Science.gov

Sample records for allergic pulmonary inflammation

  1. Hyaluronan fragments as mediators of inflammation in allergic pulmonary disease.

    PubMed

    Ghosh, Sumit; Hoselton, Scott A; Dorsam, Glenn P; Schuh, Jane M

    2015-05-01

    Asthma is frequently caused and/or exacerbated by sensitization to allergens, which are ubiquitous in many indoor and outdoor environments. Severe asthma is characterized by airway hyperresponsiveness and bronchial constriction in response to an inhaled allergen, leading to a disease course that is often very difficult to treat with standard asthma therapies. As a result of interactions among inflammatory cells, structural cells, and the intercellular matrix of the allergic lung, patients with sensitization to allergens may experience a greater degree of tissue injury followed by airway wall remodeling and progressive, accumulated pulmonary dysfunction as part of the disease sequela. In addition, turnover of extracellular matrix (ECM) components is a hallmark of tissue injury and repair. This review focuses on the role of the glycosaminoglycan hyaluronan (HA), a component of the ECM, in pulmonary injury and repair with an emphasis on allergic asthma. Both the synthesis and degradation of the ECM are critical contributors to tissue repair and remodeling. Fragmented HA accumulates during tissue injury and functions in ways distinct from the larger native polymer. There is gathering evidence that HA degradation products are active participants in stimulating the expression of inflammatory genes in a variety of immune cells at the injury site. In this review, we will consider recent advances in the understanding of the mechanisms that are associated with HA accumulation and inflammatory cell recruitment in the asthmatic lung. PMID:25582403

  2. Hyaluronan fragments as mediators of inflammation in allergic pulmonary disease

    PubMed Central

    Ghosh, Sumit; Hoselton, Scott A.; Dorsam, Glenn P.; Schuh, Jane M.

    2015-01-01

    Asthma is frequently caused and/or exacerbated by sensitization to allergens, which are ubiquitous in many indoor and outdoor environments. Severe asthma is characterized by airway hyperresponsiveness and bronchial constriction in response to an inhaled allergen, leading to a disease course that is often very difficult to treat with standard asthma therapies. As a result of interactions among inflammatory cells, structural cells, and the intercellular matrix of the allergic lung, patients with sensitization to allergens may experience a greater degree of tissue injury followed by airway wall remodeling and progressive, accumulated pulmonary dysfunction as part of the disease sequela. In addition, turnover of extracellular matrix (ECM) components is a hallmark of tissue injury and repair. This review focuses on the role of the glycosaminoglycan hyaluronan (HA), a component of the ECM, in pulmonary injury and repair with an emphasis on allergic asthma. Both the synthesis and degradation of the ECM are critical contributors to tissue repair and remodeling. Fragmented HA accumulates during tissue injury and functions in ways distinct from the larger native polymer. There is gathering evidence that HA degradation products are active participants in stimulating the expression of inflammatory genes in a variety of immune cells at the injury site. In this review, we will consider recent advances in the understanding of the mechanisms that are associated with HA accumulation and inflammatory cell recruitment in the asthmatic lung. PMID:25582403

  3. Therapeutic expansion of CD4+FoxP3+ regulatory T cells limits allergic airway inflammation during pulmonary fungal infection.

    PubMed

    Schulze, Bianca; Piehler, Daniel; Eschke, Maria; Heyen, Laura; Protschka, Martina; Köhler, Gabriele; Alber, Gottfried

    2016-06-01

    Allergic asthma can be frequently caused and exacerbated by sensitization to ubiquitous fungal allergens associated with pulmonary mucus production, airway hyperresponsiveness and bronchial constriction, resulting in a complex disease that is often difficult to treat. Fungal infections are frequently complicated by the development of a type 2 immune response that prevents successful elimination of the fungal pathogen. Furthermore, production of type 2 cytokines triggers allergic airway inflammation. Following intranasal infection of BALB/c mice with the fungusCryptococcus neoformans, we recently described a more pronounced type 2 immune response in the absence of regulatory T (Treg) cells. To determine whether Treg cell expansion is able to suppress type 2-related fungal allergic inflammation, we increased Treg cell numbers during pulmonaryC. neoformansinfection by administration of an interleukin (IL)-2/anti-IL-2 complex. Expansion of Treg cells resulted in reduced immunoglobulin E production and decreased allergic airway inflammation including reduced production of pulmonary mucus and type 2 cytokines as well as production of immunosuppressive cytokines such as IL-10 and transforming growth factor-β1. From our data we conclude that Treg cells and/or their suppressive mediators represent potential targets for therapeutic intervention during allergic fungal airway disease. PMID:27001975

  4. Nerve growth factor and neurotrophin-3 mediate survival of pulmonary plasma cells during the allergic airway inflammation.

    PubMed

    Abram, Melanie; Wegmann, Michael; Fokuhl, Verena; Sonar, Sanchaita; Luger, Elke Olga; Kerzel, Sebastian; Radbruch, Andreas; Renz, Harald; Zemlin, Michael

    2009-04-15

    Allergen-specific Abs play a pivotal role in the induction and maintenance of allergic airway inflammation. During secondary immune responses, plasma cell survival and Ab production is mediated by extrinsic factors provided by the local environment (survival niches). It is unknown whether neurotrophins, a characteristic marker of allergic airway inflammation, influence plasma cell survival in the lung. Using a mouse model of allergic asthma, we found that plasma cells from the lung and spleen are distinct subpopulations exhibiting differential expression patterns of neurotrophins and their receptors (Trks). In vitro, the nerve growth factor (NGF) and neurotrophin-3 (NT3) led to a dose-dependent increase in viability of isolated pulmonary plasma cells due to up-regulation of the antiapoptotic Bcl2 pathway. In parallel, the expression of transcription factors that stimulate the production of immunoglobulins (X-box binding protein 1 and NF-kappaB subunit RelA) was enhanced in plasma cells treated with NGF and NT3. These findings were supported in vivo. When the NGF pathway was blocked by intranasal application of a selective TrkA inhibitor, sensitized mice showed reduced numbers of pulmonary plasma cells and developed lower levels of allergen-specific and total serum IgE in response to OVA inhalation. This suggests that in the allergic airway inflammation, NGF/TrkA-mediated pulmonary IgE production contributes significantly to serum-IgE levels. We conclude that the neurotrophins NGF and NT3 act as survival factors for pulmonary plasma cells and thus are important regulators of the local Ab production in the allergic airway disease. PMID:19342646

  5. Eosinophilic Inflammation in Allergic Asthma

    PubMed Central

    Possa, Samantha S.; Leick, Edna A.; Prado, Carla M.; Martins, Mílton A.; Tibério, Iolanda F. L. C.

    2013-01-01

    Eosinophils are circulating granulocytes involved in pathogenesis of asthma. A cascade of processes directed by Th2 cytokine producing T-cells influence the recruitment of eosinophils into the lungs. Furthermore, multiple elements including interleukin (IL)-5, IL-13, chemoattractants such as eotaxin, Clara cells, and CC chemokine receptor (CCR)3 are already directly involved in recruiting eosinophils to the lung during allergic inflammation. Once recruited, eosinophils participate in the modulation of immune response, induction of airway hyperresponsiveness and remodeling, characteristic features of asthma. Various types of promising treatments for reducing asthmatic response are related to reduction in eosinophil counts both in human and experimental models of pulmonary allergic inflammation, showing that the recruitment of these cells really plays an important role in the pathophysiology of allergic diseases such asthma. PMID:23616768

  6. Basophils and allergic inflammation.

    PubMed

    Siracusa, Mark C; Kim, Brian S; Spergel, Jonathan M; Artis, David

    2013-10-01

    Basophils were discovered by Paul Ehrlich in 1879 and represent the least abundant granulocyte population in mammals. The relative rarity of basophils and their phenotypic similarities with mast cells resulted in this cell lineage being historically overlooked, both clinically and experimentally. However, recent studies in human subjects and murine systems have shown that basophils perform nonredundant effector functions and significantly contribute to the development and progression of TH2 cytokine-mediated inflammation. Although the potential functions of murine and human basophils have provoked some controversy, recent genetic approaches indicate that basophils can migrate into lymphoid tissues and, in some circumstances, cooperate with other immune cells to promote optimal TH2 cytokine responses in vivo. This article provides a brief historical perspective on basophil-related research and discusses recent studies that have identified previously unappreciated molecules and pathways that regulate basophil development, activation, and function in the context of allergic inflammation. Furthermore, we highlight the unique effector functions of basophils and discuss their contributions to the development and pathogenesis of allergic inflammation in human disease. Finally, we discuss the therapeutic potential of targeting basophils in preventing or alleviating the development and progression of allergic inflammation. PMID:24075190

  7. Surfactant and allergic airway inflammation.

    PubMed

    Winkler, Carla; Hohlfeld, Jens M

    2013-01-01

    Pulmonary surfactant is a complex mixture of unique proteins and lipids that covers the airway lumen. Surfactant prevents alveolar collapse and maintains airway patency by reducing surface tension at the air-liquid interface. Furthermore, it provides a defence against antigen uptake by binding foreign particles and enhancing cellular immune responses. Allergic asthma is associated with chronic airway inflammation and presents with episodes of airway narrowing. The pulmonary inflammation and bronchoconstriction can be triggered by exposure to allergens or pathogens present in the inhaled air. Pulmonary surfactant has the potential to interact with various immune cells which orchestrate allergen- or pathogen-driven episodes of airway inflammation. The complex nature of surfactant allows multiple sites of interaction, but also makes it susceptible to external alterations, which potentially impair its function. This duality of modulating airway physiology and immunology during inflammatory conditions, while at the same time being prone to alterations accompanied by restricted function, has stimulated numerous studies in recent decades, which are reviewed in this article. PMID:23896983

  8. Allergic inflammation--innately homeostatic.

    PubMed

    Cheng, Laurence E; Locksley, Richard M

    2015-03-01

    Allergic inflammation is associated closely with parasite infection but also asthma and other common allergic diseases. Despite the engagement of similar immunologic pathways, parasitized individuals often show no outward manifestations of allergic disease. In this perspective, we present the thesis that allergic inflammatory responses play a primary role in regulating circadian and environmental inputs involved with tissue homeostasis and metabolic needs. Parasites feed into these pathways and thus engage allergic inflammation to sustain aspects of the parasitic life cycle. In response to parasite infection, an adaptive and regulated immune response is layered on the host effector response, but in the setting of allergy, the effector response remains unregulated, thus leading to the cardinal features of disease. Further understanding of the homeostatic pressures driving allergic inflammation holds promise to further our understanding of human health and the treatment of these common afflictions. PMID:25414367

  9. ROLE OF CARBON VERSUS DIESEL PARTICLES ON PULMONARY INFLAMMATION AND ALLERGIC ADJUVANT EFFECTS IN EXPERIMENTAL ANIMALS.

    EPA Science Inventory

    We have previously demonstrated that residual oil fly ash (ROFA) or its constituent metals can behave as an adjuvant to promote allergic immune responses and asthma-like disease in Brown Norway rats We have further reported that these effects can be reproduced by adminstration of...

  10. Allergic pulmonary inflammation in mice is dependent on eosinophil-induced recruitment of effector T cells

    PubMed Central

    Jacobsen, Elizabeth A.; Ochkur, Sergei I.; Pero, Ralph S.; Taranova, Anna G.; Protheroe, Cheryl A.; Colbert, Dana C.; Lee, Nancy A.; Lee, James J.

    2008-01-01

    The current paradigm surrounding allergen-mediated T helper type 2 (Th2) immune responses in the lung suggests an almost hegemonic role for T cells. Our studies propose an alternative hypothesis implicating eosinophils in the regulation of pulmonary T cell responses. In particular, ovalbumin (OVA)-sensitized/challenged mice devoid of eosinophils (the transgenic line PHIL) have reduced airway levels of Th2 cytokines relative to the OVA-treated wild type that correlated with a reduced ability to recruit effector T cells to the lung. Adoptive transfer of Th2-polarized OVA-specific transgenic T cells (OT-II) alone into OVA-challenged PHIL recipient mice failed to restore Th2 cytokines, airway histopathologies, and, most importantly, the recruitment of pulmonary effector T cells. In contrast, the combined transfer of OT-II cells and eosinophils into PHIL mice resulted in the accumulation of effector T cells and a concomitant increase in both airway Th2 immune responses and histopathologies. Moreover, we show that eosinophils elicit the expression of the Th2 chemokines thymus- and activation-regulated chemokine/CCL17 and macrophage-derived chemokine/CCL22 in the lung after allergen challenge, and blockade of these chemokines inhibited the recruitment of effector T cells. In summary, the data suggest that pulmonary eosinophils are required for the localized recruitment of effector T cells. PMID:18316417

  11. [Allergic inflammation in respiratory system].

    PubMed

    An, Lifeng; Wang, Yanshu; Li, Lin

    2015-02-01

    The pathophysiology of allergic disease such as asthma and allergic rhinitis tell the similar story: when the endogenous and exogenous inflammatory mechanisms occur disorder, the body may begin with inflammatory cell activation, namely through the release of cytokine and inflammatory mediator role in the corresponding target cells, activate the sensory nerve fiber, acting on the cell organ specificity effect, clinical symptoms. This article is divided into the following five parts focused on the research progress of allergic inflammatory diseases: (1) inflammatory cells; (2) staphylococcus aureus superantigen; (3) small molecules (cytokines, inflammatory mediators, lipid classes medium); (4) nerve fibers and effect cells; (5) genetic and epigenetic factors. PMID:26012309

  12. Role of platelets in allergic airway inflammation.

    PubMed

    Idzko, Marco; Pitchford, Simon; Page, Clive

    2015-06-01

    Increasing evidence suggests an important role for platelets and their products (e.g., platelet factor 4, β-thromboglobulin, RANTES, thromboxane, or serotonin) in the pathogenesis of allergic diseases. A variety of changes in platelet function have been observed in patients with asthma, such as alterations in platelet secretion, expression of surface molecules, aggregation, and adhesion. Moreover, platelets have been found to actively contribute to most of the characteristic features of asthma, including bronchial hyperresponsiveness, bronchoconstriction, airway inflammation, and airway remodeling. This review brings together the current available data from both experimental and clinical studies that have investigated the role of platelets in allergic airway inflammation and asthma. It is anticipated that a better understanding of the role of platelets in the pathogenesis of asthma might lead to novel promising therapeutic approaches in the treatment of allergic airway diseases. PMID:26051948

  13. Silencing Nociceptor Neurons Reduces Allergic Airway Inflammation.

    PubMed

    Talbot, Sébastien; Abdulnour, Raja-Elie E; Burkett, Patrick R; Lee, Seungkyu; Cronin, Shane J F; Pascal, Maud A; Laedermann, Cedric; Foster, Simmie L; Tran, Johnathan V; Lai, Nicole; Chiu, Isaac M; Ghasemlou, Nader; DiBiase, Matthew; Roberson, David; Von Hehn, Christian; Agac, Busranour; Haworth, Oliver; Seki, Hiroyuki; Penninger, Josef M; Kuchroo, Vijay K; Bean, Bruce P; Levy, Bruce D; Woolf, Clifford J

    2015-07-15

    Lung nociceptors initiate cough and bronchoconstriction. To elucidate if these fibers also contribute to allergic airway inflammation, we stimulated lung nociceptors with capsaicin and observed increased neuropeptide release and immune cell infiltration. In contrast, ablating Nav1.8(+) sensory neurons or silencing them with QX-314, a charged sodium channel inhibitor that enters via large-pore ion channels to specifically block nociceptors, substantially reduced ovalbumin- or house-dust-mite-induced airway inflammation and bronchial hyperresponsiveness. We also discovered that IL-5, a cytokine produced by activated immune cells, acts directly on nociceptors to induce the release of vasoactive intestinal peptide (VIP). VIP then stimulates CD4(+) and resident innate lymphoid type 2 cells, creating an inflammatory signaling loop that promotes allergic inflammation. Our results indicate that nociceptors amplify pathological adaptive immune responses and that silencing these neurons with QX-314 interrupts this neuro-immune interplay, revealing a potential new therapeutic strategy for asthma. PMID:26119026

  14. Silibinin attenuates allergic airway inflammation in mice

    SciTech Connect

    Choi, Yun Ho; Jin, Guang Yu; Guo, Hui Shu; Piao, Hong Mei; Li, Liang chang; Li, Guang Zhao; Lin, Zhen Hua; Yan, Guang Hai

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer Silibinin diminishes ovalbumin-induced inflammatory reactions in the mouse lung. Black-Right-Pointing-Pointer Silibinin reduces the levels of various cytokines into the lung of allergic mice. Black-Right-Pointing-Pointer Silibinin prevents the development of airway hyperresponsiveness in allergic mice. Black-Right-Pointing-Pointer Silibinin suppresses NF-{kappa}B transcriptional activity. -- Abstract: Allergic asthma is a chronic inflammatory disease regulated by coordination of T-helper2 (Th2) type cytokines and inflammatory signal molecules. Silibinin is one of the main flavonoids produced by milk thistle, which is reported to inhibit the inflammatory response by suppressing the nuclear factor-kappa B (NF-{kappa}B) pathway. Because NF-{kappa}B activation plays a pivotal role in the pathogenesis of allergic inflammation, we have investigated the effect of silibinin on a mouse ovalbumin (OVA)-induced asthma model. Airway hyperresponsiveness, cytokines levels, and eosinophilic infiltration were analyzed in bronchoalveolar lavage fluid and lung tissue. Pretreatment of silibinin significantly inhibited airway inflammatory cell recruitment and peribronchiolar inflammation and reduced the production of various cytokines in bronchoalveolar fluid. In addition, silibinin prevented the development of airway hyperresponsiveness and attenuated the OVA challenge-induced NF-{kappa}B activation. These findings indicate that silibinin protects against OVA-induced airway inflammation, at least in part via downregulation of NF-{kappa}B activity. Our data support the utility of silibinin as a potential medicine for the treatment of asthma.

  15. Nasal hyperreactivity and inflammation in allergic rhinitis

    PubMed Central

    Veld, C. de Graaf-in't; Wijk, R. Gerth van; Zijlstra, F. J.

    1996-01-01

    The history of allergic disease goes back to 1819, when Bostock described his own ‘periodical affection of the eyes and chest’, which he called ‘summer catarrh’. Since they thought it was produced by the effluvium of new hay, this condition was also called hay fever. Later, in 1873, Blackley established that pollen played an important role in the causation of hay fever. Nowadays, the definition of allergy is ‘An untoward physiologic event mediated by a variety of different immunologic reactions’. In this review, the term allergy will be restricted to the IgE-dependent reactions. The most important clinical manifestations of IgE-dependent reactions are allergic conjunctivitis, allergic rhinitis, allergic asthma and atopic dermatitis. However, this review will be restricted to allergic rhinitis. The histopathological features of allergic inflammation involve an increase in blood flow and vascular permeability, leading to plasma exudation and the formation of oedema. In addition, a cascade of events occurs which involves a variety of inflammatory cells. These inflammatory cells migrate under the influence of chemotactic agents to the site of injury and induce the process of repair. Several types of inflammatory cells have been implicated in the pathogenesis of allergic rhinitis. After specific or nonspecific stimuli, inflammatory mediators are generated from cells normally found in the nose, such as mast cells, antigen-presenting cells and epithelial cells (primary effector cells) and from cells recruited into the nose, such as basophils, eosinophils, lymphocytes, platelets and neutrophils (secondary effector cells). This review describes the identification of each of the inflammatory cells and their mediators which play a role in the perennial allergic processes in the nose of rhinitis patients. PMID:18475703

  16. Group V secretory phospholipase A2 reveals its role in house dust mite-induced allergic pulmonary inflammation by regulation of dendritic cell function

    PubMed Central

    Giannattasio, Giorgio; Fujioka, Daisuke; Xing, Wei; Katz, Howard R.; Boyce, Joshua A.; Balestrieri, Barbara

    2010-01-01

    We have previously shown that group V secretory phospholipase A2 (sPLA2) regulates phagocytosis of zymosan and Candida albicans by a mechanism that depends on fusion of phagosomes with late endosomes in macrophages. Here we report that group V sPLA2 (Pla2g5)-null mice exposed to an extract of house dust mite Dermatophagoides farinae (Df) had markedly reduced pulmonary inflammation and goblet cell metaplasia compared to wild-type (WT) mice. Pla2g5-null mice had also impaired Th2-type adaptive immune responses to Df compared to WT mice. Pla2g5-null bone marrow-derived dendritic cells (BMDCs) activated by Df had delayed intracellular processing of allergen and impaired allergen-dependent maturation, a pattern recapitulated by the native lung DCs of Df-challenged mice. Adoptively transferred Df-loaded Pla2g5-null BMDCs were less able than Df-loaded WT BMDCs to induce pulmonary inflammation and Th2 polarization in WT mice. However, Pla2g5-null recipients transferred with WT or Pla2g5-null Df-loaded BMDCs exhibited significantly reduced local inflammatory responses to Df, even though the transfer of WT BMDCs still induced an intact Th2 cytokine response in regional lymph nodes. Thus, the expression of group V sPLA2 in APC regulates Ag processing and maturation of dendritic cells, and contributes to pulmonary inflammation and immune response against Df. Furthermore, an additional yet to be identified resident cell type is essential for the development of pulmonary inflammation, likely a cell in which group V sPLA2 is upregulated by Df and whose function is also regulated by group V sPLA2. PMID:20817863

  17. Neurology of allergic inflammation and rhinitis.

    PubMed

    Canning, Brendan J

    2002-05-01

    Afferent nerves, derived from the trigeminal ganglion, and postganglionic autonomic nerves, derived from sympathetic and parasympathetic ganglia expressing many different neurotransmitters, innervate the nose. Reflexes that serve to optimize the air-conditioning function of the nose by altering sinus blood flow, or serve to protect the nasal mucosal surface by mucus secretion, vasodilatation, and sneezing, can be initiated by a variety of stimuli, including allergen, cold air, and chemical irritation. Activation of nasal afferent nerves can also have profound effects on respiration, heart rate, blood pressure, and airway caliber (the diving response). Dysregulation of the nerves in the nose plays an integral role in the pathogenesis of allergic rhinitis. Axon reflexes can precipitate inflammatory responses in the nose, resulting in plasma extravasation and inflammatory cell recruitment, while allergic inflammation can produce neuronal hyper-responsiveness. Targeting the neuronal dysregulation in the nose may be beneficial in treating upper airway disease. PMID:11918862

  18. Prostaglandin E2 deficiency uncovers a dominant role for thromboxane A2 in house dust mite-induced allergic pulmonary inflammation.

    PubMed

    Liu, Tao; Laidlaw, Tanya M; Feng, Chunli; Xing, Wei; Shen, Shiliang; Milne, Ginger L; Boyce, Joshua A

    2012-07-31

    Prostaglandin E(2) (PGE(2)) is an abundant lipid inflammatory mediator with potent but incompletely understood anti-inflammatory actions in the lung. Deficient PGE(2) generation in the lung predisposes to airway hyperresponsiveness and aspirin intolerance in asthmatic individuals. PGE(2)-deficient ptges(-/-) mice develop exaggerated pulmonary eosinophilia and pulmonary arteriolar smooth-muscle hyperplasia compared with PGE(2)-sufficient controls when challenged intranasally with a house dust mite extract. We now demonstrate that both pulmonary eosinophilia and vascular remodeling in the setting of PGE(2) deficiency depend on thromboxane A(2) and signaling through the T prostanoid (TP) receptor. Deletion of TP receptors from ptges(-/-) mice reduces inflammation, vascular remodeling, cytokine generation, and airway reactivity to wild-type levels, with contributions from TP receptors localized to both hematopoietic cells and tissue. TP receptor signaling ex vivo is controlled heterologously by E prostanoid (EP)(1) and EP(2) receptor-dependent signaling pathways coupling to protein kinases C and A, respectively. TP-dependent up-regulation of intracellular adhesion molecule-1 expression is essential for the effects of PGE(2) deficiency. Thus, PGE(2) controls the strength of TP receptor signaling as a major bronchoprotective mechanism, carrying implications for the pathobiology and therapy of asthma. PMID:22802632

  19. Innate Immune Responses to Engineered Nanomaterials During Allergic Airway Inflammation

    NASA Astrophysics Data System (ADS)

    Shipkowski, Kelly Anne

    The field of nanotechnology is continually advancing, and increasing amounts of consumer goods are being produced using engineered nanomaterials (ENMs). The health risks of occupational and/or consumer exposure to ENMs are not completely understood, although significant research indicates that pulmonary exposure to nanomaterials induces toxic effects in the lungs of exposed animals. Multi-walled carbon nanotubes (MWCNTs) are a specific category of ENMs and consist of sheets of graphene rolled into cylinders that are multiple layers thick in order to strengthen their rigidity. MWCNTs have a fiber-like shape, similar to that of asbestos, which allows for a high aspect ratio and makes them difficult to clear from the lung. Studies with rodent models have demonstrated that pulmonary exposure to ENMs, in particular MWCNTs, results in acute lung inflammation and the subsequent development of chronic fibrosis, suggesting a potential human health risk to individuals involved in the manufacturing of products utilizing these nanomaterials. Induction of IL-1beta secretion via activation of the inflammasome is a prime mechanism of MWCNT-induced inflammation. The inflammasome is a multi-protein scaffold found in a variety of cell types that forms in response to a variety of immune signals, including particulates. Sensitization with allergens, such as house dust mite (HDM), increases levels of the T helper 2 (Th2) cytokines IL-4 and IL-13 in mice and in humans, and there is particular cause for concern in cases of MWCNT exposure in individuals with pre-existing allergic airway disease, such as asthma. MWCNT exposure exacerbates airway inflammation and fibrosis in animal models of pre-existing allergic asthma, suggesting that individuals suffering from asthma are more susceptible to the toxic pulmonary effects of MWCNT exposure. Asthma is an exceptionally prominent human disease, and therefore the goal of this research was to better understand how pre-existing allergic airway

  20. Neutrophil recruitment by allergens contribute to allergic sensitization and allergic inflammation

    PubMed Central

    Hosoki, Koa; Boldogh, Istvan; Sur, Sanjiv

    2016-01-01

    Purpose of review To discuss the presence and role of neutrophils in asthma and allergic diseases, and outline importance of pollen and cat dander-induced innate neutrophil recruitment in induction of allergic sensitization and allergic inflammation. Recent findings Uncontrolled asthma is associated with elevated numbers of neutrophils, and levels of neutrophil-attracting chemokine IL-8 and IL-17 in BAL fluids. These parameters negatively correlate with lung function. Pollen allergens and cat dander recruit neutrophils to the airways in a TLR4, MD2 and CXCR2-dependent manner. Repeated recruitment of activated neutrophils by these allergens facilitates allergic sensitization and airway inflammation. Inhibition of neutrophil recruitment with CXCR2 inhibitor, disruption of TLR4, or siRNA against MD2 also inhibits allergic inflammation. The molecular mechanisms by which neutrophils shift the inflammatory response of the airways to inhaled allergens to an allergic phenotype is an area of active research. Summary Recent studies have revealed that neutrophil recruitment is important in development of allergic sensitization and inflammation. Inhibition of neutrophils recruitment may be strategy to control allergic inflammation. PMID:26694038

  1. JNK-TLR9 signal pathway mediates allergic airway inflammation through suppressing melatonin biosynthesis.

    PubMed

    Wu, Hui-Mei; Shen, Qi-Ying; Fang, Lei; Zhang, Shi-Hai; Shen, Pei-Ting; Liu, Ya-Jing; Liu, Rong-Yu

    2016-05-01

    Toll-like receptors (TLRs) play pivotal role in the pathogenesis of allergic airway diseases such as asthma. TLR9 is one of the most extensively studied TLRs as an approach to treat asthma. In this study, we investigated the role of TLR9 in the allergic airway inflammation and the underlying mechanism. Wild-type (WT) mice and TLR9(-/-) mice were sensitized and challenged with OVA to establish allergic airway disease model. We found that the expression of TLR9 was elevated concomitantly with airway inflammation post-OVA challenge, and TLR9 deficiency effectively inhibited airway inflammation, including serum OVA-specific immunoglobulin E (IgE), pulmonary inflammatory cell recruitment, mucus secretion, and bronchoalveolar lavage fluid (BALF) inflammatory cytokine production. Meanwhile, the protein expression of hydroxyindole-o-methyltransferase (HIOMT) in lung tissues, the level of melatonin in serum, and BALF were reduced in OVA-challenged WT mice, while these reductions were significantly restored by TLR9 deficiency. Additionally, we showed that although TLR9 deficiency had no effect on OVA-induced phosphorylation of JNK, inhibition of JNK by specific inhibitor SP600125 significantly decreased OVA-induced expression of TLR9, suggesting that JNK is the upstream signal molecular of TLR9. Furthermore, SP600125 treatment promoted resolution of allergic airway inflammation in OVA-challenged WT mice, but not further ameliorated allergic airway inflammation in OVA-challenged TLR9(-/-) mice. Similarly, SP600125 significantly restored the protein expression of HIOMT and the level of melatonin in OVA-challenged WT mice, while such effect was not further enhanced by TLR9 deficiency. Collectively, our results indicated that JNK-TLR9 signal pathway mediates allergic airway inflammation through suppressing melatonin biosynthesis. PMID:26914888

  2. Innate Immune Responses to Engineered Nanomaterials During Allergic Airway Inflammation

    NASA Astrophysics Data System (ADS)

    Shipkowski, Kelly Anne

    The field of nanotechnology is continually advancing, and increasing amounts of consumer goods are being produced using engineered nanomaterials (ENMs). The health risks of occupational and/or consumer exposure to ENMs are not completely understood, although significant research indicates that pulmonary exposure to nanomaterials induces toxic effects in the lungs of exposed animals. Multi-walled carbon nanotubes (MWCNTs) are a specific category of ENMs and consist of sheets of graphene rolled into cylinders that are multiple layers thick in order to strengthen their rigidity. MWCNTs have a fiber-like shape, similar to that of asbestos, which allows for a high aspect ratio and makes them difficult to clear from the lung. Studies with rodent models have demonstrated that pulmonary exposure to ENMs, in particular MWCNTs, results in acute lung inflammation and the subsequent development of chronic fibrosis, suggesting a potential human health risk to individuals involved in the manufacturing of products utilizing these nanomaterials. Induction of IL-1beta secretion via activation of the inflammasome is a prime mechanism of MWCNT-induced inflammation. The inflammasome is a multi-protein scaffold found in a variety of cell types that forms in response to a variety of immune signals, including particulates. Sensitization with allergens, such as house dust mite (HDM), increases levels of the T helper 2 (Th2) cytokines IL-4 and IL-13 in mice and in humans, and there is particular cause for concern in cases of MWCNT exposure in individuals with pre-existing allergic airway disease, such as asthma. MWCNT exposure exacerbates airway inflammation and fibrosis in animal models of pre-existing allergic asthma, suggesting that individuals suffering from asthma are more susceptible to the toxic pulmonary effects of MWCNT exposure. Asthma is an exceptionally prominent human disease, and therefore the goal of this research was to better understand how pre-existing allergic airway

  3. Facilitation of Allergic Sensitization and Allergic Airway Inflammation by Pollen-Induced Innate Neutrophil Recruitment.

    PubMed

    Hosoki, Koa; Aguilera-Aguirre, Leopoldo; Brasier, Allan R; Kurosky, Alexander; Boldogh, Istvan; Sur, Sanjiv

    2016-01-01

    Neutrophil recruitment is a hallmark of rapid innate immune responses. Exposure of airways of naive mice to pollens rapidly induces neutrophil recruitment. The innate mechanisms that regulate pollen-induced neutrophil recruitment and the contribution of this neutrophilic response to subsequent induction of allergic sensitization and inflammation need to be elucidated. Here we show that ragweed pollen extract (RWPE) challenge in naive mice induces C-X-C motif ligand (CXCL) chemokine synthesis, which stimulates chemokine (C-X-C motif) receptor 2 (CXCR2)-dependent recruitment of neutrophils into the airways. Deletion of Toll-like receptor 4 (TLR4) abolishes CXCL chemokine secretion and neutrophil recruitment induced by a single RWPE challenge and inhibits induction of allergic sensitization and airway inflammation after repeated exposures to RWPE. Forced induction of CXCL chemokine secretion and neutrophil recruitment in mice lacking TLR4 also reconstitutes the ability of multiple challenges of RWPE to induce allergic airway inflammation. Blocking RWPE-induced neutrophil recruitment in wild-type mice by administration of a CXCR2 inhibitor inhibits the ability of repeated exposures to RWPE to stimulate allergic sensitization and airway inflammation. Administration of neutrophils derived from naive donor mice into the airways of Tlr4 knockout recipient mice after each repeated RWPE challenge reconstitutes allergic sensitization and inflammation in these mice. Together these observations indicate that pollen-induced recruitment of neutrophils is TLR4 and CXCR2 dependent and that recruitment of neutrophils is a critical rate-limiting event that stimulates induction of allergic sensitization and airway inflammation. Inhibiting pollen-induced recruitment of neutrophils, such as by administration of CXCR2 antagonists, may be a novel strategy to prevent initiation of pollen-induced allergic airway inflammation. PMID:26086549

  4. Effects of sublingual immunotherapy on allergic inflammation: an update.

    PubMed

    Yacoub, Mona-Rita; Colombo, Giselda; Marcucci, Francesco; Caminati, Marco; Sensi, Laura; Di Cara, Giuseppe; Frati, Franco; Incorvaia, Cristoforo

    2012-08-01

    The most common allergic diseases, and especially the respiratory disorders such as rhinitis and asthma, are closely related to the allergic inflammation elicited by the causative allergen. This makes inflammation the main target of anti-allergic therapies. Among the available treatments, allergen specific immunotherapy (AIT) has a patent effect on allergic inflammation, which persists also after its discontinuation, and is the only therapy able to modify the natural history of allergy. The traditional, subcutaneous route of administration was demonstrated to modify the allergen presentation by dendritic cells (DCs) that in turn correct the phenotype of allergen-specific T cells, switching from the Th2-type response, typical of allergic inflammation and characterized by the production of IL-4, IL-5, IL-13, IL-17, and IL-32 cytokines to a Th1-type response. This immune deviation is related to an increased IFN-gamma and IL-2 production as well as to the anergy of Th2 or to tolerance, the latter being related to the generation of allergen-specific T regulatory (Treg) cells, which produce cytokines such as IL-10 and TGF-beta. Anti-inflammatory mechanisms observed during sublingual AIT with high allergen doses proved to be similar to subcutaneous immunotherapy. Data obtained from biopsies clearly indicate that the pathophysiology of the oral mucosa, with particular importance for mucosal DCs, plays a crucial role in inducing tolerance to the administered allergen. PMID:22506880

  5. Thymic stromal lymphopoietin: master switch for allergic inflammation

    PubMed Central

    Liu, Yong-Jun

    2006-01-01

    Thymic stromal lymphopoietin (TSLP) is an interleukin (IL) 7–like cytokine that triggers dendritic cell–mediated T helper (Th)2 inflammatory responses. TSLP is highly expressed by keratinocytes in skin lesions of patients with atopic dermatitis and is associated with dendritic cell activation in situ, suggesting that TSLP might be a master switch for allergic inflammation at the epithelial cell–dendritic cell interface. New reports now establish a direct link between TSLP expression and the pathogenesis of atopic dermatitis and asthma in vivo, and begin to reveal the molecular mechanisms underlying TSLP-induced allergic inflammation. PMID:16432252

  6. Beta-escin has potent anti-allergic efficacy and reduces allergic airway inflammation

    PubMed Central

    2010-01-01

    Background Type I hypersensitivity is characterized by the overreaction of the immune system against otherwise innocuous substances. It manifests as allergic rhinitis, allergic conjunctivitis, allergic asthma or atopic dermatitis if mast cells are activated in the respective organs. In case of systemic mast cell activation, life-threatening anaphylaxis may occur. Currently, type I hypersensitivities are treated either with glucocorticoids, anti-histamines, or mast cell stabilizers. Although these drugs exert a strong anti-allergic effect, their long-term use may be problematic due to their side-effects. Results In the course of a routine in vitro screening process, we identified beta-escin as a potentially anti-allergic compound. Here we tested beta-escin in two mouse models to confirm this anti-allergic effect in vivo. In a model of the early phase of allergic reactions, the murine passive cutaneous anaphylaxis model, beta-escin inhibited the effects of mast cell activation and degranulation in the skin and dose-dependently prevented the extravasation of fluids into the tissue. Beta-escin also significantly inhibited the late response after antigen challenge in a lung allergy model with ovalbumin-sensitized mice. Allergic airway inflammation was suppressed, which was exemplified by the reduction of leucocytes, eosinophils, IL-5 and IL-13 in the bronchoalveolar lavage fluid. Histopathological examinations further confirmed the reduced inflammation of the lung tissue. In both models, the inhibitory effect of beta-escin was comparable to the benchmark dexamethasone. Conclusions We demonstrated in two independent murine models of type I hypersensitivity that beta-escin has potent anti-allergic properties. These results and the excellent safety profile of beta-escin suggest a therapeutic potential of this compound for a novel treatment of allergic diseases. PMID:20487574

  7. Allergic Lung Inflammation Reduces Tissue Invasion and Enhances Survival from Pulmonary Pneumococcal Infection in Mice, Which Correlates with Increased Expression of Transforming Growth Factor β1 and SiglecFlow Alveolar Macrophages

    PubMed Central

    Sanfilippo, Alan M.; Furuya, Yoichi; Roberts, Sean; Salmon, Sharon L.

    2015-01-01

    Asthma is generally thought to confer an increased risk for invasive pneumococcal disease (IPD) in humans. However, recent reports suggest that mortality rates from IPD are unaffected in patients with asthma and that chronic obstructive pulmonary disease (COPD), a condition similar to asthma, protects against the development of complicated pneumonia. To clarify the effects of asthma on the subsequent susceptibility to pneumococcal infection, ovalbumin (OVA)-induced allergic lung inflammation (ALI) was induced in mice followed by intranasal infection with A66.1 serotype 3 Streptococcus pneumoniae. Surprisingly, mice with ALI were significantly more resistant to lethal infection than non-ALI mice. The heightened resistance observed following ALI correlated with enhanced early clearance of pneumococci from the lung, decreased bacterial invasion from the airway into the lung tissue, a blunted inflammatory cytokine and neutrophil response to infection, and enhanced expression of transforming growth factor β1 (TGF-β1). Neutrophil depletion prior to infection had no effect on enhanced early bacterial clearance or resistance to IPD in mice with ALI. Although eosinophils recruited into the lung during ALI appeared to be capable of phagocytizing bacteria, neutralization of interleukin-5 (IL-5) to inhibit eosinophil recruitment likewise had no effect on early clearance or survival following infection. However, enhanced resistance was associated with an increase in levels of clodronate-sensitive, phagocytic SiglecFlow alveolar macrophages within the airways following ALI. These findings suggest that, while the risk of developing IPD may actually be decreased in patients with acute asthma, additional clinical data are needed to better understand the risk of IPD in patients with different asthma phenotypes. PMID:25964474

  8. Allergic Lung Inflammation Reduces Tissue Invasion and Enhances Survival from Pulmonary Pneumococcal Infection in Mice, Which Correlates with Increased Expression of Transforming Growth Factor β1 and SiglecF(low) Alveolar Macrophages.

    PubMed

    Sanfilippo, Alan M; Furuya, Yoichi; Roberts, Sean; Salmon, Sharon L; Metzger, Dennis W

    2015-07-01

    Asthma is generally thought to confer an increased risk for invasive pneumococcal disease (IPD) in humans. However, recent reports suggest that mortality rates from IPD are unaffected in patients with asthma and that chronic obstructive pulmonary disease (COPD), a condition similar to asthma, protects against the development of complicated pneumonia. To clarify the effects of asthma on the subsequent susceptibility to pneumococcal infection, ovalbumin (OVA)-induced allergic lung inflammation (ALI) was induced in mice followed by intranasal infection with A66.1 serotype 3 Streptococcus pneumoniae. Surprisingly, mice with ALI were significantly more resistant to lethal infection than non-ALI mice. The heightened resistance observed following ALI correlated with enhanced early clearance of pneumococci from the lung, decreased bacterial invasion from the airway into the lung tissue, a blunted inflammatory cytokine and neutrophil response to infection, and enhanced expression of transforming growth factor β1 (TGF-β1). Neutrophil depletion prior to infection had no effect on enhanced early bacterial clearance or resistance to IPD in mice with ALI. Although eosinophils recruited into the lung during ALI appeared to be capable of phagocytizing bacteria, neutralization of interleukin-5 (IL-5) to inhibit eosinophil recruitment likewise had no effect on early clearance or survival following infection. However, enhanced resistance was associated with an increase in levels of clodronate-sensitive, phagocytic SiglecF(low) alveolar macrophages within the airways following ALI. These findings suggest that, while the risk of developing IPD may actually be decreased in patients with acute asthma, additional clinical data are needed to better understand the risk of IPD in patients with different asthma phenotypes. PMID:25964474

  9. Differential Activation of Airway Eosinophils Induces IL-13 Mediated Allergic Th2 Pulmonary Responses in Mice

    PubMed Central

    Jacobsen, EA; Doyle, AD; Colbert, DC; Zellner, KR; Protheroe, CA; LeSuer, WE; Lee, NA.; Lee, JJ

    2015-01-01

    Background Eosinophils are hallmark cells of allergic Th2 respiratory inflammation. However, the relative importance of eosinophil activation and the induction of effector functions such as the expression of IL-13 to allergic Th2 pulmonary disease remain to be defined. Methods Wild type or cytokine deficient (IL-13−/− or IL-4−/−) eosinophils treated with cytokines (GM-CSF, IL-4, IL-33) were adoptively transferred into eosinophil-deficient recipient mice subjected to allergen provocation using established models of respiratory inflammation. Allergen-induced pulmonary changes were assessed. Results In contrast to the transfer of untreated blood eosinophils to the lungs of recipient eosinophildeficient mice, which induced no immune/inflammatory changes either in the lung or lung draining lymph nodes (LDLNs), pretreatment of blood eosinophils with GM-CSF prior to transfer elicited trafficking of these eosinophils to LDLNs. In turn, these LDLN eosinophils elicited the accumulation of dendritic cells and CD4+ T cells to these same LDLNs without inducing pulmonary inflammation. However, exposure of eosinophils to GM-CSF, IL-4 and IL-33 prior to transfer induced not only immune events in the LDLN, but also allergen-mediated increases in airway Th2 cytokine/chemokine levels, the subsequent accumulation of CD4+ T cells as well as alternatively activated (M2) macrophages, and the induction of pulmonary histopathologies. Significantly, this allergic respiratory inflammation was dependent on eosinophil-derived IL-13 whereas IL-4 expression by eosinophils had no significant role. Conclusion The data demonstrate the differential activation of eosinophils as a function of cytokine exposure and suggest that eosinophil-specific IL-13 expression by activated cells is a necessary component of the subsequent allergic Th2 pulmonary pathologies. PMID:26009788

  10. A geranyl acetophenone targeting cysteinyl leukotriene synthesis prevents allergic airway inflammation in ovalbumin-sensitized mice.

    PubMed

    Ismail, Norazren; Jambari, Nuzul Nurahya; Zareen, Seema; Akhtar, Mohamad Nadeem; Shaari, Khozirah; Zamri-Saad, Mohamad; Tham, Chau Ling; Sulaiman, Mohd Roslan; Lajis, Nordin Hj; Israf, Daud Ahmad

    2012-03-01

    Asthma is associated with increased pulmonary inflammation and airway hyperresponsiveness. The current use of corticosteroids in the management of asthma has recently raised issues regarding safety and lack of responsiveness in 5-10% of asthmatic individuals. The aim of the present study was to investigate the therapeutic effect of a non-steroidal small molecule that has cysteinyl leukotriene (cysLT) inhibitory activity, upon attenuation of allergic lung inflammation in an acute murine model. Mice were sensitized with ovalbumin (OVA) and treated with several intraperitoneal doses (100, 20, 2 and 0.2mg/kg) of 2,4,6,-trihydroxy-3-geranylacetophenone (tHGA). Bronchoalveolar lavage was performed, blood and lung samples were obtained and respiratory function was measured. OVA sensitization increased pulmonary inflammation and pulmonary allergic inflammation was significantly reduced at doses of 100, 20 and 2mg/kg with no effect at the lowest dose of 0.2mg/kg. The beneficial effects in the lung were associated with reduced eosinophilic infiltration and reduced secretion of Th2 cytokines and cysLTs. Peripheral blood reduction of total IgE was also a prominent feature. Treatment with tHGA significantly attenuated altered airway hyperresponsiveness as measured by the enhanced pause (Penh) response to incremental doses of methacholine. These data demonstrate that tHGA, a synthetic non-steroidal small molecule, can prevent acute allergic inflammation. This proof of concept opens further avenues of research and development of tHGA as an additional option to the current armamentarium of anti-asthma therapeutics. PMID:22266348

  11. The adaptor protein insulin receptor substrate 2 inhibits alternative macrophage activation and allergic lung inflammation.

    PubMed

    Dasgupta, Preeta; Dorsey, Nicolas J; Li, Jiaqi; Qi, Xiulan; Smith, Elizabeth P; Yamaji-Kegan, Kazuyo; Keegan, Achsah D

    2016-01-01

    Insulin receptor substrate 2 (IRS2) is an adaptor protein that becomes tyrosine-phosphorylated in response to the cytokines interleukin-4 (IL-4) and IL-13, which results in activation of the phosphoinositide 3-kinase (PI3K)-Akt pathway. IL-4 and IL-13 contribute to allergic lung inflammation. To examine the role of IRS2 in allergic disease, we evaluated the responses of IRS2-deficient (IRS2(-/-)) mice. Unexpectedly, loss of IRS2 resulted in a substantial increase in the expression of a subset of genes associated with the generation of alternatively activated macrophages (AAMs) in response to IL-4 or IL-13 in vitro. AAMs secrete factors that enhance allergic responses and promote airway remodeling. Moreover, compared to IRS2(+/+) mice, IRS2(+/-) and IRS2(-/-) mice developed enhanced pulmonary inflammation, accumulated eosinophils and AAMs, and exhibited airway and vascular remodeling upon allergen stimulation, responses that partially depended on macrophage-intrinsic IRS2 signaling. Both in unstimulated and IL-4-stimulated macrophages, lack of IRS2 enhanced phosphorylation of Akt and ribosomal S6 protein. Thus, we identified a critical inhibitory loop downstream of IRS2, demonstrating an unanticipated and previously unrecognized role for IRS2 in suppressing allergic lung inflammation and remodeling. PMID:27330190

  12. Inhibition of allergic inflammation by supplementation with 5-hydroxytryptophan

    PubMed Central

    Abdala-Valencia, Hiam; Berdnikovs, Sergejs; McCary, Christine A.; Urick, Daniela; Mahadevia, Riti; Marchese, Michelle E.; Swartz, Kelsey; Wright, Lakiea; Mutlu, Gökhan M.

    2012-01-01

    Clinical reports indicate that patients with allergy/asthma commonly have associated symptoms of anxiety/depression. Anxiety/depression can be reduced by 5-hydroxytryptophan (5-HTP) supplementation. However, it is not known whether 5-HTP reduces allergic inflammation. Therefore, we determined whether 5-HTP supplementation reduces allergic inflammation. We also determined whether 5-HTP decreases passage of leukocytes through the endothelial barrier by regulating endothelial cell function. For these studies, C57BL/6 mice were supplemented with 5-HTP, treated with ovalbumin fraction V (OVA), house dust mite (HDM) extract, or IL-4, and examined for allergic lung inflammation and OVA-induced airway responsiveness. To determine whether 5-HTP reduces leukocyte or eosinophil transendothelial migration, endothelial cells were pretreated with 5-HTP, washed and then used in an in vitro transendothelial migration assay under laminar flow. Interestingly, 5-HTP reduced allergic lung inflammation by 70–90% and reduced antigen-induced airway responsiveness without affecting body weight, blood eosinophils, cytokines, or chemokines. 5-HTP reduced allergen-induced transglutaminase 2 (TG2) expression and serotonylation (serotonin conjugation to proteins) in lung endothelial cells. Consistent with the regulation of endothelial serotonylation in vivo, in vitro pretreatment of endothelial cells with 5-HTP reduced TNF-α-induced endothelial cell serotonylation and reduced leukocyte transendothelial migration. Furthermore, eosinophil and leukocyte transendothelial migration was reduced by inhibitors of transglutaminase and by inhibition of endothelial cell serotonin synthesis, suggesting that endothelial cell serotonylation is key for leukocyte transendothelial migration. In summary, 5-HTP supplementation inhibits endothelial serotonylation, leukocyte recruitment, and allergic inflammation. These data identify novel potential targets for intervention in allergy/asthma. PMID:22842218

  13. A geranyl acetophenone targeting cysteinyl leukotriene synthesis prevents allergic airway inflammation in ovalbumin-sensitized mice

    SciTech Connect

    Ismail, Norazren; Jambari, Nuzul Nurahya; Zareen, Seema; Akhtar, Mohamad Nadeem; Shaari, Khozirah; Zamri-Saad, Mohamad; Tham, Chau Ling; Sulaiman, Mohd Roslan; Lajis, Nordin Hj; Israf, Daud Ahmad

    2012-03-01

    Asthma is associated with increased pulmonary inflammation and airway hyperresponsiveness. The current use of corticosteroids in the management of asthma has recently raised issues regarding safety and lack of responsiveness in 5–10% of asthmatic individuals. The aim of the present study was to investigate the therapeutic effect of a non-steroidal small molecule that has cysteinyl leukotriene (cysLT) inhibitory activity, upon attenuation of allergic lung inflammation in an acute murine model. Mice were sensitized with ovalbumin (OVA) and treated with several intraperitoneal doses (100, 20, 2 and 0.2 mg/kg) of 2,4,6,-trihydroxy-3-geranylacetophenone (tHGA). Bronchoalveolar lavage was performed, blood and lung samples were obtained and respiratory function was measured. OVA sensitization increased pulmonary inflammation and pulmonary allergic inflammation was significantly reduced at doses of 100, 20 and 2 mg/kg with no effect at the lowest dose of 0.2 mg/kg. The beneficial effects in the lung were associated with reduced eosinophilic infiltration and reduced secretion of Th2 cytokines and cysLTs. Peripheral blood reduction of total IgE was also a prominent feature. Treatment with tHGA significantly attenuated altered airway hyperresponsiveness as measured by the enhanced pause (Penh) response to incremental doses of methacholine. These data demonstrate that tHGA, a synthetic non-steroidal small molecule, can prevent acute allergic inflammation. This proof of concept opens further avenues of research and development of tHGA as an additional option to the current armamentarium of anti-asthma therapeutics. -- Highlights: ► Safer and effective anti-asthmatic drugs are in great demand. ► tHGA is a new 5-LO/cysLT inhibitor that inhibits allergic asthma in mice. ► tHGA is a natural compound that can be synthesized. ► Doses as low as 2 mg/kg alleviate lung pathology in experimental asthma. ► tHGA is a potential drug lead for the treatment of allergic asthma.

  14. The Role of Prostaglandins in Allergic Lung Inflammation and Asthma

    PubMed Central

    Claar, Dru; Hartert, Tina V.; Peebles, R. Stokes

    2015-01-01

    Prostaglandins are products of the cyclooxygenase pathway of arachidonic acid metabolism. There are five primary prostaglandins, PGD2, PGE2, PGF2, PGI2, and thromboxane B2, all of which signal through distinct seven transmembrane, G-protein coupled receptors. Some prostaglandins may counteract the actions of others, or even the same prostaglandin may have opposing physiologic or immunologic effects, depending on the specific receptor through which it signals. In this review, we will examine the effects of cyclooxygenase activity and the various prostaglandins on allergic airway inflammation and physiology that is associated with asthma. We also highlight the potential therapeutic benefit of targeting prostaglandins in allergic lung inflammation and asthma based on basic science, animal model, and human studies. PMID:25541289

  15. Role of nitric oxide on eosinophilic lung inflammation in allergic mice.

    PubMed

    Feder, L S; Stelts, D; Chapman, R W; Manfra, D; Crawley, Y; Jones, H; Minnicozzi, M; Fernandez, X; Paster, T; Egan, R W; Kreutner, W; Kung, T T

    1997-10-01

    Nitric oxide (NO) is an important mediator of inflammatory reactions and may contribute to the lung inflammation in allergic pulmonary diseases. To assess the role of NO in pulmonary inflammation, we studied the effect of four nitric oxide synthase (NOS) inhibitors, N-nitro-L-arginine methyl ester (L-NAME), aminoguanidine, N(G)-monomethyl-L-arginine (NMMA) and L-N6-(1-Iminoethyl) lysine (L-NIL), on the influx of eosinophils into the bronchoalveolar lavage (BAL) fluid and lung tissue of antigen-challenged allergic mice. We also analyzed lung tissues for the presence of steady state mRNA for inducible nitric oxide synthase (iNOS) and iNOS protein. Furthermore, BAL fluid and serum were analyzed for their nitrite content. B6D2F1/J mice were sensitized to ovalbumin (OVA) and challenged with aerosolized OVA. The NOS inhibitors were given 0.5 h before and 4 h after the antigen challenge. OVA challenge induced a marked eosinophilia in the BAL fluid and lung tissue 24 h after challenge. The OVA-induced pulmonary eosinophilia was significantly reduced by L-NAME (10 and 50 mg/kg, intraperitoneally [i.p.]). The inactive isomer, D-NAME (50 mg/kg, i.p.) had no effect. When mice were treated with L-NAME (20 mg/kg, i.p.) and an excess of NOS substrate, L-arginine (200 mg/kg, i.p.), the OVA-induced pulmonary eosinophilia was restored. Treatment with aminoguanidine (0.4-50 mg/kg, i.p.) also reduced the pulmonary eosinophilia. Treatment with NMMA (2-50 mg/kg, i.p.) partially reduced the eosinophilia, but L-NIL (10-50 mg/kg, i.p.), a selective iNOS inhibitor, had no effect. L-NAME had no effect on the reduction of eosinophils in the bone marrow following OVA challenge to sensitized mice. OVA challenge to sensitized mice had no effect on iNOS protein expression or iNOS mRNA in the lungs or on the levels of nitrite in the BAL fluid. These results suggest that NO is involved in the development of pulmonary eosinophilia in allergic mice. The NO contributing to the eosinophilia is not

  16. The Hyaluronic Acid–HDAC3–miRNA Network in Allergic Inflammation

    PubMed Central

    Kim, Youngmi; Eom, Sangkyung; Park, Deokbum; Kim, Hyuna; Jeoung, Dooil

    2015-01-01

    We previously reported the anti-allergic effect of high molecular weight form of hyaluronic acid (HMW-HA). In doing so, HA targets CD44 and inhibits FcεRI signaling and cross-talk between epidermal growth factor receptor (EGFR) and FcεRI. We previously reported the role of histone deacetylases (HDACs) in allergic inflammation and allergic inflammation-promoted enhanced tumorigenic potential. We reported regulatory role of HA in the expression of HDAC3. In this review, we will discuss molecular mechanisms associated with anti-allergic effect of HA in relation with HDACs. The role of microRNAs (miRNAs) in allergic inflammation has been reported. We will also discuss the role of miRNAs in allergic inflammation in relation with HA-mediated anti-allergic effects. PMID:25983734

  17. Pulmonary CD103 expression regulates airway inflammation in asthma.

    PubMed

    Bernatchez, Emilie; Gold, Matthew J; Langlois, Anick; Lemay, Anne-Marie; Brassard, Julyanne; Flamand, Nicolas; Marsolais, David; McNagny, Kelly M; Blanchet, Marie-Renee

    2015-04-15

    Although CD103(+) cells recently emerged as key regulatory cells in the gut, the role of CD103 ubiquitous expression in the lung and development of allergic airway disease has never been studied. To answer this important question, we evaluated the response of Cd103(-/-) mice in two separate well-described mouse models of asthma (ovalbumin and house dust mite extract). Pulmonary inflammation was assessed by analysis of bronchoalveolar lavage content, histology, and cytokine response. CD103 expression was analyzed on lung dendritic cells and T cell subsets by flow cytometry. Cd103(-/-) mice exposed to antigens developed exacerbated lung inflammation, characterized by increased eosinophilic infiltration, severe tissue inflammation, and altered cytokine response. In wild-type mice exposed to house dust mite, CD103(+) dendritic cells are increased in the lung and an important subset of CD4(+) T cells, CD8(+) T cells, and T regulatory cells express CD103. Importantly, Cd103(-/-) mice presented a deficiency in the resolution phase of inflammation, which supports an important role for this molecule in the control of inflammation severity. These results suggest an important role for CD103 in the control of airway inflammation in asthma. PMID:25681437

  18. Effects of multi-walled carbon nanotubes on a murine allergic airway inflammation model

    SciTech Connect

    Inoue, Ken-ichiro Koike, Eiko; Yanagisawa, Rie; Hirano, Seishiro; Nishikawa, Masataka; Takano, Hirohisa

    2009-06-15

    The development of nanotechnology has increased the risk of exposure to types of particles other than combustion-derived particles in the environment, namely, industrial nanomaterials. On the other hand, patients with bronchial asthma are sensitive to inhaled substances including particulate matters. This study examined the effects of pulmonary exposure to a type of nano-sized carbon nanotube (multi-walled nanotubes: MWCNT) on allergic airway inflammation in vivo and their cellular mechanisms in vitro. In vivo, ICR mice were divided into 4 experimental groups. Vehicle, MWCNT (50 {mu}g/animal), ovalbumin (OVA), and OVA + MWCNT were repeatedly administered intratracheally. Bronchoalveolar lavage (BAL) cellularity, lung histology, levels of cytokines related to allergic inflammation in lung homogenates/BAL fluids (BALFs), and serum immunoglobulin levels were studied. Also, we evaluated the impact of MWCNT (0.1-1 {mu}g/ml) on the phenotype and function of bone marrow-derived dendritic cells (DC) in vitro. MWCNT aggravated allergen-induced airway inflammation characterized by the infiltration of eosinophils, neutrophils, and mononuclear cells in the lung, and an increase in the number of goblet cells in the bronchial epithelium. MWCNT with allergen amplified lung protein levels of Th cytokines and chemokines compared with allergen alone. MWCNT exhibited adjuvant activity for allergen-specific IgG{sub 1} and IgE. MWCNT significantly increased allergen (OVA)-specific syngeneic T-cell proliferation, particularly at a lower concentration in vitro. Taken together, MWCNT can exacerbate murine allergic airway inflammation, at least partly, via the promotion of a Th-dominant milieu. In addition, the exacerbation may be partly through the inappropriate activation of antigen-presenting cells including DC.

  19. Experimental extrinsic allergic alveolitis and pulmonary angiitis induced by intratracheal or intravenous challenge with Corynebacterium parvum in sensitized rats.

    PubMed Central

    Yi, E. S.; Lee, H.; Suh, Y. K.; Tang, W.; Qi, M.; Yin, S.; Remick, D. G.; Ulich, T. R.

    1996-01-01

    Extrinsic allergic alveolitis and pulmonary sarcoidosis are granulomatous diseases of the lung for which clinical presentation and anatomic site of granuloma formation differ. Extrinsic allergic alveolitis is caused by inhaled antigens, whereas the nature and source of the inciting antigen in sarcoidosis is unknown. To test the hypothesis that the route via which antigen is introduced to the lung contributes to the clinicopathological presentation of pulmonary granulomatous disease, rats immunized with intravenous (i.v.) Corynebacterium parvum were challenged after 2 weeks with either intratracheal (i.t.) or i.v. C. parvum. The granulomatous inflammation elicited by i.t. challenge predominantly involved alveolar spaces and histologically simulated extrinsic allergic alveolitis. In contrast, the inflammation induced by i.v. challenge was characterized by granulomatous angiitis and interstitial inflammation simulating sarcoidosis. Elevations of leukocyte counts and TNF levels in bronchoalveolar fluid, which reflect inflammation in the intra-alveolar compartment, were much more pronounced after i.t. than after i.v. challenge. Tumor necrosis factor, interleukin-6, CC chemokine, CXC chemokine, and adhesion molecule mRNA and protein expression occurred in each model. In conclusion, i.t. or i.v. challenge with C. parvum in sensitized rats caused pulmonary granulomatous inflammation that was histologically similar to human extrinsic allergic alveolitis and sarcoidosis, respectively. Although the soluble and cellular mediators of granulomatous inflammation were qualitatively similar in both disease models, the differing anatomic source of the same antigenic challenge was responsible for differing clinicopathological presentations. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 11 Figure 13 Figure 12 Figure 14 PMID:8863677

  20. Pristimerin attenuates ovalbumin-induced allergic airway inflammation in mice.

    PubMed

    Jin, Yingli; Wang, Yujia; Zhao, Danning; Ma, Sitong; Lu, Jing; Shuang, Guan

    2016-06-01

    Pristimerin has been shown to possess antiinflammatory activity. However, its potential use for asthma induced by airway inflammation has not yet been studied. First, we established a ovalbumin (OVA)-induced allergic asthma mice model. BALB/c mice were immunized and challenged by OVA. Treatment with pristimerin caused a marked reduction in the levels of OVA-specific IgE, immune cells, and IL-4, IL-5, IL-13 secretion. Histological studies using H&E staining were used to study the alterations in lung tissue. These results were similar to those obtained with dexamethasone treatment. We then investigated which signal transduction mechanisms could be implicated in pristimerin activity by Western blot. The data showed that pristimerin could inhibit MAPKs and NF-κB inflammatory pathways. PMID:27098091

  1. PULMONARY MYCOTIC INFECTIONS—Allergic and Immunologic Factors

    PubMed Central

    Keeney, Edmund L.

    1954-01-01

    The mechanisms of immunity and allergy, at play in every infectious disease, must be comprehended before the pathogenesis of an infection can be appreciated. Immunity, allergy and serology are concerned with specific antigen-antibody reactions. In immunity the principal concern is with the final disposition of antigen (agglutination, lysis, and phagocytosis). In allergy attention is focused upon tissue damage resulting from antigen-antibody union. In serology interest is devoted to the presence of antibody as evaluated by certain visible in vitro reactions—precipitin, agglutination, opsonization and complement fixation tests. There are two types of allergic reaction—the immediate or anaphylactic type and the delayed type or the allergic disease of infection. Neither kind takes part in the mechanism of immunity. At this time the allergic antibody and the immune antibody must be considered as two different and distinct antibodies. Skin and serologic tests are important diagnostic aids in certain pulmonary mycotic infections—for example, coccidioidomycosis, blastomycosis, histoplasmosis and moniliasis. Clinical expressions of allergy may appear in coccidioidomycosis, histoplasmosis and moniliasis. Pulmonary mycoses are divided into three groups, that is, the endogenous mycoses (actinomycosis, moniliasis, geotrichosis), the endogenous-exogenous mycoses (cryptococcosis, aspergillosis, mucormycosis) and the exogenous mycoses (nocardiosis, coccidioidomycosis, histoplasmosis, North American blastomycosis). The diagnosis and treatment of the important mycotic infections that invade lung tissue are discussed. PMID:13209369

  2. Aggravation of Allergic Airway Inflammation by Cigarette Smoke in Mice Is CD44-Dependent

    PubMed Central

    Kumar, Smitha; Lanckacker, Ellen; Dentener, Mieke; Bracke, Ken; Provoost, Sharen; De Grove, Katrien; Brusselle, Guy; Wouters, Emiel

    2016-01-01

    Background Although epidemiological studies reveal that cigarette smoke (CS) facilitates the development and exacerbation of allergic asthma, these studies offer limited information on the mechanisms involved. The transmembrane glycoprotein CD44 is involved in cell adhesion and acts as a receptor for hyaluronic acid and osteopontin. We aimed to investigate the role of CD44 in a murine model of CS-facilitated allergic airway inflammation. Methods Wild type (WT) and CD44 knock-out (KO) mice were exposed simultaneously to house dust mite (HDM) extract and CS. Inflammatory cells, hyaluronic acid (HA) and osteopontin (OPN) levels were measured in bronchoalveolar lavage fluid (BALF). Proinflammatory mediators, goblet cell metaplasia and peribronchial eosinophilia were assessed in lung tissue. T-helper (Th) 1, Th2 and Th17 cytokine production was evaluated in mediastinal lymph node cultures. Results In WT mice, combined HDM/CS exposure increased the number of inflammatory cells and the levels of HA and OPN in BALF and Th2 cytokine production in mediastinal lymph nodes compared to control groups exposed to phosphate buffered saline (PBS)/CS, HDM/Air or PBS/Air. Furthermore, HDM/CS exposure significantly increased goblet cell metaplasia, peribronchial eosinophilia and inflammatory mediators in the lung. CD44 KO mice exposed to HDM/CS had significantly fewer inflammatory cells in BALF, an attenuated Th2 cytokine production, as well as decreased goblet cells and peribronchial eosinophils compared to WT mice. In contrast, the levels of inflammatory mediators were similar or higher than in WT mice. Conclusion We demonstrate for the first time that the aggravation of pulmonary inflammation upon combined exposure to allergen and an environmental pollutant is CD44-dependent. Data from this murine model of concomitant exposure to CS and HDM might be of importance for smoking allergic asthmatics. PMID:26999446

  3. Long-term exposure to house dust mite leads to suppression of allergic airway disease despite persistent lung inflammation

    PubMed Central

    Bracken, Sonali J.; Adami, Alexander J.; Szczepanek, Steven M.; Ehsan, Mohsin; Natarajan, Prabitha; Guernsey, Linda A.; Shahriari, Neda; Rafti, Ektor; Matson, Adam P.; Schramm, Craig M.; Thrall, Roger S.

    2015-01-01

    Background Allergic asthma is a major cause of worldwide morbidity and results from inadequate immune regulation in response to innocuous, environmental antigens. The need exists to understand the mechanisms that promote non-reactivity to human-relevant allergens such as house dust mite (HDM) in order to develop curative therapies for asthma. The aim of our study was to compare the effects of short-, intermediate- and long-term HDM administration in a murine asthma model and determine the ability of long-term HDM exposure to suppress allergic inflammation. Methods C57BL/6 mice were intranasally instilled with HDM for short-term (2 weeks), intermediate-term (5 weeks) and long-term (11 weeks) periods to induce allergic airway disease (AAD). Severity of AAD was compared across all stages of the model via both immunologic and pulmonary parameters. Results Short- and intermediate-term HDM exposure stimulated development of AAD that included eosinophilia in the bronchoalveolar lavage fluid (BAL), pronounced airway hyper-reactivity (AHR), and evidence of lung inflammation. Long-term HDM exposure promoted suppression of AAD, with loss of BAL eosinophilia and AHR despite persistent mononuclear inflammation in the lungs. Suppression of AAD with long-term HDM exposure was associated with an increase in both Foxp3+ regulatory T cells and IL-10+ alveolar macrophages at the site of inflammation. Conclusions This model recapitulates key features of human asthma and may facilitate investigation into the mechanisms that promote immunological tolerance against clinically relevant aeroallergens. PMID:25924733

  4. Therapy with resveratrol attenuates obesity-associated allergic airway inflammation in mice.

    PubMed

    André, Diana Majolli; Calixto, Marina Ciarallo; Sollon, Carolina; Alexandre, Eduardo Costa; Leiria, Luiz O; Tobar, Natalia; Anhê, Gabriel Forato; Antunes, Edson

    2016-09-01

    Obesity and insulin resistance have been associated with deterioration in asthma outcomes. High oxidative stress and deficient activation of AMP-activated protein kinase (AMPK) have emerged as important regulators linking insulin resistance and inflammation. This study aimed to evaluate the effects of resveratrol on obesity-associated allergic pulmonary inflammation. Male C57/Bl6 mice fed with high-fat diet to induce obesity (obese group) or standard-chow diet (lean group) were treated or not with resveratrol (100mg/kg/day, two weeks). Mice were sensitized and challenged with ovalbumin (OVA). At 48h thereafter, bronchoalveolar lavage fluid was performed, and lungs collected for morphological studies and Western blot analysis. Treatment of obese mice with resveratrol significantly reduced hyperglycemia and insulin resistance, as well as the body measures (body mass, fat mass, % fat, and body area). OVA-challenge promoted a higher increase in pulmonary eosinophil infiltration in obese compared with lean mice, which was nearly abrogated by resveratrol treatment. Resveratrol markedly increased the phosphorylated AMPK expression in lung tissues of obese compared with lean mice. Resveratrol reduced the p47phox expression and reactive-oxygen species (ROS) production, and elevated the superoxide dismutase (SOD) levels in lung tissues of obese mice. The increased pulmonary levels of TNF-α and inducible nitric oxide synthase (iNOS) in obese mice were also normalized after resveratrol treatment. In lean mice, resveratrol failed to affect the levels of fasting glucose, p47phox, ROS levels, TNF-α, iNOS and phosphorylated AMPK. Resveratrol exhibits protective effects in obesity-associated lung inflammation that is accompanied by local AMPK activation and antioxidant property. PMID:27344038

  5. Combination Therapy with Budesonide and Salmeterol in Experimental Allergic Inflammation.

    PubMed

    Pappová, L; Jošková, M; Kazimierová, I; Šutovská, M; Fraňová, S

    2016-01-01

    The aim of this study was to determinate bronchodilator, antitussive, and ciliomodulatory activity of inhaled combination therapy with budesonide and salmeterol, and to correlate the results with the anti-inflammatory effect. The experiments were performed using two models of allergic inflammation (21 and 28 days long sensitization with ovalbumine) in guinea pigs. The animals were treated daily by aerosols of budesonide (1 mM), salmeterol (0.17 mM), and a half-dose combination of the two drugs. Antitussive and bronchodilator activities were evaluated in vivo. The ciliary beat frequency (CBF) was assessed in vitro in tracheal brushed samples, and inflammatory cytokines (IL-4, IL-5, IL-13, GM-CSF, and TNF-α) were determined in bronchoalveolar lavage fluid (BALF). We found that the combination therapy significantly decreased the number of cough efforts, airway reactivity, and the level of inflammatory cytokines in both models of allergic asthma. Three weeks long sensitization led to an increase in CBF and all three therapeutic approaches have shown a ciliostimulatory effect in order: salmeterol < budesonid < combination therapy. Four weeks long ovalbumine sensitization, on the other hand, decreased the CBF, increased IL-5, and decreased IL-13. In this case, only the combination therapy was able to stimulate the CBF. We conclude that a half-dose combination therapy of budesonide and salmeterol shows comparable antitussive, bronchodilator, and the anti-inflammatory effect to a full dose therapy with budesonide alone, but had a more pronounced stimulatory effect on the CBF. PMID:27329088

  6. Epidermal Neuromedin U Attenuates IgE-Mediated Allergic Skin Inflammation.

    PubMed

    Mizukawa, Yoshiko; Doi, Takaaki; Yamazaki, Yoshimi; Kudo, Akihiko; Shiohara, Tetsuo

    2016-01-01

    Although keratinocyte-derived neuropeptide neuromedin U (NMU) mediates the proinflammatory effects of innate-type mast cell activation, no information is available on the physiological roles. Here, to investigate the effects of NMU on IgE-mediated allergic skin inflammation, we determined whether IgE-mediated inflammation associated with severe scratching was induced in Nmu-/- mice administered repeated hapten applications to the ear or footpad. Dry skin was induced by targeted deletion of Nmu. Mice administered repeated hapten application developed IgE-mediated allergic inflammation characterized by severe scratching and increased serum IgE levels only when the ear, and not the footpad, was subjected to scratching, indicating that depletion of NMU from the epidermis alone does not drive such allergic inflammation. Thus, the susceptibility of Nmu-/- mice to allergic inflammation depends primarily on scratching dry skin. Further, allergic skin inflammation mediated by FcεRI cross-linking in Nmu-/-mice was inhibited by prior injection of NMU. These results indicate that NMU plays an important physiological role as a negative regulator during the late stage of IgE-mediated allergic skin inflammation. PMID:27463114

  7. Epidermal Neuromedin U Attenuates IgE-Mediated Allergic Skin Inflammation

    PubMed Central

    Mizukawa, Yoshiko; Doi, Takaaki; Yamazaki, Yoshimi; Kudo, Akihiko; Shiohara, Tetsuo

    2016-01-01

    Although keratinocyte-derived neuropeptide neuromedin U (NMU) mediates the proinflammatory effects of innate-type mast cell activation, no information is available on the physiological roles. Here, to investigate the effects of NMU on IgE-mediated allergic skin inflammation, we determined whether IgE-mediated inflammation associated with severe scratching was induced in Nmu-/- mice administered repeated hapten applications to the ear or footpad. Dry skin was induced by targeted deletion of Nmu. Mice administered repeated hapten application developed IgE-mediated allergic inflammation characterized by severe scratching and increased serum IgE levels only when the ear, and not the footpad, was subjected to scratching, indicating that depletion of NMU from the epidermis alone does not drive such allergic inflammation. Thus, the susceptibility of Nmu-/- mice to allergic inflammation depends primarily on scratching dry skin. Further, allergic skin inflammation mediated by FcεRI cross-linking in Nmu-/-mice was inhibited by prior injection of NMU. These results indicate that NMU plays an important physiological role as a negative regulator during the late stage of IgE-mediated allergic skin inflammation. PMID:27463114

  8. Local Effect of Neurotrophin-3 in Neuronal Inflammation of Allergic Rhinitis: Preliminary Report

    PubMed Central

    İsmi, Onur; Özcan, Cengiz; Karabacak, Tuba; Polat, Gürbüz; Vayisoğlu, Yusuf; Güçlütürk, Taylan; Görür, Kemal

    2015-01-01

    Background: Allergic rhinitis is a common inflammatory nasal mucosal disease characterized by sneezing, watery nasal discharge, nasal obstruction and itching. Although allergen-specific antibodies play a main role in the allergic airway inflammation, neuronal inflammation may also contribute to the symptoms of allergic rhinitis. Neuronal inflammation is primarily caused by the stimulation of sensory nerve endings with histamine. It has been shown that neurotrophins may also have a role in allergic reactions and neuronal inflammation. Nerve growth factor, neurotrophin 3 (NT-3), neurotrophin 4/5 and brain-derived neurotrophic factor are members of the neurotrophin family. Although nerve growth factor and brain-derived neurotrophic factor are well studied in allergic rhinitis patients, the exact role of Neurotrophin-3 is not known. Aims: To investigate the possible roles of neurotrophin-3 in allergic rhinitis patients. Study Design: Case-control study. Methods: Neurotrophin-3 levels were studied in the inferior turbinate and serum samples of 20 allergic rhinitis and 13 control patients. Neurotrophin-3 staining of nasal tissues was evaluated by immunohistochemistry and ELISA was used for the determination of serum Neurotrophin-3 levels. Results: Neurotrophin-3 staining scores were statistically higher in the study group than in the control patients (p=0.001). Regarding serum Neurotrophin-3 levels, no statistically significant difference could be determined between allergic rhinitis and control patients (p=0.156). When comparing the serum NT-3 levels with tissue staining scores, there were no statistically significant differences in the allergic rhinitis and control groups (p=0.254 for allergic rhinitis and p=0.624 for control groups). Conclusion: We suggest that Neurotrophin-3 might affect the nasal mucosa locally without being released into the systemic circulation in allergic rhinitis patients. PMID:26740895

  9. Specific immunotherapy in combination with Clostridium butyricum inhibits allergic inflammation in the mouse intestine

    PubMed Central

    Shi, Yanhong; Xu, Ling-Zhi; Peng, Kangsheng; Wu, Wei; Wu, Ruijin; Liu, Zhi-Qiang; Yang, Gui; Geng, Xiao-Rui; Liu, Jun; Liu, Zhi-Gang; Liu, Zhanju; Yang, Ping-Chang

    2015-01-01

    The current therapy on allergic inflammation is unsatisfactory. Probiotics improve the immunity in the body. This study aims to test a hypothesis that administration with Clostridium butyricum (C. butyricum) enforces the effect of specific immunotherapy (SIT) on intestinal allergic inflammation. In this study, an ovalbumin (OVA) specific allergic inflammation mouse model was created. The mice were treated with SIT or/and C. butyricum. The results showed that the intestinal allergic inflammation was only moderately alleviated by SIT, which was significantly enforced by a combination with C. butyricum; treating with C. butyricum alone did not show much inhibitory efficacy. The increase in the frequency of the interleukin (IL)-10-producing OVA-specific B cell (OVAsBC) was observed in mice in parallel to the inhibitory effect on the intestinal allergic inflammation. The in vitro treatment of the OVAsBCs with OVA increased the histone deacetylase-1 (HDAC1) phosphorylation, modulated the transcription of the Bcl6 gene, and triggered the OVAsBCs to differentiate to the IgE-producing plasma cells. Exposure to both OVA and butyrate sodium in the culture increased the expression of IL-10 in OVAsBCs. In conclusion, administration with C. butyricum enforces the inhibitory effect of SIT on allergic inflammation in the mouse intestine. PMID:26627845

  10. Protective effects of surfactant protein D treatment in 1,3-β-glucan-modulated allergic inflammation.

    PubMed

    Fakih, Dalia; Pilecki, Bartosz; Schlosser, Anders; Jepsen, Christine S; Thomsen, Laura K; Ormhøj, Maria; Watson, Alastair; Madsen, Jens; Clark, Howard W; Barfod, Kenneth K; Hansen, Soren; Marcussen, Niels; Jounblat, Rania; Chamat, Soulaima; Holmskov, Uffe; Sorensen, Grith L

    2015-12-01

    Surfactant protein D (SP-D) is a pulmonary collectin important in lung immunity. SP-D-deficient mice (Sftpd(-/-)) are reported to be susceptible to ovalbumin (OVA)- and fungal allergen-induced pulmonary inflammation, while treatment with exogenous SP-D has therapeutic effects in such disease models. β-Glucans are a diverse group of polysaccharides previously suggested to serve as fungal ligands for SP-D. We set out to investigate if SP-D could interact with 1,3-β-glucan and attenuate allergic pulmonary inflammation in the presence of 1,3-β-glucan. Allergic airway disease was induced in Sftpd(-/-) and Sftpd(+/+) mice by OVA sensitization and subsequent challenge with OVA, 1,3-β-glucan, or OVA/1,3-β-glucan together. Mice in the combined treatment group were further treated with a high dose of recombinant fragment of human SP-D (rfhSP-D). We demonstrated direct interaction between SP-D and 1,3-β-glucan. OVA-induced mucous cell metaplasia was increased in Sftpd(-/-) mice, supporting previously reported protective effects of endogenous SP-D in allergy. OVA-induced parenchymal CCL11 levels and eosinophilic infiltration in bronchoalveolar lavage were unaffected by 1,3-β-glucan, but were reversed with rfhSP-D treatment. 1,3-β-Glucan treatment did, however, induce pulmonary neutrophilic infiltration and increased TNF-α levels in bronchoalveolar lavage, independently of OVA-induced allergy. This infiltration was also reversed by treatment with rfhSP-D. 1,3-β-Glucan reduced OVA-induced mucous cell metaplasia, T helper 2 cytokines, and IFN-γ production. rfhSP-D treatment further reduced mucous metaplasia and T helper 2 cytokine secretion to background levels. In summary, rfhSP-D treatment resulted in attenuation of both allergic inflammation and 1,3-β-glucan-mediated neutrophilic inflammation. Our data suggest that treatment with high-dose SP-D protects from mold-induced exacerbations of allergic asthma. PMID:26432866

  11. Vehicular Exhaust Particles Promote Allergic Airway Inflammation via an Aryl Hydrocarbon Receptor-Notch Signaling Cascade

    PubMed Central

    Xia, Mingcan; Viera-Hutchins, Loida; Garcia-Lloret, Maria; Rivas, Magali Noval; Wise, Petra; MGhee, Sean A.; Chatila, Zena K.; Daher, Nancy; Sioutas, Constantinos; Chatila, Talal A.

