Science.gov

Sample records for allergic pulmonary inflammation

  1. Biology of diesel exhaust effects on allergic pulmonary inflammation.

    PubMed

    Inoue, Ken-ichiro; Takano, Hirohisa

    2011-03-01

    Although the adverse health effects of diesel exhaust particles (DEP) have been proposed and are being clarified, their facilitating effects on preexisting pathological conditions (pathological conditions) have not been fully identified. On the other hand, there exist hypersensitive subjects against particulate matters. In this review, we provide insights into the immunotoxicity of DEP as an aggravating factor in hypersusceptible subjects, especially those with allergic pulmonary diseases using our in vivo experimental model. In brief, we examined the effects of DEP on allergic asthma in vivo, and showed that repetitive pulmonary exposure to DEP has promoting effects on allergic airway inflammation, including adjuvanticity on Th2-milieu. Further, we propose a causal machinery regarding the adverse impacts, i.e., via inappropriate activation of antigen-presenting cells such as dendritic cells.

  2. Hyaluronan fragments as mediators of inflammation in allergic pulmonary disease

    PubMed Central

    Ghosh, Sumit; Hoselton, Scott A.; Dorsam, Glenn P.; Schuh, Jane M.

    2015-01-01

    Asthma is frequently caused and/or exacerbated by sensitization to allergens, which are ubiquitous in many indoor and outdoor environments. Severe asthma is characterized by airway hyperresponsiveness and bronchial constriction in response to an inhaled allergen, leading to a disease course that is often very difficult to treat with standard asthma therapies. As a result of interactions among inflammatory cells, structural cells, and the intercellular matrix of the allergic lung, patients with sensitization to allergens may experience a greater degree of tissue injury followed by airway wall remodeling and progressive, accumulated pulmonary dysfunction as part of the disease sequela. In addition, turnover of extracellular matrix (ECM) components is a hallmark of tissue injury and repair. This review focuses on the role of the glycosaminoglycan hyaluronan (HA), a component of the ECM, in pulmonary injury and repair with an emphasis on allergic asthma. Both the synthesis and degradation of the ECM are critical contributors to tissue repair and remodeling. Fragmented HA accumulates during tissue injury and functions in ways distinct from the larger native polymer. There is gathering evidence that HA degradation products are active participants in stimulating the expression of inflammatory genes in a variety of immune cells at the injury site. In this review, we will consider recent advances in the understanding of the mechanisms that are associated with HA accumulation and inflammatory cell recruitment in the asthmatic lung. PMID:25582403

  3. Nerve growth factor and neurotrophin-3 mediate survival of pulmonary plasma cells during the allergic airway inflammation.

    PubMed

    Abram, Melanie; Wegmann, Michael; Fokuhl, Verena; Sonar, Sanchaita; Luger, Elke Olga; Kerzel, Sebastian; Radbruch, Andreas; Renz, Harald; Zemlin, Michael

    2009-04-15

    Allergen-specific Abs play a pivotal role in the induction and maintenance of allergic airway inflammation. During secondary immune responses, plasma cell survival and Ab production is mediated by extrinsic factors provided by the local environment (survival niches). It is unknown whether neurotrophins, a characteristic marker of allergic airway inflammation, influence plasma cell survival in the lung. Using a mouse model of allergic asthma, we found that plasma cells from the lung and spleen are distinct subpopulations exhibiting differential expression patterns of neurotrophins and their receptors (Trks). In vitro, the nerve growth factor (NGF) and neurotrophin-3 (NT3) led to a dose-dependent increase in viability of isolated pulmonary plasma cells due to up-regulation of the antiapoptotic Bcl2 pathway. In parallel, the expression of transcription factors that stimulate the production of immunoglobulins (X-box binding protein 1 and NF-kappaB subunit RelA) was enhanced in plasma cells treated with NGF and NT3. These findings were supported in vivo. When the NGF pathway was blocked by intranasal application of a selective TrkA inhibitor, sensitized mice showed reduced numbers of pulmonary plasma cells and developed lower levels of allergen-specific and total serum IgE in response to OVA inhalation. This suggests that in the allergic airway inflammation, NGF/TrkA-mediated pulmonary IgE production contributes significantly to serum-IgE levels. We conclude that the neurotrophins NGF and NT3 act as survival factors for pulmonary plasma cells and thus are important regulators of the local Ab production in the allergic airway disease.

  4. Chronic allergic inflammation causes vascular remodeling and pulmonary hypertension in BMPR2 hypomorph and wild-type mice.

    PubMed

    Mushaben, Elizabeth M; Hershey, Gurjit Khurana; Pauciulo, Michael W; Nichols, William C; Le Cras, Timothy D

    2012-01-01

    Loss-of-function mutations in the bone morphogenetic protein receptor type 2 (BMPR2) gene have been identified in patients with heritable pulmonary arterial hypertension (PAH); however, disease penetrance is low, suggesting additional factors play a role. Inflammation is associated with PAH and vascular remodeling, but whether allergic inflammation triggers vascular remodeling in individuals with BMPR2 mutations is unknown. Our goal was to determine if chronic allergic inflammation would induce more severe vascular remodeling and PAH in mice with reduced BMPR-II signaling. Groups of Bmpr2 hypomorph and wild-type (WT) Balb/c/Byj mice were exposed to house dust mite (HDM) allergen, intranasally for 7 or 20 weeks to generate a model of chronic inflammation. HDM exposure induced similar inflammatory cell counts in all groups compared to controls. Muscularization of pulmonary arterioles and arterial wall thickness were increased after 7 weeks HDM, more severe at 20 weeks, but similar in both groups. Right ventricular systolic pressure (RVSP) was measured by direct cardiac catheterization to assess PAH. RVSP was similarly increased in both HDM exposed groups after 20 weeks compared to controls, but not after 7 weeks. Airway hyperreactivity (AHR) to methacholine was also assessed and interestingly, at 20 weeks, was more severe in HDM exposed Bmpr2 hypomorph mice versus WT. We conclude that chronic allergic inflammation caused PAH and while the severity was mild and similar between WT and Bmpr2 hypomorph mice, AHR was enhanced with reduced BMPR-II signaling. These data suggest that vascular remodeling and PAH resulting from chronic allergic inflammation occurs independently of BMPR-II pathway alterations.

  5. Periostin in allergic inflammation.

    PubMed

    Izuhara, Kenji; Arima, Kazuhiko; Ohta, Shoichiro; Suzuki, Shoichi; Inamitsu, Masako; Yamamoto, Ken-ichi

    2014-06-01

    Periostin, an extracellular matrix protein belonging to the fasciclin family, has been shown to play a critical role in the process of remodeling during tissue/organ development or repair. Periostin functions as a matricellular protein in cell activation by binding to their receptors on cell surface, thereby exerting its biological activities. After we found that periostin is a downstream molecule of interleukin (IL)-4 and IL-13, signature cytokines of type 2 immune responses, we showed that periostin is a component of subepithelial fibrosis in bronchial asthma, the first formal proof that periostin is involved in allergic inflammation. Subsequently, a great deal of evidence has accumulated demonstrating the significance of periostin in allergic inflammation. It is of note that in skin tissues, periostin is critical for amplification and persistence of allergic inflammation by communicating between fibroblasts and keratinocytes. Furthermore, periostin has been applied to development of novel diagnostics or therapeutic agents for allergic diseases. Serum periostin can reflect local production of periostin in inflamed lesions induced by Th2-type immune responses and also can predict the efficacy of Th2 antagonists against bronchial asthma. Blocking the interaction between periostin and its receptor, αv integrin, or down-regulating the periostin expression shows improvement of periostin-induced inflammation in mouse models or in in vitro systems. It is hoped that diagnostics or therapeutic agents targeting periostin will be of practical use in the near future.

  6. Characteristics of Allergic Pulmonary Inflammation in CXCR3Knockout Mice Sensitized and Challenged with House Dust Mite Protein

    PubMed Central

    Chen, Xiaolan; Gao, Jinming; Guo, Zijian

    2016-01-01

    Chemokine C-X-C motif receptor 3 (CXCR3) is a chemokine receptor that is mainly expressed by activated T lymphocytes. T cells play important roles in allergic pulmonary inflammation, which is a hallmark of asthma and elicits the localized accumulation of activated T cells in the lung. In China, a marked increase in the incidence rate of chronic allergic pulmonary inflammation has made it a major public health threat. In the present study, we investigated the role of CXCR3 and its ligands in airway inflammation induced by house dust mite protein (HDMP) in a CXCR3 knockout (CXCR3KO) asthma mouse model. Pathological manifestations in the lung, cell counts and bronchoalveolar lavage fluid (BALF) classifications were studied using hematoxylin and eosin (H&E) staining. The levels of IL-4 and IFN-γ in the BALF and splenocyte supernatants were measured using ELISA. CD4+ and CD8+ T cells in the lung and spleen were analyzed by flow cytometry. RT-PCR was applied to measure the mRNA transcript levels of monokines induced by IFN-γ(CXCL9) and IFN-γ inducible protein 10(CXCL10). The total cell counts, eosinophil counts, and IL-4 levels in the BALF and cultured splenocyte supernatants were significantly increased, while the levels of IFN-γ were reduced in the HDMP groups(P<0.01). Changes in the total cell counts, eosinophil counts, and lymphocyte counts, as well as the total protein levels in the BALF, the levels of IL-4 in splenocyte supernatants, and the pathological manifestations in the lung, were all greater in CXCR3KO mice than in C57BL/6 wild-type mice. Furthermore, the expression levels of CXCL9 and CXCL10 mRNA transcripts in the lungs of CXCR3KO mice were lower than those in C57BL/6 wild-type mice (P<0.05). CXCR3 and its ligands (i.e., CXCL9 and CXCL10) may play anti-inflammatory roles in this animal model. Promoting the expression of CXCR3 and its ligands may represent a novel therapeutic approach for preventing and curing asthma. PMID:27727269

  7. IL-10 is necessary for the expression of airway hyperresponsiveness but not pulmonary inflammation after allergic sensitization

    NASA Astrophysics Data System (ADS)

    Mäkelä, M. J.; Kanehiro, A.; Borish, L.; Dakhama, A.; Loader, J.; Joetham, A.; Xing, Z.; Jordana, M.; Larsen, G. L.; Gelfand, E. W.

    2000-05-01

    Cytokines play an important role in modulating inflammatory responses and, as a result, airway tone. IL-10 is a regulatory cytokine that has been suggested for treatment of asthma because of its immunosuppressive and anti-inflammatory properties. In contrast to these suggestions, we demonstrate in a model of allergic sensitization that mice deficient in IL-10 (IL-10/) develop a pulmonary inflammatory response but fail to exhibit airway hyperresponsiveness in both in vitro and in vivo assessments of lung function. Reconstitution of these deficient mice with the IL-10 gene fully restores development of airway hyperresponsiveness comparable to control mice. These results identify an important role of IL-10, downstream of the inflammatory cascade, in regulating the tone of the airways after allergic sensitization and challenge.

  8. Silencing Nociceptor Neurons Reduces Allergic Airway Inflammation.

    PubMed

    Talbot, Sébastien; Abdulnour, Raja-Elie E; Burkett, Patrick R; Lee, Seungkyu; Cronin, Shane J F; Pascal, Maud A; Laedermann, Cedric; Foster, Simmie L; Tran, Johnathan V; Lai, Nicole; Chiu, Isaac M; Ghasemlou, Nader; DiBiase, Matthew; Roberson, David; Von Hehn, Christian; Agac, Busranour; Haworth, Oliver; Seki, Hiroyuki; Penninger, Josef M; Kuchroo, Vijay K; Bean, Bruce P; Levy, Bruce D; Woolf, Clifford J

    2015-07-15

    Lung nociceptors initiate cough and bronchoconstriction. To elucidate if these fibers also contribute to allergic airway inflammation, we stimulated lung nociceptors with capsaicin and observed increased neuropeptide release and immune cell infiltration. In contrast, ablating Nav1.8(+) sensory neurons or silencing them with QX-314, a charged sodium channel inhibitor that enters via large-pore ion channels to specifically block nociceptors, substantially reduced ovalbumin- or house-dust-mite-induced airway inflammation and bronchial hyperresponsiveness. We also discovered that IL-5, a cytokine produced by activated immune cells, acts directly on nociceptors to induce the release of vasoactive intestinal peptide (VIP). VIP then stimulates CD4(+) and resident innate lymphoid type 2 cells, creating an inflammatory signaling loop that promotes allergic inflammation. Our results indicate that nociceptors amplify pathological adaptive immune responses and that silencing these neurons with QX-314 interrupts this neuro-immune interplay, revealing a potential new therapeutic strategy for asthma. PMID:26119026

  9. Silencing nociceptor neurons reduces allergic airway inflammation

    PubMed Central

    Talbot, Sébastien; Abdulnour, Raja-Elie E.; Burkett, Patrick R.; Lee, Seungkyu; Cronin, Shane J.F.; Pascal, Maud A.; Laedermann, Cedric; Foster, Simmie L.; Tran, Johnathan V.; Lai, Nicole; Chiu, Isaac M.; Ghasemlou, Nader; DiBiase, Matthew; Roberson, David; Von Hehn, Christian; Agac, Busranour; Haworth, Oliver; Seki, Hiroyuki; Penninger, Josef M.; Kuchroo, Vijay K.; Bean, Bruce P.; Levy, Bruce D.; Woolf, Clifford J.

    2015-01-01

    Summary Lung nociceptors initiate cough and bronchoconstriction. To elucidate if these fibers also contribute to allergic airway inflammation we stimulated lung nociceptors with capsaicin and observed increased neuropeptide release and immune cell infiltration. In contrast, ablating Nav1.8+ sensory neurons or silencing them with QX-314, a charged sodium channel inhibitor that enters via large pore ion channels to specifically block nociceptors, substantially reduced ovalbumin or house dust mite-induced airway inflammation and bronchial hyperresponsiveness. We also discovered that IL-5, a cytokine produced by activated immune cells, acts directly on nociceptors to induce release of vasoactive intestinal peptide (VIP). VIP then stimulates CD4+ and resident innate lymphoid type 2 cells, creating an inflammatory signaling loop that promotes allergic inflammation. Our results indicate that nociceptors amplify pathological adaptive immune responses and that silencing these neurons with QX-314 interrupts this neuro-immune interplay, revealing a potential new therapeutic strategy for asthma. PMID:26119026

  10. Silibinin attenuates allergic airway inflammation in mice

    SciTech Connect

    Choi, Yun Ho; Jin, Guang Yu; Guo, Hui Shu; Piao, Hong Mei; Li, Liang chang; Li, Guang Zhao; Lin, Zhen Hua; Yan, Guang Hai

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer Silibinin diminishes ovalbumin-induced inflammatory reactions in the mouse lung. Black-Right-Pointing-Pointer Silibinin reduces the levels of various cytokines into the lung of allergic mice. Black-Right-Pointing-Pointer Silibinin prevents the development of airway hyperresponsiveness in allergic mice. Black-Right-Pointing-Pointer Silibinin suppresses NF-{kappa}B transcriptional activity. -- Abstract: Allergic asthma is a chronic inflammatory disease regulated by coordination of T-helper2 (Th2) type cytokines and inflammatory signal molecules. Silibinin is one of the main flavonoids produced by milk thistle, which is reported to inhibit the inflammatory response by suppressing the nuclear factor-kappa B (NF-{kappa}B) pathway. Because NF-{kappa}B activation plays a pivotal role in the pathogenesis of allergic inflammation, we have investigated the effect of silibinin on a mouse ovalbumin (OVA)-induced asthma model. Airway hyperresponsiveness, cytokines levels, and eosinophilic infiltration were analyzed in bronchoalveolar lavage fluid and lung tissue. Pretreatment of silibinin significantly inhibited airway inflammatory cell recruitment and peribronchiolar inflammation and reduced the production of various cytokines in bronchoalveolar fluid. In addition, silibinin prevented the development of airway hyperresponsiveness and attenuated the OVA challenge-induced NF-{kappa}B activation. These findings indicate that silibinin protects against OVA-induced airway inflammation, at least in part via downregulation of NF-{kappa}B activity. Our data support the utility of silibinin as a potential medicine for the treatment of asthma.

  11. Nasal hyperreactivity and inflammation in allergic rhinitis

    PubMed Central

    Veld, C. de Graaf-in't; Wijk, R. Gerth van; Zijlstra, F. J.

    1996-01-01

    The history of allergic disease goes back to 1819, when Bostock described his own ‘periodical affection of the eyes and chest’, which he called ‘summer catarrh’. Since they thought it was produced by the effluvium of new hay, this condition was also called hay fever. Later, in 1873, Blackley established that pollen played an important role in the causation of hay fever. Nowadays, the definition of allergy is ‘An untoward physiologic event mediated by a variety of different immunologic reactions’. In this review, the term allergy will be restricted to the IgE-dependent reactions. The most important clinical manifestations of IgE-dependent reactions are allergic conjunctivitis, allergic rhinitis, allergic asthma and atopic dermatitis. However, this review will be restricted to allergic rhinitis. The histopathological features of allergic inflammation involve an increase in blood flow and vascular permeability, leading to plasma exudation and the formation of oedema. In addition, a cascade of events occurs which involves a variety of inflammatory cells. These inflammatory cells migrate under the influence of chemotactic agents to the site of injury and induce the process of repair. Several types of inflammatory cells have been implicated in the pathogenesis of allergic rhinitis. After specific or nonspecific stimuli, inflammatory mediators are generated from cells normally found in the nose, such as mast cells, antigen-presenting cells and epithelial cells (primary effector cells) and from cells recruited into the nose, such as basophils, eosinophils, lymphocytes, platelets and neutrophils (secondary effector cells). This review describes the identification of each of the inflammatory cells and their mediators which play a role in the perennial allergic processes in the nose of rhinitis patients. PMID:18475703

  12. Group V secretory phospholipase A2 reveals its role in house dust mite-induced allergic pulmonary inflammation by regulation of dendritic cell function

    PubMed Central

    Giannattasio, Giorgio; Fujioka, Daisuke; Xing, Wei; Katz, Howard R.; Boyce, Joshua A.; Balestrieri, Barbara

    2010-01-01

    We have previously shown that group V secretory phospholipase A2 (sPLA2) regulates phagocytosis of zymosan and Candida albicans by a mechanism that depends on fusion of phagosomes with late endosomes in macrophages. Here we report that group V sPLA2 (Pla2g5)-null mice exposed to an extract of house dust mite Dermatophagoides farinae (Df) had markedly reduced pulmonary inflammation and goblet cell metaplasia compared to wild-type (WT) mice. Pla2g5-null mice had also impaired Th2-type adaptive immune responses to Df compared to WT mice. Pla2g5-null bone marrow-derived dendritic cells (BMDCs) activated by Df had delayed intracellular processing of allergen and impaired allergen-dependent maturation, a pattern recapitulated by the native lung DCs of Df-challenged mice. Adoptively transferred Df-loaded Pla2g5-null BMDCs were less able than Df-loaded WT BMDCs to induce pulmonary inflammation and Th2 polarization in WT mice. However, Pla2g5-null recipients transferred with WT or Pla2g5-null Df-loaded BMDCs exhibited significantly reduced local inflammatory responses to Df, even though the transfer of WT BMDCs still induced an intact Th2 cytokine response in regional lymph nodes. Thus, the expression of group V sPLA2 in APC regulates Ag processing and maturation of dendritic cells, and contributes to pulmonary inflammation and immune response against Df. Furthermore, an additional yet to be identified resident cell type is essential for the development of pulmonary inflammation, likely a cell in which group V sPLA2 is upregulated by Df and whose function is also regulated by group V sPLA2. PMID:20817863

  13. Neurology of allergic inflammation and rhinitis.

    PubMed

    Canning, Brendan J

    2002-05-01

    Afferent nerves, derived from the trigeminal ganglion, and postganglionic autonomic nerves, derived from sympathetic and parasympathetic ganglia expressing many different neurotransmitters, innervate the nose. Reflexes that serve to optimize the air-conditioning function of the nose by altering sinus blood flow, or serve to protect the nasal mucosal surface by mucus secretion, vasodilatation, and sneezing, can be initiated by a variety of stimuli, including allergen, cold air, and chemical irritation. Activation of nasal afferent nerves can also have profound effects on respiration, heart rate, blood pressure, and airway caliber (the diving response). Dysregulation of the nerves in the nose plays an integral role in the pathogenesis of allergic rhinitis. Axon reflexes can precipitate inflammatory responses in the nose, resulting in plasma extravasation and inflammatory cell recruitment, while allergic inflammation can produce neuronal hyper-responsiveness. Targeting the neuronal dysregulation in the nose may be beneficial in treating upper airway disease. PMID:11918862

  14. The role of heparanase in pulmonary cell recruitment in response to an allergic but not non-allergic stimulus.

    PubMed

    Morris, Abigail; Wang, Bo; Waern, Ida; Venkatasamy, Radhakrishnan; Page, Clive; Schmidt, Eric P; Wernersson, Sara; Li, Jin-Ping; Spina, Domenico

    2015-01-01

    Heparanase is an endo-β-glucuronidase that specifically cleaves heparan sulfate proteoglycans in the extracellular matrix. Expression of this enzyme is increased in several pathological conditions including inflammation. We have investigated the role of heparanase in pulmonary inflammation in the context of allergic and non-allergic pulmonary cell recruitment using heparanase knockout (Hpa-/-) mice as a model. Following local delivery of LPS or zymosan, no significant difference was found in the recruitment of neutrophils to the lung between Hpa-/- and wild type (WT) control. Similarly neutrophil recruitment was not inhibited in WT mice treated with a heparanase inhibitor. However, in allergic inflammatory models, Hpa-/- mice displayed a significantly reduced eosinophil (but not neutrophil) recruitment to the airways and this was also associated with a reduction in allergen-induced bronchial hyperresponsiveness, indicating that heparanase expression is associated with allergic reactions. This was further demonstrated by pharmacological treatment with a heparanase inhibitor in the WT allergic mice. Examination of lung specimens from patients with different severity of chronic obstructive pulmonary disease (COPD) found increased heparanase expression. Thus, it is established that heparanase contributes to allergen-induced eosinophil recruitment to the lung and could provide a novel therapeutic target for the development of anti-inflammatory drugs for the treatment of asthma and other allergic diseases.

  15. Innate Immune Responses to Engineered Nanomaterials During Allergic Airway Inflammation

    NASA Astrophysics Data System (ADS)

    Shipkowski, Kelly Anne

    The field of nanotechnology is continually advancing, and increasing amounts of consumer goods are being produced using engineered nanomaterials (ENMs). The health risks of occupational and/or consumer exposure to ENMs are not completely understood, although significant research indicates that pulmonary exposure to nanomaterials induces toxic effects in the lungs of exposed animals. Multi-walled carbon nanotubes (MWCNTs) are a specific category of ENMs and consist of sheets of graphene rolled into cylinders that are multiple layers thick in order to strengthen their rigidity. MWCNTs have a fiber-like shape, similar to that of asbestos, which allows for a high aspect ratio and makes them difficult to clear from the lung. Studies with rodent models have demonstrated that pulmonary exposure to ENMs, in particular MWCNTs, results in acute lung inflammation and the subsequent development of chronic fibrosis, suggesting a potential human health risk to individuals involved in the manufacturing of products utilizing these nanomaterials. Induction of IL-1beta secretion via activation of the inflammasome is a prime mechanism of MWCNT-induced inflammation. The inflammasome is a multi-protein scaffold found in a variety of cell types that forms in response to a variety of immune signals, including particulates. Sensitization with allergens, such as house dust mite (HDM), increases levels of the T helper 2 (Th2) cytokines IL-4 and IL-13 in mice and in humans, and there is particular cause for concern in cases of MWCNT exposure in individuals with pre-existing allergic airway disease, such as asthma. MWCNT exposure exacerbates airway inflammation and fibrosis in animal models of pre-existing allergic asthma, suggesting that individuals suffering from asthma are more susceptible to the toxic pulmonary effects of MWCNT exposure. Asthma is an exceptionally prominent human disease, and therefore the goal of this research was to better understand how pre-existing allergic airway

  16. Innate Immune Responses to Engineered Nanomaterials During Allergic Airway Inflammation

    NASA Astrophysics Data System (ADS)

    Shipkowski, Kelly Anne

    The field of nanotechnology is continually advancing, and increasing amounts of consumer goods are being produced using engineered nanomaterials (ENMs). The health risks of occupational and/or consumer exposure to ENMs are not completely understood, although significant research indicates that pulmonary exposure to nanomaterials induces toxic effects in the lungs of exposed animals. Multi-walled carbon nanotubes (MWCNTs) are a specific category of ENMs and consist of sheets of graphene rolled into cylinders that are multiple layers thick in order to strengthen their rigidity. MWCNTs have a fiber-like shape, similar to that of asbestos, which allows for a high aspect ratio and makes them difficult to clear from the lung. Studies with rodent models have demonstrated that pulmonary exposure to ENMs, in particular MWCNTs, results in acute lung inflammation and the subsequent development of chronic fibrosis, suggesting a potential human health risk to individuals involved in the manufacturing of products utilizing these nanomaterials. Induction of IL-1beta secretion via activation of the inflammasome is a prime mechanism of MWCNT-induced inflammation. The inflammasome is a multi-protein scaffold found in a variety of cell types that forms in response to a variety of immune signals, including particulates. Sensitization with allergens, such as house dust mite (HDM), increases levels of the T helper 2 (Th2) cytokines IL-4 and IL-13 in mice and in humans, and there is particular cause for concern in cases of MWCNT exposure in individuals with pre-existing allergic airway disease, such as asthma. MWCNT exposure exacerbates airway inflammation and fibrosis in animal models of pre-existing allergic asthma, suggesting that individuals suffering from asthma are more susceptible to the toxic pulmonary effects of MWCNT exposure. Asthma is an exceptionally prominent human disease, and therefore the goal of this research was to better understand how pre-existing allergic airway

  17. MicroRNA regulation of allergic inflammation and asthma.

    PubMed

    Pua, Heather H; Ansel, K Mark

    2015-10-01

    Allergic diseases are prevalent and clinically heterogeneous, and are the pathologic consequence of inappropriate or exaggerated type 2 immune responses. In this review, we explore the role of microRNAs (miRNAs) in regulating allergic inflammation. We discuss how miRNAs, acting through target genes to modulate gene expression networks, impact multiple facets of immune cell function critical for type 2 immune responses including cell survival, proliferation, differentiation, and effector functions. Human and mouse studies indicate that miRNAs are significant regulators of allergic immune responses. Finally, investigations of extracellular miRNAs offer promise for noninvasive biomarkers and therapeutic strategies for allergy and asthma.

  18. Regulation of allergic lung inflammation by endothelial cell transglutaminase 2.

    PubMed

    Soveg, Frank; Abdala-Valencia, Hiam; Campbell, Jackson; Morales-Nebreda, Luisa; Mutlu, Gökhan M; Cook-Mills, Joan M

    2015-09-15

    Tissue transglutaminase 2 (TG2) is an enzyme with multiple functions, including catalysis of serotonin conjugation to proteins (serotonylation). Previous research indicates that TG2 expression is upregulated in human asthma and in the lung endothelium of ovalbumin (OVA)-challenged mice. It is not known whether endothelial cell TG2 is required for allergic inflammation. Therefore, to determine whether endothelial cell TG2 regulates allergic inflammation, mice with an endothelial cell-specific deletion of TG2 were generated, and these mice were sensitized and challenged in the airways with OVA. Deletion of TG2 in endothelial cells blocked OVA-induced serotonylation in lung endothelial cells, but not lung epithelial cells. Interestingly, deletion of endothelial TG2 reduced allergen-induced increases in respiratory system resistance, number of eosinophils in the bronchoalveolar lavage, and number of eosinophils in the lung tissue. Endothelial cell deletion of TG2 did not alter expression of adhesion molecules, cytokines, or chemokines that regulate leukocyte recruitment, consistent with other studies, demonstrating that deletion of endothelial cell signals does not alter lung cytokines and chemokines during allergic inflammation. Taken together, the data indicate that endothelial cell TG2 is required for allergic inflammation by regulating the recruitment of eosinophils into OVA-challenged lungs. In summary, TG2 functions as a critical signal for allergic lung responses. These data identify potential novel targets for intervention in allergy/asthma.

  19. Inflammation in pulmonary arterial hypertension.

    PubMed

    Price, Laura C; Wort, S John; Perros, Frédéric; Dorfmüller, Peter; Huertas, Alice; Montani, David; Cohen-Kaminsky, Sylvia; Humbert, Marc

    2012-01-01

    Pulmonary arterial hypertension (PAH) is characterized by pulmonary vascular remodeling of the precapillary pulmonary arteries, with excessive proliferation of vascular cells. Although the exact pathophysiology remains unknown, there is increasing evidence to suggest an important role for inflammation. Firstly, pathologic specimens from patients with PAH reveal an accumulation of perivascular inflammatory cells, including macrophages, dendritic cells, T and B lymphocytes, and mast cells. Secondly, circulating levels of certain cytokines and chemokines are elevated, and these may correlate with a worse clinical outcome. Thirdly, certain inflammatory conditions such as connective tissue diseases are associated with an increased incidence of PAH. Finally, treatment of the underlying inflammatory condition may alleviate the associated PAH. Underlying pathologic mechanisms are likely to be "multihit" and complex. For instance, the inflammatory response may be regulated by bone morphogenetic protein receptor type 2 (BMPR II) status, and, in turn, BMPR II expression can be altered by certain cytokines. Although antiinflammatory therapies have been effective in certain connective-tissue-disease-associated PAH, this approach is untested in idiopathic PAH (iPAH). The potential benefit of antiinflammatory therapies in iPAH is of importance and requires further study. PMID:22215829

  20. Experimental extrinsic allergic alveolitis and pulmonary angiitis induced by intratracheal or intravenous challenge with Corynebacterium parvum in sensitized rats.

    PubMed

    Yi, E S; Lee, H; Suh, Y K; Tang, W; Qi, M; Yin, S; Remick, D G; Ulich, T R

    1996-10-01

    Extrinsic allergic alveolitis and pulmonary sarcoidosis are granulomatous diseases of the lung for which clinical presentation and anatomic site of granuloma formation differ. Extrinsic allergic alveolitis is caused by inhaled antigens, whereas the nature and source of the inciting antigen in sarcoidosis is unknown. To test the hypothesis that the route via which antigen is introduced to the lung contributes to the clinicopathological presentation of pulmonary granulomatous disease, rats immunized with intravenous (i.v.) Corynebacterium parvum were challenged after 2 weeks with either intratracheal (i.t.) or i.v. C. parvum. The granulomatous inflammation elicited by i.t. challenge predominantly involved alveolar spaces and histologically simulated extrinsic allergic alveolitis. In contrast, the inflammation induced by i.v. challenge was characterized by granulomatous angiitis and interstitial inflammation simulating sarcoidosis. Elevations of leukocyte counts and TNF levels in bronchoalveolar fluid, which reflect inflammation in the intra-alveolar compartment, were much more pronounced after i.t. than after i.v. challenge. Tumor necrosis factor, interleukin-6, CC chemokine, CXC chemokine, and adhesion molecule mRNA and protein expression occurred in each model. In conclusion, i.t. or i.v. challenge with C. parvum in sensitized rats caused pulmonary granulomatous inflammation that was histologically similar to human extrinsic allergic alveolitis and sarcoidosis, respectively. Although the soluble and cellular mediators of granulomatous inflammation were qualitatively similar in both disease models, the differing anatomic source of the same antigenic challenge was responsible for differing clinicopathological presentations. PMID:8863677

  1. A geranyl acetophenone targeting cysteinyl leukotriene synthesis prevents allergic airway inflammation in ovalbumin-sensitized mice

    SciTech Connect

    Ismail, Norazren; Jambari, Nuzul Nurahya; Zareen, Seema; Akhtar, Mohamad Nadeem; Shaari, Khozirah; Zamri-Saad, Mohamad; Tham, Chau Ling; Sulaiman, Mohd Roslan; Lajis, Nordin Hj; Israf, Daud Ahmad

    2012-03-01

    Asthma is associated with increased pulmonary inflammation and airway hyperresponsiveness. The current use of corticosteroids in the management of asthma has recently raised issues regarding safety and lack of responsiveness in 5–10% of asthmatic individuals. The aim of the present study was to investigate the therapeutic effect of a non-steroidal small molecule that has cysteinyl leukotriene (cysLT) inhibitory activity, upon attenuation of allergic lung inflammation in an acute murine model. Mice were sensitized with ovalbumin (OVA) and treated with several intraperitoneal doses (100, 20, 2 and 0.2 mg/kg) of 2,4,6,-trihydroxy-3-geranylacetophenone (tHGA). Bronchoalveolar lavage was performed, blood and lung samples were obtained and respiratory function was measured. OVA sensitization increased pulmonary inflammation and pulmonary allergic inflammation was significantly reduced at doses of 100, 20 and 2 mg/kg with no effect at the lowest dose of 0.2 mg/kg. The beneficial effects in the lung were associated with reduced eosinophilic infiltration and reduced secretion of Th2 cytokines and cysLTs. Peripheral blood reduction of total IgE was also a prominent feature. Treatment with tHGA significantly attenuated altered airway hyperresponsiveness as measured by the enhanced pause (Penh) response to incremental doses of methacholine. These data demonstrate that tHGA, a synthetic non-steroidal small molecule, can prevent acute allergic inflammation. This proof of concept opens further avenues of research and development of tHGA as an additional option to the current armamentarium of anti-asthma therapeutics. -- Highlights: ► Safer and effective anti-asthmatic drugs are in great demand. ► tHGA is a new 5-LO/cysLT inhibitor that inhibits allergic asthma in mice. ► tHGA is a natural compound that can be synthesized. ► Doses as low as 2 mg/kg alleviate lung pathology in experimental asthma. ► tHGA is a potential drug lead for the treatment of allergic asthma.

  2. Astragalin Attenuates Allergic Inflammation in a Murine Asthma Model.

    PubMed

    Liu, Jiping; Cheng, Yue; Zhang, Xiaoshuang; Zhang, Xue; Chen, Shuxian; Hu, Zongmiao; Zhou, Chunmei; Zhang, Enhu; Ma, Shiping

    2015-10-01

    The present study aimed to determine the protective effects and the underlying mechanisms of astragalin (AG) on ovalbumin (OVA)-induced allergic inflammation in a mouse model of allergic asthma. Our study demonstrated that AG inhibited OVA-induced increases in eosinophil count; IL-4, IL-5, IL-13, and IgE were recovered in bronchoalveolar lavage fluid, and increased IFN-γ level in bronchoalveolar lavage fluid. Histological studies demonstrated that AG substantially inhibited OVA-induced eosinophilia in lung tissue. Western blot analysis demonstrated that AG treatments markedly inhibited OVA-induced SOCS-3 expression and enhancement of SOCS-5 expression in an asthma model. Our findings support the possible use of AG as a therapeutic drug for patients with allergic asthma.

  3. Protective Effects of Diallyl Sulfide on Ovalbumin-Induced Pulmonary Inflammation of Allergic Asthma Mice by MicroRNA-144, -34a, and -34b/c-Modulated Nrf2 Activation.

    PubMed

    Ho, Cheng-Ying; Lu, Chi-Cheng; Weng, Chia-Jui; Yen, Gow-Chin

    2016-01-13

    Allergic airway disorder is characterized by an increase in the level of reactive oxygen species (ROS). The induction of inflammation and hyperresponsiveness by an allergen was ameliorated by antioxidants in vivo. This study investigated the protective effects and underlying mechanism of diallyl sulfide (DAS) on ovalbumin (OVA)-induced allergic asthma of BALB/c mice. The animals were intraperitoneally sensitized by inhaling OVA to induce chronic airway inflammation. By administering DAS, a decrease of the infiltrated inflammatory cell counts and the levels of IL-4 and IL-10 in bronchoalveolar lavage fluid as well as the OVA-specific immunoglobulin E levels in sera were observed. DAS also effectively inhibited OVA-induced inflammatory cell infiltration and mucus hypersecretion in lung tissue. Several OVA-induced inflammatory factors (ROS, 8-hydroxy-2'-deoxyguanosine, 8-iso-prostaglandin F2α, and NF-κB) were inhibited by DAS. In addition, DAS increased OVA inhalation-reduced levels of Nrf2 activation by regulating microRNA-144, -34a and -34b/c. Together, the pathogenesis of OVA-induced asthma is highly associated with oxidative stress, and DAS may be an effective supplement to alleviate this disease.

  4. Evaluation of allergic lung inflammation by computed tomography in a rat model in vivo.

    PubMed

    Jobse, B N; Johnson, J R; Farncombe, T H; Labiris, R; Walker, T D; Goncharova, S; Jordana, M

    2009-06-01

    The ability of micro-computed tomography (CT) to noninvasively evaluate allergic pulmonary inflammation in an experimental model was investigated. In addition, two image segmentation methods and the value of respiratory gating were investigated in the context of this model. Brown Norway rats were exposed to one of four doses of house dust mite (HDM) extract (0, 0.15, 15 or 150 microg) delivered intratracheally every 24 h for 10 days. CT scanning was performed at baseline and after several longitudinal HDM exposures. Both thoracic- and lung-segmentation methods yielded similar results when standardisation practices were employed. While tissue histology correlated well with CT images, cell counts from bronchoalveolar lavage depicted greater inflammation than did density measures from CT images. Evidence from representative CT slices and transaxial density distribution indicated that inflammation was primarily associated with major airways and extended into the periphery from these focal points. Respiratory gating demonstrated that images of the inspiratory state provided greater contrast of inflammatory processes. Lastly, decreases in tidal volumes indicated significant mechanical respiratory changes in animals exposed to both 15 and 150 microg. In summary, CT image segmentation can extract pertinent data on in vivo allergic airway/lung inflammation. Furthermore, respiratory gating provides additional contrast and insight into these quantification practices.

  5. Natural killer cell NKG2D and granzyme B are critical for allergic pulmonary inflammation⋆

    PubMed Central

    Farhadi, Nazanin; Lambert, Laura; Triulzi, Chiara; Openshaw, Peter J.M.; Guerra, Nadia; Culley, Fiona J.

    2014-01-01

    Background The diverse roles of innate immune cells in the pathogenesis of asthma remain to be fully defined. Natural killer (NK) cells are innate lymphocytes that can regulate adaptive immune responses. NK cells are activated in asthma; however, their role in allergic airway inflammation is not fully understood. Objective We investigated the importance of NK cells in house dust mite (HDM)-triggered allergic pulmonary inflammation. Specifically, we aimed to determine the role of the major NK-cell activating receptor NKG2D and NK-cell effector functions mediated by granzyme B. Methods Allergic airway inflammation was induced in the airways of mice by repeated intranasal HDM extract administration and responses in wild-type and NKG2D-deficient mice were compared. Adoptive transfer studies were used to identify the cells and mechanisms involved. Results Mice that lacked NKG2D were resistant to the induction of allergic inflammation and showed little pulmonary eosinophilia, few airway TH2 cells, and no rise in serum IgE after multiple HDM-allergen exposures. However, NKG2D was not required for pulmonary inflammation after a single inoculation of allergen. NKG2D-deficient mice showed no alteration in responses to respiratory virus infection. Transfer of wild-type NK cells (but not CD3+ cells) into NKG2D-deficient mice restored allergic inflammatory responses only if the NK cells expressed granzyme B. Conclusions These studies established a pivotal role for NK-cell NKG2D and granzyme B in the pathogenesis of HDM-induced allergic lung disease, and identified novel therapeutic targets for the prevention and treatment of asthma. PMID:24290277

  6. Pathogenic memory type Th2 cells in allergic inflammation.

    PubMed

    Endo, Yusuke; Hirahara, Kiyoshi; Yagi, Ryoji; Tumes, Damon J; Nakayama, Toshinori

    2014-02-01

    Immunological memory is a hallmark of adaptive immunity. Memory CD4 T helper (Th) cells are central to acquired immunity, and vaccines for infectious diseases are developed based on this concept. However, memory Th cells also play a critical role in the pathogenesis of various chronic inflammatory diseases, including asthma. We refer to these populations as 'pathogenic memory Th cells.' Here, we review recent developments highlighting the functions and characteristics of several pathogenic memory type Th2 cell subsets in allergic inflammation. Also discussed are the similarities and differences between pathogenic memory Th2 cells and recently identified type 2 innate lymphoid cells (ILC2), focusing on cytokine production and phenotypic profiles.

  7. Effects of multi-walled carbon nanotubes on a murine allergic airway inflammation model

    SciTech Connect

    Inoue, Ken-ichiro Koike, Eiko; Yanagisawa, Rie; Hirano, Seishiro; Nishikawa, Masataka; Takano, Hirohisa

    2009-06-15

    The development of nanotechnology has increased the risk of exposure to types of particles other than combustion-derived particles in the environment, namely, industrial nanomaterials. On the other hand, patients with bronchial asthma are sensitive to inhaled substances including particulate matters. This study examined the effects of pulmonary exposure to a type of nano-sized carbon nanotube (multi-walled nanotubes: MWCNT) on allergic airway inflammation in vivo and their cellular mechanisms in vitro. In vivo, ICR mice were divided into 4 experimental groups. Vehicle, MWCNT (50 {mu}g/animal), ovalbumin (OVA), and OVA + MWCNT were repeatedly administered intratracheally. Bronchoalveolar lavage (BAL) cellularity, lung histology, levels of cytokines related to allergic inflammation in lung homogenates/BAL fluids (BALFs), and serum immunoglobulin levels were studied. Also, we evaluated the impact of MWCNT (0.1-1 {mu}g/ml) on the phenotype and function of bone marrow-derived dendritic cells (DC) in vitro. MWCNT aggravated allergen-induced airway inflammation characterized by the infiltration of eosinophils, neutrophils, and mononuclear cells in the lung, and an increase in the number of goblet cells in the bronchial epithelium. MWCNT with allergen amplified lung protein levels of Th cytokines and chemokines compared with allergen alone. MWCNT exhibited adjuvant activity for allergen-specific IgG{sub 1} and IgE. MWCNT significantly increased allergen (OVA)-specific syngeneic T-cell proliferation, particularly at a lower concentration in vitro. Taken together, MWCNT can exacerbate murine allergic airway inflammation, at least partly, via the promotion of a Th-dominant milieu. In addition, the exacerbation may be partly through the inappropriate activation of antigen-presenting cells including DC.

  8. Experimental extrinsic allergic alveolitis and pulmonary angiitis induced by intratracheal or intravenous challenge with Corynebacterium parvum in sensitized rats.

    PubMed Central

    Yi, E. S.; Lee, H.; Suh, Y. K.; Tang, W.; Qi, M.; Yin, S.; Remick, D. G.; Ulich, T. R.

    1996-01-01

    Extrinsic allergic alveolitis and pulmonary sarcoidosis are granulomatous diseases of the lung for which clinical presentation and anatomic site of granuloma formation differ. Extrinsic allergic alveolitis is caused by inhaled antigens, whereas the nature and source of the inciting antigen in sarcoidosis is unknown. To test the hypothesis that the route via which antigen is introduced to the lung contributes to the clinicopathological presentation of pulmonary granulomatous disease, rats immunized with intravenous (i.v.) Corynebacterium parvum were challenged after 2 weeks with either intratracheal (i.t.) or i.v. C. parvum. The granulomatous inflammation elicited by i.t. challenge predominantly involved alveolar spaces and histologically simulated extrinsic allergic alveolitis. In contrast, the inflammation induced by i.v. challenge was characterized by granulomatous angiitis and interstitial inflammation simulating sarcoidosis. Elevations of leukocyte counts and TNF levels in bronchoalveolar fluid, which reflect inflammation in the intra-alveolar compartment, were much more pronounced after i.t. than after i.v. challenge. Tumor necrosis factor, interleukin-6, CC chemokine, CXC chemokine, and adhesion molecule mRNA and protein expression occurred in each model. In conclusion, i.t. or i.v. challenge with C. parvum in sensitized rats caused pulmonary granulomatous inflammation that was histologically similar to human extrinsic allergic alveolitis and sarcoidosis, respectively. Although the soluble and cellular mediators of granulomatous inflammation were qualitatively similar in both disease models, the differing anatomic source of the same antigenic challenge was responsible for differing clinicopathological presentations. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 11 Figure 13 Figure 12 Figure 14 PMID:8863677

  9. Nasal eosinophilic inflammation contributes to bronchial hyperresponsiveness in patients with allergic rhinitis.

    PubMed Central

    Jang, An-Soo

    2002-01-01

    There are increasing evidences that allergic rhinitis (AR) may influence the clinical course of asthma. We conducted methacholine challenge test and nasal eosinophils on nasal smear to patients with allergic rhinitis in order to investigate the mechanism of connecting upper and lower airway inflammation in 35 patients with AR during exacerbation. The methacholine concentration causing a 20% fall in FEV1 (PC20) was used as thresholds of bronchial hyperresponsiveness (BHR). Thresholds of 25 mg/dL or less were assumed to indicate BHR. All patients had normal pulmonary function. Significant differences in BHR were detected in the comparison of patients with cough or postnasal drip and without cough or postnasal drip. There were significant differences of PC20 between patients with cough or postnasal drip and those without cough or postnasal drip (3.41+/-3.59 mg/mL vs 10.2+/-1.2 mg/mL, p=0.001). The levels of total IgE were higher in patients with seasonal AR than in patients with perennial AR with exacerbation (472.5+/-132.5 IU/L vs. 389.0+/-70.9 IU/L, p<0.05). Nasal eosinophils were closely related to log PC20 (r=-0.65, p<0.01). These findings demonstrated that nasal eosinophilic inflammation might contribute to BHR in patients with AR. PMID:12482998

  10. Therapy with resveratrol attenuates obesity-associated allergic airway inflammation in mice.

    PubMed

    André, Diana Majolli; Calixto, Marina Ciarallo; Sollon, Carolina; Alexandre, Eduardo Costa; Leiria, Luiz O; Tobar, Natalia; Anhê, Gabriel Forato; Antunes, Edson

    2016-09-01

    Obesity and insulin resistance have been associated with deterioration in asthma outcomes. High oxidative stress and deficient activation of AMP-activated protein kinase (AMPK) have emerged as important regulators linking insulin resistance and inflammation. This study aimed to evaluate the effects of resveratrol on obesity-associated allergic pulmonary inflammation. Male C57/Bl6 mice fed with high-fat diet to induce obesity (obese group) or standard-chow diet (lean group) were treated or not with resveratrol (100mg/kg/day, two weeks). Mice were sensitized and challenged with ovalbumin (OVA). At 48h thereafter, bronchoalveolar lavage fluid was performed, and lungs collected for morphological studies and Western blot analysis. Treatment of obese mice with resveratrol significantly reduced hyperglycemia and insulin resistance, as well as the body measures (body mass, fat mass, % fat, and body area). OVA-challenge promoted a higher increase in pulmonary eosinophil infiltration in obese compared with lean mice, which was nearly abrogated by resveratrol treatment. Resveratrol markedly increased the phosphorylated AMPK expression in lung tissues of obese compared with lean mice. Resveratrol reduced the p47phox expression and reactive-oxygen species (ROS) production, and elevated the superoxide dismutase (SOD) levels in lung tissues of obese mice. The increased pulmonary levels of TNF-α and inducible nitric oxide synthase (iNOS) in obese mice were also normalized after resveratrol treatment. In lean mice, resveratrol failed to affect the levels of fasting glucose, p47phox, ROS levels, TNF-α, iNOS and phosphorylated AMPK. Resveratrol exhibits protective effects in obesity-associated lung inflammation that is accompanied by local AMPK activation and antioxidant property. PMID:27344038

  11. Recent advances in understanding the roles of vascular endothelial cells in allergic inflammation.

    PubMed

    Shoda, Tetsuo; Futamura, Kyoko; Orihara, Kanami; Emi-Sugie, Maiko; Saito, Hirohisa; Matsumoto, Kenji; Matsuda, Akio

    2016-01-01

    Allergic disorders commonly involve both chronic tissue inflammation and remodeling caused by immunological reactions to various antigens on tissue surfaces. Due to their anatomical location, vascular endothelial cells are the final responders to interact with various exogenous factors that come into contact with the epithelial surface, such as pathogen-associated molecular patterns (PAMPs) and antigens. Recent studies have shed light on the important roles of endothelial cells in the development and exacerbation of allergic disorders. For instance, endothelial cells have the greatest potential to produce several key molecules that are deeply involved in allergic inflammation, such as periostin and thymus and activation-regulated chemokine (TARC/CCL17). Additionally, endothelial cells were recently shown to be important functional targets for IL-33--an essential regulator of allergic inflammation. Notably, almost all endothelial cell responses and functions involved in allergic inflammation are not suppressed by corticosteroids. These corticosteroid-refractory endothelial cell responses and functions include TNF-α-associated angiogenesis, leukocyte adhesion, IL-33-mediated responses and periostin and TARC production. Therefore, these unique responses and functions of endothelial cells may be critically involved in the pathogenesis of various allergic disorders, especially their refractory processes. Here, we review recent studies, including ours, which have elucidated previously unknown pathophysiological roles of vascular endothelial cells in allergic inflammation and discuss the possibility of endothelium-targeted therapy for allergic disorders.

  12. Combination Therapy with Budesonide and Salmeterol in Experimental Allergic Inflammation.

    PubMed

    Pappová, L; Jošková, M; Kazimierová, I; Šutovská, M; Fraňová, S

    2016-01-01

    The aim of this study was to determinate bronchodilator, antitussive, and ciliomodulatory activity of inhaled combination therapy with budesonide and salmeterol, and to correlate the results with the anti-inflammatory effect. The experiments were performed using two models of allergic inflammation (21 and 28 days long sensitization with ovalbumine) in guinea pigs. The animals were treated daily by aerosols of budesonide (1 mM), salmeterol (0.17 mM), and a half-dose combination of the two drugs. Antitussive and bronchodilator activities were evaluated in vivo. The ciliary beat frequency (CBF) was assessed in vitro in tracheal brushed samples, and inflammatory cytokines (IL-4, IL-5, IL-13, GM-CSF, and TNF-α) were determined in bronchoalveolar lavage fluid (BALF). We found that the combination therapy significantly decreased the number of cough efforts, airway reactivity, and the level of inflammatory cytokines in both models of allergic asthma. Three weeks long sensitization led to an increase in CBF and all three therapeutic approaches have shown a ciliostimulatory effect in order: salmeterol < budesonid < combination therapy. Four weeks long ovalbumine sensitization, on the other hand, decreased the CBF, increased IL-5, and decreased IL-13. In this case, only the combination therapy was able to stimulate the CBF. We conclude that a half-dose combination therapy of budesonide and salmeterol shows comparable antitussive, bronchodilator, and the anti-inflammatory effect to a full dose therapy with budesonide alone, but had a more pronounced stimulatory effect on the CBF. PMID:27329088

  13. Epidermal Neuromedin U Attenuates IgE-Mediated Allergic Skin Inflammation

    PubMed Central

    Mizukawa, Yoshiko; Doi, Takaaki; Yamazaki, Yoshimi; Kudo, Akihiko; Shiohara, Tetsuo

    2016-01-01

    Although keratinocyte-derived neuropeptide neuromedin U (NMU) mediates the proinflammatory effects of innate-type mast cell activation, no information is available on the physiological roles. Here, to investigate the effects of NMU on IgE-mediated allergic skin inflammation, we determined whether IgE-mediated inflammation associated with severe scratching was induced in Nmu-/- mice administered repeated hapten applications to the ear or footpad. Dry skin was induced by targeted deletion of Nmu. Mice administered repeated hapten application developed IgE-mediated allergic inflammation characterized by severe scratching and increased serum IgE levels only when the ear, and not the footpad, was subjected to scratching, indicating that depletion of NMU from the epidermis alone does not drive such allergic inflammation. Thus, the susceptibility of Nmu-/- mice to allergic inflammation depends primarily on scratching dry skin. Further, allergic skin inflammation mediated by FcεRI cross-linking in Nmu-/-mice was inhibited by prior injection of NMU. These results indicate that NMU plays an important physiological role as a negative regulator during the late stage of IgE-mediated allergic skin inflammation. PMID:27463114

  14. Protective effects of surfactant protein D treatment in 1,3-β-glucan-modulated allergic inflammation.

    PubMed

    Fakih, Dalia; Pilecki, Bartosz; Schlosser, Anders; Jepsen, Christine S; Thomsen, Laura K; Ormhøj, Maria; Watson, Alastair; Madsen, Jens; Clark, Howard W; Barfod, Kenneth K; Hansen, Soren; Marcussen, Niels; Jounblat, Rania; Chamat, Soulaima; Holmskov, Uffe; Sorensen, Grith L

    2015-12-01

    Surfactant protein D (SP-D) is a pulmonary collectin important in lung immunity. SP-D-deficient mice (Sftpd(-/-)) are reported to be susceptible to ovalbumin (OVA)- and fungal allergen-induced pulmonary inflammation, while treatment with exogenous SP-D has therapeutic effects in such disease models. β-Glucans are a diverse group of polysaccharides previously suggested to serve as fungal ligands for SP-D. We set out to investigate if SP-D could interact with 1,3-β-glucan and attenuate allergic pulmonary inflammation in the presence of 1,3-β-glucan. Allergic airway disease was induced in Sftpd(-/-) and Sftpd(+/+) mice by OVA sensitization and subsequent challenge with OVA, 1,3-β-glucan, or OVA/1,3-β-glucan together. Mice in the combined treatment group were further treated with a high dose of recombinant fragment of human SP-D (rfhSP-D). We demonstrated direct interaction between SP-D and 1,3-β-glucan. OVA-induced mucous cell metaplasia was increased in Sftpd(-/-) mice, supporting previously reported protective effects of endogenous SP-D in allergy. OVA-induced parenchymal CCL11 levels and eosinophilic infiltration in bronchoalveolar lavage were unaffected by 1,3-β-glucan, but were reversed with rfhSP-D treatment. 1,3-β-Glucan treatment did, however, induce pulmonary neutrophilic infiltration and increased TNF-α levels in bronchoalveolar lavage, independently of OVA-induced allergy. This infiltration was also reversed by treatment with rfhSP-D. 1,3-β-Glucan reduced OVA-induced mucous cell metaplasia, T helper 2 cytokines, and IFN-γ production. rfhSP-D treatment further reduced mucous metaplasia and T helper 2 cytokine secretion to background levels. In summary, rfhSP-D treatment resulted in attenuation of both allergic inflammation and 1,3-β-glucan-mediated neutrophilic inflammation. Our data suggest that treatment with high-dose SP-D protects from mold-induced exacerbations of allergic asthma. PMID:26432866

  15. Protective effects of surfactant protein D treatment in 1,3-β-glucan-modulated allergic inflammation.

    PubMed

    Fakih, Dalia; Pilecki, Bartosz; Schlosser, Anders; Jepsen, Christine S; Thomsen, Laura K; Ormhøj, Maria; Watson, Alastair; Madsen, Jens; Clark, Howard W; Barfod, Kenneth K; Hansen, Soren; Marcussen, Niels; Jounblat, Rania; Chamat, Soulaima; Holmskov, Uffe; Sorensen, Grith L

    2015-12-01

    Surfactant protein D (SP-D) is a pulmonary collectin important in lung immunity. SP-D-deficient mice (Sftpd(-/-)) are reported to be susceptible to ovalbumin (OVA)- and fungal allergen-induced pulmonary inflammation, while treatment with exogenous SP-D has therapeutic effects in such disease models. β-Glucans are a diverse group of polysaccharides previously suggested to serve as fungal ligands for SP-D. We set out to investigate if SP-D could interact with 1,3-β-glucan and attenuate allergic pulmonary inflammation in the presence of 1,3-β-glucan. Allergic airway disease was induced in Sftpd(-/-) and Sftpd(+/+) mice by OVA sensitization and subsequent challenge with OVA, 1,3-β-glucan, or OVA/1,3-β-glucan together. Mice in the combined treatment group were further treated with a high dose of recombinant fragment of human SP-D (rfhSP-D). We demonstrated direct interaction between SP-D and 1,3-β-glucan. OVA-induced mucous cell metaplasia was increased in Sftpd(-/-) mice, supporting previously reported protective effects of endogenous SP-D in allergy. OVA-induced parenchymal CCL11 levels and eosinophilic infiltration in bronchoalveolar lavage were unaffected by 1,3-β-glucan, but were reversed with rfhSP-D treatment. 1,3-β-Glucan treatment did, however, induce pulmonary neutrophilic infiltration and increased TNF-α levels in bronchoalveolar lavage, independently of OVA-induced allergy. This infiltration was also reversed by treatment with rfhSP-D. 1,3-β-Glucan reduced OVA-induced mucous cell metaplasia, T helper 2 cytokines, and IFN-γ production. rfhSP-D treatment further reduced mucous metaplasia and T helper 2 cytokine secretion to background levels. In summary, rfhSP-D treatment resulted in attenuation of both allergic inflammation and 1,3-β-glucan-mediated neutrophilic inflammation. Our data suggest that treatment with high-dose SP-D protects from mold-induced exacerbations of allergic asthma.

  16. Specific immunotherapy in combination with Clostridium butyricum inhibits allergic inflammation in the mouse intestine.

    PubMed

    Shi, Yanhong; Xu, Ling-Zhi; Peng, Kangsheng; Wu, Wei; Wu, Ruijin; Liu, Zhi-Qiang; Yang, Gui; Geng, Xiao-Rui; Liu, Jun; Liu, Zhi-Gang; Liu, Zhanju; Yang, Ping-Chang

    2015-12-02

    The current therapy on allergic inflammation is unsatisfactory. Probiotics improve the immunity in the body. This study aims to test a hypothesis that administration with Clostridium butyricum (C. butyricum) enforces the effect of specific immunotherapy (SIT) on intestinal allergic inflammation. In this study, an ovalbumin (OVA) specific allergic inflammation mouse model was created. The mice were treated with SIT or/and C. butyricum. The results showed that the intestinal allergic inflammation was only moderately alleviated by SIT, which was significantly enforced by a combination with C. butyricum; treating with C. butyricum alone did not show much inhibitory efficacy. The increase in the frequency of the interleukin (IL)-10-producing OVA-specific B cell (OVAsBC) was observed in mice in parallel to the inhibitory effect on the intestinal allergic inflammation. The in vitro treatment of the OVAsBCs with OVA increased the histone deacetylase-1 (HDAC1) phosphorylation, modulated the transcription of the Bcl6 gene, and triggered the OVAsBCs to differentiate to the IgE-producing plasma cells. Exposure to both OVA and butyrate sodium in the culture increased the expression of IL-10 in OVAsBCs. In conclusion, administration with C. butyricum enforces the inhibitory effect of SIT on allergic inflammation in the mouse intestine.

  17. Airway Fibrinogenolysis and the Initiation of Allergic Inflammation

    PubMed Central

    Millien, Valentine Ongeri; Lu, Wen; Mak, Garbo; Yuan, Xiaoyi; Knight, J. Morgan; Porter, Paul; Kheradmand, Farrah

    2014-01-01

    The past 15 years of allergic disease research have produced extraordinary improvements in our understanding of the pathogenesis of airway allergic diseases such as asthma. Whereas it was previously viewed as largely an immunoglobulin E-mediated process, the gradual recognition that T cells, especially Type 2 T helper (Th2) cells and Th17 cells, play a major role in asthma and related afflictions has inspired clinical trials targeting cytokine-based inflammatory pathways that show great promise. What has yet to be clarified about the pathogenesis of allergic inflammatory disorders, however, are the fundamental initiating factors, both exogenous and endogenous, that drive and sustain B- and T-cell responses that underlie the expression of chronic disease. Here we review how proteinases derived from diverse sources drive allergic responses. A central discovery supporting the proteinase hypothesis of allergic disease pathophysiology is the role played by airway fibrinogen, which in part appears to serve as a sensor of unregulated proteinase activity and which, when cleaved, both participates in a novel allergic signaling pathway through Toll-like receptor 4 and forms fibrin clots that contribute to airway obstruction. Unresolved at present is the ultimate source of airway allergenic proteinases. From among many potential candidates, perhaps the most intriguing is the possibility such enzymes derive from airway fungi. Together, these new findings expand both our knowledge of allergic disease pathophysiology and options for therapeutic intervention. PMID:25525732

  18. Physicochemical characteristics of nanomaterials that affect pulmonary inflammation

    PubMed Central

    2014-01-01

    The increasing manufacture and use of products based on nanotechnology raises concerns for both workers and consumers. Various studies report induction of pulmonary inflammation after inhalation exposure to nanoparticles, which can vary in aspects such as size, shape, charge, crystallinity, chemical composition, and dissolution rate. Each of these aspects can affect their toxicity, although it is largely unknown to what extent. The aim of the current review is to analyse published data on inhalation of nanoparticles to identify and evaluate the contribution of their physicochemical characteristics to the onset and development of pulmonary inflammation. Many physicochemical characteristics of nanoparticles affect their lung deposition, clearance, and pulmonary response that, in combination, ultimately determine whether pulmonary inflammation will occur and to what extent. Lung deposition is mainly determined by the physical properties of the aerosol (size, density, shape, hygroscopicity) in relation to airflow and the anatomy of the respiratory system, whereas clearance and translocation of nanoparticles are mainly determined by their geometry and surface characteristics. Besides size and chemical composition, other physicochemical characteristics influence the induction of pulmonary inflammation after inhalation. As some nanoparticles dissolve, they can release toxic ions that can damage the lung tissue, making dissolution rate an important characteristic that affects lung inflammation. Fibre-shaped materials are more toxic to the lungs compared to spherical shaped nanoparticles of the same chemical composition. In general, cationic nanoparticles are more cytotoxic than neutral or anionic nanoparticles. Finally, surface reactivity correlates well with observed pulmonary inflammation. With all these characteristics affecting different stages of the events leading to pulmonary inflammation, no unifying dose metric could be identified to describe pulmonary

  19. Basophils as a primary inducer of the T helper type 2 immunity in ovalbumin-induced allergic airway inflammation

    PubMed Central

    Zhong, Wenwei; Su, Wen; Zhang, Yanjie; Liu, Qi; Wu, Jinhong; Di, Caixia; Zhang, Zili; Xia, Zhenwei

    2014-01-01

    Antigen-induced allergic airway inflammation is mediated by T helper type 2 (Th2) cells and their cytokines, but the mechanism that initiates the Th2 immunity is not fully understood. Recent studies show that basophils play important roles in initiating Th2 immunity in some inflammatory models. Here we explored the role of basophils in ovalbumin (OVA) -induced airway allergic inflammation in BALB/c mice. We found that OVA sensitization and challenge resulted in a significant increase in the amount of basophils in blood and lung, along with the up-regulation of activation marker of CD200R. However, depletion of basophils with MAR-1 or Ba103 antibody attenuated airway inflammation, represented by the significantly decreased amount of the Th2 subset in spleen and draining lymph nodes, interlukin-4 level in lung and OVA-special immunoglobulin E (sIgE) levels in serum. On the other hand, adoptive transfer of basophils from OVA-challenged lung tissue to naive BALB/c mice provoked the Th2 immune response. In addition, pulmonary basophils from OVA-challenged mice were able to uptake DQ-OVA and express MHC class II molecules and CD40 in vivo, as well as to release interleukin-4 following stimulation by IgE–antigen complexes and promote Th2 polarization in vitro. These findings demonstrate that basophils may participate in Th2 immune responses in antigen-induced allergic airway inflammation and that they do so through facilitating antigen presentation and providing interleukin-4. PMID:24383680

  20. Non-pulmonary allergic diseases and inflammatory bowel disease: A qualitative review

    PubMed Central

    Kotlyar, David S; Shum, Mili; Hsieh, Jennifer; Blonski, Wojciech; Greenwald, David A

    2014-01-01

    While the etiological underpinnings of inflammatory bowel disease (IBD) are highly complex, it has been noted that both clinical and pathophysiological similarities exist between IBD and both asthma and non-pulmonary allergic phenomena. In this review, several key points on common biomarkers, pathophysiology, clinical manifestations and nutritional and probiotic interventions for both IBD and non-pulmonary allergic diseases are discussed. Histamine and mast cell activity show common behaviors in both IBD and in certain allergic disorders. IgE also represents a key immunoglobulin involved in both IBD and in certain allergic pathologies, though these links require further study. Probiotics remain a critically important intervention for both IBD subtypes as well as multiple allergic phenomena. Linked clinical phenomena, especially sinonasal disease and IBD, are discussed. In addition, nutritional interventions remain an underutilized and promising therapy for modification of both allergic disorders and IBD. Recommending new mothers breastfeed their infants, and increasing the duration of breastfeeding may also help prevent both IBD and allergic diseases, but requires more investigation. While much remains to be discovered, it is clear that non-pulmonary allergic phenomena are connected to IBD in a myriad number of ways and that the discovery of common immunological pathways may usher in an era of vastly improved treatments for patients. PMID:25170192

  1. Role of selective blocking of bradykinin receptor subtypes in attenuating allergic airway inflammation in guinea pigs.

    PubMed

    El-Kady, Mohamed M; Girgis, Zarif I; Abd El-Rasheed, Eman A; Shaker, Olfat; Attallah, Magdy I; Soliman, Ahmed A

    2016-10-01

    The present study was designed to evaluate the potential role of bradykinin antagonists (R-715; bradykinin B1 receptor antagonist and icatibant; bradykinin B2 receptor antagonist) in treatment of allergic airway inflammation in comparison to dexamethasone and montelukast. R-715 as dexamethasone significantly decreased peribronchial leukocyte infiltration, bronchoalveolar lavage fluid (BALF) albumin and interleukin 1β as well as serum OVA-specific IgE level. Also, R-715 like montelukast significantly decreased BALF cell count (total and eosinophils). Icatibant showed negative results. The current findings suggest that selective bradykinin B1 receptor antagonists may have the therapeutic potential for the treatment of allergic airway inflammation. PMID:27321873

  2. Effect of the oral thrombin inhibitor dabigatran on allergic lung inflammation induced by repeated house dust mite administration in mice.

    PubMed

    de Boer, Johannes D; Berkhout, Lea C; de Stoppelaar, Sacha F; Yang, Jack; Ottenhoff, Roelof; Meijers, Joost C M; Roelofs, Joris J T H; van't Veer, Cornelis; van der Poll, Tom

    2015-10-15

    Asthma is a chronic disease of the airways; asthma patients are hampered by recurrent symptoms of dyspnoea and wheezing caused by bronchial obstruction. Most asthma patients suffer from chronic allergic lung inflammation triggered by allergens such as house dust mite (HDM). Coagulation activation in the pulmonary compartment is currently recognized as a feature of allergic lung inflammation, and data suggest that coagulation proteases further drive inflammatory mechanisms. Here, we tested whether treatment with the oral thrombin inhibitor dabigatran attenuates allergic lung inflammation in a recently developed HDM-based murine asthma model. Mice were fed dabigatran (10 mg/g) or placebo chow during a 3-wk HDM airway exposure model. Dabigatran treatment caused systemic thrombin inhibitory activity corresponding with dabigatran levels reported in human trials. Surprisingly, dabigatran did not lead to inhibition of HDM-evoked coagulation activation in the lung as measured by levels of thrombin-antithrombin complexes and D-dimer. Repeated HDM administration caused an influx of eosinophils and neutrophils into the lungs, mucus production in the airways, and a T helper 2 response, as reflected by a rise in bronchoalveolar IL-4 and IL-5 levels and a systemic rise in IgE and HDM-IgG1. Dabigatran modestly improved HDM-induced lung pathology (P < 0.05) and decreased IL-4 levels (P < 0.01), without influencing other HDM-induced responses. Considering the limited effects of dabigatran in spite of adequate plasma levels, these results argue against clinical evaluation of dabigatran in patients with asthma.

  3. The Effects of Maternal Exposure to Bisphenol A on Allergic Lung Inflammation into Adulthood

    PubMed Central

    Lawrence, B. Paige

    2012-01-01

    Bisphenol A (BPA) is a high–production volume chemical classified as an environmental estrogen and used primarily in the plastics industry. BPA’s increased usage correlates with rising BPA levels in people and a corresponding increase in the incidence of asthma. Due to limited studies, the contribution of maternal BPA exposure to allergic asthma pathogenesis is unclear. Using two established mouse models of allergic asthma, we examined whether developmental exposure to BPA alters hallmarks of allergic lung inflammation in adult offspring. Pregnant C57BL/6 dams were gavaged with 0, 0.5, 5, 50, or 500 μg BPA/kg/day from gestational day 6 until postnatal day 21. To induce allergic inflammation, adult offspring were mucosally sensitized with inhaled ovalbumin containing low-dose lipopolysaccharide or ip sensitized using ovalbumin with alum followed by ovalbumin aerosol challenge. In the mucosal sensitization model, female offspring that were maternally exposed to ≥ 50 μg BPA/kg/day displayed enhanced airway lymphocytic and lung inflammation, compared with offspring of control dams. Peritoneally sensitized, female offspring exposed to ≤ 50 μg BPA/kg/day presented dampened lung eosinophilia, compared with vehicle controls. Male offspring did not exhibit these differences in either sensitization model. Our data demonstrate that maternal exposure to BPA has subtle and qualitatively different effects on allergic inflammation, which are critically dependent upon route of allergen sensitization and sex. However, these subtle, yet persistent changes due to developmental exposure to BPA did not lead to significant differences in overall airway responsiveness, suggesting that early life exposure to BPA does not exacerbate allergic inflammation into adulthood. PMID:22821851

  4. Volatile Organic Compounds Enhance Allergic Airway Inflammation in an Experimental Mouse Model

    PubMed Central

    Bönisch, Ulrike; Böhme, Alexander; Kohajda, Tibor; Mögel, Iljana; Schütze, Nicole; von Bergen, Martin; Simon, Jan C.; Lehmann, Irina; Polte, Tobias

    2012-01-01

    Background Epidemiological studies suggest an association between exposure to volatile organic compounds (VOCs) and adverse allergic and respiratory symptoms. However, whether VOCs exhibit a causal role as adjuvants in asthma development remains unclear. Methods To investigate the effect of VOC exposure on the development of allergic airway inflammation Balb/c mice were exposed to VOCs emitted by new polyvinylchloride (PVC) flooring, sensitized with ovalbumin (OVA) and characterized in acute and chronic murine asthma models. Furthermore, prevalent evaporated VOCs were analyzed and mice were exposed to selected single VOCs. Results Exposure of mice to PVC flooring increased eosinophilic lung inflammation and OVA-specific IgE serum levels compared to un-exposed control mice. The increased inflammation was associated with elevated levels of Th2-cytokines. Long-term exposure to PVC flooring exacerbated chronic airway inflammation. VOCs with the highest concentrations emitted by new PVC flooring were N-methyl-2-pyrrolidone (NMP) and 2,2,4-trimethyl-1,3-pentanediol diisobutyrate (TXIB). Exposure to NMP or TXIB also increased the allergic immune response in OVA-sensitized mice. In vitro or in vivo exposure to NMP or TXIB reduced IL-12 production in maturing dendritic cells (DCs) and enhanced airway inflammation after adoptive DC transfer into Balb/c mice. At higher concentrations both VOCs induced oxidative stress demonstrated by increased isoprostane and glutathione-S-transferase-pi1 protein levels in the lung of non-sensitized mice. Treatment of PVC flooring-exposed mice with N-acetylcysteine prevented the VOC-induced increase of airway inflammation. Conclusions Our results demonstrate that exposure to VOCs may increase the allergic immune response by interfering with DC function and by inducing oxidative stress and has therefore to be considerate as risk factor for the development of allergic diseases. PMID:22802943

  5. Acidic Chitinase Limits Allergic Inflammation and Promotes Intestinal Nematode Expulsion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acidic mammalian chitinase (AMCase) is stereotypically induced during mammalian immune responses to helminths and allergens—yet, its precise role in immunity and inflammation is unclear. Here we show that in the lung, genetic ablation of AMCase failed to diminish type 2 inflammation against helmint...

