased at both times. On the other hand, acetylcholinesterase activity in lymphocytes increased on day 6 PI compared with the control group. Infection by T. cruzi increased acetylcholine and nitric oxide levels and histopathological damage in the brain of mice associated to increased myeloperoxidase activity. Therefore, an intense inflammatory response in mice with acute Chagas disease in the central nervous system caused an anti-inflammatory response by the activation of the cholinergic inflammatory pathway.

  16. Intradermal Skin Testing in Allergic Rhinitis and Asthma with Negative Skin Prick Tests.

    PubMed

    Erel, Fuat; Sarioglu, Nurhan; Kose, Mehmet; Kaymakci, Mustafa; Gokcen, Mucahide; Kepekci, Ahmet Hamdi; Arslan, Mehmet

    2017-06-01

    Taking medical history, physical examination, and performing some in vivo and in vitro tests are necessary for the diagnosis of allergy. Skin prick test (SPT) is considered as the standard method and first-line approach for the detection of allergic sensitization. Although mainly SPT is used for the detection of allergic sensitization, intradermal skin test (IDST) may be necessary, especially in patients with a negative SPT result. IDST is quite safe; however, is nowadays seldom used for detection of inhalant allergy and its value remains controversial. We aimed to investigate whether IDST is useful and necessary in diagnosis of respiratory allergies or not. This study involved 4223 patients with allergic rhinitis (AR) and/or bronchial asthma (BA). SPT results were positive in 2419 patients (57%) and negative in 1804 (43%). IDST was applied to 344 patients with marked allergic symptoms and with negative SPT results. Out of 344 patients, 152 (44%) showed allergic sensitization to IDST. The most commonly encountered allergic response was against the house dust mite (HDM) (32.6%). Allergic response against fungal spores was also relatively high (22%), while the pollen allergy rate (4.3%) was quite low. In BA patients with negative prick test, IDST made a significant contribution to the diagnosis of HDM allergy (p=0.003). To avoid missed diagnosis of AR and BA, particularly regarding  the HDM allergy, application of IDST may be beneficial; therefore, IDST should be considered as the next step after SPT for diagnosis of allergy prior to in vitro or provocation tests.

  17. Indoor allergens, environmental avoidance, and allergic respiratory disease.

    PubMed

    Bush, Robert K

    2008-01-01

    Indoor allergen exposure to sources such as house-dust mites, pets, fungi, and insects plays a significant role in patients with allergic rhinitis and asthma. The identification of the major allergens has led to methods that can quantitate exposure, e.g., immunoassays for Der p 1 in settled dust samples. Sensitization and the development of allergic respiratory disease result from complex genetic and environmental interactions. New paradigms that examine the role of other environmental factors, including exposure to proteases that can activate eosinophils and initiate Th2 responses, and epigenetics, are being explored. Recommendations for specific environmental allergen avoidance measures are discussed for house-dust mites, cockroaches, animal dander, and fungi. Specific measures to reduce indoor allergen exposure when vigorously applied may reduce the risk of sensitization and symptoms of allergic respiratory disease, although further research will be necessary to establish cost-effective approaches.

  18. Maternal Microbe-Specific Modulation of Inflammatory Response in Extremely Low-Gestational-Age Newborns

    PubMed Central

    Fichorova, Raina N.; Onderdonk, Andrew B.; Yamamoto, Hidemi; Delaney, Mary L.; DuBois, Andrea M.; Allred, Elizabeth; Leviton, Alan

    2011-01-01

    The fetal response to intrauterine inflammatory stimuli appears to contribute to the onset of preterm labor as well as fetal injury, especially affecting newborns of extremely low gestational age. To investigate the role of placental colonization by specific groups of microorganisms in the development of inflammatory responses present at birth, we analyzed 25 protein biomarkers in dry blood spots obtained from 527 newborns delivered by Caesarean section in the 23rd to 27th gestation weeks. Bacteria were detected in placentas and characterized by culture techniques. Odds ratios for having protein concentrations in the top quartile for gestation age for individual and groups of microorganisms were calculated. Mixed bacterial vaginosis (BV) organisms were associated with a proinflammatory pattern similar to those of infectious facultative anaerobes. Prevotella and Gardnerella species, anaerobic streptococci, peptostreptococci, and genital mycoplasmas each appeared to be associated with a different pattern of elevated blood levels of inflammation-related proteins. Lactobacillus was associated with low odds of an inflammatory response. This study provides evidence that microorganisms colonizing the placenta provoke distinctive newborn inflammatory responses and that Lactobacillus may suppress these responses. PMID:21264056

  19. TGF-Beta Gene Polymorphisms in Food Allergic versus Non-Food Allergic Eosinophilic Esophagitis

    DTIC Science & Technology

    2014-12-01

    past reports, the majority of our EE subjects are male, Caucasian, and have another atopic disorder (asthma, allergy, eczema and/or food allergy...or skin prick testing positive Table 2: Co-existent Allergic Characteristics of Pediatric EoE Population Asthma (%) Allergic Rhinitis (%) Eczema ...Consistent with high rates of atopy in the EoE population, 36% had asthma, 53% had allergic rhinitis, 43% had eczema , and 42% had a an immediate

  20. Inflammatory responses to psychological stress in fatigued breast cancer survivors: relationship to glucocorticoids.

    PubMed

    Bower, Julienne E; Ganz, Patricia A; Aziz, Najib; Olmstead, Richard; Irwin, Michael R; Cole, Steve W

    2007-03-01

    Fatigue is a common problem following cancer treatment and our previous studies suggest that a chronic inflammatory process might contribute to cancer-related fatigue. However, immune responses to challenge have not yet been evaluated among individuals with cancer-related fatigue, and it is not known what mechanisms drive increased levels of inflammatory markers in fatigued cancer survivors. We have previously reported that fatigued breast cancer survivors show a blunted cortisol response to an experimental psychological stressor. In this report, we focus on inflammatory responses to this stressor and their relationship to circulating glucocorticoids and cellular sensitivity to glucocorticoid inhibition. Relative to non-fatigued control survivors, participants experiencing persistent fatigue showed significantly greater increases in LPS-stimulated production of IL-1beta and IL-6 following the stressor (Group x Time interaction: p<.05). Fatigued participants did not show any difference in cellular sensitivity to cortisol inhibition of cytokine production, but they did show significantly less salivary cortisol increase in the aftermath of the stressor. Moreover, blunted cortisol responses were associated with significantly increased production of IL-6 in response to LPS stimulation (p<.05). These data provide further evidence of enhanced inflammatory processes in fatigued breast cancer survivors and suggest that these processes may stem in part from decreased glucocorticoid response to stress.

  1. Uric acid promotes an acute inflammatory response to sterile cell death in mice

    PubMed Central

    Kono, Hajime; Chen, Chun-Jen; Ontiveros, Fernando; Rock, Kenneth L.

    2010-01-01

    Necrosis stimulates inflammation, and this response is medically relevant because it contributes to the pathogenesis of a number of diseases. It is thought that necrosis stimulates inflammation because dying cells release proinflammatory molecules that are recognized by the immune system. However, relatively little is known about the molecular identity of these molecules and their contribution to responses in vivo. Here, we investigated the role of uric acid in the inflammatory response to necrotic cells in mice. We found that dead cells not only released intracellular stores of uric acid but also produced it in large amounts postmortem as nucleic acids were degraded. Using newly developed Tg mice that have reduced levels of uric acid either intracellularly and/or extracellularly, we found that uric acid depletion substantially reduces the cell death–induced inflammatory response. Similar results were obtained with pharmacological treatments that reduced uric acid levels either by blocking its synthesis or hydrolyzing it in the extracellular fluids. Importantly, uric acid depletion selectively inhibited the inflammatory response to dying cells but not to microbial molecules or sterile irritant particles. Collectively, our data identify uric acid as a proinflammatory molecule released from dying cells that contributes significantly to the cell death–induced inflammatory responses in vivo. PMID:20501947

  2. Cross-allergic reactions to legumes in lupin and fenugreek-sensitized mice.

    PubMed

    Vinje, N E; Namork, E; Løvik, M

    2012-10-01

    Several legumes may induce allergy, and there is extensive serological cross-reactivity among legumes. This cross-reactivity has traditionally been regarded to have limited clinical relevance. However, the introduction of novel legumes to Western countries may have changed this pattern, and in some studies cross-allergy to lupin has been reported in more than 60% of peanut-allergic patients. We wanted to explore cross-reactions among legumes using two newly established mouse models of food allergy. Mice were immunized perorally with fenugreek or lupin with cholera toxin as adjuvant. The mice were challenged with high doses of fenugreek, lupin, peanut or soy, and signs of anaphylactic reactions were observed. Cross-allergic mechanisms were investigated using serum mouse mast cell protease-1 (MMCP-1), antibody responses, immunoblotting and ex vivo production of cytokines by spleen cells. Signs of cross-allergy were observed for all the tested legumes in both models. The cross-allergic symptoms were milder and affected fewer mice than the primary allergic responses. The cross-allergy was reflected to a certain extent in the antibody and T-cell responses, but not in serum MMCP-1 levels. Cross-allergy to peanut, soy, fenugreek and lupin was observed in lupin-sensitized and fenugreek-sensitized mice. Differences in serological responses between primary allergy and cross-allergy might be due to mediation through different immune mechanisms or reflect different epitope affinity to IgE. These differences need to be further investigated. © 2012 The Authors. Scandinavian Journal of Immunology © 2012 Blackwell Publishing Ltd.

  3. Alternative products to treat allergic rhinitis and alternative routes for allergy immunotherapy.

    PubMed

    Ipci, Kagan; Oktemer, Tugba; Muluk, Nuray Bayar; Şahin, Ethem; Altıntoprak, Niyazi; Bafaqeeh, Sameer Ali; Kurt, Yasemin; Mladina, Ranko; Šubarić, Marin; Cingi, Cemal

    2016-09-01

    Some alternative products instead of immunotherapy are used in patients with allergic rhinitis (AR). In this paper, alternative products to treat allergic rhinitis and alternative routes for allergy immunotherapy are reviewed. Alternative products and methods used instead of immunotherapy are tea therapy, acupuncture, Nigella sativa, cinnamon bark, Spanish needle, acerola, capsaicin (Capsicum annum), allergen-absorbing ointment, and cellulose powder. N. sativa has been used in AR treatment due to its anti-inflammatory effects. N. sativa oil also inhibits the cyclooxygenase and 5-lipoxygenase pathways of arachidonic acid metabolism. The beneficial effects of N. sativa seed supplementation on the symptoms of AR may be due to its antihistaminic properties. To improve the efficacy of immunotherapy, some measures are taken regarding known immunotherapy applications and alternative routes of intralymphatic immunotherapy and epicutaneous immunotherapy are used. There are alternative routes and products to improve the efficacy of immunotherapy.

  4. Alveolar Macrophages Play a Key Role in Cockroach-Induced Allergic Inflammation via TNF-α Pathway

    PubMed Central

    Kim, Joo Young; Sohn, Jung Ho; Choi, Je-Min; Lee, Jae-Hyun; Hong, Chein-Soo; Lee, Joo-Shil; Park, Jung-Won

    2012-01-01

    The activity of the serine protease in the German cockroach allergen is important to the development of allergic disease. The protease-activated receptor (PAR)-2, which is expressed in numerous cell types in lung tissue, is known to mediate the cellular events caused by inhaled serine protease. Alveolar macrophages express PAR-2 and produce considerable amounts of tumor necrosis factor (TNF)-α. We determined whether the serine protease in German cockroach extract (GCE) enhances TNF-α production by alveolar macrophages through the PAR-2 pathway and whether the TNF-α production affects GCE-induced pulmonary inflammation. Effects of GCE on alveolar macrophages and TNF-α production were evaluated using in vitro MH-S and RAW264.6 cells and in vivo GCE-induced asthma models of BALB/c mice. GCE contained a large amount of serine protease. In the MH-S and RAW264.7 cells, GCE activated PAR-2 and thereby produced TNF-α. In the GCE-induced asthma model, intranasal administration of GCE increased airway hyperresponsiveness (AHR), inflammatory cell infiltration, productions of serum immunoglobulin E, interleukin (IL)-5, IL-13 and TNF-α production in alveolar macrophages. Blockade of serine proteases prevented the development of GCE induced allergic pathologies. TNF-α blockade also prevented the development of such asthma-like lesions. Depletion of alveolar macrophages reduced AHR and intracellular TNF-α level in pulmonary cell populations in the GCE-induced asthma model. These results suggest that serine protease from GCE affects asthma through an alveolar macrophage and TNF-α dependent manner, reflecting the close relation of innate and adaptive immune response in allergic asthma model. PMID:23094102

  5. HETEROGENEITY OF SYSTEMIC INFLAMMATORY RESPONSES TO PERIODONTAL THERAPY

    PubMed Central

    Behle, Jan H.; Sedaghatfar, Michael H.; Demmer, Ryan T.; Wolf, Dana L.; Celenti, Romanita; Kebschull, Moritz; Belusko, Paul B.; Herrera-Abreu, Miriam; Lalla, Evanthia; Papapanou, Panos N.

    2009-01-01

    Aims We investigated the effect of comprehensive periodontal therapy on the levels of multiple systemic inflammatory biomarkers. Methods Thirty patients with severe periodontitis received comprehensive periodontal therapy within a 6-week period. Blood samples were obtained at: one week pre- therapy (T1), therapy initiation (T2), treatment completion (T3), and 4 weeks thereafter (T4). We assessed plasma concentrations of 19 biomarkers using multiplex assays, and serum IgG antibodies to periodontal bacteria using checkerboard immunoblotting. At T2 and T4, dental plaque samples were analyzed using checkerboard hybridizations. Results At T3, PAI-1, sE-selectin, sVCAM-1, MMP-9, myeloperoxidase, and a composite Summary Inflammatory Score (SIS) were significantly reduced. However, only sE-selectin, sICAM, and serum amyloid P sustained a reduction at T4. Responses were highly variable: analyses of SIS slopes between baseline and T4 showed that approximately 1/3 and 1/4 of the patients experienced marked reduction and pronounced increase in systemic inflammation, respectively, while the remainder were seemingly unchanged. Changes in inflammatory markers correlated poorly with clinical, microbiological and serological markers of periodontitis. Conclusions Periodontal therapy resulted in an overall reduction of systemic inflammation, but the responses were inconsistent across subjects and largely not sustainable. The determinants of this substantial heterogeneity need to be explored further. PMID:19426174

  6. A metabolomics and mouse models approach to study inflammatory and immune responses to radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fornace, Albert J.; Li, Henghong

    2013-12-02

    The three-year project entitled "A Metabolomics and Mouse Models Approach to Study Inflammatory and Immune Responses to Radiation" was initiated in September 2009. The overall objectives of this project were to investigate the acute and persistent effects of low dose radiation on T cell lymphocyte function and physiology, as well the contributions of these cells to radiation-induced inflammatory responses. Inflammation after ionizing radiation (IR), even at low doses, may impact a variety of disease processes, including infectious disease, cardiovascular disease, cancer, and other potentially inflammatory disorders. There were three overall specific aims: 1. To investigate acute and persistent effects ofmore » low dose radiation on T cell subsets and function; 2. A genetic approach with mouse models to investigate p38 MAPK pathways that are involved in radiation-induced inflammatory signaling; 3. To investigate the effect of radiation quality on the inflammatory response. We have completed the work proposed in these aims.« less

  7. Endogenous Acetylcholine Controls the Severity of Polymicrobial Sepsisassociated Inflammatory Response in Mice.

    PubMed

    Amaral, Flávio Almeida; Fagundes, Caio Tavares; Miranda, Aline Silva; Costa, Vivian Vasconceios; Resende, Livia; Gloria de Souza, Danielle da; Prado, Vania Ferreira; Teixeira, Mauro Martins; Maximo Prado, Marco Antonio; Teixeira, Antonio Lucio

    2016-01-01

    Acetylcholine (ACh) is the main mediator associated with the anti-inflammatory cholinergic pathway. ACh plays an inhibitory role in several inflammatory conditions. Sepsis is a severe clinical syndrome characterized by bacterial dissemination and overproduction of inflammatory mediators. The aim of the current study was to investigate the participation of endogenous ACh in the modulation of inflammatory response induced by a model of polymicrobial sepsis. Wild type (WT) and vesicular acetylcholine transporter knockdown (VAChT(KD)) mice were exposed to cecal ligation and perforation- induced sepsis. Levels of Tumor Necrosis Factor Alpha (TNF-α) and bacterial growth in peritoneal cavity and serum, and neutrophil recruitment into peritoneal cavity were assessed. The concentration of TNF-α in both compartments was higher in VAChT(KD) in comparison with WT mice. VAChT(KD) mice presented elevated burden of bacteria in peritoneum and blood, and impairment of neutrophil migration to peritoneal cavity. This phenotype was reversed by treatment with nicotine salt. These findings suggest that endogenous ACh plays a major role in the control of sepsis-associated inflammatory response.