    2015-01-01

    Background Traffic-related particulate matter (PM) has been linked to heightened incidence of asthma and allergic diseases. However, molecular mechanisms by which PM exposure promote allergic diseases remain elusive. Objective We sought to determine the expression, function and regulation of pathways involved in the promotion by PM of allergic airway inflammation. Methods We employed gene expression transcriptional profiling, in vitro culture assays, and vivo murine models of allergic airway inflammation. Results We identified genes of the Notch pathway, most notably Jagged 1 (Jag1), as targets of PM induction in human monocytes and murine dendritic cells (DCs). PM, especially ultrafine particles (UFP), upregulated T helper cytokine, IgE production and allergic airway inflammation in mice in a Jag1 and Notch-dependent manner especially in the context of the pro-asthmatic IL-4 receptor allele Il4raR576. PM-induced Jag1 expression was mediated by the aryl hydrocarbon receptor (AhR), which bound to and activated AhR response elements in the Jag1 promoter. Pharmacological antagonism of AhR or its lineage-specific deletion in CD11c+ cells abrogated the augmentation of airway inflammation by PM. Conclusion PM activate an AhR-Jag1-Notch cascade to promote allergic airway inflammation in concert with pro-asthmatic alleles. PMID:25825216

  12. Airway Fibrinogenolysis and the Initiation of Allergic Inflammation

    PubMed Central

    Millien, Valentine Ongeri; Lu, Wen; Mak, Garbo; Yuan, Xiaoyi; Knight, J. Morgan; Porter, Paul; Kheradmand, Farrah

    2014-01-01

    The past 15 years of allergic disease research have produced extraordinary improvements in our understanding of the pathogenesis of airway allergic diseases such as asthma. Whereas it was previously viewed as largely an immunoglobulin E-mediated process, the gradual recognition that T cells, especially Type 2 T helper (Th2) cells and Th17 cells, play a major role in asthma and related afflictions has inspired clinical trials targeting cytokine-based inflammatory pathways that show great promise. What has yet to be clarified about the pathogenesis of allergic inflammatory disorders, however, are the fundamental initiating factors, both exogenous and endogenous, that drive and sustain B- and T-cell responses that underlie the expression of chronic disease. Here we review how proteinases derived from diverse sources drive allergic responses. A central discovery supporting the proteinase hypothesis of allergic disease pathophysiology is the role played by airway fibrinogen, which in part appears to serve as a sensor of unregulated proteinase activity and which, when cleaved, both participates in a novel allergic signaling pathway through Toll-like receptor 4 and forms fibrin clots that contribute to airway obstruction. Unresolved at present is the ultimate source of airway allergenic proteinases. From among many potential candidates, perhaps the most intriguing is the possibility such enzymes derive from airway fungi. Together, these new findings expand both our knowledge of allergic disease pathophysiology and options for therapeutic intervention. PMID:25525732

  13. Nitrogen dioxide enhances allergic airway inflammation and hyperresponsiveness in the mouse.

    PubMed

    Poynter, Matthew E; Persinger, Rebecca L; Irvin, Charles G; Butnor, Kelly J; van Hirtum, Hans; Blay, Wendy; Heintz, Nicholas H; Robbins, Justin; Hemenway, David; Taatjes, Douglas J; Janssen-Heininger, Yvonne

    2006-01-01

    In addition to being an air pollutant, NO2 is a potent inflammatory oxidant generated endogenously by myeloperoxidase and eosinophil peroxidase. In these studies, we sought to determine the effects of NO2 exposure on mice with ongoing allergic airway disease pathology. Mice were sensitized and challenged with the antigen ovalbumin (OVA) to generate airway inflammation and subsequently exposed to 5 or 25 ppm NO2 for 3 days or 5 days followed by a 20-day recovery period. Whereas 5 ppm NO2 elicited no pathological changes, inhalation of 25 ppm NO2 alone induced acute lung injury, which peaked after 3 days and was characterized by increases in protein, LDH, and neutrophils recovered by BAL, as well as lesions within terminal bronchioles. Importantly, 25 ppm NO2 was also sufficient to cause AHR in mice, a cardinal feature of asthma. The inflammatory changes were ameliorated after 5 days of inhalation and completely resolved after 20 days of recovery after the 5-day inhalation. In contrast, in mice immunized and challenged with OVA, inhalation of 25 ppm NO2 caused a marked augmentation of eosinophilic inflammation and terminal bronchiolar lesions, which extended significantly into the alveoli. Moreover, 20 days postcessation of the 5-day 25 ppm NO2 inhalation regimen, eosinophilic and neutrophilic inflammation, pulmonary lesions, and AHR were still present in mice immunized and challenged with OVA. Collectively, these observations suggest an important role for NO2 in airway pathologies associated with asthma, both in modulation of degree and duration of inflammatory response, as well as in induction of AHR. PMID:16085673

  14. Basophils as a primary inducer of the T helper type 2 immunity in ovalbumin-induced allergic airway inflammation

    PubMed Central

    Zhong, Wenwei; Su, Wen; Zhang, Yanjie; Liu, Qi; Wu, Jinhong; Di, Caixia; Zhang, Zili; Xia, Zhenwei

    2014-01-01

    Antigen-induced allergic airway inflammation is mediated by T helper type 2 (Th2) cells and their cytokines, but the mechanism that initiates the Th2 immunity is not fully understood. Recent studies show that basophils play important roles in initiating Th2 immunity in some inflammatory models. Here we explored the role of basophils in ovalbumin (OVA) -induced airway allergic inflammation in BALB/c mice. We found that OVA sensitization and challenge resulted in a significant increase in the amount of basophils in blood and lung, along with the up-regulation of activation marker of CD200R. However, depletion of basophils with MAR-1 or Ba103 antibody attenuated airway inflammation, represented by the significantly decreased amount of the Th2 subset in spleen and draining lymph nodes, interlukin-4 level in lung and OVA-special immunoglobulin E (sIgE) levels in serum. On the other hand, adoptive transfer of basophils from OVA-challenged lung tissue to naive BALB/c mice provoked the Th2 immune response. In addition, pulmonary basophils from OVA-challenged mice were able to uptake DQ-OVA and express MHC class II molecules and CD40 in vivo, as well as to release interleukin-4 following stimulation by IgE–antigen complexes and promote Th2 polarization in vitro. These findings demonstrate that basophils may participate in Th2 immune responses in antigen-induced allergic airway inflammation and that they do so through facilitating antigen presentation and providing interleukin-4. PMID:24383680

  15. NLRP3 inflammasome activation by mitochondrial ROS in bronchial epithelial cells is required for allergic inflammation

    PubMed Central

    Kim, S R; Kim, D I; Kim, S H; Lee, H; Lee, K S; Cho, S H; Lee, Y C

    2014-01-01

    Abnormality in mitochondria has been suggested to be associated with development of allergic airway disorders. In this study, to evaluate the relationship between mitochondrial reactive oxygen species (ROS) and NLRP3 inflammasome activation in allergic asthma, we used a newly developed mitochondrial ROS inhibitor, NecroX-5. NecroX-5 reduced the increase of mitochondrial ROS generation in airway inflammatory cells, as well as bronchial epithelial cells, NLRP3 inflammasome activation, the nuclear translocation of nuclear factor-κB, increased expression of various inflammatory mediators and pathophysiological features of allergic asthma in mice. Finally, blockade of IL-1β substantially reduced airway inflammation and hyperresponsiveness in the asthmatic mice. These findings suggest that mitochondrial ROS have a critical role in the pathogenesis of allergic airway inflammation through the modulation of NLRP3 inflammasome activation, providing a novel role of airway epithelial cells expressing NLRP3 inflammasome as an immune responder. PMID:25356867

  16. Bone marrow-derived mesenchymal stromal cells inhibit Th2-mediated allergic airways inflammation in mice.

    PubMed

    Goodwin, Meagan; Sueblinvong, Viranuj; Eisenhauer, Philip; Ziats, Nicholas P; LeClair, Laurie; Poynter, Matthew E; Steele, Chad; Rincon, Mercedes; Weiss, Daniel J

    2011-07-01

    Bone marrow-derived mesenchymal stromal cells (BMSCs) mitigate inflammation in mouse models of acute lung injury. However, specific mechanisms of BMSC actions on CD4 T lymphocyte-mediated inflammation in vivo remain poorly understood. Limited data suggests promotion of Th2 phenotype in models of Th1-mediated diseases. However, whether this might alleviate or worsen Th2-mediated diseases such as allergic asthma is unknown. To ascertain the effects of systemic administration of BMSCs in a mouse model of Th2-mediated allergic airways inflammation, ovalbumin (OVA)-induced allergic airways inflammation was induced in wild-type C57BL/6 and BALB/c mice as well as in interferon-γ (IFNγ) receptor null mice. Effects of systemic administration during antigen sensitization of either syngeneic or allogeneic BMSC on airways hyperreactivity, lung inflammation, antigen-specific CD4 T lymphocytes, and serum immunoglobulins were assessed. Both syngeneic and allogeneic BMSCs inhibited airways hyperreactivity and lung inflammation through a mechanism partly dependent on IFNγ. However, contrary to existing data, BMSCs did not affect antigen-specific CD4 T lymphocyte proliferation but rather promoted Th1 phenotype in vivo as assessed by both OVA-specific CD4 T lymphocyte cytokine production and OVA-specific circulating immunoglobulins. BMSCs treated to prevent release of soluble mediators and a control cell population of primary dermal skin fibroblasts only partly mimicked the BMSC effects and in some cases worsened inflammation. In conclusion, BMSCs inhibit Th2-mediated allergic airways inflammation by influencing antigen-specific CD4 T lymphocyte differentiation. Promotion of a Th1 phenotype in antigen-specific CD4 T lymphocytes by BMSCs is sufficient to inhibit Th2-mediated allergic airways inflammation through an IFNγ-dependent process. PMID:21544902

  17. Integrated innate mechanisms involved in airway allergic inflammation to the serine protease subtilisin.

    PubMed

    Florsheim, Esther; Yu, Shuang; Bragatto, Ivan; Faustino, Lucas; Gomes, Eliane; Ramos, Rodrigo N; Barbuto, José Alexandre M; Medzhitov, Ruslan; Russo, Momtchilo

    2015-05-15

    Proteases are recognized environmental allergens, but little is known about the mechanisms responsible for sensing enzyme activity and initiating the development of allergic inflammation. Because usage of the serine protease subtilisin in the detergent industry resulted in an outbreak of occupational asthma in workers, we sought to develop an experimental model of allergic lung inflammation to subtilisin and to determine the immunological mechanisms involved in type 2 responses. By using a mouse model of allergic airway disease, we have defined in this study that s.c. or intranasal sensitization followed by airway challenge to subtilisin induces prototypic allergic lung inflammation, characterized by airway eosinophilia, type 2 cytokine release, mucus production, high levels of serum IgE, and airway reactivity. These allergic responses were dependent on subtilisin protease activity, protease-activated receptor-2, IL-33R ST2, and MyD88 signaling. Also, subtilisin stimulated the expression of the proallergic cytokines IL-1α, IL-33, thymic stromal lymphopoietin, and the growth factor amphiregulin in a human bronchial epithelial cell line. Notably, acute administration of subtilisin into the airways increased lung IL-5-producing type 2 innate lymphoid cells, which required protease-activated receptor-2 expression. Finally, subtilisin activity acted as a Th2 adjuvant to an unrelated airborne Ag-promoting allergic inflammation to inhaled OVA. Therefore, we established a murine model of occupational asthma to a serine protease and characterized the main molecular pathways involved in allergic sensitization to subtilisin that potentially contribute to initiate allergic airway disease. PMID:25876764

  18. Physicochemical characteristics of nanomaterials that affect pulmonary inflammation

    PubMed Central

    2014-01-01

    The increasing manufacture and use of products based on nanotechnology raises concerns for both workers and consumers. Various studies report induction of pulmonary inflammation after inhalation exposure to nanoparticles, which can vary in aspects such as size, shape, charge, crystallinity, chemical composition, and dissolution rate. Each of these aspects can affect their toxicity, although it is largely unknown to what extent. The aim of the current review is to analyse published data on inhalation of nanoparticles to identify and evaluate the contribution of their physicochemical characteristics to the onset and development of pulmonary inflammation. Many physicochemical characteristics of nanoparticles affect their lung deposition, clearance, and pulmonary response that, in combination, ultimately determine whether pulmonary inflammation will occur and to what extent. Lung deposition is mainly determined by the physical properties of the aerosol (size, density, shape, hygroscopicity) in relation to airflow and the anatomy of the respiratory system, whereas clearance and translocation of nanoparticles are mainly determined by their geometry and surface characteristics. Besides size and chemical composition, other physicochemical characteristics influence the induction of pulmonary inflammation after inhalation. As some nanoparticles dissolve, they can release toxic ions that can damage the lung tissue, making dissolution rate an important characteristic that affects lung inflammation. Fibre-shaped materials are more toxic to the lungs compared to spherical shaped nanoparticles of the same chemical composition. In general, cationic nanoparticles are more cytotoxic than neutral or anionic nanoparticles. Finally, surface reactivity correlates well with observed pulmonary inflammation. With all these characteristics affecting different stages of the events leading to pulmonary inflammation, no unifying dose metric could be identified to describe pulmonary

  19. Non-pulmonary allergic diseases and inflammatory bowel disease: A qualitative review

    PubMed Central

    Kotlyar, David S; Shum, Mili; Hsieh, Jennifer; Blonski, Wojciech; Greenwald, David A

    2014-01-01

    While the etiological underpinnings of inflammatory bowel disease (IBD) are highly complex, it has been noted that both clinical and pathophysiological similarities exist between IBD and both asthma and non-pulmonary allergic phenomena. In this review, several key points on common biomarkers, pathophysiology, clinical manifestations and nutritional and probiotic interventions for both IBD and non-pulmonary allergic diseases are discussed. Histamine and mast cell activity show common behaviors in both IBD and in certain allergic disorders. IgE also represents a key immunoglobulin involved in both IBD and in certain allergic pathologies, though these links require further study. Probiotics remain a critically important intervention for both IBD subtypes as well as multiple allergic phenomena. Linked clinical phenomena, especially sinonasal disease and IBD, are discussed. In addition, nutritional interventions remain an underutilized and promising therapy for modification of both allergic disorders and IBD. Recommending new mothers breastfeed their infants, and increasing the duration of breastfeeding may also help prevent both IBD and allergic diseases, but requires more investigation. While much remains to be discovered, it is clear that non-pulmonary allergic phenomena are connected to IBD in a myriad number of ways and that the discovery of common immunological pathways may usher in an era of vastly improved treatments for patients. PMID:25170192

  20. Allergic airway inflammation disrupts interleukin-17 mediated host defense against streptococcus pneumoniae infection.

    PubMed

    Guo, Sheng; Wu, Liang-Xia; Jones, Can-Xin; Chen, Ling; Hao, Chun-Li; He, Li; Zhang, Jian-Hua

    2016-02-01

    Despite decreasing rates of invasive pneumococcal disease caused by vaccine serotypes, the prevalence of invasive pneumococcal pneumonia in asthmatic patients remains high. However, little is known about the mechanisms underlying the susceptibility of the asthmatic airway to bacterial infections. In this study, we used a combined model of allergic airway inflammation and Streptococcus pneumoniae lung infection to investigate the association between persistent allergic inflammation in the airway and antibacterial host defenses against S. pneumoniae. When challenged with S. pneumoniae, allergic mice exhibited higher airway bacterial burdens, greater eosinophil infiltration, lower neutrophil infiltration, and more severe structural damage than non-allergic mice. In sensitized mice, S. pneumoniae infection elicited higher IL-4 but lower IFN-γ, IL-17 and defensin-β2 expression than in control mice. These results indicate that persistent allergic inflammation impaired airway host defense against S. pneumoniae is associated with the insufficient IL-17 responses. To elicit IL-17 induced-anti-bacterial immune responses, mice were intranasally immunized with rIL-17. Immunized mice exhibited fewer bacterial colonies in the respiratory tract and less severe lung pathology than unimmunized mice. rIL-17 contributed to airway host defense enhancement and innate immune response promotion, which was associated with increased IL-23, MIP-2 and defensin-β2 expression. Administration of exogenous IL-17 (2μg/mouse) suppressed eosinophil-related immune responses. The results demonstrate IL-17 plays a key role in host defenses against bacterial infection in allergic airways and suggest that exogenous IL-17 administration promotes the anti-becterial immune responses and attenuates the existed allergic inflammation. PMID:26699848

  1. Resolution of Allergic Airway Inflammation and Airway Hyperreactivity Is Mediated by IL-17–producing γδT Cells

    PubMed Central

    Murdoch, Jenna R.; Lloyd, Clare M.

    2010-01-01

    Rationale: γδT lymphocytes are enriched within the epithelial microenvironment, where they are thought to maintain homeostasis and limit immunopathology. γδT cells are postulated to exert a regulatory influence during acute allergic airway disease, but the mechanism is unknown. Although regulation of allergic airway disease has been attributed to IL-17–producing T helper (Th) 17 cells, we have found that γδT cells represent the major source of IL-17 in the allergic lung. Objectives: The aim of this study was to determine the contribution of these IL-17–producing γδT cells to regulation of allergic airway inflammation. Methods: Flow cytometry revealed that IL-17–producing γδT cells are more prevalent than IL-17+αβT cells (Th17) in a murine model of ovalbumin-induced allergic inflammation. Measurements and Main Results: Transfer of γδT cells at the peak of acute allergic responses ameliorated airway hyperresponsiveness with a corresponding acceleration in the resolution of eosinophilic and Th2-driven inflammation. Conversely, functional blockade of γδT cells led to exacerbation of injury. Neither treatment changed pulmonary Th17 cell numbers. Moreover, transfer of Th17 cells had no effect on disease outcome. Importantly, IL-17–deficient γδT cells were unable to promote resolution of injury. These data identify IL-17–producing γδT cells as key regulators of the allergic response in vivo. Conclusions: This unfolds a new perspective for the understanding of γδT cell function with regard to innate regulation of the adaptive immune responses, emphasizing that resolution of responses are important in determining the outcome of acute inflammatory episodes as well as for maintenance of tissue integrity and homeostasis. PMID:20413629

  2. The sickle cell mouse lung: proinflammatory and primed for allergic inflammation.

    PubMed

    Andemariam, Biree; Adami, Alexander J; Singh, Anurag; McNamara, Jeffrey T; Secor, Eric R; Guernsey, Linda A; Thrall, Roger S

    2015-09-01

    Comorbid asthma in sickle cell disease (SCD) confers higher rates of vaso-occlusive pain and mortality, yet the physiological link between these two distinct diseases remains puzzling. We used a mouse model of SCD to study pulmonary immunology and physiology before and after the induction of allergic airway disease (AAD). SCD mice were sensitized with ovalbumin (OVA) and aluminum hydroxide by the intraperitoneal route followed by daily, nose-only OVA-aerosol challenge to induce AAD. The lungs of naive SCD mice showed signs of inflammatory and immune processes: (1) histologic and cytochemical evidence of airway inflammation compared with naive wild-type mice; (2) bronchoalveolar lavage (BAL) fluid contained increased total lymphocytes, %CD8+ T cells, granulocyte-colony stimulating factor, interleukin 5 (IL-5), IL-7, and chemokine (C-X-C motif) ligand (CXCL)1; and (3) lung tissue and hilar lymph node (HLN) had increased CD4+, CD8+, and regulatory T (Treg) cells. Furthermore, SCD mice at AAD demonstrated significant changes compared with the naive state: (1) BAL fluid with increased %CD4+ T cells and Treg cells, lower %CD8+ T cells, and decreased interferon gamma, CXCL10, chemokine (C-C motif) ligand 2, and IL-17; (2) serum with increased OVA-specific immunoglobulin E, IL-6, and IL-13, and decreased IL-1α and CXCL10; (3) no increase in Treg cells in the lung tissue or HLN; and (4) hyporesponsiveness to methacholine challenge. In conclusion, SCD mice have an altered immunologic pulmonary milieu and physiological responsiveness. These findings suggest that the clinical phenotype of AAD in SCD mice differs from that of wild-type mice and that individuals with SCD may also have a unique, divergent phenotype perhaps amenable to a different therapeutic approach. PMID:25843670

  3. The active contribution of Toll-like receptors to allergic airway inflammation.

    PubMed

    Chen, Keqiang; Xiang, Yi; Yao, Xiaohong; Liu, Ying; Gong, Wanghua; Yoshimura, Teizo; Wang, Ji Ming

    2011-10-01

    Epithelia lining the respiratory tract represent a major portal of entry for microorganisms and allergens and are equipped with innate and adaptive immune signaling receptors for host protection. These include Toll-like receptors (TLRs) that recognize microbial components and evoke diverse responses in cells of the respiratory system. TLR stimulation by microorganism-derived molecules activates antigen presenting cells, control T helper (Th) 1, Th2, and Th17 immune cell differentiation, cytokine production by mast cells, and activation of eosinophils. It is clear that TLR are involved in the pathophysiology of allergic airway diseases such as asthma. Dendritic cells (DCs), a kind of antigen presenting cells, which play a key role in the induction of allergic airway inflammation, are privileged targets for pathogen associated molecular patterns (PAMPs). During the allergic responses, engagement of TLRs on DCs determines the Th2 polarization of the T cells. TLR signaling in mast cells increases the release of IL-5, and TLR activation of airway epithelial cells forces the generation of proallergic Th2 type of cytokines. Although these responses aim to protect the host, they may also result in inflammatory tissue damage in the airway. Under certain conditions, stimulation of TLRs, in particular, TLR9, may reduce Th2-dependent allergic inflammation by induction of Th1 responses. Therefore, understanding the complex regulatory roles of TLRs in the pathogenesis of allergic airway inflammation should facilitate the development of preventive and therapeutic measures for asthmatic patients. PMID:21624504

  4. Volatile Organic Compounds Enhance Allergic Airway Inflammation in an Experimental Mouse Model

    PubMed Central

    Bönisch, Ulrike; Böhme, Alexander; Kohajda, Tibor; Mögel, Iljana; Schütze, Nicole; von Bergen, Martin; Simon, Jan C.; Lehmann, Irina; Polte, Tobias

    2012-01-01

    Background Epidemiological studies suggest an association between exposure to volatile organic compounds (VOCs) and adverse allergic and respiratory symptoms. However, whether VOCs exhibit a causal role as adjuvants in asthma development remains unclear. Methods To investigate the effect of VOC exposure on the development of allergic airway inflammation Balb/c mice were exposed to VOCs emitted by new polyvinylchloride (PVC) flooring, sensitized with ovalbumin (OVA) and characterized in acute and chronic murine asthma models. Furthermore, prevalent evaporated VOCs were analyzed and mice were exposed to selected single VOCs. Results Exposure of mice to PVC flooring increased eosinophilic lung inflammation and OVA-specific IgE serum levels compared to un-exposed control mice. The increased inflammation was associated with elevated levels of Th2-cytokines. Long-term exposure to PVC flooring exacerbated chronic airway inflammation. VOCs with the highest concentrations emitted by new PVC flooring were N-methyl-2-pyrrolidone (NMP) and 2,2,4-trimethyl-1,3-pentanediol diisobutyrate (TXIB). Exposure to NMP or TXIB also increased the allergic immune response in OVA-sensitized mice. In vitro or in vivo exposure to NMP or TXIB reduced IL-12 production in maturing dendritic cells (DCs) and enhanced airway inflammation after adoptive DC transfer into Balb/c mice. At higher concentrations both VOCs induced oxidative stress demonstrated by increased isoprostane and glutathione-S-transferase-pi1 protein levels in the lung of non-sensitized mice. Treatment of PVC flooring-exposed mice with N-acetylcysteine prevented the VOC-induced increase of airway inflammation. Conclusions Our results demonstrate that exposure to VOCs may increase the allergic immune response by interfering with DC function and by inducing oxidative stress and has therefore to be considerate as risk factor for the development of allergic diseases. PMID:22802943

  5. Fas-activated serine/threonine phosphoprotein promotes immune-mediated pulmonary inflammation

    PubMed Central

    Simarro, Maria; Giannattasio, Giorgio; De la Fuente, Miguel A; Benarafa, Charaf; Subramanian, Kulandayan K.; Ishizawar, Rumey; Balestrieri, Barbara; Andersson, Emma M; Luo, Hongbo R.; Orduña, Antonio; Boyce, Joshua; Anderson, Paul

    2010-01-01

    We have generated Fas activated serine threonine phosphoprotein-deficient mice (FAST−/−) to study the in vivo role of FAST in immune system function. In a model of house dust mite (HDM)-induced allergic pulmonary inflammation, wild type mice develop a mixed cellular infiltrate composed of eosinophils, lymphocytes and neutrophils. FAST−/− mice develop airway inflammation that is distinguished by the near absence of neutrophils. Similarly, LPS-induced alveolar neutrophil recruitment is markedly reduced in FAST−/− mice compared to wild type controls. This is accompanied by reduced concentrations of cytokines (TNF-α, IL-6 and IL-23) and chemoattractants (MIP-2 and KC) in bronchoalveolar lavage fluids. As FAST−/− neutrophils exhibit normal chemotaxis and survival, impaired neutrophil recruitment is likely to be due to reduced production of chemoattractants within the pulmonary parenchyma. Studies using bone marrow chimeras implicate lung resident hematopoietic cells (e.g. pulmonary dendritic cells and/or alveolar macrophages) in this process. In conclusion, our results introduce FAST as a pro-inflammatory factor that modulates the function of lung resident hematopoietic cells to promote neutrophil recruitment and pulmonary inflammation. PMID:20363972

  6. Acidic Chitinase Limits Allergic Inflammation and Promotes Intestinal Nematode Expulsion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acidic mammalian chitinase (AMCase) is stereotypically induced during mammalian immune responses to helminths and allergens—yet, its precise role in immunity and inflammation is unclear. Here we show that in the lung, genetic ablation of AMCase failed to diminish type 2 inflammation against helmint...

  7. Selective depletion of Foxp3+ Treg during sensitization phase aggravates experimental allergic airway inflammation.

    PubMed

    Baru, Abdul Mannan; Hartl, Andrea; Lahl, Katharina; Krishnaswamy, Jayendra Kumar; Fehrenbach, Heinz; Yildirim, Ali O; Garn, Holger; Renz, Harald; Behrens, Georg M N; Sparwasser, Tim

    2010-08-01

    Recent studies highlight the role of Treg in preventing unnecessary responses to allergens and maintaining functional immune tolerance in the lung. We investigated the role of Treg during the sensitization phase in a murine model of experimental allergic airway inflammation by selectively depleting the Treg population in vivo. DEpletion of REGulatory T cells (DEREG) mice were depleted of Treg by diphtheria toxin injection. Allergic airway inflammation was induced using OVA as a model allergen. Pathology was assessed by scoring for differential cellular infiltration in bronchoalveolar lavage, IgE and IgG1 levels in serum, cytokine secretion analysis of lymphocytes from lung draining lymph nodes and lung histology. Use of DEREG mice allowed us for the first time to track and specifically deplete both CD25(+) and CD25(-) Foxp3(+) Treg, and to analyze their significance in limiting pathology in allergic airway inflammation. We observed that depletion of Treg during the priming phase of an active immune response led to a dramatic exacerbation of allergic airway inflammation in mice, suggesting an essential role played by Treg in regulating immune responses against allergens as early as the sensitization phase via maintenance of functional tolerance. PMID:20544727

  8. Modulation of lung inflammation by vessel dilator in a mouse model of allergic asthma

    PubMed Central

    Wang, Xiaoqin; Xu, Weidong; Kong, Xiaoyuan; Chen, Dongqing; Hellermann, Gary; Ahlert, Terry A; Giaimo, Joseph D; Cormier, Stephania A; Li, Xu; Lockey, Richard F; Mohapatra, Subhra; Mohapatra, Shyam S

    2009-01-01

    Background Atrial natriuretic peptide (ANP) and its receptor, NPRA, have been extensively studied in terms of cardiovascular effects. We have found that the ANP-NPRA signaling pathway is also involved in airway allergic inflammation and asthma. ANP, a C-terminal peptide (amino acid 99–126) of pro-atrial natriuretic factor (proANF) and a recombinant peptide, NP73-102 (amino acid 73–102 of proANF) have been reported to induce bronchoprotective effects in a mouse model of allergic asthma. In this report, we evaluated the effects of vessel dilator (VD), another N-terminal natriuretic peptide covering amino acids 31–67 of proANF, on acute lung inflammation in a mouse model of allergic asthma. Methods A549 cells were transfected with pVD or the pVAX1 control plasmid and cells were collected 24 hrs after transfection to analyze the effect of VD on inactivation of the extracellular-signal regulated receptor kinase (ERK1/2) through western blot. Luciferase assay, western blot and RT-PCR were also performed to analyze the effect of VD on NPRA expression. For determination of VD's attenuation of lung inflammation, BALB/c mice were sensitized and challenged with ovalbumin and then treated intranasally with chitosan nanoparticles containing pVD. Parameters of airway inflammation, such as airway hyperreactivity, proinflammatory cytokine levels, eosinophil recruitment and lung histopathology were compared with control mice receiving nanoparticles containing pVAX1 control plasmid. Results pVD nanoparticles inactivated ERK1/2 and downregulated NPRA expression in vitro, and intranasal treatment with pVD nanoparticles protected mice from airway inflammation. Conclusion VD's modulation of airway inflammation may result from its inactivation of ERK1/2 and downregulation of NPRA expression. Chitosan nanoparticles containing pVD may be therapeutically effective in preventing allergic airway inflammation. PMID:19615076

  9. Protective effect of soybean oil- or fish oil-rich diets on allergic airway inflammation

    PubMed Central

    Navarro-Xavier, Roberta Araujo; de Barros, Karina Vieira; de Andrade, Iracema Senna; Palomino, Zaira; Casarini, Dulce Elena; Flor Silveira, Vera Lucia

    2016-01-01

    Background The increased prevalence of asthma and allergic diseases in westernized societies has been associated with increased intake of diets rich in n-6 fatty acids (FAs) and poor in n-3 FAs. This study aimed to analyze the prophylactic effects of treatment with a soybean oil-rich diet (rich in n-6) or fish oil (rich in n-3) in an allergic airway inflammation model on lung inflammation score, leukocyte migration, T-helper cell (Th)-2 (interleukin [IL]-4, IL-5) and Th1 (interferon [IFN]-γ, tumor necrosis factor-α) cytokines, lipoxin A4, nitric oxide, bradykinin, and corticosterone levels in bronchoalveolar lavage (BAL) or lungs. Methods Male Wistar rats fed with soybean oil- or fish oil-rich diet or standard rat chow were sensitized twice with ovalbumin–alumen and challenged twice with ovalbumin aerosol. The BAL and lungs were examined 24 hours later. Results Both diets, rich in n-6 or n-3 FAs, impaired the allergic lung inflammation and reduced leukocyte migration, eosinophil and neutrophil percentages, and IL-4/IL-5/bradykinin levels in BAL and/or lungs, as well as increased the nitric oxide levels in BAL. The soybean oil-rich diet additionally increased the levels of lipoxin A4 and corticosterone in the lungs. Conclusion Data presented demonstrated that the n-6 FA-rich diet had protective effect upon allergic airway inflammation and was as anti-inflammatory as the n-3 FA-rich diet, although through different mechanisms, suggesting that both diets could be considered as complementary therapy or a prophylactic alternative for allergic airway inflammation. PMID:27274303

  10. Alveolar Macrophages Play a Key Role in Cockroach-Induced Allergic Inflammation via TNF-α Pathway

    PubMed Central

    Kim, Joo Young; Sohn, Jung Ho; Choi, Je-Min; Lee, Jae-Hyun; Hong, Chein-Soo; Lee, Joo-Shil; Park, Jung-Won

    2012-01-01

    The activity of the serine protease in the German cockroach allergen is important to the development of allergic disease. The protease-activated receptor (PAR)-2, which is expressed in numerous cell types in lung tissue, is known to mediate the cellular events caused by inhaled serine protease. Alveolar macrophages express PAR-2 and produce considerable amounts of tumor necrosis factor (TNF)-α. We determined whether the serine protease in German cockroach extract (GCE) enhances TNF-α production by alveolar macrophages through the PAR-2 pathway and whether the TNF-α production affects GCE-induced pulmonary inflammation. Effects of GCE on alveolar macrophages and TNF-α production were evaluated using in vitro MH-S and RAW264.6 cells and in vivo GCE-induced asthma models of BALB/c mice. GCE contained a large amount of serine protease. In the MH-S and RAW264.7 cells, GCE activated PAR-2 and thereby produced TNF-α. In the GCE-induced asthma model, intranasal administration of GCE increased airway hyperresponsiveness (AHR), inflammatory cell infiltration, productions of serum immunoglobulin E, interleukin (IL)-5, IL-13 and TNF-α production in alveolar macrophages. Blockade of serine proteases prevented the development of GCE induced allergic pathologies. TNF-α blockade also prevented the development of such asthma-like lesions. Depletion of alveolar macrophages reduced AHR and intracellular TNF-α level in pulmonary cell populations in the GCE-induced asthma model. These results suggest that serine protease from GCE affects asthma through an alveolar macrophage and TNF-α dependent manner, reflecting the close relation of innate and adaptive immune response in allergic asthma model. PMID:23094102

  11. Resident alveolar macrophages suppress while recruited monocytes promote allergic lung inflammation in murine models of asthma

    PubMed Central

    Zasłona, Zbigniew; Przybranowski, Sally; Wilke, Carol; van Rooijen, Nico; Teitz-Tennenbaum, Seagal; Osterholzer, John J.; Wilkinson, John E.; Moore, Bethany B.; Peters-Golden, Marc

    2014-01-01

    The role and origin of alveolar macrophages (AMs) in asthma are incompletely defined. We sought to clarify these issues in the context of acute allergic lung inflammation utilizing house dust mite and ovalbumin murine models. Use of liposomal clodronate to deplete resident AMs (rAMs) resulted in increased levels of inflammatory cytokines and eosinophil numbers in lavage fluid and augmented histopathologic evidence of lung inflammation, suggesting a suppressive role of rAMs. Lung digests of asthmatic mice revealed an increased percentage of Ly6Chigh/CD11bpos inflammatory monocytes. Clodronate depletion of circulating monocytes, by contrast, resulted in an attenuation of allergic inflammation. A CD45.1/CD45.2 chimera model demonstrated that recruitment at least partially contributes to the AM pool in irradiated non-asthmatic mice, but its contribution was no greater in asthma. Ki-67 staining of AMs supported a role for local proliferation, which was increased in asthma. Our data demonstrate that rAMs dampen, while circulating monocytes promote, early events in allergic lung inflammation. Moreover, maintenance of the AM pool in the early stages of asthmatic inflammation depends on local proliferation but not recruitment. PMID:25225663

  12. Effect of P2X4R on airway inflammation and airway remodeling in allergic airway challenge in mice

    PubMed Central

    CHEN, HONGXIA; XIA, QINGQING; FENG, XIAOQIAN; CAO, FANGYUAN; YU, HANG; SONG, YINLI; NI, XIUQIN

    2016-01-01

    P2X4 receptor (P2X4R) is the most widely expressed subtype of the P2XRs in the purinergic receptor family. Adenosine triphosphate (ATP), a ligand for this receptor, has been implicated in the pathogenesis of asthma. ATP-P2X4R signaling is involved in pulmonary vascular remodeling, and in the proliferation and differentiation of airway and alveolar epithelial cell lines. However, the role of P2X4R in asthma remains to be elucidated. This aim of the present study was to investigate the effects of P2X4R in a murine experimental asthma model. The asthmatic model was established by the inhalation of ovalbumin (OVA) in BALB/c mice. The mice were treated with P2X4R-specific agonists and antagonists to investigate the role of this receptor in vivo. Pathological changes in the bronchi and lung tissues were examined using hematoxylin and eosin staining, Masson's trichrome staining and Alcian blue staining. The inflammatory cells in the bronchoalveolar lavage fluid were counted, and the expression levels of P2X4R, α-smooth muscle actin (α-SMA) and proliferating cell nuclear antigen (PCNA) were detected using western blotting. In the OVA-challenged mice, inflammation, infiltration, collagen deposition, mucus production, and the expression levels of P2X4R and PCNA were all increased; however, the expression of α-SMA was decreased, compared with the mice in the control group. Whereas treatment with the P2X4R agonist, ATP, enhanced the allergic reaction, treatment with the P2X4R antagonist, 5-BDBD, attenuated the allergic reaction. The results suggested that ATP-P2X4R signaling may not only contribute to airway inflammation, but it may also contribute to airway remodeling in allergic asthma in mice. PMID:26648454

  13. Abietic acid attenuates allergic airway inflammation in a mouse allergic asthma model.

    PubMed

    Gao, Yi; Zhaoyu, Liu; Xiangming, Fang; Chunyi, Lin; Jiayu, Pan; Lu, Shen; Jitao, Chen; Liangcai, Chen; Jifang, Liu

    2016-09-01

    Abietic acid (AA), one of the terpenoids isolated from Pimenta racemosa var. grissea, has been reported to have anti-inflammatory and immunomodulatory effects. However, the anti-allergic effects of AA remain unclear. The aim of this study was to investigate the anti-allergic effects of AA in an ovalbumin (OVA)-induced asthma murine model. The model of mouse asthma was established by induction of OVA. AA (10, 20, 40mg/kg) was administered by oral gavage 1h after the OVA treatment on days 21 to 23. At 24h after the last challenge, bronchoalveolar lavage fluid (BALF) and lung tissues were collected to assess pathological changes, cytokines production, and NF-κB expression. The results showed that AA attenuated lung histopathologic changes, inflammatory cells infiltration, and bronchial hyper-responsiveness. AA also inhibited OVA-induced the nitric oxide (NO), IL-4, IL-5, IL-13, and OVA-specific IgE production, as well as NF-κB activation. In conclusion, the current study demonstrated that AA exhibited protective effects against OVA-induced allergic asthma in mice and the possible mechanism was involved in inhibiting NF-κB activation. PMID:27318791

  14. FoxO1 regulates allergic asthmatic inflammation through regulating polarization of the macrophage inflammatory phenotype

    PubMed Central

    Chung, Sangwoon; Lee, Tae Jin; Reader, Brenda F.; Kim, Ji Young; Lee, Yong Gyu; Park, Gye Young; Karpurapu, Manjula; Ballinger, Megan N.; Qian, Feng; Rusu, Luiza; Chung, Hae Young; Unterman, Terry G.; Croce, Carlo M.; Christman, John W.

    2016-01-01

    Inflammatory monocyte and tissue macrophages influence the initiation, progression, and resolution of type 2 immune responses, and alveolar macrophages are the most prevalent immune-effector cells in the lung. While we were characterizing the M1- or M2-like macrophages in type 2 allergic inflammation, we discovered that FoxO1 is highly expressed in alternatively activated macrophages. Although several studies have been focused on the fundamental role of FoxOs in hematopoietic and immune cells, the exact role that FoxO1 plays in allergic asthmatic inflammation in activated macrophages has not been investigated. Growing evidences indicate that FoxO1 acts as an upstream regulator of IRF4 and could have a role in a specific inflammatory phenotype of macrophages. Therefore, we hypothesized that IRF4 expression regulated by FoxO1 in alveolar macrophages is required for established type 2 immune mediates allergic lung inflammation. Our data indicate that targeted deletion of FoxO1 using FoxO1-selective inhibitor AS1842856 and genetic ablation of FoxO1 in macrophages significantly decreases IRF4 and various M2 macrophage-associated genes, suggesting a mechanism that involves FoxO1-IRF4 signaling in alveolar macrophages that works to polarize macrophages toward established type 2 immune responses. In response to the challenge of DRA (dust mite, ragweed, and Aspergillus) allergens, macrophage specific FoxO1 overexpression is associated with an accentuation of asthmatic lung inflammation, whereas pharmacologic inhibition of FoxO1 by AS1842856 attenuates the development of asthmatic lung inflammation. Thus, our study identifies a role for FoxO1-IRF4 signaling in the development of alternatively activated alveolar macrophages that contribute to type 2 allergic airway inflammation. PMID:27007158

  15. Regulatory cells induced by acute toxoplasmosis prevent the development of allergic lung inflammation.

    PubMed

    Fenoy, Ignacio M; Sanchez, Vanesa R; Soto, Ariadna S; Picchio, Mariano S; Maglioco, Andrea; Corigliano, Mariana G; Dran, Graciela I; Martin, Valentina; Goldman, Alejandra

    2015-05-01

    The increased prevalence of allergies in developed countries has been attributed to a reduction of some infections. Supporting epidemiological studies, we previously showed that both acute and chronic Toxoplasma gondii infection can diminish allergic airway inflammation in BALB/c mice. The mechanisms involved when sensitization occurs during acute phase would be related to the strong Th1 response induced by the parasite. Here, we further investigated the mechanisms involved in T. gondii allergy protection in mice sensitized during acute T. gondii infection. Adoptive transference assays and ex vivo co-cultures experiments showed that not only thoracic lymph node cells from infected and sensitized mice but also from non-sensitized infected animals diminished both allergic lung inflammation and the proliferation of effector T cells from allergic mice. This ability was found to be contact-independent and correlated with high levels of CD4(+)FoxP3(+) cells. IL-10 would not be involved in allergy suppression since IL-10-deficient mice behaved similar to wild type mice. Our results extend earlier work and show that, in addition to immune deviation, acute T. gondii infection can suppress allergic airway inflammation through immune suppression. PMID:25532793

  16. Adoptive transfer of induced-Treg cells effectively attenuates murine airway allergic inflammation.

    PubMed

    Xu, Wei; Lan, Qin; Chen, Maogen; Chen, Hui; Zhu, Ning; Zhou, Xiaohui; Wang, Julie; Fan, Huimin; Yan, Chun-Song; Kuang, Jiu-Long; Warburton, David; Togbe, Dieudonnée; Ryffel, Bernhard; Zheng, Song-Guo; Shi, Wei

    2012-01-01

    Both nature and induced regulatory T (Treg) lymphocytes are potent regulators of autoimmune and allergic disorders. Defects in endogenous Treg cells have been reported in patients with allergic asthma, suggesting that disrupted Treg cell-mediated immunological regulation may play an important role in airway allergic inflammation. In order to determine whether adoptive transfer of induced Treg cells generated in vitro can be used as an effective therapeutic approach to suppress airway allergic inflammation, exogenously induced Treg cells were infused into ovalbumin-sensitized mice prior to or during intranasal ovalbumin challenge. The results showed that adoptive transfer of induced Treg cells prior to allergen challenge markedly reduced airway hyperresponsiveness, eosinophil recruitment, mucus hyper-production, airway remodeling, and IgE levels. This effect was associated with increase of Treg cells (CD4(+)FoxP3(+)) and decrease of dendritic cells in the draining lymph nodes, and with reduction of Th1, Th2, and Th17 cell response as compared to the controls. Moreover, adoptive transfer of induced Treg cells during allergen challenge also effectively attenuate airway inflammation and improve airway function, which are comparable to those by natural Treg cell infusion. Therefore, adoptive transfer of in vitro induced Treg cells may be a promising therapeutic approach to prevent and treat severe asthma. PMID:22792275

  17. METALS, PARTICLES AND IMPACT UPON PULMONARY ALLERGIC RESPONSES

    EPA Science Inventory


    The increase in allergic asthma over the past few decades has prompted investigations into whether air pollution may affect either the incidence or severity of allergic lung disease. Population studies have demonstrated that as air pollution rises, symptoms, medication use a...

  18. Ripe fruit of Rubus coreanus inhibits mast cell-mediated allergic inflammation.

    PubMed

    Kim, Hui-Hun; Choi, Phil Hyung; Yoo, Jin-Su; Jeon, Hoon; Chae, Byeong-Suk; Park, Jeong-Suk; Kim, Sang-Hyun; Shin, Tae-Yong

    2012-02-01

    In this study, we investigated the effect of a water extract of the ripe fruits of Rubus coreanus Miq. (Rosaceae) (RFRC) on mast cell-mediated allergic inflammation and studied the possible mechanism of action. Mast cell-mediated allergic disease is involved in many diseases such as anaphylaxis, rhinitis, asthma and atopic dermatitis. RFRC dose-dependently inhibited compound 48/80-induced systemic anaphylaxis and serum histamine release in mice. RFRC reduced the immunoglobulin E (IgE)-mediated local allergic reaction, passive cutaneous anaphylaxis. RFRC attenuated histamine release from rat peritoneal mast cells and human mast cells by the reduction of intracellular calcium. RFRC decreased the phorbol 12-myristate 13-acetate (PMA) and the calcium ionophore A23187 (PMACI)-stimulated expression and secretion of pro-inflammatory cytokines in human mast cells. The inhibitory effect of RFRC on cytokine production was nuclear factor (NF)-κB- and mitogen-activated protein kinase (MAPK)-dependent. In addition, RFRC suppressed the activation of caspase-1. Our findings provide evidence that RFRC inhibits mast cell-derived allergic inflammatory reactions, and for the involvement of calcium, NF-κB, MAPKs and caspase-1 in these effects. Furthermore, in vivo and in vitro anti-allergic inflammatory effects of RFRC provide affirmative proof of a possible therapeutic application of this agent in allergic inflammatory diseases. PMID:22075758

  19. Allergic lung inflammation alters neither susceptibility to Streptococcus pneumoniae infection nor inducibility of innate resistance in mice

    PubMed Central

    Clement, Cecilia G; Tuvim, Michael J; Evans, Christopher M; Tuvin, Daniel M; Dickey, Burton F; Evans, Scott E

    2009-01-01

    Background Protective host responses to respiratory pathogens are typically characterized by inflammation. However, lung inflammation is not always protective and it may even become deleterious to the host. We have recently reported substantial protection against Streptococcus pneumoniae (pneumococcal) pneumonia by induction of a robust inflammatory innate immune response to an inhaled bacterial lysate. Conversely, the allergic inflammation associated with asthma has been proposed to promote susceptibility to pneumococcal disease. This study sought to determine whether preexisting allergic lung inflammation influences the progression of pneumococcal pneumonia or reduces the inducibilty of protective innate immunity against bacteria. Methods To compare the effect of different inflammatory and secretory stimuli on defense against pneumonia, intraperitoneally ovalbumin-sensitized mice were challenged with inhaled pneumococci following exposure to various inhaled combinations of ovalbumin, ATP, and/or a bacterial lysate. Thus, allergic inflammation, mucin degranulation and/or stimulated innate resistance were induced prior to the infectious challenge. Pathogen killing was evaluated by assessing bacterial CFUs of lung homogenates immediately after infection, the inflammatory response to the different conditions was evaluated by measurement of cell counts of bronchoalveolar lavage fluid 18 hours after challenge, and mouse survival was assessed after seven days. Results We found no differences in survival of mice with and without allergic inflammation, nor did the induction of mucin degranulation alter survival. As we have found previously, mice treated with the bacterial lysate demonstrated substantially increased survival at seven days, and this was not altered by the presence of allergic inflammation or mucin degranulation. Allergic inflammation was associated with predominantly eosinophilic infiltration, whereas the lysate-induced response was primarily neutrophilic

  20. Immune Modulatory Effects of IL-22 on Allergen-Induced Pulmonary Inflammation

    PubMed Central

    Fang, Ping; Zhou, Li; Zhou, Yuqi; Kolls, Jay K.; Zheng, Tao; Zhu, Zhou

    2014-01-01

    IL-22 is a Th17/Th22 cytokine that is increased in asthma. However, recent animal studies showed controversial findings in the effects of IL-22 in allergic asthma. To determine the role of IL-22 in ovalbumin-induced allergic inflammation we generated inducible lung-specific IL-22 transgenic mice. Transgenic IL-22 expression and signaling activity in the lung were determined. Ovalbumin (OVA)-induced pulmonary inflammation, immune responses, and airway hyperresponsiveness (AHR) were examined and compared between IL-22 transgenic mice and wild type controls. Following doxycycline (Dox) induction, IL-22 protein was readily detected in the large (CC10 promoter) and small (SPC promoter) airway epithelial cells. IL-22 signaling was evidenced by phosphorylated STAT3. After OVA sensitization and challenge, compared to wild type littermates, IL-22 transgenic mice showed decreased eosinophils in the bronchoalveolar lavage (BAL), and in lung tissue, decreased mucus metaplasia in the airways, and reduced AHR. Among the cytokines and chemokines examined, IL-13 levels were reduced in the BAL fluid as well as in lymphocytes from local draining lymph nodes of IL-22 transgenic mice. No effect was seen on the levels of serum total or OVA-specific IgE or IgG. These findings indicate that IL-22 has immune modulatory effects on pulmonary inflammatory responses in allergen-induced asthma. PMID:25254361

  1. The Effects of Environmental Toxins on Allergic Inflammation

    PubMed Central

    Yang, San-Nan; Hsieh, Chong-Chao; Kuo, Hsuan-Fu; Lee, Min-Sheng; Huang, Ming-Yii

    2014-01-01

    The prevalence of asthma and allergic disease has increased worldwide over the last few decades. Many common environmental factors are associated with this increase. Several theories have been proposed to account for this trend, especially those concerning the impact of environmental toxicants. The development of the immune system, particularly in the prenatal period, has far-reaching consequences for health during early childhood, and throughout adult life. One underlying mechanism for the increased levels of allergic responses, secondary to exposure, appears to be an imbalance in the T-helper function caused by exposure to the toxicants. Exposure to environmental endocrine-disrupting chemicals can result in dramatic changes in cytokine production, the activity of the immune system, the overall Th1 and Th2 balance, and in mediators of type 1 hypersensitivity mediators, such as IgE. Passive exposure to tobacco smoke is a common risk factor for wheezing and asthma in children. People living in urban areas and close to roads with a high volume of traffic, and high levels of diesel exhaust fumes, have the highest exposure to environmental compounds, and these people are strongly linked with type 1 hypersensitivity disorders and enhanced Th2 responses. These data are consistent with epidemiological research that has consistently detected increased incidences of allergies and asthma in people living in these locations. During recent decades more than 100,000 new chemicals have been used in common consumer products and are released into the everyday environment. Therefore, in this review, we discuss the environmental effects on allergies of indoor and outside exposure. PMID:25374746

  2. Allergic rhinitis and asthma: inflammation in a one-airway condition

    PubMed Central

    Jeffery, Peter K; Haahtela, Tari

    2006-01-01

    Background Allergic rhinitis and asthma are conditions of airway inflammation that often coexist. Discussion In susceptible individuals, exposure of the nose and lungs to allergen elicits early phase and late phase responses. Contact with antigen by mast cells results in their degranulation, the release of selected mediators, and the subsequent recruitment of other inflammatory cell phenotypes. Additional proinflammatory mediators are released, including histamine, prostaglandins, cysteinyl leukotrienes, proteases, and a variety of cytokines, chemokines, and growth factors. Nasal biopsies in allergic rhinitis demonstrate accumulations of mast cells, eosinophils, and basophils in the epithelium and accumulations of eosinophils in the deeper subepithelium (that is, lamina propria). Examination of bronchial tissue, even in mild asthma, shows lymphocytic inflammation enriched by eosinophils. In severe asthma, the predominant pattern of inflammation changes, with increases in the numbers of neutrophils and, in many, an extension of the changes to involve smaller airways (that is, bronchioli). Structural alterations (that is, remodeling) of bronchi in mild asthma include epithelial fragility and thickening of its reticular basement membrane. With increasing severity of asthma there may be increases in airway smooth muscle mass, vascularity, interstitial collagen, and mucus-secreting glands. Remodeling in the nose is less extensive than that of the lower airways, but the epithelial reticular basement membrane may be slightly but significantly thickened. Conclusion Inflammation is a key feature of both allergic rhinitis and asthma. There are therefore potential benefits for application of anti-inflammatory strategies that target both these anatomic sites. PMID:17140423

  3. Estrogen Signaling Modulates Allergic Inflammation and Contributes to Sex Differences in Asthma

    PubMed Central

    Keselman, Aleksander; Heller, Nicola

    2015-01-01

    Asthma is a chronic airway inflammatory disease that affects ~300 million people worldwide. It is characterized by airway constriction that leads to wheezing, coughing, and shortness of breath. The most common treatments are corticosteroids and β2-adrenergic receptor antagonists, which target inflammation and airway smooth muscle constriction, respectively. The incidence and severity of asthma is greater in women than in men, and women are more prone to develop corticosteroid-resistant or “hard-to-treat” asthma. Puberty, menstruation, pregnancy, menopause, and oral contraceptives are known to contribute to disease outcome in women, suggesting a role for estrogen and other hormones impacting allergic inflammation. Currently, the mechanisms underlying these sex differences are poorly understood, although the effect of sex hormones, such as estrogen, on allergic inflammation is gaining interest. Asthma presents as a heterogeneous disease. In typical Th2-type allergic asthma, interleukin (IL)-4 and IL-13 predominate, driving IgE production and recruitment of eosinophils into the lungs. Chronic Th2-inflammation in the lung results in structural changes and activation of multiple immune cell types, leading to a deterioration of lung function over time. Most immune cells express estrogen receptors (ERα, ERβ, or the membrane-bound G-protein-coupled ER) to varying degrees and can respond to the hormone. Together these receptors have demonstrated the capacity to regulate a spectrum of immune functions, including adhesion, migration, survival, wound healing, and antibody and cytokine production. This review will cover the current understanding of estrogen signaling in allergic inflammation and discuss how this signaling may contribute to sex differences in asthma and allergy. PMID:26635789

  4. STAT6 and PARP Family Members in the Development of T Cell-dependent Allergic Inflammation

    PubMed Central

    Krishnamurthy, Purna

    2016-01-01

    Allergic inflammation requires the orchestration of altered gene expression in the target tissue and in the infiltrating immune cells. The transcription factor STAT6 is critical in activating cytokine gene expression and cytokine signaling both in the immune cells and in target tissue cells including airway epithelia, keratinocytes and esophageal epithelial cells. STAT6 is activated by the cytokines IL-4 and IL-13 to mediate the pathogenesis of allergic disorders such as asthma, atopic dermatitis, food allergy and eosinophilic esophagitis (EoE). In this review, we summarize the role of STAT6 in allergic diseases, its interaction with the co-factor PARP14 and the molecular mechanisms by which STAT6 and PARP14 regulate gene transcription. PMID:27574499

  5. STAT6 and PARP Family Members in the Development of T Cell-dependent Allergic Inflammation.

    PubMed

    Krishnamurthy, Purna; Kaplan, Mark H

    2016-08-01

    Allergic inflammation requires the orchestration of altered gene expression in the target tissue and in the infiltrating immune cells. The transcription factor STAT6 is critical in activating cytokine gene expression and cytokine signaling both in the immune cells and in target tissue cells including airway epithelia, keratinocytes and esophageal epithelial cells. STAT6 is activated by the cytokines IL-4 and IL-13 to mediate the pathogenesis of allergic disorders such as asthma, atopic dermatitis, food allergy and eosinophilic esophagitis (EoE). In this review, we summarize the role of STAT6 in allergic diseases, its interaction with the co-factor PARP14 and the molecular mechanisms by which STAT6 and PARP14 regulate gene transcription. PMID:27574499

  6. Airborne pollutant ROFA enhances the allergic airway inflammation through direct modulation of dendritic cells in an uptake-dependent mechanism.

    PubMed

    Arantes-Costa, Fernanda Magalhaes; Grund, Lidiane Zito; Martins, Milton Arruda; Lima, Carla

    2014-09-01

    Studies suggest that airborne pollutants are important cofactors in the exacerbation of lung diseases. The role of DC on the exacerbation of lung inflammation induced by particulate matter pollutants is unclear. We evaluated the effects of residual oil fly ash (ROFA) on the phenotype and function of bone marrow-derived dendritic cells (BMDCs) in vitro and lung dendritic cells (DCs) in vivo, and the subsequent T-cell response. In a model of asthma, exposure to ROFA exacerbated pulmonary inflammation, which was attributed to the increase of eosinophils, IL-5- and IFN-γ-producing T cells, and goblet cells as well as decreased number of Treg and pDC. However, the ROFA showed no ability to modulate the production of anaphylactic IgE. In vitro studies showed that ROFA directly induced the maturation of DCs up-regulating the expression of co-stimulatory molecules and cytokines and MMP production in an uptake-dependent and oxidative stress-dependent manner. Furthermore, ROFA-pulsed BMDC transferred to allergic mice exacerbated eosinophilic inflammation as well as promoted increased epithelial and goblet cells changes. Thus, pollutants may constitute an important and risk factor in the exacerbation of asthma with inhibition of the negative regulatory signals in the lung, with enhanced mDC activation that sustains the recruitment of effector T lymphocytes and eosinophil. PMID:24975839

  7. Prostaglandin I2 Suppresses Proinflammatory Chemokine Expression, CD4 T Cell Activation, and STAT6-Independent Allergic Lung Inflammation.

    PubMed

    Zhou, Weisong; Zhang, Jian; Goleniewska, Kasia; Dulek, Daniel E; Toki, Shinji; Newcomb, Dawn C; Cephus, Jacqueline Y; Collins, Robert D; Wu, Pingsheng; Boothby, Mark R; Peebles, R Stokes

    2016-09-01

    Allergic airway diseases are immune disorders associated with heightened type 2 immune responses and IL-5 and IL-13 production at the site of inflammation. We have previously reported that cyclooxygenase (COX) inhibition by indomethacin augmented allergic airway inflammation in a STAT6-independent manner. However, the key COX product(s) responsible for restraining indomethacin-mediated STAT6-independent allergic inflammation is unknown. In this study, using the mouse model of OVA-induced allergic airway inflammation, we identified that PGI2 receptor (IP) signaling was critical for indomethacin-induced, STAT6-independent proallergic effects. We demonstrated that IP deficiency increased inflammatory cell infiltration, eosinophilia, and IL-5 and IL-13 expression in the lung in a STAT6-independent manner. The augmented STAT6-independent allergic inflammation correlated with enhanced primary immune responses to allergic sensitization and elevated production of multiple inflammatory chemokines (CCL11, CCL17, CCL22, and CXCL12) in the lung after allergen challenge. We also showed that the PGI2 analogue cicaprost inhibited CD4 T cell proliferation and IL-5 and IL-13 expression in vitro, and IP deficiency diminished the stimulatory effect of indomethacin on STAT6-independent IL-5 and IL-13 responses in vivo. The inhibitory effects of PGI2 and the IP signaling pathway on CD4 T cell activation, inflammatory chemokine production, and allergic sensitization and airway inflammation suggest that PGI2 and its analogue iloprost, both Food and Drug Administration-approved drugs, may be useful in treating allergic diseases and asthma. In addition, inhibiting PGI2 signaling by drugs that either block PGI2 production or restrain IP signaling may augment STAT6-independent pathways of allergic inflammation. PMID:27456482

  8. The Role of Ion Channels to Regulate Airway Ciliary Beat Frequency During Allergic Inflammation.

    PubMed

    Joskova, M; Sutovska, M; Durdik, P; Koniar, D; Hargas, L; Banovcin, P; Hrianka, M; Khazaei, V; Pappova, L; Franova, S

    2016-01-01

    Overproduction of mucus is a hallmark of asthma. The aim of this study was to identify potentially effective therapies for removing excess mucus. The role of voltage-gated (Kir 6.1, KCa 1.1) and store-operated ion channels (SOC, CRAC) in respiratory cilia, relating to the tracheal ciliary beat frequency (CBF), was compared under the physiological and allergic airway conditions. Ex vivo experiments were designed to test the local effects of Kir 6.1, KCa 1.1 and CRAC ion channel modulators in a concentration-dependent manner on the CBF. Cilia, obtained with the brushing method, were monitored by a high-speed video camera and analyzed with ciliary analysis software. In natural conditions, a Kir 6.1 opener accelerated CBF, while CRAC blocker slowed it in a concentration-dependent manner. In allergic inflammation, the effect of Kir 6.1 opener was insignificant, with a tendency to decrease CBF. A cilio-inhibitory effect of a CRAC blocker, while gently reduced by allergic inflammation, remained significant. A KCa 1.1 opener turned out to significantly enhance the CBF under the allergic OVA-sensitized conditions. We conclude that optimally attuned concentration of KCa 1.1 openers or special types of bimodal SOC channel blockers, potentially given by inhalation, might benefit asthma. PMID:27369295

  9. IL-23 signaling enhances Th2 polarization and regulates allergic airway inflammation

    PubMed Central

    Peng, Juan; Yang, Xuexian O.; Chang, Seon Hee; Yang, Jiong; Dong, Chen

    2009-01-01

    IL-23/IL-17 axis is an important regulator in various inflammatory diseases. However, the role of IL-23 in allergic airway inflammation is not well understood. In this study, we show that in an allergen-induced asthma model, mice with transgenic overexpression of IL-23R exhibited increased airway infiltration of eosinophils and Th2 cytokine production, whereas those deficient in IL-23 displayed reduced airway inflammation. In vitro, IL-23-IL-23R signaling promoted GATA-3 expression and enhanced Th2 cytokine expression. Conversely, in the absence of this signal, Th2 cell differentiation was partially inhibited. Therefore, IL-23 signaling may regulate allergic asthma through modulation of Th2 cell differentiation. PMID:19935773

  10. Evaluation on Potential Contributions of Protease Activated Receptors Related Mediators in Allergic Inflammation

    PubMed Central

    Zhang, Huiyun; Zeng, Xiaoning; He, Shaoheng

    2014-01-01

    Protease activated receptors (PARs) have been recognized as a distinctive four-member family of seven transmembrane G protein-coupled receptors (GPCRs) that can be cleaved by certain serine proteases. In recent years, there has been considerable interest in the role of PARs in allergic inflammation, the fundamental pathologic changes of allergy, but the potential roles of PARs in allergy remain obscure. Since many of these proteases are produced and actively involved in the pathologic process of inflammation including exudation of plasma components, inflammatory cell infiltration, and tissue damage and repair, PARs appear to make important contribution to allergy. The aim of the present review is to summarize the expression of PARs in inflammatory and structural cells, the influence of agonists or antagonists of PARs on cell behavior, and the involvement of PARs in allergic disorders, which will help us to better understand the roles of serine proteases and PARs in allergy. PMID:24876677

  11. Endocrine disruptors found in food contaminants enhance allergic sensitization through an oxidative stress that promotes the development of allergic airway inflammation

    SciTech Connect

    Kato, Takuma; Tada-Oikawa, Saeko; Wang, Linan; Murata, Mariko; Kuribayashi, Kagemasa

    2013-11-15

    In the past few decades, there has been a significant increase in incidence of allergic diseases. The hygiene hypothesis may provide some clues to explain this rising trend, but it may also be attributable to other environmental factors that exert a proallergic adjuvant effects. However, there is limited information on the risks of developing allergic asthma and related diseases through the ingestion of environmental chemicals found in food contaminants. In the present study, we have shown that oral administration of tributyltin, used as a model environmental chemical, induced oxidative-stress status in the bronchial lymph node, mesenteric lymph node and spleen, but not in the lung, where the initial step of allergic asthma pathogenesis takes place. Mice exposed to tributyltin exhibited heightened Th2 immunity to the allergen with more severe airway inflammation. Tributyltin also induced Treg cells apoptosis preferentially over non-Treg cells. All these effects of tributyltin exposure were canceled by the administration of glutathione monoethyl ester. Meanwhile, tributyltin did not affect airway inflammation of mice transferred with allergen-specific Th2 cells. Collectively, these results suggest that tributyltin exerts its pathological effect during the sensitization phase through oxidative stress that enhances the development of allergic diseases. The current study dissects the pathogenic role of oxidative stress induced by oral exposure to an environmental chemical during the sensitization phase of allergic airway inflammation and would be important for developing therapeutics for prevention of allergic diseases. - Highlights: • Oral exposure to TBT exacerbates airway inflammation. • TBT induces oxidative stress in secondary lymphoid organs, but not in the lung. • TBT preferentially induces regulatory T cell apoptosis over non-Treg cells. • TBT does not enhance pre-existing airway inflammation in sensitized mice. • Chemicals in food contaminants

  12. Temporal Changes in Glutaredoxin 1 and Protein S-Glutathionylation in Allergic Airway Inflammation

    PubMed Central

    Maki, Kanako; Nagai, Katsura; Suzuki, Masaru; Inomata, Takashi; Yoshida, Takayuki; Nishimura, Masaharu

    2015-01-01

    Introduction Asthma is a chronic inflammatory disorder of the airways, involving oxidative stress. Upon oxidative stress, glutathione covalently binds to protein thiols to protect them against irreversible oxidation. This posttranslational modification, known as protein S-glutathionylation, can be reversed by glutaredoxin 1 (Glrx1) under physiological condition. Glrx1 is known to increase in the lung tissues of a murine model of allergic airway inflammation. However, the temporal relationship between levels of Glrx1, protein S-glutathionylation, and glutathione in the lungs with allergic airway inflammation is not clearly understood. Methods BALB/c mice received 3 aerosol challenges with ovalbumin (OVA) following sensitization to OVA. They were sacrificed at 6, 24, 48, or 72 h, or 8 days (5 mice per group), and the levels of Glrx1, protein S-glutathionylation, glutathione, and 25 cytokines/chemokines were evaluated in bronchoalveolar lavage fluid (BALF) and/or lung tissue. Results Levels of Glrx1 in BALF were significantly elevated in the OVA 6 h (final challenge) group compared to those in the control, with concurrent increases in protein S-glutathionylation levels in the lungs, as well as total glutathione (reduced and oxidized) and oxidized glutathione in BALF. Protein S-glutathionylation levels were attenuated at 24 h, with significant increases in Glrx1 levels in lung tissues at 48 and 72 h. Glrx1 in alveolar macrophages was induced after 6 h. Glrx1 levels concomitantly increased with Th2/NF-κB-related cytokines and chemokines in BALF. Conclusions The temporal relationships of Glrx1 with protein S-glutathionylation, glutathione, and cytokines/chemokines were observed as dynamic changes in lungs with allergic airway inflammation, suggesting that Glrx1 and protein–SSG redox status may play important roles in the development of allergic airway inflammation. PMID:25874776

  13. CRAC ion channels and airway defense reflexes in experimental allergic inflammation.

    PubMed

    Sutovska, M; Adamkov, M; Kocmalova, M; Mesarosova, L; Oravec, M; Franova, S

    2013-01-01

    Calcium release-activated calcium channels (CRAC) play unambiguous role in secretory functions of mast cells, T cells, and eosinophils. Less knowledge exists about the role of CRAC, widely distributed in airway smooth muscle (ASM) cells, in airway contractility. The presented study seeks to determine the possible participation of CRAC in ASM-based inflammatory airway disorders in guinea pigs. The acute and long-term administration (14 days) of the CRAC antagonist 3-fluoropyridine-4-carboxylic acid was used to examine the ASM contractility and associated reflexes in the guinea pig model of allergic airway inflammation by the following methods: (i) evaluation of specific airway resistance in vivo; (ii) evaluation of the contractile response of isolated ASM strips in vitro; and (iii) citric acid-induced cough reflex; (iv) measurement of exhaled NO levels (E(NO)). Allergic airway inflammation was induced by repetitive exposure of guinea pigs to ovalbumin (10(-6) M). The CRAC antagonist administered in a single dose to guinea pigs with confirmed allergic inflammation significantly reduced the cough response and the airway resistance, which corresponded with the findings in vitro. Long-term application of the CRAC antagonist had more strongly expressed effects. The results confirm the role of CRAC in the pathophysiology of experimental animal asthma and have a potential meaning for anti-asthma therapy. PMID:22836617

  14. Bystander suppression of allergic airway inflammation by lung resident memory CD8+ T cells

    NASA Astrophysics Data System (ADS)

    Marsland, Benjamin J.; Harris, Nicola L.; Camberis, Mali; Kopf, Manfred; Hook, Sarah M.; Le Gros, Graham

    2004-04-01

    CD8+ memory T cells have recently been recognized as playing a key role in natural immunity against unrelated viral infections, a phenomenon referred to as "heterologous antiviral immunity." We now provide data that the cellular immunological interactions that underlie such heterologous immunity can play an equally important role in regulating T helper 2 immune responses and protecting mucosal surfaces from allergen-induced inflammation. Our data show that CD8+ T cells, either retained in the lung after infection with influenza virus, or adoptively transferred via the intranasal route can suppress allergic airway inflammation. The suppression is mediated by IFN-, which acts to reduce the activation level, T helper 2 cytokine production, airways hyperresponsiveness, and migration of allergen-specific CD4+ T cells into the lung, whereas the systemic and draining lymph node responses remain unchanged. Of note, adoptive transfer of previously activated transgenic CD8+ T cells conferred protection against allergic airway inflammation, even in the absence of specific-antigen. Airway resident CD8+ T cells produced IFN- when directly exposed to conditioned media from activated dendritic cells or the proinflammatory cytokines IL-12 and IL-18. Taken together these data indicate that effector/memory CD8+ T cells present in the airways produce IFN- after inflammatory stimuli, independent of specific-antigen, and as a consequence play a key role in modifying the degree and frequency of allergic responses in the lung.

  15. TRPA1 controls inflammation and pruritogen responses in allergic contact dermatitis

    PubMed Central

    Liu, Boyi; Escalera, Jasmine; Balakrishna, Shrilatha; Fan, Lu; Caceres, Ana I.; Robinson, Eve; Sui, Aiwei; McKay, M. Craig; McAlexander, M. Allen; Herrick, Christina A.; Jordt, Sven E.

    2013-01-01

    Allergic contact dermatitis is a common skin disease associated with inflammation and persistent pruritus. Transient receptor potential (TRP) ion channels in skin-innervating sensory neurons mediate acute inflammatory and pruritic responses following exogenous stimulation and may contribute to allergic responses. Genetic ablation or pharmacological inhibition of TRPA1, but not TRPV1, inhibited skin edema, keratinocyte hyperplasia, nerve growth, leukocyte infiltration, and antihistamine-resistant scratching behavior in mice exposed to the haptens, oxazolone and urushiol, the contact allergen of poison ivy. Hapten-challenged skin of TRPA1-deficient mice contained diminished levels of inflammatory cytokines, nerve growth factor, and endogenous pruritogens, such as substance P (SP) and serotonin. TRPA1-deficient sensory neurons were defective in SP signaling, and SP-induced scratching behavior was abolished in Trpa1−/− mice. SP receptor antagonists, such as aprepitant inhibited both hapten-induced cutaneous inflammation and scratching behavior. These findings support a central role for TRPA1 and SP in the integration of immune and neuronal mechanisms leading to chronic inflammatory responses and pruritus associated with contact dermatitis.—Liu, B., Escalera, J., Balakrishna, S., Fan, L., Caceres, A. I., Robinson, E., Sui, A., McKay, M. C., McAlexander, M. A., Herrick, C. A., Jordt, S. E. TRPA1 controls inflammation and pruritogen responses in allergic contact dermatitis. PMID:23722916

  16. The Effects of Proresolution of Ellagic Acid in an Experimental Model of Allergic Airway Inflammation

    PubMed Central

    de Freitas Alves, Claudiney; Angeli, Giovanna Natalia; Favarin, Daniely Cornélio; Lemos de Andrade, Edinéia; Lazo Chica, Javier Emilio; Faccioli, Lúcia Helena; Roberto da Silva, Paulo; de Paula Rogerio, Alexandre

    2013-01-01

    Asthma is a disease of airway inflammation characterized by airway hyperresponsiveness, eosinophilic inflammation, and hypersecretion of mucus. Ellagic acid, a compound derived from medicinal plants and fruits, has shown anti-inflammatory activity in several experimental disease models. We used the classical experimental model, in BALB/c mice, of sensibilization with ovalbumin to determine the effect of ellagic acid (10 mg/kg; oral route) in the resolution of allergic airways response. Dexamethasone (1 mg/kg; subcutaneous route) was used as a positive control. The control group consisted of nonimmunized mice that received challenge with ovalbumin. Ellagic acid and dexamethasone or vehicle (water) were administered before or after intranasal allergen challenge. Ellagic acid accelerated the resolution of airways inflammation by decreasing total leukocytes and eosinophils numbers in the bronchoalveolar lavage fluid (BALF), the mucus production and lung inflammation in part by reducing IL-5 concentration, eosinophil peroxidase (EPO) activity, and P-selectin expression, but not activator protein 1 (AP-1) and nuclear factor kappa B (NF-κB) pathways. In addition, ellagic acid enhanced alveolar macrophage phagocytosis of IgG-OVA-coated beads ex vivo, a new proresolving mechanism for the clearance of allergen from the airways. Together, these findings identify ellagic acid as a potential therapeutic agent for accelerating the resolution of allergic airways inflammation. PMID:24376308

  17. Role of Eosinophil Granulocytes in Allergic Airway Inflammation Endotypes.

    PubMed

    Amin, K; Janson, C; Bystrom, J

    2016-08-01

    Eosinophil granulocytes are intriguing members of the innate immunity system that have been considered important defenders during parasitic diseases as well as culprits during allergy-associated inflammatory diseases. Novel studies have, however, found new homoeostasis-maintaining roles for the cell. Recent clinical trials blocking different Th2 cytokines have uncovered that asthma is heterogeneous entity and forms different characteristic endotypes. Although eosinophils are present in allergic asthma with early onset, the cells may not be essential for the pathology. The cells are, however, likely disease causing in asthma with a late onset, which is often associated with chronic rhinosinusitis. Assessment of eosinophilia, fraction exhaled nitric oxide (FeNO) and periostin are markers that have emerged useful in assessing and monitoring asthma severity and endotype. Current scientific knowledge suggests that eosinophils are recruited by the inflammatory environment, activated by the innate interleukin (IL)-33 and prevented from apoptosis by both lymphocytes and innate immune cells such as type two innate immune cells. Eosinophils contain four specific granule proteins that exhibit an array of toxic and immune-modulatory activates. The granule proteins can be released by different mechanisms. Additionally, eosinophils contain a number of inflammatory cytokines and lipid mediators as well as radical oxygen species that might contribute to the disease both by the recruitment of other cells and the direct damage to supporting cells, leading to exacerbations and tissue fibrosis. This review aimed to outline current knowledge how eosinophils are recruited, activated and mediate damage to tissues and therapies used to control the cells. PMID:27167590

  18. Parasitic Nematode-Induced CD4+Foxp3+T Cells Can Ameliorate Allergic Airway Inflammation

    PubMed Central

    Kang, Shin Ae; Park, Mi-Kyung; Cho, Min Kyoung; Park, Sang Kyun; Jang, Min Seong; Yang, Bo-Gie; Jang, Myoung Ho; Kim, Dong-Hee; Yu, Hak Sun

    2014-01-01

    Background The recruitment of CD4+CD25+Foxp3+T (Treg) cells is one of the most important mechanisms by which parasites down-regulate the immune system. Methodology/Principal Findings We compared the effects of Treg cells from Trichinella spiralis-infected mice and uninfected mice on experimental allergic airway inflammation in order to understand the functions of parasite-induced Treg cells. After four weeks of T. spiralis infection, we isolated Foxp3-GFP-expressing cells from transgenic mice using a cell sorter. We injected CD4+Foxp3+ cells from T. spiralis-infected [Inf(+)Foxp3+] or uninfected [Inf(-)Foxp3+] mice into the tail veins of C57BL/6 mice before the induction of inflammation or during inflammation. Inflammation was induced by ovalbumin (OVA)-alum sensitization and OVA challenge. The concentrations of the Th2-related cytokines IL-4, IL-5, and IL-13 in the bronchial alveolar lavage fluid and the levels of OVA-specific IgE and IgG1 in the serum were lower in mice that received intravenous application of Inf(+)Foxp3+ cells [IV(inf):+(+) group] than in control mice. Some features of allergic airway inflammation were ameliorated by the intravenous application of Inf(-)Foxp3+ cells [IV(inf):+(-) group], but the effects were less distinct than those observed in the IV(inf):+(+) group. We found that Inf(+)Foxp3+ cells migrated to inflammation sites in the lung and expressed higher levels of Treg-cell homing receptors (CCR5 and CCR9) and activation markers (Klrg1, Capg, GARP, Gzmb, OX40) than did Inf(-)Foxp3+ cells. Conclusion/Significance T. spiralis infection promotes the proliferation and functional activation of Treg cells. Parasite-induced Treg cells migrate to the inflammation site and suppress immune responses more effectively than non-parasite-induced Treg cells. The adoptive transfer of Inf(+)Foxp3+ cells is an effective method for the treatment and prevention of allergic airway diseases in mice and is a promising therapeutic approach for the treatment

  19. Induction of eosinophil apoptosis by hydrogen peroxide promotes the resolution of allergic inflammation.

    PubMed

    Reis, A C; Alessandri, A L; Athayde, R M; Perez, D A; Vago, J P; Ávila, T V; Ferreira, T P T; de Arantes, A C S; Coutinho, D de Sá; Rachid, M A; Sousa, L P; Martins, M A; Menezes, G B; Rossi, A G; Teixeira, M M; Pinho, V

    2015-01-01

    Eosinophils are effector cells that have an important role in the pathogenesis of allergic disease. Defective removal of these cells likely leads to chronic inflammatory diseases such as asthma. Thus, there is great interest in understanding the mechanisms responsible for the elimination of eosinophils from inflammatory sites. Previous studies have demonstrated a role for certain mediators and molecular pathways responsible for the survival and death of leukocytes at sites of inflammation. Reactive oxygen species have been described as proinflammatory mediators but their role in the resolution phase of inflammation is poorly understood. The aim of this study was to investigate the effect of reactive oxygen species in the resolution of allergic inflammatory responses. An eosinophilic cell line (Eol-1) was treated with hydrogen peroxide and apoptosis was measured. Allergic inflammation was induced in ovalbumin sensitized and challenged mouse models and reactive oxygen species were administered at the peak of inflammatory cell infiltrate. Inflammatory cell numbers, cytokine and chemokine levels, mucus production, inflammatory cell apoptosis and peribronchiolar matrix deposition was quantified in the lungs. Resistance and elastance were measured at baseline and after aerosolized methacholine. Hydrogen peroxide accelerates resolution of airway inflammation by induction of caspase-dependent apoptosis of eosinophils and decrease remodeling, mucus deposition, inflammatory cytokine production and airway hyperreactivity. Moreover, the inhibition of reactive oxygen species production by apocynin or in gp91(phox-/-) mice prolonged the inflammatory response. Hydrogen peroxide induces Eol-1 apoptosis in vitro and enhances the resolution of inflammation and improves lung function in vivo by inducing caspase-dependent apoptosis of eosinophils. PMID:25675292

  20. Induction of eosinophil apoptosis by hydrogen peroxide promotes the resolution of allergic inflammation

    PubMed Central

    Reis, A C; Alessandri, A L; Athayde, R M; Perez, D A; Vago, J P; Ávila, T V; Ferreira, T P T; de Arantes, A CS; de Sá Coutinho, D; Rachid, M A; Sousa, L P; Martins, M A; Menezes, G B; Rossi, A G; Teixeira, M M; Pinho, V

    2015-01-01

    Eosinophils are effector cells that have an important role in the pathogenesis of allergic disease. Defective removal of these cells likely leads to chronic inflammatory diseases such as asthma. Thus, there is great interest in understanding the mechanisms responsible for the elimination of eosinophils from inflammatory sites. Previous studies have demonstrated a role for certain mediators and molecular pathways responsible for the survival and death of leukocytes at sites of inflammation. Reactive oxygen species have been described as proinflammatory mediators but their role in the resolution phase of inflammation is poorly understood. The aim of this study was to investigate the effect of reactive oxygen species in the resolution of allergic inflammatory responses. An eosinophilic cell line (Eol-1) was treated with hydrogen peroxide and apoptosis was measured. Allergic inflammation was induced in ovalbumin sensitized and challenged mouse models and reactive oxygen species were administered at the peak of inflammatory cell infiltrate. Inflammatory cell numbers, cytokine and chemokine levels, mucus production, inflammatory cell apoptosis and peribronchiolar matrix deposition was quantified in the lungs. Resistance and elastance were measured at baseline and after aerosolized methacholine. Hydrogen peroxide accelerates resolution of airway inflammation by induction of caspase-dependent apoptosis of eosinophils and decrease remodeling, mucus deposition, inflammatory cytokine production and airway hyperreactivity. Moreover, the inhibition of reactive oxygen species production by apocynin or in gp91phox−/− mice prolonged the inflammatory response. Hydrogen peroxide induces Eol-1 apoptosis in vitro and enhances the resolution of inflammation and improves lung function in vivo by inducing caspase-dependent apoptosis of eosinophils. PMID:25675292

  1. Human pluripotent stem cell-derived mesenchymal stem cells prevent allergic airway inflammation in mice.

    PubMed

    Sun, Yue-Qi; Deng, Meng-Xia; He, Jia; Zeng, Qing-Xiang; Wen, Weiping; Wong, David S H; Tse, Hung-Fat; Xu, Geng; Lian, Qizhou; Shi, Jianbo; Fu, Qing-Ling

    2012-12-01

    We previously found that mesenchymal stem cells (MSCs) derived from human-induced pluripotent stem cells (iPSCs) exerted immunomodulatory effects on Th2-mediated allergic rhinitis in vitro. However, their contribution to the asthma and allergic rhinitis in animal models remains unclear. In this study, we developed a mouse model of ovalbumin (OVA)-induced allergic inflammation in both the upper and lower airways and evaluated the effects of the systemic administration of human iPSC-MSCs and bone marrow-derived MSCs (BM-MSCs) on allergic inflammation. Our results showed that treatments with both the iPSC-MSCs and BM-MSCs before the challenge phase protected the animals from the majority of allergy-specific pathological changes. This protection included an inhibition of inflammatory cell infiltration and mucus production in the lung, a reduction in eosinophil infiltration in the nose, and a decrease in inflammatory cell infiltration in both the bronchoalveolar and nasal lavage fluids. In addition, treatment with iPSC-MSCs or BM-MSCs before the challenge phase resulted in reduced serum levels of Th2 immunoglobulins (e.g., IgE) and decreased levels of Th2 cytokines including interleukin (IL)-4, IL-5, or IL-13 in the bronchoalveolar and/or nasal lavage fluids. Similar therapeutic effects were observed when the animals were pretreated with human iPSC-MSCs before the sensitization phase. These data suggest that iPSC-MSCs may be used as an alternative strategy to adult MSCs in the treatment of asthma and allergic rhinitis. PMID:22987325

  2. Exposure to inhomogeneous static magnetic field beneficially affects allergic inflammation in a murine model

    PubMed Central

    Csillag, Anikó; Kumar, Brahma V.; Szabó, Krisztina; Szilasi, Mária; Papp, Zsuzsa; Szilasi, Magdolna E.; Pázmándi, Kitti; Boldogh, István; Rajnavölgyi, Éva; Bácsi, Attila; László, János F.

    2014-01-01

    Previous observations suggest that static magnetic field (SMF)-exposure acts on living organisms partly through reactive oxygen species (ROS) reactions. In this study, we aimed to define the impact of SMF-exposure on ragweed pollen extract (RWPE)-induced allergic inflammation closely associated with oxidative stress. Inhomogeneous SMF was generated with an apparatus validated previously providing a peak-to-peak magnetic induction of the dominant SMF component 389 mT by 39 T m−1 lateral gradient in the in vivo and in vitro experiments, and 192 mT by 19 T m−1 in the human study at the 3 mm target distance. Effects of SMF-exposure were studied in a murine model of allergic inflammation and also in human provoked skin allergy. We found that even a single 30-min exposure of mice to SMF immediately following intranasal RWPE challenge significantly lowered the increase in the total antioxidant capacity of the airways and decreased allergic inflammation. Repeated (on 3 consecutive days) or prolonged (60 min) exposure to SMF after RWPE challenge decreased the severity of allergic responses more efficiently than a single 30-min treatment. SMF-exposure did not alter ROS production by RWPE under cell-free conditions, while diminished RWPE-induced increase in the ROS levels in A549 epithelial cells. Results of the human skin prick tests indicated that SMF-exposure had no significant direct effect on provoked mast cell degranulation. The observed beneficial effects of SMF are likely owing to the mobilization of cellular ROS-eliminating mechanisms rather than direct modulation of ROS production by pollen NAD(P)H oxidases. PMID:24647908

  3. The IL-33 receptor (ST2) regulates early IL-13 production in fungus-induced allergic airway inflammation.

    PubMed

    Piehler, D; Eschke, M; Schulze, B; Protschka, M; Müller, U; Grahnert, A; Richter, T; Heyen, L; Köhler, G; Brombacher, F; Alber, G

    2016-07-01

    Allergic airway inflammation (AAI) in response to environmental antigens is an increasing medical problem, especially in the Western world. Type 2 interleukins (IL) are central in the pathological response but their importance and cellular source(s) often rely on the particular allergen. Here, we highlight the cellular sources and regulation of the prototypic type 2 cytokine, IL-13, during the establishment of AAI in a fungal infection model using Cryptococcus neoformans. IL-13 reporter mice revealed a rapid onset of IL-13 competence within innate lymphoid cells type 2 (ILC2) and IL-33R(+) T helper (Th) cells. ILC2 showed IL-33-dependent proliferation upon infection and significant IL-13 production. Th cells essentially required IL-33 to become either GATA3(+) or GATA3(+)/Foxp3(+) hybrids. GATA3(+) Th cells almost exclusively contributed to IL-13 production but hybrid GATA3(+)/Foxp3(+) Th cells did not. In addition, alveolar macrophages upregulated the IL-33R and subsequently acquired a phenotype of alternative activation (Ym1(+), FIZZ1(+), and arginase-1(+)) linked to type 2 immunity. Absence of adaptive immunity in rag2(-/-) mice resulted in attenuated AAI, revealing the need for Th2 cells for full AAI development. Taken together, in pulmonary cryptococcosis ILC2 and GATA3(+) Th2 cells produce early IL-13 largely IL-33R-dependent, thereby promoting goblet cell metaplasia, pulmonary eosinophilia, and alternative activation of alveolar macrophages. PMID:26555705

  4. Biosignature for airway inflammation in a house dust mite-challenged murine model of allergic asthma.

    PubMed

    Piyadasa, Hadeesha; Altieri, Anthony; Basu, Sujata; Schwartz, Jacquie; Halayko, Andrew J; Mookherjee, Neeloffer

    2016-01-01

    House dust mite (HDM) challenge is commonly used in murine models of allergic asthma for preclinical pathophysiological studies. However, few studies define objective readouts or biomarkers in this model. In this study we characterized immune responses and defined molecular markers that are specifically altered after HDM challenge. In this murine model, we used repeated HDM challenge for two weeks which induced hallmarks of allergic asthma seen in humans, including airway hyper-responsiveness (AHR) and elevated levels of circulating total and HDM-specific IgE and IgG1. Kinetic studies showed that at least 24 h after last HDM challenge results in significant AHR along with eosinophil infiltration in the lungs. Histologic assessment of lung revealed increased epithelial thickness and goblet cell hyperplasia, in the absence of airway wall collagen deposition, suggesting ongoing tissue repair concomitant with acute allergic lung inflammation. Thus, this model may be suitable to delineate airway inflammation processes that precede airway remodeling and development of fixed airway obstruction. We observed that a panel of cytokines e.g. IFN-γ, IL-1β, IL-4, IL-5, IL-6, KC, TNF-α, IL-13, IL-33, MDC and TARC were elevated in lung tissue and bronchoalveolar fluid, indicating local lung inflammation. However, levels of these cytokines remained unchanged in serum, reflecting lack of systemic inflammation in this model. Based on these findings, we further monitored the expression of 84 selected genes in lung tissues by quantitative real-time PCR array, and identified 31 mRNAs that were significantly up-regulated in lung tissue from HDM-challenged mice. These included genes associated with human asthma (e.g. clca3, ear11, il-13, il-13ra2, il-10, il-21, arg1 and chia1) and leukocyte recruitment in the lungs (e.g. ccl11, ccl12 and ccl24). This study describes a biosignature to enable broad and systematic interrogation of molecular mechanisms and intervention strategies for

  5. Suppression of allergic airway inflammation in a mouse model of asthma by exogenous mesenchymal stem cells.

    PubMed

    Ou-Yang, Hai-Feng; Huang, Yun; Hu, Xing-Bin; Wu, Chang-Gui

    2011-12-01

    Mesenchymal stem cells (MSCs) have significant immunomodulatory effects in the development of acute lung inflammation and fibrosis. However, it is still unclear as to whether MSCs could attenuate allergic airway inflammation in a mouse model of asthma. We firstly investigated whether exogenous MSCs can relocate to lung tissues in asthmatic mice and analyzed the chemotactic mechanism. Then, we evaluated the in vivo immunomodulatory effect of exogenous MSCs in asthma. MSCs (2 × 10(6)) were administered through the tail vein to mice one day before the first airway challenge. Migration of MSCs was evaluated by flow cytometry. The immunomodulatory effect of MSCs was evaluated by cell counting in bronchoalveolar lavage fluid (BALF), histology, mast cell degranulation, airway hyperreactivity and cytokine profile in BALF. Exogenous MSCs can migrate to sites of inflammation in asthmatic mice through a stromal cell-derived factor-1α/CXCR4-dependent mechanism. MSCs can protect mice against a range of allergic airway inflammatory pathologies, including the infiltration of inflammatory cells, mast cell degranulation and airway hyperreactivity partly via shifting to a T-helper 1 (Th1) from a Th2 immune response to allergens. So, immunotherapy based on MSCs may be a feasible, efficient therapy for asthma. PMID:22114062

  6. Nitric Oxide, Oxidative Stress and Inflammation in Pulmonary Arterial Hypertension

    PubMed Central

    Crosswhite, Patrick; Sun, Zhongjie

    2010-01-01

    Pulmonary arterial hypertension (PAH) is a chronic and progressive disease characterized by a persistent elevation of pulmonary artery pressure accompanied by right ventricular hypertrophy (RVH). The current treatment for pulmonary hypertension is limited and only provides symptomatic relief due to unknown etiology and pathogenesis of the disease. Both vasoconstriction and structural remodeling (enhanced proliferation of VSMC) of the pulmonary arteries contribute to the progressive course of PAH, irrespective of different underlying causes. The exact molecular mechanism of PAH, however, is not fully understood. The purpose of this review is to provide recent advances in the mechanistic investigation of PAH. Specifically, this review focuses on nitric oxide (NO), oxidative stress and inflammation and how these factors contribute to the development and progression of PAH. This review also discusses recent and potential therapeutic advancements for the treatment of PAH. PMID:20051913

  7. MicroRNA-26a/-26b-COX-2-MIP-2 Loop Regulates Allergic Inflammation and Allergic Inflammation-promoted Enhanced Tumorigenic and Metastatic Potential of Cancer Cells*

    PubMed Central

    Kwon, Yoojung; Kim, Youngmi; Eom, Sangkyung; Kim, Misun; Park, Deokbum; Kim, Hyuna; Noh, Kyeonga; Lee, Hansoo; Lee, Yun Sil; Choe, Jongseon; Kim, Young Myeong; Jeoung, Dooil

    2015-01-01

    Cyclooxgenase-2 (COX-2) knock-out mouse experiments showed that COX-2 was necessary for in vivo allergic inflammation, such as passive cutaneous anaphylaxis, passive systemic anaphylaxis, and triphasic cutaneous allergic reaction. TargetScan analysis predicted COX-2 as a target of miR-26a and miR-26b. miR-26a/-26b decreased luciferase activity associated with COX-2–3′-UTR. miR-26a/-26b exerted negative effects on the features of in vitro and in vivo allergic inflammation by targeting COX-2. ChIP assays showed the binding of HDAC3 and SNAIL, but not COX-2, to the promoter sequences of miR-26a and miR-26b. Cytokine array analysis showed that the induction of chemokines, such as MIP-2, in the mouse passive systemic anaphylaxis model occurred in a COX-2-dependent manner. ChIP assays showed the binding of HDAC3 and COX-2 to the promoter sequences of MIP-2. In vitro and in vivo allergic inflammation was accompanied by the increased expression of MIP-2. miR-26a/-26b negatively regulated the expression of MIP-2. Allergic inflammation enhanced the tumorigenic and metastatic potential of cancer cells and induced positive feedback involving cancer cells and stromal cells, such as mast cells, macrophages, and endothelial cells. miR-26a mimic and miR-26b mimic negatively regulated the positive feedback between cancer cells and stromal cells and the positive feedback among stromal cells. miR-26a/-26b negatively regulated the enhanced tumorigenic potential by allergic inflammation. COX-2 was necessary for the enhanced metastatic potential of cancer cells by allergic inflammation. Taken together, our results indicate that the miR26a/-26b-COX-2-MIP-2 loop regulates allergic inflammation and the feedback relationship between allergic inflammation and the enhanced tumorigenic and metastatic potential. PMID:25907560

  8. CARMA3 Is Critical for the Initiation of Allergic Airway Inflammation.

    PubMed

    Causton, Benjamin; Ramadas, Ravisankar A; Cho, Josalyn L; Jones, Khristianna; Pardo-Saganta, Ana; Rajagopal, Jayaraj; Xavier, Ramnik J; Medoff, Benjamin D

    2015-07-15

    Innate immune responses to allergens by airway epithelial cells (AECs) help initiate and propagate the adaptive immune response associated with allergic airway inflammation in asthma. Activation of the transcription factor NF-κB in AECs by allergens or secondary mediators via G protein-coupled receptors (GPCRs) is an important component of this multifaceted inflammatory cascade. Members of the caspase recruitment domain family of proteins display tissue-specific expression and help mediate NF-κB activity in response to numerous stimuli. We have previously shown that caspase recruitment domain-containing membrane-associated guanylate kinase protein (CARMA)3 is specifically expressed in AECs and mediates NF-κB activation in these cells in response to stimulation with the GPCR agonist lysophosphatidic acid. In this study, we demonstrate that reduced levels of CARMA3 in normal human bronchial epithelial cells decreases the production of proasthmatic mediators in response to a panel of asthma-relevant GPCR ligands such as lysophosphatidic acid, adenosine triphosphate, and allergens that activate GPCRs such as Alternaria alternata and house dust mite. We then show that genetically modified mice with CARMA3-deficient AECs have reduced airway eosinophilia and proinflammatory cytokine production in a murine model of allergic airway inflammation. Additionally, we demonstrate that these mice have impaired dendritic cell maturation in the lung and that dendritic cells from mice with CARMA3-deficient AECs have impaired Ag processing. In conclusion, we show that AEC CARMA3 helps mediate allergic airway inflammation, and that CARMA3 is a critical signaling molecule bridging the innate and adaptive immune responses in the lung. PMID:26041536

  9. CARMA3 Is Critical for the Initiation of Allergic Airway Inflammation

    PubMed Central

    Causton, Benjamin; Ramadas, Ravisankar A.; Cho, Josalyn L.; Jones, Khristianna; Pardo-Saganta, Ana; Rajagopal, Jayaraj; Xavier, Ramnik J.