  6. Protective effect of soybean oil- or fish oil-rich diets on allergic airway inflammation

    PubMed Central

    Navarro-Xavier, Roberta Araujo; de Barros, Karina Vieira; de Andrade, Iracema Senna; Palomino, Zaira; Casarini, Dulce Elena; Flor Silveira, Vera Lucia

    2016-01-01

    Background The increased prevalence of asthma and allergic diseases in westernized societies has been associated with increased intake of diets rich in n-6 fatty acids (FAs) and poor in n-3 FAs. This study aimed to analyze the prophylactic effects of treatment with a soybean oil-rich diet (rich in n-6) or fish oil (rich in n-3) in an allergic airway inflammation model on lung inflammation score, leukocyte migration, T-helper cell (Th)-2 (interleukin [IL]-4, IL-5) and Th1 (interferon [IFN]-γ, tumor necrosis factor-α) cytokines, lipoxin A4, nitric oxide, bradykinin, and corticosterone levels in bronchoalveolar lavage (BAL) or lungs. Methods Male Wistar rats fed with soybean oil- or fish oil-rich diet or standard rat chow were sensitized twice with ovalbumin–alumen and challenged twice with ovalbumin aerosol. The BAL and lungs were examined 24 hours later. Results Both diets, rich in n-6 or n-3 FAs, impaired the allergic lung inflammation and reduced leukocyte migration, eosinophil and neutrophil percentages, and IL-4/IL-5/bradykinin levels in BAL and/or lungs, as well as increased the nitric oxide levels in BAL. The soybean oil-rich diet additionally increased the levels of lipoxin A4 and corticosterone in the lungs. Conclusion Data presented demonstrated that the n-6 FA-rich diet had protective effect upon allergic airway inflammation and was as anti-inflammatory as the n-3 FA-rich diet, although through different mechanisms, suggesting that both diets could be considered as complementary therapy or a prophylactic alternative for allergic airway inflammation. PMID:27274303

  7. A common cold virus, rhinovirus 16, potentiates airway inflammation after segmental antigen bronchoprovocation in allergic subjects.

    PubMed Central

    Calhoun, W J; Dick, E C; Schwartz, L B; Busse, W W

    1994-01-01

    Many patients with asthma have increased wheezing with colds. We hypothesized that rhinovirus colds might increase asthma by augmenting airway allergic responses (histamine release and eosinophil influx) after antigen challenge. Seven allergic rhinitis patients and five normal volunteers were infected with rhinovirus type 16 (RV16) and evaluated by segmental bronchoprovocation and bronchoalveolar lavage. Segmental challenge with saline and antigen was performed 1 mo before infection, during the acute infection, and 1 mo after infection. Lavage was performed immediately and 48 h after antigen challenge. Data were analyzed by two-way analysis of variance, and a P value of < or = 0.05 was considered to be significant. All volunteers inoculated with RV16 developed an acute respiratory infection. BAL fluid obtained from allergic rhinitis subjects during the acute viral infection, and 1 mo after infection, showed the following significant RV16-associated changes after antigen challenge: (a) an enhanced release of histamine immediately after local antigen challenge; (b) persistent histamine leak 48 h afterwards; and (c) a greater recruitment of eosinophils to the airway 48 h after challenge. These changes were not seen in non-allergic volunteers infected with RV16 and challenged with antigen, nor in allergic volunteers repetitively challenged with antigen but not infected with RV16, nor in RV16 infected allergic volunteers sham challenged with saline. We conclude that rhinovirus upper respiratory infection significantly augments immediate and late allergic responses in the airways of allergic individuals after local antigen challenge. These data suggest that one mechanism of increased asthma during a cold is an accentuation of allergic responses in the airway which may then contribute to bronchial inflammation. PMID:7989575

  8. METALS, PARTICLES AND IMPACT UPON PULMONARY ALLERGIC RESPONSES

    EPA Science Inventory


    The increase in allergic asthma over the past few decades has prompted investigations into whether air pollution may affect either the incidence or severity of allergic lung disease. Population studies have demonstrated that as air pollution rises, symptoms, medication use a...

  9. Effect of P2X4R on airway inflammation and airway remodeling in allergic airway challenge in mice

    PubMed Central

    CHEN, HONGXIA; XIA, QINGQING; FENG, XIAOQIAN; CAO, FANGYUAN; YU, HANG; SONG, YINLI; NI, XIUQIN

    2016-01-01

    P2X4 receptor (P2X4R) is the most widely expressed subtype of the P2XRs in the purinergic receptor family. Adenosine triphosphate (ATP), a ligand for this receptor, has been implicated in the pathogenesis of asthma. ATP-P2X4R signaling is involved in pulmonary vascular remodeling, and in the proliferation and differentiation of airway and alveolar epithelial cell lines. However, the role of P2X4R in asthma remains to be elucidated. This aim of the present study was to investigate the effects of P2X4R in a murine experimental asthma model. The asthmatic model was established by the inhalation of ovalbumin (OVA) in BALB/c mice. The mice were treated with P2X4R-specific agonists and antagonists to investigate the role of this receptor in vivo. Pathological changes in the bronchi and lung tissues were examined using hematoxylin and eosin staining, Masson's trichrome staining and Alcian blue staining. The inflammatory cells in the bronchoalveolar lavage fluid were counted, and the expression levels of P2X4R, α-smooth muscle actin (α-SMA) and proliferating cell nuclear antigen (PCNA) were detected using western blotting. In the OVA-challenged mice, inflammation, infiltration, collagen deposition, mucus production, and the expression levels of P2X4R and PCNA were all increased; however, the expression of α-SMA was decreased, compared with the mice in the control group. Whereas treatment with the P2X4R agonist, ATP, enhanced the allergic reaction, treatment with the P2X4R antagonist, 5-BDBD, attenuated the allergic reaction. The results suggested that ATP-P2X4R signaling may not only contribute to airway inflammation, but it may also contribute to airway remodeling in allergic asthma in mice. PMID:26648454

  10. Abietic acid attenuates allergic airway inflammation in a mouse allergic asthma model.

    PubMed

    Gao, Yi; Zhaoyu, Liu; Xiangming, Fang; Chunyi, Lin; Jiayu, Pan; Lu, Shen; Jitao, Chen; Liangcai, Chen; Jifang, Liu

    2016-09-01

    Abietic acid (AA), one of the terpenoids isolated from Pimenta racemosa var. grissea, has been reported to have anti-inflammatory and immunomodulatory effects. However, the anti-allergic effects of AA remain unclear. The aim of this study was to investigate the anti-allergic effects of AA in an ovalbumin (OVA)-induced asthma murine model. The model of mouse asthma was established by induction of OVA. AA (10, 20, 40mg/kg) was administered by oral gavage 1h after the OVA treatment on days 21 to 23. At 24h after the last challenge, bronchoalveolar lavage fluid (BALF) and lung tissues were collected to assess pathological changes, cytokines production, and NF-κB expression. The results showed that AA attenuated lung histopathologic changes, inflammatory cells infiltration, and bronchial hyper-responsiveness. AA also inhibited OVA-induced the nitric oxide (NO), IL-4, IL-5, IL-13, and OVA-specific IgE production, as well as NF-κB activation. In conclusion, the current study demonstrated that AA exhibited protective effects against OVA-induced allergic asthma in mice and the possible mechanism was involved in inhibiting NF-κB activation. PMID:27318791

  11. Effects of local nasal immunotherapy in allergic airway inflammation: Using urea denatured Dermatophagoides pteronyssinus.

    PubMed

    Yu, Sheng-Jie; Liao, En-Chih; Tsai, Jaw-Ji

    2015-01-01

    Despite improvements in anti-allergy medication, the prevalence of allergic airway inflammation remains high, affecting up to 40% of the population worldwide. Allergen immunotherapy is effective for inducing tolerance but has the adverse effect of severe allergic reaction. This can be avoided by denaturing with urea. In this study, we demonstrated that the serum level of allergen-specific IgE in mice sensitized with native Dermatophagoides pteronyssinus (Der p) crude extract after receiving local nasal immunotherapy (LNIT) with urea-denatured Der p crude extract (DN-Dp) significantly decreased compared to that in the normal saline (NS) treatment group. Expressions of IL-4 were significantly reduced in lung tissues after treatment. Inflammation around the bronchial epithelium improved and airway hypersensitivity was down-regulated. LNIT with DN-Dp can down-regulate IL-1b, IL-6 and TNF-a expression and then decrease Der p-induced allergic airway inflammation. This therapeutic modality may be used as an alternative treatment for airway allergic diseases.

  12. Ripe fruit of Rubus coreanus inhibits mast cell-mediated allergic inflammation.

    PubMed

    Kim, Hui-Hun; Choi, Phil Hyung; Yoo, Jin-Su; Jeon, Hoon; Chae, Byeong-Suk; Park, Jeong-Suk; Kim, Sang-Hyun; Shin, Tae-Yong

    2012-02-01

    In this study, we investigated the effect of a water extract of the ripe fruits of Rubus coreanus Miq. (Rosaceae) (RFRC) on mast cell-mediated allergic inflammation and studied the possible mechanism of action. Mast cell-mediated allergic disease is involved in many diseases such as anaphylaxis, rhinitis, asthma and atopic dermatitis. RFRC dose-dependently inhibited compound 48/80-induced systemic anaphylaxis and serum histamine release in mice. RFRC reduced the immunoglobulin E (IgE)-mediated local allergic reaction, passive cutaneous anaphylaxis. RFRC attenuated histamine release from rat peritoneal mast cells and human mast cells by the reduction of intracellular calcium. RFRC decreased the phorbol 12-myristate 13-acetate (PMA) and the calcium ionophore A23187 (PMACI)-stimulated expression and secretion of pro-inflammatory cytokines in human mast cells. The inhibitory effect of RFRC on cytokine production was nuclear factor (NF)-κB- and mitogen-activated protein kinase (MAPK)-dependent. In addition, RFRC suppressed the activation of caspase-1. Our findings provide evidence that RFRC inhibits mast cell-derived allergic inflammatory reactions, and for the involvement of calcium, NF-κB, MAPKs and caspase-1 in these effects. Furthermore, in vivo and in vitro anti-allergic inflammatory effects of RFRC provide affirmative proof of a possible therapeutic application of this agent in allergic inflammatory diseases. PMID:22075758

  13. MicroRNA-26a/-26b-COX-2-MIP-2 Loop Regulates Allergic Inflammation and Allergic Inflammation-promoted Enhanced Tumorigenic and Metastatic Potential of Cancer Cells.

    PubMed

    Kwon, Yoojung; Kim, Youngmi; Eom, Sangkyung; Kim, Misun; Park, Deokbum; Kim, Hyuna; Noh, Kyeonga; Lee, Hansoo; Lee, Yun Sil; Choe, Jongseon; Kim, Young Myeong; Jeoung, Dooil

    2015-05-29

    Cyclooxgenase-2 (COX-2) knock-out mouse experiments showed that COX-2 was necessary for in vivo allergic inflammation, such as passive cutaneous anaphylaxis, passive systemic anaphylaxis, and triphasic cutaneous allergic reaction. TargetScan analysis predicted COX-2 as a target of miR-26a and miR-26b. miR-26a/-26b decreased luciferase activity associated with COX-2-3'-UTR. miR-26a/-26b exerted negative effects on the features of in vitro and in vivo allergic inflammation by targeting COX-2. ChIP assays showed the binding of HDAC3 and SNAIL, but not COX-2, to the promoter sequences of miR-26a and miR-26b. Cytokine array analysis showed that the induction of chemokines, such as MIP-2, in the mouse passive systemic anaphylaxis model occurred in a COX-2-dependent manner. ChIP assays showed the binding of HDAC3 and COX-2 to the promoter sequences of MIP-2. In vitro and in vivo allergic inflammation was accompanied by the increased expression of MIP-2. miR-26a/-26b negatively regulated the expression of MIP-2. Allergic inflammation enhanced the tumorigenic and metastatic potential of cancer cells and induced positive feedback involving cancer cells and stromal cells, such as mast cells, macrophages, and endothelial cells. miR-26a mimic and miR-26b mimic negatively regulated the positive feedback between cancer cells and stromal cells and the positive feedback among stromal cells. miR-26a/-26b negatively regulated the enhanced tumorigenic potential by allergic inflammation. COX-2 was necessary for the enhanced metastatic potential of cancer cells by allergic inflammation. Taken together, our results indicate that the miR26a/-26b-COX-2-MIP-2 loop regulates allergic inflammation and the feedback relationship between allergic inflammation and the enhanced tumorigenic and metastatic potential.

  14. Immune Modulatory Effects of IL-22 on Allergen-Induced Pulmonary Inflammation

    PubMed Central

    Fang, Ping; Zhou, Li; Zhou, Yuqi; Kolls, Jay K.; Zheng, Tao; Zhu, Zhou

    2014-01-01

    IL-22 is a Th17/Th22 cytokine that is increased in asthma. However, recent animal studies showed controversial findings in the effects of IL-22 in allergic asthma. To determine the role of IL-22 in ovalbumin-induced allergic inflammation we generated inducible lung-specific IL-22 transgenic mice. Transgenic IL-22 expression and signaling activity in the lung were determined. Ovalbumin (OVA)-induced pulmonary inflammation, immune responses, and airway hyperresponsiveness (AHR) were examined and compared between IL-22 transgenic mice and wild type controls. Following doxycycline (Dox) induction, IL-22 protein was readily detected in the large (CC10 promoter) and small (SPC promoter) airway epithelial cells. IL-22 signaling was evidenced by phosphorylated STAT3. After OVA sensitization and challenge, compared to wild type littermates, IL-22 transgenic mice showed decreased eosinophils in the bronchoalveolar lavage (BAL), and in lung tissue, decreased mucus metaplasia in the airways, and reduced AHR. Among the cytokines and chemokines examined, IL-13 levels were reduced in the BAL fluid as well as in lymphocytes from local draining lymph nodes of IL-22 transgenic mice. No effect was seen on the levels of serum total or OVA-specific IgE or IgG. These findings indicate that IL-22 has immune modulatory effects on pulmonary inflammatory responses in allergen-induced asthma. PMID:25254361

  15. Therapies for allergic inflammation: refining strategies to induce tolerance.

    PubMed

    Akdis, Cezmi A

    2012-05-04

    Current therapies for asthma and allergy are relatively safe and effective at controlling symptoms but do not change the chronic course of disease. There is no established method to prevent asthma and allergy, and major unmet needs in this area include the better control of the severe forms of these diseases and the developments of curative therapies. Two major therapeutic strategies for asthma and allergy are currently being developed, and I here discuss the advances and challenges for future therapeutic development in these two areas. The first approach, allergen-specific immunotherapy, aims to induce specific immune tolerance and has a long-term disease-modifying effect. The second approach is the use of biological immune response modifiers to decrease pathological immune responses. Combination strategies using both of these approaches may also provide a route for addressing the unmet clinical needs in allergic diseases.

  16. Intranasal sirna targeting c-kit reduces airway inflammation in experimental allergic asthma.

    PubMed

    Wu, Wei; Chen, Hui; Li, Ya-Ming; Wang, Sheng-Yu; Diao, Xin; Liu, Kai-Ge

    2014-01-01

    Allergic asthma is characterized by airway inflammation caused by infiltration and activation of inflammatory cells that produce cytokines. Many studies have revealed that c-kit, a proto-oncogene, and its ligand, stem cell factor (SCF), play an important role in the development of asthmatic inflammation. Intranasal small interference RNA (siRNA) nanoparticles targeting specific viral gene could inhibit airway inflammation. In this study, we assessed whether silencing of c-kit with intranasal small interference RNA could reduce inflammation in allergic asthma. A mouse model of experimental asthma was treated with intranasal administration of anti-c-kit siRNA to inhibit the expression of the c-kit gene. We assessed the inflammatory response in both anti-c-kit siRNA-treated and control mice. Local administration of siRNA effectively inhibited the expression of the c-kit gene and reduced airway mucus secretion and the infiltration of eosinophils in bronchoalveolar lavage fluid. Moreover, c-kit siRNA reduced the production of SCF, interleukin-4 (IL-4), and IL-5, but had no effect on interferon-γ (IFN-γ) generation. These results show that intranasal siRNA nanoparticles targeting c-kit can decrease the inflammatory response in experimental allergic asthma.

  17. Estrogen Signaling Modulates Allergic Inflammation and Contributes to Sex Differences in Asthma

    PubMed Central

    Keselman, Aleksander; Heller, Nicola

    2015-01-01

    Asthma is a chronic airway inflammatory disease that affects ~300 million people worldwide. It is characterized by airway constriction that leads to wheezing, coughing, and shortness of breath. The most common treatments are corticosteroids and β2-adrenergic receptor antagonists, which target inflammation and airway smooth muscle constriction, respectively. The incidence and severity of asthma is greater in women than in men, and women are more prone to develop corticosteroid-resistant or “hard-to-treat” asthma. Puberty, menstruation, pregnancy, menopause, and oral contraceptives are known to contribute to disease outcome in women, suggesting a role for estrogen and other hormones impacting allergic inflammation. Currently, the mechanisms underlying these sex differences are poorly understood, although the effect of sex hormones, such as estrogen, on allergic inflammation is gaining interest. Asthma presents as a heterogeneous disease. In typical Th2-type allergic asthma, interleukin (IL)-4 and IL-13 predominate, driving IgE production and recruitment of eosinophils into the lungs. Chronic Th2-inflammation in the lung results in structural changes and activation of multiple immune cell types, leading to a deterioration of lung function over time. Most immune cells express estrogen receptors (ERα, ERβ, or the membrane-bound G-protein-coupled ER) to varying degrees and can respond to the hormone. Together these receptors have demonstrated the capacity to regulate a spectrum of immune functions, including adhesion, migration, survival, wound healing, and antibody and cytokine production. This review will cover the current understanding of estrogen signaling in allergic inflammation and discuss how this signaling may contribute to sex differences in asthma and allergy. PMID:26635789

  18. CCR9 Is a Key Regulator of Early Phases of Allergic Airway Inflammation

    PubMed Central

    López-Pacheco, C.; Soldevila, G.; Du Pont, G.; Hernández-Pando, R.

    2016-01-01

    Airway inflammation is the most common hallmark of allergic asthma. Chemokine receptors involved in leukocyte recruitment are closely related to the pathology in asthma. CCR9 has been described as a homeostatic and inflammatory chemokine receptor, but its role and that of its ligand CCL25 during lung inflammation remain unknown. To investigate the role of CCR9 as a modulator of airway inflammation, we established an OVA-induced allergic inflammation model in CCR9-deficient mice. Here, we report the expression of CCR9 and CCL25 as early as 6 hours post-OVA challenge in eosinophils and T-lymphocytes. Moreover, in challenged CCR9-deficient mice, cell recruitment was impaired at peribronchial and perivenular levels. OVA-administration in CCR9-deficient mice leads to a less inflammatory cell recruitment, which modifies the expression of IL-10, CCL11, and CCL25 at 24 hours after OVA challenge. In contrast, the secretion of IL-4 and IL-5 was not affected in CCR9-deficient mice compared to WT mice. These results demonstrate for the first time that CCR9 and CCL25 expressions are induced in the early stages of airway inflammation and they have an important role modulating eosinophils and lymphocytes recruitment at the first stages of inflammatory process, suggesting that they might be a potential target to regulate inflammation in asthma. PMID:27795621

  19. STAT6 and PARP Family Members in the Development of T Cell-dependent Allergic Inflammation

    PubMed Central

    Krishnamurthy, Purna

    2016-01-01

    Allergic inflammation requires the orchestration of altered gene expression in the target tissue and in the infiltrating immune cells. The transcription factor STAT6 is critical in activating cytokine gene expression and cytokine signaling both in the immune cells and in target tissue cells including airway epithelia, keratinocytes and esophageal epithelial cells. STAT6 is activated by the cytokines IL-4 and IL-13 to mediate the pathogenesis of allergic disorders such as asthma, atopic dermatitis, food allergy and eosinophilic esophagitis (EoE). In this review, we summarize the role of STAT6 in allergic diseases, its interaction with the co-factor PARP14 and the molecular mechanisms by which STAT6 and PARP14 regulate gene transcription. PMID:27574499

  20. STAT6 and PARP Family Members in the Development of T Cell-dependent Allergic Inflammation.

    PubMed

    Krishnamurthy, Purna; Kaplan, Mark H

    2016-08-01

    Allergic inflammation requires the orchestration of altered gene expression in the target tissue and in the infiltrating immune cells. The transcription factor STAT6 is critical in activating cytokine gene expression and cytokine signaling both in the immune cells and in target tissue cells including airway epithelia, keratinocytes and esophageal epithelial cells. STAT6 is activated by the cytokines IL-4 and IL-13 to mediate the pathogenesis of allergic disorders such as asthma, atopic dermatitis, food allergy and eosinophilic esophagitis (EoE). In this review, we summarize the role of STAT6 in allergic diseases, its interaction with the co-factor PARP14 and the molecular mechanisms by which STAT6 and PARP14 regulate gene transcription. PMID:27574499

  1. Targeted inhibition of KCa3.1 channel attenuates airway inflammation and remodeling in allergic asthma.

    PubMed

    Yu, Zhi-Hua; Xu, Jian-Rong; Wang, Yan-Xia; Xu, Guang-Ni; Xu, Zu-Peng; Yang, Kai; Wu, Da-Zheng; Cui, Yong-Yao; Chen, Hong-Zhuan

    2013-06-01

    KCa3.1 has been suggested to be involved in regulating cell activation, proliferation, and migration in multiple cell types, including airway inflammatory and structural cells. However, the contributions of KCa3.1 to airway inflammation and remodeling and subsequent airway hyperresponsiveness (AHR) in allergic asthma remain to be explored. The main purpose of this study was to elucidate the roles of KCa3.1 and the potential therapeutic value of KCa3.1 blockers in chronic allergic asthma. Using real-time PCR, Western blotting, or immunohistochemical analyses, we explored the precise role of KCa3.1 in the bronchi of allergic mice and asthmatic human bronchial smooth muscle cells (BSMCs). We found that KCa3.1 mRNA and protein expression were elevated in the bronchi of allergic mice, and double labeling revealed that up-regulation occurred primarily in airway smooth muscle cells. Triarylmethane (TRAM)-34, a KCa3.1 blocker, dose-dependently inhibited the generation and maintenance of the ovalbumin-induced airway inflammation associated with increased Th2-type cytokines and decreased Th1-type cytokine, as well as subepithelial extracellular matrix deposition, goblet-cell hyperplasia, and AHR in a murine model of asthma. Moreover, the pharmacological blockade and gene silencing of KCa3.1, which was evidently elevated after mitogen stimulation, suppressed asthmatic human BSMC proliferation and migration, and arrested the cell cycle at the G0/G1 phase. In addition, the KCa3.1 activator 1-ethylbenzimidazolinone-induced membrane hyperpolarization and intracellular calcium increase in asthmatic human BSMCs were attenuated by TRAM-34. We demonstrate for the first time an important role for KCa3.1 in the pathogenesis of airway inflammation and remodeling in allergic asthma, and we suggest that KCa3.1 blockers may represent a promising therapeutic strategy for asthma.

  2. The Role of Ion Channels to Regulate Airway Ciliary Beat Frequency During Allergic Inflammation.

    PubMed

    Joskova, M; Sutovska, M; Durdik, P; Koniar, D; Hargas, L; Banovcin, P; Hrianka, M; Khazaei, V; Pappova, L; Franova, S

    2016-01-01

    Overproduction of mucus is a hallmark of asthma. The aim of this study was to identify potentially effective therapies for removing excess mucus. The role of voltage-gated (Kir 6.1, KCa 1.1) and store-operated ion channels (SOC, CRAC) in respiratory cilia, relating to the tracheal ciliary beat frequency (CBF), was compared under the physiological and allergic airway conditions. Ex vivo experiments were designed to test the local effects of Kir 6.1, KCa 1.1 and CRAC ion channel modulators in a concentration-dependent manner on the CBF. Cilia, obtained with the brushing method, were monitored by a high-speed video camera and analyzed with ciliary analysis software. In natural conditions, a Kir 6.1 opener accelerated CBF, while CRAC blocker slowed it in a concentration-dependent manner. In allergic inflammation, the effect of Kir 6.1 opener was insignificant, with a tendency to decrease CBF. A cilio-inhibitory effect of a CRAC blocker, while gently reduced by allergic inflammation, remained significant. A KCa 1.1 opener turned out to significantly enhance the CBF under the allergic OVA-sensitized conditions. We conclude that optimally attuned concentration of KCa 1.1 openers or special types of bimodal SOC channel blockers, potentially given by inhalation, might benefit asthma. PMID:27369295

  3. Temporal Changes in Glutaredoxin 1 and Protein S-Glutathionylation in Allergic Airway Inflammation

    PubMed Central

    Maki, Kanako; Nagai, Katsura; Suzuki, Masaru; Inomata, Takashi; Yoshida, Takayuki; Nishimura, Masaharu

    2015-01-01

    Introduction Asthma is a chronic inflammatory disorder of the airways, involving oxidative stress. Upon oxidative stress, glutathione covalently binds to protein thiols to protect them against irreversible oxidation. This posttranslational modification, known as protein S-glutathionylation, can be reversed by glutaredoxin 1 (Glrx1) under physiological condition. Glrx1 is known to increase in the lung tissues of a murine model of allergic airway inflammation. However, the temporal relationship between levels of Glrx1, protein S-glutathionylation, and glutathione in the lungs with allergic airway inflammation is not clearly understood. Methods BALB/c mice received 3 aerosol challenges with ovalbumin (OVA) following sensitization to OVA. They were sacrificed at 6, 24, 48, or 72 h, or 8 days (5 mice per group), and the levels of Glrx1, protein S-glutathionylation, glutathione, and 25 cytokines/chemokines were evaluated in bronchoalveolar lavage fluid (BALF) and/or lung tissue. Results Levels of Glrx1 in BALF were significantly elevated in the OVA 6 h (final challenge) group compared to those in the control, with concurrent increases in protein S-glutathionylation levels in the lungs, as well as total glutathione (reduced and oxidized) and oxidized glutathione in BALF. Protein S-glutathionylation levels were attenuated at 24 h, with significant increases in Glrx1 levels in lung tissues at 48 and 72 h. Glrx1 in alveolar macrophages was induced after 6 h. Glrx1 levels concomitantly increased with Th2/NF-κB-related cytokines and chemokines in BALF. Conclusions The temporal relationships of Glrx1 with protein S-glutathionylation, glutathione, and cytokines/chemokines were observed as dynamic changes in lungs with allergic airway inflammation, suggesting that Glrx1 and protein–SSG redox status may play important roles in the development of allergic airway inflammation. PMID:25874776

  4. Endocrine disruptors found in food contaminants enhance allergic sensitization through an oxidative stress that promotes the development of allergic airway inflammation

    SciTech Connect

    Kato, Takuma; Tada-Oikawa, Saeko; Wang, Linan; Murata, Mariko; Kuribayashi, Kagemasa

    2013-11-15

    In the past few decades, there has been a significant increase in incidence of allergic diseases. The hygiene hypothesis may provide some clues to explain this rising trend, but it may also be attributable to other environmental factors that exert a proallergic adjuvant effects. However, there is limited information on the risks of developing allergic asthma and related diseases through the ingestion of environmental chemicals found in food contaminants. In the present study, we have shown that oral administration of tributyltin, used as a model environmental chemical, induced oxidative-stress status in the bronchial lymph node, mesenteric lymph node and spleen, but not in the lung, where the initial step of allergic asthma pathogenesis takes place. Mice exposed to tributyltin exhibited heightened Th2 immunity to the allergen with more severe airway inflammation. Tributyltin also induced Treg cells apoptosis preferentially over non-Treg cells. All these effects of tributyltin exposure were canceled by the administration of glutathione monoethyl ester. Meanwhile, tributyltin did not affect airway inflammation of mice transferred with allergen-specific Th2 cells. Collectively, these results suggest that tributyltin exerts its pathological effect during the sensitization phase through oxidative stress that enhances the development of allergic diseases. The current study dissects the pathogenic role of oxidative stress induced by oral exposure to an environmental chemical during the sensitization phase of allergic airway inflammation and would be important for developing therapeutics for prevention of allergic diseases. - Highlights: • Oral exposure to TBT exacerbates airway inflammation. • TBT induces oxidative stress in secondary lymphoid organs, but not in the lung. • TBT preferentially induces regulatory T cell apoptosis over non-Treg cells. • TBT does not enhance pre-existing airway inflammation in sensitized mice. • Chemicals in food contaminants

  5. Toxoplasma gondii infection blocks the development of allergic airway inflammation in BALB/c mice.

    PubMed

    Fenoy, I; Giovannoni, M; Batalla, E; Martin, V; Frank, F M; Piazzon, I; Goldman, A

    2009-02-01

    There is a link between increased allergy and a reduction of some infections in western countries. Epidemiological data also show that respiratory allergy is less frequent in people exposed to orofaecal and foodborne microbes such as Toxoplasma gondii. Infection with T. gondii induces a strong cell-mediated immunity with a highly polarized T helper type 1 (Th1) response in early stages of infection. Using a well-known murine model of allergic lung inflammation, we sought to investigate whether T. gondii infection could modulate the susceptibility to develop respiratory allergies. Both acute and chronic infection with T. gondii before allergic sensitization resulted in a diminished allergic inflammation, as shown by a decrease in bronchoalveolar lavage (BAL) eosinophilia, mononuclear and eosinophil cell infiltration around airways and vessels and goblet cell hyperplasia. Low allergen-specific immunoglobulin (Ig)E and IgG1 and high levels of allergen-specific IgG2a serum antibodies were detected. A decreased interleukin (IL)-4 and IL-5 production by lymph node cells was observed, while no antigen-specific interferon-gamma increase was detected. Higher levels of the regulatory cytokine IL-10 were found in BAL from infected mice. These results show that both acute and chronic parasite infection substantially blocked development of airway inflammation in adult BALB/c mice. Our results support the hypothesis that T. gondii infection contributes to protection against allergy in humans. PMID:19032550

  6. TRPA1 controls inflammation and pruritogen responses in allergic contact dermatitis

    PubMed Central

    Liu, Boyi; Escalera, Jasmine; Balakrishna, Shrilatha; Fan, Lu; Caceres, Ana I.; Robinson, Eve; Sui, Aiwei; McKay, M. Craig; McAlexander, M. Allen; Herrick, Christina A.; Jordt, Sven E.

    2013-01-01

    Allergic contact dermatitis is a common skin disease associated with inflammation and persistent pruritus. Transient receptor potential (TRP) ion channels in skin-innervating sensory neurons mediate acute inflammatory and pruritic responses following exogenous stimulation and may contribute to allergic responses. Genetic ablation or pharmacological inhibition of TRPA1, but not TRPV1, inhibited skin edema, keratinocyte hyperplasia, nerve growth, leukocyte infiltration, and antihistamine-resistant scratching behavior in mice exposed to the haptens, oxazolone and urushiol, the contact allergen of poison ivy. Hapten-challenged skin of TRPA1-deficient mice contained diminished levels of inflammatory cytokines, nerve growth factor, and endogenous pruritogens, such as substance P (SP) and serotonin. TRPA1-deficient sensory neurons were defective in SP signaling, and SP-induced scratching behavior was abolished in Trpa1−/− mice. SP receptor antagonists, such as aprepitant inhibited both hapten-induced cutaneous inflammation and scratching behavior. These findings support a central role for TRPA1 and SP in the integration of immune and neuronal mechanisms leading to chronic inflammatory responses and pruritus associated with contact dermatitis.—Liu, B., Escalera, J., Balakrishna, S., Fan, L., Caceres, A. I., Robinson, E., Sui, A., McKay, M. C., McAlexander, M. A., Herrick, C. A., Jordt, S. E. TRPA1 controls inflammation and pruritogen responses in allergic contact dermatitis. PMID:23722916

  7. Role of Eosinophil Granulocytes in Allergic Airway Inflammation Endotypes.

    PubMed

    Amin, K; Janson, C; Bystrom, J

    2016-08-01

    Eosinophil granulocytes are intriguing members of the innate immunity system that have been considered important defenders during parasitic diseases as well as culprits during allergy-associated inflammatory diseases. Novel studies have, however, found new homoeostasis-maintaining roles for the cell. Recent clinical trials blocking different Th2 cytokines have uncovered that asthma is heterogeneous entity and forms different characteristic endotypes. Although eosinophils are present in allergic asthma with early onset, the cells may not be essential for the pathology. The cells are, however, likely disease causing in asthma with a late onset, which is often associated with chronic rhinosinusitis. Assessment of eosinophilia, fraction exhaled nitric oxide (FeNO) and periostin are markers that have emerged useful in assessing and monitoring asthma severity and endotype. Current scientific knowledge suggests that eosinophils are recruited by the inflammatory environment, activated by the innate interleukin (IL)-33 and prevented from apoptosis by both lymphocytes and innate immune cells such as type two innate immune cells. Eosinophils contain four specific granule proteins that exhibit an array of toxic and immune-modulatory activates. The granule proteins can be released by different mechanisms. Additionally, eosinophils contain a number of inflammatory cytokines and lipid mediators as well as radical oxygen species that might contribute to the disease both by the recruitment of other cells and the direct damage to supporting cells, leading to exacerbations and tissue fibrosis. This review aimed to outline current knowledge how eosinophils are recruited, activated and mediate damage to tissues and therapies used to control the cells. PMID:27167590

  8. The Effects of Proresolution of Ellagic Acid in an Experimental Model of Allergic Airway Inflammation

    PubMed Central

    de Freitas Alves, Claudiney; Angeli, Giovanna Natalia; Favarin, Daniely Cornélio; Lemos de Andrade, Edinéia; Lazo Chica, Javier Emilio; Faccioli, Lúcia Helena; Roberto da Silva, Paulo; de Paula Rogerio, Alexandre

    2013-01-01

    Asthma is a disease of airway inflammation characterized by airway hyperresponsiveness, eosinophilic inflammation, and hypersecretion of mucus. Ellagic acid, a compound derived from medicinal plants and fruits, has shown anti-inflammatory activity in several experimental disease models. We used the classical experimental model, in BALB/c mice, of sensibilization with ovalbumin to determine the effect of ellagic acid (10 mg/kg; oral route) in the resolution of allergic airways response. Dexamethasone (1 mg/kg; subcutaneous route) was used as a positive control. The control group consisted of nonimmunized mice that received challenge with ovalbumin. Ellagic acid and dexamethasone or vehicle (water) were administered before or after intranasal allergen challenge. Ellagic acid accelerated the resolution of airways inflammation by decreasing total leukocytes and eosinophils numbers in the bronchoalveolar lavage fluid (BALF), the mucus production and lung inflammation in part by reducing IL-5 concentration, eosinophil peroxidase (EPO) activity, and P-selectin expression, but not activator protein 1 (AP-1) and nuclear factor kappa B (NF-κB) pathways. In addition, ellagic acid enhanced alveolar macrophage phagocytosis of IgG-OVA-coated beads ex vivo, a new proresolving mechanism for the clearance of allergen from the airways. Together, these findings identify ellagic acid as a potential therapeutic agent for accelerating the resolution of allergic airways inflammation. PMID:24376308

  9. The impact of pulmonary tuberculosis treatment on the prevalence of allergic rhinitis.

    PubMed

    Lin, Carren Teh Sui; Gopala, Krishnan; Manuel, Anura Michelle

    2013-08-01

    Atopy is a syndrome characterized by immediate hypersensitivity reactions to common environmental antigens. The "hygiene hypothesis" stipulates that childhood infections are associated with a lower risk of allergies. Not much has been published about the effects that the treatment of pulmonary tuberculosis (TB) has on allergies, specifically allergic rhinitis. We conducted a study to investigate the prevalence of allergic rhinitis in patients with pulmonary TB before and after treatment of their TB. Our initial study group was made up of 121 patients with confirmed pulmonary TB who were followed up by questionnaire. In addition to demographic data, they provided information about their personal and family history of atopy and their current status with regard to allergic rhinitis. After providing informed consent, all patients underwent skin-prick testing with Dermatophagoides pteronyssinus, Dermatophagoides farinae, and Blomia tropicalis allergens before and after TB treatment. Stool samples were obtained to identify patients with worm infestation, and they were excluded from the study. In all, 94 patients completed treatment and follow-up, and their data were included in the final analysis. Of this group, 31 patients (33.0%) exhibited symptoms of allergic rhinitis prior to TB treatment, and 26 (27.7%) had a positive skin-prick test. Following treatment, only 12 patients (12.8%) reported allergic rhinitis symptoms (p = 0.004), but there was no significant reduction in the number of patients with a positive skin-prick test (n = 20 [21.3%]; p = 0.555). We conclude that the treatment of pulmonary TB results in significant relief of atopy, particularly allergic rhinitis symptoms.

  10. Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension.

    PubMed

    Rabinovitch, Marlene; Guignabert, Christophe; Humbert, Marc; Nicolls, Mark R

    2014-06-20

    This review summarizes an expanding body of knowledge indicating that failure to resolve inflammation and altered immune processes underlie the development of pulmonary arterial hypertension. The chemokines and cytokines implicated in pulmonary arterial hypertension that could form a biomarker platform are discussed. Pre-clinical studies that provide the basis for dysregulated immunity in animal models of the disease are reviewed. In addition, we present therapies that target inflammatory/immune mechanisms that are currently enrolling patients, and discuss others in development. We show how genetic and metabolic abnormalities are inextricably linked to dysregulated immunity and adverse remodeling in the pulmonary arteries. PMID:24951765

  11. Exposure to inhomogeneous static magnetic field beneficially affects allergic inflammation in a murine model

    PubMed Central

    Csillag, Anikó; Kumar, Brahma V.; Szabó, Krisztina; Szilasi, Mária; Papp, Zsuzsa; Szilasi, Magdolna E.; Pázmándi, Kitti; Boldogh, István; Rajnavölgyi, Éva; Bácsi, Attila; László, János F.

    2014-01-01

    Previous observations suggest that static magnetic field (SMF)-exposure acts on living organisms partly through reactive oxygen species (ROS) reactions. In this study, we aimed to define the impact of SMF-exposure on ragweed pollen extract (RWPE)-induced allergic inflammation closely associated with oxidative stress. Inhomogeneous SMF was generated with an apparatus validated previously providing a peak-to-peak magnetic induction of the dominant SMF component 389 mT by 39 T m−1 lateral gradient in the in vivo and in vitro experiments, and 192 mT by 19 T m−1 in the human study at the 3 mm target distance. Effects of SMF-exposure were studied in a murine model of allergic inflammation and also in human provoked skin allergy. We found that even a single 30-min exposure of mice to SMF immediately following intranasal RWPE challenge significantly lowered the increase in the total antioxidant capacity of the airways and decreased allergic inflammation. Repeated (on 3 consecutive days) or prolonged (60 min) exposure to SMF after RWPE challenge decreased the severity of allergic responses more efficiently than a single 30-min treatment. SMF-exposure did not alter ROS production by RWPE under cell-free conditions, while diminished RWPE-induced increase in the ROS levels in A549 epithelial cells. Results of the human skin prick tests indicated that SMF-exposure had no significant direct effect on provoked mast cell degranulation. The observed beneficial effects of SMF are likely owing to the mobilization of cellular ROS-eliminating mechanisms rather than direct modulation of ROS production by pollen NAD(P)H oxidases. PMID:24647908

  12. Exposure to inhomogeneous static magnetic field beneficially affects allergic inflammation in a murine model.

    PubMed

    Csillag, Anikó; Kumar, Brahma V; Szabó, Krisztina; Szilasi, Mária; Papp, Zsuzsa; Szilasi, Magdolna E; Pázmándi, Kitti; Boldogh, István; Rajnavölgyi, Éva; Bácsi, Attila; László, János F

    2014-06-01

    Previous observations suggest that static magnetic field (SMF)-exposure acts on living organisms partly through reactive oxygen species (ROS) reactions. In this study, we aimed to define the impact of SMF-exposure on ragweed pollen extract (RWPE)-induced allergic inflammation closely associated with oxidative stress. Inhomogeneous SMF was generated with an apparatus validated previously providing a peak-to-peak magnetic induction of the dominant SMF component 389 mT by 39 T m(-1) lateral gradient in the in vivo and in vitro experiments, and 192 mT by 19 T m(-1) in the human study at the 3 mm target distance. Effects of SMF-exposure were studied in a murine model of allergic inflammation and also in human provoked skin allergy. We found that even a single 30-min exposure of mice to SMF immediately following intranasal RWPE challenge significantly lowered the increase in the total antioxidant capacity of the airways and decreased allergic inflammation. Repeated (on 3 consecutive days) or prolonged (60 min) exposure to SMF after RWPE challenge decreased the severity of allergic responses more efficiently than a single 30-min treatment. SMF-exposure did not alter ROS production by RWPE under cell-free conditions, while diminished RWPE-induced increase in the ROS levels in A549 epithelial cells. Results of the human skin prick tests indicated that SMF-exposure had no significant direct effect on provoked mast cell degranulation. The observed beneficial effects of SMF are likely owing to the mobilization of cellular ROS-eliminating mechanisms rather than direct modulation of ROS production by pollen NAD(P)H oxidases.

  13. Toxoplasma gondii infection induces suppression in a mouse model of allergic airway inflammation.

    PubMed

    Fenoy, Ignacio M; Chiurazzi, Romina; Sánchez, Vanesa R; Argenziano, Mariana A; Soto, Ariadna; Picchio, Mariano S; Martin, Valentina; Goldman, Alejandra

    2012-01-01

    Allergic asthma is an inflammatory disorder characterized by infiltration of the airway wall with inflammatory cells driven mostly by activation of Th2-lymphocytes, eosinophils and mast cells. There is a link between increased allergy and a reduction of some infections in Western countries. Epidemiological data also show that respiratory allergy is less frequent in people exposed to orofecal and foodborne microbes such as Toxoplasma gondii. We previously showed that both acute and chronic parasite T. gondii infection substantially blocked development of airway inflammation in adult BALB/c mice. Based on the high levels of IFN-γ along with the reduction of Th2 phenotype, we hypothesized that the protective effect might be related to the strong Th1 immune response elicited against the parasite. However, other mechanisms could also be implicated. The possibility that regulatory T cells inhibit allergic diseases has received growing support from both animal and human studies. Here we investigated the cellular mechanisms involved in T. gondii induced protection against allergy. Our results show for the first time that thoracic lymph node cells from mice sensitized during chronic T. gondii infection have suppressor activity. Suppression was detected both in vitro, on allergen specific T cell proliferation and in vivo, on allergic lung inflammation after adoptive transference from infected/sensitized mice to previously sensitized animals. This ability was found to be contact-independent and correlated with high levels of TGF-β and CD4(+)FoxP3(+) cells. PMID:22952678

  14. Semaphorin 7A Aggravates Pulmonary Inflammation during Lung Injury

    PubMed Central

    Schneider, Mariella; Granja, Tiago Folgosa; Rosenberger, Peter

    2016-01-01

    The extent of pulmonary inflammation during lung injury ultimately determines patient outcome. Pulmonary inflammation is initiated by the migration of neutrophils into the alveolar space. Recent work has demonstrated that the guidance protein semaphorin 7A (SEMA7A) influences the migration of neutrophils into hypoxic tissue sites, yet, its role during lung injury is not well understood. Here, we report that the expression of SEMA7A is induced in vitro through pro-inflammatory cytokines. SEMA7A itself induces the production of pro-inflammatory cytokines in endothelial and epithelial cells, enhancing pulmonary inflammation. The induction of SEMA7A facilitates the transendothelial migration of neutrophils. In vivo, animals with deletion of SEMA7A expression showed reduced signs of pulmonary inflammatory changes following lipopolysaccharide challenge. We define here the role of SEMA7A in the development of lung injury and identify a potential pathway to interfere with these detrimental changes. Future anti-inflammatory strategies for the treatment of lung injury might be based on this finding. PMID:26752048

  15. Biodegradable antigen-associated PLG nanoparticles tolerize Th2-mediated allergic airway inflammation pre- and postsensitization.

    PubMed

    Smarr, Charles B; Yap, Woon Teck; Neef, Tobias P; Pearson, Ryan M; Hunter, Zoe N; Ifergan, Igal; Getts, Daniel R; Bryce, Paul J; Shea, Lonnie D; Miller, Stephen D

    2016-05-01

    Specific immunotherapy (SIT) is the most widely used treatment for allergic diseases that directly targets the T helper 2 (Th2) bias underlying allergy. However, the most widespread clinical applications of SIT require a long period of dose escalation with soluble antigen (Ag) and carry a significant risk of adverse reactions, particularly in highly sensitized patients who stand to benefit most from a curative treatment. Thus, the development of safer, more efficient methods to induce Ag-specific immune tolerance is critical to advancing allergy treatment. We hypothesized that antigen-associated nanoparticles (Ag-NPs), which we have used to prevent and treat Th1/Th17-mediated autoimmune disease, would also be effective for the induction of tolerance in a murine model of Th2-mediated ovalbumin/alum-induced allergic airway inflammation. We demonstrate here that antigen-conjugated polystyrene (Ag-PS) NPs, although effective for the prophylactic induction of tolerance, induce anaphylaxis in presensitized mice. Antigen-conjugated NPs made of biodegradable poly(lactide-co-glycolide) (Ag-PLG) are similarly effective prophylactically, are well tolerated by sensitized animals, but only partially inhibit Th2 responses when administered therapeutically. PLG NPs containing encapsulated antigen [PLG(Ag)], however, were well tolerated and effectively inhibited Th2 responses and airway inflammation both prophylactically and therapeutically. Thus, we illustrate progression toward PLG(Ag) as a biodegradable Ag carrier platform for the safe and effective inhibition of allergic airway inflammation without the need for nonspecific immunosuppression in animals with established Th2 sensitization. PMID:27091976

  16. CARMA3 Is Critical for the Initiation of Allergic Airway Inflammation.

    PubMed

    Causton, Benjamin; Ramadas, Ravisankar A; Cho, Josalyn L; Jones, Khristianna; Pardo-Saganta, Ana; Rajagopal, Jayaraj; Xavier, Ramnik J; Medoff, Benjamin D

    2015-07-15

    Innate immune responses to allergens by airway epithelial cells (AECs) help initiate and propagate the adaptive immune response associated with allergic airway inflammation in asthma. Activation of the transcription factor NF-κB in AECs by allergens or secondary mediators via G protein-coupled receptors (GPCRs) is an important component of this multifaceted inflammatory cascade. Members of the caspase recruitment domain family of proteins display tissue-specific expression and help mediate NF-κB activity in response to numerous stimuli. We have previously shown that caspase recruitment domain-containing membrane-associated guanylate kinase protein (CARMA)3 is specifically expressed in AECs and mediates NF-κB activation in these cells in response to stimulation with the GPCR agonist lysophosphatidic acid. In this study, we demonstrate that reduced levels of CARMA3 in normal human bronchial epithelial cells decreases the production of proasthmatic mediators in response to a panel of asthma-relevant GPCR ligands such as lysophosphatidic acid, adenosine triphosphate, and allergens that activate GPCRs such as Alternaria alternata and house dust mite. We then show that genetically modified mice with CARMA3-deficient AECs have reduced airway eosinophilia and proinflammatory cytokine production in a murine model of allergic airway inflammation. Additionally, we demonstrate that these mice have impaired dendritic cell maturation in the lung and that dendritic cells from mice with CARMA3-deficient AECs have impaired Ag processing. In conclusion, we show that AEC CARMA3 helps mediate allergic airway inflammation, and that CARMA3 is a critical signaling molecule bridging the innate and adaptive immune responses in the lung. PMID:26041536

  17. Antileukotriene Reverts the Early Effects of Inflammatory Response of Distal Parenchyma in Experimental Chronic Allergic Inflammation

    PubMed Central

    Gobbato, Nathália Brandão; de Souza, Flávia Castro Ribas; Fumagalli, Stella Bruna Napolitano; Lopes, Fernanda Degobbi Tenório Quirino dos Santos; Prado, Carla Máximo; Martins, Milton Arruda; Tibério, Iolanda de Fátima Lopes Calvo; Leick, Edna Aparecida

    2013-01-01

    Aims. Compare the effects of montelukast or dexamethasone in distal lung parenchyma and airway walls of guinea pigs (GP) with chronic allergic inflammation. Methods. GP have inhaled ovalbumin (OVA group-2x/week/4weeks). After the 4th inhalation, GP were treated with montelukast or dexamethasone. After 72 hours of the 7th inhalation, GP were anesthetised, and lungs were removed and submitted to histopathological evaluation. Results. Montelukast and dexamethasone treatments reduced the number of eosinophils in airway wall and distal lung parenchyma compared to OVA group (P < 0.05). On distal parenchyma, both treatments were effective in reducing RANTES, NF-κB, and fibronectin positive cells compared to OVA group (P < 0.001). Montelukast was more effective in reducing eotaxin positive cells on distal parenchyma compared to dexamethasone treatment (P < 0.001), while there was a more expressive reduction of IGF-I positive cells in OVA-D group (P < 0.001). On airway walls, montelukast and dexamethasone were effective in reducing IGF-I, RANTES, and fibronectin positive cells compared to OVA group (P < 0.05). Dexamethasone was more effective in reducing the number of eotaxin and NF-κB positive cells than Montelukast (P < 0.05). Conclusions. In this animal model, both treatments were effective in modulating allergic inflammation and remodeling distal lung parenchyma and airway wall, contributing to a better control of the inflammatory response. PMID:24151607

  18. TRPA1 controls inflammation and pruritogen responses in allergic contact dermatitis.

    PubMed

    Liu, Boyi; Escalera, Jasmine; Balakrishna, Shrilatha; Fan, Lu; Caceres, Ana I; Robinson, Eve; Sui, Aiwei; McKay, M Craig; McAlexander, M Allen; Herrick, Christina A; Jordt, Sven E

    2013-09-01

    Allergic contact dermatitis is a common skin disease associated with inflammation and persistent pruritus. Transient receptor potential (TRP) ion channels in skin-innervating sensory neurons mediate acute inflammatory and pruritic responses following exogenous stimulation and may contribute to allergic responses. Genetic ablation or pharmacological inhibition of TRPA1, but not TRPV1, inhibited skin edema, keratinocyte hyperplasia, nerve growth, leukocyte infiltration, and antihistamine-resistant scratching behavior in mice exposed to the haptens, oxazolone and urushiol, the contact allergen of poison ivy. Hapten-challenged skin of TRPA1-deficient mice contained diminished levels of inflammatory cytokines, nerve growth factor, and endogenous pruritogens, such as substance P (SP) and serotonin. TRPA1-deficient sensory neurons were defective in SP signaling, and SP-induced scratching behavior was abolished in Trpa1(-/-) mice. SP receptor antagonists, such as aprepitant inhibited both hapten-induced cutaneous inflammation and scratching behavior. These findings support a central role for TRPA1 and SP in the integration of immune and neuronal mechanisms leading to chronic inflammatory responses and pruritus associated with contact dermatitis. PMID:23722916

  19. Airborne lipid antigens mobilize resident intravascular NKT cells to induce allergic airway inflammation.

    PubMed

    Scanlon, Seth T; Thomas, Seddon Y; Ferreira, Caroline M; Bai, Li; Krausz, Thomas; Savage, Paul B; Bendelac, Albert

    2011-09-26

    Airborne exposure to microbial cell wall lipids such as lipopolysaccharide triggers innate immune responses that regulate susceptibility to allergic airway inflammation. α-Glycosylceramides represent another widespread class of microbial lipids that directly stimulate innate-like, IL-4- and IL-13-producing, CD1d-restricted NKT cells. In this study, we demonstrate that NKT cells constitutively accumulate and reside in the microvasculature of the mouse lung. After a single airborne exposure to lipid antigen, they promptly extravasate to orchestrate the formation of peribronchiolar and interstitial lymphohistiocytic granulomas containing numerous eosinophils. Concomitant airborne exposure to ovalbumin (OVA) induces the priming of OVA-specific Th2 cells and IgE antibodies by the same dendritic cell coexpressing CD1d and MHC class II. Although NKT cell activation remains confined to the lipid-exposed lung and draining lymph nodes, Th2 cells recirculate and seed the lung of a parabiotic partner, conferring susceptibility to OVA challenge months after the initial exposure, in a manner independent of NKT cells and CD1d. Thus, transient recruitment and activation of lung-resident intravascular NKT cells can trigger long-term susceptibility to allergic airway inflammation.

  20. Gedunin, a natural tetranortriterpenoid, modulates T lymphocyte responses and ameliorates allergic inflammation.

    PubMed

    Ferraris, Fausto K; Moret, Katelim Hottz; Figueiredo, Alexandre Bezerra Conde; Penido, Carmen; Henriques, Maria das Graças M O

    2012-09-01

    T lymphocytes are critical cells involved in allergy. Here, we report that the natural tetranortriterpenoid gedunin impaired allergic responses primarily by modulating T lymphocyte functions. The intraperitoneal (i.p.) administration of gedunin inhibited pleural leukocyte accumulation triggered by intra-pleural (i.pl.) challenge with ovalbumin (OVA) in previously sensitized C57BL/6 mice; this inhibition was primarily due to the impairment of eosinophil and T lymphocyte influx. Likewise, i.pl. pre-treatment with gedunin inhibited eosinophil and T lymphocyte migration into mouse lungs 24 h after OVA intra-nasal (i.n.) instillation. Pre-treatment with gedunin diminished the levels of CCL2, CCL3, CCL5, CCL11, Interleukin-5 and leukotriene B(4) at the allergic site. In vitro pre-treatment with gedunin failed to inhibit T lymphocyte adhesion and chemotaxis towards pleural washes recovered from OVA-challenged mice, suggesting that gedunin inhibits T lymphocyte migration in vivo via the inhibition of chemotactic mediators in situ. In vivo pre-treatment with gedunin reduced the numbers of CD69(+) and CD25(+) T lymphocytes in the pleura and CD25(+) cells in the thoracic lymph nodes 24 h after OVA i.pl. challenge. In accordance, in vitro treatment of T lymphocytes with gedunin inhibited α-CD3 mAb-induced expression of CD69 and CD25, proliferation, Interleukin-2 production and nuclear translocation of NFκB and NFAT. Notably, post-treatment of mice with gedunin reverted OVA-induced lung allergic inflammation by decreasing the T lymphocyte and eosinophil counts and the levels of eosinophilotactic mediators in bronchoalveolar lavage fluid. Our results demonstrate a remarkable anti-allergic effect of gedunin due to its capability to modulate T cell activation and trafficking into the airways. PMID:22709475

  1. IL-21R is essential for epicutaneous sensitization and allergic skin inflammation in humans and mice

    PubMed Central

    Jin, Haoli; Oyoshi, Michiko K.; Le, Yi; Bianchi, Teresa; Koduru, Suresh; Mathias, Clinton B.; Kumar, Lalit; Le Bras, Séverine; Young, Deborah; Collins, Mary; Grusby, Michael J.; Wenzel, Joerg; Bieber, Thomas; Boes, Marianne; Silberstein, Leslie E.; Oettgen, Hans C.; Geha, Raif S.

    2008-01-01

    Atopic dermatitis (AD) is a common allergic inflammatory skin disease caused by a combination of intense pruritus, scratching, and epicutaneous (e.c.) sensitization with allergens. To explore the roles of IL-21 and IL-21 receptor (IL-21R) in AD, we examined skin lesions from patients with AD and used a mouse model of allergic skin inflammation. IL-21 and IL-21R expression was upregulated in acute skin lesions of AD patients and in mouse skin subjected to tape stripping, a surrogate for scratching. The importance of this finding was highlighted by the fact that both Il21r–/– mice and WT mice treated with soluble IL-21R–IgG2aFc fusion protein failed to develop skin inflammation after e.c. sensitization of tape-stripped skin. Adoptively transferred OVA-specific WT CD4+ T cells accumulated poorly in draining LNs (DLNs) of e.c. sensitized Il21r–/– mice. This was likely caused by both DC-intrinsic and nonintrinsic effects, because trafficking of skin DCs to DLNs was defective in Il21r–/– mice and, to a lesser extent, in WT mice reconstituted with Il21r–/– BM. More insight into this defect was provided by the observation that skin DCs from tape-stripped WT mice, but not Il21r–/– mice, upregulated CCR7 and migrated toward CCR7 ligands. Treatment of epidermal and dermal cells with IL-21 activated MMP2, which has been implicated in trafficking of skin DCs. These results suggest an important role for IL-21R in the mobilization of skin DCs to DLNs and the subsequent allergic response to e.c. introduced antigen. PMID:19075398

  2. The role of autophagy in allergic inflammation: a new target for severe asthma

    PubMed Central

    Liu, Jing-Nan; Suh, Dong-Hyeon; Trinh, Hoang Kim Tu; Chwae, Yong-Joon; Park, Hae-Sim; Shin, Yoo Seob

    2016-01-01

    Autophagy has been investigated for its involvement in inflammatory diseases, but its role in asthma has been little studied. This study aimed to explore the possible role of autophagy and its therapeutic potential in severe allergic asthma. BALB/c mice were sensitized with ovalbumin (OVA) on days 0 and 14, followed by primary OVA challenge on days 28–30. The mice received a secondary 1 or 2% OVA challenge on days 44–46. After the final OVA challenge, the mice were assessed for airway responsiveness (AHR), cell composition and cytokine levels in bronchoalveolar lavage fluid (BALF). LC3 expression in lung tissue was measured by western blot and immunofluorescence staining. Autophagosomes were detected by electron microscopy. 3-Methyladenine (3-MA) treatment and Atg5 knockdown were applied to investigate the potential role of autophagy in allergic asthma mice. AHR, inflammation in BALF and LC3 expression in lung tissue were significantly increased in the 2% OVA-challenged mice compared with the 1% OVA-challenged mice (P<0.05). In addition, eosinophils showed prominent formation of autophagosomes and increased LC3 expression compared with other inflammatory cells in BALF and lung tissue. After autophagy was inhibited by 3-MA and Atg5 shRNA treatment, AHR, eosinophilia, interleukin (IL)-5 levels in BALF and histological inflammatory findings were much improved. Finally, treatment with an anti-IL-5 antibody considerably reduced LC3 II expression in lung homogenates. Our findings suggest that autophagy is closely correlated with the severity of asthma through eosinophilic inflammation, and its modulation may provide novel therapeutic approaches for severe allergic asthma. PMID:27364893

  3. The Therapeutic Potential of Targeting Cytokine Alarmins to Treat Allergic Airway Inflammation.

    PubMed

    Sy, Chandler B; Siracusa, Mark C

    2016-01-01

    Asthma is a heterogeneous disorder that results in recurrent attacks of breathlessness, coughing, and wheezing that affects millions of people worldwide. Although the precise causes of asthma are unclear, studies suggest that a combination of genetic predisposition and environmental exposure to various allergens and pathogens contribute to its development. Currently, the most common treatment to control asthma is a dual combination of β2-adrenergic receptor agonists and corticosteroids. However, studies have shown that some patients do not respond well to these medications, while others experience significant side effects. It is reported that the majority of asthmas are associated with T helper type 2 (TH2) responses. In these patients, allergen challenge initiates the influx of TH2 cells in the airways leading to an increased production of TH2-associated cytokines and the promotion of allergy-induced asthma. Therefore, biologics that target this pathway may provide an alternative method to treat the allergic airway inflammation associated with asthma. As of now, only two biologics (omalizumab and mepolizumab), which target immunoglobulin E and interleukin-5, respectively, are FDA-approved and being prescribed to asthmatics. However, recent studies have reported that targeting other components of the TH2 response also show great promise. In this review, we will briefly describe the immunologic mechanisms underlying allergic asthma. Furthermore, we will discuss the current therapeutic strategies used to treat asthma including their limitations. Finally, we will highlight the benefits of using biologics to treat asthma-associated allergic airway inflammation with an emphasis on the potential of targeting cytokine alarmins, especially thymic stromal lymphopoietin. PMID:27378934

  4. The Therapeutic Potential of Targeting Cytokine Alarmins to Treat Allergic Airway Inflammation

    PubMed Central

    Sy, Chandler B.; Siracusa, Mark C.

    2016-01-01

    Asthma is a heterogeneous disorder that results in recurrent attacks of breathlessness, coughing, and wheezing that affects millions of people worldwide. Although the precise causes of asthma are unclear, studies suggest that a combination of genetic predisposition and environmental exposure to various allergens and pathogens contribute to its development. Currently, the most common treatment to control asthma is a dual combination of β2-adrenergic receptor agonists and corticosteroids. However, studies have shown that some patients do not respond well to these medications, while others experience significant side effects. It is reported that the majority of asthmas are associated with T helper type 2 (TH2) responses. In these patients, allergen challenge initiates the influx of TH2 cells in the airways leading to an increased production of TH2-associated cytokines and the promotion of allergy-induced asthma. Therefore, biologics that target this pathway may provide an alternative method to treat the allergic airway inflammation associated with asthma. As of now, only two biologics (omalizumab and mepolizumab), which target immunoglobulin E and interleukin-5, respectively, are FDA-approved and being prescribed to asthmatics. However, recent studies have reported that targeting other components of the TH2 response also show great promise. In this review, we will briefly describe the immunologic mechanisms underlying allergic asthma. Furthermore, we will discuss the current therapeutic strategies used to treat asthma including their limitations. Finally, we will highlight the benefits of using biologics to treat asthma-associated allergic airway inflammation with an emphasis on the potential of targeting cytokine alarmins, especially thymic stromal lymphopoietin. PMID:27378934

  5. Calcium-sensing receptor antagonists abrogate airway hyperresponsiveness and inflammation in allergic asthma

    PubMed Central

    Yarova, Polina L.; Stewart, Alecia L.; Sathish, Venkatachalem; Britt, Rodney D; Thompson, Michael A.; Lowe, Alexander P. P.; Freeman, Michelle; Aravamudan, Bharathi; Kita, Hirohito; Brennan, Sarah C.; Schepelmann, Martin; Davies, Thomas; Yung, Sun; Cholisoh, Zakky; Kidd, Emma J.; Ford, William R.; Broadley, Kenneth J.; Rietdorf, Katja; Chang, Wenhan; Khayat, Mohd E. Bin; Ward, Donald T.; Corrigan, Christopher J.; Ward, Jeremy P. T.; Kemp, Paul J.; Pabelick, Christina M.; Prakash, Y. S.; Riccardi, Daniela

    2016-01-01

    Airway hyperresponsiveness and inflammation are fundamental hallmarks of allergic asthma that are accompanied by increases in certain polycations, such as eosinophil cationic protein. Levels of these cations in body fluids correlate with asthma severity. We show that polycations and elevated extracellular calcium activate the human recombinant and native calcium-sensing receptor (CaSR), leading to intracellular calcium mobilization, cyclic adenosine monophosphate breakdown, and p38 mitogen-activated protein kinase phosphorylation in airway smooth muscle (ASM) cells. These effects can be prevented by CaSR antagonists, termed calcilytics. Moreover, asthmatic patients and allergen-sensitized mice expressed more CaSR in ASMs than did their healthy counterparts. Indeed, polycations induced hyper-reactivity in mouse bronchi, and this effect was prevented by calcilytics and absent in mice with CaSR ablation from ASM. Calcilytics also reduced airway hyperresponsiveness and inflammation in allergen-sensitized mice in vivo. These data show that a functional CaSR is up-regulated in asthmatic ASM and targeted by locally produced polycations to induce hyperresponsiveness and inflammation. Thus, calcilytics may represent effective asthma therapeutics. PMID:25904744

  6. Systemic inflammation after inspiratory loading in chronic obstructive pulmonary disease

    PubMed Central

    Fuster, Antonia; Sauleda, Jaume; Sala, Ernest; Barceló, Bernardí; Pons, Jaume; Carrera, Miguel; Noguera, Aina; Togores, Bernat; Agustí, Alvar GN

    2008-01-01

    Objective Patients with chronic obstructive pulmonary disease (COPD) present systemic inflammation. Strenuous resistive breathing induces systemic inflammation in healthy subjects. We hypothesized that the increased respiratory load that characterizes COPD can contribute to systemic inflammation in these patients. Patients and methods To test this hypothesis, we compared leukocyte numbers and levels of circulating cytokines (tumor necrosis factor alpha [TNFα], interleukin-1β [IL-1β], IL-6, IL-8, and IL-10), before and 1 hour after maximal incremental inspiratory loading in 13 patients with stable COPD (forced expiratory volume in one second [FEV1] 29 ± 2.5% ref) and in 8 healthy sedentary subjects (FEV1 98 ± 5% ref). Results We found that: (1) at baseline, patients with COPD showed higher leukocyte counts and IL-8 levels than controls (p < 0.01); and, (2) one hour after maximal inspiratory loading these values were unchanged, except for IL-10, which increased in controls (p < 0.05) but not in patients with COPD. Conclusions This study confirms the presence of systemic inflammation in COPD, shows that maximal inspiratory loading does not increase the levels of pro-inflammatory cytokines (IL-1β, IL-8) in COPD patients or controls, but suggests that the former may be unable to mount an appropriate systemic anti-inflammatory response to exercise. PMID:18488438

  7. Clusterin Modulates Allergic Airway Inflammation by Attenuating CCL20-Mediated Dendritic Cell Recruitment.

    PubMed

    Hong, Gyong Hwa; Kwon, Hyouk-Soo; Moon, Keun-Ai; Park, So Young; Park, Sunjoo; Lee, Kyoung Young; Ha, Eun Hee; Kim, Tae-Bum; Moon, Hee-Bom; Lee, Heung Kyu; Cho, You Sook

    2016-03-01

    Recruitment and activation of dendritic cells (DCs) in the lungs are critical for Th2 responses in asthma, and CCL20 secreted from bronchial epithelial cells (BECs) is known to influence the recruitment of DCs. Because asthma is a disease that is closely associated with oxidative stress, we hypothesized that clusterin, an oxidative stress regulatory molecule, may have a role in the development of allergic airway inflammation. The aim of this study was to examine whether clusterin regulates CCL20 production from the BECs and the subsequent DC recruitment in the lungs. To verify the idea, clusterin knockout (Clu(-/-)), clusterin heterogeneous (Clu(+/-)), and wild-type mice were exposed intranasally to house dust mite (HDM) extract to induce allergic airway inflammation. We found that the total number of immune cells in bronchoalveolar lavage fluid and the lung was increased in Clu(-/-) and Clu(+/-) mice. Of these immune cells, inflammatory DCs (CD11b(+)CD11c(+)) and Ly6C(high) monocyte populations in the lung were significantly increased, which was accompanied by increased levels of various chemokines, including CCL20 in bronchoalveolar lavage fluid, and increased oxidative stress markers in the lung. Moreover, HDM-stimulated human BECs with either up- or downregulated clusterin expression showed that CCL20 secretion was negatively associated with clusterin expression. Interestingly, clusterin also reduced the level of intracellular reactive oxygen species, which is related to induction of CCL20 expression after HDM stimulation. Thus, the antioxidant property of clusterin is suggested to regulate the expression of CCL20 in BECs and the subsequent recruitment of inflammatory DCs in the airway. PMID:26826245

  8. Clusterin Modulates Allergic Airway Inflammation by Attenuating CCL20-Mediated Dendritic Cell Recruitment.

    PubMed

    Hong, Gyong Hwa; Kwon, Hyouk-Soo; Moon, Keun-Ai; Park, So Young; Park, Sunjoo; Lee, Kyoung Young; Ha, Eun Hee; Kim, Tae-Bum; Moon, Hee-Bom; Lee, Heung Kyu; Cho, You Sook

    2016-03-01

    Recruitment and activation of dendritic cells (DCs) in the lungs are critical for Th2 responses in asthma, and CCL20 secreted from bronchial epithelial cells (BECs) is known to influence the recruitment of DCs. Because asthma is a disease that is closely associated with oxidative stress, we hypothesized that clusterin, an oxidative stress regulatory molecule, may have a role in the development of allergic airway inflammation. The aim of this study was to examine whether clusterin regulates CCL20 production from the BECs and the subsequent DC recruitment in the lungs. To verify the idea, clusterin knockout (Clu(-/-)), clusterin heterogeneous (Clu(+/-)), and wild-type mice were exposed intranasally to house dust mite (HDM) extract to induce allergic airway inflammation. We found that the total number of immune cells in bronchoalveolar lavage fluid and the lung was increased in Clu(-/-) and Clu(+/-) mice. Of these immune cells, inflammatory DCs (CD11b(+)CD11c(+)) and Ly6C(high) monocyte populations in the lung were significantly increased, which was accompanied by increased levels of various chemokines, including CCL20 in bronchoalveolar lavage fluid, and increased oxidative stress markers in the lung. Moreover, HDM-stimulated human BECs with either up- or downregulated clusterin expression showed that CCL20 secretion was negatively associated with clusterin expression. Interestingly, clusterin also reduced the level of intracellular reactive oxygen species, which is related to induction of CCL20 expression after HDM stimulation. Thus, the antioxidant property of clusterin is suggested to regulate the expression of CCL20 in BECs and the subsequent recruitment of inflammatory DCs in the airway.

  9. Ultrafine carbon black particles cause early airway inflammation and have adjuvant activity in a mouse allergic airway disease model.

    PubMed

    de Haar, Colin; Hassing, Ine; Bol, Marianne; Bleumink, Rob; Pieters, Raymond

    2005-10-01

    To gain more insight into the mechanisms of particulate matter (PM)-induced adjuvant activity, we studied the kinetics of airway toxicity/inflammation and allergic sensitization to ovalbumin (OVA) in response to ultrafine carbon black particles (CBP). Mice were exposed intranasally to OVA alone or in combination with different concentrations of CBP. Airway toxicity and inflammation were assessed at days 4 and 8. Immune adjuvant effects were studied in the lung draining peribronchial lymph nodes (PBLN) at day 8. Antigen-specific IgE was measured at days 21 and 28, whereas allergic airway inflammation was studied after OVA challenges (day 28). Results show that a total dose of 200 microg CBP per mouse, but not 20 microg or 2 microg, induced immediate airway inflammation. This 200 microg CBP was the only dose that had immune adjuvant activity, by inducing enlargement of the PBLN and increasing OVA-specific production of Th2 cytokines (IL-4, IL-5, and IL-10). The immune adjuvant activity of 200 microg CBP dosing was further examined. Whereas increased OVA-specific IgE levels in serum on day 21 confirms systemic sensitization, this was further supported by allergic airway inflammation after challenges with OVA. Our data show a link between early airway toxicity and adjuvant effects of CBP. In addition, results indicate that local cytokine production early after exposure to CBP is predictive of allergic airway inflammation. In addition this model appears suitable for studying the role of airway toxicity, inflammation and other mechanisms of particle adjuvant activity, and predicting the adjuvant potential of different particles.

  10. ICAM-1 Targeted Nanogels Loaded with Dexamethasone Alleviate Pulmonary Inflammation

    PubMed Central

    Coll Ferrer, M. Carme; Shuvaev, Vladimir V.; Zern, Blaine J.; Composto, Russell J.; Muzykantov, Vladimir R.; Eckmann, David M.

    2014-01-01

    Lysozyme dextran nanogels (NG) have great potential in vitro as a drug delivery platform, combining simple chemistry with rapid uptake and cargo release in target cells with “stealth” properties and low toxicity. In this work, we study for the first time the potential of targeted NG as a drug delivery platform in vivo to alleviate acute pulmonary inflammation in animal model of LPS-induced lung injury. NG are targeted to the endothelium via conjugation with an antibody (Ab) directed to Intercellular Adhesion Molecule-1(ICAM-NG), whereas IgG conjugated NG (IgG-NG) are used for control formulations. The amount of Ab conjugated to the NG and distribution in the body after intravenous (IV) injection have been quantitatively analyzed using a tracer isotope-labeled [125I]IgG. As a proof of concept, Ab-NG are loaded with dexamethasone, an anti-inflammatory therapeutic, and the drug uptake and release kinetics are measured by HPLC. In vivo studies in mice showed that: i) ICAM-NG accumulates in mouse lungs (∼120% ID/g vs ∼15% ID/g of IgG-NG); and, ii) DEX encapsulated in ICAM-NG, but not in IgG-NG practically blocks LPS-induced overexpression of pro-inflammatory cell adhesion molecules including ICAM-1 in the pulmonary inflammation. PMID:25019304

  11. Distinct expression and function of the novel mouse chemokine monocyte chemotactic protein-5 in lung allergic inflammation

    PubMed Central

    1996-01-01

    We have cloned a novel mouse CC chemokine cDNA from the lung during an allergic inflammatory reaction. The protein encoded by this cDNA is chemotactic for eosinophils, monocytes, and lymphocytes in vitro and in vivo. Based on its similarities in sequence and function with other CC chemokines, we have named it mouse monocyte chemotactic protein-5 (mMCP- 5). Under noninflammatory conditions, expression of mMCP-5 in the lymph nodes and thymus is constitutive and is generally restricted to stromal cells. Neutralization of mMCP-5 protein with specific antibodies during an allergic inflammatory reaction in vivo resulted in a reduction in the number of eosinophils that accumulated in the lung. Moreover, mMCP- 5 mRNA expression in vivo is regulated differently from that of other major CC chemokines in the lung during the allergic reaction, including Eotaxin. The presence of lymphocytes is essential for expression of mMCP-5 by alveolar macrophages and smooth muscle cells in the lung, and the induction of mMCP-5 RNA occurs earlier than that of the eosinophil chemokine Eotaxin during allergic inflammation. In contrast to Eotaxin, mRNA for mMCP-5 can be produced by mast cells. From these results, we postulate that mMCP-5 plays a pivotal role during the early stages of allergic lung inflammation. PMID:8920881

  12. Systemic Microvascular Dysfunction and Inflammation after Pulmonary Particulate Matter Exposure

    PubMed Central

    Nurkiewicz, Timothy R.; Porter, Dale W.; Barger, Mark; Millecchia, Lyndell; Rao, K. Murali K.; Marvar, Paul J.; Hubbs, Ann F.; Castranova, Vincent; Boegehold, Matthew A.