  8. Review of Allergic and Photoallergic Contact Dermatitis from an Ingredient in a Medicament Vehicle Consisting of a Compress, Poultice, Plaster, and Tape

    PubMed Central

    Oiso, Naoki; Kawada, Akira

    2011-01-01

    The topical application of a medicament vehicle consisting of a compress, poultice, plaster, and tape containing a nonsteroidal anti-inflammatory drug or methyl salicylate is prevalent in Japan. The method is effective for conveying ingredients to the muscles via the skin for the relief of muscular pain. However, an ingredient in the occlusive vehicle can cause allergic and photoallergic contact dermatitis. We summarize cases reported over the past decade and discuss the current strategy for diminishing the risk of allergic and photoallergic contact dermatitis. PMID:21603165

  9. Soy Biodiesel Emissions Have Reduced Inflammatory Effects Compared to Diesel Emissions in Healthy and Allergic Mice

    EPA Science Inventory

    Toxicity of exhaust from combustion of petroleum diesel (BO), soy-based biodiesel (B100), or a 20% biodiesel/80% petrodiesel mix (B20) was compared in healthy and house dust mite (HDM)-allergic mice. Fuel emissions were diluted to target fine particulate matter (PM2.5) conrentrat...

  10. Preliminary evidence of a blunted anti-inflammatory response to exhaustive exercise in fibromyalgia

    PubMed Central

    Torgrimson-Ojerio, Britta; Ross, Rebecca L.; Dieckman, Nathaniel F.; Avery, Stephanie; Bennett, Robert M.; Jones, Kim D.; Guarino, Anthony J.; Wood, Lisa J.

    2014-01-01

    Exercise intolerance, as evidenced by a worsening of pain, fatigue, and stiffness after novel exertion, is a key feature of fibromyalgia (FM). In this pilot study, we investigate whether; insufficient muscle repair processes and impaired anti-inflammatory mechanisms result in an exaggerated pro-inflammatory cytokine response to exhaustive exercise, and consequently a worsening of muscle pain, stiffness and fatigue in the days post-exercise. We measured changes in muscle pain and tenderness, fatigue, stiffness, and serum levels of neuroendocrine and inflammatory cytokine markers in 20 women with FM and 16 healthy controls (HCs) before and after exhaustive treadmill exercise. Compared to HCs, FM participants failed to mount the expected anti-inflammatory response to exercise and experienced a worsening of symptoms post-exercise. However, changes in post-exertional symptoms were not mediated by post-exertional changes in pro-inflammatory cytokine levels. Implications of these findings are discussed. PMID:25457842

  11. Blood eosinophils from asymptomatic allergics have a reduced capacity to produce oxygen-free radicals.

    PubMed

    Woschnagg, C; Rak, S; Venge, P

    1998-12-01

    The eosinophil granulocyte is an inflammatory cell that plays an active part in diseases such as asthma and rhinitis. This study aimed to investigate oxidative metabolism by blood eosinophils taken from allergic rhinitis patients, asthmatics, and nonallergic controls before and during the birch-pollen season. Twenty patients with allergy to birch pollen and seasonal symptoms of rhinitis, some of whom were also asthmatic, were followed before and during the birch-pollen season in Sweden. The cells were purified using a Percoll gradient and the MACS system. Eosinophil purity in all samples was > 95%. Oxidative metabolism was measured by a chemiluminescence (CL) assay, with luminol and lucigenin acting as enhancers, and PMA, serum-treated zymosan (STZ), interleukin (IL)-5, or RANTES as stimuli. The allergic subjects showed reduced luminol CL when activated before the season with PMA (P = 0.040) or STZ (P = 0.0055). This was not seen during pollen exposure. STZ-activated lucigenin CL was also reduced before the season (P = 0.0027). The reduction was most evident in the group with asymptomatic rhinitis. In terms of eosinophil stimulation, IL-5 and RANTES were equally effective in allergic and nonallergic subjects, both before and during the pollen season. Blood eosinophils from asymptomatic allergics may have a lower capacity to produce oxygen-free radicals than eosinophils from nonallergics.

  12. Obesity promotes prolonged ovalbumin-induced airway inflammation modulating T helper type 1 (Th1), Th2 and Th17 immune responses in BALB/c mice.

    PubMed

    Silva, F M C; Oliveira, E E; Gouveia, A C C; Brugiolo, A S S; Alves, C C; Correa, J O A; Gameiro, J; Mattes, J; Teixeira, H C; Ferreira, A P

    2017-07-01

    Clinical and epidemiological studies indicate that obesity affects the development and phenotype of asthma by inducing inflammatory mechanisms in addition to eosinophilic inflammation. The aim of this study was to assess the effect of obesity on allergic airway inflammation and T helper type 2 (Th2) immune responses using an experimental model of asthma in BALB/c mice. Mice fed a high-fat diet (HFD) for 10 weeks were sensitized and challenged with ovalbumin (OVA), and analyses were performed at 24 and 48 h after the last OVA challenge. Obesity induced an increase of inducible nitric oxide synthase (iNOS)-expressing macrophages and neutrophils which peaked at 48 h after the last OVA challenge, and was associated with higher levels of interleukin (IL)-4, IL-9, IL-17A, leptin and interferon (IFN)-γ in the lungs. Higher goblet cell hyperplasia was associated with elevated mast cell influx into the lungs and trachea in the obese allergic mice. In contrast, early eosinophil influx and lower levels of IL-25, thymic stromal lymphopoietin (TSLP), CCL11 and OVA-specific immunoglobulin (IgE) were observed in the obese allergic mice in comparison to non-obese allergic mice. Moreover, obese mice showed higher numbers of mast cells regardless of OVA challenge. These results indicate that obesity affects allergic airway inflammation through mechanisms involving mast cell influx and the release of TSLP and IL-25, which favoured a delayed immune response with an exacerbated Th1, Th2 and Th17 profile. In this scenario, an intense mixed inflammatory granulocyte influx, classically activated macrophage accumulation and intense mucus production may contribute to a refractory therapeutic response and exacerbate asthma severity. © 2017 British Society for Immunology.

  13. The Initial Inflammatory Response to Bioactive Implants Is Characterized by NETosis

    PubMed Central

    Stoiber, Walter; Hannig, Matthias; Klappacher, Michaela; Hartl, Dominik

    2015-01-01

    Implants trigger an inflammatory response, which is important for osseointegration. Here we studied neutrophil extracellular trap (NET) release of human neutrophils in response to sandblasted large-grit acid etched (SLA) implants using fluorescent, confocal laser scanning and scanning electron microscopy. Our studies demonstrate that human neutrophils rapidly adhered to SLA surfaces, which triggered histone citrullination and NET release. Further studies showed that albumin or acetylsalicylic acid had no significant effects on the inflammatory response to SLA surfaces. In contrast to bioinert materials, which do not osseointegrate, the bioactivity of SLA surfaces is coupled with the ability to release NETs. Further investigations are necessary for clarifying the role of NETosis for osseointegration. PMID:25798949

  14. [Function and modulation of type Ⅱ innate lymphoid cells and their role in chronic upper airway inflammatory diseases].

    PubMed

    Liu, Y; Liu, Z

    2017-02-07

    Type Ⅱ innate lymphoid cells (ILC2) is a family of innate immune lymphocytes, which provide effective immune responses to cytokines. ILC2 are regulated by the nuclear transcription factor ROR alpha and GATA3, secreting cytokines IL-5 and IL-13, etc. Animal models have shown that ILC2 are involved in allergic diseases, such as asthma and atopic dermatitis, and also play a very important role in the metabolic balance. In addition, recent reports suggest that ILC2 not only play a role in the initial stages of the disease, but also can lead to chronic pathological changes in the disease, such as fibrosis, and may have an effect on acquired immunity. This paper mainly focus in the role and regulation of ILC2 cells, and review the research status of ILC2 in the field of chronic upper airway inflammatory diseases including allergic rhinitis and chronic rhinosinusitis.

  15. Clinical characteristics of an allergic reaction to a polyether dental impression material.

    PubMed

    Rafael, Caroline Freitas; Liebermann, Anja

    2017-04-01

    Allergic and hypersensitivity reactions to dental impression materials may occur throughout dental treatment, with diverse manifestations from slight redness to severe pain and a burning mouth with total stomatitis. Patients are often unaware of these allergic reactions, which makes early identification of the cause almost impossible. In addition, symptoms usually begin after 24 hours and mostly in patients with a preexisting history of allergic responses. This report describes a patient with a suspected allergic reaction to a polyether dental impression material during prosthetic rehabilitation associated with a mandibular telescopic denture. Although instances of such occurrence are rare, clinicians need to be aware of these symptoms and select materials carefully for patients with a history of allergy. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  16. The mycotoxin deoxynivalenol facilitates allergic sensitization to whey in mice.

    PubMed

    Bol-Schoenmakers, M; Braber, S; Akbari, P; de Graaff, P; van Roest, M; Kruijssen, L; Smit, J J; van Esch, B C A M; Jeurink, P V; Garssen, J; Fink-Gremmels, J; Pieters, R H H

    2016-11-01

    Intestinal epithelial stress or damage may contribute to allergic sensitization against certain food antigens. Hence, the present study investigated whether impairment of intestinal barrier integrity by the mycotoxin deoxynivalenol (DON) contributes to the development of whey-induced food allergy in a murine model. C3H/HeOuJ mice, orally exposed to DON plus whey once a week for 5 consecutive weeks, showed whey-specific IgG1 and IgE in serum and an acute allergic skin response upon intradermal whey challenge, although early initiating mechanisms of sensitization in the intestine appeared to be different compared with the widely used mucosal adjuvant cholera toxin (CT). Notably, DON exposure modulated tight-junction mRNA and protein levels, and caused an early increase in IL-33, whereas CT exposure affected intestinal γδ T cells. On the other hand, both DON- and CT-sensitized mice induced a time-dependent increase in the soluble IL-33 receptor ST2 (IL-1R1) in serum, and enhanced local innate lymphoid cells type 2 cell numbers. Together, these results demonstrate that DON facilitates allergic sensitization to food proteins and that development of sensitization can be induced by different molecular mechanisms and local immune responses. Our data illustrate the possible contribution of food contaminants in allergic sensitization in humans.

  17. The role of Peroxiredoxin 4 in inflammatory response and aging

    PubMed Central

    Klichko, Vladimir I.; Orr, William C.; Radyuk, Svetlana N.

    2015-01-01

    In prior studies, we determined that moderate overexpression of the Drosophila endoplasmic reticulum (ER)-localized peroxiredoxin (Prx), dPrx4, reduced oxidative damage and conferred beneficial effects on lifespan, while high level expression increased the incidence of tissue-specific apoptosis and dramatically shortened longevity. The detrimental pro-apoptotic and life-shortening effects were attributed to aberrant localization of dPrx4 and the apparent ER stress elicited by dPrx4 overexpression. In addition, activation of both the NF-κB- and JAK/STAT- mediated stress responses was detected, although it wasn’t clear whether these served as functional alarm signals. Here we extend these findings to show that activation of the NF-κB -dependent immunity-related/inflammatory genes, associated with lifespan shortening effects, is dependent on the activity of a Drosophila NF-κB ortholog, Relish. In the absence of Relish, the pro-inflammatory effects typically elicited by dPrx4 overexpression were not detected. The absence of Relish not only prevented hyperactivation of the immunity-related genes but also significantly rescued the severe shortening of lifespan normally observed in dPrx4 over-expressors. Overactivation of the immune/inflammatory responses was also lessened by JAK/STAT signaling. In addition we found that cellular immune/pro-inflammatory responses provoked by the oxidant paraquat but not bacteria are mediated via dPrx4 activity in the ER, as up-regulation of the immune-related genes was eliminated in flies underexpressing dPrx4 whereas immune responses triggered by bacteria were unaffected. Finally, efforts to reveal critical tissues where dPrx4 modulates longevity showed that broad targeting of dPrx4 to neuronal tissue had strong beneficial effects, while targeting expression to the fat body had deleterious effects. PMID:26689888

  18. Maternal exposure to environmental DEHP exacerbated OVA-induced asthmatic responses in rat offspring.

    PubMed

    Wang, Bohan; Liu, Fangwei; Dong, Jing; You, Mingdan; Fu, Yuanyuan; Li, Chao; Lu, Yiping; Chen, Jie

    2018-02-15

    Di (ethylhexyl) phthalate (DEHP) is a commonly used phthalates (PAEs) compound as plasticizer and becomes a severe environmental pollutant worldwide. Studies show that DEHP, as an environmental endocrine disruptor, has potential adverse effects on human. Epidemiologic studies indicate that DEHP is positively correlated to allergic diseases. Maternal exposure to DEHP may contribute to the increasing incidence of allergic diseases in offspring. However, the role of DEHP and its detailed mechanism in allergic disease of the offspring are still unclear. The aim of our study is to investigate whether DEHP maternal exposure could aggravate the allergic responses in offspring and its mechanism. Pregnant Wistar rats were randomly divided into three groups and exposed to different doses of DEHP. Half of the offspring were challenged with OVA after birth. All the pups of each group were sacrificed at postnatal day (PND)14, PND21 and PND28. The number of inflammatory cells in bronchoalveolar lavage was counted, lung pathological changes were observed, Th2 type cytokines expressions were checked, and the expression of TSLP signaling pathway were examined. Our results showed that maternal exposure to DEHP during pregnancy and lactation aggravated the eosinophils accumulation and the pathological inflammatory changes in pups' lung after OVA challenge. And maternal exposure to DEHP during pregnancy and lactation also elevated the levels of typical Th2 cytokines in OVA-challenged rats. What's more, maternal exposure to DEHP during pregnancy and lactation increased the levels of TSLP, TSLPR and IL-7R in the offspring after OVA challenge. Our study suggested that DEHP maternal exposure could aggravate the OVA-induced asthmatic responses in offspring. And this adjuvant effect of DEHP was related with the TSLP/TSLPR/IL-7R and its downstream signal pathways. Copyright © 2017. Published by Elsevier B.V.

  19. Purified aged garlic extract modulates allergic airway inflammation in BALB/c mice.

    PubMed

    Zare, Ahad; Farzaneh, Parvaneh; Pourpak, Zahra; Zahedi, Fatemeh; Moin, Mostafa; Shahabi, Shahram; Hassan, Zuhair M

    2008-09-01

    Garlic is known as a potent spice and a medicinal herb with broad therapeutic properties ranging from antibacterial to anticancer and anticoagulant. Our previous studies have shown some immunoregulatory effects for aged garlic extract, suggesting a key role for 14-kD glycoprotein of garlic in shifting the cytokine pattern to T helper-1. In present study, we investigated the effect of 1, 2, and 3 times intraperitoneal injections of aged garlic extract on an established allergic airway inflammation in murine model (BALB/c mice). The garlic extract, isolated by biochemical method, includes proteins precipitation by ammonium sulfate. After injection of the aged garlic extract, IFN-, anti allergen specific IgE and IgG1 were measured in lavage and serum by ELISA and histological assessment was performed on the lung tissues. The results indicated that three-time intra peritoneal injections of the aged garlic extract caused a significant decrease in the hallmark criteria of allergic airway inflammation levels which included eosinophil percentage in lavage, peribronchial lung eosinophils, IgG1 level in lavage and serum, mucous producing goblet cells grade and peribronchial and perivascular inflammation. Our findings in the present research suggested that aged garlic extract has the potential of attenuation of inflammatory features of allergic airway inflammation in murine model.