    2015-01-01

    Innate immune responses to allergens by airway epithelial cells (AECs) help initiate and propagate the adaptive immune response associated with allergic airway inflammation in asthma. Activation of the transcription factor NF-κB in AECs by allergens or secondary mediators via G protein–coupled receptors (GPCRs) is an important component of this multifaceted inflammatory cascade. Members of the caspase recruitment domain family of proteins display tissue-specific expression and help mediate NF-κB activity in response to numerous stimuli. We have previously shown that caspase recruitment domain–containing membrane-associated guanylate kinase protein (CARMA)3 is specifically expressed in AECs and mediates NF-κB activation in these cells in response to stimulation with the GPCR agonist lysophosphatidic acid. In this study, we demonstrate that reduced levels of CARMA3 in normal human bronchial epithelial cells decreases the production of proasthmatic mediators in response to a panel of asthma-relevant GPCR ligands such as lysophosphatidic acid, adenosine triphosphate, and allergens that activate GPCRs such as Alternaria alternata and house dust mite. We then show that genetically modified mice with CARMA3-deficient AECs have reduced airway eosinophilia and proinflammatory cytokine production in a murine model of allergic airway inflammation. Additionally, we demonstrate that these mice have impaired dendritic cell maturation in the lung and that dendritic cells from mice with CARMA3-deficient AECs have impaired Ag processing. In conclusion, we show that AEC CARMA3 helps mediate allergic airway inflammation, and that CARMA3 is a critical signaling molecule bridging the innate and adaptive immune responses in the lung. PMID:26041536

  10. γ-Secretase Inhibitor Alleviates Acute Airway Inflammation of Allergic Asthma in Mice by Downregulating Th17 Cell Differentiation

    PubMed Central

    Zhang, Weixi; Zhang, Xueya; Sheng, Anqun; Weng, Cuiye; Zhu, Tingting; Zhao, Wei; Li, Changchong

    2015-01-01

    T helper 17 (Th17) cells play an important role in the pathogenesis of allergic asthma. Th17 cell differentiation requires Notch signaling. γ-Secretase inhibitor (GSI) blocks Notch signaling; thus, it may be considered as a potential treatment for allergic asthma. The aim of this study was to evaluate the effect of GSI on Th17 cell differentiation in a mouse model of allergic asthma. OVA was used to induce mouse asthma model in the presence and absence of GSI. GSI ameliorated the development of OVA-induced asthma, including suppressing airway inflammation responses and reducing the severity of clinical signs. GSI also significantly suppressed Th17-cell responses in spleen and reduced IL-17 levels in serum. These findings suggest that GSI directly regulates Th17 responses through a Notch signaling-dependent pathway in mouse model of allergic asthma, supporting the notion that GSI is a potential therapeutic agent for the treatment of allergic asthma. PMID:26339131

  11. Effect of acute airway inflammation on the pulmonary antioxidant status.

    PubMed

    Deaton, Christopher M; Marlin, David J; Smith, Nicola C; Harris, Patricia A; Dagleish, Mark P; Schroter, Robert C; Kelly, Frank J

    2005-09-01

    Effects of acute airway inflammation induced by organic dust inhalation on pulmonary antioxidant status were investigated in healthy horses and horses affected by recurrent airway obstruction. Exposure to organic dust induced acute airway neutrophilia, which was associated with increases in elastase and decreases in ascorbic acid concentrations in bronchoalveolar lavage fluid. However, markers of oxidative stress were unaffected, as was hydrogen peroxide in breath condensate. Decreases in ascorbic acid correlated with increased respiratory resistance (P = .001) when both groups were combined. In conclusion, acute neutrophilic airway inflammation does not result in significant evidence of oxidative stress in horses affected by recurrent airway obstruction. PMID:16203621

  12. T cells are necessary for ILC2 activation in house dust mite-induced allergic airway inflammation in mice.

    PubMed

    Li, Bobby W S; de Bruijn, Marjolein J W; Tindemans, Irma; Lukkes, Melanie; KleinJan, Alex; Hoogsteden, Henk C; Hendriks, Rudi W

    2016-06-01

    Allergic asthma is a chronic inflammation of the airways mediated by an adaptive type 2 immune response. Upon allergen exposure, group 2 innate lymphoid cells (ILC2s) can be rapidly activated and represent an early innate source of IL-5 and IL-13. Here, we used a house dust mite (HDM)-driven asthma mouse model to study the induction of ILC2s in allergic airway inflammation. In BALF, lungs, and lymph nodes, ILC2 activation is critically dependent on prior sensitization with HDM. Importantly, T cells are required for ILC2 induction, whereby T-cell activation precedes ILC2 induction. During HDM-driven allergic airway inflammation the accumulation of ILC2s in BALF is IL-33 independent, although infiltrating ILC2s produce less cytokines in Il33(-/-) mice. Transfer of in vitro polarized OVA-specific OT-II Th2 cells alone or in combination with Th17 cells followed by OVA and HDM challenge is not sufficient to induce ILC2, despite significant eosinophilic inflammation and T-cell activation. In this asthma model, ILC2s are therefore not an early source of Th2 cytokines, but rather contribute to type 2 inflammation in which Th2 cells play a key role. Taken together, ILC2 induction in HDM-mediated allergic airway inflammation in mice critically depends on activation of T cells. PMID:27062360

  13. Adipose-derived stem cells ameliorate allergic airway inflammation by inducing regulatory T cells in a mouse model of asthma.

    PubMed

    Cho, Kyu-Sup; Park, Mi-Kyung; Kang, Shin-Ae; Park, Hee-Young; Hong, Sung-Lyong; Park, Hye-Kyung; Yu, Hak-Sun; Roh, Hwan-Jung

    2014-01-01

    Although several studies have demonstrated that mesenchymal stem cells derived from adipose tissue (ASCs) can ameliorate allergic airway inflammation, the immunomodulatory mechanism of ASCs remains unclear. In this study, we investigated whether regulatory T cells (Tregs) induction is a potential mechanism in immunomodulatory effects of ASCs on allergic airway disease and how these induced Tregs orchestrate allergic inflammation. Intravenous administration of ASCs significantly reduced allergic symptoms and inhibited eosinophilic inflammation. Airway hyperresponsiveness, total immune cell and eosinophils in the bronchoalveolar lavage fluid, mucus production, and serum allergen-specific IgE and IgG1 were significantly reduced after ASCs administration. ASCs significantly inhibited Th2 cytokines (IL-4, IL-5, and IL-13) and enhanced Th1 cytokine (IFN-γ) and regulatory cytokines (IL-10 and TGF-β) in the bronchoalveolar lavage fluid and lung draining lymph nodes. Furthermore, levels of IDO, TGF-β, and PGE2 were significantly increased after ASCs administration. Interestingly, this upregulation was accompanied by increased Treg populations. In conclusion, ASCs ameliorated allergic airway inflammation and improved lung function through the induction of Treg expansion. The induction of Treg by ASCs involves the secretion of soluble factors such as IDO, TGF-β, and PGE2 and Treg might be involved in the downregulation of Th2 cytokines and upregulation of Th1 cytokines production. PMID:25246732

  14. Lipopolysaccharide exposure makes allergic airway inflammation and hyper-responsiveness less responsive to dexamethasone and inhibition of iNOS.

    PubMed

    Komlósi, Z I; Pozsonyi, E; Tábi, T; Szöko, E; Nagy, A; Bartos, B; Kozma, G T; Tamási, L; Orosz, M; Magyar, P; Losonczy, G

    2006-07-01

    Allergic airway disease can be refractory to anti-inflammatory treatment, whose cause is unclarified. Therefore, in the present experiment, we have tested the hypothesis that co-exposure to lipopolysacharide (Lps) and allergen results in glucocorticoid-resistant eosinophil airway inflammation and hyper-responsiveness (AHR). Ovalbumin (Ova)-sensitized BALB/c mice were primed with 10 microg intranasal Lps 24 h before the start of Ova challenges (20 min on 3 consecutive days). Dexamethasone (5 mg/kg/day) was given on the last 2 days of Ova challenges. AHR, cellular build-up, cytokine and nitrite concentrations of bronchoalveolar lavage fluid (BALF) and lung histology were examined. To assess the role of iNOS-derived NO in airway responsiveness, mice were treated with a selective inhibitor of this enzyme (1400W) 2 h before AHR measurements. More severe eosinophil inflammation and higher nitrite formation were found in Lps-primed than in non-primed allergized mice. After Lps priming, AHR and concentrations of T-helper type 2 cytokines in BALF were decreased, but still remained significantly higher than in controls. Eosinophil inflammation was partially, while nitrite production and AHR were observed to be largely dexamethasone resistant in Lps-primed allergized animals. 1400W effectively and rapidly diminished the AHR in Ova-sensitized and challenged mice, but failed to affect it after Lps priming plus allergization. In conclusion, Lps inhalation may exaggerate eosinophil inflammation and reduce responsiveness to anti-inflammatory treatment in allergic airway disease. PMID:16839411

  15. Dendritic Cell-Nerve Clusters Are Sites of T Cell Proliferation in Allergic Airway Inflammation

    PubMed Central

    Veres, Tibor Z.; Shevchenko, Marina; Krasteva, Gabriela; Spies, Emma; Prenzler, Frauke; Rochlitzer, Sabine; Tschernig, Thomas; Krug, Norbert; Kummer, Wolfgang; Braun, Armin

    2009-01-01

    Interactions between T cells and dendritic cells in the airway mucosa precede secondary immune responses to inhaled antigen. The purpose of this study was to identify the anatomical locations where dendritic cell–T cell interactions occur, resulting in T cells activation by dendritic cells. In a mouse model of allergic airway inflammation, we applied whole-mount immunohistology and confocal microscopy to visualize dendritic cells and T cells together with nerves, epithelium, and smooth muscle in three dimensions. Proliferating T cells were identified by the detection of the incorporation of the nucleotide analogue 5-ethynyl-2′-deoxyuridine into the DNA. We developed a novel quantification method that enabled the accurate determination of cell–cell contacts in a semi-automated fashion. Dendritic cell–T cell interactions occurred beneath the smooth muscle layer, but not in the epithelium. Approximately 10% of the dendritic cells were contacted by nerves, and up to 4% of T cells formed clusters with these dendritic cells. T cells that were clustered with nerve-contacting dendritic cells proliferated only in the airways of mice with allergic inflammation but not in the airways of negative controls. Taken together, these results suggest that during the secondary immune response, sensory nerves influence dendritic cell-driven T cell activation in the airway mucosa. PMID:19179611

  16. Airborne lipid antigens mobilize resident intravascular NKT cells to induce allergic airway inflammation

    PubMed Central

    Scanlon, Seth T.; Thomas, Seddon Y.; Ferreira, Caroline M.; Bai, Li; Krausz, Thomas; Savage, Paul B.

    2011-01-01

    Airborne exposure to microbial cell wall lipids such as lipopolysaccharide triggers innate immune responses that regulate susceptibility to allergic airway inflammation. α-Glycosylceramides represent another widespread class of microbial lipids that directly stimulate innate-like, IL-4– and IL-13–producing, CD1d-restricted NKT cells. In this study, we demonstrate that NKT cells constitutively accumulate and reside in the microvasculature of the mouse lung. After a single airborne exposure to lipid antigen, they promptly extravasate to orchestrate the formation of peribronchiolar and interstitial lymphohistiocytic granulomas containing numerous eosinophils. Concomitant airborne exposure to ovalbumin (OVA) induces the priming of OVA-specific Th2 cells and IgE antibodies by the same dendritic cell coexpressing CD1d and MHC class II. Although NKT cell activation remains confined to the lipid-exposed lung and draining lymph nodes, Th2 cells recirculate and seed the lung of a parabiotic partner, conferring susceptibility to OVA challenge months after the initial exposure, in a manner independent of NKT cells and CD1d. Thus, transient recruitment and activation of lung-resident intravascular NKT cells can trigger long-term susceptibility to allergic airway inflammation. PMID:21930768

  17. Antileukotriene Reverts the Early Effects of Inflammatory Response of Distal Parenchyma in Experimental Chronic Allergic Inflammation

    PubMed Central

    Gobbato, Nathália Brandão; de Souza, Flávia Castro Ribas; Fumagalli, Stella Bruna Napolitano; Lopes, Fernanda Degobbi Tenório Quirino dos Santos; Prado, Carla Máximo; Martins, Milton Arruda; Tibério, Iolanda de Fátima Lopes Calvo; Leick, Edna Aparecida

    2013-01-01

    Aims. Compare the effects of montelukast or dexamethasone in distal lung parenchyma and airway walls of guinea pigs (GP) with chronic allergic inflammation. Methods. GP have inhaled ovalbumin (OVA group-2x/week/4weeks). After the 4th inhalation, GP were treated with montelukast or dexamethasone. After 72 hours of the 7th inhalation, GP were anesthetised, and lungs were removed and submitted to histopathological evaluation. Results. Montelukast and dexamethasone treatments reduced the number of eosinophils in airway wall and distal lung parenchyma compared to OVA group (P < 0.05). On distal parenchyma, both treatments were effective in reducing RANTES, NF-κB, and fibronectin positive cells compared to OVA group (P < 0.001). Montelukast was more effective in reducing eotaxin positive cells on distal parenchyma compared to dexamethasone treatment (P < 0.001), while there was a more expressive reduction of IGF-I positive cells in OVA-D group (P < 0.001). On airway walls, montelukast and dexamethasone were effective in reducing IGF-I, RANTES, and fibronectin positive cells compared to OVA group (P < 0.05). Dexamethasone was more effective in reducing the number of eotaxin and NF-κB positive cells than Montelukast (P < 0.05). Conclusions. In this animal model, both treatments were effective in modulating allergic inflammation and remodeling distal lung parenchyma and airway wall, contributing to a better control of the inflammatory response. PMID:24151607

  18. Lunasin alleviates allergic airway inflammation while increases antigen-specific Tregs.

    PubMed

    Yang, Xiaowei; Zhu, Jingjing; Tung, Chun-Yu; Gardiner, Gail; Wang, Qun; Chang, Hua-Chen; Zhou, Baohua

    2015-01-01

    Lunasin is a naturally occurring peptide isolated from soybeans and has been explored in cancer treatment. Lunasin inhibits NF-κB activation and thus pro-inflammatory cytokine and mediator production in macrophages. In this study we demonstrate that lunasin can effectively suppress allergic airway inflammation in two murine models of asthma. In an OVA+Alum sensitization model, intranasal lunasin treatment at the time of OVA challenges significantly reduced total cells counts in bronchoalveolar lavage (BAL) fluid and eosinophilia, peribronchiolar inflammatory infiltration, goblet cell metaplasia and airway IL-4 production. In an OVA+LPS intranasal sensitization model, lunasin treatment either at the time of sensitization or challenge has similar effects in suppress allergic airway inflammation including significantly reduced total cell and eosinophil counts in BAL fluid, inflammatory gene Fizz1 expression in the lung, and IL-4 production by OVA re-stimulated cells from mediastinal lymph nodes. We further show that intranasal instillation of OVA+lunasin significantly increases OVA-specific regulatory T cell (Treg) accumulation in the lung comparing to OVA only treatment. Taken together, our results suggest lunasin as an anti-inflammatory agent can be potentially used in asthma therapy or as an adjuvant to enhance the induction of antigen-specific Tregs and thus boost the efficacy of allergy immunotherapy. PMID:25646897

  19. Lunasin Alleviates Allergic Airway Inflammation while Increases Antigen-Specific Tregs

    PubMed Central

    Yang, Xiaowei; Zhu, Jingjing; Tung, Chun-Yu; Gardiner, Gail; Wang, Qun; Chang, Hua-Chen; Zhou, Baohua

    2015-01-01

    Lunasin is a naturally occurring peptide isolated from soybeans and has been explored in cancer treatment. Lunasin inhibits NF-κB activation and thus pro-inflammatory cytokine and mediator production in macrophages. In this study we demonstrate that lunasin can effectively suppress allergic airway inflammation in two murine models of asthma. In an OVA+Alum sensitization model, intranasal lunasin treatment at the time of OVA challenges significantly reduced total cells counts in bronchoalveolar lavage (BAL) fluid and eosinophilia, peribronchiolar inflammatory infiltration, goblet cell metaplasia and airway IL-4 production. In an OVA+LPS intranasal sensitization model, lunasin treatment either at the time of sensitization or challenge has similar effects in suppress allergic airway inflammation including significantly reduced total cell and eosinophil counts in BAL fluid, inflammatory gene Fizz1 expression in the lung, and IL-4 production by OVA re-stimulated cells from mediastinal lymph nodes. We further show that intranasal instillation of OVA+lunasin significantly increases OVA-specific regulatory T cell (Treg) accumulation in the lung comparing to OVA only treatment. Taken together, our results suggest lunasin as an anti-inflammatory agent can be potentially used in asthma therapy or as an adjuvant to enhance the induction of antigen-specific Tregs and thus boost the efficacy of allergy immunotherapy. PMID:25646897

  20. Precipitants of adolescent suicide: possible interaction between allergic inflammation and alcohol intake.

    PubMed

    Reeves, Gloria M; Tonelli, Leonardo H; Anthony, Bruno J; Postolache, Teodor T

    2007-01-01

    Suicide is a leading cause of mortality among adolescents. There is a pressing public health need to investigate triggers and novel vulnerabilities for suicide in order to improve risk assessment and develop innovative prevention strategies. Alcohol is a well established risk factor for adolescent suicide. In this paper, we outline a novel mechanism linking allergy, alcohol, and suicide, reviewing (a) the association between allergic inflammation, depression, and suicide; and (b) the role of alcohol in inducing phosphorylation and rearrangement of tight junction proteins of the blood-brain barrier (BBB) resulting in increased "leakiness", i.e. passage of cells and molecules. Seasonal peaks of suicide in spring have been consistently reported, but their causality is poorly understood. A preliminary epidemiologic study found increased nonviolent suicide rates in females in spring during intervals of high tree pollen, in comparison to similar intervals of low tree pollen. This initial report added to the emerging literature proposing a relationship between allergy and depression, and is being further pursued at clinical, epidemiological, animal and postmortem tissue levels. We propose that allergic inflammation influences depression-related brain function via molecular and cellular mediators, but those mediators have a very limited access to the brain when the BBB is intact. Alcohol intake disrupts BBB, allowing increased brain exposure to cellular mediators of allergy. Considering the greater prevalence of allergy in adolescence when alcohol use starts, studies investigating the connection between allergy, alcohol, and suicide should be expanded to also include a focus on youth. PMID:17458322

  1. TRPA1 controls inflammation and pruritogen responses in allergic contact dermatitis.

    PubMed

    Liu, Boyi; Escalera, Jasmine; Balakrishna, Shrilatha; Fan, Lu; Caceres, Ana I; Robinson, Eve; Sui, Aiwei; McKay, M Craig; McAlexander, M Allen; Herrick, Christina A; Jordt, Sven E

    2013-09-01

    Allergic contact dermatitis is a common skin disease associated with inflammation and persistent pruritus. Transient receptor potential (TRP) ion channels in skin-innervating sensory neurons mediate acute inflammatory and pruritic responses following exogenous stimulation and may contribute to allergic responses. Genetic ablation or pharmacological inhibition of TRPA1, but not TRPV1, inhibited skin edema, keratinocyte hyperplasia, nerve growth, leukocyte infiltration, and antihistamine-resistant scratching behavior in mice exposed to the haptens, oxazolone and urushiol, the contact allergen of poison ivy. Hapten-challenged skin of TRPA1-deficient mice contained diminished levels of inflammatory cytokines, nerve growth factor, and endogenous pruritogens, such as substance P (SP) and serotonin. TRPA1-deficient sensory neurons were defective in SP signaling, and SP-induced scratching behavior was abolished in Trpa1(-/-) mice. SP receptor antagonists, such as aprepitant inhibited both hapten-induced cutaneous inflammation and scratching behavior. These findings support a central role for TRPA1 and SP in the integration of immune and neuronal mechanisms leading to chronic inflammatory responses and pruritus associated with contact dermatitis. PMID:23722916

  2. Nerve growth factor partially recovers inflamed skin from stress-induced worsening in allergic inflammation.

    PubMed

    Peters, Eva M J; Liezmann, Christiane; Spatz, Katharina; Daniltchenko, Maria; Joachim, Ricarda; Gimenez-Rivera, Andrey; Hendrix, Sven; Botchkarev, Vladimir A; Brandner, Johanna M; Klapp, Burghard F

    2011-03-01

    Neuroimmune dysregulation characterizes atopic disease, but its nature and clinical impact remain ill-defined. Induced by stress, the neurotrophin nerve growth factor (NGF) may worsen cutaneous inflammation. We therefore studied the role of NGF in the cutaneous stress response in a mouse model for atopic dermatitis-like allergic dermatitis (AlD). Combining several methods, we found that stress increased cutaneous but not serum or hypothalamic NGF in telogen mice. Microarray analysis showed increased mRNAs of inflammatory and growth factors associated with NGF in the skin. In stress-worsened AlD, NGF-neutralizing antibodies markedly reduced epidermal thickening together with NGF, neurotrophin receptor (tyrosine kinase A and p75 neurotrophin receptor), and transforming growth factor-β expression by keratinocytes but did not alter transepidermal water loss. Moreover, NGF expression by mast cells was reduced; this corresponded to reduced cutaneous tumor necrosis factor-α (TNF-α) mRNA levels but not to changes in mast cell degranulation or in the T helper type 1 (Th1)/Th2 cytokine balance. Also, eosinophils expressed TNF receptor type 2, and we observed reduced eosinophil infiltration after treatment with NGF-neutralizing antibodies. We thus conclude that NGF acts as a local stress mediator in perceived stress and allergy and that increased NGF message contributes to worsening of cutaneous inflammation mainly by enhancing epidermal hyperplasia, pro-allergic cytokine induction, and allergy-characteristic cellular infiltration. PMID:21085186

  3. A small molecule CRTH2 antagonist inhibits FITC-induced allergic cutaneous inflammation.

    PubMed

    Boehme, Stefen A; Franz-Bacon, Karin; Chen, Edward P; Sásik, Roman; Sprague, L James; Ly, Tai Wei; Hardiman, Gary; Bacon, Kevin B

    2009-01-01

    A FITC-induced allergic contact hypersensitivity model was used to investigate the role that the prostaglandin D(2) receptor-chemoattractant receptor-homologous molecule expressed on T(h)2 cells (CRTH2) plays in modulating cutaneous inflammation. Our results show that inhibition of CRTH2, achieved via administration of a potent, small molecule antagonist, Compound A (Cmpd A), effectively blocked edema formation and greatly reduced the inflammatory infiltrate and skin pathology observed in drug vehicle-treated animals. Gene expression analysis revealed that Cmpd A administration down-regulated the transcription of a wide range of pro-inflammatory mediators. This correlated with decreases in cytokine and chemokine protein levels, notably IL-4, IL-1beta, tumor necrosis factor-alpha, transforming growth factor-beta, GRO-alpha, MIP-2 and thymic stromal lymphopoietin (TSLP) in FITC-challenged ears. The administration of an anti-TSLP-neutralizing antibody was only partially effective in lowering the FITC-induced inflammatory infiltrate and cytokine production compared with the CRTH2 antagonist. Taken together, these data suggest that blockade of CRTH2 inhibits multiple pathways leading to cutaneous inflammation in this model. This suggests that CRTH2 antagonism may be a viable route for therapeutic intervention in allergic skin diseases, such as atopic dermatitis. PMID:19066314

  4. Thalidomide attenuates airway hyperresponsiveness and eosinophilic inflammation in a murine model of allergic asthma.

    PubMed

    Asano, Toshiaki; Kume, Hiroaki; Taki, Fumitaka; Ito, Satoru; Hasegawa, Yoshinori

    2010-01-01

    Asthma is characterized by chronic eosinophilic inflammation and hyperresponsiveness of the airways. We hypothesized that thalidomide, which has numerous immunomodulatory properties, may have anti-inflammatory effects in allergic asthma. BALB/c mice sensitized and challenged with ovalbumin (OVA) were treated orally with thalidomide (30, 100, or 300 mg/kg) or a vehicle. When thalidomide was administered to OVA-challenged mice, the number of eosinophils in bronchoalveolar lavage fluid (BALF) was significantly decreased. The numbers of inflammatory cells other than eosinophils were not reduced by thalidomide. Thalidomide inhibited the elevated levels of interleukin-5 (IL-5) and tumor necrosis factor-alpha (TNF-alpha) in BALF by OVA challenges. Histological analysis of the lung revealed that both the infiltration of inflammatory cells and the hyperplasia of goblet cells were significantly suppressed by thalidomide treatment. Furthermore, thalidomide significantly inhibited the response to methacholine induced by OVA challenges. Taken together, thalidomide treatment decreased airway inflammation and hyperresponsiveness in a murine model of allergic asthma. These results might provide an opportunity for the development of novel therapeutics to treat severe asthma. PMID:20522972

  5. Thymol attenuates allergic airway inflammation in ovalbumin (OVA)-induced mouse asthma.

    PubMed

    Zhou, Ershun; Fu, Yunhe; Wei, Zhengkai; Yu, Yuqiang; Zhang, Xichen; Yang, Zhengtao

    2014-07-01

    Thymol, a naturally occurring monocyclic phenolic compound derived from Thymus vulgaris (Lamiaceae), has been reported to exhibit anti-inflammatory property in vivo and vitro. However, the mechanism of thymol is not clear. The aim of the present study was to investigate the effects of thymol on allergic inflammation in OVA-induced mice asthma and explore its mechanism. The model of mouse asthma was established by the induction of OVA. Thymol was orally administered at a dose of 4, 8, and 16 mg/kg body weight 1h before OVA challenge. At 24h after the last challenge, mice were sacrificed, and the data were collected by various experimental methods. The results revealed that pretreatment with thymol reduced the level of OVA-specific IgE, inhibited recruitment of inflammatory cells into airway, and decreased the levels of IL-4, IL-5, and IL-13 in BALF. Moreover, the pathologic changes of lung tissues were obviously ameliorated and goblet cell hyperplasia was effectively inhibited by the pretreatment of thymol. In addition, thymol reduced the development of airway hyperresponsiveness and blocked the activation of NF-κB pathway. All data suggested that thymol ameliorated airway inflammation in OVA-induced mouse asthma, possibly through inhibiting NF-κB activation. These findings indicated that thymol may be used as an alternative agent for treating allergic asthma. PMID:24785965

  6. Gedunin, a natural tetranortriterpenoid, modulates T lymphocyte responses and ameliorates allergic inflammation.

    PubMed

    Ferraris, Fausto K; Moret, Katelim Hottz; Figueiredo, Alexandre Bezerra Conde; Penido, Carmen; Henriques, Maria das Graças M O

    2012-09-01

    T lymphocytes are critical cells involved in allergy. Here, we report that the natural tetranortriterpenoid gedunin impaired allergic responses primarily by modulating T lymphocyte functions. The intraperitoneal (i.p.) administration of gedunin inhibited pleural leukocyte accumulation triggered by intra-pleural (i.pl.) challenge with ovalbumin (OVA) in previously sensitized C57BL/6 mice; this inhibition was primarily due to the impairment of eosinophil and T lymphocyte influx. Likewise, i.pl. pre-treatment with gedunin inhibited eosinophil and T lymphocyte migration into mouse lungs 24 h after OVA intra-nasal (i.n.) instillation. Pre-treatment with gedunin diminished the levels of CCL2, CCL3, CCL5, CCL11, Interleukin-5 and leukotriene B(4) at the allergic site. In vitro pre-treatment with gedunin failed to inhibit T lymphocyte adhesion and chemotaxis towards pleural washes recovered from OVA-challenged mice, suggesting that gedunin inhibits T lymphocyte migration in vivo via the inhibition of chemotactic mediators in situ. In vivo pre-treatment with gedunin reduced the numbers of CD69(+) and CD25(+) T lymphocytes in the pleura and CD25(+) cells in the thoracic lymph nodes 24 h after OVA i.pl. challenge. In accordance, in vitro treatment of T lymphocytes with gedunin inhibited α-CD3 mAb-induced expression of CD69 and CD25, proliferation, Interleukin-2 production and nuclear translocation of NFκB and NFAT. Notably, post-treatment of mice with gedunin reverted OVA-induced lung allergic inflammation by decreasing the T lymphocyte and eosinophil counts and the levels of eosinophilotactic mediators in bronchoalveolar lavage fluid. Our results demonstrate a remarkable anti-allergic effect of gedunin due to its capability to modulate T cell activation and trafficking into the airways. PMID:22709475

  7. Thuja orientalis reduces airway inflammation in ovalbumin-induced allergic asthma.

    PubMed

    Shin, In-Sik; Shin, Na-Rae; Jeon, Chan-Mi; Kwon, Ok-Kyoung; Hong, Ju-Mi; Kim, Hui-Seong; Oh, Sei-Ryang; Ahn, Kyung-Seop

    2015-09-01

    Thuja orientalis (TO) may be used as a herbal remedy for the treatment of numerous inflammatory diseases. In the present study, the effects of TO were evaluated on airway inflammation in ovalbumin (OVA)‑induced allergic asthma and RAW264.7 murine macrophage cells. The effects of TO on the production of proinflammatory mediators, were determined in RAW264.7 cells that had been stimulated with lipopolysaccharide (LPS). Furthermore, an in vivo experiment was performed on mice that were sensitized to OVA and then received an OVA airway challenge. TO was administered by daily oral gavage at a dose of 30 mg/kg, 21‑23 days after the initial OVA sensitization. TO was shown to reduce nitric oxide production and reduce the relative mRNA expression levels of inducible nitric oxide synthase (iNOS), interleukin (IL)‑6, cyclooxygenase‑2, matrix metalloproteinase (MMP)‑9, and tumor necrosis factor‑α in RAW264.7 cells stimulated with LPS. In addition, TO markedly decreased the inflammatory cell counts in bronchial alveolar lavage fluid, reduced the levels of IL‑4, IL‑5, IL‑13, eotaxin and immunoglobulin E, and reduced airway hyperresponsivenes, in the OVA sensitized mice. Furthermore, TO attenuated airway inflammation and mucus hypersecretion, induced by the OVA challenge of the lung tissue. TO also reduced the expression of iNOS and MMP‑9 in lung tissue. In conclusion, TO exerted anti‑inflammatory effects in an OVA‑induced allergic asthma model, and in LPS‑stimulated RAW264.7 cells. These results suggest that TO may be a useful therapeutic agent for the treatment of inflammatory diseases, including allergic asthma. PMID:26063078

  8. The Therapeutic Potential of Targeting Cytokine Alarmins to Treat Allergic Airway Inflammation

    PubMed Central

    Sy, Chandler B.; Siracusa, Mark C.

    2016-01-01

    Asthma is a heterogeneous disorder that results in recurrent attacks of breathlessness, coughing, and wheezing that affects millions of people worldwide. Although the precise causes of asthma are unclear, studies suggest that a combination of genetic predisposition and environmental exposure to various allergens and pathogens contribute to its development. Currently, the most common treatment to control asthma is a dual combination of β2-adrenergic receptor agonists and corticosteroids. However, studies have shown that some patients do not respond well to these medications, while others experience significant side effects. It is reported that the majority of asthmas are associated with T helper type 2 (TH2) responses. In these patients, allergen challenge initiates the influx of TH2 cells in the airways leading to an increased production of TH2-associated cytokines and the promotion of allergy-induced asthma. Therefore, biologics that target this pathway may provide an alternative method to treat the allergic airway inflammation associated with asthma. As of now, only two biologics (omalizumab and mepolizumab), which target immunoglobulin E and interleukin-5, respectively, are FDA-approved and being prescribed to asthmatics. However, recent studies have reported that targeting other components of the TH2 response also show great promise. In this review, we will briefly describe the immunologic mechanisms underlying allergic asthma. Furthermore, we will discuss the current therapeutic strategies used to treat asthma including their limitations. Finally, we will highlight the benefits of using biologics to treat asthma-associated allergic airway inflammation with an emphasis on the potential of targeting cytokine alarmins, especially thymic stromal lymphopoietin. PMID:27378934

  9. The role of autophagy in allergic inflammation: a new target for severe asthma

    PubMed Central

    Liu, Jing-Nan; Suh, Dong-Hyeon; Trinh, Hoang Kim Tu; Chwae, Yong-Joon; Park, Hae-Sim; Shin, Yoo Seob

    2016-01-01

    Autophagy has been investigated for its involvement in inflammatory diseases, but its role in asthma has been little studied. This study aimed to explore the possible role of autophagy and its therapeutic potential in severe allergic asthma. BALB/c mice were sensitized with ovalbumin (OVA) on days 0 and 14, followed by primary OVA challenge on days 28–30. The mice received a secondary 1 or 2% OVA challenge on days 44–46. After the final OVA challenge, the mice were assessed for airway responsiveness (AHR), cell composition and cytokine levels in bronchoalveolar lavage fluid (BALF). LC3 expression in lung tissue was measured by western blot and immunofluorescence staining. Autophagosomes were detected by electron microscopy. 3-Methyladenine (3-MA) treatment and Atg5 knockdown were applied to investigate the potential role of autophagy in allergic asthma mice. AHR, inflammation in BALF and LC3 expression in lung tissue were significantly increased in the 2% OVA-challenged mice compared with the 1% OVA-challenged mice (P<0.05). In addition, eosinophils showed prominent formation of autophagosomes and increased LC3 expression compared with other inflammatory cells in BALF and lung tissue. After autophagy was inhibited by 3-MA and Atg5 shRNA treatment, AHR, eosinophilia, interleukin (IL)-5 levels in BALF and histological inflammatory findings were much improved. Finally, treatment with an anti-IL-5 antibody considerably reduced LC3 II expression in lung homogenates. Our findings suggest that autophagy is closely correlated with the severity of asthma through eosinophilic inflammation, and its modulation may provide novel therapeutic approaches for severe allergic asthma. PMID:27364893

  10. IL-21R is essential for epicutaneous sensitization and allergic skin inflammation in humans and mice.

    PubMed

    Jin, Haoli; Oyoshi, Michiko K; Le, Yi; Bianchi, Teresa; Koduru, Suresh; Mathias, Clinton B; Kumar, Lalit; Le Bras, Séverine; Young, Deborah; Collins, Mary; Grusby, Michael J; Wenzel, Joerg; Bieber, Thomas; Boes, Marianne; Silberstein, Leslie E; Oettgen, Hans C; Geha, Raif S

    2009-01-01

    Atopic dermatitis (AD) is a common allergic inflammatory skin disease caused by a combination of intense pruritus, scratching, and epicutaneous (e.c.) sensitization with allergens. To explore the roles of IL-21 and IL-21 receptor (IL-21R) in AD, we examined skin lesions from patients with AD and used a mouse model of allergic skin inflammation. IL-21 and IL-21R expression was upregulated in acute skin lesions of AD patients and in mouse skin subjected to tape stripping, a surrogate for scratching. The importance of this finding was highlighted by the fact that both Il21r-/- mice and WT mice treated with soluble IL-21R-IgG2aFc fusion protein failed to develop skin inflammation after e.c. sensitization of tape-stripped skin. Adoptively transferred OVA-specific WT CD4+ T cells accumulated poorly in draining LNs (DLNs) of e.c. sensitized Il21r-/- mice. This was likely caused by both DC-intrinsic and nonintrinsic effects, because trafficking of skin DCs to DLNs was defective in Il21r-/- mice and, to a lesser extent, in WT mice reconstituted with Il21r-/- BM. More insight into this defect was provided by the observation that skin DCs from tape-stripped WT mice, but not Il21r-/- mice, upregulated CCR7 and migrated toward CCR7 ligands. Treatment of epidermal and dermal cells with IL-21 activated MMP2, which has been implicated in trafficking of skin DCs. These results suggest an important role for IL-21R in the mobilization of skin DCs to DLNs and the subsequent allergic response to e.c. introduced antigen. PMID:19075398

  11. Effective treatment of allergic airway inflammation with Helicobacter pylori immunomodulators requires BATF3-dependent dendritic cells and IL-10.

    PubMed

    Engler, Daniela B; Reuter, Sebastian; van Wijck, Yolanda; Urban, Sabine; Kyburz, Andreas; Maxeiner, Joachim; Martin, Helen; Yogev, Nir; Waisman, Ari; Gerhard, Markus; Cover, Timothy L; Taube, Christian; Müller, Anne

    2014-08-12

    The prevalence of allergic asthma and other atopic diseases has reached epidemic proportions in large parts of the developed world. The gradual loss of the human indigenous microbiota has been held responsible for this trend. The bacterial pathogen Helicobacter pylori is a constituent of the normal gastric microbiota whose presence has been inversely linked to allergy and asthma in humans and experimental models. Here we show that oral or i.p. tolerization with H. pylori extract prevents the airway hyperresponsiveness, bronchoalveolar eosinophilia, pulmonary inflammation, and Th2 cytokine production that are hallmarks of allergen-induced asthma in mice. Asthma protection is not conferred by extracts from other enteropathogens and requires a heat-sensitive H. pylori component and the DC-intrinsic production of IL-10. The basic leucine zipper ATF-like 3 (BATF3)-dependent CD103(+)CD11b(-) dendritic cell lineage is enriched in the lungs of protected mice and strictly required for protection. Two H. pylori persistence determinants, the γ-glutamyl-transpeptidase GGT and the vacuolating cytotoxin VacA, are required and sufficient for asthma protection and can be administered in purified form to prevent asthma. In conclusion, we provide preclinical evidence for the concept that the immunomodulatory properties of H. pylori can be exploited for tolerization strategies aiming to prevent allergen-induced asthma. PMID:25074917

  12. Effective treatment of allergic airway inflammation with Helicobacter pylori immunomodulators requires BATF3-dependent dendritic cells and IL-10

    PubMed Central

    Engler, Daniela B.; Reuter, Sebastian; van Wijck, Yolanda; Urban, Sabine; Kyburz, Andreas; Maxeiner, Joachim; Martin, Helen; Yogev, Nir; Waisman, Ari; Gerhard, Markus; Cover, Timothy L.; Taube, Christian; Müller, Anne

    2014-01-01

    The prevalence of allergic asthma and other atopic diseases has reached epidemic proportions in large parts of the developed world. The gradual loss of the human indigenous microbiota has been held responsible for this trend. The bacterial pathogen Helicobacter pylori is a constituent of the normal gastric microbiota whose presence has been inversely linked to allergy and asthma in humans and experimental models. Here we show that oral or i.p. tolerization with H. pylori extract prevents the airway hyperresponsiveness, bronchoalveolar eosinophilia, pulmonary inflammation, and Th2 cytokine production that are hallmarks of allergen-induced asthma in mice. Asthma protection is not conferred by extracts from other enteropathogens and requires a heat-sensitive H. pylori component and the DC-intrinsic production of IL-10. The basic leucine zipper ATF-like 3 (BATF3)-dependent CD103+CD11b− dendritic cell lineage is enriched in the lungs of protected mice and strictly required for protection. Two H. pylori persistence determinants, the γ-glutamyl-transpeptidase GGT and the vacuolating cytotoxin VacA, are required and sufficient for asthma protection and can be administered in purified form to prevent asthma. In conclusion, we provide preclinical evidence for the concept that the immunomodulatory properties of H. pylori can be exploited for tolerization strategies aiming to prevent allergen-induced asthma. PMID:25074917

  13. 8-oxoguanine DNA glycosylase 1-deficiency modifies allergic airway inflammation by regulating STAT6 and IL-4 in cells and in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: 8-oxoguanine-DNA glycosylase (OGG-1) is an enzyme involved in DNA repair. OGG-1 has a potential role in regulating inflammation but its function in modulating allergic diseases remains undefined. Objectives: To investigate the role of OGG-1 in mediating allergic inflammation, we used OGG...

  14. Allergic Non-Asthmatic Adults Have Regional Pulmonary Responses to Segmental Allergen Challenge

    PubMed Central

    Kelly, Vanessa J.; Winkler, Tilo; Venegas, Jose G.; Kone, Mamary; Hamilos, Daniel L.; Afshar, Roshi; Cho, Josalyn L.; Luster, Andrew D.; Medoff, Benjamin D.; Harris, R. Scott

    2015-01-01

    Background Allergic non-asthmatic (ANA) adults experience upper airway symptoms of allergic disease such as rhinorrhea, congestion and sneezing without symptoms of asthma. The aim of this study was to utilize PET-CT functional imaging to determine whether allergen challenge elicits a pulmonary response in ANA subjects or whether their allergic disease is truly isolated to the upper airways. Methods In 6 ANA subjects, bronchoalveolar lavages (BAL) were performed at baseline and 24h after instillation of an allergen and a diluent in separate lung lobes. After instillation (10h), functional imaging was performed to quantify and compare regional perfusion, ventilation, fractional gas content (Fgas), and glucose uptake rate (Ki) between the baseline, diluent and allergen lobes. BAL cell counts were also compared. Results In ANA subjects, compared to the baseline and diluent lobes, perfusion and ventilation were significantly lower in the allergen lobe (median [inter-quartile range], baseline vs. diluent vs. allergen: Mean-normalized perfusion; 0.87 [0.85–0.97] vs. 0.90 [0.86–0.98] vs. 0.59 [0.55–0.67]; p<0.05. Mean-normalized ventilation 0.89 [0.88–0.98] vs. 0.95 [0.89–1.02] vs. 0.63 [0.52–0.67], p<0.05). In contrast, no significant differences were found in Fgas between baseline, diluent and allergen lobes or in Ki. Total cell counts, eosinophil and neutrophil cell counts (cells/ml BAL) were significantly greater in the allergen lobe compared to the baseline lobe (all P<0.05). Conclusions Despite having no clinical symptoms of a lower airway allergic response (cough and wheeze) allergic non-asthmatic subjects have a pulmonary response to allergen exposure which manifests as reduced ventilation and perfusion. PMID:26640951

  15. IL-17RA Signaling in Airway Inflammation and Bronchial Hyperreactivity in Allergic Asthma.

    PubMed

    Willis, Cynthia R; Siegel, Lori; Leith, Anh; Mohn, Deanna; Escobar, Sabine; Wannberg, Sharon; Misura, Kira; Rickel, Erika; Rottman, James B; Comeau, Michael R; Sullivan, John K; Metz, Daniela P; Tocker, Joel; Budelsky, Alison L

    2015-12-01

    Asthma is a heterogeneous disease characterized by airway inflammation and hyperreactivity. IL-17 receptor A (IL-17RA) is a shared receptor subunit required for activity of IL-17 family cytokines, including IL-17A and IL-25. IL-17A and IL-25 induce different proinflammatory responses, and concentrations are elevated in subjects with asthma. However, the individual contributions of IL-17A and IL-25 to disease pathogenesis are unclear. We explored proinflammatory activities of the IL-17 pathway in models of pulmonary inflammation and assessed its effects on contractility of human bronchial airway smooth muscle. In two mouse models, IL-17RA, IL-17RB, or IL-25 blockade reduced airway inflammation and airway hyperreactivity. Individually, IL-17A and IL-25 enhanced contractility of human bronchial smooth muscle induced by methacholine or carbachol. IL-17A had more pronounced effects on methacholine-induced contractility in bronchial rings from donors with asthma compared with donors without asthma. Blocking the IL-17 pathway via IL-17RA may be a useful therapy for some patients with asthma by reducing pulmonary inflammation and airway hyperreactivity. PMID:25919006

  16. VBP15, a glucocorticoid analogue, is effective at reducing allergic lung inflammation in mice.

    PubMed

    Damsker, Jesse M; Dillingham, Blythe C; Rose, Mary C; Balsley, Molly A; Heier, Christopher R; Watson, Alan M; Stemmy, Erik J; Jurjus, Roslyn A; Huynh, Tony; Tatem, Kathleen; Uaesoontrachoon, Kitipong; Berry, Dana M; Benton, Angela S; Freishtat, Robert J; Hoffman, Eric P; McCall, John M; Gordish-Dressman, Heather; Constant, Stephanie L; Reeves, Erica K M; Nagaraju, Kanneboyina

    2013-01-01

    Asthma is a chronic inflammatory condition of the lower respiratory tract associated with airway hyperreactivity and mucus obstruction in which a majority of cases are due to an allergic response to environmental allergens. Glucocorticoids such as prednisone have been standard treatment for many inflammatory diseases for the past 60 years. However, despite their effectiveness, long-term treatment is often limited by adverse side effects believed to be caused by glucocorticoid receptor-mediated gene transcription. This has led to the pursuit of compounds that retain the anti-inflammatory properties yet lack the adverse side effects associated with traditional glucocorticoids. We have developed a novel series of steroidal analogues (VBP compounds) that have been previously shown to maintain anti-inflammatory properties such as NFκB-inhibition without inducing glucocorticoid receptor-mediated gene transcription. This study was undertaken to determine the effectiveness of the lead compound, VBP15, in a mouse model of allergic lung inflammation. We show that VBP15 is as effective as the traditional glucocorticoid, prednisolone, at reducing three major hallmarks of lung inflammation--NFκB activity, leukocyte degranulation, and pro-inflammatory cytokine release from human bronchial epithelial cells obtained from patients with asthma. Moreover, we found that VBP15 is capable of reducing inflammation of the lung in vivo to an extent similar to that of prednisone. We found that prednisolone--but not VBP15 shortens the tibia in mice upon a 5 week treatment regimen suggesting effective dissociation of side effects from efficacy. These findings suggest that VBP15 may represent a potent and safer alternative to traditional glucocorticoids in the treatment of asthma and other inflammatory diseases. PMID:23667681

  17. Does eosinophil cationic protein in sputum and blood reflect bronchial inflammation and obstruction in allergic asthmatics?

    PubMed

    Grebski, E; Wu, J; Wüthrich, B; Medici, T C

    1999-01-01

    In the assessment of asthma severity and monitoring of asthma drug therapy, eosinophils and eosinophil cationic protein (ECP) have been identified in blood but rarely in sputum. The aim of our study was to determine if ECP concentrations in blood and sputum reflect bronchial inflammation and obstruction in allergic asthmatics and if inhaled steroids influence this relationship. We carried out a descriptive, cross-sectional study of 42 allergic asthmatic outpatients from a respiratory medicine department, of whom 22 were on beta 2-adrenergic agonists only and 20 were treated with low doses of inhaled steroids. Spirometry and methacholine challenge were performed and eosinophils and ECP values in induced sputum and blood were determined. The age and FEV1 were similar in both groups. It was found that in patients receiving inhaled steroids, the methacholine PD20 was higher than in patients on beta 2-adrenergic agonists only. However, there were no significant differences in serum and sputum ECP between the groups (median 14.5 micrograms/l vs. 17.2 micrograms/l and 235 micrograms/l vs. 301 micrograms/l, respectively). In patients not receiving steroids, sputum ECP correlated positively with eosinophils in sputum (r = 0.61, p < 0.01) and inversely with FEV1 (r = -0.43, p < 0.05). Serum ECP correlated with blood eosinophils and methacholine PD20. In patients treated with inhaled steroids most correlations were no longer significant. We concluded that ECP in sputum, rather than in blood, seems to reflect both eosinophilic inflammation and bronchial obstruction in asthmatics not receiving inhaled steroids. Asthmatics on low doses of inhaled steroids had increased ECP levels in sputum and serum, indicating persistent eosinophilic inflammation of the airways. PMID:10353094

  18. T cell-derived Act1 is necessary for IL-25-mediated Th2 responses and allergic airway inflammation.

    PubMed

    Swaidani, Shadi; Bulek, Katarzyna; Kang, Zizhen; Gulen, Muhammet Fatih; Liu, Caini; Yin, Weiguo; Abbadi, Amina; Aronica, Mark; Li, Xiaoxia

    2011-09-15

    The cellular and molecular mechanisms driven by IL-25 and its cognate receptor IL-17RB necessary for the promotion of Th2-mediating pathogenic pulmonary inflammation remains to be defined. We have previously reported the critical role of the U-box-type E3 ubiquitin ligase Act1 (1) for the downstream signaling of the IL-17 cytokine family including the Th2-promoting cytokine IL-25 (IL-17E) (2). In this study, we report that IL-25-driven but not conventional IL-4-driven Th2 polarization and cytokine production is impaired in Act1-deficient T cells. Also, Act1 deficiency in the T cell compartment results in the abrogation of eosinophilic airway infiltration as well as airway hyperresponsiveness in mouse models of Ag-induced airway inflammation. The in vivo generation of Ag-specific Th2 cytokine-producing cells is defective in the absence of Act1 expression in T cells after OVA/aluminum hydroxide immunization. Notably, the production of OVA-specific IgG(1) but not IgG(2a) or IgE is also impaired. At the molecular level, we report that IL-25-mediated induction of Th2 master regulator GATA-3 and the transcription factor GFI-1 is attenuated in Act1-deficient T cells. Taken together, our findings indicate that Act1 expression in T cells is required for cellular and humoral Th2-mediated allergic responses and the development of airway hyperresponsiveness, in part, through Act1's function in IL-25-induced development of Th2 T cells. PMID:21856933

  19. Anti-IgE treatment, airway inflammation and remodelling in severe allergic asthma: current knowledge and future perspectives.

    PubMed

    Samitas, Konstantinos; Delimpoura, Vasiliki; Zervas, Eleftherios; Gaga, Mina

    2015-12-01

    Asthma is a disorder of the airways involving various inflammatory cells and mediators and characterised by bronchial hyperresponsiveness, chronic inflammation and structural alterations in the airways, also known as remodelling. IgE is an important mediator of allergic reactions and has a central role in allergic asthma pathophysiology, as it is implicated in both the early and late phase allergic response. Moreover, clinical and mechanistic evidence has lately emerged, implicating IgE in the development of airway remodelling. The use of monoclonal antibodies targeting IgE, such as omalizumab, has proven very effective in improving respiratory symptoms and quality of life, while reducing asthma exacerbations, emergency room visits and the use of systemic corticosteroids in allergic severe asthma. These effects are believed to be mainly mediated by omalizumab's inhibitory effect on the initiation and further propagation of the allergic inflammation cascade. However, there is evidence to suggest that anti-IgE treatment remains effective long after it has been discontinued. In part, these findings could be attributed to the possible ameliorating effects of anti-IgE treatment on airway remodelling. In this review, we discuss recent findings supporting the notion that anti-IgE treatment modulates the complex immune responses that manifest clinically as asthma and ameliorates airway remodelling changes often observed in allergic severe asthma phenotypes. PMID:26621973

  20. Idiopathic Pulmonary Hemosiderosis With Allergic Asthma Diagnosis in a Pediatric Patient.

    PubMed

    Eldem, İrem; İleri, Talia; İnce, Elif; Asarcikli, Fikret; Pekpak, Esra; Çakmakli, Hasan F; Ceyhan, Koray; Uysal, Zümrüt

    2015-10-01

    Idiopathic pulmonary hemosiderosis (IPH) is a rare disorder with unknown pathogenesis that usually presents in the first decade of life. As a result of diffuse alveolar hemorrhage, respiratory symptoms such as cough attacks, hemoptysis, dyspnea, and recurrent and refractory iron-deficiency anemia (IDA) are observed. We present an 8-year-old girl who was followed up with recurrent IDA and allergic asthma and later diagnosed with IPH. IPH was confirmed by the presence of hemosiderin-laden macrophages in bronchoalveolar lavage obtained by bronchoscopy and exclusion of the secondary causes of pulmonary hemosiderosis. Glucocorticoids and iron supplementation were started. Clinical and laboratory improvement was observed with therapy. Our case illustrates that refractory/recurrent IDA with any pulmonary symptoms may be the only presenting feature of IPH. PMID:26241728

  1. Intercellular Adhesion Molecule 1 Knockout Abrogates Radiation Induced Pulmonary Inflammation

    NASA Astrophysics Data System (ADS)

    Hallahan, Dennis E.; Virudachalam, Subbulakshmi

    1997-06-01

    Increased expression of intercellular adhesion molecule 1 (ICAM-1; CD54) is induced by exposure to ionizing radiation. The lung was used as a model to study the role of ICAM-1 in the pathogenesis of the radiation-induced inflammation-like response. ICAM-1 expression increased in the pulmonary microvascular endothelium and not in the endothelium of larger pulmonary vessels following treatment of mice with thoracic irradiation. To quantify radiation-induced ICAM-1 expression, we utilized fluorescence-activated cell sorting analysis of anti-ICAM-1 antibody labeling of pulmonary microvascular endothelial cells from human cadaver donors (HMVEC-L cells). Fluorochrome conjugates and UV microscopy were used to quantify the fluorescence intensity of ICAM in the irradiated lung. These studies showed a dose- and time-dependent increase in ICAM-1 expression in the pulmonary microvascular endothelium. Peak expression occurred at 24 h, while threshold dose was as low as 2 Gy. To determine whether ICAM-1 is required for inflammatory cell infiltration into the irradiated lung, the anti-ICAM-1 blocking antibody was administered by tail vein injection to mice following thoracic irradiation. Inflammatory cells were quantified by immunofluorescence for leukocyte common antigen (CD45). Mice treated with the anti-ICAM-1 blocking antibody showed attenuation of inflammatory cell infiltration into the lung in response to ionizing radiation exposure. To verify the requirement of ICAM-1 in the inflammation-like radiation response, we utilized the ICAM-1 knockout mouse. ICAM-1 was not expressed in the lungs of ICAM-1-deficient mice following treatment with thoracic irradiation. ICAM-1 knockout mice had no increase in the inflammatory cell infiltration into the lung in response to thoracic irradiation. These studies demonstrate a radiation dose-dependent increase in ICAM-1 expression in the pulmonary microvascular endothelium, and show that ICAM-1 is required for inflammatory cell infiltration

  2. Intercellular adhesion molecule 1 knockout abrogates radiation induced pulmonary inflammation.

    PubMed

    Hallahan, D E; Virudachalam, S

    1997-06-10

    Increased expression of intercellular adhesion molecule 1 (ICAM-1; CD54) is induced by exposure to ionizing radiation. The lung was used as a model to study the role of ICAM-1 in the pathogenesis of the radiation-induced inflammation-like response. ICAM-1 expression increased in the pulmonary microvascular endothelium and not in the endothelium of larger pulmonary vessels following treatment of mice with thoracic irradiation. To quantify radiation-induced ICAM-1 expression, we utilized fluorescence-activated cell sorting analysis of anti-ICAM-1 antibody labeling of pulmonary microvascular endothelial cells from human cadaver donors (HMVEC-L cells). Fluorochrome conjugates and UV microscopy were used to quantify the fluorescence intensity of ICAM in the irradiated lung. These studies showed a dose- and time-dependent increase in ICAM-1 expression in the pulmonary microvascular endothelium. Peak expression occurred at 24 h, while threshold dose was as low as 2 Gy. To determine whether ICAM-1 is required for inflammatory cell infiltration into the irradiated lung, the anti-ICAM-1 blocking antibody was administered by tail vein injection to mice following thoracic irradiation. Inflammatory cells were quantified by immunofluorescence for leukocyte common antigen (CD45). Mice treated with the anti-ICAM-1 blocking antibody showed attenuation of inflammatory cell infiltration into the lung in response to ionizing radiation exposure. To verify the requirement of ICAM-1 in the inflammation-like radiation response, we utilized the ICAM-1 knockout mouse. ICAM-1 was not expressed in the lungs of ICAM-1-deficient mice following treatment with thoracic irradiation. ICAM-1 knockout mice had no increase in the inflammatory cell infiltration into the lung in response to thoracic irradiation. These studies demonstrate a radiation dose-dependent increase in ICAM-1 expression in the pulmonary microvascular endothelium, and show that ICAM-1 is required for inflammatory cell infiltration

  3. Calcium-sensing receptor antagonists abrogate airway hyperresponsiveness and inflammation in allergic asthma.

    PubMed

    Yarova, Polina L; Stewart, Alecia L; Sathish, Venkatachalem; Britt, Rodney D; Thompson, Michael A; P Lowe, Alexander P; Freeman, Michelle; Aravamudan, Bharathi; Kita, Hirohito; Brennan, Sarah C; Schepelmann, Martin; Davies, Thomas; Yung, Sun; Cholisoh, Zakky; Kidd, Emma J; Ford, William R; Broadley, Kenneth J; Rietdorf, Katja; Chang, Wenhan; Bin Khayat, Mohd E; Ward, Donald T; Corrigan, Christopher J; T Ward, Jeremy P; Kemp, Paul J; Pabelick, Christina M; Prakash, Y S; Riccardi, Daniela

    2015-04-22

    Airway hyperresponsiveness and inflammation are fundamental hallmarks of allergic asthma that are accompanied by increases in certain polycations, such as eosinophil cationic protein. Levels of these cations in body fluids correlate with asthma severity. We show that polycations and elevated extracellular calcium activate the human recombinant and native calcium-sensing receptor (CaSR), leading to intracellular calcium mobilization, cyclic adenosine monophosphate breakdown, and p38 mitogen-activated protein kinase phosphorylation in airway smooth muscle (ASM) cells. These effects can be prevented by CaSR antagonists, termed calcilytics. Moreover, asthmatic patients and allergen-sensitized mice expressed more CaSR in ASMs than did their healthy counterparts. Indeed, polycations induced hyperreactivity in mouse bronchi, and this effect was prevented by calcilytics and absent in mice with CaSR ablation from ASM. Calcilytics also reduced airway hyperresponsiveness and inflammation in allergen-sensitized mice in vivo. These data show that a functional CaSR is up-regulated in asthmatic ASM and targeted by locally produced polycations to induce hyperresponsiveness and inflammation. Thus, calcilytics may represent effective asthma therapeutics. PMID:25904744

  4. Chrysin alleviates allergic inflammation and airway remodeling in a murine model of chronic asthma.

    PubMed

    Yao, Jing; Jiang, Mingzi; Zhang, Yunshi; Liu, Xing; Du, Qiang; Feng, Ganzhu

    2016-03-01

    Asthma is a chronic airway inflammatory disorder and progresses mainly due to airway remodeling. Chrysin, a natural flavonoid, has been reported to possess multiple biologic activities, including anti-inflammation, anti-oxidation and anti-proliferation. The present study aimed to investigate whether chrysin could relieve allergic airway inflammation and remodeling in a murine model of chronic asthma and the mechanism involved. The female BALB/c mice sensitized and challenged with ovalbumin (OVA) successfully developed airway hyperresponsiveness (AHR), inflammation and remodeling. The experimental data showed that chrysin could alleviate OVA-induced AHR. Chrysin could also reduce OVA-induced increases in the number of inflammatory cells, especially eosinophils, interleukin (IL) -4, and IL-13 in bronchoalveolar lavage fluid (BALF) and total IgE in serum. The decreased interferon-γ (IFN-γ) level in BALF was also upregulated by chrysin. In addition, inflammatory cell infiltration, goblet cell hyperplasia and the expression of α-smooth muscle actin (α-SMA) around bronchioles were suppressed by chrysin. Furthermore, the phosphorylation levels of Akt and extracellular signal-regulated kinase (ERK) could be decreased by chrysin, which are associated with airway smooth muscle cell (ASMC) proliferation. These results indicate the promising therapeutic effect of chrysin on chronic asthma, especially the progression of airway remodeling. PMID:26780233

  5. Calcium-sensing receptor antagonists abrogate airway hyperresponsiveness and inflammation in allergic asthma

    PubMed Central

    Yarova, Polina L.; Stewart, Alecia L.; Sathish, Venkatachalem; Britt, Rodney D; Thompson, Michael A.; Lowe, Alexander P. P.; Freeman, Michelle; Aravamudan, Bharathi; Kita, Hirohito; Brennan, Sarah C.; Schepelmann, Martin; Davies, Thomas; Yung, Sun; Cholisoh, Zakky; Kidd, Emma J.; Ford, William R.; Broadley, Kenneth J.; Rietdorf, Katja; Chang, Wenhan; Khayat, Mohd E. Bin; Ward, Donald T.; Corrigan, Christopher J.; Ward, Jeremy P. T.; Kemp, Paul J.; Pabelick, Christina M.; Prakash, Y. S.; Riccardi, Daniela

    2016-01-01

    Airway hyperresponsiveness and inflammation are fundamental hallmarks of allergic asthma that are accompanied by increases in certain polycations, such as eosinophil cationic protein. Levels of these cations in body fluids correlate with asthma severity. We show that polycations and elevated extracellular calcium activate the human recombinant and native calcium-sensing receptor (CaSR), leading to intracellular calcium mobilization, cyclic adenosine monophosphate breakdown, and p38 mitogen-activated protein kinase phosphorylation in airway smooth muscle (ASM) cells. These effects can be prevented by CaSR antagonists, termed calcilytics. Moreover, asthmatic patients and allergen-sensitized mice expressed more CaSR in ASMs than did their healthy counterparts. Indeed, polycations induced hyper-reactivity in mouse bronchi, and this effect was prevented by calcilytics and absent in mice with CaSR ablation from ASM. Calcilytics also reduced airway hyperresponsiveness and inflammation in allergen-sensitized mice in vivo. These data show that a functional CaSR is up-regulated in asthmatic ASM and targeted by locally produced polycations to induce hyperresponsiveness and inflammation. Thus, calcilytics may represent effective asthma therapeutics. PMID:25904744

  6. Dendritic cell-bound IgE functions to restrain allergic inflammation at mucosal sites

    PubMed Central

    Platzer, Barbara; Baker, Kristi; Vera, Miguel Pinilla; Singer, Kathleen; Panduro, Marisella; Lexmond, Willem S.; Turner, Devin; Vargas, Sara O.; Kinet, Jean-Pierre; Maurer, Dieter; Baron, Rebecca M.; Blumberg, Richard S.; Fiebiger, Edda

    2014-01-01

    Antigen-mediated crosslinking of Immunoglobulin E (IgE) bound to mast cells/basophils via FcεRI, the high affinity IgE Fc-receptor, is a well-known trigger of allergy. In humans, but not mice, dendritic cells (DCs) also express FcεRI that is constitutively occupied with IgE. In contrast to mast cells/basophils, the consequences of IgE/FcεRI signals for DC function remain poorly understood. We show that humanized mice that express FcεRI on DCs carry IgE like non-allergic humans and do not develop spontaneous allergies. Antigen-specific IgE/FcεRI crosslinking fails to induce maturation or production of inflammatory mediators in human DCs and FcεRI-humanized DCs. Furthermore, conferring expression of FcεRI to DCs decreases the severity of food allergy and asthma in disease-relevant models suggesting anti-inflammatory IgE/FcεRI signals. Consistent with the improved clinical parameters in vivo, antigen-specific IgE/FcεRI crosslinking on papain or LPS-stimulated DCs inhibits the production of pro-inflammatory cytokines and chemokines. Migration assays confirm that the IgE-dependent decrease in cytokine production results in diminished recruitment of mast cell progenitors; providing a mechanistic explanation for the reduced mast cell-dependent allergic phenotype observed in FcεRI-humanized mice. Our study demonstrates a novel immune regulatory function of IgE and proposes that DC-intrinsic IgE signals serve as a feedback mechanism to restrain allergic tissue inflammation. PMID:25227985

  7. Downregulation of SUMF2 gene in ovalbumin-induced rat model of allergic inflammation

    PubMed Central

    Fang, Chuanfeng; Li, Xiaoxia; Liang, Hongyan; Xue, Li; Liu, Lei; Yang, Chun; Gao, Guangqiang; Jiang, Xiaofeng

    2015-01-01

    Sulfate-modifying factor 2 (SUMF2), a member of the formylglycine-generating enzyme family, was earlier found to play a role in the regulation of interleukin (IL)-13 expression and secretion in airway smooth muscle cells. IL-13 is a T helper 2 cytokine that plays important roles in the pathogenesis of asthma. However, there is little evidence of the potential role of SUMF2 in the cellular inflammatory responses in asthma. Here, using an ovalbumin-induced asthma rat model, we show that SUMF2 gene expression is significantly decreased in allergic asthma rats. Moreover, several pathological changes were observed in the lung tissue and IL-13 was found to be overexpressed in the ovalbumin-induced asthma model. Additional studies on the lung bronchial epithelial tissues, peripheral blood lymphocytes and bronchoalveolar lavage fluid of the OVA-induced asthma rats showed that SUMF2 mRNA and protein expression were attenuated. However, there was only a little significant correlation was found between SUMF2 and IL-13 expression. These results indicate that SUMF2 may mediate airway inflammation in allergic asthma by modulating the expression of IL-13. More data from in vivo experiments are needed to clearly understand the role of SUMF2 in asthma. PMID:26722390

  8. In children allergic to ragweed pollen, nasal inflammation is not influenced by monosensitization or polysensitization

    PubMed Central

    Gelardi, Matteo; Bosoni, Mariangela; Morelli, Marco; Beretta, Silvia; Incorvaia, Cristoforo; Buttafava, Serena; Landi, Massimo; Masieri, Simonetta; Frati, Franco; Quaranta, Nicola; Zuccotti, Gian Vincenzo

    2016-01-01

    Background In patients polysensitized to pollen allergens, the priming effect, by which the sensitivity of the nasal mucosa to an allergen is increased by the previous exposure to another allergen, is a known phenomenon. This study was aimed at evaluating the degree of nasal inflammation, assessed by nasal cytology, in children with allergic rhinitis (AR) from ragweed pollen according to being monosensitized or polysensitized. Methods The study included 47 children. Of them, 24 suffered from AR caused by sensitization to grass pollen and ragweed pollen (group A) and 23 were sensitized only to ragweed pollen (group B). In all patients, the severity of AR was assessed according to the Allergic Rhinitis and Its Impact on Asthma guidelines, and comorbidities were also evaluated. Results In group A, 16.7% of children had a mild intermittent AR, 4.2% a moderate-to-severe intermittent, 33.3% a mild persistent, and 45.8% a moderate-to-severe persistent; in group B, 26.1% of children had a mild intermittent AR, 0% a moderate-to-severe intermittent, 52.2% a mild persistent, and 21.7% a moderate-to-severe persistent. No significant difference was detected in the number of the considered comorbidities between the two groups. The cell counts of neutrophils, eosinophils, lymphocytes/plasma cells, and mast cells were high but not significantly different in the two groups. Conclusion These findings show that the degree of nasal inflammation found in children with ragweed-induced AR is not influenced by additional allergy to grass pollen and confirm the previously reported absence of priming effect in ragweed allergy. PMID:27103838

  9. Clusterin Modulates Allergic Airway Inflammation by Attenuating CCL20-Mediated Dendritic Cell Recruitment.

    PubMed

    Hong, Gyong Hwa; Kwon, Hyouk-Soo; Moon, Keun-Ai; Park, So Young; Park, Sunjoo; Lee, Kyoung Young; Ha, Eun Hee; Kim, Tae-Bum; Moon, Hee-Bom; Lee, Heung Kyu; Cho, You Sook

    2016-03-01

    Recruitment and activation of dendritic cells (DCs) in the lungs are critical for Th2 responses in asthma, and CCL20 secreted from bronchial epithelial cells (BECs) is known to influence the recruitment of DCs. Because asthma is a disease that is closely associated with oxidative stress, we hypothesized that clusterin, an oxidative stress regulatory molecule, may have a role in the development of allergic airway inflammation. The aim of this study was to examine whether clusterin regulates CCL20 production from the BECs and the subsequent DC recruitment in the lungs. To verify the idea, clusterin knockout (Clu(-/-)), clusterin heterogeneous (Clu(+/-)), and wild-type mice were exposed intranasally to house dust mite (HDM) extract to induce allergic airway inflammation. We found that the total number of immune cells in bronchoalveolar lavage fluid and the lung was increased in Clu(-/-) and Clu(+/-) mice. Of these immune cells, inflammatory DCs (CD11b(+)CD11c(+)) and Ly6C(high) monocyte populations in the lung were significantly increased, which was accompanied by increased levels of various chemokines, including CCL20 in bronchoalveolar lavage fluid, and increased oxidative stress markers in the lung. Moreover, HDM-stimulated human BECs with either up- or downregulated clusterin expression showed that CCL20 secretion was negatively associated with clusterin expression. Interestingly, clusterin also reduced the level of intracellular reactive oxygen species, which is related to induction of CCL20 expression after HDM stimulation. Thus, the antioxidant property of clusterin is suggested to regulate the expression of CCL20 in BECs and the subsequent recruitment of inflammatory DCs in the airway. PMID:26826245

  10. Chronic Thromboembolic Pulmonary Hypertension Associated with Chronic Inflammation.

    PubMed

    Kuse, Naoyuki; Abe, Shinji; Kuribayashi, Hidehiko; Fukuda, Asami; Kusunoki, Yuji; Narato, Ritsuko; Saito, Hitoshi; Gemma, Akihiko

    2016-01-01

    Chronic thromboembolic pulmonary hypertension (CTEPH) is one of the leading causes of severe pulmonary hypertension. According to previously reported studies in the pertinent literature, chronic inflammatory conditions may be implicated in the development of CTEPH. We herein describe the case of a 56-year-old woman who was diagnosed with CTEPH in association with chronic infection. The patient had experienced five episodes of pneumonia in the five years prior to the diagnosis of CTEPH. Blood tests from the previous five years of outpatient follow-up demonstrated that the C-reactive protein level was slightly elevated. This case suggests that a relationship exists between chronic inflammation and CTEPH, and furthermore, may contribute towards elucidating the pathophysiology of CTEPH. PMID:27250055

  11. Chronic Low Dose Chlorine Exposure Aggravates Allergic Inflammation and Airway Hyperresponsiveness and Activates Inflammasome Pathway

    PubMed Central

    Kim, Sae-Hoon; Park, Da-Eun; Lee, Hyun-Seung; Kang, Hye-Ryun; Cho, Sang-Heon

    2014-01-01

    Background Epidemiologic clinical studies suggested that chronic exposure to chlorine products is associated with development of asthma and aggravation of asthmatic symptoms. However, its underlying mechanism was not clearly understood. Studies were undertaken to define the effects and mechanisms of chronic low-dose chlorine exposure in the pathogenesis of airway inflammation and airway hyperresponsiveness (AHR). Methods Six week-old female BALB/c mice were sensitized and challenged with OVA in the presence and absence of chronic low dose chlorine exposure of naturally vaporized gas of 5% sodium hypochlorite solution. Airway inflammation and AHR were evaluated by bronchoalveolar lavage (BAL) cell recovery and non-invasive phlethysmography, respectively. Real-time qPCR, Western blot assay, and ELISA were used to evaluate the mRNA and protein expressions of cytokines and other inflammatory mediators. Human A549 and murine epithelial (A549 and MLE12) and macrophage (AMJ2-C11) cells were used to define the responses to low dose chlorine exposure in vitro. Results Chronic low dose chlorine exposure significantly augmented airway inflammation and AHR in OVA-sensitized and challenged mice. The expression of Th2 cytokines IL-4 and IL-5 and proinflammatory cytokine IL-1β and IL-33 were significantly increased in OVA/Cl group compared with OVA group. The chlorine exposure also activates the major molecules associated with inflammasome pathway in the macrophages with increased expression of epithelial alarmins IL-33 and TSLP in vitro. Conclusion Chronic low dose exposure of chlorine aggravates allergic Th2 inflammation and AHR potentially through activation of inflammasome danger signaling pathways. PMID:25202911

  12. Systemic inflammation after inspiratory loading in chronic obstructive pulmonary disease

    PubMed Central

    Fuster, Antonia; Sauleda, Jaume; Sala, Ernest; Barceló, Bernardí; Pons, Jaume; Carrera, Miguel; Noguera, Aina; Togores, Bernat; Agustí, Alvar GN

    2008-01-01

    Objective Patients with chronic obstructive pulmonary disease (COPD) present systemic inflammation. Strenuous resistive breathing induces systemic inflammation in healthy subjects. We hypothesized that the increased respiratory load that characterizes COPD can contribute to systemic inflammation in these patients. Patients and methods To test this hypothesis, we compared leukocyte numbers and levels of circulating cytokines (tumor necrosis factor alpha [TNFα], interleukin-1β [IL-1β], IL-6, IL-8, and IL-10), before and 1 hour after maximal incremental inspiratory loading in 13 patients with stable COPD (forced expiratory volume in one second [FEV1] 29 ± 2.5% ref) and in 8 healthy sedentary subjects (FEV1 98 ± 5% ref). Results We found that: (1) at baseline, patients with COPD showed higher leukocyte counts and IL-8 levels than controls (p < 0.01); and, (2) one hour after maximal inspiratory loading these values were unchanged, except for IL-10, which increased in controls (p < 0.05) but not in patients with COPD. Conclusions This study confirms the presence of systemic inflammation in COPD, shows that maximal inspiratory loading does not increase the levels of pro-inflammatory cytokines (IL-1β, IL-8) in COPD patients or controls, but suggests that the former may be unable to mount an appropriate systemic anti-inflammatory response to exercise. PMID:18488438

  13. Suppression of type 2 immunity and allergic airway inflammation by secreted products of the helminth Heligmosomoides polygyrus

    PubMed Central

    McSorley, Henry J; O'Gorman, Mary T; Blair, Natalie; Sutherland, Tara E; Filbey, Kara J; Maizels, Rick M

    2016-01-01

    Summary Allergic asthma is less prevalent in countries with parasitic helminth infections, and mice infected with parasites such as Heligmosomoides polygyrus are protected from allergic airway inflammation. To establish whether suppression of allergy could be mediated by soluble products of this helminth, we tested H. polygyrus excretory-secretory (HES) material for its ability to impair allergic inflammation. When HES was added to sensitising doses of ovalbumin, the subsequent allergic airway response was suppressed, with ablated cell infiltration, a lower ratio of effector (CD4+CD25+Foxp3−) to regulatory (CD4+Foxp3+) T (Treg) cells, and reduced Th1, Th2 and Th17 cytokine production. HES exposure reduced IL-5 responses and eosinophilia, abolished IgE production, and inhibited the type 2 innate molecules arginase-1 and RELM-α. Although HES contains a TGF-β-like activity, similar effects in modulating allergy were not observed when administering mammalian TGF-β alone. HES also protected previously sensitised mice, suppressing recruitment of eosinophils to the airways when given at challenge, but no change in Th or Treg cell populations was apparent. Because heat-treatment of HES did not impair suppression at sensitisation, but compromised its ability to suppress at challenge, we propose that HES contains distinct heat-stable and heat-labile immunomodulatory molecules which modulate pro-allergic adaptive and innate cell populations. PMID:22706967

  14. Acute stress affects the physiology and behavior of allergic mice.

    PubMed

    Sutherland, M A; Shome, G P; Hulbert, L E; Krebs, N; Wachtel, M; McGlone, J J

    2009-09-01

    Physical and psychological stressors have been implicated in acute asthma exacerbation. The objective of the current study was to determine the effects of forced swimming stress (FST) on allergic pulmonary inflammation in BALB/c mice. Eighty female mice were allocated to one of four treatments arranged in a 2 x 2 factorial consisting of two levels of allergy and two levels of stress. The effects of stress and allergy were assessed by examination of cytokines and leukocyte differentials in the bronchoalveolar lavage fluid, corticosterone and immunoglobulin (Ig) E in the plasma, leukocyte differentials in the peripheral blood, natural killer cytotoxicity, and histopathology of the lungs. Behavior was recorded during the FST. Stress and allergy increased plasma corticosterone in mice. Allergy increased IgE concentrations and pulmonary inflammation. Interleukin-4 was greater among allergic stressed and non-stressed mice and stressed, non-allergic mice compared with non-stressed, non-allergic mice. Interleukin-5 (IL-5) and 6 (IL-6) were greater among allergic stressed and non-stressed mice compared with non-allergic mice. Interleukin-5 and 6 were reduced among stressed-allergic mice compared with non-stressed, allergic mice. Stress and allergy shifted mice towards a T-helper 2 response as shown by increased interleukin-4. Stress reduced IL-5 and IL-6 in allergic mice but not non-allergic mice. Pulmonary inflammation was not reduced among allergic stressed mice in spite of elevated glucocorticoids. Mice induced to be allergic responded to FST differently than non-allergic mice. Our findings suggest that stress induces a differential response among allergic and non-allergic mice. PMID:19527741

  15. Gut dysbiosis promotes M2 macrophage polarization and allergic airway inflammation via fungi-induced PGE2

    PubMed Central

    Kim, Yun-Gi; Udayanga, Kankanam Gamage Sanath; Totsuka, Naoya; Weinberg, Jason B.; Núñez, Gabriel; Shibuya, Akira

    2014-01-01

    SUMMARY Although imbalances in gut microbiota composition, or “dysbiosis”, are associated with many diseases, the effects of gut dysbiosis on host systemic physiology are less well characterized. We report that gut dysbiosis induced by antibiotic (Abx)-treatment promotes allergic airway inflammation by shifting macrophage polarization in the lung toward the alternatively activated M2 phenotype. Adoptive transfer of alveolar macrophages derived from Abx-treated mice was sufficient to increase allergic airway inflammation. Abx-treatment resulted in the overgrowth of a commensal fungal Candida species in the gut and increased plasma concentrations of prostaglandin E2 (PGE2), which induced M2 macrophage polarization in the lung. Suppression of PGE2 synthesis by the cyclooxygenase inhibitors aspirin and celecoxib suppressed M2 macrophage polarization and decreased allergic airway inflammatory cell infiltration in Abx-treated mice. Thus, Abx-treatment can cause overgrowth of particular fungal species in the gut and promote M2 macrophage activation at distant sites to influence systemic responses including allergic inflammation. PMID:24439901

  16. Specific allergen immunotherapy attenuates allergic airway inflammation in a rat model of Alstonia scholaris pollen induced airway allergy.

    PubMed

    Datta, Ankur; Moitra, Saibal; Hazra, Iman; Mondal, Somnath; Das, Prasanta Kumar; Singh, Manoj Kumar; Chaudhuri, Suhnrita; Bhattacharya, Debanjan; Tripathi, Santanu Kumar; Chaudhuri, Swapna

    2016-01-01

    Pollen grains are well established to be an important cause of respiratory allergy. Current pharmacologic therapies for allergic asthma do not cure the disease. Allergen specific immunotherapy is the only treatment method which re-directs the immune system away from allergic response leading to a long lasting effect. The mechanism by which immunotherapy achieves this goal is an area of active research world-wide. The present experimental study was designed to develop an experimental model of allergic lung inflammation based on a relevant human allergen, Alstonia scholaris pollen, and to establish the immunological and cellular features of specific allergen immunotherapy using this same pollen extract. Our results revealed that Alstonia scholaris pollen sensitization and challenge causes eosinophilic airway inflammation with mucin hypersecretion. This is associated with increased total IgE, increased expression of FcɛRI on lung mast cells and increased levels of IL-4, IL-5 & IL-13 as confirmed by ELISA, in-situ immunofluorescence and FACS assay. Allergen specific immunotherapy reduced airway inflammation and also decreased total IgE level, FcɛRI expression, IL-4, IL-5 & IL-13 levels. It was further noted that the reduction of these levels was more by intra-nasal route than by intra-peritoneal route. Thus we present a novel animal model of Alstonia scholaris pollen allergic disease and specific allergen immunotherapy which will pave the way towards the development of better treatment modalities. PMID:26667977

  17. Mast cells and basophils are essential for allergies: mechanisms of allergic inflammation and a proposed procedure for diagnosis.

    PubMed

    He, Shao-Heng; Zhang, Hui-Yun; Zeng, Xiao-Ning; Chen, Dong; Yang, Ping-Chang

    2013-10-01

    The current definition of allergy is a group of IgE-mediated diseases. However, a large portion of patients with clinical manifestations of allergies do not exhibit elevated serum levels of IgE (sIgEs). In this article, three key factors, ie soluble allergens, sIgEs and mast cells or basophils, representing the causative factors, messengers and primary effector cells in allergic inflammation, respectively, were discussed. Based on current knowledge on allergic diseases, we propose that allergic diseases are a group of diseases mediated through activated mast cells and/or basophils in sensitive individuals, and allergic diseases include four subgroups: (1) IgE dependent; (2) other immunoglobulin dependent; (3) non-immunoglobulin mediated; (4) mixture of the first three subgroups. According to our proposed definition, pseudo-allergic-reactions, in which mast cell or basophil activation is not mediated via IgE, or to a lesser extent via IgG or IgM, should be non-IgE-mediated allergic diseases. Specific allergen challenge tests (SACTs) are gold standard tests for diagnosing allergies in vivo, but risky. The identification of surface membrane activation markers of mast cells and basophils (CD203c, CCR3, CD63, etc) has led to development of the basophil activation test (BAT), an in vitro specific allergen challenge test (SACT). Based on currently available laboratory allergy tests, we here propose a laboratory examination procedure for allergy. PMID:23974516

  18. FEF(25-75) might be a predictive factor for bronchial inflammation and bronchial hyperreactivity in adolescents with allergic rhinitis.

    PubMed

    Ciprandi, G; Tosca, M A; Castellazzi, A M; Cairello, F; Salpietro, C; Arrigo, T; Miraglia Del Giudice, M

    2011-10-01

    Allergic rhinitis and asthma are closely associated. Bronchial hyperreactivity (BHR) is a pathophysiological characteristic of asthma. Allergic inflammation is characterized by eosinophilic infiltrate and may by indirectly assessed by exhaled nitric oxide (FeNO). Forced expiratory flow between 25 percent and 75 percent of vital capacity (FEF25-75) may predict BHR in adult patients with allergic rhinitis. The aim of this study was to evaluate the presence of BHR in a large group of adolescents with allergic rhinitis and whether FEF25-75 might be related with BHR and FeNO. Methods 150 adolescents with allergic rhinitis were enrolled. Clinical examination, skin prick test, spirometry, methacholine challenge, and FeNO were performed in all patients. Results Severe BHR is quite frequent in allergic adolescents. Impaired FEF25-75 values (such as less than 65 percent of predicted) constitute a relevant predictive factor for severe BHR (OR 4.4). FeNO levels were significantly related with BHR. Conclusion This study provides evidence that impaired FEF25-75 values might predict severe BHR and BHR is related with FeNO in adolescents. Therefore, BHR should be suspected in adolescents with low FEF25-75 values. PMID:22032781

  19. Allergic lung inflammation promotes atherosclerosis in apolipoprotein E-deficient mice.

    PubMed

    Liu, Cong-Lin; Wang, Yi; Liao, Mengyang; Santos, Marcela M; Fernandes, Cleverson; Sukhova, Galina K; Zhang, Jin-Ying; Cheng, Xiang; Yang, Chongzhe; Huang, Xiaozhu; Levy, Bruce; Libby, Peter; Wu, Gongxiong; Shi, Guo-Ping

    2016-05-01

    Inflammation drives asthma and atherosclerosis. Clinical studies suggest that asthmatic patients have a high risk of atherosclerosis. Yet this hypothesis remains uncertain, given that Th2 imbalance causes asthma whereas Th1 immunity promotes atherosclerosis. In this study, chronic allergic lung inflammation (ALI) was induced in mice by ovalbumin sensitization and challenge. Acute ALI was induced in mice by ovalbumin and aluminum sensitization and ovalbumin challenge. Atherosclerosis was produced in apolipoprotein E-deficient (Apoe(-/-)) mice with a Western diet. When chronic ALI and atherosclerosis were produced simultaneously, ALI increased atherosclerotic lesion size, lesion inflammatory cell content, elastin fragmentation, smooth muscle cell (SMC) loss, lesion cell proliferation, and apoptosis. Production of acute ALI before atherogenesis did not affect lesion size, but increased atherosclerotic lesion CD4(+) T cells, lesion SMC loss, angiogenesis, and apoptosis. Production of acute ALI after atherogenesis also did not change atherosclerotic lesion area, but increased lesion elastin fragmentation, cell proliferation, and apoptosis. In mice with chronic ALI and diet-induced atherosclerosis, daily inhalation of a mast cell inhibitor or corticosteroid significantly reduced atherosclerotic lesion T-cell and mast cell contents, SMC loss, angiogenesis, and cell proliferation and apoptosis, although these drugs did not affect lesion area, compared with those that received vehicle treatment. In conclusion, both chronic and acute ALI promote atherogenesis or aortic lesion pathology, regardless whether ALI occurred before, after, or at the same time as atherogenesis. Antiasthmatic medication can efficiently mitigate atherosclerotic lesion pathology. PMID:26898714

  20. Allergic sensitization modifies the pulmonary expression of 5-hydroxytryptamine receptors in guinea pigs.

    PubMed

    Córdoba-Rodríguez, Guadalupe; Vargas, Mario H; Ruiz, Víctor; Carbajal, Verónica; Campos-Bedolla, Patricia; Mercadillo-Herrera, Paulina; Arreola-Ramírez, José Luis; Segura-Medina, Patricia

    2016-03-01

    There is mounting evidence that 5-hydroxytryptamine (5-HT) plays a role in asthma. However, scarce information exists about the pulmonary expression of 5-HT receptors and its modification after allergic sensitization. In the present work, we explored the expression of 5-HT1A, 5-HT2A, 5-HT3, 5-HT4, 5-ht5a, 5-HT6, and 5-HT7 receptors in lungs from control and sensitized guinea pigs through qPCR and Western blot. In control animals, mRNA from all receptors was detectable in lung homogenates, especially from 5-HT2A and 5-HT4 receptors. Sensitized animals had decreased mRNA expression of 5-HT2A and 5-HT4 receptors and increased that of 5-HT7 receptor. In contrast, they had increased protein expression of 5-HT2A receptor in bronchial epithelium and of 5-HT4 receptor in lung parenchyma. The degree of airway response to the allergic challenge was inversely correlated with mRNA expression of the 5-HT1A receptor. In summary, our results showed that major 5-HT receptor subtypes are constitutively expressed in the guinea pig lung, and that allergic sensitization modifies the expression of 5-HT2A, 5-HT4, and 5-HT7 receptors. PMID:26657047

  1. Systemic Microvascular Dysfunction and Inflammation after Pulmonary Particulate Matter Exposure

    PubMed Central

    Nurkiewicz, Timothy R.; Porter, Dale W.; Barger, Mark; Millecchia, Lyndell; Rao, K. Murali K.; Marvar, Paul J.; Hubbs, Ann F.; Castranova, Vincent; Boegehold, Matthew A.