    2006-01-01

    The epidemiologic association between pulmonary exposure to ambient particulate matter (PM) and cardiovascular dysfunction is well known, but the systemic mechanisms that drive this effect remain unclear. We have previously shown that acute pulmonary exposure to PM impairs or abolishes endothelium-dependent arteriolar dilation in the rat spinotrapezius muscle. The purpose of this study was to further characterize the effect of pulmonary PM exposure on systemic microvascular function and to identify local inflammatory events that may contribute to these effects. Rats were intratracheally instilled with residual oil fly ash (ROFA) or titanium dioxide at 0.1 or 0.25 mg/rat 24 hr before measurement of pulmonary and systemic microvascular responses. In vivo microscopy of the spinotrapezius muscle was used to study systemic arteriolar responses to intraluminal infusion of the Ca2+ ionophore A23187 or iontophoretic abluminal application of the adrenergic agonist phenylephrine (PHE). Leukocyte rolling and adhesion were quantified in venules paired with the studied arterioles. Histologic techniques were used to assess pulmonary inflammation, characterize the adherence of leukocytes to systemic venules, verify the presence of myeloperoxidase (MPO) in the systemic microvascular wall, and quantify systemic microvascular oxidative stress. In the lungs of rats exposed to ROFA or TiO2, changes in some bronchoalveolar lavage markers of inflammation were noted, but an indication of cellular damage was not found. In rats exposed to 0.1 mg ROFA, focal alveolitis was evident, particularly at sites of particle deposition. Exposure to either ROFA or TiO2 caused a dose-dependent impairment of endothelium-dependent arteriolar dilation. However, exposure to these particles did not affect microvascular constriction in response to PHE. ROFA and TiO2 exposure significantly increased leukocyte rolling and adhesion in paired venules, and these cells were positively identified as

  13. Systemic microvascular dysfunction and inflammation after pulmonary particulate matter exposure.

    PubMed

    Nurkiewicz, Timothy R; Porter, Dale W; Barger, Mark; Millecchia, Lyndell; Rao, K Murali K; Marvar, Paul J; Hubbs, Ann F; Castranova, Vincent; Boegehold, Matthew A

    2006-03-01

    The epidemiologic association between pulmonary exposure to ambient particulate matter (PM) and cardiovascular dysfunction is well known, but the systemic mechanisms that drive this effect remain unclear. We have previously shown that acute pulmonary exposure to PM impairs or abolishes endothelium-dependent arteriolar dilation in the rat spinotrapezius muscle. The purpose of this study was to further characterize the effect of pulmonary PM exposure on systemic microvascular function and to identify local inflammatory events that may contribute to these effects. Rats were intratracheally instilled with residual oil fly ash (ROFA) or titanium dioxide at 0.1 or 0.25 mg/rat 24 hr before measurement of pulmonary and systemic microvascular responses. In vivo microscopy of the spinotrapezius muscle was used to study systemic arteriolar responses to intraluminal infusion of the Ca2+ ionophore A23187 or iontophoretic abluminal application of the adrenergic agonist phenylephrine (PHE). Leukocyte rolling and adhesion were quantified in venules paired with the studied arterioles. Histologic techniques were used to assess pulmonary inflammation, characterize the adherence of leukocytes to systemic venules, verify the presence of myeloperoxidase (MPO) in the systemic microvascular wall, and quantify systemic microvascular oxidative stress. In the lungs of rats exposed to ROFA or TiO2, changes in some bronchoalveolar lavage markers of inflammation were noted, but an indication of cellular damage was not found. In rats exposed to 0.1 mg ROFA, focal alveolitis was evident, particularly at sites of particle deposition. Exposure to either ROFA or TiO2 caused a dose-dependent impairment of endothelium-dependent arteriolar dilation. However, exposure to these particles did not affect microvascular constriction in response to PHE. ROFA and TiO2 exposure significantly increased leukocyte rolling and adhesion in paired venules, and these cells were positively identified as

  14. Asiatic acid inhibits pulmonary inflammation induced by cigarette smoke.

    PubMed

    Lee, Jae-Won; Park, Hyun Ah; Kwon, Ok-Kyoung; Jang, Yin-Gi; Kim, Ju Yeong; Choi, Bo Kyung; Lee, Hee Jae; Lee, Sangwoo; Paik, Jin-Hyub; Oh, Sei-Ryang; Ahn, Kyung-Seop; Lee, Hyun-Jun

    2016-10-01

    Asiatic acid (AA) is one of the major components of Titrated extract of Centella asiatica (TECA), which has been reported to possess antioxidant and anti-inflammatory activities. The purpose of this study was to investigate the protective effect of AA on pulmonary inflammation induced by cigarette smoke (CS). AA significantly attenuated the infiltration of inflammatory cells in bronchoalveolar lavage fluid (BALF) of CS exposure mice. AA also decreased ROS production and NE activity, and inhibited the release of proinflammatory cytokines in BALF. AA reduced the recruitment of inflammatory cells and MCP-1 expression in lung tissue of CS exposure mice. AA also attenuated mucus overproduction, and decreased the activation of MAPKs and NF-kB in lung tissue. Furthermore, AA increased HO-1 expression and inhibited the reduced expression of SOD3 in lung tissue. These findings indicate that AA effectively inhibits pulmonary inflammatory response, which is an important process in the development of chronic obstructive pulmonary disease (COPD) via suppression of inflammatory mediators and induction of HO-1. Therefore, we suggest that AA has the potential to treat inflammatory disease such as COPD.

  15. Specific allergen immunotherapy attenuates allergic airway inflammation in a rat model of Alstonia scholaris pollen induced airway allergy.

    PubMed

    Datta, Ankur; Moitra, Saibal; Hazra, Iman; Mondal, Somnath; Das, Prasanta Kumar; Singh, Manoj Kumar; Chaudhuri, Suhnrita; Bhattacharya, Debanjan; Tripathi, Santanu Kumar; Chaudhuri, Swapna

    2016-01-01

    Pollen grains are well established to be an important cause of respiratory allergy. Current pharmacologic therapies for allergic asthma do not cure the disease. Allergen specific immunotherapy is the only treatment method which re-directs the immune system away from allergic response leading to a long lasting effect. The mechanism by which immunotherapy achieves this goal is an area of active research world-wide. The present experimental study was designed to develop an experimental model of allergic lung inflammation based on a relevant human allergen, Alstonia scholaris pollen, and to establish the immunological and cellular features of specific allergen immunotherapy using this same pollen extract. Our results revealed that Alstonia scholaris pollen sensitization and challenge causes eosinophilic airway inflammation with mucin hypersecretion. This is associated with increased total IgE, increased expression of FcɛRI on lung mast cells and increased levels of IL-4, IL-5 & IL-13 as confirmed by ELISA, in-situ immunofluorescence and FACS assay. Allergen specific immunotherapy reduced airway inflammation and also decreased total IgE level, FcɛRI expression, IL-4, IL-5 & IL-13 levels. It was further noted that the reduction of these levels was more by intra-nasal route than by intra-peritoneal route. Thus we present a novel animal model of Alstonia scholaris pollen allergic disease and specific allergen immunotherapy which will pave the way towards the development of better treatment modalities.

  16. Specific allergen immunotherapy attenuates allergic airway inflammation in a rat model of Alstonia scholaris pollen induced airway allergy.

    PubMed

    Datta, Ankur; Moitra, Saibal; Hazra, Iman; Mondal, Somnath; Das, Prasanta Kumar; Singh, Manoj Kumar; Chaudhuri, Suhnrita; Bhattacharya, Debanjan; Tripathi, Santanu Kumar; Chaudhuri, Swapna

    2016-01-01

    Pollen grains are well established to be an important cause of respiratory allergy. Current pharmacologic therapies for allergic asthma do not cure the disease. Allergen specific immunotherapy is the only treatment method which re-directs the immune system away from allergic response leading to a long lasting effect. The mechanism by which immunotherapy achieves this goal is an area of active research world-wide. The present experimental study was designed to develop an experimental model of allergic lung inflammation based on a relevant human allergen, Alstonia scholaris pollen, and to establish the immunological and cellular features of specific allergen immunotherapy using this same pollen extract. Our results revealed that Alstonia scholaris pollen sensitization and challenge causes eosinophilic airway inflammation with mucin hypersecretion. This is associated with increased total IgE, increased expression of FcɛRI on lung mast cells and increased levels of IL-4, IL-5 & IL-13 as confirmed by ELISA, in-situ immunofluorescence and FACS assay. Allergen specific immunotherapy reduced airway inflammation and also decreased total IgE level, FcɛRI expression, IL-4, IL-5 & IL-13 levels. It was further noted that the reduction of these levels was more by intra-nasal route than by intra-peritoneal route. Thus we present a novel animal model of Alstonia scholaris pollen allergic disease and specific allergen immunotherapy which will pave the way towards the development of better treatment modalities. PMID:26667977

  17. Allergic lung inflammation promotes atherosclerosis in apolipoprotein E-deficient mice.

    PubMed

    Liu, Cong-Lin; Wang, Yi; Liao, Mengyang; Santos, Marcela M; Fernandes, Cleverson; Sukhova, Galina K; Zhang, Jin-Ying; Cheng, Xiang; Yang, Chongzhe; Huang, Xiaozhu; Levy, Bruce; Libby, Peter; Wu, Gongxiong; Shi, Guo-Ping

    2016-05-01

    Inflammation drives asthma and atherosclerosis. Clinical studies suggest that asthmatic patients have a high risk of atherosclerosis. Yet this hypothesis remains uncertain, given that Th2 imbalance causes asthma whereas Th1 immunity promotes atherosclerosis. In this study, chronic allergic lung inflammation (ALI) was induced in mice by ovalbumin sensitization and challenge. Acute ALI was induced in mice by ovalbumin and aluminum sensitization and ovalbumin challenge. Atherosclerosis was produced in apolipoprotein E-deficient (Apoe(-/-)) mice with a Western diet. When chronic ALI and atherosclerosis were produced simultaneously, ALI increased atherosclerotic lesion size, lesion inflammatory cell content, elastin fragmentation, smooth muscle cell (SMC) loss, lesion cell proliferation, and apoptosis. Production of acute ALI before atherogenesis did not affect lesion size, but increased atherosclerotic lesion CD4(+) T cells, lesion SMC loss, angiogenesis, and apoptosis. Production of acute ALI after atherogenesis also did not change atherosclerotic lesion area, but increased lesion elastin fragmentation, cell proliferation, and apoptosis. In mice with chronic ALI and diet-induced atherosclerosis, daily inhalation of a mast cell inhibitor or corticosteroid significantly reduced atherosclerotic lesion T-cell and mast cell contents, SMC loss, angiogenesis, and cell proliferation and apoptosis, although these drugs did not affect lesion area, compared with those that received vehicle treatment. In conclusion, both chronic and acute ALI promote atherogenesis or aortic lesion pathology, regardless whether ALI occurred before, after, or at the same time as atherogenesis. Antiasthmatic medication can efficiently mitigate atherosclerotic lesion pathology.

  18. Allergic lung inflammation promotes atherosclerosis in apolipoprotein E-deficient mice.

    PubMed

    Liu, Cong-Lin; Wang, Yi; Liao, Mengyang; Santos, Marcela M; Fernandes, Cleverson; Sukhova, Galina K; Zhang, Jin-Ying; Cheng, Xiang; Yang, Chongzhe; Huang, Xiaozhu; Levy, Bruce; Libby, Peter; Wu, Gongxiong; Shi, Guo-Ping

    2016-05-01

    Inflammation drives asthma and atherosclerosis. Clinical studies suggest that asthmatic patients have a high risk of atherosclerosis. Yet this hypothesis remains uncertain, given that Th2 imbalance causes asthma whereas Th1 immunity promotes atherosclerosis. In this study, chronic allergic lung inflammation (ALI) was induced in mice by ovalbumin sensitization and challenge. Acute ALI was induced in mice by ovalbumin and aluminum sensitization and ovalbumin challenge. Atherosclerosis was produced in apolipoprotein E-deficient (Apoe(-/-)) mice with a Western diet. When chronic ALI and atherosclerosis were produced simultaneously, ALI increased atherosclerotic lesion size, lesion inflammatory cell content, elastin fragmentation, smooth muscle cell (SMC) loss, lesion cell proliferation, and apoptosis. Production of acute ALI before atherogenesis did not affect lesion size, but increased atherosclerotic lesion CD4(+) T cells, lesion SMC loss, angiogenesis, and apoptosis. Production of acute ALI after atherogenesis also did not change atherosclerotic lesion area, but increased lesion elastin fragmentation, cell proliferation, and apoptosis. In mice with chronic ALI and diet-induced atherosclerosis, daily inhalation of a mast cell inhibitor or corticosteroid significantly reduced atherosclerotic lesion T-cell and mast cell contents, SMC loss, angiogenesis, and cell proliferation and apoptosis, although these drugs did not affect lesion area, compared with those that received vehicle treatment. In conclusion, both chronic and acute ALI promote atherogenesis or aortic lesion pathology, regardless whether ALI occurred before, after, or at the same time as atherogenesis. Antiasthmatic medication can efficiently mitigate atherosclerotic lesion pathology. PMID:26898714

  19. Mast cells and basophils are essential for allergies: mechanisms of allergic inflammation and a proposed procedure for diagnosis.

    PubMed

    He, Shao-Heng; Zhang, Hui-Yun; Zeng, Xiao-Ning; Chen, Dong; Yang, Ping-Chang

    2013-10-01

    The current definition of allergy is a group of IgE-mediated diseases. However, a large portion of patients with clinical manifestations of allergies do not exhibit elevated serum levels of IgE (sIgEs). In this article, three key factors, ie soluble allergens, sIgEs and mast cells or basophils, representing the causative factors, messengers and primary effector cells in allergic inflammation, respectively, were discussed. Based on current knowledge on allergic diseases, we propose that allergic diseases are a group of diseases mediated through activated mast cells and/or basophils in sensitive individuals, and allergic diseases include four subgroups: (1) IgE dependent; (2) other immunoglobulin dependent; (3) non-immunoglobulin mediated; (4) mixture of the first three subgroups. According to our proposed definition, pseudo-allergic-reactions, in which mast cell or basophil activation is not mediated via IgE, or to a lesser extent via IgG or IgM, should be non-IgE-mediated allergic diseases. Specific allergen challenge tests (SACTs) are gold standard tests for diagnosing allergies in vivo, but risky. The identification of surface membrane activation markers of mast cells and basophils (CD203c, CCR3, CD63, etc) has led to development of the basophil activation test (BAT), an in vitro specific allergen challenge test (SACT). Based on currently available laboratory allergy tests, we here propose a laboratory examination procedure for allergy. PMID:23974516

  20. Protective effect of curcumin on acute airway inflammation of allergic asthma in mice through Notch1-GATA3 signaling pathway.

    PubMed

    Chong, Lei; Zhang, Weixi; Nie, Ying; Yu, Gang; Liu, Liu; Lin, Li; Wen, Shunhang; Zhu, Lili; Li, Changchong

    2014-10-01

    Curcumin, a natural product derived from the plant Curcuma longa, has been found to have anti-inflammatory, antineoplastic and antifibrosis effects. It has been reported that curcumin attenuates allergic airway inflammation in mice through inhibiting NF-κB and its downstream transcription factor GATA3. It also has been proved the antineoplastic effect of curcumin through down-regulating Notch1 receptor and its downstream nuclear transcription factor NF-κB levels. In this study, we aimed to investigate the anti-inflammatory effect of curcumin on acute allergic asthma and its underlying mechanisms. 36 male BALB/c mice were randomly divided into four groups (normal, asthma, asthma+budesonide and asthma+curcumin groups). BALF (bronchoalveolar lavage fluid) and lung tissues were analyzed for airway inflammation and the expression of Notch1, Notch2, Notch3, Notch4 and the downstream transcription factor GATA3. Our findings showed that the levels of Notch1 and Notch2 receptors were up-regulated in asthma group, accompanied by the increased expression of GATA3. But the expression of Notch2 receptor was lower than Notch1 receptor. Curcumin pretreatment improved the airway inflammatory cells infiltration and reversed the increasing levels of Notch1/2 receptors and GATA3. Notch3 receptor was not expressed in all of the four groups. Notch4 receptor protein and mRNA expression level in the four groups had no significant differences. The results of the present study suggested that Notch1 and Notch2 receptor, major Notch1 receptor, played an important role in the development of allergic airway inflammation and the inhibition of Notch1-GATA3 signaling pathway by curcumin can prevent the development and deterioration of the allergic airway inflammation. This may be a possible therapeutic option of allergic asthma.

  1. Acute and chronic exposure to Tyrophagus putrescentiae induces allergic pulmonary response in a murine model

    PubMed Central

    Nuñez, Nailê Karine; dos Santos Dutra, Moisés; Barbosa, Gustavo Leivas; Morassutti, Alessandra Loureiro; de Souza, Rodrigo Godinho; Vargas, Mauro Henrique Moraes; Antunes, Géssica Luana; Silveira, Josiane Silva; da Silva, Guilherme Liberato; Pitrez, Paulo Márcio

    2016-01-01

    Background Tyrophagus putrescentiae (Tp) is a source of aeroallergen that causes allergic diseases. Objective To describe an acute and chronic murine model of allergic asthma with Tp extract with no systemic sensitization and no use of adjuvant. Methods Mites from dust sample were cultured and a raw extract was produced. Female BALB/c mice (6-8 weeks) were challenged intranasally with Tp extract or Dulbecco's phosphate-buffered saline, for 10 consecutive days (acute protocol) or for 6 weeks (chronic protocol). Twenty-four hours after the last intranasal challenge, bronchoalveolar lavage fluid (BALF) was performed for total and differential cells count, cytokine analysis, and eosinophil peroxidase activity. Lung tissue was also removed for histopathologic analysis. Results Tp extract has shown a significant increase in total cells count from BALF as well as an increase in absolute eosinophils count, eosinophil peroxidase activity, interleukin (IL)-5 and IL-13 levels, in both acute and chronic protocols. Peribronchovascular infiltrate, goblet cells hyperplasia and collagen deposition were shown in the airways of acute and chronic Tp-exposed mice. Conclusion Our data suggest that the intranasal exposure to Tp extract, with no systemic sensitization and no use of adjuvants, induces a robust allergic inflammation in the lungs of mice, in both acute and chronic models. Our Tp extract seems to be a potent allergen extract which may be used in asthma model studies. PMID:26844220

  2. Origin, Localization, and Immunoregulatory Properties of Pulmonary Phagocytes in Allergic Asthma

    PubMed Central

    Hoffmann, Franziska; Ender, Fanny; Schmudde, Inken; Lewkowich, Ian P.; Köhl, Jörg; König, Peter; Laumonnier, Yves

    2016-01-01

    Allergic asthma is a chronic inflammatory disease of the airways that is driven by maladaptive T helper 2 (Th2) and Th17 immune responses against harmless, airborne substances. Pulmonary phagocytes represent the first line of defense in the lung where they constantly sense the local environment for potential threats. They comprise two distinct cell types, i.e., macrophages and dendritic cells (DC) that differ in their origins and functions. Alveolar macrophages quickly take up most of the inhaled allergens, yet do not deliver their cargo to naive T cells sampling in draining lymph nodes. In contrast, pulmonary DCs instruct CD4+ T cells develop into Th2 and Th17 effectors, initiating the maladaptive immune responses toward harmless environmental substances observed in allergic individuals. Unraveling the mechanisms underlying this mistaken identity of harmless, airborne substances by innate immune cells is one of the great challenges in asthma research. The identification of different pulmonary DC subsets, their role in antigen uptake, migration to the draining lymph nodes, and their potential to instruct distinct T cell responses has set the stage to unravel this mystery. However, at this point, a detailed understanding of the spatiotemporal resolution of DC subset localization, allergen uptake, processing, autocrine and paracrine cellular crosstalk, and the humoral factors that define the activation status of DCs is still lacking. In addition to DCs, at least two distinct macrophage populations have been identified in the lung that are either located in the airway/alveolar lumen or in the interstitium. Recent data suggest that such populations can exert either pro- or anti-inflammatory functions. Similar to the DC subsets, detailed insights into the individual roles of alveolar and interstitial macrophages during the different phases of asthma development are still missing. Here, we will provide an update on the current understanding of the origin, localization

  3. Exposure to Deepwater Horizon Crude Oil Burnoff Particulate Matter Induces Pulmonary Inflammation and Alters Adaptive Immune Response.

    PubMed

    Jaligama, Sridhar; Chen, Zaili; Saravia, Jordy; Yadav, Nikki; Lomnicki, Slawomir M; Dugas, Tammy R; Cormier, Stephania A

    2015-07-21

    The ″in situ burning" of trapped crude oil on the surface of Gulf waters during the 2010 Deepwater Horizon (DWH) oil spill released numerous pollutants, including combustion-generated particulate matter (PM). Limited information is available on the respiratory impact of inhaled in situ burned oil sail particulate matter (OSPM). Here we utilized PM collected from in situ burn plumes of the DWH oil spill to study the acute effects of exposure to OSPM on pulmonary health. OSPM caused dose-and time-dependent cytotoxicity and generated reactive oxygen species and superoxide radicals in vitro. Additionally, mice exposed to OSPM exhibited significant decreases in body weight gain, systemic oxidative stress in the form of increased serum 8-isoprostane (8-IP) levels, and airway inflammation in the form of increased macrophages and eosinophils in bronchoalveolar lavage fluid. Further, in a mouse model of allergic asthma, OSPM caused increased T helper 2 cells (Th2), peribronchiolar inflammation, and increased airway mucus production. These findings demonstrate that acute exposure to OSPM results in pulmonary inflammation and alteration of innate/adaptive immune responses in mice and highlight potential respiratory effects associated with cleaning up an oil spill. PMID:26115348

  4. Exposure to Deepwater Horizon Crude Oil Burnoff Particulate Matter Induces Pulmonary Inflammation and Alters Adaptive Immune Response.

    PubMed

    Jaligama, Sridhar; Chen, Zaili; Saravia, Jordy; Yadav, Nikki; Lomnicki, Slawomir M; Dugas, Tammy R; Cormier, Stephania A

    2015-07-21

    The ″in situ burning" of trapped crude oil on the surface of Gulf waters during the 2010 Deepwater Horizon (DWH) oil spill released numerous pollutants, including combustion-generated particulate matter (PM). Limited information is available on the respiratory impact of inhaled in situ burned oil sail particulate matter (OSPM). Here we utilized PM collected from in situ burn plumes of the DWH oil spill to study the acute effects of exposure to OSPM on pulmonary health. OSPM caused dose-and time-dependent cytotoxicity and generated reactive oxygen species and superoxide radicals in vitro. Additionally, mice exposed to OSPM exhibited significant decreases in body weight gain, systemic oxidative stress in the form of increased serum 8-isoprostane (8-IP) levels, and airway inflammation in the form of increased macrophages and eosinophils in bronchoalveolar lavage fluid. Further, in a mouse model of allergic asthma, OSPM caused increased T helper 2 cells (Th2), peribronchiolar inflammation, and increased airway mucus production. These findings demonstrate that acute exposure to OSPM results in pulmonary inflammation and alteration of innate/adaptive immune responses in mice and highlight potential respiratory effects associated with cleaning up an oil spill.

  5. HIF-1 expression is associated with CCL2 chemokine expression in airway inflammatory cells: implications in allergic airway inflammation

    PubMed Central

    2012-01-01

    Background The pathogenesis of allergic airway inflammation in asthmatic patients is complex and characterized by cellular infiltrates and activity of many cytokines and chemokines. Both the transcription factor hypoxia inducible factor-1 (HIF-1) and chemokine CCL2 have been shown to play pivotal roles in allergic airway inflammation. The interrelationship between these two factors is not known. We hypothesized that the expression of HIF-1 and CCL2 may be correlated and that the expression of CCL2 may be under the regulation of HIF-1. Several lines of evidence are presented to support this hypothesis. Methods The effects of treating wild-type OVA (ovalbumin)-sensitized/challenged mice with ethyl-3,4-dihydroxybenzoate (EDHB), which upregulate HIF, on CCL2 expression, were determined. Mice conditionally knocked out for HIF-1β was examined for their ability to mount an allergic inflammatory response and CCL2 expression in the lung after intratracheal exposure to ovalbumin. The association of HIF-1α and CCL2 levels was also measured in endobronchial biopsies and bronchial fluid of asthma patients after challenge. Results We show that both HIF-1α and CCL2 were upregulated during an OVA (ovalbumin)-induced allergic response in mice. The levels of HIF-1α and CCL2 were significantly increased following treatment with a pharmacological agent which upregulates HIF-1α, ethyl-3,4-dihydroxybenzoate (EDHB). In contrast, the expression levels of HIF-1α and CCL2 were decreased in the lungs of mice that have been conditionally knocked out for ARNT (HIF-1β) following sensitization with OVA when compared to levels in wild type mice. In asthma patients, the levels of HIF-1α and CCL2 increased after challenge with the allergen. Conclusions These data suggest that CCL2 expression is regulated, in part, by HIF-1 in the lung. These findings also demonstrate that both CCL2 and HIF-1 are implicated in the pathogenesis of allergic airway inflammation. PMID:22823210

  6. EFFECTS OF DIESEL EXHAUST ON PULMONARY RESPONSES DURING ALLERGIC SENSITIZATION TO AEROSOLIZED OVALBUMIN IN BALB/C MICE

    EPA Science Inventory

    Effects of Diesel Exhaust on Pulmonary Responses During Allergic Sensitization to Aerosolized Ovalbumin in BALB/c Mice. P. Singh1, M.J. Daniels1, D. Andrews1, E. Boykin1, W. P. Linak2 and M.I. Gilmour1. 1USEPA, ORD, NHEERL, RTP, NC. 2 USEPA, ORD, NRMRL, RTP, NC.

    Inhala...

  7. Diesel exposure suppresses natural killer cell function and resolution of eosinophil inflammation: a randmonized controlled trial of exposure in allergic rhinitics

    EPA Science Inventory

    Exposure to diesel exhaust (DE) is known to exacerbate allergic inflammation, including virus induced eosinophil activation in laboratory animals. We have previously shown that in human volunteers with allergic rhinitis a short-term exposure to DE prior to infection with the live...

  8. Silencing of c-kit with small interference RNA attenuates inflammation in a murine model of allergic asthma.

    PubMed

    Wu, Wei; Wang, Tao; Dong, Jia-Jia; Liao, Zeng-Lin; Wen, Fu-Qiang

    2012-07-01

    Asthma is a chronic respiratory disease characterized by the inflammation of the airways due to infiltration and activation of several inflammatory cells that produce cytokines. c-kit, a proto-oncogene that encodes a tyrosine kinase receptor, has been found to be associated with allergic inflammation. The aim of the present study was to assess whether silencing of c-kit with small interference RNA (siRNA) would attenuate inflammation in allergic asthma. A mouse model of ovalbumin (OVA)-induced allergic asthma was treated with systemic administration of anti-c-kit siRNA to inhibit the expression of the c-kit gene. siRNAs were injected through the vena caudalis. We measured inflammatory response in both anti-c-kit siRNA-treated and control mice. Systemic administration of siRNA could effectively inhibit the expression of the c-kit gene and reduce the infiltration of inflammatory cells (eosinophils and lymphocytes) into the lung tissue and bronchoalveolar lavage fluid. In addition, we found that c-kit siRNA can decrease the production of the T-helper type 2 (Th2) cytokines, interleukin 4 (IL-4) and IL-5, but has no influence on IFN-γ generation. These results show that inhibition of c-kit expression with siRNA can reduce the inflammatory response in allergic asthma.

  9. Systemic and local eosinophil inflammation during the birch pollen season in allergic patients with predominant rhinitis or asthma

    PubMed Central

    Kämpe, Mary; Stålenheim, Gunnemar; Janson, Christer; Stolt, Ingrid; Carlson, Marie

    2007-01-01

    Background The aim of the study was to investigate inflammation during the birch pollen season in patients with rhinitis or asthma. Methods Subjects with birch pollen asthma (n = 7) or rhinitis (n = 9) and controls (n = 5) were studied before and during pollen seasons. Eosinophils (Eos), eosinophil cationic protein (ECP) and human neutrophil lipocalin were analysed. Results Allergic asthmatics had a larger decline in FEV1 after inhaling hypertonic saline than patients with rhinitis (median) (-7.0 vs.-0.4%, p = 0.02). The asthmatics had a lower sesonal PEFR than the rhinitis group. The seasonal increase in B-Eos was higher among patients with asthma (+0.17 × 109/L) and rhinitis (+0.27 × 109/L) than among controls (+0.01 × 109/L, p = 0.01). Allergic asthmatics and patients with rhinitis had a larger increase in sputum ECP (+2180 and +310 μg/L) than the controls (-146 μg/L, p = 0.02). No significant differences in inflammatory parameters were found between the two groups of allergic patients. Conclusion Patients with allergic asthma and rhinitis have the same degree of eosinophil inflammation. Despite this, only the asthmatic group experienced an impairment in lung function during the pollen season. PMID:17967188

  10. Pollen/TLR4 Innate Immunity Signaling Initiates IL-33/ST2/Th2 Pathways in Allergic Inflammation

    PubMed Central

    Li, Jin; Zhang, Lili; Chen, Xin; Chen, Ding; Hua, Xia; Bian, Fang; Deng, Ruzhi; Lu, Fan; Li, Zhijie; Pflugfelder, Stephen C.; Li, De-Quan

    2016-01-01

    Innate immunity has been extended to respond environmental pathogen other than microbial components. Here we explore a novel pollen/TLR4 innate immunity in allergic inflammation. In experimental allergic conjunctivitis induced by short ragweed (SRW) pollen, typical allergic signs, stimulated IL-33/ST2 signaling and overproduced Th2 cytokine were observed in ocular surface, cervical lymph nodes and isolated CD4+ T cells of BALB/c mice. These clinical, cellular and molecular changes were significantly reduced/eliminated in TLR4 deficient (Tlr4-d) or MyD88 knockout (MyD88−/−) mice. Aqueous SRW extract (SRWe) directly stimulated IL-33 mRNA and protein expression by corneal epithelium and conjunctiva in wild type, but not in Tlr4-d or MyD88−/− mice with topical challenge. Furthermore, SRWe-stimulated IL-33 production was blocked by TLR4 antibody and NF-kB inhibitor in mouse and human corneal epithelial cells. These findings for the first time uncovered a novel mechanism by which SRW pollen initiates TLR4-dependent IL-33/ST2 signaling that triggers Th2-dominant allergic inflammation. PMID:27796360

  11. Inhalation of Carbon Black Nanoparticles Aggravates Pulmonary Inflammation in Mice

    PubMed Central

    Saputra, Devina; Yoon, Jin-ha; Park, Hyunju; Heo, Yongju; Yang, Hyoseon; Lee, Eun Ji; Lee, Sangjin; Song, Chang-Woo; Lee, Kyuhong

    2014-01-01

    An increasing number of recent studies have focused on the impact of particulate matter on human health. As a model for atmospheric particulate inhalation, we investigated the effects of inhaled carbon black nanoparticles (CBNP) on mice with bleomycin-induced pulmonary fibrosis. The CNBPs were generated by a novel aerosolization process, and the mice were exposed to the aerosol for 4 hours. We found that CBNP inhalation exacerbated lung inflammation, as evidenced by histopathology analysis and by the expression levels of interleukin-6 protein, fibronectin, and interferon-γ mRNAs in lung tissues. Notably, fibronectin mRNA expression showed a statistically significant increase in expression after CBNP exposure. These data suggest that the concentration of CBNPs delivered (calculated to be 12.5 μg/m3) can aggravate lung inflammation in mice. Our results also suggest that the inhalation of ultrafine particles like PM 2.5 is an impactful environmental risk factor for humans, particularly in susceptible populations with predisposing lung conditions. PMID:25071917

  12. Immune Inflammation and Disease Progression in Idiopathic Pulmonary Fibrosis.

    PubMed

    Balestro, Elisabetta; Calabrese, Fiorella; Turato, Graziella; Lunardi, Francesca; Bazzan, Erica; Marulli, Giuseppe; Biondini, Davide; Rossi, Emanuela; Sanduzzi, Alessandro; Rea, Federico; Rigobello, Chiara; Gregori, Dario; Baraldo, Simonetta; Spagnolo, Paolo; Cosio, Manuel G; Saetta, Marina

    2016-01-01

    The clinical course in idiopathic pulmonary fibrosis (IPF) is highly heterogeneous, with some patients having a slow progression and others an accelerated clinical and functional decline. This study aims to clinically characterize the type of progression in IPF and to investigate the pathological basis that might account for the observed differences in disease behavior. Clinical and functional data were analyzed in 73 IPF patients, followed long-time as candidates for lung transplantation. The forced vital capacity (FVC) change/year (< or ≥10% predicted) was used to define "slow" or "rapid" disease progression. Pathological abnormalities were quantified in the explanted lung of 41 out of 73 patients undergoing lung transplantation. At diagnosis, slow progressors (n = 48) showed longer duration of symptoms and lower FVC than rapid progressors (n = 25). Eleven slow and 3 rapid progressors developed an acute exacerbation (AE) during follow-up. Quantitative lung pathology showed a severe innate and adaptive inflammatory infiltrate in rapid progressors, markedly increased compared to slow progressors and similar to that observed in patients experiencing AE. The extent of inflammation was correlated with the yearly FVC decline (r = 0.52, p = 0.005). In conclusion an innate and adaptive inflammation appears to be a prominent feature in the lung of patients with IPF and could contribute to determining of the rate of disease progression. PMID:27159038

  13. Precursor B Cells Increase in the Lung during Airway Allergic Inflammation: A Role for B Cell-Activating Factor

    PubMed Central

    Malmhäll, Carina; Rådinger, Madeleine; Ramos-Ramirez, Patricia; Lu, You; Deák, Tünde; Semitekolou, Maria; Gaga, Mina; Sjöstrand, Margareta; Lötvall, Jan; Bossios, Apostolos

    2016-01-01

    Background B cells, key cells in allergic inflammation, differentiate in the bone marrow and their precursors include pro-B, pre-B and immature B cells. Eosinophil progenitor cells increase in the lung after allergen exposure. However, the existence and possible role of B cell precursors in the lung during allergic inflammation remains elusive. Methods A BALB/c mouse model of allergic airway inflammation was utilized to perform phenotypic and quantification analyses of pro-B and pre-B cells in the lung by flow cytometry. B cell maturation factors IL-7 and B cell-activating factor (BAFF) and their receptors (CD127 and BAFFR, BCMA, TACI, respectively) were also evaluated in the lung and serum. The effect of anti-BAFF treatment was investigated both in vivo (i.p. administration of BAFF-R-Ig fusion protein) and in vitro (colony forming cell assay). Finally, BAFF levels were examined in the bronchoalveolar lavage (BAL) of asthmatic patients and healthy controls. Results Precursor pro and pre-B cells increase in the lung after allergen exposure, proliferate in the lung tissue in vivo, express markers of chemotaxis (CCR10 and CXCR4) and co-stimulation (CD40, CD86) and are resistant to apoptosis (Bax). Precursor B cells express receptors for BAFF at baseline, while after allergen challenge both their ligand BAFF and the BCMA receptor expression increases in B cell precursors. Blocking BAFFR in the lung in vivo decreases eosinophils and proliferating precursor B cells. Blocking BAFFR in bone marrow cultures in vitro reduces pre-B colony formation units. BAFF is increased in the BAL of severe asthmatics. Conclusion Our data support the concept of a BAFF-mediated role for B cell precursors in allergic airway inflammation. PMID:27513955

  14. Antigen-specific cytotoxic T lymphocytes target airway CD103+ and CD11b+ dendritic cells to suppress allergic inflammation.

    PubMed

    Daniels, N J; Hyde, E; Ghosh, S; Seo, K; Price, K M; Hoshino, K; Kaisho, T; Okada, T; Ronchese, F

    2016-01-01

    Allergic airway inflammation is driven by the recognition of inhaled allergen by T helper type 2 (Th2) cells in the airway and lung. Allergen-specific cytotoxic T lymphocytes (CTLs) can strongly reduce airway inflammation, however, the mechanism of their inhibitory activity is not fully defined. We used mouse models to show that allergen-specific CTLs reduced early cytokine production by Th2 cells in lung, and their subsequent accumulation and production of interleukin (IL)-4 and IL-13. In addition, treatment with specific CTLs also increased the proportion of caspase(+) dendritic cells (DCs) in mediastinal lymph node (MLN), and decreased the numbers of CD103(+) and CD11b(+) DCs in the lung. This decrease required expression of the cytotoxic mediator perforin in CTLs and of the appropriate MHC-antigen ligand on DCs, suggesting that direct CTL-DC contact was necessary. Lastly, lung imaging experiments revealed that in airway-challenged mice XCR1-GFP(+) DCs, corresponding to the CD103(+) DC subset, and XCR1-GFP(-) CD11c(+) cells, which include CD11b(+) DCs and alveolar macrophages, both clustered in the areas surrounding the small airways and were closely associated with allergen-specific CTLs. Thus, allergen-specific CTLs reduce allergic airway inflammation by depleting CD103(+) and CD11b(+) DC populations in the lung, and may constitute a mechanism through which allergic immune responses are regulated.

  15. Critical role for syndecan-4 in dendritic cell migration during development of allergic airway inflammation.

    PubMed

    Polte, Tobias; Petzold, Susanne; Bertrand, Jessica; Schütze, Nicole; Hinz, Denise; Simon, Jan C; Lehmann, Irina; Echtermeyer, Frank; Pap, Thomas; Averbeck, Marco

    2015-07-13

    Syndecan-4 (SDC4), expressed on dendritic cells (DCs) and activated T cells, plays a crucial role in DC motility and has been shown as a potential target for activated T-cell-driven diseases. In the present study, we investigate the role of SDC4 in the development of T-helper 2 cell-mediated allergic asthma. Using SDC4-deficient mice or an anti-SDC4 antibody we show that the absence or blocking of SDC4 signalling in ovalbumin-sensitized mice results in a reduced asthma phenotype compared with control animals. Most importantly, even established asthma is significantly decreased using the anti-SDC4 antibody. The disturbed SDC4 signalling leads to an impaired motility and directional migration of antigen-presenting DCs and therefore, to a modified sensitization leading to diminished airway inflammation. Our results demonstrate that SDC4 plays an important role in asthma induction and indicate SDC4 as possible target for therapeutic intervention in this disease.

  16. Mouse models to unravel the role of inhaled pollutants on allergic sensitization and airway inflammation

    PubMed Central

    2010-01-01

    Air pollutant exposure has been linked to a rise in wheezing illnesses. Clinical data highlight that exposure to mainstream tobacco smoke (MS) and environmental tobacco smoke (ETS) as well as exposure to diesel exhaust particles (DEP) could promote allergic sensitization or aggravate symptoms of asthma, suggesting a role for these inhaled pollutants in the pathogenesis of asthma. Mouse models are a valuable tool to study the potential effects of these pollutants in the pathogenesis of asthma, with the opportunity to investigate their impact during processes leading to sensitization, acute inflammation and chronic disease. Mice allow us to perform mechanistic studies and to evaluate the importance of specific cell types in asthma pathogenesis. In this review, the major clinical effects of tobacco smoke and diesel exhaust exposure regarding to asthma development and progression are described. Clinical data are compared with findings from murine models of asthma and inhalable pollutant exposure. Moreover, the potential mechanisms by which both pollutants could aggravate asthma are discussed. PMID:20092634

  17. Fisetin, a bioactive flavonol, attenuates allergic airway inflammation through negative regulation of NF-κB.

    PubMed

    Goh, Fera Y; Upton, Nadine; Guan, Shouping; Cheng, Chang; Shanmugam, Muthu K; Sethi, Gautam; Leung, Bernard P; Wong, W S Fred

    2012-03-15

    Persistent activation of nuclear factor-κB (NF-κB) has been associated with the development of asthma. Fisetin (3,7,3',4'-tetrahydroxyflavone), a naturally occurring bioactive flavonol, has been shown to inhibit NF-κB activity. We hypothesized that fisetin may attenuate allergic asthma via negative regulation of the NF-κB activity. Female BALB/c mice sensitized and challenged with ovalbumin developed airway inflammation. Bronchoalveolar lavage fluid was assessed for total and differential cell counts, and cytokine and chemokine levels. Lung tissues were examined for cell infiltration and mucus hypersecretion, and the expression of inflammatory biomarkers. Airway hyperresponsiveness was monitored by direct airway resistance analysis. Fisetin dose-dependently inhibited ovalbumin-induced increases in total cell count, eosinophil count, and IL-4, IL-5 and IL-13 levels recovered in bronchoalveolar lavage fluid. It attenuated ovalbumin-induced lung tissue eosinophilia and airway mucus production, mRNA expression of adhesion molecules, chitinase, IL-17, IL-33, Muc5ac and inducible nitric oxide synthase in lung tissues, and airway hyperresponsiveness to methacholine. Fisetin blocked NF-κB subunit p65 nuclear translocation and DNA-binding activity in the nuclear extracts from lung tissues of ovalbumin-challenged mice. In normal human bronchial epithelial cells, fisetin repressed TNF-α-induced NF-κB-dependent reporter gene expression. Our findings implicate a potential therapeutic value of fisetin in the treatment of asthma through negative regulation of NF-κB pathway.

  18. Von-Willebrand Factor Influences Blood Brain Barrier Permeability and Brain Inflammation in Experimental Allergic Encephalomyelitis

    PubMed Central

    Noubade, Rajkumar; del Rio, Roxana; McElvany, Benjamin; Zachary, James F.; Millward, Jason M.; Wagner, Denisa D.; Offner, Halina; Blankenhorn, Elizabeth P.; Teuscher, Cory

    2008-01-01

    Weibel-Palade bodies within endothelial cells are secretory granules known to release von Willebrand Factor (VWF), P-selectin, chemokines, and other stored molecules following histamine exposure. Mice with a disrupted VWF gene (VWFKO) have endothelial cells that are deficient in Weibel-Palade bodies. These mice were used to evaluate the role of VWF and/or Weibel-Palade bodies in Bordetella pertussis toxin-induced hypersensitivity to histamine, a subphenotype of experimental allergic encephalomyelitis, the principal autoimmune model of multiple sclerosis. No significant differences in susceptibility to histamine between wild-type and VWFKO mice were detected after 3 days; however, histamine sensitivity persisted significantly longer in VWFKO mice. Correspondingly, encephalomyelitis onset was earlier, disease was more severe, and blood brain barrier (BBB) permeability was significantly increased in VWFKO mice, as compared with wild-type mice. Moreover, inflammation was selectively increased in the brains, but not spinal cords, of VWFKO mice as compared with wild-type mice. Early increases in BBB permeability in VWFKO mice were not due to increased encephalitogenic T-cell activity since BBB permeability did not differ in adjuvant-treated VWFKO mice as compared with littermates immunized with encephalitogenic peptide plus adjuvant. Taken together, these data indicate that VWF and/or Weibel-Palade bodies negatively regulate BBB permeability changes and autoimmune inflammatory lesion formation within the brain elicited by peripheral inflammatory stimuli. PMID:18688020

  19. Establishment of a mouse model for pulmonary inflammation and fibrosis by intratracheal instillation of polyhexamethyleneguanidine phosphate

    PubMed Central

    Lee, Sang Jin; Park, Jong-Hwan; Lee, Jun-Young; Jeong, Yu-Jin; Song, Jeong Ah; Lee, Kyuhong; Kim, Dong-Jae

    2016-01-01

    Although several animal models have been developed to study human pulmonary fibrosis, lack of a perfect model has raised the need for various animal models of pulmonary fibrosis. In this study, we evaluated the pulmonary effect of polyhexamethyleneguanidine phosphate instillation into the lungs of mice to determine the potential of these mice as a murine model of pulmonary fibrosis. Intratracheal instillation of polyhexamethyleneguanidine phosphate induced severe lung inflammation manifested by the infiltration of mononuclear cells and neutrophils and increased production of IL-6, TNF-α, CCL2 and CXCL1. The lung inflammation gradually increased until 28 days after polyhexamethyleneguanidine phosphate exposure, and increases of collagen deposition and TGF-β production, which are indicators of pulmonary fibrosis, were seen. Our study showed that intratracheal instillation of polyhexamethyleneguanidine phosphate induces pulmonary inflammation and fibrosis in mice. PMID:27182113

  20. Reversal of established CD4+ type 2 T helper-mediated allergic airway inflammation and eosinophilia by therapeutic treatment with DNA vaccines limits progression towards chronic inflammation and remodelling

    PubMed Central

    Jarman, Elizabeth R; Lamb, Jonathan R

    2004-01-01

    Immunostimulatory DNA-based vaccines can prevent the induction of CD4+ type 2 T helper (Th2) cell-mediated airway inflammation in experimental models, when administered before or at the time of allergen exposure. Here we demonstrate their efficacy in limiting the progression of an established response to chronic pulmonary inflammation and airway remodelling on subsequent allergen challenge. Mice exhibiting Th2-mediated airway inflammation induced following sensitization and challenge with group 1 allergen derived from Dermatophagoides pteronyssinus group species (Der p 1), a major allergen of house dust mite, were treated with pDNA vaccines. Their airways were rechallenged and the extent of inflammation assessed. In plasma DNA (pDNA)-vaccinated mice, infiltration of inflammatory cells, goblet cell hyperplasia and mucus production were reduced and subepithelial fibrosis attenuated. The reduction in eosinophil numbers correlated with a fall in levels of the profibrotic mediator transforming growth factor (TGF)-β1 in bronchoalveolar lavage (BAL) and lung tissue. In addition to lung epithelial cells and resident alveolar macrophages, infiltrating eosinophils, the principle inflammatory cells recruited following allergen exposure, were a major source of TGF-β1. Protection, conferred irrespective of the specificity of the pDNA construct, did not correlate with a sustained increase in systemic interferon (IFN)-γ production but in a reduction in levels of the Th2 pro-inflammatory cytokines. Notably, there was a reduction in levels of interleukin (IL)-5 and IL-13 produced by systemic Der p 1 reactive CD4+ Th2 cells on in vitro stimulation as well as in IL-4 and IL-5 levels in BAL fluid. These data suggest that suppression of CD4+ Th2-mediated inflammation and eosinophilia were sufficient to attenuate progression towards airway remodelling. Immunostimulatory DNA may therefore have a therapeutic application in treatment of established allergic asthma in patients. PMID

  1. Role of P2 Receptors as Modulators of Rat Eosinophil Recruitment in Allergic Inflammation.

    PubMed

    Alberto, Anael Viana Pinto; Faria, Robson Xavier; de Menezes, Joao Ricardo Lacerda; Surrage, Andrea; da Rocha, Natasha Cristina; Ferreira, Leonardo Gomes Braga; Frutuoso, Valber da Silva; Martins, Marco Aurélio; Alves, Luiz Anastácio

    2016-01-01

    ATP and other nucleotides are released from cells through regulated pathways or following the loss of plasma membrane integrity. Once outside the cell, these compounds can activate P2 receptors: P2X ionotropic receptors and G protein-coupled P2Y receptors. Eosinophils represent major effector cells in the allergic inflammatory response and they are, in fact, associated with several physiological and pathological processes. Here we investigate the expression of P2 receptors and roles of those receptors in murine eosinophils. In this context, our first step was to investigate the expression and functionality of the P2X receptors by patch clamping, our results showed a potency ranking order of ATP>ATPγS> 2meSATP> ADP> αβmeATP> βγmeATP>BzATP> UTP> UDP>cAMP. This data suggest the presence of P2X1, P2X2 and P2X7. Next we evaluate by microfluorimetry the expression of P2Y receptors, our results based in the ranking order of potency (UTP>ATPγS> ATP > UDP> ADP >2meSATP > αβmeATP) suggests the presence of P2Y2, P2Y4, P2Y6 and P2Y11. Moreover, we confirmed our findings by immunofluorescence assays. We also did chemotaxis assays to verify whether nucleotides could induce migration. After 1 or 2 hours of incubation, ATP increased migration of eosinophils, as well as ATPγS, a less hydrolysable analogue of ATP, while suramin a P2 blocker abolished migration. In keeping with this idea, we tested whether these receptors are implicated in the migration of eosinophils to an inflammation site in vivo, using a model of rat allergic pleurisy. In fact, migration of eosinophils has increased when ATP or ATPγS were applied in the pleural cavity, and once more suramin blocked this effect. We have demonstrated that rat eosinophils express P2X and P2Y receptors. In addition, the activation of P2 receptors can increase migration of eosinophils in vitro and in vivo, an effect blocked by suramin.

  2. Role of P2 Receptors as Modulators of Rat Eosinophil Recruitment in Allergic Inflammation

    PubMed Central

    Alberto, Anael Viana Pinto; Faria, Robson Xavier; de Menezes, Joao Ricardo Lacerda; Surrage, Andrea; da Rocha, Natasha Cristina; Ferreira, Leonardo Gomes Braga; Frutuoso, Valber da Silva; Martins, Marco Aurélio; Alves, Luiz Anastácio

    2016-01-01

    ATP and other nucleotides are released from cells through regulated pathways or following the loss of plasma membrane integrity. Once outside the cell, these compounds can activate P2 receptors: P2X ionotropic receptors and G protein-coupled P2Y receptors. Eosinophils represent major effector cells in the allergic inflammatory response and they are, in fact, associated with several physiological and pathological processes. Here we investigate the expression of P2 receptors and roles of those receptors in murine eosinophils. In this context, our first step was to investigate the expression and functionality of the P2X receptors by patch clamping, our results showed a potency ranking order of ATP>ATPγS> 2meSATP> ADP> αβmeATP> βγmeATP>BzATP> UTP> UDP>cAMP. This data suggest the presence of P2X1, P2X2 and P2X7. Next we evaluate by microfluorimetry the expression of P2Y receptors, our results based in the ranking order of potency (UTP>ATPγS> ATP > UDP> ADP >2meSATP > αβmeATP) suggests the presence of P2Y2, P2Y4, P2Y6 and P2Y11. Moreover, we confirmed our findings by immunofluorescence assays. We also did chemotaxis assays to verify whether nucleotides could induce migration. After 1 or 2 hours of incubation, ATP increased migration of eosinophils, as well as ATPγS, a less hydrolysable analogue of ATP, while suramin a P2 blocker abolished migration. In keeping with this idea, we tested whether these receptors are implicated in the migration of eosinophils to an inflammation site in vivo, using a model of rat allergic pleurisy. In fact, migration of eosinophils has increased when ATP or ATPγS were applied in the pleural cavity, and once more suramin blocked this effect. We have demonstrated that rat eosinophils express P2X and P2Y receptors. In addition, the activation of P2 receptors can increase migration of eosinophils in vitro and in vivo, an effect blocked by suramin. PMID:26784445

  3. Chrysin suppresses mast cell-mediated allergic inflammation: Involvement of calcium, caspase-1 and nuclear factor-{kappa}B

    SciTech Connect

    Bae, Yunju; Lee, Soyoung; Kim, Sang-Hyun

    2011-07-01

    A great number of people are suffering from allergic inflammatory diseases such as asthma, atopic dermatitis, and sinusitis. Therefore discovery of drugs for the treatment of these diseases is an important subject in human health. Chrysin (5,7-dihydroxyflavone) is a natural flavonoid contained in propolis, blue passion flower, and fruits. Several studies reported that chrysin has beneficial effects including anti-tumor and anti-oxidant activities. The aim of the present study was to elucidate whether chrysin modulates the allergic inflammatory reaction and to study its possible mechanisms of action using mast cell-based in vitro and in vivo models. Chrysin inhibited immediate-type systemic hypersensitivity and serum histamine release. Chrysin attenuated immunoglobulin E-mediated local anaphylaxis. These inhibitory effects of chrysin on the systemic and local allergic reaction were more potent than cromolyn, a known anti-allergic drug. Chrysin reduced histamine release from mast cells. The inhibitory effect of chrysin on the histamine release was mediated by the modulation of intracellular calcium. In addition, chrysin decreased gene expression of pro-inflammatory cytokines such as, tumor necrosis factor-{alpha}, IL (interleukin)-1{beta}, IL-4, and IL-6 in mast cells. The inhibitory effect of chrysin on the pro-inflammatory cytokine was nuclear factor-{kappa}B and caspase-1 dependent. Our findings provide evidence that chrysin inhibits mast cell-derived allergic inflammatory reactions by blocking histamine release and pro-inflammatory cytokine expression, and suggest the mechanisms of action. Furthermore, in vivo and in vitro anti-allergic inflammatory effect of chrysin suggests a possible therapeutic application of this agent in allergic inflammatory diseases. - Research Highlights: > Discovery of drugs for the allergic inflammation is important in human health. > Chrysin is a natural flavonoid contained in propolis, blue passion flower, and fruits. > Chrysin

  4. Risk of Allergic Rhinitis, Allergic Conjunctivitis, and Eczema in Children Born to Mothers with Gum Inflammation during Pregnancy

    PubMed Central

    Hsieh, Vivian Chia-Rong; Liu, Chin-Chen; Hsiao, Yu-Chen; Wu, Trong-Neng

    2016-01-01

    Purpose Despite links between maternal and child health status, evidence on the association between gum infection in pregnant mothers and childhood allergies is scarce. We aim to evaluate the risk of developing allergy in children born to periodontal mothers in a nationwide study. Methods We conducted a 9-year population-based, retrospective cohort study using Taiwan’s National Health Insurance database. A study cohort of 42,217 newborns born to mothers with periodontal disease during pregnancy was identified in 2001 and matched with 42,334 babies born to mothers without any infection (control) by mother’s age at delivery and baby sex. With a follow-up period from 2001 to 2010, we observed the incidence of allergic rhinitis (AR), allergic conjunctivitis (AC), and eczema in these children. Cox proportional hazards regression models were performed with premature deaths as competing risk for the estimation of allergic disease risks. Results Nine-year cumulative incidences were the highest among children born to periodontal mothers; they reached 46.8%, 24.2%, and 40.4% (vs. 39.5%, 18.3% and 34.8% in control) for AR, AC, and eczema, respectively. Our results showed moderately increased risks for the allergies in children born to periodontal mothers relative to their matched non-inflammatory control (adjusted HRs: 1.17, 95% CI: 1.15–1.20; 1.27, 1.24–1.31; 1.14, 1.12–1.17, respectively). Because the impact of food consumption and living environment cannot be considered using insurance data, we attempted to control it by adjusting for parental income and mother’s residential area. Conclusions Overall cumulative incidence and risks of children born to periodontal mothers for AR, AC, and eczema are significantly higher than those born to non-inflammatory mothers. Gum infection in women during pregnancy is an independent risk factor for allergic diseases in children, thus its intergenerational consequences should be considered in gestational care. PMID:27224053

  5. Familial idiopathic pulmonary fibrosis. Evidence of lung inflammation in unaffected family members

    SciTech Connect

    Bitterman, P.B.; Rennard, S.I.; Keogh, B.A.; Wewers, M.D.; Adelberg, S.; Crystal, R.G.

    1986-05-22

    We evaluated 17 clinically unaffected members of three families with an autosomal dominant form of idiopathic pulmonary fibrosis for evidence of alveolar inflammation. Each person in the study was examined by gallium-67 scanning for a general estimate of pulmonary inflammation, and by bronchoalveolar lavage for characterization of the types of recovered cells and their state of activation. Eight of the 17 subjects had evidence of alveolar inflammation on the lavage studies. Supporting data included increased numbers of neutrophils and activated macrophages that released one or more neutrophil chemoattractants, and growth factors for lung fibroblasts--findings similar to those observed in patients with overt idiopathic pulmonary fibrosis. Four of these eight also had a positive gallium scan; in all the other clinically unaffected subjects the scan was normal. During a follow-up of two to four years in seven of the eight subjects who had evidence of inflammation, no clinical evidence of pulmonary fibrosis has appeared. These results indicate that alveolar inflammation occurs in approximately half the clinically unaffected family members at risk of inheriting autosomal dominant idiopathic pulmonary fibrosis. Whether these persons with evidence of pulmonary inflammation but no fibrosis will proceed to have clinically evident pulmonary fibrosis is not yet known.

  6. Pulmonary oxidative stress, inflammation and dysregulated iron homeostatis in rat models of cardiovascular disease

    EPA Science Inventory

    Underlying cardiovascular disease (CVD) is considered a risk factor for the exacerbation of air pollution health effects. Therefore, rodent models of CVD are increasingly used to examine mechanisms ofvariation in susceptibility. Pulmonary oxidative stress, inflammation and altere...

  7. Ozone-Induced Pulmonary Injury and Inflammation are Modulated by Adrenal-Derived Stress Hormones

    EPA Science Inventory

    Ozone exposure promotes pulmonary injury and inflammation. Previously we have characterized systemic changes that occur immediately after acute ozone exposure and are mediated by neuro-hormonal stress response pathway. Both HPA axis and sympathetic tone alterations induce the rel...

  8. Protective role of interleukin-10 in Ozone-induced pulmonary inflammation**

    EPA Science Inventory

    Background: The mechanisms underlying ozone (03)-induced pulmonary inflammation remain unclear. Interleukin-10 (IL-10) is an anti-inflammatory cytokine that is known to inhibit inflammatory mediators. Objectives: We investigated the molecular mechanisms underlying interleuken-10...

  9. Schistosoma mansoni Venom Allergen Like Proteins Present Differential Allergic Responses in a Murine Model of Airway Inflammation

    PubMed Central

    Farias, Leonardo Paiva; Rodrigues, Dunia; Cunna, Vinicius; Rofatto, Henrique Krambeck; Faquim-Mauro, Eliana L.; Leite, Luciana C. C.

    2012-01-01

    Background The Schistosoma mansoni Venom-Allergen-Like proteins (SmVALs) are members of the SCP/TAPS (Sperm-coating protein/Tpx-1/Ag5/PR-1/Sc7) protein superfamily, which may be important in the host-pathogen interaction. Some of these molecules were suggested by us and others as potential immunomodulators and vaccine candidates, due to their functional classification, expression profile and predicted localization. From a vaccine perspective, one of the concerns is the potential allergic effect of these molecules. Methodology/Principal Findings Herein, we characterized the putative secreted proteins SmVAL4 and SmVAL26 and explored the mouse model of airway inflammation to investigate their potential allergenic properties. The respective recombinant proteins were obtained in the Pichia pastoris system and the purified proteins used to produce specific antibodies. SmVAL4 protein was revealed to be present only in the cercarial stage, increasing from 0–6 h in the secretions of newly transformed schistosomulum. SmVAL26 was identified only in the egg stage, mainly in the hatched eggs' fluid and also in the secretions of cultured eggs. Concerning the investigation of the allergic properties of these proteins in the mouse model of airway inflammation, SmVAL4 induced a significant increase in total cells in the bronchoalveolar lavage fluid, mostly due to an increase in eosinophils and macrophages, which correlated with increases in IgG1, IgE and IL-5, characterizing a typical allergic airway inflammation response. High titers of anaphylactic IgG1 were revealed by the Passive Cutaneous Anaphylactic (PCA) hypersensitivity assay. Additionally, in a more conventional protocol of immunization for vaccine trials, rSmVAL4 still induced high levels of IgG1 and IgE. Conclusions Our results suggest that members of the SmVAL family do present allergic properties; however, this varies significantly and therefore should be considered in the design of a schistosomiasis vaccine

  10. Impaired induction of allergic lung inflammation by Alternaria alternata mutant MAPK homologue Fus3.

    PubMed

    Kim, Hee-Kyoo; Baum, Rachel; Lund, Sean; Khorram, Naseem; Yang, Siwy Ling; Chung, Kuang-Ren; Doherty, Taylor A

    2013-11-01

    The fungal allergen Alternaria alternata is associated with development of asthma, though the mechanisms underlying the allergenicity of Alternaria are largely unknown. The aim of this study was to identify whether the MAP kinase homologue Fus3 of Alternaria contributed to allergic airway responses. Wild-type (WT) and Fus3 deficient Alternaria extracts were given intranasal to mice. Extracts from Fus3 deficient Alternaria that had a functional copy of Fus3 introduced were also administered (CpFus3). Mice were challenged once and levels of BAL eosinophils and innate cytokines IL-33, thymic stromal lymphopoeitin (TSLP), and IL-25 (IL-17E) were assessed. Alternaria extracts or protease-inhibited extract were administered with (OVA) during sensitization prior to ovalbumin only challenges to determine extract adjuvant activity. Levels of BAL inflammatory cells, Th2 cytokines, and OX40-expressing Th2 cells as well as airway infiltration and mucus production were measured. WT Alternaria induced innate airway eosinophilia within 3 days. Mice given Fus3 deficient Alternaria were significantly impaired in developing airway eosinophilia that was largely restored by CpFus3. Further, BAL IL-33, TSLP, and Eotaxin-1 levels were reduced after challenge with Fus3 mutant extract compared with WT and CpFus3 extracts. WT and CpFus3 extracts demonstrated strong adjuvant activity in vivo as levels of BAL eosinophils, Th2 cytokines, and OX40-expressing Th2 cells as well as peribronchial inflammation and mucus production were induced. In contrast, the adjuvant activity of Fus3 extract or protease-inhibited WT extract was largely impaired. Finally, protease activity and Alt a1 levels were reduced in Fus3 mutant extract. Thus, Fus3 contributes to the Th2-sensitizing properties of Alternaria.

  11. Natural Killer Receptor 1 Dampens the Development of Allergic Eosinophilic Airway Inflammation.

    PubMed

    Elhaik Goldman, Shirin; Moshkovits, Itay; Shemesh, Avishai; Filiba, Ayelet; Tsirulsky, Yevgeny; Vronov, Elena; Shagan, Marilou; Apte, Ron N; Benharroch, D Aniel; Karo-Atar, Danielle; Dagan, Ron; Munitz, Ariel; Mizrachi Nebenzahl, Yaffa; Porgador, Angel

    2016-01-01

    The function of NCR1 was studied in a model of experimental asthma, classified as a type 1 hypersensitivity reaction, in mice. IgE levels were significantly increased in the serum of OVA immunized NCR1 deficient (NCR1gfp/gfp) mice in comparison to OVA immunized wild type (NCR1+/+) and adjuvant immunized mice. Histological analysis of OVA immunized NCR1gfp/gfp mice revealed no preservation of the lung structure and overwhelming peribronchial and perivascular granulocytes together with mononuclear cells infiltration. OVA immunized NCR+/+ mice demonstrated preserved lung structure and peribronchial and perivascular immune cell infiltration to a lower extent than that in NCR1gfp/gfp mice. Adjuvant immunized mice demonstrated lung structure preservation and no immune cell infiltration. OVA immunization caused an increase in PAS production independently of NCR1 presence. Bronchoalveolar lavage (BAL) revealed NCR1 dependent decreased percentages of eosinophils and increased percentages of lymphocytes and macrophages following OVA immunization. In the OVA immunized NCR1gfp/gfp mice the protein levels of eosinophils' (CCL24) and Th2 CD4+ T-cells' chemoattractants (CCL17, and CCL24) in the BAL are increased in comparison with OVA immunized NCR+/+ mice. In the presence of NCR1, OVA immunization caused an increase in NK cells numbers and decreased NCR1 ligand expression on CD11c+GR1+ cells and decreased NCR1 mRNA expression in the BAL. OVA immunization resulted in significantly increased IL-13, IL-4 and CCL17 mRNA expression in NCR1+/+ and NCR1gfp/gfp mice. IL-17 and TNFα expression increased only in OVA-immunized NCR1+/+mice. IL-6 mRNA increased only in OVA immunized NCR1gfp/gfp mice. Collectively, it is demonstrated that NCR1 dampens allergic eosinophilic airway inflammation. PMID:27580126

  12. Natural Killer Receptor 1 Dampens the Development of Allergic Eosinophilic Airway Inflammation

    PubMed Central

    Elhaik Goldman, Shirin; Moshkovits, Itay; Shemesh, Avishai; Filiba, Ayelet; Tsirulsky, Yevgeny; Vronov, Elena; Shagan, Marilou; Apte, Ron N.; Benharroch, D aniel; Karo-Atar, Danielle; Dagan, Ron; Munitz, Ariel

    2016-01-01

    The function of NCR1 was studied in a model of experimental asthma, classified as a type 1 hypersensitivity reaction, in mice. IgE levels were significantly increased in the serum of OVA immunized NCR1 deficient (NCR1gfp/gfp) mice in comparison to OVA immunized wild type (NCR1+/+) and adjuvant immunized mice. Histological analysis of OVA immunized NCR1gfp/gfp mice revealed no preservation of the lung structure and overwhelming peribronchial and perivascular granulocytes together with mononuclear cells infiltration. OVA immunized NCR+/+ mice demonstrated preserved lung structure and peribronchial and perivascular immune cell infiltration to a lower extent than that in NCR1gfp/gfp mice. Adjuvant immunized mice demonstrated lung structure preservation and no immune cell infiltration. OVA immunization caused an increase in PAS production independently of NCR1 presence. Bronchoalveolar lavage (BAL) revealed NCR1 dependent decreased percentages of eosinophils and increased percentages of lymphocytes and macrophages following OVA immunization. In the OVA immunized NCR1gfp/gfp mice the protein levels of eosinophils’ (CCL24) and Th2 CD4+ T-cells’ chemoattractants (CCL17, and CCL24) in the BAL are increased in comparison with OVA immunized NCR+/+ mice. In the presence of NCR1, OVA immunization caused an increase in NK cells numbers and decreased NCR1 ligand expression on CD11c+GR1+ cells and decreased NCR1 mRNA expression in the BAL. OVA immunization resulted in significantly increased IL-13, IL-4 and CCL17 mRNA expression in NCR1+/+ and NCR1gfp/gfp mice. IL-17 and TNFα expression increased only in OVA-immunized NCR1+/+mice. IL-6 mRNA increased only in OVA immunized NCR1gfp/gfp mice. Collectively, it is demonstrated that NCR1 dampens allergic eosinophilic airway inflammation. PMID:27580126

  13. Adam8 Limits the Development of Allergic Airway Inflammation in Mice

    PubMed Central

    Knolle, Martin D.; Nakajima, Takahiro; Hergrueter, Anja; Gupta, Kushagra; Polverino, Francesca; Craig, Vanessa J.; Fyfe, Susanne E.; Zahid, Muhammad; Permaul, Perdita; Cernadas, Manuela; Montano, Gilbert; Tesfaigzi, Yohannes; Sholl, Lynette; Kobzik, Lester; Israel, Elliot; Owen, Caroline A.

    2013-01-01

    To determine whether a disintegrin and a metalloproteinase-8 (Adam8) regulates allergic airway inflammation (AAI) and airway hyper-responsiveness (AHR), we compared AAI and AHR in wild type (WT) versus Adam8−/− mice in different genetic backgrounds sensitized and challenged with ovalbumin (OVA) or house dust mite protein extract (HDM). OVA- and HDM-treated Adam8−/− mice had higher lung leukocyte counts, more airway mucus metaplasia, greater lung levels of some TH2 cytokines, and higher methacholine-induced increases in central airway resistance than allergen-treated WT mice. Studies of OVA-treated Adam8 bone marrow chimeric mice confirmed that leukocyte-derived Adam8 predominantly mediated Adam8’s anti-inflammatory activities in murine airways. Airway eosinophils and macrophages both expressed Adam8 in WT mice with AAI. Adam8 limited AAI and AHR in mice by reducing leukocyte survival because: 1) Adam8−/− mice with AAI had fewer apoptotic eosinophils and macrophages in their airways than WT mice with AAI; and 2) Adam8−/− macrophages and eosinophils had reduced rates of apoptosis compared with WT leukocytes when the intrinsic (but not the extrinsic) apoptosis pathway was triggered in the cells in vitro. ADAM8 was robustly expressed by airway granulocytes in lung sections from human asthma patients but, surprisingly, airway macrophages had less ADAM8 staining than airway eosinophils. Thus, ADAM8 has anti-inflammatory activities during AAI in mice by activating the intrinsic apoptosis pathway in myeloid leukocytes. Strategies that increase ADAM8 levels in myeloid leukocytes may have therapeutic efficacy in asthma. PMID:23670189

  14. Balance impairment and systemic inflammation in chronic obstructive pulmonary disease

    PubMed Central

    Tudorache, Emanuela; Oancea, Cristian; Avram, Claudiu; Fira-Mladinescu, Ovidiu; Petrescu, Lucian; Timar, Bogdan

    2015-01-01

    Background/purpose Chronic obstructive pulmonary disease (COPD), especially in severe forms, is commonly associated with systemic inflammation and balance impairment. The aim of our study was to evaluate the impact on equilibrium of stable and exacerbation (acute exacerbation of COPD [AECOPD]) phases of COPD and to investigate if there is a connection between lower extremity muscle weakness and systemic inflammation. Methods We enrolled 41 patients with COPD (22 stable and 19 in AECOPD) and 20 healthy subjects (control group), having no significant differences regarding the anthropometric data. We analyzed the differences in balance tests scores: Falls Efficacy Scale-International (FES-I) questionnaire, Berg Balance Scale (BBS), Timed Up and Go (TUG) test, Single Leg Stance (SLS), 6-minute walking distance (6MWD), isometric knee extension (IKE) between these groups, and also the correlation between these scores and inflammatory biomarkers. Results The presence and severity of COPD was associated with significantly decreased score in IKE (P<0.001), 6MWD (P<0.001), SLS (P<0.001), and BBS (P<0.001), at the same time noting a significant increase in median TUG score across the studied groups (P<0.001). The AECOPD group vs stable group presented a significant increase in high-sensitive C-reactive protein (hs-CRP) levels (10.60 vs 4.01; P=0.003) and decrease in PaO2 (70.1 vs 59.1; P<0.001). We observed that both IKE scores were significantly and positive correlated with all the respiratory volumes. In both COPD groups, we observed that fibrinogen reversely and significantly correlated with the 6MWD, and FES-I questionnaire is correlated positively with TUG test. Hs-CRP correlated reversely with the walking test and SLS test, while correlating positively with TUG test and FES-I questionnaire. Conclusion According to this study, COPD in advanced and acute stages is associated with an increased history of falls, systemic inflammation, balance impairment, and lower extremity

  15. Exposure to low doses of formaldehyde during pregnancy suppresses the development of allergic lung inflammation in offspring

    SciTech Connect

    Maiellaro, Marília; Correa-Costa, Matheus; Vitoretti, Luana Beatriz; Gimenes Júnior, João Antônio; Câmara, Niels Olsen Saraiva; Tavares-de-Lima, Wothan; Farsky, Sandra Helena Poliselli; Lino-dos-Santos-Franco, Adriana

    2014-08-01

    Formaldehyde (FA) is an environmental and occupational pollutant, and its toxic effects on the immune system have been shown. Nevertheless, no data are available regarding the programming mechanisms after FA exposure and its repercussions for the immune systems of offspring. In this study, our objective was to investigate the effects of low-dose exposure of FA on pregnant rats and its repercussion for the development of allergic lung inflammation in offspring. Pregnant Wistar rats were assigned in 3 groups: P (rats exposed to FA (0.75 ppm, 1 h/day, 5 days/week, for 21 days)), C (rats exposed to vehicle of FA (distillated water)) and B (rats non-manipulated). After 30 days of age, the offspring was sensitised with ovalbumin (OVA)-alum and challenged with aerosolized OVA (1%, 15 min, 3 days). After 24 h the OVA challenge the parameters were evaluated. Our data showed that low-dose exposure to FA during pregnancy induced low birth weight and suppressed the development of allergic lung inflammation and tracheal hyperresponsiveness in offspring by mechanisms mediated by reduced anaphylactic antibodies synthesis, IL-6 and TNF-alpha secretion. Elevated levels of IL-10 were found. Any systemic alteration was detected in the exposed pregnant rats, although oxidative stress in the uterine environment was evident at the moment of the delivery based on elevated COX-1 expression and reduced cNOS and SOD-2 in the uterus. Therefore, we show the putative programming mechanisms induced by FA on the immune system for the first time and the mechanisms involved may be related to oxidative stress in the foetal microenvironment. - Highlights: • Formaldehyde exposure does not cause lung inflammation in pregnant rats. • Formaldehyde exposure suppresses allergic lung inflammation in the offspring. • Formaldehyde exposure induces oxidative stress in uterine environment.