  20. Nonesterified fatty acids modify inflammatory response and eicosanoid biosynthesis in bovine endothelial cells.

    PubMed

    Contreras, G A; Raphael, W; Mattmiller, S A; Gandy, J; Sordillo, L M

    2012-09-01

    Intense lipid mobilization during the transition period in dairy cows is associated with increased disease susceptibility. The potential impact of altered plasma nonesterified fatty acids (NEFA) concentrations and composition on host inflammatory responses that may contribute to disease incidence and severity are not known. The objective of this study was to evaluate if increased NEFA concentrations could modify vascular inflammatory responses in vitro by changing the expression of important inflammatory mediators that are important in the pathogenesis of infectious diseases of transition cows such as mastitis and metritis. Bovine aortic endothelial cells (BAEC) were cultured with different concentrations of a NEFA mixture that reflected the plasma NEFA composition during different stages of lactation. The expression of cytokines, adhesion molecules, and eicosanoids were measured to assess changes in BAEC inflammatory phenotype. Addition of NEFA mixtures altered the fatty acid profile of BAEC by increasing the concentration of stearic acid (C18:0) and decreasing the content of arachidonic acid (C20:4n6c) and other long-chain polyunsaturated fatty acids in the phospholipid fraction. A significant increase also occurred in mRNA expression of cytokine and adhesion molecules that are associated with increased inflammatory responses during the transition period. Expression of cyclooxygenase 2, an important enzyme associated with eicosanoid biosynthesis, was increased in a NEFA concentration-dependent manner. The production of linoleic acid-derived eicosanoids 9- and 13-hydroxyoctadecadienoic acids also was increased significantly after treatment with NEFA mixtures. This research described for the first time specific changes in vascular inflammatory response during in vitro exposure to NEFA mixtures that mimic the composition and concentration found in cows during the transition period. These findings could explain, in part, alterations in inflammatory responses observed

  1. Japanese Guideline for Allergic Rhinitis 2014.

    PubMed

    Okubo, Kimihiro; Kurono, Yuichi; Fujieda, Shigeharu; Ogino, Satoshi; Uchio, Eiichi; Odajima, Hiroshi; Takenaka, Hiroshi

    2014-09-01

    Like asthma and atopic dermatitis, allergic rhinitis is an allergic disease, but of the three, it is the only type I allergic disease. Allergic rhinitis includes pollinosis, which is intractable and reduces quality of life (QOL) when it becomes severe. A guideline is needed to understand allergic rhinitis and to use this knowledge to develop a treatment plan. In Japan, the first guideline was prepared after a symposium held by the Japanese Society of Allergology in 1993. The current 7th edition was published in 2013, and is widely used today. To incorporate evidence based medicine (EBM) introduced from abroad, the most recent collection of evidence/literature was supplemented to the Practical Guideline for the Management of Allergic Rhinitis in Japan 2013. The revised guideline includes assessment of diagnosis/treatment and prescriptions for children and pregnant women, for broad clinical applications. An evidence-based step-by-step strategy for treatment is also described. In addition, the QOL concept and cost benefit analyses are also addressed. Along with Allergic Rhinitis and its Impact of Asthma (ARIA), this guideline is widely used for various clinical purposes, such as measures for patients with sinusitis, childhood allergic rhinitis, oral allergy syndrome, and anaphylaxis and for pregnant women. A Q&A section regarding allergic rhinitis in Japan was added to the end of this guideline.

  2. Dietary flavonoids: molecular mechanisms of action as anti- inflammatory agents.

    PubMed

    Marzocchella, Laura; Fantini, Massimo; Benvenuto, Monica; Masuelli, Laura; Tresoldi, Ilaria; Modesti, Andrea; Bei, Roberto

    2011-09-01

    Flavonoids are a large group of polyphenolic compounds, which are ubiquitously expressed in plants. They are grouped according to their chemical structure and function into flavonols, flavones, flavan-3-ols, anthocyanins, flavanones and isoflavones. Many of flavonoids are found in fruits, vegetables and beverages. Flavonoids have been demonstrated to have advantageous effects on human health because their anti-allergic, anti-inflammatory, anti-platelet aggregation, anti-tumor and anti-oxidant behavior. This report reviews the current knowledge on the molecular mechanisms of action of flavonoids as anti-inflammatory agents and also discusses the relevant patents.

  3. The Acute Exercise-Induced Inflammatory Response: A Comparison of Young-Adult Smokers and Nonsmokers

    ERIC Educational Resources Information Center

    Kastelein, Tegan E.; Donges, Cheyne E.; Mendham, Amy E.; Duffield, Rob

    2017-01-01

    Purpose: This study examined postexercise inflammatory and leukocyte responses in smokers and nonsmokers, as well as the effects of cigarette smoking on the acute postexercise inflammatory and leukocyte response in habitual smokers. Method: Eleven recreationally active male smokers and 11 nonsmokers matched for age and aerobic fitness were…

  4. Skin Prick Test in Patients with Chronic Allergic Skin Disorders

    PubMed Central

    Bains, Pooja; Dogra, Alka

    2015-01-01

    Background: Chronic allergic skin disorders are the inflammatory and proliferative conditions in which both genetic and environmental factors play important roles. Chronic idiopathic urticaria (CIU) and atopic dermatitis (AD) are among the most common chronic allergic skin disorders. These can be provoked by various food and aeroallergens. Skin prick tests (SPTs) represent the cheapest and most effective method to diagnose type I hypersensitivity. Positive skin tests with a history suggestive of clinical sensitivity strongly incriminate the allergen as a contributor to the disease process. Aims and Objectives: To determine the incidence of positive SPT in patients with chronic allergic skin disorders and to identify the various allergens implicated in positive SPT. Methods: Fifty patients of chronic allergic disorders were recruited in this study. They were evaluated by SPT with both food and aeroallergens. Results: In our study, SPT positivity in patients of CIU was 63.41% and in AD was 77.78%. Out of the 41 patients of CIU, the most common allergen groups showing SPT positivity were dust and pollen, each comprising 26.83% patients. SPT reaction was positive with food items (21.6%), insects (17.07%), fungus (12.20%), and Dermatophagoides farinae, that is, house dust mite (HDM) (7.32%). The allergen which showed maximum positivity was grain dust wheat (19.51%). Among nine patients of AD, maximum SPT positivity was seen with Dermatophagoides farinae, pollen Amaranthus spinosus, grain dust wheat, and cotton mill dust; each comprising 22.22% of patients. Conclusion: Our study showed that a significant number of patients of CIU and AD showed sensitivity to dust, pollen, insects, Dermatophagoides farinae, and fungi on SPT. Thus, it is an important tool in the diagnosis of CIU and AD. PMID:25814704

  5. Suppressive effects of lysozyme on polyphosphate-mediated vascular inflammatory responses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Jiwoo; Ku, Sae-Kwang; Lee, Suyeon

    Lysozyme, found in relatively high concentration in blood, saliva, tears, and milk, protects us from the ever-present danger of bacterial infection. Previous studies have reported proinflammatory responses of endothelial cells to the release of polyphosphate(PolyP). In this study, we examined the anti-inflammatory responses and mechanisms of lysozyme and its effects on PolyP-induced septic activities in human umbilical vein endothelial cells (HUVECs) and mice. The survival rates, septic biomarker levels, behavior of human neutrophils, and vascular permeability were determined in PolyP-activated HUVECs and mice. Lysozyme suppressed the PolyP-mediated vascular barrier permeability, upregulation of inflammatory biomarkers, adhesion/migration of leukocytes, and activation and/ormore » production of nuclear factor-κB, tumor necrosis factor-α, and interleukin-6. Furthermore, lysozyme demonstrated protective effects on PolyP-mediated lethal death and the levels of the related septic biomarkers. Therefore, these results indicated the therapeutic potential of lysozyme on various systemic inflammatory diseases, such as sepsis or septic shock. -- Highlights: •PolyP is shown to be an important mediator of vascular inflammation. •Lysozyme inhibited PolyP-mediated hyperpermeability. •Lysozyme inhibited PolyP-mediated septic response. •Lysozyme reduced PolyP-induced septic mortality.« less

  6. Soy Biodiesel Emissions Have Reduced Inflammatory Effects ...

    EPA Pesticide Factsheets

    Toxicity of exhaust from combustion of petroleum diesel (BO), soy-based biodiesel (B100), or a 20% biodiesel/80% petrodiesel mix (B20) was compared in healthy and house dust mite (HDM)-allergic mice. Fuel emissions were diluted to target fine particulate matter (PM2.5) conrentrations of 50, 150, or 500 µg/m(3). Studies in healthy mice showed greater levels of neutrophils and MIP-2 in bronchoaeolar lavage (BAL) fluid 2 h after a single 4-h exposure to BO compared with mice exposed to B20 or B100. No consistent differences in BAL cells and biochemistry, or hematological parameters, were observed after 5 d or 4 weeks of exposure to any of the emissions. Air-exposed HDM-allergc mice had significantly increased responsiveness to methacholine aerosol challenge compared with non-allergic mice. Exposure to any of the emissions for 4 weeks did not further increase responsiveness in either non-allergic or HDM­ allergic mice, and few parameters of allergic inflammation in BAL fluid were altered. Lung and nasal pathology were not significantly different among BO-, B20-, or B100-exposed groups. In HDM-allergic mice, exposure to BO, but not B20 or B100, significantly increased resting peribronchiolar lymph node cell proliferation and production of TH2 cytokines (IL-4, IL-5, and IL-13) and IL-17 in comparison with air-exposed allergic mice. These results suggest that diesel exhaust at a relatively high concentration (500 µg/m(3)) can induce inflammation acutely in healthy m

  7. Host DNA released by NETosis promotes rhinovirus-induced type 2 allergic asthma exacerbation

    PubMed Central

    Toussaint, Marie; Jackson, David J; Swieboda, Dawid; Guedán, Anabel; Tsourouktsoglou, Theodora-Dorita; Ching, Yee Man; Radermecker, Coraline; Makrinioti, Heidi; Aniscenko, Julia; Edwards, Michael R; Solari, Roberto; Farnir, Frédéric; Papayannopoulos, Venizelos; Bureau, Fabrice; Marichal, Thomas; Johnston, Sebastian L

    2018-01-01

    Respiratory viral infections represent the most common cause of allergic asthma exacerbations. Amplification of type 2 immune response is strongly implicated in asthma exacerbation, but how virus infection boosts type 2 responses is poorly understood. We report a significant correlation between release of host double stranded DNA (dsDNA) following rhinovirus infection and exacerbation of type 2 allergic inflammation in humans. In a mouse model of allergic airway hypersensitivity, we show that rhinovirus infection triggers dsDNA release associated with neutrophil extracellular traps (NETs) formation (NETosis). We further demonstrate that inhibiting NETosis by blocking neutrophil elastase, or degrading NETs with DNase protects mice from type 2 immunopathology. Furthermore, injection of mouse genomic DNA alone is sufficient to recapitulate many features of rhinovirus-induced type 2 immune responses and asthma pathology. Thus, NETosis and its associated extracellular dsDNA contribute to the pathogenesis and may represent potential therapeutic targets of rhinovirus-induced asthma exacerbations. PMID:28459437

  8. [Burning Vulva: Significance of Surgery in Inflammatory and Precancerous Vulvar Pathologies].

    PubMed

    Ghisu, Gian-Piero; Fink, Daniel

    2015-06-17

    Vuval pathologies manifested by allodynia and burning sensations can be due to infection, inflammatory dermatoses or other causes. Infective as well as certain inflammatory diseases, e.g. drug eruptions, allergic eczemas, irritative dermatitis/vulvitis, Behcet's Syndrome and pemphigus/pemphigoid usually respond well to conservative treatment. The category of inflammatory diseases also contains pathologies that in certain circumstances do require a surgical intervention, e.g. Lichen ruber planus/Lichen sclerosus, Condyloma, scars, premalignant lesions (VIN, genital M. Paget) and cancer. Vulodynia also can cause some stinging to the vulvar skin. The surgical aspects relating to the treatment of the benign and premalignant pathologies indicated above are mentioned in this mini-review.

  9. Preliminary evidence of a blunted anti-inflammatory response to exhaustive exercise in fibromyalgia.

    PubMed

    Torgrimson-Ojerio, Britta; Ross, Rebecca L; Dieckmann, Nathan F; Avery, Stephanie; Bennett, Robert M; Jones, Kim D; Guarino, Anthony J; Wood, Lisa J

    2014-12-15

    Exercise intolerance, as evidenced by a worsening of pain, fatigue, and stiffness after novel exertion, is a key feature of fibromyalgia (FM). In this pilot study, we investigate whether; insufficient muscle repair processes and impaired anti-inflammatory mechanisms result in an exaggerated pro-inflammatory cytokine response to exhaustive exercise, and consequently a worsening of muscle pain, stiffness and fatigue in the days post-exercise. We measured changes in muscle pain and tenderness, fatigue, stiffness, and serum levels of neuroendocrine and inflammatory cytokine markers in 20 women with FM and 16 healthy controls (HCs) before and after exhaustive treadmill exercise. Compared to HCs, FM participants failed to mount the expected anti-inflammatory response to exercise and experienced a worsening of symptoms post-exercise. However, changes in post-exertional symptoms were not mediated by post-exertional changes in pro-inflammatory cytokine levels. Implications of these findings are discussed. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Nickel (Ni) allergic patients with complications to Ni containing joint replacement show preferential IL-17 type reactivity to Ni.

    PubMed

    Summer, Burkhard; Paul, Carina; Mazoochian, Farhad; Rau, Christoph; Thomsen, Marc; Banke, Ingo; Gollwitzer, Hans; Dietrich, Karin-Almut; Mayer-Wagner, Susanne; Ruzicka, Thomas; Thomas, Peter

    2010-07-01

    Some nickel (Ni) allergic patients develop complications following Ni-containing arthroplasty. In the peri-implant tissue of such patients, we had observed lymphocyte dominated inflammation together with IFN-gamma and IL-17 expression. To determine whether Ni stimulation of peripheral blood mononuclear cells (PBMCs) of such patients would lead to a different cytokine pattern as compared to Ni-allergic patients with symptom-free arthroplasty. Based on history and patch testing in 15 Ni-allergic patients (five without implant, five with symptom-free arthroplasty, five with complicated arthroplasty) and five non-allergic individuals, lymphocyte transformation test (LTT) was performed using PBMC. In parallel in vitro cytokine response to Ni was assessed by real-time reverse transcriptase-polymerase chain reaction (RT-PCR). All 15 Ni-allergic individuals showed enhanced LTT reactivity to Ni (mean SI = 8.42 +/- 1.8) compared to the non-allergic control group. Predominant IFN-gamma expression to Ni was found both in the five allergic patients without arthroplasty and also in the five allergic, symptom-free arthroplasty patients. In contrast, in the five Ni-allergic patients with arthroplasty-linked complications a predominant, significant IL-17 expression to Ni was seen but not in patients with symptom-free arthroplasty. The predominant IL-17 type response to Ni may characterize a subgroup of Ni-allergic patients prone to develop lymphocytic peri-implant hyper-reactivity.