    2006-01-01

    The epidemiologic association between pulmonary exposure to ambient particulate matter (PM) and cardiovascular dysfunction is well known, but the systemic mechanisms that drive this effect remain unclear. We have previously shown that acute pulmonary exposure to PM impairs or abolishes endothelium-dependent arteriolar dilation in the rat spinotrapezius muscle. The purpose of this study was to further characterize the effect of pulmonary PM exposure on systemic microvascular function and to identify local inflammatory events that may contribute to these effects. Rats were intratracheally instilled with residual oil fly ash (ROFA) or titanium dioxide at 0.1 or 0.25 mg/rat 24 hr before measurement of pulmonary and systemic microvascular responses. In vivo microscopy of the spinotrapezius muscle was used to study systemic arteriolar responses to intraluminal infusion of the Ca2+ ionophore A23187 or iontophoretic abluminal application of the adrenergic agonist phenylephrine (PHE). Leukocyte rolling and adhesion were quantified in venules paired with the studied arterioles. Histologic techniques were used to assess pulmonary inflammation, characterize the adherence of leukocytes to systemic venules, verify the presence of myeloperoxidase (MPO) in the systemic microvascular wall, and quantify systemic microvascular oxidative stress. In the lungs of rats exposed to ROFA or TiO2, changes in some bronchoalveolar lavage markers of inflammation were noted, but an indication of cellular damage was not found. In rats exposed to 0.1 mg ROFA, focal alveolitis was evident, particularly at sites of particle deposition. Exposure to either ROFA or TiO2 caused a dose-dependent impairment of endothelium-dependent arteriolar dilation. However, exposure to these particles did not affect microvascular constriction in response to PHE. ROFA and TiO2 exposure significantly increased leukocyte rolling and adhesion in paired venules, and these cells were positively identified as

  2. Systemic microvascular dysfunction and inflammation after pulmonary particulate matter exposure.

    PubMed

    Nurkiewicz, Timothy R; Porter, Dale W; Barger, Mark; Millecchia, Lyndell; Rao, K Murali K; Marvar, Paul J; Hubbs, Ann F; Castranova, Vincent; Boegehold, Matthew A

    2006-03-01

    The epidemiologic association between pulmonary exposure to ambient particulate matter (PM) and cardiovascular dysfunction is well known, but the systemic mechanisms that drive this effect remain unclear. We have previously shown that acute pulmonary exposure to PM impairs or abolishes endothelium-dependent arteriolar dilation in the rat spinotrapezius muscle. The purpose of this study was to further characterize the effect of pulmonary PM exposure on systemic microvascular function and to identify local inflammatory events that may contribute to these effects. Rats were intratracheally instilled with residual oil fly ash (ROFA) or titanium dioxide at 0.1 or 0.25 mg/rat 24 hr before measurement of pulmonary and systemic microvascular responses. In vivo microscopy of the spinotrapezius muscle was used to study systemic arteriolar responses to intraluminal infusion of the Ca2+ ionophore A23187 or iontophoretic abluminal application of the adrenergic agonist phenylephrine (PHE). Leukocyte rolling and adhesion were quantified in venules paired with the studied arterioles. Histologic techniques were used to assess pulmonary inflammation, characterize the adherence of leukocytes to systemic venules, verify the presence of myeloperoxidase (MPO) in the systemic microvascular wall, and quantify systemic microvascular oxidative stress. In the lungs of rats exposed to ROFA or TiO2, changes in some bronchoalveolar lavage markers of inflammation were noted, but an indication of cellular damage was not found. In rats exposed to 0.1 mg ROFA, focal alveolitis was evident, particularly at sites of particle deposition. Exposure to either ROFA or TiO2 caused a dose-dependent impairment of endothelium-dependent arteriolar dilation. However, exposure to these particles did not affect microvascular constriction in response to PHE. ROFA and TiO2 exposure significantly increased leukocyte rolling and adhesion in paired venules, and these cells were positively identified as

  3. An epithelial circadian clock controls pulmonary inflammation and glucocorticoid action

    PubMed Central

    Gibbs, Julie; Ince, Louise; Matthews, Laura; Mei, Junjie; Bell, Thomas; Yang, Nan; Saer, Ben; Begley, Nicola; Poolman, Toryn; Pariollaud, Marie; Farrow, Stuart; Demayo, Francesco; Hussell, Tracy; Worthen, G Scott; Ray, David; Loudon, Andrew

    2014-01-01

    The circadian system is as an important regulator of immune function. Human inflammatory lung diseases frequently show time-of-day variation in symptom severity and lung function, but the mechanisms and cell types that are underlying these effects remain unclear. We show that pulmonary antibacterial responses are modulated by a circadian clock within epithelial club (Clara) cells. These drive circadian neutrophil recruitment to the lung via the chemokine CXCL5. Genetic ablation of the clock gene Bmal1 (also called Arntl or MOP3) in bronchiolar cells disrupts rhythmic Cxcl5 expression, resulting in exaggerated inflammatory responses to lipopolysaccharide and bacterial infection. Adrenalectomy blocks rhythmic inflammatory responses and the circadian regulation of CXCL5, suggesting a key role for the adrenal axis in driving CXCL5 expression and pulmonary neutrophil recruitment. Glucocorticoid receptor occupancy at the Cxcl5 locus shows circadian oscillations, but this is disrupted in mice with bronchiole-specific ablation of Bmal1, leading to enhanced CXCL5 expression despite normal corticosteroid secretion. In clock-gene disrupted mice the synthetic glucocorticoid dexamethasone loses anti-inflammatory efficacy. We now define a regulatory mechanism that links the circadian clock and glucocorticoid hormones to control both time-of-day variation and also the magnitude of pulmonary inflammation and responses to bacterial infection. PMID:25064128

  4. Acute and chronic exposure to Tyrophagus putrescentiae induces allergic pulmonary response in a murine model

    PubMed Central

    Nuñez, Nailê Karine; dos Santos Dutra, Moisés; Barbosa, Gustavo Leivas; Morassutti, Alessandra Loureiro; de Souza, Rodrigo Godinho; Vargas, Mauro Henrique Moraes; Antunes, Géssica Luana; Silveira, Josiane Silva; da Silva, Guilherme Liberato; Pitrez, Paulo Márcio

    2016-01-01

    Background Tyrophagus putrescentiae (Tp) is a source of aeroallergen that causes allergic diseases. Objective To describe an acute and chronic murine model of allergic asthma with Tp extract with no systemic sensitization and no use of adjuvant. Methods Mites from dust sample were cultured and a raw extract was produced. Female BALB/c mice (6-8 weeks) were challenged intranasally with Tp extract or Dulbecco's phosphate-buffered saline, for 10 consecutive days (acute protocol) or for 6 weeks (chronic protocol). Twenty-four hours after the last intranasal challenge, bronchoalveolar lavage fluid (BALF) was performed for total and differential cells count, cytokine analysis, and eosinophil peroxidase activity. Lung tissue was also removed for histopathologic analysis. Results Tp extract has shown a significant increase in total cells count from BALF as well as an increase in absolute eosinophils count, eosinophil peroxidase activity, interleukin (IL)-5 and IL-13 levels, in both acute and chronic protocols. Peribronchovascular infiltrate, goblet cells hyperplasia and collagen deposition were shown in the airways of acute and chronic Tp-exposed mice. Conclusion Our data suggest that the intranasal exposure to Tp extract, with no systemic sensitization and no use of adjuvants, induces a robust allergic inflammation in the lungs of mice, in both acute and chronic models. Our Tp extract seems to be a potent allergen extract which may be used in asthma model studies. PMID:26844220

  5. Monitoring nasal allergic inflammation by measuring the concentration of eosinophil cationic protein and eosinophils in nasal secretions.

    PubMed

    Wang, D; Clement, P; Smitz, J; de Waele, M; Derde, M P

    1995-02-01

    Quantitative measurement of the eosinophil cationic protein (ECP) concentration and the percentage of eosinophils in nasal secretions has greatly improved our understanding of the inflammatory process after natural allergen exposure. ECP and eosinophils were measured in the nasal secretions of 40 symptomatic patients with seasonal allergic rhinitis during the pollen season. Results showed a significant relationship between a high concentration of ECP (median: 410 ng/g, range: 6-2380 ng/g) and a high percentage of eosinophils (median: 13.5%, range: 1-85%). This quantitative study again demonstrated that infiltration by eosinophils and release of ECP play a key role in allergic rhinitis. It also suggests that the combined measurement of the percentage of eosinophils together with the ECP concentration in nasal secretions seems to be a very useful model in monitoring and assessing the condition of chronic nasal inflammation in patients with allergic rhinitis. PMID:7604937

  6. [Allergic inflamation of the lower airways in patients with allergic rhinitis].

    PubMed

    Stefanović, Lj; Balaban, J; Stosović, R; Mitrović, N; Djurasinović, M; Tanurdzić, S

    1994-01-01

    Reporting two of our cases we wanted to point to a great dilemma related to the final diagnosis. Recently, such cases have been more frewuently seen, since in all patients with allergic rhinitis conditions of the lower airways is examined before the administration of the specific immunotherapy. Therefore, we may see patients who are still free of pulmonary sings, despite of positive specific and/or non specific bronchoprovocative tests. The presented cases with evidenced allergic rhinitis are probably in the phase of development of allergic bronchial asthma, the phase of "allergic inflammation" of the lower airways, not clinically manifested yet. PMID:18173213

  7. Biomarkers of in vivo fluorescence imaging in allergic airway inflammation.

    PubMed

    Wang, Fa-Ping; Fan, Ying-Qi; Li, Su-Yun; Mao, Hui

    2016-04-01

    Airway inflammation is a central component of the manifestation of asthma but is relatively inaccessible to study. Current imaging techniques such as X-ray CT, MRI, and PET, have advanced noninvasive research on pulmonary diseases. However, these techniques mainly facilitate the anatomical or structural assessment of the diseased lung and/or typically use radioactive agents. In vivo fluorescence imaging is a novel method for noninvasive, real-time, and specific monitoring of lung airway inflammation, which is particularly important to gain a further understanding asthma. Compared to conventional techniques, fluorescent imaging has the advantages of rapid feedback, as well as high sensitivity and resolution. Recently, there has been an increase in the identification of biomarkers, including matrix metalloproteinases, cathepsins, selectins, folate receptor-beta, nanoparticles, as well as sialic acid-binding immunoglobulin-like lectin-F to assess the level of airway inflammation in asthma. Recent advances in our understanding of these biomarkers as molecular probes for in vivo imaging are discussed in this review. PMID:26902991

  8. Origin, Localization, and Immunoregulatory Properties of Pulmonary Phagocytes in Allergic Asthma

    PubMed Central

    Hoffmann, Franziska; Ender, Fanny; Schmudde, Inken; Lewkowich, Ian P.; Köhl, Jörg; König, Peter; Laumonnier, Yves

    2016-01-01

    Allergic asthma is a chronic inflammatory disease of the airways that is driven by maladaptive T helper 2 (Th2) and Th17 immune responses against harmless, airborne substances. Pulmonary phagocytes represent the first line of defense in the lung where they constantly sense the local environment for potential threats. They comprise two distinct cell types, i.e., macrophages and dendritic cells (DC) that differ in their origins and functions. Alveolar macrophages quickly take up most of the inhaled allergens, yet do not deliver their cargo to naive T cells sampling in draining lymph nodes. In contrast, pulmonary DCs instruct CD4+ T cells develop into Th2 and Th17 effectors, initiating the maladaptive immune responses toward harmless environmental substances observed in allergic individuals. Unraveling the mechanisms underlying this mistaken identity of harmless, airborne substances by innate immune cells is one of the great challenges in asthma research. The identification of different pulmonary DC subsets, their role in antigen uptake, migration to the draining lymph nodes, and their potential to instruct distinct T cell responses has set the stage to unravel this mystery. However, at this point, a detailed understanding of the spatiotemporal resolution of DC subset localization, allergen uptake, processing, autocrine and paracrine cellular crosstalk, and the humoral factors that define the activation status of DCs is still lacking. In addition to DCs, at least two distinct macrophage populations have been identified in the lung that are either located in the airway/alveolar lumen or in the interstitium. Recent data suggest that such populations can exert either pro- or anti-inflammatory functions. Similar to the DC subsets, detailed insights into the individual roles of alveolar and interstitial macrophages during the different phases of asthma development are still missing. Here, we will provide an update on the current understanding of the origin, localization

  9. Diesel exposure suppresses natural killer cell function and resolution of eosinophil inflammation: a randmonized controlled trial of exposure in allergic rhinitics

    EPA Science Inventory

    Exposure to diesel exhaust (DE) is known to exacerbate allergic inflammation, including virus induced eosinophil activation in laboratory animals. We have previously shown that in human volunteers with allergic rhinitis a short-term exposure to DE prior to infection with the live...

  10. Systemic and local eosinophil inflammation during the birch pollen season in allergic patients with predominant rhinitis or asthma

    PubMed Central

    Kämpe, Mary; Stålenheim, Gunnemar; Janson, Christer; Stolt, Ingrid; Carlson, Marie

    2007-01-01

    Background The aim of the study was to investigate inflammation during the birch pollen season in patients with rhinitis or asthma. Methods Subjects with birch pollen asthma (n = 7) or rhinitis (n = 9) and controls (n = 5) were studied before and during pollen seasons. Eosinophils (Eos), eosinophil cationic protein (ECP) and human neutrophil lipocalin were analysed. Results Allergic asthmatics had a larger decline in FEV1 after inhaling hypertonic saline than patients with rhinitis (median) (-7.0 vs.-0.4%, p = 0.02). The asthmatics had a lower sesonal PEFR than the rhinitis group. The seasonal increase in B-Eos was higher among patients with asthma (+0.17 × 109/L) and rhinitis (+0.27 × 109/L) than among controls (+0.01 × 109/L, p = 0.01). Allergic asthmatics and patients with rhinitis had a larger increase in sputum ECP (+2180 and +310 μg/L) than the controls (-146 μg/L, p = 0.02). No significant differences in inflammatory parameters were found between the two groups of allergic patients. Conclusion Patients with allergic asthma and rhinitis have the same degree of eosinophil inflammation. Despite this, only the asthmatic group experienced an impairment in lung function during the pollen season. PMID:17967188

  11. EFFECTS OF DIESEL EXHAUST ON PULMONARY RESPONSES DURING ALLERGIC SENSITIZATION TO AEROSOLIZED OVALBUMIN IN BALB/C MICE

    EPA Science Inventory

    Effects of Diesel Exhaust on Pulmonary Responses During Allergic Sensitization to Aerosolized Ovalbumin in BALB/c Mice. P. Singh1, M.J. Daniels1, D. Andrews1, E. Boykin1, W. P. Linak2 and M.I. Gilmour1. 1USEPA, ORD, NHEERL, RTP, NC. 2 USEPA, ORD, NRMRL, RTP, NC.

    Inhala...

  12. Inhibition of CD23-mediated IgE transcytosis suppresses the initiation and development of allergic airway inflammation

    PubMed Central

    Palaniyandi, Senthilkumar; Liu, Xiaoyang; Periasamy, Sivakumar; Ma, Aiying; Tang, Jin; Jenkins, Mark; Tuo, Wenbin; Song, Wenxia; Keegan, Achsah D.; Conrad, Daniel H.; Zhu, Xiaoping

    2015-01-01

    The epithelial lining of the airway tract and allergen-specific IgE are considered essential controllers of inflammatory responses to allergens. The human low affinity IgE receptor, CD23 (FcεRII), is capable of transporting IgE or IgE-allergen complexes across the polarized human airway epithelial cell (AEC) monolayer in vitro. However, it remains unknown whether the CD23-dependent IgE transfer pathway in AECs initiates and facilitates allergic inflammation in vivo, and whether inhibition of this pathway attenuates allergic inflammation. To this end, we show that in wild-type (WT) mice, epithelial CD23 transcytosed both IgE and ovalbumin (OVA)-IgE complexes across the airway epithelial barrier, while neither type of transcytosis was observed in CD23 knockout (KO) mice. In chimeric mice, OVA sensitization and aerosol challenge of WT/WT (bone-marrow transfer from the WT to WT) or CD23KO/WT (CD23KO to WT) chimeric mice, which express CD23 on radioresistant airway structural cells (mainly epithelial cells) resulted in airway eosinophilia, including collagen deposition and a significant increase in goblet cells, and increased airway hyperreactivity. In contrast, the absence of CD23 expression on airway structural or epithelial cells, but not on hematopoietic cells, in WT/CD23KO (the WT to CD23KO) chimeric mice significantly reduced OVA-driven allergic airway inflammation. In addition, inhalation of the CD23-blocking B3B4 antibody in sensitized WT mice before or during airway challenge suppressed the salient features of asthma, including bronchial hyperreactivity. Taken together, these results identify a previously unproven mechanism in which epithelial CD23 plays a central role in the development of allergic inflammation. Further, our study suggests that functional inhibition of CD23 in the airway is a potential therapeutic approach with which to inhibit the development of asthma. PMID:25783969

  13. Glutathione modulation during sensitization as well as challenge phase regulates airway reactivity and inflammation in mouse model of allergic asthma.

    PubMed

    Nadeem, Ahmed; Siddiqui, Nahid; Alharbi, Naif O; Alharbi, Mohammad M; Imam, Faisal; Sayed-Ahmed, Mohamed M

    2014-08-01

    Glutathione, being a major intracellular redox regulator has been shown to be implicated in regulation of airway reactivity and inflammation. However, no study so far has investigated the effect of glutathione depletion/repletion during sensitization and challenge phases separately, which could provide an important insight into the pathophysiology of allergic asthma. The aim of the present study was to evaluate the role of glutathione depletion/repletion during sensitization and challenge phases separately in a mouse model of allergic asthma. Buthionine sulphoximine (BSO), an inhibitor of gamma-glutamylcysteine synthetase or N-acetyl cysteine (NAC), a thiol donor were used for depletion or repletion of glutathione levels respectively during both sensitization and challenge phases separately followed by assessment of airway reactivity, inflammation and oxidant-antioxidant balance in allergic mice. Depletion of glutathione with BSO during sensitization as well as challenge phase worsened allergen induced airway reactivity/inflammation and caused greater oxidant-antioxidant imbalance as reflected by increased NADPH oxidase expression/reactive oxygen species (ROS) generation/lipid peroxides formation and decreased total antioxidant capacity. On the other hand, repletion of glutathione pool by NAC during sensitization and challenge phases counteracted allergen induced airway reactivity/inflammation and restored oxidant-antioxidant balance through a decrease in NADPH oxidase expression/ROS generation/lipid peroxides formation and increase in total antioxidant capacity. Taken together, these findings suggest that depletion or repletion of glutathione exacerbates or ameliorates allergic asthma respectively by regulation of airway oxidant-antioxidant balance. This might have implications towards increased predisposition to allergy by glutathione depleting environmental pollutants. PMID:24742380

  14. 12/15-Lipoxygenase deficiency protects mice from allergic airways inflammation and increases secretory IgA levels

    PubMed Central

    Hajek, Amanda R.; Lindley, Alexa R.; Favoreto, Silvio; Carter, Roderick; Schleimer, Robert P.; Kuperman, Douglas A.

    2009-01-01

    Background Induction of 15-lipoxygenase-1 (15-LO-1) has been observed in the airways of subjects with asthma, although its physiologic role in the airways has remained largely undefined. Objectives We sought to test the hypothesis that the mouse 15-LO-1 ortholog 12/15-LO contributes to the development of allergic airways inflammation. Methods Two models were used to evaluate wild-type and 12/15-LO–deficient mice. The systemic model involved intraperitoneal injections of allergen, and the mucosal model involved allergen exposures occurring exclusively in the airways. The systemic and mucosal-specific contributions of 12/15-LO to allergic sensitization and airways inflammation were determined by comparing the results obtained in the 2 models. Results In the mucosal model 12/15-LO knockout mice were protected from the development of allergic sensitization and airways inflammation, as evidenced by circulating levels of allergen-specific IgE, IgG1, and IgG2a; the profile of inflammatory cells in bronchoalveolar lavage fluid; and the expression of cytokines and mediators in lung tissue. In the systemic model 12/15-LO knockout mice were not protected. This suggested the presence of a lung-restricted protective role for 12/15-LO deficiency that was potentially accounted for by increased activation of mucosal B cells and increased production of the known mucosal-specific protective mediator secretory IgA. Conclusions Induction of 15-LO-1 in asthma might contribute to allergic sensitization and airways inflammation, potentially by causing suppression of secretory IgA. PMID:18692885

  15. Precursor B Cells Increase in the Lung during Airway Allergic Inflammation: A Role for B Cell-Activating Factor

    PubMed Central

    Malmhäll, Carina; Rådinger, Madeleine; Ramos-Ramirez, Patricia; Lu, You; Deák, Tünde; Semitekolou, Maria; Gaga, Mina; Sjöstrand, Margareta; Lötvall, Jan; Bossios, Apostolos

    2016-01-01

    Background B cells, key cells in allergic inflammation, differentiate in the bone marrow and their precursors include pro-B, pre-B and immature B cells. Eosinophil progenitor cells increase in the lung after allergen exposure. However, the existence and possible role of B cell precursors in the lung during allergic inflammation remains elusive. Methods A BALB/c mouse model of allergic airway inflammation was utilized to perform phenotypic and quantification analyses of pro-B and pre-B cells in the lung by flow cytometry. B cell maturation factors IL-7 and B cell-activating factor (BAFF) and their receptors (CD127 and BAFFR, BCMA, TACI, respectively) were also evaluated in the lung and serum. The effect of anti-BAFF treatment was investigated both in vivo (i.p. administration of BAFF-R-Ig fusion protein) and in vitro (colony forming cell assay). Finally, BAFF levels were examined in the bronchoalveolar lavage (BAL) of asthmatic patients and healthy controls. Results Precursor pro and pre-B cells increase in the lung after allergen exposure, proliferate in the lung tissue in vivo, express markers of chemotaxis (CCR10 and CXCR4) and co-stimulation (CD40, CD86) and are resistant to apoptosis (Bax). Precursor B cells express receptors for BAFF at baseline, while after allergen challenge both their ligand BAFF and the BCMA receptor expression increases in B cell precursors. Blocking BAFFR in the lung in vivo decreases eosinophils and proliferating precursor B cells. Blocking BAFFR in bone marrow cultures in vitro reduces pre-B colony formation units. BAFF is increased in the BAL of severe asthmatics. Conclusion Our data support the concept of a BAFF-mediated role for B cell precursors in allergic airway inflammation. PMID:27513955

  16. Lower airway inflammation and hyperresponsiveness in non-asthmatic patients with non-allergic rhinitis

    PubMed Central

    Wang, Qiuping; Ji, Junfeng; Xie, Yanqing; Guan, Weijie; Zhang, Yong; Wang, Zhiyi; Wu, Kunmin

    2015-01-01

    Background Potential associations between non-allergic rhinitis (NAR) and asthma have been verified epidemiologically, but these associations remain not very clear. It is necessary to further explore the possible implication of lower airway abnormities in NAR patients but without asthma. This study aims to determine lower airway hyperresponsiveness (AHR), inflammation and lung function in non-asthmatic patients with NAR. Methods We recruited 262 non-asthmatic patients with NAR, 377 with AR and 264 healthy subjects. All subjects were non-smokers who underwent meticulous history taking, nasal examination, allergen skin prick test (SPT), blood routine test, measurement of fractional exhaled nitric oxide (FeNO), methacholine bronchial challenge test and induced sputum eosinophil count, in this order. Results Compared with healthy subjects, non-asthmatic patients with NAR yielded markedly lower FEV1/FVC, maximal mid-expiratory flow (MMEF), mid-expiratory flow when 50% of FVC has been expired (MEF50%) and mid-expiratory flow when 75% of FVC has been expired (MEF25%) (P<0.05). Differences in spirometry between group AR and NAR were unremarkable (P>0.05). Patients with NAR yielded higher rate of AHR and higher FeNO levels than healthy subjects but lower than those with AR. The proportion of lower airways disorders (sputum eosinophilia, high FeNO levels or AHR) was highest in group AR (70.8%), followed by NAR (53.4%) and healthy subjects (24.2%) (P<0.01). However, sputum eosinophils in NAR patients were not higher compared with healthy subjects (P>0.05). Sputum eosinophils and FeNO had significant correlation with positive AHR and MMEF in group AR but not in NAR. Conclusions Non-asthmatic patients with NAR harbor lower AHR, small airways dysfunction and inflammation, despite being less significant than those with AR. This offers clues to unravel the link between NAR and asthma. PMID:26623098

  17. miR-125b inhibits goblet cell differentiation in allergic airway inflammation by targeting SPDEF.

    PubMed

    Liu, Zhaoe; Chen, Xing; Wu, Qiaoling; Song, Jia; Wang, Lijun; Li, Gang

    2016-07-01

    Asthma is a disease characterized by goblet cell differentiation, mucus hypersecretion, airway inflammation, and airway hyperresponsiveness. miR-125b was downregulated as normal human bronchial epithelial cells differentiation to pseudostratified epithelium. However, its role in asthma remains unknown especially in regulating goblet cell differentiation. miR-125b expression in the sputum of 50 asthmatic children and 50 age- and sex-matched healthy controls were assessed by quantitative RT-PCR (qRT-PCR). Meanwhile, expressions of miR-125b and SAM pointed domain-containing ETS transcription factor (SPDEF) in normal human tracheal epithelial (HTEpC) and A549 cells stimulated with lipopolysaccharide (LPS) for 2h were detected by qRT-PCR and western blot. Furthermore, the predicted miR-125b target was determined in silico and confirmed with dual-luciferase reporter assay. Additionally, intranasal delivery of miR-125b mimic in mice was performed to study its effects on house dust mite-induced allergic airway inflammation mouse models. We found that miR-125b expression was decreased in the sputum of the asthmatic patients especially in eosinophilic asthma. After stimulation with LPS, miR-125b expression was downregulated, accompanied by the upregulation of SPDEF in HTEpC and A549 cells. Moreover, SPDEF is a target of miR-125b, which regulates SPDEF at the posttranscriptional level. Additionally, intranasal delivery of miR-125b decreased SPDEF protein levels, goblet cell differentiation, mucus hypersecretion, and altered relevant gene expressions. Taken together, these results suggest that miR-125b inhibits SPDEF expression modulating goblet cell differentiation and mucus secretion in asthma. PMID:27112664

  18. Antigen-specific cytotoxic T lymphocytes target airway CD103+ and CD11b+ dendritic cells to suppress allergic inflammation.

    PubMed

    Daniels, N J; Hyde, E; Ghosh, S; Seo, K; Price, K M; Hoshino, K; Kaisho, T; Okada, T; Ronchese, F

    2016-01-01

    Allergic airway inflammation is driven by the recognition of inhaled allergen by T helper type 2 (Th2) cells in the airway and lung. Allergen-specific cytotoxic T lymphocytes (CTLs) can strongly reduce airway inflammation, however, the mechanism of their inhibitory activity is not fully defined. We used mouse models to show that allergen-specific CTLs reduced early cytokine production by Th2 cells in lung, and their subsequent accumulation and production of interleukin (IL)-4 and IL-13. In addition, treatment with specific CTLs also increased the proportion of caspase(+) dendritic cells (DCs) in mediastinal lymph node (MLN), and decreased the numbers of CD103(+) and CD11b(+) DCs in the lung. This decrease required expression of the cytotoxic mediator perforin in CTLs and of the appropriate MHC-antigen ligand on DCs, suggesting that direct CTL-DC contact was necessary. Lastly, lung imaging experiments revealed that in airway-challenged mice XCR1-GFP(+) DCs, corresponding to the CD103(+) DC subset, and XCR1-GFP(-) CD11c(+) cells, which include CD11b(+) DCs and alveolar macrophages, both clustered in the areas surrounding the small airways and were closely associated with allergen-specific CTLs. Thus, allergen-specific CTLs reduce allergic airway inflammation by depleting CD103(+) and CD11b(+) DC populations in the lung, and may constitute a mechanism through which allergic immune responses are regulated. PMID:26104914

  19. Grouping nanomaterials to predict their potential to induce pulmonary inflammation.

    PubMed

    Braakhuis, Hedwig M; Oomen, Agnes G; Cassee, Flemming R

    2016-05-15

    The rapidly expanding manufacturing, production and use of nanomaterials have raised concerns for both worker and consumer safety. Various studies have been published in which induction of pulmonary inflammation after inhalation exposure to nanomaterials has been described. Nanomaterials can vary in aspects such as size, shape, charge, crystallinity, chemical composition, and dissolution rate. Currently, efforts are made to increase the knowledge on the characteristics of nanomaterials that can be used to categorise them into hazard groups according to these characteristics. Grouping helps to gather information on nanomaterials in an efficient way with the aim to aid risk assessment. Here, we discuss different ways of grouping nanomaterials for their risk assessment after inhalation. Since the relation between single intrinsic particle characteristics and the severity of pulmonary inflammation is unknown, grouping of nanomaterials by their intrinsic characteristics alone is not sufficient to predict their risk after inhalation. The biokinetics of nanomaterials should be taken into account as that affects the dose present at a target site over time. The parameters determining the kinetic behaviour are not the same as the hazard-determining parameters. Furthermore, characteristics of nanomaterials change in the life-cycle, resulting in human exposure to different forms and doses of these nanomaterials. As information on the biokinetics and in situ characteristics of nanomaterials is essential but often lacking, efforts should be made to include these in testing strategies. Grouping nanomaterials will probably be of the most value to risk assessors when information on intrinsic characteristics, life-cycle, biokinetics and effects are all combined. PMID:26603513

  20. Control of T helper 2 cell function and allergic airway inflammation by PKCζ

    PubMed Central

    Martin, Pilar; Villares, Ricardo; Rodriguez-Mascarenhas, Sandra; Zaballos, Angel; Leitges, Michael; Kovac, Judit; Sizing, Irene; Rennert, Paul; Márquez, Gabriel; Martínez-A, Carlos; Diaz-Meco, María T.; Moscat, Jorge

    2005-01-01

    Asthma is a disease of chronic airway inflammation in which T helper (Th) 2 cells play a critical role. The molecular mechanisms controlling Th2 differentiation and function are of paramount importance in biology and immunology. PKCζ has been implicated in the regulation of apoptosis and NF-κB, as well as in the control of T-dependent responses, although no defects were detected in naïve T cells from PKCζ–/– mice. Here, we report that PKCζ is critical for IL-4 signaling and Th2 differentiation. Thus, PKCζ levels are increased during Th2 differentiation, but not Th1 differentiation, of CD4+ T cells, and the loss of PKCζ impairs the secretion of Th2 cytokines in vitro and in vivo, as well as the nuclear translocation and tyrosine phosphorylation of Stat6 and Jak1 activation, essential downstream targets of IL-4 signaling. Moreover, PKCζ–/– mice display dramatic inhibition of ovalbumin-induced allergic airway disease, strongly suggesting that PKCζ can be a therapeutic target in asthma. PMID:15987782

  1. Ionotropic and Metabotropic Proton-Sensing Receptors Involved in Airway Inflammation in Allergic Asthma

    PubMed Central

    Aoki, Haruka; Mogi, Chihiro; Okajima, Fumikazu

    2014-01-01

    An acidic microenvironment has been shown to evoke a variety of airway responses, including cough, bronchoconstriction, airway hyperresponsiveness (AHR), infiltration of inflammatory cells in the lung, and stimulation of mucus hyperproduction. Except for the participation of transient receptor potential vanilloid-1 (TRPV1) and acid-sensing ion channels (ASICs) in severe acidic pH (of less than 6.0)-induced cough and bronchoconstriction through sensory neurons, the molecular mechanisms underlying extracellular acidic pH-induced actions in the airways have not been fully understood. Recent studies have revealed that ovarian cancer G protein-coupled receptor 1 (OGR1)-family G protein-coupled receptors, which sense pH of more than 6.0, are expressed in structural cells, such as airway smooth muscle cells and epithelial cells, and in inflammatory and immune cells, such as eosinophils and dendritic cells. They function in a variety of airway responses related to the pathophysiology of inflammatory diseases, including allergic asthma. In the present review, we discuss the roles of ionotropic TRPV1 and ASICs and metabotropic OGR1-family G protein-coupled receptors in the airway inflammation and AHR in asthma and respiratory diseases. PMID:25197168

  2. Mast Cells Regulate Epidermal Barrier Function and the Development of Allergic Skin Inflammation.

    PubMed

    Sehra, Sarita; Serezani, Ana P M; Ocaña, Jesus A; Travers, Jeffrey B; Kaplan, Mark H

    2016-07-01

    Atopic dermatitis is a chronic inflammatory skin disease characterized by infiltration of eosinophils, T helper cells, and mast cells. The role of mast cells in atopic dermatitis is not completely understood. To define the effects of mast cells on skin biology, we observed that mast cells regulate the homeostatic expression of epidermal differentiation complex and other skin genes. Decreased epidermal differentiation complex gene expression in mice that genetically lack mast cells (Kit(W-sh/W-sh) mice) is associated with increased uptake of protein antigens painted on the skin by dendritic cells (DCs) compared with similarly treated wild-type mice, suggesting a protective role for mast cells in exposure to nominal environmental allergens. To test this further, we crossed Kit(W-sh/W-sh) mice with signal transducer and activator of transcription 6 (i.e., Stat6) VT transgenic mice that develop spontaneous atopic dermatitis-like disease that is dependent on T helper cell 2 cytokines and is associated with high serum concentrations of IgE. We observed that Stat6VT × Kit(W-sh/W-sh) mice developed more frequent and more severe allergic skin inflammation than Stat6VT transgenic mice that had mast cells. Together, these studies suggest that mast cells regulate epidermal barrier function and have a potential protective role in the development of atopic dermatitis-like disease. PMID:27021404

  3. Mouse models to unravel the role of inhaled pollutants on allergic sensitization and airway inflammation

    PubMed Central

    2010-01-01

    Air pollutant exposure has been linked to a rise in wheezing illnesses. Clinical data highlight that exposure to mainstream tobacco smoke (MS) and environmental tobacco smoke (ETS) as well as exposure to diesel exhaust particles (DEP) could promote allergic sensitization or aggravate symptoms of asthma, suggesting a role for these inhaled pollutants in the pathogenesis of asthma. Mouse models are a valuable tool to study the potential effects of these pollutants in the pathogenesis of asthma, with the opportunity to investigate their impact during processes leading to sensitization, acute inflammation and chronic disease. Mice allow us to perform mechanistic studies and to evaluate the importance of specific cell types in asthma pathogenesis. In this review, the major clinical effects of tobacco smoke and diesel exhaust exposure regarding to asthma development and progression are described. Clinical data are compared with findings from murine models of asthma and inhalable pollutant exposure. Moreover, the potential mechanisms by which both pollutants could aggravate asthma are discussed. PMID:20092634

  4. Sex-specific lung remodeling and inflammation changes in experimental allergic asthma.

    PubMed

    Antunes, Mariana A; Abreu, Soraia C; Silva, Adriana L; Parra-Cuentas, Edwin R; Ab'Saber, Alexandre M; Capelozzi, Vera L; Ferreira, Tatiana P T; Martins, Marco A; Silva, Patricia M R; Rocco, Patricia R M

    2010-09-01

    There is evidence that sex and sex hormones influence the severity of asthma. Airway and lung parenchyma remodeling and the relationship of ultrastructural changes to airway responsiveness and inflammation in male, female, and oophorectomized mice (OVX) were analyzed in experimental chronic allergic asthma. Seventy-two BALB/c mice were randomly divided into three groups (n=24/each): male, female, and OVX mice, whose ovaries were removed 7 days before the start of sensitization. Each group was further randomized to be sensitized and challenged with ovalbumin (OVA) or saline. Twenty-four hours after the last challenge, collagen fiber content in airways and lung parenchyma, the volume proportion of smooth muscle-specific actin in alveolar ducts and terminal bronchiole, the amount of matrix metalloproteinase (MMP)-2 and MMP-9, and the number of eosinophils and interleukin (IL)-4, IL-5, and transforming growth factor (TGF)-β levels in bronchoalveolar lavage fluid were higher in female than male OVA mice. The response of OVX mice was similar to that of males, except that IL-5 remained higher. Nevertheless, after OVA provocation, airway responsiveness to methacholine was higher in males compared with females and OVX mice. In conclusion, sex influenced the remodeling process, but the mechanisms responsible for airway hyperresponsiveness seemed to differ from those related to remodeling. PMID:20634353

  5. Therapeutic efficacy of an E coli strain carrying an ovalbumin allergenic peptide as a fused protein to OMPC in a murine model of allergic airway inflammation.

    PubMed

    Yépez, Sara Huerta; Pando, Rogelio Hernández; Argumedo, Leopoldo Santos; Paredes, Mario Vega; Cueto, Angeles Hernández; Isibasi, Armando; Bonilla, César R González

    2003-01-17

    An Escherichia coli strain expressing the ovalbumin (OVA) 323-329 allergenic peptide on the bacterial surface was evaluated for its ability to reduce the lung inflammatory response in mice allergic to OVA. BALB/c mice were rendered allergic by means of two intraperitoneal injections of OVA suspended in alum 5 days apart, and one intratracheal boost 1 week later. The mice were then treated with two intranasal, 1 week apart, doses of 4x10(9) E. coli-UH302 transformed with plasmids pST13 or pST13-OVA(323-339), which bear the OmpC porin from Salmonella enterica serovar Typhi or the OmpC with the OVA allergenic 323-339 amino acid sequence inserted in the external loop 5. The allergic inflammatory reaction was evaluated on day 31, finding that mice treated with E. coli-UH302-pST13-OVA reduced four to seven times perivascular and peribronchial infiltrates, mucus production, goblet cell hyperplasia and eosinophils when compared with mice treated with E. coli-UH302-pST13 or saline solution. These results were consistent with a significant decrease of IL-5 mRNA and induction of IFN-gamma mRNA in cells from bronchio-alveolar lavages (BAL). Specific serum IgE anti-OVA was also reduced, although the decrease did not reach statistical significance. These results demonstrate that the bacterial live vector bearing an allergenic peptide successfully moderated two important components of allergy, pulmonary inflammation and mucus overproduction. PMID:12531657

  6. Immune Inflammation and Disease Progression in Idiopathic Pulmonary Fibrosis

    PubMed Central

    Balestro, Elisabetta; Calabrese, Fiorella; Turato, Graziella; Lunardi, Francesca; Bazzan, Erica; Marulli, Giuseppe; Biondini, Davide; Rossi, Emanuela; Sanduzzi, Alessandro; Rea, Federico; Rigobello, Chiara; Gregori, Dario; Baraldo, Simonetta; Spagnolo, Paolo

    2016-01-01

    The clinical course in idiopathic pulmonary fibrosis (IPF) is highly heterogeneous, with some patients having a slow progression and others an accelerated clinical and functional decline. This study aims to clinically characterize the type of progression in IPF and to investigate the pathological basis that might account for the observed differences in disease behavior. Clinical and functional data were analyzed in 73 IPF patients, followed long-time as candidates for lung transplantation. The forced vital capacity (FVC) change/year (< or ≥10% predicted) was used to define “slow” or “rapid” disease progression. Pathological abnormalities were quantified in the explanted lung of 41 out of 73 patients undergoing lung transplantation. At diagnosis, slow progressors (n = 48) showed longer duration of symptoms and lower FVC than rapid progressors (n = 25). Eleven slow and 3 rapid progressors developed an acute exacerbation (AE) during follow-up. Quantitative lung pathology showed a severe innate and adaptive inflammatory infiltrate in rapid progressors, markedly increased compared to slow progressors and similar to that observed in patients experiencing AE. The extent of inflammation was correlated with the yearly FVC decline (r = 0.52, p = 0.005). In conclusion an innate and adaptive inflammation appears to be a prominent feature in the lung of patients with IPF and could contribute to determining of the rate of disease progression. PMID:27159038

  7. Inhalation of Carbon Black Nanoparticles Aggravates Pulmonary Inflammation in Mice

    PubMed Central

    Saputra, Devina; Yoon, Jin-ha; Park, Hyunju; Heo, Yongju; Yang, Hyoseon; Lee, Eun Ji; Lee, Sangjin; Song, Chang-Woo; Lee, Kyuhong

    2014-01-01

    An increasing number of recent studies have focused on the impact of particulate matter on human health. As a model for atmospheric particulate inhalation, we investigated the effects of inhaled carbon black nanoparticles (CBNP) on mice with bleomycin-induced pulmonary fibrosis. The CNBPs were generated by a novel aerosolization process, and the mice were exposed to the aerosol for 4 hours. We found that CBNP inhalation exacerbated lung inflammation, as evidenced by histopathology analysis and by the expression levels of interleukin-6 protein, fibronectin, and interferon-γ mRNAs in lung tissues. Notably, fibronectin mRNA expression showed a statistically significant increase in expression after CBNP exposure. These data suggest that the concentration of CBNPs delivered (calculated to be 12.5 μg/m3) can aggravate lung inflammation in mice. Our results also suggest that the inhalation of ultrafine particles like PM 2.5 is an impactful environmental risk factor for humans, particularly in susceptible populations with predisposing lung conditions. PMID:25071917

  8. Chrysin suppresses mast cell-mediated allergic inflammation: Involvement of calcium, caspase-1 and nuclear factor-{kappa}B

    SciTech Connect

    Bae, Yunju; Lee, Soyoung; Kim, Sang-Hyun

    2011-07-01

    A great number of people are suffering from allergic inflammatory diseases such as asthma, atopic dermatitis, and sinusitis. Therefore discovery of drugs for the treatment of these diseases is an important subject in human health. Chrysin (5,7-dihydroxyflavone) is a natural flavonoid contained in propolis, blue passion flower, and fruits. Several studies reported that chrysin has beneficial effects including anti-tumor and anti-oxidant activities. The aim of the present study was to elucidate whether chrysin modulates the allergic inflammatory reaction and to study its possible mechanisms of action using mast cell-based in vitro and in vivo models. Chrysin inhibited immediate-type systemic hypersensitivity and serum histamine release. Chrysin attenuated immunoglobulin E-mediated local anaphylaxis. These inhibitory effects of chrysin on the systemic and local allergic reaction were more potent than cromolyn, a known anti-allergic drug. Chrysin reduced histamine release from mast cells. The inhibitory effect of chrysin on the histamine release was mediated by the modulation of intracellular calcium. In addition, chrysin decreased gene expression of pro-inflammatory cytokines such as, tumor necrosis factor-{alpha}, IL (interleukin)-1{beta}, IL-4, and IL-6 in mast cells. The inhibitory effect of chrysin on the pro-inflammatory cytokine was nuclear factor-{kappa}B and caspase-1 dependent. Our findings provide evidence that chrysin inhibits mast cell-derived allergic inflammatory reactions by blocking histamine release and pro-inflammatory cytokine expression, and suggest the mechanisms of action. Furthermore, in vivo and in vitro anti-allergic inflammatory effect of chrysin suggests a possible therapeutic application of this agent in allergic inflammatory diseases. - Research Highlights: > Discovery of drugs for the allergic inflammation is important in human health. > Chrysin is a natural flavonoid contained in propolis, blue passion flower, and fruits. > Chrysin

  9. Establishment of a mouse model for pulmonary inflammation and fibrosis by intratracheal instillation of polyhexamethyleneguanidine phosphate

    PubMed Central

    Lee, Sang Jin; Park, Jong-Hwan; Lee, Jun-Young; Jeong, Yu-Jin; Song, Jeong Ah; Lee, Kyuhong; Kim, Dong-Jae

    2016-01-01

    Although several animal models have been developed to study human pulmonary fibrosis, lack of a perfect model has raised the need for various animal models of pulmonary fibrosis. In this study, we evaluated the pulmonary effect of polyhexamethyleneguanidine phosphate instillation into the lungs of mice to determine the potential of these mice as a murine model of pulmonary fibrosis. Intratracheal instillation of polyhexamethyleneguanidine phosphate induced severe lung inflammation manifested by the infiltration of mononuclear cells and neutrophils and increased production of IL-6, TNF-α, CCL2 and CXCL1. The lung inflammation gradually increased until 28 days after polyhexamethyleneguanidine phosphate exposure, and increases of collagen deposition and TGF-β production, which are indicators of pulmonary fibrosis, were seen. Our study showed that intratracheal instillation of polyhexamethyleneguanidine phosphate induces pulmonary inflammation and fibrosis in mice. PMID:27182113

  10. Role of P2 Receptors as Modulators of Rat Eosinophil Recruitment in Allergic Inflammation

    PubMed Central

    Alberto, Anael Viana Pinto; Faria, Robson Xavier; de Menezes, Joao Ricardo Lacerda; Surrage, Andrea; da Rocha, Natasha Cristina; Ferreira, Leonardo Gomes Braga; Frutuoso, Valber da Silva; Martins, Marco Aurélio; Alves, Luiz Anastácio

    2016-01-01

    ATP and other nucleotides are released from cells through regulated pathways or following the loss of plasma membrane integrity. Once outside the cell, these compounds can activate P2 receptors: P2X ionotropic receptors and G protein-coupled P2Y receptors. Eosinophils represent major effector cells in the allergic inflammatory response and they are, in fact, associated with several physiological and pathological processes. Here we investigate the expression of P2 receptors and roles of those receptors in murine eosinophils. In this context, our first step was to investigate the expression and functionality of the P2X receptors by patch clamping, our results showed a potency ranking order of ATP>ATPγS> 2meSATP> ADP> αβmeATP> βγmeATP>BzATP> UTP> UDP>cAMP. This data suggest the presence of P2X1, P2X2 and P2X7. Next we evaluate by microfluorimetry the expression of P2Y receptors, our results based in the ranking order of potency (UTP>ATPγS> ATP > UDP> ADP >2meSATP > αβmeATP) suggests the presence of P2Y2, P2Y4, P2Y6 and P2Y11. Moreover, we confirmed our findings by immunofluorescence assays. We also did chemotaxis assays to verify whether nucleotides could induce migration. After 1 or 2 hours of incubation, ATP increased migration of eosinophils, as well as ATPγS, a less hydrolysable analogue of ATP, while suramin a P2 blocker abolished migration. In keeping with this idea, we tested whether these receptors are implicated in the migration of eosinophils to an inflammation site in vivo, using a model of rat allergic pleurisy. In fact, migration of eosinophils has increased when ATP or ATPγS were applied in the pleural cavity, and once more suramin blocked this effect. We have demonstrated that rat eosinophils express P2X and P2Y receptors. In addition, the activation of P2 receptors can increase migration of eosinophils in vitro and in vivo, an effect blocked by suramin. PMID:26784445

  11. Risk of Allergic Rhinitis, Allergic Conjunctivitis, and Eczema in Children Born to Mothers with Gum Inflammation during Pregnancy

    PubMed Central

    Hsieh, Vivian Chia-Rong; Liu, Chin-Chen; Hsiao, Yu-Chen; Wu, Trong-Neng

    2016-01-01

    Purpose Despite links between maternal and child health status, evidence on the association between gum infection in pregnant mothers and childhood allergies is scarce. We aim to evaluate the risk of developing allergy in children born to periodontal mothers in a nationwide study. Methods We conducted a 9-year population-based, retrospective cohort study using Taiwan’s National Health Insurance database. A study cohort of 42,217 newborns born to mothers with periodontal disease during pregnancy was identified in 2001 and matched with 42,334 babies born to mothers without any infection (control) by mother’s age at delivery and baby sex. With a follow-up period from 2001 to 2010, we observed the incidence of allergic rhinitis (AR), allergic conjunctivitis (AC), and eczema in these children. Cox proportional hazards regression models were performed with premature deaths as competing risk for the estimation of allergic disease risks. Results Nine-year cumulative incidences were the highest among children born to periodontal mothers; they reached 46.8%, 24.2%, and 40.4% (vs. 39.5%, 18.3% and 34.8% in control) for AR, AC, and eczema, respectively. Our results showed moderately increased risks for the allergies in children born to periodontal mothers relative to their matched non-inflammatory control (adjusted HRs: 1.17, 95% CI: 1.15–1.20; 1.27, 1.24–1.31; 1.14, 1.12–1.17, respectively). Because the impact of food consumption and living environment cannot be considered using insurance data, we attempted to control it by adjusting for parental income and mother’s residential area. Conclusions Overall cumulative incidence and risks of children born to periodontal mothers for AR, AC, and eczema are significantly higher than those born to non-inflammatory mothers. Gum infection in women during pregnancy is an independent risk factor for allergic diseases in children, thus its intergenerational consequences should be considered in gestational care. PMID:27224053

  12. Down-regulation of 8-oxoguanine DNA glycosylase 1 expression in the airway epithelium ameliorates allergic lung inflammation.

    PubMed

    Bacsi, Attila; Aguilera-Aguirre, Leopoldo; Szczesny, Bartosz; Radak, Zsolt; Hazra, Tapas K; Sur, Sanjiv; Ba, Xueqing; Boldogh, Istvan

    2013-01-01

    Allergic airway inflammation is characterized by increased expression of pro-inflammatory mediators, inflammatory cell infiltration, mucus hypersecretion, and airway hyperresponsiveness, in parallel with oxidative DNA base and strand damage, whose etiological role is not understood. Our goal was to establish the role of 8-oxoguanine (8-oxoG), a common oxidatively damaged base, and its repair by 8-oxoguanine DNA glycosylase 1 (Ogg1) in allergic airway inflammatory processes. Airway inflammation was induced by intranasally administered ragweed (Ambrosia artemisiifolia) pollen grain extract (RWPE) in sensitized BALB/c mice. We utilized siRNA technology to deplete Ogg1 from airway epithelium; 8-oxoG and DNA strand break levels were quantified by Comet assays. Inflammatory cell infiltration and epithelial methaplasia were determined histologically, mucus and cytokines levels biochemically and enhanced pause was used as the main index of airway hyperresponsiveness. Decreased Ogg1 expression and thereby 8-oxoG repair in the airway epithelium conveyed a lower inflammatory response after RWPE challenge of sensitized mice, as determined by expression of Th2 cytokines, eosinophilia, epithelial methaplasia, and airway hyperresponsiveness. In contrast, 8-oxoG repair in Ogg1-proficient airway epithelium was coupled to an increase in DNA single-strand break (SSB) levels and exacerbation of allergen challenge-dependent inflammation. Decreased expression of the Nei-like glycosylases Neil1 and Neil2 that preferentially excise ring-opened purines and 5-hydroxyuracil, respectively, did not alter the above parameters of allergic immune responses to RWPE. These results show that DNA SSBs formed during Ogg1-mediated repair of 8-oxoG augment antigen-driven allergic immune responses. A transient modulation of OGG1 expression/activity in airway epithelial cells could have clinical benefits. PMID:23127499

  13. Chrysin attenuates allergic airway inflammation by modulating the transcription factors T-bet and GATA-3 in mice.

    PubMed

    Du, Qiang; Gu, Xiaoyan; Cai, Jiankang; Huang, Mao; Su, Mei

    2012-07-01

    Chrysin, a flavonoid obtained from various natural sources, has been reported to possess anti-inflammatory, antitumor, antioxidant and anti-allergic activities. However, its anti-inflammatory and immunoregulatory activities in asthma animal models are poorly understood. In the present study, we examined the effects of chrysin on airway inflammation and the possible mechanisms through which it acts in a murine model of allergic asthma. BALB/c mice sensitized and challenged to ovalbumin (OVA) were administered intragastrically with chrysin at a dose of 50 mg/kg daily. Chrysin significantly suppressed OVA-induced airway hyperresponsiveness (AHR) to acetylcholine chloride (Ach). Chrysin administration significantly inhibited the total inflammatory cell and eosinophil counts in bronchoalveolar lavage fluid (BALF) and total immunoglobulin E (IgE) levels in serum. Histological examination of lung tissue demonstrated that chrysin significantly attenuated allergen-induced lung eosinophilic inflammation and mucus-producing goblet cells in the airway. In addition, chrysin triggered a switch of the immune response to allergens towards a T-helper type 1 (Th1) profile by modulating the transcription factors T-bet and GATA-3 in allergic mice. These data suggest that chrysin exhibits anti-inflammatory and immunoregulatory properties and provides new insights into the immunopharmacological role of chrysin in terms of its effects in a murine model of asthma. PMID:22552848

  14. Neurotrophic tyrosine kinase receptor 1 is a direct transcriptional and epigenetic target of IL-13 involved in allergic inflammation

    PubMed Central

    Rochman, M.; Kartashov, A.V.; Caldwell, J.M.; Collins, M.H.; Stucke, E.M.; Kc, K.; Sherrill, J.D.; Herren, J.; Barski, A.; Rothenberg, M.E.

    2014-01-01

    Although IL-13 and neurotrophins are functionally important for the pathogenesis of immune responses, the interaction of these pathways has not been explored. Herein, by interrogating IL-13–induced responses in human epithelial cells we show that neurotrophic tyrosine kinase receptor, type 1 (NTRK1), a cognate, high-affinity receptor for nerve growth factor (NGF), is an early transcriptional IL-13 target. Induction of NTRK1 was accompanied by accumulation of activating epigenetic marks in the promoter; transcriptional and epigenetic changes were STAT6-dependent. Using eosinophilic esophagitis (EoE) as a model for human allergic inflammation, we found that NTRK1 was increased in inflamed tissue, dynamically expressed as a function of disease activity, and the downstream mediator of NTRK1 signaling early growth response 1 (EGR1) protein was elevated in allergic inflammatory tissue compared with control tissue. Unlike NTRK1, its ligand NGF was constitutively expressed in control and disease states, indicating that IL-13–stimulated NTRK1 induction is a limiting factor in pathway activation. In epithelial cells, NGF and IL-13 synergistically induced several target genes, including CCL26 (eotaxin-3). In summary, we have demonstrated that IL-13 confers epithelial cell responsiveness to NGF by regulating NTRK1 levels by a transcriptional and epigenetic mechanism and that this process likely contributes to allergic inflammation. PMID:25389033

  15. Familial idiopathic pulmonary fibrosis. Evidence of lung inflammation in unaffected family members

    SciTech Connect

    Bitterman, P.B.; Rennard, S.I.; Keogh, B.A.; Wewers, M.D.; Adelberg, S.; Crystal, R.G.

    1986-05-22

    We evaluated 17 clinically unaffected members of three families with an autosomal dominant form of idiopathic pulmonary fibrosis for evidence of alveolar inflammation. Each person in the study was examined by gallium-67 scanning for a general estimate of pulmonary inflammation, and by bronchoalveolar lavage for characterization of the types of recovered cells and their state of activation. Eight of the 17 subjects had evidence of alveolar inflammation on the lavage studies. Supporting data included increased numbers of neutrophils and activated macrophages that released one or more neutrophil chemoattractants, and growth factors for lung fibroblasts--findings similar to those observed in patients with overt idiopathic pulmonary fibrosis. Four of these eight also had a positive gallium scan; in all the other clinically unaffected subjects the scan was normal. During a follow-up of two to four years in seven of the eight subjects who had evidence of inflammation, no clinical evidence of pulmonary fibrosis has appeared. These results indicate that alveolar inflammation occurs in approximately half the clinically unaffected family members at risk of inheriting autosomal dominant idiopathic pulmonary fibrosis. Whether these persons with evidence of pulmonary inflammation but no fibrosis will proceed to have clinically evident pulmonary fibrosis is not yet known.

  16. Exposure to low doses of formaldehyde during pregnancy suppresses the development of allergic lung inflammation in offspring

    SciTech Connect

    Maiellaro, Marília; Correa-Costa, Matheus; Vitoretti, Luana Beatriz; Gimenes Júnior, João Antônio; Câmara, Niels Olsen Saraiva; Tavares-de-Lima, Wothan; Farsky, Sandra Helena Poliselli; Lino-dos-Santos-Franco, Adriana

    2014-08-01

    Formaldehyde (FA) is an environmental and occupational pollutant, and its toxic effects on the immune system have been shown. Nevertheless, no data are available regarding the programming mechanisms after FA exposure and its repercussions for the immune systems of offspring. In this study, our objective was to investigate the effects of low-dose exposure of FA on pregnant rats and its repercussion for the development of allergic lung inflammation in offspring. Pregnant Wistar rats were assigned in 3 groups: P (rats exposed to FA (0.75 ppm, 1 h/day, 5 days/week, for 21 days)), C (rats exposed to vehicle of FA (distillated water)) and B (rats non-manipulated). After 30 days of age, the offspring was sensitised with ovalbumin (OVA)-alum and challenged with aerosolized OVA (1%, 15 min, 3 days). After 24 h the OVA challenge the parameters were evaluated. Our data showed that low-dose exposure to FA during pregnancy induced low birth weight and suppressed the development of allergic lung inflammation and tracheal hyperresponsiveness in offspring by mechanisms mediated by reduced anaphylactic antibodies synthesis, IL-6 and TNF-alpha secretion. Elevated levels of IL-10 were found. Any systemic alteration was detected in the exposed pregnant rats, although oxidative stress in the uterine environment was evident at the moment of the delivery based on elevated COX-1 expression and reduced cNOS and SOD-2 in the uterus. Therefore, we show the putative programming mechanisms induced by FA on the immune system for the first time and the mechanisms involved may be related to oxidative stress in the foetal microenvironment. - Highlights: • Formaldehyde exposure does not cause lung inflammation in pregnant rats. • Formaldehyde exposure suppresses allergic lung inflammation in the offspring. • Formaldehyde exposure induces oxidative stress in uterine environment.

  17. Allergic skin inflammation induced by chemical sensitizers is controlled by the transcription factor Nrf2.

    PubMed

    El Ali, Zeina; Gerbeix, Cédric; Hemon, Patrice; Esser, Philipp R; Martin, Stefan F; Pallardy, Marc; Kerdine-Römer, Saadia

    2013-07-01

    Allergic contact dermatitis (ACD) is induced by low-molecular weight electrophilic chemicals and metal ions. Chemical contact sensitizers trigger reactive oxygen species production and provoke electrophilic stress, leading to the accumulation of the transcription factor nuclear-related factor 2 (Nrf2) in innate immune cell types. The objective of this work was to identify the role of Nrf2 in the regulation of ACD. We used the local lymph node assay (LLNA) and the mouse ear swelling test (MEST) to study the role of Nrf2 in both the sensitization and elicitation phase in nrf2 knockout (nrf2(-/-)) and wild-type (nrf2(+/+)) mice. Five chemicals were used: two compounds known to react with cysteine residues, 2,4-dinitrochlorobenzene (DNCB) and cinnamaldehyde (CinA); one sensitizer known to exhibit mixed reactivity to cysteine and lysine residues, isophorone diisocyanate; and one reacting specifically with lysine residues, trimellitic anhydride and croton oil, a well-known irritant. In the MEST assay, DNCB (1 and 2%) induced a significant increase in ear thickness in nrf2(-/-) compared with nrf2(+/+) mice, suggesting a role for Nrf2 in the control of the inflammatory process. When DNCB was used at 0.25 and 0.5% or when mice were treated with CinA, inflammation was found only in nrf2(-/-) mice. In the LLNA, all chemical sensitizers induced an increase of lymphocyte proliferation in nrf2(-/-) compared with nrf2(+/+) mice for the same chemical concentration. These results reveal an important role for Nrf2 in controlling ACD and lymphocyte proliferation in response to sensitizers. PMID:23564646

  18. Adam8 Limits the Development of Allergic Airway Inflammation in Mice

    PubMed Central

    Knolle, Martin D.; Nakajima, Takahiro; Hergrueter, Anja; Gupta, Kushagra; Polverino, Francesca; Craig, Vanessa J.; Fyfe, Susanne E.; Zahid, Muhammad; Permaul, Perdita; Cernadas, Manuela; Montano, Gilbert; Tesfaigzi, Yohannes; Sholl, Lynette; Kobzik, Lester; Israel, Elliot; Owen, Caroline A.

    2013-01-01

    To determine whether a disintegrin and a metalloproteinase-8 (Adam8) regulates allergic airway inflammation (AAI) and airway hyper-responsiveness (AHR), we compared AAI and AHR in wild type (WT) versus Adam8−/− mice in different genetic backgrounds sensitized and challenged with ovalbumin (OVA) or house dust mite protein extract (HDM). OVA- and HDM-treated Adam8−/− mice had higher lung leukocyte counts, more airway mucus metaplasia, greater lung levels of some TH2 cytokines, and higher methacholine-induced increases in central airway resistance than allergen-treated WT mice. Studies of OVA-treated Adam8 bone marrow chimeric mice confirmed that leukocyte-derived Adam8 predominantly mediated Adam8’s anti-inflammatory activities in murine airways. Airway eosinophils and macrophages both expressed Adam8 in WT mice with AAI. Adam8 limited AAI and AHR in mice by reducing leukocyte survival because: 1) Adam8−/− mice with AAI had fewer apoptotic eosinophils and macrophages in their airways than WT mice with AAI; and 2) Adam8−/− macrophages and eosinophils had reduced rates of apoptosis compared with WT leukocytes when the intrinsic (but not the extrinsic) apoptosis pathway was triggered in the cells in vitro. ADAM8 was robustly expressed by airway granulocytes in lung sections from human asthma patients but, surprisingly, airway macrophages had less ADAM8 staining than airway eosinophils. Thus, ADAM8 has anti-inflammatory activities during AAI in mice by activating the intrinsic apoptosis pathway in myeloid leukocytes. Strategies that increase ADAM8 levels in myeloid leukocytes may have therapeutic efficacy in asthma. PMID:23670189

  19. Natural Killer Receptor 1 Dampens the Development of Allergic Eosinophilic Airway Inflammation.

    PubMed

    Elhaik Goldman, Shirin; Moshkovits, Itay; Shemesh, Avishai; Filiba, Ayelet; Tsirulsky, Yevgeny; Vronov, Elena; Shagan, Marilou; Apte, Ron N; Benharroch, D Aniel; Karo-Atar, Danielle; Dagan, Ron; Munitz, Ariel; Mizrachi Nebenzahl, Yaffa; Porgador, Angel

    2016-01-01

    The function of NCR1 was studied in a model of experimental asthma, classified as a type 1 hypersensitivity reaction, in mice. IgE levels were significantly increased in the serum of OVA immunized NCR1 deficient (NCR1gfp/gfp) mice in comparison to OVA immunized wild type (NCR1+/+) and adjuvant immunized mice. Histological analysis of OVA immunized NCR1gfp/gfp mice revealed no preservation of the lung structure and overwhelming peribronchial and perivascular granulocytes together with mononuclear cells infiltration. OVA immunized NCR+/+ mice demonstrated preserved lung structure and peribronchial and perivascular immune cell infiltration to a lower extent than that in NCR1gfp/gfp mice. Adjuvant immunized mice demonstrated lung structure preservation and no immune cell infiltration. OVA immunization caused an increase in PAS production independently of NCR1 presence. Bronchoalveolar lavage (BAL) revealed NCR1 dependent decreased percentages of eosinophils and increased percentages of lymphocytes and macrophages following OVA immunization. In the OVA immunized NCR1gfp/gfp mice the protein levels of eosinophils' (CCL24) and Th2 CD4+ T-cells' chemoattractants (CCL17, and CCL24) in the BAL are increased in comparison with OVA immunized NCR+/+ mice. In the presence of NCR1, OVA immunization caused an increase in NK cells numbers and decreased NCR1 ligand expression on CD11c+GR1+ cells and decreased NCR1 mRNA expression in the BAL. OVA immunization resulted in significantly increased IL-13, IL-4 and CCL17 mRNA expression in NCR1+/+ and NCR1gfp/gfp mice. IL-17 and TNFα expression increased only in OVA-immunized NCR1+/+mice. IL-6 mRNA increased only in OVA immunized NCR1gfp/gfp mice. Collectively, it is demonstrated that NCR1 dampens allergic eosinophilic airway inflammation. PMID:27580126

  20. Protective role of interleukin-10 in Ozone-induced pulmonary inflammation**

    EPA Science Inventory

    Background: The mechanisms underlying ozone (03)-induced pulmonary inflammation remain unclear. Interleukin-10 (IL-10) is an anti-inflammatory cytokine that is known to inhibit inflammatory mediators. Objectives: We investigated the molecular mechanisms underlying interleuken-10...

  1. Pulmonary oxidative stress, inflammation and dysregulated iron homeostatis in rat models of cardiovascular disease

    EPA Science Inventory

    Underlying cardiovascular disease (CVD) is considered a risk factor for the exacerbation of air pollution health effects. Therefore, rodent models of CVD are increasingly used to examine mechanisms ofvariation in susceptibility. Pulmonary oxidative stress, inflammation and altere...

  2. Ozone-Induced Pulmonary Injury and Inflammation are Modulated by Adrenal-Derived Stress Hormones

    EPA Science Inventory

    Ozone exposure promotes pulmonary injury and inflammation. Previously we have characterized systemic changes that occur immediately after acute ozone exposure and are mediated by neuro-hormonal stress response pathway. Both HPA axis and sympathetic tone alterations induce the rel...

  3. Alveolar macrophage-derived vascular endothelial growth factor contributes to allergic airway inflammation in a mouse asthma model.

    PubMed

    Song, C; Ma, H; Yao, C; Tao, X; Gan, H

    2012-06-01

    Vascular endothelial growth factor (VEGF) is a potent proangiogenic factor that correlates with vascular permeability and remodelling in asthma. Recently, alveolar macrophages (AM) were shown to be an important source of VEGF during lung injury. Our previous studies demonstrated that AM are an important subset of macrophages in the initiation of asthmatic symptoms. Here, we further investigated whether AM-derived VEGF was required for allergic airway inflammation in asthma. In this study, we reported that the expression of VEGF in AM was significantly increased after allergen challenge. Depleting AM or neutralizing VEGF in alveolus prevented ovalbumin (OVA)-induced asthma-related inflammation by inhibiting the infiltration of inflammatory cells in the lung, reduced the level of the cytokines, IL-4, IL-5, and IL-13, in the bronchoalveolar lavage fluid (BALF) and decreased airway hyperresponsiveness (AHR). Moreover, the inhibition of miR-20b increased the protein level of VEGF in normal AM; conversely, increasing miR-20b in asthmatic AM resulted in decreased VEGF protein levels. These findings suggest that AM-derived VEGF is necessary for allergic airway inflammation in asthmatic mice and miR-20b negatively regulates this expression. PMID:22324377

  4. Allergen-Experienced Group 2 Innate Lymphoid Cells Acquire Memory-like Properties and Enhance Allergic Lung Inflammation.

    PubMed

    Martinez-Gonzalez, Itziar; Mathä, Laura; Steer, Catherine A; Ghaedi, Maryam; Poon, Grace F T; Takei, Fumio

    2016-07-19

    Group 2 innate lymphoid cells (ILC2s) in the lung are stimulated by inhaled allergens. ILC2s do not directly recognize allergens but they are stimulated by cytokines including interleukin (IL)-33 released by damaged epithelium. In response to allergens, lung ILC2s produce T helper 2 cell type cytokines inducing T cell-independent allergic lung inflammation. Here we examined the fate of lung ILC2s upon allergen challenges. ILC2s proliferated and secreted cytokines upon initial stimulation with allergen or IL-33, and this phase was followed by a contraction phase as cytokine production ceased. Some ILC2s persisted long after the resolution of the inflammation as allergen-experienced ILC2s and responded to unrelated allergens more potently than naive ILC2s, mediating severe allergic inflammation. The allergen-experienced ILC2s exhibited a gene expression profile similar to that of memory T cells. The memory-like properties of allergen-experienced ILC2s may explain why asthma patients are often sensitized to multiple allergens. PMID:27421705

  5. Dietary Fiber Intake Regulates Intestinal Microflora and Inhibits Ovalbumin-Induced Allergic Airway Inflammation in a Mouse Model

    PubMed Central

    Zhang, Zhiyu; Shi, Lei; Pang, Wenhui; Liu, Wenwen; Li, Jianfeng; Wang, Haibo; Shi, Guanggang

    2016-01-01

    Background Recently, academic studies suggest that global growth of airway allergic disease has a close association with dietary changes including reduced consumption of fiber. Therefore, appropriate dietary fiber supplementation might be potential to prevent airway allergic disease (AAD). Objective We investigated whether dietary fiber intake suppressed the induction of AAD and tried to elucidate the possible underlying mechanisms. Methods The control mice and AAD model mice fed with 4% standard-fiber chow, while low-fiber group of mice fed with a 1.75% low-fiber chow. The two fiber-intervened groups including mice, apart from a standard-fiber diet, were also intragastric (i.g.) administrated daily with poorly fermentable cellulose or readily fermentable pectin (0.4% of daily body weight), respectively. All animals except normal mice were sensitized and challenged with ovalbumin (OVA) to induce airway allergic inflammation. Hallmarks of AAD were examined by histological analysis and ELISA. The variation in intestinal bacterial composition was assessed by qualitative analysis of 16S ribosomal DNA (rDNA) content in fecal samples using real-time PCR. Results Low-fiber diet aggravated inflammatory response in ovalbumin-induced allergic mice, whereas dietary fiber intake significantly suppressed the allergic responses, attenuated allergic symptoms of nasal rubbing and sneezing, decreased the pathology of eosinophil infiltration and goblet cell metaplasia in the nasal mucosa and lung, inhibited serum OVA-specific IgE levels, and lowered the levels of Th2 cytokines in NALF and BALF, but, increased Th1 (IFN-γ) cytokines. Additionally, dietary fiber intake also increased the proportion of Bacteroidetes and Actinobacteria, and decreased Firmicutes and Proteobacteria. Levels of probiotic bacteria, such as Lactobacillus and Bifidobacterium, were upgraded significantly. Conclusion Long-term deficiency of dietary fiber intake increases the susceptibility to AAD, whereas proper

  6. Self-Assembling Nanoparticles Containing Dexamethasone as a Novel Therapy in Allergic Airways Inflammation

    PubMed Central

    Kenyon, Nicholas J.; Bratt, Jennifer M.; Lee, Joyce; Luo, Juntao; Franzi, Lisa M.; Zeki, Amir A.; Lam, Kit S.

    2013-01-01

    Nanocarriers can deliver a wide variety of drugs, target them to sites of interest, and protect them from degradation and inactivation by the body. They have the capacity to improve drug action and decrease undesirable systemic effects. We have previously developed a well-defined non-toxic PEG-dendritic block telodendrimer for successful delivery of chemotherapeutics agents and, in these studies, we apply this technology for therapeutic development in asthma. In these proof-of-concept experiments, we hypothesized that dexamethasone contained in self-assembling nanoparticles (Dex-NP) and delivered systemically would target the lung and decrease allergic lung inflammation and airways hyper-responsiveness to a greater degree than equivalent doses of dexamethasone (Dex) alone. We found that ovalbumin (Ova)-exposed mice treated with Dex-NP had significantly fewer total cells (2.78±0.44×105 (n = 18) vs. 5.98±1.3×105 (n = 13), P<0.05) and eosinophils (1.09±0.28×105 (n = 18) vs. 2.94±0.6×105 (n = 12), p<0.05) in the lung lavage than Ova-exposed mice alone. Also, lower levels of the inflammatory cytokines IL-4 (3.43±1.2 (n = 11) vs. 8.56±2.1 (n = 8) pg/ml, p<0.05) and MCP-1 (13.1±3.6 (n = 8) vs. 28.8±8.7 (n = 10) pg/ml, p<0.05) were found in lungs of the Dex-NP compared to control, and they were not lower in the Dex alone group. In addition, respiratory system resistance was lower in the Dex-NP compared to the other Ova-exposed groups suggesting a better therapeutic effect on airways hyperresponsiveness. Taken together, these findings from early-stage drug development studies suggest that the encapsulation and protection of anti-inflammatory agents such as corticosteroids in nanoparticle formulations can improve efficacy. Further development of novel drugs in nanoparticles is warranted to explore potential treatments for chronic inflammatory diseases such as asthma. PMID:24204939

  7. Self-assembling nanoparticles containing dexamethasone as a novel therapy in allergic airways inflammation.

    PubMed

    Kenyon, Nicholas J; Bratt, Jennifer M; Lee, Joyce; Luo, Juntao; Franzi, Lisa M; Zeki, Amir A; Lam, Kit S

    2013-01-01

    Nanocarriers can deliver a wide variety of drugs, target them to sites of interest, and protect them from degradation and inactivation by the body. They have the capacity to improve drug action and decrease undesirable systemic effects. We have previously developed a well-defined non-toxic PEG-dendritic block telodendrimer for successful delivery of chemotherapeutics agents and, in these studies, we apply this technology for therapeutic development in asthma. In these proof-of-concept experiments, we hypothesized that dexamethasone contained in self-assembling nanoparticles (Dex-NP) and delivered systemically would target the lung and decrease allergic lung inflammation and airways hyper-responsiveness to a greater degree than equivalent doses of dexamethasone (Dex) alone. We found that ovalbumin (Ova)-exposed mice treated with Dex-NP had significantly fewer total cells (2.78 ± 0.44 × 10(5) (n = 18) vs. 5.98 ± 1.3 × 10(5) (n = 13), P<0.05) and eosinophils (1.09 ± 0.28 × 10(5) (n = 18) vs. 2.94 ± 0.6 × 10(5) (n = 12), p<0.05) in the lung lavage than Ova-exposed mice alone. Also, lower levels of the inflammatory cytokines IL-4 (3.43 ± 1.2 (n = 11) vs. 8.56 ± 2.1 (n = 8) pg/ml, p<0.05) and MCP-1 (13.1 ± 3.6 (n = 8) vs. 28.8 ± 8.7 (n = 10) pg/ml, p<0.05) were found in lungs of the Dex-NP compared to control, and they were not lower in the Dex alone group. In addition, respiratory system resistance was lower in the Dex-NP compared to the other Ova-exposed groups suggesting a better therapeutic effect on airways hyperresponsiveness. Taken together, these findings from early-stage drug development studies suggest that the encapsulation and protection of anti-inflammatory agents such as corticosteroids in nanoparticle formulations can improve efficacy. Further development of novel drugs in nanoparticles is warranted to explore potential treatments for chronic inflammatory diseases such as asthma. PMID:24204939

  8. Comparison of allergen-induced changes in bronchial hyperresponsiveness and airway inflammation between mildly allergic asthma patients and allergic rhinitis patients.

    PubMed

    Alvarez, M J; Olaguibel, J M; Garcia, B E; Tabar, A I; Urbiola, E

    2000-06-01

    Bronchial eosinophilic inflammation and bronchial hyperresponsiveness (BHR) are the main features of allergic asthma (AA), but they have also been demonstrated in allergic rhinitis (AR), suggesting a continuity between both diseases. In spite of not fully reproducing natural allergenic exposure, the allergen bronchial provocation test (A-BPT) has provided important knowledge of the pathophysiology of AA. Our aim was to verify the existence of a behavior of AA and AR airways different from the allergen bronchial challenge-induced airway eosinophilic inflammation and BHR changes. We studied a group of 31 mild and short-evolution AA and 15 AR patients, sensitized to Dermatophagoides pteronyssinus. The A-BPT was performed with a partially biologically standardized D. pteronyssinus extract, and known quantities of Der p 1 were inhaled. Peripheral blood (eosinophils and ECP) and induced sputum (percentage cell counts, ECP, albumin, tryptase, and interleukin [IL]-5) were analyzed, before and 24 h after A-BPT. Methacholine BHR, assessed before and 32 h after the A-BPT, was defined by M-PD20 values and, when possible, by maximal response plateau (MRP). The A-BPT was well tolerated by all the patients. AA presented a lower Der p 1 PD20 and a higher occurrence of late-phase responses (LPR). M-PD20 values decreased in AA, but not in AR, patients. MRP values increased in both groups. Eosinophils numbers and ECP levels increased in blood and sputum from both AA and AR, but only the absolute increment of sputum ECP levels was higher in AA than AR patients (P = 0.025). The A-BPT induced no change in sputum albumin, tryptase, or IL-5 values. We conclude as follows: 1) In spite of presenting a lower degree of bronchial sensitivity to allergen, AR patients responded to allergen inhalation with an eosinophilic inflammation enhancement very similar to that observed among AA. 2) MRP levels increased in both AA and AR patients after allergen challenge; however, M-PD20 values

  9. Allergic inflammation in the human lower respiratory tract affected by exposure to diesel exhaust.

    PubMed

    Riedl, Marc A; Diaz-Sanchez, David; Linn, William S; Gong, Henry; Clark, Kenneth W; Effros, Richard M; Miller, J Wayne; Cocker, David R; Berhane, Kiros T

    2012-02-01

    significantly during DE exposure. In Phase 2, indicators of airway inflammation in sputum showed a possibly meaningful response: polymorphonuclear leukocytes (PMNs) and eosinophils increased after DE exposure, whereas macrophages decreased. IgE in sputum and the bronchoconstrictive response to cat allergen varied significantly between atmospheres, but not in patterns consistent with our primary hypothesis. Symptom score changes relatable to DE exposure were smaller than those in Phase 1 and not statistically significant. Controlled exposures, lasting 2 hours with intermittent exercise, to diluted DE at a particle mass concentration of 100 microg/m3 did not evoke clear and consistent lower-airway or systemic immunologic or inflammatory responses in mildly asthmatic subjects, with or without accompanying challenge with cat allergen. Likewise, these DE exposures did not significantly increase nonspecific or allergen-specific bronchial reactivity. A few isolated statistically significant or near-significant changes were observed during and after DE exposure, including increases in nonspecific symptoms (e.g., headache, nausea) suggestive of subtle, rapid-onset systemic effects. It is possible the lower respiratory tract is more resistant than the nose to adjuvant effects of diesel particles on allergic inflammation, so that no meaningful effects occur under exposure conditions like these. Alternatively, the experimental conditions may have been near a threshold for finding effects. That is, important lower respiratory effects may occur but may be detectable experimentally with slightly higher DEP concentrations, longer exposures, more invasive testing (e.g., bronchoalveolar lavage), or more susceptible subjects. However, ethical and practical barriers to such experiments are considerable. PMID:22852485

  10. A limited CpG-containing oligodeoxynucleotide therapy regimen induces sustained suppression of allergic airway inflammation in mice

    PubMed Central

    Kozy, Heather M.; Lum, Jeremy A.; Sweetwood, Rosemary; Chu, Mabel; Cunningham, Cameron R.; Salamon, Hugh; Lloyd, Clare M.; Coffman, Robert L.; Hessel, Edith M.

    2015-01-01

    Background CpG-containing oligodeoxynucleotides (CpG-ODN) are potent inhibitors of Th2-mediated allergic airway disease in sensitized mice challenged with allergen. A single treatment has transient effects but a limited series of treatments has potential to achieve clinically meaningful sustained inhibition of allergic airway disease. Objective To optimize the treatment regimen and determine the mechanisms of action in mice of an inhaled form of CpG-ODN being developed for human asthma treatment. Methods A limited series of weekly intranasal 1018 ISS (CpG-ODN; B-class) treatments were given to ragweed allergen-sensitized mice chronically exposed to allergen during and after the 1018 ISS treatment regimen. Treatment effects were evaluated by measuring effect on lung Th2 cytokines and eosinophilia as well as lung dendritic cell function and T cell responses. Results Twelve intranasal 1018 ISS treatments induced significant suppression of BAL eosinophilia and IL-4, IL-5, and IL-13 levels and suppression was maintained through 13 weekly ragweed exposures administered after treatment cessation. At least 5 treatments were required for lasting Th2 suppression. CpG-ODN induced moderate Th1 responses but Th2 suppression did not require IFN-γ. Th2 suppression was associated with induction of a regulatory T cell response. Conclusion A short series of CpG-ODN treatments results in sustained suppression of allergic lung inflammation induced by a clinically relevant allergen. PMID:24464743

  11. Inhibitory effect of putranjivain A on allergic inflammation through suppression of mast cell activation

    SciTech Connect

    Kim, Hui-Hun; Park, Seung-Bin; Lee, Soyoung; Kwon, Taeg Kyu; Shin, Tae-Yong; Park, Pil-Hoon; Lee, Seung-Ho; Kim, Sang-Hyun

    2014-02-01

    A great number of people are suffering from allergic inflammatory disease such as asthma, atopic dermatitis, and sinusitis. Therefore discovery of drugs for the treatment of these diseases is an important subject in human health. Putranjivain A (PJA), member of ellagitannin, is known to possess beneficial effects including anti-cancer and anti-viral activities. The aim of the present study was to elucidate whether PJA modulates the allergic inflammatory reaction and to study its possible mechanisms of action using mast cell-based in vitro and in vivo models. The study was performed in anaphylaxis mouse model and cultured mast cells. PJA inhibited the expression of pro-inflammatory cytokines in immunoglobulin E-stimulated mast cells. PJA reduced this expression by inhibiting nuclear factor (NF)-κB and nuclear factor of activated T cell. The oral administration of PJA reduced systemic and cutaneous anaphylaxis, the release of serum histamine, and the expression of the histamine H{sub 1} receptor. In addition, PJA attenuated the activation of mast cells. PJA inhibited the release of histamine from various types of mast cells by the suppression of intracellular calcium. The inhibitory activity of PJA on the allergic reaction was similar to that of disodium cromoglycate, a known anti-allergic drug. These results suggest that PJA can facilitate the prevention or treatment of allergic inflammatory diseases mediated by mast cells. - Highlights: • PJA reduced the degranulation of mast cells. • PJA inhibited the production of inflammatory cytokines. • The effect of PJA on allergic reaction was comparable to the DSCG. • PJA might be a candidate for the treatment of allergic inflammatory diseases.

  12. Strain-dependent activation of NF-kappaB in the airway epithelium and its role in allergic airway inflammation.

    PubMed

    Alcorn, John F; Ckless, Karina; Brown, Amy L; Guala, Amy S; Kolls, Jay K; Poynter, Matthew E; Irvin, Charles G; van der Vliet, Albert; Janssen-Heininger, Yvonne M W

    2010-01-01

    NF-kappaB activation in the airway epithelium has been established as a critical pathway in ovalbumin (Ova)-induced airway inflammation in BALB/c mice (Poynter ME, Cloots R, van Woerkom T, Butnor KJ, Vacek P, Taatjes DJ, Irvin CG, Janssen-Heininger YM. J Immunol 173: 7003-7009, 2004). BALB/c mice are susceptible to the development of allergic airway disease, whereas other strains of mice, such as C57BL/6, are considered more resistant. The goal of the present study was to determine the proximal signals required for NF-kappaB activation in the airway epithelium in allergic airway disease and to unravel whether these signals are strain-dependent. Our previous studies, conducted in the BALB/c mouse background, demonstrated that transgenic mice expressing a dominant-negative version of IkappaBalpha in the airway epithelium (CC10-IkappaBalpha(SR)) were protected from Ova-induced inflammation. In contrast to these earlier observations, we demonstrate here that CC10-IkappaBalpha(SR) transgenic mice on the C57BL/6 background were not protected from Ova-induced allergic airway inflammation. Consistent with this finding, Ova-induced nuclear localization of the RelA subunit of NF-kappaB was not observed in C57BL/6 mice, in contrast to the marked nuclear presence of RelA in BALB/c mice. Evaluation of cytokine profiles in bronchoalveolar lavage demonstrated elevated expression of TNF-alpha in BALB/c mice compared with C57BL/6 mice after an acute challenge with Ova. Finally, neutralization of TNF-alpha by a blocking antibody prevented nuclear localization of RelA in BALB/c mice after Ova challenge. These data suggest that the mechanism of response of the airway epithelium of immunized C57BL/6 mice to antigen challenge is fundamentally different from that of immunized BALB/c mice and highlight the potential importance of TNF-alpha in regulating epithelial NF-kappaB activation in allergic airway disease. PMID:19897746

  13. Diesel exposure suppresses natural killer cell function and resolution of eosinophil inflammation: a randomized controlled trial of exposure in allergic rhinitics.

    PubMed

    Pawlak, Erica A; Noah, Terry L; Zhou, Haibo; Chehrazi, Claire; Robinette, Carole; Diaz-Sanchez, David; Müller, Loretta; Jaspers, Ilona

    2016-01-01

    Exposure to diesel exhaust (DE) is known to exacerbate allergic inflammation, including virus-induced eosinophil activation in laboratory animals. We have previously shown that in human volunteers with allergic rhinitis a short-term exposure to DE prior to infection with the live attenuated influenza virus (LAIV) increases markers of allergic inflammation in the nasal mucosa. Specifically, levels of eosinophilic cationic protein (ECP) were significantly enhanced in individuals exposed to DE prior to inoculation with LAIV and this effect was maintained for at least seven days. However, this previous study was limited in its scope of nasal immune endpoints and did not explore potential mechanisms mediating the prolonged exacerbation of allergic inflammation caused by exposure to DE prior to inoculation with LAIV. In this follow-up study, the methods were modified to expand experimental endpoints and explore the potential role of NK cells. The data presented here suggest DE prolongs viral-induced eosinophil activation, which was accompanied by decreased markers of NK cell recruitment and activation. Separate in vitro studies showed that exposure to DE particles decreases the ability of NK cells to kill eosinophils. Taken together, these follow-up studies suggest that DE-induced exacerbation of allergic inflammation in the context of viral infections may be mediated by decreased activity of NK cells and their ability to clear eosinophils. PMID:27154411

  14. Rupatadine improves nasal symptoms, airflow and inflammation in patients with persistent allergic rhinitis: a pilot study.

    PubMed

    Ciprandi, Giorgio; Cirillo, I

    2010-01-01

    Nasal obstruction is the main symptom in patients with allergic rhinitis and may be measured by rhinomanometry. Rupatadine is a new antihistamine with potential antiallergic activities. The aim of this pilot study is to evaluate nasal symptoms, nasal airflow and nasal mediators in patients with persistent allergic rhinitis, before and after treatment with rupatadine. Twenty patients with persistent allergic rhinitis were evaluated, 15 males and 5 females (mean age 35 +/- 9.1 years), all of whom received rupatadine (10 mg/daily) for 3 weeks. Nasal and ocular symptoms (measured by VAS), rhinomanometry, and nasal mediators (ECP and tryptase) were assessed in all subjects before and after treatment. Rupatadine treatment induced significant symptom relief (both nasal and ocular, respectively p=0.005 and p=0.0004), including obstruction (p=0.0015) and significant increase of nasal airflow (p=0.0025). Moreover, there was a significant difference of nasal mediators. In conclusion, this pilot study demonstrates the effectiveness of rupatadine treatment in: i) improving nasal and ocular symptoms, ii) increasing nasal airflow, iii) exerting antiallergic activity in patients with persistent allergic rhinitis. These positive results could explain the effectiveness of rupatadine in the treatment of persistent allergic rhinitis, as reported in a previous study Further controlled studies need to be conducted to confirm these preliminary findings. PMID:20487631

  15. Inhibitory effects of Pycnogenol® (French maritime pine bark extract) on airway inflammation in ovalbumin-induced allergic asthma.