  16. Low-Dose Intestinal Trichuris muris Infection Alters the Lung Immune Microenvironment and Can Suppress Allergic Airway Inflammation.

    PubMed

    Chenery, Alistair L; Antignano, Frann; Burrows, Kyle; Scheer, Sebastian; Perona-Wright, Georgia; Zaph, Colby

    2015-12-07

    Immunological cross talk between mucosal tissues such as the intestine and the lung is poorly defined during homeostasis and disease. Here, we show that a low-dose infection with the intestinally restricted helminth parasite Trichuris muris results in the production of Th1 cell-dependent gamma interferon (IFN-γ) and myeloid cell-derived interleukin-10 (IL-10) in the lung without causing overt airway pathology. This cross-mucosal immune response in the lung inhibits the development of papain-induced allergic airway inflammation, an innate cell-mediated type 2 airway inflammatory disease. Thus, we identify convergent and nonredundant roles of adaptive and innate immunity in mediating cross-mucosal suppression of type 2 airway inflammation during low-dose helminth-induced intestinal inflammation. These results provide further insight in identifying novel intersecting immune pathways elicited by gut-to-lung mucosal cross talk.

  17. Low-Dose Intestinal Trichuris muris Infection Alters the Lung Immune Microenvironment and Can Suppress Allergic Airway Inflammation.

    PubMed

    Chenery, Alistair L; Antignano, Frann; Burrows, Kyle; Scheer, Sebastian; Perona-Wright, Georgia; Zaph, Colby

    2016-02-01

    Immunological cross talk between mucosal tissues such as the intestine and the lung is poorly defined during homeostasis and disease. Here, we show that a low-dose infection with the intestinally restricted helminth parasite Trichuris muris results in the production of Th1 cell-dependent gamma interferon (IFN-γ) and myeloid cell-derived interleukin-10 (IL-10) in the lung without causing overt airway pathology. This cross-mucosal immune response in the lung inhibits the development of papain-induced allergic airway inflammation, an innate cell-mediated type 2 airway inflammatory disease. Thus, we identify convergent and nonredundant roles of adaptive and innate immunity in mediating cross-mucosal suppression of type 2 airway inflammation during low-dose helminth-induced intestinal inflammation. These results provide further insight in identifying novel intersecting immune pathways elicited by gut-to-lung mucosal cross talk. PMID:26644379

  18. Dietary Fiber Intake Regulates Intestinal Microflora and Inhibits Ovalbumin-Induced Allergic Airway Inflammation in a Mouse Model

    PubMed Central

    Zhang, Zhiyu; Shi, Lei; Pang, Wenhui; Liu, Wenwen; Li, Jianfeng; Wang, Haibo; Shi, Guanggang

    2016-01-01

    Background Recently, academic studies suggest that global growth of airway allergic disease has a close association with dietary changes including reduced consumption of fiber. Therefore, appropriate dietary fiber supplementation might be potential to prevent airway allergic disease (AAD). Objective We investigated whether dietary fiber intake suppressed the induction of AAD and tried to elucidate the possible underlying mechanisms. Methods The control mice and AAD model mice fed with 4% standard-fiber chow, while low-fiber group of mice fed with a 1.75% low-fiber chow. The two fiber-intervened groups including mice, apart from a standard-fiber diet, were also intragastric (i.g.) administrated daily with poorly fermentable cellulose or readily fermentable pectin (0.4% of daily body weight), respectively. All animals except normal mice were sensitized and challenged with ovalbumin (OVA) to induce airway allergic inflammation. Hallmarks of AAD were examined by histological analysis and ELISA. The variation in intestinal bacterial composition was assessed by qualitative analysis of 16S ribosomal DNA (rDNA) content in fecal samples using real-time PCR. Results Low-fiber diet aggravated inflammatory response in ovalbumin-induced allergic mice, whereas dietary fiber intake significantly suppressed the allergic responses, attenuated allergic symptoms of nasal rubbing and sneezing, decreased the pathology of eosinophil infiltration and goblet cell metaplasia in the nasal mucosa and lung, inhibited serum OVA-specific IgE levels, and lowered the levels of Th2 cytokines in NALF and BALF, but, increased Th1 (IFN-γ) cytokines. Additionally, dietary fiber intake also increased the proportion of Bacteroidetes and Actinobacteria, and decreased Firmicutes and Proteobacteria. Levels of probiotic bacteria, such as Lactobacillus and Bifidobacterium, were upgraded significantly. Conclusion Long-term deficiency of dietary fiber intake increases the susceptibility to AAD, whereas proper

  19. Cyclic nitroxide radicals attenuate inflammation and Hyper-responsiveness in a mouse model of allergic asthma.

    PubMed

    Assayag, Miri; Goldstein, Sara; Samuni, Amram; Berkman, Neville

    2015-10-01

    The effects of stable cyclic nitroxide radicals have been extensively investigated both in vivo and in vitro demonstrating anti-inflammatory, radioprotective, anti-mutagenic, age-retardant, hypotensive, anti-cancer and anti-teratogenic activities. Yet, these stable radicals have not been evaluated in asthma and other airway inflammatory disorders. The present study investigated the effect of 4-hydroxy-2,2,6,6-tetramethyl-piperidine-N-oxyl (TPL) and 3-carbamoyl-proxyl (3-CP) in a mouse model of ovalbumin (OVA)-induced allergic asthma. Both 3-CP and TPL were non-toxic when administered either orally (1% w/w nitroxide-containing chow) or via intraperitoneal (IP) injection (∼300 mg/kg). Feeding the mice orally demonstrated that 3-CP was more effective than TPL in reducing inflammatory cell recruitment into the airway and in suppressing airway hyper-responsiveness (AHR) in OVA-challenged mice. To characterize the optimal time-window of intervention and mode of drug administration, 3-CP was given orally during allergen sensitization, during allergen challenge or during both sensitization and challenge stages, and via IP injection or intranasal instillation for 3 days during the challenge period. 3-CP given via all modes of delivery markedly inhibited OVA-induced airway inflammation, expression of cytokines, AHR and protein nitration of the lung tissue. Oral administration during the entire experiment was the most efficient delivery of 3-CP and was more effective than dexamethasone a potent corticosteroid used for asthma treatment. Under a similar administration regimen (IP injection before the OVA challenge), the effect of 3-CP was similar to that of dexamethasone and even greater on AHR and protein nitration. The protective effect of the nitroxides, which preferentially react with free radicals, in suppressing the increase of main asthmatic inflammatory markers substantiate the key role played by reactive oxygen and nitrogen species in the molecular mechanism of

  20. Elimination of Aspergillus fumigatus conidia from the airways of mice with allergic airway inflammation

    PubMed Central

    2013-01-01

    Background Aspergillus fumigatus conidia can exacerbate asthma symptoms. Phagocytosis of conidia is a principal component of the host antifungal defense. We investigated whether allergic airway inflammation (AAI) affects the ability of phagocytic cells in the airways to internalize the resting fungal spores. Methods Using BALB/c mice with experimentally induced AAI, we tested the ability of neutrophils, macrophages, and dendritic cells to internalize A. fumigatus conidia at various anatomical locations. We used light microscopy and differential cell and conidium counts to determine the ingestion potential of neutrophils and macrophages present in bronchoalveolar lavage (BAL). To identify phagocyte-conidia interactions in conducting airways, conidia labeled with tetramethylrhodamine-(5-(and-6))-isothiocyanate were administered to the oropharyngeal cavity of mice. Confocal microscopy was used to quantify the ingestion potential of Ly-6G+ neutrophils and MHC II+ antigen-presenting cells located in the intraepithelial and subepithelial areas of conducting airways. Results Allergen challenge induced transient neutrophil recruitment to the airways. Application of A. fumigatus conidia at the acute phase of AAI provoked recurrent neutrophil infiltration, and consequently increased the number and the ingestion potential of the airway neutrophils. In the absence of recurrent allergen or conidia provocation, both the ingestion potential and the number of BAL neutrophils decreased. As a result, conidia were primarily internalized by alveolar macrophages in both AAI and control mice at 24 hours post-inhalation. Transient influx of neutrophils to conducting airways shortly after conidial application was observed in mice with AAI. In addition, the ingestion potential of conducting airway neutrophils in mice with induced asthma exceeded that of control mice. Although the number of neutrophils subsequently decreased, the ingestion capacity remained elevated in AAI mice, even at 24

  1. Global burden of allergic bronchopulmonary aspergillosis with asthma and its complication chronic pulmonary aspergillosis in adults.

    PubMed

    Denning, David W; Pleuvry, Alex; Cole, Donald C

    2013-05-01

    Allergic bronchopulmonary aspergillosis (ABPA) complicates asthma and may lead to chronic pulmonary aspergillosis (CPA) yet global burdens of each have never been estimated. Antifungal therapy has a place in the management of ABPA and is the cornerstone of treatment in CPA, reducing morbidity and probably mortality. We used the country-specific prevalence of asthma from the Global Initiative for Asthma (GINA) report applied to population estimates to calculate adult asthma cases. From five referral cohorts (China, Ireland, New Zealand, Saudi Arabia and South Africa), we estimated the prevalence of ABPA in adults with asthma at 2.5% (range 0.72-3.5%) (scoping review). From ABPA case series, pulmonary cavitation occurred in 10% (range 7-20%), allowing an estimate of CPA prevalence worldwide using a deterministic scenario-based model. Of 193 million adults with active asthma worldwide, we estimate that 4,837,000 patients (range 1,354,000-6,772,000) develop ABPA. By WHO region, the ABPA burden estimates are: Europe, 1,062,000; Americas, 1,461,000; Eastern Mediterranean, 351,000; Africa, 389,900; Western Pacific, 823,200; South East Asia, 720,400. We calculate a global case burden of CPA complicating ABPA of 411,100 (range 206,300-589,400) at a 10% rate with a 15% annual attrition. The global burden of ABPA potentially exceeds 4.8 million people and of CPA complicating ABPA ˜ 400,000, which is more common than previously appreciated. Both conditions respond to antifungal therapy justifying improved case detection. Prospective population and clinical cohort studies are warranted to more precisely ascertain the frequency of ABPA and CPA in different locations and ethnic groups and validate the model inputs.

  2. Effects of inhalation of acidic compounds on pulmonary function in allergic adolescent subjects

    SciTech Connect

    Koenig, J.Q.; Covert, D.S.; Pierson, W.E.

    1989-02-01

    There is concern about the human health effects of inhalation of acid compounds found in urban air pollution. It was the purpose of this study to investigate three of these acid compounds, sulfur dioxide (SO/sub 2/), sulfuric acid (H/sub 2/SO/sub 4/), and nitric acid (HNO/sub 3/) in a group of allergic adolescent subjects. Subjects were exposed during rest and moderate exercise to 0.7 mumole/m/sup 3/ (68 micrograms/m/sup 3/) H/sub 2/SO/sub 4/, 4.0 mumole/m/sup 3/ (0.1 ppm) SO/sub 2/, or 2.0 mumole/m/sup 3/ (0.05 ppm) HNO/sub 3/. Pulmonary functions (FEV1, total respiratory resistance, and maximal flow) were measured before and after exposure. Preliminary analysis based on nine subjects indicates that exposure to 0.7 mumole/m/sup 3/ H/sub 2/SO/sub 4/ alone and in combination with SO/sub 2/ caused significant changes in pulmonary function, whereas exposure to air or SO/sub 2/ alone did not. FEV1 decreased an average of 6% after exposure to H/sub 2/SO/sub 4/ alone and 4% when the aerosol was combined with SO/sub 2/. The FEV1 decrease was 2% after both air and SO/sub 2/ exposures. Total respiratory resistance (RT) increased 15% after the combined H/sub 2/SO/sub 4/ exposures, 12% after H/sub 2/SO/sub 4/ alone, and 7% after exposure to air. After exposures to HNO3 alone, FEV1 decreased by 4%, and RT increased by 23%. These results are preliminary; final conclusions must wait for completion of the study.

  3. Effects of inhalation of acidic compounds on pulmonary function in allergic adolescent subjects.

    PubMed

    Koenig, J Q; Covert, D S; Pierson, W E

    1989-02-01

    There is concern about the human health effects of inhalation of acid compounds found in urban air pollution. It was the purpose of this study to investigate three of these acid compounds, sulfur dioxide (SO2), sulfuric acid (H2SO4), and nitric acid (HNO3) in a group of allergic adolescent subjects. Subjects were exposed during rest and moderate exercise to 0.7 mumole/m3 (68 micrograms/m3) H2SO4, 4.0 mumole/m3 (0.1 ppm) SO2, or 2.0 mumole/m3 (0.05 ppm) HNO3. Pulmonary functions (FEV1, total respiratory resistance, and maximal flow) were measured before and after exposure. Preliminary analysis based on nine subjects indicates that exposure to 0.7 mumole/m3 H2SO4 alone and in combination with SO2 caused significant changes in pulmonary function, whereas exposure to air or SO2 alone did not. FEV1 decreased an average of 6% after exposure to H2SO4 alone and 4% when the aerosol was combined with SO2. The FEV1 decrease was 2% after both air and SO2 exposures. Total respiratory resistance (RT) increased 15% after the combined H2SO4 exposures, 12% after H2SO4 alone, and 7% after exposure to air. After exposures to HNO3 alone, FEV1 decreased by 4%, and RT increased by 23%. These results are preliminary; final conclusions must wait for completion of the study.

  4. Inhibitory effect of putranjivain A on allergic inflammation through suppression of mast cell activation

    SciTech Connect

    Kim, Hui-Hun; Park, Seung-Bin; Lee, Soyoung; Kwon, Taeg Kyu; Shin, Tae-Yong; Park, Pil-Hoon; Lee, Seung-Ho; Kim, Sang-Hyun

    2014-02-01

    A great number of people are suffering from allergic inflammatory disease such as asthma, atopic dermatitis, and sinusitis. Therefore discovery of drugs for the treatment of these diseases is an important subject in human health. Putranjivain A (PJA), member of ellagitannin, is known to possess beneficial effects including anti-cancer and anti-viral activities. The aim of the present study was to elucidate whether PJA modulates the allergic inflammatory reaction and to study its possible mechanisms of action using mast cell-based in vitro and in vivo models. The study was performed in anaphylaxis mouse model and cultured mast cells. PJA inhibited the expression of pro-inflammatory cytokines in immunoglobulin E-stimulated mast cells. PJA reduced this expression by inhibiting nuclear factor (NF)-κB and nuclear factor of activated T cell. The oral administration of PJA reduced systemic and cutaneous anaphylaxis, the release of serum histamine, and the expression of the histamine H{sub 1} receptor. In addition, PJA attenuated the activation of mast cells. PJA inhibited the release of histamine from various types of mast cells by the suppression of intracellular calcium. The inhibitory activity of PJA on the allergic reaction was similar to that of disodium cromoglycate, a known anti-allergic drug. These results suggest that PJA can facilitate the prevention or treatment of allergic inflammatory diseases mediated by mast cells. - Highlights: • PJA reduced the degranulation of mast cells. • PJA inhibited the production of inflammatory cytokines. • The effect of PJA on allergic reaction was comparable to the DSCG. • PJA might be a candidate for the treatment of allergic inflammatory diseases.

  5. The Ethanol Extract of Osmanthus fragrans Flowers Reduces Oxidative Stress and Allergic Airway Inflammation in an Animal Model

    PubMed Central

    Hung, Chien-Ya; Shi, Li-Shian; Wang, Jing-Yao; Tsai, Yu-Cheng; Ye, Yi-Ling

    2013-01-01

    The Osmanthus fragrans flower, a popular herb in Eastern countries, contains several antioxidant compounds. Ben Cao Gang Mu, traditional Chinese medical literature, describes the usefulness of these flowers for phlegm and stasis reduction, arrest of dysentery with blood in the bowel, and stomachache and diarrhea treatment. However, modern evidence regarding the therapeutic efficacy of these flowers is limited. This study was aimed at assessing the antioxidative effects of the ethanol extract of O. fragrans flowers (OFE) in vivo and evaluating its antioxidant maintenance and therapeutic effect on an allergic airway inflammation in mice. After OFE's oral administration to mice, the values obtained in the oxygen radical absorbance capacity assay as well as the glutathione concentration in the lungs and spleens of mice increased while thiobarbituric acid reactive substances decreased significantly, indicating OFE's significant in vivo antioxidant activity. OFE was also therapeutically efficacious in a mouse model of ovalbumin-induced allergic airway inflammation. Orally administered OFE suppressed ovalbumin-specific IgE production and inflammatory cell infiltration in the lung. Moreover, the antioxidative state of the mice improved. Thus, our findings confirm the ability of the O. fragrans flowers to reduce phlegm and suggest that OFE may be useful as an antiallergic agent. PMID:24386002

  6. Treatment with olopatadine and naphazoline hydrochloride reduces allergic conjunctivitis in mice through alterations in inflammation, NGF and VEGF.

    PubMed

    Quan, Lin; He, Hua

    2016-04-01

    The aim of the current study was to investigate whether olopatadine and naphazoline hydrochloride reduce allergic conjunctivitis in mice through alterations in inflammation, NGF and VEGF. An allergic conjunctivitis mouse model was established using histamine or an antigen (ovalbumin), following which mice were treated with 1% olopatadine solution and/or 0.2 mg/ml of naphazoline hydrochloride. Histamine or antigen‑induced conjunctival vascular hyperpermeability was examined and the levels of inflammatory factors, cytokines, IgE, GMCSF and NGF were analyzed using ELISA in antigen‑induced conjunctival vascular hyperpermeability mice. In addition, VEGF protein expression was measured using western blotting in antigen‑induced mice. The results indicated that olopatadine and naphazoline hydrochloride significantly suppressed conjunctival dye leakage in mice with histamine or antigen‑induced conjunctival vascular hyperpermeability. In addition, treatment with olopatadine and naphazoline hydrochloride was able to reduce the levels of inflammatory factors (TNF‑α, IL‑1β and IL‑6), cytokines (IFN‑γ and IL‑4), IgE, GMCSF, and NGF in antigen‑induced conjunctival vascular hyperpermeability mice. The protein expression levels of VEGF in antigen‑induced conjunctival vascular hyperpermeability mice were reduced following treatment with olopatadine and naphazoline hydrochloride. These results suggest that treatment with olopatadine and naphazoline hydrochloride reduces conjunctivitis in mice via effects on inflammation, NGF and VEGF.

  7. Arctigenin, a phenylpropanoid dibenzylbutyrolactone lignan, inhibits type I-IV allergic inflammation and pro-inflammatory enzymes.

    PubMed

    Lee, Ji Yun; Kim, Chang Jong

    2010-06-01

    We previously reported that arctigenin, a phenylpropanoid dibenzylbutyrolactone lignan isolated from Forsythia koreana, exhibits anti-inflammatory, antioxidant, and analgesic effects in animal models. In addition, arctigenin inhibited eosinophil peroxidase and activated myeloperoxidase in inflamed tissues. In this study, we tested the effects of arctigenin on type I-IV allergic inflammation and pro-inflammatory enzymes in vitro and in vivo. Arctigenin significantly inhibited the heterologous passive cutaneous anaphylaxis induced by ovalbumin in mice at 15 mg/kg, p.o., and compound 48/80-induced histamine release from rat peritoneal mast cells at 10 microM. Arctigenin (15 mg/kg, p.o.) significantly inhibited reversed cutaneous anaphylaxis. Further, arctigenin (15 mg/kg, p.o.) significantly inhibited the Arthus reaction to sheep's red blood cells, decreasing the hemolysis titer, the hemagglutination titer, and the plaque-forming cell number for SRBCs. In addition, arctigenin significantly inhibited delayed type hypersensitivity at 15 mg/kg, p.o. and the formation of rosette-forming cells at 45 mg/kg, p.o. Contact dermatitis induced by picrylchloride and dinitrofluorobenzene was significantly (p < 0.05) inhibited by surface treatment with arctigenin (0.3 mg/ear). Furthermore, arctigenin dose-dependently inhibited pro-inflammatory enzymes, such as cyclooxygenase-1 and 2, 5-lipoxygenase, phospholipase A2, and phosphodiesterase. Our results show that arctigenin significantly inhibited B- and T-cell mediated allergic inflammation as well as pro-inflammatory enzymes.

  8. Investigating the Effects of Particulate Matter on House Dust Mite and Ovalbumin Allergic Airway Inflammation in Mice.

    PubMed

    Castañeda, Alejandro R; Pinkerton, Kent E

    2016-01-01

    Particulate matter (PM), a component of air pollution, has been shown to enhance allergen-mediated airway hypersensitivity and inflammation. Surprisingly, exposure to PM during the sensitization to allergen is sufficient to produce immunological changes that result in heightened inflammatory effects upon future allergen exposures (challenge) in the absence of PM. This suggests that PM has the ability to modulate the allergic immune response, thereby acting as an adjuvant by enhancing the immunological memory formed during the adaptive immune response; however, the mechanisms through which this occurs remain elusive. Establishing a reproducible animal model to study the PM-mediated immunotoxicological effects that enhance allergy, may provide insights to understand how air pollution activates the immune system and thereby modulates the pathophysiology of asthma. The basic protocol can be used to study various characteristics of air pollution, such as PM size, source, or chemical composition, to help elucidate how such features may affect the allergic response in a mouse model of asthma. Using a BALB/c model of acute exposure (14 days), mice are first sensitized with allergen and PM, and then subsequently challenged with allergen only. The endpoints of this basic protocol include the assessment of inflammation via cells recovered from broncho-alveolar lavage (BAL), histopathological analysis, gene expression profiles, and protein quantification of inflammatory markers. © 2016 by John Wiley & Sons, Inc. PMID:27145110

  9. Investigating the Effects of Particulate Matter on House Dust Mite and Ovalbumin Allergic Airway Inflammation in Mice.

    PubMed

    Castañeda, Alejandro R; Pinkerton, Kent E

    2016-05-04

    Particulate matter (PM), a component of air pollution, has been shown to enhance allergen-mediated airway hypersensitivity and inflammation. Surprisingly, exposure to PM during the sensitization to allergen is sufficient to produce immunological changes that result in heightened inflammatory effects upon future allergen exposures (challenge) in the absence of PM. This suggests that PM has the ability to modulate the allergic immune response, thereby acting as an adjuvant by enhancing the immunological memory formed during the adaptive immune response; however, the mechanisms through which this occurs remain elusive. Establishing a reproducible animal model to study the PM-mediated immunotoxicological effects that enhance allergy, may provide insights to understand how air pollution activates the immune system and thereby modulates the pathophysiology of asthma. The basic protocol can be used to study various characteristics of air pollution, such as PM size, source, or chemical composition, to help elucidate how such features may affect the allergic response in a mouse model of asthma. Using a BALB/c model of acute exposure (14 days), mice are first sensitized with allergen and PM, and then subsequently challenged with allergen only. The endpoints of this basic protocol include the assessment of inflammation via cells recovered from broncho-alveolar lavage (BAL), histopathological analysis, gene expression profiles, and protein quantification of inflammatory markers. © 2016 by John Wiley & Sons, Inc.

  10. Diesel exposure suppresses natural killer cell function and resolution of eosinophil inflammation: a randomized controlled trial of exposure in allergic rhinitics.

    PubMed

    Pawlak, Erica A; Noah, Terry L; Zhou, Haibo; Chehrazi, Claire; Robinette, Carole; Diaz-Sanchez, David; Müller, Loretta; Jaspers, Ilona

    2016-05-06

    Exposure to diesel exhaust (DE) is known to exacerbate allergic inflammation, including virus-induced eosinophil activation in laboratory animals. We have previously shown that in human volunteers with allergic rhinitis a short-term exposure to DE prior to infection with the live attenuated influenza virus (LAIV) increases markers of allergic inflammation in the nasal mucosa. Specifically, levels of eosinophilic cationic protein (ECP) were significantly enhanced in individuals exposed to DE prior to inoculation with LAIV and this effect was maintained for at least seven days. However, this previous study was limited in its scope of nasal immune endpoints and did not explore potential mechanisms mediating the prolonged exacerbation of allergic inflammation caused by exposure to DE prior to inoculation with LAIV. In this follow-up study, the methods were modified to expand experimental endpoints and explore the potential role of NK cells. The data presented here suggest DE prolongs viral-induced eosinophil activation, which was accompanied by decreased markers of NK cell recruitment and activation. Separate in vitro studies showed that exposure to DE particles decreases the ability of NK cells to kill eosinophils. Taken together, these follow-up studies suggest that DE-induced exacerbation of allergic inflammation in the context of viral infections may be mediated by decreased activity of NK cells and their ability to clear eosinophils.

  11. Exposure to nickel oxide nanoparticles induces pulmonary inflammation through NLRP3 inflammasome activation in rats.

    PubMed

    Cao, Zhengwang; Fang, Yiliang; Lu, Yonghui; Qian, Fenghua; Ma, Qinglong; He, Mingdi; Pi, Huifeng; Yu, Zhengping; Zhou, Zhou

    2016-01-01

    With recent advances in the manufacture and application of nickel oxide nanoparticles (NiONPs), concerns about their adverse effects on the respiratory system are increasing. However, the underlying cellular and molecular mechanisms of NiONP-induced pulmonary toxicity remain unclear. In this study, we focused on the impacts of NiONPs on pulmonary inflammation and investigated whether the NLRP3 inflammasome is involved in NiONP-induced pulmonary inflammation and injury. NiONP suspensions were administered by single intratracheal instillation to rats, and inflammatory responses were evaluated at 3 days, 7 days, or 28 days after treatment. NiONP exposure resulted in sustained pulmonary inflammation accompanied by inflammatory cell infiltration, alveolar proteinosis, and cytokine secretion. Expression of Nlrp3 was markedly upregulated by the NiONPs, which was accompanied by overexpression of the active form of caspase-1 (p20) and interleukin (IL)-1β secretion in vivo. NiONP-induced IL-1β secretion was partially prevented by co-treatment with a caspase-1 inhibitor in macrophages. Moreover, siRNA-mediated Nlrp3 knockdown completely attenuated NiONP-induced cytokine release and caspase-1 activity in macrophages in vitro. In addition, NiONP-induced NLRP3 inflammasome activation requires particle uptake and reactive oxygen species production. Collectively, our findings suggest that the NLRP3 inflammasome participates in NiONP-induced pulmonary inflammation and offer new strategies to combat the pulmonary toxicity induced by NiONPs. PMID:27524893

  12. Exposure to nickel oxide nanoparticles induces pulmonary inflammation through NLRP3 inflammasome activation in rats

    PubMed Central

    Cao, Zhengwang; Fang, Yiliang; Lu, Yonghui; Qian, Fenghua; Ma, Qinglong; He, Mingdi; Pi, Huifeng; Yu, Zhengping; Zhou, Zhou

    2016-01-01

    With recent advances in the manufacture and application of nickel oxide nanoparticles (NiONPs), concerns about their adverse effects on the respiratory system are increasing. However, the underlying cellular and molecular mechanisms of NiONP-induced pulmonary toxicity remain unclear. In this study, we focused on the impacts of NiONPs on pulmonary inflammation and investigated whether the NLRP3 inflammasome is involved in NiONP-induced pulmonary inflammation and injury. NiONP suspensions were administered by single intratracheal instillation to rats, and inflammatory responses were evaluated at 3 days, 7 days, or 28 days after treatment. NiONP exposure resulted in sustained pulmonary inflammation accompanied by inflammatory cell infiltration, alveolar proteinosis, and cytokine secretion. Expression of Nlrp3 was markedly upregulated by the NiONPs, which was accompanied by overexpression of the active form of caspase-1 (p20) and interleukin (IL)-1β secretion in vivo. NiONP-induced IL-1β secretion was partially prevented by co-treatment with a caspase-1 inhibitor in macrophages. Moreover, siRNA-mediated Nlrp3 knockdown completely attenuated NiONP-induced cytokine release and caspase-1 activity in macrophages in vitro. In addition, NiONP-induced NLRP3 inflammasome activation requires particle uptake and reactive oxygen species production. Collectively, our findings suggest that the NLRP3 inflammasome participates in NiONP-induced pulmonary inflammation and offer new strategies to combat the pulmonary toxicity induced by NiONPs. PMID:27524893

  13. Innate imprinting of murine resident alveolar macrophages by allergic bronchial inflammation causes a switch from hypoinflammatory to hyperinflammatory reactivity.

    PubMed

    Naessens, Thomas; Vander Beken, Seppe; Bogaert, Pieter; Van Rooijen, Nico; Lienenklaus, Stefan; Weiss, Siegfried; De Koker, Stefaan; Grooten, Johan

    2012-07-01

    Resident alveolar macrophages (rAMs) residing in the bronchoalveolar lumen of the airways play an important role in limiting excessive inflammatory responses in the respiratory tract. High phagocytic activity along with hyporesponsiveness to inflammatory insults and lack of autonomous IFN-β production are crucial assets in this regulatory function. Using a mouse model of asthma, we analyzed the fate of rAMs both during and after allergic bronchial inflammation. Although nearly indistinguishable phenotypically from naïve rAMs, postinflammation rAMs exhibited a strongly reduced basal phagocytic capacity, accompanied by a markedly increased inflammatory reactivity to Toll-like receptors TLR-3 (poly I:C), TLR-4 [lipopolysaccharide (LPS)], and TLR-7 (imiquimod). Importantly, after inflammation, rAMs exhibited a switch from an IFN-β-defective to an IFN-β-competent phenotype, thus indicating the occurrence of a new, inflammatory-released rAM population in the postallergic lung. Analysis of rAM turnover revealed a rapid disappearance of naïve rAMs after the onset of inflammation. This inflammation-induced rAM turnover is critical for the development of the hyperinflammatory rAM phenotype observed after clearance of bronchial inflammation. These data document a novel mechanism of innate imprinting in which noninfectious bronchial inflammation causes alveolar macrophages to acquire a highly modified innate reactivity. The resulting increase in secretion of inflammatory mediators on TLR stimulation implies a role for this phenomenon of innate imprinting in the increased sensitivity of postallergic lungs to inflammatory insults. PMID:22613023

  14. α-Tocopherol supplementation of allergic female mice inhibits development of CD11c+CD11b+ dendritic cells in utero and allergic inflammation in neonates

    PubMed Central

    Abdala-Valencia, Hiam; Berdnikovs, Sergejs; Soveg, Frank W.

    2014-01-01

    α-Tocopherol blocks responses to allergen challenge in allergic adult mice, but it is not known whether α-tocopherol regulates the development of allergic disease. Development of allergic disease often occurs early in life. In clinical studies and animal models, offspring of allergic mothers have increased responsiveness to allergen challenge. Therefore, we determined whether α-tocopherol blocked development of allergic responses in offspring of allergic female mice. Allergic female mice were supplemented with α-tocopherol starting at mating. The pups from allergic mothers developed allergic lung responses, whereas pups from saline-treated mothers did not respond to the allergen challenge, and α-tocopherol supplementation of allergic female mice resulted in a dose-dependent reduction in eosinophils in the pup bronchoalveolar lavage and lungs after allergen challenge. There was also a reduction in pup lung CD11b+ dendritic cell subsets that are critical to development of allergic responses, but there was no change in several CD11b− dendritic cell subsets. Furthermore, maternal supplementation with α-tocopherol reduced the number of fetal liver CD11b+ dendritic cells in utero. In the pups, there was reduced allergen-induced lung mRNA expression of IL-4, IL-33, TSLP, CCL11, and CCL24. Cross-fostering pups at the time of birth demonstrated that α-tocopherol had a regulatory function in utero. In conclusion, maternal supplementation with α-tocopherol reduced fetal development of subsets of dendritic cells that are critical for allergic responses and reduced development of allergic responses in pups from allergic mothers. These results have implications for supplementation of allergic mothers with α-tocopherol. PMID:25015974

  15. Skeletal muscle response to inflammation--lessons for chronic obstructive pulmonary disease.

    PubMed

    Reid, W Darlene; Rurak, Jennifer; Harris, R Luke

    2009-10-01

    To describe how inflammation affects muscle adaptation and performance in people with chronic obstructive pulmonary disease. In chronic obstructive pulmonary disease, an increasingly sedentary lifestyle is a primary contributor to muscle dysfunction that results in a loss of mobility and independence and, ultimately, mortality. Given the systemic chronic inflammation and profound limb muscle atrophy in chronic obstructive pulmonary disease, it is tempting to speculate that the inflammatory process is deleterious to skeletal muscle. In healthy people, however, the inflammatory process initially is dominated by a destructive phase that is tightly regulated and modulates a reparative, regenerative phase. Although the inflammatory process and associated oxidative stress is more closely connected to muscle wasting in animal models of chronic obstructive pulmonary disease, the causative role of inflammation toward muscle atrophy and weakness in people with chronic obstructive pulmonary disease has not been definitively shown. Anti-inflammatory interventions aimed toward tempering muscle wasting and weakness in chronic obstructive pulmonary disease may not prove to be beneficial because of longer-term disruption of the regeneration of muscle tissue. Temporally and spatially targeted interventions aimed toward ameliorating oxidative stress, such as antioxidants, nutritional supplements, and chronic exercise training, may optimize outcomes toward maintaining muscle mass and performance.

  16. Home-based pulmonary rehabilitation improves clinical features and systemic inflammation in chronic obstructive pulmonary disease patients

    PubMed Central

    do Nascimento, Eloisa Sanches Pereira; Sampaio, Luciana Maria Malosá; Peixoto-Souza, Fabiana Sobral; Dias, Fernanda Dultra; Gomes, Evelim Leal Freitas Dantas; Greiffo, Flavia Regina; Ligeiro de Oliveira, Ana Paula; Stirbulov, Roberto; Vieira, Rodolfo Paula; Costa, Dirceu

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is a respiratory disease characterized by chronic airflow limitation that leads beyond the pulmonary changes to important systemic effects. COPD is characterized by pulmonary and systemic inflammation. However, increases in the levels of inflammatory cytokines in plasma are found even when the disease is stable. Pulmonary rehabilitation improves physical exercise capacity and quality of life and decreases dyspnea. The aim of this study was to evaluate whether a home-based pulmonary rehabilitation (HBPR) program improves exercise tolerance in COPD patients, as well as health-related quality of life and systemic inflammation. This prospective study was conducted at the Laboratory of Functional Respiratory Evaluation, Nove de Julho University, São Paulo, Brazil. After anamnesis, patients were subjected to evaluations of health-related quality of life and dyspnea, spirometry, respiratory muscle strength, upper limbs incremental test, incremental shuttle walk test, and blood test for quantification of systemic inflammatory markers (interleukin [IL]-6 and IL-8). At the end of the evaluations, patients received a booklet containing the physical exercises to be performed at home, three times per week for 8 consecutive weeks. Around 25 patients were enrolled, and 14 completed the pre- and post-HBPR ratings. There was a significant increase in the walked distance and the maximal inspiratory pressure, improvements on two components from the health-related quality-of-life questionnaire, and a decrease in plasma IL-8 levels after the intervention. The HBPR is an important and viable alternative to pulmonary rehabilitation for the treatment of patients with COPD; it improves exercise tolerance, inspiratory muscle strength, quality of life, and systemic inflammation in COPD patients. PMID:25848241

  17. Home-based pulmonary rehabilitation improves clinical features and systemic inflammation in chronic obstructive pulmonary disease patients.

    PubMed

    do Nascimento, Eloisa Sanches Pereira; Sampaio, Luciana Maria Malosá; Peixoto-Souza, Fabiana Sobral; Dias, Fernanda Dultra; Gomes, Evelim Leal Freitas Dantas; Greiffo, Flavia Regina; Ligeiro de Oliveira, Ana Paula; Stirbulov, Roberto; Vieira, Rodolfo Paula; Costa, Dirceu

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is a respiratory disease characterized by chronic airflow limitation that leads beyond the pulmonary changes to important systemic effects. COPD is characterized by pulmonary and systemic inflammation. However, increases in the levels of inflammatory cytokines in plasma are found even when the disease is stable. Pulmonary rehabilitation improves physical exercise capacity and quality of life and decreases dyspnea. The aim of this study was to evaluate whether a home-based pulmonary rehabilitation (HBPR) program improves exercise tolerance in COPD patients, as well as health-related quality of life and systemic inflammation. This prospective study was conducted at the Laboratory of Functional Respiratory Evaluation, Nove de Julho University, São Paulo, Brazil. After anamnesis, patients were subjected to evaluations of health-related quality of life and dyspnea, spirometry, respiratory muscle strength, upper limbs incremental test, incremental shuttle walk test, and blood test for quantification of systemic inflammatory markers (interleukin [IL]-6 and IL-8). At the end of the evaluations, patients received a booklet containing the physical exercises to be performed at home, three times per week for 8 consecutive weeks. Around 25 patients were enrolled, and 14 completed the pre- and post-HBPR ratings. There was a significant increase in the walked distance and the maximal inspiratory pressure, improvements on two components from the health-related quality-of-life questionnaire, and a decrease in plasma IL-8 levels after the intervention. The HBPR is an important and viable alternative to pulmonary rehabilitation for the treatment of patients with COPD; it improves exercise tolerance, inspiratory muscle strength, quality of life, and systemic inflammation in COPD patients.

  18. Identification of genes differentially regulated by vitamin D deficiency that alter lung pathophysiology and inflammation in allergic airways disease.

    PubMed

    Foong, Rachel E; Bosco, Anthony; Troy, Niamh M; Gorman, Shelley; Hart, Prue H; Kicic, Anthony; Zosky, Graeme R

    2016-09-01

    Vitamin D deficiency is associated with asthma risk. Vitamin D deficiency may enhance the inflammatory response, and we have previously shown that airway remodeling and airway hyperresponsiveness is increased in vitamin D-deficient mice. In this study, we hypothesize that vitamin D deficiency would exacerbate house dust mite (HDM)-induced inflammation and alterations in lung structure and function. A BALB/c mouse model of vitamin D deficiency was established by dietary manipulation. Responsiveness to methacholine, airway smooth muscle (ASM) mass, mucus cell metaplasia, lung and airway inflammation, and cytokines in bronchoalveolar lavage (BAL) fluid were assessed. Gene expression patterns in mouse lung samples were profiled by RNA-Seq. HDM exposure increased inflammation and inflammatory cytokines in BAL, baseline airway resistance, tissue elastance, and ASM mass. Vitamin D deficiency enhanced the HDM-induced influx of lymphocytes into BAL, ameliorated the HDM-induced increase in ASM mass, and protected against the HDM-induced increase in baseline airway resistance. RNA-Seq identified nine genes that were differentially regulated by vitamin D deficiency in the lungs of HDM-treated mice. Immunohistochemical staining confirmed that protein expression of midline 1 (MID1) and adrenomedullin was differentially regulated such that they promoted inflammation, while hypoxia-inducible lipid droplet-associated, which is associated with ASM remodeling, was downregulated. Protein expression studies in human bronchial epithelial cells also showed that addition of vitamin D decreased MID1 expression. Differential regulation of these genes by vitamin D deficiency could determine lung inflammation and pathophysiology and suggest that the effect of vitamin D deficiency on HDM-induced allergic airways disease is complex.

  19. Essential Role of Nuclear Factor κB in the Induction of Eosinophilia in Allergic Airway Inflammation

    PubMed Central

    Yang, Liyan; Cohn, Lauren; Zhang, Dong-Hong; Homer, Robert; Ray, Anuradha; Ray, Prabir

    1998-01-01

    The molecular mechanisms that contribute to an eosinophil-rich airway inflammation in asthma are unclear. A predominantly T helper 2 (Th2)-type cell response has been documented in allergic asthma. Here we show that mice deficient in the p50 subunit of nuclear factor (NF)- κB are incapable of mounting eosinophilic airway inflammation compared with wild-type mice. This deficiency was not due to a block in T cell priming or proliferation in the p50−/− mice, nor was it due to a defect in the expression of the cell adhesion molecules VCAM-1 and ICAM-1 that are required for the extravasation of eosinophils into the airways. The major defects in the p50−/− mice were the lack of production of the Th2 cytokine interleukin 5 and the chemokine eotaxin, which are crucial for proliferation and for differentiation and recruitment, respectively, of eosinophils into the asthmatic airway. Additionally, the p50−/− mice were deficient in the production of the chemokines macrophage inflammatory protein (MIP)-1α and MIP-1β that have been implicated in T cell recruitment to sites of inflammation. These results demonstrate a crucial role for NF-κB in vivo in the expression of important molecules that have been implicated in the pathogenesis of asthma. PMID:9802985

  20. The Intestinal Microbiota Contributes to the Ability of Helminths to Modulate Allergic Inflammation

    PubMed Central

    Zaiss, Mario M.; Rapin, Alexis; Lebon, Luc; Dubey, Lalit Kumar; Mosconi, Ilaria; Sarter, Kerstin; Piersigilli, Alessandra; Menin, Laure; Walker, Alan W.; Rougemont, Jacques; Paerewijck, Oonagh; Geldhof, Peter; McCoy, Kathleen D.; Macpherson, Andrew J.; Croese, John; Giacomin, Paul R.; Loukas, Alex; Junt, Tobias; Marsland, Benjamin J.; Harris, Nicola L.

    2015-01-01

    Summary Intestinal helminths are potent regulators of their host’s immune system and can ameliorate inflammatory diseases such as allergic asthma. In the present study we have assessed whether this anti-inflammatory activity was purely intrinsic to helminths, or whether it also involved crosstalk with the local microbiota. We report that chronic infection with the murine helminth Heligmosomoides polygyrus bakeri (Hpb) altered the intestinal habitat, allowing increased short chain fatty acid (SCFA) production. Transfer of the Hpb-modified microbiota alone was sufficient to mediate protection against allergic asthma. The helminth-induced anti-inflammatory cytokine secretion and regulatory T cell suppressor activity that mediated the protection required the G protein-coupled receptor (GPR)-41. A similar alteration in the metabolic potential of intestinal bacterial communities was observed with diverse parasitic and host species, suggesting that this represents an evolutionary conserved mechanism of host-microbe-helminth interactions. PMID:26522986

  1. The Intestinal Microbiota Contributes to the Ability of Helminths to Modulate Allergic Inflammation.

    PubMed

    Zaiss, Mario M; Rapin, Alexis; Lebon, Luc; Dubey, Lalit Kumar; Mosconi, Ilaria; Sarter, Kerstin; Piersigilli, Alessandra; Menin, Laure; Walker, Alan W; Rougemont, Jacques; Paerewijck, Oonagh; Geldhof, Peter; McCoy, Kathleen D; Macpherson, Andrew J; Croese, John; Giacomin, Paul R; Loukas, Alex; Junt, Tobias; Marsland, Benjamin J; Harris, Nicola L

    2015-11-17

    Intestinal helminths are potent regulators of their host's immune system and can ameliorate inflammatory diseases such as allergic asthma. In the present study we have assessed whether this anti-inflammatory activity was purely intrinsic to helminths, or whether it also involved crosstalk with the local microbiota. We report that chronic infection with the murine helminth Heligmosomoides polygyrus bakeri (Hpb) altered the intestinal habitat, allowing increased short chain fatty acid (SCFA) production. Transfer of the Hpb-modified microbiota alone was sufficient to mediate protection against allergic asthma. The helminth-induced anti-inflammatory cytokine secretion and regulatory T cell suppressor activity that mediated the protection required the G protein-coupled receptor (GPR)-41. A similar alteration in the metabolic potential of intestinal bacterial communities was observed with diverse parasitic and host species, suggesting that this represents an evolutionary conserved mechanism of host-microbe-helminth interactions. PMID:26522986

  2. The Intestinal Microbiota Contributes to the Ability of Helminths to Modulate Allergic Inflammation.

    PubMed

    Zaiss, Mario M; Rapin, Alexis; Lebon, Luc; Dubey, Lalit Kumar; Mosconi, Ilaria; Sarter, Kerstin; Piersigilli, Alessandra; Menin, Laure; Walker, Alan W; Rougemont, Jacques; Paerewijck, Oonagh; Geldhof, Peter; McCoy, Kathleen D; Macpherson, Andrew J; Croese, John; Giacomin, Paul R; Loukas, Alex; Junt, Tobias; Marsland, Benjamin J; Harris, Nicola L

    2015-11-17

    Intestinal helminths are potent regulators of their host's immune system and can ameliorate inflammatory diseases such as allergic asthma. In the present study we have assessed whether this anti-inflammatory activity was purely intrinsic to helminths, or whether it also involved crosstalk with the local microbiota. We report that chronic infection with the murine helminth Heligmosomoides polygyrus bakeri (Hpb) altered the intestinal habitat, allowing increased short chain fatty acid (SCFA) production. Transfer of the Hpb-modified microbiota alone was sufficient to mediate protection against allergic asthma. The helminth-induced anti-inflammatory cytokine secretion and regulatory T cell suppressor activity that mediated the protection required the G protein-coupled receptor (GPR)-41. A similar alteration in the metabolic potential of intestinal bacterial communities was observed with diverse parasitic and host species, suggesting that this represents an evolutionary conserved mechanism of host-microbe-helminth interactions.

  3. Regulation of allergic inflammation by the ectoenzyme E-NPP3 (CD203c) on basophils and mast cells.

    PubMed

    Tsai, Shih Han; Takeda, Kiyoshi

    2016-09-01

    Adenosine 5'-triphosphate (ATP) is released from dying or damaged cells, as well as from activated cells. Once secreted, extracellular ATP induces several immune responses via P2X and P2Y receptors. Basophils and mast cells release ATP upon FcεRI-crosslinking, and ATP activates basophils and mast cells in an autocrine manner. Nucleotide-converting ectoenzymes, such as E-NTPD1, E-NTPD7, and E-NPP3, inhibit ATP-dependent immune responses by hydrolyzing ATP, thereby contributing to immune response regulation. E-NPP3 is a well-known activation marker for human basophils. E-NPP3's physiologic function has recently been disclosed in mice. E-NPP3 is rapidly induced on basophils and mast cells after FcεRI-crosslinking and hydrolyzes extracellular ATP on cell surfaces to prevent ATP-dependent excess activation of basophils and mast cells. In the absence of E-NPP3, basophils and mast cells are overactivated and mice suffer from severe chronic allergic inflammation. Thus, the ATP-hydrolyzing ectoenzymes E-NPP3 has a nonnegligible role in the regulation of basophil- and mast cell-mediated allergic responses.

  4. Exposure to low doses of formaldehyde during pregnancy suppresses the development of allergic lung inflammation in offspring.

    PubMed

    Maiellaro, Marília; Correa-Costa, Matheus; Vitoretti, Luana Beatriz; Gimenes Júnior, João Antônio; Câmara, Niels Olsen Saraiva; Tavares-de-Lima, Wothan; Farsky, Sandra Helena Poliselli; Lino-dos-Santos-Franco, Adriana

    2014-08-01

    Formaldehyde (FA) is an environmental and occupational pollutant, and its toxic effects on the immune system have been shown. Nevertheless, no data are available regarding the programming mechanisms after FA exposure and its repercussions for the immune systems of offspring. In this study, our objective was to investigate the effects of low-dose exposure of FA on pregnant rats and its repercussion for the development of allergic lung inflammation in offspring. Pregnant Wistar rats were assigned in 3 groups: P (rats exposed to FA (0.75 ppm, 1 h/day, 5 days/week, for 21 days)), C (rats exposed to vehicle of FA (distillated water)) and B (rats non-manipulated). After 30 days of age, the offspring was sensitised with ovalbumin (OVA)-alum and challenged with aerosolized OVA (1%, 15 min, 3 days). After 24 h the OVA challenge the parameters were evaluated. Our data showed that low-dose exposure to FA during pregnancy induced low birth weight and suppressed the development of allergic lung inflammation and tracheal hyperresponsiveness in offspring by mechanisms mediated by reduced anaphylactic antibodies synthesis, IL-6 and TNF-alpha secretion. Elevated levels of IL-10 were found. Any systemic alteration was detected in the exposed pregnant rats, although oxidative stress in the uterine environment was evident at the moment of the delivery based on elevated COX-1 expression and reduced cNOS and SOD-2 in the uterus. Therefore, we show the putative programming mechanisms induced by FA on the immune system for the first time and the mechanisms involved may be related to oxidative stress in the foetal microenvironment.

  5. Effects of exercise training on atrophy gene expression in skeletal muscle of mice with chronic allergic lung inflammation.

    PubMed

    Durigan, J L Q; Peviani, S M; Russo, T L; Silva, A C D; Vieira, R P; Martins, M A; Carvalho, C R F; Salvini, T F

    2009-04-01

    We evaluated the effects of chronic allergic airway inflammation and of treadmill training (12 weeks) of low and moderate intensity on muscle fiber cross-sectional area and mRNA levels of atrogin-1 and MuRF1 in the mouse tibialis anterior muscle. Six 4-month-old male BALB/c mice (28.5 +/- 0.8 g) per group were examined: 1) control, non-sensitized and non-trained (C); 2) ovalbumin sensitized (OA, 20 microg per mouse); 3) non-sensitized and trained at 50% maximum speed _ low intensity (PT50%); 4) non-sensitized and trained at 75% maximum speed _ moderate intensity (PT75%); 5) OA-sensitized and trained at 50% (OA+PT50%), 6) OA-sensitized and trained at 75% (OA+PT75%). There was no difference in muscle fiber cross-sectional area among groups and no difference in atrogin-1 and MuRF1 expression between C and OA groups. All exercised groups showed significantly decreased expression of atrogin-1 compared to C (1.01 +/- 0.2-fold): PT50% = 0.71 +/- 0.12-fold; OA+PT50% = 0.74 +/- 0.03-fold; PT75% = 0.71 +/- 0.09-fold; OA+PT75% = 0.74 +/- 0.09-fold. Similarly significant results were obtained regarding MuRF1 gene expression compared to C (1.01 +/- 0.23-fold): PT50% = 0.53 +/- 0.20-fold; OA+PT50% = 0.55 +/- 0.11-fold; PT75% = 0.35 +/- 0.15-fold; OA+PT75% = 0.37 +/- 0.08-fold. A short period of OA did not induce skeletal muscle atrophy in the mouse tibialis anterior muscle and aerobic training at low and moderate intensity negatively regulates the atrophy pathway in skeletal muscle of healthy mice or mice with allergic lung inflammation.

  6. Global analysis of gene expression in pulmonary fibrosis reveals distinct programs regulating lung inflammation and fibrosis

    NASA Astrophysics Data System (ADS)

    Kaminski, Naftali; Allard, John D.; Pittet, Jean F.; Zuo, Fengrong; Griffiths, Mark J. D.; Morris, David; Huang, Xiaozhu; Sheppard, Dean; Heller, Renu A.

    2000-02-01

    The molecular mechanisms of pulmonary fibrosis are poorly understood. We have used oligonucleotide arrays to analyze the gene expression programs that underlie pulmonary fibrosis in response to bleomycin, a drug that causes lung inflammation and fibrosis, in two strains of susceptible mice (129 and C57BL/6). We then compared the gene expression patterns in these mice with 129 mice carrying a null mutation in the epithelial-restricted integrin 6 subunit (6/-), which develop inflammation but are protected from pulmonary fibrosis. Cluster analysis identified two distinct groups of genes involved in the inflammatory and fibrotic responses. Analysis of gene expression at multiple time points after bleomycin administration revealed sequential induction of subsets of genes that characterize each response. The availability of this comprehensive data set should accelerate the development of more effective strategies for intervention at the various stages in the development of fibrotic diseases of the lungs and other organs.

  7. Multi-walled carbon nanotube physicochemical properties predict pulmonary inflammation and genotoxicity.

    PubMed

    Poulsen, Sarah S; Jackson, Petra; Kling, Kirsten; Knudsen, Kristina B; Skaug, Vidar; Kyjovska, Zdenka O; Thomsen, Birthe L; Clausen, Per Axel; Atluri, Rambabu; Berthing, Trine; Bengtson, Stefan; Wolff, Henrik; Jensen, Keld A; Wallin, Håkan; Vogel, Ulla

    2016-11-01

    Lung deposition of multi-walled carbon nanotubes (MWCNT) induces pulmonary toxicity. Commercial MWCNT vary greatly in physicochemical properties and consequently in biological effects. To identify determinants of MWCNT-induced toxicity, we analyzed the effects of pulmonary exposure to 10 commercial MWCNT (supplied in three groups of different dimensions, with one pristine and two/three surface modified in each group). We characterized morphology, chemical composition, surface area and functionalization levels. MWCNT were deposited in lungs of female C57BL/6J mice by intratracheal instillation of 0, 6, 18 or 54 μg/mouse. Pulmonary inflammation (neutrophil influx in bronchoalveolar lavage (BAL)) and genotoxicity were determined on day 1, 28 or 92. Histopathology of the lungs was performed on day 28 and 92. All MWCNT induced similar histological changes. Lymphocytic aggregates were detected for all MWCNT on day 28 and 92. Using adjusted, multiple regression analyses, inflammation and genotoxicity were related to dose, time and physicochemical properties. The specific surface area (BET) was identified as a positive predictor of pulmonary inflammation on all post-exposure days. In addition, length significantly predicted pulmonary inflammation, whereas surface oxidation (-OH and -COOH) was predictor of lowered inflammation on day 28. BET surface area, and therefore diameter, significantly predicted genotoxicity in BAL fluid cells and lung tissue such that lower BET surface area or correspondingly larger diameter was associated with increased genotoxicity. This study provides information on possible toxicity-driving physicochemical properties of MWCNT. The results may contribute to safe-by-design manufacturing of MWCNT, thereby minimizing adverse effects. PMID:27323647

  8. Multi-walled carbon nanotube physicochemical properties predict pulmonary inflammation and genotoxicity.

    PubMed

    Poulsen, Sarah S; Jackson, Petra; Kling, Kirsten; Knudsen, Kristina B; Skaug, Vidar; Kyjovska, Zdenka O; Thomsen, Birthe L; Clausen, Per Axel; Atluri, Rambabu; Berthing, Trine; Bengtson, Stefan; Wolff, Henrik; Jensen, Keld A; Wallin, Håkan; Vogel, Ulla

    2016-11-01

    Lung deposition of multi-walled carbon nanotubes (MWCNT) induces pulmonary toxicity. Commercial MWCNT vary greatly in physicochemical properties and consequently in biological effects. To identify determinants of MWCNT-induced toxicity, we analyzed the effects of pulmonary exposure to 10 commercial MWCNT (supplied in three groups of different dimensions, with one pristine and two/three surface modified in each group). We characterized morphology, chemical composition, surface area and functionalization levels. MWCNT were deposited in lungs of female C57BL/6J mice by intratracheal instillation of 0, 6, 18 or 54 μg/mouse. Pulmonary inflammation (neutrophil influx in bronchoalveolar lavage (BAL)) and genotoxicity were determined on day 1, 28 or 92. Histopathology of the lungs was performed on day 28 and 92. All MWCNT induced similar histological changes. Lymphocytic aggregates were detected for all MWCNT on day 28 and 92. Using adjusted, multiple regression analyses, inflammation and genotoxicity were related to dose, time and physicochemical properties. The specific surface area (BET) was identified as a positive predictor of pulmonary inflammation on all post-exposure days. In addition, length significantly predicted pulmonary inflammation, whereas surface oxidation (-OH and -COOH) was predictor of lowered inflammation on day 28. BET surface area, and therefore diameter, significantly predicted genotoxicity in BAL fluid cells and lung tissue such that lower BET surface area or correspondingly larger diameter was associated with increased genotoxicity. This study provides information on possible toxicity-driving physicochemical properties of MWCNT. The results may contribute to safe-by-design manufacturing of MWCNT, thereby minimizing adverse effects.

  9. Multi-walled carbon nanotube physicochemical properties predict pulmonary inflammation and genotoxicity

    PubMed Central

    Poulsen, Sarah S.; Jackson, Petra; Kling, Kirsten; Knudsen, Kristina B.; Skaug, Vidar; Kyjovska, Zdenka O.; Thomsen, Birthe L.; Clausen, Per Axel; Atluri, Rambabu; Berthing, Trine; Bengtson, Stefan; Wolff, Henrik; Jensen, Keld A.; Wallin, Håkan; Vogel, Ulla

    2016-01-01

    Abstract Lung deposition of multi-walled carbon nanotubes (MWCNT) induces pulmonary toxicity. Commercial MWCNT vary greatly in physicochemical properties and consequently in biological effects. To identify determinants of MWCNT-induced toxicity, we analyzed the effects of pulmonary exposure to 10 commercial MWCNT (supplied in three groups of different dimensions, with one pristine and two/three surface modified in each group). We characterized morphology, chemical composition, surface area and functionalization levels. MWCNT were deposited in lungs of female C57BL/6J mice by intratracheal instillation of 0, 6, 18 or 54 μg/mouse. Pulmonary inflammation (neutrophil influx in bronchoalveolar lavage (BAL)) and genotoxicity were determined on day 1, 28 or 92. Histopathology of the lungs was performed on day 28 and 92. All MWCNT induced similar histological changes. Lymphocytic aggregates were detected for all MWCNT on day 28 and 92. Using adjusted, multiple regression analyses, inflammation and genotoxicity were related to dose, time and physicochemical properties. The specific surface area (BET) was identified as a positive predictor of pulmonary inflammation on all post-exposure days. In addition, length significantly predicted pulmonary inflammation, whereas surface oxidation (–OH and –COOH) was predictor of lowered inflammation on day 28. BET surface area, and therefore diameter, significantly predicted genotoxicity in BAL fluid cells and lung tissue such that lower BET surface area or correspondingly larger diameter was associated with increased genotoxicity. This study provides information on possible toxicity-driving physicochemical properties of MWCNT. The results may contribute to safe-by-design manufacturing of MWCNT, thereby minimizing adverse effects. PMID:27323647

  10. The role of inflammation in hypoxic pulmonary hypertension: from cellular mechanisms to clinical phenotypes

    PubMed Central

    Poth, Jens M.; Fini, Mehdi A.; Olschewski, Andrea; El Kasmi, Karim C.; Stenmark, Kurt R.

    2014-01-01

    Hypoxic pulmonary hypertension (PH) comprises a heterogeneous group of diseases sharing the common feature of chronic hypoxia-induced pulmonary vascular remodeling. The disease is usually characterized by mild to moderate pulmonary vascular remodeling that is largely thought to be reversible compared with the progressive irreversible disease seen in World Health Organization (WHO) group I disease. However, in these patients, the presence of PH significantly worsens morbidity and mortality. In addition, a small subset of patients with hypoxic PH develop “out-of-proportion” severe pulmonary hypertension characterized by pulmonary vascular remodeling that is irreversible and similar to that in WHO group I disease. In all cases of hypoxia-related vascular remodeling and PH, inflammation, particularly persistent inflammation, is thought to play a role. This review focuses on the effects of hypoxia on pulmonary vascular cells and the signaling pathways involved in the initiation and perpetuation of vascular inflammation, especially as they relate to vascular remodeling and transition to chronic irreversible PH. We hypothesize that the combination of hypoxia and local tissue factors/cytokines (“second hit”) antagonizes tissue homeostatic cellular interactions between mesenchymal cells (fibroblasts and/or smooth muscle cells) and macrophages and arrests these cells in an epigenetically locked and permanently activated proremodeling and proinflammatory phenotype. This aberrant cellular cross-talk between mesenchymal cells and macrophages promotes transition to chronic nonresolving inflammation and vascular remodeling, perpetuating PH. A better understanding of these signaling pathways may lead to the development of specific therapeutic targets, as none are currently available for WHO group III disease. PMID:25416383

  11. Allergic inflammation: where epithelial function interacts with immune response in atopic diseases.

    PubMed

    Godoy, Laura

    2009-05-01

    Current hot topics in allergy and asthma were presented this year at the annual meeting of the American Academy of Allergy, Asthma & Immunology (AAAAI) in Washington, D.C. Understanding the natural history of allergic diseases is an area of interest because it could help to identify relevant biomarkers to predict allergy early in infancy. An abnormal epithelial barrier allows easy access to allergens/ pathogens and such a dysfunction could also be involved in the initiation of the natural course of allergic diseases. In addition, newly identified cytokines produced by epithelial cells such as thymic stromal lymphopoietin, interleukin-33 (IL-33) and IL-25 are involved in the generation of T helper type 2 (Th2) cell response. Genetic studies are also providing relevant information on biomarkers and new targets for allergy and asthma. Different genetic studies to identify single nucleotide polymorphisms of relevant mediators of allergy in patients, application of gene array analysis to identify biomarkers during asthma exacerbation, and IL-13-induced inflammatory events, are some examples of the interesting information presented at the AAAAI this year.

  12. Inhibitory effect of 1,2,4,5-tetramethoxybenzene on mast cell-mediated allergic inflammation through suppression of IκB kinase complex

    SciTech Connect

    Je, In-Gyu; Choi, Hyun Gyu; Kim, Hui-Hun; Lee, Soyoung; Choi, Jin Kyeong; Kim, Sung-Wan; Kim, Duk-Sil; Kwon, Taeg Kyu; Shin, Tae-Yong; Park, Pil-Hoon; Khang, Dongwoo; Kim, Sang-Hyun

    2015-09-01

    As the importance of allergic disorders such as atopic dermatitis and allergic asthma, research on potential drug candidates becomes more necessary. Mast cells play an important role as initiators of allergic responses through the release of histamine; therefore, they should be the target of pharmaceutical development for the management of allergic inflammation. In our previous study, anti-allergic effect of extracts of Amomum xanthioides was demonstrated. To further investigate improved candidates, 1,2,4,5-tetramethoxybenzene (TMB) was isolated from methanol extracts of A. xanthioides. TMB dose-dependently attenuated the degranulation of mast cells without cytotoxicity by inhibiting calcium influx. TMB decreased the expression of pro-inflammatory cytokines such as tumor necrosis factor-α and interleukin (IL)-4 at both the transcriptional and translational levels. Increased expression of these cytokines was caused by translocation of nuclear factor-κB into the nucleus, and it was hindered by suppressing activation of IκB kinase complex. To confirm the effect of TMB in vivo, the ovalbumin (OVA)-induced active systemic anaphylaxis (ASA) and IgE-mediated passive cutaneous anaphylaxis (PCA) models were used. In the ASA model, hypothermia was decreased by oral administration of TMB, which attenuated serum histamine, OVA-specific IgE, and IL-4 levels. Increased pigmentation of Evans blue was reduced by TMB in a dose-dependent manner in the PCA model. Our results suggest that TMB is a possible therapeutic candidate for allergic inflammatory diseases that acts through the inhibition of mast cell degranulation and expression of pro-inflammatory cytokines. - Highlights: • TMB reduced the degranulation of mast cells. • TMB inhibited the production of pro-inflammatory cytokines. • TMB suppressed both active and passive anaphylaxis. • Anti-allergic inflammatory effects of TMB might be due to the blocking IKK complex. • TMB might be a candidate for the treatment of

  13. Tracking of Inhaled Near-Infrared Fluorescent Nanoparticles in Lungs of SKH-1 Mice with Allergic Airway Inflammation.

    PubMed

    Markus, M Andrea; Napp, Joanna; Behnke, Thomas; Mitkovski, Miso; Monecke, Sebastian; Dullin, Christian; Kilfeather, Stephen; Dressel, Ralf; Resch-Genger, Ute; Alves, Frauke

    2015-12-22

    Molecular imaging of inflammatory lung diseases, such as asthma, has been limited to date. The recruitment of innate immune cells to the airways is central to the inflammation process. This study exploits these cells for imaging purposes within the lung, using inhaled polystyrene nanoparticles loaded with the near-infrared fluorescence dye Itrybe (Itrybe-NPs). By means of in vivo and ex vivo fluorescence reflectance imaging of an ovalbumin-based allergic airway inflammation (AAI) model in hairless SKH-1 mice, we show that subsequent to intranasal application of Itrybe-NPs, AAI lungs display fluorescence intensities significantly higher than those in lungs of control mice for at least 24 h. Ex vivo immunofluorescence analysis of lung tissue demonstrates the uptake of Itrybe-NPs predominantly by CD68(+)CD11c(+)ECF-L(+)MHCII(low) cells, identifying them as alveolar M2 macrophages in the peribronchial and alveolar areas. The in vivo results were validated by confocal microscopy, overlapping tile analysis, and flow cytometry, showing an amount of Itrybe-NP-containing macrophages in lungs of AAI mice significantly larger than that in controls. A small percentage of NP-containing cells were identified as dendritic cells. Flow cytometry of tracheobronchial lymph nodes showed that Itrybe-NPs were negligible in lung draining lymph nodes 24 h after inhalation. This imaging approach may advance preclinical monitoring of AAI in vivo over time and aid the investigation of the role that macrophages play during lung inflammation. Furthermore, it allows for tracking of inhaled nanoparticles and can hence be utilized for studies of the fate of potential new nanotherapeutics.

  14. Fas deficiency in mice with the Balb/c background induces blepharitis with allergic inflammation and hyper-IgE production in conjunction with severe autoimmune disease.

    PubMed

    Takahashi, Suzuka; Futatsugi-Yumikura, Shizue; Fukuoka, Ayumi; Yoshimoto, Tomohiro; Nakanishi, Kenji; Yonehara, Shin

    2013-05-01

    Fas (CD95) is a cell surface death receptor belonging to the tumor necrosis factor receptor superfamily, which mediates apoptosis-inducing signaling when activated by Fas ligand or its agonistic antibody. lpr mice with a loss of apoptosis-inducing function mutation in the Fas gene develop systemic autoimmune disease and lymphadenopathy but not allergic inflammation. In the case of Fas mutations including lpr and knockout (KO), background genes determine the incidence and severity of lymphadenopathy and histopathological manifestation of systemic autoimmunity: MRL-lpr/lpr mice and C57BL/6-lpr/lpr or C57BL/6 Fas KO mice develop severe and minimum disease, respectively. We generated Fas KO mice with the Balb/c background that show severer autoimmune phenotypes than MRL-lpr/lpr mice, such as critical infiltration of mononuclear cells into lung, liver and spleen, elevated serum levels of auto-antibodies and a decreased life span. To our astonishment, Balb/c Fas KO mice spontaneously develop blepharitis with not only autoimmune inflammation with deposition of auto-antibody but also allergic inflammation with infiltration by eosinophils and mast cells and show the capacity to strongly increase serum level of IgE and IgG1 along with their aging. Thus, Fas expression regulates development of not only autoimmune disease but also allergic inflammation.

  15. Insulin modulates cytokine release and selectin expression in the early phase of allergic airway inflammation in diabetic rats

    PubMed Central

    2010-01-01

    Background Clinical and experimental data suggest that the inflammatory response is impaired in diabetics and can be modulated by insulin. The present study was undertaken to investigate the role of insulin on the early phase of allergic airway inflammation. Methods Diabetic male Wistar rats (alloxan, 42 mg/Kg, i.v., 10 days) and controls were sensitized by s.c. injection of ovalbumin (OA) in aluminium hydroxide 14 days before OA (1 mg/0.4 mL) or saline intratracheal challenge. The following analyses were performed 6 hours thereafter: a) quantification of interleukin (IL)-1β, tumor necrosis factor (TNF)-α and cytokine-induced neutrophil chemoattractant (CINC)-1 in the bronchoalveolar lavage fluid (BALF) by Enzyme-Linked Immunosorbent Assay, b) expression of E- and P- selectins on lung vessels by immunohistochemistry, and c) inflammatory cell infiltration into the airways and lung parenchyma. NPH insulin (4 IU, s.c.) was given i.v. 2 hours before antigen challenge. Results Diabetic rats exhibited significant reduction in the BALF concentrations of IL-1β (30%) and TNF-α (45%), and in the lung expression of P-selectin (30%) compared to non-diabetic animals. This was accompanied by reduced number of neutrophils into the airways and around bronchi and blood vessels. There were no differences in the CINC-1 levels in BALF, and E-selectin expression. Treatment of diabetic rats with NPH insulin, 2 hours before antigen challenge, restored the reduced levels of IL-1β, TNF-α and P-selectin, and neutrophil migration. Conclusion Data presented suggest that insulin modulates the production/release of TNF-α and IL-1β, the expression of P- and E-selectin, and the associated neutrophil migration into the lungs during the early phase of the allergic inflammatory reaction. PMID:20667094

  16. CFTR-regulated MAPK/NF-κB signaling in pulmonary inflammation in thermal inhalation injury

    PubMed Central

    Dong, Zhi Wei; Chen, Jing; Ruan, Ye Chun; Zhou, Tao; Chen, Yu; Chen, YaJie; Tsang, Lai Ling; Chan, Hsiao Chang; Peng, Yi Zhi

    2015-01-01

    The mechanism underlying pulmonary inflammation in thermal inhalation injury remains elusive. Cystic fibrosis, also hallmarked with pulmonary inflammation, is caused by mutations in CFTR, the expression of which is temperature-sensitive. We investigated whether CFTR is involved in heat-induced pulmonary inflammation. We applied heat-treatment in 16HBE14o- cells with CFTR knockdown or overexpression and heat-inhalation in rats in vivo. Heat-treatment caused significant reduction in CFTR and, reciprocally, increase in COX-2 at early stages both in vitro and in vivo. Activation of ERK/JNK, NF-κB and COX-2/PGE2 were detected in heat-treated cells, which were mimicked by knockdown, and reversed by overexpression of CFTR or VX-809, a reported CFTR mutation corrector. JNK/ERK inhibition reversed heat-/CFTR-knockdown-induced NF-κB activation, whereas NF-κB inhibitor showed no effect on JNK/ERK. IL-8 was augmented by heat-treatment or CFTR-knockdown, which was abolished by inhibition of NF-κB, JNK/ERK or COX-2. Moreover, in vitro or in vivo treatment with curcumin, a natural phenolic compound, significantly enhanced CFTR expression and reversed the heat-induced increases in COX-2/PGE2/IL-8, neutrophil infiltration and tissue damage in the airway. These results have revealed a CFTR-regulated MAPK/NF-κB pathway leading to COX-2/PGE2/IL-8 activation in thermal inhalation injury, and demonstrated therapeutic potential of curcumin for alleviating heat-induced pulmonary inflammation. PMID:26515683

  17. Identification of an interleukin 13-induced epigenetic signature in allergic airway inflammation

    PubMed Central

    Ooi, Aik T; Ram, Sonal; Kuo, Alan; Gilbert, Jennifer L; Yan, Weihong; Pellegrini, Matteo; Nickerson, Derek W; Chatila, Talal A; Gomperts, Brigitte N

    2012-01-01

    Epigenetic changes have been implicated in the pathogenesis of asthma. We sought to determine if IL13, a key cytokine in airway inflammation and remodeling, induced epigenetic DNA methylation and miRNAs expression changes in the airways in conjunction with its transcriptional gene regulation. Inducible expression of an IL13 transgene in the airways resulted in significant changes in DNA methylation in 177 genes, most of which were associated with the IL13 transcriptional signature in the airways. A large number of genes whose expression was induced by IL13 were found to have decreased methylation, including those involved in tissue remodeling (Olr1), leukocyte influx (Cxcl3, Cxcl5, CSFr2b), and the Th2 response (C3ar1, Chi3l4). Reciprocally, some genes whose expression was suppressed were found to have increased methylation (e.g. Itga8). In addition, miRNAs were identified with targets for lung development and Wnt signaling, amongst others. These results indicate that IL13 confers an epigenetic methylation and miRNA signature that accompanies its transcriptional program in the airways, which may play a critical role in airway inflammation and remodeling. PMID:22611474

  18. GS143, an I{kappa}B ubiquitination inhibitor, inhibits allergic airway inflammation in mice

    SciTech Connect

    Hirose, Koichi; Wakashin, Hidefumi; Oki, Mie; Kagami, Shin-ichiro; Suto, Akira; Ikeda, Kei; Watanabe, Norihiko; Iwamoto, Itsuo; Furuichi, Yasuhiro; Nakajima, Hiroshi

    2008-09-26

    Asthma is characterized by airway inflammation with intense eosinophil infiltration and mucus hyper-production, in which antigen-specific Th2 cells play critical roles. Nuclear factor-{kappa}B (NF-{kappa}B) pathway has been demonstrated to be essential for the production of Th2 cytokines and chemokines in the airways in murine asthma models. In the present study, we examined the effect of GS143, a novel small-molecule inhibitor of I{kappa}B ubiquitination, on antigen-induced airway inflammation and Th2 cytokine production in mice. Intranasal administration of GS143 prior to antigen challenge suppressed antigen-induced NF-{kappa}B activation in the lung of sensitized mice. Intranasal administration of GS143 also inhibited antigen-induced eosinophil and lymphocyte recruitment into the airways as well as the expression of Th2 cytokines and eotaxin in the airways. Moreover, GS143 inhibited antigen-induced differentiation of Th2 cells but not of Th1 cells in vitro. Taken together, these results suggest that I{kappa}B ubiquitination inhibitor may have therapeutic potential against asthma.