  11. Metformin inhibits inflammatory response via AMPK-PTEN pathway in vascular smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sun Ae; Choi, Hyoung Chul, E-mail: hcchoi@med.yu.ac.kr

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer PTEN was induced by metformin and inhibited by compound C and AMPK siRNA. Black-Right-Pointing-Pointer Metformin suppressed TNF-{alpha}-induced COX-2 and iNOS mRNA expression. Black-Right-Pointing-Pointer Compound C and bpv (pic) increased iNOS and COX-2 protein expression. Black-Right-Pointing-Pointer NF-{kappa}B activation was restored by inhibiting AMPK and PTEN. Black-Right-Pointing-Pointer AMPK and PTEN regulated TNF-{alpha}-induced ROS production in VSMCs. -- Abstract: Atherosclerosis is a chronic inflammation of the coronary arteries. Vascular smooth muscle cells (VSMCs) stimulated by cytokines and chemokines accelerate the inflammatory response and migrate to the injured endothelium during the progression of atherosclerosis. Activation of AMP activated protein kinase (AMPK), amore » key sensor maintaining metabolic homeostasis, suppresses the inflammatory response. However, how AMPK regulates the inflammatory response is poorly understood. To identify the mechanism of this response, we focused on phosphatase and tensin homolog (PTEN), which is a negative regulator of inflammation. We investigated that activation of AMPK-induced PTEN expression and suppression of the inflammatory response through the AMPK-PTEN pathway in VSMCs. We treated with the well-known AMPK activator metformin to induce PTEN expression. PTEN was induced by metformin (2 mM) and inhibited by compound C (10 {mu}M) and AMPK siRNA. Tumor necrosis factor-alpha (TNF-{alpha}) was used to induce inflammation. The inflammatory response was confirmed by cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS) expression, and activation of nuclear factor (NF)-{kappa}B. Metformin suppressed COX-2 and iNOS mRNA and protein expression dose dependently. Treatment with compound C and bpv (pic) in the presence of metformin, iNOS and COX-2 protein expression increased. NF-{kappa}B activation decreased in response to metformin and was restored by inhibiting

  12. Mice exposed to dim light at night exaggerate inflammatory responses to lipopolysaccharide.

    PubMed

    Fonken, Laura K; Weil, Zachary M; Nelson, Randy J

    2013-11-01

    The mammalian circadian system regulates many physiological functions including inflammatory responses. Appropriately timed light information is essential for maintaining circadian organization. Over the past ∼120 years, urbanization and the widespread adoption of electric lights have dramatically altered lighting environments. Exposure to light at night (LAN) is pervasive in modern society and disrupts core circadian clock mechanisms. Because microglia are the resident macrophages in the brain and macrophages contain intrinsic circadian clocks, we hypothesized that chronic exposure to LAN would alter microglia cytokine expression and sickness behavior following LPS administration. Exposure to 4 weeks of dim LAN elevated inflammatory responses in mice. Mice exposed to dimly lit, as compared to dark, nights exaggerated changes in body temperature and elevated microglia pro-inflammatory cytokine expression following LPS administration. Furthermore, dLAN mice had a prolonged sickness response following the LPS challenge. Mice exposed to dark or dimly lit nights had comparable sickness behavior directly following the LPS injection; however, dLAN mice showed greater reductions in locomotor activity, increased anorectic behavior, and increased weight loss than mice maintained in dark nights 24h post-LPS injection. Overall, these data suggest that chronic exposure to even very low levels of light pollution may alter inflammatory responses. These results may have important implications for humans and other urban dwelling species that commonly experience nighttime light exposure. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. High-dose bee venom exposure induces similar tolerogenic B-cell responses in allergic patients and healthy beekeepers.

    PubMed

    Boonpiyathad, T; Meyer, N; Moniuszko, M; Sokolowska, M; Eljaszewicz, A; Wirz, O F; Tomasiak-Lozowska, M M; Bodzenta-Lukaszyk, A; Ruxrungtham, K; van de Veen, W

    2017-03-01

    The involvement of B cells in allergen tolerance induction remains largely unexplored. This study investigates the role of B cells in this process, by comparing B-cell responses in allergic patients before and during allergen immunotherapy (AIT) and naturally exposed healthy beekeepers before and during the beekeeping season. Circulating B cells were characterized by flow cytometry. Phospholipase A2 (PLA)-specific B cells were identified using dual-color staining with fluorescently labeled PLA. Expression of regulatory B-cell-associated surface markers, interleukin-10, chemokine receptors, and immunoglobulin heavy-chain isotypes, was measured. Specific and total IgG1, IgG4, IgA, and IgE from plasma as well as culture supernatants of PLA-specific cells were measured by ELISA. Strikingly, similar responses were observed in allergic patients and beekeepers after venom exposure. Both groups showed increased frequencies of plasmablasts, PLA-specific memory B cells, and IL-10-secreting CD73 - CD25 + CD71 + B R 1 cells. Phospholipase A2-specific IgG4-switched memory B cells expanded after bee venom exposure. Interestingly, PLA-specific B cells showed increased CCR5 expression after high-dose allergen exposure while CXCR4, CXCR5, CCR6, and CCR7 expression remained unaffected. This study provides the first detailed characterization of allergen-specific B cells before and after bee venom tolerance induction. The observed B-cell responses in both venom immunotherapy-treated patients and naturally exposed beekeepers suggest a similar functional immunoregulatory role for B cells in allergen tolerance in both groups. These findings can be investigated in other AIT models to determine their potential as biomarkers of early and successful AIT responses. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Anti-Inflammatory Effects of a Mixture of Lactic Acid Bacteria and Sodium Butyrate in Atopic Dermatitis Murine Model.

    PubMed

    Kim, Jeong A; Kim, Sung-Hak; Kim, In Sung; Yu, Da Yoon; Kim, Sung Chan; Lee, Seung Ho; Lee, Sang Suk; Yun, Cheol-Heui; Choi, In Soon; Cho, Kwang Keun

    2018-03-20

    Atopic dermatitis is a chronic and recurrent inflammatory skin disease. Recently, probiotics have been shown to suppress allergic symptoms through immunomodulatory responses. In the present study, combinatorial effects on allergic symptoms were identified in BALB/c mice fed with a mixture of four species of probiotics, Bifidobacterium lactis, Lactobacillus casei, Lactobacillus rhamnosus, and Lactobacillus plantarum, and sodium butyrate. Following sensitization with whey protein, the mice were challenged and divided into two groups: (1) mice administered with phosphate-buffered saline as a control and (2) mice administered with the probiotic mixture and sodium butyrate. Allergic symptoms were assessed by measuring ear thicknesses, serum histamine and IL-10 concentrations, and the quantities of leaked Evans blue. T cell differentiation was determined by analyzing the T cells groups in the mesenteric lymph nodes (MLNs) and spleen. To examine changes in the total gut microbiota, total fecal microflora was isolated, species identification was performed by DNA sequencing using Illumina MiSeq, and changes in intestinal beneficial bacteria were analyzed using quantitative polymerase chain reaction. Treatment with the probiotic mixture and sodium butyrate reduced ear thicknesses, the quantity of leaked Evans blue, and serum histamine values, while increasing serum IL-10 values. In the mouse model, the probiotic mixture and sodium butyrate increased Th1 and Treg cell differentiation in MLN and spleen tissues; the ratio of Firmicutes/Bacteroidetes, which is associated with reduction in allergic reactions; and microorganisms that lead to cell differentiation into Treg. These results suggest that the probiotic mixture and sodium butyrate can prevent and alleviate allergic symptoms.

  15. Upregulation of the axonal growth and the expression of substance P and its NK1 receptor in human allergic contact dermatitis.

    PubMed

    El-Nour, H; Lundeberg, L; Al-Tawil, R; Granlund, A; Lonne-Rahm, S-B; Nordlind, K

    2006-01-01

    Nerve fibers and sensory neuropeptides substance P and calcitonin gene-related peptide (CGRP) have been reported to be involved in allergic contact dermatitis (ACD). In the present study, we investigated the general innervation (using antibody against protein gene product 9.5, PGP 9.5), axonal growth (using antibody against growth associated protein, GAP-43), CGRP, and substance P with its receptor neurokinin 1 (NK1), in positive epicutaneous reactions to nickel sulphate from nickel-allergic patients, at the peak of inflammation, 72 hr after challenge with the antigen. There was an increased (p < 0.01) number of GAP-43 positive fibers in the eczematous compared with control skin, indicating an increased axonal growth already at 72 hr postchallenge. Double staining revealed a coexpression of CGRP and GAP-43 on dermal nerve fibers. There was no difference in the number of substance P and CGRP positive nerve fibers between eczematous and control skin. However, semiquantification analyses showed an increased expression of substance P positive inflammatory cells, being CD3, CD4, or CD8 positive, and NK1R positive inflammatory cells, being tryptase or CD3 positive. These results indicate a contribution of regenerating nerve fibers and substance P to the contact allergic reaction.

  16. IL-23 secreted by bronchial epithelial cells contributes to allergic sensitization in asthma model: role of IL-23 secreted by bronchial epithelial cells.

    PubMed

    Lee, Hyun Seung; Park, Da-Eun; Lee, Ji-Won; Chang, Yuna; Kim, Hye Young; Song, Woo-Jung; Kang, Hye-Ryun; Park, Heung-Woo; Chang, Yoon-Seok; Cho, Sang-Heon

    2017-01-01

    IL-23 has been postulated to be a critical mediator contributing to various inflammatory diseases. Dermatophagoides pteronyssinus (Der p) is one of the most common inhalant allergens. However, the role of IL-23 in Der p-induced mouse asthma model is not well understood, particularly with regard to the development of allergic sensitization in the airways. The objective of this study was to evaluate roles of IL-23 in Der p sensitization and asthma development. BALB/c mice were repeatedly administered Der p intranasally to develop Der p allergic sensitization and asthma. After Der p local administration, changes in IL-23 expression were examined in lung tissues and primary epithelial cells. Anti-IL-23p19 antibody was given during the Der p sensitization period, and its effects were examined. Effects of anti-IL-23p19 antibody at bronchial epithelial levels were also examined in vitro. The expression of IL-23 at bronchial epithelial layers was increased after Der p local administration in mouse. In Der p-induced mouse models, anti-IL-23p19 antibody treatment during allergen sensitization significantly diminished Der p allergic sensitization and several features of allergic asthma including the production of Th2 cytokines and the population of type 2 innate lymphoid cells in lungs. The activation of dendritic cells in lung-draining lymph nodes was also reduced by anti-IL-23 treatment. In murine lung alveolar type II-like epithelial cell line (MLE-12) cells, IL-23 blockade prevented cytokine responses to Der p stimulation, such as IL-1α, granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-33, and also bone marrow-derived dendritic cell activation. In conclusion, IL-23 is another important bronchial epithelial cell-driven cytokine which may contribute to the development of house dust mite allergic sensitization and asthma. Copyright © 2017 the American Physiological Society.

  17. A Recombinant Fragment of Human Surfactant Protein D Suppresses Basophil Activation and T-Helper Type 2 and B-Cell Responses in Grass Pollen-induced Allergic Inflammation.

    PubMed

    Qaseem, Asif S; Singh, Iesha; Pathan, Ansar A; Layhadi, Janice A; Parkin, Rebecca; Alexandra, Fedina; Durham, Stephen R; Kishore, Uday; Shamji, Mohamed H

    2017-12-15

    Recombinant fragment of human surfactant protein D (rfhSP-D) has been shown to suppress house dust mite- and Aspergillus fumigatus-induced allergic inflammation in murine models. We sought to elucidate the effect of rfhSP-D on high-affinity IgE receptor- and CD23-mediated, grass pollen-induced allergic inflammatory responses. rfhSP-D, containing homotrimeric neck and lectin domains, was expressed in Escherichia coli BL21(λDE3)pLysS cells. Peripheral blood mononuclear cells and sera were obtained from individuals with grass pollen allergy (n = 27). The effect of rfhSP-D on basophil activation and histamine release was measured by flow cytometry. IgE-facilitated allergen binding and presentation were assessed by flow cytometry. T-helper cell type 2 (Th2) cytokines were measured in cell culture supernatants. The effect of rfhSP-D on IgE production by B cells when stimulated with CD40L, IL-4, and IL-21 was also determined. rfhSP-D bound to Phleum pratense in a dose- and calcium-dependent manner. Allergen-induced basophil responsiveness and histamine release were inhibited in the presence of rfhSP-D, as measured by CD63, CD203c (P = 0.0086, P = 0.04205), and intracellularly labeled diamine oxidase (P = 0.0003, P = 0.0148). The binding of allergen-IgE complexes to B cells was reduced by 51% (P = 0.002) in the presence of rfhSP-D. This decrease was concomitant with reduction in CD23 expression on B cells (P < 0.001). rfhSP-D suppressed allergen-driven CD27 - CD4 + CRTh2 + T-cell proliferation (P < 0.01), IL-4, and IL-5 levels (all P < 0.01). Moreover, rfhSP-D inhibited CD40L/IL-4- and IL-21-mediated IgE production (77.12%; P = 0.02) by B cells. For the first time, to our knowledge, we show that rfhSP-D inhibited allergen-induced basophil responses at a single-cell level and suppressed CD23-mediated facilitated allergen presentation and Th2 cytokine production. In addition, rfhSP-D inhibited IgE synthesis by B cells, which is also a

  18. Purinergic signaling modulates the cerebral inflammatory response in experimentally infected fish with Streptococcus agalactiae: an attempt to improve the immune response.

    PubMed

    Souza, Carine F; Baldissera, Matheus D; Bottari, Nathiele B; Moreira, Karen L S; da Rocha, Maria Izabel U M; da Veiga, Marcelo L; Santos, Roberto C V; Baldisserotto, Bernardo

    2018-06-01

    Appropriate control of the immune response is a critical determinant of fish health, and the purinergic cascade has an important role in the immune and inflammatory responses. This cascade regulates the levels of adenosine triphosphate (ATP), adenosine diphosphate, adenosine monophosphate and adenosine (Ado), molecules involved in physiological or pathological events as inflammatory and anti-inflammatory mediators. Thus, the aim of this study was to evaluate whether purinergic signaling, through the activities of nucleoside triphosphate diphosphohydrolase (NTPDase), 5'-nucleotidase, and adenosine deaminase (ADA), is capable of modulating the cerebral immune and inflammatory responses in silver catfish that is experimentally infected with Streptococcus agalactiae. Cerebral NTPDase (with ATP as substrate) and 5'-nucleotidase activities increased, while ADA activity decreased in silver catfish that is experimentally infected with S. agalactiae, compared to the control group. Moreover, the cerebral levels of ATP and Ado increased in infected animals compared to the uninfected control group. Brain histopathology in infected animals revealed inflammatory demyelination (the presence of occasional bubbly collections), increased cellular density in the area near to pia-mater and intercellular edema. Based on this evidence, the modulation of the purinergic cascade by the enzymes NTPDase, 5'-nucleotidase, and ADA exerts an anti-inflammatory profile due to the regulation of ATP and Ado levels. This suggests involvement of purinergic enzymes on streptococcosis pathogenesis, through regulating cerebral ATP and Ado levels, molecules known to participate in physiological or pathological events as inflammatory and anti-inflammatory mediators, respectively. In summary, the modulation of the cerebral purinergic cascade exerts an anti-inflammatory profile in an attempt to reduce inflammatory damage.

  19. Bee Venom Decreases LPS-Induced Inflammatory Responses in Bovine Mammary Epithelial Cells.

    PubMed

    Jeong, Chang Hee; Cheng, Wei Nee; Bae, Hyojin; Lee, Kyung Woo; Han, Sang Mi; Petriello, Michael C; Lee, Hong Gu; Seo, Han Geuk; Han, Sung Gu

    2017-10-28

    The world dairy industry has long been challenged by bovine mastitis, an inflammatory disease, which causes economic loss due to decreased milk production and quality. Attempts have been made to prevent or treat this disease with multiple approaches, primarily through increased abuse of antibiotics, but effective natural solutions remain elusive. Bee venom (BV) contains a variety of peptides ( e.g. , melittin) and shows multiple bioactivities, including prevention of inflammation. Thus, in the current study, it was hypothesized that BV can reduce inflammation in bovine mammary epithelial cells (MAC-T). To examine the hypothesis, cells were treated with LPS (1 μg/ml) to induce an inflammatory response and the anti-inflammatory effects of BV (2.5 and 5 μg/ml) were investigated. The cellular mechanisms of BV against LPS-induced inflammation were also investigated. Results showed that BV can attenuate expression of an inflammatory protein, COX2, and pro-inflammatory cytokines such as IL-6 and TNF-α. Activation of NF-κB, an inflammatory transcription factor, was significantly downregulated by BV in cells treated with LPS, through dephosphorylation of ERK1/2. Moreover, pretreatment of cells with BV attenuated LPS-induced production of intracellular reactive oxygen species ( e.g. , superoxide anion). These results support our hypothesis that BV can decrease LPS-induced inflammatory responses in bovine mammary epithelial cells through inhibition of oxidative stress, NF-κB, ERK1/2, and COX-2 signaling.