    PubMed

    Shin, In-Sik; Shin, Na-Rae; Jeon, Chan-Mi; Hong, Ju-Mi; Kwon, Ok-Kyoung; Kim, Jong-Choon; Oh, Sei-Ryang; Hahn, Kyu-Woung; Ahn, Kyung-Seop

    2013-12-01

    Pycnogenol® (PYC) is a standardized extracts from the bark of the French maritime pine (Pinus maritime) and used as a herbal remedy for various diseases. In this study, we evaluated the effects of PYC on airway inflammation using a model of ovalbumin (OVA)-induced allergic asthma and RAW264.7 cells. PYC decreased nitric oxide production and reduced the interleukine (IL)-1β and IL-6 levels in LPS-stimulated RAW264.7 cells. PYC also reduced the expression of inducible nitric oxide synthase (iNOS) and matrix metalloproteinase (MMP)-9 and enhanced the expression of hemeoxygenase (HO)-1. In the in vivo experiment, PYC decreased the inflammatory cell count and the levels of IL-4, IL-5, IL-13, and immunoglobulin (Ig) E in BALF or serum. These results are consistent with the histological analysis findings, which showed that PYC attenuated the airway inflammation and mucus hypersecretion induced by OVA challenge. In addition, PYC enhanced the expression of HO-1. In contrast, PYC inhibited the elevated expression of iNOS and MMP-9 proteins induced by OVA challenge. In conclusion, PYC exhibits protective effects against OVA-induced asthma and LPS-stimulated RAW264.7 cells. These results suggest that PYC has potential as a therapeutic agent for the treatment of allergic asthma. PMID:24120901

  16. Investigating the Effects of Particulate Matter on House Dust Mite and Ovalbumin Allergic Airway Inflammation in Mice.

    PubMed

    Castañeda, Alejandro R; Pinkerton, Kent E

    2016-01-01

    Particulate matter (PM), a component of air pollution, has been shown to enhance allergen-mediated airway hypersensitivity and inflammation. Surprisingly, exposure to PM during the sensitization to allergen is sufficient to produce immunological changes that result in heightened inflammatory effects upon future allergen exposures (challenge) in the absence of PM. This suggests that PM has the ability to modulate the allergic immune response, thereby acting as an adjuvant by enhancing the immunological memory formed during the adaptive immune response; however, the mechanisms through which this occurs remain elusive. Establishing a reproducible animal model to study the PM-mediated immunotoxicological effects that enhance allergy, may provide insights to understand how air pollution activates the immune system and thereby modulates the pathophysiology of asthma. The basic protocol can be used to study various characteristics of air pollution, such as PM size, source, or chemical composition, to help elucidate how such features may affect the allergic response in a mouse model of asthma. Using a BALB/c model of acute exposure (14 days), mice are first sensitized with allergen and PM, and then subsequently challenged with allergen only. The endpoints of this basic protocol include the assessment of inflammation via cells recovered from broncho-alveolar lavage (BAL), histopathological analysis, gene expression profiles, and protein quantification of inflammatory markers. © 2016 by John Wiley & Sons, Inc. PMID:27145110

  17. The Ethanol Extract of Osmanthus fragrans Flowers Reduces Oxidative Stress and Allergic Airway Inflammation in an Animal Model

    PubMed Central

    Hung, Chien-Ya; Shi, Li-Shian; Wang, Jing-Yao; Tsai, Yu-Cheng; Ye, Yi-Ling

    2013-01-01

    The Osmanthus fragrans flower, a popular herb in Eastern countries, contains several antioxidant compounds. Ben Cao Gang Mu, traditional Chinese medical literature, describes the usefulness of these flowers for phlegm and stasis reduction, arrest of dysentery with blood in the bowel, and stomachache and diarrhea treatment. However, modern evidence regarding the therapeutic efficacy of these flowers is limited. This study was aimed at assessing the antioxidative effects of the ethanol extract of O. fragrans flowers (OFE) in vivo and evaluating its antioxidant maintenance and therapeutic effect on an allergic airway inflammation in mice. After OFE's oral administration to mice, the values obtained in the oxygen radical absorbance capacity assay as well as the glutathione concentration in the lungs and spleens of mice increased while thiobarbituric acid reactive substances decreased significantly, indicating OFE's significant in vivo antioxidant activity. OFE was also therapeutically efficacious in a mouse model of ovalbumin-induced allergic airway inflammation. Orally administered OFE suppressed ovalbumin-specific IgE production and inflammatory cell infiltration in the lung. Moreover, the antioxidative state of the mice improved. Thus, our findings confirm the ability of the O. fragrans flowers to reduce phlegm and suggest that OFE may be useful as an antiallergic agent. PMID:24386002

  18. The histamine H4 -receptor (H4 R) regulates eosinophilic inflammation in ovalbumin-induced experimental allergic asthma in mice.

    PubMed

    Hartwig, Christina; Munder, Antje; Glage, Silke; Wedekind, Dirk; Schenk, Heiko; Seifert, Roland; Neumann, Detlef

    2015-04-01

    Via the histamine H4 -receptor (H4 R), histamine promotes the pathogenesis of experimental allergic asthma in mice. Application of H4 R antagonists during sensitization as well as during provocation reduces the severity of the disease. However, the specific cell types functionally expressing H4 R in experimental allergic asthma have not been well characterized in vivo. In this study, we identified the cell type(s) responsible for H4 R activity in experimental asthma and related physiological mechanisms. Using H4 R-deficient mice, we studied the role of H4 R in the sensitization and effector phase. DCs lacking H4 R expression during the in vitro sensitization reaction resulted in effector T cells unable to induce an entire eosinophilic inflammation in the lung upon adoptive transfer in vivo. Recipient mice lacking H4 R expression, which were adoptively transferred with H4 R(+/+) T cells polarized in the presence of H4 R(+/+) DCs, showed reduced signs of inflammation and ameliorated lung function. Here, we provide in vivo evidence that in experimental asthma in mice the H4 R specifically regulates activation of DCs during sensitization, while in the effector phase the H4 R is active in cells involved in the activation of eosinophils, and possibly other cells. A putative therapy targeting the H4 R may be an option for asthma patients developing IL-5-dependent eosinophilia. PMID:25501767

  19. High-dose but not low-dose mainstream cigarette smoke suppresses allergic airway inflammation by inhibiting T cell function

    PubMed Central

    Thatcher, Thomas H.; Benson, Randi P.; Phipps, Richard P.; Sime, Patricia J.

    2008-01-01

    Epidemiological studies have identified childhood exposure to environmental tobacco smoke as a significant risk factor for the onset and exacerbation of asthma, but studies of smoking in adults are less conclusive, and mainstream cigarette smoke (MCS) has been reported to both enhance and attenuate allergic airway inflammation in animal models. We sensitized mice to ovalbumin (OVA) and exposed them to MCS in a well-characterized exposure system. Exposure to MCS (600 mg/m3 total suspended particulates, TSP) for 1 h/day suppresses the allergic airway response, with reductions in eosinophilia, tissue inflammation, goblet cell metaplasia, IL-4 and IL-5 in bronchoalveolar lavage (BAL) fluid, and OVA-specific antibodies. Suppression is associated with a loss of antigen-specific proliferation and cytokine production by T cells. However, exposure to a lower dose of MCS (77 mg/m3 TSP) had no effect on the number of BAL eosinophils or OVA-specific antibodies. This is the first report to demonstrate, using identical smoking methodologies, that MCS inhibits immune responses in a dose-dependent manner and may explain the observation that, although smoking provokes a systemic inflammatory response, it also inhibits T cell-mediated responses involved in a number of diseases. PMID:18567739

  20. Functional relevance of NLRP3 inflammasome-mediated interleukin (IL)-1β during acute allergic airway inflammation

    PubMed Central

    Ritter, M; Straubinger, K; Schmidt, S; Busch, D H; Hagner, S; Garn, H; Prazeres da Costa, C; Layland, L E

    2014-01-01

    Overall asthmatic symptoms can be controlled with diverse therapeutic agents. However, certain symptomatic individuals remain at risk for serious morbidity and mortality, which prompts the identification of novel therapeutic targets and treatment strategies. Thus, using an adjuvant-free T helper type 2 (Th2) murine model, we have deciphered the role of interleukin (IL)-1 signalling during allergic airway inflammation (AAI). Because functional IL-1β depends on inflammasome activation we first studied asthmatic manifestations in specific inflammasome-deficient [NACHT, LRR and PYD domains-containing protein 3 (NLRP3−/−) and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC−/−)] and IL-1 receptor type 1−/− (IL-1R1−/−) mice on the BALB/c background. To verify the onset of disease we assessed cellular infiltration in the bronchial regions, lung pathology, airway hyperresponsiveness and ovalbumin (OVA)-specific immune responses. In the absence of NLRP3 inflammasome-mediated IL-1β release all symptoms of AAI were reduced, except OVA-specific immunoglobulin levels. To address whether manipulating IL-1 signalling reduced asthmatic development, we administered the IL-1R antagonist anakinra (Kineret®) during critical immunological time-points: sensitization or challenge. Amelioration of asthmatic symptoms was only observed when anakinra was administered during OVA challenge. Our findings indicate that blocking IL-1 signalling could be a potential complementary therapy for allergic airway inflammation. PMID:24943899

  1. Mesenchymal stromal cells mediate Aspergillus hyphal extract-induced allergic airway inflammation by inhibition of the Th17 signaling pathway.

    PubMed

    Lathrop, Melissa J; Brooks, Elice M; Bonenfant, Nick R; Sokocevic, Dino; Borg, Zachary D; Goodwin, Meagan; Loi, Roberto; Cruz, Fernanda; Dunaway, Chad W; Steele, Chad; Weiss, Daniel J

    2014-02-01

    Systemic administration of mesenchymal stromal cells (MSCs) suppresses airway inflammation and methacholine-induced airway hyper-responsiveness (AHR) in mouse models of T helper cell (Th) type 2-mediated eosinophilic allergic airway inflammation (AAI); however, the efficacy of MSCs in mouse models of severe Th17-mediated neutrophilic AAI has not yet been demonstrated. We assessed MSC effects in a mouse model of mixed Th2/Th17 AAI produced by mucosal exposure to Aspergillus fumigatus hyphal extract (AHE). Following sensitization produced by oropharyngeal AHE administration, systemic (tail vein) administration of syngeneic MSCs on the first day of challenge significantly reduced acute AHR predominantly through reduction of Th17-mediated airway inflammation. In parallel experiments, MSCs also mitigated AHR when administered during recurrent challenge 10 weeks after initial sensitization and challenge through reduction in systemic Th17-mediated inflammation. Investigation into potential mechanistic actions of MSCs in this model demonstrated that although T regulatory cells were increased in all AHE-treated mice, MSC administration did not alter T regulatory cell numbers in either the acute or recurrent model. Differential induction of interleukin-17a secretion was observed in ex vivo restimulation of mediastinal lymph node mixed-cell cytokine analyses. Although the mechanisms by which MSCs act to decrease inflammation and AHR in this model are not yet fully elucidated, decrease in Th17-mediated airway inflammation appears to play a significant role. These results provide a basis for further investigations of MSC administration as a potential therapeutic approach for severe refractory neutrophilic asthma. PMID:24436442

  2. Measurement of airway function using invasive and non-invasive methods in mild and severe models for allergic airway inflammation in mice

    PubMed Central

    Verheijden, Kim A. T.; Henricks, Paul A. J.; Redegeld, Frank A.; Garssen, Johan; Folkerts, Gert

    2014-01-01

    In this study a direct comparison was made between non-invasive and non-ventilated unrestrained whole body plethysmography (Penh) (conscious animals) and the invasive ventilated lung resistance (RL) method (anesthetized animals) in both mild and severe allergic airway inflammation models. Mild inflammation was induced by intraperitoneal sensitization and aerosols of ovalbumin. Severe inflammation was induced by intraperitoneal sensitization using trinitrophenyl-ovalbumin, followed by intranasal challenges with IgE-allergen complexes. A significant increase in airway responsiveness to methacholine was observed in the mild inflammation group when RL was measured. Significant changes in both RL and Penh were observed in the severe inflammation groups. There was a significant increase in the number of inflammatory cells in the Broncho-Alveolar Lavage Fluid (BALF) in both the mild and severe inflammation animals. The enforced ventilation of the animals during the RL measurement further increased the number of cells in the BALF. IL-2 and RANTES levels in the BALF were higher in the severe inflammation groups compared to the mild inflammation groups. Penh gave only reliable measurements during severe airway inflammation. Measuring RL gave consistent results in both mild and severe allergic airway inflammation models however, ventilation induced an additional cell influx into the airways. PMID:25161620

  3. Arginase inhibition prevents inflammation and remodeling in a guinea pig model of chronic obstructive pulmonary disease.

    PubMed

    Pera, T; Zuidhof, A B; Smit, M; Menzen, M H; Klein, T; Flik, G; Zaagsma, J; Meurs, H; Maarsingh, H

    2014-05-01

    Airway inflammation and remodeling are major features of chronic obstructive pulmonary disease (COPD), whereas pulmonary hypertension is a common comorbidity associated with a poor disease prognosis. Recent studies in animal models have indicated that increased arginase activity contributes to features of asthma, including allergen-induced airway eosinophilia and mucus hypersecretion. Although cigarette smoke and lipopolysaccharide (LPS), major risk factors for COPD, may increase arginase expression, the role of arginase in COPD is unknown. This study aimed to investigate the role of arginase in pulmonary inflammation and remodeling using an animal model of COPD. Guinea pigs were instilled intranasally with LPS or saline twice weekly for 12 weeks and pretreated by inhalation of the arginase inhibitor 2(S)-amino-6-boronohexanoic acid (ABH) or vehicle. Repeated LPS exposure increased lung arginase activity, resulting in increased l-ornithine/l-arginine and l-ornithine/l-citrulline ratios. Both ratios were reversed by ABH. ABH inhibited the LPS-induced increases in pulmonary IL-8, neutrophils, and goblet cells as well as airway fibrosis. Remarkably, LPS-induced right ventricular hypertrophy, indicative of pulmonary hypertension, was prevented by ABH. Strong correlations were found between arginase activity and inflammation, airway remodeling, and right ventricular hypertrophy. Increased arginase activity contributes to pulmonary inflammation, airway remodeling, and right ventricular hypertrophy in a guinea pig model of COPD, indicating therapeutic potential for arginase inhibitors in this disease. PMID:24563530

  4. Exposure to nickel oxide nanoparticles induces pulmonary inflammation through NLRP3 inflammasome activation in rats.

    PubMed

    Cao, Zhengwang; Fang, Yiliang; Lu, Yonghui; Qian, Fenghua; Ma, Qinglong; He, Mingdi; Pi, Huifeng; Yu, Zhengping; Zhou, Zhou

    2016-01-01

    With recent advances in the manufacture and application of nickel oxide nanoparticles (NiONPs), concerns about their adverse effects on the respiratory system are increasing. However, the underlying cellular and molecular mechanisms of NiONP-induced pulmonary toxicity remain unclear. In this study, we focused on the impacts of NiONPs on pulmonary inflammation and investigated whether the NLRP3 inflammasome is involved in NiONP-induced pulmonary inflammation and injury. NiONP suspensions were administered by single intratracheal instillation to rats, and inflammatory responses were evaluated at 3 days, 7 days, or 28 days after treatment. NiONP exposure resulted in sustained pulmonary inflammation accompanied by inflammatory cell infiltration, alveolar proteinosis, and cytokine secretion. Expression of Nlrp3 was markedly upregulated by the NiONPs, which was accompanied by overexpression of the active form of caspase-1 (p20) and interleukin (IL)-1β secretion in vivo. NiONP-induced IL-1β secretion was partially prevented by co-treatment with a caspase-1 inhibitor in macrophages. Moreover, siRNA-mediated Nlrp3 knockdown completely attenuated NiONP-induced cytokine release and caspase-1 activity in macrophages in vitro. In addition, NiONP-induced NLRP3 inflammasome activation requires particle uptake and reactive oxygen species production. Collectively, our findings suggest that the NLRP3 inflammasome participates in NiONP-induced pulmonary inflammation and offer new strategies to combat the pulmonary toxicity induced by NiONPs. PMID:27524893

  5. Exposure to nickel oxide nanoparticles induces pulmonary inflammation through NLRP3 inflammasome activation in rats

    PubMed Central

    Cao, Zhengwang; Fang, Yiliang; Lu, Yonghui; Qian, Fenghua; Ma, Qinglong; He, Mingdi; Pi, Huifeng; Yu, Zhengping; Zhou, Zhou

    2016-01-01

    With recent advances in the manufacture and application of nickel oxide nanoparticles (NiONPs), concerns about their adverse effects on the respiratory system are increasing. However, the underlying cellular and molecular mechanisms of NiONP-induced pulmonary toxicity remain unclear. In this study, we focused on the impacts of NiONPs on pulmonary inflammation and investigated whether the NLRP3 inflammasome is involved in NiONP-induced pulmonary inflammation and injury. NiONP suspensions were administered by single intratracheal instillation to rats, and inflammatory responses were evaluated at 3 days, 7 days, or 28 days after treatment. NiONP exposure resulted in sustained pulmonary inflammation accompanied by inflammatory cell infiltration, alveolar proteinosis, and cytokine secretion. Expression of Nlrp3 was markedly upregulated by the NiONPs, which was accompanied by overexpression of the active form of caspase-1 (p20) and interleukin (IL)-1β secretion in vivo. NiONP-induced IL-1β secretion was partially prevented by co-treatment with a caspase-1 inhibitor in macrophages. Moreover, siRNA-mediated Nlrp3 knockdown completely attenuated NiONP-induced cytokine release and caspase-1 activity in macrophages in vitro. In addition, NiONP-induced NLRP3 inflammasome activation requires particle uptake and reactive oxygen species production. Collectively, our findings suggest that the NLRP3 inflammasome participates in NiONP-induced pulmonary inflammation and offer new strategies to combat the pulmonary toxicity induced by NiONPs. PMID:27524893

  6. α-Tocopherol supplementation of allergic female mice inhibits development of CD11c+CD11b+ dendritic cells in utero and allergic inflammation in neonates

    PubMed Central

    Abdala-Valencia, Hiam; Berdnikovs, Sergejs; Soveg, Frank W.

    2014-01-01

    α-Tocopherol blocks responses to allergen challenge in allergic adult mice, but it is not known whether α-tocopherol regulates the development of allergic disease. Development of allergic disease often occurs early in life. In clinical studies and animal models, offspring of allergic mothers have increased responsiveness to allergen challenge. Therefore, we determined whether α-tocopherol blocked development of allergic responses in offspring of allergic female mice. Allergic female mice were supplemented with α-tocopherol starting at mating. The pups from allergic mothers developed allergic lung responses, whereas pups from saline-treated mothers did not respond to the allergen challenge, and α-tocopherol supplementation of allergic female mice resulted in a dose-dependent reduction in eosinophils in the pup bronchoalveolar lavage and lungs after allergen challenge. There was also a reduction in pup lung CD11b+ dendritic cell subsets that are critical to development of allergic responses, but there was no change in several CD11b− dendritic cell subsets. Furthermore, maternal supplementation with α-tocopherol reduced the number of fetal liver CD11b+ dendritic cells in utero. In the pups, there was reduced allergen-induced lung mRNA expression of IL-4, IL-33, TSLP, CCL11, and CCL24. Cross-fostering pups at the time of birth demonstrated that α-tocopherol had a regulatory function in utero. In conclusion, maternal supplementation with α-tocopherol reduced fetal development of subsets of dendritic cells that are critical for allergic responses and reduced development of allergic responses in pups from allergic mothers. These results have implications for supplementation of allergic mothers with α-tocopherol. PMID:25015974

  7. Inhibitory effect of oblongifolin C on allergic inflammation through the suppression of mast cell activation.

    PubMed

    Lu, Yue; Cai, Shuangfan; Tan, Hongsheng; Fu, Wenwei; Zhang, Hong; Xu, Hongxi

    2015-08-01

    Oblongifolin C (OC), a natural small molecule compound extracted from Garcinia yunnanensis Hu, has been previously shown to have anti-cancer effect, but the anti-allergic effect of OC has not yet been investigated. The aim of the present study is to determine the anti-allergic effect of OC on IgE/Ag-induced mouse bone marrow-derived mast cells (BMMCs) and on the passive systemic anaphylaxis (PSA) reaction in mice. OC clearly suppressed cyclooxygenase-2 (COX-2)-dependent prostaglandin D2 (PGD2) generation as well as leukotriene C4 (LTC4) generation and the degranulation reaction in IgE/Ag-stimulated BMMCs. Biochemical analyses of the IgE/Ag-mediated signaling pathways showed that OC suppressed the phosphorylation of phospholipase Cγ1 (PLCγ1)-mediated intracellular Ca(2+) influx and the nuclear factor-κB (NF-κB) pathway, as well as the phosphorylation of mitogen-activated protein (MAP) kinases. Although OC did not inhibit the phosphorylation of Fyn, Lyn, and Syk, it directly inhibited the tyrosine kinase activity in vitro. Moreover, oral administration of OC inhibited the IgE-induced PSA reaction in a dose-dependent manner. Taken together, the present study provides new insights into the anti-allergic activity of OC, which could be a promising candidate for allergic therapy. PMID:25968068

  8. Adjuvant and anti-inflammatory properties of cigarette smoke in murine allergic airway inflammation.

    PubMed

    Trimble, Nancy J; Botelho, Fernando M; Bauer, Carla M T; Fattouh, Ramzi; Stämpfli, Martin R

    2009-01-01

    The impact of cigarette smoke on allergic asthma remains controversial both clinically and experimentally. The objective of this study was to investigate, in a murine model, how cigarette smoke affects immune inflammatory processes elicited by a surrogate allergen. In our experimental design, mice were concurrently exposed to cigarette smoke and ovalbumin (OVA), an innocuous antigen that, unless introduced in the context of an adjuvant, induces inhalation tolerance. We show that cigarette smoke exposure has adjuvant properties, allowing for allergic mucosal sensitization to OVA. Specifically, concurrent exposure to cigarette smoke and OVA for 2 weeks led to airway eosinophilia and goblet cell hyperplasia. In vivo OVA recall challenge 1 month after the last smoke exposure showed that concurrent exposure to OVA and cigarette smoke induced antigen-specific memory. Robust eosinophilia and OVA-specific IgG1 and IgE characterized the ensuing inflammatory response. Mechanistically, allergic sensitization was, in part, granulocyte macrophage colony-stimulating factor (GM-CSF) dependent, as a significant reduction in BAL eosinophilia was observed in mice treated with an anti-GM-CSF antibody. Of note, continuous smoke exposure attenuated the OVA recall response; decreased airway eosinophilia was observed in mice continuously exposed to cigarette smoke compared with mice that ceased the smoke exposure protocol. In conclusion, we demonstrate experimentally that while cigarette smoke acts as an adjuvant allowing for allergic sensitization, it also attenuates the ensuing eosinophilic inflammatory response. PMID:18635815

  9. γ-Tocopherol supplementation of allergic female mice augments development of CD11c+CD11b+ dendritic cells in utero and allergic inflammation in neonates.

    PubMed

    Abdala-Valencia, Hiam; Soveg, Frank; Cook-Mills, Joan M

    2016-04-15

    γ-Tocopherol increases responses to allergen challenge in allergic adult mice, but it is not known whether γ-tocopherol regulates the development of allergic disease. Development of allergic disease often occurs early in life. In clinical studies and animal models, offspring of allergic mothers have increased responsiveness to allergen challenge. Therefore, we determined whether γ-tocopherol augments development of allergic responses in offspring of allergic female mice. Allergic female mice were supplemented with γ-tocopherol starting at mating. The pups from allergic mothers developed allergic lung responses, whereas pups from saline-treated mothers did not respond to allergen challenge. The γ-tocopherol supplementation of allergic female mice increased the numbers of eosinophils twofold in the pup bronchoalveolar lavage and lungs after allergen challenge. There was also about a twofold increase in pup lung CD11b(+) subsets of CD11c(+) dendritic cells and in numbers of these dendritic cells expressing the transcription factor IRF4. There was no change in several CD11b(-) dendritic cell subsets. Furthermore, maternal supplementation with γ-tocopherol increased the number of fetal liver CD11b(+)CD11c(+) dendritic cells twofold in utero. In the pups, γ-tocopherol increased lung expression of the inflammatory mediators CCL11, amphiregulin, activin A, and IL-5. In conclusion, maternal supplementation with γ-tocopherol increased fetal development of subsets of dendritic cells that are critical for allergic responses and increased development of allergic responses in pups from allergic mothers. These results have implications for supplementation of allergic mothers with γ-tocopherol in prenatal vitamins. PMID:26801566

  10. Misdiagnosis of pulmonary embolism in patients with allergic reaction--the importance of prior probability of disease.

    PubMed

    Janata, Karin; Prokop, Mathias; Schaefer-Prokop, Cornelia; Laggner, Anton N

    2003-10-31

    Because pulmonary embolism (PE) and its treatment carry substantial risk of morbidity and mortality, accurate diagnosis is essential. We report two cases with allergic reactions, in which PE was suggested by routine ECG and D-dimer elevation and strengthened by spiral CT. Therapy with low-molecular-weight heparin was initiated and long-term anticoagulation was considered. As their histories did not reveal any predisposing factor to PE, the cases were re-evaluated. Elevation of D-dimer was now attributed to allergic reaction, ECG abnormalities were considered as constitutional, and findings from spiral CT attributed to breathing artifacts and partial-volume effects. The diagnosis of PE was therefore rejected and anticoagulant treatment discontinued without sequelae. These cases show the importance of determining clinical probability before ordering further diagnostic tests and critical interpretation of test results suggestive of PE, based on prior probability of the disease. PMID:14650950

  11. The Intestinal Microbiota Contributes to the Ability of Helminths to Modulate Allergic Inflammation

    PubMed Central

    Zaiss, Mario M.; Rapin, Alexis; Lebon, Luc; Dubey, Lalit Kumar; Mosconi, Ilaria; Sarter, Kerstin; Piersigilli, Alessandra; Menin, Laure; Walker, Alan W.; Rougemont, Jacques; Paerewijck, Oonagh; Geldhof, Peter; McCoy, Kathleen D.; Macpherson, Andrew J.; Croese, John; Giacomin, Paul R.; Loukas, Alex; Junt, Tobias; Marsland, Benjamin J.; Harris, Nicola L.

    2015-01-01

    Summary Intestinal helminths are potent regulators of their host’s immune system and can ameliorate inflammatory diseases such as allergic asthma. In the present study we have assessed whether this anti-inflammatory activity was purely intrinsic to helminths, or whether it also involved crosstalk with the local microbiota. We report that chronic infection with the murine helminth Heligmosomoides polygyrus bakeri (Hpb) altered the intestinal habitat, allowing increased short chain fatty acid (SCFA) production. Transfer of the Hpb-modified microbiota alone was sufficient to mediate protection against allergic asthma. The helminth-induced anti-inflammatory cytokine secretion and regulatory T cell suppressor activity that mediated the protection required the G protein-coupled receptor (GPR)-41. A similar alteration in the metabolic potential of intestinal bacterial communities was observed with diverse parasitic and host species, suggesting that this represents an evolutionary conserved mechanism of host-microbe-helminth interactions. PMID:26522986

  12. The Intestinal Microbiota Contributes to the Ability of Helminths to Modulate Allergic Inflammation.

    PubMed

    Zaiss, Mario M; Rapin, Alexis; Lebon, Luc; Dubey, Lalit Kumar; Mosconi, Ilaria; Sarter, Kerstin; Piersigilli, Alessandra; Menin, Laure; Walker, Alan W; Rougemont, Jacques; Paerewijck, Oonagh; Geldhof, Peter; McCoy, Kathleen D; Macpherson, Andrew J; Croese, John; Giacomin, Paul R; Loukas, Alex; Junt, Tobias; Marsland, Benjamin J; Harris, Nicola L

    2015-11-17

    Intestinal helminths are potent regulators of their host's immune system and can ameliorate inflammatory diseases such as allergic asthma. In the present study we have assessed whether this anti-inflammatory activity was purely intrinsic to helminths, or whether it also involved crosstalk with the local microbiota. We report that chronic infection with the murine helminth Heligmosomoides polygyrus bakeri (Hpb) altered the intestinal habitat, allowing increased short chain fatty acid (SCFA) production. Transfer of the Hpb-modified microbiota alone was sufficient to mediate protection against allergic asthma. The helminth-induced anti-inflammatory cytokine secretion and regulatory T cell suppressor activity that mediated the protection required the G protein-coupled receptor (GPR)-41. A similar alteration in the metabolic potential of intestinal bacterial communities was observed with diverse parasitic and host species, suggesting that this represents an evolutionary conserved mechanism of host-microbe-helminth interactions. PMID:26522986

  13. Effects of inhaled therapy on biomarkers of systemic inflammation in stable chronic obstructive pulmonary disease.

    PubMed

    Antoniu, Sabina A

    2010-03-01

    In chronic obstructive pulmonary disease (COPD) airways inflammation is associated in more advanced stages with systemic inflammation. COPD-associated systemic inflammation syndrome is defined currently with rather non-specific biomarkers such as C-reactive protein (CRP) but there are also other 'organ-specific' biomarkers such as surfactant protein-D which are still not well characterized but might represent more appropriate and reliable alternatives to the non-specific biomarkers. Inhaled therapies are the mainstay in stable COPD and they were demonstrated to reduce airway inflammation and more recently in the case of inhaled corticosteroids alone or combined with long-acting beta-2 agonists to reduce systemic inflammation as well. This paper focuses on current and potential biomarkers of systemic inflammation in COPD and on the systemic anti-inflammatory effects of inhaled therapies in stable COPD. PMID:19929747

  14. Reducing hypoxia and inflammation during invasive pulmonary aspergillosis by targeting the Interleukin-1 receptor

    PubMed Central

    Gresnigt, Mark S.; Rekiki, Abdessalem; Rasid, Orhan; Savers, Amélie; Jouvion, Grégory; Dannaoui, Eric; Parlato, Marianna; Fitting, Catherine; Brock, Matthias; Cavaillon, Jean-Marc; van de Veerdonk, Frank L.; Ibrahim-Granet, Oumaïma

    2016-01-01

    Hypoxia as a result of pulmonary tissue damage due to unresolved inflammation during invasive pulmonary aspergillosis (IPA) is associated with a poor outcome. Aspergillus fumigatus can exploit the hypoxic microenvironment in the lung, but the inflammatory response required for fungal clearance can become severely disregulated as a result of hypoxia. Since severe inflammation can be detrimental to the host, we investigated whether targeting the interleukin IL-1 pathway could reduce inflammation and tissue hypoxia, improving the outcome of IPA. The interplay between hypoxia and inflammation was investigated by in vivo imaging of hypoxia and measurement of cytokines in the lungs in a model of corticosteroid immunocompromised and in Cxcr2 deficient mice. Severe hypoxia was observed following Aspergillus infection in both models and correlated with development of pulmonary inflammation and expression of hypoxia specific transcripts. Treatment with IL-1 receptor antagonist reduced hypoxia and slightly, but significantly reduced mortality in immunosuppressed mice, but was unable to reduce hypoxia in Cxcr2−/− mice. Our data provides evidence that the inflammatory response during invasive pulmonary aspergillosis, and in particular the IL-1 axis, drives the development of hypoxia. Targeting the inflammatory IL-1 response could be used as a potential immunomodulatory therapy to improve the outcome of aspergillosis. PMID:27215684

  15. Reducing hypoxia and inflammation during invasive pulmonary aspergillosis by targeting the Interleukin-1 receptor.

    PubMed

    Gresnigt, Mark S; Rekiki, Abdessalem; Rasid, Orhan; Savers, Amélie; Jouvion, Grégory; Dannaoui, Eric; Parlato, Marianna; Fitting, Catherine; Brock, Matthias; Cavaillon, Jean-Marc; van de Veerdonk, Frank L; Ibrahim-Granet, Oumaïma

    2016-01-01

    Hypoxia as a result of pulmonary tissue damage due to unresolved inflammation during invasive pulmonary aspergillosis (IPA) is associated with a poor outcome. Aspergillus fumigatus can exploit the hypoxic microenvironment in the lung, but the inflammatory response required for fungal clearance can become severely disregulated as a result of hypoxia. Since severe inflammation can be detrimental to the host, we investigated whether targeting the interleukin IL-1 pathway could reduce inflammation and tissue hypoxia, improving the outcome of IPA. The interplay between hypoxia and inflammation was investigated by in vivo imaging of hypoxia and measurement of cytokines in the lungs in a model of corticosteroid immunocompromised and in Cxcr2 deficient mice. Severe hypoxia was observed following Aspergillus infection in both models and correlated with development of pulmonary inflammation and expression of hypoxia specific transcripts. Treatment with IL-1 receptor antagonist reduced hypoxia and slightly, but significantly reduced mortality in immunosuppressed mice, but was unable to reduce hypoxia in Cxcr2(-/-) mice. Our data provides evidence that the inflammatory response during invasive pulmonary aspergillosis, and in particular the IL-1 axis, drives the development of hypoxia. Targeting the inflammatory IL-1 response could be used as a potential immunomodulatory therapy to improve the outcome of aspergillosis. PMID:27215684

  16. Residual oil fly ash amplifies allergic cytokines, airway responsiveness, and inflammation in mice.

    PubMed

    Gavett, S H; Madison, S L; Stevens, M A; Costa, D L

    1999-12-01

    Particulate matter (PM) air pollution may increase symptom severity in allergic asthmatics. To examine possible interaction, or greater than additive responses, between PM effects and allergic responses, an ovalbumin-sensitized and challenged (OVA) mouse model of allergic airways disease was utilized. After challenge, mice were intratracheally instilled with saline vehicle or 3 mg/kg (approximately 60 microg) residual oil fly ash (ROFA), a transition metal-rich emission source PM sample. Physiological and inflammatory responses were examined 1, 3, 8, and 15 d later. In response to intravenously administered methacholine, ROFA increased total respiratory system resistance and decreased compliance 1 d after exposure, whereas effects of OVA lasted at least 15 d after exposure. Significant interactions between OVA and ROFA were mainly observed 8 d after challenge and exposure, especially with respect to compliance. A strong interaction (p < 0.01) between OVA and ROFA exposure resulted in 8-fold (1 d) and 3-fold (3 d) increases in bronchoalveolar lavage (BAL) fluid eosinophil numbers. A similarly strong interaction (8-fold) was observed in BAL fluid interleukin-4 (IL-4) 1 d after challenge and exposure. Significant though less strong interactions were also found with respect to IL-4 and IL-5 by 3 d postchallenge/exposure. This study shows that allergen challenge and exposure to emission source particulate matter containing relatively high levels of transitions metals can interact to increase Th2 cytokine production, eosinophil recruitment, and airway hyperresponsiveness in previously sensitized mice. PMID:10588603

  17. The role of histamine H1 and H4 receptors in allergic inflammation: the search for new antihistamines.

    PubMed

    Thurmond, Robin L; Gelfand, Erwin W; Dunford, Paul J

    2008-01-01

    Histamine has a key role in allergic inflammatory conditions. The inflammatory responses resulting from the liberation of histamine have long been thought to be mediated by the histamine H1 receptor, and H1-receptor antagonists--commonly known as antihistamines--have been used to treat allergies for many years. However, the importance of histamine in the pathology of conditions such as asthma and chronic pruritus may have been underestimated. Here, we review accumulating evidence suggesting that histamine indeed has roles in inflammation and immune function modulation in such diseases. In particular, the discovery of a fourth histamine receptor (H4) and its expression on numerous immune and inflammatory cells has prompted a re-evaluation of the actions of histamine, suggesting a new potential for H4-receptor antagonists and a possible synergy between H1 and H4-receptor antagonists in targeting various inflammatory conditions. PMID:18172439

  18. Preventive and therapeutic anti-inflammatory properties of the sesquiterpene α-humulene in experimental airways allergic inflammation

    PubMed Central

    Rogerio, Alexandre P; Andrade, Edinéia L; Leite, Daniela FP; Figueiredo, Cláudia P; Calixto, João B

    2009-01-01

    Background and purpose: α-Humulene and trans-caryophyllene are plant sesquiterpenes with pronounced anti-inflammatory properties. Here, we evaluated the effects of these compounds in an experimental model of airways allergic inflammation. Experimental approach: Female BALB/c mice, sensitized to and challenged with ovalbumin received daily α-humulene or trans-caryophyllene (50 mg·kg−1, orally) or α-humulene (1 mg·mL−1, by aerosol) as either a preventive (for 22 days) or therapeutic (from the 18th to the 22nd day) treatment. Dexamethasone or budesonide was used as a positive control drug. Inflammation was determined on day 22 post-immunization by leukocyte recruitment, interleukin-5 (IL-5), CCL11, interferon-γ (IFN-γ) and leukotriene (LT)B4 levels in bronchoalveolar lavage fluid (BALF). In addition, transcription factors [nuclear factor κB (NF-κB), activator protein 1 (AP-1)] and P-selectin in lung tissue were measured by immunohistochemistry and mucus secretion by histochemistry. Key results: Preventive or therapeutic treatments with α-humulene, but not with trans-caryophyllene, significantly reduced the eosinophil recruitment to the BALF. In addition, α-humulene recovery INF-γ and reduced the IL-5, CCL11 and LTB4 levels in BALF, as well as the IL-5 production in mediastinal lymph nodes (in vitro assay). Furthermore, α-humulene decreased the NF-kB and the AP-1 activation, the expression of P-selectin and the increased mucus secretion in the lung. Conclusions and implications: α-Humulene, given either orally or by aerosol, exhibited marked anti-inflammatory properties in a murine model of airways allergic inflammation, an effect that seemed to be mediated via reduction of inflammatory mediators, adhesion molecule expression and transcription factors activation. This article is part of a themed issue on Mediators and Receptors in the Resolution of Inflammation. To view this issue visit http://www3.interscience.wiley.com/journal/121548564/issueyear

  19. Angiotensin-(1-7) attenuates airway remodelling and hyperresponsiveness in a model of chronic allergic lung inflammation

    PubMed Central

    Magalhães, G S; Rodrigues-Machado, M G; Motta-Santos, D; Silva, A R; Caliari, M V; Prata, L O; Abreu, S C; Rocco, P R M; Barcelos, L S; Santos, R A S; Campagnole-Santos, M J

    2015-01-01

    Background and Purpose A long-term imbalance between pro- and anti-inflammatory mediators leads to airway remodelling, which is strongly correlated to most of the symptoms, severity and progression of chronic lung inflammation. The Angiotensin-(1-7) [Ang-(1-7)]/Mas receptor axis of the renin-angiotensin system is associated with attenuation of acute and chronic inflammatory processes. In this study, we investigated the effects of Ang-(1-7) treatment in a model of chronic allergic lung inflammation. Experimental Approach Mice were sensitized to ovalbumin (OVA; 4 injections over 42 days, 14 days apart) and were challenged three times per week (days 21–46). These mice received Ang-(1-7) (1 μg·h−1, s.c.) by osmotic mini-pumps, for the last 28 days. Histology and morphometric analysis were performed in left lung and right ventricle. Airway responsiveness to methacholine, analysis of Ang-(1-7) levels (RIA), collagen I and III (qRT-PCR), ERK1/2 and JNK (Western blotting), IgE (elisa), cytokines and chemokines (elisa multiplex), and immunohistochemistry for Mas receptors were performed. Key Results Infusion of Ang-(1-7) in OVA-sensitized and challenged mice decreased inflammatory cell infiltration and collagen deposition in the airways and lung parenchyma, and prevented bronchial hyperresponsiveness. These effects were accompanied by decreased IgE and ERK1/2 phosphorylation, and decreased pro-inflammatory cytokines. Mas receptors were detected in the epithelium and bronchial smooth muscle, suggesting a site in the lung for the beneficial actions of Ang-(1-7). Conclusions and Implications Ang-(1-7) exerted beneficial attenuation of three major features of chronic asthma: lung inflammation, airway remodelling and hyperresponsiveness. Our results support an important protective role of Ang-(1-7) in lung inflammation. PMID:25559763

  20. Recruited alveolar macrophages, in response to airway epithelial-derived monocyte chemoattractant protein 1/CCl2, regulate airway inflammation and remodeling in allergic asthma.

    PubMed

    Lee, Yong Gyu; Jeong, Jong Jin; Nyenhuis, Sharmilee; Berdyshev, Evgeny; Chung, Sangwoon; Ranjan, Ravi; Karpurapu, Manjula; Deng, Jing; Qian, Feng; Kelly, Elizabeth A B; Jarjour, Nizar N; Ackerman, Steven J; Natarajan, Viswanathan; Christman, John W; Park, Gye Young

    2015-06-01

    Although alveolar macrophages (AMs) from patients with asthma are known to be functionally different from those of healthy individuals, the mechanism by which this transformation occurs has not been fully elucidated in asthma. The goal of this study was to define the mechanisms that control AM phenotypic and functional transformation in response to acute allergic airway inflammation. The phenotype and functional characteristics of AMs obtained from human subjects with asthma after subsegmental bronchoprovocation with allergen was studied. Using macrophage-depleted mice, the role and trafficking of AM populations was determined using an acute allergic lung inflammation model. We observed that depletion of AMs in a mouse allergic asthma model attenuates Th2-type allergic lung inflammation and its consequent airway remodeling. In both human and mouse, endobronchial challenge with allergen induced a marked increase in monocyte chemotactic proteins (MCPs) in bronchoalveolar fluid, concomitant with the rapid appearance of a monocyte-derived population of AMs. Furthermore, airway allergen challenge of allergic subjects with mild asthma skewed the pattern of AM gene expression toward high levels of the receptor for MCP1 (CCR2/MCP1R) and expression of M2 phenotypic proteins, whereas most proinflammatory genes were highly suppressed. CCL2/MCP-1 gene expression was prominent in bronchial epithelial cells in a mouse allergic asthma model, and in vitro studies indicate that bronchial epithelial cells produced abundant MCP-1 in response to house dust mite allergen. Thus, our study indicates that bronchial allergen challenge induces the recruitment of blood monocytes along a chemotactic gradient generated by allergen-exposed bronchial epithelial cells. PMID:25360868

  1. Tiotropium inhibits pulmonary inflammation and remodelling in a guinea pig model of COPD.

    PubMed

    Pera, T; Zuidhof, A; Valadas, J; Smit, M; Schoemaker, R G; Gosens, R; Maarsingh, H; Zaagsma, J; Meurs, H

    2011-10-01

    Airway remodelling and emphysema are major structural abnormalities in chronic obstructive pulmonary disease (COPD). In addition, pulmonary vascular remodelling may occur and contribute to pulmonary hypertension, a comorbidity of COPD. Increased cholinergic activity in COPD contributes to airflow limitation and, possibly, to inflammation and airway remodelling. This study aimed to investigate the role of acetylcholine in pulmonary inflammation and remodelling using an animal model of COPD. To this aim, guinea pigs were instilled intranasally with lipopolysaccharide (LPS) twice weekly for 12 weeks and were treated, by inhalation, with the long-acting muscarinic receptor antagonist tiotropium. Repeated LPS exposure induced airway and parenchymal neutrophilia, and increased goblet cell numbers, lung hydroxyproline content, airway wall collagen and airspace size. Furthermore, LPS increased the number of muscularised microvessels in the adventitia of cartilaginous airways. Tiotropium abrogated the LPS-induced increase in neutrophils, goblet cells, collagen deposition and muscularised microvessels, but had no effect on emphysema. In conclusion, tiotropium inhibits remodelling of the airways as well as pulmonary inflammation in a guinea pig model of COPD, suggesting that endogenous acetylcholine plays a major role in the pathogenesis of this disease. PMID:21349917

  2. Global analysis of gene expression in pulmonary fibrosis reveals distinct programs regulating lung inflammation and fibrosis

    NASA Astrophysics Data System (ADS)

    Kaminski, Naftali; Allard, John D.; Pittet, Jean F.; Zuo, Fengrong; Griffiths, Mark J. D.; Morris, David; Huang, Xiaozhu; Sheppard, Dean; Heller, Renu A.

    2000-02-01

    The molecular mechanisms of pulmonary fibrosis are poorly understood. We have used oligonucleotide arrays to analyze the gene expression programs that underlie pulmonary fibrosis in response to bleomycin, a drug that causes lung inflammation and fibrosis, in two strains of susceptible mice (129 and C57BL/6). We then compared the gene expression patterns in these mice with 129 mice carrying a null mutation in the epithelial-restricted integrin 6 subunit (6/-), which develop inflammation but are protected from pulmonary fibrosis. Cluster analysis identified two distinct groups of genes involved in the inflammatory and fibrotic responses. Analysis of gene expression at multiple time points after bleomycin administration revealed sequential induction of subsets of genes that characterize each response. The availability of this comprehensive data set should accelerate the development of more effective strategies for intervention at the various stages in the development of fibrotic diseases of the lungs and other organs.

  3. Multi-walled carbon nanotube physicochemical properties predict pulmonary inflammation and genotoxicity.

    PubMed

    Poulsen, Sarah S; Jackson, Petra; Kling, Kirsten; Knudsen, Kristina B; Skaug, Vidar; Kyjovska, Zdenka O; Thomsen, Birthe L; Clausen, Per Axel; Atluri, Rambabu; Berthing, Trine; Bengtson, Stefan; Wolff, Henrik; Jensen, Keld A; Wallin, Håkan; Vogel, Ulla

    2016-11-01

    Lung deposition of multi-walled carbon nanotubes (MWCNT) induces pulmonary toxicity. Commercial MWCNT vary greatly in physicochemical properties and consequently in biological effects. To identify determinants of MWCNT-induced toxicity, we analyzed the effects of pulmonary exposure to 10 commercial MWCNT (supplied in three groups of different dimensions, with one pristine and two/three surface modified in each group). We characterized morphology, chemical composition, surface area and functionalization levels. MWCNT were deposited in lungs of female C57BL/6J mice by intratracheal instillation of 0, 6, 18 or 54 μg/mouse. Pulmonary inflammation (neutrophil influx in bronchoalveolar lavage (BAL)) and genotoxicity were determined on day 1, 28 or 92. Histopathology of the lungs was performed on day 28 and 92. All MWCNT induced similar histological changes. Lymphocytic aggregates were detected for all MWCNT on day 28 and 92. Using adjusted, multiple regression analyses, inflammation and genotoxicity were related to dose, time and physicochemical properties. The specific surface area (BET) was identified as a positive predictor of pulmonary inflammation on all post-exposure days. In addition, length significantly predicted pulmonary inflammation, whereas surface oxidation (-OH and -COOH) was predictor of lowered inflammation on day 28. BET surface area, and therefore diameter, significantly predicted genotoxicity in BAL fluid cells and lung tissue such that lower BET surface area or correspondingly larger diameter was associated with increased genotoxicity. This study provides information on possible toxicity-driving physicochemical properties of MWCNT. The results may contribute to safe-by-design manufacturing of MWCNT, thereby minimizing adverse effects. PMID:27323647

  4. The role of inflammation in hypoxic pulmonary hypertension: from cellular mechanisms to clinical phenotypes

    PubMed Central

    Poth, Jens M.; Fini, Mehdi A.; Olschewski, Andrea; El Kasmi, Karim C.; Stenmark, Kurt R.

    2014-01-01

    Hypoxic pulmonary hypertension (PH) comprises a heterogeneous group of diseases sharing the common feature of chronic hypoxia-induced pulmonary vascular remodeling. The disease is usually characterized by mild to moderate pulmonary vascular remodeling that is largely thought to be reversible compared with the progressive irreversible disease seen in World Health Organization (WHO) group I disease. However, in these patients, the presence of PH significantly worsens morbidity and mortality. In addition, a small subset of patients with hypoxic PH develop “out-of-proportion” severe pulmonary hypertension characterized by pulmonary vascular remodeling that is irreversible and similar to that in WHO group I disease. In all cases of hypoxia-related vascular remodeling and PH, inflammation, particularly persistent inflammation, is thought to play a role. This review focuses on the effects of hypoxia on pulmonary vascular cells and the signaling pathways involved in the initiation and perpetuation of vascular inflammation, especially as they relate to vascular remodeling and transition to chronic irreversible PH. We hypothesize that the combination of hypoxia and local tissue factors/cytokines (“second hit”) antagonizes tissue homeostatic cellular interactions between mesenchymal cells (fibroblasts and/or smooth muscle cells) and macrophages and arrests these cells in an epigenetically locked and permanently activated proremodeling and proinflammatory phenotype. This aberrant cellular cross-talk between mesenchymal cells and macrophages promotes transition to chronic nonresolving inflammation and vascular remodeling, perpetuating PH. A better understanding of these signaling pathways may lead to the development of specific therapeutic targets, as none are currently available for WHO group III disease. PMID:25416383

  5. Inhibitory effect of 1,2,4,5-tetramethoxybenzene on mast cell-mediated allergic inflammation through suppression of IκB kinase complex

    SciTech Connect

    Je, In-Gyu; Choi, Hyun Gyu; Kim, Hui-Hun; Lee, Soyoung; Choi, Jin Kyeong; Kim, Sung-Wan; Kim, Duk-Sil; Kwon, Taeg Kyu; Shin, Tae-Yong; Park, Pil-Hoon; Khang, Dongwoo; Kim, Sang-Hyun

    2015-09-01

    As the importance of allergic disorders such as atopic dermatitis and allergic asthma, research on potential drug candidates becomes more necessary. Mast cells play an important role as initiators of allergic responses through the release of histamine; therefore, they should be the target of pharmaceutical development for the management of allergic inflammation. In our previous study, anti-allergic effect of extracts of Amomum xanthioides was demonstrated. To further investigate improved candidates, 1,2,4,5-tetramethoxybenzene (TMB) was isolated from methanol extracts of A. xanthioides. TMB dose-dependently attenuated the degranulation of mast cells without cytotoxicity by inhibiting calcium influx. TMB decreased the expression of pro-inflammatory cytokines such as tumor necrosis factor-α and interleukin (IL)-4 at both the transcriptional and translational levels. Increased expression of these cytokines was caused by translocation of nuclear factor-κB into the nucleus, and it was hindered by suppressing activation of IκB kinase complex. To confirm the effect of TMB in vivo, the ovalbumin (OVA)-induced active systemic anaphylaxis (ASA) and IgE-mediated passive cutaneous anaphylaxis (PCA) models were used. In the ASA model, hypothermia was decreased by oral administration of TMB, which attenuated serum histamine, OVA-specific IgE, and IL-4 levels. Increased pigmentation of Evans blue was reduced by TMB in a dose-dependent manner in the PCA model. Our results suggest that TMB is a possible therapeutic candidate for allergic inflammatory diseases that acts through the inhibition of mast cell degranulation and expression of pro-inflammatory cytokines. - Highlights: • TMB reduced the degranulation of mast cells. • TMB inhibited the production of pro-inflammatory cytokines. • TMB suppressed both active and passive anaphylaxis. • Anti-allergic inflammatory effects of TMB might be due to the blocking IKK complex. • TMB might be a candidate for the treatment of

  6. Intranasal exposure of mice to house dust mite elicits allergic airway inflammation via a GM-CSF-mediated mechanism.

    PubMed

    Cates, Elizabeth C; Fattouh, Ramzi; Wattie, Jennifer; Inman, Mark D; Goncharova, Susanna; Coyle, Anthony J; Gutierrez-Ramos, José-Carlos; Jordana, Manel

    2004-11-15

    It is now well established that passive exposure to inhaled OVA leads to a state of immunological tolerance. Therefore, to elicit allergic sensitization, researchers have been compelled to devise alternative strategies, such as the systemic delivery of OVA in the context of powerful adjuvants, which are alien to the way humans are exposed and sensitized to allergens. The objectives of these studies were to investigate immune-inflammatory responses to intranasal delivery of a purified house dust mite (HDM) extract and to evaluate the role of GM-CSF in this process. HDM was delivered to BALB/c mice daily for 10 days. After the last exposure, mice were killed, bronchoalveolar lavage was performed, and samples were obtained. Expression/production of Th2-associated molecules in the lymph nodes, lung, and spleen were evaluated by real-time quantitative PCR and ELISA, respectively. Using this exposure protocol, exposure to HDM alone generated Th2 sensitization based on the expression/production of Th2 effector molecules and airway eosinophilic inflammation. Flow cytometric analysis demonstrated expansion and activation of APCs in the lung and an influx of activated Th2 effector cells. Moreover, this inflammation was accompanied by airways hyper-responsiveness and a robust memory-driven immune response. Finally, administration of anti-GM-CSF-neutralizing Abs markedly reduced immune-inflammatory responses in both lung and spleen. Thus, intranasal delivery of HDM results in Th2 sensitization and airway eosinophilic inflammation that appear to be mediated, at least in part, by endogenous GM-CSF production. PMID:15528378

  7. Neuroimmune semaphorin 4D is necessary for optimal lung allergic inflammation.

    PubMed

    Shanks, K; Nkyimbeng-Takwi, E H; Smith, E; Lipsky, M M; DeTolla, L J; Scott, D W; Keegan, A D; Chapoval, S P

    2013-12-01

    Neuroimmune semaphorin 4D (Sema4D) was found to be expressed and function in the nervous and immune systems. In the immune system, Sema4D is constitutively expressed on T cells and regulates T cell priming. In addition, it displays a stimulatory function on macrophages, DC, NK cells, and neutrophils. As all these cells are deeply involved in asthma pathology, we hypothesized that Sema4D plays a critical non-redundant regulatory role in allergic airway response. To test our hypothesis, we exposed Sema4D(-/-) and WT mice to OVA injections and challenges in the well-defined mouse model of OVA-induced experimental asthma. We observed a significant decrease in eosinophilic airway infiltration in allergen-treated Sema4D(-/-) mice relative to WT mice. This reduced allergic inflammatory response was associated with decreased BAL IL-5, IL-13, TGFβ1, IL-6, and IL-17A levels. In addition, T cell proliferation in OVA₃₂₃₋₃₃₉-restimulated Sema4D(-/-) cell cultures was downregulated. We also found increased Treg numbers in spleens of Sema4D(-/-) mice. However, airway hyperreactivity (AHR) to methacholine challenges was not affected by Sema4D deficiency in either acute or chronic experimental disease setting. Surprisingly, lung DC number and activation were not affected by Sema4D deficiency. These data provide a new insight into Sema4D biology and define Sema4D as an important regulator of Th2-driven lung pathophysiology and as a potential target for a combinatory disease immunotherapy. PMID:23911404

  8. Thy1+IL-7+ lymphatic endothelial cells in iBALT provide a survival niche for memory T-helper cells in allergic airway inflammation

    PubMed Central

    Shinoda, Kenta; Hirahara, Kiyoshi; Iinuma, Tomohisa; Ichikawa, Tomomi; Suzuki, Akane S.; Sugaya, Kaoru; Tumes, Damon J.; Yamamoto, Heizaburo; Hara, Takahiro; Tani-ichi, Shizue; Ikuta, Koichi; Okamoto, Yoshitaka; Nakayama, Toshinori

    2016-01-01

    Memory CD4+ T helper (Th) cells are central to long-term protection against pathogens, but they can also be pathogenic and drive chronic inflammatory disorders. How these pathogenic memory Th cells are maintained, particularly at sites of local inflammation, remains unclear. We found that ectopic lymphoid-like structures called inducible bronchus-associated lymphoid tissue (iBALT) are formed during chronic allergic inflammation in the lung, and that memory-type pathogenic Th2 (Tpath2) cells capable of driving allergic inflammation are maintained within the iBALT structures. The maintenance of memory Th2 cells within iBALT is supported by Thy1+IL-7–producing lymphatic endothelial cells (LECs). The Thy1+IL-7–producing LECs express IL-33 and T-cell–attracting chemokines CCL21 and CCL19. Moreover, ectopic lymphoid structures consisting of memory CD4+ T cells and IL-7+IL-33+ LECs were found in nasal polyps of patients with eosinophilic chronic rhinosinusitis. Thus, Thy1+IL-7–producing LECs control chronic allergic airway inflammation by providing a survival niche for memory-type Tpath2 cells. PMID:27140620

  9. Suppression of allergic inflammation by allergen-DNA-modified dendritic cells depends on the induction of Foxp3+ Regulatory T cells.

    PubMed

    Wu, Kui; Bi, Yuttian; Sun, Kun; Xia, Junbo; Wang, Yan; Wang, Changzheng

    2008-02-01

    CD4(+)CD25(+)Foxp3(+)Regulatory T cells (Tregs) play important roles in regulating allergic inflammation. To analyse if allergen-DNA-modified dendritic cells (DC) can suppress allergic responses and what roles Treg cells play in DC-based allergen-specific immunotherapy. Immature DC were transfected with retrovirus encoding Der p2 DNA, and administered to mice that sensitized and challenged with Der p2 protein. After Treg cells were depleted with anti-CD25 mAb, mice were re-challenged to observe the airway inflammation, and Treg cells in spleen CD4(+) T cells. And responses of spleen CD4(+) T cells to Der p2 were determined. Co-culture of naïve CD4(+) T cells with allergen-modified DC induced Foxp3+ Tregs. Sensitized and challenged mice developed allergic airway inflammation and Th2 responses, and decreased Foxp3(+) Tregs. Treatment with allergen-modified-DC suppressed airway inflammation and Th2 responses, and increased IL-10 and IFN-gamma production and Foxp3(+) Tregs significantly; and eliminated the responses of CD4(+) T cells to allergen. Administration of anit-CD25 mAb eliminated all the effects of modified-DC except for the increasing of IFN-gamma. Allergen-modified DC can induce immune tolerance to allergens and reverse the established Th2 responses induced by allergen, with dependence on the induction of Foxp3(+) Tregs. PMID:18201369

  10. Proteinase activated receptor-2-mediated dual oxidase-2 up-regulation is involved in enhanced airway reactivity and inflammation in a mouse model of allergic asthma.

    PubMed

    Nadeem, Ahmed; Alharbi, Naif O; Vliagoftis, Harissios; Tyagi, Manoj; Ahmad, Sheikh F; Sayed-Ahmed, Mohamed M

    2015-07-01

    Airway epithelial cells (AECs) express a variety of receptors, which sense danger signals from various aeroallergens/pathogens being inhaled constantly. Proteinase-activated receptor 2 (PAR-2) is one such receptor and is activated by cockroach allergens, which have intrinsic serine proteinase activity. Recently, dual oxidases (DUOX), especially DUOX-2, have been shown to be involved in airway inflammation in response to Toll-like receptor activation. However, the association between PAR-2 and DUOX-2 has not been explored in airways of allergic mice. Therefore, this study investigated the contribution of DUOX-2/reactive oxygen species (ROS) signalling in airway reactivity and inflammation after PAR-2 activation. Mice were sensitized intraperitoneally with intact cockroach allergen extract (CE) in the presence of aluminium hydroxide followed by intranasal challenge with CE. Mice were then assessed for airway reactivity, inflammation, oxidative stress (DUOX-2, ROS, inducible nitric oxide synthase, nitrite, nitrotyrosine and protein carbonyls) and apoptosis (Bax, Bcl-2, caspase-3). Challenge with CE led to up-regulation of DUOX-2 and ROS in AECs with concomitant increases in airway reactivity/inflammation and parameters of oxidative stress, and apoptosis. All of these changes were significantly inhibited by intranasal administration of ENMD-1068, a small molecule antagonist of PAR-2 in allergic mice. Administration of diphenyliodonium to allergic mice also led to improvement of allergic airway responses via inhibition of the DUOX-2/ROS pathway; however, these effects were less pronounced than PAR-2 antagonism. The current study suggests that PAR-2 activation leads to up-regulation of the DUOX-2/ROS pathway in AECs, which is involved in regulation of airway reactivity and inflammation via oxidative stress and apoptosis. PMID:25684443

  11. Liver-Specific Allergen Gene Transfer by Adeno-Associated Virus Suppresses Allergic Airway Inflammation in Mice.

    PubMed

    Chan, Cheng-Chi; Lai, Chin-Wen; Wu, Chia-Jen; Chen, Li-Chen; Tao, Mi-Hua; Kuo, Ming-Ling

    2016-08-01

    Allergic airway inflammation driven by T helper 2 (Th2)-type immunity is characterized by airway hyperresponsiveness, eosinophilic infiltration, and elevated IgE production. Various novel strategies for managing asthma have been explored, such as DNA vaccines, T-cell peptides, and allergen-specific immunotherapy. A principal goal of most immunotherapeutic approaches is active and long-term allergen-specific tolerance. Liver-specific gene transfer using adeno-associated virus (AAV) has been shown to favorably induce tolerogenic responses to therapeutic products in various experimental models. AAV8 has strong liver tropism and induces immune tolerance in mice. The present study aimed to determine whether hepatocyte-specific allergen expression by pseudotyped AAV2/8 alleviates asthmatic symptoms in ovalbumin (OVA)-sensitized mice. Mice were intravenously injected with AAV2/8 vector carrying membrane-bound OVA transgene under transcriptional control of a hepatocyte-specific alpha 1 antitrypsin promoter (AAV2/8-OVA) and then sensitized with OVA. AAV2/8-OVA specifically transduced the OVA transgene in the liver. Airway hyperresponsiveness, eosinophilia, mucus hypersecretion, and Th2 cytokines were significantly suppressed in both the lungs and secondary lymphoid organs of asthmatic mice infected with AAV2/8-OVA. Significant reduction of OVA-specific antibodies was detected in the bronchoalveolar lavage fluid from AAV2/8-OVA-treated mice. Moreover, AAV2/8-OVA treatment prominently promoted the expression of Foxp3, IL-10, and TGF-β in the liver. Enhanced Foxp3 expression was also detected in the lungs of asthmatic mice after AAV2/8-OVA treatment. Taken together, these results suggest that the induction of immune tolerance by hepatic AAV gene transfer may be beneficial for modulating allergic asthma. PMID:27178525

  12. Insulin modulates cytokine release and selectin expression in the early phase of allergic airway inflammation in diabetic rats

    PubMed Central

    2010-01-01

    Background Clinical and experimental data suggest that the inflammatory response is impaired in diabetics and can be modulated by insulin. The present study was undertaken to investigate the role of insulin on the early phase of allergic airway inflammation. Methods Diabetic male Wistar rats (alloxan, 42 mg/Kg, i.v., 10 days) and controls were sensitized by s.c. injection of ovalbumin (OA) in aluminium hydroxide 14 days before OA (1 mg/0.4 mL) or saline intratracheal challenge. The following analyses were performed 6 hours thereafter: a) quantification of interleukin (IL)-1β, tumor necrosis factor (TNF)-α and cytokine-induced neutrophil chemoattractant (CINC)-1 in the bronchoalveolar lavage fluid (BALF) by Enzyme-Linked Immunosorbent Assay, b) expression of E- and P- selectins on lung vessels by immunohistochemistry, and c) inflammatory cell infiltration into the airways and lung parenchyma. NPH insulin (4 IU, s.c.) was given i.v. 2 hours before antigen challenge. Results Diabetic rats exhibited significant reduction in the BALF concentrations of IL-1β (30%) and TNF-α (45%), and in the lung expression of P-selectin (30%) compared to non-diabetic animals. This was accompanied by reduced number of neutrophils into the airways and around bronchi and blood vessels. There were no differences in the CINC-1 levels in BALF, and E-selectin expression. Treatment of diabetic rats with NPH insulin, 2 hours before antigen challenge, restored the reduced levels of IL-1β, TNF-α and P-selectin, and neutrophil migration. Conclusion Data presented suggest that insulin modulates the production/release of TNF-α and IL-1β, the expression of P- and E-selectin, and the associated neutrophil migration into the lungs during the early phase of the allergic inflammatory reaction. PMID:20667094

  13. Lung Neutrophilia in Myeloperoxidase Deficient Mice during the Course of Acute Pulmonary Inflammation.

    PubMed

    Kremserova, Silvie; Perecko, Tomas; Soucek, Karel; Klinke, Anna; Baldus, Stephan; Eiserich, Jason P; Kubala, Lukas

    2016-01-01

    Systemic inflammation accompanying diseases such as sepsis affects primarily lungs and induces their failure. This remains the most common cause of sepsis induced mortality. While neutrophils play a key role in pulmonary failure, the mechanisms remain incompletely characterized. We report that myeloperoxidase (MPO), abundant enzyme in neutrophil granules, modulates the course of acute pulmonary inflammatory responses induced by intranasal application of lipopolysaccharide. MPO deficient mice had significantly increased numbers of airway infiltrated neutrophils compared to wild-type mice during the whole course of lung inflammation. This was accompanied by higher levels of RANTES in bronchoalveolar lavage fluid from the MPO deficient mice. Other markers of lung injury and inflammation, which contribute to recruitment of neutrophils into the inflamed lungs, including total protein and other selected proinflammatory cytokines did not significantly differ in bronchoalveolar lavage fluid from the wild-type and the MPO deficient mice. Interestingly, MPO deficient neutrophils revealed a decreased rate of cell death characterized by phosphatidylserine surface expression. Collectively, the importance of MPO in regulation of pulmonary inflammation, independent of its putative microbicidal functions, can be potentially linked to MPO ability to modulate the life span of neutrophils and to affect accumulation of chemotactic factors at the inflammatory site. PMID:26998194

  14. Lung Neutrophilia in Myeloperoxidase Deficient Mice during the Course of Acute Pulmonary Inflammation

    PubMed Central

    Kremserova, Silvie; Perecko, Tomas; Soucek, Karel; Klinke, Anna; Baldus, Stephan; Eiserich, Jason P.; Kubala, Lukas

    2016-01-01

    Systemic inflammation accompanying diseases such as sepsis affects primarily lungs and induces their failure. This remains the most common cause of sepsis induced mortality. While neutrophils play a key role in pulmonary failure, the mechanisms remain incompletely characterized. We report that myeloperoxidase (MPO), abundant enzyme in neutrophil granules, modulates the course of acute pulmonary inflammatory responses induced by intranasal application of lipopolysaccharide. MPO deficient mice had significantly increased numbers of airway infiltrated neutrophils compared to wild-type mice during the whole course of lung inflammation. This was accompanied by higher levels of RANTES in bronchoalveolar lavage fluid from the MPO deficient mice. Other markers of lung injury and inflammation, which contribute to recruitment of neutrophils into the inflamed lungs, including total protein and other selected proinflammatory cytokines did not significantly differ in bronchoalveolar lavage fluid from the wild-type and the MPO deficient mice. Interestingly, MPO deficient neutrophils revealed a decreased rate of cell death characterized by phosphatidylserine surface expression. Collectively, the importance of MPO in regulation of pulmonary inflammation, independent of its putative microbicidal functions, can be potentially linked to MPO ability to modulate the life span of neutrophils and to affect accumulation of chemotactic factors at the inflammatory site. PMID:26998194

  15. Ribes fasciculatum var. chinense Attenuated Allergic Inflammation In Vivo and In Vitro

    PubMed Central

    Jung, Ji-Wook; Kim, Su-Jin; Ahn, Eun-Mi; Oh, Sa-Rang; Lee, Hye-Ja; Jeong, Ji-Ahn; Lee, Ju-Young

    2014-01-01

    Ribes fasciculatum var. chinense MAX. (R. fasciculatum) has traditionally been used in Korea to treat inflammatory diseases. However, the exact mechanism that accounts for the anti-inflammatory effect of R. fasciculatum is not completely understood. We aimed to ascertain the pharmacological effects of R. fasciculatum on both compound 48/80- or histamine-induced scratching behaviors and 2, 4-dinitrochlorobenzene (DNCB)-induced atopic dermatitis (AD) in mice. Additionally, to find a possible explanation for the anti-inflammatory effects of R. fasciculatum, we evaluated the effects of R. fasciculatum on the production of inflammatory mediators in LPS-stimulated macrophage cells. Treatment of R. fasciculatum significantly reduced compound 48/80- or histamine-induced the pruritus in mice. R. fasciculatum attenuated the AD symptoms such as eczematous, erythema and dryness and serum IgE levels in AD model. Additionally, R. fasciculatum inhibited the production of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). The maximal rates of TNF-α and IL-6 inhibition by R. fasciculatum (1 mg/ml) were approximately 32.12% and 46.24%, respectively. We also showed that R. fasciculatum inhibited the activation of nuclear factor-kappa B in LPS-stimulated macrophages. Collectively, the findings of this study provide us with novel insights into the pharmacological actions of R. fasciculatum as a potential molecule for use in the treatment of allergic inflammatory diseases. PMID:25489423

  16. Cholera toxin B suppresses allergic inflammation through induction of secretory IgA.

    PubMed

    Smits, H H; Gloudemans, A K; van Nimwegen, M; Willart, M A; Soullié, T; Muskens, F; de Jong, E C; Boon, L; Pilette, C; Johansen, F-E; Hoogsteden, H C; Hammad, H; Lambrecht, B N

    2009-07-01

    In healthy individuals, humoral immune responses to allergens consist of serum IgA and IgG4, whereas cellular immune responses are controlled by regulatory T (Treg) cells. In search of new compounds that might prevent the onset of allergies by stimulating this type of immune response, we have focused on the mucosal adjuvant, cholera toxin B (CTB), as it induces the formation of Treg cells and production of IgA. Here, we have found that CTB suppresses the potential of dendritic cells to prime for Th2 responses to inhaled allergen. When we administered CTB to the airways of naïve and allergic mice, it strongly suppressed the salient features of asthma, such as airway eosinophilia, Th2 cytokine synthesis, and bronchial hyperreactivity. This beneficial effect was only transferable to other mice by transfer of B but not of T lymphocytes. CTB caused a transforming growth factor-beta-dependent rise in antigen-specific IgA in the airway luminal secretions, which was necessary for its preventive and curative effect, as all effects of CTB were abrogated in mice lacking the luminal IgA transporting polymeric Ig receptor. Not only do these findings show a novel therapeutic avenue for allergy, they also help to explain the complex relationship between IgA levels and risk of developing allergy in humans. PMID:19404246

  17. Hepatic versus pulmonary uptake of particles injected into the portal circulation in sheep. Endotoxin escapes hepatic clearance causing pulmonary inflammation.

    PubMed

    DeCamp, M M; Warner, A E; Molina, R M; Brain, J D

    1992-07-01

    Removal of circulating particulates (bacteria, cell debris, endotoxin) is accomplished in most species by macrophages resident in the liver and spleen. We have shown that sheep and other species have phagocytic macrophages resident in their pulmonary capillaries. Moreover, these pulmonary intravascular macrophages accomplish the bulk of uptake of injected tracer particles, bacteria, or endotoxin (LPS). Because bacteria or LPS of intestinal origin enter the portal circulation, they would first encounter hepatic mononuclear phagocytes. We sought to determine the extent to which particulates injected into the portal circulation of sheep would be taken up by liver or by lung macrophages. Sheep (four per group) were injected via a mesenteric vein with radiolabeled gold colloid, magnetic iron oxide particles, live Pseudomonas aeruginosa, or 125I E. coli endotoxin. For each, the uptake pattern was determined 1 h after injection. Lung and liver were also fixed to determine the cells responsible for uptake and subsequent inflammatory changes. We found that for circulating gold colloid, iron oxide particles, or bacteria, hepatic uptake predominated, and Kupffer cells were responsible. After hepatic uptake of bacteria, inflammatory changes were confined to the liver. In contrast, nearly 50% of endotoxin escaped hepatic clearance and was subsequently removed by the lungs. We then saw inflammatory changes in both lungs and liver. Thus, hepatic macrophages are active in species with pulmonary intravascular macrophages, partially sparing the lungs from uptake and acute inflammation. Endotoxin, however, may elude hepatic uptake, be sequestered in the lungs, and initiate inflammation there. PMID:1320819

  18. The long-acting β2-adrenoceptor agonist olodaterol attenuates pulmonary inflammation

    PubMed Central

    Wex, Eva; Kollak, Ines; Duechs, Matthias J; Naline, Emmanuel; Wollin, Lutz; Devillier, Philippe

    2015-01-01

    Background and Purpose β2-adrenoceptor agonists are widely used in the management of obstructive airway diseases. Besides their bronchodilatory effect, several studies suggest inhibitory effects on various aspects of inflammation. The aim of our study was to determine the efficacy of the long-acting β2-adrenoceptor agonist olodaterol to inhibit pulmonary inflammation and to elucidate mechanism(s) underlying its anti-inflammatory actions. Experimental Approach Olodaterol was tested in murine and guinea pig models of cigarette smoke- and LPS-induced lung inflammation. Furthermore, effects of olodaterol on the LPS-induced pro-inflammatory mediator release from human parenchymal explants, CD11b adhesion molecule expression on human granulocytes TNF-α release from human whole blood and on the IL-8-induced migration of human peripheral blood neutrophils were investigated. Key Results Olodaterol dose-dependently attenuated cell influx and pro-inflammatory mediator release in murine and guinea pig models of pulmonary inflammation. These anti-inflammatory effects were observed at doses relevant to their bronchodilatory efficacy. Mechanistically, olodaterol attenuated pro-inflammatory mediator release from human parenchymal explants and whole blood and reduced expression of CD11b adhesion molecules on granulocytes, but without direct effects on IL-8-induced neutrophil transwell migration. Conclusions and Implications This is the first evidence for the anti-inflammatory efficacy of a β2-adrenoceptor agonist in models of lung inflammation induced by cigarette smoke. The long-acting β2-adrenoceptor agonist olodaterol attenuated pulmonary inflammation through mechanisms that are separate from direct inhibition of bronchoconstriction. Furthermore, the in vivo data suggest that the anti-inflammatory properties of olodaterol are maintained after repeated dosing for 4 days. PMID:25824824

  19. Contrasting roles for the receptor for advanced glycation end-products on structural cells in allergic airway inflammation vs. airway hyperresponsiveness.

    PubMed

    Taniguchi, Akihiko; Miyahara, Nobuaki; Waseda, Koichi; Kurimoto, Etsuko; Fujii, Utako; Tanimoto, Yasushi; Kataoka, Mikio; Yamamoto, Yasuhiko; Gelfand, Erwin W; Yamamoto, Hiroshi; Tanimoto, Mitsune; Kanehiro, Arihiko

    2015-10-15

    The receptor for advanced glycation end-products (RAGE) is a multiligand receptor that belongs to the immunoglobulin superfamily. RAGE is reported to be involved in various inflammatory disorders; however, studies that address the role of RAGE in allergic airway disease are inconclusive. RAGE-sufficient (RAGE+/+) and RAGE-deficient (RAGE-/-) mice were sensitized to ovalbumin, and airway responses were monitored after ovalbumin challenge. RAGE-/- mice showed reduced eosinophilic inflammation and goblet cell metaplasia, lower T helper type 2 (Th2) cytokine production from spleen and peribronchial lymph node mononuclear cells, and lower numbers of group 2 innate lymphoid cells in the lung compared with RAGE+/+ mice following sensitization and challenge. Experiments using irradiated, chimeric mice showed that the mice expressing RAGE on radio-resistant structural cells but not hematopoietic cells developed allergic airway inflammation; however, the mice expressing RAGE on hematopoietic cells but not structural cells showed reduced airway inflammation. In contrast, absence of RAGE expression on structural cells enhanced innate airway hyperresponsiveness (AHR). In the absence of RAGE, increased interleukin (IL)-33 levels in the lung were detected, and blockade of IL-33 receptor ST2 suppressed innate AHR in RAGE-/- mice. These data identify the importance of RAGE expressed on lung structural cells in the development of allergic airway inflammation, T helper type 2 cell activation, and group 2 innate lymphoid cell accumulation in the airways. RAGE on lung structural cells also regulated innate AHR, likely through the IL-33-ST2 pathway. Thus manipulating RAGE represents a novel therapeutic target in controlling allergic airway responses. PMID:26472810

  20. Schistosoma mansoni antigens modulate the allergic response in a murine model of ovalbumin-induced airway inflammation.

    PubMed

    Cardoso, L S; Oliveira, S C; Góes, A M; Oliveira, R R; Pacífico, L G; Marinho, F V; Fonseca, C T; Cardoso, F C; Carvalho, E M; Araujo, M I

    2010-05-01

    Schistosoma mansoni infection has been associated with protection against allergies. The mechanisms underlying this association may involve regulatory cells and cytokines. We evaluated the immune response induced by the S. mansoni antigens Sm22.6, PIII and Sm29 in a murine model of ovalbumin (OVA)-induced airway inflammation. BALB/c mice were sensitized with subcutaneously injected OVA-alum and challenged with aerolized OVA. Mice were given three doses of the different S. mansoni antigens. Lung histopathology, cellularity of bronchoalveolar lavage (BAL) and eosinophil peroxidase activity in lung were evaluated. Immunoglobulin (Ig)E levels in serum and cytokines in BAL were also measured. Additionally, we evaluated the frequency of CD4+forkhead box P3 (FoxP3)+ T cells in cultures stimulated with OVA and the expression of interleukin (IL)-10 by these cells. The number of total cells and eosinophils in BAL and the levels of OVA-specific IgE were reduced in the immunized mice. Also, the levels of IL-4 and IL-5 in the BAL of mice immunized with PIII and Sm22.6 were decreased, while the levels of IL-10 were higher in mice immunized with Sm22.6 compared to the non-immunized mice. The frequency of CD4+FoxP3+ T cells was higher in the groups of mice who received Sm22.6, Sm29 and PIII, being the expression of IL-10 by these cells only higher in mice immunized with Sm22.6. We concluded that the S. mansoni antigens used in this study are able to down-modulate allergic inflammatory mediators in a murine model of airway inflammation and that the CD4+FoxP3+ T cells, even in the absence of IL-10 expression, might play an important role in this process. PMID:20132231

  1. Schistosoma mansoni antigens modulate the allergic response in a murine model of ovalbumin-induced airway inflammation

    PubMed Central

    Cardoso, L S; Oliveira, S C; Góes, A M; Oliveira, R R; Pacífico, L G; Marinho, F V; Fonseca, C T; Cardoso, F C; Carvalho, E M; Araujo, M I

    2010-01-01

    Schistosoma mansoni infection has been associated with protection against allergies. The mechanisms underlying this association may involve regulatory cells and cytokines. We evaluated the immune response induced by the S. mansoni antigens Sm22·6, PIII and Sm29 in a murine model of ovalbumin (OVA)-induced airway inflammation. BALB/c mice were sensitized with subcutaneously injected OVA-alum and challenged with aerolized OVA. Mice were given three doses of the different S. mansoni antigens. Lung histopathology, cellularity of bronchoalveolar lavage (BAL) and eosinophil peroxidase activity in lung were evaluated. Immunoglobulin (Ig)E levels in serum and cytokines in BAL were also measured. Additionally, we evaluated the frequency of CD4+forkhead box P3 (FoxP3)+ T cells in cultures stimulated with OVA and the expression of interleukin (IL)-10 by these cells. The number of total cells and eosinophils in BAL and the levels of OVA-specific IgE were reduced in the immunized mice. Also, the levels of IL-4 and IL-5 in the BAL of mice immunized with PIII and Sm22·6 were decreased, while the levels of IL-10 were higher in mice immunized with Sm22·6 compared to the non-immunized mice. The frequency of CD4+FoxP3+ T cells was higher in the groups of mice who received Sm22·6, Sm29 and PIII, being the expression of IL-10 by these cells only higher in mice immunized with Sm22·6. We concluded that the S. mansoni antigens used in this study are able to down-modulate allergic inflammatory mediators in a murine model of airway inflammation and that the CD4+FoxP3+ T cells, even in the absence of IL-10 expression, might play an important role in this process. PMID:20132231

  2. Acute glutathione depletion leads to enhancement of airway reactivity and inflammation via p38MAPK-iNOS pathway in allergic mice.

    PubMed

    Nadeem, A; Siddiqui, N; Alharbi, Naif O; Alharbi, M M; Imam, F

    2014-09-01

    Glutathione (GSH) plays a major role in allergic airway responses through a variety of mechanism which include direct scavenging of oxidative species, being a reducing equivalent and regulation of cellular signaling through redox sensitive mechanisms. Therefore, the aim of the present study was to evaluate the role of acute GSH depletion on airway reactivity, inflammation and NO signaling in a mouse model of allergic asthma. Buthionine sulfoximine (BSO), an inhibitor of gamma-glutamylcysteine synthetase was used for depletion of GSH levels. Acute depletion of GSH with BSO worsened allergen induced airway reactivity and inflammation through increase in nitrosative stress as reflected by increased inducible NO synthase (iNOS) expression, total nitrates and nitrites (NOx), nitrotyrosine, protein carbonyls, and decreased total antioxidant capacity. Treatment with p38 mitogen-activated protein kinase (MAPK) and iNOS inhibitors attenuated the effects of GSH depletion on airway reactivity and inflammation through attenuation of nitrosative stress as evidenced by a decrease in NOx, nitrotyrosine, protein carbonyls and increase in total antioxidant capacity (TAC). In conclusion, these data suggest that acute depletion of glutathione is associated with alteration of airway responses through an increase in nitrosative stress in allergic airways of mice. PMID:24978607

  3. GS143, an I{kappa}B ubiquitination inhibitor, inhibits allergic airway inflammation in mice

    SciTech Connect

    Hirose, Koichi; Wakashin, Hidefumi; Oki, Mie; Kagami, Shin-ichiro; Suto, Akira; Ikeda, Kei; Watanabe, Norihiko; Iwamoto, Itsuo; Furuichi, Yasuhiro; Nakajima, Hiroshi

    2008-09-26

    Asthma is characterized by airway inflammation with intense eosinophil infiltration and mucus hyper-production, in which antigen-specific Th2 cells play critical roles. Nuclear factor-{kappa}B (NF-{kappa}B) pathway has been demonstrated to be essential for the production of Th2 cytokines and chemokines in the airways in murine asthma models. In the present study, we examined the effect of GS143, a novel small-molecule inhibitor of I{kappa}B ubiquitination, on antigen-induced airway inflammation and Th2 cytokine production in mice. Intranasal administration of GS143 prior to antigen challenge suppressed antigen-induced NF-{kappa}B activation in the lung of sensitized mice. Intranasal administration of GS143 also inhibited antigen-induced eosinophil and lymphocyte recruitment into the airways as well as the expression of Th2 cytokines and eotaxin in the airways. Moreover, GS143 inhibited antigen-induced differentiation of Th2 cells but not of Th1 cells in vitro. Taken together, these results suggest that I{kappa}B ubiquitination inhibitor may have therapeutic potential against asthma.