  19. Aquaporin-3 potentiates allergic airway inflammation in ovalbumin-induced murine asthma.

    PubMed

    Ikezoe, Kohei; Oga, Toru; Honda, Tetsuya; Hara-Chikuma, Mariko; Ma, Xiaojun; Tsuruyama, Tatsuaki; Uno, Kazuko; Fuchikami, Jun-Ichi; Tanizawa, Kiminobu; Handa, Tomohiro; Taguchi, Yoshio; Verkman, Alan S; Narumiya, Shuh; Mishima, Michiaki; Chin, Kazuo

    2016-01-01

    Oxidative stress plays a pivotal role in the pathogenesis of asthma. Aquaporin-3 (AQP3) is a small transmembrane water/glycerol channel that may facilitate the membrane uptake of hydrogen peroxide (H2O2). Here we report that AQP3 potentiates ovalbumin (OVA)-induced murine asthma by mediating both chemokine production from alveolar macrophages and T cell trafficking. AQP3 deficient (AQP3(-/-)) mice exhibited significantly reduced airway inflammation compared to wild-type mice. Adoptive transfer experiments showed reduced airway eosinophilic inflammation in mice receiving OVA-sensitized splenocytes from AQP3(-/-) mice compared with wild-type mice after OVA challenge, consistently with fewer CD4(+) T cells from AQP3(-/-) mice migrating to the lung than from wild-type mice. Additionally, in vivo and vitro experiments indicated that AQP3 induced the production of some chemokines such as CCL24 and CCL22 through regulating the amount of cellular H2O2 in M2 polarized alveolar macrophages. These results imply a critical role of AQP3 in asthma, and AQP3 may be a novel therapeutic target. PMID:27165276

  20. Aquaporin-3 potentiates allergic airway inflammation in ovalbumin-induced murine asthma

    PubMed Central

    Ikezoe, Kohei; Oga, Toru; Honda, Tetsuya; Hara-Chikuma, Mariko; Ma, Xiaojun; Tsuruyama, Tatsuaki; Uno, Kazuko; Fuchikami, Jun-ichi; Tanizawa, Kiminobu; Handa, Tomohiro; Taguchi, Yoshio; Verkman, Alan S.; Narumiya, Shuh; Mishima, Michiaki; Chin, Kazuo

    2016-01-01

    Oxidative stress plays a pivotal role in the pathogenesis of asthma. Aquaporin-3 (AQP3) is a small transmembrane water/glycerol channel that may facilitate the membrane uptake of hydrogen peroxide (H2O2). Here we report that AQP3 potentiates ovalbumin (OVA)-induced murine asthma by mediating both chemokine production from alveolar macrophages and T cell trafficking. AQP3 deficient (AQP3−/−) mice exhibited significantly reduced airway inflammation compared to wild-type mice. Adoptive transfer experiments showed reduced airway eosinophilic inflammation in mice receiving OVA-sensitized splenocytes from AQP3−/− mice compared with wild-type mice after OVA challenge, consistently with fewer CD4+ T cells from AQP3−/− mice migrating to the lung than from wild-type mice. Additionally, in vivo and vitro experiments indicated that AQP3 induced the production of some chemokines such as CCL24 and CCL22 through regulating the amount of cellular H2O2 in M2 polarized alveolar macrophages. These results imply a critical role of AQP3 in asthma, and AQP3 may be a novel therapeutic target. PMID:27165276

  1. Effect of Chicoric Acid on Mast Cell-Mediated Allergic Inflammation in Vitro and in Vivo.

    PubMed

    Lee, Na Young; Chung, Kyung-Sook; Jin, Jong Sik; Bang, Keuk Soo; Eom, Ye-Jin; Hong, Chul-Hee; Nugroho, Agung; Park, Hee-Jun; An, Hyo-Jin

    2015-12-24

    Chicoric acid (dicaffeoyl-tartaric acid), is a natural phenolic compound found in a number of plants, such as chicory (Cichorium intybus) and Echinacea (Echinacea purpurea), which possesses antioxidant, anti-inflammatory, antiviral, and analgesic activities. Although these biological effects of chicoric acid have been investigated, there are no reports of its antiallergic-related anti-inflammatory effects in human mast cells (HMC)-1 or anaphylactic activity in a mouse model. Therefore, we investigated the antiallergic-related anti-inflammatory effect of chicoric acid and its underlying mechanisms of action using phorbol-12-myristate 13-acetate plus calcium ionophore A23187 (PMACI)-stimulated HMC-1 cells. Chicoric acid decreased the mRNA expression of pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β. We studied the inhibitory effects of chicoric acid on the nuclear translocation of nuclear factor kappa B (NF-κB) and activation of caspase-1. However, mitogen-activated protein kinase (MAPK) activation was not sufficient to abrogate the stimulus. In addition, we investigated the ability of chicoric acid to inhibit compound 48/80-induced systemic anaphylaxis in vivo. Oral administration of chicoric acid at 20 mg/kg inhibited histamine release and protected mice against compound 48/80-induced anaphylactic mortality. These results suggest that chicoric acid has an antiallergic-related anti-inflammatory effect that involves modulating mast cell-mediated allergic responses. Therefore, chicoric acid could be an efficacious agent for allergy-related inflammatory disorders. PMID:26593037

  2. T cell derived IL-10 is dispensable for tolerance induction in a murine model of allergic airway inflammation.

    PubMed

    Kunz, Stefanie; Dolch, Anja; Surianarayanan, Sangeetha; Dorn, Britta; Bewersdorff, Mayte; Alessandrini, Francesca; Behrendt, Rayk; Karp, Christopher L; Muller, Werner; Martin, Stefan F; Roers, Axel; Jakob, Thilo

    2016-08-01

    Regulatory mechanisms initiated by allergen-specific immunotherapy are mainly attributed to T cell derived IL-10. However, it has not been shown that T cell derived IL-10 is required for successful tolerance induction (TI). Here, we analyze cellular sources and the functional relevance of cell type specific IL-10 during TI in a murine model of allergic airway inflammation. While TI was effective in IL-10 competent mice, neutralizing IL-10 prior to tolerogenic treatment completely abrogated the beneficial effects. Cellular sources of IL-10 during TI were identified by using transcriptional reporter mice as T cells, B cells, and to a lesser extent DCs. Interestingly, TI was still effective in mice with T cell, B cell, B and T cell, or DC-specific IL-10 deficiency. In contrast, TI was not possible in mice lacking IL-10 in all hematopoetic cells, while it was effective in bone marrow (BM) chimera that lacked IL-10 only in nonhematopoetic cells. Taken together, allergen-specific tolerance depends on IL-10 from hematopoetic sources. The beneficial effects of allergen-specific immunotherapy cannot solely be attributed to IL-10 from T cells, B cells, or even DCs, suggesting a high degree of cellular redundancy in IL-10-mediated tolerance. PMID:27287239

  3. Inflammation in pulmonary hypertension: what we know and what we could logically and safely target first.

    PubMed

    Cohen-Kaminsky, Sylvia; Hautefort, Aurélie; Price, Laura; Humbert, Marc; Perros, Frédéric

    2014-08-01

    Inflammation is important for the initiation and the maintenance of vascular remodeling in most of the animal models of pulmonary arterial hypertension (PAH), and therapeutic targeting of inflammation in these models blocks PAH development. In humans, pulmonary vascular lesions of PAH are the source of cytokine and chemokine production, related to inflammatory cell recruitment and lymphoid neogenesis. Circulating autoantibodies to endothelial cells and to fibroblasts have been reported in 10-40% of patients with idiopathic PAH, suggesting a possible role for autoimmunity in the pathogenesis of pulmonary vascular lesions. Current specific PAH treatments have immunomodulatory properties, and some studies have demonstrated a correlation between levels of circulating inflammatory mediators and patient survival. New immunopathological approaches to PAH should enable the development of innovative treatments for this severe condition. PMID:24747559

  4. Inhibition of chlorine-induced pulmonary inflammation and edema by mometasone and budesonide.

    PubMed

    Chen, Jing; Mo, Yiqun; Schlueter, Connie F; Hoyle, Gary W

    2013-10-15

    Chlorine gas is a widely used industrial compound that is highly toxic by inhalation and is considered a chemical threat agent. Inhalation of high levels of chlorine results in acute lung injury characterized by pneumonitis, pulmonary edema, and decrements in lung function. Because inflammatory processes can promote damage in the injured lung, anti-inflammatory therapy may be of potential benefit for treating chemical-induced acute lung injury. We previously developed a chlorine inhalation model in which mice develop epithelial injury, neutrophilic inflammation, pulmonary edema, and impaired pulmonary function. This model was used to evaluate nine corticosteroids for the ability to inhibit chlorine-induced neutrophilic inflammation. Two of the most potent corticosteroids in this assay, mometasone and budesonide, were investigated further. Mometasone or budesonide administered intraperitoneally 1h after chlorine inhalation caused a dose-dependent inhibition of neutrophil influx in lung tissue sections and in the number of neutrophils in lung lavage fluid. Budesonide, but not mometasone, reduced the levels of the neutrophil attractant CXCL1 in lavage fluid 6h after exposure. Mometasone or budesonide also significantly inhibited pulmonary edema assessed 1 day after chlorine exposure. Chlorine inhalation resulted in airway hyperreactivity to inhaled methacholine, but neither mometasone nor budesonide significantly affected this parameter. The results suggest that mometasone and budesonide may represent potential treatments for chemical-induced lung injury.

  5. Aerobic exercise attenuates pulmonary inflammation induced by Streptococcus pneumoniae.

    PubMed

    Olivo, Clarice R; Miyaji, Eliane N; Oliveira, Maria Leonor S; Almeida, Francine M; Lourenço, Juliana D; Abreu, Rodrigo M; Arantes, Petra M M; Lopes, Fernanda Dtqs; Martins, Milton A

    2014-11-01

    Aerobic exercise has been recognized as a stimulator of the immune system, but its effect on bacterial infection has not been extensively evaluated. We studied whether moderate aerobic exercise training prior to Streptococcus pneumoniae infection influences pulmonary inflammatory responses. BALB/c mice were divided into four groups: Sedentary Untreated (sedentary without infection); Sedentary Infected (sedentary with infection); Trained Untreated (aerobic training without infection); and Trained Infected (aerobic training with infection). Animals underwent aerobic training for 4 wk, and 72 h after last exercise training, animals received a challenge with S. pneumoniae and were evaluated either 12 h or 10 days after instillation. In acute phase, Sedentary Infected group had an increase in respiratory system resistance and elastance; number of neutrophils, lymphocytes, and macrophages in bronchoalveolar lavage fluid (BAL); polymorphonuclear cells in lung parenchyma; and levels of keratinocyte-derived chemokine (KC), tumor necrosis factor-α (TNF-α), and interleukin (IL)-1β (IL-1β) in lung homogenates. Exercise training significantly attenuated the increase in all of these parameters and induced an increase in expression of antioxidant enzymes (CuZnSOD and MnSOD) in lungs. Trained Infected mice had a significant decrease in the number of colony-forming units of pneumococci in the lungs compared with Sedentary Infected animals. Ten days after infection, Trained Infected group exhibited lower numbers of macrophages in BAL, polymorphonuclear cells in lung parenchyma and IL-6 in lung homogenates compared with Sedentary Infected group. Our results suggest a protective effect of moderate exercise training against respiratory infection with S. pneumoniae. This effect is most likely secondary to an effect of exercise on oxidant-antioxidant balance.

  6. Effects of environmental pollutants on airways, allergic inflammation, and the immune response.

    PubMed

    Handzel, Z T

    2000-01-01

    Particulate and gaseous air pollutants are capable of damaging the airway epithelial lining and of shifting the local immune balance, thereby facilitating the induction of persistent inflammation. Epidemiological studies are inconclusive regarding whether air pollution increases the incidence of asthma and chronic bronchitis in the population. Clearly, environmental pollution can, however, precipitate attacks and emergency-room admissions in those already suffering from such conditions. The catastrophic potential of airborne pollution was demonstrated in the 1960s and 1970s, when inverted atmospheric pressure conditions trapped smog over cities on the Eastern coast of the United States and over Europe. This smog resulted in thousands of hospital admissions and dozens of deaths. With the general rise in the incidence of atopy and asthma in the Western population, it is of major public health interest to reduce, as much as possible, the exposure of such populations to anthropogenic and natural sources of pollution. PMID:11048334

  7. SG-HQ2 inhibits mast cell-mediated allergic inflammation through suppression of histamine release and pro-inflammatory cytokines.

    PubMed

    Je, In-Gyu; Kim, Hui-Hun; Park, Pil-Hoon; Kwon, Taeg Kyu; Seo, Seung-Yong; Shin, Tae-Yong; Kim, Sang-Hyun

    2015-05-01

    In this study, we investigated the effect of 3,4,5-trihydroxy-N-(8-hydroxyquinolin-2-yl)benzamide) (SG-HQ2), a synthetic analogue of gallic acid (3,4,5-trihydroxybenzoic acid), on the mast cell-mediated allergic inflammation and the possible mechanism of action. Mast cells play major roles in immunoglobulin E-mediated allergic responses by the release of histamine, lipid-derived mediators, and pro-inflammatory cytokines. We previously reported the potential effects of gallic acid using allergic inflammation models. For incremental research, we synthesized the SG-HQ2 by the modification of functional groups from gallic acid. SG-HQ2 attenuated histamine release by the reduction of intracellular calcium in human mast cells and primary peritoneal mast cells. The inhibitory efficacy of SG-HQ2 was similar with gallic acid. Enhanced expression of pro-inflammatory cytokines such as tumor necrosis factor-α, interleukin-1β, interleukin-4, and interleukin-6 in activated mast cells was significantly diminished by SG-HQ2 100 times lower concentration of gallic acid. This inhibitory effect was mediated by the reduction of nuclear factor-κB. In animal models, SG-HQ2 inhibited compound 48/80-induced serum histamine release and immunoglobulin E-mediated local allergic reaction, passive cutaneous anaphylaxis. Our results indicate that SG-HQ2, an analogue of gallic acid, might be a possible therapeutic candidate for mast cell-mediated allergic inflammatory diseases through suppression of histamine release and pro-inflammatory cytokines.

  8. SG-HQ2 inhibits mast cell-mediated allergic inflammation through suppression of histamine release and pro-inflammatory cytokines

    PubMed Central

    Je, In-Gyu; Kim, Hui-Hun; Park, Pil-Hoon; Kwon, Taeg Kyu

    2015-01-01

    In this study, we investigated the effect of 3,4,5-trihydroxy-N-(8-hydroxyquinolin-2-yl)benzamide) (SG-HQ2), a synthetic analogue of gallic acid (3,4,5-trihydroxybenzoic acid), on the mast cell-mediated allergic inflammation and the possible mechanism of action. Mast cells play major roles in immunoglobulin E-mediated allergic responses by the release of histamine, lipid-derived mediators, and pro-inflammatory cytokines. We previously reported the potential effects of gallic acid using allergic inflammation models. For incremental research, we synthesized the SG-HQ2 by the modification of functional groups from gallic acid. SG-HQ2 attenuated histamine release by the reduction of intracellular calcium in human mast cells and primary peritoneal mast cells. The inhibitory efficacy of SG-HQ2 was similar with gallic acid. Enhanced expression of pro-inflammatory cytokines such as tumor necrosis factor-α, interleukin-1β, interleukin-4, and interleukin-6 in activated mast cells was significantly diminished by SG-HQ2 100 times lower concentration of gallic acid. This inhibitory effect was mediated by the reduction of nuclear factor-κB. In animal models, SG-HQ2 inhibited compound 48/80-induced serum histamine release and immunoglobulin E-mediated local allergic reaction, passive cutaneous anaphylaxis. Our results indicate that SG-HQ2, an analogue of gallic acid, might be a possible therapeutic candidate for mast cell-mediated allergic inflammatory diseases through suppression of histamine release and pro-inflammatory cytokines. PMID:25349218

  9. Genetics Home Reference: allergic asthma

    MedlinePlus

    ... Understand Genetics Home Health Conditions allergic asthma allergic asthma Enable Javascript to view the expand/collapse boxes. Download PDF Open All Close All Description Asthma is a breathing disorder characterized by inflammation of ...

  10. Combined radiation and burn injury results in exaggerated early pulmonary inflammation

    PubMed Central

    Palmer, Jessica L.; Deburghgraeve, Cory R.; Bird, Melanie D.; Hauer-Jensen, Martin; Chen, Michael M.; Yong, Sherri; Kovacs, Elizabeth J.

    2014-01-01

    Events such as a nuclear meltdown accident or nuclear attack have potential for severe radiation injuries. Radiation injury frequently occurs in combination with other forms of trauma, most often burns. Thus far, combined injury studies have focused mainly on skin wound healing and damage to the gut. Since both radiation exposure and remote burn have pulmonary consequences, we examined the early effects of combined injury on the lung. C57BL/6 male mice were subjected to 5 Gy of total body irradiation followed by a 15% total body surface area scald burn. Lungs from surviving animals were examined for evidence of inflammation and pneumonitis. At 48 hours post-injury, pathology of the lungs from combined injury mice showed greater inflammation compared to all other treatment groups, with marked red blood cell and leukocyte congestion of the pulmonary vasculature. There was excessive leukocyte accumulation, primarily neutrophils, in the vasculature and interstitium, with occasional cells in the alveolar space. At 24 and 48 hours post-injury, myeloperoxidase levels in lungs of mice given combined injury were elevated compared to all other treatment groups (p<0.01), confirming histological evidence of neutrophil accumulation. Pulmonary levels of the neutrophil chemoattractant KC (CXCL1) were 3 times above that of either injury alone (p<0.05). Further, monocyte chemotactic protein-1 (MCP-1, CCL2) was increased 2-fold and 3-fold compared to burn injury or radiation injury, respectively (p<0.05). Together, these data suggest that combined radiation and burn injury augments early pulmonary congestion and inflammation.. Currently, countermeasures for this unique type of injury are extremely limited. Further research is needed to elucidate the mechanisms behind the synergistic effects of combined injury in order to develop appropriate treatments. PMID:23899376

  11. The activity of an anti-allergic compound, proxicromil, on models of immunity and inflammation.

    PubMed

    Keogh, R W; Bundick, R V; Cunnington, P G; Jenkins, S N; Blackham, A; Orr, T S

    1981-07-01

    A tricyclic chromone, proxicromil (sodium 6,7,8,9-tetrahydro-5-hydroxy-4-oxo-10-propyl-naphtho (2,3-b) pyran-2-carboxylate), has been tested for activity against certain immunological and inflammatory reactions. When given parenterally it suppressed the development of delayed hypersensitivity reactions in sensitized mice and guinea-pigs but did not affect the rejection of skin allografts in mice. The compound had no activity against certain in vitro correlates of delayed hypersensitivity reactions (lymphocyte transformation and lymphokine activity), but did have an inhibitory effect on lymphokine (MIF) productions at 10(-4) M but not at 10(-5) M. Proxicromil was also found to be active in non-immunologically mediated models of inflammation and in models having an immunological component which are known to be sensitive to non-steroidal anti-inflammatory drugs (adjuvant arthritis, reversed passive Arthus reaction). The activity of this compound was enhanced when administered in arachis oil when compared to its activity in saline. Proxicromil has not direct activity on the development of immune responsiveness but appear to suppress the expression of delayed hypersensitivity and immune complex mediated hypersensitivity reactions by virtue and its anti-inflammatory properties. This activity is not associated with inhibition of cyclo-oxygenase.

  12. Epithelial barrier function: at the frontline of asthma immunology and allergic airway inflammation

    PubMed Central

    Georas, Steve N.; Rezaee, Fariba

    2014-01-01

    Airway epithelial cells form a barrier to the outside world, and are at the frontline of mucosal immunity. Epithelial apical junctional complexes are multi-protein subunits that promote cell-cell adhesion and barrier integrity. Recent studies in the skin and GI tract suggest that disruption of cell-cell junctions is required to initiate epithelial immune responses, but how this applies to mucosal immunity in the lung is not clear. Increasing evidence indicates that defective epithelial barrier function is a feature of airway inflammation in asthma. One challenge in this area is that barrier function and junctional integrity are difficult to study in the intact lung, but innovative approaches should provide new knowledge in this area in the near future. In this article, we review the structure and function of epithelial apical junctional complexes, emphasizing how regulation of the epithelial barrier impacts innate and adaptive immunity. We discuss why defective epithelial barrier function may be linked to Th2 polarization in asthma, and propose a rheostat model of barrier dysfunction that implicates the size of inhaled allergen particles as an important factor influencing adaptive immunity. PMID:25085341

  13. Inhibition of chlorine-induced pulmonary inflammation and edema by mometasone and budesonide

    SciTech Connect

    Chen, Jing; Mo, Yiqun; Schlueter, Connie F.; Hoyle, Gary W.

    2013-10-15

    Chlorine gas is a widely used industrial compound that is highly toxic by inhalation and is considered a chemical threat agent. Inhalation of high levels of chlorine results in acute lung injury characterized by pneumonitis, pulmonary edema, and decrements in lung function. Because inflammatory processes can promote damage in the injured lung, anti-inflammatory therapy may be of potential benefit for treating chemical-induced acute lung injury. We previously developed a chlorine inhalation model in which mice develop epithelial injury, neutrophilic inflammation, pulmonary edema, and impaired pulmonary function. This model was used to evaluate nine corticosteroids for the ability to inhibit chlorine-induced neutrophilic inflammation. Two of the most potent corticosteroids in this assay, mometasone and budesonide, were investigated further. Mometasone or budesonide administered intraperitoneally 1 h after chlorine inhalation caused a dose-dependent inhibition of neutrophil influx in lung tissue sections and in the number of neutrophils in lung lavage fluid. Budesonide, but not mometasone, reduced the levels of the neutrophil attractant CXCL1 in lavage fluid 6 h after exposure. Mometasone or budesonide also significantly inhibited pulmonary edema assessed 1 day after chlorine exposure. Chlorine inhalation resulted in airway hyperreactivity to inhaled methacholine, but neither mometasone nor budesonide significantly affected this parameter. The results suggest that mometasone and budesonide may represent potential treatments for chemical-induced lung injury. - Highlights: • Chlorine causes lung injury when inhaled and is considered a chemical threat agent. • Corticosteroids may inhibit lung injury through their anti-inflammatory actions. • Corticosteroids inhibited chlorine-induced pneumonitis and pulmonary edema. • Mometasone and budesonide are potential rescue treatments for chlorine lung injury.

  14. Matrikines are key regulators in modulating the amplitude of lung inflammation in acute pulmonary infection

    PubMed Central

    Akthar, Samia; Patel, Dhiren F.; Beale, Rebecca C.; Peiró, Teresa; Xu, Xin; Gaggar, Amit; Jackson, Patricia L.; Blalock, J. Edwin; Lloyd, Clare M.; Snelgrove, Robert J.

    2015-01-01

    Bioactive matrix fragments (matrikines) have been identified in a myriad of disorders, but their impact on the evolution of airway inflammation has not been demonstrated. We recently described a pathway where the matrikine and neutrophil chemoattractant proline–glycine–proline (PGP) could be degraded by the enzyme leukotriene A4 hydrolase (LTA4H). LTA4H classically functions in the generation of pro-inflammatory leukotriene B4, thus LTA4H exhibits opposing pro- and anti-inflammatory activities. The physiological significance of this secondary anti-inflammatory activity remains unknown. Here we show, using readily resolving pulmonary inflammation models, that loss of this secondary activity leads to more pronounced and sustained inflammation and illness owing to PGP accumulation. PGP elicits an exacerbated neutrophilic inflammation and protease imbalance that further degrades the extracellular matrix, generating fragments that perpetuate inflammation. This highlights a critical role for the secondary anti-inflammatory activity of LTA4H and thus has consequences for the generation of global LTA4H inhibitors currently being developed. PMID:26400771

  15. Effect of naturally occurring ozone air pollution episodes on pulmonary oxidative stress and inflammation.

    PubMed

    Pirozzi, Cheryl; Sturrock, Anne; Weng, Hsin-Yi; Greene, Tom; Scholand, Mary Beth; Kanner, Richard; Paine, Robert

    2015-05-12

    This study aimed to determine if naturally occurring episodes of ozone air pollution in the Salt Lake Valley in Utah, USA, during the summer are associated with increased pulmonary inflammation and oxidative stress, increased respiratory symptoms, and decreased lung function in individuals with chronic obstructive pulmonary disease (COPD) compared to controls. We measured biomarkers (nitrite/nitrate (NOx), 8-isoprostane) in exhaled breath condensate (EBC), spirometry, and respiratory symptoms in 11 former smokers with moderate-to-severe COPD and nine former smokers without airflow obstruction during periods of low and high ozone air pollution. High ozone levels were associated with increased NOx in EBC in both COPD (8.7 (±8.5) vs. 28.6 (±17.6) μmol/L on clean air vs. pollution days, respectively, p < 0.01) and control participants (7.6 (±16.5) vs. 28.5 (±15.6) μmol/L on clean air vs. pollution days, respectively, p = 0.02). There was no difference in pollution effect between COPD and control groups, and no difference in EBC 8-isoprostane, pulmonary function, or respiratory symptoms between clean air and pollution days in either group. Former smokers both with and without airflow obstruction developed airway oxidative stress and inflammation in association with ozone air pollution episodes.

  16. Fresh frozen plasma lessens pulmonary endothelial inflammation and hyperpermeability after hemorrhagic shock and is associated with loss of syndecan 1.

    PubMed

    Peng, Zhanglong; Pati, Shibani; Potter, Daniel; Brown, Ryan; Holcomb, John B; Grill, Raymond; Wataha, Kathryn; Park, Pyong Woo; Xue, Hasen; Kozar, Rosemary A

    2013-09-01

    We have recently demonstrated that injured patients in hemorrhagic shock shed syndecan 1 and that the early use of fresh frozen plasma (FFP) in these patients is correlated with improved clinical outcomes. As the lungs are frequently injured after trauma, we hypothesized that hemorrhagic shock-induced shedding of syndecan 1 exposes the underlying pulmonary vascular endothelium to injury resulting in inflammation and hyperpermeability and that these effects would be mitigated by FFP. In vitro, pulmonary endothelial permeability, endothelial monolayer flux, transendothelial electrical resistance, and leukocyte-endothelial binding were measured in pulmonary endothelial cells after incubation with equal volumes of FFP or lactated Ringer's (LR). In vivo, using a coagulopathic mouse model of trauma and hemorrhagic shock, pulmonary hyperpermeability, neutrophil infiltration, and syndecan 1 expression and systemic shedding were assessed after 3 h of resuscitation with either 1× FFP or 3× LR and compared with shock alone and shams. In vitro, endothelial permeability and flux were decreased, transendothelial electrical resistance was increased, and leukocyte-endothelial binding was inhibited by FFP compared with LR-treated endothelial cells. In vivo, hemorrhagic shock was associated with systemic shedding of syndecan 1, which correlated with decreased pulmonary syndecan 1 and increased pulmonary vascular hyperpermeability and inflammation. Fresh frozen plasma resuscitation, compared with LR resuscitation, abrogated these injurious effects. After hemorrhagic shock, FFP resuscitation inhibits endothelial cell hyperpermeability and inflammation and restores pulmonary syndecan 1 expression. Modulation of pulmonary syndecan 1 expression may mechanistically contribute to the beneficial effects FFP.

  17. Acute secondhand smoke-induced pulmonary inflammation is diminished in RAGE knockout mice.

    PubMed

    Wood, Tyler T; Winden, Duane R; Marlor, Derek R; Wright, Alex J; Jones, Cameron M; Chavarria, Michael; Rogers, Geraldine D; Reynolds, Paul R

    2014-11-15

    The receptor for advanced glycation end-products (RAGE) has increasingly been demonstrated to be an important modulator of inflammation in cases of pulmonary disease. Published reports involving tobacco smoke exposure have demonstrated increased expression of RAGE, its participation in proinflammatory signaling, and its role in irreversible pulmonary remodeling. The current research evaluated the in vivo effects of short-term secondhand smoke (SHS) exposure in RAGE knockout and control mice compared with identical animals exposed to room air only. Quantitative PCR, immunoblotting, and immunohistochemistry revealed elevated RAGE expression in controls after 4 wk of SHS exposure and an anticipated absence of RAGE expression in RAGE knockout mice regardless of smoke exposure. Ras activation, NF-κB activity, and cytokine elaboration were assessed to characterize the molecular basis of SHS-induced inflammation in the mouse lung. Furthermore, bronchoalveolar lavage fluid was procured from RAGE knockout and control animals for the assessment of inflammatory cells and molecules. As a general theme, inflammation coincident with leukocyte recruitment was induced by SHS exposure and significantly influenced by the availability of RAGE. These data reveal captivating information suggesting a role for RAGE signaling in lungs exposed to SHS. However, ongoing research is still warranted to fully explain roles for RAGE and other receptors in cells coping with involuntary smoke exposure for prolonged periods of time.

  18. Modulation of the oscillatory mechanics of lung tissue and the oxidative stress response induced by arginase inhibition in a chronic allergic inflammation model

    PubMed Central

    2013-01-01

    Background The importance of the lung parenchyma in the pathophysiology of asthma has previously been demonstrated. Considering that nitric oxide synthases (NOS) and arginases compete for the same substrate, it is worthwhile to elucidate the effects of complex NOS-arginase dysfunction in the pathophysiology of asthma, particularly, related to distal lung tissue. We evaluated the effects of arginase and iNOS inhibition on distal lung mechanics and oxidative stress pathway activation in a model of chronic pulmonary allergic inflammation in guinea pigs. Methods Guinea pigs were exposed to repeated ovalbumin inhalations (twice a week for 4 weeks). The animals received 1400 W (an iNOS-specific inhibitor) for 4 days beginning at the last inhalation. Afterwards, the animals were anesthetized and exsanguinated; then, a slice of the distal lung was evaluated by oscillatory mechanics, and an arginase inhibitor (nor-NOHA) or vehicle was infused in a Krebs solution bath. Tissue resistance (Rt) and elastance (Et) were assessed before and after ovalbumin challenge (0.1%), and lung strips were submitted to histopathological studies. Results Ovalbumin-exposed animals presented an increase in the maximal Rt and Et responses after antigen challenge (p<0.001), in the number of iNOS positive cells (p<0.001) and in the expression of arginase 2, 8-isoprostane and NF-kB (p<0.001) in distal lung tissue. The 1400 W administration reduced all these responses (p<0.001) in alveolar septa. Ovalbumin-exposed animals that received nor-NOHA had a reduction of Rt, Et after antigen challenge, iNOS positive cells and 8-isoprostane and NF-kB (p<0.001) in lung tissue. The activity of arginase 2 was reduced only in the groups treated with nor-NOHA (p <0.05). There was a reduction of 8-isoprostane expression in OVA-NOR-W compared to OVA-NOR (p<0.001). Conclusions In this experimental model, increased arginase content and iNOS-positive cells were associated with the constriction of distal lung parenchyma

  19. Silver Nanoparticles: A study of dissolution, kinetics, and factors affecting pulmonary inflammation

    NASA Astrophysics Data System (ADS)

    Saunders, Eric L.

    The growing use of silver (Ag) nanoparticles (NP) in consumer and industrial goods has led to an increase in interest in the health effects associated with exposure, both occupationally and environmentally. The aim of this research is to examine the contribution of size, shape, and dissolution of AgNP, with its corresponding effect on pulmonary inflammation and clearance. In addition this study looks at metallothionein (MT) and the role it plays as an inflammatory modulator. A nose only exposure method was used to expose three strains of mouse (two inbred, one knockout) to two different sizes of AgNP (˜25 nm and ˜100 nm). This research demonstrates that size, chemistry, and dissolution play key roles in NP deposition and inflammatory response, while no conclusions could be drawn about shape. Additionally, this study found that the main factors affecting the deposition of NP in mice both acutely and sub-chronically are particle size and mouse strain. The results of this study also indicate a relationship between MT2 and inflammation. It was found that the mRNA levels of MT2 were greatly up-regulated in the livers and lungs of mice exposed to AgNP, while MT protein levels were not significantly altered to correlate with the altered regulation of mRNA. Finally, this study showed that, for AgNP, the mechanisms of pulmonary clearance and dissolution happened rapidly and that they, combined, likely represent a major pathway of AgNP transport out of the lung. Taken as a whole, the data in this study show that dissolution, coupled with protein interaction, is a significant mediator of pulmonary inflammation and translocation of AgNP.

  20. Dihydroartemisinin supresses inflammation and fibrosis in bleomycine-induced pulmonary fibrosis in rats

    PubMed Central

    Yang, Dongxia; Yuan, Wendan; Lv, Changjun; Li, Naie; Liu, Tongshen; Wang, Liang; Sun, Yufei; Qiu, Xueshan; Fu, Qiang

    2015-01-01

    Pulmonary fibrosis is a respiratory disease with a high mortality rate and its pathogenesis involves multiple mechanisms including epithelial cell injury, fibroblast proliferation, inflammation, and collagen coagulation. The treatment regimens still fail to recover this disease. We have previously found that dihydroartemisinin inhibits the development of pulmonary fibrosis in rats. This study aimed to determine the mechanisms of dihydroartemisinin in bleomycin-induced pulmonary fibrosis. The experimental rats were divided into six groups as normal saline control group (NS group), bleomycin group (BLM group), dihydroartemisinin-1, -2, or -3 group (DHA-1, DHA-2 and DHA-3 group) and dexamethasone group (DXM group). In BLM group, rats were treated with intratracheal instillation of bleomycin. NS group received the same volume of saline instead of bleomycin. In DHA-1, DHA-2 and DHA-3 group, in addition to intratracheal instillation of bleomycin, respectively, dihydroartemisinin (25 mg/kg, 50 mg/kg, 100 mg/kg daily) was administrated by intraperitoneal instillation. In DXM group, rats were treated with intraperitoneal instillation of dexamethasone as control. Immunocytochemical assay, reverse transcription PCR and western blot were used for detecting the expression of TGF-β1, TNF-α, α-SMA and NF-κB in lung tissues. What’s more, morphological change and collagen deposition were analyzed by hematoxylin-eosin staining and Masson staining. Collagen synthesis was detected by hydroxyproline chromatometry. Results showed that dihydroartemisinin significantly decreased the amount of inflammatory cytokines and collagen synthesis, and inhibited fibroblast proliferation in bleomycin-induced pulmonary fibrosis (P < 0.001). This study provides experimental evidence that dihydroartemisinin could decrease cytokines, alveolar inflammation and attenuates lung injury and fibrosis. PMID:25973011

  1. Pulmonary Allergic Responses Augment IL-13 Secretion by Circulating Basophils yet Suppress IFN-alpha from Plasmacytoid DCs

    PubMed Central

    Schroeder, John T.; Bieneman, Anja P.; Chichester, Kristin L.; Breslin, Linda; Xiao, HuiQing; Liu, Mark C.

    2011-01-01

    Background Allergic inflammatory processes may have the capacity to propagate systemically through the actions of circulating leukocytes. Consequently, basophils from allergic individuals are often “primed”, as evidenced by their hyper-responsiveness in vitro. IFN-α, secreted predominately by plasmacytoid DCs, suppresses basophil priming for IL-13 production in vitro. Objective This study sought in vivo correlates, arising during experimental allergen challenge, that support an “axis-interplay” between basophils and pDCs. Methods Using segmental allergen challenge in the lung, the immune responses of both cell types from blood were investigated in volunteers (n=10) before and 24h after allergen exposure. These responses were then correlated with inflammatory parameters measured in bronchoalveolar lavage fluids. Results In blood, segmental allergen challenge significantly augmented IL-13 secretion by basophils induced by IL-3 (p=0.009) yet reduced IFN-α secreted by plasmacytoid dendritic cells stimulated with CpG (p=0.018). Both parameters were negatively correlated (p=0.0015), at least among those subjects secreting the latter. Circulating basophil IL-13 responses further correlated with post-segmental allergen challenge bronchoalveolar lavage parameters including IL-13 protein (p=0.04), basophil (p=0.051), eosinophil (p=0.0018) and total cell counts (p<0.003). Basophil and IL-13 levels in bronchoalveolar lavage likewise correlated (p=0.0002). Conclusions These results support a mechanism of immune regulation whereby allergen reduces innate immune responses and IFN-α production by plasmacytoid dendritic cells, resulting in enhanced inflammation and basophil cytokine production at sites of allergen exposure. PMID:20184608

  2. Ligation of TLR7 on CD19(+) CD1d(hi) B cells suppresses allergic lung inflammation via regulatory T cells.

    PubMed

    Khan, Adnan R; Amu, Sylvie; Saunders, Sean P; Hams, Emily; Blackshields, Gordon; Leonard, Martin O; Weaver, Casey T; Sparwasser, Tim; Sheils, Orla; Fallon, Padraic G

    2015-06-01

    B cells have been described as having the capacity to regulate cellular immune responses and suppress inflammatory processes. One such regulatory B-cell population is defined as IL-10-producing CD19(+) CD1d(hi) cells. Previous work has identified an expansion of these cells in mice infected with the helminth, Schistosoma mansoni. Here, microarray analysis of CD19(+) CD1d(hi) B cells from mice infected with S. mansoni demonstrated significantly increased Tlr7 expression, while CD19(+) CD1d(hi) B cells from uninfected mice also demonstrated elevated Tlr7 expression. Using IL-10 reporter, Il10(-/-) and Tlr7(-/-) mice, we formally demonstrate that TLR7 ligation of CD19(+) CD1d(hi) B cells increases their capacity to produce IL-10. In a mouse model of allergic lung inflammation, the adoptive transfer of TLR7-elicited CD19(+) CD1d(hi) B cells reduced airway inflammation and associated airway hyperresponsiveness. Using DEREG mice to deplete FoxP3(+) T regulatory cells in allergen-sensitized mice, we show that that TLR7-elicited CD19(+) CD1d(hi) B cells suppress airway hyperresponsiveness via a T regulatory cell dependent mechanism. These studies identify that TLR7 stimulation leads to the expansion of IL-10-producing CD19(+) CD1d(hi) B cells, which can suppress allergic lung inflammation via T regulatory cells.

  3. Ligation of TLR7 on CD19(+) CD1d(hi) B cells suppresses allergic lung inflammation via regulatory T cells.

    PubMed

    Khan, Adnan R; Amu, Sylvie; Saunders, Sean P; Hams, Emily; Blackshields, Gordon; Leonard, Martin O; Weaver, Casey T; Sparwasser, Tim; Sheils, Orla; Fallon, Padraic G

    2015-06-01

    B cells have been described as having the capacity to regulate cellular immune responses and suppress inflammatory processes. One such regulatory B-cell population is defined as IL-10-producing CD19(+) CD1d(hi) cells. Previous work has identified an expansion of these cells in mice infected with the helminth, Schistosoma mansoni. Here, microarray analysis of CD19(+) CD1d(hi) B cells from mice infected with S. mansoni demonstrated significantly increased Tlr7 expression, while CD19(+) CD1d(hi) B cells from uninfected mice also demonstrated elevated Tlr7 expression. Using IL-10 reporter, Il10(-/-) and Tlr7(-/-) mice, we formally demonstrate that TLR7 ligation of CD19(+) CD1d(hi) B cells increases their capacity to produce IL-10. In a mouse model of allergic lung inflammation, the adoptive transfer of TLR7-elicited CD19(+) CD1d(hi) B cells reduced airway inflammation and associated airway hyperresponsiveness. Using DEREG mice to deplete FoxP3(+) T regulatory cells in allergen-sensitized mice, we show that that TLR7-elicited CD19(+) CD1d(hi) B cells suppress airway hyperresponsiveness via a T regulatory cell dependent mechanism. These studies identify that TLR7 stimulation leads to the expansion of IL-10-producing CD19(+) CD1d(hi) B cells, which can suppress allergic lung inflammation via T regulatory cells. PMID:25763771

  4. Acute effect of glucan-spiked office dust on nasal and pulmonary inflammation in guinea pigs.

    PubMed

    Straszek, S P; Adamcakova-Dodd, A; Metwali, N; Pedersen, O F; Sigsgaard, T; Thorne, P S

    2007-11-01

    The acute effects of pure inhaled glucan on respiratory inflammation remain inconclusive and not sufficiently examined with regards to the simultaneous interaction of glucan, endotoxin (lipopolysaccharide, LPS), and house dust in airway inflammation. This study aims at determining effects of simultaneous exposure to office dust and glucan on nasal and pulmonary inflammation. This is relevant for humans with occupational exposure in waste handling and farming and buildings with mold problems. Office dust collected from Danish offices was spiked with 1% (1-3)-beta-glucan (curdlan). Guinea pig nasal cavity volume was measured by acoustic rhinometry (AR) and animals were exposed by inhalation for 4 h to curdlan-spiked dust, unspiked dust, purified air (negative controls), or LPS (positive controls). After exposure (+5 h) or the following day (+18 h), measurements were repeated by AR and followed by bronchoalveolar lavage (BAL). Total and differential cell counts, interleukin (IL)-8 in BAL fluid, and change in nasal volume were compared between groups. A 5-10% increase in nasal volume was seen for all groups including clean air except for a significant 5% decrease for spiked-dust inhalation (+18 h). No marked differences were observed in BAL cells or IL-8 except in LPS-exposed controls. The delayed decrease of nasal cavity volume after exposure to glucan spiked dust suggests a slow effect on the upper airways for curdlan and office dust together, though no pulmonary response or direct signs of inflammation were observed. Glucan-spiked office dust exposures produced a delayed nasal subacute congestion in guinea pigs compared to office dust alone, but extrapolated to nasal congestion in humans, paralleling the nasal congestion seen in human volunteers exposed to the same dust, this may not have clinical importance. PMID:17966063

  5. Eosinophilic airway inflammation: role in asthma and chronic obstructive pulmonary disease

    PubMed Central

    George, Leena; Brightling, Christopher E.

    2016-01-01

    The chronic lung diseases, asthma and chronic obstructive pulmonary disease (COPD), are common affecting over 500 million people worldwide and causing substantial morbidity and mortality. Asthma is typically associated with Th2-mediated eosinophilic airway inflammation, in contrast to neutrophilic inflammation observed commonly in COPD. However, there is increasing evidence that the eosinophil might play an important role in 10–40% of patients with COPD. Consistently in both asthma and COPD a sputum eosinophilia is associated with a good response to corticosteroid therapy and tailored strategies aimed to normalize sputum eosinophils reduce exacerbation frequency and severity. Advances in our understanding of the multistep paradigm of eosinophil recruitment to the airway, and the consequence of eosinophilic inflammation, has led to the development of new therapies to target these molecular pathways. In this article we discuss the mechanisms of eosinophilic trafficking, the tools to assess eosinophilic airway inflammation in asthma and COPD during stable disease and exacerbations and review current and novel anti-eosinophilic treatments. PMID:26770668

  6. Inducible nitric oxide synthase inhibition attenuates lung tissue responsiveness and remodeling in a model of chronic pulmonary inflammation in guinea pigs.

    PubMed

    Starling, Claudia M; Prado, Carla M; Leick-Maldonado, Edna A; Lanças, Tatiana; Reis, Fabiana G; Aristóteles, Luciana R C B R; Dolhnikoff, Marisa; Martins, Mílton A; Tibério, Iolanda F L C

    2009-02-28

    We evaluated the influence of iNOS-derived NO on the mechanics, inflammatory, and remodeling process in peripheral lung parenchyma of guinea pigs with chronic pulmonary allergic inflammation. Animals treated or not with 1400 W were submitted to seven exposures of ovalbumin in increasing doses. Seventy-two hours after the 7th inhalation, lung strips were suspended in a Krebs organ bath, and tissue resistance and elastance measured at baseline and after ovalbumin challenge. The strips were submitted to histopathological measurements. The ovalbumin-exposed animals showed increased maximal responses of resistance and elastance (p<0.05), eosinophils counting (p<0.001), iNOS-positive cells (p<0.001), collagen and elastic fiber deposition (p<0.05), actin density (p<0.05) and 8-iso-PGF2alpha expression (p<0.001) in alveolar septa compared to saline-exposed ones. Ovalbumin-exposed animals treated with 1400 W had a significant reduction in lung functional and histopathological findings (p<0.05). We showed that iNOS-specific inhibition attenuates lung parenchyma constriction, inflammation, and remodeling, suggesting NO-participation in the modulation of the oxidative stress pathway.

  7. Systemic Administration of Human Bone Marrow-Derived Mesenchymal Stromal Cell Extracellular Vesicles Ameliorates Aspergillus Hyphal Extract-Induced Allergic Airway Inflammation in Immunocompetent Mice

    PubMed Central

    Cruz, Fernanda F.; Borg, Zachary D.; Goodwin, Meagan; Sokocevic, Dino; Wagner, Darcy E.; Coffey, Amy; Antunes, Mariana; Robinson, Kristen L.; Mitsialis, S. Alex; Kourembanas, Stella; Thane, Kristen; Hoffman, Andrew M.; McKenna, David H.; Rocco, Patricia R.M.

    2015-01-01

    An increasing number of studies demonstrate that administration of either conditioned media (CM) or extracellular vesicles (EVs) released by mesenchymal stromal cells (MSCs) derived from bone marrow and other sources are as effective as the MSCs themselves in mitigating inflammation and injury. The goal of the current study was to determine whether xenogeneic administration of CM or EVs from human bone marrow-derived MSCs would be effective in a model of mixed Th2/Th17, neutrophilic-mediated allergic airway inflammation, reflective of severe refractory asthma, induced by repeated mucosal exposure to Aspergillus hyphal extract (AHE) in immunocompetent C57Bl/6 mice. Systemic administration of both CM and EVs isolated from human and murine MSCs, but not human lung fibroblasts, at the onset of antigen challenge in previously sensitized mice significantly ameliorated the AHE-provoked increases in airway hyperreactivity (AHR), lung inflammation, and the antigen-specific CD4 T-cell Th2 and Th17 phenotype. Notably, both CM and EVs from human MSCs (hMSCs) were generally more potent than those from mouse MSCs (mMSCs) in most of the outcome measures. The weak cross-linking agent 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride was found to inhibit release of both soluble mediators and EVs, fully negating effects of systemically administered hMSCs but only partly inhibited the ameliorating effects of mMSCs. These results demonstrate potent xenogeneic effects of CM and EVs from hMSCs in an immunocompetent mouse model of allergic airway inflammation and they also show differences in mechanisms of action of hMSCs versus mMSCs to mitigate AHR and lung inflammation in this model. Significance There is a growing experience demonstrating benefit of mesenchymal stromal cell (MSC)-based cell therapies in preclinical models of asthma. In the current study, conditioned media (CM) and, in particular, the extracellular vesicle fraction obtained from the CM were as potent as the

  8. Dietary supplementation of omega-3 fatty acid-containing fish oil suppresses F2-isoprostanes but enhances inflammatory cytokine response in a mouse model of ovalbumin-induced allergic lung inflammation.

    PubMed

    Yin, Huiyong; Liu, Wei; Goleniewska, Kasia; Porter, Ned A; Morrow, Jason D; Peebles, R Stokes

    2009-09-01

    Epidemiological and clinical evidence has suggested that increased dietary intake of fish oil containing omega-3 fatty acids including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) may be associated with a reduced risk of asthma. However, interventional studies on these effects have been equivocal and controversial. Free radical oxidation products of lipids and cyclooxygenases-derived prostaglandins are believed to play an important role in asthma, and fish oil supplementation may modulate the levels of these critical lipid mediators. We employed a murine model of allergic inflammation produced by sensitization to ovalbumin (OVA) to study the effects of fish oil supplementation on airway inflammation. Our studies demonstrated that omega-3 fatty acids were dose dependently incorporated into mouse lung tissue after dietary supplementation. We examined the oxidative stress status by measuring the levels of isoprostanes (IsoPs), the gold standard for oxidative stress in vivo. OVA challenge caused significant increase of F(2)-IsoPs in mouse lung, suggesting an elevated level of oxidative stress. Compared to the control group, fish oil supplementation led to a significant reduction of F(2)-IsoP (from arachidonic acid) with a concomitant increase of F(3)-IsoPs (from EPA) and F(4)-IsoPs (from DHA). Surprisingly, however, fish oil supplementation enhanced production of proinflammatory cytokine IL-5 and IL-13. Furthermore, fish oil supplementation suppressed the production of pulmonary protective PGE(2) in the bronchoalveolar lavage (BAL) while the level of urinary metabolites of the PGE(2) was increased. Our data suggest that augmented lung inflammation after fish oil supplementation may be due to the reduction of PGE(2) production in the lung and these dichotomous results bring into question the role of fish oil supplementation in the treatment of asthma.

  9. Anti-inflammatory actions of Chemoattractant Receptor-homologous molecule expressed on Th2 by the antagonist MK-7246 in a novel rat model of Alternaria alternata elicited pulmonary inflammation.

    PubMed

    Gil, Malgorzata A; Caniga, Michael; Woodhouse, Janice D; Eckman, Joseph; Lee, Hyun-Hee; Salmon, Michael; Naber, John; Hamilton, Valerie T; Sevilla, Raquel S; Bettano, Kimberly; Klappenbach, Joel; Moy, Lily; Correll, Craig C; Gervais, Francois G; Siliphaivanh, Phieng; Zhang, Weisheng; Zhang-Hoover, Jie; McLeod, Robbie L; Cicmil, Milenko

    2014-11-15

    Alternaria alternata is a fungal allergen linked to the development of severe asthma in humans. In view of the clinical relationship between A. alternata and asthma, we sought to investigate the allergic activity of this antigen after direct application to the lungs of Brown Norway rats. Here we demonstrate that a single intratracheal instillation of A. alternata induces dose and time dependent eosinophil influx, edema and Type 2 helper cell cytokine production in the lungs of BN rats. We established the temporal profile of eosinophilic infiltration and cytokine production, such as Interleukin-5 and Interleukin-13, following A. alternata challenge. These responses were comparable to Ovalbumin induced models of asthma and resulted in peak inflammatory responses 48h following a single challenge, eliminating the need for multiple sensitizations and challenges. The initial perivascular and peribronchiolar inflammation preceded alveolar inflammation, progressing to a more sub-acute inflammatory response with notable epithelial cell hypertrophy. To limit the effects of an A. alternata inflammatory response, MK-7246 was utilized as it is an antagonist for Chemoattractant Receptor-homologous molecule expressed in Th2 cells. In a dose-dependent manner, MK-7246 decreased eosinophil influx and Th2 cytokine production following the A. alternata challenge. Furthermore, therapeutic administration of corticosteroids resulted in a dose-dependent decrease in eosinophil influx and Th2 cytokine production. Reproducible asthma-related outcomes and amenability to pharmacological intervention by mechanisms relevant to asthma demonstrate that an A. alternata induced pulmonary inflammation in BN rats is a valuable preclinical pharmacodynamic in vivo model for evaluating the pharmacological inhibitors of allergic pulmonary inflammation.

  10. Decreased pulmonary inflammation after ethanol exposure and burn injury in intercellular adhesion molecule-1 knockout mice.

    PubMed

    Bird, Melanie D; Morgan, Michelle O; Ramirez, Luis; Yong, Sherri; Kovacs, Elizabeth J

    2010-01-01

    Clinical and laboratory evidence suggests that alcohol consumption dysregulates immune function. Burn patients who consume alcohol before their injuries demonstrate higher rates of morbidity and mortality, including acute respiratory distress syndrome, than patients without alcohol at the time of injury. Our laboratory observed higher levels of proinflammatory cytokines and leukocyte infiltration in the lungs of mice after ethanol exposure and burn injury than with either insult alone. To understand the mechanism of the increased pulmonary inflammatory response in mice treated with ethanol and burn injury, we investigated the role of intercellular adhesion molecule (ICAM)-1. Wild-type and ICAM-1 knockout (KO) mice were treated with vehicle or ethanol and subsequently given a sham or burn injury. Twenty-four hours postinjury, lungs were harvested and analyzed for indices of inflammation. Higher numbers of neutrophils were observed in the lungs of wild-type mice after burn and burn with ethanol treatment. This increase in pulmonary inflammatory cell accumulation was significantly lower in the KO mice. In addition, levels of KC, interleukin-1beta, and interleukin-6 in the lung were decreased in the ICAM-1 KO mice after ethanol exposure and burn injury. Interestingly, no differences were observed in serum or lung tissue content of soluble ICAM-1 24 hours postinjury. These data suggest that upregulation of adhesion molecules such as ICAM-1 on the vascular endothelium may play a critical role in the excessive inflammation seen after ethanol exposure and burn injury.

  11. TLR4 signalling in pulmonary stromal cells is critical for inflammation and immunity in the airways.

    PubMed

    Perros, Frederic; Lambrecht, Bart N; Hammad, Hamida

    2011-01-01

    Inflammation of the airways, which is often associated with life-threatening infection by Gram-negative bacteria or presence of endotoxin in the bioaerosol, is still a major cause of severe airway diseases. Moreover, inhaled endotoxin may play an important role in the development and progression of airway inflammation in asthma. Pathologic changes induced by endotoxin inhalation include bronchospasm, airflow obstruction, recruitment of inflammatory cells, injury of the alveolar epithelium, and disruption of pulmonary capillary integrity leading to protein rich fluid leak in the alveolar space. Mammalian Toll-like receptors (TLRs) are important signalling receptors in innate host defense. Among these receptors, TLR4 plays a critical role in the response to endotoxin. Lungs are a complex compartmentalized organ with separate barriers, namely the alveolar-capillary barrier, the microvascular endothelium, and the alveolar epithelium. An emerging theme in the field of lung immunology is that structural cells (SCs) of the airways such as epithelial cells (ECs), endothelial cells, fibroblasts and other stromal cells produce activating cytokines that determine the quantity and quality of the lung immune response. This review focuses on the role of TLR4 in the innate and adaptive immune functions of the pulmonary SCs. PMID:21943186

  12. TLR4 signalling in pulmonary stromal cells is critical for inflammation and immunity in the airways

    PubMed Central

    2011-01-01

    Inflammation of the airways, which is often associated with life-threatening infection by Gram-negative bacteria or presence of endotoxin in the bioaerosol, is still a major cause of severe airway diseases. Moreover, inhaled endotoxin may play an important role in the development and progression of airway inflammation in asthma. Pathologic changes induced by endotoxin inhalation include bronchospasm, airflow obstruction, recruitment of inflammatory cells, injury of the alveolar epithelium, and disruption of pulmonary capillary integrity leading to protein rich fluid leak in the alveolar space. Mammalian Toll-like receptors (TLRs) are important signalling receptors in innate host defense. Among these receptors, TLR4 plays a critical role in the response to endotoxin. Lungs are a complex compartmentalized organ with separate barriers, namely the alveolar-capillary barrier, the microvascular endothelium, and the alveolar epithelium. An emerging theme in the field of lung immunology is that structural cells (SCs) of the airways such as epithelial cells (ECs), endothelial cells, fibroblasts and other stromal cells produce activating cytokines that determine the quantity and quality of the lung immune response. This review focuses on the role of TLR4 in the innate and adaptive immune functions of the pulmonary SCs. PMID:21943186

  13. Butylated hydroxytoluene (BHT) induction of pulmonary inflammation: a role in tumor promotion.

    PubMed

    Bauer, A K; Dwyer-Nield, L D; Keil, K; Koski, K; Malkinson, A M

    2001-01-01

    Chronic pulmonary inflammatory diseases predispose towards lung cancer by unknown mechanisms. Butylated hydroxytoluene (BHT) administration to mice causes lung injury and a subsequent inflammatory response, and when administered chronically to certain inbred strains following carcinogen treatment, increases lung tumor multiplicity. We hypothesize that inflammation promotes lung tumor growth in this model system and have begun to examine this hypothesis by assessing inflammatory parameters in inbred strains that vary in their susceptibility to promotion. Positive correlations were found between susceptibilities to tumor promotion and BHT induction of alveolar macrophage and lymphocyte infiltration into alveolar airspaces, and increased vascular permeability (P < .03, P < .04, and P < .005, respectively). The amounts of pulmonary cyclooxygenase (COX)-1 and COX-2 did not strongly correlate with promotion. Because persistent elevation of macrophage content is the hallmark of a chronic inflammatory response, the alveolar macrophage population was depleted by adding chlorine to the drinking water prior to carcinogenesis. This treatment reduced lung tumor multiplicity following 2-stage carcinogenesis (P < .05). These correlations between inflammatory and tumorigenic responses to BHT, along with decreased tumorigenesis after macrophage depletion, are consistent with a role of inflammation in promotion. Inflammatory mediators may provide targets for early diagnosis and chemoprevention.

  14. Pulmonary inflammation after ethanol exposure and burn injury is attenuated in the absence of IL-6.

    PubMed

    Chen, Michael M; Bird, Melanie D; Zahs, Anita; Deburghgraeve, Cory; Posnik, Bartlomiej; Davis, Christopher S; Kovacs, Elizabeth J

    2013-05-01

    Alcohol consumption leads to an exaggerated inflammatory response after burn injury. Elevated levels of interleukin-6 (IL-6) in patients are associated with increased morbidity and mortality after injury, and high systemic and pulmonary levels of IL-6 have been observed after the combined insult of ethanol exposure and burn injury. To further investigate the role of IL-6 in the pulmonary inflammatory response, we examined leukocyte infiltration and cytokine and chemokine production in the lungs of wild-type and IL-6 knockout mice given vehicle or ethanol (1.11 g/kg) and subjected to a sham or 15% total body surface area burn injury. Levels of neutrophil infiltration and neutrophil chemoattractants were increased to a similar extent in wild-type and IL-6 knockout mice 24 h after burn injury. When ethanol exposure preceded the burn injury, however, a further increase of these inflammatory markers was seen only in the wild-type mice. Additionally, signal transducer and activator of transcription-3 (STAT3) phosphorylation did not increase in response to ethanol exposure in the IL-6 knockout mice, in contrast to their wild-type counterparts. Visual and imaging analysis of alveolar wall thickness supported these findings and similar results were obtained by blocking IL-6 with antibody. Taken together, our data suggest a causal relationship between IL-6 and the excessive pulmonary inflammation observed after the combined insult of ethanol and burn injury.

  15. In vivo two-photon imaging reveals monocyte-dependent neutrophil extravasation during pulmonary inflammation

    PubMed Central

    Kreisel, Daniel; Nava, Ruben G.; Li, Wenjun; Zinselmeyer, Bernd H.; Wang, Baomei; Lai, Jiaming; Pless, Robert; Gelman, Andrew E.; Krupnick, Alexander S.; Miller, Mark J.

    2010-01-01

    Immune-mediated pulmonary diseases are a significant public health concern. Analysis of leukocyte behavior in the lung is essential for understanding cellular mechanisms that contribute to normal and diseased states. Here, we used two-photon imaging to study neutrophil extravasation from pulmonary vessels and subsequent interstitial migration. We found that the lungs contained a significant pool of tissue-resident neutrophils in the steady state. In response to inflammation produced by bacterial challenge or transplant-mediated, ischemia-reperfusion injury, neutrophils were rapidly recruited from the circulation and patrolled the interstitium and airspaces of the lung. Motile neutrophils often aggregated in dynamic clusters that formed and dispersed over tens of minutes. These clusters were associated with CD115+ F4/80+ Ly6C+ cells that had recently entered the lung. The depletion of blood monocytes with clodronate liposomes reduced neutrophil clustering in the lung, but acted by inhibiting neutrophil transendothelial migration upstream of interstitial migration. Our results suggest that a subset of monocytes serve as key regulators of neutrophil extravasation in the lung and may be an attractive target for the treatment of inflammatory pulmonary diseases. PMID:20923880

  16. Resolvin D1 Dampens Pulmonary Inflammation and Promotes Clearance of Nontypeable Haemophilus influenzae.

    PubMed

    Croasdell, Amanda; Lacy, Shannon H; Thatcher, Thomas H; Sime, Patricia J; Phipps, Richard P

    2016-03-15

    Nontypeable Haemophilus influenzae (NTHi) is a Gram-negative, opportunistic pathogen that frequently causes ear infections, bronchitis, pneumonia, and exacerbations in patients with underlying inflammatory diseases, such as chronic obstructive pulmonary disease. In mice, NTHi is rapidly cleared, but a strong inflammatory response persists, underscoring the concept that NTHi induces dysregulation of normal inflammatory responses and causes a failure to resolve. Lipid-derived specialized proresolving mediators (SPMs) play a critical role in the active resolution of inflammation by both suppressing proinflammatory actions and promoting resolution pathways. Importantly, SPMs lack the immunosuppressive properties of classical anti-inflammatory therapies. On the basis of these characteristics, we hypothesized that aspirin-triggered resolvin D1 (AT-RvD1) would dampen NTHi-induced inflammation while still enhancing bacterial clearance. C57BL/6 mice were treated with AT-RvD1 and infected with live NTHi. AT-RvD1-treated mice had lower total cell counts and neutrophils in bronchoalveolar lavage fluid, and had earlier influx of macrophages. In addition, AT-RvD1-treated mice showed changes in temporal regulation of inflammatory cytokines and enzymes, with decreased KC at 6 h and decreased IL-6, TNF-α, and cyclooxygenase-2 expression at 24 h post infection. Despite reduced inflammation, AT-RvD1-treated mice had reduced NTHi bacterial load, mediated by enhanced clearance by macrophages and a skewing toward an M2 phenotype. Finally, AT-RvD1 protected NTHi-infected mice from weight loss, hypothermia, hypoxemia, and respiratory compromise. This research highlights the beneficial role of SPMs in pulmonary bacterial infections and provides the groundwork for further investigation into SPMs as alternatives to immunosuppressive therapies like steroids.

  17. Immunobiotic lactobacilli reduce viral-associated pulmonary damage through the modulation of inflammation-coagulation interactions.

    PubMed

    Zelaya, Hortensia; Tsukida, Kohichiro; Chiba, Eriko; Marranzino, Gabriela; Alvarez, Susana; Kitazawa, Haruki; Agüero, Graciela; Villena, Julio

    2014-03-01

    The exacerbated disease due to immune- and coagulative-mediated pulmonary injury during acute respiratory viruses infection results in severe morbidity and mortality. Identifying novel approaches to modulate virus-induced inflammation-coagulation interactions could be important alternatives for treating acute respiratory viruses infections. In this study we investigated the effect of the probiotic strain Lactobacillus rhamnosus CRL1505 on lung TLR3-mediated inflammation, and its ability to modulate inflammation-coagulation interaction during respiratory viral infection. Our findings reveal for the first time that a probiotic bacterium is able to influence lung immune-coagulative reaction triggered by TLR3 activation, by modulating the production of proinflammatory and anti-inflammatory cytokines as well as expression of tissue factor and thrombomodulin in the lung. We also demonstrated that the preventive treatment with the probiotic bacteria beneficially modulates the fine tune balance between clearing respiratory viruses (respiratory syncytial virus and influenza virus) and controlling immune-coagulative responses in the lung, allowing normal lung function to be maintained in the face of a viral attack. Our data also pinpoint a crucial role for IL-10 in the immune protection induced by L. rhamnosus CRL1505 during respiratory viral infections. These observations might be helpful to propose new preventive or therapeutic approaches to better control virus-inflammatory lung damage using probiotic functional foods.

  18. An Interleukin-33-Mast Cell-Interleukin-2 Axis Suppresses Papain-Induced Allergic Inflammation by Promoting Regulatory T Cell Numbers

    PubMed Central

    Morita, Hideaki; Arae, Ken; Unno, Hirotoshi; Miyauchi, Kousuke; Toyama, Sumika; Nambu, Aya; Oboki, Keisuke; Ohno, Tatsukuni; Motomura, Kenichiro; Matsuda, Akira; Yamaguchi, Sachiko; Narushima, Seiko; Kajiwara, Naoki; Iikura, Motoyasu; Suto, Hajime; McKenzie, Andrew N.J.; Takahashi, Takao; Karasuyama, Hajime; Okumura, Ko; Azuma, Miyuki; Moro, Kazuyo; Akdis, Cezmi A.; Galli, Stephen J.; Koyasu, Shigeo; Kubo, Masato; Sudo, Katsuko; Saito, Hirohisa; Matsumoto, Kenji; Nakae, Susumu

    2015-01-01

    SUMMARY House dust mite-derived proteases contribute to allergic disorders in part by disrupting epithelial barrier function. Interleukin-33 (IL-33), produced by lung cells after exposure to protease allergens, can induce innate-type airway eosinophilia by activating natural helper (NH) cells, a member of group 2 innate lymphoid cells (ILC2), to secrete Th2 type-cytokines. Because IL-33 also can induce mast cells (MCs) to secrete Th2 type-cytokines, MCs are thought to cooperate with NH cells in enhancing protease or IL-33-mediated innate-type airway eosinophilia. However, we found that MC-deficient KitW-sh/W-sh mice exhibited exacerbated protease-induced lung inflammation associated with reduced numbers of regulatory T (Treg) cells. Moreover, IL-2 produced by IL-33-stimulated MCs promoted expansion of numbers of Treg cells, thereby suppressing development of papain- or IL-33-induced airway eosinophilia. We have thus identified a unique anti-inflammatory pathway that can limit induction of innate-type allergic airway inflammation mediated by NH cells. PMID:26200013

  19. An Interleukin-33-Mast Cell-Interleukin-2 Axis Suppresses Papain-Induced Allergic Inflammation by Promoting Regulatory T Cell Numbers.

    PubMed

    Morita, Hideaki; Arae, Ken; Unno, Hirotoshi; Miyauchi, Kousuke; Toyama, Sumika; Nambu, Aya; Oboki, Keisuke; Ohno, Tatsukuni; Motomura, Kenichiro; Matsuda, Akira; Yamaguchi, Sachiko; Narushima, Seiko; Kajiwara, Naoki; Iikura, Motoyasu; Suto, Hajime; McKenzie, Andrew N J; Takahashi, Takao; Karasuyama, Hajime; Okumura, Ko; Azuma, Miyuki; Moro, Kazuyo; Akdis, Cezmi A; Galli, Stephen J; Koyasu, Shigeo; Kubo, Masato; Sudo, Katsuko; Saito, Hirohisa; Matsumoto, Kenji; Nakae, Susumu

    2015-07-21

    House dust mite-derived proteases contribute to allergic disorders in part by disrupting epithelial barrier function. Interleukin-33 (IL-33), produced by lung cells after exposure to protease allergens, can induce innate-type airway eosinophilia by activating natural helper (NH) cells, a member of group 2 innate lymphoid cells (ILC2), to secrete Th2 type-cytokines. Because IL-33 also can induce mast cells (MCs) to secrete Th2 type-cytokines, MCs are thought to cooperate with NH cells in enhancing protease or IL-33-mediated innate-type airway eosinophilia. However, we found that MC-deficient Kit(W-sh/W-sh) mice exhibited exacerbated protease-induced lung inflammation associated with reduced numbers of regulatory T (Treg) cells. Moreover, IL-2 produced by IL-33-stimulated MCs promoted expansion of numbers of Treg cells, thereby suppressing development of papain- or IL-33-induced airway eosinophilia. We have thus identified a unique anti-inflammatory pathway that can limit induction of innate-type allergic airway inflammation mediated by NH cells.

  20. Lung inflammation and genotoxicity following pulmonary exposure to nanoparticles in ApoE-/- mice

    PubMed Central

    Jacobsen, Nicklas Raun; Møller, Peter; Jensen, Keld Alstrup; Vogel, Ulla; Ladefoged, Ole; Loft, Steffen; Wallin, Håkan

    2009-01-01

    Background The toxic and inflammatory potential of 5 different types of nanoparticles were studied in a sensitive model for pulmonary effects in apolipoprotein E knockout mice (ApoE-/-). We studied the effects instillation or inhalation Printex 90 of carbon black (CB) and compared CB instillation in ApoE-/- and C57 mice. Three and 24 h after pulmonary exposure, inflammation was assessed by mRNA levels of cytokines in lung tissue, cell composition, genotoxicity, protein and lactate dehydrogenase activity in broncho-alveolar lavage (BAL) fluid. Results Firstly, we found that intratracheal instillation of CB caused far more pulmonary toxicity in ApoE-/- mice than in C57 mice. Secondly, we showed that instillation of CB was more toxic than inhalation of a presumed similar dose with respect to inflammation in the lungs of ApoE-/- mice. Thirdly, we compared effects of instillation in ApoE-/- mice of three carbonaceous particles; CB, fullerenes C60 (C60) and single walled carbon nanotubes (SWCNT) as well as gold particles and quantum dots (QDs). Characterization of the instillation media revealed that all particles were delivered as agglomerates and aggregates. Significant increases in Il-6, Mip-2 and Mcp-1 mRNA were detected in lung tissue, 3 h and 24 h following instillation of SWCNT, CB and QDs. DNA damage in BAL cells, the fraction of neutrophils in BAL cells and protein in BAL fluid increased statistically significantly. Gold and C60 particles caused much weaker inflammatory responses. Conclusion Our data suggest that ApoE-/- model is sensitive for evaluating particle induced inflammation. Overall QDs had greatest effects followed by CB and SWCNT with C60 and gold being least inflammatory and DNA-damaging. However the gold was used at a much lower mass dose than the other particles. The strong effects of QDs were likely due to Cd release. The surface area of the instilled dose correlated well the inflammatory response for low toxicity particles. PMID:19138394

  1. Mean platelet volume as an inflammation marker in active pulmonary tuberculosis

    PubMed Central

    2014-01-01

    Background The mean platelet volume (MPV) reflects the size of platelets. It has been shown to be inversely correlated with level of the inflammation in some chronic inflammatory diseases. This prospective study aims to show the usability of MPV as an inflammation marker in patients with active pulmonary tuberculosis (PTB) by comparison with healthy controls. In addition, its relationships with other inflammatory markers such as C-reactive protein (CRP) and the erythrocyte sedimentation rate (ESR) as well as with the radiological extent of disease were examined. Methods This study included 82 patients with active PTB and 95 healthy subjects (control group). Whole blood counts, CRP level, and ESR were compared between the two groups. In the PTB group, the relationships between the radiological extent of disease and the MPV and other inflammation markers were investigated. Results The MPV was 7.74 ± 1.33/μL in the PTB group and 8.20 ± 1.13/μL in the control group (p = 0.005). The blood platelet count, CRP level, and ESR were significantly higher in the active PTB group than in the control group (p < 0.0001). In the PTB group, CRP levels (r = 0.26, p = 0.003) and ESR (r = 0.39, p = 0.003), but not MPV (p = 0.80), were significantly correlated with the radiologic extent of the disease. Conclusions The MPV was lower in patients with PTB than in healthy controls, however, the difference was limited. The MPV does not reflect the severity of the disease. The use of MPV as an inflammation marker and a negative acute-phase reactant in PTB does not seem to be reliable. PMID:24581084

  2. CD14 contributes to pulmonary inflammation and mortality during murine tuberculosis

    PubMed Central

    Wieland, Catharina W; van der Windt, Gerritje J W; Wiersinga, W Joost; Florquin, Sandrine; van der Poll, Tom

    2008-01-01

    Toll-like receptors play an essential role in the innate recognition of micro-organisms by the host. CD14 is one of the extracellular adaptor proteins required for recognition of Gram-negative bacteria and possibly also Mycobacterium tuberculosis. Therefore, we intranasally infected wild-type (WT) and CD14 knock-out (KO) mice with virulent M. tuberculosis H37Rv. We found no differences in bacterial load in the main target organ lung up to 32 weeks after infection. From 20 weeks onward 57% of WT mice succumbed, whereas all CD14 KO mice survived. The improved outcome of CD14 KO mice was accompanied by reduced pulmonary inflammation; lung cell counts and percentage of inflamed lung tissue were reduced in CD14 WT mice. These data suggest that during chronic infection CD14 KO mice are protected from lethality caused by lung tuberculosis because of a reduction of the inflammatory response. PMID:18393969

  3. Recent advances in understanding inflammation and remodeling in the airways in chronic obstructive pulmonary disease.

    PubMed

    Sohal, Sukhwinder Singh; Ward, Chris; Danial, Wan; Wood-Baker, Richard; Walters, Eugene Haydn

    2013-06-01

    The authors have reviewed the current literature on airway inflammation and remodeling in smoking-related chronic obstructive pulmonary disease (COPD). Detailed data on airway remodeling in COPD are especially sparse and how these changes lead to decline in lung function is not well understood. Small airway fibrosis and obliteration are likely to be the main contributors to physiological airway dysfunction and occur earlier than any subsequent development of emphysema. One potential mechanism contributing to small airway fibrosis/obliteration and change in extracellular matrix is epithelial-mesenchymal transition. When associated with angiogenesis (so-called epithelial-mesenchymal transition type 3) it may well also be the link with the development of cancer, which is closely associated with COPD, predominantly in large airways. The authors have focused on our recent publications in these areas. Further investigations teasing out these mechanisms will help improve our understanding of key airway disease processes in COPD, which may have major therapeutic implications.