  20. Probiotics for the prevention or treatment of allergic diseases.

    PubMed

    Prescott, Susan L; Björkstén, Bengt

    2007-08-01

    This review addresses the effects of probiotic bacteria on immune development and the role in the treatment and prevention of allergic disease. Although there is a sound theoretical basis for anticipating benefits, there are currently insufficient data to recommend probiotics as a part of standard therapy in any allergic conditions. Furthermore, although there have been several studies to show a benefit in prevention of atopic eczema, other studies have failed to support this. None of the studies has shown any clear preventive effect on sensitization, nor any allergic disease other than eczema. The term "probiotic" is often used loosely to include bacterial strains with little documented immunomodulatory capacity or controlled studies to support the claims. It is not known whether effects in experimental systems have any clinical relevance. Finally, very little is known about this large, complex internal ecosystem. Explanations for the varied results between studies include host factors (including genetic differences in microbial responses and allergic predisposition) and other environmental factors, such as general microbial burden, individual microbiota, diet (including consumption of prebiotic substances), and treatment with antibiotics. As more studies are completed, these factors are likely to make robust meta-analyses problematic to perform.

  1. Mediator profiles in tears during the conjunctival response induced by allergic reaction in the nasal mucosa.

    PubMed

    Pelikan, Zdenek

    2013-01-01

    The allergic reaction occurring primarily in the nasal mucosa can induce a secondary conjunctival response of an immediate (SICR), late (SLCR), or delayed (SDYCR) type in some patients with allergic conjunctivitis (AC). To investigate the concentration changes of histamine, tryptase, eosinophil cationic protein (ECP), eosinophil-derived neurotoxin (EDN), leukotrienes (LTB 4, LTC4, LTE4), myeloperoxidase (MPO), interferon-γ (IFN-γ), and interleukins (IL-2, IL-4, IL-5) in tears during the SICR, SLCR, and SDYCR. In 32 patients with AC, 11 SICR (p<0.01), 13 SLCR (p<0.001), and eight SDYCR (p<0.01) to nasal challenges with allergens (NPTs), the NPTs and 32 control tests with PBS were repeated and supplemented with the determination of these factors in tears. The SICRs were associated with significant concentration changes in tears (p<0.05) of histamine, tryptase, ECP, LTC4, and IL-4. The SLCRs were accompanied by significant changes in concentrations of histamine, ECP, LTB4, LTC4, MPO, IL-4, and IL-5. The SDYCRs were associated with significant concentration changes in tears (p<0.05) of LTB4, MPO, IFN-γ, and IL-2. No significant changes in these factors were recorded in tears during the 32 PBS controls (p>0.1) or in the ten control patients (p>0.1). These results provide evidence for causal involvement of nasal allergy in some patients with AC, inducing secondary conjunctival response of immediate (SICR), late SLCR, or delayed SDYCR type, associated with different mediator, cytokine, and cellular profiles in the tears, suggesting involvement of different hypersensitivity mechanisms. These results also emphasize the diagnostic value of nasal allergen challenge combined with monitoring of the conjunctival response in some patients with AC.

  2. Mediator profiles in tears during the conjunctival response induced by allergic reaction in the nasal mucosa

    PubMed Central

    2013-01-01

    Background The allergic reaction occurring primarily in the nasal mucosa can induce a secondary conjunctival response of an immediate (SICR), late (SLCR), or delayed (SDYCR) type in some patients with allergic conjunctivitis (AC). Objectives To investigate the concentration changes of histamine, tryptase, eosinophil cationic protein (ECP), eosinophil-derived neurotoxin (EDN), leukotrienes (LTB 4, LTC4, LTE4), myeloperoxidase (MPO), interferon-γ (IFN-γ), and interleukins (IL-2, IL-4, IL-5) in tears during the SICR, SLCR, and SDYCR. Methods In 32 patients with AC, 11 SICR (p<0.01), 13 SLCR (p<0.001), and eight SDYCR (p<0.01) to nasal challenges with allergens (NPTs), the NPTs and 32 control tests with PBS were repeated and supplemented with the determination of these factors in tears. Results The SICRs were associated with significant concentration changes in tears (p<0.05) of histamine, tryptase, ECP, LTC4, and IL-4. The SLCRs were accompanied by significant changes in concentrations of histamine, ECP, LTB4, LTC4, MPO, IL-4, and IL-5. The SDYCRs were associated with significant concentration changes in tears (p<0.05) of LTB4, MPO, IFN-γ, and IL-2. No significant changes in these factors were recorded in tears during the 32 PBS controls (p>0.1) or in the ten control patients (p>0.1). Conclusions These results provide evidence for causal involvement of nasal allergy in some patients with AC, inducing secondary conjunctival response of immediate (SICR), late SLCR, or delayed SDYCR type, associated with different mediator, cytokine, and cellular profiles in the tears, suggesting involvement of different hypersensitivity mechanisms. These results also emphasize the diagnostic value of nasal allergen challenge combined with monitoring of the conjunctival response in some patients with AC. PMID:23869165

  3. Bovine milk fat enriched in conjugated linoleic and vaccenic acids attenuates allergic airway disease in mice.

    PubMed

    Kanwar, R K; Macgibbon, A K; Black, P N; Kanwar, J R; Rowan, A; Vale, M; Krissansen, G W

    2008-01-01

    It has been argued that a reduction in the Western diet of anti-inflammatory unsaturated lipids, such as n-3 polyunsaturated fatty acids, has contributed to the increase in the frequency and severity of allergic diseases. We investigated whether feeding milk fat enriched in conjugated linoleic acid and vaccenic acids (VAs) ('enriched' milk fat), produced by supplementing the diet of pasture-fed cows with fish and sunflower oil, will prevent development of allergic airway responses. C57BL/6 mice were fed a control diet containing soybean oil and diets supplemented with milk lipids. They were sensitized by intraperitoneal injection of ovalbumin (OVA) on days 14 and 28, and challenged intranasally with OVA on day 42. Bronchoalveolar lavage fluid, lung tissues and serum samples were collected 6 days after the intranasal challenge. Feeding of enriched milk fat led to marked suppression of airway inflammation as evidenced by reductions in eosinophilia and lymphocytosis in the airways, compared with feeding of normal milk fat and control diet. Enriched milk fat significantly reduced circulating allergen-specific IgE and IgG1 levels, together with reductions in bronchoalveolar lavage fluid of IL-5 and CCL11. Treatment significantly inhibited changes in the airway including airway epithelial cell hypertrophy, goblet cell metaplasia and mucus hypersecretion. The two major components of enriched milk fat, cis-9, trans-11 conjugated linoleic acid and VA, inhibited airway inflammation when fed together to mice, whereas alone they were not effective. Milk fat enriched in conjugated linoleic and VAs suppresses inflammation and changes to the airways in an animal model of allergic airway disease.

  4. Micro124-mediated AHR expression regulates the inflammatory response of chronic rhinosinusitis (CRS) with nasal polyps.

    PubMed

    Liu, C C; Xia, M; Zhang, Y J; Jin, P; Zhao, L; Zhang, J; Li, T; Zhou, X M; Tu, Y Y; Kong, F; Sun, C; Shi, L; Zhao, M Q

    2018-06-02

    MicroRNAs represent a component of the innate immune responses that can restrain inflammatory signaling, miR124 is an important member of inflammation-associated miRNAs, and abnormal miR124 expression is observed in many inflammatory diseases and immune disorders. However, the role and signaling pathways of miR124 in chronic rhinosinusitis with nasal polyps (CRSwNPs) have not been studied in detail. The aryl hydrocarbon receptor (AHR) is a ligand-inducible transcription factor that is highly conserved in evolution and plays important roles in the inflammatory response process. In our study, we describe the role of miR124 in the inflammatory response of CRS with nasal polyps. We found that the expression of miR124 was decreased in nasal polyps, and negatively correlated with the expression of AHR. MiR124 can inhibit AHR expression by directly target 3' untranslated region (3'-UTR) of AHR. To further investigate the relationship between miR124, AHR and CRS inflammatory response, we transfect HNEpC cells with miR124 mimic, miR124 inhibitors or siRNA of AHR, then all the results showed that miR124 could regulates cellular inflammatory response through negatively regulating AHR expression. This study demonstrated that the regulation of AHR expression by miR124 is critical to the development of inflammatory response in CRSwNPs. Copyright © 2018. Published by Elsevier Inc.

  5. Immune response, diagnosis and treatment of allergic bronchopulmonary aspergillosis in cystic fibrosis lung disease.

    PubMed

    Eickmeier, Olaf; Rieber, Nikolaus; Eckrich, Jonas; Hector, Andreas; Graeppler-Mainka, Ute; Hartl, Dominik

    2013-01-01

    Patients with cystic fibrosis (CF) suffer from chronic infective lung disease, which determines morbidity and mortality. While bacteria, such as Pseudomonas aeruginosa, are well-known to contribute to pulmonary pathology, the relevance of fungi in CF airways remains poorly understood. The best studied fungus in CF is Aspergillus fumigatus, which frequently colonizes CF airways and causes a disease condition termed allergic bronchopulmonary aspergillosis. This review aims to provide an update on the immunological mechanisms, diagnostic approaches and therapeutic strategies for allergic bronchopulmonary aspergillosis and other Aspergillus fumigatusmediated phenotypes in CF lung disease.

  6. An aryl hydrocarbon receptor ligand acts on dendritic cells and T cells to suppress the Th17 response in allergic rhinitis patients.

    PubMed

    Wei, Ping; Hu, Guo-Hua; Kang, Hou-Yong; Yao, Hong-Bing; Kou, Wei; Liu, Hong; Zhang, Cheng; Hong, Su-Ling

    2014-05-01

    A predominant Th17 population is a marker of allergic rhinitis (AR). The aryl hydrocarbon receptor (AhR) exhibits strong immunomodulation potential via regulation of the differentiation of T lymphocytes and dendritic cells (DCs) after activation by its ligand, such as 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE). The aim of this study was to analyze the effect of AhR on Th17 differentiation by investigating the action of ITE on DCs and CD4(+) T cells from patients with AR. In all, 26 AR patients and 12 healthy controls were included in this study. The expression of interleukin (IL)-1β, IL-6, IL-10, and IL-17 in the culture supernatant and the presence of Th17 cells in CD4(+) T cells and DC-CD4(+) T-cell co-culture system were measured before and after treatment with ITE. We show that ITE significantly induced cell secretion of IL-10 and inhibited IL-1β and IL-6 production in DCs, and promoted IL-10 production and suppressed IL-17 expression in CD4(+) T cells in vitro. It also suppressed the expansion of Th17 cells in vitro. Our work demonstrates that ITE acts on DCs and CD4(+) T cells to inhibit the Th17 response that suppresses AR; the AhR-DC-Th17 axis may be an important pathway in the treatment of AR. ITE, a nontoxic AhR ligand, attenuated the Th17 response; thus, it appears to be a promising therapeutic candidate for suppressing the inflammatory responses associated with AR.

  7. Specific IgE in tear fluid and features of allergic conjunctivitis.

    PubMed

    Mimura, Tatsuya; Yamagami, Satoru; Kamei, Yuko; Goto, Mari; Matsubara, Masao

    2013-09-01

    The level of specific class E immunoglobulins (IgE) in tear fluid is a useful diagnostic indicator for allergic conjunctivitis, but it is still unclear whether the measurement of tear fluid IgE is helpful for assessing the severity of allergic conjunctivitis. In this study, we evaluated the relation between tear fluid levels of specific IgE and features of allergic conjunctivitis. A prospective, nonrandomized, cross-sectional study was conducted in patients with allergic conjunctivitis (n = 55, allergic group) and age- and sex-matched healthy control subjects (n = 50, control group). Levels of specific IgE for cedar pollen, cat epithelium/dander and Dermatophagoides pteronyssinus were measured in tear fluid with the Immfast Check J1®. A severity score (0, 1, 2 or 3) was assigned for various changes of the palpebral and bulbar conjunctiva, as well as for limbal and corneal lesions. The levels of specific IgE for both cedar pollen, and D. pteronyssinus were significantly higher in the allergic group compared with the control group (p < 0.0001), while the level of specific IgE for cat epithelium/dander showed no significant difference between the two groups (p = 0.0777). When IgE levels were divided into four classes, the classes for both D. Pteronyssinus and cat epithelium/dander IgE were correlated with four features of allergic conjunctivitis. On the other hand, no correlation was found between the class of cedar pollen IgE and any of the features of allergic conjunctivitis. This study demonstrated that measurement of specific IgE in tear fluid may be useful for determining the severity of allergic conjunctivitis induced by indoor allergens. Although measurement of IgE in tear fluid is only a supplemental tool for evaluating the clinical activity of allergic conjunctivitis, the test can be useful for detecting specific IgE antibodies responsible for this condition.

  8. Allergic Responses Induced by the Immunomodulatory Effects of Nanomaterials upon Skin Exposure

    PubMed Central

    Yoshioka, Yasuo; Kuroda, Etsushi; Hirai, Toshiro; Tsutsumi, Yasuo; Ishii, Ken J.

    2017-01-01

    Over the past decade, a vast array of nanomaterials has been created through the development of nanotechnology. With the increasing application of these nanomaterials in various fields, such as foods, cosmetics, and medicines, there has been concern about their safety, that is, nanotoxicity. Therefore, there is an urgent need to collect information about the biological effects of nanomaterials so that we can exploit their potential benefits and design safer nanomaterials, while avoiding nanotoxicity as a result of inhalation or skin exposure. In particular, the immunomodulating effect of nanomaterials is one of most interesting aspects of nanotoxicity. However, the immunomodulating effects of nanomaterials through skin exposure have not been adequately discussed compared with the effects of inhalation exposure, because skin penetration by nanomaterials is thought to be extremely low under normal conditions. On the other hand, the immunomodulatory effects of nanomaterials via skin may cause severe problems for people with impaired skin barrier function, because some nanomaterials could penetrate the deep layers of their allergic or damaged skin. In addition, some studies, including ours, have shown that nanomaterials could exhibit significant immunomodulating effects even if they do not penetrate the skin. In this review, we summarize our current knowledge of the allergic responses induced by nanomaterials upon skin exposure. First, we discuss nanomaterial penetration of the intact or impaired skin barrier. Next, we describe the immunomodulating effects of nanomaterials, focusing on the sensitization potential of nanomaterials and the effects of co-exposure of nanomaterials with substances such as chemical sensitizers or allergens, on the onset of allergy, following skin exposure. Finally, we discuss the potential mechanisms underlying the immunomodulating effects of nanomaterials by describing the involvement of the protein corona in the interaction of

  9. An aspirin-triggered lipoxin A4 stable analog displays a unique topical anti-inflammatory profile.

    PubMed

    Schottelius, Arndt J; Giesen, Claudia; Asadullah, Khusru; Fierro, Iolanda M; Colgan, Sean P; Bauman, John; Guilford, William; Perez, Hector D; Parkinson, John F

    2002-12-15

    Lipoxins and 15-epi-lipoxins are counter-regulatory lipid mediators that modulate leukocyte trafficking and promote the resolution of inflammation. To assess the potential of lipoxins as novel anti-inflammatory agents, a stable 15-epi-lipoxin A(4) analog, 15-epi-16-p-fluorophenoxy-lipoxin A(4) methyl ester (ATLa), was synthesized by total organic synthesis and examined for efficacy relative to a potent leukotriene B(4) (LTB(4)) receptor antagonist (LTB(4)R-Ant) and the clinically used topical glucocorticoid methylprednisolone aceponate. In vitro, ATLa was 100-fold more potent than LTB(4)R-Ant for inhibiting neutrophil chemotaxis and trans-epithelial cell migration induced by fMLP, but was approximately 10-fold less potent than the LTB(4)R-Ant in blocking responses to LTB(4). A broad panel of cutaneous inflammation models that display pathological aspects of psoriasis, atopic dermatitis, and allergic contact dermatitis was used to directly compare the topical efficacy of ATLa with that of LTB(4)R-Ant and methylprednisolone aceponate. ATLa was efficacious in all models tested: LTB(4)/Iloprost-, calcium ionophore-, croton oil-, and mezerein-induced inflammation and trimellitic anhydride-induced allergic delayed-type hypersensitivity. ATLa was efficacious in mouse and guinea pig skin inflammation models, exhibiting dose-dependent effects on edema, neutrophil or eosinophil infiltration, and epidermal hyperproliferation. We conclude that the LXA(4) and aspirin-triggered LXA(4) pathways play key anti-inflammatory roles in vivo. Moreover, these results suggest that ATLa and related LXA(4) analogs may have broad therapeutic potential in inflammatory disorders and could provide an alternative to corticosteroids in certain clinical settings.