  4. Aquaporin-3 potentiates allergic airway inflammation in ovalbumin-induced murine asthma

    PubMed Central

    Ikezoe, Kohei; Oga, Toru; Honda, Tetsuya; Hara-Chikuma, Mariko; Ma, Xiaojun; Tsuruyama, Tatsuaki; Uno, Kazuko; Fuchikami, Jun-ichi; Tanizawa, Kiminobu; Handa, Tomohiro; Taguchi, Yoshio; Verkman, Alan S.; Narumiya, Shuh; Mishima, Michiaki; Chin, Kazuo

    2016-01-01

    Oxidative stress plays a pivotal role in the pathogenesis of asthma. Aquaporin-3 (AQP3) is a small transmembrane water/glycerol channel that may facilitate the membrane uptake of hydrogen peroxide (H2O2). Here we report that AQP3 potentiates ovalbumin (OVA)-induced murine asthma by mediating both chemokine production from alveolar macrophages and T cell trafficking. AQP3 deficient (AQP3−/−) mice exhibited significantly reduced airway inflammation compared to wild-type mice. Adoptive transfer experiments showed reduced airway eosinophilic inflammation in mice receiving OVA-sensitized splenocytes from AQP3−/− mice compared with wild-type mice after OVA challenge, consistently with fewer CD4+ T cells from AQP3−/− mice migrating to the lung than from wild-type mice. Additionally, in vivo and vitro experiments indicated that AQP3 induced the production of some chemokines such as CCL24 and CCL22 through regulating the amount of cellular H2O2 in M2 polarized alveolar macrophages. These results imply a critical role of AQP3 in asthma, and AQP3 may be a novel therapeutic target. PMID:27165276

  5. Aquaporin-3 potentiates allergic airway inflammation in ovalbumin-induced murine asthma.

    PubMed

    Ikezoe, Kohei; Oga, Toru; Honda, Tetsuya; Hara-Chikuma, Mariko; Ma, Xiaojun; Tsuruyama, Tatsuaki; Uno, Kazuko; Fuchikami, Jun-Ichi; Tanizawa, Kiminobu; Handa, Tomohiro; Taguchi, Yoshio; Verkman, Alan S; Narumiya, Shuh; Mishima, Michiaki; Chin, Kazuo

    2016-01-01

    Oxidative stress plays a pivotal role in the pathogenesis of asthma. Aquaporin-3 (AQP3) is a small transmembrane water/glycerol channel that may facilitate the membrane uptake of hydrogen peroxide (H2O2). Here we report that AQP3 potentiates ovalbumin (OVA)-induced murine asthma by mediating both chemokine production from alveolar macrophages and T cell trafficking. AQP3 deficient (AQP3(-/-)) mice exhibited significantly reduced airway inflammation compared to wild-type mice. Adoptive transfer experiments showed reduced airway eosinophilic inflammation in mice receiving OVA-sensitized splenocytes from AQP3(-/-) mice compared with wild-type mice after OVA challenge, consistently with fewer CD4(+) T cells from AQP3(-/-) mice migrating to the lung than from wild-type mice. Additionally, in vivo and vitro experiments indicated that AQP3 induced the production of some chemokines such as CCL24 and CCL22 through regulating the amount of cellular H2O2 in M2 polarized alveolar macrophages. These results imply a critical role of AQP3 in asthma, and AQP3 may be a novel therapeutic target. PMID:27165276

  6. T cell derived IL-10 is dispensable for tolerance induction in a murine model of allergic airway inflammation.

    PubMed

    Kunz, Stefanie; Dolch, Anja; Surianarayanan, Sangeetha; Dorn, Britta; Bewersdorff, Mayte; Alessandrini, Francesca; Behrendt, Rayk; Karp, Christopher L; Muller, Werner; Martin, Stefan F; Roers, Axel; Jakob, Thilo

    2016-08-01

    Regulatory mechanisms initiated by allergen-specific immunotherapy are mainly attributed to T cell derived IL-10. However, it has not been shown that T cell derived IL-10 is required for successful tolerance induction (TI). Here, we analyze cellular sources and the functional relevance of cell type specific IL-10 during TI in a murine model of allergic airway inflammation. While TI was effective in IL-10 competent mice, neutralizing IL-10 prior to tolerogenic treatment completely abrogated the beneficial effects. Cellular sources of IL-10 during TI were identified by using transcriptional reporter mice as T cells, B cells, and to a lesser extent DCs. Interestingly, TI was still effective in mice with T cell, B cell, B and T cell, or DC-specific IL-10 deficiency. In contrast, TI was not possible in mice lacking IL-10 in all hematopoetic cells, while it was effective in bone marrow (BM) chimera that lacked IL-10 only in nonhematopoetic cells. Taken together, allergen-specific tolerance depends on IL-10 from hematopoetic sources. The beneficial effects of allergen-specific immunotherapy cannot solely be attributed to IL-10 from T cells, B cells, or even DCs, suggesting a high degree of cellular redundancy in IL-10-mediated tolerance. PMID:27287239

  7. Effect of Chicoric Acid on Mast Cell-Mediated Allergic Inflammation in Vitro and in Vivo.

    PubMed

    Lee, Na Young; Chung, Kyung-Sook; Jin, Jong Sik; Bang, Keuk Soo; Eom, Ye-Jin; Hong, Chul-Hee; Nugroho, Agung; Park, Hee-Jun; An, Hyo-Jin

    2015-12-24

    Chicoric acid (dicaffeoyl-tartaric acid), is a natural phenolic compound found in a number of plants, such as chicory (Cichorium intybus) and Echinacea (Echinacea purpurea), which possesses antioxidant, anti-inflammatory, antiviral, and analgesic activities. Although these biological effects of chicoric acid have been investigated, there are no reports of its antiallergic-related anti-inflammatory effects in human mast cells (HMC)-1 or anaphylactic activity in a mouse model. Therefore, we investigated the antiallergic-related anti-inflammatory effect of chicoric acid and its underlying mechanisms of action using phorbol-12-myristate 13-acetate plus calcium ionophore A23187 (PMACI)-stimulated HMC-1 cells. Chicoric acid decreased the mRNA expression of pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β. We studied the inhibitory effects of chicoric acid on the nuclear translocation of nuclear factor kappa B (NF-κB) and activation of caspase-1. However, mitogen-activated protein kinase (MAPK) activation was not sufficient to abrogate the stimulus. In addition, we investigated the ability of chicoric acid to inhibit compound 48/80-induced systemic anaphylaxis in vivo. Oral administration of chicoric acid at 20 mg/kg inhibited histamine release and protected mice against compound 48/80-induced anaphylactic mortality. These results suggest that chicoric acid has an antiallergic-related anti-inflammatory effect that involves modulating mast cell-mediated allergic responses. Therefore, chicoric acid could be an efficacious agent for allergy-related inflammatory disorders. PMID:26593037

  8. Vanadium pentoxide induces pulmonary inflammation and tumor promotion in a strain-dependent manner

    PubMed Central

    2010-01-01

    Background Elevated levels of air pollution are associated with increased risk of lung cancer. Particulate matter (PM) contains transition metals that may potentiate neoplastic development through the induction of oxidative stress and inflammation, a lung cancer risk factor. Vanadium pentoxide (V2O5) is a component of PM derived from fuel combustion as well as a source of occupational exposure in humans. In the current investigation we examined the influence of genetic background on susceptibility to V2O5-induced inflammation and evaluated whether V2O5 functions as a tumor promoter using a 2-stage (initiation-promotion) model of pulmonary neoplasia in mice. Results A/J, BALB/cJ (BALB), and C57BL/6J (B6) mice were treated either with the initiator 3-methylcholanthrene (MCA; 10 μg/g; i.p.) or corn oil followed by 5 weekly aspirations of V2O5 or PBS and pulmonary tumors were enumerated 20 weeks following MCA treatment. Susceptibility to V2O5-induced pulmonary inflammation was assessed in bronchoalveolar lavage fluid (BALF), and chemokines, transcription factor activity, and MAPK signaling were quantified in lung homogenates. We found that treatment of animals with MCA followed by V2O5 promoted lung tumors in both A/J (10.3 ± 0.9 tumors/mouse) and BALB (2.2 ± 0.36) mice significantly above that observed with MCA/PBS or V2O5 alone (P < 0.05). No tumors were observed in the B6 mice in any of the experimental groups. Mice sensitive to tumor promotion by V2O5 were also found to be more susceptible to V2O5-induced pulmonary inflammation and hyperpermeability (A/J>BALB>B6). Differential strain responses in inflammation were positively associated with elevated levels of the chemokines KC and MCP-1, higher NFκB and c-Fos binding activity, as well as sustained ERK1/2 activation in lung tissue. Conclusions In this study we demonstrate that V2O5, an occupational and environmentally relevant metal oxide, functions as an in vivo lung tumor promoter among different inbred

  9. CFTR-regulated MAPK/NF-κB signaling in pulmonary inflammation in thermal inhalation injury

    PubMed Central

    Dong, Zhi Wei; Chen, Jing; Ruan, Ye Chun; Zhou, Tao; Chen, Yu; Chen, YaJie; Tsang, Lai Ling; Chan, Hsiao Chang; Peng, Yi Zhi

    2015-01-01

    The mechanism underlying pulmonary inflammation in thermal inhalation injury remains elusive. Cystic fibrosis, also hallmarked with pulmonary inflammation, is caused by mutations in CFTR, the expression of which is temperature-sensitive. We investigated whether CFTR is involved in heat-induced pulmonary inflammation. We applied heat-treatment in 16HBE14o- cells with CFTR knockdown or overexpression and heat-inhalation in rats in vivo. Heat-treatment caused significant reduction in CFTR and, reciprocally, increase in COX-2 at early stages both in vitro and in vivo. Activation of ERK/JNK, NF-κB and COX-2/PGE2 were detected in heat-treated cells, which were mimicked by knockdown, and reversed by overexpression of CFTR or VX-809, a reported CFTR mutation corrector. JNK/ERK inhibition reversed heat-/CFTR-knockdown-induced NF-κB activation, whereas NF-κB inhibitor showed no effect on JNK/ERK. IL-8 was augmented by heat-treatment or CFTR-knockdown, which was abolished by inhibition of NF-κB, JNK/ERK or COX-2. Moreover, in vitro or in vivo treatment with curcumin, a natural phenolic compound, significantly enhanced CFTR expression and reversed the heat-induced increases in COX-2/PGE2/IL-8, neutrophil infiltration and tissue damage in the airway. These results have revealed a CFTR-regulated MAPK/NF-κB pathway leading to COX-2/PGE2/IL-8 activation in thermal inhalation injury, and demonstrated therapeutic potential of curcumin for alleviating heat-induced pulmonary inflammation. PMID:26515683

  10. CFTR-regulated MAPK/NF-κB signaling in pulmonary inflammation in thermal inhalation injury.

    PubMed

    Dong, Zhi Wei; Chen, Jing; Ruan, Ye Chun; Zhou, Tao; Chen, Yu; Chen, YaJie; Tsang, Lai Ling; Chan, Hsiao Chang; Peng, Yi Zhi

    2015-01-01

    The mechanism underlying pulmonary inflammation in thermal inhalation injury remains elusive. Cystic fibrosis, also hallmarked with pulmonary inflammation, is caused by mutations in CFTR, the expression of which is temperature-sensitive. We investigated whether CFTR is involved in heat-induced pulmonary inflammation. We applied heat-treatment in 16HBE14o- cells with CFTR knockdown or overexpression and heat-inhalation in rats in vivo. Heat-treatment caused significant reduction in CFTR and, reciprocally, increase in COX-2 at early stages both in vitro and in vivo. Activation of ERK/JNK, NF-κB and COX-2/PGE2 were detected in heat-treated cells, which were mimicked by knockdown, and reversed by overexpression of CFTR or VX-809, a reported CFTR mutation corrector. JNK/ERK inhibition reversed heat-/CFTR-knockdown-induced NF-κB activation, whereas NF-κB inhibitor showed no effect on JNK/ERK. IL-8 was augmented by heat-treatment or CFTR-knockdown, which was abolished by inhibition of NF-κB, JNK/ERK or COX-2. Moreover, in vitro or in vivo treatment with curcumin, a natural phenolic compound, significantly enhanced CFTR expression and reversed the heat-induced increases in COX-2/PGE2/IL-8, neutrophil infiltration and tissue damage in the airway. These results have revealed a CFTR-regulated MAPK/NF-κB pathway leading to COX-2/PGE2/IL-8 activation in thermal inhalation injury, and demonstrated therapeutic potential of curcumin for alleviating heat-induced pulmonary inflammation. PMID:26515683

  11. Effects of environmental pollutants on airways, allergic inflammation, and the immune response.

    PubMed

    Handzel, Z T

    2000-01-01

    Particulate and gaseous air pollutants are capable of damaging the airway epithelial lining and of shifting the local immune balance, thereby facilitating the induction of persistent inflammation. Epidemiological studies are inconclusive regarding whether air pollution increases the incidence of asthma and chronic bronchitis in the population. Clearly, environmental pollution can, however, precipitate attacks and emergency-room admissions in those already suffering from such conditions. The catastrophic potential of airborne pollution was demonstrated in the 1960s and 1970s, when inverted atmospheric pressure conditions trapped smog over cities on the Eastern coast of the United States and over Europe. This smog resulted in thousands of hospital admissions and dozens of deaths. With the general rise in the incidence of atopy and asthma in the Western population, it is of major public health interest to reduce, as much as possible, the exposure of such populations to anthropogenic and natural sources of pollution. PMID:11048334

  12. Impact of interleukin-6 on hypoxia-induced pulmonary hypertension and lung inflammation in mice

    PubMed Central

    Savale, Laurent; Tu, Ly; Rideau, Dominique; Izziki, Mohamed; Maitre, Bernard; Adnot, Serge; Eddahibi, Saadia

    2009-01-01

    Background Inflammation may contribute to the pathogenesis of various forms of pulmonary hypertension (PH). Recent studies in patients with idiopathic PH or PH associated with underlying diseases suggest a role for interleukin-6 (IL-6). Methods To determine whether endogenous IL-6 contributes to mediate hypoxic PH and lung inflammation, we studied IL-6-deficient (IL-6-/-) and wild-type (IL-6+/+) mice exposed to hypoxia for 2 weeks. Results Right ventricular systolic pressure, right ventricle hypertrophy, and the number and media thickness of muscular pulmonary vessels were decreased in IL-6-/- mice compared to wild-type controls after 2 weeks' hypoxia, although the pressure response to acute hypoxia was similar in IL-6+/+ and IL-6-/- mice. Hypoxia exposure of IL-6+/+ mice led to marked increases in IL-6 mRNA and protein levels within the first week, with positive IL-6 immunostaining in the pulmonary vessel walls. Lung IL-6 receptor and gp 130 (the IL-6 signal transducer) mRNA levels increased after 1 and 2 weeks' hypoxia. In vitro studies of cultured human pulmonary-artery smooth-muscle-cells (PA-SMCs) and microvascular endothelial cells revealed prominent synthesis of IL-6 by PA-SMCs, with further stimulation by hypoxia. IL-6 also markedly stimulated PA-SMC migration without affecting proliferation. Hypoxic IL-6-/- mice showed less inflammatory cell recruitment in the lungs, compared to hypoxic wild-type mice, as assessed by lung protein levels and immunostaining for the specific macrophage marker F4/80, with no difference in lung expression of adhesion molecules or cytokines. Conclusion These data suggest that IL-6 may be actively involved in hypoxia-induced lung inflammation and pulmonary vascular remodeling in mice. PMID:19173740

  13. Genetics Home Reference: allergic asthma

    MedlinePlus

    ... Understand Genetics Home Health Conditions allergic asthma allergic asthma Enable Javascript to view the expand/collapse boxes. Download PDF Open All Close All Description Asthma is a breathing disorder characterized by inflammation of ...

  14. Impaired respiratory function and heightened pulmonary inflammation in episodic binge ethanol intoxication and burn injury.

    PubMed

    Shults, Jill A; Curtis, Brenda J; Chen, Michael M; O'Halloran, Eileen B; Ramirez, Luis; Kovacs, Elizabeth J

    2015-11-01

    Clinical data indicate that cutaneous burn injuries covering greater than 10% of the total body surface area are associated with significant morbidity and mortality, in which pulmonary complications, including acute respiratory distress syndrome (ARDS), contribute to nearly half of all patient deaths. Approximately 50% of burn patients are intoxicated at the time of hospital admission, which increases days on ventilators by 3-fold, and doubles the length of hospitalization, compared to non-intoxicated burn patients. The most common drinking pattern in the United States is binge drinking, where an individual rapidly consumes alcoholic beverages (4 for women, 5 for men) in 2 h. An estimated 38 million Americans binge drink, often several times per month. Experimental data demonstrate that a single binge-ethanol exposure, prior to scald injury, impairs innate and adaptive immune responses, thereby enhancing infection susceptibility and amplifying pulmonary inflammation, neutrophil infiltration, and edema, and is associated with increased mortality. Since these characteristics are similar to those observed in ARDS burn patients, our study objective was to determine whether ethanol intoxication and burn injury and the subsequent pulmonary congestion affect physiological parameters of lung function, using non-invasive and unrestrained plethysmography in a murine model system. Furthermore, to mirror young adult binge-drinking patterns, and to determine the effect of multiple ethanol exposures on pulmonary inflammation, we utilized an episodic binge-ethanol exposure regimen, where mice were exposed to ethanol for a total of 6 days (3 days ethanol, 4 days rest, 3 days ethanol) prior to burn injury. Our analyses demonstrate mice exposed to episodic binge ethanol and burn injury have higher mortality, increased pulmonary congestion and neutrophil infiltration, elevated neutrophil chemoattractants, and respiratory dysfunction, compared to burn or ethanol intoxication alone

  15. Pulmonary and pleural inflammation after intratracheal instillation of short single-walled and multi-walled carbon nanotubes.

    PubMed

    Fujita, Katsuhide; Fukuda, Makiko; Endoh, Shigehisa; Maru, Junko; Kato, Haruhisa; Nakamura, Ayako; Shinohara, Naohide; Uchino, Kanako; Honda, Kazumasa

    2016-08-22

    Relationships between the physical properties of carbon nanotubes (CNTs) and their toxicities have been studied. However, little research has been conducted to investigate the pulmonary and pleural inflammation caused by short-fiber single-walled CNTs (SWCNTs) and multi-walled CNTs (MWCNTs). This study was performed to characterize differences in rat pulmonary and pleural inflammation caused by intratracheal instillation with doses of 0.15 or 1.5mg/kg of either short-sized SWCNTs or MWCNTs. Data from bronchoalveolar lavage fluid analysis, histopathological findings, and transcriptional profiling of rat lungs obtained over a 90-day period indicated that short SWCNTs caused persistent pulmonary inflammation. In addition, the short MWCNTs markedly impacted alveoli immediately after instillation, with the levels of pulmonary inflammation following MWCNT instillation being reduced in a time-dependent manner. MWCNT instillation induced greater levels of pleural inflammation than did short SWCNTs. SWCNTs and MWCNTs translocated in mediastinal lymph nodes were observed, suggesting that SWCNTs and MWCNTs underwent lymphatic drainage to the mediastinal lymph nodes after pleural penetration. Our results suggest that short SWCNTs and MWCNTs induced pulmonary and pleural inflammation and that they might be transported throughout the body after intratracheal instillation. The extent of changes in inflammation differed following SWCNT and MWCNT instillation in a time-dependent manner. PMID:27259835

  16. Systemic inflammation, depression and obstructive pulmonary function: a population-based study

    PubMed Central

    2013-01-01

    Background Levels of Interleukin-6 (IL-6) and C-creative protein (CRP) indicating systemic inflammation are known to be elevated in chronic diseases including chronic obstructive pulmonary disease (COPD) and depression. Comorbid depression is common in patients with COPD, but no studies have investigated whether proinflammatory cytokines mediate the association between pulmonary function and depressive symptoms in healthy individuals with no known history of obstructive pulmonary diseases. Methods In a population-based sample (n = 2077) of individuals aged 55 and above with no known history of obstructive pulmonary disease in the Singapore Longitudinal Ageing Study (SLAS), we analyzed the relationships between IL-6 and CRP, depressive symptoms (GDS-15 ≥5) and obstructive pulmonary function (FEV1% predicted and FEV1/FVC% predicted). Results High serum levels of IL-6 and CRP were associated with greater prevalence of depressive symptoms (p < 0.05). High IL-6, high CRP and depressive symptoms were independently associated with decreased FEV1% predicted and FEV1/FVC% predicted after adjusting for smoking status, BMI and number of chronic inflammatory diseases. Increasing grades of combination of inflammatory markers and/or depressive symptoms was associated with progressive increases in pulmonary obstruction. In hierarchical models, the significant association of depressive symptoms with pulmonary obstruction was reduced by the presence of IL-6 and CRP. Conclusions This study found for the first time an association of depressive symptoms and pulmonary function in older adults which appeared to be partly mediated by proinflammatory cytokines. Further studies should be conducted to investigate proinflammatory immune markers and depressive symptoms as potential phenotypic indicators for chronic obstructive airway disorders in older adults. PMID:23676005

  17. Epithelial barrier function: at the frontline of asthma immunology and allergic airway inflammation

    PubMed Central

    Georas, Steve N.; Rezaee, Fariba

    2014-01-01

    Airway epithelial cells form a barrier to the outside world, and are at the frontline of mucosal immunity. Epithelial apical junctional complexes are multi-protein subunits that promote cell-cell adhesion and barrier integrity. Recent studies in the skin and GI tract suggest that disruption of cell-cell junctions is required to initiate epithelial immune responses, but how this applies to mucosal immunity in the lung is not clear. Increasing evidence indicates that defective epithelial barrier function is a feature of airway inflammation in asthma. One challenge in this area is that barrier function and junctional integrity are difficult to study in the intact lung, but innovative approaches should provide new knowledge in this area in the near future. In this article, we review the structure and function of epithelial apical junctional complexes, emphasizing how regulation of the epithelial barrier impacts innate and adaptive immunity. We discuss why defective epithelial barrier function may be linked to Th2 polarization in asthma, and propose a rheostat model of barrier dysfunction that implicates the size of inhaled allergen particles as an important factor influencing adaptive immunity. PMID:25085341

  18. Combined radiation and burn injury results in exaggerated early pulmonary inflammation

    PubMed Central

    Palmer, Jessica L.; Deburghgraeve, Cory R.; Bird, Melanie D.; Hauer-Jensen, Martin; Chen, Michael M.; Yong, Sherri; Kovacs, Elizabeth J.

    2014-01-01

    Events such as a nuclear meltdown accident or nuclear attack have potential for severe radiation injuries. Radiation injury frequently occurs in combination with other forms of trauma, most often burns. Thus far, combined injury studies have focused mainly on skin wound healing and damage to the gut. Since both radiation exposure and remote burn have pulmonary consequences, we examined the early effects of combined injury on the lung. C57BL/6 male mice were subjected to 5 Gy of total body irradiation followed by a 15% total body surface area scald burn. Lungs from surviving animals were examined for evidence of inflammation and pneumonitis. At 48 hours post-injury, pathology of the lungs from combined injury mice showed greater inflammation compared to all other treatment groups, with marked red blood cell and leukocyte congestion of the pulmonary vasculature. There was excessive leukocyte accumulation, primarily neutrophils, in the vasculature and interstitium, with occasional cells in the alveolar space. At 24 and 48 hours post-injury, myeloperoxidase levels in lungs of mice given combined injury were elevated compared to all other treatment groups (p<0.01), confirming histological evidence of neutrophil accumulation. Pulmonary levels of the neutrophil chemoattractant KC (CXCL1) were 3 times above that of either injury alone (p<0.05). Further, monocyte chemotactic protein-1 (MCP-1, CCL2) was increased 2-fold and 3-fold compared to burn injury or radiation injury, respectively (p<0.05). Together, these data suggest that combined radiation and burn injury augments early pulmonary congestion and inflammation.. Currently, countermeasures for this unique type of injury are extremely limited. Further research is needed to elucidate the mechanisms behind the synergistic effects of combined injury in order to develop appropriate treatments. PMID:23899376

  19. Neutrophilic oxidative stress mediates organic dust-induced pulmonary inflammation and airway hyperresponsiveness.

    PubMed

    McGovern, Toby K; Chen, Michael; Allard, Benoit; Larsson, Kjell; Martin, James G; Adner, Mikael

    2016-01-15

    Airway exposure to organic dust (OD) from swine confinement facilities induces airway inflammation dominated by neutrophils and airway hyperresponsiveness (AHR). One important neutrophilic innate defense mechanism is the induction of oxidative stress. Therefore, we hypothesized that neutrophils exacerbate airway dysfunction following OD exposure by increasing oxidant burden. BALB/C mice were given intranasal challenges with OD or PBS (1/day for 3 days). Mice were untreated or treated with a neutrophil-depleting antibody, anti-Ly6G, or the antioxidant dimethylthiourea (DMTU) prior to OD exposure. Twenty-four hours after the final exposure, we measured airway responsiveness in response to methacholine (MCh) and collected bronchoalveolar lavage fluid to assess pulmonary inflammation and total antioxidant capacity. Lung tissue was harvested to examine the effect of OD-induced antioxidant gene expression and the effect of anti-Ly6G or DMTU. OD exposure induced a dose-dependent increase of airway responsiveness, a neutrophilic pulmonary inflammation, and secretion of keratinocyte cytokine. Depletion of neutrophils reduced OD-induced AHR. DMTU prevented pulmonary inflammation involving macrophages and neutrophils. Neutrophil depletion and DMTU were highly effective in preventing OD-induced AHR affecting large, conducting airways and tissue elastance. OD induced an increase in total antioxidant capacity and mRNA levels of NRF-2-dependent antioxidant genes, effects that are prevented by administration of DMTU and neutrophil depletion. We conclude that an increase in oxidative stress and neutrophilia is critical in the induction of OD-induced AHR. Prevention of oxidative stress diminishes neutrophil influx and AHR, suggesting that mechanisms driving OD-induced AHR may be dependent on neutrophil-mediated oxidant pathways. PMID:26545900

  20. Lung inflammation does not affect the clearance kinetics of lipid nanocapsules following pulmonary administration.

    PubMed

    Patel, Aateka; Woods, A; Riffo-Vasquez, Yanira; Babin-Morgan, Anna; Jones, Marie-Christine; Jones, Stuart; Sunassee, Kavitha; Clark, Stephen; T M de Rosales, Rafael; Page, Clive; Spina, Domenico; Forbes, Ben; Dailey, Lea Ann

    2016-08-10

    Lipid nanocapsules (LNCs) are semi-rigid spherical capsules with a triglyceride core that present a promising formulation option for the pulmonary delivery of drugs with poor aqueous solubility. Whilst the biodistribution of LNCs of different size has been studied following intravenous administration, the fate of LNCs following pulmonary delivery has not been reported. We investigated quantitatively whether lung inflammation affects the clearance of 50nm lipid nanocapsules, or is exacerbated by their pulmonary administration. Studies were conducted in mice with lipopolysaccharide-induced lung inflammation compared to healthy controls. Particle deposition and nanocapsule clearance kinetics were measured by single photon emission computed tomography/computed tomography (SPECT/CT) imaging over 48 h. A significantly lower lung dose of (111)In-LNC50 was achieved in the lipopolysaccharide (LPS)-treated animals compared with healthy controls (p<0.001). When normalised to the delivered lung dose, the clearance kinetics of (111)In-LNC50 from the lungs fit a first order model with an elimination half-life of 10.5±0.9h (R(2)=0.995) and 10.6±0.3h (R(2)=1.000) for healthy and inflamed lungs respectively (n=3). In contrast, (111)In-diethylene triamine pentaacetic acid (DTPA), a small hydrophilic molecule, was cleared rapidly from the lungs with the majority of the dose absorbed within 20min of administration. Biodistribution to lungs, stomach-intestine, liver, trachea-throat and blood at the end of the imaging period was unaltered by lung inflammation. This study demonstrated that lung clearance and whole body distribution of lipid nanocapsules were unaffected by the presence of acute lung inflammation. PMID:27180635

  1. Inhibition of chlorine-induced pulmonary inflammation and edema by mometasone and budesonide

    SciTech Connect

    Chen, Jing; Mo, Yiqun; Schlueter, Connie F.; Hoyle, Gary W.

    2013-10-15

    Chlorine gas is a widely used industrial compound that is highly toxic by inhalation and is considered a chemical threat agent. Inhalation of high levels of chlorine results in acute lung injury characterized by pneumonitis, pulmonary edema, and decrements in lung function. Because inflammatory processes can promote damage in the injured lung, anti-inflammatory therapy may be of potential benefit for treating chemical-induced acute lung injury. We previously developed a chlorine inhalation model in which mice develop epithelial injury, neutrophilic inflammation, pulmonary edema, and impaired pulmonary function. This model was used to evaluate nine corticosteroids for the ability to inhibit chlorine-induced neutrophilic inflammation. Two of the most potent corticosteroids in this assay, mometasone and budesonide, were investigated further. Mometasone or budesonide administered intraperitoneally 1 h after chlorine inhalation caused a dose-dependent inhibition of neutrophil influx in lung tissue sections and in the number of neutrophils in lung lavage fluid. Budesonide, but not mometasone, reduced the levels of the neutrophil attractant CXCL1 in lavage fluid 6 h after exposure. Mometasone or budesonide also significantly inhibited pulmonary edema assessed 1 day after chlorine exposure. Chlorine inhalation resulted in airway hyperreactivity to inhaled methacholine, but neither mometasone nor budesonide significantly affected this parameter. The results suggest that mometasone and budesonide may represent potential treatments for chemical-induced lung injury. - Highlights: • Chlorine causes lung injury when inhaled and is considered a chemical threat agent. • Corticosteroids may inhibit lung injury through their anti-inflammatory actions. • Corticosteroids inhibited chlorine-induced pneumonitis and pulmonary edema. • Mometasone and budesonide are potential rescue treatments for chlorine lung injury.

  2. Matrikines are key regulators in modulating the amplitude of lung inflammation in acute pulmonary infection

    PubMed Central

    Akthar, Samia; Patel, Dhiren F.; Beale, Rebecca C.; Peiró, Teresa; Xu, Xin; Gaggar, Amit; Jackson, Patricia L.; Blalock, J. Edwin; Lloyd, Clare M.; Snelgrove, Robert J.

    2015-01-01

    Bioactive matrix fragments (matrikines) have been identified in a myriad of disorders, but their impact on the evolution of airway inflammation has not been demonstrated. We recently described a pathway where the matrikine and neutrophil chemoattractant proline–glycine–proline (PGP) could be degraded by the enzyme leukotriene A4 hydrolase (LTA4H). LTA4H classically functions in the generation of pro-inflammatory leukotriene B4, thus LTA4H exhibits opposing pro- and anti-inflammatory activities. The physiological significance of this secondary anti-inflammatory activity remains unknown. Here we show, using readily resolving pulmonary inflammation models, that loss of this secondary activity leads to more pronounced and sustained inflammation and illness owing to PGP accumulation. PGP elicits an exacerbated neutrophilic inflammation and protease imbalance that further degrades the extracellular matrix, generating fragments that perpetuate inflammation. This highlights a critical role for the secondary anti-inflammatory activity of LTA4H and thus has consequences for the generation of global LTA4H inhibitors currently being developed. PMID:26400771

  3. Matrikines are key regulators in modulating the amplitude of lung inflammation in acute pulmonary infection.

    PubMed

    Akthar, Samia; Patel, Dhiren F; Beale, Rebecca C; Peiró, Teresa; Xu, Xin; Gaggar, Amit; Jackson, Patricia L; Blalock, J Edwin; Lloyd, Clare M; Snelgrove, Robert J

    2015-01-01

    Bioactive matrix fragments (matrikines) have been identified in a myriad of disorders, but their impact on the evolution of airway inflammation has not been demonstrated. We recently described a pathway where the matrikine and neutrophil chemoattractant proline-glycine-proline (PGP) could be degraded by the enzyme leukotriene A4 hydrolase (LTA4H). LTA4H classically functions in the generation of pro-inflammatory leukotriene B4, thus LTA4H exhibits opposing pro- and anti-inflammatory activities. The physiological significance of this secondary anti-inflammatory activity remains unknown. Here we show, using readily resolving pulmonary inflammation models, that loss of this secondary activity leads to more pronounced and sustained inflammation and illness owing to PGP accumulation. PGP elicits an exacerbated neutrophilic inflammation and protease imbalance that further degrades the extracellular matrix, generating fragments that perpetuate inflammation. This highlights a critical role for the secondary anti-inflammatory activity of LTA4H and thus has consequences for the generation of global LTA4H inhibitors currently being developed. PMID:26400771

  4. Impact of agglomeration state of nano- and submicron sized gold particles on pulmonary inflammation

    PubMed Central

    2010-01-01

    Background Nanoparticle (NP) toxicity testing comes with many challenges. Characterization of the test substance is of crucial importance and in the case of NPs, agglomeration/aggregation state in physiological media needs to be considered. In this study, we have addressed the effect of agglomerated versus single particle suspensions of nano- and submicron sized gold on the inflammatory response in the lung. Rats were exposed to a single dose of 1.6 mg/kg body weight (bw) of spherical gold particles with geometric diameters of 50 nm or 250 nm diluted either by ultrapure water or by adding phosphate buffered saline (PBS). A single dose of 1.6 mg/kg bw DQ12 quartz was used as a positive control for pulmonary inflammation. Extensive characterization of the particle suspensions has been performed by determining the zetapotential, pH, gold concentration and particle size distribution. Primary particle size and particle purity has been verified using transmission electron microscopy (TEM) techniques. Pulmonary inflammation (total cell number, differential cell count and pro-inflammatory cytokines), cell damage (total protein and albumin) and cytotoxicity (alkaline phosphatase and lactate dehydrogenase) were determined in bronchoalveolar lavage fluid (BALF) and acute systemic effects in blood (total cell number, differential cell counts, fibrinogen and C-reactive protein) 3 and 24 hours post exposure. Uptake of gold particles in alveolar macrophages has been determined by TEM. Results Particles diluted in ultrapure water are well dispersed, while agglomerates are formed when diluting in PBS. The particle size of the 50 nm particles was confirmed, while the 250 nm particles appear to be 200 nm using tracking analysis and 210 nm using TEM. No major differences in pulmonary and systemic toxicity markers were observed after instillation of agglomerated versus single gold particles of different sizes. Both agglomerated as well as single nanoparticles were taken up by

  5. Prospective Evaluation of a New Aspergillus IgG Enzyme Immunoassay Kit for Diagnosis of Chronic and Allergic Pulmonary Aspergillosis.

    PubMed

    Dumollard, C; Bailly, S; Perriot, S; Brenier-Pinchart, M P; Saint-Raymond, C; Camara, B; Gangneux, J P; Persat, F; Valot, S; Grenouillet, F; Pelloux, H; Pinel, C; Cornet, M

    2016-05-01

    Anti-Aspergillus IgG antibodies are important biomarkers for the diagnosis of chronic pulmonary aspergillosis (CPA) and allergic bronchopulmonary aspergillosis (ABPA). We compared the performance of a new commercial enzyme immunoassay (EIA) (Bordier Affinity Products) with that of the Bio-Rad and Virion\\Serion EIAs. This assay is novel in its association of two recombinant antigens with somatic and metabolic antigens of Aspergillus fumigatus In a prospective multicenter study, 436 serum samples from 147 patients diagnosed with CPA (136 samples/104 patients) or ABPA (94 samples/43 patients) and from 205 controls (206 samples) were tested. We obtained sensitivities of 97%, 91.7%, and 86.1%, and specificities of 90.3%, 91.3%, and 81.5% for the Bordier, Bio-Rad, and Virion\\Serion tests, respectively. The Bordier kit was more sensitive than the Bio-Rad kit (P < 0.01), which was itself more sensitive than the Virion\\Serion kit (P = 0.04). The Bordier and Bio-Rad kits had similar specificity (P = 0.8), both higher than that of the Virion\\Serion kit (P = 0.02). The area under the receiver operating characteristic (ROC) curves confirmed the superiority of the Bordier kit over the Bio-Rad and the Virion\\Serion kits (0.977, 0.951, and 0.897, respectively; P < 0.01 for each comparison). In a subset analysis of 279 serum samples tested with the Bordier and Bio-Rad kits and an in-house immunoprecipitin assay (IPD), the Bordier kit had the highest sensitivity (97.7%), but the IPD tended to be more specific (71.2 and 84.7%, respectively; P = 0.10). The use of recombinant, somatic, and metabolic antigens in a single EIA improved the balance of sensitivity and specificity, resulting in an assay highly suitable for use in the diagnosis of chronic and allergic aspergillosis. PMID:26888904

  6. Ligation of TLR7 on CD19(+) CD1d(hi) B cells suppresses allergic lung inflammation via regulatory T cells.

    PubMed

    Khan, Adnan R; Amu, Sylvie; Saunders, Sean P; Hams, Emily; Blackshields, Gordon; Leonard, Martin O; Weaver, Casey T; Sparwasser, Tim; Sheils, Orla; Fallon, Padraic G

    2015-06-01

    B cells have been described as having the capacity to regulate cellular immune responses and suppress inflammatory processes. One such regulatory B-cell population is defined as IL-10-producing CD19(+) CD1d(hi) cells. Previous work has identified an expansion of these cells in mice infected with the helminth, Schistosoma mansoni. Here, microarray analysis of CD19(+) CD1d(hi) B cells from mice infected with S. mansoni demonstrated significantly increased Tlr7 expression, while CD19(+) CD1d(hi) B cells from uninfected mice also demonstrated elevated Tlr7 expression. Using IL-10 reporter, Il10(-/-) and Tlr7(-/-) mice, we formally demonstrate that TLR7 ligation of CD19(+) CD1d(hi) B cells increases their capacity to produce IL-10. In a mouse model of allergic lung inflammation, the adoptive transfer of TLR7-elicited CD19(+) CD1d(hi) B cells reduced airway inflammation and associated airway hyperresponsiveness. Using DEREG mice to deplete FoxP3(+) T regulatory cells in allergen-sensitized mice, we show that that TLR7-elicited CD19(+) CD1d(hi) B cells suppress airway hyperresponsiveness via a T regulatory cell dependent mechanism. These studies identify that TLR7 stimulation leads to the expansion of IL-10-producing CD19(+) CD1d(hi) B cells, which can suppress allergic lung inflammation via T regulatory cells. PMID:25763771

  7. Role of Granulocyte Macrophage Colony-Stimulating Factor in Host Defense Against Pulmonary Cryptococcus neoformans Infection during Murine Allergic Bronchopulmonary Mycosis

    PubMed Central

    Chen, Gwo-Hsiao; Olszewski, Michal A.; McDonald, Roderick A.; Wells, Jason C.; Paine, Robert; Huffnagle, Gary B.; Toews, Galen B.

    2007-01-01

    We investigated the role of granulocyte macrophage colony-stimulating factor (GM-CSF) in host defense in a murine model of pulmonary cryptococcosis induced by intratracheal inoculation of Cryptococcus neoformans. Pulmonary C. neoformans infection of C57BL/6 mice is an established model of an allergic bronchopulmonary mycosis. Our objective was to determine whether GM-CSF regulates the pulmonary Th2 immune response in C. neoformans-infected C57BL/6 mice. Long-term pulmonary fungistasis was lost in GM-CSF knockout (GM−/−) mice, resulting in increased pulmonary burden of fungi between weeks 3 and 5. GM-CSF was required for the early influx of macrophages and CD4 and CD8 T cells into the lungs but was not required later in the infection. Lack of GM-CSF also resulted in reduced eosinophil recruitment and delayed recruitment of mononuclear cells into the airspace. Macrophages from GM+/+ mice showed numerous hallmarks of alternatively activated macrophages: higher numbers of intracellular cryptococci, YM1 crystals, and induction of CCL17. These hallmarks are absent in macrophages from GM−/− mice. Mucus-producing goblet cells were abundantly present within the bronchial epithelial layer in GM+/+ mice but not in GM−/− mice at week 5 after infection. Production of both Th1 and Th2 cytokines was impaired in the absence of GM-CSF, consistent with both reduced C. neoformans clearance and absence of allergic lung pathology. PMID:17322386

  8. Pulmonary Allergic Responses Augment IL-13 Secretion by Circulating Basophils yet Suppress IFN-alpha from Plasmacytoid DCs

    PubMed Central

    Schroeder, John T.; Bieneman, Anja P.; Chichester, Kristin L.; Breslin, Linda; Xiao, HuiQing; Liu, Mark C.

    2011-01-01

    Background Allergic inflammatory processes may have the capacity to propagate systemically through the actions of circulating leukocytes. Consequently, basophils from allergic individuals are often “primed”, as evidenced by their hyper-responsiveness in vitro. IFN-α, secreted predominately by plasmacytoid DCs, suppresses basophil priming for IL-13 production in vitro. Objective This study sought in vivo correlates, arising during experimental allergen challenge, that support an “axis-interplay” between basophils and pDCs. Methods Using segmental allergen challenge in the lung, the immune responses of both cell types from blood were investigated in volunteers (n=10) before and 24h after allergen exposure. These responses were then correlated with inflammatory parameters measured in bronchoalveolar lavage fluids. Results In blood, segmental allergen challenge significantly augmented IL-13 secretion by basophils induced by IL-3 (p=0.009) yet reduced IFN-α secreted by plasmacytoid dendritic cells stimulated with CpG (p=0.018). Both parameters were negatively correlated (p=0.0015), at least among those subjects secreting the latter. Circulating basophil IL-13 responses further correlated with post-segmental allergen challenge bronchoalveolar lavage parameters including IL-13 protein (p=0.04), basophil (p=0.051), eosinophil (p=0.0018) and total cell counts (p<0.003). Basophil and IL-13 levels in bronchoalveolar lavage likewise correlated (p=0.0002). Conclusions These results support a mechanism of immune regulation whereby allergen reduces innate immune responses and IFN-α production by plasmacytoid dendritic cells, resulting in enhanced inflammation and basophil cytokine production at sites of allergen exposure. PMID:20184608

  9. Heme oxygenase-1 inhibits basophil maturation and activation but promotes its apoptosis in T helper type 2-mediated allergic airway inflammation.

    PubMed

    Zhong, Wenwei; Di, Caixia; Lv, Jiajia; Zhang, Yanjie; Lin, Xiaoliang; Yuan, Yufan; Lv, Jie; Xia, Zhenwei

    2016-03-01

    The anti-inflammatory role of heme oxygenase-1 (HO-1) has been studied extensively in many disease models including asthma. Many cell types are anti-inflammatory targets of HO-1, such as dendritic cells and regulatory T cells. In contrast to previous reports that HO-1 had limited effects on basophils, which participate in T helper type 2 immune responses and antigen-induced allergic airway inflammation, we demonstrated in this study, for the first time, that the up-regulation of HO-1 significantly suppressed the maturation of mouse basophils, decreased the expression of CD40, CD80, MHC-II and activation marker CD200R on basophils, blocked DQ-ovalbumin uptake and promoted basophil apoptosis both in vitro and in vivo, leading to the inhibition of T helper type 2 polarization. These effects of HO-1 were mimicked by exogenous carbon monoxide, which is one of the catalytic products of HO-1. Furthermore, adoptive transfer of HO-1-modified basophils reduced ovalbumin-induced allergic airway inflammation. The above effects of HO-1 can be reversed by the HO-1 inhibitor Sn-protoporphyrin IX. Moreover, conditional depletion of basophils accompanying hemin treatment further attenuated airway inflammation compared with the hemin group, indicating that the protective role of HO-1 may involve multiple immune cells. Collectively, our findings demonstrated that HO-1 exerted its anti-inflammatory function through suppression of basophil maturation and activation, but promotion of basophil apoptosis, providing a possible novel therapeutic target in allergic asthma. PMID:26879758

  10. Secretory leukoprotease inhibitor: partnering alpha 1-proteinase inhibitor to combat pulmonary inflammation.

    PubMed Central

    Bingle, L.; Tetley, T. D.

    1996-01-01

    Secretory leukoprotease inhibitor (SLPI) is a low molecular weight serine proteinase inhibitor, notably of neutrophil elastase (NE), which is synthesised and secreted by the pulmonary epithelium. SLPI plays an important role in limiting NE-induced pulmonary inflammation and, significantly, it also possesses anti-HIV activity. SLPI is a significant component of the anti-NE shield in the lung which has different reactivity from, and is therefore complementary to, the anti-NE action of alpha 1-proteinase inhibitor (alpha 1-PI). Inhaled recombinant SLPI (rSLPI) could prove beneficial in partnership with alpha 1-PI in the treatment of a number of inflammatory lung disorders including emphysema, chronic bronchitis, cystic fibrosis, and adult respiratory distress syndrome. PMID:8994529

  11. Silver Nanoparticles: A study of dissolution, kinetics, and factors affecting pulmonary inflammation

    NASA Astrophysics Data System (ADS)

    Saunders, Eric L.

    The growing use of silver (Ag) nanoparticles (NP) in consumer and industrial goods has led to an increase in interest in the health effects associated with exposure, both occupationally and environmentally. The aim of this research is to examine the contribution of size, shape, and dissolution of AgNP, with its corresponding effect on pulmonary inflammation and clearance. In addition this study looks at metallothionein (MT) and the role it plays as an inflammatory modulator. A nose only exposure method was used to expose three strains of mouse (two inbred, one knockout) to two different sizes of AgNP (˜25 nm and ˜100 nm). This research demonstrates that size, chemistry, and dissolution play key roles in NP deposition and inflammatory response, while no conclusions could be drawn about shape. Additionally, this study found that the main factors affecting the deposition of NP in mice both acutely and sub-chronically are particle size and mouse strain. The results of this study also indicate a relationship between MT2 and inflammation. It was found that the mRNA levels of MT2 were greatly up-regulated in the livers and lungs of mice exposed to AgNP, while MT protein levels were not significantly altered to correlate with the altered regulation of mRNA. Finally, this study showed that, for AgNP, the mechanisms of pulmonary clearance and dissolution happened rapidly and that they, combined, likely represent a major pathway of AgNP transport out of the lung. Taken as a whole, the data in this study show that dissolution, coupled with protein interaction, is a significant mediator of pulmonary inflammation and translocation of AgNP.

  12. Systemic Administration of Human Bone Marrow-Derived Mesenchymal Stromal Cell Extracellular Vesicles Ameliorates Aspergillus Hyphal Extract-Induced Allergic Airway Inflammation in Immunocompetent Mice

    PubMed Central

    Cruz, Fernanda F.; Borg, Zachary D.; Goodwin, Meagan; Sokocevic, Dino; Wagner, Darcy E.; Coffey, Amy; Antunes, Mariana; Robinson, Kristen L.; Mitsialis, S. Alex; Kourembanas, Stella; Thane, Kristen; Hoffman, Andrew M.; McKenna, David H.; Rocco, Patricia R.M.

    2015-01-01

    An increasing number of studies demonstrate that administration of either conditioned media (CM) or extracellular vesicles (EVs) released by mesenchymal stromal cells (MSCs) derived from bone marrow and other sources are as effective as the MSCs themselves in mitigating inflammation and injury. The goal of the current study was to determine whether xenogeneic administration of CM or EVs from human bone marrow-derived MSCs would be effective in a model of mixed Th2/Th17, neutrophilic-mediated allergic airway inflammation, reflective of severe refractory asthma, induced by repeated mucosal exposure to Aspergillus hyphal extract (AHE) in immunocompetent C57Bl/6 mice. Systemic administration of both CM and EVs isolated from human and murine MSCs, but not human lung fibroblasts, at the onset of antigen challenge in previously sensitized mice significantly ameliorated the AHE-provoked increases in airway hyperreactivity (AHR), lung inflammation, and the antigen-specific CD4 T-cell Th2 and Th17 phenotype. Notably, both CM and EVs from human MSCs (hMSCs) were generally more potent than those from mouse MSCs (mMSCs) in most of the outcome measures. The weak cross-linking agent 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride was found to inhibit release of both soluble mediators and EVs, fully negating effects of systemically administered hMSCs but only partly inhibited the ameliorating effects of mMSCs. These results demonstrate potent xenogeneic effects of CM and EVs from hMSCs in an immunocompetent mouse model of allergic airway inflammation and they also show differences in mechanisms of action of hMSCs versus mMSCs to mitigate AHR and lung inflammation in this model. Significance There is a growing experience demonstrating benefit of mesenchymal stromal cell (MSC)-based cell therapies in preclinical models of asthma. In the current study, conditioned media (CM) and, in particular, the extracellular vesicle fraction obtained from the CM were as potent as the

  13. Dihydroartemisinin supresses inflammation and fibrosis in bleomycine-induced pulmonary fibrosis in rats

    PubMed Central

    Yang, Dongxia; Yuan, Wendan; Lv, Changjun; Li, Naie; Liu, Tongshen; Wang, Liang; Sun, Yufei; Qiu, Xueshan; Fu, Qiang

    2015-01-01

    Pulmonary fibrosis is a respiratory disease with a high mortality rate and its pathogenesis involves multiple mechanisms including epithelial cell injury, fibroblast proliferation, inflammation, and collagen coagulation. The treatment regimens still fail to recover this disease. We have previously found that dihydroartemisinin inhibits the development of pulmonary fibrosis in rats. This study aimed to determine the mechanisms of dihydroartemisinin in bleomycin-induced pulmonary fibrosis. The experimental rats were divided into six groups as normal saline control group (NS group), bleomycin group (BLM group), dihydroartemisinin-1, -2, or -3 group (DHA-1, DHA-2 and DHA-3 group) and dexamethasone group (DXM group). In BLM group, rats were treated with intratracheal instillation of bleomycin. NS group received the same volume of saline instead of bleomycin. In DHA-1, DHA-2 and DHA-3 group, in addition to intratracheal instillation of bleomycin, respectively, dihydroartemisinin (25 mg/kg, 50 mg/kg, 100 mg/kg daily) was administrated by intraperitoneal instillation. In DXM group, rats were treated with intraperitoneal instillation of dexamethasone as control. Immunocytochemical assay, reverse transcription PCR and western blot were used for detecting the expression of TGF-β1, TNF-α, α-SMA and NF-κB in lung tissues. What’s more, morphological change and collagen deposition were analyzed by hematoxylin-eosin staining and Masson staining. Collagen synthesis was detected by hydroxyproline chromatometry. Results showed that dihydroartemisinin significantly decreased the amount of inflammatory cytokines and collagen synthesis, and inhibited fibroblast proliferation in bleomycin-induced pulmonary fibrosis (P < 0.001). This study provides experimental evidence that dihydroartemisinin could decrease cytokines, alveolar inflammation and attenuates lung injury and fibrosis. PMID:25973011

  14. Eosinophilic airway inflammation: role in asthma and chronic obstructive pulmonary disease

    PubMed Central

    George, Leena; Brightling, Christopher E.

    2016-01-01

    The chronic lung diseases, asthma and chronic obstructive pulmonary disease (COPD), are common affecting over 500 million people worldwide and causing substantial morbidity and mortality. Asthma is typically associated with Th2-mediated eosinophilic airway inflammation, in contrast to neutrophilic inflammation observed commonly in COPD. However, there is increasing evidence that the eosinophil might play an important role in 10–40% of patients with COPD. Consistently in both asthma and COPD a sputum eosinophilia is associated with a good response to corticosteroid therapy and tailored strategies aimed to normalize sputum eosinophils reduce exacerbation frequency and severity. Advances in our understanding of the multistep paradigm of eosinophil recruitment to the airway, and the consequence of eosinophilic inflammation, has led to the development of new therapies to target these molecular pathways. In this article we discuss the mechanisms of eosinophilic trafficking, the tools to assess eosinophilic airway inflammation in asthma and COPD during stable disease and exacerbations and review current and novel anti-eosinophilic treatments. PMID:26770668

  15. Eosinophilic airway inflammation: role in asthma and chronic obstructive pulmonary disease.

    PubMed

    George, Leena; Brightling, Christopher E

    2016-01-01

    The chronic lung diseases, asthma and chronic obstructive pulmonary disease (COPD), are common affecting over 500 million people worldwide and causing substantial morbidity and mortality. Asthma is typically associated with Th2-mediated eosinophilic airway inflammation, in contrast to neutrophilic inflammation observed commonly in COPD. However, there is increasing evidence that the eosinophil might play an important role in 10-40% of patients with COPD. Consistently in both asthma and COPD a sputum eosinophilia is associated with a good response to corticosteroid therapy and tailored strategies aimed to normalize sputum eosinophils reduce exacerbation frequency and severity. Advances in our understanding of the multistep paradigm of eosinophil recruitment to the airway, and the consequence of eosinophilic inflammation, has led to the development of new therapies to target these molecular pathways. In this article we discuss the mechanisms of eosinophilic trafficking, the tools to assess eosinophilic airway inflammation in asthma and COPD during stable disease and exacerbations and review current and novel anti-eosinophilic treatments. PMID:26770668

  16. Human eosinophil major basic protein, a mediator of allergic inflammation, is expressed by alternative splicing from two promoters.

    PubMed Central

    Li, M S; Sun, L; Satoh, T; Fisher, L M; Spry, C J

    1995-01-01

    Human eosinophil major basic protein (MBP) is one of the principal mediators of injury to parasites and tissues in allergic inflammation. MBP is stored in eosinophil crystalloid granules and released with other granule constituents during eosinophil action. Previous studies have identified an MBP gene promoter that generates a 1.0 kb mRNA transcript encoding MBP preproprotein which undergoes processing to the mature storage form. To investigate how the MBP gene is regulated, we have examined the identity and levels of the MBP transcripts both in precursor cells and in blood eosinophils. It was found that the gene was expressed from two upstream promoters, a distal promoter P1 in addition to the previously described promoter P2. Evidence for the second promoter was initially provided by isolation from a human HL-60 leukaemic cell cDNA library of a novel 1.6 kb MBP cDNA that was distinct from the known 1.0 kb cDNA. The complete nucleotide sequence of the 1.6 kb cDNA was determined, and showed that the two cDNAs had identical coding and 3' untranslated regions but differed in their 5' sequences. By isolating and sequencing MBP genomic clones from an arrayed chromosome 11 library, it was demonstrated that the MBP gene is composed of nine upstream exons and five coding exons. The 1.6 and 1.0 kb cDNAs arise by differential splicing of alternate MBP transcripts from promoters P1 and P2 respectively, located 32 kb apart in the genomic DNA. Primer extension analysis identified two transcription start sites at P1, neither associated with a typical TATA box motif. Northern blotting and reverse-transcription PCR analysis showed that the 1.0 kb mRNA was present at higher levels than the 1.6 kb species in immature cells including HL-60 and bone-marrow cells. By contrast, low levels of 1.6 kb mRNA transcripts predominated in differentiated blood eosinophils. The results are compatible with differential use of P1 and P2 promoters as a mechanism for regulation of MBP expression

  17. Anti-inflammatory actions of Chemoattractant Receptor-homologous molecule expressed on Th2 by the antagonist MK-7246 in a novel rat model of Alternaria alternata elicited pulmonary inflammation.

    PubMed

    Gil, Malgorzata A; Caniga, Michael; Woodhouse, Janice D; Eckman, Joseph; Lee, Hyun-Hee; Salmon, Michael; Naber, John; Hamilton, Valerie T; Sevilla, Raquel S; Bettano, Kimberly; Klappenbach, Joel; Moy, Lily; Correll, Craig C; Gervais, Francois G; Siliphaivanh, Phieng; Zhang, Weisheng; Zhang-Hoover, Jie; McLeod, Robbie L; Cicmil, Milenko

    2014-11-15

    Alternaria alternata is a fungal allergen linked to the development of severe asthma in humans. In view of the clinical relationship between A. alternata and asthma, we sought to investigate the allergic activity of this antigen after direct application to the lungs of Brown Norway rats. Here we demonstrate that a single intratracheal instillation of A. alternata induces dose and time dependent eosinophil influx, edema and Type 2 helper cell cytokine production in the lungs of BN rats. We established the temporal profile of eosinophilic infiltration and cytokine production, such as Interleukin-5 and Interleukin-13, following A. alternata challenge. These responses were comparable to Ovalbumin induced models of asthma and resulted in peak inflammatory responses 48h following a single challenge, eliminating the need for multiple sensitizations and challenges. The initial perivascular and peribronchiolar inflammation preceded alveolar inflammation, progressing to a more sub-acute inflammatory response with notable epithelial cell hypertrophy. To limit the effects of an A. alternata inflammatory response, MK-7246 was utilized as it is an antagonist for Chemoattractant Receptor-homologous molecule expressed in Th2 cells. In a dose-dependent manner, MK-7246 decreased eosinophil influx and Th2 cytokine production following the A. alternata challenge. Furthermore, therapeutic administration of corticosteroids resulted in a dose-dependent decrease in eosinophil influx and Th2 cytokine production. Reproducible asthma-related outcomes and amenability to pharmacological intervention by mechanisms relevant to asthma demonstrate that an A. alternata induced pulmonary inflammation in BN rats is a valuable preclinical pharmacodynamic in vivo model for evaluating the pharmacological inhibitors of allergic pulmonary inflammation. PMID:25261040

  18. Stanniocalcin-1 ameliorates lipopolysaccharide-induced pulmonary oxidative stress, inflammation, and apoptosis in mice.

    PubMed

    Tang, Shih-En; Wu, Chin-Pyng; Wu, Shu-Yu; Peng, Chung-Kan; Perng, Wann-Cherng; Kang, Bor-Hwang; Chu, Shi-Jye; Huang, Kun-Lun

    2014-06-01

    Stanniocalcin-1 (STC1) is an endogenous glycoprotein whose anti-inflammatory effects occur through induction of uncoupling proteins to reduce oxidative stress. In this study, we tested the hypothesis that exogenous recombinant human STC1 (rhSTC1) protects against lipopolysaccharide (LPS)-induced acute lung injury in mice. Anesthetized C57BL/6 mice underwent intratracheal spraying of LPS (20 µg/10 g body wt), and lung injury was assessed 24h later by analyzing pulmonary edema, bronchoalveolar lavage fluid, and lung histopathology. Lung inflammation, oxidative stress, and expression of STC1 and its downstream uncoupling protein 2 (UCP2) were analyzed at specific time points. Expression of UCP2 was suppressed initially but was subsequently upregulated after STC1 elevation in response to intratracheal administration of LPS. Intratracheal rhSTC1 treatment 1h before or after LPS spraying significantly attenuated pulmonary inflammation, oxidative stress, cell apoptosis, and acute lung injury. Pretreatment with STC1 short interfering RNA 48 h before LPS spraying inhibited the expression of STC1 and UCP2 and significantly increased the extent of lung injury. These findings suggest that STC1 is an endogenous stress protein that may counteract LPS-induced lung injury by inhibiting the inflammatory cascade and inducing antioxidant and antiapoptotic mechanisms. However, the potential clinical application of STC1 and the direct linkage between UCP2 and LPS-induced lung injury remain to be further investigated. PMID:24685991

  19. IKK NBD peptide inhibits LPS induced pulmonary inflammation and alters sphingolipid metabolism in a murine model.

    PubMed

    von Bismarck, Philipp; Winoto-Morbach, Supandi; Herzberg, Mona; Uhlig, Ulrike; Schütze, Stefan; Lucius, Ralph; Krause, Martin F

    2012-06-01

    Airway epithelial NF-κB is a key regulator of host defence in bacterial infections and has recently evolved as a target for therapeutical approaches. Evidence is accumulating that ceramide, generated by acid sphingomyelinase (aSMase), and sphingosine-1-phosphate (S1-P) are important mediators in host defence as well as in pathologic processes of acute lung injury. Little is known about the regulatory mechanisms of pulmonary sphingolipid metabolism in bacterial infections of the lung. The objective of this study was to evaluate the influence of NF-κB on sphingolipid metabolism in Pseudomonas aeruginosa LPS-induced pulmonary inflammation. In a murine acute lung injury model with intranasal Pseudomonas aeruginosa LPS we investigated TNF-α, KC (murine IL-8), IL-6, MCP-1 and neutrophilic infiltration next to aSMase activity and ceramide and S1-P lung tissue concentrations. Airway epithelial NF-κB was inhibited by topically applied IKK NBD, a cell penetrating NEMO binding peptide. This treatment resulted in significantly reduced inflammation and suppression of aSMase activity along with decreased ceramide and S1-P tissue concentrations down to levels observed in healthy animals. In conclusion our results confirm that changes in sphingolipid metabolim due to Pseudomonas aeruginosa LPS inhalation are regulated by NF-κB translocation. This confirms the critical role of airway epithelial NF-κB pathway for the inflammatory response to bacterial pathogens and underlines the impact of sphingolipids in inflammatory host defence mechanisms. PMID:22469869

  20. Do mouse models of allergic asthma mimic clinical disease?

    PubMed

    Epstein, Michelle M

    2004-01-01

    Experimental mouse models of allergic asthma established almost 10 years ago offered new opportunities to study disease pathogenesis and to develop new therapeutics. These models focused on the factors governing the allergic immune response, on modeling clinical behavior of allergic asthma, and led to insights into pulmonary pathophysiology. Although mouse models rarely completely reproduce all the features of human disease, after sensitization and respiratory tract challenges with antigen, wild-type mice develop a clinical syndrome that closely resembles allergic asthma, characterized by eosinophilic lung inflammation, airway hyperresponsiveness (AHR), increased IgE, mucus hypersecretion, and eventually, airway remodeling. There are, however, differences between mouse and human physiology that threaten to limit the value of mouse models. Three examples of such differences relate to both clinical manifestations of disease and underlying pathogenesis. First, in contrast to patients who have increased methacholine-induced AHR even when they are symptom-free, mice exhibit only transient methacholine-induced AHR following allergen exposure. Second, chronic allergen exposure in patients leads to chronic allergic asthma, whereas repeated exposures in sensitized mice causes suppression of disease. Third, IgE and mast cells, in humans, mediate early- and late-phase allergic responses, though both are unnecessary for the generation of allergic asthma in mice. Taken together, these observations suggest that mouse models of allergic asthma are not exact replicas of human disease and thus, question the validity of these models. However, observations from mouse models of allergic asthma support many existing paradigms, although some novel discoveries in mice have yet to be verified in patients. This review presents an overview of the clinical aspects of disease in mouse models of allergic asthma emphasizing (1). the factors influencing the pathophysiological responses during

  1. An Interleukin-33-Mast Cell-Interleukin-2 Axis Suppresses Papain-Induced Allergic Inflammation by Promoting Regulatory T Cell Numbers

    PubMed Central

    Morita, Hideaki; Arae, Ken; Unno, Hirotoshi; Miyauchi, Kousuke; Toyama, Sumika; Nambu, Aya; Oboki, Keisuke; Ohno, Tatsukuni; Motomura, Kenichiro; Matsuda, Akira; Yamaguchi, Sachiko; Narushima, Seiko; Kajiwara, Naoki; Iikura, Motoyasu; Suto, Hajime; McKenzie, Andrew N.J.; Takahashi, Takao; Karasuyama, Hajime; Okumura, Ko; Azuma, Miyuki; Moro, Kazuyo; Akdis, Cezmi A.; Galli, Stephen J.; Koyasu, Shigeo; Kubo, Masato; Sudo, Katsuko; Saito, Hirohisa; Matsumoto, Kenji; Nakae, Susumu

    2015-01-01

    SUMMARY House dust mite-derived proteases contribute to allergic disorders in part by disrupting epithelial barrier function. Interleukin-33 (IL-33), produced by lung cells after exposure to protease allergens, can induce innate-type airway eosinophilia by activating natural helper (NH) cells, a member of group 2 innate lymphoid cells (ILC2), to secrete Th2 type-cytokines. Because IL-33 also can induce mast cells (MCs) to secrete Th2 type-cytokines, MCs are thought to cooperate with NH cells in enhancing protease or IL-33-mediated innate-type airway eosinophilia. However, we found that MC-deficient KitW-sh/W-sh mice exhibited exacerbated protease-induced lung inflammation associated with reduced numbers of regulatory T (Treg) cells. Moreover, IL-2 produced by IL-33-stimulated MCs promoted expansion of numbers of Treg cells, thereby suppressing development of papain- or IL-33-induced airway eosinophilia. We have thus identified a unique anti-inflammatory pathway that can limit induction of innate-type allergic airway inflammation mediated by NH cells. PMID:26200013

  2. Group 2 Innate Lymphoid Cells Are Critical for the Initiation of Adaptive T Helper 2 Cell-Mediated Allergic Lung Inflammation

    PubMed Central

    Halim, Timotheus Y.F.; Steer, Catherine A.; Mathä, Laura; Gold, Matthew J.; Martinez-Gonzalez, Itziar; McNagny, Kelly M.; McKenzie, Andrew N.J.; Takei, Fumio

    2014-01-01

    Summary Naive CD4+ T cell differentiation into distinct subsets of T helper (Th) cells is a pivotal process in the initiation of the adaptive immune response. Allergens predominantly stimulate Th2 cells, causing allergic inflammation. However, why allergens induce Th2 cell differentiation is not well understood. Here we show that group 2 innate lymphoid cells (ILC2s) are required to mount a robust Th2 cell response to the protease-allergen papain. Intranasal administration of papain stimulated ILC2s and Th2 cells, causing allergic lung inflammation and elevated immunoglobulin E titers. This process was severely impaired in ILC2-deficient mice. Whereas interleukin-4 (IL-4) was dispensable for papain-induced Th2 cell differentiation, ILC2-derived IL-13 was critical as it promoted migration of activated lung dendritic cells into the draining lymph node where they primed naive T cells to differentiate into Th2 cells. Papain-induced ILC2 activation and Th2 cell differentiation was IL-33-dependent, suggesting a common pathway in the initiation of Th2 cell responses to allergen. PMID:24613091

  3. An Interleukin-33-Mast Cell-Interleukin-2 Axis Suppresses Papain-Induced Allergic Inflammation by Promoting Regulatory T Cell Numbers.

    PubMed

    Morita, Hideaki; Arae, Ken; Unno, Hirotoshi; Miyauchi, Kousuke; Toyama, Sumika; Nambu, Aya; Oboki, Keisuke; Ohno, Tatsukuni; Motomura, Kenichiro; Matsuda, Akira; Yamaguchi, Sachiko; Narushima, Seiko; Kajiwara, Naoki; Iikura, Motoyasu; Suto, Hajime; McKenzie, Andrew N J; Takahashi, Takao; Karasuyama, Hajime; Okumura, Ko; Azuma, Miyuki; Moro, Kazuyo; Akdis, Cezmi A; Galli, Stephen J; Koyasu, Shigeo; Kubo, Masato; Sudo, Katsuko; Saito, Hirohisa; Matsumoto, Kenji; Nakae, Susumu

    2015-07-21

    House dust mite-derived proteases contribute to allergic disorders in part by disrupting epithelial barrier function. Interleukin-33 (IL-33), produced by lung cells after exposure to protease allergens, can induce innate-type airway eosinophilia by activating natural helper (NH) cells, a member of group 2 innate lymphoid cells (ILC2), to secrete Th2 type-cytokines. Because IL-33 also can induce mast cells (MCs) to secrete Th2 type-cytokines, MCs are thought to cooperate with NH cells in enhancing protease or IL-33-mediated innate-type airway eosinophilia. However, we found that MC-deficient Kit(W-sh/W-sh) mice exhibited exacerbated protease-induced lung inflammation associated with reduced numbers of regulatory T (Treg) cells. Moreover, IL-2 produced by IL-33-stimulated MCs promoted expansion of numbers of Treg cells, thereby suppressing development of papain- or IL-33-induced airway eosinophilia. We have thus identified a unique anti-inflammatory pathway that can limit induction of innate-type allergic airway inflammation mediated by NH cells. PMID:26200013

  4. Inhibition of Protein Kinase C Delta Attenuates Allergic Airway Inflammation through Suppression of PI3K/Akt/mTOR/HIF-1 Alpha/VEGF Pathway

    PubMed Central

    Li, Liang chang; Yan, Guang Hai

    2013-01-01

    Vascular endothelial growth factor (VEGF) is supposed to contribute to the pathogenesis of allergic airway disease. VEGF expression is regulated by a variety of stimuli such as nitric oxide, growth factors, and hypoxia-inducible factor-1 alpha (HIF-1α). Recently, inhibition of the mammalian target of rapamycin (mTOR) has been shown to alleviate cardinal asthmatic features, including airway hyperresponsiveness, eosinophilic inflammation, and increased vascular permeability in asthma models. Based on these observations, we have investigated whether mTOR is associated with HIF-1α-mediated VEGF expression in allergic asthma. In studies with the mTOR inhibitor rapamycin, we have elucidated the stimulatory role of a mTOR-HIF-1α-VEGF axis in allergic response. Next, the mechanisms by which mTOR is activated to modulate this response have been evaluated. mTOR is known to be regulated by phosphoinositide 3-kinase (PI3K)/Akt or protein kinase C-delta (PKC δ) in various cell types. Consistent with these, our results have revealed that suppression of PKC δ by rottlerin leads to the inhibition of PI3K/Akt activity and the subsequent blockade of a mTOR-HIF-1α-VEGF module, thereby attenuating typical asthmatic attack in a murine model. Thus, the present data indicate that PKC δ is necessary for the modulation of the PI3K/Akt/mTOR signaling cascade, resulting in a tight regulation of HIF-1α activity and VEGF expression. In conclusion, PKC δ may represent a valuable target for innovative therapeutic treatment of allergic airway disease. PMID:24312355

  5. Effects of ultrafine particles on the allergic inflammation in the lung of asthmatics: results of a double-blinded randomized cross-over clinical pilot study

    PubMed Central

    2014-01-01

    Background Epidemiological and experimental studies suggest that exposure to ultrafine particles (UFP) might aggravate the allergic inflammation of the lung in asthmatics. Methods We exposed 12 allergic asthmatics in two subgroups in a double-blinded randomized cross-over design, first to freshly generated ultrafine carbon particles (64 μg/m3; 6.1 ± 0.4 × 105 particles/cm3 for 2 h) and then to filtered air or vice versa with a 28-day recovery period in-between. Eighteen hours after each exposure, grass pollen was instilled into a lung lobe via bronchoscopy. Another 24 hours later, inflammatory cells were collected by means of bronchoalveolar lavage (BAL). (Trial registration: NCT00527462) Results For the entire study group, inhalation of UFP by itself had no significant effect on the allergen induced inflammatory response measured with total cell count as compared to exposure with filtered air (p = 0.188). However, the subgroup of subjects, which inhaled UFP during the first exposure, exhibited a significant increase in total BAL cells (p = 0.021), eosinophils (p = 0.031) and monocytes (p = 0.013) after filtered air exposure and subsequent allergen challenge 28 days later. Additionally, the potential of BAL cells to generate oxidant radicals was significantly elevated at that time point. The subgroup that was exposed first to filtered air and 28 days later to UFP did not reveal differences between sessions. Conclusions Our data demonstrate that pre-allergen exposure to UFP had no acute effect on the allergic inflammation. However, the subgroup analysis lead to the speculation that inhaled UFP particles might have a long-term effect on the inflammatory course in asthmatic patients. This should be reconfirmed in further studies with an appropriate study design and sufficient number of subjects. PMID:25204642

  6. Airway epithelial SPDEF integrates goblet cell differentiation and pulmonary Th2 inflammation.

    PubMed

    Rajavelu, Priya; Chen, Gang; Xu, Yan; Kitzmiller, Joseph A; Korfhagen, Thomas R; Whitsett, Jeffrey A

    2015-05-01

    Epithelial cells that line the conducting airways provide the initial barrier and innate immune responses to the abundant particles, microbes, and allergens that are inhaled throughout life. The transcription factors SPDEF and FOXA3 are both selectively expressed in epithelial cells lining the conducting airways, where they regulate goblet cell differentiation and mucus production. Moreover, these transcription factors are upregulated in chronic lung disorders, including asthma. Here, we show that expression of SPDEF or FOXA3 in airway epithelial cells in neonatal mice caused goblet cell differentiation, spontaneous eosinophilic inflammation, and airway hyperresponsiveness to methacholine. SPDEF expression promoted DC recruitment and activation in association with induction of Il33, Csf2, thymic stromal lymphopoietin (Tslp), and Ccl20 transcripts. Increased Il4, Il13, Ccl17, and Il25 expression was accompanied by recruitment of Th2 lymphocytes, group 2 innate lymphoid cells, and eosinophils to the lung. SPDEF was required for goblet cell differentiation and pulmonary Th2 inflammation in response to house dust mite (HDM) extract, as both were decreased in neonatal and adult Spdef(-/-) mice compared with control animals. Together, our results indicate that SPDEF causes goblet cell differentiation and Th2 inflammation during postnatal development and is required for goblet cell metaplasia and normal Th2 inflammatory responses to HDM aeroallergen. PMID:25866971

  7. Pulmonary Inflammation Triggered by Ricin Toxin Requires Macrophages and IL-1 Signaling1

    PubMed Central

    Lindauer, Meghan L.; Wong, John; Iwakura, Yoichiro; Magun, Bruce E.

    2015-01-01

    Ricin is a potent ribotoxin considered to be a potentially dangerous bioterrorist agent due to its wide availability and the possibility of aerosol delivery to human populations. Studies in rodents and nonhuman primates have demonstrated that ricin delivered to the pulmonary system leads to acute lung injury and symptoms resembling acute respiratory distress syndrome. Increasing evidence suggests that the inflammatory effects triggered by ricin are responsible for its lethality. We demonstrated previously that ricin administered to the lungs of mice causes death of pulmonary macrophages and the release of proinflammatory cytokines, suggesting macrophages may be a primary target of ricin. Here we examined the requirement for macrophages in the development of ricinmediated pulmonary inflammation by employing transgenic (MAFIA) mice that express an inducible gene driven by the c-fms promoter for Fas-mediated apoptosis of macrophages upon injection of a synthetic dimerizer, AP20187. Administration of aerosolized ricin to macrophage-depleted mice led to reduced inflammatory responses, including recruitment of neutrophils, expression of proinflammatory transcripts, and microvascular permeability. When compared with control mice treated with ricin, macrophage-depleted mice treated with ricin displayed a reduction in pulmonary IL-1/3. Employing mice deficient in IL-1, we found that ricin-induced inflammatory responses were suppressed, including neutrophilia. Neutrophilia could be restored by co-administering ricin and exogenous IL-1β to IL-1α/β−/− mice. Furthermore, IL1Ra/anakinra cotreatment inhibited ricin-mediated inflammatory responses, including recruitment of neutrophils, expression of proinflammatory genes, and histopathology. These data suggest a central role for macrophages and IL-1 signaling in the inflammatory process triggered by ricin. PMID:19561099

  8. Effect of Treatment of Cystic Fibrosis Pulmonary Exacerbations on Systemic Inflammation

    PubMed Central

    Thompson, Valeria; Chmiel, James F.; Montgomery, Gregory S.; Nasr, Samya Z.; Perkett, Elizabeth; Saavedra, Milene T.; Slovis, Bonnie; Anthony, Margaret M.; Emmett, Peggy; Heltshe, Sonya L.

    2015-01-01

    Rationale: In cystic fibrosis (CF), pulmonary exacerbations present an opportunity to define the effect of antibiotic therapy on systemic measures of inflammation. Objectives: Investigate whether plasma inflammatory proteins demonstrate and predict a clinical response to antibiotic therapy and determine which proteins are associated with measures of clinical improvement. Methods: In this multicenter study, a panel of 15 plasma proteins was measured at the onset and end of treatment for pulmonary exacerbation and at a clinically stable visit in patients with CF who were 10 years of age or older. Measurements and Main Results: Significant reductions in 10 plasma proteins were observed in 103 patients who had paired blood collections during antibiotic treatment for pulmonary exacerbations. Plasma C-reactive protein, serum amyloid A, calprotectin, and neutrophil elastase antiprotease complexes correlated most strongly with clinical measures at exacerbation onset. Reductions in C-reactive protein, serum amyloid A, IL-1ra, and haptoglobin were most associated with improvements in lung function with antibiotic therapy. Having higher IL-6, IL-8, and α1-antitrypsin (α1AT) levels at exacerbation onset were associated with an increased risk of being a nonresponder (i.e., failing to recover to baseline FEV1). Baseline IL-8, neutrophil elastase antiprotease complexes, and α1AT along with changes in several plasma proteins with antibiotic treatment, in combination with FEV1 at exacerbation onset, were predictive of being a treatment responder. Conclusions: Circulating inflammatory proteins demonstrate and predict a response to treatment of CF pulmonary exacerbations. A systemic biomarker panel could speed up drug discovery, leading to a quicker, more efficient drug development process for the CF community. PMID:25714657

  9. Airway inflammation in cadmium-exposed rats is associated with pulmonary oxidative stress and emphysema.

    PubMed

    Kirschvink, Nathalie; Martin, Nathalie; Fievez, Laurence; Smith, Nicola; Marlin, David; Gustin, Pascal

    2006-03-01

    The aim of this study was to test the hypothesis that pulmonary inflammation and emphysema induced by cadmium (Cd) inhalation are associated with pulmonary oxidative stress. Two groups of Sprague Dawley rats were used: one vehicle-exposed group undergoing inhalation of NaCl (0.9%, n = 24) and one Cd-exposed group undergoing inhalation of CdCl(2) (0.1%, n = 24). The animals in the vehicle-and Cd-exposed groups were divided into 4 subgroups (n = 6 per group), which underwent either a single exposure (D2) of 1H or repeated exposures 3 times/week for 1H for a period of 3 weeks (3W), 5 weeks (5W) or 5 weeks followed by 2 weeks without exposure (5W + 2). At sacrifice, the left lung was fixed for histomorphometric analysis (median inter-wall distance, MIWD), whilst bronchoalveolar lavage fluid (BALF) was collected from the right lung. Cytological analysis of BALF was performed and BALF was analysed for oxidant markers 8-iso-PGF(2a), uric acid (UA), reduced (AA) and oxidised ascorbic acid (DHA) and reduced (GSH) and oxidised glutathione (GSSG). Cd-exposure induced a significant increase of BALF macrophages and neutrophils. 8-iso-PGF(2a), UA, GSH and GSSG were significantly increased at D2. At 5W and 5W + 2, AA and GSH were significantly lower in Cd-exposed rats, indicating antioxidant depletion. MIWD significantly increased in all repeatedly Cd-exposed groups, suggesting development of pulmonary emphysema. 8-iso-PGF(2a) and UA were positively correlated with macrophage and neutrophil counts. GSH, GSSG and 8-iso-PGF(2a) were negatively correlated with MIWD, indicating that Cd-induced emphysema could be associated with pulmonary oxidative stress. PMID:16484040

  10. Infiltration of Neutrophils and Eosinophils during Allergic Inflammation is Regulated by the Inhibitory Receptor gp-49B

    Technology Transfer Automated Retrieval System (TEKTRAN)

    gp49B, an Ig-like receptor, negatively regulates the activity of mast cells and neutrophils through cytoplasmic immuno-receptor tyrosine-based inhibition motifs (ITIM). To further characterize the role of gp49B in vivo, gp49B-deficient mice were tested in two allergic models. Responses to ragweed (R...

  11. Negative feedback on IL-23 exerted by IL-17A during pulmonary inflammation.

    PubMed

    Silverpil, Elin; Wright, Adam K A; Hansson, Marit; Jirholt, Pernilla; Henningsson, Louise; Smith, Margaretha E; Gordon, Stephen B; Iwakura, Yoichiro; Gjertsson, Inger; Glader, Pernilla; Lindén, Anders

    2013-10-01

    It is now established that IL-17 has a broad pro-inflammatory potential in mammalian host defense, in inflammatory disease and in autoimmunity, whereas little is known about its anti-inflammatory potential and inhibitory feedback mechanisms. Here, we examined whether IL-17A can inhibit the extracellular release of IL-23 protein, the upstream regulator of IL-17A producing lymphocyte subsets, that is released from macrophages during pulmonary inflammation. We characterized the effect of IL-17A on IL-23 release in several models of pulmonary inflammation, evaluated the presence of IL-17 receptor A (RA) and C (RC) on human alveolar macrophages and assessed the role of the Rho family GTPase Rac1 as a mediator of the effect of IL-17A on the release of IL-23 protein. In a model of sepsis-induced pneumonia, intravenous exposure to Staphylococcus aureus caused higher IL-23 protein concentrations in cell-free bronchoalveolar lavage (BAL) samples from IL-17A knockout (KO) mice, compared with wild type (WT) control mice. In a model of Gram-negative airway infection, pre-treatment with a neutralizing anti-IL-17A Ab and subsequent intranasal (i.n.) exposure to LPS caused higher IL-23 and IL-17A protein concentrations in BAL samples compared with mice exposed to LPS, but pre-treated with an isotype control Ab. Moreover, i.n. exposure with IL-17A protein per se decreased IL- 23 protein concentrations in BAL samples. We detected IL-17RA and IL-17RC on human alveolar macrophages, and found that in vitro stimulation of these cells with IL-17A protein, after exposure to LPS, decreased IL-23 protein in conditioned medium, but not IL-23 p19 or p40 mRNA. This study indicates that IL-17A can partially inhibit the release of IL-23 protein during pulmonary inflammation, presumably by stimulating the here demonstrated receptor units IL-17RA and IL-17RC on alveolar macrophages. Hypothetically, the demonstrated mechanism may serve as negative feedback to protect from excessive IL-17A

  12. Blunted HPA axis responsiveness to stress in atopic patients is associated with the acuity and severeness of allergic inflammation.

    PubMed

    Buske-Kirschbaum, A; Ebrecht, M; Hellhammer, D H

    2010-11-01

    Previously we could demonstrate attenuated responsiveness of the hypothalamus-pituitary-adrenal (HPA) axis to stress in patients with chronic allergic inflammatory disease (i.e., atopic dermatitis, allergic asthma). The present study was designed to investigate HPA axis function in an acute manifestation of allergy. Patients with seasonal allergic rhinitis (SAR; n = 20) and non-atopic controls (n = 20) were exposed to a standardized laboratory stressor ('Trier Social Stress Test'; TSST). Cortisol responses to the TSST and cortisol awakening responses (CAR) were measured in SAR subjects while suffering from acute symptoms of SAR (pollen season), and during a non-active state of their disease (pollen-free season). To assess the acuity and severity of SAR, eosinophil and basophil numbers and SAR symptomatology were determined. Non-allergic control subjects were examined at identical times during the year. To control for possible sequence effects, a cross-over design was used. SAR patients showed significantly increased symptom severity (t = 9.4; p<.001) as well as eosinophil (F(1,31) = 9.8; p<.01) and basophil (F(1,38) = 6.4; p<.05) numbers during the pollen season when compared to a pollen-free period. When exposed to the TSST, significantly attenuated cortisol responses were found in SAR subjects during acute manifestation of the disease (pollen season) when compared to the pollen-free season (F(16,456) = 1.65; p<.05). In SAR patients, there was a significant negative correlation between symptom severity and the cortisol response to the stressor (r = .53; p<.05). No significant between-group or between-condition differences with respect to the CAR could be determined (all p>.05). These findings support previous data of attenuated HPA axis responsiveness to stress in atopic conditions and further, suggest that HPA axis hyporesponsiveness in atopy may be linked to the severity of the allergic inflammatory process. PMID:20633637

  13. CD14 contributes to pulmonary inflammation and mortality during murine tuberculosis

    PubMed Central

    Wieland, Catharina W; van der Windt, Gerritje J W; Wiersinga, W Joost; Florquin, Sandrine; van der Poll, Tom

    2008-01-01

    Toll-like receptors play an essential role in the innate recognition of micro-organisms by the host. CD14 is one of the extracellular adaptor proteins required for recognition of Gram-negative bacteria and possibly also Mycobacterium tuberculosis. Therefore, we intranasally infected wild-type (WT) and CD14 knock-out (KO) mice with virulent M. tuberculosis H37Rv. We found no differences in bacterial load in the main target organ lung up to 32 weeks after infection. From 20 weeks onward 57% of WT mice succumbed, whereas all CD14 KO mice survived. The improved outcome of CD14 KO mice was accompanied by reduced pulmonary inflammation; lung cell counts and percentage of inflamed lung tissue were reduced in CD14 WT mice. These data suggest that during chronic infection CD14 KO mice are protected from lethality caused by lung tuberculosis because of a reduction of the inflammatory response. PMID:18393969

  14. Pulmonary inflammation and crystalline silica in respirable coal mine dust: dose-response.

    PubMed

    Kuempel, E D; Attfield, M D; Vallyathan, V; Lapp, N L; Hale, J M; Smith, R J; Castranova, V

    2003-02-01

    This study describes the quantitative relationships between early pulmonary responses and the estimated lung-burden or cumulative exposure of respirable-quartz or coal mine dust. Data from a previous bronchoalveolar lavage (BAL) study in coal miners (n = 20) and nonminers (n = 16) were used including cell counts of alveolar macrophages (AMs) and polymorphonuclear leukocytes (PMNs), and the antioxidant superoxide dismutase (SOD) levels. Miners' individual working lifetime particulate exposures were estimated from work histories and mine air sampling data, and quartz lung-burdens were estimated using a lung dosimetry model. Results show that quartz, as either cumulative exposure or estimated lung-burden, was a highly statistically significant predictor of PMN response (P < 0.0001); however cumulative coal dust exposure did not significantly add to the prediction of PMNs (P = 0.2) above that predicted by cumulative quartz exposure (P < 0.0001). Despite the small study size, radiographic category was also significantly related to increasing levels of both PMNs and quartz lung burden (P-values < 0.04). SOD in BAL fluid rose linearly with quartz lung burden (P < 0.01), but AM count in BAL fluid did not (P > 0.4). This study demonstrates dose-response relationships between respirable crystalline silica in coal mine dust and pulmonary inflammation, antioxidant production, and radiographic small opacities. PMID:12682426

  15. The histone deacetylase inhibitor trichostatin A suppresses murine innate allergic inflammation by blocking group 2 innate lymphoid cell (ILC2) activation

    PubMed Central

    Toki, Shinji; Goleniewska, Kasia; Reiss, Sara; Zhou, Weisong; Newcomb, Dawn C; Bloodworth, Melissa H; Stier, Matthew T; Boyd, Kelli L; Polosukhin, Vasiliy V; Subramaniam, Sriram; Peebles, R Stokes

    2016-01-01

    Background Group 2 innate lymphoid cells (ILC2) are an important source of the type 2 cytokines interleukin (IL)-5 and IL-13 that are critical to the allergic airway phenotype. Previous studies reported that histone deacetylase (HDAC) inhibition by trichostatin A (TSA) downregulated adaptive allergic immune responses; however, the effect of HDAC inhibition on the early innate allergic immune response is unknown. Therefore, we investigated the effect of TSA on innate airway inflammation mediated by ILC2 activation. Methods BALB/c mice were challenged intranasally with Alternaria extract, exogenous recombinant mouse IL-33 (rmIL-33) or the respective vehicles for four consecutive days following TSA or vehicle treatment. Bronchoalveolar lavage (BAL) fluids and lungs were harvested 24 h after the last challenge. Results We found that TSA treatment significantly decreased the number of ILC2 expressing IL-5 and IL-13 in the lungs challenged with Alternaria extract or rmIL-33 compared with vehicle treatment (p<0.05). TSA treatment significantly decreased protein expression of IL-5, IL-13, CCL11 and CCL24 in the lung homogenates from Alternaria extract-challenged mice or rmIL-33-challenged mice compared with vehicle treatment (p<0.05). Further, TSA treatment significantly decreased the number of perivascular eosinophils and mucus production in the large airways that are critical components of the asthma phenotype (p<0.05). TSA did not change early IL-33 release in the BAL fluids; however, TSA decreased lung IL-33 expression from epithelial cells 24 h after last Alternaria extract challenge compared with vehicle treatment (p<0.05). Conclusions These results reveal that TSA reduces allergen-induced ILC2 activation and the early innate immune responses to an inhaled protease-containing aeroallergen. PMID:27071418

  16. Coincident Helminth Infection Modulates Systemic Inflammation and Immune Activation in Active Pulmonary Tuberculosis

    PubMed Central

    George, Parakkal Jovvian; Kumar, Nathella Pavan; Sridhar, Rathinam; Hanna, Luke E.; Nair, Dina; Banurekha, Vaithilingam V.; Nutman, Thomas B.; Babu, Subash

    2014-01-01

    Background Helminth infections are known to modulate innate and adaptive immune responses in active and latent tuberculosis (TB). However, the role of helminth infections in modulating responses associated with inflammation and immune activation (reflecting disease activity and/or severity) in TB is not known. Methodology We measured markers of inflammation and immune activation in active pulmonary TB individuals (ATB) with co-incidental Strongyloides stercoralis (Ss) infection. These included systemic levels of acute phase proteins, matrix metalloproteinases and their endogenous inhibitors and immune activation markers. As a control, we measured the systemic levels of the same molecules in TB-uninfected individuals (NTB) with or without Ss infection. Principal Findings Our data confirm that ATB is associated with elevated levels of the various measured molecules when compared to those seen in NTB. Our data also reveal that co-incident Ss infection in ATB individuals is associated with significantly decreased circulating levels of acute phase proteins, matrix metalloproteinases, tissue inhibitors of matrix metalloproteinases as well as the systemic immune activation markers, sCD14 and sCD163. These changes are specific to ATB since they are absent in NTB individuals with Ss infection. Conclusions Our data therefore reveal a profound effect of Ss infection on the markers associated with TB disease activity and severity and indicate that co-incidental helminth infections might dampen the severity of TB disease. PMID:25375117

  17. Overexpression of RORγt Enhances Pulmonary Inflammation after Infection with Mycobacterium Avium.

    PubMed

    Matsuyama, Masashi; Ishii, Yukio; Sakurai, Hirofumi; Ano, Satoshi; Morishima, Yuko; Yoh, Keigyou; Takahashi, Satoru; Ogawa, Kenji; Hizawa, Nobuyuki

    2016-01-01

    Mycobacterium avium complex (MAC) is the most common cause of nontuberculous mycobacterial disease in humans. The role of Th17 immunity in the pathogenesis of intracellular bacteria, such as MAC, is not currently understood. Transcription factor RAR-related orphan receptor gamma t (RORγt) is known as the master regulator for Th17 cell development. Here, we investigated the role of RORγt in host responses against MAC infection. Wild-type (WT) mice and RORγt-overexpressing mice were infected with MAC via intratracheal inoculation. Systemic MAC growth was not different between WT mice and RORγt-overexpressing mice. However, neutrophilic pulmonary inflammation following MAC infection was enhanced in RORγt-overexpressing mice compared with that in WT mice. The cytokine expression shifted toward a Th17 phenotype in the lungs of RORγt-overexpressing mice following MAC infection; the levels of IL-6 and IL-17 were significantly higher in the lung of these mice than in WT mice. In addition to the increase in IL-17 single-positive T cells, T cells producing both IL-17 and interferon-γ were elevated in the lung of RORγt-overexpressing mice following MAC infection. These findings suggest that RORγt overexpression-mediated Th17 bias contributes to local inflammation rather than systemic responses, by regulating neutrophil recruitment into the sites of infection during MAC infection. PMID:26784959

  18. Systemic biomarkers of inflammation and haemostasis in patients with chronic necrotizing pulmonary aspergillosis

    PubMed Central

    2012-01-01

    Background The purpose of this study was to investigate mediators of inflammation and haemostasis in patients with chronic necrotizing pulmonary aspergillosis (CNPA), a locally, destructive process of the lung due to invasion by Aspergillus species. Methods Measurements of selected biomarkers in 10 patients with CNPA and 19 healthy, matched controls were performed with enzyme-linked immunosorbent assay (ELISA) and multiplex methodology. The gene expressions of relevant biomarkers were analyzed with real-time quantitative RT-PCR. Results Increased concentrations of circulating mediators of inflammation interleukin (IL)-6, IL-8, RANTES, TNF-α, ICAM-1 and mediators involved in endothelial activation and thrombosis (vWF, TF and PAI-1) were observed in patients with CNPA. The concentration of the anti-inflammatory cytokine IL-10 was increased both in plasma and in PBMC in the patient population. The gene expression of CD40L was decreased in PBMC from the patient group, accompanied by decreased concentrations of soluble (s) CD40L in the circulation. Conclusions The proinflammatory response against Aspergillus may be counteracted by reduced CD40L and sCD40L, as well as increased IL-10, which may compromise the immune response against Aspergillus in patients with CNPA. PMID:22731696

  19. Restrictive pulmonary deficit is associated with inflammation in sub-optimally controlled obese diabetics

    PubMed Central

    Seemungal, Terence A. R.; Teelucksingh, Surujpal; Nayak, B. Shivananda

    2013-01-01

    Caribbean data linking inflammation, pulmonary dysfunction and diabetes is unavailable. Spirometry, acanthosis nigricans, hs-CRP were assessed in 109 type 2 diabetics (43% males) mean age=55.6 years, BMI=29.29 kg/m2, waist circumference=103.86 cm. Residual FEV1/FVC increased with age (P=0.005), BMI (P=0.011) and waist circumference (P=0.003). Residual FVC related inversely to hs-CRP (–0.178), P<0.06) systolic (–0.028, P<0.031), diastolic (–0.247, P<0.010) pressure and weight (–0.25, P<0.009). Residual FEV1 related inversely to diastolic pressure (–0.219, P<0.023), hs-CRP (–0.234, P<0.015), acanthosis nigricans (–0.029, P<0.029). HbA1C and residual FEV1 predict high hs-CRP (P=0.011, P=0.046). Low FVC with inflammation presents in poorly controlled obese diabetics. PMID:23825761

  20. Intranasal administration of CpG oligodeoxynucleotides reduces lower airway inflammation in a murine model of combined allergic rhinitis and asthma syndrome.