  4. BLOCKADE OF NERVE GROWTH FACTOR (NGF) RECEPTOR TRKA ATTENUATES DIESEL EXHAUST PARTICULATE MATTER (DEP) ENHANCEMENT OF ALLERGIC INFLAMMATION

    EPA Science Inventory


    Recent studies have shown that asthmatics have increased levels of the neurotrophin, NGF, in their lungs. In addition, antibody blockade of NGF in mice attenuates airway resistance associated with allergic airway responses. DEP has been linked to asthma exacerbation in many c...

  5. Infiltration of Neutrophils and Eosinophils during Allergic Inflammation is Regulated by the Inhibitory Receptor gp-49B

    Technology Transfer Automated Retrieval System (TEKTRAN)

    gp49B, an Ig-like receptor, negatively regulates the activity of mast cells and neutrophils through cytoplasmic immuno-receptor tyrosine-based inhibition motifs (ITIM). To further characterize the role of gp49B in vivo, gp49B-deficient mice were tested in two allergic models. Responses to ragweed (R...

  6. Prior exposure to acrolein accelerates pulmonary inflammation in influenza A-infected mice.

    PubMed

    Ong, Ferrer H C; Henry, Peter J; Burcham, Philip C

    2012-08-01

    The combustion product acrolein contributes to several smoke-related health disorders, but whether this immunomodulatory toxicant alters pulmonary susceptibility to viruses has received little attention. To study the effects of prior acrolein dosing on the severity of influenza A viral infection, male BALB/c mice received acrolein (1mg/kg) or saline (control) via oropharyngeal aspiration either 4- or 7-days prior to intranasal inoculation with either influenza A/PR/8/34 virus or vehicle. At 0, 2, 4 and 7 days post-inoculation, lung samples were assessed for histological changes while pulmonary inflammation was monitored by estimating immune cell numbers and cytokine levels in bronchoalveolar lavage fluid (BALF). After viral challenge, animals that were exposed to acrolein 4 days previously experienced greater weight loss and exhibited an accelerated inflammatory response at 2 days after viral inoculation. Thus compared to saline-pretreated, virus-challenged controls, BALF recovered from these mice contained higher numbers of macrophages and neutrophils in addition to increased levels of several inflammatory cytokines, including IL-1α, IL-1β, IL-6, TNF, IFN-γ, KC, and MCP-1. The acrolein-induced increase in viral susceptibility was suppressed by the carbonyl scavenger bisulphite. These findings suggest acute acrolein intoxication "primes" the lung to mount an accelerated immune response to inhaled viruses.

  7. The Prevalence of Oral Inflammation Among Denture Wearing Patients with Chronic Obstructive Pulmonary Disease.

    PubMed

    Przybyłowska, D; Rubinsztajn, R; Chazan, R; Swoboda-Kopeć, E; Kostrzewa-Janicka, J; Mierzwińska-Nastalska, E

    2015-01-01

    Oral inflammation is an important contributor to the etiology of chronic obstructive pulmonary disease, which can impact patient's health status. Previous studies indicate that people with poor oral health are at higher risk for nosocomial pneumonia. Denture wearing is one promoting factor in the development of mucosal infections. Colonization of the denture plaque by Gram-negative bacteria, Candida spp., or other respiratory pathogens, occurring locally, may be aspirated to the lungs. The studies showed that chronic obstructive pulmonary disease (COPD) patients treated with combinations of medicines with corticosteroids more frequently suffer from Candida-associated denture stomatitis. Treatment of oral candidiasis in patients with COPD constitutes a therapeutic problem. Therefore, it is essential to pay attention to the condition of oral mucosal membrane and denture hygiene habits. The guidelines for care and maintenance of dentures for COPD patients are presented in this paper. The majority of patients required improvement of their prosthetic and oral hygiene. Standard oral hygiene procedures in relation to dentures, conducted for prophylaxis of stomatitis complicated by mucosal infection among immunocompromised patients, are essential to maintain healthy oral tissues. The elimination of traumatic denture action in dental office, compliance with oral and denture hygiene, proper use and storage of prosthetic appliances in a dry environment outside the oral cavity can reduce susceptibility to infection. Proper attention to hygiene, including brushing and rinsing the mouth, may also help prevent denture stomatitis in these patients.

  8. Overexpression of RORγt Enhances Pulmonary Inflammation after Infection with Mycobacterium Avium

    PubMed Central

    Matsuyama, Masashi; Ishii, Yukio; Sakurai, Hirofumi; Ano, Satoshi; Morishima, Yuko; Yoh, Keigyou; Takahashi, Satoru; Ogawa, Kenji; Hizawa, Nobuyuki

    2016-01-01

    Mycobacterium avium complex (MAC) is the most common cause of nontuberculous mycobacterial disease in humans. The role of Th17 immunity in the pathogenesis of intracellular bacteria, such as MAC, is not currently understood. Transcription factor RAR-related orphan receptor gamma t (RORγt) is known as the master regulator for Th17 cell development. Here, we investigated the role of RORγt in host responses against MAC infection. Wild-type (WT) mice and RORγt-overexpressing mice were infected with MAC via intratracheal inoculation. Systemic MAC growth was not different between WT mice and RORγt-overexpressing mice. However, neutrophilic pulmonary inflammation following MAC infection was enhanced in RORγt-overexpressing mice compared with that in WT mice. The cytokine expression shifted toward a Th17 phenotype in the lungs of RORγt-overexpressing mice following MAC infection; the levels of IL-6 and IL-17 were significantly higher in the lung of these mice than in WT mice. In addition to the increase in IL-17 single-positive T cells, T cells producing both IL-17 and interferon-γ were elevated in the lung of RORγt-overexpressing mice following MAC infection. These findings suggest that RORγt overexpression-mediated Th17 bias contributes to local inflammation rather than systemic responses, by regulating neutrophil recruitment into the sites of infection during MAC infection. PMID:26784959

  9. Restrictive pulmonary deficit is associated with inflammation in sub-optimally controlled obese diabetics

    PubMed Central

    Seemungal, Terence A. R.; Teelucksingh, Surujpal; Nayak, B. Shivananda

    2013-01-01

    Caribbean data linking inflammation, pulmonary dysfunction and diabetes is unavailable. Spirometry, acanthosis nigricans, hs-CRP were assessed in 109 type 2 diabetics (43% males) mean age=55.6 years, BMI=29.29 kg/m2, waist circumference=103.86 cm. Residual FEV1/FVC increased with age (P=0.005), BMI (P=0.011) and waist circumference (P=0.003). Residual FVC related inversely to hs-CRP (–0.178), P<0.06) systolic (–0.028, P<0.031), diastolic (–0.247, P<0.010) pressure and weight (–0.25, P<0.009). Residual FEV1 related inversely to diastolic pressure (–0.219, P<0.023), hs-CRP (–0.234, P<0.015), acanthosis nigricans (–0.029, P<0.029). HbA1C and residual FEV1 predict high hs-CRP (P=0.011, P=0.046). Low FVC with inflammation presents in poorly controlled obese diabetics. PMID:23825761

  10. Toll-like receptor 4 in butylated hydroxytoluene-induced mouse pulmonary inflammation and tumorigenesis.

    PubMed

    Bauer, Alison K; Dixon, Darlene; DeGraff, Laura M; Cho, Hye-Youn; Walker, Christopher R; Malkinson, Alvin M; Kleeberger, Steven R

    2005-12-01

    Because chronic pulmonary diseases predispose to lung neoplasia, the identification of the molecular mechanisms involved could provide novel preventive, diagnostic, and therapeutic strategies. Toll-like receptors (TLRs) transduce exogenous and endogenous signals into the production of inflammatory cytokines to coordinate adaptive immune responses. To determine the role of Tlr4 in chronic lung inflammation, we compared lung permeability, leukocyte infiltration, and nuclear factor kappa B (NFkappaB) and activator protein 1 (AP-1) DNA binding in butylated hydroxytoluene (BHT)-treated (four weekly injections of 125-200 mg/kg each) inbred mouse strains with functional Tlr4 (OuJ and BALB) and mutated Tlr4 (HeJ and BALB(Lps-d)). We also measured primary tumor formation in these mice after single-carcinogen injection (3-methylcholanthrene; 10 microg/kg), followed by BHT treatment (six weekly injections of 125-200 mg/kg each). Mice with functional Tlr4 had reduced lung permeability, leukocyte inflammation, and primary tumor formation (BALB(Lps-d), mean = 22.3 tumors/mouse, versus BALB, mean = 13.9 tumors/mouse, difference = 8.4 tumors/mouse, 95% confidence interval = 4.6 to 12.1 tumors/mouse; P = .025) compared with mice with mutated Tlr4. NFkappaB DNA binding activity was higher in OuJ than in HeJ mice; however, AP-1 activity was elevated in HeJ mice. To our knowledge, this is the first model to demonstrate a modulatory role for Tlr4 in chronic lung inflammation and tumorigenesis.

  11. The histone deacetylase inhibitor trichostatin A suppresses murine innate allergic inflammation by blocking group 2 innate lymphoid cell (ILC2) activation

    PubMed Central

    Toki, Shinji; Goleniewska, Kasia; Reiss, Sara; Zhou, Weisong; Newcomb, Dawn C; Bloodworth, Melissa H; Stier, Matthew T; Boyd, Kelli L; Polosukhin, Vasiliy V; Subramaniam, Sriram; Peebles, R Stokes

    2016-01-01

    Background Group 2 innate lymphoid cells (ILC2) are an important source of the type 2 cytokines interleukin (IL)-5 and IL-13 that are critical to the allergic airway phenotype. Previous studies reported that histone deacetylase (HDAC) inhibition by trichostatin A (TSA) downregulated adaptive allergic immune responses; however, the effect of HDAC inhibition on the early innate allergic immune response is unknown. Therefore, we investigated the effect of TSA on innate airway inflammation mediated by ILC2 activation. Methods BALB/c mice were challenged intranasally with Alternaria extract, exogenous recombinant mouse IL-33 (rmIL-33) or the respective vehicles for four consecutive days following TSA or vehicle treatment. Bronchoalveolar lavage (BAL) fluids and lungs were harvested 24 h after the last challenge. Results We found that TSA treatment significantly decreased the number of ILC2 expressing IL-5 and IL-13 in the lungs challenged with Alternaria extract or rmIL-33 compared with vehicle treatment (p<0.05). TSA treatment significantly decreased protein expression of IL-5, IL-13, CCL11 and CCL24 in the lung homogenates from Alternaria extract-challenged mice or rmIL-33-challenged mice compared with vehicle treatment (p<0.05). Further, TSA treatment significantly decreased the number of perivascular eosinophils and mucus production in the large airways that are critical components of the asthma phenotype (p<0.05). TSA did not change early IL-33 release in the BAL fluids; however, TSA decreased lung IL-33 expression from epithelial cells 24 h after last Alternaria extract challenge compared with vehicle treatment (p<0.05). Conclusions These results reveal that TSA reduces allergen-induced ILC2 activation and the early innate immune responses to an inhaled protease-containing aeroallergen. PMID:27071418

  12. Effects of prior oral exposure to combinations of environmental immunosuppressive agents on ovalbumin allergen-induced allergic airway inflammation in Balb/c mice.

    PubMed

    Fukuyama, Tomoki; Nishino, Risako; Kosaka, Tadashi; Watanabe, Yuko; Kurosawa, Yoshimi; Ueda, Hideo; Harada, Takanori

    2014-08-01

    Abstract Humans are exposed daily to multiple environmental chemicals in the atmosphere, in food, and in commercial products. Therefore, hazard identification and risk management must account for exposure to chemical mixtures. The objective of the study reported here was to investigate the effects of combinations of three well-known environmental immunotoxic chemicals - methoxychlor (MXC), an organochlorine compound; parathion (PARA), an organophosphate compound; and piperonyl butoxide (PBO), an agricultural insecticide synergist - by using a mouse model of ovalbumin (OVA)-induced allergic airway inflammation. Four-week-old Balb/c mice were exposed orally to either one or two of the environmental immunotoxic chemicals for five consecutive days, prior to intraperitoneal sensitization with OVA and an inhalation challenge. We assessed IgE levels in serum, B-cell counts, and cytokine production in hilar lymph nodes, and differential cell counts and levels of related chemokines in bronchoalveolar lavage fluid (BALF). Mice treated with MXC + PARA or PBO + MXC showed marked increases in serum IgE, IgE-positive B-cells and cytokines in lymph nodes, and differential cell counts and related chemokines in BALF compared with mice that received the vehicle control or the corresponding individual test substances. These results suggest that simultaneous exposure to multiple environmental chemicals aggravates allergic airway inflammation more than exposure to individual chemicals. It is expected that the results of this study will help others in their evaluation of immunotoxic combinational effects when conducting assessments of the safety of environmental/occupational chemicals.

  13. Oxidative airway inflammation leads to systemic and vascular oxidative stress in a murine model of allergic asthma.

    PubMed

    Al-Harbi, Naif O; Nadeem, A; Al-Harbi, Mohamed M; Imam, F; Al-Shabanah, Othman A; Ahmad, Sheikh F; Sayed-Ahmed, Mohamed M; Bahashwan, Saleh A

    2015-05-01

    Oxidant-antioxidant imbalance plays an important role in repeated cycles of airway inflammation observed in asthma. It is when reactive oxygen species (ROS) overwhelm antioxidant defenses that a severe inflammatory state becomes apparent and may impact vasculature. Several studies have shown an association between airway inflammation and cardiovascular complications; however so far none has investigated the link between airway oxidative stress and systemic/vascular oxidative stress in a murine model of asthma. Therefore, this study investigated the contribution of oxidative stress encountered in asthmatic airways in modulation of vascular/systemic oxidant-antioxidant balance. Rats were sensitized intraperitoneally with ovalbumin (OVA) in the presence of aluminum hydroxide followed by several intranasal (i.n.) challenges with OVA. Rats were then assessed for airway and vascular inflammation, oxidative stress (ROS, lipid peroxides) and antioxidants measured as total antioxidant capacity (TAC) and thiol content. Challenge with OVA led to increased airway inflammation and oxidative stress with a concomitant increase in vascular inflammation and oxidative stress. Oxidative stress in the vasculature was significantly inhibited by antioxidant treatment, N-acetyl cysteine; whereas hydrogen peroxide (H2O2) inhalation worsened it. Therefore, our study shows that oxidative airway inflammation is associated with vascular/systemic oxidative stress which might predispose these patients to increased cardiovascular risk.

  14. Inhibitory Effect of Methyleugenol on IgE-Mediated Allergic Inflammation in RBL-2H3 Cells

    PubMed Central

    2015-01-01

    Allergic diseases, such as asthma and allergic rhinitis, are common. Therefore, the discovery of therapeutic drugs for these conditions is essential. Methyleugenol (ME) is a natural compound with antiallergic, antianaphylactic, antinociceptive, and anti-inflammatory effects. This study examined the antiallergic effect of ME on IgE-mediated inflammatory responses and its antiallergy mechanism in the mast cell line, RBL-2H3. We found that ME significantly inhibited the release of β-hexosaminidase, tumor necrosis factor- (TNF-) α, and interleukin- (IL-) 4, and was not cytotoxic at the tested concentrations (0–100 μM). Additionally, ME markedly reduced the production of the proinflammatory lipid mediators prostaglandin E2 (PGE2), prostaglandin D2 (PGD2), leukotriene B4 (LTB4), and leukotriene C4 (LTC4). We further evaluated the effect of ME on the early stages of the FcεRI cascade. ME significantly inhibited Syk phosphorylation and expression but had no effect on Lyn. Furthermore, it suppressed ERK1/2, p38, and JNK phosphorylation, which is implicated in proinflammatory cytokine expression. ME also decreased cytosolic phospholipase A2 (cPLA2) and 5-lipoxygenase (5-LO) phosphorylation and cyclooxygenase-2 (COX-2) expression. These results suggest that ME inhibits allergic response by suppressing the activation of Syk, ERK1/2, p38, JNK, cPLA2, and 5-LO. Furthermore, the strong inhibition of COX-2 expression may also contribute to the antiallergic action of ME. Our study provides further information about the biological functions of ME. PMID:25960618

  15. Inhibitory effect of methyleugenol on IgE-mediated allergic inflammation in RBL-2H3 cells.

    PubMed

    Tang, Feng; Chen, Feilong; Ling, Xiao; Huang, Yao; Zheng, Xiaomei; Tang, Qingfa; Tan, Xiaomei

    2015-01-01

    Allergic diseases, such as asthma and allergic rhinitis, are common. Therefore, the discovery of therapeutic drugs for these conditions is essential. Methyleugenol (ME) is a natural compound with antiallergic, antianaphylactic, antinociceptive, and anti-inflammatory effects. This study examined the antiallergic effect of ME on IgE-mediated inflammatory responses and its antiallergy mechanism in the mast cell line, RBL-2H3. We found that ME significantly inhibited the release of β-hexosaminidase, tumor necrosis factor- (TNF-) α, and interleukin- (IL-) 4, and was not cytotoxic at the tested concentrations (0-100 μM). Additionally, ME markedly reduced the production of the proinflammatory lipid mediators prostaglandin E2 (PGE2), prostaglandin D2 (PGD2), leukotriene B4 (LTB4), and leukotriene C4 (LTC4). We further evaluated the effect of ME on the early stages of the FcεRI cascade. ME significantly inhibited Syk phosphorylation and expression but had no effect on Lyn. Furthermore, it suppressed ERK1/2, p38, and JNK phosphorylation, which is implicated in proinflammatory cytokine expression. ME also decreased cytosolic phospholipase A2 (cPLA2) and 5-lipoxygenase (5-LO) phosphorylation and cyclooxygenase-2 (COX-2) expression. These results suggest that ME inhibits allergic response by suppressing the activation of Syk, ERK1/2, p38, JNK, cPLA2, and 5-LO. Furthermore, the strong inhibition of COX-2 expression may also contribute to the antiallergic action of ME. Our study provides further information about the biological functions of ME.

  16. Montelukast versus Dexamethasone Treatment in a Guinea Pig Model of Chronic Pulmonary Neutrophilic Inflammation.

    PubMed

    Abdel Kawy, Hala S

    2016-08-01

    Airway inflammation in chronic obstructive pulmonary disease (COPD) is refractory to corticosteroids and hence COPD treatment is hindered and insufficient. This study assessed the effects of oral treatment with Montelukast (10 and 30 mg/kg) or dexamethasone (20 mg/kg) for 20 days on COPD model induced by chronic exposure to lipopolysaccharide (LPS). Six groups of male guinea pigs were studied. Group 1: naïve group, group 2: exposed to saline nebulization. Groups 3, 4, 5, and 6: exposed to 9 nebulizations of LPS (30 μg/ml) for 1 hour, 48 hours apart with or without treatment with Montelukast or dexamethasone. Airway hyperreactivity (AHR) to methacholine (MCh), histopathological study and bronchoalveolar lavage fluid (BALF) as well as lung tissue analyses were performed 48 hours after the final exposure to LPS (day 20). LPS-induced pulmonary dysfunction was associated with increased neutrophil count, leukotriene (LT) B4, and tumor necrosis factor (TNF)-α in BALF. Moreover, there was an increase in malondialdehyde (MDA) level and a decrease in histone deacetylases(HDAC) activity in the lung tissue. Both Montelukast (10 or 30 mg /kg) and dexamethasone significantly reduced neutrophil count in BALF and inflammatory cells in lung parenchyma as well as TNF-α, and MDA levels. However, dexamethasone was more effective (p < 0.05). Montelukast, at a dose of 30 mg /kg, significantly reduced specific airway resistance after the 9th LPS exposure, attenuated AHR to MCh, decreased LTB4 and increased HDAC activity in comparison to dexamethasone. These results suggest that treatment with Montelukast can be useful in chronic airway inflammatory diseases including COPD poorly responsive to glucocorticoids. PMID:26751767

  17. Regulation of the development of asthmatic inflammation by in situ CD4(+)Foxp3 (+) T cells in a mouse model of late allergic asthma.

    PubMed

    Nakashima, Tomomi; Hayashi, Toshiharu; Mizuno, Takuya

    2014-10-01

    CD4(+)Foxp3(+)T cells (Tregs) mediate homeostatic peripheral tolerance by suppressing helper T2 cells in allergy. However, the regulation of asthmatic inflammation by local (in situ) Tregs in asthma remains unclear. BALB/c mice sensitized and challenged with ovalbumin (OVA) (asthma group) developed asthmatic inflammation with eosinophils and lymphocytes, but not mast cells. The number of Tregs in the circulation, pulmonary lymph nodes (pLNs), and thymi significantly decreased in the asthma group compared to the control group without OVA sensitization and challenge in the effector phase. The development of asthmatic inflammation is inversely related to decreased Tregs with reduced mRNA expression such as interleukin (IL)-4, transforming growth factor-β1, and IL-10, but not interferon-γ, in pLNs. Moreover, M2 macrophages increased in the local site. The present study suggests that Tregs, at least in part, may regulate the development of asthmatic inflammation by cell-cell contact and regional cytokine productions.

  18. Time course of inflammation resolution in patients with frequent exacerbations of chronic obstructive pulmonary disease

    PubMed Central

    Chang, Chun; Yao, Wanzhen

    2014-01-01

    Background When exacerbation of chronic obstructive pulmonary disease (AECOPD) occurs frequently, patients have high levels of airway and systemic inflammation and a poor quality of life. This study compared the nature and course of systemic and airway inflammation during AECOPD between patients who experienced frequent exacerbations and those with non-frequent exacerbations. Material/Methods Consecutive hospitalized patients with AECOPD were recruited and divided into 2 groups according to the frequency of AECOPD they had experienced in the previous year. Frequent exacerbators (defined as 2 or more AECOPD in the previous year) and non-frequent exacerbators (defined as zero or 1 AECOPD in the previous year). Inflammatory (interleukin 6, interleukin 8, myeloperoxidase, and C-reactive protein) and clinical (dyspnea, COPD assessment test (CAT), and peak expiratory flow) indices were assessed on the day of admission before starting therapy, day 7 of treatment, the day of planned discharge (day 10–14), and 8 weeks after discharge. Results We analyzed data from 135 patients; 78 (57.8%) were non-frequent exacerbators and 57 (42.2%) were frequent exacerbators. In both groups, the inflammatory and clinical indices at day 7, the day of planned discharge (day 10–14), and 8 weeks were significantly improved compared to those at admission. Frequent exacerbators had a smaller reduction in their inflammatory indices and CAT scores between exacerbation onset and all the other time points compared with infrequent exacerbators. Conclusions Frequent exacerbators have a reduced response to treatment of AECOPD in terms of inflammatory indices and quality of life. PMID:24569299

  19. CD11b+ and Sca-1+ Cells Exert the Main Beneficial Effects of Systemically Administered Bone Marrow-Derived Mononuclear Cells in a Murine Model of Mixed Th2/Th17 Allergic Airway Inflammation

    PubMed Central

    Cruz, Fernanda F.; Borg, Zachary D.; Goodwin, Meagan; Coffey, Amy L.; Wagner, Darcy E.; Rocco, Patricia R.M.

    2016-01-01

    Systemic administration of bone marrow-derived mononuclear cells (BMDMCs) or bone marrow-derived mesenchymal stromal cells (MSCs) reduces inflammation and airway hyperresponsiveness (AHR) in a murine model of Th2-mediated eosinophilic allergic airway inflammation. However, since BMDMCs are a heterogeneous population that includes MSCs, it is unclear whether the MSCs alone are responsible for the BMDMC effects. To determine which BMDMC population(s) is responsible for ameliorating AHR and lung inflammation in a model of mixed Th2-eosinophilic and Th17-neutrophilic allergic airway inflammation, reminiscent of severe clinical asthma, BMDMCs obtained from normal C57Bl/6 mice were serially depleted of CD45, CD34, CD11b, CD3, CD19, CD31, or Sca-1 positive cells. The different resulting cell populations were then assessed for ability to reduce lung inflammation and AHR in mixed Th2/Th17 allergic airway inflammation induced by mucosal sensitization to and challenge with Aspergillus hyphal extract (AHE) in syngeneic C56Bl/6 mice. BMDMCs depleted of either CD11b-positive (CD11b+) or Sca-1-positive (Sca-1+) cells were unable to ameliorate AHR or lung inflammation in this model. Depletion of the other cell types did not diminish the ameliorating effects of BMDMC administration. In conclusion, in the current model of allergic inflammation, CD11b+ cells (monocytes, macrophages, dendritic cells) and Sca-1+ cells (MSCs) are responsible for the beneficial effects of BMDMCs. Significance This study shows that bone marrow-derived mononuclear cells (BMDMCs) are as effective as bone marrow-derived mesenchymal stromal cells (MSCs) in ameliorating experimental asthma. It also demonstrates that not only MSCs present in the pool of BMDMCs are responsible for BMDMCs’ beneficial effects but also monocytes, which are the most important cell population to trigger these effects. All of this is in the setting of a clinically relevant model of severe allergic airways inflammation and thus

  20. Hirsutella sinensis mycelium attenuates bleomycin-induced pulmonary inflammation and fibrosis in vivo.

    PubMed

    Huang, Tsung-Teng; Lai, Hsin-Chih; Ko, Yun-Fei; Ojcius, David M; Lan, Ying-Wei; Martel, Jan; Young, John D; Chong, Kowit-Yu

    2015-01-01

    Hirsutella sinensis mycelium (HSM), the anamorph of Cordyceps sinensis, is a traditional Chinese medicine that has been shown to possess various pharmacological properties. We previously reported that this fungus suppresses interleukin-1β and IL-18 secretion by inhibiting both canonical and non-canonical inflammasomes in human macrophages. However, whether HSM may be used to prevent lung fibrosis and the mechanism underlying this activity remain unclear. Our results show that pretreatment with HSM inhibits TGF-β1-induced expression of fibronectin and α-SMA in lung fibroblasts. HSM also restores superoxide dismutase expression in TGF-β1-treated lung fibroblasts and inhibits reactive oxygen species production in lung epithelial cells. Furthermore, HSM pretreatment markedly reduces bleomycin-induced lung injury and fibrosis in mice. Accordingly, HSM reduces inflammatory cell accumulation in bronchoalveolar lavage fluid and proinflammatory cytokines levels in lung tissues. The HSM extract also significantly reduces TGF-β1 in lung tissues, and this effect is accompanied by decreased collagen 3α1 and α-SMA levels. Moreover, HSM reduces expression of the NLRP3 inflammasome and P2X7R in lung tissues, whereas it enhances expression of superoxide dismutase. These findings suggest that HSM may be used for the treatment of pulmonary inflammation and fibrosis. PMID:26497260

  1. Acrolein induced both pulmonary inflammation and the death of lung epithelial cells.

    PubMed

    Sun, Yang; Ito, Sachiko; Nishio, Naomi; Tanaka, Yuriko; Chen, Nana; Isobe, Ken-Ichi

    2014-09-01

    Acrolein, a compound found in cigarette smoke, is a major risk factor for respiratory diseases. Previous research determined that both acrolein and cigarette smoke produced reactive oxygen species (ROS). As many types of pulmonary injuries are associated with inflammation, this study sought to ascertain the extent to which exposure to acrolein advanced inflammatory state in the lungs. Our results showed that intranasal exposure of mice to acrolein increased CD11c(+)F4/80(high) macrophages in the lungs and increased ROS formation via induction of NF-κB signaling. Treatment with acrolein activated macrophages and led to their increased production of ROS and expression of several key pro-inflammatory cytokines. In in vitro studies, acrolein treatment of bone marrow-derived GM-CSF-dependent immature macrophages (GM-IMs), activated the cells and led to their increased production of ROS and expression of several key pro-inflammatory cytokines. Acrolein treatment of macrophages induced apoptosis of lung epithelial cells. Inclusion of an inhibitor of ROS formation markedly decreased acrolein-mediated macrophage activation and reduced the extent of epithelial cell death. These results indicate that acrolein can cause lung damage, in great part by mediating the increased release of pro-inflammatory cytokines/factors by macrophages.

  2. Hirsutella sinensis mycelium attenuates bleomycin-induced pulmonary inflammation and fibrosis in vivo

    PubMed Central

    Huang, Tsung-Teng; Lai, Hsin-Chih; Ko, Yun-Fei; Ojcius, David M.; Lan, Ying-Wei; Martel, Jan; Young, John D.; Chong, Kowit-Yu

    2015-01-01

    Hirsutella sinensis mycelium (HSM), the anamorph of Cordyceps sinensis, is a traditional Chinese medicine that has been shown to possess various pharmacological properties. We previously reported that this fungus suppresses interleukin-1β and IL-18 secretion by inhibiting both canonical and non-canonical inflammasomes in human macrophages. However, whether HSM may be used to prevent lung fibrosis and the mechanism underlying this activity remain unclear. Our results show that pretreatment with HSM inhibits TGF-β1–induced expression of fibronectin and α-SMA in lung fibroblasts. HSM also restores superoxide dismutase expression in TGF-β1–treated lung fibroblasts and inhibits reactive oxygen species production in lung epithelial cells. Furthermore, HSM pretreatment markedly reduces bleomycin–induced lung injury and fibrosis in mice. Accordingly, HSM reduces inflammatory cell accumulation in bronchoalveolar lavage fluid and proinflammatory cytokines levels in lung tissues. The HSM extract also significantly reduces TGF-β1 in lung tissues, and this effect is accompanied by decreased collagen 3α1 and α-SMA levels. Moreover, HSM reduces expression of the NLRP3 inflammasome and P2X7R in lung tissues, whereas it enhances expression of superoxide dismutase. These findings suggest that HSM may be used for the treatment of pulmonary inflammation and fibrosis. PMID:26497260

  3. Respiratory Allergic Disorders.

    PubMed

    Woloski, Jason Raymond; Heston, Skye; Escobedo Calderon, Sheyla Pamela

    2016-09-01

    Allergic asthma refers to a chronic reversible bronchoconstriction influenced by an allergic trigger, leading to symptoms of cough, wheezing, shortness of breath, and chest tightness. Allergic bronchopulmonary aspergillosis is a complex hypersensitivity reaction, often in patients with asthma or cystic fibrosis, occurring when bronchi become colonized by Aspergillus species. The clinical picture is dominated by asthma complicated by recurrent episodes of bronchial obstruction, fever, malaise, mucus production, and peripheral blood eosinophilia. Hypersensitivity pneumonitis is a syndrome associated with lung inflammation from the inhalation of airborne antigens, such as molds and dust. PMID:27545731

  4. Allergic rhinitis

    MedlinePlus

    ... allergic to, such as dust, animal dander, or pollen. Symptoms can also occur when you eat a ... article focuses on allergic rhinitis due to plant pollens. This type of allergic rhinitis is commonly called ...

  5. Inhibitory effects of hydrogen sulphide on pulmonary fibrosis in smoking rats via attenuation of oxidative stress and inflammation.

    PubMed

    Zhou, Xiang; An, Guoyin; Chen, Jianchang

    2014-06-01

    Accumulating evidence has demonstrated that hydrogen sulphide (H2 S) is involved in the pathogenesis of various respiratory diseases. In the present study, we established a rat model of passive smoking and investigated whether or not H2 S has protective effects against pulmonary fibrosis induced by chronic cigarette smoke exposure. Rat lung tissues were stained with haematoxylin-eosin and Masson's trichrome. The expression of type I collagen was detected by immunohistochemistry. Oxidative stress was evaluated by detecting serum levels of malondialdehyde, superoxide dismutase and glutathione peroxidase and measuring reactive oxygen species generation in lung tissue. Inflammation was assessed by measuring serum levels of inflammatory cytokines, including high-sensitivity C-reactive protein, tumour necrosis factor-α, interleukin (IL)-1β and IL-6. The protein expression of Nrf2, NF-κB and phosphorylated mitogen-activated protein kinases (MAPKs) in the pulmonary tissue was determined by Western blotting. Our findings indicated that administration of NaHS (a donor of H2 S) could protect against pulmonary fibrosis in the smoking rats. H2 S was found to induce the nuclear accumulation of Nrf2 in lung tissue and consequently up-regulate the expression of antioxidant genes HO-1 and Trx-1 in the smoking rats. Moreover, H2 S could also reduce cigarette smoking-induced inflammation by inhibiting the phosphorylation of ERK 1/2, JNK and p38 MAPKs and negatively regulating NF-κB activation. In conclusion, our study suggests that H2 S has protective effects against pulmonary fibrosis in the smoking rats by attenuating oxidative stress and inflammation.

  6. Interleukin-8 in airway inflammation in patients with asthma and chronic obstructive pulmonary disease.

    PubMed

    Nocker, R E; Schoonbrood, D F; van de Graaf, E A; Hack, C E; Lutter, R; Jansen, H M; Out, T A

    1996-02-01

    We have investigated whether IL-8 is present in airway secretions from patients with asthma and chronic obstructive pulmonary disease (COPD) to obtain information on its possible role in airway inflammation in obstructive airways disease. In the bronchoalveolar lavage fluid (BALF) from 11 clinically stable patients with asthma the levels of IL-8 were increased compared to 10 healthy subjects (median: controls 21.5 pg/ml, asthma 244 pg/ml: p < 0.005). In the patients with asthma the levels of IL-8 correlated with the percentage neutrophils in the BALF (r = 0.81; p < 0.001) and with a parameter of the permeability of the respiratory membrane, the quotient (alpha 2-macroglobulin in BALF)/(alpha 2-macroglobulin in serum) (r = 0.66; p < 0.025). In the sputum sol phase of 9 patients with symptomatic asthma the levels of IL-8 were lower than in 9 patients with COPD (asthma: 6.4 ng/ml; COPD: 16.3 ng/ml; p < 0.02) and significantly correlated with those of neutrophilic myeloperoxidase (MPO; r = 0.85; p < 0.005). The increased levels of IL-8 in the airway secretions from both patients with asthma and COPD may be markers of an ongoing inflammatory process, which is more pronounced in patients with COPD. In patients with asthma the strong correlation between the levels of IL-8 and the percentage neutrophils and/or the levels of MPO points to a role of IL-8 in the recruitment and activation of neutrophils in the airway lumen.

  7. Functional characterisation of human pulmonary monocyte-like cells in lipopolysaccharide-mediated acute lung inflammation

    PubMed Central

    2014-01-01

    Background We have previously reported the presence of novel subpopulations of pulmonary monocyte-like cells (PMLC) in the human lung; resident PMLC (rPMLC, HLA-DR+CD14++CD16+cells) and inducible PMLC (iPMLC, HLA-DR+CD14++CD16- cells). iPMLC are significantly increased in bronchoalveolar lavage (BAL) fluid following inhalation of lipopolysaccharide (LPS). We have carried out the first functional evaluation of PMLC subpopulations in the inflamed lung, following the isolation of these cells, and other lineages, from BAL fluid using novel and complex protocols. Methods iPMLC, rPMLC, alveolar macrophages (AM), neutrophils, and regulatory T cells were quantified in BAL fluid of healthy subjects at 9 hours post-LPS inhalation (n = 15). Cell surface antigen expression by iPMLC, rPMLC and AM and the ability of each lineage to proliferate and to undergo phagocytosis were investigated using flow cytometry. Basal cytokine production by iPMLC compared to AM following their isolation from BAL fluid and the responsiveness of both cell types following in vitro treatment with the synthetic corticosteroid dexamethasone were assessed. Results rPMLC have a significantly increased expression of mature macrophage markers and of the proliferation antigen Ki67, compared to iPMLC. Our cytokine data revealed a pro-inflammatory, corticosteroid-resistant phenotype of iPMLC in this model. Conclusions These data emphasise the presence of functionally distinct subpopulations of the monocyte/macrophage lineage in the human lung in experimental acute lung inflammation. PMID:24684897

  8. Cell- and isoform-specific increases in arginase expression in acute silica-induced pulmonary inflammation.

    PubMed

    Poljakovic, Mirjana; Porter, Dale W; Millecchia, Lyndell; Kepka-Lenhart, Diane; Beighley, Christopher; Wolfarth, Michael G; Castranova, Vincent; Morris, Sidney M

    2007-01-15

    Arginase induction was reported in several inflammatory lung diseases, suggesting that this may be a common feature underlying the pathophysiology of such diseases. As little is known regarding arginase expression in silicosis, the induction and cellular localization of arginase were elucidated in lungs of Sprague-Dawley rats 24 h following exposure to varying doses of silica by intratracheal instillation. Arginase expression was evaluated by activity assay, quantification of arginase I and arginase II mRNA levels using real-time polymerase chain reaction (PCR), and immunohistochemistry. Analyses of cells and fluid obtained by bronchoalveolar lavage (BAL) showed that markers of pulmonary inflammation, tissue damage, activation of alveolar macrophages (AM) and NO production were significantly increased by all silica doses. Arginase activity was increased also in AMs isolated from BAL fluid of silica-treated rats. Silica produced two- and three-fold increases in arginase activity of whole lung at doses of 1 and 5 mg/100 g body weight, respectively. Levels of arginase I mRNA, but not of arginase II mRNA, were similarly elevated. In control lungs, arginase I immunoreactivity was observed only in AMs sparsely dispersed throughout the lung; no inducible nitric oxide synthase (iNOS) immunoreactivity was detected. In silica-treated lungs, arginase I and iNOS were co-expressed in most AMs that were abundantly clustered at inflammatory foci. The rapid induction of arginase I expression in inflammatory lung cells, similar to induction of arginase in other inflammatory lung diseases, implicates elevated arginase activity as a factor in the development of lung damage following exposure to silica. PMID:17365572

  9. Cell- and Isoform-specific Increases in Arginase Expression in Acute Silica-induced Pulmonary Inflammation

    PubMed Central

    Poljakovic, Mirjana; Porter, Dale W.; Millecchia, Lyndell; Kepka-Lenhart, Diane; Beighley, Christopher; Wolfarth, Michael G.; Castranova, Vincent; Morris, Sidney M.

    2009-01-01

    Arginase induction was reported in several inflammatory lung diseases, suggesting that this may be a common feature underlying the pathophysiology of such diseases. As little is known regarding arginase expression in silicosis, the induction and cellular localization of arginase was elucidated in lungs of Sprague-Dawley rats 24 hr following exposure to varying doses of silica by intratracheal instillation. Arginase expression was evaluated by activity assay, quantification of arginase I and arginase II mRNA levels using real-time PCR, and immunohistochemistry. Analyses of cells and fluid obtained by bronchoalveolar lavage (BAL) showed that markers of pulmonary inflammation, tissue damage, activation of alveolar macrophages (AM) and NO production were significantly increased by all silica doses. Arginase activity was increased also in AMs isolated from BAL fluid of silica-treated rats. Silica produced 2- and 3-fold increases in arginase activity of whole lung at doses of 1 and 5 mg/100g body weight, respectively. Levels of arginase I mRNA, but not of arginase II mRNA, were similarly elevated. In control lungs, arginase I immunoreactivity was observed only in AMs sparsely dispersed throughout the lung; no iNOS immunoreactivity was detected. In silica-treated lungs, arginase I and iNOS were co-expressed in most AMs that were abundantly clustered at inflammatory foci. The rapid induction of arginase I expression in inflammatory lung cells, similar to induction of arginase in other inflammatory lung diseases, implicates elevated arginase activity as a factor in the development of lung damage following exposure to silica. PMID:17365572

  10. Tiotropium Attenuates Virus-Induced Pulmonary Inflammation in Cigarette Smoke–Exposed Mice

    PubMed Central

    Bucher, Hannes; Duechs, Matthias J.; Tilp, Cornelia; Jung, Birgit

    2016-01-01

    Viral infections trigger exacerbations in chronic obstructive pulmonary disease (COPD), and tiotropium, a M3 receptor antagonist, reduces exacerbations in patients by unknown mechanisms. In this report, we investigated whether tiotropium has anti-inflammatory effects in mice exposed to cigarette smoke (CS) and infected with influenza virus A/PR/8/34 (H1N1) or respiratory syncytial virus (RSV) and compared these effects with those of steroid fluticasone and PDE4-inhibitor roflumilast. Mice were exposed to CS; infected with H1N1 or RSV; and treated with tiotropium, fluticasone, or roflumilast. The amount of cells and cytokine levels in the airways, lung function, and viral load was determined. NCI-H292 cells were infected with H1N1 or RSV and treated with the drugs. In CS/H1N1-exposed mice, tiotropium reduced neutrophil and macrophage numbers and levels of interleukin-6 (IL-6) and interferon-γ (IFN-γ) in the airways and improved lung function. In contrast, fluticasone increased the loss of body weight; failed to reduce neutrophil or macrophage numbers; increased IL-6, KC, and tumor necrosis factor-α (TNF-α) in the lungs; and worsened lung function. Treatment with roflumilast reduced macrophage numbers, IL-6, and KC in the lungs but had no effect on neutrophil numbers or lung function. In CS/RSV-exposed mice, treatment with tiotropium, but not fluticasone or roflumilast, reduced neutrophil numbers and IL-6 and TNF-α levels in the lungs. Viral load of H1N1 and RSV was significantly elevated in CS/virus-exposed mice and NCI-H292 cells after fluticasone treatment, whereas tiotropium and roflumilast had no effect. In conclusion, tiotropium has anti-inflammatory effects on CS/virus-induced inflammation in mice that are superior to the effects of roflumilast and fluticasone. This finding might help to explain the observed reduction of exacerbation rates in COPD patients. PMID:27016458

  11. Granzyme B, a novel mediator of allergic inflammation: its induction and release in blood basophils and human asthma.

    PubMed

    Tschopp, Cornelia M; Spiegl, Nicole; Didichenko, Svetlana; Lutmann, Werner; Julius, Peter; Virchow, J Christian; Hack, C Erik; Dahinden, Clemens A

    2006-10-01

    Histamine, leukotriene C4, IL-4, and IL-13 are major mediators of allergy and asthma. They are all formed by basophils and are released in particularly large quantities after stimulation with IL-3. Here we show that supernatants of activated mast cells or IL-3 qualitatively change the makeup of granules of human basophils by inducing de novo synthesis of granzyme B (GzmB), without induction of other granule proteins expressed by cytotoxic lymphocytes (granzyme A, perforin). This bioactivity of IL-3 is not shared by other cytokines known to regulate the function of basophils or lymphocytes. The IL-3 effect is restricted to basophil granulocytes as no constitutive or inducible expression of GzmB is detected in eosinophils or neutrophils. GzmB is induced within 6 to 24 hours, sorted into the granule compartment, and released by exocytosis upon IgE-dependent and -independent activation. In vitro, there is a close parallelism between GzmB, IL-13, and leukotriene C4 production. In vivo, granzyme B, but not the lymphoid granule marker granzyme A, is released 18 hours after allergen challenge of asthmatic patients in strong correlation with interleukin-13. Our study demonstrates an unexpected plasticity of the granule composition of mature basophils and suggests a role of granzyme B as a novel mediator of allergic diseases.

  12. Ferulic Acid Induces Th1 Responses by Modulating the Function of Dendritic Cells and Ameliorates Th2-Mediated Allergic Airway Inflammation in Mice

    PubMed Central

    Lee, Chen-Chen; Wang, Ching-Chiung; Huang, Huei-Mei; Lin, Chu-Lun; Leu, Sy-Jye; Lee, Yueh-Lun

    2015-01-01

    This study investigated the immunomodulatory effects of ferulic acid (FA) on antigen-presenting dendritic cells (DCs) in vitro and its antiallergic effects against ovalbumin- (OVA-) induced Th2-mediated allergic asthma in mice. The activation of FA-treated bone marrow-derived DCs by lipopolysaccharide (LPS) stimulation induced a high level of interleukin- (IL-) 12 but reduced the expression levels of the proinflammatory cytokines IL-1β, IL-6, and tumor necrosis factor- (TNF-) α. Compared to control-treated DCs, FA significantly enhanced the expressions of Notch ligand Delta-like 4 (Dll4), MHC class II, and CD40 molecules by these DCs. Furthermore, these FA-treated DCs enhanced T-cell proliferation and Th1 cell polarization. In animal experiments, oral administration of FA reduced the levels of OVA-specific immunoglobulin E (IgE) and IgG1 and enhanced IgG2a antibody production in serum. It also ameliorated airway hyperresponsiveness and attenuated eosinophilic pulmonary infiltration in dose-dependent manners. In addition, FA treatment inhibited the production of eotaxin, Th2 cytokines (IL-4, IL-5, and IL-13), and proinflammatory cytokines but promoted the Th1 cytokine interferon- (IFN-) γ production in bronchoalveolar lavage fluid (BALF) and the culture supernatant of spleen cells. These findings suggest that FA exhibits an antiallergic effect via restoring Th1/Th2 imbalance by modulating DCs function in an asthmatic mouse model. PMID:26495021

  13. Perinatal Maternal Administration of Lactobacillus paracasei NCC 2461 Prevents Allergic Inflammation in a Mouse Model of Birch Pollen Allergy

    PubMed Central

    Schabussova, Irma; Hufnagl, Karin; Tang, Mimi L. K.; Hoflehner, Elisabeth; Wagner, Angelika; Loupal, Gerhard; Nutten, Sophie; Zuercher, Adrian; Mercenier, Annick; Wiedermann, Ursula

    2012-01-01

    Background The hygiene hypothesis implies that microbial agents including probiotic bacteria may modulate foetal/neonatal immune programming and hence offer effective strategies for primary allergy prevention; however their mechanisms of action are poorly understood. We investigated whether oral administration of Lactobacillus paracasei NCC 2461 to mothers during gestation/lactation can protect against airway inflammation in offspring in a mouse model of birch pollen allergy, and examined the immune mechanisms involved. Methods BALB/c mice were treated daily with L. paracasei in drinking water or drinking water alone in the last week of gestation and during lactation. Their offspring were sensitized with recombinant Bet v 1, followed by aerosol challenge with birch pollen extract. Results Maternal exposure to L. paracasei prevented the development of airway inflammation in offspring, as demonstrated by attenuation of eosinophil influx in the lungs; reduction of IL-5 levels in bronchoalveolar lavage, and in lung and mediastinal lymph node cell cultures; and reduced peribronchial inflammatory infiltrate and mucus hypersecretion. While allergen-specific IgE and IgG antibody levels remained unchanged by the treatment, IL-4 and IL-5 production in spleen cell cultures were significantly reduced upon allergen stimulation in offspring of L. paracasei treated mice. Offspring of L. paracasei supplemented mothers had significantly reduced Bet v 1-specific as well as Concanavalin A-induced responses in spleen and mesenteric lymph node cell cultures, suggesting the modulation of both antigen-specific and mitogen-induced immune responses in offspring. These effects were associated with increased Foxp3 mRNA expression in the lungs and increased TGF-beta in serum. Conclusion Our data show that in a mouse model of birch pollen allergy, perinatal administration of L. paracasei NCC 2461 to pregnant/lactating mothers protects against the development of airway inflammation in offspring

  14. Variability in ozone-induced pulmonary injury and inflammation in healthy and cardiovascular-compromised rat models.

    PubMed

    Kodavanti, Urmila P; Ledbetter, Allen D; Thomas, Ronald F; Richards, Judy E; Ward, William O; Schladweiler, Mette C; Costa, Daniel L

    2015-01-01

    The molecular bases for variability in air pollutant-induced pulmonary injury due to underlying cardiovascular (CVD) and/or metabolic diseases are unknown. We hypothesized that healthy and genetic CVD-prone rat models will exhibit exacerbated response to acute ozone exposure dependent on the type and severity of disease. Healthy male 12-14-week-old Wistar Kyoto (WKY), Wistar (WS) and Sprague Dawley (SD); and CVD-compromised spontaneously hypertensive (SH), Fawn-Hooded hypertensive (FHH), stroke-prone spontaneously hypertensive (SHSP), obese spontaneously hypertensive heart failure (SHHF) and obese JCR (JCR) rats were exposed to 0.0, 0.25, 0.5, or 1.0 ppm ozone for 4 h; pulmonary injury and inflammation were analyzed immediately following (0-h) or 20-h later. Baseline bronchoalveolar lavage fluid (BALF) protein was higher in CVD strains except for FHH when compared to healthy. Ozone-induced increases in protein and inflammation were concentration-dependent within each strain but the degree of response varied from strain to strain and with time. Among healthy rats, SD were least affected. Among CVD strains, lean rats were more susceptible to protein leakage from ozone than obese rats. Ozone caused least neutrophilic inflammation in SH and SHHF while SHSP and FHH were most affected. BALF neutrophils and protein were poorly correlated when considering the entire dataset (r = 0.55). The baseline and ozone-induced increases in cytokine mRNA varied markedly between strains and did not correlate with inflammation. These data illustrate that the degree of ozone-induced lung injury/inflammation response is likely influenced by both genetic and physiological factors that govern the nature of cardiovascular compromise in CVD models.

  15. Intranasal Administration of Recombinant Mycobacterium smegmatis Inducing IL-17A Autoantibody Attenuates Airway Inflammation in a Murine Model of Allergic Asthma.

    PubMed

    Xu, Wanting; Chen, Ling; Guo, Sheng; Wu, Liangxia; Zhang, Jianhua

    2016-01-01

    Asthma is a chronic inflammatory disorder, previous studies have shown that IL-17A contributes to the development of asthma, and there is a positive correlation between the level of IL-17A and the severity of disease. Here, we constructed recombinant Mycobacterium smegmatis expressing fusion protein Ag85A-IL-17A (rMS-Ag85a-IL-17a) and evaluated whether it could attenuate allergic airway inflammation, and further investigated the underlying mechanism. In this work, the murine model of asthma was established with ovalbumin, and mice were intranasally vaccinated with rMS-Ag85a-IL-17a. Autoantibody of IL-17A in sera was detected, and the airway inflammatory cells infiltration, the local cytokines and chemokines production and the histopathological changes of lung tissue were investigated. We found that the administration of rMS-Ag85a-IL-17a induced the autoantibody of IL-17A in sera. The vaccination of rMS-Ag85a-IL-17a remarkably reduced the infiltration of inflammatory cells and the secretion of mucus in lung tissue and significantly decreased the numbers of the total cells, eosinophils and neutrophils in BALF. Th1 cells count in spleen, Th1 cytokine levels in BALF and supernatant of splenocytes and mediastinal lymph nodes, and T-bet mRNA in lung tissue were significantly increased with rMS-Ag85a-IL-17a administration. Meanwhile, rMS-Ag85a-IL-17a vaccination markedly decreased Th2 cells count, Th2 cytokine and Th17 cytokine levels in BALF and supernatant of splenocytes and mediastinal lymph nodes, and chemokines mRNA expression in lung tissue. These data confirmed that recombinant Mycobacterium smegmatis in vivo could induce autoantibody of IL-17A, which attenuated asthmatic airway inflammation.

  16. Intranasal Administration of Recombinant Mycobacterium smegmatis Inducing IL-17A Autoantibody Attenuates Airway Inflammation in a Murine Model of Allergic Asthma.

    PubMed

    Xu, Wanting; Chen, Ling; Guo, Sheng; Wu, Liangxia; Zhang, Jianhua

    2016-01-01

    Asthma is a chronic inflammatory disorder, previous studies have shown that IL-17A contributes to the development of asthma, and there is a positive correlation between the level of IL-17A and the severity of disease. Here, we constructed recombinant Mycobacterium smegmatis expressing fusion protein Ag85A-IL-17A (rMS-Ag85a-IL-17a) and evaluated whether it could attenuate allergic airway inflammation, and further investigated the underlying mechanism. In this work, the murine model of asthma was established with ovalbumin, and mice were intranasally vaccinated with rMS-Ag85a-IL-17a. Autoantibody of IL-17A in sera was detected, and the airway inflammatory cells infiltration, the local cytokines and chemokines production and the histopathological changes of lung tissue were investigated. We found that the administration of rMS-Ag85a-IL-17a induced the autoantibody of IL-17A in sera. The vaccination of rMS-Ag85a-IL-17a remarkably reduced the infiltration of inflammatory cells and the secretion of mucus in lung tissue and significantly decreased the numbers of the total cells, eosinophils and neutrophils in BALF. Th1 cells count in spleen, Th1 cytokine levels in BALF and supernatant of splenocytes and mediastinal lymph nodes, and T-bet mRNA in lung tissue were significantly increased with rMS-Ag85a-IL-17a administration. Meanwhile, rMS-Ag85a-IL-17a vaccination markedly decreased Th2 cells count, Th2 cytokine and Th17 cytokine levels in BALF and supernatant of splenocytes and mediastinal lymph nodes, and chemokines mRNA expression in lung tissue. These data confirmed that recombinant Mycobacterium smegmatis in vivo could induce autoantibody of IL-17A, which attenuated asthmatic airway inflammation. PMID:26974537

  17. Oxidative stress–induced mitochondrial dysfunction drives inflammation and airway smooth muscle remodeling in patients with chronic obstructive pulmonary disease

    PubMed Central

    Wiegman, Coen H.; Michaeloudes, Charalambos; Haji, Gulammehdi; Narang, Priyanka; Clarke, Colin J.; Russell, Kirsty E.; Bao, Wuping; Pavlidis, Stelios; Barnes, Peter J.; Kanerva, Justin; Bittner, Anton; Rao, Navin; Murphy, Michael P.; Kirkham, Paul A.; Chung, Kian Fan; Adcock, Ian M.; Brightling, Christopher E.; Davies, Donna E.; Finch, Donna K.; Fisher, Andrew J.; Gaw, Alasdair; Knox, Alan J.; Mayer, Ruth J.; Polkey, Michael; Salmon, Michael; Singh, David

    2015-01-01

    Background Inflammation and oxidative stress play critical roles in patients with chronic obstructive pulmonary disease (COPD). Mitochondrial oxidative stress might be involved in driving the oxidative stress–induced pathology. Objective We sought to determine the effects of oxidative stress on mitochondrial function in the pathophysiology of airway inflammation in ozone-exposed mice and human airway smooth muscle (ASM) cells. Methods Mice were exposed to ozone, and lung inflammation, airway hyperresponsiveness (AHR), and mitochondrial function were determined. Human ASM cells were isolated from bronchial biopsy specimens from healthy subjects, smokers, and patients with COPD. Inflammation and mitochondrial function in mice and human ASM cells were measured with and without the presence of the mitochondria-targeted antioxidant MitoQ. Results Mice exposed to ozone, a source of oxidative stress, had lung inflammation and AHR associated with mitochondrial dysfunction and reflected by decreased mitochondrial membrane potential (ΔΨm), increased mitochondrial oxidative stress, and reduced mitochondrial complex I, III, and V expression. Reversal of mitochondrial dysfunction by the mitochondria-targeted antioxidant MitoQ reduced inflammation and AHR. ASM cells from patients with COPD have reduced ΔΨm, adenosine triphosphate content, complex expression, basal and maximum respiration levels, and respiratory reserve capacity compared with those from healthy control subjects, whereas mitochondrial reactive oxygen species (ROS) levels were increased. Healthy smokers were intermediate between healthy nonsmokers and patients with COPD. Hydrogen peroxide induced mitochondrial dysfunction in ASM cells from healthy subjects. MitoQ and Tiron inhibited TGF-β–induced ASM cell proliferation and CXCL8 release. Conclusions Mitochondrial dysfunction in patients with COPD is associated with excessive mitochondrial ROS levels, which contribute to enhanced inflammation and cell

  18. Modulation of pulmonary inflammatory responses and anti-microbial defenses in mice exposed to diesel exhaust

    EPA Science Inventory

    Abstract: Diesel exhaust (DE) is a major component of urban air pollution and has been shown to increase the severity of infectious and allergic lung disease. The purpose of this study was to evaluate the effects of DE exposure on pulmonary inflammation, mediator production and ...

  19. Effects of prenatal diesel exhaust inhalation on pulmonary inflammation and development of specific immune responses

    EPA Science Inventory

    There is increasing evidence that exposure to air pollutants during pregnancy can result in a number of deleterious effects including low birth weight and the incidence of allergic asthma. To investigate the in utero effects of DE exposure, timed pregnant BALB/c mice were exposed...

  20. Klotho Reduction in Alveolar Macrophages Contributes to Cigarette Smoke Extract-induced Inflammation in Chronic Obstructive Pulmonary Disease.

    PubMed

    Li, Lingling; Wang, Yujie; Gao, Wei; Yuan, Cheng; Zhang, Sini; Zhou, Hong; Huang, Mao; Yao, Xin

    2015-11-13

    Abnormal inflammation and accelerated decline in lung function occur in patients with chronic obstructive pulmonary disease (COPD). Klotho, an anti-aging protein, has an anti-inflammatory function. However, the role of Klotho has never been investigated in COPD. The aim of this study is to investigate the possible role of Klotho by alveolar macrophages in airway inflammation in COPD. Klotho levels were assessed in the lung samples and peripheral blood mononuclear cells of non-smokers, smokers, and patients with COPD. The regulation of Klotho expression by cigarette smoke extract (CSE) was studied in vitro, and small interfering RNA (siRNA) and recombinant Klotho were employed to investigate the role of Klotho on CSE-induced inflammation. Klotho expression was reduced in alveolar macrophages in the lungs and peripheral blood mononuclear cells of COPD patients. CSE decreased Klotho expression and release from MH-S cells. Knockdown of endogenous Klotho augmented the expression of the inflammatory mediators, such as MMP-9, IL-6, and TNF-α, by MH-S cells. Exogenous Klotho inhibited the expression of CSE-induced inflammatory mediators. Furthermore, we showed that Klotho interacts with IκBα of the NF-κB pathway. Dexamethasone treatment increased the expression and release level of Klotho in MH-S cells. Our findings suggest that Klotho plays a role in sustained inflammation of the lungs, which in turn may have therapeutic implications in COPD.

  1. Broncho-Vaxom Attenuates Allergic Airway Inflammation by Restoring GSK3β-Related T Regulatory Cell Insufficiency

    PubMed Central

    Zhong, Hua; Yu, Dehong; Zeng, Xianping; Deng, Mengxia; Sun, Yueqi; Wen, Weiping; Li, Huabin

    2014-01-01

    Background Oral administration of bacterial extracts (eg, Broncho-Vaxom (BV)) has been proposed to attenuate asthma through modulating Treg cells. However, the underlying mechanism has not been fully characterized. This study sought to assess the effects of oral administration of BV on GSK-3β expression and Treg cells in ovalbumin (OVA)-induced asthmatic mice models. Method Asthmatic mice models were established with OVA challenge and treated with oral administration of BV. Next, infiltration of inflammatory cells including eosinophil and neutrophils, mucous metaplasia, levels of Th1/Th2/Treg-typed cytokines and expression of GSK3β and Foxp3 were examined in asthmatic mice models by histological analysis, Bio-Plex and western blot, respectively. Moreover, the frequencies of Treg cells were evaluated in cultured splenocytes by flow cytometry in the presence of BV or GSK3β siRNA interference. Results We found significant decrease of infiltrated inflammatory cells in bronchoalveolar lavage fluid (BALF) in asthmatic mice models after oral administration of BV. Oral administration of BV was shown to significantly suppress mucus metaplasia, Th2-typed cytokine levels and GSK3β expression while increasing Foxp3 production in asthmatic mice models. Moreover, BV significantly enhanced GSK3β-related expansion of Treg cells in cultured spleen cells in vitro. Conclusion Our findings provide evidence that oral administration of BV is capable of attenuating airway inflammation in asthmatic mice models, which may be associated with GSK3β-related expansion of Treg cells. PMID:24667347

  2. Bronchodilator and Anti-Inflammatory Action of Theophylline in a Model of Ovalbumin-Induced Allergic Inflammation.

    PubMed

    Urbanova, A; Kertys, M; Simekova, M; Mikolka, P; Kosutova, P; Mokra, D; Mokry, J

    2016-01-01

    Phosphodiesterases (PDEs) represent a super-family of 11 enzymes hydrolyzing cyclic nucleotides into inactive 5' monophosphates. Inhibition of PDEs leads to a variety of cellular effects, including airway smooth muscle relaxation, inhibition of cellular inflammation, and immune responses. In this study we focused on theophylline, a known non-selective inhibitor of PDEs. Theophylline has been used for decades in the treatment of chronic inflammatory airway diseases. It has a narrow therapeutic window and belongs to the drugs whose plasma concentration should be monitored. Therefore, the main goal of this study was to evaluate the plasma theophylline concentration and to determine its relevance to pharmacological effects after single and longer term (7 days) administration of theophylline at different doses (5, 10, 20, and 50 mg/kg) in guinea pigs. Airway hyperresponsiveness was assessed by repeated exposure to ovalbumin. Theophylline reduced specific airway resistance in response to histamine nebulization, measured in a double chamber body plethysmograph. A decrease in tracheal smooth muscle contractility after cumulative doses of histamine and acetylcholine was confirmed in vitro. A greater efficacy of theophylline after seven days long treatment indicates the predominance of its anti-inflammatory activity, which may be involved in the bronchodilating action. PMID:27334733

  3. Bronchodilator and Anti-Inflammatory Action of Theophylline in a Model of Ovalbumin-Induced Allergic Inflammation.

    PubMed

    Urbanova, A; Kertys, M; Simekova, M; Mikolka, P; Kosutova, P; Mokra, D; Mokry, J

    2016-01-01

    Phosphodiesterases (PDEs) represent a super-family of 11 enzymes hydrolyzing cyclic nucleotides into inactive 5' monophosphates. Inhibition of PDEs leads to a variety of cellular effects, including airway smooth muscle relaxation, inhibition of cellular inflammation, and immune responses. In this study we focused on theophylline, a known non-selective inhibitor of PDEs. Theophylline has been used for decades in the treatment of chronic inflammatory airway diseases. It has a narrow therapeutic window and belongs to the drugs whose plasma concentration should be monitored. Therefore, the main goal of this study was to evaluate the plasma theophylline concentration and to determine its relevance to pharmacological effects after single and longer term (7 days) administration of theophylline at different doses (5, 10, 20, and 50 mg/kg) in guinea pigs. Airway hyperresponsiveness was assessed by repeated exposure to ovalbumin. Theophylline reduced specific airway resistance in response to histamine nebulization, measured in a double chamber body plethysmograph. A decrease in tracheal smooth muscle contractility after cumulative doses of histamine and acetylcholine was confirmed in vitro. A greater efficacy of theophylline after seven days long treatment indicates the predominance of its anti-inflammatory activity, which may be involved in the bronchodilating action.

  4. Lipopolysaccharide and Interleukin 1 Augment the Effects of Hypoxia and Inflammation in Human Pulmonary Arterial Tissue

    NASA Astrophysics Data System (ADS)

    Ziesche, Rolf; Petkov, Venzeslav; Williams, John; Zakeri, Schaker M.; Mosgoller, Wilhelm; Knofler, Martin; Block, Lutz H.

    1996-10-01

    The combined effects of hypoxia and interleukin 1, lipopolysaccharide, or tumor necrosis factor α on the expression of genes encoding endothelial constitutive and inducible nitric oxide synthases, endothelin 1, interleukin 6, and interleukin 8 were investigated in human primary pulmonary endothelial cells and whole pulmonary artery organoid cultures. Hypoxia decreased the expression of constitutive endothelial nitric oxide synthase (NOS-3) mRNA and NOS-3 protein as compared with normoxic conditions. The inhibition of expression of NOS-3 corresponded with a reduced production of NO. A combination of hypoxia with bacterial lipopolysaccharide, interleukin 1β , or tumor necrosis factor α augmented both effects. In contrast, the combination of hypoxia and the inflammatory mediators superinduced the expression of endothelin 1, interleukin 6, and interleukin 8. Here, we have shown that inflammatory mediators aggravate the effect of hypoxia on the down-regulation of NOS-3 and increase the expression of proinflammatory cytokines in human pulmonary endothelial cells and whole pulmonary artery organoid cultures.

  5. Allergic Conjunctivitis

    MedlinePlus

    ... water. This is called conjunctivitis, also known as “pink eye.” Causes & Risk Factors What causes allergic conjunctivitis? ... example, if you are allergic to pollen or mold, stay indoors when pollen and mold levels are ...

  6. Pentoxifylline inhibits pulmonary inflammation induced by infrarenal aorticcross-clamping dependent of adenosine receptor A2A

    PubMed Central

    Li, Hali; Tan, Gang; Tong, Liquan; Han, Peng; Zhang, Feng; Liu, Bing; Sun, Xueying

    2016-01-01

    Infrarenal aortic cross-clamping (IAC) is commonly used during infrarenal vascular operations. Prolonged IAC causes ischemia-reperfusion injury to local tissues, resulting in the release of inflammatory cytokines and acute lung injury (ALI). Pentoxifylline (PTX) is a clinically used drug for chronic occlusive arterial diseases and exerts protective effects against ALI induced by various factors in experimental models. In this study, we evaluated the protective effects of PTX in a rat model of IAC. Wistar rats underwent IAC for 2 h, followed by 4 h reperfusion. PTX alone, or in combination with ZM-241385 (an adenosine receptor A2A antagonist) or CGS-21680 (an A2A agonist), was pre-administered to rats 1 h prior to IAC, and the severity of lung injury and inflammation were examined. Administration of PTX significantly attenuated ALI induced by IAC, evidenced by reduced histological scores and wet lung contents, improved blood gas parameters, decreased cell counts and protein amounts in bronchoalveolar lavage fluids, and inhibition of MPO activity and ICAM-1 expression in lung tissues, and lower plasma levels of TNF-α, IL-6, IL-1β and soluble ICAM-1. ZM-241385 significantly abrogated, while CGS-21680 slightly enhanced, the effects of PTX in ameliorating ALI and inhibiting pulmonary inflammation. In exploration of the mechanisms, we found that PTX stimulated IL-10 production through the phosphorylation of STAT3, and A2A receptor participated in this regulation. The study indicates PTX plays a protective role in IAC-induced ALI in rats by inhibiting pulmonary inflammation through A2A signaling pathways. PMID:27347328

  7. Early pulmonary inflammation and lung damage in children with cystic fibrosis.

    PubMed

    Schultz, André; Stick, Stephen

    2015-05-01

    Individuals with cystic fibrosis (CF) suffer progressive airway inflammation, infection and lung damage. Airway inflammation and infection are present from early in life, often before children are symptomatic. CF gene mutations cause changes in the CF transmembrane regulator protein that result in an aberrant airway microenvironment including airway surface liquid (ASL) dehydration, reduced ASL acidity, altered airway mucin and a dysregulated inflammatory response. This review discusses how an altered microenvironment drives CF lung disease before overt airway infection, the response of the CF airway to early infection, and methods to prevent inflammation and early lung disease.

  8. The novel compound Sul-121 inhibits airway inflammation and hyperresponsiveness in experimental models of chronic obstructive pulmonary disease

    PubMed Central

    Han, Bing; Poppinga, Wilfred J.; Zuo, Haoxiao; Zuidhof, Annet B.; Bos, I. Sophie T.; Smit, Marieke; Vogelaar, Pieter; Krenning, Guido; Henning, Robert H.; Maarsingh, Harm; Halayko, Andrew J.; van Vliet, Bernard; Stienstra, Stef; Graaf, Adrianus Cornelis van der; Meurs, Herman; Schmidt, Martina

    2016-01-01

    COPD is characterized by persistent airflow limitation, neutrophilia and oxidative stress from endogenous and exogenous insults. Current COPD therapy involving anticholinergics, β2-adrenoceptor agonists and/or corticosteroids, do not specifically target oxidative stress, nor do they reduce chronic pulmonary inflammation and disease progression in all patients. Here, we explore the effects of Sul-121, a novel compound with anti-oxidative capacity, on hyperresponsiveness (AHR) and inflammation in experimental models of COPD. Using a guinea pig model of lipopolysaccharide (LPS)-induced neutrophilia, we demonstrated that Sul-121 inhalation dose-dependently prevented LPS-induced airway neutrophilia (up to ~60%) and AHR (up to ~90%). Non-cartilaginous airways neutrophilia was inversely correlated with blood H2S, and LPS-induced attenuation of blood H2S (~60%) was prevented by Sul-121. Concomitantly, Sul-121 prevented LPS-induced production of the oxidative stress marker, malondialdehyde by ~80%. In immortalized human airway smooth muscle (ASM) cells, Sul-121 dose-dependently prevented cigarette smoke extract-induced IL-8 release parallel with inhibition of nuclear translocation of the NF-κB subunit, p65 (each ~90%). Sul-121 also diminished cellular reactive oxygen species production in ASM cells, and inhibited nuclear translocation of the anti-oxidative response regulator, Nrf2. Our data show that Sul-121 effectively inhibits airway inflammation and AHR in experimental COPD models, prospectively through inhibition of oxidative stress. PMID:27229886

  9. Mechanisms of carbon nanotube-induced toxicity: focus on pulmonary inflammation.

    PubMed

    Bhattacharya, Kunal; Andón, Fernando Torres; El-Sayed, Ramy; Fadeel, Bengt

    2013-12-01

    Carbon nanotubes have gained tremendous interest in a wide range of applications due to their unique physical, chemical, and electronic properties. Needless to say, close attention to the potential toxicity of carbon nanotubes is of paramount importance. Numerous studies have linked exposure of carbon nanotubes to the induction of inflammation, a complex protective response to harmful stimuli including pathogens, damaged or dying cells, and other irritants. However, inflammation is a double-edged sword as chronic inflammation can lead to destruction of tissues thus compromising the homeostasis of the organism. Here, we provide an overview of the process of inflammation, the key cells and the soluble mediators involved, and discuss research on carbon nanotubes and inflammation, including recent studies on the activation of the so-called inflammasome complex in macrophages resulting in secretion of pro-inflammatory cytokines. Moreover, recent work has shown that inflammatory cells i.e. neutrophils and eosinophils are capable of enzymatic degradation of carbon nanotubes, with mitigation of the pro-inflammatory and pro-fibrotic effects of nanotubes thus underscoring that inflammation is both good and bad.

  10. Non-invasive biomarkers of pulmonary damage and inflammation: Application to children exposed to ozone and trichloramine

    SciTech Connect

    Bernard, Alfred . E-mail: bernard@toxi.ucl.ac.be; Carbonnelle, Sylviane; Nickmilder, Marc; Burbure, Claire de

    2005-08-07

    To date, airways injury or inflammation caused by air pollutants has been evaluated mainly by analysis of bronchoalveolar lavage, an invasive technique totally unsuitable to children. The assessment of respiratory risks in this particularly vulnerable population has thus for a long time relied on spirometric tests and self-reported symptoms which are relatively late and inaccurate indicators of lung damage. Research in the field of biomarkers is now opening new perspectives with the development of non-invasive tests allowing to monitor inflammation and damage in the deep lung. Blood tests measuring lung-specific proteins (pneumoproteins) such as Clara cell protein (CC16) and surfactant-associated proteins (A, B or D) are now available to evaluate the permeability and/or the cellular integrity of the pulmonary epithelium. The application of these tests to children has recently led to the discovery of a lung epithelium hyperpermeability caused by trichloramine (nitrogen trichloride), an irritant gas contaminating the air of indoor-chlorinated pools. Serum CC16 can also serve to detect increases of airway permeability during short-term exposures to ambient ozone. Indicators measurable in exhaled air such as nitric oxide (NO) appear more useful to detect airway inflammation. By applying the exhaled NO test to children attending summer camps, we recently found that ambient ozone produces an acute inflammatory response in children from levels slightly lower than current air quality guidelines. In a study exploring the links between atopy, asthma, and exposure to chlorination products in indoor pools, we also found that the exhaled NO test can serve to detect the chronic airway inflammation associated with excessive exposure to trichloramine. Lung-specific proteins measurable in serum and markers in exhaled air represent sensitive tools that can be used to assess non-invasively the effects of air pollutants on the respiratory tract of children.