  10. Inhalation of concentrated PM2.5 from Mexico City acts as an adjuvant in a guinea pig model of allergic asthma.

    PubMed

    Falcon-Rodriguez, Carlos Iván; De Vizcaya-Ruiz, Andrea; Rosas-Pérez, Irma Aurora; Osornio-Vargas, Álvaro Román; Segura-Medina, Patricia

    2017-09-01

    Exposure to Particulate Matter (PM) could function as an adjuvant depending on the city of origin in mice allergic asthma models. Therefore, our aim was to determine whether inhalation of fine particles (PM2.5) from Mexico City could act as an adjuvant inducing allergic sensitization and/or worsening the asthmatic response in guinea pig, as a suitable model of human asthma. Experimental groups were Non-Sensitized (NS group), sensitized with Ovalbumin (OVA) plus Aluminum hydroxide (Al(OH)3) as adjuvant (S + Adj group), and sensitized (OVA) without adjuvant (S group). All the animals were exposed to Filtered Air (FA) or concentrated PM2.5 (5 h/daily/3 days), employing an aerosol concentrator system, PM2.5 composition was characterized. Lung function was evaluated by barometric plethysmography (Penh index). Inflammatory cells present in bronchoalveolar lavage were counted as well as OVA-specific IgG1 and IgE were determined by ELISA assay. Our results showed in sensitized animals without Al(OH)3, that the PM2.5 exposure (609 ± 12.73 μg/m3) acted as an adjuvant, triggering OVA-specific IgG1 and IgE concentration. Penh index increased ∼9-fold after OVA challenge in adjuvant-sensitized animals as well as in S + PM2.5 group (∼6-fold), meanwhile NS + FA and S + FA lacked response. S + Adj + PM2.5 group showed an increase significantly of eosinophils and neutrophils in bronchoalveolar lavage. PM2.5 composition was made up of inorganic elements and Polycyclic Aromatic Hydrocarbons, as well as endotoxins and β-glucan, all these components could act as adjuvant. Our study demonstrated that acute inhalation of PM2.5 acted as an adjuvant, similar to the aluminum hydroxide effect, triggering allergic asthma in a guinea pig model. Furthermore, in sensitized animals with aluminum hydroxide an enhancing influence of PM2.5 exposure was observed as specific-hyperresponsiveness to OVA challenge (quickly response) and eosinophilic and neutrophilic airway

  11. Involvement of the Negative Feedback of IL-33 Signaling in the Anti-Inflammatory Effect of Electro-acupuncture on Allergic Contact Dermatitis via Targeting MicroRNA-155 in Mast Cells.

    PubMed

    Wang, Zhigang; Yi, Tao; Long, Man; Ding, Fengmin; Ouyang, Lichen; Chen, Zebin

    2018-06-01

    In this study, we aimed to investigate the effect of electro-acupuncture (EA) at the Zusanli acupoint (ST36) on interleukin (IL)-33-mediated mast cell activation. Firstly, 2,4-dinitrofluorobenzene (DNFB)-induced allergic contact dermatitis (ACD) in rats was developed with or without EA treatment. Then, rat peritoneal mast cells (RPMCs) were obtained and cultured in the presence of IL-33. EA treatment relieved ear swelling and reduced mast cell infiltration in the local inflammation area with DNFB challenge, accompanying the decrement of IL-33 production. RPMCs isolated from ACD rats with EA treatment showed significant downregulation of IL-6, TNF-α, IL-13, and MCP-1 production following IL-33 stimulation. However, there was no obvious difference in surface ST2 receptor expression among different groups. In addition, EA selectively altered IL-33 signaling, suppressing p38 phosphorylation as well as NF-κB- and AP-1-mediated transcription but not Akt phosphorylation. Importantly, EA lowered microRNA (miR)-155 expression in the RPMCs, which presented a positive correlation with IL-33-induced IL-6 production. Furthermore, overexpression of miR-155 in the RPMCs was established following miR-155 mimic transfection. RPMCs with the overexpressed miR-155 displayed an obvious increment of inflammatory cytokine and abrogated the inhibitive effect of EA on NF-κB- and AP-1-regulated transcription in response to IL-33 compared with those without transfected-miR-155. These findings demonstrate EA treatment inhibits NF-κB and AP-1 activation as well as promotes the negative feedback regulation of IL-33 signaling via targeting miR-155 in mast cells, which contribute to the anti-inflammatory effect of EA on DNFB-induced ACD in rats.

  12. Amniotic Fluid Protein Profiles of Intraamniotic Inflammatory Response to Ureaplasma spp. and Other Bacteria

    PubMed Central

    Kacerovsky, Marian; Celec, Peter; Vlkova, Barbora; Skogstrand, Kristin; Hougaard, David M.; Cobo, Teresa; Jacobsson, Bo

    2013-01-01

    Objective This study aimed to evaluate the amniotic fluid protein profiles and the intensity of intraamniotic inflammatory response to Ureaplasma spp. and other bacteria, using the multiplex xMAP technology. Methods A retrospective cohort study was undertaken in the Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Czech Republic. A total of 145 pregnant women with preterm prelabor rupture of membranes between gestational age 24+0 and 36+6 weeks were included in the study. Amniocenteses were performed. The presence of Ureaplasma spp. and other bacteria was evaluated using 16S rRNA gene sequencing. The levels of specific proteins were determined using multiplex xMAP technology. Results The presence of Ureaplasma spp. and other bacteria in the amniotic fluid was associated with increased levels of interleukin (IL)-6, IL-8, IL-10, brain-derived neurotropic factor, granulocyte macrophage colony stimulating factor, monocyte chemotactic protein-1, macrophage inflammatory protein-1, and matrix metalloproteinasis-9. Ureaplasma spp. were also associated with increased levels of neurotropin-3 and triggering receptor expressed on myeloid cells-1. Conclusions The presence of Ureaplasma spp. in the amniotic fluid is associated with a slightly different protein profile of inflammatory response, but the intensity of inflammatory response to Ureaplasma spp. is comparable with the inflammatory response to other bacteria. PMID:23555967

  13. Amniotic fluid protein profiles of intraamniotic inflammatory response to Ureaplasma spp. and other bacteria.

    PubMed

    Kacerovsky, Marian; Celec, Peter; Vlkova, Barbora; Skogstrand, Kristin; Hougaard, David M; Cobo, Teresa; Jacobsson, Bo

    2013-01-01

    This study aimed to evaluate the amniotic fluid protein profiles and the intensity of intraamniotic inflammatory response to Ureaplasma spp. and other bacteria, using the multiplex xMAP technology. A retrospective cohort study was undertaken in the Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Czech Republic. A total of 145 pregnant women with preterm prelabor rupture of membranes between gestational age 24+0 and 36+6 weeks were included in the study. Amniocenteses were performed. The presence of Ureaplasma spp. and other bacteria was evaluated using 16S rRNA gene sequencing. The levels of specific proteins were determined using multiplex xMAP technology. The presence of Ureaplasma spp. and other bacteria in the amniotic fluid was associated with increased levels of interleukin (IL)-6, IL-8, IL-10, brain-derived neurotropic factor, granulocyte macrophage colony stimulating factor, monocyte chemotactic protein-1, macrophage inflammatory protein-1, and matrix metalloproteinasis-9. Ureaplasma spp. were also associated with increased levels of neurotropin-3 and triggering receptor expressed on myeloid cells-1. The presence of Ureaplasma spp. in the amniotic fluid is associated with a slightly different protein profile of inflammatory response, but the intensity of inflammatory response to Ureaplasma spp. is comparable with the inflammatory response to other bacteria.

  14. Allergic asthma is distinguished by sensitivity of allergen-specific CD4+ T cells and airway structural cells to type 2 inflammation.

    PubMed

    Cho, Josalyn L; Ling, Morris F; Adams, David C; Faustino, Lucas; Islam, Sabina A; Afshar, Roshi; Griffith, Jason W; Harris, Robert S; Ng, Aylwin; Radicioni, Giorgia; Ford, Amina A; Han, Andre K; Xavier, Ramnik; Kwok, William W; Boucher, Richard; Moon, James J; Hamilos, Daniel L; Kesimer, Mehmet; Suter, Melissa J; Medoff, Benjamin D; Luster, Andrew D

    2016-10-05

    Despite systemic sensitization, not all allergic individuals develop asthma symptoms upon airborne allergen exposure. Determination of the factors that lead to the asthma phenotype in allergic individuals could guide treatment and identify novel therapeutic targets. We used segmental allergen challenge of allergic asthmatics (AA) and allergic nonasthmatic controls (AC) to determine whether there are differences in the airway immune response or airway structural cells that could drive the development of asthma. Both groups developed prominent allergic airway inflammation in response to allergen. However, asthmatic subjects had markedly higher levels of innate type 2 receptors on allergen-specific CD4 + T cells recruited into the airway. There were also increased levels of type 2 cytokines, increased total mucin, and increased mucin MUC5AC in response to allergen in the airways of AA subjects. Furthermore, type 2 cytokine levels correlated with the mucin response in AA but not AC subjects, suggesting differences in the airway epithelial response to inflammation. Finally, AA subjects had increased airway smooth muscle mass at baseline measured in vivo using novel orientation-resolved optical coherence tomography. Our data demonstrate that the development of allergic asthma is dependent on the responsiveness of allergen-specific CD4 + T cells to innate type 2 mediators as well as increased sensitivity of airway epithelial cells and smooth muscle to type 2 inflammation. Copyright © 2016, American Association for the Advancement of Science.

  15. Exacerbation of allergic inflammation in mice exposed to diesel exhaust particles prior to viral infection

    PubMed Central

    Jaspers, Ilona; Sheridan, Patricia A; Zhang, Wenli; Brighton, Luisa E; Chason, Kelly D; Hua, Xiaoyang; Tilley, Stephen L

    2009-01-01

    Background Viral infections and exposure to oxidant air pollutants are two of the most important inducers of asthma exacerbation. Our previous studies have demonstrated that exposure to diesel exhaust increases the susceptibility to influenza virus infections both in epithelial cells in vitro and in mice in vivo. Therefore, we examined whether in the setting of allergic asthma, exposure to oxidant air pollutants enhances the susceptibility to respiratory virus infections, which in turn leads to increased virus-induced exacerbation of asthma. Ovalbumin-sensitized (OVA) male C57BL/6 mice were instilled with diesel exhaust particles (DEP) or saline and 24 hours later infected with influenza A/PR/8. Animals were sacrificed 24 hours post-infection and analyzed for markers of lung injury, allergic inflammation, and pro-inflammatory cytokine production. Results Exposure to DEP or infection with influenza alone had no significant effects on markers of injury or allergic inflammation. However, OVA-sensitized mice that were exposed to DEP and subsequently infected with influenza showed increased levels of eosinophils in lung lavage and tissue. In addition Th2-type cytokines, such as IL-4 and IL-13, and markers of eosinophil chemotaxis, such as CCL11 and CCR3, were increased in OVA-sensitized mice exposed to DEP prior to infection with influenza. These mice also showed increased levels of IL-1α, but not IL-10, RANTES, and MCP-1 in lung homogenates. Conclusion These data suggest that in the setting of allergic asthma, exposure to diesel exhaust could enhance virus-induced exacerbation of allergic inflammation. PMID:19682371

  16. Antioxidant properties of Aller-7, a novel polyherbal formulation for allergic rhinitis.

    PubMed

    D'Souza, P; Amit, A; Saxena, V S; Bagchi, D; Bagchi, M; Stohs, S J

    2004-01-01

    Allergic rhinitis, a frequently occurring immunological disorder affecting men, women and children worldwide, is a state of hypersensitivity that occurs when the body overreacts to a substance such as pollen, mold, mites or dust. Allergic rhinitis exerts inflammatory response and irritation of the nasal mucosal membranes leading to sneezing; stuffy/runny nose; nasal congestion; and itchy, watery and swollen eyes. A novel, safe polyherbal formulation (Aller-7/NR-A2) has been developed for the treatment of allergic rhinitis using a unique combination of extracts from seven medicinal plants including Phyllanthus emblica, Terminalia chebula, Terminalia bellerica, Albizia lebbeck, Piper nigrum, Zingiber officinale and Piper longum. In this study, the antioxidant efficacy of Aller-7 was investigated by various assays including hydroxyl radical scavenging assay, superoxide anion scavenging assay, 1,1-diphenyl-2-picryl hydrazyl (DPPH) and 2,2-azinobis-ethyl-benzothiozoline-sulphonic acid diammonium salt (ABTS) radical scavenging assays. The protective effect of Aller-7 on free radical-induced lysis of red blood cells and inhibition of nitric oxide release by Aller-7 in lipopolysaccharide-stimulated murine macrophages were determined. Aller-7 exhibited concentration-dependent scavenging activities toward biochemically generated hydroxyl radicals (IC50 741.73 microg/ml); superoxide anion (IC50 24.65 microg/ml by phenazine methosulfate-nicotinamide adenine dinucleotide [PMS-NADH] assay and IC50 4.27 microg/ml by riboflavin/nitroblue tetrazolium [NBT] light assay), nitric oxide (IC50 16.34 microg/ml); 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical (IC50 5.62 microg/ml); and 2,2-azinobis-ethyl-benzothiozoline-sulphonic acid diammonium salt (ABTS) radical (IC50 7.35 microg/ml). Aller-7 inhibited free radical-induced hemolysis in the concentration range of 20-80 microg/ml. Aller-7 also significantly inhibited nitric oxide release from lipopolysaccharide-stimulated murine

  17. RAPID COMMUNICATION IL-4 INDUCES IL-6 AND SIGNS OF ALLERGIC-TYPE INFLAMMATION IN THE NASAL AIRWAYS OF NONALLERGIC INDIVIDUALS

    EPA Science Inventory


    In addition to its more widely recognized role in promoting IgE synthesis, we speculate that interleukin-4 (IL-4) may modulate both allergic- and nonallergic-type inflammatory processes in the airway mucosa. We examined in vivo the effect of IL-4 on granulocyte and cytokine h...

  18. [Clinical symptomps, diagnosis and therapy of feline allergic dermatitis].

    PubMed

    Favrot, C; Rostaher, A; Fischer, N

    2014-07-01

    Allergies are often suspected in cats and they are mainly hypersensitivity reactions against insect bites, food- or environmental allergens. Cats, with non flea induced atopic dermatitis, normally present with one oft he following reaction patterns: miliary dermatitis, eosinophilic dermatitis, selfinduced alopecia or head and neck excoriations. None of these reaction patterns is nevertheless pathognomonic for allergic dermatitis, therefore the diagnosis is based on the one hand on the exclusion of similar diseases on the other hand on the successful response on a certain therapy. Recently a study on the clinical presentation of cats with non flea induced atopic dermatitis was published. In this study certain criteria for diagnosing atopy in cats were proposed. For therapy of allergic cats cyclosporin, glucocorticoids, antihistamines, hypoallergenic diets and allergen specific immunotherapy are used. This article should provide a recent overview on the clinical symptoms, diagnosis and therapy of feline allergic dermatitis.

  19. Fullerene carbon-70 derivatives dampen anaphylaxis and allergic asthma pathogenesis in mice

    NASA Astrophysics Data System (ADS)

    Norton, Sarah Brooke

    C70-TGA inhibition. Further experiments utilizing an inhibitor of 11,12-EET formation (6-(2-Propargyloxyphenyl)hexanoic acid) and a structural analog of 14,15-EET (14,15-EE-5(Z)-E) in vivo indicate that these mediators are closely associated with C70-TGA mediated inhibition as their inhibition reverses the anti-inflammatory effects of C70-TGA. Importantly, mice did not exhibit any acute toxicity following C70-TGA treatment and liver and kidney function were normal. Collectively, these results show that the fullerene C70 derivative C70-TGA is capable of dampening severe allergic responses including systemic anaphylaxis, airway inflammation, and bronchoconstriction. The mechanism of inhibition is through the upregulation of the anti-inflammatory EETs, which may dampen mast cell degranulation in vivo, thus contributing to the inhibitory effect of C70-TGA on allergic disease

  20. Effect of Kramecyne on the Inflammatory Response in Lipopolysaccharide-Stimulated Peritoneal Macrophages

    PubMed Central

    Sánchez-Miranda, E.; Lemus-Bautista, J.; Pérez, S.; Pérez-Ramos, J.