    PubMed

    Li, Hong-Tao; Zhang, Tian-Tuo; Chen, Zhuang-Gui; Ye, Jin; Liu, Hui; Zou, Xiao-Ling; Wang, Yan-Hong; Yang, Hai-Ling

    2015-09-01

    Given the relationship between allergic rhinitis (AR) and asthma, it can be hypothesized that reducing upper airway inflammation by targeting oligodeoxynucleotides with CpG motifs (CpG-ODN) specifically to the upper airway via intranasal administration in a small volume (10 μL) might improve lower airway (asthma) outcomes. The goal of this study was to investigate the therapeutic efficacy of 10 μL of intranasal versus intradermal administration of CpG-ODN in suppressing lower airway inflammation and methacholine-induced airway hyperreactivity (AHR) in mice subjected to ovalbumin (OVA)-induced combined allergic rhinitis and asthma syndrome (CARAS). OVA-sensitized BALB/c mice were subjected to upper-airway intranasal OVA exposure three times per week for 3 weeks. Then, CpG-ODN was administered to a subset of these mice 1h after intranasal OVA exposure, followed by five days of OVA aerosol challenges, thereby targeting OVA to the lower airways. Immunologic variables and nasal symptoms were evaluated. The results showed that the CARAS mice exhibited significant increases in bronchoalveolar lavage fluid (BALF) and splenocytes Th2-associated cytokine production, OVA-specific serum IgE, and AHR, as well as nose and lung pathologies. Intranasal administration of CpG-ODN significantly reduced Th2-associated cytokine production, the percentage of eosinophils in the BALF, the IL-4 and IL-5 concentrations in the supernatants of cultured OVA-challenged splenic lymphocytes, the serum OVA-specific IgE levels, the peribronchial inflammation score in the lungs, and the severity of nose pathology and nasal symptoms. However, intradermal administration of CpG-ODN did not significantly reduce the aforementioned parameters. In conclusion, intranasal treatment with CpG-ODN attenuated AR and significantly alleviated lower airway inflammation and AHR in the CARAS model. CpG-ODN therapy was more effective when administered intranasally than when administered intradermally. The current

  1. Long-chain polyunsaturated fatty acids are consumed during allergic inflammation and affect T helper type 1 (Th1)- and Th2-mediated hypersensitivity differently.

    PubMed

    Johansson, S; Lönnqvist, A; Ostman, S; Sandberg, A-S; Wold, A E

    2010-06-01

    Studies have shown that atopic individuals have decreased serum levels of n-3 fatty acids. Indicating these compounds may have a protective effect against allergic reaction and/or are consumed during inflammation. This study investigated whether fish (n-3) or sunflower (n-6) oil supplementation affected T helper type 1 (Th1)- and Th2-mediated hypersensitivity in the skin and airways, respectively, and whether the fatty acid serum profile changed during the inflammatory response. Mice were fed regular chow, chow + 10% fish oil or chow + 10% sunflower oil. Mice were immunized with ovalbumin (OVA) resolved in Th1 or Th2 adjuvant. For Th1 hypersensitivity, mice were challenged with OVA in the footpad. Footpad swelling, OVA-induced lymphocyte proliferation and cytokine production in the draining lymph node were evaluated. In the airway hypersensitivity model (Th2), mice were challenged intranasally with OVA and the resulting serum immunoglobulin (Ig)E and eosinophilic lung infiltration were measured. In the Th1 model, OVA-specific T cells proliferated less and produced less interferon (IFN)-gamma, tumour necrosis factor (TNF) and interleukin (IL)-6 in fish oil-fed mice versus controls. Footpad swelling was reduced marginally. In contrast, mice fed fish oil in the Th2 model produced more OVA-specific IgE and had slightly higher proportions of eosinophils in lung infiltrate. A significant fall in serum levels of long-chain n-3 fatty acids accompanied challenge and Th2-mediated inflammation in Th2 model. Fish oil supplementation affects Th1 and Th2 immune responses conversely; significant consumption of n-3 fatty acids occurs during Th2-driven inflammation. The latter observation may explain the association between Th2-mediated inflammation and low serum levels of n-3 fatty acids. PMID:20148912

  2. Immunostimulatory oligonucleotides block allergic airway inflammation by inhibiting Th2 cell activation and IgE-mediated cytokine induction

    PubMed Central

    Hessel, Edith M.; Chu, Mabel; Lizcano, Jennifer O.; Chang, Bonnie; Herman, Nancy; Kell, Sariah A.; Wills-Karp, Marsha; Coffman, Robert L.

    2005-01-01

    A single treatment with a CpG-containing immunostimulatory DNA sequence (ISS) given before allergen challenge can inhibit T helper type 2 cell (Th2)–mediated airway responses in animal models of allergic asthma; however, the mechanism of this inhibition remains largely undefined. Here, we demonstrate that airway delivery of ISS before allergen challenge in Th2-primed mice acts in two distinct ways to prevent the allergic responses to this challenge. The first is to prevent induction of cytokines from allergen-specific Th2 cells, as demonstrated by the nearly complete inhibition of Th2 cytokine production, Th2-dependent functional responses, and gene induction patterns. ISS inhibits the Th2 response by rendering lung antigen-presenting cells (APCs) unable to effectively present antigen to Th2 cells, but not to Th1 cells. This loss of APC function correlates with a reduced expression of costimulatory molecules, including programmed cell death ligand (PD-L)1, PD-L2, CD40, CD80, CD86, and inducible T cell costimulator, and of major histocompatibility complex class II on CD11c+APCs from the airways of ISS-treated mice. The second important action of ISS is inhibition of immunoglobulin E–dependent release of Th2 cytokines, especially interleukin 4, from basophils and/or mast cells in the airways of Th2-primed mice. Thus, inhibition by ISS of allergic responses can be explained by two novel mechanisms that culminate in the inhibition of the principal sources of type 2 cytokines in the airways. PMID:16314434

  3. Inhibitory Effect of Methyleugenol on IgE-Mediated Allergic Inflammation in RBL-2H3 Cells

    PubMed Central

    2015-01-01

    Allergic diseases, such as asthma and allergic rhinitis, are common. Therefore, the discovery of therapeutic drugs for these conditions is essential. Methyleugenol (ME) is a natural compound with antiallergic, antianaphylactic, antinociceptive, and anti-inflammatory effects. This study examined the antiallergic effect of ME on IgE-mediated inflammatory responses and its antiallergy mechanism in the mast cell line, RBL-2H3. We found that ME significantly inhibited the release of β-hexosaminidase, tumor necrosis factor- (TNF-) α, and interleukin- (IL-) 4, and was not cytotoxic at the tested concentrations (0–100 μM). Additionally, ME markedly reduced the production of the proinflammatory lipid mediators prostaglandin E2 (PGE2), prostaglandin D2 (PGD2), leukotriene B4 (LTB4), and leukotriene C4 (LTC4). We further evaluated the effect of ME on the early stages of the FcεRI cascade. ME significantly inhibited Syk phosphorylation and expression but had no effect on Lyn. Furthermore, it suppressed ERK1/2, p38, and JNK phosphorylation, which is implicated in proinflammatory cytokine expression. ME also decreased cytosolic phospholipase A2 (cPLA2) and 5-lipoxygenase (5-LO) phosphorylation and cyclooxygenase-2 (COX-2) expression. These results suggest that ME inhibits allergic response by suppressing the activation of Syk, ERK1/2, p38, JNK, cPLA2, and 5-LO. Furthermore, the strong inhibition of COX-2 expression may also contribute to the antiallergic action of ME. Our study provides further information about the biological functions of ME. PMID:25960618

  4. Regulation of the development of asthmatic inflammation by in situ CD4(+)Foxp3 (+) T cells in a mouse model of late allergic asthma.

    PubMed

    Nakashima, Tomomi; Hayashi, Toshiharu; Mizuno, Takuya

    2014-10-01

    CD4(+)Foxp3(+)T cells (Tregs) mediate homeostatic peripheral tolerance by suppressing helper T2 cells in allergy. However, the regulation of asthmatic inflammation by local (in situ) Tregs in asthma remains unclear. BALB/c mice sensitized and challenged with ovalbumin (OVA) (asthma group) developed asthmatic inflammation with eosinophils and lymphocytes, but not mast cells. The number of Tregs in the circulation, pulmonary lymph nodes (pLNs), and thymi significantly decreased in the asthma group compared to the control group without OVA sensitization and challenge in the effector phase. The development of asthmatic inflammation is inversely related to decreased Tregs with reduced mRNA expression such as interleukin (IL)-4, transforming growth factor-β1, and IL-10, but not interferon-γ, in pLNs. Moreover, M2 macrophages increased in the local site. The present study suggests that Tregs, at least in part, may regulate the development of asthmatic inflammation by cell-cell contact and regional cytokine productions. PMID:24854160

  5. [Genetic study of allergic diseases].

    PubMed

    Zhang, Yuan; Zhang, Luo

    2012-09-01

    Allergic diseases mentioned in this review is regarding to I type allergic inflammation induced by an IgE-mediated reaction, including asthma, allergic rhinitis, atopic dermatitis and food allergy. It is convinced that allergic diseases belong to multiple genes diseases and are controlled by both genetic and environmental factors. Meanwhile there exists gene-gene as well as gene-environment interactions during the development of the disease. The aim of this review is to summarize the toolkit, advance, inherent difficulties and future clinical application prospect in genetic studies of allergic disease. PMID:23214325

  6. A New Approach for the Study of Lung Smooth Muscle Phenotypes and Its Application in a Murine Model of Allergic Airway Inflammation

    PubMed Central

    Paez-Cortez, Jesus; Krishnan, Ramaswamy; Arno, Anneliese; Aven, Linh; Ram-Mohan, Sumati; Patel, Kruti R.; Lu, Jining; King, Oliver D.; Ai, Xingbin; Fine, Alan

    2013-01-01

    Phenotypes of lung smooth muscle cells in health and disease are poorly characterized. This is due, in part, to a lack of methodologies that allow for the independent and direct isolation of bronchial smooth muscle cells (BSMCs) and vascular smooth muscle cells (VSMCs) from the lung. In this paper, we describe the development of a bi-fluorescent mouse that permits purification of these two cell populations by cell sorting. By subjecting this mouse to an acute allergen based-model of airway inflammation that exhibits many features of asthma, we utilized this tool to characterize the phenotype of so-called asthmatic BSMCs. First, we examined the biophysical properties of single BSMCs from allergen sensitized mice and found increases in basal tone and cell size that were sustained ex vivo. We then generated for the first time, a comprehensive characterization of the global gene expression changes in BSMCs isolated from the bi-fluorescent mice with allergic airway inflammation. Using statistical methods and pathway analysis, we identified a number of differentially expressed mRNAs in BSMCs from allergen sensitized mice that code for key candidate proteins underlying changes in matrix formation, contractility, and immune responses. Ultimately, this tool will provide direction and guidance for the logical development of new markers and approaches for studying human lung smooth muscle. PMID:24040256

  7. Cyclooxygenase-2/prostaglandin D2/CRTH2 pathway mediates double-stranded RNA-induced enhancement of allergic airway inflammation.

    PubMed

    Shiraishi, Yoshiki; Asano, Koichiro; Niimi, Kyoko; Fukunaga, Koichi; Wakaki, Misa; Kagyo, Junko; Takihara, Takahisa; Ueda, Soichiro; Nakajima, Takeshi; Oguma, Tsuyoshi; Suzuki, Yusuke; Shiomi, Tetsuya; Sayama, Koichi; Kagawa, Shizuko; Ikeda, Eiji; Hirai, Hiroyuki; Nagata, Kinya; Nakamura, Masataka; Miyasho, Taku; Ishizaka, Akitoshi

    2008-01-01

    Respiratory RNA viruses responsible for the common cold often worsen airway inflammation and bronchial responsiveness, two characteristic features of human asthma. We studied the effects of dsRNA, a nucleotide synthesized during viral replication, on airway inflammation and bronchial hyperresponsiveness in murine models of asthma. Intratracheal instillation of poly I:C, a synthetic dsRNA, increased the airway eosinophilia and enhanced bronchial hyperresponsiveness to methacholine in OVA-sensitized, exposed rats. These changes were associated with induction of cyclooxygenase-2 (COX-2) expression and COX-2-dependent PGD2 synthesis in the lungs, particularly in alveolar macrophages. The direct intratracheal instillation of PGD2 enhanced the eosinophilic inflammation in OVA-exposed animals, whereas pretreatment with a dual antagonist against the PGD2 receptor-(CRTH2) and the thromboxane A2 receptor, but not with a thromboxane A2 receptor-specific antagonist, nearly completely eliminated the dsRNA-induced worsening of airway inflammation and bronchial hyperresponsiveness. CRTH2-deficient mice had the same degree of allergen-induced airway eosinophilia as wild-type mice, but they did not exhibit a dsRNA-induced increase in eosinophil accumulation. Our data demonstrate that COX-2-dependent production of PGD2 followed by eosinophil recruitment into the airways via a CRTH2 receptor are the major pathogenetic factors responsible for the dsRNA-induced enhancement of airway inflammation and responsiveness. PMID:18097056

  8. Montelukast versus Dexamethasone Treatment in a Guinea Pig Model of Chronic Pulmonary Neutrophilic Inflammation.

    PubMed

    Abdel Kawy, Hala S

    2016-08-01

    Airway inflammation in chronic obstructive pulmonary disease (COPD) is refractory to corticosteroids and hence COPD treatment is hindered and insufficient. This study assessed the effects of oral treatment with Montelukast (10 and 30 mg/kg) or dexamethasone (20 mg/kg) for 20 days on COPD model induced by chronic exposure to lipopolysaccharide (LPS). Six groups of male guinea pigs were studied. Group 1: naïve group, group 2: exposed to saline nebulization. Groups 3, 4, 5, and 6: exposed to 9 nebulizations of LPS (30 μg/ml) for 1 hour, 48 hours apart with or without treatment with Montelukast or dexamethasone. Airway hyperreactivity (AHR) to methacholine (MCh), histopathological study and bronchoalveolar lavage fluid (BALF) as well as lung tissue analyses were performed 48 hours after the final exposure to LPS (day 20). LPS-induced pulmonary dysfunction was associated with increased neutrophil count, leukotriene (LT) B4, and tumor necrosis factor (TNF)-α in BALF. Moreover, there was an increase in malondialdehyde (MDA) level and a decrease in histone deacetylases(HDAC) activity in the lung tissue. Both Montelukast (10 or 30 mg /kg) and dexamethasone significantly reduced neutrophil count in BALF and inflammatory cells in lung parenchyma as well as TNF-α, and MDA levels. However, dexamethasone was more effective (p < 0.05). Montelukast, at a dose of 30 mg /kg, significantly reduced specific airway resistance after the 9th LPS exposure, attenuated AHR to MCh, decreased LTB4 and increased HDAC activity in comparison to dexamethasone. These results suggest that treatment with Montelukast can be useful in chronic airway inflammatory diseases including COPD poorly responsive to glucocorticoids. PMID:26751767

  9. Metabolic reprogramming and inflammation act in concert to control vascular remodeling in hypoxic pulmonary hypertension.

    PubMed

    Stenmark, Kurt R; Tuder, Rubin M; El Kasmi, Karim C

    2015-11-15

    Pulmonary hypertension (PH) is a complex, multifactorial syndrome that remains poorly understood despite decades of research. PH is characterized by profound pulmonary artery (PA) remodeling that includes significant fibro-proliferative and inflammatory changes of the PA adventitia. In line with the emerging concept that PH shares key features with cancer, recent work centers on the idea that PH results from a multistep process driven by reprogramming of gene-expression patterns that govern changes in cell metabolism, inflammation, and proliferation. Data demonstrate that in addition to PA endothelial cells and smooth muscle cells, adventitial fibroblasts from animals with experimental hypoxic PH and from humans with PH (hereafter, termed PH-Fibs) exhibit proinflammatory activation, increased proliferation, and apoptosis resistance, all in the context of metabolic reprogramming to aerobic glycolysis. PH-Fibs can also recruit, retain, and activate naïve macrophages (Mϕ) toward a proinflammatory/proremodeling phenotype through secretion of chemokines, cytokines, and glycolytic metabolites, among which IL-6 and lactate play key roles. Furthermore, these fibroblast-activated Mϕ (hereafter, termed FAMϕ) exhibit aerobic glycolysis together with high expression of arginase 1, Vegfa, and I1lb, all of which require hypoxia-inducible factor 1α and STAT3 signaling. Strikingly, in situ, the adventitial Mϕ phenotype in the remodeled PA closely resembles the Mϕ phenotype induced by fibroblasts in vitro (FAMϕ), suggesting that FAMϕ crosstalk involving metabolic and inflammatory signals is a critical, pathogenetic component of vascular remodeling. This review discusses metabolic and inflammatory changes in fibroblasts and Mϕ in PH with the goal of raising ideas about new interventions to abrogate remodeling in hypoxic forms of PH. PMID:25930027

  10. Cardiac inflammation contributes to right ventricular dysfunction following experimental pulmonary embolism in rats.

    PubMed

    Watts, John A; Zagorski, John; Gellar, Michael A; Stevinson, Brad G; Kline, Jeffrey A

    2006-08-01

    Acute right ventricular (RV) failure following pulmonary embolism (PE) is a strong predictor of poor clinical outcome. Present studies test for an association between RV failure from experimental PE, inflammation, and upregulated chemokine expression. Additional experiments test if neutrophil influx contributes to RV dysfunction. PE was induced in male rats by infusing 24 microm microspheres (right jugular vein) producing mild hypertension (1.3 million beads/100 g, PE1.3), or moderately severe hypertension (2.0 million beads/100 g, PE2.0). Additional rats served as vehicle sham (0.01% Tween 20, Veh). In vivo RV peak systolic pressures (RVPSP) increased significantly, and then declined following PE2.0 (51 +/- 1 mm Hg 2 h; 49 +/- 1, 6 h; 44 +/- 1, 18 h). RV generated pressure of isolated, perfused hearts was significantly reduced in PE2.0 compared with PE1.3 or Veh. MCP-1 protein (ELISA) was elevated 21-fold and myeloperoxidase activity 95-fold in RV of PE2.0 compared with Veh or PE1.3. CINC-1, CINC-2, MIP-2, MCP-1, and MIP-1alpha mRNA also increased in RV of PE2.0. Histological analysis revealed massive accumulation of neutrophils (selective esterase stain) and monocyte/macrophages (CD68, ED-1) in RV of PE2.0 hearts in regions of myocyte damage. Electron microscopy showed myocyte necrosis and phagocytosis by inflammatory cells. LV function was normal and did not show increased inflammation after PE2.0. Treatment with anti-PMN antibody reduced RV MPO activity and prevented RV dysfunction. Conclusions-PE with moderately severe pulmonary hypertension (PE2.0) resulted in selective RV dysfunction, which was associated with increased chemokine expression, and infiltration of both neutrophils and monocyte/macrophages, indicating that a robust immune response occurred with RV damage following experimental PE. Experimental agranulocytosis reduced RV, suggesting that neutrophil influx contributed to RV damage. PMID:16814320

  11. Syndecan-4 Regulates Early Neutrophil Migration and Pulmonary Inflammation in Response to Lipopolysaccharide

    PubMed Central

    Chang, Mary Y.; Wang, Xintao; Gill, Sean E.; Skerrett, Shawn; McGuire, John K.; Sato, Suguru; Nikaido, Takefumi; Kojima, Tetsuhito; Munakata, Mitsuru; Mongovin, Steve; Parks, William C.; Martin, Thomas R.; Wight, Thomas N.; Frevert, Charles W.

    2012-01-01

    Proteoglycans (PGs) and their associated glycosaminoglycan side chains are effectors of inflammation, but little is known about changes to the composition of PGs in response to lung infection or injury. The goals of this study were to identify changes to heparan sulfate PGs in a mouse model of gram-negative pneumonia, to identify the Toll-like receptor adaptor molecules responsible for these changes, and to determine the role of the heparan sulfate PG in the innate immune response in the lungs. We treated mice with intratracheal LPS, a component of the cell wall of gram-negative bacteria, to model gram-negative pneumonia. Mice treated with intratracheal LPS had a rapid and selective increase in syndecan-4 mRNA that was regulated through MyD88-dependent mechanisms, whereas expression of several other PGs was not affected. To determine the role of syndecan-4 in the inflammatory response, we exposed mice deficient in syndecan-4 to LPS and found a significant increase in neutrophil numbers and amounts of CXC-chemokines and total protein in bronchoalveolar lavage fluid. In studies performed in vitro, macrophages and epithelial cells treated with LPS had increased expression of syndecan-4. Studies performed using BEAS-2B cells showed that pretreatment with heparin and syndecan-4 decreased the expression of CXCL8 mRNA in response to LPS and TNF-α. These findings indicate that the early inflammatory response to LPS involves marked up-regulation of syndecan-4, which functions to limit the extent of pulmonary inflammation and lung injury. PMID:22427536

  12. Respiratory Allergic Disorders.

    PubMed

    Woloski, Jason Raymond; Heston, Skye; Escobedo Calderon, Sheyla Pamela

    2016-09-01

    Allergic asthma refers to a chronic reversible bronchoconstriction influenced by an allergic trigger, leading to symptoms of cough, wheezing, shortness of breath, and chest tightness. Allergic bronchopulmonary aspergillosis is a complex hypersensitivity reaction, often in patients with asthma or cystic fibrosis, occurring when bronchi become colonized by Aspergillus species. The clinical picture is dominated by asthma complicated by recurrent episodes of bronchial obstruction, fever, malaise, mucus production, and peripheral blood eosinophilia. Hypersensitivity pneumonitis is a syndrome associated with lung inflammation from the inhalation of airborne antigens, such as molds and dust. PMID:27545731

  13. Phosphoinositide 3-kinase γ plays a critical role in bleomycin-induced pulmonary inflammation and fibrosis in mice.

    PubMed

    Russo, Remo C; Garcia, Cristiana C; Barcelos, Lucíola S; Rachid, Milene A; Guabiraba, Rodrigo; Roffê, Ester; Souza, Adriano L S; Sousa, Lirlândia P; Mirolo, Massimiliano; Doni, Andrea; Cassali, Geovanni D; Pinho, Vanessa; Locati, Massimo; Teixeira, Mauro M

    2011-02-01

    PI3Kγ is central in signaling diverse arrays of cellular functions and inflammation. Pulmonary fibrosis is associated with pulmonary inflammation, angiogenesis, and deposition of collagen and is modeled by instillation of bleomycin. The role of PI3Kγ in mediating bleomycin-induced pulmonary inflammation and fibrosis in mice and potential mechanisms involved was investigated here. WT or PI3Kγ KO mice were instilled with bleomycin and leukocyte subtype influx, cytokine and chemokine levels, and angiogenesis and tissue fibrosis evaluated. The activation of lung-derived leukocytes and fibroblasts was evaluated in vitro. The relevance of PI3Kγ for endothelial cell function was evaluated in HUVECs. PI3Kγ KO mice had greater survival and weight recovery and less fibrosis than WT mice after bleomycin instillation. This was associated with decreased production of TGF-β(1) and CCL2 and increased production of IFN-γ and IL-10. There was reduced expression of collagen, fibronectin, α-SMA, and von Willebrand factor and decreased numbers and activation of leukocytes and phosphorylation of AKT and IκB-α. PI3Kγ KO mice had a reduced number and area of blood vessels in the lungs. In vitro, treatment of human endothelial cells with the PI3Kγ inhibitor AS605240 decreased proliferation, migration, and formation of capillary-like structures. AS605240 also decreased production of collagen by murine lung-derived fibroblasts. PI3Kγ deficiency confers protection against bleomycin-induced pulmonary injury, angiogenesis, and fibrosis through the modulation of leukocyte, fibroblast, and endothelial cell functions. Inhibitors of PI3Kγ may be beneficial for the treatment of pulmonary fibrosis. PMID:21048214

  14. Allergic rhinitis

    MedlinePlus

    ... allergic to, such as dust, animal dander, or pollen. Symptoms can also occur when you eat a ... article focuses on allergic rhinitis due to plant pollens. This type of allergic rhinitis is commonly called ...

  15. Hirsutella sinensis mycelium attenuates bleomycin-induced pulmonary inflammation and fibrosis in vivo.

    PubMed

    Huang, Tsung-Teng; Lai, Hsin-Chih; Ko, Yun-Fei; Ojcius, David M; Lan, Ying-Wei; Martel, Jan; Young, John D; Chong, Kowit-Yu

    2015-01-01

    Hirsutella sinensis mycelium (HSM), the anamorph of Cordyceps sinensis, is a traditional Chinese medicine that has been shown to possess various pharmacological properties. We previously reported that this fungus suppresses interleukin-1β and IL-18 secretion by inhibiting both canonical and non-canonical inflammasomes in human macrophages. However, whether HSM may be used to prevent lung fibrosis and the mechanism underlying this activity remain unclear. Our results show that pretreatment with HSM inhibits TGF-β1-induced expression of fibronectin and α-SMA in lung fibroblasts. HSM also restores superoxide dismutase expression in TGF-β1-treated lung fibroblasts and inhibits reactive oxygen species production in lung epithelial cells. Furthermore, HSM pretreatment markedly reduces bleomycin-induced lung injury and fibrosis in mice. Accordingly, HSM reduces inflammatory cell accumulation in bronchoalveolar lavage fluid and proinflammatory cytokines levels in lung tissues. The HSM extract also significantly reduces TGF-β1 in lung tissues, and this effect is accompanied by decreased collagen 3α1 and α-SMA levels. Moreover, HSM reduces expression of the NLRP3 inflammasome and P2X7R in lung tissues, whereas it enhances expression of superoxide dismutase. These findings suggest that HSM may be used for the treatment of pulmonary inflammation and fibrosis. PMID:26497260

  16. Hirsutella sinensis mycelium attenuates bleomycin-induced pulmonary inflammation and fibrosis in vivo

    PubMed Central

    Huang, Tsung-Teng; Lai, Hsin-Chih; Ko, Yun-Fei; Ojcius, David M.; Lan, Ying-Wei; Martel, Jan; Young, John D.; Chong, Kowit-Yu

    2015-01-01

    Hirsutella sinensis mycelium (HSM), the anamorph of Cordyceps sinensis, is a traditional Chinese medicine that has been shown to possess various pharmacological properties. We previously reported that this fungus suppresses interleukin-1β and IL-18 secretion by inhibiting both canonical and non-canonical inflammasomes in human macrophages. However, whether HSM may be used to prevent lung fibrosis and the mechanism underlying this activity remain unclear. Our results show that pretreatment with HSM inhibits TGF-β1–induced expression of fibronectin and α-SMA in lung fibroblasts. HSM also restores superoxide dismutase expression in TGF-β1–treated lung fibroblasts and inhibits reactive oxygen species production in lung epithelial cells. Furthermore, HSM pretreatment markedly reduces bleomycin–induced lung injury and fibrosis in mice. Accordingly, HSM reduces inflammatory cell accumulation in bronchoalveolar lavage fluid and proinflammatory cytokines levels in lung tissues. The HSM extract also significantly reduces TGF-β1 in lung tissues, and this effect is accompanied by decreased collagen 3α1 and α-SMA levels. Moreover, HSM reduces expression of the NLRP3 inflammasome and P2X7R in lung tissues, whereas it enhances expression of superoxide dismutase. These findings suggest that HSM may be used for the treatment of pulmonary inflammation and fibrosis. PMID:26497260

  17. Endothelial targeting of liposomes encapsulating SOD/catalase mimetic EUK-134 alleviates acute pulmonary inflammation.

    PubMed

    Howard, Melissa D; Greineder, Colin F; Hood, Elizabeth D; Muzykantov, Vladimir R

    2014-03-10

    Production of excessive levels of reactive oxygen species (ROS) in the vascular endothelium is a common pathogenic pathway in many dangerous conditions, including acute lung injury, ischemia-reperfusion, and inflammation. Ineffective delivery of antioxidants to the endothelium limits their utility for management of these conditions. In this study, we devised a novel translational antioxidant intervention targeted to the vascular endothelium using PEG-liposomes loaded with EUK-134 (EUK), a potent superoxide dismutase/catalase mimetic. EUK loaded into antibody-coated liposomes (size 197.8±4.5 nm diameter, PDI 0.179±0.066) exerted partial activity in the intact carrier, while full activity was recovered upon liposome disruption. For targeting we used antibodies (Abs) to platelet-endothelial cell adhesion molecule (PECAM-1). Both streptavidin-biotin and SATA/SMCC conjugation chemistries provided binding of 125-150 Ab molecules per liposome. Ab/EUK/liposomes, but not IgG/EUK/liposomes: i) bound to endothelial cells and inhibited cytokine-induced inflammatory activation in vitro; and, ii) accumulated in lungs after intravascular injection, providing >60% protection against pulmonary edema in endotoxin-challenged mice (vs <6% protection afforded by IgG/liposome/EUK counterpart). Since the design elements of this drug delivery system are already in clinical use (PEG-liposomes, antibodies, SATA/SMCC conjugation), it is an attractive candidate for translational interventions using antioxidant molecules such as EUK and other clinically acceptable drugs. PMID:24412573

  18. Human metapneumovirus infection activates the TSLP pathway that drives excessive pulmonary inflammation and viral replication in mice.

    PubMed

    Lay, Margarita K; Céspedes, Pablo F; Palavecino, Christian E; León, Miguel A; Díaz, Rodrigo A; Salazar, Francisco J; Méndez, Gonzalo P; Bueno, Susan M; Kalergis, Alexis M

    2015-06-01

    Human metapneumovirus (hMPV) is a leading cause of acute respiratory tract infections in children and the elderly. The mechanism by which this virus triggers an inflammatory response still remains unknown. Here, we evaluated whether the thymic stromal lymphopoietin (TSLP) pathway contributes to lung inflammation upon hMPV infection. We found that hMPV infection promotes TSLP expression both in human airway epithelial cells and in the mouse lung. hMPV infection induced lung infiltration of OX40L(+) CD11b(+) DCs. Mice lacking the TSLP receptor deficient mice (tslpr(-/-) ) showed reduced lung inflammation and hMPV replication. These mice displayed a decreased number of neutrophils as well a reduction in levels of thymus and activation-regulated chemokine/CCL17, IL-5, IL-13, and TNF-α in the airways upon hMPV infection. Furthermore, a higher frequency of CD4(+) and CD8(+) T cells was found in tslpr(-/-) mice compared to WT mice, which could contribute to controlling viral spread. Depletion of neutrophils in WT and tslpr(-/-) mice decreased inflammation and hMPV replication. Remarkably, blockage of TSLP or OX40L with specific Abs reduced lung inflammation and viral replication following hMPV challenge in mice. Altogether, these results suggest that activation of the TSLP pathway is pivotal in the development of pulmonary pathology and pulmonary hMPV replication. PMID:25763996

  19. Activation of angiotensin-converting enzyme 2 (ACE2) attenuates allergic airway inflammation in rat asthma model.

    PubMed

    Dhawale, Vaibhav Shrirang; Amara, Venkateswara Rao; Karpe, Pinakin Arun; Malek, Vajir; Patel, Deep; Tikoo, Kulbhushan

    2016-09-01

    Angiotensin-I converting enzyme (ACE) is positively correlated to asthma, chronic obstructive pulmonary disease (COPD), acute respiratory distress syndrome (ARDS) and is highly expressed in lungs. ACE2, the counteracting enzyme of ACE, was proven to be protective in pulmonary, cardiovascular diseases. In the present study we checked the effect of ACE2 activation in animal model of asthma. Asthma was induced in male wistar rats by sensitization and challenge with ovalbumin and then treated with ACE2 activator, diminazene aceturate (DIZE) for 2weeks. 48h after last allergen challenge, animals were anesthetized, blood, BALF, femoral bone marrow lavage were collected for leucocyte count; trachea for measuring airway responsiveness to carbachol; lungs and heart were isolated for histological studies and western blotting. In our animal model, the characteristic features of asthma such as altered airway responsiveness to carbachol, eosinophilia and neutrophilia were observed. Western blotting revealed the increased pulmonary expression of ACE1, IL-1β, IL-4, NF-κB, BCL2, p-AKT, p-p38 and decreased expression of ACE2 and IκB. DIZE treatment prevented these alterations. Intraalveolar interstitial thickening, inflammatory cell infiltration, interstitial fibrosis, oxidative stress and right ventricular hypertrophy in asthma control animals were also reversed by DIZE treatment. Activation of ACE2 by DIZE conferred protection against asthma as evident from biochemical, functional, histological and molecular parameters. To the best of our knowledge, we report for the first time that activation of ACE2 by DIZE prevents asthma progression by altering AKT, p38, NF-κB and other inflammatory markers. PMID:27343405

  20. Ferulic Acid Induces Th1 Responses by Modulating the Function of Dendritic Cells and Ameliorates Th2-Mediated Allergic Airway Inflammation in Mice

    PubMed Central

    Lee, Chen-Chen; Wang, Ching-Chiung; Huang, Huei-Mei; Lin, Chu-Lun; Leu, Sy-Jye; Lee, Yueh-Lun

    2015-01-01

    This study investigated the immunomodulatory effects of ferulic acid (FA) on antigen-presenting dendritic cells (DCs) in vitro and its antiallergic effects against ovalbumin- (OVA-) induced Th2-mediated allergic asthma in mice. The activation of FA-treated bone marrow-derived DCs by lipopolysaccharide (LPS) stimulation induced a high level of interleukin- (IL-) 12 but reduced the expression levels of the proinflammatory cytokines IL-1β, IL-6, and tumor necrosis factor- (TNF-) α. Compared to control-treated DCs, FA significantly enhanced the expressions of Notch ligand Delta-like 4 (Dll4), MHC class II, and CD40 molecules by these DCs. Furthermore, these FA-treated DCs enhanced T-cell proliferation and Th1 cell polarization. In animal experiments, oral administration of FA reduced the levels of OVA-specific immunoglobulin E (IgE) and IgG1 and enhanced IgG2a antibody production in serum. It also ameliorated airway hyperresponsiveness and attenuated eosinophilic pulmonary infiltration in dose-dependent manners. In addition, FA treatment inhibited the production of eotaxin, Th2 cytokines (IL-4, IL-5, and IL-13), and proinflammatory cytokines but promoted the Th1 cytokine interferon- (IFN-) γ production in bronchoalveolar lavage fluid (BALF) and the culture supernatant of spleen cells. These findings suggest that FA exhibits an antiallergic effect via restoring Th1/Th2 imbalance by modulating DCs function in an asthmatic mouse model. PMID:26495021

  1. Attenuation of pulmonary inflammation after exposure to blast overpressure by N-acetylcysteine amide.

    PubMed

    Chavko, Mikulas; Adeeb, Saleena; Ahlers, Stephen T; McCarron, Richard M

    2009-09-01

    Lung contusion is a common problem from blunt chest trauma caused by mechanical forces and by exposure to blast overpressure, often with fatal consequences. Lung contusion is also a risk factor for the development of pneumonia, severe clinical acute lung injury (ALI), and acute respiratory distress syndrome (ARDS). Infiltrating neutrophils are considered to be central mediators of lung injuries after blunt trauma. Recent studies have demonstrated that antioxidants reduced pulmonary inflammation in different models of lung damage. This study examined the effect of antioxidant N-acetylcysteine amide (NACA) on the progression of lung inflammation after exposure to a moderate level of blast overpressure (140 kPa). Rats were administered with NACA (i.p. 100 mg/kg) or placebo (PBS) 30, 60 min and 24 h after exposure. Nonblasted sham-injected animals served as controls. Neutrophil infiltration measured by myeloperoxidase (MPO) activity in the lung was significantly increased at 2 days after blast and returned to controls at 8 days. This increase corresponded with activation of integrin CD11b mRNA and lung inflammatory chemokine mRNA expression; macrophage inflammatory protein-1 (MIP-1), monocyte chemotactic peptide-1 (MCP-1), and cytokine-induced neutrophil chemoattractant-1 (CINC-1). At 8 days, all inflammatory mediators returned to control levels. In addition, expression of heme oxygenase-1 (HO-1) mRNA increased at 2 days after exposure. No changes were detected in the lung manganase superoxide dismutase (MnSOD) or glutathione reductase (GR) mRNA expression after blast. N-Acetylcysteine amide significantly reduced infiltration of neutrophils and CD11b mRNA activation in lungs, and completely blocked activation of MIP-1, MCP-1 and CINC-1 mRNA. The relatively higher inhibition of chemokine mRNAs compared with reduction in MPO activity and CD11b is in accordance with an antioxidant effect of NACA on reactive oxygen species (ROS) accumulation, rather than by an effect on

  2. Perinatal Maternal Administration of Lactobacillus paracasei NCC 2461 Prevents Allergic Inflammation in a Mouse Model of Birch Pollen Allergy

    PubMed Central

    Schabussova, Irma; Hufnagl, Karin; Tang, Mimi L. K.; Hoflehner, Elisabeth; Wagner, Angelika; Loupal, Gerhard; Nutten, Sophie; Zuercher, Adrian; Mercenier, Annick; Wiedermann, Ursula

    2012-01-01

    Background The hygiene hypothesis implies that microbial agents including probiotic bacteria may modulate foetal/neonatal immune programming and hence offer effective strategies for primary allergy prevention; however their mechanisms of action are poorly understood. We investigated whether oral administration of Lactobacillus paracasei NCC 2461 to mothers during gestation/lactation can protect against airway inflammation in offspring in a mouse model of birch pollen allergy, and examined the immune mechanisms involved. Methods BALB/c mice were treated daily with L. paracasei in drinking water or drinking water alone in the last week of gestation and during lactation. Their offspring were sensitized with recombinant Bet v 1, followed by aerosol challenge with birch pollen extract. Results Maternal exposure to L. paracasei prevented the development of airway inflammation in offspring, as demonstrated by attenuation of eosinophil influx in the lungs; reduction of IL-5 levels in bronchoalveolar lavage, and in lung and mediastinal lymph node cell cultures; and reduced peribronchial inflammatory infiltrate and mucus hypersecretion. While allergen-specific IgE and IgG antibody levels remained unchanged by the treatment, IL-4 and IL-5 production in spleen cell cultures were significantly reduced upon allergen stimulation in offspring of L. paracasei treated mice. Offspring of L. paracasei supplemented mothers had significantly reduced Bet v 1-specific as well as Concanavalin A-induced responses in spleen and mesenteric lymph node cell cultures, suggesting the modulation of both antigen-specific and mitogen-induced immune responses in offspring. These effects were associated with increased Foxp3 mRNA expression in the lungs and increased TGF-beta in serum. Conclusion Our data show that in a mouse model of birch pollen allergy, perinatal administration of L. paracasei NCC 2461 to pregnant/lactating mothers protects against the development of airway inflammation in offspring

  3. Systemic interleukin-2 administration improves lung function and modulates chorioamnionitis-induced pulmonary inflammation in the ovine fetus.

    PubMed

    Willems, Monique G M; Ophelders, Daan R M G; Nikiforou, Maria; Jellema, Reint K; Butz, Anke; Delhaas, Tammo; Kramer, Boris W; Wolfs, Tim G A M

    2016-01-01

    Chorioamnionitis, an inflammatory reaction of the fetal membranes to microbes, is an important cause of preterm birth and associated with inflammation-driven lung injury. However, inflammation in utero overcomes immaturity of the premature lung by inducing surfactant lipids and lung gas volume. Previously, we found that lipopolysaccharide (LPS)-induced chorioamnionitis resulted in pulmonary inflammation with increased effector T cells and decreased regulatory T cell (Treg) numbers. Because Tregs are crucial for immune regulation, we assessed the effects of interleukin (IL)-2-driven selective Treg expansion on the fetal lung in an ovine chorioamnionitis model. Instrumented fetuses received systemic prophylactic IL-2 treatment [118 days gestational age (dGA)] with or without subsequent exposure to intra-amniotic LPS (122 dGA). Following delivery at 129 dGA (term 147 dGA), pulmonary and systemic inflammation, morphological changes, lung gas volume, and phospholipid concentration were assessed. IL-2 pretreatment increased the FoxP3(+)/CD3(+) ratio, which was associated with reduced CD3-positive cells in the fetal lungs of LPS-exposed animals. Prophylactic IL-2 treatment did not prevent pulmonary accumulation of myeloperoxidase- and PU.1-positive cells or elevation of bronchoalveolar lavage fluid IL-8 and systemic IL-6 concentrations in LPS-exposed animals. Unexpectedly, IL-2 treatment improved fetal lung function of control lambs as indicated by increased disaturated phospholipids and improved lung gas volume. In conclusion, systemic IL-2 treatment in utero preferentially expanded Tregs and improved lung gas volume and disaturated phospholipids. These beneficial effects on lung function were maintained despite the moderate immunomodulatory effects of prophylactic IL-2 in the course of chorioamnionitis. PMID:26519206

  4. Intranasal Administration of Recombinant Mycobacterium smegmatis Inducing IL-17A Autoantibody Attenuates Airway Inflammation in a Murine Model of Allergic Asthma

    PubMed Central

    Guo, Sheng; Wu, Liangxia; Zhang, Jianhua

    2016-01-01

    Asthma is a chronic inflammatory disorder, previous studies have shown that IL-17A contributes to the development of asthma, and there is a positive correlation between the level of IL-17A and the severity of disease. Here, we constructed recombinant Mycobacterium smegmatis expressing fusion protein Ag85A-IL-17A (rMS-Ag85a-IL-17a) and evaluated whether it could attenuate allergic airway inflammation, and further investigated the underlying mechanism. In this work, the murine model of asthma was established with ovalbumin, and mice were intranasally vaccinated with rMS-Ag85a-IL-17a. Autoantibody of IL-17A in sera was detected, and the airway inflammatory cells infiltration, the local cytokines and chemokines production and the histopathological changes of lung tissue were investigated. We found that the administration of rMS-Ag85a-IL-17a induced the autoantibody of IL-17A in sera. The vaccination of rMS-Ag85a-IL-17a remarkably reduced the infiltration of inflammatory cells and the secretion of mucus in lung tissue and significantly decreased the numbers of the total cells, eosinophils and neutrophils in BALF. Th1 cells count in spleen, Th1 cytokine levels in BALF and supernatant of splenocytes and mediastinal lymph nodes, and T-bet mRNA in lung tissue were significantly increased with rMS-Ag85a-IL-17a administration. Meanwhile, rMS-Ag85a-IL-17a vaccination markedly decreased Th2 cells count, Th2 cytokine and Th17 cytokine levels in BALF and supernatant of splenocytes and mediastinal lymph nodes, and chemokines mRNA expression in lung tissue. These data confirmed that recombinant Mycobacterium smegmatis in vivo could induce autoantibody of IL-17A, which attenuated asthmatic airway inflammation. PMID:26974537

  5. Prolonged B Cell Depletion With Rituximab is Effective in Treating Refractory Pulmonary Granulomatous Inflammation in Granulomatosis With Polyangiitis (GPA)

    PubMed Central

    Henderson, Scott R.; Copley, Susan J.; Pusey, Charles D.; Ind, Philip W.; Salama, Alan D.

    2014-01-01

    Abstract Pulmonary nodule formation is a frequent feature of granulomatosis with polyangiitis (GPA). Traditional induction therapy includes methotrexate or cyclophosphamide, however, pulmonary nodules generally respond slower than vasculitic components of disease. Efficacy of rituximab (RTX) solely for the treatment of pulmonary nodules has not been assessed. In this observational cohort study, we report patient outcomes with RTX in GPA patients with pulmonary nodules who failed to achieve remission following conventional immunosuppression. Patients (n = 5) with persistent pulmonary nodules were identified from our clinic database and retrospectively evaluated. Systemic manifestations, inflammatory markers, disease activity, concurrent immunosuppression, and absolute B cell numbers were recorded pre-RTX and at 6 monthly intervals following treatment. Chest radiographs at each time point were scored by an experienced radiologist, blinded to clinical details. Five patients with GPA and PR3-ANCA were evaluated (2 male, 3 female), mean age 34 (22–52) years. Pulmonary nodules (median 4, range 2–6), with or without cavitation were present in all patients. RTX induced initial B cell depletion (<5 cells/μL) in all patients but re-population was observed in 3 patients. Repeated RTX treatment in these 3 and persistent B cell depletion in the whole cohort was associated with further significant radiological improvement. Radiographic scoring at each time interval showed reduction in both number of nodules (P = <0.0001) and largest nodule diameter (P = <0.0001) in all patients for at least 18 months following B cell depletion. In summary, RTX therapy induces resolution of pulmonary granulomatous inflammation in GPA following prolonged B cell depletion. PMID:25501085

  6. Functional characterisation of human pulmonary monocyte-like cells in lipopolysaccharide-mediated acute lung inflammation

    PubMed Central

    2014-01-01

    Background We have previously reported the presence of novel subpopulations of pulmonary monocyte-like cells (PMLC) in the human lung; resident PMLC (rPMLC, HLA-DR+CD14++CD16+cells) and inducible PMLC (iPMLC, HLA-DR+CD14++CD16- cells). iPMLC are significantly increased in bronchoalveolar lavage (BAL) fluid following inhalation of lipopolysaccharide (LPS). We have carried out the first functional evaluation of PMLC subpopulations in the inflamed lung, following the isolation of these cells, and other lineages, from BAL fluid using novel and complex protocols. Methods iPMLC, rPMLC, alveolar macrophages (AM), neutrophils, and regulatory T cells were quantified in BAL fluid of healthy subjects at 9 hours post-LPS inhalation (n = 15). Cell surface antigen expression by iPMLC, rPMLC and AM and the ability of each lineage to proliferate and to undergo phagocytosis were investigated using flow cytometry. Basal cytokine production by iPMLC compared to AM following their isolation from BAL fluid and the responsiveness of both cell types following in vitro treatment with the synthetic corticosteroid dexamethasone were assessed. Results rPMLC have a significantly increased expression of mature macrophage markers and of the proliferation antigen Ki67, compared to iPMLC. Our cytokine data revealed a pro-inflammatory, corticosteroid-resistant phenotype of iPMLC in this model. Conclusions These data emphasise the presence of functionally distinct subpopulations of the monocyte/macrophage lineage in the human lung in experimental acute lung inflammation. PMID:24684897

  7. Cell- and isoform-specific increases in arginase expression in acute silica-induced pulmonary inflammation.

    PubMed

    Poljakovic, Mirjana; Porter, Dale W; Millecchia, Lyndell; Kepka-Lenhart, Diane; Beighley, Christopher; Wolfarth, Michael G; Castranova, Vincent; Morris, Sidney M

    2007-01-15

    Arginase induction was reported in several inflammatory lung diseases, suggesting that this may be a common feature underlying the pathophysiology of such diseases. As little is known regarding arginase expression in silicosis, the induction and cellular localization of arginase were elucidated in lungs of Sprague-Dawley rats 24 h following exposure to varying doses of silica by intratracheal instillation. Arginase expression was evaluated by activity assay, quantification of arginase I and arginase II mRNA levels using real-time polymerase chain reaction (PCR), and immunohistochemistry. Analyses of cells and fluid obtained by bronchoalveolar lavage (BAL) showed that markers of pulmonary inflammation, tissue damage, activation of alveolar macrophages (AM) and NO production were significantly increased by all silica doses. Arginase activity was increased also in AMs isolated from BAL fluid of silica-treated rats. Silica produced two- and three-fold increases in arginase activity of whole lung at doses of 1 and 5 mg/100 g body weight, respectively. Levels of arginase I mRNA, but not of arginase II mRNA, were similarly elevated. In control lungs, arginase I immunoreactivity was observed only in AMs sparsely dispersed throughout the lung; no inducible nitric oxide synthase (iNOS) immunoreactivity was detected. In silica-treated lungs, arginase I and iNOS were co-expressed in most AMs that were abundantly clustered at inflammatory foci. The rapid induction of arginase I expression in inflammatory lung cells, similar to induction of arginase in other inflammatory lung diseases, implicates elevated arginase activity as a factor in the development of lung damage following exposure to silica. PMID:17365572

  8. Cell- and Isoform-specific Increases in Arginase Expression in Acute Silica-induced Pulmonary Inflammation

    PubMed Central

    Poljakovic, Mirjana; Porter, Dale W.; Millecchia, Lyndell; Kepka-Lenhart, Diane; Beighley, Christopher; Wolfarth, Michael G.; Castranova, Vincent; Morris, Sidney M.

    2009-01-01

    Arginase induction was reported in several inflammatory lung diseases, suggesting that this may be a common feature underlying the pathophysiology of such diseases. As little is known regarding arginase expression in silicosis, the induction and cellular localization of arginase was elucidated in lungs of Sprague-Dawley rats 24 hr following exposure to varying doses of silica by intratracheal instillation. Arginase expression was evaluated by activity assay, quantification of arginase I and arginase II mRNA levels using real-time PCR, and immunohistochemistry. Analyses of cells and fluid obtained by bronchoalveolar lavage (BAL) showed that markers of pulmonary inflammation, tissue damage, activation of alveolar macrophages (AM) and NO production were significantly increased by all silica doses. Arginase activity was increased also in AMs isolated from BAL fluid of silica-treated rats. Silica produced 2- and 3-fold increases in arginase activity of whole lung at doses of 1 and 5 mg/100g body weight, respectively. Levels of arginase I mRNA, but not of arginase II mRNA, were similarly elevated. In control lungs, arginase I immunoreactivity was observed only in AMs sparsely dispersed throughout the lung; no iNOS immunoreactivity was detected. In silica-treated lungs, arginase I and iNOS were co-expressed in most AMs that were abundantly clustered at inflammatory foci. The rapid induction of arginase I expression in inflammatory lung cells, similar to induction of arginase in other inflammatory lung diseases, implicates elevated arginase activity as a factor in the development of lung damage following exposure to silica. PMID:17365572

  9. Tiotropium Attenuates Virus-Induced Pulmonary Inflammation in Cigarette Smoke-Exposed Mice.

    PubMed

    Bucher, Hannes; Duechs, Matthias J; Tilp, Cornelia; Jung, Birgit; Erb, Klaus J

    2016-06-01

    Viral infections trigger exacerbations in chronic obstructive pulmonary disease (COPD), and tiotropium, a M3 receptor antagonist, reduces exacerbations in patients by unknown mechanisms. In this report, we investigated whether tiotropium has anti-inflammatory effects in mice exposed to cigarette smoke (CS) and infected with influenza virus A/PR/8/34 (H1N1) or respiratory syncytial virus (RSV) and compared these effects with those of steroid fluticasone and PDE4-inhibitor roflumilast. Mice were exposed to CS; infected with H1N1 or RSV; and treated with tiotropium, fluticasone, or roflumilast. The amount of cells and cytokine levels in the airways, lung function, and viral load was determined. NCI-H292 cells were infected with H1N1 or RSV and treated with the drugs. In CS/H1N1-exposed mice, tiotropium reduced neutrophil and macrophage numbers and levels of interleukin-6 (IL-6) and interferon-γ (IFN-γ) in the airways and improved lung function. In contrast, fluticasone increased the loss of body weight; failed to reduce neutrophil or macrophage numbers; increased IL-6, KC, and tumor necrosis factor-α (TNF-α) in the lungs; and worsened lung function. Treatment with roflumilast reduced macrophage numbers, IL-6, and KC in the lungs but had no effect on neutrophil numbers or lung function. In CS/RSV-exposed mice, treatment with tiotropium, but not fluticasone or roflumilast, reduced neutrophil numbers and IL-6 and TNF-α levels in the lungs. Viral load of H1N1 and RSV was significantly elevated in CS/virus-exposed mice and NCI-H292 cells after fluticasone treatment, whereas tiotropium and roflumilast had no effect. In conclusion, tiotropium has anti-inflammatory effects on CS/virus-induced inflammation in mice that are superior to the effects of roflumilast and fluticasone. This finding might help to explain the observed reduction of exacerbation rates in COPD patients. PMID:27016458

  10. Local and systemic neutrophilic inflammation in patients with lung cancer and chronic obstructive pulmonary disease

    PubMed Central

    2013-01-01

    Background Recent investigations suggest that neutrophils play an important role in the immune response to lung cancer as well as chronic obstructive pulmonary disease (COPD). The aim of this study was to evaluate the amount of neutrophils and markers of their activity in lung cancer and COPD and in coexistence of these two diseases. Methods In total, 267 persons were included in the study: 139 patients with lung cancer, 55 patients with lung cancer and COPD, 40 patients with COPD, and 33 healthy subjects. Peripheral blood and BAL fluid samples were obtained for cell count analysis and determination of NE, MPO levels and ROS production. NE and MPO levels in the serum and BAL fluid were determined by ELISA. ROS production was analyzed by flow cytometer. Results The percentage, cell count of neutrophils and neutrophil to lymphocyte ratio in the peripheral blood were significantly higher in lung cancer patients with or without COPD compared to COPD patients or healthy individuals (P < 0.05). The percentage and cell count of neutrophils in BAL fluid were significantly lower in patients with lung cancer with or without COPD than in patients with COPD (P < 0.05). However, BAL fluid and serum levels of both NE and MPO were significantly higher in patients with lung cancer than COPD patients or healthy individuals (P < 0.05). Neutrophils produced higher amounts of ROS in patients with lung cancer with or without COPD compared with COPD patients or healthy individuals (P < 0.05). Conclusions The results from this study demonstrate higher degree of local and systemic neutrophilic inflammation in patients with lung cancer (with or without COPD) than in patients with COPD. PMID:23919722

  11. Tiotropium Attenuates Virus-Induced Pulmonary Inflammation in Cigarette Smoke–Exposed Mice

    PubMed Central

    Bucher, Hannes; Duechs, Matthias J.; Tilp, Cornelia; Jung, Birgit

    2016-01-01

    Viral infections trigger exacerbations in chronic obstructive pulmonary disease (COPD), and tiotropium, a M3 receptor antagonist, reduces exacerbations in patients by unknown mechanisms. In this report, we investigated whether tiotropium has anti-inflammatory effects in mice exposed to cigarette smoke (CS) and infected with influenza virus A/PR/8/34 (H1N1) or respiratory syncytial virus (RSV) and compared these effects with those of steroid fluticasone and PDE4-inhibitor roflumilast. Mice were exposed to CS; infected with H1N1 or RSV; and treated with tiotropium, fluticasone, or roflumilast. The amount of cells and cytokine levels in the airways, lung function, and viral load was determined. NCI-H292 cells were infected with H1N1 or RSV and treated with the drugs. In CS/H1N1-exposed mice, tiotropium reduced neutrophil and macrophage numbers and levels of interleukin-6 (IL-6) and interferon-γ (IFN-γ) in the airways and improved lung function. In contrast, fluticasone increased the loss of body weight; failed to reduce neutrophil or macrophage numbers; increased IL-6, KC, and tumor necrosis factor-α (TNF-α) in the lungs; and worsened lung function. Treatment with roflumilast reduced macrophage numbers, IL-6, and KC in the lungs but had no effect on neutrophil numbers or lung function. In CS/RSV-exposed mice, treatment with tiotropium, but not fluticasone or roflumilast, reduced neutrophil numbers and IL-6 and TNF-α levels in the lungs. Viral load of H1N1 and RSV was significantly elevated in CS/virus-exposed mice and NCI-H292 cells after fluticasone treatment, whereas tiotropium and roflumilast had no effect. In conclusion, tiotropium has anti-inflammatory effects on CS/virus-induced inflammation in mice that are superior to the effects of roflumilast and fluticasone. This finding might help to explain the observed reduction of exacerbation rates in COPD patients. PMID:27016458

  12. An alteration of the gut-liver axis drives pulmonary inflammation after intoxication and burn injury in mice.

    PubMed

    Chen, Michael M; Zahs, Anita; Brown, Mary M; Ramirez, Luis; Turner, Jerrold R; Choudhry, Mashkoor A; Kovacs, Elizabeth J

    2014-10-01

    Approximately half of all adult burn patients are intoxicated at the time of their injury and have worse clinical outcomes than those without prior alcohol exposure. This study tested the hypothesis that intoxication alters the gut-liver axis, leading to increased pulmonary inflammation mediated by burn-induced IL-6 in the liver. C57BL/6 mice were given 1.2 g/kg ethanol 30 min prior to a 15% total body surface area burn. To restore gut barrier function, the specific myosin light chain kinase inhibitor membrane-permeant inhibitor of kinase (PIK), which we have demonstrated to reduce bacterial translocation from the gut, was administered 30 min after injury. Limiting bacterial translocation with PIK attenuated hepatic damage as measured by a 47% reduction in serum alanine aminotransferase (P < 0.05), as well as a 33% reduction in hepatic IL-6 mRNA expression (P < 0.05), compared with intoxicated and burn-injured mice without PIK. This mitigation of hepatic damage was associated with a 49% decline in pulmonary neutrophil infiltration (P < 0.05) and decreased alveolar wall thickening compared with matched controls. These results were reproduced by prophylactic reduction of the bacterial load in the intestines with oral antibiotics before intoxication and burn injury. Overall, these data suggest that the gut-liver axis is deranged when intoxication precedes burn injury and that limiting bacterial translocation in this setting attenuates hepatic damage and pulmonary inflammation. PMID:25104501

  13. Oxidative stress–induced mitochondrial dysfunction drives inflammation and airway smooth muscle remodeling in patients with chronic obstructive pulmonary disease

    PubMed Central

    Wiegman, Coen H.; Michaeloudes, Charalambos; Haji, Gulammehdi; Narang, Priyanka; Clarke, Colin J.; Russell, Kirsty E.; Bao, Wuping; Pavlidis, Stelios; Barnes, Peter J.; Kanerva, Justin; Bittner, Anton; Rao, Navin; Murphy, Michael P.; Kirkham, Paul A.; Chung, Kian Fan; Adcock, Ian M.; Brightling, Christopher E.; Davies, Donna E.; Finch, Donna K.; Fisher, Andrew J.; Gaw, Alasdair; Knox, Alan J.; Mayer, Ruth J.; Polkey, Michael; Salmon, Michael; Singh, David

    2015-01-01

    Background Inflammation and oxidative stress play critical roles in patients with chronic obstructive pulmonary disease (COPD). Mitochondrial oxidative stress might be involved in driving the oxidative stress–induced pathology. Objective We sought to determine the effects of oxidative stress on mitochondrial function in the pathophysiology of airway inflammation in ozone-exposed mice and human airway smooth muscle (ASM) cells. Methods Mice were exposed to ozone, and lung inflammation, airway hyperresponsiveness (AHR), and mitochondrial function were determined. Human ASM cells were isolated from bronchial biopsy specimens from healthy subjects, smokers, and patients with COPD. Inflammation and mitochondrial function in mice and human ASM cells were measured with and without the presence of the mitochondria-targeted antioxidant MitoQ. Results Mice exposed to ozone, a source of oxidative stress, had lung inflammation and AHR associated with mitochondrial dysfunction and reflected by decreased mitochondrial membrane potential (ΔΨm), increased mitochondrial oxidative stress, and reduced mitochondrial complex I, III, and V expression. Reversal of mitochondrial dysfunction by the mitochondria-targeted antioxidant MitoQ reduced inflammation and AHR. ASM cells from patients with COPD have reduced ΔΨm, adenosine triphosphate content, complex expression, basal and maximum respiration levels, and respiratory reserve capacity compared with those from healthy control subjects, whereas mitochondrial reactive oxygen species (ROS) levels were increased. Healthy smokers were intermediate between healthy nonsmokers and patients with COPD. Hydrogen peroxide induced mitochondrial dysfunction in ASM cells from healthy subjects. MitoQ and Tiron inhibited TGF-β–induced ASM cell proliferation and CXCL8 release. Conclusions Mitochondrial dysfunction in patients with COPD is associated with excessive mitochondrial ROS levels, which contribute to enhanced inflammation and cell

  14. Modulation of pulmonary inflammatory responses and anti-microbial defenses in mice exposed to diesel exhaust

    EPA Science Inventory

    Abstract: Diesel exhaust (DE) is a major component of urban air pollution and has been shown to increase the severity of infectious and allergic lung disease. The purpose of this study was to evaluate the effects of DE exposure on pulmonary inflammation, mediator production and ...

  15. Broncho-Vaxom Attenuates Allergic Airway Inflammation by Restoring GSK3β-Related T Regulatory Cell Insufficiency

    PubMed Central

    Zhong, Hua; Yu, Dehong; Zeng, Xianping; Deng, Mengxia; Sun, Yueqi; Wen, Weiping; Li, Huabin

    2014-01-01

    Background Oral administration of bacterial extracts (eg, Broncho-Vaxom (BV)) has been proposed to attenuate asthma through modulating Treg cells. However, the underlying mechanism has not been fully characterized. This study sought to assess the effects of oral administration of BV on GSK-3β expression and Treg cells in ovalbumin (OVA)-induced asthmatic mice models. Method Asthmatic mice models were established with OVA challenge and treated with oral administration of BV. Next, infiltration of inflammatory cells including eosinophil and neutrophils, mucous metaplasia, levels of Th1/Th2/Treg-typed cytokines and expression of GSK3β and Foxp3 were examined in asthmatic mice models by histological analysis, Bio-Plex and western blot, respectively. Moreover, the frequencies of Treg cells were evaluated in cultured splenocytes by flow cytometry in the presence of BV or GSK3β siRNA interference. Results We found significant decrease of infiltrated inflammatory cells in bronchoalveolar lavage fluid (BALF) in asthmatic mice models after oral administration of BV. Oral administration of BV was shown to significantly suppress mucus metaplasia, Th2-typed cytokine levels and GSK3β expression while increasing Foxp3 production in asthmatic mice models. Moreover, BV significantly enhanced GSK3β-related expansion of Treg cells in cultured spleen cells in vitro. Conclusion Our findings provide evidence that oral administration of BV is capable of attenuating airway inflammation in asthmatic mice models, which may be associated with GSK3β-related expansion of Treg cells. PMID:24667347

  16. Bronchodilator and Anti-Inflammatory Action of Theophylline in a Model of Ovalbumin-Induced Allergic Inflammation.

    PubMed

    Urbanova, A; Kertys, M; Simekova, M; Mikolka, P; Kosutova, P; Mokra, D; Mokry, J

    2016-01-01

    Phosphodiesterases (PDEs) represent a super-family of 11 enzymes hydrolyzing cyclic nucleotides into inactive 5' monophosphates. Inhibition of PDEs leads to a variety of cellular effects, including airway smooth muscle relaxation, inhibition of cellular inflammation, and immune responses. In this study we focused on theophylline, a known non-selective inhibitor of PDEs. Theophylline has been used for decades in the treatment of chronic inflammatory airway diseases. It has a narrow therapeutic window and belongs to the drugs whose plasma concentration should be monitored. Therefore, the main goal of this study was to evaluate the plasma theophylline concentration and to determine its relevance to pharmacological effects after single and longer term (7 days) administration of theophylline at different doses (5, 10, 20, and 50 mg/kg) in guinea pigs. Airway hyperresponsiveness was assessed by repeated exposure to ovalbumin. Theophylline reduced specific airway resistance in response to histamine nebulization, measured in a double chamber body plethysmograph. A decrease in tracheal smooth muscle contractility after cumulative doses of histamine and acetylcholine was confirmed in vitro. A greater efficacy of theophylline after seven days long treatment indicates the predominance of its anti-inflammatory activity, which may be involved in the bronchodilating action. PMID:27334733

  17. Effects of prenatal diesel exhaust inhalation on pulmonary inflammation and development of specific immune responses

    EPA Science Inventory

    There is increasing evidence that exposure to air pollutants during pregnancy can result in a number of deleterious effects including low birth weight and the incidence of allergic asthma. To investigate the in utero effects of DE exposure, timed pregnant BALB/c mice were exposed...

  18. Genetic removal of the A2A adenosine receptor enhances pulmonary inflammation, mucin production, and angiogenesis in adenosine deaminase-deficient mice.

    PubMed

    Mohsenin, Amir; Mi, Tiejuan; Xia, Yang; Kellems, Rodney E; Chen, Jiang-Fan; Blackburn, Michael R

    2007-09-01

    Adenosine is generated at sites of tissue injury where it serves to regulate inflammation and damage. Adenosine signaling has been implicated in the regulation of pulmonary inflammation and damage in diseases such as asthma and chronic obstructive pulmonary disease; however, the contribution of specific adenosine receptors to key immunoregulatory processes in these diseases is still unclear. Mice deficient in the purine catabolic enzyme adenosine deaminase (ADA) develop pulmonary inflammation and mucous metaplasia in association with adenosine elevations making them a useful model for assessing the contribution of specific adenosine receptors to adenosine-mediated pulmonary disease. Studies suggest that the A(2A) adenosine receptor (A(2A)R) functions to limit inflammation and promote tissue protection; however, the contribution of A(2A)R signaling has not been examined in the ADA-deficient model of adenosine-mediated lung inflammation. The purpose of the current study was to examine the contribution of A(2A)R signaling to the pulmonary phenotype seen in ADA-deficient mice. This was accomplished by generating ADA/A(2A)R double knockout mice. Genetic removal of the A(2A)R from ADA-deficient mice resulted in enhanced inflammation comprised largely of macrophages and neutrophils, mucin production in the bronchial airways, and angiogenesis, relative to that seen in the lungs of ADA-deficient mice with the A(2A)R. In addition, levels of the chemokines monocyte chemoattractant protein-1 and CXCL1 were elevated, whereas levels of cytokines such as TNF-alpha and IL-6 were not. There were no compensatory changes in the other adenosine receptors in the lungs of ADA/A(2A)R double knockout mice. These findings suggest that the A(2A)R plays a protective role in the ADA-deficient model of pulmonary inflammation. PMID:17601796

  19. Mesenchymal stem cell-conditioned media suppresses inflammation-associated overproliferation of pulmonary artery smooth muscle cells in a rat model of pulmonary hypertension

    PubMed Central

    LIU, JUNFENG; HAN, ZHIBO; HAN, ZHONGCHAO; HE, ZHIXU

    2016-01-01

    Inflammation-associated overproliferation of pulmonary artery smooth muscle cells (PASMCs) is considered to be involved in the pathogenesis of pulmonary hypertension (PH). The administration of mesenchymal stem cell-conditioned media (MSC-CM) has displayed benefits in the treatment of PH, however, the exact mechanism has yet to be elucidated. The present study aimed to determine whether MSC-CM is able to suppress overproliferation of PASMCs in PH via immunoregulation. By the administration of MSC-CM to monocrotaline (MCT)-induced PH rats, and the development of an in vitro co-culture system comprised of PASMCs and activated T cells, the therapeutic effects of MSC-CM on PH, and the changes in the expression of correlated factors, including TNF-α, calcineurin (CaN) and nuclear factor of activated T cells (NFAT), were assessed. Immunohistochemical staining results indicated that MSC-CM was able to significantly suppress the production of TNF-α in MCT-induced PH and co-culture systems; and reverse transcription-quantitative polymerase chain reaction results showed significant downregulation of the expression of CaN and NFATc2 in PASMCs (P<0.01). Furthermore, MSC-CM was able to significantly suppress CaN activity and NFATc2 activation (P<0.01), thus inhibiting the overproliferation of PASMCs. Finally, MSC-CM improved abnormalities in hemodynamics and pulmonary histology in MCT-induced PH. In conclusion, the findings of the current study suggest that administration of MSC-CM has the potential to suppress inflammation-associated overproliferation of PASMCs due to its immunosuppressive effects in PH and, thus, may serve as a beneficial therapeutic strategy. PMID:26893632

  20. Klotho Reduction in Alveolar Macrophages Contributes to Cigarette Smoke Extract-induced Inflammation in Chronic Obstructive Pulmonary Disease.

    PubMed

    Li, Lingling; Wang, Yujie; Gao, Wei; Yuan, Cheng; Zhang, Sini; Zhou, Hong; Huang, Mao; Yao, Xin

    2015-11-13

    Abnormal inflammation and accelerated decline in lung function occur in patients with chronic obstructive pulmonary disease (COPD). Klotho, an anti-aging protein, has an anti-inflammatory function. However, the role of Klotho has never been investigated in COPD. The aim of this study is to investigate the possible role of Klotho by alveolar macrophages in airway inflammation in COPD. Klotho levels were assessed in the lung samples and peripheral blood mononuclear cells of non-smokers, smokers, and patients with COPD. The regulation of Klotho expression by cigarette smoke extract (CSE) was studied in vitro, and small interfering RNA (siRNA) and recombinant Klotho were employed to investigate the role of Klotho on CSE-induced inflammation. Klotho expression was reduced in alveolar macrophages in the lungs and peripheral blood mononuclear cells of COPD patients. CSE decreased Klotho expression and release from MH-S cells. Knockdown of endogenous Klotho augmented the expression of the inflammatory mediators, such as MMP-9, IL-6, and TNF-α, by MH-S cells. Exogenous Klotho inhibited the expression of CSE-induced inflammatory mediators. Furthermore, we showed that Klotho interacts with IκBα of the NF-κB pathway. Dexamethasone treatment increased the expression and release level of Klotho in MH-S cells. Our findings suggest that Klotho plays a role in sustained inflammation of the lungs, which in turn may have therapeutic implications in COPD. PMID:26385922

  1. PULMONARY INJURY AND INFLAMMATION FROM REPEATED EXPOSURE TO SOLUBLE COMPONENTS AND SOLID PARTICULATE MATTER (PM)

    EPA Science Inventory

    Pulmonary injury from acute exposures to PM and the role of soluble versus insoluble PM have received considerable attention; however, their long-term impacts are less well understood. This study compared pulmonary injury and inflammatory responses from repeated exposure to solub...

  2. Allergic Conjunctivitis

    MedlinePlus

    ... water. This is called conjunctivitis, also known as “pink eye.” Causes & Risk Factors What causes allergic conjunctivitis? ... example, if you are allergic to pollen or mold, stay indoors when pollen and mold levels are ...

  3. Heme oxygenase-1 attenuates acute pulmonary inflammation by decreasing the release of segmented neutrophils from the bone marrow.

    PubMed

    Konrad, Franziska M; Braun, Stefan; Ngamsri, Kristian-Christos; Vollmer, Irene; Reutershan, Jörg

    2014-11-01

    Recruiting polymorphonuclear neutrophil granulocytes (PMNs) from circulation and bone marrow to the site of inflammation is one of the pivotal mechanisms of the innate immune system. During inflammation, the enzyme heme oxygenase 1 (HO-1) has been shown to reduce PMN migration. Although these effects have been described in various models, underlying mechanisms remain elusive. Recent studies revealed an influence of HO-1 on different cells of the bone marrow. We investigated the particular role of the bone marrow in terms of HO-1-dependent pulmonary inflammation. In a murine model of LPS inhalation, stimulation of HO-1 by cobalt (III) protoporphyrin-IX-chloride (CoPP) resulted in reduced segmented PMN migration into the alveolar space. In the CoPP group, segmented PMNs were also decreased intravascularly, and concordantly, mature and immature PMN populations were higher in the bone marrow. Inhibition of the enzyme by tin protoporphyrin-IX increased segmented and banded PMN migration into the bronchoalveolar lavage fluid with enhanced PMN release from the bone marrow and aggravated parameters of tissue inflammation. Oxidative burst activity was significantly higher in immature compared with mature PMNs. The chemokine stromal-derived factor-1 (SDF-1), which mediates homing of leukocytes into the bone marrow and is decreased in inflammation, was increased by CoPP. When SDF-1 was blocked by the specific antagonist AMD3100, HO-1 activation was no longer effective in curbing PMN trafficking to the inflamed lungs. In conclusion, we show evidence that the anti-inflammatory effects of HO-1 are largely mediated by inhibiting the release of segmented PMNs from the bone marrow rather than direct effects within the lung. PMID:25172914

  4. Effect of ultrafine carbon black particles on lipoteichoic acid-induced early pulmonary inflammation in BALB/c mice

    SciTech Connect

    Yamamoto, Shoji . E-mail: snyamamo@nies.go.jp; Tin-Tin-Win-Shwe; Ahmed, Sohel; Kobayashi, Takahiro; Fujimaki, Hidekazu

    2006-06-15

    We studied the interaction effects of a single intratracheal instillation of ultrafine carbon black (CB) particles and staphylococcal lipoteichoic acid (LTA) on early pulmonary inflammation in male BALB/c mice. We examined the cellular profile, cytokine and chemokine levels in the bronchoalveolar lavage (BAL) fluid, and expression of chemokine and toll-like receptor (TLR) mRNAs in lungs. LTA produced a dose-related increase in early pulmonary inflammation, which was characterized by (1) influx of polymorphonuclear neutrophils (PMNs) and (2) induction of interleukin (IL)-6, tumor necrosis factor (TNF)-{alpha}, macrophage inflammatory protein (MIP)-1{alpha}/CCL3, but no effect on monocyte chemoattractant protein (MCP)-1/CCL2 at 24 h after instillation. Levels of some proinflammatory indicators and TLR2-mRNA expression were significantly increased by 14 nm or 95 nm CB (125 {mu}g) and low-dose LTA (10 {mu}g) treatment compared to CB or LTA alone at 4 h after instillation. Notably, PMN levels and production of IL-6 and CCL2 in the 14 nm CB + LTA were significantly higher than that of 95 nm CB + LTA at 4 h after instillation. However, at 24 h after instillation, only PMN levels were significantly higher in the 14 nm CB + LTA than 95 nm CB + LTA but not the cytokines and chemokines. These data show additive as well as synergistic interaction effects of 14 nm or 95 nm ultrafine CB particles and LTA. We suggest that early pulmonary inflammatory responses in male BALB/c mice may be induced in a size-specific manner of the CB particles used in our study.

  5. Exposure to ultrafine carbon particles at levels below detectable pulmonary inflammation affects cardiovascular performance in spontaneously hypertensive rats

    PubMed Central

    Upadhyay, Swapna; Stoeger, Tobias; Harder, Volkar; Thomas, Ronald F; Schladweiler, Mette C; Semmler-Behnke, Manuela; Takenaka, Shinji; Karg, Erwin; Reitmeir, Peter; Bader, Michael; Stampfl, Andreas; Kodavanti, Urmila P; Schulz, Holger

    2008-01-01

    Background Exposure to particulate matter is a risk factor for cardiopulmonary disease but the underlying molecular mechanisms remain poorly understood. In the present study we sought to investigate the cardiopulmonary responses on spontaneously hypertensive rats (SHRs) following inhalation of UfCPs (24 h, 172 μg·m-3), to assess whether compromised animals (SHR) exhibit a different response pattern compared to the previously studied healthy rats (WKY). Methods Cardiophysiological response in SHRs was analyzed using radiotelemetry. Blood pressure (BP) and its biomarkers plasma renin-angiotensin system were also assessed. Lung and cardiac mRNA expressions for markers of oxidative stress (hemeoxygenase-1), blood coagulation (tissue factor, plasminogen activator inhibitor-1), and endothelial function (endothelin-1, and endothelin receptors A and B) were analyzed following UfCPs exposure in SHRs. UfCPs-mediated inflammatory responses were assessed from broncho-alveolar-lavage fluid (BALF). Results Increased BP and heart rate (HR) by about 5% with a lag of 1–3 days were detected in UfCPs exposed SHRs. Inflammatory markers of BALF, lung (pulmonary) and blood (systemic) were not affected. However, mRNA expression of hemeoxygenase-1, endothelin-1, endothelin receptors A and B, tissue factor, and plasminogen activator inhibitor showed a significant induction (~2.5-fold; p < 0.05) with endothelin 1 being the maximally induced factor (6-fold; p < 0.05) on the third recovery day in the lungs of UfCPs exposed SHRs; while all of these factors – except hemeoxygenase-1 – were not affected in cardiac tissues. Strikingly, the UfCPs-mediated altered BP is paralleled by the induction of renin-angiotensin system in plasma. Conclusion Our finding shows that UfCPs exposure at levels which does not induce detectable pulmonary neutrophilic inflammation, triggers distinct effects in the lung and also at the systemic level in compromised SHRs. These effects are characterized by

  6. Pentoxifylline inhibits pulmonary inflammation induced by infrarenal aorticcross-clamping dependent of adenosine receptor A2A

    PubMed Central

    Li, Hali; Tan, Gang; Tong, Liquan; Han, Peng; Zhang, Feng; Liu, Bing; Sun, Xueying

    2016-01-01

    Infrarenal aortic cross-clamping (IAC) is commonly used during infrarenal vascular operations. Prolonged IAC causes ischemia-reperfusion injury to local tissues, resulting in the release of inflammatory cytokines and acute lung injury (ALI). Pentoxifylline (PTX) is a clinically used drug for chronic occlusive arterial diseases and exerts protective effects against ALI induced by various factors in experimental models. In this study, we evaluated the protective effects of PTX in a rat model of IAC. Wistar rats underwent IAC for 2 h, followed by 4 h reperfusion. PTX alone, or in combination with ZM-241385 (an adenosine receptor A2A antagonist) or CGS-21680 (an A2A agonist), was pre-administered to rats 1 h prior to IAC, and the severity of lung injury and inflammation were examined. Administration of PTX significantly attenuated ALI induced by IAC, evidenced by reduced histological scores and wet lung contents, improved blood gas parameters, decreased cell counts and protein amounts in bronchoalveolar lavage fluids, and inhibition of MPO activity and ICAM-1 expression in lung tissues, and lower plasma levels of TNF-α, IL-6, IL-1β and soluble ICAM-1. ZM-241385 significantly abrogated, while CGS-21680 slightly enhanced, the effects of PTX in ameliorating ALI and inhibiting pulmonary inflammation. In exploration of the mechanisms, we found that PTX stimulated IL-10 production through the phosphorylation of STAT3, and A2A receptor participated in this regulation. The study indicates PTX plays a protective role in IAC-induced ALI in rats by inhibiting pulmonary inflammation through A2A signaling pathways. PMID:27347328

  7. The novel compound Sul-121 inhibits airway inflammation and hyperresponsiveness in experimental models of chronic obstructive pulmonary disease

    PubMed Central

    Han, Bing; Poppinga, Wilfred J.; Zuo, Haoxiao; Zuidhof, Annet B.; Bos, I. Sophie T.; Smit, Marieke; Vogelaar, Pieter; Krenning, Guido; Henning, Robert H.; Maarsingh, Harm; Halayko, Andrew J.; van Vliet, Bernard; Stienstra, Stef; Graaf, Adrianus Cornelis van der; Meurs, Herman; Schmidt, Martina

    2016-01-01

    COPD is characterized by persistent airflow limitation, neutrophilia and oxidative stress from endogenous and exogenous insults. Current COPD therapy involving anticholinergics, β2-adrenoceptor agonists and/or corticosteroids, do not specifically target oxidative stress, nor do they reduce chronic pulmonary inflammation and disease progression in all patients. Here, we explore the effects of Sul-121, a novel compound with anti-oxidative capacity, on hyperresponsiveness (AHR) and inflammation in experimental models of COPD. Using a guinea pig model of lipopolysaccharide (LPS)-induced neutrophilia, we demonstrated that Sul-121 inhalation dose-dependently prevented LPS-induced airway neutrophilia (up to ~60%) and AHR (up to ~90%). Non-cartilaginous airways neutrophilia was inversely correlated with blood H2S, and LPS-induced attenuation of blood H2S (~60%) was prevented by Sul-121. Concomitantly, Sul-121 prevented LPS-induced production of the oxidative stress marker, malondialdehyde by ~80%. In immortalized human airway smooth muscle (ASM) cells, Sul-121 dose-dependently prevented cigarette smoke extract-induced IL-8 release parallel with inhibition of nuclear translocation of the NF-κB subunit, p65 (each ~90%). Sul-121 also diminished cellular reactive oxygen species production in ASM cells, and inhibited nuclear translocation of the anti-oxidative response regulator, Nrf2. Our data show that Sul-121 effectively inhibits airway inflammation and AHR in experimental COPD models, prospectively through inhibition of oxidative stress. PMID:27229886

  8. The novel compound Sul-121 inhibits airway inflammation and hyperresponsiveness in experimental models of chronic obstructive pulmonary disease.

    PubMed

    Han, Bing; Poppinga, Wilfred J; Zuo, Haoxiao; Zuidhof, Annet B; Bos, I Sophie T; Smit, Marieke; Vogelaar, Pieter; Krenning, Guido; Henning, Robert H; Maarsingh, Harm; Halayko, Andrew J; van Vliet, Bernard; Stienstra, Stef; Graaf, Adrianus Cornelis van der; Meurs, Herman; Schmidt, Martina

    2016-01-01

    COPD is characterized by persistent airflow limitation, neutrophilia and oxidative stress from endogenous and exogenous insults. Current COPD therapy involving anticholinergics, β2-adrenoceptor agonists and/or corticosteroids, do not specifically target oxidative stress, nor do they reduce chronic pulmonary inflammation and disease progression in all patients. Here, we explore the effects of Sul-121, a novel compound with anti-oxidative capacity, on hyperresponsiveness (AHR) and inflammation in experimental models of COPD. Using a guinea pig model of lipopolysaccharide (LPS)-induced neutrophilia, we demonstrated that Sul-121 inhalation dose-dependently prevented LPS-induced airway neutrophilia (up to ~60%) and AHR (up to ~90%). Non-cartilaginous airways neutrophilia was inversely correlated with blood H2S, and LPS-induced attenuation of blood H2S (~60%) was prevented by Sul-121. Concomitantly, Sul-121 prevented LPS-induced production of the oxidative stress marker, malondialdehyde by ~80%. In immortalized human airway smooth muscle (ASM) cells, Sul-121 dose-dependently prevented cigarette smoke extract-induced IL-8 release parallel with inhibition of nuclear translocation of the NF-κB subunit, p65 (each ~90%). Sul-121 also diminished cellular reactive oxygen species production in ASM cells, and inhibited nuclear translocation of the anti-oxidative response regulator, Nrf2. Our data show that Sul-121 effectively inhibits airway inflammation and AHR in experimental COPD models, prospectively through inhibition of oxidative stress. PMID:27229886

  9. Allergic Fungal Rhinosinusitis.

    PubMed

    Hoyt, Alice E W; Borish, Larry; Gurrola, José; Payne, Spencer

    2016-01-01

    This article reviews the history of allergic fungal rhinosinusitis and the clinical, pathologic, and radiographic criteria necessary to establish its diagnosis and differentiate this disease from other types of chronic rhinosinusitis. Allergic fungal rhinosinusitis is a noninvasive fungal form of sinus inflammation characterized by an often times unilateral, expansile process in which the typical allergic "peanut-butter-like" mucin contributes to the formation of nasal polyps, hyposmia/anosmia, and structural changes of the face. IgE sensitization to fungi is a necessary, but not sufficient, pathophysiologic component of the disease process that is also defined by microscopic visualization of mucin-containing fungus and characteristic radiological imaging. This article expounds on these details and others including the key clinical and scientific distinctions of this diagnosis, the pathophysiologic mechanisms beyond IgE-mediated hypersensitivity that must be at play, and areas of current and future research. PMID:27393774

  10. Non-invasive biomarkers of pulmonary damage and inflammation: Application to children exposed to ozone and trichloramine

    SciTech Connect

    Bernard, Alfred . E-mail: bernard@toxi.ucl.ac.be; Carbonnelle, Sylviane; Nickmilder, Marc; Burbure, Claire de

    2005-08-07

    To date, airways injury or inflammation caused by air pollutants has been evaluated mainly by analysis of bronchoalveolar lavage, an invasive technique totally unsuitable to children. The assessment of respiratory risks in this particularly vulnerable population has thus for a long time relied on spirometric tests and self-reported symptoms which are relatively late and inaccurate indicators of lung damage. Research in the field of biomarkers is now opening new perspectives with the development of non-invasive tests allowing to monitor inflammation and damage in the deep lung. Blood tests measuring lung-specific proteins (pneumoproteins) such as Clara cell protein (CC16) and surfactant-associated proteins (A, B or D) are now available to evaluate the permeability and/or the cellular integrity of the pulmonary epithelium. The application of these tests to children has recently led to the discovery of a lung epithelium hyperpermeability caused by trichloramine (nitrogen trichloride), an irritant gas contaminating the air of indoor-chlorinated pools. Serum CC16 can also serve to detect increases of airway permeability during short-term exposures to ambient ozone. Indicators measurable in exhaled air such as nitric oxide (NO) appear more useful to detect airway inflammation. By applying the exhaled NO test to children attending summer camps, we recently found that ambient ozone produces an acute inflammatory response in children from levels slightly lower than current air quality guidelines. In a study exploring the links between atopy, asthma, and exposure to chlorination products in indoor pools, we also found that the exhaled NO test can serve to detect the chronic airway inflammation associated with excessive exposure to trichloramine. Lung-specific proteins measurable in serum and markers in exhaled air represent sensitive tools that can be used to assess non-invasively the effects of air pollutants on the respiratory tract of children.

  11. Non-invasive biomarkers of pulmonary damage and inflammation: Application to children exposed to ozone and trichloramine.