  11. Serum amyloid A opposes lipoxin A₄ to mediate glucocorticoid refractory lung inflammation in chronic obstructive pulmonary disease.

    PubMed

    Bozinovski, Steven; Uddin, Mohib; Vlahos, Ross; Thompson, Michelle; McQualter, Jonathan L; Merritt, Anne-Sophie; Wark, Peter A B; Hutchinson, Anastasia; Irving, Louis B; Levy, Bruce D; Anderson, Gary P

    2012-01-17

    Chronic obstructive pulmonary disease (COPD) will soon be the third most common cause of death globally. Despite smoking cessation, neutrophilic mucosal inflammation persistently damages the airways and fails to protect from recurrent infections. This maladaptive and excess inflammation is also refractory to glucocorticosteroids (GC). Here, we identify serum amyloid A (SAA) as a candidate mediator of GC refractory inflammation in COPD. Extrahepatic SAA was detected locally in COPD bronchoalveolar lavage fluid, which correlated with IL-8 and neutrophil elastase, consistent with neutrophil recruitment and activation. Immunohistochemistry detected SAA was in close proximity to airway epithelium, and in vitro SAA triggered release of IL-8 and other proinflammatory mediators by airway epithelial cells in an ALX/FPR2 (formyl peptide receptor 2) receptor-dependent manner. Lipoxin A(4) (LXA(4)) can also interact with ALX/FPR2 receptors and lead to allosteric inhibition of SAA-initiated epithelial responses (pA(2) 13 nM). During acute exacerbation, peripheral blood SAA levels increased dramatically and were disproportionately increased relative to LXA(4). Human lung macrophages (CD68(+)) colocalized with SAA and GCs markedly increased SAA in vitro (THP-1, pEC(50) 43 nM). To determine its direct actions, SAA was administered into murine lung, leading to induction of CXC chemokine ligand 1/2 and a neutrophilic response that was inhibited by 15-epi-LXA(4) but not dexamethasone. Taken together, these findings identify SAA as a therapeutic target for inhibition and implicate SAA as a mediator of GC-resistant lung inflammation that can overwhelm organ protective signaling by lipoxins at ALX/FPR2 receptors.

  12. Variability in Ozone-Induced Pulmonary Injury and Inflammation in Healthy and Cardiovascular Compromised Rat Models

    EPA Science Inventory

    The molecular bases for variability in air pollutant-induced pulmonary injury due to underlying cardiovascular (CVD) and/or metabolic diseases are unknown. We hypothesized that healthy and genetic CVD-prone rat models will exhibit exacerbated response to acute ozone exposure depe...

  13. Allergic Fungal Rhinosinusitis.

    PubMed

    Hoyt, Alice E W; Borish, Larry; Gurrola, José; Payne, Spencer

    2016-01-01

    This article reviews the history of allergic fungal rhinosinusitis and the clinical, pathologic, and radiographic criteria necessary to establish its diagnosis and differentiate this disease from other types of chronic rhinosinusitis. Allergic fungal rhinosinusitis is a noninvasive fungal form of sinus inflammation characterized by an often times unilateral, expansile process in which the typical allergic "peanut-butter-like" mucin contributes to the formation of nasal polyps, hyposmia/anosmia, and structural changes of the face. IgE sensitization to fungi is a necessary, but not sufficient, pathophysiologic component of the disease process that is also defined by microscopic visualization of mucin-containing fungus and characteristic radiological imaging. This article expounds on these details and others including the key clinical and scientific distinctions of this diagnosis, the pathophysiologic mechanisms beyond IgE-mediated hypersensitivity that must be at play, and areas of current and future research. PMID:27393774

  14. Dietary Enrichment with 20% Fish Oil Decreases Mucus Production and the Inflammatory Response in Mice with Ovalbumin-Induced Allergic Lung Inflammation

    PubMed Central

    Hall, Jean A.; Hartman, Jaye; Skinner, Monica M.; Schwindt, Adam R.; Fischer, Kay A.; Vorachek, William R.; Bobe, Gerd; Valentine, Beth A.

    2016-01-01

    The prevalence of asthma has increased in recent decades, which may be related to higher dietary intake of (n-6) polyunsaturated fatty acids (PUFA) and lower intake of (n-3) PUFA, e.g., those contained in fish oil. The objective of this study was to determine if dietary PUFA enrichment decreases mucus production or the inflammatory response associated with ovalbumin (OVA)-induced allergic lung inflammation. Mice (n = 10/group) were fed control, 20% fish oil, or 20% corn oil enriched diets for a total of 12 weeks. At 8 and 10 weeks, mice were given an intraperitoneal injection of saline (10 control-fed mice) or OVA (30 remaining mice). Once at 10 weeks and on 3 consecutive days during week 12, mice were challenged by nebulizing with saline or OVA. Mice were euthanized 24 hours after the last challenge and blood was collected for plasma FA analysis. Bronchoalveolar lavage (BAL) fluid was collected to determine cell composition and Th2-type cytokine (IL-4, IL-13) concentrations. Periodic acid-Schiff (PAS) + mucus-producing cells and CD45+ inflammatory cell infiltrates in lung tissue were quantified using morphometric analysis. Relative abundance of mRNA for mucin (Muc4, Muc5ac, and Muc5b) and Th2-type cytokine (IL-4, IL-5, and IL-13) genes were compared with ß-actin by qPCR. Supplementation with either corn oil or fish oil effectively altered plasma FA profiles towards more (n-6) FA or (n-3) FA, respectively (P < 0.0001). Sensitization and challenge with OVA increased the proportion of neutrophils, lymphocytes, and eosinophils, and decreased the proportion of macrophages and concentrations of IL-13 in BAL fluid; increased the percentage of PAS+ mucus-producing cells and CD45+ inflammatory cell infiltrates in lung tissue; and increased gene expression of mucins (Muc4, Muc5ac, and Muc5b) and Th2-type cytokines (IL-5 and IL-13) in lung tissue of control-fed mice. Dietary PUFA reversed the increase in PAS+ mucus-producing cells (P = 0.003). In addition, dietary

  15. Reduction in pulmonary function after CABG surgery is related to postoperative inflammation and hypercortisolemia

    PubMed Central

    Roncada, Gert; Dendale, Paul; Linsen, Loes; Hendrikx, Marc; Hansen, Dominique

    2015-01-01

    Pulmonary function is significantly reduced in the acute phase after coronary artery bypass graft (CABG) surgery. Because pulmonary function partly depends on respiratory muscle strength, we studied whether reductions in pulmonary function are related to postoperative alterations in circulatory factors that affect muscle protein synthesis. Methods: Slow vital capacity (SVC) was assessed in 22 subjects before and 9 ± 3 days after CABG surgery. Blood testosterone, cortisol, insulin-like growth factor-1 (IGF-1), growth hormone, sex-hormone binding globulin (SHBG), glucose, insulin, c-peptide, c-reactive protein (CRP) content, and free androgen index, cortisol/testosterone ratio, HOMA-IR index were assessed before surgery and during the first three days after surgery. Intubation, surgery time and cumulative chest tube drainage were measured. Correlations between changes in SVC and blood parameters after surgery or subject characteristics were studied. This was a prospective observational study. Results: After CABG surgery SVC decreased by 37 ± 18% (P < 0.01). Free androgen index, blood SHBG, testosterone and IGF-1 content decreased, while HOMA-IR index, cortisol/testosterone ratio, blood growth hormone, insulin and CRP content increased (P < 0.0025) in the first three days after surgery. Decrease in SVC was independently (P < 0.05) related to higher preoperative SVC (SC β = 0.66), and greater increase in blood cortisol (SC β = 0.54) and CRP (SC β = 0.37) content after surgery. Conclusions: Larger reductions in pulmonary function after CABG surgery are present in patients experiencing greater postoperative increases in blood CRP and cortisol levels. Decrements in pulmonary function after CABG surgery are, at least in part, thus related to alterations in circulatory factors that affect muscle protein synthesis. PMID:26379888

  16. The Impact of Aspergillus fumigatus Viability and Sensitization to Its Allergens on the Murine Allergic Asthma Phenotype

    PubMed Central

    Pandey, Sumali; Hoselton, Scott A.; Schuh, Jane M.

    2013-01-01

    Aspergillus fumigatus is a ubiquitously present respiratory pathogen. The outcome of a pulmonary disease may vary significantly with fungal viability and host immune status. Our objective in this study was (1) to assess the ability of inhaled irradiation-killed or live A. fumigatus spores to induce allergic pulmonary disease and (2) to assess the extent to which inhaled dead or live A. fumigatus spores influence pulmonary symptoms in a previously established allergic state. Our newly developed fungal delivery apparatus allowed us to recapitulate human exposure through repeated inhalation of dry fungal spores in an animal model. We found that live A. fumigatus spore inhalation led to a significantly increased humoral response, pulmonary inflammation, and airway remodeling in naïve mice and is more likely to induce allergic asthma symptoms than the dead spores. In contrast, in allergic mice, inhalation of dead and live conidia recruited neutrophils and induced goblet cell metaplasia. This data suggests that asthma symptoms might be exacerbated by the inhalation of live or dead spores in individuals with established allergy to fungal antigens, although the extent of symptoms was less with dead spores. These results are likely to be important while considering fungal exposure assessment methods and for making informed therapeutic decisions for mold-associated diseases. PMID:24063011

  17. TRPV4 inhibition counteracts edema and inflammation and improves pulmonary function and oxygen saturation in chemically induced acute lung injury

    PubMed Central

    Balakrishna, Shrilatha; Song, Weifeng; Achanta, Satyanarayana; Doran, Stephen F.; Liu, Boyi; Kaelberer, Melanie M.; Yu, Zhihong; Sui, Aiwei; Cheung, Mui; Leishman, Emma; Eidam, Hilary S.; Ye, Guosen; Willette, Robert N.; Thorneloe, Kevin S.; Bradshaw, Heather B.; Matalon, Sadis

    2014-01-01

    The treatment of acute lung injury caused by exposure to reactive chemicals remains challenging because of the lack of mechanism-based therapeutic approaches. Recent studies have shown that transient receptor potential vanilloid 4 (TRPV4), an ion channel expressed in pulmonary tissues, is a crucial mediator of pressure-induced damage associated with ventilator-induced lung injury, heart failure, and infarction. Here, we examined the effects of two novel TRPV4 inhibitors in mice exposed to hydrochloric acid, mimicking acid exposure and acid aspiration injury, and to chlorine gas, a severe chemical threat with frequent exposures in domestic and occupational environments and in transportation accidents. Postexposure treatment with a TRPV4 inhibitor suppressed acid-induced pulmonary inflammation by diminishing neutrophils, macrophages, and associated chemokines and cytokines, while improving tissue pathology. These effects were recapitulated in TRPV4-deficient mice. TRPV4 inhibitors had similar anti-inflammatory effects in chlorine-exposed mice and inhibited vascular leakage, airway hyperreactivity, and increase in elastance, while improving blood oxygen saturation. In both models of lung injury we detected increased concentrations of N-acylamides, a class of endogenous TRP channel agonists. Taken together, we demonstrate that TRPV4 inhibitors are potent and efficacious countermeasures against severe chemical exposures, acting against exaggerated inflammatory responses, and protecting tissue barriers and cardiovascular function. PMID:24838754

  18. TRPV4 inhibition counteracts edema and inflammation and improves pulmonary function and oxygen saturation in chemically induced acute lung injury.

    PubMed

    Balakrishna, Shrilatha; Song, Weifeng; Achanta, Satyanarayana; Doran, Stephen F; Liu, Boyi; Kaelberer, Melanie M; Yu, Zhihong; Sui, Aiwei; Cheung, Mui; Leishman, Emma; Eidam, Hilary S; Ye, Guosen; Willette, Robert N; Thorneloe, Kevin S; Bradshaw, Heather B; Matalon, Sadis; Jordt, Sven-Eric

    2014-07-15

    The treatment of acute lung injury caused by exposure to reactive chemicals remains challenging because of the lack of mechanism-based therapeutic approaches. Recent studies have shown that transient receptor potential vanilloid 4 (TRPV4), an ion channel expressed in pulmonary tissues, is a crucial mediator of pressure-induced damage associated with ventilator-induced lung injury, heart failure, and infarction. Here, we examined the effects of two novel TRPV4 inhibitors in mice exposed to hydrochloric acid, mimicking acid exposure and acid aspiration injury, and to chlorine gas, a severe chemical threat with frequent exposures in domestic and occupational environments and in transportation accidents. Postexposure treatment with a TRPV4 inhibitor suppressed acid-induced pulmonary inflammation by diminishing neutrophils, macrophages, and associated chemokines and cytokines, while improving tissue pathology. These effects were recapitulated in TRPV4-deficient mice. TRPV4 inhibitors had similar anti-inflammatory effects in chlorine-exposed mice and inhibited vascular leakage, airway hyperreactivity, and increase in elastance, while improving blood oxygen saturation. In both models of lung injury we detected increased concentrations of N-acylamides, a class of endogenous TRP channel agonists. Taken together, we demonstrate that TRPV4 inhibitors are potent and efficacious countermeasures against severe chemical exposures, acting against exaggerated inflammatory responses, and protecting tissue barriers and cardiovascular function. PMID:24838754

  19. Dietary long-chain omega-3 fatty acids do not diminish eosinophilic pulmonary inflammation in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of fish oil supplements on diminishing airway inflammation in asthma have been studied in mouse models and human intervention trials with varying results. However, the independent effects of the main omega-3 PUFAs found in fish oil, eicosapentaenoic acid (EPA) and docosahexaenoic acid (D...

  20. Role of inducible nitric oxide synthase-derived nitric oxide in lipopolysaccharide plus interferon-gamma-induced pulmonary inflammation.

    PubMed

    Zeidler, Patti C; Millecchia, Lyndell M; Castranova, Vincent

    2004-02-15

    Exposure of mice to lipopolysaccharide (LPS) plus interferon-gamma (IFN-gamma) increases nitric oxide (NO) production, which is proposed to play a role in the resulting pulmonary damage and inflammation. To determine the role of inducible nitric oxide synthase (iNOS)-induced NO in this lung reaction, the responses of inducible nitric oxide synthase knockout (iNOS KO) versus C57BL/6J wild-type (WT) mice to aspirated LPS + IFN-gamma were compared. Male mice (8-10 weeks) were exposed to LPS (1.2 mg/kg) + IFN-gamma (5000 U/mouse) or saline. At 24 or 72 h postexposure, lungs were lavaged with saline and the acellular fluid from the first bronchoalveolar lavage (BAL) was analyzed for total antioxidant capacity (TAC), lactate dehydrogenase (LDH) activity, albumin, tumor necrosis factor-alpha (TNF-alpha), and macrophage inflammatory protein-2 (MIP-2). The cellular fraction of the total BAL was used to determine alveolar macrophage (AM) and polymorphonuclear leukocyte (PMN) counts, and AM zymosan-stimulated chemiluminescence (AM-CL). Pulmonary responses 24 h postexposure to LPS + IFN-gamma were characterized by significantly decreased TAC, increased BAL AMs and PMNs, LDH, albumin, TNF-alpha, and MIP-2, and enhanced AM-CL to the same extent in both WT and iNOS KO mice. Responses 72 h postexposure were similar; however, significant differences were found between WT and iNOS KO mice. iNOS KO mice demonstrated a greater decline in total antioxidant capacity, greater BAL PMNs, LDH, albumin, TNF-alpha, and MIP-2, and an enhanced AM-CL compared to the WT. These data suggest that the role of iNOS-derived NO in the pulmonary response to LPS + IFN-gamma is anti-inflammatory, and this becomes evident over time. PMID:14962504

  1. Depletion of Neutrophils Promotes the Resolution of Pulmonary Inflammation and Fibrosis in Mice Infected with Paracoccidioides brasiliensis

    PubMed Central

    Arango, Julián Camilo

    2016-01-01

    Chronic stages of paracoccidioidomycosis (PCM) are characterized by granulomatous lesions which promote the development of pulmonary fibrosis leading to the loss of respiratory function in 50% of patients; in addition, it has been observed that neutrophils predominate during these chronic stages of P. brasiliensis infection. The goal of this study was to evaluate the role of the neutrophil during the chronic stages of experimental pulmonary PCM and during the fibrosis development and tissue repair using a monoclonal specific to this phagocytic cell. Male BALB/c mice were inoculated intranasally with 1.5x106 P. brasiliensis yeast cells. A monoclonal antibody specific to neutrophils was administered at 4 weeks post-inoculation followed by doses every 48h during two weeks. Mice were sacrificed at 8 and 12 weeks post-inoculation to assess cellularity, fungal load, cytokine/chemokine levels, histopathological analysis, collagen and expression of genes related to fibrosis development. Depletion of neutrophils was associated with a significant decrease in the number of eosinophils, dendritic cells, B cells, CD4-T cells, MDSCs and Treg cells, fungal load and levels of most of the pro-inflammatory cytokines/chemokines evaluated, including IL-17, TNF-α and TGF-β1. Recovery of lung architecture was also associated with reduced levels of collagen, high expression of TGF-β3, matrix metalloproteinase (MMP)-12 and -14, and decreased expression of tissue inhibitor metalloproteinase (TIMP)-2, and MMP-8. Depletion of neutrophils might attenuate lung fibrosis and inflammation through down-regulating TGF-β1, TNF-α, IL-17, MMP-8 and TIMP-2. These results suggest that neutrophil could be considered as a therapeutic target in pulmonary fibrosis induced by P. brasiliensis. PMID:27690127

  2. Acute pulmonary toxicity and inflammation induced by combined exposure to didecyldimethylammonium chloride and ethylene glycol in rats.

    PubMed

    Kwon, Do Young; Kim, Hyun-Mi; Kim, Eunji; Lim, Yeon-Mi; Kim, Pilje; Choi, Kyunghee; Kwon, Jung-Taek

    2016-02-01

    Didecyldimethylammonium chloride (DDAC), an antimicrobial agent, has been reported to induce pulmonary toxicity in animal studies. DDAC is frequently used in spray-form household products in combination with ethylene glycol (EG). The purpose of this study was to evaluate the toxic interaction between DDAC and EG in the lung. DDAC at a sub-toxic dose (100 μg/kg body weight) was mixed with a non-toxic dose of EG (100 or 200 μg/kg body weight), and was administrated to rats via intratracheal instillation. Lactate dehydrogenase activity and total protein content in the bronchoalveolar lavage fluid (BALF) were not changed by singly treated DDAC or EG, but significantly enhanced at 1 d after treatment with the mixture, with the effect dependent on the dose of EG. Total cell count in BALF was largely increased and polymorphonuclear leukocytes were predominantly recruited to the lung in rats administrated with the mixture. Inflammatory cytokines, tumor necrosis factor-alpha and interleukin-6 also appeared to be increased by the mixture of DDAC and EG (200 μg/kg body weight) at 1 d post-exposure, which might be associated with the increase in inflammatory cells in lung. BALF protein content and inflammatory cell recruitment in the lung still remained elevated at 7 d after the administration of DDAC with the higher dose of EG. These results suggest that the combination of DDAC and EG can synergistically induce pulmonary cytotoxicity and inflammation, and EG appears to amplify the harmful effects of DDAC on the lung. Therefore pulmonary exposure to these two chemicals commonly found in commercial products can be a potential hazard to human health. PMID:26763389

  3. Biodiesel versus diesel exposure: Enhanced pulmonary inflammation, oxidative stress, and differential morphological changes in the mouse lung

    SciTech Connect

    Yanamala, Naveena; Birch, M. Eileen; Kisin, Elena; Bugarski, Aleksandar D.

    2013-10-15

    The use of biodiesel (BD) or its blends with petroleum diesel (D) is considered to be a viable approach to reduce occupational and environmental exposures to particulate matter (PM). Due to its lower particulate mass emissions compared to D, use of BD is thought to alleviate adverse health effects. Considering BD fuel is mainly composed of unsaturated fatty acids, we hypothesize that BD exhaust particles could induce pronounced adverse outcomes, due to their ability to readily oxidize. The main objective of this study was to compare the effects of particles generated by engine fueled with neat BD and neat petroleum-based D. Biomarkers of tissue damage and inflammation were significantly elevated in lungs of mice exposed to BD particulates. Additionally, BD particulates caused a significant accumulation of oxidatively modified proteins and an increase in 4-hydroxynonenal. The up-regulation of inflammatory cytokines/chemokines/growth factors was higher in lungs upon BD particulate exposure. Histological evaluation of lung sections indicated presence of lymphocytic infiltrate and impaired clearance with prolonged retention of BD particulate in pigment laden macrophages. Taken together, these results clearly indicate that BD exhaust particles could exert more toxic effects compared to D. - Highlights: • Exposure of mice to BDPM caused higher pulmonary toxicity compared to DPM. • Oxidative stress and inflammation were higher in BD vs to D exposed mice. • Inflammatory lymphocyte infiltrates were seen only in lungs of mice exposed to BD. • Ineffective clearance, prolonged PM retention was present only after BD exposure.

  4. An Immature Myeloid/Myeloid-Suppressor Cell Response Associated with Necrotizing Inflammation Mediates Lethal Pulmonary Tularemia.

    PubMed

    Periasamy, Sivakumar; Avram, Dorina; McCabe, Amanda; MacNamara, Katherine C; Sellati, Timothy J; Harton, Jonathan A

    2016-03-01

    Inhalation of Francisella tularensis (Ft) causes acute and fatal pneumonia. The lung cytokine milieu favors exponential Ft replication, but the mechanisms underlying acute pathogenesis and death remain unknown. Evaluation of the sequential and systemic host immune response in pulmonary tularemia reveals that in contrast to overwhelming bacterial burden or cytokine production, an overt innate cellular response to Ft drives tissue pathology and host mortality. Lethal infection with Ft elicits medullary and extra-medullary myelopoiesis supporting recruitment of large numbers of immature myeloid cells and MDSC to the lungs. These cells fail to mature and die, leading to subsequent necrotic lung damage, loss of pulmonary function, and host death that is partially dependent upon immature Ly6G+ cells. Acceleration of this process may account for the rapid lethality seen with Ft SchuS4. In contrast, during sub-lethal infection with Ft LVS the pulmonary cellular response is characterized by a predominance of mature neutrophils and monocytes required for protection, suggesting a required threshold for lethal bacterial infection. Further, eliciting a mature phagocyte response provides transient, but dramatic, innate protection against Ft SchuS4. This study reveals that the nature of the myeloid cell response may be the primary determinant of host mortality versus survival following Francisella infection. PMID:27015566

  5. An Immature Myeloid/Myeloid-Suppressor Cell Response Associated with Necrotizing Inflammation Mediates Lethal Pulmonary Tularemia.

    PubMed

    Periasamy, Sivakumar; Avram, Dorina; McCabe, Amanda; MacNamara, Katherine C; Sellati, Timothy J; Harton, Jonathan A

    2016-03-01

    Inhalation of Francisella tularensis (Ft) causes acute and fatal pneumonia. The lung cytokine milieu favors exponential Ft replication, but the mechanisms underlying acute pathogenesis and death remain unknown. Evaluation of the sequential and systemic host immune response in pulmonary tularemia reveals that in contrast to overwhelming bacterial burden or cytokine production, an overt innate cellular response to Ft drives tissue pathology and host mortality. Lethal infection with Ft elicits medullary and extra-medullary myelopoiesis supporting recruitment of large numbers of immature myeloid cells and MDSC to the lungs. These cells fail to mature and die, leading to subsequent necrotic lung damage, loss of pulmonary function, and host death that is partially dependent upon immature Ly6G+ cells. Acceleration of this process may account for the rapid lethality seen with Ft SchuS4. In contrast, during sub-lethal infection with Ft LVS the pulmonary cellular response is characterized by a predominance of mature neutrophils and monocytes required for protection, suggesting a required threshold for lethal bacterial infection. Further, eliciting a mature phagocyte response provides transient, but dramatic, innate protection against Ft SchuS4. This study reveals that the nature of the myeloid cell response may be the primary determinant of host mortality versus survival following Francisella infection.

  6. An Immature Myeloid/Myeloid-Suppressor Cell Response Associated with Necrotizing Inflammation Mediates Lethal Pulmonary Tularemia

    PubMed Central

    Periasamy, Sivakumar; Avram, Dorina; McCabe, Amanda; MacNamara, Katherine C.; Sellati, Timothy J.; Harton, Jonathan A.

    2016-01-01

    Inhalation of Francisella tularensis (Ft) causes acute and fatal pneumonia. The lung cytokine milieu favors exponential Ft replication, but the mechanisms underlying acute pathogenesis and death remain unknown. Evaluation of the sequential and systemic host immune response in pulmonary tularemia reveals that in contrast to overwhelming bacterial burden or cytokine production, an overt innate cellular response to Ft drives tissue pathology and host mortality. Lethal infection with Ft elicits medullary and extra-medullary myelopoiesis supporting recruitment of large numbers of immature myeloid cells and MDSC to the lungs. These cells fail to mature and die, leading to subsequent necrotic lung damage, loss of pulmonary function, and host death that is partially dependent upon immature Ly6G+ cells. Acceleration of this process may account for the rapid lethality seen with Ft SchuS4. In contrast, during sub-lethal infection with Ft LVS the pulmonary cellular response is characterized by a predominance of mature neutrophils and monocytes required for protection, suggesting a required threshold for lethal bacterial infection. Further, eliciting a mature phagocyte response provides transient, but dramatic, innate protection against Ft SchuS4. This study reveals that the nature of the myeloid cell response may be the primary determinant of host mortality versus survival following Francisella infection. PMID:27015566

  7. Use of Metal Oxide Nanoparticle Band Gap to Develop a Predictive Paradigm for Oxidative Stress and Acute Pulmonary Inflammation

    PubMed Central

    Zhang, Haiyuan; Ji, Zhaoxia; Xia, Tian; Meng, Huan; Low-Kam, Cecile; Liu, Rong; Pokhrel, Suman; Lin, Sijie; Wang, Xiang; Liao, Yu-Pei; Wang, Meiying; Li, Linjiang; Rallo, Robert; Damoiseaux, Robert; Telesca, Donatello; Mädler, Lutz; Cohen, Yoram; Zink, Jeffrey I.; Nel, Andre E.

    2014-01-01

    We demonstrate for 24 metal oxide (MOx) nanoparticles that it is possible to use conduction band energy levels to delineate their toxicological potential at cellular and whole animal levels. Among the materials, the overlap of conduction band energy (Ec) levels with the cellular redox potential (−4.12 to −4.84 eV) was strongly correlated to the ability of Co3O4, Cr2O3, Ni2O3, Mn2O3 and CoO nanoparticles to induce oxygen radicals, oxidative stress and inflammation. This outcome is premised on permissible electron transfers from the biological redox couples that maintain the cellular redox equilibrium to the conduction band of the semiconductor particles. Both single parameter cytotoxic as well as multi-parameter oxidative stress assays in cells showed excellent correlation to the generation of acute neutrophilic inflammation and cytokine responses in the lungs of CB57 Bl/6 mice. Co3O4, Ni2O3, Mn2O3 and CoO nanoparticles could also oxidize cytochrome c as a representative redox couple involved in redox homeostasis. While CuO and ZnO generated oxidative stress and acute pulmonary inflammation that is not predicted by Ec levels, the adverse biological effects of these materials could be explained by their solubility, as demonstrated by ICP-MS analysis. Taken together, these results demonstrate, for the first time, that it is possible to predict the toxicity of a large series of MOx nanoparticles in the lung premised on semiconductor properties and an integrated in vitro/in vivo hazard ranking model premised on oxidative stress. This establishes a robust platform for modeling of MOx structure-activity relationships based on band gap energy levels and particle dissolution. This predictive toxicological paradigm is also of considerable importance for regulatory decision-making about this important class of engineered nanomaterials. PMID:22502734

  8. Patients with chronic obstructive pulmonary disease and chronically colonized with Haemophilus influenzae during stable disease phase have increased airway inflammation

    PubMed Central

    Tufvesson, Ellen; Bjermer, Leif; Ekberg, Marie

    2015-01-01

    Background Some patients with chronic obstructive pulmonary disease (COPD) show increased airway inflammation and bacterial colonization during stable phase. The aim of this study was to follow COPD patients and investigate chronic colonization with pathogenic bacteria during stable disease phase, and relate these findings to clinical parameters, inflammatory pattern, lung function, and exacerbations. Methods Forty-three patients with COPD were included while in a stable state and followed up monthly until exacerbation or for a maximum of 6 months. The patients completed the Clinical COPD Questionnaire and Medical Research Council dyspnea scale questionnaires, and exhaled breath condensate was collected, followed by spirometry, impulse oscillometry, and sputum induction. Results Ten patients were chronically colonized (ie, colonized at all visits) with Haemophilus influenzae during stable phase. These patients had higher sputum levels of leukotriene B4 (P<0.001), 8-isoprostane (P=0.002), myeloperoxidase activity (P=0.028), and interleukin-8 (P=0.02) during stable phase when compared with other patients. In addition, they had lower forced vital capacity (P=0.035) and reactance at 5 Hz (P=0.034), but there was no difference in forced expiratory volume in 1 second (FEV1), FEV1 % predicted, forced vital capacity % predicted, exhaled breath condensate biomarkers, C-reactive protein, or Clinical COPD Questionnaire and Medical Research Council dyspnea scale results. Three patients had intermittent colonization (colonized at only some visits) of H. influenzae during stable phase, and had lower levels of inflammatory biomarkers in sputum when compared with the chronically colonized patients. The difference in airway inflammation seen during stable phase in patients chronically colonized with H. influenzae was not observed during exacerbations. Conclusion Some COPD patients who were chronically colonized with H. influenzae during stable phase showed increased airway

  9. Quantitative trait locus mapping of susceptibilities to butylated hydroxytoluene-induced lung tumor promotion and pulmonary inflammation in CXB mice.

    PubMed

    Malkinson, Alvin M; Radcliffe, Richard A; Bauer, Alison K

    2002-03-01

    We have reported previously [Bauer,A.K. et al. (2001) Exp. Lung Res., 27, 197-216] that the 13 CXB recombinant inbred mouse strains derived from BALB/cByJ and C57BL/6J progenitors vary in their responsiveness to both lung tumor promotion and pulmonary inflammation induced by chronic administration of butylated hydroxytoluene (BHT). Herein we have applied these data, along with markers known to be polymorphic among these strains, to conduct linkage analysis of these susceptibilities. This enabled us to assign provisional quantitative trait loci (QTL) that govern these strain variations in susceptibility as a genetic approach to assessing the influence of inflammation on tumorigenesis. A Chr 15 (39.1-55.6 cM) QTL regulated susceptibility to two-stage carcinogenesis, a protocol in which chronic BHT exposure followed a single urethane injection; a similar QTL on Chr 15 (46.7-61.7 cM) influenced BHT induction of cyclooxygenase-2 (COX-2) expression. A Chr 18 (37-41 cM) QTL modulated both the number of lung tumors induced by 3-methylcholanthrene (MCA) injection with subsequent treatment with BHT as well as BHT-induced ingress of macrophages into airways. Other chromosomal sites that affected either the degree of BHT-elicited macrophage infiltration, Chr 9 (48-61 cM), or COX-2 induction, Chr 10 (59-65 cM), were reported to influence susceptibility to lung tumorigenesis in other strains. The fact that common chromosomal locations regulate both inflammation and carcinogenesis suggests a pathogenic role of inflammatory mediators in tumor development that may be exploited for chemoprevention of lung cancer.

  10. Particulate nature of inhaled zinc oxide nanoparticles determines systemic effects and mechanisms of pulmonary inflammation in mice.

    PubMed

    Chen, Jen-Kun; Ho, Chia-Chi; Chang, Han; Lin, Jing-Fang; Yang, Chung Shi; Tsai, Ming-Hsien; Tsai, Hui-Ti; Lin, Pinpin

    2015-02-01

    Inhalation of zinc oxide nanoparticles (ZnONP) has potential health impact. Because zinc ion may involve in the toxicity of ZnONP, we compared adverse effects of inhaled aerosolized ZnONP and zinc nitrate in mice. Aerosolized ZnONP and zinc nitrate were well-dispersed in the inhalation chamber. Inhalation of 0.86 mg/m(3) ZnONP or 1.98 mg/m(3) zinc nitrate for 5 h caused acute inflammation mainly at bronchioloalveolar junctions of lungs at 24-h post-exposure. Inhalation of ZnONP or zinc nitrate increased metallothionein expression in the epithelial cells of brochioloalveolar junction. While the effects on cytokines secretion in bronchoalveolar lavage were similar between ZnONP and zinc nitrate, only ZnONP increased lactate dehydrogenase activity. However, repeated exposure to 0.86 mg/m(3) ZnONP 5 h/day for 5 days failed to cause a similar adverse effect. Either single or repeated exposure to 0.86 mg/m(3) ZnONP increased activities of glutamate oxaloacetate transaminase, glutamate pyruvate transaminase and creatine phosphokinase in blood. In contrast, exposure to zinc nitrate had no similar systemic effects. In human bronchial epithelial cells, ZnONP-induced interleukin-8 secretion was partially prevented by co-treatment with the Toll-like receptor 4 (TLR4) inhibitor. Furthermore, ZnONP-induced pulmonary inflammation was greater in wild-type mice than in TLR4-deficent mice. It appears that ZnONP-induced acute pulmonary inflammation partially depended on TLR4. In summary, we demonstrated the dose-responsive effects for inhalation of ZnONP and zinc nitrate in mice. The threshold of cytokines induction for inhalation of ZnONP for 5 h was 0.43 mg/m(3). The particulate characters of ZnONP might contribute to the systemic adverse effects and shall be evaluated for assessing its health impact in humans.

  11. Regional pulmonary inflammation in an endotoxemic ovine acute lung injury model.

    PubMed

    Fernandez-Bustamante, A; Easley, R B; Fuld, M; Mulreany, D; Chon, D; Lewis, J F; Simon, B A

    2012-08-15

    The regional distribution of inflammation during acute lung injury (ALI) is not well known. In an ovine ALI model we studied regional alveolar inflammation, surfactant composition, and CT-derived regional specific volume change (sVol) and specific compliance (sC). 18 ventilated adult sheep received IV lipopolysaccharide (LPS) until severe ALI was achieved. Blood and bronchoalveolar lavage (BAL) samples from apical and basal lung regions were obtained at baseline and injury time points, for analysis of cytokines (IL-6, IL-1β), BAL protein and surfactant composition. Whole lung CT images were obtained in 4 additional sheep. BAL protein and IL-1β were significantly higher in injured apical vs. basal regions. No significant regional surfactant composition changes were observed. Baseline sVol and sC were lower in apex vs. base; ALI enhanced this cranio-caudal difference, reaching statistical significance only for sC. This study suggests that apical lung regions show greater inflammation than basal ones during IV LPS-induced ALI which may relate to differences in regional mechanical events.

  12. Pulmonary surfactant phosphatidylglycerol inhibits respiratory syncytial virus–induced inflammation and infection

    PubMed Central

    Numata, Mari; Chu, Hong Wei; Dakhama, Azzeddine; Voelker, Dennis R.

    2009-01-01

    Respiratory syncytial virus (RSV) is the most common cause of hospitalization for respiratory tract infection in young children. It is also a significant cause of morbidity and mortality in elderly individuals and in persons with asthma and chronic obstructive pulmonary disease. Currently, no reliable vaccine or simple RSV antiviral therapy is available. Recently, we determined that the minor pulmonary surfactant phospholipid, palmitoyl-oleoyl-phosphatidylglycerol (POPG), could markedly attenuate inflammatory responses induced by lipopolysaccharide through direct interactions with the Toll-like receptor 4 (TLR4) interacting proteins CD14 and MD-2. CD14 and TLR4 have been implicated in the host response to RSV. Treatment of bronchial epithelial cells with POPG significantly inhibited interleukin-6 and -8 production, as well as the cytopathic effects induced by RSV. The phospholipid bound RSV with high affinity and inhibited viral attachment to HEp2 cells. POPG blocked viral plaque formation in vitro by 4 log units, and markedly suppressed the expansion of plaques from cells preinfected with the virus. Administration of POPG to mice, concomitant with viral infection, almost completely eliminated the recovery of virus from the lungs at 3 and 5 days after infection, and abrogated IFN-γ (IFN-γ) production and the enhanced expression of surfactant protein D (SP-D). These findings demonstrate an important approach to prevention and treatment of RSV infections using exogenous administration of a specific surfactant phospholipid. PMID:20080799

  13. Pulmonary Inflammation Impacts on CYP1A1-Mediated Respiratory Tract DNA Damage Induced by the Carcinogenic Air Pollutant Benzo[a]pyrene

    PubMed Central

    Arlt, Volker M.; Krais, Annette M.; Godschalk, Roger W.; Riffo-Vasquez, Yanira; Mrizova, Iveta; Roufosse, Candice A.; Corbin, Charmaine; Shi, Quan; Frei, Eva; Stiborova, Marie; van Schooten, Frederik-Jan; Phillips, David H.; Spina, Domenico

    2015-01-01

    Pulmonary inflammation can contribute to the development of lung cancer in humans. We investigated whether pulmonary inflammation alters the genotoxicity of polycyclic aromatic hydrocarbons (PAHs) in the lungs of mice and what mechanisms are involved. To model nonallergic acute inflammation, mice were exposed intranasally to lipopolysaccharide (LPS; 20 µg/mouse) and then instilled intratracheally with benzo[a]pyrene (BaP; 0.5 mg/mouse). BaP-DNA adduct levels, measured by 32P-postlabeling analysis, were approximately 3-fold higher in the lungs of LPS/BaP-treated mice than in mice treated with BaP alone. Pulmonary Cyp1a1 enzyme activity was decreased in LPS/BaP-treated mice relative to BaP-treated mice suggesting that pulmonary inflammation impacted on BaP-induced Cyp1a1 activity in the lung. Our results showed that Cyp1a1 appears to be important for BaP detoxification in vivo and that the decrease of pulmonary Cyp1a1 activity in LPS/BaP-treated mice results in a decrease of pulmonary BaP detoxification, thereby enhancing BaP genotoxicity (ie, DNA adduct formation) in the lung. Because less BaP was detoxified by Cyp1a1 in the lungs of LPS/BaP-treated mice, more BaP circulated via the blood to extrapulmonary tissues relative to mice treated with BaP only. Indeed, we observed higher BaP-DNA adduct levels in livers of LPS/BaP-treated mice compared with BaP-treated mice. Our results indicate that pulmonary inflammation could be a critical determinant in the induction of genotoxicity in the lung by PAHs like BaP. Cyp1a1 appears to be involved in both BaP bioactivation and detoxification although the contribution of other enzymes to BaP-DNA adduct formation in lung and liver under inflammatory conditions remains to be explored. PMID:25911668

  14. RAPID COMMUNICATION IL-4 INDUCES IL-6 AND SIGNS OF ALLERGIC-TYPE INFLAMMATION IN THE NASAL AIRWAYS OF NONALLERGIC INDIVIDUALS

    EPA Science Inventory


    In addition to its more widely recognized role in promoting IgE synthesis, we speculate that interleukin-4 (IL-4) may modulate both allergic- and nonallergic-type inflammatory processes in the airway mucosa. We examined in vivo the effect of IL-4 on granulocyte and cytokine h...

  15. Elevated expression of IL-23/IL-17 pathway-related mediators correlates with exacerbation of pulmonary inflammation during polymicrobial sepsis.

    PubMed

    Cauvi, David M; Williams, Michael R; Bermudez, Jose A; Armijo, Gabrielle; De Maio, Antonio

    2014-09-01

    Sepsis is a leading cause of death in the United States, claiming more than 215,000 lives every year. A primary condition observed in septic patients is the incidence of acute respiratory distress syndrome, which is characterized by the infiltration of neutrophils into the lung. Prior studies have shown differences in pulmonary neutrophil accumulation in C57BL/6J (B6) and A/J mice after endotoxic and septic shock. However, the mechanism by which neutrophils accumulate in the lung after polymicrobial sepsis induced by cecal ligation and puncture still remains to be fully elucidated. We show in this study that lung inflammation, characterized by neutrophil infiltration and expression of inflammatory cytokines, was aggravated in B6 as compared with A/J mice and correlated with a high expression of p19, the interleukin 23 (IL-23)-specific subunit. Furthermore, lipopolysaccharide stimulation of B6- and A/J-derived macrophages, one of the main producers of IL-23 and IL-12, revealed that B6 mice favored the production of IL-23, whereas A/J-derived macrophages expressed higher levels of IL-12. In addition, expression of IL-17, known to be upregulated by IL-23, was also more elevated in the lung of B6 mice when compared with that in the lung of A/J mice. In contrast, pulmonary expression of interferon-γ was much more pronounced in A/J than that in B6 mice, which was most likely a result of a higher production of IL-12. The expression of the IL-17-dependent neutrophil recruitment factors chemokine (CXC motif) ligand 2 and granulocyte colony-stimulating factor was also higher in B6 mice. Altogether, these results suggest that increased activation of the IL-23/IL-17 pathway has detrimental effects on sepsis-induced lung inflammation, whereas activation of the IL-12/interferon-γ pathway may lead, in contrast, to less pronounced inflammatory events. These two pathways may become possible therapeutic targets for the treatment of sepsis-induced acute respiratory distress

  16. Targeting Mast Cells and Basophils with Anti-FcεRIα Fab-Conjugated Celastrol-Loaded Micelles Suppresses Allergic Inflammation.

    PubMed

    Peng, Xia; Wang, Juan; Li, Xianyang; Lin, Lihui; Xie, Guogang; Cui, Zelin; Li, Jia; Wang, Yuping; Li, Li

    2015-12-01

    Mast cells and basophils are effector cells in the pathophysiology of allergic diseases. Targeted elimination of these cells may be a promising strategy for the treatment of allergic disorders. Our present study aims at targeted delivery of anti-FcεRIα Fab-conjugated celastrol-loaded micelles toward FcεRIα receptors expressed on mast cells and basophils to have enhanced anti-allergic effect. To achieve this aim, we prepared celastrol-loaded (PEO-block-PPO-block-PEO, Pluronic) polymeric nanomicelles using thin-film hydration method. The anti-FcεRIα Fab Fragment was then conjugated to carboxyl groups on drug-loaded micelles via EDC amidation reaction. The anti-FcεRIα Fab-conjugated celastrol-loaded micelles revealed uniform particle size (93.43 ± 12.93 nm) with high loading percentage (21.2 ± 1.5% w/w). The image of micelles showed oval and rod like. The anti-FcεRIα Fab-conjugated micelles demonstrated enhanced cellular uptake and cytotoxity toward target KU812 cells than non-conjugated micelles in vitro. Furthermore, diffusion of the drug into the cells allowed an efficient induction of cell apoptosis. In mouse model of allergic asthma, treatment with anti-FcεRIα Fab-conjugated micelles increased lung accumulation of micelles, and significantly reduced OVA-sIgE, histamine and Th2 cytokines (IL-4, IL-5, TNF-α) levels, eosinophils infiltration and mucus production. In addition, in mouse model of passive cutaneous anaphylaxis, anti-FcεRIα Fab-conjugated celastrol-loaded micelles treatment significantly decreased extravasated evan's in the ear. These results indicate that anti-FcεRIα Fab-conjugated celastrol-loaded micelles can target and selectively kill mast cells and basophils which express FcεRIα, and may be efficient reagents for the treatment of allergic disorders and mast cell related diseases.

  17. Effect of early treatment with transcutaneous electrical diaphragmatic stimulation (TEDS) on pulmonary inflammation induced by bleomycin

    PubMed Central

    Santos, Laisa A.; Silva, Carlos A.; Polacow, Maria L. O.

    2013-01-01

    Background Bleomycin (B) is an antineoplastic drug that has pulmonary fibrosis as a side effect. There are few experimental studies about the effects of physical therapy treatment in this case. Objective The objective was to study rat lungs treated with B and precocious intervention by transcutaneous electrical diaphragmatic stimulation (TEDS). Method Wistar rats were divided into 4 groups (n=5): a control group (C); a stimulated group (TEDS); a group treated with a single dose of B (intratracheally, 2.5 mg/kg) (B); and a group treated with B and electric stimulation (B + TEDS). After the B instillation, the electrical stimulation was applied for 7 days, for a duration of 20 minutes. Lung fragments were histologically processed with hematoxylin and eosin (HE) and 8-isoprostane-PGF2α (8-iso-PGF2α). The density of the alveolar area was determined by planimetry, the inflammatory profile was defined by the number of cells, and the level of oxidative stress in the pulmonary tissue was evaluated by 8-iso-PGF2α. For statistical analysis of the data, the Shapiro-Wilk test was used, followed by a one-way ANOVA with the post-hoc Bonferroni test (p≤0.05). Results The B group exhibited a significant reduction in the area density, and the acute treatment with B + TEDS prevented this reduction. There were increased numbers of fibroblasts, leukocytes, and macrophages in the B group, as well as increased lipid peroxidation, which was observed only in this group. Conclusion B promoted a reduction in the alveolar density area, thereby inducing the inflammatory process and increasing the production of free radicals. These effects were minimized by the application of TEDS at the initial treatment stage. PMID:24346295

  18. What Causes Pulmonary Hypertension?

    MedlinePlus

    ... from the NHLBI on Twitter. What Causes Pulmonary Hypertension? Pulmonary hypertension (PH) begins with inflammation and changes in the ... different types of PH. Group 1 pulmonary arterial hypertension (PAH) may have no known cause, or the ...

  19. Pulmonary inflammation induced by repeated inhalations of beta(1,3)-D-glucan and endotoxin.

    PubMed Central

    Fogelmark, B.; Sjöstrand, M.; Rylander, R.

    1994-01-01

    In an animal model of hypersensitivity pneumonitis (HP) guinea-pigs were exposed for 5 weeks to an aerosol of bacterial endotoxin, beta(1,3)-D-glucan (curdlan) or a combination. Exposure to endotoxin or curdlan showed only small changes in inflammatory cells in airways or the lung wall, histologically or in terms of enzyme secretion from alveolar macrophages. When the two agents were given together, a histology resembling HP was seen with alveolar infiltrates and early granulomas. Inflammatory cells in airways were increased and enzyme production of macrophages was changed, suggesting an effect of curdlan on the inflammatory regulating capacity of airway macrophages. The results suggest that interference with macrophage function and inflammation are important components in the development of HP. PMID:8199009

  20. Acute pulmonary inflammation induced by exposure of the airways to staphylococcal enterotoxin type B in rats

    SciTech Connect

    Desouza, Ivani A. . E-mail: ivanidesouza@fcm.unicamp.br; Franco-Penteado, Carla F.; Camargo, Enilton A.; Lima, Carmen S.P.; Teixeira, Simone A.; Muscara, Marcelo N.; De Nucci, Gilberto; Antunes, Edson

    2006-11-15

    Staphylocococcus aureus is a gram-positive bacterium that produces several enterotoxins, which are responsible for most part of pathological conditions associated to staphylococcal infections, including lung inflammation. This study aimed to investigate the underlying inflammatory mechanisms involved in leukocyte recruitment in rats exposed to staphylococcal enterotoxin B (SEB). Rats were anesthetized with pentobarbital sodium and intratracheally injected with either SEB or sterile phosphate-buffered saline (PBS, 0.4 ml). Airways exposition to SEB (7.5-250 ng/trachea) caused a dose- and time-dependent neutrophil accumulation in BAL fluid, the maximal effects of which were observed at 4 h post-SEB exposure (250 ng/trachea). Eosinophils were virtually absent in BAL fluid, whereas mononuclear cell counts increased only at 24 h post-SEB. Significant elevations of granulocytes in bone marrow (mature and immature forms) and peripheral blood have also been detected. In BAL fluid, marked elevations in the levels of lipid mediators (LTB{sub 4} and PGE{sub 2}) and cytokines (TNF-{alpha}, IL-6 and IL-10) were observed after SEB instillation. The SEB-induced neutrophil accumulation in BAL fluid was reduced by pretreatment with dexamethasone (0.5 mg/kg), the COX-2 inhibitor celecoxib (3 mg/kg), the selective iNOS inhibitor compound 1400 W (5 mg/kg) and the lipoxygenase inhibitor AA-861 (200 {mu}g/kg). In separate experiments carried out with rat isolated peripheral neutrophils, SEB failed to induce neutrophil adhesion to serum-coated plates and chemotaxis. In conclusion, rat airways exposition to SEB causes a neutrophil-dependent lung inflammation at 4 h as result of the release of proinflammatory (NO, PGE{sub 2}, LTB{sub 4}, TNF-{alpha}, IL-6) and anti-inflammatory mediators (IL-10)

  1. Dietary Long-Chain Omega-3 Fatty Acids Do Not Diminish Eosinophilic Pulmonary Inflammation in Mice

    PubMed Central

    Bratt, Jennifer M.; Jiang, Xiaowen; Pedersen, Theresa L.; Grapov, Dmitry; Adkins, Yuriko; Kelley, Darshan S.; Newman, John W.; Kenyon, Nicholas J.; Stephensen, Charles B.

    2014-01-01

    Although the effects of fish oil supplements on airway inflammation in asthma have been studied with varying results, the independent effects of the fish oil components, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), administered separately, are untested. Here, we investigated airway inflammation and hyperresponsiveness using a mouse ovalbumin exposure model of asthma assessing the effects of consuming EPA (1.5% wt/wt), DHA (1.5% wt/wt), EPA plus DHA (0.75% each), or a control diet with no added omega-3 polyunsaturated fatty acids. Consuming these diets for 6 weeks resulted in erythrocyte membrane EPA contents (molar %) of 9.0 (± 0.6), 3.2 (± 0.2), 6.8 (± 0.5), and 0.01 (± 0.0)%; DHA contents were 6.8 (± 0.1), 15.6 (± 0.5), 12.3 (± 0.3), and 3.8 (± 0.2)%, respectively. The DHA group had the highest bronchoalveolar lavage (BAL) fluid eosinophil and IL-6 levels (P < 0.05). Similar trends were seen for macrophages, IL-4, and IL-13, whereas TNF-α was lower in omega-3 polyunsaturated fatty acid groups than the control (P < 0.05). The DHA group also had the highest airway resistance, which differed significantly from the EPA plus DHA group (P < 0.05), which had the lowest. Oxylipins were measured in plasma and BAL fluid, with DHA and EPA suppressing arachidonic acid–derived oxylipin production. DHA-derived oxylipins from the cytochrome P450 and 15-lipoxygenase pathways correlated significantly with BAL eosinophil levels. The proinflammatory effects of DHA suggest that the adverse effects of individual fatty acid formulations should be thoroughly considered before any use as therapeutic agents in asthma. PMID:24134486

  2. Electrophilic Fatty Acid Species Inhibit 5-Lipoxygenase and Attenuate Sepsis-Induced Pulmonary Inflammation

    PubMed Central

    Awwad, Khader; Steinbrink, Svenja D.; Frömel, Timo; Lill, Nicole; Isaak, Johann; Häfner, Ann-Kathrin; Roos, Jessica; Hofmann, Bettina; Heide, Heinrich; Geisslinger, Gerd; Steinhilber, Dieter; Freeman, Bruce A.; Maier, Thorsten J.; Fleming, Ingrid

    2014-01-01

    Abstract Aims: The reaction of nitric oxide and nitrite-derived species with polyunsaturated fatty acids yields electrophilic fatty acid nitroalkene derivatives (NO2-FA), which display anti-inflammatory properties. Given that the 5-lipoxygenase (5-LO, ALOX5) possesses critical nucleophilic amino acids, which are potentially sensitive to electrophilic modifications, we determined the consequences of NO2-FA on 5-LO activity in vitro and on 5-LO-mediated inflammation in vivo. Results: Stimulation of human polymorphonuclear leukocytes (PMNL) with nitro-oleic (NO2-OA) or nitro-linoleic acid (NO2-LA) (but not the parent lipids) resulted in the concentration-dependent and irreversible inhibition of 5-LO activity. Similar effects were observed in cell lysates and using the recombinant human protein, indicating a direct reaction with 5-LO. NO2-FAs did not affect the activity of the platelet-type 12-LO (ALOX12) or 15-LO-1 (ALOX15) in intact cells or the recombinant protein. The NO2-FA-induced inhibition of 5-LO was attributed to the alkylation of Cys418, and the exchange of Cys418 to serine rendered 5-LO insensitive to NO2-FA. In vivo, the systemic administration of NO2-OA to mice decreased neutrophil and monocyte mobilization in response to lipopolysaccharide (LPS), attenuated the formation of the 5-LO product 5-hydroxyeicosatetraenoic acid (5-HETE), and inhibited lung injury. The administration of NO2-OA to 5-LO knockout mice had no effect on LPS-induced neutrophil or monocyte mobilization as well as on lung injury. Innovation: Prophylactic administration of NO2-OA to septic mice inhibits inflammation and promotes its resolution by interfering in 5-LO-mediated inflammatory processes. Conclusion: NO2-FAs directly and irreversibly inhibit 5-LO and attenuate downstream acute inflammatory responses. Antioxid. Redox Signal. 20, 2667–2680. PMID:24206143

  3. Effect of antigen sensitization and challenge on oscillatory mechanics of the lung and pulmonary inflammation in obese carboxypeptidase E-deficient mice

    PubMed Central

    Dahm, Paul H.; Richards, Jeremy B.; Karmouty-Quintana, Harry; Cromar, Kevin R.; Sur, Sanjiv; Price, Roger E.; Malik, Farhan; Spencer, Chantal Y.; Barreno, Ramon X.; Hashmi, Syed S.; Blackburn, Michael R.; Haque, Ikram U.

    2014-01-01

    Atopic, obese asthmatics exhibit airway obstruction with variable degrees of eosinophilic airway inflammation. We previously reported that mice obese as a result of a genetic deficiency in either leptin (ob/ob mice) or the long isoform of the leptin receptor (db/db mice) exhibit enhanced airway obstruction in the presence of decreased numbers of bronchoalveolar lavage fluid (BALF) eosinophils compared with lean, wild-type mice following antigen (ovalbumin; OVA) sensitization and challenge. To determine whether the genetic modality of obesity induction influences the development of OVA-induced airway obstruction and OVA-induced pulmonary inflammation, we examined indices of these sequelae in mice obese as a result of a genetic deficiency in carboxypeptidase E, an enzyme that processes prohormones and proneuropeptides involved in satiety and energy expenditure (Cpefat mice). Accordingly, Cpefat and lean, wild-type (C57BL/6) mice were sensitized to OVA and then challenged with either aerosolized PBS or OVA. Compared with genotype-matched, OVA-sensitized and PBS-challenged mice, OVA sensitization and challenge elicited airway obstruction and increased BALF eosinophils, macrophages, neutrophils, IL-4, IL-13, IL-18, and chemerin. However, OVA challenge enhanced airway obstruction and pulmonary inflammation in Cpefat compared with wild-type mice. These results demonstrate that OVA sensitization and challenge enhance airway obstruction in obese mice regardless of the genetic basis of obesity, whereas the degree of OVA-induced pulmonary inflammation is dependent on the genetic modality of obesity induction. These results have important implications for animal models of asthma, as modeling the pulmonary phenotypes for subpopulations of atopic, obese asthmatics critically depends on selecting the appropriate mouse model. PMID:25009214

  4. Effect of antigen sensitization and challenge on oscillatory mechanics of the lung and pulmonary inflammation in obese carboxypeptidase E-deficient mice.

    PubMed

    Dahm, Paul H; Richards, Jeremy B; Karmouty-Quintana, Harry; Cromar, Kevin R; Sur, Sanjiv; Price, Roger E; Malik, Farhan; Spencer, Chantal Y; Barreno, Ramon X; Hashmi, Syed S; Blackburn, Michael R; Haque, Ikram U; Johnston, Richard A

    2014-09-15

    Atopic, obese asthmatics exhibit airway obstruction with variable degrees of eosinophilic airway inflammation. We previously reported that mice obese as a result of a genetic deficiency in either leptin (ob/ob mice) or the long isoform of the leptin receptor (db/db mice) exhibit enhanced airway obstruction in the presence of decreased numbers of bronchoalveolar lavage fluid (BALF) eosinophils compared with lean, wild-type mice following antigen (ovalbumin; OVA) sensitization and challenge. To determine whether the genetic modality of obesity induction influences the development of OVA-induced airway obstruction and OVA-induced pulmonary inflammation, we examined indices of these sequelae in mice obese as a result of a genetic deficiency in carboxypeptidase E, an enzyme that processes prohormones and proneuropeptides involved in satiety and energy expenditure (Cpe(fat) mice). Accordingly, Cpe(fat) and lean, wild-type (C57BL/6) mice were sensitized to OVA and then challenged with either aerosolized PBS or OVA. Compared with genotype-matched, OVA-sensitized and PBS-challenged mice, OVA sensitization and challenge elicited airway obstruction and increased BALF eosinophils, macrophages, neutrophils, IL-4, IL-13, IL-18, and chemerin. However, OVA challenge enhanced airway obstruction and pulmonary inflammation in Cpe(fat) compared with wild-type mice. These results demonstrate that OVA sensitization and challenge enhance airway obstruction in obese mice regardless of the genetic basis of obesity, whereas the degree of OVA-induced pulmonary inflammation is dependent on the genetic modality of obesity induction. These results have important implications for animal models of asthma, as modeling the pulmonary phenotypes for subpopulations of atopic, obese asthmatics critically depends on selecting the appropriate mouse model.

  5. Current concepts on oxidative/carbonyl stress, inflammation and epigenetics in pathogenesis of chronic obstructive pulmonary disease

    SciTech Connect

    Yao Hongwei; Rahman, Irfan

    2011-07-15

    Chronic obstructive pulmonary disease (COPD) is a global health problem. The current therapies for COPD are poorly effective and the mainstays of pharmacotherapy are bronchodilators. A better understanding of the pathobiology of COPD is critical for the development of novel therapies. In the present review, we have discussed the roles of oxidative/aldehyde stress, inflammation/immunity, and chromatin remodeling in the pathogenesis of COPD. An imbalance of oxidants/antioxidants caused by cigarette smoke and other pollutants/biomass fuels plays an important role in the pathogenesis of COPD by regulating redox-sensitive transcription factors (e.g., NF-{kappa}B), autophagy and unfolded protein response leading to chronic lung inflammatory response. Cigarette smoke also activates canonical/alternative NF-{kappa}B pathways and their upstream kinases leading to sustained inflammatory response in lungs. Recently, epigenetic regulation has been shown to be critical for the development of COPD because the expression/activity of enzymes that regulate these epigenetic modifications have been reported to be abnormal in airways of COPD patients. Hence, the significant advances made in understanding the pathophysiology of COPD as described herein will identify novel therapeutic targets for intervention in COPD.

  6. Anergy-like immunosuppression in mice bearing pulmonary foreign-body granulomatous inflammation.

    PubMed Central

    Allred, D. C.; Kobayashi, K.; Yoshida, T.

    1985-01-01

    Pulmonary granulomas were induced in BALB/c mice by the intratracheal injection of insoluble polymerized dextran and latex microparticles. Very large granulomas developed around dextran beads, which reached peak intensity within 2-3 days and rapidly declined in size thereafter. Latex beads generated small stable lesions. The involvement of cell-mediated immunity could not be demonstrated in the inflammatory responses induced by either type of bead. Antigen-induced delayed type hypersensitivity (DTH) and mitogen-induced DTH-like footpad reactions were markedly suppressed in immunized mice bearing early dextran granulomas. Mitogen-induced DTH-like footpad reactions were suppressed in unimmunized animals bearing early dextran foreign-body granulomas. Antigen- and mitogen-induced footpad swelling recovered to normal levels as dextran granulomas diminished in size. No suppression of these footpad reactions was observed in mice bearing small latex foreign-body granulomas. The intraperitoneal injection of aqueous extracts prepared from the lungs of unimmunized donor animals bearing early dextran foreign-body granulomas could partially transfer suppression of mitogen DTH-like footpad responses to normal mice. These results suggest that cells within large, nonimmunologic lung granulomas produce a soluble factor which participates in the expression of anergy-like immunosuppression. Images Figure 2 PMID:3907366

  7. Allergic Mechanisms in Eosinophilic Esophagitis

    PubMed Central

    Wechsler, Joshua B; Bryce, Paul J

    2014-01-01

    Paralleling the overall trend in allergic diseases, Eosinophilic Esophagitis is rapidly increasing in incidence. It is associated with food antigen-triggered, eosinophil-predominant inflammation and the pathogenic mechanisms have many similarities to other chronic atopic diseases, such as eczema and allergic asthma. Studies in animal models and from patients over the last 15 years have suggested that allergic sensitization leads to food-specific IgE and T-helper lymphocyte type 2 cells, both of which appear to contribute to the pathogenesis along with basophils, mast cells, and antigen-presenting cells. This review will outline our current understandings of the allergic mechanisms that drive eosinophilic esophagitis, drawing from clinical and translational studies in humans as well as experimental animal models. PMID:24813516

  8. Allergic Reactions

    MedlinePlus

    ... immune system identifies pollen as an invader or allergen. Your immune system overreacts by producing antibodies called ... IgE has specific "radar" for each type of allergen. That's why some people are only allergic to ...

  9. Update on the Mechanisms of Pulmonary Inflammation and Oxidative Imbalance Induced by Exercise.

    PubMed

    Araneda, O F; Carbonell, T; Tuesta, M

    2016-01-01

    The mechanisms involved in the generation of oxidative damage and lung inflammation induced by physical exercise are described. Changes in lung function induced by exercise involve cooling of the airways, fluid evaporation of the epithelial surface, increased contact with polluting substances, and activation of the local and systemic inflammatory response. The present work includes evidence obtained from the different types of exercise in terms of duration and intensity, the effect of both acute performance and chronic performance, and the influence of special conditions such as cold weather, high altitude, and polluted environments. Levels of prooxidants, antioxidants, oxidative damage to biomolecules, and cellularity, as well as levels of soluble mediators of the inflammatory response and its effects on tissues, are described in samples of lung origin. These samples include tissue homogenates, induced sputum, bronchoalveolar lavage fluid, biopsies, and exhaled breath condensate obtained in experimental protocols conducted on animal and human models. Finally, the need to simultaneously explore the oxidative/inflammatory parameters to establish the interrelation between them is highlighted. PMID:26881028

  10. In Vivo Transcriptional Profiling of Yersinia pestis Reveals a Novel Bacterial Mediator of Pulmonary Inflammation

    PubMed Central

    Pechous, Roger D.; Broberg, Christopher A.; Stasulli, Nikolas M.; Miller, Virginia L.

    2015-01-01

    ABSTRACT Inhalation of Yersinia pestis results in primary pneumonic plague, a highly lethal and rapidly progressing necrotizing pneumonia. The disease begins with a period of extensive bacterial replication in the absence of disease symptoms, followed by the sudden onset of inflammatory responses that ultimately prove fatal. Very little is known about the bacterial and host factors that contribute to the rapid biphasic progression of pneumonic plague. In this work, we analyzed the in vivo transcription kinetics of 288 bacterial open reading frames previously shown by microarray analysis to be dynamically regulated in the lung. Using this approach combined with bacterial genetics, we were able to identify five Y. pestis genes that contribute to the development of pneumonic plague. Deletion of one of these genes, ybtX, did not alter bacterial survival but attenuated host inflammatory responses during late-stage disease. Deletion of ybtX in another lethal respiratory pathogen, Klebsiella pneumoniae, also resulted in diminished host inflammation during infection. Thus, our in vivo transcriptional screen has identified an important inflammatory mediator that is common to two Gram-negative bacterial pathogens that cause severe pneumonia. PMID:25691593

  11. β-Glucans Are Masked but Contribute to Pulmonary Inflammation During Pneumocystis Pneumonia.

    PubMed

    Kutty, Geetha; Davis, A Sally; Ferreyra, Gabriela A; Qiu, Ju; Huang, Da Wei; Sassi, Monica; Bishop, Lisa; Handley, Grace; Sherman, Brad; Lempicki, Richard; Kovacs, Joseph A

    2016-09-01

    β-glucans, which can activate innate immune responses, are a major component in the cell wall of the cyst form of Pneumocystis In the current study, we examined whether β-1,3-glucans are masked by surface proteins in Pneumocystis and what role β-glucans play in Pneumocystis-associated inflammation. For 3 species, including Pneumocystis jirovecii, which causes Pneumocystis pneumonia in humans, Pneumocystis carinii, and Pneumocystis murina, β-1,3-glucans were masked in most organisms, as demonstrated by increased exposure following trypsin treatment. Using quantitative polymerase chain reaction and microarray techniques, we demonstrated in a mouse model of Pneumocystis pneumonia that treatment with caspofungin, an inhibitor of β-1,3-glucan synthesis, for 21 days decreased expression of a broad panel of inflammatory markers, including interferon γ, tumor necrosis factor α, interleukin 1β, interleukin 6, and multiple chemokines/chemokine ligands. Thus, β-glucans in Pneumocystis cysts are largely masked, which likely decreases innate immune activation; this mechanism presumably was developed for interactions with immunocompetent hosts, in whom organism loads are substantially lower. In immunosuppressed hosts with a high organism burden, organism death and release of glucans appears to be an important contributor to deleterious host inflammatory responses. PMID:27324243

  12. Hemorrhagic shock primes for lung vascular endothelial cell pyroptosis: role in pulmonary inflammation following LPS

    PubMed Central

    Yang, Jie; Zhao, Yanfeng; Zhang, Peng; Li, Yuehua; Yang, Yong; Yang, Yang; Zhu, Junjie; Song, Xiao; Jiang, Gening; Fan, Jie

    2016-01-01

    Hemorrhagic shock (HS) often renders patients more susceptible to lung injury by priming for an exaggerated response to a second infectious stimulus. Acute lung injury (ALI) is a major component of multiple organ dysfunction syndrome following HS and regularly serves as a major cause of patient mortality. The lung vascular endothelium is an active organ that has a central role in the development of ALI through synthesizing and releasing of a number of inflammatory mediators. Cell pyroptosis is a caspase-1-dependent regulated cell death, which features rapid plasma membrane rupture and release of proinflammatory intracellular contents. In this study, we demonstrated an important role of HS in priming for LPS-induced lung endothelial cell (EC) pyroptosis. We showed that LPS through TLR4 activates Nlrp3 (NACHT, LRR, and PYD domains containing protein 3) inflammasome in mouse lung vascular EC, and subsequently induces caspase-1 activation. However, HS induced release of high-mobility group box 1 (HMGB1), which acting through the receptor for advanced glycation end products initiates EC endocytosis of HMGB1, and subsequently triggers a cascade of molecular events, including cathepsin B release from ruptured lysosomes followed by pyroptosome formation and caspase-1 activation. These HS-induced events enhance LPS-induced EC pyroptosis. We further showed that lung vascular EC pyroptosis significantly exaggerates lung inflammation and injury. The present study explores a novel mechanism underlying HS-primed ALI and thus presents a potential therapeutic target for post-HS ALI. PMID:27607578

  13. Hemorrhagic shock primes for lung vascular endothelial cell pyroptosis: role in pulmonary inflammation following LPS.

    PubMed

    Yang, Jie; Zhao, Yanfeng; Zhang, Peng; Li, Yuehua; Yang, Yong; Yang, Yang; Zhu, Junjie; Song, Xiao; Jiang, Gening; Fan, Jie

    2016-01-01

    Hemorrhagic shock (HS) often renders patients more susceptible to lung injury by priming for an exaggerated response to a second infectious stimulus. Acute lung injury (ALI) is a major component of multiple organ dysfunction syndrome following HS and regularly serves as a major cause of patient mortality. The lung vascular endothelium is an active organ that has a central role in the development of ALI through synthesizing and releasing of a number of inflammatory mediators. Cell pyroptosis is a caspase-1-dependent regulated cell death, which features rapid plasma membrane rupture and release of proinflammatory intracellular contents. In this study, we demonstrated an important role of HS in priming for LPS-induced lung endothelial cell (EC) pyroptosis. We showed that LPS through TLR4 activates Nlrp3 (NACHT, LRR, and PYD domains containing protein 3) inflammasome in mouse lung vascular EC, and subsequently induces caspase-1 activation. However, HS induced release of high-mobility group box 1 (HMGB1), which acting through the receptor for advanced glycation end products initiates EC endocytosis of HMGB1, and subsequently triggers a cascade of molecular events, including cathepsin B release from ruptured lysosomes followed by pyroptosome formation and caspase-1 activation. These HS-induced events enhance LPS-induced EC pyroptosis. We further showed that lung vascular EC pyroptosis significantly exaggerates lung inflammation and injury. The present study explores a novel mechanism underlying HS-primed ALI and thus presents a potential therapeutic target for post-HS ALI. PMID:27607578

  14. A Functional Variant of Elafin With Improved Anti-inflammatory Activity for Pulmonary Inflammation

    PubMed Central

    Small, Donna M; Zani, Marie-Louise; Quinn, Derek J; Dallet-Choisy, Sandrine; Glasgow, Arlene MA; O'Kane, Cecilia; McAuley, Danny F; McNally, Paul; Weldon, Sinéad; Moreau, Thierry; Taggart, Clifford C

    2015-01-01

    Elafin is a serine protease inhibitor produced by epithelial and immune cells with anti-inflammatory properties. Research has shown that dysregulated protease activity may elicit proteolytic cleavage of elafin, thereby impairing the innate immune function of the protein. The aim of this study was to generate variants of elafin (GG- and QQ-elafin) that exhibit increased protease resistance while retaining the biological properties of wild-type (WT) elafin. Similar to WT-elafin, GG- and QQ-elafin variants retained antiprotease activity and susceptibility to transglutaminase-mediated fibronectin cross-linking. However, in contrast to WT-elafin, GG- and QQ-elafin displayed significantly enhanced resistance to degradation when incubated with bronchoalveolar lavage fluid from patients with cystic fibrosis. Intriguingly, both variants, particularly GG-elafin, demonstrated improved lipopolysaccharide (LPS) neutralization properties in vitro. In addition, GG-elafin showed improved anti-inflammatory activity in a mouse model of LPS-induced acute lung inflammation. Inflammatory cell infiltration into the lung was reduced in lungs of mice treated with GG-elafin, predominantly neutrophilic infiltration. A reduction in MCP-1 levels in GG-elafin treated mice compared to the LPS alone treatment group was also demonstrated. GG-elafin showed increased functionality when compared to WT-elafin and may be of future therapeutic relevance in the treatment of lung diseases characterized by a protease burden. PMID:25189740

  15. Update on the Mechanisms of Pulmonary Inflammation and Oxidative Imbalance Induced by Exercise

    PubMed Central

    Araneda, O. F.; Carbonell, T.; Tuesta, M.

    2016-01-01

    The mechanisms involved in the generation of oxidative damage and lung inflammation induced by physical exercise are described. Changes in lung function induced by exercise involve cooling of the airways, fluid evaporation of the epithelial surface, increased contact with polluting substances, and activation of the local and systemic inflammatory response. The present work includes evidence obtained from the different types of exercise in terms of duration and intensity, the effect of both acute performance and chronic performance, and the influence of special conditions such as cold weather, high altitude, and polluted environments. Levels of prooxidants, antioxidants, oxidative damage to biomolecules, and cellularity, as well as levels of soluble mediators of the inflammatory response and its effects on tissues, are described in samples of lung origin. These samples include tissue homogenates, induced sputum, bronchoalveolar lavage fluid, biopsies, and exhaled breath condensate obtained in experimental protocols conducted on animal and human models. Finally, the need to simultaneously explore the oxidative/inflammatory parameters to establish the interrelation between them is highlighted. PMID:26881028

  16. Update on the Mechanisms of Pulmonary Inflammation and Oxidative Imbalance Induced by Exercise.

    PubMed

    Araneda, O F; Carbonell, T; Tuesta, M

    2016-01-01

    The mechanisms involved in the generation of oxidative damage and lung inflammation induced by physical exercise are described. Changes in lung function induced by exercise involve cooling of the airways, fluid evaporation of the epithelial surface, increased contact with polluting substances, and activation of the local and systemic inflammatory response. The present work includes evidence obtained from the different types of exercise in terms of duration and intensity, the effect of both acute performance and chronic performance, and the influence of special conditions such as cold weather, high altitude, and polluted environments. Levels of prooxidants, antioxidants, oxidative damage to biomolecules, and cellularity, as well as levels of soluble mediators of the inflammatory response and its effects on tissues, are described in samples of lung origin. These samples include tissue homogenates, induced sputum, bronchoalveolar lavage fluid, biopsies, and exhaled breath condensate obtained in experimental protocols conducted on animal and human models. Finally, the need to simultaneously explore the oxidative/inflammatory parameters to establish the interrelation between them is highlighted.