    2013-01-01

    Kramecyne is a new peroxide, it was isolated from Krameria cytisoides, methanol extract, and this plant was mostly found in North and South America. This compound showed potent anti-inflammatory activity; however, the mechanisms by which this compound exerts its anti-inflammatory effect are not well understood. In this study, we examined the effects of kramecyne on inflammatory responses in mouse lipopolysaccharide- (LPS-) induced peritoneal macrophages. Our findings indicate that kramecyne inhibits LPS-induced production of tumor necrosis factor (TNF-α) and interleukin- (IL-) 6. During the inflammatory process, levels of cyclooxygenase- (COX-) 2, nitric oxide synthase (iNOS), and nitric oxide (NO) increased in mouse peritoneal macrophages; however, kramecyne suppressed them significantly. These results provide novel insights into the anti-inflammatory actions and support its potential use in the treatment of inflammatory diseases. PMID:23573152

  1. PF4-HIT antibody (KKO) complexes activate broad innate immune and inflammatory responses.

    PubMed

    Haile, Lydia A; Rao, Roshni; Polumuri, Swamy K; Arepally, Gowthami M; Keire, David A; Verthelyi, Daniela; Sommers, Cynthia D

    2017-11-01

    Heparin-induced thrombocytopenia (HIT) is an immune-mediated complication of heparin anticoagulation therapy resulting in thrombocytopenia frequently accompanied by thrombosis. Current evidence suggests that HIT is associated with antibodies developed in response to multi-molecular complexes formed by platelet factor 4 (PF4) bound to heparin or cell surface glycosaminoglycans. These antibody complexes activate platelets and monocytes typically through FcγRIIA receptors increasing the production of PF4, inflammatory mediators, tissue factor and thrombin. The influence of underlying events in HIT including complex-induced pro-inflammatory cell activation and structural determinants leading to local inflammatory responses are not fully understood. The stoichiometry and complex component requirements were determined by incubating fresh peripheral blood mononuclear cells (PBMC) with different concentrations of unfractionated heparin (H), low molecular weight heparin (LMWH), PF4- and anti-PF4-H complex antibodies (KKO). Cytokine mRNA or protein were measured by qRT-PCR or Meso Scale Discovery technology, respectively. Gene expression profile analysis for 594 genes was performed using Nanostring technology and analyzed using Ingenuity Pathway Analysis software. The data show that antibodies magnify immune responses induced in PBMCs by PF4 alone or in complex with heparin or LMWH. We propose that following induction of HIT antibodies by heparin-PF4 complexes, binding of the antibodies to PF4 is sufficient to induce a local pro-inflammatory response which may play a role in the progression of HIT. In vitro assays using PBMCs may be useful in characterizing local inflammatory and innate immune responses induced by HIT antibodies in the presence of PF4 and different sources of heparins. The findings and conclusions in this article are solely the responsibility of the authors and are not being formally disseminated by the Food and Drug Administration. Thus, they should not be

  2. Systemic inflammatory response after endoscopic (TEP) vs Shouldice groin hernia repair.

    PubMed

    Schwab, R; Eissele, S; Brückner, U B; Gebhard, F; Becker, H P

    2004-08-01

    Endoscopic techniques are commonly used for many different types of surgery. It is claimed that videoendoscopic procedures have the advantage of being less traumatic and of offering higher postoperative patient comfort than conventional open techniques. The extent of tissue trauma can be evaluated on the basis of the inflammatory response observed in the wake of surgery. Available studies that have compared endoscopic and conventional techniques suggest that endoscopic cholecystectomy, laparoscopic colorectal resection, and thoracoscopic pulmonary resection have immunologic advantages over conventional approaches. The objective of this prospective study was to determine whether endoscopic hernia repair techniques are also preferable to conventional procedures and to what extent the anesthetic technique (local or general anesthesia) influences the postoperative inflammatory response. For this purpose, biochemical monitoring of cytokine activity [C-reactive protein (CRP), prostaglandin F1alpha (PGF1alpha), neopterin, interleukin-6 (IL-6)] was done prospectively in 101 patients [totally extraperitoneal approach (TEP) n=32, unilateral n=12, bilateral n=20; Shouldice n=69, local anesthesia (LA) n=23, general anesthesia (GA) n=46] before and until 3 days after surgery. The parameters IL-6 and PGF1alpha suggested that the immune trauma immediately after surgery was significantly higher in the group of patients with endoscopic hernia repair than in the group of patients who received a Shouldice repair. No significant differences were observed after the first postoperative day. A comparison between the TEP group and the patients who received conventional surgery under local anesthesia showed that the TEP approach was also associated with a higher postoperative neopterin level. Within the first 3 days after surgical intervention, bilateral endoscopic hernia repair induced no significantly higher inflammatory response than the surgical treatment of unilateral conditions. The

  3. Protease-Activated Receptor-2 Activation Contributes to House Dust Mite-Induced IgE Responses in Mice

    PubMed Central

    Post, Sijranke; Heijink, Irene H.; Petersen, Arjen H.; de Bruin, Harold G.; van Oosterhout, Antoon J. M.; Nawijn, Martijn C.

    2014-01-01

    Aeroallergens such as house dust mite (HDM), cockroach, and grass or tree pollen are innocuous substances that can induce allergic sensitization upon inhalation. The serine proteases present in these allergens are thought to activate the protease-activated receptor (PAR)-2, on the airway epithelium, thereby potentially inducing allergic sensitization at the expense of inhalation tolerance. We hypothesized that the proteolytic activity of allergens may play an important factor in the allergenicity to house dust mite and is essential to overcome airway tolerance. Here, we aimed to investigate the role of PAR-2 activation in allergic sensitization and HDM-induced allergic airway inflammation. In our study, Par-2 deficient mice were treated with two different HDM extracts containing high and low serine protease activities twice a week for a period of 5 weeks. We determined airway inflammation through quantification of percentages of mononuclear cells, eosinophils and neutrophils in the bronchial alveolar lavage fluid and measured total IgE and HDM-specific IgE and IgG1 levels in serum. Furthermore, Th2 and pro-inflammatory cytokines including IL-5, IL-13, Eotaxin-1, IL-17, KC, Chemokine (C-C motif) ligand 17 (CCL17) and thymic stromal lymphopoietin (TSLP), were measured in lung tissue homogenates. We observed that independent of the serine protease content, HDM was able to induce elevated levels of eosinophils and neutrophils in the airways of both wild-type (WT) and Par-2 deficient mice. Furthermore, we show that induction of pro-inflammatory cytokines by HDM exposure is independent of Par-2 activation. In contrast, serine protease activity of HDM does contribute to enhanced levels of total IgE, but not HDM-specific IgE. We conclude that, while Par-2 activation contributes to the development of IgE responses, it is largely dispensable for the HDM-induced induction of pro-inflammatory cytokines and airway inflammation in an experimental mouse model of HDM

  4. Inflammatory cell response to ultra-thin amorphous and crystalline hydroxyapatite surfaces.

    PubMed

    Rydén, Louise; Omar, Omar; Johansson, Anna; Jimbo, Ryo; Palmquist, Anders; Thomsen, Peter

    2017-01-01

    It has been suggested that surface modification with a thin hydroxyapatite (HA) coating enhances the osseointegration of titanium implants. However, there is insufficient information about the biological processes involved in the HA-induced response. This study aimed to investigate the inflammatory cell response to titanium implants with either amorphous or crystalline thin HA. Human mononuclear cells were cultured on titanium discs with a machined surface or with a thin, 0.1 μm, amorphous or crystalline HA coating. Cells were cultured for 24 and 96 h, with and without lipopolysaccharide (LPS) stimulation. The surfaces were characterized with respect to chemistry, phase composition, wettability and topography. Biological analyses included the percentage of implant-adherent cells and the secretion of pro-inflammatory cytokine (TNF-α) and growth factors (BMP-2 and TGF-β1). Crystalline HA revealed a smooth surface, whereas the amorphous HA displayed a porous structure, at nano-scale, and a hydrophobic surface. Higher TNF-α secretion and a higher ratio of adherent cells were demonstrated for the amorphous HA compared with the crystalline HA. TGF-β1 secretion was detected in all groups, but without any difference. No BMP-2 secretion was detected in any of the groups. The addition of LPS resulted in a significant increase in TNF-α in all groups, whereas TGF-β1 was not affected. Taken together, the results show that thin HA coatings with similar micro-roughness but a different phase composition, nano-scale roughness and wettability are associated with different monocyte responses. In the absence of strong inflammatory stimuli, crystalline hydroxyapatite elicits a lower inflammatory response compared with amorphous hydroxyapatite.

  5. Cytokine profile of food-allergic post-liver transplant children is identified by high levels of IL-5 and low IL-10 secretion from patients' peripheral blood mononuclear cells.

    PubMed

    Nahum, Amit; Brener, Avivit; Granot, Ettie

    2015-11-01

    Severe allergic reaction to food following liver transplantation is a well-known phenomenon. However, the mechanisms underlying this phenomenon are not yet elucidated. This study aimed to reveal the nature of the immune response in post-transplanted allergic patients and compare them to non-allergic transplanted as well as allergic and non-allergic control subjects, with focus on cytokine milieu. Post-liver transplant patients with and without allergic reactions as well as food-allergic but otherwise healthy and healthy non-allergic control patients were recruited. We reviewed patient records and routine laboratory tests and assayed subjects' PBMCs, studying cytokine secretion profile in response to different stimuli. Post-transplant patients with food allergy showed a unique cytokine profile in response to various stimuli, with extremely elevated IL-5, low IL-10 secretion, and somewhat higher IFN-γ. T regulatory cell number was not significantly different among the groups of patients and controls. Immune response of food-allergic post-liver transplant patients is identified by a unique cytokine profile when compared to allergic but otherwise healthy individuals. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Inflammatory responses to individual microorganisms in the lungs of children with cystic fibrosis.

    PubMed

    Gangell, Catherine; Gard, Samantha; Douglas, Tonia; Park, Judy; de Klerk, Nicholas; Keil, Tony; Brennan, Siobhain; Ranganathan, Sarath; Robins-Browne, Roy; Sly, Peter D

    2011-09-01

    We hypothesized that the inflammatory response in the lungs of children with cystic fibrosis (CF) would vary with the type of infecting organism, being greatest with Pseudomonas aeruginosa and Staphylococcus aureus. A microbiological surveillance program based on annual bronchoalveolar lavage (BAL) collected fluid for culture and assessment of inflammation was conducted. Primary analyses compared inflammation in samples that grew a single organism with uninfected samples in cross-sectional and longitudinal analyses. Results were available for 653 samples from 215 children with CF aged 24 days to 7 years. A single agent was associated with pulmonary infection (≥10(5) cfu/mL) in 67 BAL samples, with P. aeruginosa (n = 25), S. aureus (n = 17), and Aspergillus species (n = 19) being the most common. These microorganisms were associated with increased levels of inflammation, with P. aeruginosa being the most proinflammatory. Mixed oral flora (MOF) alone was isolated from 165 BAL samples from 112 patients, with 97 of these samples having a bacterial density ≥10(5) cfu/mL, and was associated with increased pulmonary inflammation (P < .001). For patients with current, but not past, infections there was an association with a greater inflammatory response, compared with those who were never infected (P < .05). However, previous infection with S. aureus was associated with a greater inflammatory response in subsequent BAL. Pulmonary infection with P. aeruginosa, S. aureus, or Aspergillus species and growth of MOF was associated with significant inflammatory responses in young children with CF. Our data support the use of specific surveillance and eradication programs for these organisms. The inflammatory response to MOF requires additional investigation.

  7. The prevalence of dogs with lymphocyte proliferative responses to food allergens in canine allergic dermatitis.

    PubMed

    Kawano, K; Oumi, K; Ashida, Y; Horiuchi, Y; Mizuno, T

    2013-01-01

    The aim of the present study was to examine the correlation between the results of lymphocyte proliferative test (LPT) specific to food allergens and allergic skin diseases in dogs. Investigations were performed in 138 dogs with allergic skin diseases diagnosed in a private animal hospital. Of the 138 animals, 97 cases had positive reactions in LPT specific to food allergens. Of these 97 dogs, 67 animals were diagnosed with canine atopic dermatitis (CAD), but 30 dogs did not have IgE antibodies to environmental allergens. As 14 dogs out of 30 animals showed a positive result, 12 dogs underwent elimination diet trial based on the test results and all of them showed improvement in the pruritus score. Therefore, we conclude that LPT is an effective diagnostic test for allergic skin disease. Results of the lymphocyte test are useful in the identification of food allergens for the elimination diet trial.

  8. Methotrexate use in allergic contact dermatitis: a retrospective study.

    PubMed

    Patel, Ashaki; Burns, Erin; Burkemper, Nicole M

    2018-03-01

    Methotrexate, a folate antimetabolite, is used to treat atopic dermatitis and psoriasis. Although methotrexate's therapeutic efficacy has been noted in the literature, there are few data on the efficacy of methotrexate treatment for allergic contact dermatitis. To evaluate the efficacy and tolerability of methotrexate in treating allergic contact dermatitis at a single institution, and also to assess methotrexate efficacy in patients with chronic, unavoidable allergen exposure. We performed a retrospective chart review of 32 patients diagnosed with allergic contact dermatitis by positive patch test reactions, and who received treatment with methotrexate from November 2010 to November 2014. Demographic and treatment-associated data were collected from electronic medical records. Ten patients were identified as allergen non-avoiders secondary to their occupation, and were subgrouped as such. Seventy-eight per cent (25/32) of patients showed either a partial or a complete response. Methotrexate had a comparable efficacy rate in the allergen non-avoiders subset, at 10 of 10. Of the 32 patients, 23% (5/22) had complete clearance of their dermatitis, and 1/10 of allergen non-avoiders had complete clearance of their dermatitis. Methotrexate is a well-tolerated and effective treatment for allergic contact dermatitis, and shows comparable efficacy to immunomodulatory agents such as cyclosporine and azathioprine, with robust efficacy despite persistent allergen exposure in patients with allergic contact dermatitis. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. The relationship between bifidobacteria and allergic asthma and/or allergic dermatitis: a prospective study of 0-3 years-old children in Turkey.

    PubMed

    Akay, Hatice Kubra; Bahar Tokman, Hrisi; Hatipoglu, Nevin; Hatipoglu, Huseyin; Siraneci, Rengin; Demirci, Mehmet; Borsa, Baris Ata; Yuksel, Pelin; Karakullukcu, Asiye; Kangaba, Achille Aime; Sirekbasan, Serhat; Aka, Sibel; Mamal Torun, Muzeyyen; Kocazeybek, Bekir S

    2014-08-01

    Bifidobacteria are beneficial bacteria for humans. These bacteria are particularly effective at protecting against infectious diseases and modulating the immune response. It was shown that in newborns, the fecal distribution of the colonizing Bifidobacterium species influences the prevalence of allergic diseases. This study aimed to compare the faecal Bifidobacterium species of allergic children to those of healthy children to detect species level differences in faecal distribution. Stool samples were obtained from 99 children between 0 and 3 years of age whose clinical symptoms and laboratory reports were compatible with atopic dermatitis and allergic asthma. Samples were also obtained from 102 healthy children who were similar to the case group with respect to age and sex. Bifidobacteria were isolated by culture and identified at the genus level by API 20 A. In addition, 7 unique species-specific primers were used for the molecular characterization of bifidobacteria. The McNemar test was used for statistical analyses, and p < 0.05 was accepted as significant. Bifidobacterium longum was detected in 11 (11.1%) of the allergic children and in 31 (30.3%) of the healthy children. Statistical analysis revealed a significant difference in the prevalence of B. longum between these two groups (X(2): 11.2, p < 0.001). However, no significant differences in the prevalence of other Bifidobacterium species were found between faecal samples from healthy and allergic children. (p > 0.05). The significant difference in the isolation of B. longum from our study groups suggests that this species favors the host by preventing the development of asthma and allergic dermatitis. Based on these results, we propose that the production of probiotics in accordance with country-specific Bifidobacterium species densities would improve public health. Thus, country-specific prospective case-control studies that collect broad data sets are needed. Copyright © 2014 Elsevier Ltd. All

  10. Hormetic Effect of Chronic Hypergravity in a Mouse Model of Allergic Asthma and Rhinitis

    NASA Astrophysics Data System (ADS)

    Jang, Tae Young; Jung, Ah-Yeoun; Kim, Young Hyo

    2016-06-01

    We aimed to evaluate the effect of chronic hypergravity in a mouse model of allergic asthma and rhinitis. Forty BALB/c mice were divided as: group A (n = 10, control) sensitized and challenged with saline, group B (n = 10, asthma) challenged by intraperitoneal and intranasal ovalbumin (OVA) to induce allergic asthma and rhinitis, and groups C (n = 10, asthma/rotatory control) and D (n = 10, asthma/hypergravity) exposed to 4 weeks of rotation with normogravity (1G) or hypergravity (5G) during induction of asthma/rhinitis. Group D showed significantly decreased eosinophils, neutrophils, and lymphocytes in their BAL fluid compared with groups B and C (p < 0.05). In real-time polymerase chain reaction using lung homogenate, the expression of IL-1β was significantly upregulated (p < 0.001) and IL-4 and IL-10 significantly downregulated (p < 0.05) in group D. Infiltration of inflammatory cells into lung parenchyma and turbinate, and the thickness of respiratory epithelium was significantly reduced in group D (p < 0.05). The expression of Bcl-2 and heme oxygenase-1 were significantly downregulated, Bax and extracellular dismutase significantly upregulated in Group D. Therefore, chronic hypergravity could have a hormetic effect for allergic asthma and rhinitis via regulation of genes involved in antioxidative and proapoptotic pathways. It is possible that we could use hypergravity machinery for treating allergic respiratory disorders.