    PubMed

    Bernard, Alfred; Carbonnelle, Sylviane; Nickmilder, Marc; de Burbure, Claire

    2005-08-01

    To date, airways injury or inflammation caused by air pollutants has been evaluated mainly by analysis of bronchoalveolar lavage, an invasive technique totally unsuitable to children. The assessment of respiratory risks in this particularly vulnerable population has thus for a long time relied on spirometric tests and self-reported symptoms which are relatively late and inaccurate indicators of lung damage. Research in the field of biomarkers is now opening new perspectives with the development of non-invasive tests allowing to monitor inflammation and damage in the deep lung. Blood tests measuring lung-specific proteins (pneumoproteins) such as Clara cell protein (CC16) and surfactant-associated proteins (A, B or D) are now available to evaluate the permeability and/or the cellular integrity of the pulmonary epithelium. The application of these tests to children has recently led to the discovery of a lung epithelium hyperpermeability caused by trichloramine (nitrogen trichloride), an irritant gas contaminating the air of indoor-chlorinated pools. Serum CC16 can also serve to detect increases of airway permeability during short-term exposures to ambient ozone. Indicators measurable in exhaled air such as nitric oxide (NO) appear more useful to detect airway inflammation. By applying the exhaled NO test to children attending summer camps, we recently found that ambient ozone produces an acute inflammatory response in children from levels slightly lower than current air quality guidelines. In a study exploring the links between atopy, asthma, and exposure to chlorination products in indoor pools, we also found that the exhaled NO test can serve to detect the chronic airway inflammation associated with excessive exposure to trichloramine. Lung-specific proteins measurable in serum and markers in exhaled air represent sensitive tools that can be used to assess non-invasively the effects of air pollutants on the respiratory tract of children. PMID:15967207

  12. The Impact of Aspergillus fumigatus Viability and Sensitization to Its Allergens on the Murine Allergic Asthma Phenotype

    PubMed Central

    Pandey, Sumali; Hoselton, Scott A.; Schuh, Jane M.

    2013-01-01

    Aspergillus fumigatus is a ubiquitously present respiratory pathogen. The outcome of a pulmonary disease may vary significantly with fungal viability and host immune status. Our objective in this study was (1) to assess the ability of inhaled irradiation-killed or live A. fumigatus spores to induce allergic pulmonary disease and (2) to assess the extent to which inhaled dead or live A. fumigatus spores influence pulmonary symptoms in a previously established allergic state. Our newly developed fungal delivery apparatus allowed us to recapitulate human exposure through repeated inhalation of dry fungal spores in an animal model. We found that live A. fumigatus spore inhalation led to a significantly increased humoral response, pulmonary inflammation, and airway remodeling in naïve mice and is more likely to induce allergic asthma symptoms than the dead spores. In contrast, in allergic mice, inhalation of dead and live conidia recruited neutrophils and induced goblet cell metaplasia. This data suggests that asthma symptoms might be exacerbated by the inhalation of live or dead spores in individuals with established allergy to fungal antigens, although the extent of symptoms was less with dead spores. These results are likely to be important while considering fungal exposure assessment methods and for making informed therapeutic decisions for mold-associated diseases. PMID:24063011

  13. Systemic inflammation in patients with chronic obstructive pulmonary disease who are colonized with Pneumocystis jiroveci.

    PubMed

    Calderón, Enrique J; Rivero, Laura; Respaldiza, Nieves; Morilla, Rubén; Montes-Cano, Marco A; Friaza, Vicente; Muñoz-Lobato, Fernando; Varela, José M; Medrano, Francisco J; Horra, Carmen de la

    2007-07-15

    In chronic obstructive pulmonary disease, high levels of airway and systemic inflammatory markers are associated with a faster decrease in lung function. Our study shows that patients colonized by Pneumocystis jiroveci have higher proinflammatory cytokine levels than do noncolonized patients. This suggests that Pneumocystis may play a role in disease progression. PMID:17578770

  14. Variability in Ozone-Induced Pulmonary Injury and Inflammation in Healthy and Cardiovascular Compromised Rat Models

    EPA Science Inventory

    The molecular bases for variability in air pollutant-induced pulmonary injury due to underlying cardiovascular (CVD) and/or metabolic diseases are unknown. We hypothesized that healthy and genetic CVD-prone rat models will exhibit exacerbated response to acute ozone exposure depe...

  15. Influenza A (H1N1) Virus Infection Triggers Severe Pulmonary Inflammation in Lupus-Prone Mice following Viral Clearance

    PubMed Central

    Slight-Webb, Samantha R.; Bagavant, Harini; Crowe, Sherry R.; James, Judith A.

    2015-01-01

    Each year, up to one fifth of the United States population is infected with influenza virus. Although mortality rates are low, hundreds of thousands are hospitalized each year in the United States. Specific high risk groups, such as those with suppressed or dysregulated immune systems, are at greater danger for influenza complications. Respiratory infections are a common cause of hospitalizations and early mortality in patients with systemic lupus erythematosus (SLE); however, whether this increased infection risk is a consequence of the underlying dysregulated immune background and/or immunosuppressing drugs is unknown. To evaluate the influenza immune response in the context of lupus, as well as assess the effect of infection on autoimmune disease in a controlled setting, we infected lupus-prone MRL/MpJ-Faslpr mice with influenza virus A PR/8/34 H1N1. Interestingly, we found that Faslpr mice generated more influenza A virus specific T cells with less neutrophil accumulation in the lung during acute infection. Moreover, Faslpr mice produced fewer flu-specific IgG and IgM antibodies, but effectively cleared the virus. Further, increased extrinsic apoptosis during influenza infection led to a delay in autoimmune disease pathology with decreased severity of splenomegaly and kidney disease. Following primary influenza A infection, Faslpr mice had severe complications during the contraction and resolution phase with widespread severe pulmonary inflammation. Our findings suggest that influenza infection may not exacerbate autoimmune pathology in mice during acute infection as a direct result of virus induced apoptosis. Additionally, autoimmunity drives an enhanced antigen-specific T cell response to clear the virus, but persisting pulmonary inflammation following viral clearance may cause complications in this lupus animal model. PMID:25563403

  16. Dietary long-chain omega-3 fatty acids do not diminish eosinophilic pulmonary inflammation in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of fish oil supplements on diminishing airway inflammation in asthma have been studied in mouse models and human intervention trials with varying results. However, the independent effects of the main omega-3 PUFAs found in fish oil, eicosapentaenoic acid (EPA) and docosahexaenoic acid (D...

  17. TRPV4 inhibition counteracts edema and inflammation and improves pulmonary function and oxygen saturation in chemically induced acute lung injury

    PubMed Central

    Balakrishna, Shrilatha; Song, Weifeng; Achanta, Satyanarayana; Doran, Stephen F.; Liu, Boyi; Kaelberer, Melanie M.; Yu, Zhihong; Sui, Aiwei; Cheung, Mui; Leishman, Emma; Eidam, Hilary S.; Ye, Guosen; Willette, Robert N.; Thorneloe, Kevin S.; Bradshaw, Heather B.; Matalon, Sadis

    2014-01-01

    The treatment of acute lung injury caused by exposure to reactive chemicals remains challenging because of the lack of mechanism-based therapeutic approaches. Recent studies have shown that transient receptor potential vanilloid 4 (TRPV4), an ion channel expressed in pulmonary tissues, is a crucial mediator of pressure-induced damage associated with ventilator-induced lung injury, heart failure, and infarction. Here, we examined the effects of two novel TRPV4 inhibitors in mice exposed to hydrochloric acid, mimicking acid exposure and acid aspiration injury, and to chlorine gas, a severe chemical threat with frequent exposures in domestic and occupational environments and in transportation accidents. Postexposure treatment with a TRPV4 inhibitor suppressed acid-induced pulmonary inflammation by diminishing neutrophils, macrophages, and associated chemokines and cytokines, while improving tissue pathology. These effects were recapitulated in TRPV4-deficient mice. TRPV4 inhibitors had similar anti-inflammatory effects in chlorine-exposed mice and inhibited vascular leakage, airway hyperreactivity, and increase in elastance, while improving blood oxygen saturation. In both models of lung injury we detected increased concentrations of N-acylamides, a class of endogenous TRP channel agonists. Taken together, we demonstrate that TRPV4 inhibitors are potent and efficacious countermeasures against severe chemical exposures, acting against exaggerated inflammatory responses, and protecting tissue barriers and cardiovascular function. PMID:24838754

  18. TRPV4 inhibition counteracts edema and inflammation and improves pulmonary function and oxygen saturation in chemically induced acute lung injury.

    PubMed

    Balakrishna, Shrilatha; Song, Weifeng; Achanta, Satyanarayana; Doran, Stephen F; Liu, Boyi; Kaelberer, Melanie M; Yu, Zhihong; Sui, Aiwei; Cheung, Mui; Leishman, Emma; Eidam, Hilary S; Ye, Guosen; Willette, Robert N; Thorneloe, Kevin S; Bradshaw, Heather B; Matalon, Sadis; Jordt, Sven-Eric

    2014-07-15

    The treatment of acute lung injury caused by exposure to reactive chemicals remains challenging because of the lack of mechanism-based therapeutic approaches. Recent studies have shown that transient receptor potential vanilloid 4 (TRPV4), an ion channel expressed in pulmonary tissues, is a crucial mediator of pressure-induced damage associated with ventilator-induced lung injury, heart failure, and infarction. Here, we examined the effects of two novel TRPV4 inhibitors in mice exposed to hydrochloric acid, mimicking acid exposure and acid aspiration injury, and to chlorine gas, a severe chemical threat with frequent exposures in domestic and occupational environments and in transportation accidents. Postexposure treatment with a TRPV4 inhibitor suppressed acid-induced pulmonary inflammation by diminishing neutrophils, macrophages, and associated chemokines and cytokines, while improving tissue pathology. These effects were recapitulated in TRPV4-deficient mice. TRPV4 inhibitors had similar anti-inflammatory effects in chlorine-exposed mice and inhibited vascular leakage, airway hyperreactivity, and increase in elastance, while improving blood oxygen saturation. In both models of lung injury we detected increased concentrations of N-acylamides, a class of endogenous TRP channel agonists. Taken together, we demonstrate that TRPV4 inhibitors are potent and efficacious countermeasures against severe chemical exposures, acting against exaggerated inflammatory responses, and protecting tissue barriers and cardiovascular function. PMID:24838754

  19. Effect of chronic airway inflammation and exercise on pulmonary and systemic antioxidant status of healthy and heaves-affected horses.

    PubMed

    Kirschvink, N; Smith, N; Fiévez, L; Bougnet, V; Art, T; Degand, G; Marlin, D; Roberts, C; Génicot, B; Lindsey, P; Lekeux, P

    2002-09-01

    In heaves-affected horses the relation between oxidant status, airway inflammation (AI) and pulmonary function (PF) is unknown. The oxidant status of blood and pulmonary epithelial lining fluid (PELF) of healthy (H, n = 6) and heaves-affected horses in clinical remission (REM, n = 6) and in crisis (CR, n = 7) was assessed at rest, during and after standardised exercise test by measurement of reduced and oxidised glutathione, glutathione redox ratio [GRR%]; uric acid and 8-epi-PGF2alpha. Oxidant status was related to PF parameters (mechanics of breathing and arterial blood gas tension) and Al parameters (bronchoalveolar lavage [BAL] neutrophil % and AI score). Haemolysate glutathione was significantly different between groups and was correlated with PF and AI parameters; GRR in PELF was increased during CR and was correlated with PF and AI parameters. Exercise induced an increase of plasma uric acid that was significantly higher both in REM and CR. PELF 8-epi-PGF2alpha was significantly increased in CR and correlated with PF and AI parameters. These results suggest that oxidative stress occurring in heaves is correlated with PF and AI and may be locally assessed by PELF glutathione status, uric acid and 8-epi-PGF2alpha. Systemic repercussions are reflected by assay of GSH in resting horses and by uric acid in exercising horses. PMID:12357995

  20. Role of inducible nitric oxide synthase-derived nitric oxide in lipopolysaccharide plus interferon-gamma-induced pulmonary inflammation.

    PubMed

    Zeidler, Patti C; Millecchia, Lyndell M; Castranova, Vincent

    2004-02-15

    Exposure of mice to lipopolysaccharide (LPS) plus interferon-gamma (IFN-gamma) increases nitric oxide (NO) production, which is proposed to play a role in the resulting pulmonary damage and inflammation. To determine the role of inducible nitric oxide synthase (iNOS)-induced NO in this lung reaction, the responses of inducible nitric oxide synthase knockout (iNOS KO) versus C57BL/6J wild-type (WT) mice to aspirated LPS + IFN-gamma were compared. Male mice (8-10 weeks) were exposed to LPS (1.2 mg/kg) + IFN-gamma (5000 U/mouse) or saline. At 24 or 72 h postexposure, lungs were lavaged with saline and the acellular fluid from the first bronchoalveolar lavage (BAL) was analyzed for total antioxidant capacity (TAC), lactate dehydrogenase (LDH) activity, albumin, tumor necrosis factor-alpha (TNF-alpha), and macrophage inflammatory protein-2 (MIP-2). The cellular fraction of the total BAL was used to determine alveolar macrophage (AM) and polymorphonuclear leukocyte (PMN) counts, and AM zymosan-stimulated chemiluminescence (AM-CL). Pulmonary responses 24 h postexposure to LPS + IFN-gamma were characterized by significantly decreased TAC, increased BAL AMs and PMNs, LDH, albumin, TNF-alpha, and MIP-2, and enhanced AM-CL to the same extent in both WT and iNOS KO mice. Responses 72 h postexposure were similar; however, significant differences were found between WT and iNOS KO mice. iNOS KO mice demonstrated a greater decline in total antioxidant capacity, greater BAL PMNs, LDH, albumin, TNF-alpha, and MIP-2, and an enhanced AM-CL compared to the WT. These data suggest that the role of iNOS-derived NO in the pulmonary response to LPS + IFN-gamma is anti-inflammatory, and this becomes evident over time. PMID:14962504

  1. Acute pulmonary toxicity and inflammation induced by combined exposure to didecyldimethylammonium chloride and ethylene glycol in rats.

    PubMed

    Kwon, Do Young; Kim, Hyun-Mi; Kim, Eunji; Lim, Yeon-Mi; Kim, Pilje; Choi, Kyunghee; Kwon, Jung-Taek

    2016-02-01

    Didecyldimethylammonium chloride (DDAC), an antimicrobial agent, has been reported to induce pulmonary toxicity in animal studies. DDAC is frequently used in spray-form household products in combination with ethylene glycol (EG). The purpose of this study was to evaluate the toxic interaction between DDAC and EG in the lung. DDAC at a sub-toxic dose (100 μg/kg body weight) was mixed with a non-toxic dose of EG (100 or 200 μg/kg body weight), and was administrated to rats via intratracheal instillation. Lactate dehydrogenase activity and total protein content in the bronchoalveolar lavage fluid (BALF) were not changed by singly treated DDAC or EG, but significantly enhanced at 1 d after treatment with the mixture, with the effect dependent on the dose of EG. Total cell count in BALF was largely increased and polymorphonuclear leukocytes were predominantly recruited to the lung in rats administrated with the mixture. Inflammatory cytokines, tumor necrosis factor-alpha and interleukin-6 also appeared to be increased by the mixture of DDAC and EG (200 μg/kg body weight) at 1 d post-exposure, which might be associated with the increase in inflammatory cells in lung. BALF protein content and inflammatory cell recruitment in the lung still remained elevated at 7 d after the administration of DDAC with the higher dose of EG. These results suggest that the combination of DDAC and EG can synergistically induce pulmonary cytotoxicity and inflammation, and EG appears to amplify the harmful effects of DDAC on the lung. Therefore pulmonary exposure to these two chemicals commonly found in commercial products can be a potential hazard to human health. PMID:26763389

  2. Biodiesel versus diesel exposure: Enhanced pulmonary inflammation, oxidative stress, and differential morphological changes in the mouse lung

    SciTech Connect

    Yanamala, Naveena; Birch, M. Eileen; Kisin, Elena; Bugarski, Aleksandar D.

    2013-10-15

    The use of biodiesel (BD) or its blends with petroleum diesel (D) is considered to be a viable approach to reduce occupational and environmental exposures to particulate matter (PM). Due to its lower particulate mass emissions compared to D, use of BD is thought to alleviate adverse health effects. Considering BD fuel is mainly composed of unsaturated fatty acids, we hypothesize that BD exhaust particles could induce pronounced adverse outcomes, due to their ability to readily oxidize. The main objective of this study was to compare the effects of particles generated by engine fueled with neat BD and neat petroleum-based D. Biomarkers of tissue damage and inflammation were significantly elevated in lungs of mice exposed to BD particulates. Additionally, BD particulates caused a significant accumulation of oxidatively modified proteins and an increase in 4-hydroxynonenal. The up-regulation of inflammatory cytokines/chemokines/growth factors was higher in lungs upon BD particulate exposure. Histological evaluation of lung sections indicated presence of lymphocytic infiltrate and impaired clearance with prolonged retention of BD particulate in pigment laden macrophages. Taken together, these results clearly indicate that BD exhaust particles could exert more toxic effects compared to D. - Highlights: • Exposure of mice to BDPM caused higher pulmonary toxicity compared to DPM. • Oxidative stress and inflammation were higher in BD vs to D exposed mice. • Inflammatory lymphocyte infiltrates were seen only in lungs of mice exposed to BD. • Ineffective clearance, prolonged PM retention was present only after BD exposure.

  3. Abnormalities of pulmonary vascular dynamics and inflammation in early progressive systemic sclerosis

    SciTech Connect

    Furst, D.E.; Davis, J.A.; Clements, P.J.; Chopra, S.K.; Theofilopoulos, A.N.; Chia, D.

    1981-11-01

    Abnormalities of pulmonary function were studied in 10 patients with progressive systemic sclerosis (PSS) and 3 control subjects. All underwent 81M krypton lung scanning and total body gallium scanning. Immune complexes were measured by Raji cell radioimmunoassay and polyethylene glycol (PEG) assay. Perfusion scans were abnormal in 7 of 9 patients, and 5 of 9 showed a decrease in pulmonary perfusion after cold challenge. Increased gallium uptake was noted in the lungs of 6 of 9 patients. Krypton scans were normal in the control group. Elevated immune complexes were noted in 8 of 10 patients by the Raji assay and in 5 of 10 with the PEG assay. Efforts to separate patients with PSS into subgroups may lead to a better understanding of and advances in therapy for PSS.

  4. Use of Metal Oxide Nanoparticle Band Gap to Develop a Predictive Paradigm for Oxidative Stress and Acute Pulmonary Inflammation

    PubMed Central

    Zhang, Haiyuan; Ji, Zhaoxia; Xia, Tian; Meng, Huan; Low-Kam, Cecile; Liu, Rong; Pokhrel, Suman; Lin, Sijie; Wang, Xiang; Liao, Yu-Pei; Wang, Meiying; Li, Linjiang; Rallo, Robert; Damoiseaux, Robert; Telesca, Donatello; Mädler, Lutz; Cohen, Yoram; Zink, Jeffrey I.; Nel, Andre E.

    2014-01-01

    We demonstrate for 24 metal oxide (MOx) nanoparticles that it is possible to use conduction band energy levels to delineate their toxicological potential at cellular and whole animal levels. Among the materials, the overlap of conduction band energy (Ec) levels with the cellular redox potential (−4.12 to −4.84 eV) was strongly correlated to the ability of Co3O4, Cr2O3, Ni2O3, Mn2O3 and CoO nanoparticles to induce oxygen radicals, oxidative stress and inflammation. This outcome is premised on permissible electron transfers from the biological redox couples that maintain the cellular redox equilibrium to the conduction band of the semiconductor particles. Both single parameter cytotoxic as well as multi-parameter oxidative stress assays in cells showed excellent correlation to the generation of acute neutrophilic inflammation and cytokine responses in the lungs of CB57 Bl/6 mice. Co3O4, Ni2O3, Mn2O3 and CoO nanoparticles could also oxidize cytochrome c as a representative redox couple involved in redox homeostasis. While CuO and ZnO generated oxidative stress and acute pulmonary inflammation that is not predicted by Ec levels, the adverse biological effects of these materials could be explained by their solubility, as demonstrated by ICP-MS analysis. Taken together, these results demonstrate, for the first time, that it is possible to predict the toxicity of a large series of MOx nanoparticles in the lung premised on semiconductor properties and an integrated in vitro/in vivo hazard ranking model premised on oxidative stress. This establishes a robust platform for modeling of MOx structure-activity relationships based on band gap energy levels and particle dissolution. This predictive toxicological paradigm is also of considerable importance for regulatory decision-making about this important class of engineered nanomaterials. PMID:22502734

  5. An Immature Myeloid/Myeloid-Suppressor Cell Response Associated with Necrotizing Inflammation Mediates Lethal Pulmonary Tularemia.

    PubMed

    Periasamy, Sivakumar; Avram, Dorina; McCabe, Amanda; MacNamara, Katherine C; Sellati, Timothy J; Harton, Jonathan A

    2016-03-01

    Inhalation of Francisella tularensis (Ft) causes acute and fatal pneumonia. The lung cytokine milieu favors exponential Ft replication, but the mechanisms underlying acute pathogenesis and death remain unknown. Evaluation of the sequential and systemic host immune response in pulmonary tularemia reveals that in contrast to overwhelming bacterial burden or cytokine production, an overt innate cellular response to Ft drives tissue pathology and host mortality. Lethal infection with Ft elicits medullary and extra-medullary myelopoiesis supporting recruitment of large numbers of immature myeloid cells and MDSC to the lungs. These cells fail to mature and die, leading to subsequent necrotic lung damage, loss of pulmonary function, and host death that is partially dependent upon immature Ly6G+ cells. Acceleration of this process may account for the rapid lethality seen with Ft SchuS4. In contrast, during sub-lethal infection with Ft LVS the pulmonary cellular response is characterized by a predominance of mature neutrophils and monocytes required for protection, suggesting a required threshold for lethal bacterial infection. Further, eliciting a mature phagocyte response provides transient, but dramatic, innate protection against Ft SchuS4. This study reveals that the nature of the myeloid cell response may be the primary determinant of host mortality versus survival following Francisella infection. PMID:27015566

  6. An Immature Myeloid/Myeloid-Suppressor Cell Response Associated with Necrotizing Inflammation Mediates Lethal Pulmonary Tularemia

    PubMed Central

    Periasamy, Sivakumar; Avram, Dorina; McCabe, Amanda; MacNamara, Katherine C.; Sellati, Timothy J.; Harton, Jonathan A.

    2016-01-01

    Inhalation of Francisella tularensis (Ft) causes acute and fatal pneumonia. The lung cytokine milieu favors exponential Ft replication, but the mechanisms underlying acute pathogenesis and death remain unknown. Evaluation of the sequential and systemic host immune response in pulmonary tularemia reveals that in contrast to overwhelming bacterial burden or cytokine production, an overt innate cellular response to Ft drives tissue pathology and host mortality. Lethal infection with Ft elicits medullary and extra-medullary myelopoiesis supporting recruitment of large numbers of immature myeloid cells and MDSC to the lungs. These cells fail to mature and die, leading to subsequent necrotic lung damage, loss of pulmonary function, and host death that is partially dependent upon immature Ly6G+ cells. Acceleration of this process may account for the rapid lethality seen with Ft SchuS4. In contrast, during sub-lethal infection with Ft LVS the pulmonary cellular response is characterized by a predominance of mature neutrophils and monocytes required for protection, suggesting a required threshold for lethal bacterial infection. Further, eliciting a mature phagocyte response provides transient, but dramatic, innate protection against Ft SchuS4. This study reveals that the nature of the myeloid cell response may be the primary determinant of host mortality versus survival following Francisella infection. PMID:27015566

  7. RAPID COMMUNICATION IL-4 INDUCES IL-6 AND SIGNS OF ALLERGIC-TYPE INFLAMMATION IN THE NASAL AIRWAYS OF NONALLERGIC INDIVIDUALS

    EPA Science Inventory


    In addition to its more widely recognized role in promoting IgE synthesis, we speculate that interleukin-4 (IL-4) may modulate both allergic- and nonallergic-type inflammatory processes in the airway mucosa. We examined in vivo the effect of IL-4 on granulocyte and cytokine h...

  8. Treatment with the C5a receptor/CD88 antagonist PMX205 reduces inflammation in a murine model of allergic asthma.

    PubMed

    Staab, Elizabeth B; Sanderson, Sam D; Wells, Sandra M; Poole, Jill A

    2014-08-01

    Allergic asthma is a chronic inflammatory airway disease arising from an aberrant immune response following exposure to environmental stimuli in genetically susceptible persons. The complement component 5 (C5)/C5a Receptor (C5aR/CD88) signaling pathway has been implicated in both experimental allergic asthma and human asthmatic disease. Targeting the C5a/C5aR signaling pathway in rodent models has been shown to either enhance or reduce allergic asthma consequences. Treatment with a recombinant humanized monoclonal antibody directed against C5 has shown unclear results in patients with asthma. The objective of this proof-of-concept animal study was to determine whether the low molecular weight C5aR peptidomimetic antagonist, PMX205, would reduce experimental allergic asthma consequences in mice. PMX205 or vehicle control was administered subcutaneously to BALB/c mice prior to and during standard ovalbumin (OVA) allergen sensitization and aerosolized challenge phases. PMX205 substantially reduced OVA-induced total cell (60%), neutrophil (66%) and eosinophil (65%) influxes in lavage fluid sampling. There were also significant reductions in OVA-induced lavage fluid IL-13 protein and lung Th2 cytokine gene expression with PMX205 administration. PMX205 treatment also diminished OVA-induced lung parenchyma cellular infiltration. PMX205 administration did not reduce OVA-induced serum IgE levels or epithelial mucous/goblet cell generation. There was no evidence of toxicity observed with PMX205 treatment in saline or OVA-challenged animals. These data provide evidence that pharmacologic blockade of C5aR by a low molecular weight antagonist (PMX205) reduces airway inflammatory cell and cytokine responses in experimental allergic asthma, and suggests that PMX205 might represent a novel therapeutic agent for reducing asthmatic outcomes. PMID:24859057

  9. The NF-κB inhibitory Proteins IκBα and IκBβ Mediate Disparate Responses to Inflammation in Fetal Pulmonary Endothelial Cells

    PubMed Central

    Tang, Jen-Ruey; Michaelis, Katherine A.; Nozik-Grayck, Eva; Seedorf, Gregory J.; Hartman-Filson, Marlena; Abman, Steven H.; Wright, Clyde J.

    2013-01-01

    Rationale Exposure to intrauterine inflammation impairs lung growth, but paradoxically protects the neonatal pulmonary vasculature from hyperoxic injury. The mechanisms mediating these contradictory effects are unknown. Objective To identify the role of NF-κB in mediating cytoprotective and pro-inflammatory responses to inflammation in the fetal pulmonary endothelium. Methods and Results In newborn rats exposed to intraamniotic lipopolysaccharide (LPS), we found increased expression of the NF-κB target gene manganese superoxide dismutase (MnSOD) in the pulmonary endothelium. Supporting these in vivo findings, LPS induced NF-κB activation and MnSOD expression in isolated fetal pulmonary arterial endothelial cells. Additionally, LPS exposure caused apoptosis, and suppressed cellular growth and induced P-selectin expression. LPS-induced NF-κB activation that proceeded through specific isoforms of the inhibitory protein IκB mediated these diverse responses; NF-κB signaling through IκBα degradation resulted in MnSOD upregulation and preserved cell growth, whereas NF-κB signaling through IκBβ degradation mediated apoptosis and P-selectin expression. Conclusions These findings suggest that selective inhibition of NF-κB activation that results from IκBβ degradation preserves the enhanced antioxidant defense and protects the developing pulmonary vascular endothelium from ongoing inflammatory injury. PMID:23418625

  10. Pulmonary Inflammation Is Regulated by the Levels of the Vesicular Acetylcholine Transporter

    PubMed Central

    Perini, Adenir; Câmara, Niels O. S.; Costa, Soraia K. P.; Alonso-Vale, Maria Isabel C.; Caperuto, Luciana C.; Tibério, Iolanda F. L. C.; Prado, Marco Antônio M.; Martins, Mílton A.; Prado, Vânia F.; Prado, Carla M.

    2015-01-01

    Acetylcholine (ACh) plays a crucial role in physiological responses of both the central and the peripheral nervous system. Moreover, ACh was described as an anti-inflammatory mediator involved in the suppression of exacerbated innate response and cytokine release in various organs. However, the specific contributions of endogenous release ACh for inflammatory responses in the lung are not well understood. To address this question we have used mice with reduced levels of the vesicular acetylcholine transporter (VAChT), a protein required for ACh storage in secretory vesicles. VAChT deficiency induced airway inflammation with enhanced TNF-α and IL-4 content, but not IL-6, IL-13 and IL-10 quantified by ELISA. Mice with decreased levels of VAChT presented increased collagen and elastic fibers deposition in airway walls which was consistent with an increase in inflammatory cells positive to MMP-9 and TIMP-1 in the lung. In vivo lung function evaluation showed airway hyperresponsiveness to methacholine in mutant mice. The expression of nuclear factor-kappa B (p65-NF-kB) in lung of VAChT-deficient mice were higher than in wild-type mice, whereas a decreased expression of janus-kinase 2 (JAK2) was observed in the lung of mutant animals. Our findings show the first evidence that cholinergic deficiency impaired lung function and produce local inflammation. Our data supports the notion that cholinergic system modulates airway inflammation by modulation of JAK2 and NF-kB pathway. We proposed that intact cholinergic pathway is necessary to maintain the lung homeostasis. PMID:25816137

  11. A dual role for complement in allergic asthma.

    PubMed

    Köhl, Jörg; Wills-Karp, Marsha

    2007-06-01

    Complement is an ancient danger-sensor system of innate immunity, providing first-line defence against pathogens. Concordant with its pro-inflammatory properties, complement contributes to airway inflammation, hyperresponsiveness and mucus production during the effector phase of allergic asthma. In contrast to these pro-allergic properties, complement can also protect from the development of the maladaptive Th2-biased immune response that drives airway inflammation and hyperreactivity in allergic asthma. As such, selective targeting of pro-allergic complement pathways appears an attractive therapeutic option in allergic asthma. PMID:17475559

  12. Allergic rhinitis.

    PubMed

    Mygind, Niels

    2014-01-01

    Allergic rhinitis is a very frequent disease with a prevalence of 15-20%. Symptoms are most pronounced in young people while, for some unknown reason, the elderly become clinically hyposensitized. Pollen is the cause of seasonal allergic rhinitis, and house dust mite and animals are the main causes of perennial allergic rhinitis. Histamine is the main cause of sneezing and hypersecretion, while other mediators probably also play a role in nasal blockage. In polyposis, a local denervation is an important cause of vascular leakage, edema and polyp formation. Antihistamines have a positive effect on sneezing and hypersecretion, but not on blockage. As they have a quick onset of action they are useful in patients with mild and occasional symptoms. A nasal steroid is preferable in patients with persistent symptoms, since it is more effective on all nasal symptoms. Short-term use of a systemic steroid can be a valuable adjunct to topical treatment, especially in nasal polyposis, when there is a temporary failure of topical treatment in a blocked nose. A nasal vasoconstrictor can be added for short-term treatment, and an ipratropium spray can be beneficial in perennial non-allergic rhinitis, when watery secretion is the dominant symptom. Immunotherapy can be added in allergic rhinitis, when pharmacotherapy is insufficient. This chapter is based on the author's personal experience with allergic rhinitis, as a patient, a doctor and a researcher. Therefore, it is not a balanced review and the references will be highly selected as they largely consist of the author's own publications. As the text is mainly based on personal research, steroids are described in detail, while, with regard to immunotherapy, the reader is referred to another chapter. In addition to allergic rhinitis, nasal polyposis will be described. It was formerly believed to be an allergic disease, but we now know that it is not. However, with regard to histopathology and drug responsiveness this disease is

  13. Effects of Swimming on the Inflammatory and Redox Response in a Model of Allergic Asthma.

    PubMed

    Brüggemann, T R; Ávila, L C M; Fortkamp, B; Greiffo, F R; Bobinski, F; Mazzardo-Martins, L; Martins, D F; Duarte, M M M F; Dafre, A; Santos, A R S; Silva, M D; Souza, L F; Vieira, R P; Hizume-Kunzler, D C

    2015-06-01

    In this study we hypothesized that swimming during sensitization phase could result in a preventive effect in mice with allergic asthma. Swiss mice were divided into 4 groups: Control and Swimming (non-sensitized), OVA and OVA+Swimming (sensitized). The allergic inflammation was induced by 2 intraperitoneal injections and 4 aerosol challenges using ovalbumin. Swimming sessions were performed at high intensity over 3 weeks. 48 h after the last challenge mice were euthanized. Swimming decreased OVA-increased total IgE, IL-1, IL-4, IL-5 and IL-6 levels, as well as the number of total cells, lymphocytes and eosinophils in bronchoalveolar lavage fluid, (p<0.05). Simultaneously, swimming also increased IL-10 and glutathione levels in the Swimming and OVA+Swimming groups (p<0.05). The levels of glutathione peroxidase and catalase were increased only in the Swimming group when compared to all groups (p<0.05). 21 days of swimming resulted in an attenuation of pulmonary allergic inflammation followed by an increase of glutathione levels in the OVA group. Swimming only increased the levels of glutathione peroxidase and catalase in non-sensitized mice (p<0.05). These data suggest that the pulmonary anti-inflammatory effects produced by 3 weeks of high-intensity swimming in this model of OVA-induced asthma may be, at least partly, modulated by reduced oxidative stress and increased IL-10 production. PMID:25837246

  14. Markers of Thrombogenesis and Fibrinolysis and Their Relation to Inflammation and Endothelial Activation in Patients with Idiopathic Pulmonary Arterial Hypertension

    PubMed Central

    Kopeć, Grzegorz; Moertl, Deddo; Steiner, Sabine; Stępień, Ewa; Mikołajczyk, Tomasz; Podolec, Jakub; Waligóra, Marcin; Stępniewski, Jakub; Tomkiewicz-Pająk, Lidia; Guzik, Tomasz; Podolec, Piotr

    2013-01-01

    Background Chronic anticoagulation is a standard of care in idiopathic pulmonary arterial hypertension (IPAH). However, hemostatic abnormalities in this disease remain poorly understood. Therefore, we aimed to study markers of thrombogenesis and fibrinolysis in patients with IPAH. Methods We studied 27 consecutive patients (67% female) with IPAH aged 50.0 years (IQR: 41.0 - 65.0) and 16 controls without pulmonary hypertension. Prothrombin fragment 1+2 (F1+2) and thrombin-antithrombin (TAT) complexes were measured to assess thrombogenesis; tissue-type plasminogen activator (tPA) antigen and plasmin-anti-plasmin complex to characterize activation of fibrinolysis; plasminogen activator inhibitor 1 (PAI-1) to measure inhibition of fibrinolysis; and endothelin-1 (ET-1) and interleukin-6 (IL-6) to assess endothelial activation and systemic inflammation, respectively. In addition, in treatment-naive IPAH patients these markers were assessed after 3 months of PAH-specific therapies. Results TPA (10.1[6.8-15.8] vs 5.2[3.3-7.3] ng/ml, p<0.001), plasmin-anti-plasmin (91.5[60.3-94.2] vs 55.8[51.1-64.9] ng/ml, p<0.001), IL-6 (4.9[2.5-7.9] vs 2.1[1.3-3.8] pg/ml, p=0.001) and ET-1 (3.7 [3.3-4.5] vs 3.4[3.1-3.5], p= 0.03) were higher in patients with IPAH than in controls. In IPAH patients plasmin-anti-plasmin and tPA correlated positively with IL-6 (r=0.39, p=0.04 and r=0.63, p<0.001, respectively) and ET-1 (r=0.55, p=0.003 and r=0.59, p=0.001, respectively). No correlation was found between tPA or plasmin-anti-plasmin and markers of thrombogenesis. Plasmin-anti-plasmin decreased after 3 months of PAH specific therapy while the other markers remained unchanged. Conclusions In the present study we showed that markers of fibrynolysis were elevated in patients with IPAH however we did not find a clear evidence for increased thrombogenesis in this group of patients. Fibrinolysis, inflammation, and endothelial activation were closely interrelated in IPAH. PMID:24312667

  15. Effect of early treatment with transcutaneous electrical diaphragmatic stimulation (TEDS) on pulmonary inflammation induced by bleomycin

    PubMed Central

    Santos, Laisa A.; Silva, Carlos A.; Polacow, Maria L. O.

    2013-01-01

    Background Bleomycin (B) is an antineoplastic drug that has pulmonary fibrosis as a side effect. There are few experimental studies about the effects of physical therapy treatment in this case. Objective The objective was to study rat lungs treated with B and precocious intervention by transcutaneous electrical diaphragmatic stimulation (TEDS). Method Wistar rats were divided into 4 groups (n=5): a control group (C); a stimulated group (TEDS); a group treated with a single dose of B (intratracheally, 2.5 mg/kg) (B); and a group treated with B and electric stimulation (B + TEDS). After the B instillation, the electrical stimulation was applied for 7 days, for a duration of 20 minutes. Lung fragments were histologically processed with hematoxylin and eosin (HE) and 8-isoprostane-PGF2α (8-iso-PGF2α). The density of the alveolar area was determined by planimetry, the inflammatory profile was defined by the number of cells, and the level of oxidative stress in the pulmonary tissue was evaluated by 8-iso-PGF2α. For statistical analysis of the data, the Shapiro-Wilk test was used, followed by a one-way ANOVA with the post-hoc Bonferroni test (p≤0.05). Results The B group exhibited a significant reduction in the area density, and the acute treatment with B + TEDS prevented this reduction. There were increased numbers of fibroblasts, leukocytes, and macrophages in the B group, as well as increased lipid peroxidation, which was observed only in this group. Conclusion B promoted a reduction in the alveolar density area, thereby inducing the inflammatory process and increasing the production of free radicals. These effects were minimized by the application of TEDS at the initial treatment stage. PMID:24346295

  16. CRTH2 antagonism significantly ameliorates airway hyperreactivity and downregulates inflammation-induced genes in a mouse model of airway inflammation.

    PubMed

    Lukacs, Nicholas W; Berlin, Aaron A; Franz-Bacon, Karin; Sásik, Roman; Sprague, L James; Ly, Tai Wei; Hardiman, Gary; Boehme, Stefen A; Bacon, Kevin B

    2008-11-01

    Prostaglandin D(2), the ligand for the G protein-coupled receptors DP1 and CRTH2, has been implicated in the pathogenesis of the allergic response in diseases such as asthma, rhinitis, and atopic dermatitis. This prostanoid also fulfills a number of physiological, anti-inflammatory roles through its receptor DP1. We investigated the role of PGD(2) and CRTH2 in allergic pulmonary inflammation by using a highly potent and specific antagonist of CRTH2. Administration of this antagonist ameliorated inflammation caused by either acute or subchronic sensitization using the cockroach egg antigen. Gene expression and ELISA analysis revealed that there was reduced proinflammatory cytokine mRNA or protein produced, as well as a wide array of genes associated with the Th2-type proinflammatory response. Importantly, the CRTH2 antagonist reduced antigen-specific IgE, IgG1, and IgG2a antibody levels as well as decreased mucus deposition and leukocyte infiltration in the large airways. Collectively, these findings suggest that the PGD(2)-CRTH2 activation axis has a pivotal role in mediating the inflammation and the underlying immune response in a T cell-driven model of allergic airway inflammation. PMID:18757520

  17. Allergic Mechanisms in Eosinophilic Esophagitis

    PubMed Central

    Wechsler, Joshua B; Bryce, Paul J

    2014-01-01

    Paralleling the overall trend in allergic diseases, Eosinophilic Esophagitis is rapidly increasing in incidence. It is associated with food antigen-triggered, eosinophil-predominant inflammation and the pathogenic mechanisms have many similarities to other chronic atopic diseases, such as eczema and allergic asthma. Studies in animal models and from patients over the last 15 years have suggested that allergic sensitization leads to food-specific IgE and T-helper lymphocyte type 2 cells, both of which appear to contribute to the pathogenesis along with basophils, mast cells, and antigen-presenting cells. This review will outline our current understandings of the allergic mechanisms that drive eosinophilic esophagitis, drawing from clinical and translational studies in humans as well as experimental animal models. PMID:24813516

  18. TSG-6 protein is crucial for the development of pulmonary hyaluronan deposition, eosinophilia, and airway hyperresponsiveness in a murine model of asthma.

    PubMed

    Swaidani, Shadi; Cheng, Georgiana; Lauer, Mark E; Sharma, Manisha; Mikecz, Katalin; Hascall, Vincent C; Aronica, Mark A

    2013-01-01

    Hyaluronan (HA) deposition is often correlated with mucosal inflammatory responses, where HA mediates both protective and pathological responses. By modifying the HA matrix, Tnfip6 (TNF-α-induced protein-6; also known as TSG-6 (TNF-stimulated gene-6)) is thought to potentiate anti-inflammatory and anti-plasmin effects that are inhibitory to leukocyte extravasation. In this study, we examined the role of endogenous TSG-6 in the pathophysiological responses associated with acute allergic pulmonary inflammation. Compared with wild-type littermate controls, TSG-6(-/-) mice exhibited attenuated inflammation marked by a significant decrease in pulmonary HA concentrations measured in the bronchoalveolar lavage and lung tissue. Interestingly, despite the equivalent induction of both humoral and cellular Th2 immunity and the comparable levels of cytokines and chemokines typically associated with eosinophilic pulmonary inflammation, airway eosinophilia was significantly decreased in TSG-6(-/-) mice. Most importantly, contrary to their counterpart wild-type littermates, TSG-6(-/-) mice were resistant to the induction of airway hyperresponsiveness and manifested improved lung mechanics in response to methacholine challenge. Our study demonstrates that endogenous TSG-6 is dispensable for the induction of Th2 immunity but is essential for the robust increase in pulmonary HA deposition, propagation of acute eosinophilic pulmonary inflammation, and development of airway hyperresponsiveness. Thus, TSG-6 is implicated in the experimental murine model of allergic pulmonary inflammation and is likely to contribute to the pathogenesis of asthma. PMID:23118230

  19. Allergic rhinitis

    MedlinePlus

    ... your symptoms. Skin testing is the most common method of allergy testing. If your doctor determines you ... Others cause little or no sleepiness. Antihistamine nasal sprays work well for treating allergic rhinitis. Ask your ...

  20. Allergic Reactions

    MedlinePlus

    ... immune system identifies pollen as an invader or allergen. Your immune system overreacts by producing antibodies called ... IgE has specific "radar" for each type of allergen. That's why some people are only allergic to ...

  1. Acute pulmonary inflammation induced by exposure of the airways to staphylococcal enterotoxin type B in rats

    SciTech Connect

    Desouza, Ivani A. . E-mail: ivanidesouza@fcm.unicamp.br; Franco-Penteado, Carla F.; Camargo, Enilton A.; Lima, Carmen S.P.; Teixeira, Simone A.; Muscara, Marcelo N.; De Nucci, Gilberto; Antunes, Edson

    2006-11-15

    Staphylocococcus aureus is a gram-positive bacterium that produces several enterotoxins, which are responsible for most part of pathological conditions associated to staphylococcal infections, including lung inflammation. This study aimed to investigate the underlying inflammatory mechanisms involved in leukocyte recruitment in rats exposed to staphylococcal enterotoxin B (SEB). Rats were anesthetized with pentobarbital sodium and intratracheally injected with either SEB or sterile phosphate-buffered saline (PBS, 0.4 ml). Airways exposition to SEB (7.5-250 ng/trachea) caused a dose- and time-dependent neutrophil accumulation in BAL fluid, the maximal effects of which were observed at 4 h post-SEB exposure (250 ng/trachea). Eosinophils were virtually absent in BAL fluid, whereas mononuclear cell counts increased only at 24 h post-SEB. Significant elevations of granulocytes in bone marrow (mature and immature forms) and peripheral blood have also been detected. In BAL fluid, marked elevations in the levels of lipid mediators (LTB{sub 4} and PGE{sub 2}) and cytokines (TNF-{alpha}, IL-6 and IL-10) were observed after SEB instillation. The SEB-induced neutrophil accumulation in BAL fluid was reduced by pretreatment with dexamethasone (0.5 mg/kg), the COX-2 inhibitor celecoxib (3 mg/kg), the selective iNOS inhibitor compound 1400 W (5 mg/kg) and the lipoxygenase inhibitor AA-861 (200 {mu}g/kg). In separate experiments carried out with rat isolated peripheral neutrophils, SEB failed to induce neutrophil adhesion to serum-coated plates and chemotaxis. In conclusion, rat airways exposition to SEB causes a neutrophil-dependent lung inflammation at 4 h as result of the release of proinflammatory (NO, PGE{sub 2}, LTB{sub 4}, TNF-{alpha}, IL-6) and anti-inflammatory mediators (IL-10)

  2. Dietary Long-Chain Omega-3 Fatty Acids Do Not Diminish Eosinophilic Pulmonary Inflammation in Mice

    PubMed Central

    Bratt, Jennifer M.; Jiang, Xiaowen; Pedersen, Theresa L.; Grapov, Dmitry; Adkins, Yuriko; Kelley, Darshan S.; Newman, John W.; Kenyon, Nicholas J.; Stephensen, Charles B.

    2014-01-01

    Although the effects of fish oil supplements on airway inflammation in asthma have been studied with varying results, the independent effects of the fish oil components, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), administered separately, are untested. Here, we investigated airway inflammation and hyperresponsiveness using a mouse ovalbumin exposure model of asthma assessing the effects of consuming EPA (1.5% wt/wt), DHA (1.5% wt/wt), EPA plus DHA (0.75% each), or a control diet with no added omega-3 polyunsaturated fatty acids. Consuming these diets for 6 weeks resulted in erythrocyte membrane EPA contents (molar %) of 9.0 (± 0.6), 3.2 (± 0.2), 6.8 (± 0.5), and 0.01 (± 0.0)%; DHA contents were 6.8 (± 0.1), 15.6 (± 0.5), 12.3 (± 0.3), and 3.8 (± 0.2)%, respectively. The DHA group had the highest bronchoalveolar lavage (BAL) fluid eosinophil and IL-6 levels (P < 0.05). Similar trends were seen for macrophages, IL-4, and IL-13, whereas TNF-α was lower in omega-3 polyunsaturated fatty acid groups than the control (P < 0.05). The DHA group also had the highest airway resistance, which differed significantly from the EPA plus DHA group (P < 0.05), which had the lowest. Oxylipins were measured in plasma and BAL fluid, with DHA and EPA suppressing arachidonic acid–derived oxylipin production. DHA-derived oxylipins from the cytochrome P450 and 15-lipoxygenase pathways correlated significantly with BAL eosinophil levels. The proinflammatory effects of DHA suggest that the adverse effects of individual fatty acid formulations should be thoroughly considered before any use as therapeutic agents in asthma. PMID:24134486

  3. What Causes Pulmonary Hypertension?

    MedlinePlus

    ... from the NHLBI on Twitter. What Causes Pulmonary Hypertension? Pulmonary hypertension (PH) begins with inflammation and changes in the ... different types of PH. Group 1 pulmonary arterial hypertension (PAH) may have no known cause, or the ...

  4. Inflammation severely alters thyroid hormone signaling in the central nervous system during experimental allergic encephalomyelitis in rat: Direct impact on OPCs differentiation failure.

    PubMed

    Fernández, Mercedes; Baldassarro, Vito A; Sivilia, Sandra; Giardino, Luciana; Calzà, Laura

    2016-09-01

    Differentiation of oligodendrocyte precursor cells (OPCs) into myelinating oligodendrocytes is severely impaired by inflammatory cytokines and this could lead to remyelination failure in inflammatory/demyelinating diseases. Due to the role of thyroid hormone in the maturation of OPCs and developmental myelination, in this study we investigated (i) the possible occurrence of dysregulation of thyroid hormone signaling in the CNS tissue during experimental neuroinflammation; (ii) the possible impact of inflammatory cytokines on thyroid hormone signaling and OPCs differentiation in vitro. The disease model is the experimental allergic encephalomyelitis in female Dark-Agouti rats, whereas in vitro experiments were carried out in OPCs derived from neural stem cells. The main results are the following: (i) a strong upregulation of cytokine mRNA expression level was found in the spinal cord during experimental allergic encephalomyelitis; (ii) thyroid hormone signaling in the spinal cord (thyroid hormone receptors; deiodinase; thyroid hormone membrane transporter) is substantially downregulated, due to the upregulation of the thyroid hormone inactivating enzyme deiodinase 3 and the downregulation of thyroid hormone receptors, as investigated at mRNA expression level; (iii) when exposed to inflammatory cytokines, deiodinase 3 is upregulated in OPCs as well, and OPCs differentiation is blocked; (iv) deiodinase 3 inhibition by iopanoic acid recovers OPCs differentiation in the presence on inflammatory cytokines. These data suggest that cellular hypothyroidism occurs during experimental allergic encephalomyelitis, possibly impacting on thyroid hormone-dependent cellular processes, including maturation of OPCs into myelinating oligodendrocytes. GLIA 2016;64:1573-1589. PMID:27404574

  5. Use of silver nanowires to determine thresholds for fibre length-dependent pulmonary inflammation and inhibition of macrophage migration in vitro

    PubMed Central

    2012-01-01

    Background The objective of this study was to examine the threshold fibre length for the onset of pulmonary inflammation after aspiration exposure in mice to four different lengths of silver nanowires (AgNW). We further examined the effect of fibre length on macrophage locomotion in an in vitro wound healing assay. We hypothesised that exposure to longer fibres causes both increased inflammation and restricted mobility leading to impaired clearance of long fibres from the lower respiratory tract to the mucociliary escalator in vivo. Methods Nine week old female C57BL/6 strain mice were exposed to AgNW and controls via pharyngeal aspiration. The dose used in this study was equalised to fibre number and based on 50 μg/ mouse for AgNW14. To examine macrophage migration in vitro a wound healing assay was used. An artificial wound was created in a confluent layer of bone marrow derived macrophages by scraping with a pipette tip and the number of cells migrating into the wound was monitored microscopically. The dose was equalised for fibre number and based on 2.5 μg/cm2 for AgNW14. Results Aspiration of AgNW resulted in a length dependent inflammatory response in the lungs with threshold at a fibre length of 14 μm. Shorter fibres including 3, 5 and 10 μm elicited no significant inflammation. Macrophage locomotion was also restricted in a length dependent manner whereby AgNW in the length of ≥5 μm resulted in impaired motility in the wound closure assay. Conclusion We demonstrated a 14 μm cut-off length for fibre-induced pulmonary inflammation after aspiration exposure and an in vitro threshold for inhibition of macrophage locomotion of 5 μm. We previously reported a threshold length of 5 μm for fibre-induced pleural inflammation. This difference in pulmonary and pleural fibre- induced inflammation may be explained by differences in clearance mechanism of deposited fibres from the airspaces compared to the pleural space. Inhibition of macrophage migration at

  6. Current concepts on oxidative/carbonyl stress, inflammation and epigenetics in pathogenesis of chronic obstructive pulmonary disease

    SciTech Connect

    Yao Hongwei; Rahman, Irfan

    2011-07-15

    Chronic obstructive pulmonary disease (COPD) is a global health problem. The current therapies for COPD are poorly effective and the mainstays of pharmacotherapy are bronchodilators. A better understanding of the pathobiology of COPD is critical for the development of novel therapies. In the present review, we have discussed the roles of oxidative/aldehyde stress, inflammation/immunity, and chromatin remodeling in the pathogenesis of COPD. An imbalance of oxidants/antioxidants caused by cigarette smoke and other pollutants/biomass fuels plays an important role in the pathogenesis of COPD by regulating redox-sensitive transcription factors (e.g., NF-{kappa}B), autophagy and unfolded protein response leading to chronic lung inflammatory response. Cigarette smoke also activates canonical/alternative NF-{kappa}B pathways and their upstream kinases leading to sustained inflammatory response in lungs. Recently, epigenetic regulation has been shown to be critical for the development of COPD because the expression/activity of enzymes that regulate these epigenetic modifications have been reported to be abnormal in airways of COPD patients. Hence, the significant advances made in understanding the pathophysiology of COPD as described herein will identify novel therapeutic targets for intervention in COPD.

  7. The inducible kinase IKKi is required for IL-17-dependent signaling associated with neutrophilia and pulmonary inflammation.

    PubMed

    Bulek, Katarzyna; Liu, Caini; Swaidani, Shadi; Wang, Liwen; Page, Richard C; Gulen, Muhammet F; Herjan, Tomasz; Abbadi, Amina; Qian, Wen; Sun, Dongxu; Lauer, Mark; Hascall, Vincent; Misra, Saurav; Chance, Mark R; Aronica, Mark; Hamilton, Thomas; Li, Xiaoxia

    2011-09-01

    Interleukin 17 (IL-17) is critical in the pathogenesis of inflammatory and autoimmune diseases. Here we report that Act1, the key adaptor for the IL-17 receptor (IL-7R), formed a complex with the inducible kinase IKKi after stimulation with IL-17. Through the use of IKKi-deficient mice, we found that IKKi was required for IL-17-induced expression of genes encoding inflammatory molecules in primary airway epithelial cells, neutrophilia and pulmonary inflammation. IKKi deficiency abolished IL-17-induced formation of the complex of Act1 and the adaptors TRAF2 and TRAF5, activation of mitogen-activated protein kinases (MAPKs) and mRNA stability, whereas the Act1-TRAF6-transcription factor NF-κB axis was retained. IKKi was required for IL-17-induced phosphorylation of Act1 on Ser311, adjacent to a putative TRAF-binding motif. Substitution of the serine at position 311 with alanine impaired the IL-17-mediated Act1-TRAF2-TRAF5 interaction and gene expression. Thus, IKKi is a kinase newly identified as modulating IL-17 signaling through its effect on Act1 phosphorylation and consequent function. PMID:21822257

  8. Update on the Mechanisms of Pulmonary Inflammation and Oxidative Imbalance Induced by Exercise

    PubMed Central

    Araneda, O. F.; Carbonell, T.; Tuesta, M.

    2016-01-01

    The mechanisms involved in the generation of oxidative damage and lung inflammation induced by physical exercise are described. Changes in lung function induced by exercise involve cooling of the airways, fluid evaporation of the epithelial surface, increased contact with polluting substances, and activation of the local and systemic inflammatory response. The present work includes evidence obtained from the different types of exercise in terms of duration and intensity, the effect of both acute performance and chronic performance, and the influence of special conditions such as cold weather, high altitude, and polluted environments. Levels of prooxidants, antioxidants, oxidative damage to biomolecules, and cellularity, as well as levels of soluble mediators of the inflammatory response and its effects on tissues, are described in samples of lung origin. These samples include tissue homogenates, induced sputum, bronchoalveolar lavage fluid, biopsies, and exhaled breath condensate obtained in experimental protocols conducted on animal and human models. Finally, the need to simultaneously explore the oxidative/inflammatory parameters to establish the interrelation between them is highlighted. PMID:26881028

  9. Hemorrhagic shock primes for lung vascular endothelial cell pyroptosis: role in pulmonary inflammation following LPS.

    PubMed

    Yang, Jie; Zhao, Yanfeng; Zhang, Peng; Li, Yuehua; Yang, Yong; Yang, Yang; Zhu, Junjie; Song, Xiao; Jiang, Gening; Fan, Jie

    2016-01-01

    Hemorrhagic shock (HS) often renders patients more susceptible to lung injury by priming for an exaggerated response to a second infectious stimulus. Acute lung injury (ALI) is a major component of multiple organ dysfunction syndrome following HS and regularly serves as a major cause of patient mortality. The lung vascular endothelium is an active organ that has a central role in the development of ALI through synthesizing and releasing of a number of inflammatory mediators. Cell pyroptosis is a caspase-1-dependent regulated cell death, which features rapid plasma membrane rupture and release of proinflammatory intracellular contents. In this study, we demonstrated an important role of HS in priming for LPS-induced lung endothelial cell (EC) pyroptosis. We showed that LPS through TLR4 activates Nlrp3 (NACHT, LRR, and PYD domains containing protein 3) inflammasome in mouse lung vascular EC, and subsequently induces caspase-1 activation. However, HS induced release of high-mobility group box 1 (HMGB1), which acting through the receptor for advanced glycation end products initiates EC endocytosis of HMGB1, and subsequently triggers a cascade of molecular events, including cathepsin B release from ruptured lysosomes followed by pyroptosome formation and caspase-1 activation. These HS-induced events enhance LPS-induced EC pyroptosis. We further showed that lung vascular EC pyroptosis significantly exaggerates lung inflammation and injury. The present study explores a novel mechanism underlying HS-primed ALI and thus presents a potential therapeutic target for post-HS ALI. PMID:27607578

  10. A functional variant of elafin with improved anti-inflammatory activity for pulmonary inflammation.

    PubMed

    Small, Donna M; Zani, Marie-Louise; Quinn, Derek J; Dallet-Choisy, Sandrine; Glasgow, Arlene M A; O'Kane, Cecilia; McAuley, Danny F; McNally, Paul; Weldon, Sinéad; Moreau, Thierry; Taggart, Clifford C

    2015-01-01

    Elafin is a serine protease inhibitor produced by epithelial and immune cells with anti-inflammatory properties. Research has shown that dysregulated protease activity may elicit proteolytic cleavage of elafin, thereby impairing the innate immune function of the protein. The aim of this study was to generate variants of elafin (GG- and QQ-elafin) that exhibit increased protease resistance while retaining the biological properties of wild-type (WT) elafin. Similar to WT-elafin, GG- and QQ-elafin variants retained antiprotease activity and susceptibility to transglutaminase-mediated fibronectin cross-linking. However, in contrast to WT-elafin, GG- and QQ-elafin displayed significantly enhanced resistance to degradation when incubated with bronchoalveolar lavage fluid from patients with cystic fibrosis. Intriguingly, both variants, particularly GG-elafin, demonstrated improved lipopolysaccharide (LPS) neutralization properties in vitro. In addition, GG-elafin showed improved anti-inflammatory activity in a mouse model of LPS-induced acute lung inflammation. Inflammatory cell infiltration into the lung was reduced in lungs of mice treated with GG-elafin, predominantly neutrophilic infiltration. A reduction in MCP-1 levels in GG-elafin treated mice compared to the LPS alone treatment group was also demonstrated. GG-elafin showed increased functionality when compared to WT-elafin and may be of future therapeutic relevance in the treatment of lung diseases characterized by a protease burden. PMID:25189740

  11. β-Glucans Are Masked but Contribute to Pulmonary Inflammation During Pneumocystis Pneumonia.

    PubMed

    Kutty, Geetha; Davis, A Sally; Ferreyra, Gabriela A; Qiu, Ju; Huang, Da Wei; Sassi, Monica; Bishop, Lisa; Handley, Grace; Sherman, Brad; Lempicki, Richard; Kovacs, Joseph A

    2016-09-01

    β-glucans, which can activate innate immune responses, are a major component in the cell wall of the cyst form of Pneumocystis In the current study, we examined whether β-1,3-glucans are masked by surface proteins in Pneumocystis and what role β-glucans play in Pneumocystis-associated inflammation. For 3 species, including Pneumocystis jirovecii, which causes Pneumocystis pneumonia in humans, Pneumocystis carinii, and Pneumocystis murina, β-1,3-glucans were masked in most organisms, as demonstrated by increased exposure following trypsin treatment. Using quantitative polymerase chain reaction and microarray techniques, we demonstrated in a mouse model of Pneumocystis pneumonia that treatment with caspofungin, an inhibitor of β-1,3-glucan synthesis, for 21 days decreased expression of a broad panel of inflammatory markers, including interferon γ, tumor necrosis factor α, interleukin 1β, interleukin 6, and multiple chemokines/chemokine ligands. Thus, β-glucans in Pneumocystis cysts are largely masked, which likely decreases innate immune activation; this mechanism presumably was developed for interactions with immunocompetent hosts, in whom organism loads are substantially lower. In immunosuppressed hosts with a high organism burden, organism death and release of glucans appears to be an important contributor to deleterious host inflammatory responses. PMID:27324243

  12. Resolvin D1 and Resolvin E1 Promote the Resolution of Allergic Airway Inflammation via Shared and Distinct Molecular Counter-Regulatory Pathways

    PubMed Central

    Levy, Bruce D.

    2012-01-01

    Resolvins are generated from omega-3 fatty acids during inflammatory responses in the lung. These natural mediators interact with specific receptors to decrease lung inflammation and promote its resolution in healthy tissues. There are several lung diseases of chronic inflammation that fail to resolve, most notable asthma. This common disorder has a lifetime prevalence of nearly 10% and is characterized, in part, by chronic, non-resolving inflammation of the airway. Pro-resolving mediators are generated during asthma; however, their biosynthesis is decreased in severe and uncontrolled asthma, suggesting that the chronic, adaptive inflammation in asthmatic airways may result from a resolution defect. This article focuses on recent insights into the cellular and molecular mechanisms for resolvins that limit adaptive immune responses in healthy airways. PMID:23293638

  13. Pulmonary inflammation by ambient air particles is mediated by superoxide anion.

    PubMed

    Rhoden, Claudia Ramos; Ghelfi, Elisa; González-Flecha, Beatriz

    2008-01-01

    Lung inflammation is a key response to increased levels of particulate air pollution (PM); however, the cellular mechanisms leading to this response remain poorly understood. We have previously shown that oxidants are critical mediators of the inflammatory response elicited by inhalation of ambient air particles. Here we tested the possible role of a specific oxidant, superoxide anion, by using the membrane-permeable analog of superoxide dismutase, Mn(III) tetrakis(4-benzoic acid)porphyrin chloride (MnTBAP). Adult Sprague-Dawley rats were instilled with either urban air particles (UAP) or saline. MnTBAP-treated rats received 10 mg/kg (ip) MnTBAP 2 h prior to exposure to UAP. Recruitment of inflammatory cells into bronchoalveolar lavage was evaluated 4 h after instillation. Rats exposed to UAP showed significant increases in the total cell number (8.9 +/- 0.6 x 10(6); sham: 5.1 +/- 0.6 x 10(6), p < .02), the numbers of polymorphonuclear leukocytes (26 +/- 4%; sham: 6 +/- 1%, p < .0001), protein levels (1.2 +/- 0.5 mg/ml, sham: 0.4 +/- 0.1 mg/ml, p < .001), and a trend of increase in myeloperoxidase levels (5 +/- 1; sham: 2 +/- 1 mU/ml) in bronchoalveolar lavage (BAL). Pretreatment with MnTBAP at a dose that prevented UAP-induced increases in oxidants effectively prevented increase in BAL cells (2.7 +/- 0.6 x 10(6), p < .0001 vs. UAP), PMN influx into the lungs (4 +/- 3%, p < .0001 vs. UAP), and increase in myeloperoxidase (2 +/- 1 mU/ml) and protein levels in BAL (0.1 +/- 0.1 mg/ml). These data indicate that superoxide anion is a critical mediator of the inflammatory response elicited by PM deposition in the lung. PMID:18236216

  14. Peripheral Blood Neutrophilia as a Biomarker of Ozone-Induced Pulmonary Inflammation

    PubMed Central

    Bosson, Jenny A.; Blomberg, Anders; Stenfors, Nikolai; Helleday, Ragnberth; Kelly, Frank J.; Behndig, Annelie F.; Mudway, Ian S.

    2013-01-01

    Background Ozone concentrations are predicted to increase over the next 50 years due to global warming and the increased release of precursor chemicals. It is therefore urgent that good, reliable biomarkers are available to quantify the toxicity of this pollutant gas at the population level. Such a biomarker would need to be easily performed, reproducible, economically viable, and reflective of ongoing pathological processes occurring within the lung. Methodology We examined whether blood neutrophilia occurred following a controlled ozone challenge and addressed whether this could serve as a biomarker for ozone-induced airway inflammation. Three separate groups of healthy subjects were exposed to ozone (0.2 ppm, 2h) and filtered air (FA) on two separate occasions. Peripheral blood samples were collected and bronchoscopy with biopsy sampling and lavages was performed at 1.5h post exposures in group 1 (n=13), at 6h in group 2 (n=15) and at 18h in group 3 (n=15). Total and differential cell counts were assessed in blood, bronchial tissue and airway lavages. Results In peripheral blood, we observed fewer neutrophils 1.5h after ozone compared with the parallel air exposure (-1.1±1.0x109 cells/L, p<0.01), at 6h neutrophil numbers were increased compared to FA (+1.2±1.3x109 cells/L, p<0.01), and at 18h this response had fully attenuated. Ozone induced a peak in neutrophil numbers at 6h post exposure in all compartments examined, with a positive correlation between the response in blood and bronchial biopsies. Conclusions These data demonstrate a systemic neutrophilia in healthy subjects following an acute ozone exposure, which mirrors the inflammatory response in the lung mucosa and lumen. This relationship suggests that blood neutrophilia could be used as a relatively simple functional biomarker for the effect of ozone on the lung. PMID:24391708

  15. Allergic rhinitis

    PubMed Central

    2011-01-01

    Allergic rhinitis is a common disorder that is strongly linked to asthma and conjunctivitis. It is usually a long-standing condition that often goes undetected in the primary-care setting. The classic symptoms of the disorder are nasal congestion, nasal itch, rhinorrhea and sneezing. A thorough history, physical examination and allergen skin testing are important for establishing the diagnosis of allergic rhinitis. Second-generation oral antihistamines and intranasal corticosteroids are the mainstay of treatment. Allergen immunotherapy is an effective immune-modulating treatment that should be recommended if pharmacologic therapy for allergic rhinitis is not effective or is not tolerated. This article provides an overview of the pathophysiology, diagnosis, and appropriate management of this disorder. PMID:22166009

  16. The effects of cordycepin on ovalbumin-induced allergic inflammation by strengthening Treg response and suppressing Th17 responses in ovalbumin-sensitized mice.

    PubMed

    Tianzhu, Zhang; Shihai, Yang; Juan, Du

    2015-01-01

    The aim of the current study was to use a mouse model of allergic asthma to investigate whether cordycepin has antiasthmatic effects, and if so, to determine the mechanism of these effects. A total of 50 mice were randomly assigned to five experimental groups: control, model, dexamethasone (Dex, 2 mg/kg), and cordycepin (20-40 mg/kg). Histological studies were evaluated by the hematoxylin and eosin staining, OVA-specific serum and BALF IgE levels and Treg/Th17 cytokines were evaluated by enzyme-linked immunosorbent assay, and RORγt and Foxp3 were evaluated by western blot. Our study demonstrated that cordycepin inhibited OVA-induced increases in eosinophil count; IL-17A levels were recovered and increased IL-10 levels in bronchoalveolar lavage fluid. Histological studies demonstrated that cordycepin substantially inhibited OVA-induced eosinophilia in lung tissue. Western blot study demonstrated that cordycepin increased Foxp3 and inhibited RORγt. These findings suggest that cordycepin may effectively ameliorate the progression of asthma and could be used as a therapy for patients with allergic asthma. PMID:25417131

  17. Allergic Rhinitis.

    PubMed

    Kakli, Hasan A; Riley, Timothy D

    2016-09-01

    Among the atopic disorders, allergic rhinitis is the most prevalent. Patients who suffer from allergic rhinitis sustain significant morbidity and loss of productivity. Cardinal symptoms include nasal congestion, rhinorrhea, sneezing, and nasal itching, although multiple related symptoms may occur. Causes should be ruled out with a thorough history and physical examination, with particular attention to red flag or atypical symptoms. Skin testing or serum sampling can confirm diagnosis and also guide therapy. Therapy is multimodal, tailored to a particular patient's symptom burden and quality of life. PMID:27545735

  18. Omentin protects against LPS-induced ARDS through suppressing pulmonary inflammation and promoting endothelial barrier via an Akt/eNOS-dependent mechanism.

    PubMed

    Qi, Di; Tang, Xumao; He, Jing; Wang, Daoxin; Zhao, Yan; Deng, Wang; Deng, Xinyu; Zhou, Guoqi; Xia, Jing; Zhong, Xi; Pu, Shenglan

    2016-01-01

    Acute respiratory distress syndrome (ARDS) is characterized by increased pulmonary inflammation and endothelial barrier permeability. Omentin has been shown to benefit obesity-related systemic vascular diseases; however, its effects on ARDS are unknown. In the present study, the level of circulating omentin in patients with ARDS was assessed to appraise its clinical significance in ARDS. Mice were subjected to systemic administration of adenoviral vector expressing omentin (Ad-omentin) and one-shot treatment of recombinant human omentin (rh-omentin) to examine omentin's effects on lipopolysaccharide (LPS)-induced ARDS. Pulmonary endothelial cells (ECs) were treated with rh-omentin to further investigate its underlying mechanism. We found that a decreased level of circulating omentin negatively correlated with white blood cells and procalcitonin in patients with ARDS. Ad-omentin protected against LPS-induced ARDS by alleviating the pulmonary inflammatory response and endothelial barrier injury in mice, accompanied by Akt/eNOS pathway activation. Treatment of pulmonary ECs with rh-omentin attenuated inflammatory response and restored adherens junctions (AJs), and cytoskeleton organization promoted endothelial barrier after LPS insult. Moreover, the omentin-mediated enhancement of EC survival and differentiation was blocked by the Akt/eNOS pathway inactivation. Therapeutic rh-omentin treatment also effectively protected against LPS-induced ARDS via the Akt/eNOS pathway. Collectively, these data indicated that omentin protects against LPS-induced ARDS by suppressing inflammation and promoting the pulmonary endothelial barrier, at least partially, through an Akt/eNOS-dependent mechanism. Therapeutic strategies aiming to restore omentin levels may be valuable for the prevention or treatment of ARDS. PMID:27607575

  19. Alum Adjuvant Enhances Protection against Respiratory Syncytial Virus but Exacerbates Pulmonary Inflammation by Modulating Multiple Innate and Adaptive Immune Cells

    PubMed Central

    Kim, Ki-Hye; Lee, Young-Tae; Hwang, Hye Suk; Kwon, Young-Man; Jung, Yu-Jin; Lee, Youri; Lee, Jong Seok; Lee, Yu-Na; Park, Soojin; Kang, Sang-Moo

    2015-01-01

    Respiratory syncytial virus (RSV) is well-known for inducing vaccine-enhanced respiratory disease after vaccination of young children with formalin-inactivated RSV (FI-RSV) in alum formulation. Here, we investigated alum adjuvant effects on protection and disease after FI-RSV immunization with or without alum in comparison with live RSV reinfections. Despite viral clearance, live RSV reinfections caused weight loss and substantial pulmonary inflammation probably due to high levels of RSV specific IFN-γ+IL4-, IFN-γ-TNF-α+, IFN-γ+TNF-α- effector CD4 and CD8 T cells. Alum adjuvant significantly improved protection as evidenced by effective viral clearance compared to unadjuvanted FI-RSV. However, in contrast to unadjuvanted FI-RSV, alum-adjuvanted FI-RSV (FI-RSV-A) induced severe vaccine-enhanced RSV disease including weight loss, eosinophilia, and lung histopathology. Alum adjuvant in the FI-RSV-A was found to be mainly responsible for inducing high levels of RSV-specific IFN-γ-IL4+, IFN-γ-TNF-α+ CD4+ T cells, and proinflammatory cytokines IL-6 and IL-4 as well as B220+ plasmacytoid and CD4+ dendritic cells, and inhibiting the induction of IFN-γ+CD8 T cells. This study suggests that alum adjuvant in FI-RSV vaccines increases immunogenicity and viral clearance but also induces atypical T helper CD4+ T cells and multiple inflammatory dendritic cell subsets responsible for vaccine-enhanced severe RSV disease. PMID:26468884

  20. Airway oxidative stress causes vascular and hepatic inflammation via upregulation of IL-17A in a murine model of allergic asthma.

    PubMed

    Al-Harbi, Naif O; Nadeem, Ahmed; Al-Harbi, Mohammed M; Ansari, Mushtaq A; AlSharari, Shakir D; Bahashwan, Saleh A; Attia, Sabry M; Al-Hosaini, Khaled A; Al Hoshani, Ali R; Ahmad, Sheikh F

    2016-05-01

    Oxidants are generated in asthmatic airways due to infiltration of inflammatory leukocytes and resident cells in the lung. Reactive oxygen species (ROS) such as hydrogen peroxide and superoxide radical may leak into systemic circulation when generated in uncontrolled manner and may impact vasculature. Our previous studies have shown an association between airway inflammation and systemic inflammation; however so far none has investigated the impact of airway oxidative inflammation on hepatic oxidative stress and Th1/Th2/Th17 cytokine markers in liver/vasculature in a murine model of asthma. Therefore, this study investigated the contribution of oxidative stress encountered in asthmatic airways in modulation of systemic/hepatic Th1/Th2/Th17 cytokines balance and hepatic oxidative stress. Mice were sensitized intraperitoneally with cockroach extract (CE) in the presence of aluminum hydroxide followed by several intranasal (i.n.) challenges with CE. Mice were then assessed for systemic/hepatic inflammation through assessment of Th1/Th2/Th17 cytokines and oxidative stress (iNOS, protein nitrotyrosine, lipid peroxides and myeloperoxidase activity). Challenge with CE led to increased Th2/Th17 cytokines in blood/liver and hepatic oxidative stress. However, only Th17 related pro-inflammatory markers were upregulated by hydrogen peroxide (H2O2) inhalation in vasculature and liver, whereas antioxidant treatment, N-acetyl cysteine (NAC) downregulated them. Hepatic oxidative stress was also upregulated by H2O2 inhalation, whereas NAC attenuated it. Therefore, our study shows that airway oxidative inflammation may contribute to systemic inflammation through upregulation of Th17 immune responses in blood/liver and hepatic oxidative stress. This might predispose these patients to increased risk for the development of cardiovascular disorders. PMID:26953647

  1. Effect of nutritional antioxidant supplementation on systemic and pulmonary antioxidant status, airway inflammation and lung function in heaves-affected horses.

    PubMed

    Kirschvink, N; Fiévez, L; Bougnet, V; Art, T; Degand, G; Smith, N; Marlin, D; Roberts, C; Harris, P; Lekeux, P

    2002-11-01

    An oxidant/antioxidant imbalance in favour of oxidants has been identified as playing a decisive role in the pathogenesis of chronic inflammatory airway diseases. Nutritional antioxidant supplementation might reduce oxidative damage by enhancement of the antioxidant defence, thereby modulating inflammatory processes. In a placebo-controlled, blind study, it was tested whether a dietary antioxidant supplement administered for 4 weeks would improve lung function and reduce airway inflammation in heaves-affected horses. Eight horses in clinical remission of heaves were investigated at rest and after a standardised exercise test before and after treatment with an antioxidant supplement (consisting of a mixture of natural antioxidants including vitamins E and C and selenium from a variety of sources) or placebo (oatfeed pellets without additive). Pulmonary function and exercise tolerance were monitored; systemic and pulmonary lining fluid uric acid, glutathione and 8-epi-PGF(2alpha) were analysed, and bronchoalveolar lavage (BAL) cytology and inflammatory scoring of the airways were performed. The antioxidant treatment significantly improved exercise tolerance and significantly reduced endoscopic inflammatory score. Plasma uric acid concentrations were significantly reduced, suggesting downregulation of the xanthine-dehydrogenase and xanthine-oxydase pathway. Haemolysate glutathione showed a nonsignificant trend to increase, while plasma 8-epi-PGF(2alpha) remained unchanged. Pulmonary markers and BAL cytology were not significantly affected by antioxidant supplementation. The present study suggests that the antioxidant supplement tested modulated oxidant/antioxidant balance and airway inflammation of heaves-affected horses. PMID:12455842

  2. Sequential Treatments with Tongsai and Bufei Yishen Granules Reduce Inflammation and Improve Pulmonary Function in Acute Exacerbation-Risk Window of Chronic Obstructive Pulmonary Disease in Rats.

    PubMed

    Lu, Xiaofan; Li, Ya; Li, Jiansheng; Wang, Haifeng; Wu, Zhaohuan; Li, Hangjie; Wang, Yang

    2016-01-01

    Background. Sequential treatments of Chinese medicines for acute exacerbation of chronic obstructive pulmonary disease (AECOPD) risk window (RW) have benefits for preventing reoccurrences of AEs; however, the effects on pulmonary function, pulmonary, and systemic inflammatory biomarkers remain unclear. Methods. Cigarette-smoke/bacterial infections induced rats were randomized into Control, COPD, AECOPD, Tongsai Granule/normal saline (TSG/NS), moxifloxacin + salbutamol/NS (MXF+STL/NS), TSG/Bufei Yishen Granule (BYG), MXF+STL/STL, and TSG+MXF+STL/BYG+STL groups and given corresponding medicine(s) in AE- and/or RW phase. Body temperature, pulmonary function, blood cytology, serum amyloid A (SAA) and C-reactive protein (CRP), pulmonary histomorphology and myeloperoxidase (MPO), polymorphonuclear (PMN) elastase, interleukins IL-1β, IL-6, and IL-10, and tumor necrosis factor- (TNF-) α expressions were determined. Results. Body temperature, inflammatory cells and cytokines, SAA, CRP, and pulmonary impairment were higher in AECOPD rats than stable COPD, while pulmonary function declined and recovered to COPD level in 14-18 days. All biomarkers were improved in treated groups with shorter recovery times of 4-10 days, especially in TSG+MXF+STL/BYG+STL group. Conclusion. Sequential treatments with Tongsai and Bufei Yishen Granules, during AECOPD-RW periods, can reduce inflammatory response and improve pulmonary function and shorten the recovery courses of AEs, especially the integrated Chinese and Western medicines. PMID:27563333

  3. Sequential Treatments with Tongsai and Bufei Yishen Granules Reduce Inflammation and Improve Pulmonary Function in Acute Exacerbation-Risk Window of Chronic Obstructive Pulmonary Disease in Rats

    PubMed Central

    Lu, Xiaofan; Li, Ya; Wang, Haifeng; Wu, Zhaohuan; Li, Hangjie; Wang, Yang

    2016-01-01

    Background. Sequential treatments of Chinese medicines for acute exacerbation of chronic obstructive pulmonary disease (AECOPD) risk window (RW) have benefits for preventing reoccurrences of AEs; however, the effects on pulmonary function, pulmonary, and systemic inflammatory biomarkers remain unclear. Methods. Cigarette-smoke/bacterial infections induced rats were randomized into Control, COPD, AECOPD, Tongsai Granule/normal saline (TSG/NS), moxifloxacin + salbutamol/NS (MXF+STL/NS), TSG/Bufei Yishen Granule (BYG), MXF+STL/STL, and TSG+MXF+STL/BYG+STL groups and given corresponding medicine(s) in AE- and/or RW phase. Body temperature, pulmonary function, blood cytology, serum amyloid A (SAA) and C-reactive protein (CRP), pulmonary histomorphology and myeloperoxidase (MPO), polymorphonuclear (PMN) elastase, interleukins IL-1β, IL-6, and IL-10, and tumor necrosis factor- (TNF-) α expressions were determined. Results. Body temperature, inflammatory cells and cytokines, SAA, CRP, and pulmonary impairment were higher in AECOPD rats than stable COPD, while pulmonary function declined and recovered to COPD level in 14–18 days. All biomarkers were improved in treated groups with shorter recovery times of 4–10 days, especially in TSG+MXF+STL/BYG+STL group. Conclusion. Sequential treatments with Tongsai and Bufei Yishen Granules, during AECOPD-RW periods, can reduce inflammatory response and improve pulmonary function and shorten the recovery courses of AEs, especially the integrated Chinese and Western medicines. PMID:27563333

  4. A Single 9-Colour Flow Cytometric Method to Characterise Major Leukocyte Populations in the Rat: Validation in a Model of LPS-Induced Pulmonary Inflammation

    PubMed Central

    Barnett-Vanes, Ashton; Sharrock, Anna; Birrell, Mark A.; Rankin, Sara

    2016-01-01

    The rat is a commonly used model for immunological investigation. Yet basic research and characterisation of leukocyte populations and sub-sets lags far behind murine research, with inconsistency on reported leukocyte markers and their overlap. These shortcomings limit the opportunity for more complex and advanced rat immunology research. In this study, we developed a robust 9-colour flow-cytometric protocol to elucidate the major blood and tissue rat leukocyte populations, and validated it in a model of LPS-induced pulmonary inflammation. Blood and tissues (lung, BALF, spleen, liver, bone marrow) from naïve Sprague-Dawley rats were collected and analysed by flow cytometry (FCM). Rats were exposed to aerosolised saline or LPS (1mg/mL), at 3 and 24hrs thereafter blood, lung and BALF were collected and analysed using FCM and ELISA. Neutrophils, two monocyte subsets, NK Cells, B Cells, CD4+, CD8+ T Cells and alveolar macrophages can be identified simultaneously across different tissues using a 9-colour panel. Neutrophils and monocytes can be distinguished based upon differential expression of CD43 and His48. Neutrophils and CD43Lo/His48Hi monocyte-macrophages are elevated in the lung at 3 and 24hrs during LPS-induced pulmonary inflammation. This validated method for leukocyte enumeration will offer a platform for greater consistency in future rat immunology and inflammation research. PMID:26764486

  5. Titanium dioxide nanoparticles augment allergic airway inflammation and Socs3 expression via NF-κB pathway in murine model of asthma.

    PubMed

    Mishra, Vani; Baranwal, Vikas; Mishra, Rohit K; Sharma, Shivesh; Paul, Bholanath; Pandey, Avinash C

    2016-06-01

    Titanium dioxide nanoparticles (nTiO2) previously considered to possess relatively low toxicity both in vitro and in vivo, although classified as possibly carcinogenic to humans. Also, their adjuvant potential has been reported to promote allergic sensitization and modulate immune responses. Previously, in OVA induced mouse model of asthma we found high expression of Socs3 and low expression of Stat3 and IL-6. However, a clear understanding regarding the signaling pathways associated with nTiO2 adjuvant effect in mouse model of asthma is lacking. In the present study we investigated the status of Stat3/IL-6 and Socs3 and their relationship with NF-κB, with nTiO2 as an adjuvant in mouse model of asthma. nTiO2 when administered with ovalbumin (OVA) during sensitization phase augmented airway hyper-responsiveness (AHR), biochemical markers of lung damage and a mixed Th2/Th1 dependent immune response. At the same time, we observed significant elevation in the levels of Stat3, Socs3, NF-κB, IL-6 and TNF-α. Furthermore, transient in vivo blocking of NF-κB by NF-κB p65 siRNA, downregulated the expression of Socs3, IL-6 and TNF-α. Our study, thus, shows that nTiO2 exacerbate the inflammatory responses in lungs of pre-sensitized allergic individuals and that these changes are regulated via NF-κB pathway. PMID:27057692

  6. Expansion of CD4+CD25+ and CD25- T-Bet, GATA-3, Foxp3 and RORγt Cells in Allergic Inflammation, Local Lung Distribution and Chemokine Gene Expression

    PubMed Central

    Lu, You; Malmhäll, Carina; Sjöstrand, Margareta; Rådinger, Madeleine; O'Neil, Serena E.; Lötvall, Jan; Bossios, Apostolos

    2011-01-01

    Allergic asthma is associated with airway eosinophilia, which is regulated by different T-effector cells. T cells express transcription factors T-bet, GATA-3, RORγt and Foxp3, representing Th1, Th2, Th17 and Treg cells respectively. No study has directly determined the relative presence of each of these T cell subsets concomitantly in a model of allergic airway inflammation. In this study we determined the degree of expansion of these T cell subsets, in the lungs of allergen challenged mice. Cell proliferation was determined by incorporation of 5-bromo-2′-deoxyuridine (BrdU) together with 7-aminoactnomycin (7-AAD). The immunohistochemical localisation of T cells in the lung microenvironments was also quantified. Local expression of cytokines, chemokines and receptor genes was measured using real-time RT-PCR array analysis in tissue sections isolated by laser microdissection and pressure catapulting technology. Allergen exposure increased the numbers of T-bet+, GATA-3+, RORγt+ and Foxp3+ cells in CD4+CD25+ and CD4+CD25- T cells, with the greatest expansion of GATA-3+ cells. The majority of CD4+CD25+ T-bet+, GATA-3+, RORγt+ and Foxp3+ cells had incorporated BrdU and underwent proliferation during allergen exposure. Allergen exposure led to the accumulation of T-bet+, GATA-3+ and Foxp3+ cells in peribronchial and alveolar tissue, GATA-3+ and Foxp3+ cells in perivascular tissue, and RORγt+ cells in alveolar tissue. A total of 28 cytokines, chemokines and receptor genes were altered more than 3 fold upon allergen exposure, with expression of half of the genes claimed in all three microenvironments. Our study shows that allergen exposure affects all T effector cells in lung, with a dominant of Th2 cells, but with different local cell distribution, probably due to a distinguished local inflammatory milieu. PMID:21625544

  7. [Infectious-allergic bronchopulmonary paecilomycosis].

    PubMed

    Akhunova, A M

    1991-01-01

    Primary or secondary infection of the lungs with fungi of the Paecilomyces family (P. variotii and P. viridis) gives rise to the development of infectious allergic bronchopulmonary paecilomycosis characterized by the presence of chronic allergic interstitial pneumonia and obstructive bronchitis, bronchial asthma, total and pulmonary eosinophilia, the presence of the tissue parasitic form of the fungus in sputum, blood, pulmonary tissue, the presence of allergen-specific IgE and/or IgG antibodies in patients' sera, immediate or double (20 min and 6 h) reaction of the skin to administration of allergen of Paecilomyces, by not infrequent combination of lung damage and impairment of other organs as well as by chronic relapses. PMID:1805416

  8. Upregulated protein arginine methyltransferase 1 by IL-4 increases eotaxin-1 expression in airway epithelial cells and participates in antigen-induced pulmonary inflammation in rats.

    PubMed

    Sun, Qingzhu; Yang, Xudong; Zhong, Bo; Jiao, Fangfang; Li, Chenyan; Li, Dongmin; Lan, Xi; Sun, Jian; Lu, Shemin

    2012-04-01

    Protein arginine methyltransferases (PRMTs), catalyzing methylation of both histones and other cellular proteins, have emerged as key regulators of various cellular processes. This study aimed to identify key PRMTs involved in Ag-induced pulmonary inflammation (AIPI), a rat model for asthma, and to explore the role of PRMT1 in the IL-4-induced eosinophil infiltration process. E3 rats were i.p. sensitized with OVA/alum and intranasally challenged with OVA to induce AIPI. The expressions of PRMT1-6, eotaxin-1, and CCR3 in lungs were screened by real-time quantitative PCR. Arginine methyltransferase inhibitor 1 (AMI-1, a pan-PRMT inhibitor) and small interfering RNA-PRMT1 were used to interrupt the function of PRMT1 in A549 cells. In addition, AMI-1 was administrated intranasally to AIPI rats to observe the effects on inflammatory parameters. The results showed that PRMT1 expression was mainly expressed in bronchus and alveolus epithelium and significantly upregulated in lungs from AIPI rats. The inhibition of PRMTs by AMI-1 and the knockdown of PRMT1 expression were able to downregulate the expressions of eotaxin-1 and CCR3 with the IL-4 stimulation in the epithelial cells. Furthermore, AMI-1 administration to AIPI rats can also ameliorate pulmonary inflammation, reduce IL-4 production and humoral immune response, and abrogate eosinophil infiltration into the lungs. In summary, PRMT1 expression is upregulated in AIPI rat lungs and can be stimulated by IL-4. Intervention of PRMT1 activity can abrogate IL-4