  11. Allergic contact dermatitis from color film developers: clinical and histologic features.

    PubMed

    Brancaccio, R R; Cockerell, C J; Belsito, D; Ostreicher, R

    1993-05-01

    We evaluated two patients with allergic contact dermatitis that resulted from exposure to color film developers. A lichenoid eruption developed in one patient, whereas an eruption more characteristic of an acute spongiotic dermatitis developed in the second patient. Histologic findings in the first case were those of a "lichenoid dermatitis" but with features distinct from classic lichen planus. The biopsy specimens from the second patient showed a subacute spongiotic process with a bandlike infiltrate suggestive of an evolving lichenoid process. Contact allergy to color developers may result in eruptions similar to lichen planus. This process appears to evolve from an acute spongiotic dermatitis in its early phase to a lichenoid dermatitis in fully developed and more chronic forms. Although the histologic features are those of a "lichenoid" dermatitis, some features, such as the presence of spongiosis, eosinophils, and a less intense inflammatory infiltrate, may enable distinction between lichenoid allergic contact dermatitis and true lichen planus. In addition, clinicopathologic correlation with patch test results should permit accurate diagnosis in most cases.

  12. Increased Transcription of Immune and Metabolic Pathways in Naive and Allergic Mice Exposed to Diesel Exhaust

    EPA Science Inventory

    Diesel exhaust (DE) has been shown to enhance allergic sensitization in animals following high dose instillation or chronic inhalation exposure scenarios. The purpose of this study was to determine if short term exposures to diluted DE enhance allergic immune responses to antigen...

  13. Asthma and Fungus: Role in Allergic Bronchopulmonary Aspergillosis (ABPA) and Other Conditions.

    PubMed

    Singh, Meenu; Paul, Nandini; Singh, Shreya; Nayak, Gyan Ranjan

    2018-03-17

    Asthma is an allergic, respiratory disorder characterized by hyper responsiveness of the airway to external stimuli. Considerable research is currently being directed towards understanding the role of environmental and genetic factors contributing to the development of asthma and its severity. Recent years have seen a substantial rise in evidence linking fungi to asthma. Few major clinical conditions associated with fungal sensitization and hypersensitive immune response are Allergic bronchopulmonary aspergillosis (ABPA), Allergic fungal rhinosinusitis (AFRS) and Severe asthma with fungal sensitization (SAFS). The most common fungi implicated in these conditions belong to genus Aspergillus, although an association with several other fungi has been described. In this review authors discuss the varying clinical characteristics of fungus induced respiratory complications in individuals with asthma. They also highlight the epidemiology of these conditions including their prevalence in children and their fungal etiological profile. Laboratory diagnostic methods and clinical case definitions have also been discussed. Future studies evaluating the role of fungal exposure and susceptibility to asthma are required. Till date there are no guidelines for the diagnosis and treatment of ABPA in pediatric population, thus it is also imperative to establish validated clinical definitions of fungal allergic manifestations in pediatric patients with asthma to fully understand this complex interaction.

  14. Pollinex Quattro: an innovative four injections immunotherapy in allergic rhinitis.

    PubMed

    Rosewich, Martin; Lee, Denise; Zielen, Stefan

    2013-07-01

    The prevalence of seasonal allergic rhinitis in the western world is high and increasing. Besides considerably affecting physical and psychosocial aspects of patients' lives, allergic rhinitis is often associated with allergic asthma and may aggravate this condition over time. Specific immunotherapy is currently the only approved therapy that can modify the underlying disease process and induce long-term tolerance to allergens. Pollinex Quattro is a subcutaneous four injections immunotherapy consisting of tyrosine-absorbed specific allergoids and enhanced with the adjuvant monophosphoryl lipid A (MPL(®)). MPL(®) induces a significant Th 1-type immune response, characterized by an increase of allergen-specific IgG antibody levels and dampening of the IgE response during allergen exposure. Due to this dual action of stimulating the immune system, Pollinex Quattro is clinically effective after only four injections given pre-seasonally. A large clinical program has demonstrated efficacy and tolerability of Pollinex Quattro in children, adolescents and adults with grass and tree pollen allergy. A health economics study concluded that an immunotherapy with only 4 injections might be more cost-beneficial than other application forms of immunotherapy.

  15. Inflammatory response and cardioprotection during open-heart surgery: the importance of anaesthetics.

    PubMed

    Suleiman, M-S; Zacharowski, K; Angelini, G D

    2008-01-01

    Open-heart surgery triggers an inflammatory response that is largely the result of surgical trauma, cardiopulmonary bypass, and organ reperfusion injury (e.g. heart). The heart sustains injury triggered by ischaemia and reperfusion and also as a result of the effects of systemic inflammatory mediators. In addition, the heart itself is a source of inflammatory mediators and reactive oxygen species that are likely to contribute to the impairment of cardiac pump function. Formulating strategies to protect the heart during open heart surgery by attenuating reperfusion injury and systemic inflammatory response is essential to reduce morbidity. Although many anaesthetic drugs have cardioprotective actions, the diversity of the proposed mechanisms for protection (e.g. attenuating Ca(2+) overload, anti-inflammatory and antioxidant effects, pre- and post-conditioning-like protection) may have contributed to the slow adoption of anaesthetics as cardioprotective agents during open heart surgery. Clinical trials have suggested at least some cardioprotective effects of volatile anaesthetics. Whether these benefits are relevant in terms of morbidity and mortality is unclear and needs further investigation. This review describes the main mediators of myocardial injury during open heart surgery, explores available evidence of anaesthetics induced cardioprotection and addresses the efforts made to translate bench work into clinical practice.

  16. Allergic bronchopulmonary aspergillosis--a case report.

    PubMed

    Chokhani, Ramesh; Neupane, Saraswoti; Kandel, Ishwar Sharma

    2004-12-01

    A 24 years old male presented with recurrent symptoms of cough and breathlessness for 6 years but increased in past 6 months. Fleeting radiological opacities, peripheral eosinophilia and central type bronchiectasus in high resolution CT scan gave the suspicion of allergic bronchopolmonary aspergilosis. Confirmation of the diagnosis was done by skin prick and immunological tests. The patient showed an excellent response to oral prednisolone.

  17. Arm and Intensity-Matched Leg Exercise Induce Similar Inflammatory Responses.

    PubMed

    Leicht, Christof A; Paulson, Thomas A W; Goosey-Tolfrey, Victoria L; Bishop, Nicolette C

    2016-06-01

    The amount of active muscle mass can influence the acute inflammatory response to exercise, associated with reduced risk for chronic disease. This may affect those restricted to upper body exercise, for example, due to injury or disability. The purpose of this study was to compare the inflammatory responses for arm exercise and intensity-matched leg exercise. Twelve male individuals performed three 45-min constant load exercise trials after determination of peak oxygen uptake for arm exercise (V˙O2peak A) and cycling (V˙O2peak C): 1) arm cranking exercise at 60% V˙O2peak A, 2) moderate cycling at 60% V˙O2peak C, and 3) easy cycling at 60% V˙O2peak A. Cytokine, adrenaline, and flow cytometric analysis of monocyte subsets were performed before and up to 4 h postexercise. Plasma IL-6 increased from resting concentrations in all trials; however, postexercise concentrations were higher for arm exercise (1.73 ± 1.04 pg·mL) and moderate cycling (1.73 ± 0.95 pg·mL) compared with easy cycling (0.87 ± 0.41 pg·mL; P < 0.04). Similarly, the plasma IL-1ra concentration in the recovery period was higher for arm exercise (325 ± 139 pg·mL) and moderate cycling (316 ± 128 pg·mL) when compared with easy cycling (245 ± 77 pg·mL, P < 0.04). Arm exercise and moderate cycling induced larger increases in monocyte numbers and larger increases of the classical monocyte subset in the recovery period than easy cycling (P < 0.05). The postexercise adrenaline concentration was lowest for easy cycling (P = 0.04). Arm exercise and cycling at the same relative exercise intensity induces a comparable acute inflammatory response; however, cycling at the same absolute oxygen uptake as arm exercise results in a blunted cytokine, monocyte, and adrenaline response. Relative exercise intensity appears to be more important to the acute inflammatory response than modality, which is of major relevance for populations restricted to upper body exercise.

  18. Allergic Diseases and Internalizing Behaviors in Early Childhood

    PubMed Central

    LeMasters, Grace K.; Levin, Linda; Rothenberg, Marc E.; Assa'ad, Amal H.; Newman, Nicholas; Bernstein, David; Khurana-Hershey, Gurjit; Lockey, James E.; Ryan, Patrick H.

    2016-01-01

    BACKGROUND AND OBJECTIVES: The relationship between allergic diseases and internalizing disorders has not been well characterized with regard to multiple allergic diseases or longitudinal study. The objective of this study was to examine the association between multiple allergic diseases in early childhood with validated measures of internalizing disorders in the school-age years. METHODS: Children enrolled in the Cincinnati Childhood Allergy and Air Pollution Study underwent skin testing and examinations at ages 1, 2, 3, 4, and 7 years. At age 7, parents completed the Behavior Assessment System for Children, Second Edition (BASC-2), a validated measure of childhood behavior and emotion. The association between allergic diseases at age 4, including allergic rhinitis, allergic persistent wheezing, atopic dermatitis, and allergic sensitization, and BASC-2 internalizing, anxiety, and depression T scores at age 7 was examined by logistic and linear regression, adjusting for covariates. RESULTS: The cohort included 546 children with complete information on allergic disease and BASC-2 outcomes. Allergic rhinitis at age 4 was significantly associated with elevated internalizing (adjusted odds ratio [aOR]: 3.2; 95% confidence interval [CI]: 1.8–5.8), anxiety (aOR: 2.0; 95% CI: 1.2–3.6), and depressive scores (aOR: 3.2; 95% CI: 1.7–6.5) at age 7. Allergic persistent wheezing was significantly associated with elevated internalizing scores (aOR: 2.7; 95% CI: 1.2–6.3). The presence of >1 allergic disease (aOR: 3.6; 95% CI: 1.7–7.6) and allergic rhinitis with comorbid allergic disease(s) (aOR: 4.3; 95% CI: 2.0–9.2) at age 4 had dose-dependent associations with internalizing scores. CONCLUSIONS: Children with allergic rhinitis and allergic persistent wheezing at age 4 are at increased risk of internalizing behaviors at age 7. Furthermore, multiple allergic diseases had a dose-dependent association with elevated internalizing scores. PMID:26715608

  19. Allergic Diseases and Internalizing Behaviors in Early Childhood.

    PubMed

    Nanda, Maya K; LeMasters, Grace K; Levin, Linda; Rothenberg, Marc E; Assa'ad, Amal H; Newman, Nicholas; Bernstein, David; Khurana-Hershey, Gurjit; Lockey, James E; Ryan, Patrick H

    2016-01-01

    The relationship between allergic diseases and internalizing disorders has not been well characterized with regard to multiple allergic diseases or longitudinal study. The objective of this study was to examine the association between multiple allergic diseases in early childhood with validated measures of internalizing disorders in the school-age years. Children enrolled in the Cincinnati Childhood Allergy and Air Pollution Study underwent skin testing and examinations at ages 1, 2, 3, 4, and 7 years. At age 7, parents completed the Behavior Assessment System for Children, Second Edition (BASC-2), a validated measure of childhood behavior and emotion. The association between allergic diseases at age 4, including allergic rhinitis, allergic persistent wheezing, atopic dermatitis, and allergic sensitization, and BASC-2 internalizing, anxiety, and depression T scores at age 7 was examined by logistic and linear regression, adjusting for covariates. The cohort included 546 children with complete information on allergic disease and BASC-2 outcomes. Allergic rhinitis at age 4 was significantly associated with elevated internalizing (adjusted odds ratio [aOR]: 3.2; 95% confidence interval [CI]: 1.8-5.8), anxiety (aOR: 2.0; 95% CI: 1.2-3.6), and depressive scores (aOR: 3.2; 95% CI: 1.7-6.5) at age 7. Allergic persistent wheezing was significantly associated with elevated internalizing scores (aOR: 2.7; 95% CI: 1.2-6.3). The presence of >1 allergic disease (aOR: 3.6; 95% CI: 1.7-7.6) and allergic rhinitis with comorbid allergic disease(s) (aOR: 4.3; 95% CI: 2.0-9.2) at age 4 had dose-dependent associations with internalizing scores. Children with allergic rhinitis and allergic persistent wheezing at age 4 are at increased risk of internalizing behaviors at age 7. Furthermore, multiple allergic diseases had a dose-dependent association with elevated internalizing scores. Copyright © 2016 by the American Academy of Pediatrics.

  20. Murine lung eosinophil activation and chemokine production in allergic airway inflammation

    PubMed Central

    Rose, C Edward; Lannigan, Joanne A; Kim, Paul; Lee, James J; Fu, Shu Man; Sung, Sun-sang J

    2010-01-01

    Eosinophils play important roles in asthma and lung infections. Murine models are widely used for assessing the functional significance and mechanistic basis for eosinophil involvements in these diseases. However, little is known about tissue eosinophils in homeostasis. In addition, little data on eosinophil chemokine production during allergic airway inflammation are available. In this study, the properties and functions of homeostatic and activated eosinophils were compared. Eosinophils from normal tissues expressed costimulation and adhesion molecules B7-1, B7-2 and ICAM-1 for Ag presentation but little major histocompatibility complex (MHC) class II, and were found to be poor stimulators of T-cell proliferation. However, these eosinophils expressed high levels of chemokine mRNA including C10, macrophage inflammatory protein (MIP)-1α, MIP-1γ, MIP-2, eotaxin and monocyte chemoattractant protein-5 (MCP-5), and produced chemokine proteins. Eosinophil intracellular chemokines decreased rapidly with concomitant surface marker downregulation upon in vitro culturing consistent with piecemeal degranulation. Lung eosinophils from mice with induced allergic airway inflammation exhibited increased chemokines mRNA expression and chemokines protein production and upregulated MHC class II and CD11c expression. They were also found to be the predominant producers of the CCR1 ligands CCL6/C10 and CCL9/MIP-1γ in inflamed lungs. Eosinophil production of C10 and MIP-1γ correlated with the marked influx of CD11bhigh lung dendritic cells during allergic airway inflammation and the high expression of CCR1 on these dendritic cells (DCs). The study provided baseline information on tissue eosinophils, documented the upregulation of activation markers and chemokine production in activated eosinophils, and indicated that eosinophils were a key chemokine-producing cell type in allergic lung inflammation. PMID:20622891