  17. Cold ischemia with selective anterograde in situ pulmonary perfusion preserves gas exchange and mitochondrial homeostasis and curbs inflammation in an experimental model of donation after cardiac death.

    PubMed

    Pottecher, Julien; Santelmo, Nicola; Noll, Eric; Charles, Anne-Laure; Benahmed, Malika; Canuet, Matthieu; Frossard, Nelly; Namer, Izzie J; Geny, Bernard; Massard, Gilbert; Diemunsch, Pierre

    2013-10-01

    The aim of this study was to assess the functional preservation of the lung graft with anterograde lung perfusion in a model of donation after cardiac death. Thirty minutes after cardiac arrest, in situ anterograde selective pulmonary cold perfusion was started in six swine. The alveolo-capillary membrane was challenged at 3, 6, and 8 h with measurements of the mean pulmonary arterial pressure (mPAP), the pulmonary vascular resistance (PVR), the PaO2 /FiO2 ratio, the transpulmonary oxygen output (tpVO2 ), and the transpulmonary CO2 clearance (tpCO2 ). Mitochondrial homeostasis was investigated by measuring maximal oxidative capacity (Vmax ) and the coupling of phosphorylation to oxidation (ACR, acceptor control ratio) in lung biopsies. Inflammation and induction of primary immune response were assessed by measurement of tumor necrosis factor alpha (TNFα), interleukine-6 (IL-6) and receptor for advanced glycation endproducts (RAGE) in bronchoalveolar lavage fluid. Data were compared using repeated measures Anova. Pulmonary hemodynamics (mPAP: P = 0.69; PVR: P = 0.46), oxygenation (PaO2 /FiO2 : P = 0.56; tpVO2 : P = 0.46), CO2 diffusion (tpCO2 : P = 0.24), mitochondrial homeostasis (Vmax : P = 0.42; ACR: P = 0.8), and RAGE concentrations (P = 0.24) did not significantly change up to 8 h after cardiac arrest. TNFα and IL-6 were undetectable. Unaffected pulmonary hemodynamics, sustained oxygen and carbon dioxide diffusion, preserved mitochondrial homeostasis, and lack of inflammation suggest a long-lasting functional preservation of the graft with selective anterograde in situ pulmonary perfusion.

  18. Inflammation severely alters thyroid hormone signaling in the central nervous system during experimental allergic encephalomyelitis in rat: Direct impact on OPCs differentiation failure.

    PubMed

    Fernández, Mercedes; Baldassarro, Vito A; Sivilia, Sandra; Giardino, Luciana; Calzà, Laura

    2016-09-01

    Differentiation of oligodendrocyte precursor cells (OPCs) into myelinating oligodendrocytes is severely impaired by inflammatory cytokines and this could lead to remyelination failure in inflammatory/demyelinating diseases. Due to the role of thyroid hormone in the maturation of OPCs and developmental myelination, in this study we investigated (i) the possible occurrence of dysregulation of thyroid hormone signaling in the CNS tissue during experimental neuroinflammation; (ii) the possible impact of inflammatory cytokines on thyroid hormone signaling and OPCs differentiation in vitro. The disease model is the experimental allergic encephalomyelitis in female Dark-Agouti rats, whereas in vitro experiments were carried out in OPCs derived from neural stem cells. The main results are the following: (i) a strong upregulation of cytokine mRNA expression level was found in the spinal cord during experimental allergic encephalomyelitis; (ii) thyroid hormone signaling in the spinal cord (thyroid hormone receptors; deiodinase; thyroid hormone membrane transporter) is substantially downregulated, due to the upregulation of the thyroid hormone inactivating enzyme deiodinase 3 and the downregulation of thyroid hormone receptors, as investigated at mRNA expression level; (iii) when exposed to inflammatory cytokines, deiodinase 3 is upregulated in OPCs as well, and OPCs differentiation is blocked; (iv) deiodinase 3 inhibition by iopanoic acid recovers OPCs differentiation in the presence on inflammatory cytokines. These data suggest that cellular hypothyroidism occurs during experimental allergic encephalomyelitis, possibly impacting on thyroid hormone-dependent cellular processes, including maturation of OPCs into myelinating oligodendrocytes. GLIA 2016;64:1573-1589. PMID:27404574

  19. Maternal dietary docosahexaenoic acid supplementation attenuates fetal growth restriction and enhances pulmonary function in a newborn mouse model of perinatal inflammation.

    PubMed

    Velten, Markus; Britt, Rodney D; Heyob, Kathryn M; Tipple, Trent E; Rogers, Lynette K

    2014-03-01

    The preterm infant is often exposed to maternal and neonatal inflammatory stimuli and is born with immature lungs, resulting in a need for oxygen therapy. Nutritional intervention with docosahexaenoic acid (DHA; 6.3 g/kg of diet) has been shown to attenuate inflammation in various human diseases. Previous studies demonstrated that maternal DHA supplementation during late gestation and lactation attenuated hyperoxic lung injury in newborn mouse pups. In the present studies, we tested the hypothesis that DHA supplementation to the dam would reduce hyperoxic lung injury and growth deficits in a more severe model of systemic maternal inflammation, including lipopolysaccharide (LPS) and neonatal hyperoxia exposure. On embryonic day 16, dams were placed on DHA (6.3 g DHA/kg diet) or control diets and injected with saline or LPS. Diets were maintained through weaning. At birth, pups were placed in room air or hyperoxia for 14 d. Improvements in birth weight (P < 0.01), alveolarization (P ≤ 0.01), and pulmonary function (P ≤ 0.03) at 2 and 8 wk of age were observed in pups exposed to perinatal inflammation and born to DHA-supplemented dams compared with control diet-exposed pups. These improvements were associated with decreases in tissue macrophage numbers (P < 0.01), monocyte chemoattractant protein-1 expression (P ≤ 0.05), and decreases in soluble receptor for advanced glycation end products concentrations (P < 0.01) at 2 and 8 wk. Furthermore, DHA supplementation attenuated pulmonary fibrosis, which was associated with the reduction of matrix metalloproteinases 2, 3, and 8 (P ≤ 0.03) and collagen mRNA (P ≤ 0.05), and decreased collagen (P < 0.01) and vimentin (P ≤ 0.03) protein concentrations. In a model of severe inflammation, maternal DHA supplementation lessened inflammation and improved lung growth in the offspring. Maternal supplementation with DHA may be a therapeutic strategy to reduce neonatal inflammation.

  20. Resolvin D1 and Resolvin E1 Promote the Resolution of Allergic Airway Inflammation via Shared and Distinct Molecular Counter-Regulatory Pathways

    PubMed Central

    Levy, Bruce D.

    2012-01-01

    Resolvins are generated from omega-3 fatty acids during inflammatory responses in the lung. These natural mediators interact with specific receptors to decrease lung inflammation and promote its resolution in healthy tissues. There are several lung diseases of chronic inflammation that fail to resolve, most notable asthma. This common disorder has a lifetime prevalence of nearly 10% and is characterized, in part, by chronic, non-resolving inflammation of the airway. Pro-resolving mediators are generated during asthma; however, their biosynthesis is decreased in severe and uncontrolled asthma, suggesting that the chronic, adaptive inflammation in asthmatic airways may result from a resolution defect. This article focuses on recent insights into the cellular and molecular mechanisms for resolvins that limit adaptive immune responses in healthy airways. PMID:23293638

  1. Framework for 3D histologic reconstruction and fusion with in vivo MRI: Preliminary results of characterizing pulmonary inflammation in a mouse model

    PubMed Central

    Rusu, Mirabela; Golden, Thea; Wang, Haibo; Gow, Andrew; Madabhushi, Anant

    2015-01-01

    Purpose: Pulmonary inflammation is associated with a variety of diseases. Assessing pulmonary inflammation on in vivo imaging may facilitate the early detection and treatment of lung diseases. Although routinely used in thoracic imaging, computed tomography has thus far not been compellingly shown to characterize inflammation in vivo. Alternatively, magnetic resonance imaging (MRI) is a nonionizing radiation technique to better visualize and characterize pulmonary tissue. Prior to routine adoption of MRI for early characterization of inflammation in humans, a rigorous and quantitative characterization of the utility of MRI to identify inflammation is required. Such characterization may be achieved by considering ex vivo histology as the ground truth, since it enables the definitive spatial assessment of inflammation. In this study, the authors introduce a novel framework to integrate 2D histology, ex vivo and in vivo imaging to enable the mapping of the extent of disease from ex vivo histology onto in vivo imaging, with the goal of facilitating computerized feature analysis and interrogation of disease appearance on in vivo imaging. The authors’ framework was evaluated in a preclinical preliminary study aimed to identify computer extracted features on in vivo MRI associated with chronic pulmonary inflammation. Methods: The authors’ image analytics framework first involves reconstructing the histologic volume in 3D from individual histology slices. Second, the authors map the disease ground truth onto in vivo MRI via coregistration with 3D histology using the ex vivo lung MRI as a conduit. Finally, computerized feature analysis of the disease extent is performed to identify candidate in vivo imaging signatures of disease presence and extent. Results: The authors evaluated the framework by assessing the quality of the 3D histology reconstruction and the histology—MRI fusion, in the context of an initial use case involving characterization of chronic

  2. Pneumocystis murina infection and cigarette smoke exposure interact to cause increased organism burden, development of airspace enlargement, and pulmonary inflammation in mice.

    PubMed

    Christensen, Paul J; Preston, Angela M; Ling, Tony; Du, Ming; Fields, W Bradley; Curtis, Jeffrey L; Beck, James M

    2008-08-01

    Chronic obstructive pulmonary disease (COPD) is characterized by the presence of airflow obstruction and lung destruction with airspace enlargement. In addition to cigarette smoking, respiratory pathogens play a role in pathogenesis, but specific organisms are not always identified. Recent reports demonstrate associations between the detection of Pneumocystis jirovecii DNA in lung specimens or respiratory secretions and the presence of emphysema in COPD patients. Additionally, human immunodeficiency virus-infected individuals who smoke cigarettes develop early emphysema, but a role for P. jirovecii in pathogenesis remains speculative. We developed a new experimental model using immunocompetent mice to test the interaction of cigarette smoke exposure and environmentally acquired Pneumocystis murina infection in vivo. We hypothesized that cigarette smoke and P. murina would interact to cause increases in total lung capacity, airspace enlargement, and pulmonary inflammation. We found that exposure to cigarette smoke significantly increases the lung organism burden of P. murina. Pulmonary infection with P. murina, combined with cigarette smoke exposure, results in changes in pulmonary function and airspace enlargement characteristic of pulmonary emphysema. P. murina and cigarette smoke exposure interact to cause increased lung inflammatory cell accumulation. These findings establish a novel animal model system to explore the role of Pneumocystis species in the pathogenesis of COPD. PMID:18490462

  3. Omentin protects against LPS-induced ARDS through suppressing pulmonary inflammation and promoting endothelial barrier via an Akt/eNOS-dependent mechanism

    PubMed Central

    Qi, Di; Tang, Xumao; He, Jing; Wang, Daoxin; Zhao, Yan; Deng, Wang; Deng, Xinyu; Zhou, Guoqi; Xia, Jing; Zhong, Xi; Pu, Shenglan

    2016-01-01

    Acute respiratory distress syndrome (ARDS) is characterized by increased pulmonary inflammation and endothelial barrier permeability. Omentin has been shown to benefit obesity-related systemic vascular diseases; however, its effects on ARDS are unknown. In the present study, the level of circulating omentin in patients with ARDS was assessed to appraise its clinical significance in ARDS. Mice were subjected to systemic administration of adenoviral vector expressing omentin (Ad-omentin) and one-shot treatment of recombinant human omentin (rh-omentin) to examine omentin's effects on lipopolysaccharide (LPS)-induced ARDS. Pulmonary endothelial cells (ECs) were treated with rh-omentin to further investigate its underlying mechanism. We found that a decreased level of circulating omentin negatively correlated with white blood cells and procalcitonin in patients with ARDS. Ad-omentin protected against LPS-induced ARDS by alleviating the pulmonary inflammatory response and endothelial barrier injury in mice, accompanied by Akt/eNOS pathway activation. Treatment of pulmonary ECs with rh-omentin attenuated inflammatory response and restored adherens junctions (AJs), and cytoskeleton organization promoted endothelial barrier after LPS insult. Moreover, the omentin-mediated enhancement of EC survival and differentiation was blocked by the Akt/eNOS pathway inactivation. Therapeutic rh-omentin treatment also effectively protected against LPS-induced ARDS via the Akt/eNOS pathway. Collectively, these data indicated that omentin protects against LPS-induced ARDS by suppressing inflammation and promoting the pulmonary endothelial barrier, at least partially, through an Akt/eNOS-dependent mechanism. Therapeutic strategies aiming to restore omentin levels may be valuable for the prevention or treatment of ARDS. PMID:27607575

  4. Omentin protects against LPS-induced ARDS through suppressing pulmonary inflammation and promoting endothelial barrier via an Akt/eNOS-dependent mechanism.

    PubMed

    Qi, Di; Tang, Xumao; He, Jing; Wang, Daoxin; Zhao, Yan; Deng, Wang; Deng, Xinyu; Zhou, Guoqi; Xia, Jing; Zhong, Xi; Pu, Shenglan

    2016-01-01

    Acute respiratory distress syndrome (ARDS) is characterized by increased pulmonary inflammation and endothelial barrier permeability. Omentin has been shown to benefit obesity-related systemic vascular diseases; however, its effects on ARDS are unknown. In the present study, the level of circulating omentin in patients with ARDS was assessed to appraise its clinical significance in ARDS. Mice were subjected to systemic administration of adenoviral vector expressing omentin (Ad-omentin) and one-shot treatment of recombinant human omentin (rh-omentin) to examine omentin's effects on lipopolysaccharide (LPS)-induced ARDS. Pulmonary endothelial cells (ECs) were treated with rh-omentin to further investigate its underlying mechanism. We found that a decreased level of circulating omentin negatively correlated with white blood cells and procalcitonin in patients with ARDS. Ad-omentin protected against LPS-induced ARDS by alleviating the pulmonary inflammatory response and endothelial barrier injury in mice, accompanied by Akt/eNOS pathway activation. Treatment of pulmonary ECs with rh-omentin attenuated inflammatory response and restored adherens junctions (AJs), and cytoskeleton organization promoted endothelial barrier after LPS insult. Moreover, the omentin-mediated enhancement of EC survival and differentiation was blocked by the Akt/eNOS pathway inactivation. Therapeutic rh-omentin treatment also effectively protected against LPS-induced ARDS via the Akt/eNOS pathway. Collectively, these data indicated that omentin protects against LPS-induced ARDS by suppressing inflammation and promoting the pulmonary endothelial barrier, at least partially, through an Akt/eNOS-dependent mechanism. Therapeutic strategies aiming to restore omentin levels may be valuable for the prevention or treatment of ARDS. PMID:27607575

  5. Disruption of Sirtuin 1-Mediated Control of Circadian Molecular Clock and Inflammation in Chronic Obstructive Pulmonary Disease.

    PubMed

    Yao, Hongwei; Sundar, Isaac K; Huang, Yadi; Gerloff, Janice; Sellix, Michael T; Sime, Patricia J; Rahman, Irfan

    2015-12-01

    Chronic obstructive pulmonary disease (COPD) is the fourth most common cause of death, and it is characterized by abnormal inflammation and lung function decline. Although the circadian molecular clock regulates inflammatory responses, there is no information available regarding the impact of COPD on lung molecular clock function and its regulation by sirtuin 1 (SIRT1). We hypothesize that the molecular clock in the lungs is disrupted, leading to increased inflammatory responses in smokers and patients with COPD and its regulation by SIRT1. Lung tissues, peripheral blood mononuclear cells (PBMCs), and sputum cells were obtained from nonsmokers, smokers, and patients with COPD for measurement of core molecular clock proteins (BMAL1, CLOCK, PER1, PER2, and CRY1), clock-associated nuclear receptors (REV-ERBα, REV-ERBβ, and RORα), and SIRT1 by immunohistochemistry, immunofluorescence, and immunoblot. PBMCs were treated with the SIRT1 activator SRT1720 followed by LPS treatment, and supernatant was collected at 6-hour intervals. Levels of IL-8, IL-6, and TNF-α released from PBMCs were determined by ELISA. Expression of BMAL1, PER2, CRY1, and REV-ERBα was reduced in PBMCs, sputum cells, and lung tissues from smokers and patients with COPD when compared with nonsmokers. SRT1720 treatment attenuated LPS-mediated reduction of BMAL1 and REV-ERBα in PBMCs from nonsmokers. Additionally, LPS differentially affected the timing and amplitude of cytokine (IL-8, IL-6, and TNF-α) release from PBMCs in nonsmokers, smokers, and patients with COPD. Moreover, SRT1720 was able to inhibit LPS-induced cytokine release from cultured PBMCs. In conclusion, disruption of the molecular clock due to SIRT1 reduction contributes to abnormal inflammatory response in smokers and patients with COPD.

  6. Sequential Treatments with Tongsai and Bufei Yishen Granules Reduce Inflammation and Improve Pulmonary Function in Acute Exacerbation-Risk Window of Chronic Obstructive Pulmonary Disease in Rats.

    PubMed

    Lu, Xiaofan; Li, Ya; Li, Jiansheng; Wang, Haifeng; Wu, Zhaohuan; Li, Hangjie; Wang, Yang

    2016-01-01

    Background. Sequential treatments of Chinese medicines for acute exacerbation of chronic obstructive pulmonary disease (AECOPD) risk window (RW) have benefits for preventing reoccurrences of AEs; however, the effects on pulmonary function, pulmonary, and systemic inflammatory biomarkers remain unclear. Methods. Cigarette-smoke/bacterial infections induced rats were randomized into Control, COPD, AECOPD, Tongsai Granule/normal saline (TSG/NS), moxifloxacin + salbutamol/NS (MXF+STL/NS), TSG/Bufei Yishen Granule (BYG), MXF+STL/STL, and TSG+MXF+STL/BYG+STL groups and given corresponding medicine(s) in AE- and/or RW phase. Body temperature, pulmonary function, blood cytology, serum amyloid A (SAA) and C-reactive protein (CRP), pulmonary histomorphology and myeloperoxidase (MPO), polymorphonuclear (PMN) elastase, interleukins IL-1β, IL-6, and IL-10, and tumor necrosis factor- (TNF-) α expressions were determined. Results. Body temperature, inflammatory cells and cytokines, SAA, CRP, and pulmonary impairment were higher in AECOPD rats than stable COPD, while pulmonary function declined and recovered to COPD level in 14-18 days. All biomarkers were improved in treated groups with shorter recovery times of 4-10 days, especially in TSG+MXF+STL/BYG+STL group. Conclusion. Sequential treatments with Tongsai and Bufei Yishen Granules, during AECOPD-RW periods, can reduce inflammatory response and improve pulmonary function and shorten the recovery courses of AEs, especially the integrated Chinese and Western medicines. PMID:27563333

  7. Sequential Treatments with Tongsai and Bufei Yishen Granules Reduce Inflammation and Improve Pulmonary Function in Acute Exacerbation-Risk Window of Chronic Obstructive Pulmonary Disease in Rats

    PubMed Central

    Lu, Xiaofan; Li, Ya; Wang, Haifeng; Wu, Zhaohuan; Li, Hangjie; Wang, Yang

    2016-01-01

    Background. Sequential treatments of Chinese medicines for acute exacerbation of chronic obstructive pulmonary disease (AECOPD) risk window (RW) have benefits for preventing reoccurrences of AEs; however, the effects on pulmonary function, pulmonary, and systemic inflammatory biomarkers remain unclear. Methods. Cigarette-smoke/bacterial infections induced rats were randomized into Control, COPD, AECOPD, Tongsai Granule/normal saline (TSG/NS), moxifloxacin + salbutamol/NS (MXF+STL/NS), TSG/Bufei Yishen Granule (BYG), MXF+STL/STL, and TSG+MXF+STL/BYG+STL groups and given corresponding medicine(s) in AE- and/or RW phase. Body temperature, pulmonary function, blood cytology, serum amyloid A (SAA) and C-reactive protein (CRP), pulmonary histomorphology and myeloperoxidase (MPO), polymorphonuclear (PMN) elastase, interleukins IL-1β, IL-6, and IL-10, and tumor necrosis factor- (TNF-) α expressions were determined. Results. Body temperature, inflammatory cells and cytokines, SAA, CRP, and pulmonary impairment were higher in AECOPD rats than stable COPD, while pulmonary function declined and recovered to COPD level in 14–18 days. All biomarkers were improved in treated groups with shorter recovery times of 4–10 days, especially in TSG+MXF+STL/BYG+STL group. Conclusion. Sequential treatments with Tongsai and Bufei Yishen Granules, during AECOPD-RW periods, can reduce inflammatory response and improve pulmonary function and shorten the recovery courses of AEs, especially the integrated Chinese and Western medicines. PMID:27563333

  8. Allergic Rhinitis.

    PubMed

    Kakli, Hasan A; Riley, Timothy D

    2016-09-01

    Among the atopic disorders, allergic rhinitis is the most prevalent. Patients who suffer from allergic rhinitis sustain significant morbidity and loss of productivity. Cardinal symptoms include nasal congestion, rhinorrhea, sneezing, and nasal itching, although multiple related symptoms may occur. Causes should be ruled out with a thorough history and physical examination, with particular attention to red flag or atypical symptoms. Skin testing or serum sampling can confirm diagnosis and also guide therapy. Therapy is multimodal, tailored to a particular patient's symptom burden and quality of life. PMID:27545735

  9. A Single 9-Colour Flow Cytometric Method to Characterise Major Leukocyte Populations in the Rat: Validation in a Model of LPS-Induced Pulmonary Inflammation.

    PubMed

    Barnett-Vanes, Ashton; Sharrock, Anna; Birrell, Mark A; Rankin, Sara

    2016-01-01

    The rat is a commonly used model for immunological investigation. Yet basic research and characterisation of leukocyte populations and sub-sets lags far behind murine research, with inconsistency on reported leukocyte markers and their overlap. These shortcomings limit the opportunity for more complex and advanced rat immunology research. In this study, we developed a robust 9-colour flow-cytometric protocol to elucidate the major blood and tissue rat leukocyte populations, and validated it in a model of LPS-induced pulmonary inflammation. Blood and tissues (lung, BALF, spleen, liver, bone marrow) from naïve Sprague-Dawley rats were collected and analysed by flow cytometry (FCM). Rats were exposed to aerosolised saline or LPS (1 mg/mL), at 3 and 24 hrs thereafter blood, lung and BALF were collected and analysed using FCM and ELISA. Neutrophils, two monocyte subsets, NK Cells, B Cells, CD4+, CD8+ T Cells and alveolar macrophages can be identified simultaneously across different tissues using a 9-colour panel. Neutrophils and monocytes can be distinguished based upon differential expression of CD43 and His48. Neutrophils and CD43Lo/His48Hi monocyte-macrophages are elevated in the lung at 3 and 24 hrs during LPS-induced pulmonary inflammation. This validated method for leukocyte enumeration will offer a platform for greater consistency in future rat immunology and inflammation research.

  10. Airway oxidative stress causes vascular and hepatic inflammation via upregulation of IL-17A in a murine model of allergic asthma.

    PubMed

    Al-Harbi, Naif O; Nadeem, Ahmed; Al-Harbi, Mohammed M; Ansari, Mushtaq A; AlSharari, Shakir D; Bahashwan, Saleh A; Attia, Sabry M; Al-Hosaini, Khaled A; Al Hoshani, Ali R; Ahmad, Sheikh F

    2016-05-01

    Oxidants are generated in asthmatic airways due to infiltration of inflammatory leukocytes and resident cells in the lung. Reactive oxygen species (ROS) such as hydrogen peroxide and superoxide radical may leak into systemic circulation when generated in uncontrolled manner and may impact vasculature. Our previous studies have shown an association between airway inflammation and systemic inflammation; however so far none has investigated the impact of airway oxidative inflammation on hepatic oxidative stress and Th1/Th2/Th17 cytokine markers in liver/vasculature in a murine model of asthma. Therefore, this study investigated the contribution of oxidative stress encountered in asthmatic airways in modulation of systemic/hepatic Th1/Th2/Th17 cytokines balance and hepatic oxidative stress. Mice were sensitized intraperitoneally with cockroach extract (CE) in the presence of aluminum hydroxide followed by several intranasal (i.n.) challenges with CE. Mice were then assessed for systemic/hepatic inflammation through assessment of Th1/Th2/Th17 cytokines and oxidative stress (iNOS, protein nitrotyrosine, lipid peroxides and myeloperoxidase activity). Challenge with CE led to increased Th2/Th17 cytokines in blood/liver and hepatic oxidative stress. However, only Th17 related pro-inflammatory markers were upregulated by hydrogen peroxide (H2O2) inhalation in vasculature and liver, whereas antioxidant treatment, N-acetyl cysteine (NAC) downregulated them. Hepatic oxidative stress was also upregulated by H2O2 inhalation, whereas NAC attenuated it. Therefore, our study shows that airway oxidative inflammation may contribute to systemic inflammation through upregulation of Th17 immune responses in blood/liver and hepatic oxidative stress. This might predispose these patients to increased risk for the development of cardiovascular disorders.

  11. Heme oxygenase-1 and inflammation in experimental right ventricular failure on prolonged overcirculation-induced pulmonary hypertension.

    PubMed

    Belhaj, Asmae; Dewachter, Laurence; Kerbaul, François; Brimioulle, Serge; Dewachter, Céline; Naeije, Robert; Rondelet, Benoît

    2013-01-01

    Heme oxygenase (HO)-1 is a stress response enzyme which presents with cardiovascular protective and anti-inflammatory properties. Six-month chronic overcirculation-induced pulmonary arterial hypertension (PAH) in piglets has been previously reported as a model of right ventricular (RV) failure related to the RV activation of apoptotic and inflammatory processes. We hypothesized that altered HO-1 signalling could be involved in both pulmonary vascular and RV changes. Fifteen growing piglets were assigned to a sham operation (n = 8) or to an anastomosis of the left innominate artery to the pulmonary arterial trunk (n = 7). Six months later, hemodynamics was evaluated after closure of the shunt. After euthanasia of the animals, pulmonary and myocardial tissue was sampled for pathobiological evaluation. Prolonged shunting was associated with a tendency to decreased pulmonary gene and protein expressions of HO-1, while pulmonary gene expressions of interleukin (IL)-33, IL-19, intercellular adhesion molecule (ICAM)-1 and -2 were increased. Pulmonary expressions of constitutive HO-2 and pro-inflammatory tumor necrosis factor (TNF)-α remained unchanged. Pulmonary vascular resistance (evaluated by pressure/flow plots) was inversely correlated to pulmonary HO-1 protein and IL-19 gene expressions, and correlated to pulmonary ICAM-1 gene expression. Pulmonary arteriolar medial thickness and PVR were inversely correlated to pulmonary IL-19 expression. RV expression of HO-1 was decreased, while RV gene expressions TNF-α and ICAM-2 were increased. There was a correlation between RV ratio of end-systolic to pulmonary arterial elastances and RV HO-1 expression. These results suggest that downregulation of HO-1 is associated to PAH and RV failure.

  12. Role of Chitinase 3-Like-1 in Interleukin-18-Induced Pulmonary Type 1, Type 2, and Type 17 Inflammation; Alveolar Destruction; and Airway Fibrosis in the Murine Lung.

    PubMed

    Kang, Min-Jong; Yoon, Chang Min; Nam, Milang; Kim, Do-Hyun; Choi, Je-Min; Lee, Chun Geun; Elias, Jack A

    2015-12-01

    Chitinase 3-like 1 (Chi3l1), which is also called YKL-40 in humans and BRP-39 in mice, is the prototypic chitinase-like protein. Recent studies have highlighted its impressive ability to regulate the nature of tissue inflammation and the magnitude of tissue injury and fibroproliferative repair. This can be appreciated in studies that highlight its induction after cigarette smoke exposure, during which it inhibits alveolar destruction and the genesis of pulmonary emphysema. IL-18 is also known to be induced and activated by cigarette smoke, and, in murine models, the IL-18 pathway has been shown to be necessary and sufficient to generate chronic obstructive pulmonary disease-like inflammation, fibrosis, and tissue destruction. However, the relationship between Chi3l1 and IL-18 has not been defined. To address this issue we characterized the expression of Chi3l1/BRP-39 in control and lung-targeted IL-18 transgenic mice. We also characterized the effects of transgenic IL-18 in mice with wild-type and null Chi3l1 loci. The former studies demonstrated that IL-18 is a potent stimulator of Chi3l1/BRP-39 and that this stimulation is mediated via IFN-γ-, IL-13-, and IL-17A-dependent mechanisms. The latter studies demonstrated that, in the absence of Chi3l1/BRP-39, IL-18 induced type 2 and type 17 inflammation and fibrotic airway remodeling were significantly ameliorated, whereas type 1 inflammation, emphysematous alveolar destruction, and the expression of cytotoxic T lymphocyte perforin, granzyme, and retinoic acid early transcript 1 expression were enhanced. These studies demonstrate that IL-18 is a potent stimulator of Chi3l1 and that Chi3l1 is an important mediator of IL-18-induced inflammatory, fibrotic, alveolar remodeling, and cytotoxic responses.

  13. Invasive versus noninvasive measurement of allergic and cholinergic airway responsiveness in mice

    PubMed Central

    Glaab, Thomas; Ziegert, Michaela; Baelder, Ralf; Korolewitz, Regina; Braun, Armin; Hohlfeld, Jens M; Mitzner, Wayne; Krug, Norbert; Hoymann, Heinz G

    2005-01-01

    Background This study seeks to compare the ability of repeatable invasive and noninvasive lung function methods to assess allergen-specific and cholinergic airway responsiveness (AR) in intact, spontaneously breathing BALB/c mice. Methods Using noninvasive head-out body plethysmography and the decrease in tidal midexpiratory flow (EF50), we determined early AR (EAR) to inhaled Aspergillus fumigatus antigens in conscious mice. These measurements were paralleled by invasive determination of pulmonary conductance (GL), dynamic compliance (Cdyn) and EF50 in another group of anesthetized, orotracheally intubated mice. Results With both methods, allergic mice, sensitized and boosted with A. fumigatus, elicited allergen-specific EAR to A. fumigatus (p < 0.05 versus controls). Dose-response studies to aerosolized methacholine (MCh) were performed in the same animals 48 h later, showing that allergic mice relative to controls were distinctly more responsive (p < 0.05) and revealed acute airway inflammation as evidenced from increased eosinophils and lymphocytes in bronchoalveolar lavage. Conclusion We conclude that invasive and noninvasive pulmonary function tests are capable of detecting both allergen-specific and cholinergic AR in intact, allergic mice. The invasive determination of GL and Cdyn is superior in sensitivity, whereas the noninvasive EF50 method is particularly appropriate for quick and repeatable screening of respiratory function in large numbers of conscious mice. PMID:16309547

  14. Engineered silica nanoparticles act as adjuvants to enhance allergic airway disease in mice

    PubMed Central

    2013-01-01

    Background With the increase in production and use of engineered nanoparticles (NP; ≤ 100 nm), safety concerns have risen about the potential health effects of occupational or environmental NP exposure. Results of animal toxicology studies suggest that inhalation of NP may cause pulmonary injury with subsequent acute or chronic inflammation. People with chronic respiratory diseases like asthma or allergic rhinitis may be even more susceptible to toxic effects of inhaled NP. Few studies, however, have investigated adverse effects of inhaled NP that may enhance the development of allergic airway disease. Methods We investigated the potential of polyethylene glycol coated amorphous silica NP (SNP; 90 nm diameter) to promote allergic airway disease when co-exposed during sensitization with an allergen. BALB/c mice were sensitized by intranasal instillation with 0.02% ovalbumin (OVA; allergen) or saline (control), and co-exposed to 0, 10, 100, or 400 μg of SNP. OVA-sensitized mice were then challenged intranasally with 0.5% OVA 14 and 15 days after sensitization, and all animals were sacrificed a day after the last OVA challenge. Blood and bronchoalveolar lavage fluid (BALF) were collected, and pulmonary tissue was processed for histopathology and biochemical and molecular analyses. Results Co-exposure to SNP during OVA sensitization caused a dose-dependent enhancement of allergic airway disease upon challenge with OVA alone. This adjuvant-like effect was manifested by significantly greater OVA-specific serum IgE, airway eosinophil infiltration, mucous cell metaplasia, and Th2 and Th17 cytokine gene and protein expression, as compared to mice that were sensitized to OVA without SNP. In saline controls, SNP exposure did cause a moderate increase in airway neutrophils at the highest doses. Conclusions These results suggest that airway exposure to engineered SNP could enhance allergen sensitization and foster greater manifestation of allergic airway disease upon

  15. A module-based analytical strategy to identify novel disease-associated genes shows an inhibitory role for interleukin 7 Receptor in allergic inflammation

    PubMed Central

    Mobini, Reza; Andersson, Bengt A; Erjefält, Jonas; Hahn-Zoric, Mirjana; Langston, Michael A; Perkins, Andy D; Cardell, Lars Olaf; Benson, Mikael

    2009-01-01

    Background The identification of novel genes by high-throughput studies of complex diseases is complicated by the large number of potential genes. However, since disease-associated genes tend to interact, one solution is to arrange them in modules based on co-expression data and known gene interactions. The hypothesis of this study was that such a module could be a) found and validated in allergic disease and b) used to find and validate one ore more novel disease-associated genes. Results To test these hypotheses integrated analysis of a large number of gene expression microarray experiments from different forms of allergy was performed. This led to the identification of an experimentally validated reference gene that was used to construct a module of co-expressed and interacting genes. This module was validated in an independent material, by replicating the expression changes in allergen-challenged CD4+ cells. Moreover, the changes were reversed following treatment with corticosteroids. The module contained several novel disease-associated genes, of which the one with the highest number of interactions with known disease genes, IL7R, was selected for further validation. The expression levels of IL7R in allergen challenged CD4+ cells decreased following challenge but increased after treatment. This suggested an inhibitory role, which was confirmed by functional studies. Conclusion We propose that a module-based analytical strategy is generally applicable to find novel genes in complex diseases. PMID:19216740

  16. Hemoglobin-induced lung vascular oxidation, inflammation, and remodeling contribute to the progression of hypoxic pulmonary hypertension and is attenuated in rats with repeated-dose haptoglobin administration.

    PubMed

    Irwin, David C; Baek, Jin Hyen; Hassell, Kathryn; Nuss, Rachelle; Eigenberger, Paul; Lisk, Christina; Loomis, Zoe; Maltzahn, Joanne; Stenmark, Kurt R; Nozik-Grayck, Eva; Buehler, Paul W

    2015-05-01

    Haptoglobin (Hp) is an approved treatment in Japan for trauma, burns, and massive transfusion-related hemolysis. Additional case reports suggest uses in other acute hemolytic events that lead to acute kidney injury. However, Hp's protective effects on the pulmonary vasculature have not been evaluated within the context of mitigating the consequences of chronic hemoglobin (Hb) exposure in the progression of pulmonary hypertension (PH) secondary to hemolytic diseases. This study was performed to assess the utility of chronic Hp therapy in a preclinical model of Hb and hypoxia-mediated PH. Rats were simultaneously exposed to chronic Hb infusion (35 mg per day) and hypobaric hypoxia for 5 weeks in the presence or absence of Hp treatment (90 mg/kg twice a week). Hp inhibited the Hb plus hypoxia-mediated nonheme iron accumulation in lung and heart tissue, pulmonary vascular inflammation and resistance, and right-ventricular hypertrophy, which suggests a positive impact on impeding the progression of PH. In addition, Hp therapy was associated with a reduction in critical mediators of PH, including lung adventitial macrophage population and endothelial ICAM-1 expression. By preventing Hb-mediated pathology, Hp infusions: (1) demonstrate a critical role for Hb in vascular remodeling associated with hypoxia and (2) suggest a novel therapy for chronic hemolysis-associated PH. PMID:25656991

  17. Hemoglobin induced lung vascular oxidation, inflammation, and remodeling contributes to the progression of hypoxic pulmonary hypertension and is attenuated in rats with repeat dose haptoglobin administration

    PubMed Central

    Baek, Jin Hyen; Hassell, Kathryn; Nuss, Rachelle; Eigenberger, Paul; Lisk, Christina; Loomis, Zoe; Maltzahn, Joanne; Stenmark, Kurt R; Nozik-Grayck, Eva

    2015-01-01

    Objective Haptoglobin (Hp) is an approved treatment in Japan with indications for trauma, burns and massive transfusion related hemolysis. Additional case reports suggest uses in other acute hemolytic events that lead to acute kidney injury. However, Hp's protective effects on the pulmonary vasculature have not been evaluated within the context of mitigating the consequences of chronic hemoglobin (Hb) exposure in the progression of pulmonary hypertension (PH) secondary to hemolytic diseases. This study was performed to assess the utility of chronic Hp therapy in a preclinical model of Hb and hypoxia mediated PH. Approach and results Rats were simultaneously exposed to chronic Hb-infusion (35 mg per day) and hypobaric hypoxia for five weeks in the presence or absence of Hp treatment (90 mg/kg twice a week). Hp inhibited the Hb plus hypoxia-mediated non-heme iron accumulation in lung and heart tissue, pulmonary vascular inflammation and resistance, and right ventricular hypertrophy, which suggest a positive impact on impeding the progression of PH. In addition, Hp therapy was associated with a reduction in critical mediators of PH, including lung adventitial macrophage population and endothelial ICAM-1 expression. Conclusions By preventing Hb-mediated pathology, Hp infusions: (1) demonstrate a critical role for Hb in vascular remodeling associated with hypoxia; and (2) suggest a novel therapy for chronic hemolysis associated PH. PMID:25656991

  18. Blockade of CD49d (alpha4 integrin) on intrapulmonary but not circulating leukocytes inhibits airway inflammation and hyperresponsiveness in a mouse model of asthma.

    PubMed Central

    Henderson, W R; Chi, E Y; Albert, R K; Chu, S J; Lamm, W J; Rochon, Y; Jonas, M; Christie, P E; Harlan, J M

    1997-01-01

    Immunized mice after inhalation of specific antigen have the following characteristic features of human asthma: airway eosinophilia, mucus and Th2 cytokine release, and hyperresponsiveness to methacholine. A model of late-phase allergic pulmonary inflammation in ovalbumin-sensitized mice was used to address the role of the alpha4 integrin (CD49d) in mediating the airway inflammation and hyperresponsiveness. Local, intrapulmonary blockade of CD49d by intranasal administration of CD49d mAb inhibited all signs of lung inflammation, IL-4 and IL-5 release, and hyperresponsiveness to methacholine. In contrast, CD49d blockade on circulating leukocytes by intraperitoneal CD49d mAb treatment only prevented the airway eosinophilia. In this asthma model, a CD49d-positive intrapulmonary leukocyte distinct from the eosinophil is the key effector cell of allergen-induced pulmonary inflammation and hyperresponsiveness. PMID:9399955

  19. CD28/B7 Deficiency Attenuates Systolic Overload-Induced Congestive Heart Failure, Myocardial and Pulmonary Inflammation, and Activated T Cell Accumulation in the Heart and Lungs.

    PubMed

    Wang, Huan; Kwak, Dongmin; Fassett, John; Hou, Lei; Xu, Xin; Burbach, Brandon J; Thenappan, Thenappan; Xu, Yawei; Ge, Jun-Bo; Shimizu, Yoji; Bache, Robert J; Chen, Yingjie

    2016-09-01

    The inflammatory response regulates congestive heart failure (CHF) development. T cell activation plays an important role in tissue inflammation. We postulate that CD28 or B7 deficiency inhibits T cell activation and attenuates CHF development by reducing systemic, cardiac, and pulmonary inflammation. We demonstrated that chronic pressure overload-induced end-stage CHF in mice is characterized by profound accumulation of activated effector T cells (CD3(+)CD44(high) cells) in the lungs and a mild but significant increase of these cells in the heart. In knockout mice lacking either CD28 or B7, there was a dramatic reduction in the accumulation of activated effector T cells in both hearts and lungs of mice under control conditions and after transverse aortic constriction. CD28 or B7 knockout significantly attenuated transverse aortic constriction-induced CHF development, as indicated by less increase of heart and lung weight and less reduction of left ventricle contractility. CD28 or B7 knockout also significantly reduced transverse aortic constriction-induced CD45(+) leukocyte, T cell, and macrophage infiltration in hearts and lungs, lowered proinflammatory cytokine expression (such as tumor necrosis factor-α and interleukin-1β) in lungs. Furthermore, CD28/B7 blockade by CTLA4-Ig treatment (250 μg/mouse every 3 days) attenuated transverse aortic constriction-induced T cell activation, left ventricle hypertrophy, and left ventricle dysfunction. Our data indicate that CD28/B7 deficiency inhibits activated effector T cell accumulation, reduces myocardial and pulmonary inflammation, and attenuates the development of CHF. Our findings suggest that strategies targeting T cell activation may be useful in treating CHF. PMID:27432861

  20. CD28/B7 Deficiency Attenuates Systolic Overload-Induced Congestive Heart Failure, Myocardial and Pulmonary Inflammation, and Activated T Cell Accumulation in the Heart and Lungs.

    PubMed

    Wang, Huan; Kwak, Dongmin; Fassett, John; Hou, Lei; Xu, Xin; Burbach, Brandon J; Thenappan, Thenappan; Xu, Yawei; Ge, Jun-Bo; Shimizu, Yoji; Bache, Robert J; Chen, Yingjie

    2016-09-01

    The inflammatory response regulates congestive heart failure (CHF) development. T cell activation plays an important role in tissue inflammation. We postulate that CD28 or B7 deficiency inhibits T cell activation and attenuates CHF development by reducing systemic, cardiac, and pulmonary inflammation. We demonstrated that chronic pressure overload-induced end-stage CHF in mice is characterized by profound accumulation of activated effector T cells (CD3(+)CD44(high) cells) in the lungs and a mild but significant increase of these cells in the heart. In knockout mice lacking either CD28 or B7, there was a dramatic reduction in the accumulation of activated effector T cells in both hearts and lungs of mice under control conditions and after transverse aortic constriction. CD28 or B7 knockout significantly attenuated transverse aortic constriction-induced CHF development, as indicated by less increase of heart and lung weight and less reduction of left ventricle contractility. CD28 or B7 knockout also significantly reduced transverse aortic constriction-induced CD45(+) leukocyte, T cell, and macrophage infiltration in hearts and lungs, lowered proinflammatory cytokine expression (such as tumor necrosis factor-α and interleukin-1β) in lungs. Furthermore, CD28/B7 blockade by CTLA4-Ig treatment (250 μg/mouse every 3 days) attenuated transverse aortic constriction-induced T cell activation, left ventricle hypertrophy, and left ventricle dysfunction. Our data indicate that CD28/B7 deficiency inhibits activated effector T cell accumulation, reduces myocardial and pulmonary inflammation, and attenuates the development of CHF. Our findings suggest that strategies targeting T cell activation may be useful in treating CHF.

  1. The standardized herbal formula, PM014, ameliorated cigarette smoke-induced lung inflammation in a murine model of chronic obstructive pulmonary disease

    PubMed Central

    2013-01-01

    Background In this study, we evaluated the anti-inflammatory effect of PM014 on cigarette smoke induced lung disease in the murine animal model of chronic obstructive pulmonary disease (COPD). Methods Mice were exposed to cigarette smoke (CS) for 2 weeks to induce COPD-like lung inflammation. Two hours prior to cigarette smoke exposure, the treatment group was administered PM014 via an oral injection. To investigate the effects of PM014, we assessed PM014 functions in vivo, including immune cell infiltration, cytokine profiles in bronchoalveolar lavage (BAL) fluid and histopathological changes in the lung. The efficacy of PM014 was compared with that of the recently developed anti-COPD drug, roflumilast. Results PM014 substantially inhibited immune cell infiltration (neutrophils, macrophages, and lymphocytes) into the airway. In addition, IL-6, TNF-α and MCP-1 were decreased in the BAL fluid of PM014-treated mice compared to cigarette smoke stimulated mice. These changes were more prominent than roflumilast treated mice. The expression of PAS-positive cells in the bronchial layer was also significantly reduced in both PM014 and roflumilast treated mice. Conclusions These data suggest that PM014 exerts strong therapeutic effects against CS induced, COPD-like lung inflammation. Therefore, this herbal medicine may represent a novel therapeutic agent for lung inflammation in general, as well as a specific agent for COPD treatment. PMID:24010767

  2. Bee venom phospholipase A2 suppresses allergic airway inflammation in an ovalbumin-induced asthma model through the induction of regulatory T cells.

    PubMed

    Park, Soojin; Baek, Hyunjung; Jung, Kyung-Hwa; Lee, Gihyun; Lee, Hyeonhoon; Kang, Geun-Hyung; Lee, Gyeseok; Bae, Hyunsu

    2015-12-01

    Bee venom (BV) is one of the alternative medicines that have been widely used in the treatment of chronic inflammatory diseases. We previously demonstrated that BV induces immune tolerance by increasing the population of regulatory T cells (Tregs) in immune disorders. However, the major component and how it regulates the immune response have not been elucidated. We investigated whether bee venom phospholipase A2 (bvPLA2) exerts protective effects that are mediated via Tregs in OVA-induced asthma model. bvPLA2 was administered by intraperitoneal injection into control and OVA-challenged mice. The Treg population, total and differential bronchoalveolar lavage fluid (BALF) cell count, Th2 cytokines, and lung histological features were assessed. Treg depletion was used to determine the involvement of Treg migration and the reduction of asthmatic symptoms. The CD206-dependence of bvPLA2-treated suppression of airway inflammation was evaluated in OVA-challenged CD206(-/-) mice. The bvPLA2 treatment induced the Tregs and reduced the infiltration of inflammatory cells into the lung in the OVA-challenged mice. Th2 cytokines in the bronchoalveolar lavage fluid (BALF) were reduced in bvPLA2-treated mice. Although bvPLA2 suppressed the number of inflammatory cells after OVA challenge, these effects were not observed in Treg-depleted mice. In addition, we investigated the involvement of CD206 in bvPLA2-mediated immune tolerance in OVA-induced asthma model. We observed a significant reduction in the levels of Th2 cytokines and inflammatory cells in the BALF of bvPLA2-treated OVA-induced mice but not in bvPLA2-treated OVA-induced CD206(-/-) mice. These results demonstrated that bvPLA2 can mitigate airway inflammation by the induction of Tregs in an OVA-induced asthma model. PMID:26734460

  3. Effects of corticosteroid treatment on airway inflammation, mechanics, and hyperpolarized ³He magnetic resonance imaging in an allergic mouse model.

    PubMed

    Thomas, Abraham C; Kaushik, S Sivaram; Nouls, John; Potts, Erin N; Slipetz, Deborah M; Foster, W Michael; Driehuys, Bastiaan

    2012-05-01

    The purpose of this study was to assess the effects of corticosteroid therapy on a murine model of allergic asthma using hyperpolarized (3)He magnetic resonance imaging (MRI) and respiratory mechanics measurements before, during, and after methacholine (MCh) challenge. Three groups of mice were prepared, consisting of ovalbumin sensitized/ovalbumin challenged (Ova/Ova, n = 5), Ova/Ova challenged but treated with the corticosteroid dexamethasone (Ova/Ova+Dex, n = 3), and ovalbumin-sensitized/saline-challenged (Ova/PBS, n = 4) control animals. All mice underwent baseline 3D (3)He MRI, then received a MCh challenge while 10 2D (3)He MR images were acquired for 2 min, followed by post-MCh 3D (3)He MRI. Identically treated groups underwent respiratory mechanics evaluation (n = 4/group) and inflammatory cell counts (n = 4/group). Ova/Ova animals exhibited predominantly large whole lobar defects at baseline, with significantly higher ventilation defect percentage (VDP = 19 ± 4%) than Ova/PBS (+2 ± 1%, P = 0.01) animals. Such baseline defects were suppressed by dexamethasone (0%, P = 0.009). In the Ova/Ova group, MCh challenge increased VDP on both 2D (+30 ± 8%) and 3D MRI scans (+14 ± 2%). MCh-induced VDP changes were diminished in Ova/Ova+Dex animals on both 2D (+21 ± 9%, P = 0.63) and 3D scans (+7 ± 2%, P = 0.11) and also in Ova/PBS animals on 2D (+6 ± 3%, P = 0.07) and 3D (+4 ± 1%, P = 0.01) scans. Because MCh challenge caused near complete cessation of ventilation in four of five Ova/Ova animals, even as large airways remained patent, this implies that small airway (<188 μm) obstruction predominates in this model. This corresponds with respiratory mechanics observations that MCh challenge significantly increases elastance and tissue damping but only modestly affects Newtonian airway resistance. PMID:22241062

  4. Effects of Schisandra chinensis extracts on cough and pulmonary inflammation in a cough hypersensitivity guinea pig model induced by cigarette smoke exposure.

    PubMed

    Zhong, Shan; Nie, Yi-chu; Gan, Zhen-yong; Liu, Xiao-dong; Fang, Zhang-fu; Zhong, Bo-nian; Tian, Jin; Huang, Chu-qin; Lai, Ke-fang; Zhong, Nan-shan

    2015-05-13

    Schisandra chinensis (S. chinensis) is a traditional Chinese medicine commonly used in prescription medications for the treatment of chronic cough. However, the material basis of S. chinensis in relieving cough has not been completely elucidated yet. This study established a guinea pig model of cough hypersensitivity induced by 14 days of cigarette smoke (CS) exposure, to evaluate the antitussive, antioxidant, and anti-inflammatory effects of three S. chinensis extracts. And then the function of four lignans in reducing expression of TRPV1 and TRPA1 was examined using A549 cells induced by cigarette smoke extract (CSE). The results demonstrated that both ethanol extract (EE) and ethanol-water extract (EWE) of S. chinensis, but not water extract (WE), significantly reduced the cough frequency enhanced by 0.4M citric acid solution in these cough hypersensitivity guinea pigs. Meanwhile, pretreatment with EE and EWE both significantly attenuated the CS-induced increase in infiltration of pulmonary neutrophils and total inflammatory cells, as well as pulmonary MDA, TNF-α, and IL-8, while remarkably increased activities of pulmonary SOD and GSH. According to H&E and immunofluorescence staining assays, airway epithelium hyperplasia, smooth muscle thickening, inflammatory cells infiltration, as well as expression of TRPV1 and TRPA1, were significantly attenuated in animals pretreatment with 1g/kg EE. Moreover, four lignans of EE, including schizandrin, schisantherin A, deoxyschizandrin and γ-schisandrin, significantly inhibited CSE-induced expression of TRPV1, TRPA1 and NOS3, as well as NO release in A549 cells. In conclusion, S. chinensis reduces cough frequency and pulmonary inflammation in the CS-induced cough hypersensitivity guinea pigs. Lignans may be the active components.

  5. Pulmonary instillation of low doses of titanium dioxide nanoparticles in mice leads to particle retention and gene expression changes in the absence of inflammation

    SciTech Connect

    Husain, Mainul; Saber, Anne T.; Guo, Charles; Jacobsen, Nicklas R.; Jensen, Keld A.; Yauk, Carole L.; Williams, Andrew; Vogel, Ulla; Wallin, Hakan; Halappanavar, Sabina

    2013-06-15

    We investigated gene expression, protein synthesis, and particle retention in mouse lungs following intratracheal instillation of varying doses of nano-sized titanium dioxide (nano-TiO{sub 2}). Female C57BL/6 mice were exposed to rutile nano-TiO{sub 2} via single intratracheal instillations of 18, 54, and 162 μg/mouse. Mice were sampled 1, 3, and 28 days post-exposure. The deposition of nano-TiO{sub 2} in the lungs was assessed using nanoscale hyperspectral microscopy. Biological responses in the pulmonary system were analyzed using DNA microarrays, pathway-specific real-time RT-PCR (qPCR), gene-specific qPCR arrays, and tissue protein ELISA. Hyperspectral mapping showed dose-dependent retention of nano-TiO{sub 2} in the lungs up to 28 days post-instillation. DNA microarray analysis revealed approximately 3000 genes that were altered across all treatment groups (± 1.3 fold; p < 0.1). Several inflammatory mediators changed in a dose- and time-dependent manner at both the mRNA and protein level. Although no influx of neutrophils was detected at the low dose, changes in the expression of several genes and proteins associated with inflammation were observed. Resolving inflammation at the medium dose, and lack of neutrophil influx in the lung fluid at the low dose, were associated with down-regulation of genes involved in ion homeostasis and muscle regulation. Our gene expression results imply that retention of nano-TiO{sub 2} in the absence of inflammation over time may potentially perturb calcium and ion homeostasis, and affect smooth muscle activities. - Highlights: • Pulmonary effects following exposure to low doses of nano-TiO{sub 2} were examined. • Particle retention in lungs was assessed using nanoscale hyperspectral microscopy. • Particles persisted up to 28 days in lungs in all dose groups. • Inflammation was the pathway affected in the high dose group at all time points. • Ion homeostasis and muscle activity pathways were affected in the low dose

  6. Role of Cardiovascular Disease-associated iron overload in Libby amphibole-induced acute pulmonary injury and inflammation

    EPA Science Inventory

    Pulmonary toxicity induced by asbestos is thought to be mediated through redox-cycling of fiber-bound and bioavailable iron (Fe). We hypothesized that Libby amphibole (LA)-induced cute lung injury will be exacerbated in rat models of cardiovascular disease (CVD)-associated Fe-ove...

  7. DIFFERENTIAL PULMONARY INFLAMMATION AND IN VITRO CYTOTOXICITY BY SIZE-FRACTIONATED FLY ASH PARTICLES FROM PULVERIZED COAL COMBUSTION

    EPA Science Inventory

    The paper presents results of research on the adverse health effects associated with exposure to airborne particulate matter. Pulmonary inflammatory responses were examined in CDI mice after intratracheal instillation of 25 or 100 micrograms of ultrafine (<0.2 micrometers), fine ...

  8. Overview on the pathomechanisms of allergic rhinitis

    PubMed Central

    Mori, Sachiko; Ozu, Chika; Kimura, Satoko

    2011-01-01

    Allergic rhinitis a chronic inflammatory disease of the upper airways that has a major impact on the quality of life of patients and is a socio-economic burden. Understanding the underlying immune mechanisms is central to developing better and more targeted therapies. The inflammatory response in the nasal mucosa includes an immediate IgE-mediated mast cell response as well as a latephase response characterized by recruitment of eosinophils, basophils, and T cells expressing Th2 cytokines including interleukin (IL)-4, a switch factor for IgE synthesis, and IL-5, an eosinophil growth factor and on-going allergic inflammation. Recent advances have suggested new pathways like local synthesis of IgE, the IgE-IgE receptor mast cell cascade in on-going allergic inflammation and the epithelial expression of cytokines that regulate Th2 cytokine responses (i.e., thymic stromal lymphopoietin, IL-25, and IL-33). In this review, we briefly review the conventional pathways in the pathophysiology of allergic rhinitis and then elaborate on the recent advances in the pathophysiology of allergic rhinitis. An improved understanding of the immune mechanisms of allergic rhinitis can provide a better insight on novel therapeutic targets. PMID:22053313

  9. Acute respiratory changes and pulmonary inflammation involving a pathway of TGF-β1 induction in a rat model of chlorine-induced lung injury.

    PubMed

    Wigenstam, Elisabeth; Elfsmark, Linda; Koch, Bo; Bucht, Anders; Jonasson, Sofia

    2016-10-15

    We investigated acute and delayed respiratory changes after inhalation exposure to chlorine (Cl2) with the aim to understand the pathogenesis of the long-term sequelae of Cl2-induced lung-injury. In a rat model of nose-only exposure we analyzed changes in airway hyperresponsiveness (AHR), inflammatory responses in airways, expression of pro-inflammatory markers and development of lung fibrosis during a time-course from 5h up to 90days after a single inhalation of Cl2. A single dose of dexamethasone (10mg/kg) was administered 1h following Cl2-exposure. A 15-min inhalation of 200ppm Cl2 was non-lethal in Sprague-Dawley rats. At 24h post exposure, Cl2-exposed rats displayed elevated numbers of leukocytes with an increase of neutrophils and eosinophils in bronchoalveolar lavage (BAL) and edema was shown both in lung tissue and the heart. At 24h, the inflammasome-associated cytokines IL-1β and IL-18 were detected in BAL. Concomitant with the acute inflammation a significant AHR was detected. At the later time-points, a delayed inflammatory response was observed together with signs of lung fibrosis as indicated by increased pulmonary macrophages, elevated TGF-β expression in BAL and collagen deposition around airways. Dexamethasone reduced the numbers of neutrophils in BAL at 24h but did not influence the AHR. Inhalation of Cl2 in rats leads to acute respiratory and cardiac changes as well as pulmonary inflammation involving induction of TGF-β1. The acute inflammatory response was followed by sustained macrophage response and lack of tissue repair. It was also found that pathways apart from the acute inflammatory response contribute to the Cl2-induced respiratory dysfunction. PMID:27586366

  10. Chronic obstructive pulmonary disease and asthma-associated Proteobacteria, but not commensal Prevotella spp., promote Toll-like receptor 2-independent lung inflammation and pathology.

    PubMed

    Larsen, Jeppe M; Musavian, Hanieh S; Butt, Tariq M; Ingvorsen, Camilla; Thysen, Anna H; Brix, Susanne

    2015-02-01

    Recent studies of healthy human airways have revealed colonization by a distinct commensal bacterial microbiota containing Gram-negative Prevotella spp. However, the immunological properties of these bacteria in the respiratory system remain unknown. Here we compare the innate respiratory immune response to three Gram-negative commensal Prevotella strains (Prevotella melaninogenica, Prevotella nanceiensis and Prevotella salivae) and three Gram-negative pathogenic Proteobacteria known to colonize lungs of patients with chronic obstructive pulmonary disease (COPD) and asthma (Haemophilus influenzae B, non-typeable Haemophilus influenzae and Moraxella catarrhalis). The commensal Prevotella spp. and pathogenic Proteobacteria were found to exhibit intrinsic differences in innate inflammatory capacities on murine lung cells in vitro. In vivo in mice, non-typeable H. influenzae induced severe Toll-like receptor 2 (TLR2)-independent COPD-like inflammation characterized by predominant airway neutrophilia, expression of a neutrophilic cytokine/chemokine profile in lung tissue, and lung immunopathology. In comparison, P. nanceiensis induced a diminished neutrophilic airway inflammation and no detectable lung pathology. Interestingly, the inflammatory airway response to the Gram-negative bacteria P. nanceiensis was completely TLR2-dependent. These findings demonstrate weak inflammatory properties of Gram-negative airway commensal Prevotella spp. that may make colonization by these bacteria tolerable by the respiratory immune system.

  11. p53- and PAI-1-mediated induction of C-X-C chemokines and CXCR2: importance in pulmonary inflammation due to cigarette smoke exposure.

    PubMed

    Tiwari, Nivedita; Marudamuthu, Amarnath S; Tsukasaki, Yoshikazu; Ikebe, Mitsuo; Fu, Jian; Shetty, Sreerama

    2016-03-15

    We previously demonstrated that tumor suppressor protein p53 augments plasminogen activator inhibitor-1 (PAI-1) expression in alveolar epithelial cells (AECs) during chronic cigarette smoke (CS) exposure-induced lung injury. Chronic lung inflammation with elevated p53 and PAI-1 expression in AECs and increased susceptibility to and exacerbation of respiratory infections are all associated with chronic obstructive pulmonary disease (COPD). We recently demonstrated that preventing p53 from binding to the endogenous PAI-1 mRNA in AECs by either suppressing p53 expression or blockading p53 interactions with the PAI-1 mRNA mitigates apoptosis and lung injury. Within this context, we now show increased expression of the C-X-C chemokines (CXCL1 and CXCL2) and their receptor CXCR2, and the intercellular cellular adhesion molecule-1 (ICAM-1), in the lung tissues of patients with COPD. We also found a similar increase in lung tissues and AECs from wild-type (WT) mice exposed to passive CS for 20 wk and in primary AECs treated with CS extract in vitro. Interestingly, passive CS exposure of mice lacking either p53 or PAI-1 expression resisted an increase in CXCL1, CXCL2, CXCR2, and ICAM-1. Furthermore, inhibition of p53-mediated induction of PAI-1 expression by treatment of WT mice exposed to passive CS with caveolin-1 scaffolding domain peptide reduced CXCL1, CXCL2, and CXCR2 levels and lung inflammation. Our study reveals that p53-mediated induction of PAI-1 expression due to chronic CS exposure exacerbates lung inflammation through elaboration of CXCL1, CXCL2, and CXCR2. We further provide evidence that targeting this pathway mitigates lung injury associated with chronic CS exposure.

  12. Elevated circulating PAI-1 levels are related to lung function decline, systemic inflammation, and small airway obstruction in chronic obstructive pulmonary disease

    PubMed Central

    Wang, Hao; Yang, Ting; Li, Diandian; Wu, Yanqiu; Zhang, Xue; Pang, Caishuang; Zhang, Junlong; Ying, Binwu; Wang, Tao; Wen, Fuqiang

    2016-01-01

    Background Plasminogen activator inhibitor-1 (PAI-1) and soluble urokinase-type plasminogen activator receptor (suPAR) participate in inflammation and tissue remolding in various diseases, but their roles in chronic obstructive pulmonary disease (COPD) are not yet clear. This study aimed to investigate if PAI-1 and suPAR were involved in systemic inflammation and small airway obstruction (SAO) in COPD. Methods Demographic and clinical characteristics, spirometry examination, and blood samples were obtained from 84 COPD patients and 51 healthy volunteers. Serum concentrations of PAI-1, suPAR, tissue inhibitor of metalloproteinase-1 (TIMP-1), Matrix metalloproteinase-9 (MMP-9), and C-reactive protein (CRP) were detected with Magnetic Luminex Screening Assay. Differences between groups were statistically analyzed using one-way analysis of variance or chi-square test. Pearson’s partial correlation test (adjusted for age, sex, body mass index, cigarette status, and passive smoke exposure) and multivariable linear analysis were used to explore the relationships between circulating PAI-1 and indicators of COPD. Results First, we found that serum PAI-1 levels but not suPAR levels were significantly increased in COPD patients compared with healthy volunteers (125.56±51.74 ng/mL versus 102.98±36.62 ng/mL, P=0.007). Then, the correlation analysis showed that circulating PAI-1 was inversely correlated with pulmonary function parameters including the ratio of forced expiratory volume in 1 second to forced vital capacity (FEV1/FVC), FEV1/Pre (justified r=−0.308, P<0.001; justified r=−0.295, P=0.001, respectively) and SAO indicators such as FEV3/FVC, MMEF25–75/Pre (justified r=−0.289, P=0.001; justified r=−0.273, P=0.002, respectively), but positively related to the inflammatory marker CRP (justified r=0.351, P<0.001), the small airway remolding biomarker TIMP-1, and MMP-9 (justified r=0.498, P<0.001; justified r=0.267, P=0.002, respectively). Besides, multivariable

  13. Hepatic and Pulmonary Toxicogenomic Profiles in Mice Intratracheally Instilled With Carbon Black Nanoparticles Reveal Pulmonary Inflammation, Acute Phase Response, and Alterations in Lipid Homeostasis

    PubMed Central

    Bourdon, Julie A.; Halappanavar, Sabina; Saber, Anne T.; Jacobsen, Nicklas R.; Williams, Andrew; Wallin, Håkan; Vogel, Ulla; Yauk, Carole L.

    2012-01-01

    Global pulmonary and hepatic messenger RNA profiles in adult female C57BL/6 mice intratracheally instilled with carbon black nanoparticles (NPs) (Printex 90) were analyzed to identify biological perturbations underlying systemic responses to NP exposure. Tissue gene expression changes were profiled 1, 3, and 28 days following exposure to 0.018, 0.054, and 0.162 mg Printex 90 alongside controls. Pulmonary response was marked by increased expression of inflammatory markers and acute phase response (APR) genes that persisted to day 28 at the highest exposure dose. Genes in the 3-hydroxy-3-methylglutaryl-Coenzyme A (HMG-CoA) reductase pathway were increased, and those involved in cholesterol efflux were decreased at least at the highest dose on days 1 and 3. Hepatic responses mainly consisted of the HMG-CoA reductase pathway on days 1 (high dose) and 28 (all doses). Protein analysis in tissues and plasma of 0.162 mg Printex 90–exposed mice relative to control revealed an increase in plasma serum amyloid A on days 1 and 28 (p < 0.05), decreases in plasma high-density lipoprotein on days 3 and 28, an increase in plasma low-density lipoprotein on day 28 (p < 0.05), and marginal increases in total hepatic cholesterol on day 28 (p = 0.06). The observed changes are linked to APR. Although further research is needed to establish links between observations and the onset and progression of systemic disorders, the present study demonstrates the ability of NPs to induce systemic effects. PMID:22461453

  14. Identification of the appropriate dose metric for pulmonary inflammation of silver nanoparticles in an inhalation toxicity study.

    PubMed

    Braakhuis, Hedwig M; Cassee, Flemming R; Fokkens, Paul H B; de la Fonteyne, Liset J J; Oomen, Agnes G; Krystek, Petra; de Jong, Wim H; van Loveren, Henk; Park, Margriet V D Z

    2016-01-01

    A number of studies have shown that induction of pulmonary toxicity by nanoparticles of the same chemical composition depends on particle size, which is likely in part due to differences in lung deposition. Particle size mostly determines whether nanoparticles reach the alveoli, and where they might induce toxicity. For the risk assessment of nanomaterials, there is need for a suitable dose metric that accounts for differences in effects between different sized nanoparticles of the same chemical composition. The aim of the present study is to determine the most suitable dose metric to describe the effects of silver nanoparticles after short-term inhalation. Rats were exposed to different concentrations (ranging from 41 to 1105 µg silver/m(3) air) of 18, 34, 60 and 160 nm silver particles for four consecutive days and sacrificed at 24 h and 7 days after exposure. We observed a concentration-dependent increase in pulmonary toxicity parameters like cell counts and pro-inflammatory cytokines in the bronchoalveolar lavage fluid. All results were analysed using the measured exposure concentrations in air, the measured internal dose in the lung and the estimated alveolar dose. In addition, we analysed the results based on mass, particle number and particle surface area. Our study indicates that using the particle surface area as a dose metric in the alveoli, the dose-response effects of the different silver particle sizes overlap for most pulmonary toxicity parameters. We conclude that the alveolar dose expressed as particle surface area is the most suitable dose metric to describe the toxicity of silver nanoparticles after inhalation.

  15. C1q Deficiency Promotes Pulmonary Vascular Inflammation and Enhances the Susceptibility of the Lung Endothelium to Injury.

    PubMed

    Shah, Dilip; Romero, Freddy; Zhu, Ying; Duong, Michelle; Sun, Jianxin; Walsh, Kenneth; Summer, Ross

    2015-12-01

    The collectin proteins are innate immune molecules found in high concentrations on the epithelial and endothelial surfaces of the lung. While these proteins are known to have important anti-inflammatory actions in the airways of the lung little is known of their functional importance in the pulmonary circulation. We recently demonstrated that the circulating collectin protein adiponectin has potent anti-inflammatory effects on the lung endothelium, leading us to reason that other structurally related proteins might have similar effects. To test this hypothesis, we investigated the anti-inflammatory actions of C1q in lung endothelial homeostasis and the pulmonary vascular response to LPS or HCl injury. We show that lung endothelium from C1q-deficient (C1q(-/-)) mice expresses higher baseline levels of the vascular adhesion markers ICAM-1, VCAM-1, and E-selectin when compared with wild-type mice. Further, we demonstrate that these changes are associated with enhanced susceptibility of the lung to injury as evident by increased expression of adhesion markers, enhanced production of pro-inflammatory cytokines, and augmented neutrophil recruitment. Additionally, we found that C1q(-/-) mice also exhibited enhanced endothelial barrier dysfunction after injury as manifested by decreased expression of junctional adherens proteins and enhanced vascular leakage. Mechanistically, C1q appears to mediate its effects by inhibiting phosphorylation of p38 mitogen-activated protein kinase (MAPK) and blocking nuclear translocation of the P65 subunit of nuclear factor (NF)-κB. In summary, our findings indicate a previously unrecognized role for C1q in pulmonary vascular homeostasis and provide added support for the hypothesis that circulating collectin proteins have protective effects on the lung endothelium.

  16. Allergic reactions (image)

    MedlinePlus

    Allergic reaction can be provoked by skin contact with poison plants, chemicals and animal scratches, as well as by ... dust, nuts and shellfish, may also cause allergic reaction. Medications such as penicillin and other antibiotics are ...

  17. Cardiomyopathy confers susceptibility to particulate matter-induced oxidative stress, vagal dominance, arrhythmia, and pulmonary inflammation in heart failure-prone rats

    PubMed Central

    Carll, Alex P.; Haykal-Coates, Najwa; Winsett, Darrell W.; Hazari, Mehdi S.; Ledbetter, Allen D.; Richards, Judy H.; Cascio, Wayne E.; Costa, Daniel L.; Farraj, Aimen K.

    2016-01-01

    Acute exposure to ambient fine particulate matter (PM2.5) is tied to cardiovascular morbidity and mortality, especially among those with prior cardiac injury. The mechanisms and pathophysiologic events precipitating these outcomes remain poorly understood but may involve inflammation, oxidative stress, arrhythmia, and autonomic nervous system imbalance. Cardiomyopathy results from cardiac injury, is the leading cause of heart failure, and can be induced in heart failure-prone rats through sub-chronic infusion of isoproterenol (ISO). To test whether cardiomyopathy confers susceptibility to inhaled PM2.5 and can elucidate potential mechanisms, we investigated the cardiophysiologic, ventilatory, inflammatory, and oxidative effects of a single nose-only inhalation of a metal-rich PM2.5 (580 μg/m3, 4h) in ISO-pretreated (35 days * 1.0 mg/kg/day sc) rats. During the 5 days post-treatment, ISO-treated rats had decreased HR and BP and increased pre-ejection period (PEP, an inverse correlate of contractility) relative to saline-treated rats. Before inhalation exposure, ISO-pretreated rats had increased PR and ventricular repolarization time (QT) and heterogeneity (Tp-Te). Relative to clean air, PM2.5 further prolonged PR-interval and decreased systolic BP during inhalation exposure; increased tidal volume, expiratory time, heart rate variability (HRV) parameters of parasympathetic tone, and atrioventricular block arrhythmias over the hours post-exposure; increased pulmonary neutrophils, macrophages, and total antioxidant status one day post-exposure; and decreased pulmonary glutathione peroxidase 8 weeks after exposure, with all effects occurring exclusively in ISO-pretreated rats but not saline-pretreated rats. Ultimately, our findings indicate that cardiomyopathy confers susceptibility to the oxidative, inflammatory, ventilatory, autonomic, and arrhythmogenic effects of acute PM2.5 inhalation. PMID:25600220

  18. γδ T Cells Are Required for M2 Macrophage Polarization and Resolution of Ozone-Induced Pulmonary Inflammation in Mice.

    PubMed

    Mathews, Joel A; Kasahara, David I; Ribeiro, Luiza; Wurmbrand, Allison P; Ninin, Fernanda M C; Shore, Stephanie A

    2015-01-01

    We examined the role of γδ T cells in the induction of alternatively activated M2 macrophages and the resolution of inflammation after ozone exposure. Wildtype (WT) mice and mice deficient in γδ T cells (TCRδ-/- mice) were exposed to air or to ozone (0.3 ppm for up to 72h) and euthanized immediately or 1, 3, or 5 days after cessation of exposure. In WT mice, M2 macrophages accumulated in the lungs over the course of ozone exposure. Pulmonary mRNA abundance of the M2 genes, Arg1, Retnla, and Clec10a, also increased after ozone. In contrast, no evidence of M2 polarization was observed in TCRδ-/- mice. WT but not TCRδ-/- mice expressed the M2c polarizing cytokine, IL-17A, after ozone exposure and WT mice treated with an IL-17A neutralizing antibody exhibited attenuated ozone-induced M2 gene expression. In WT mice, ozone-induced increases in bronchoalveolar lavage neutrophils and macrophages resolved quickly after cessation of ozone exposure returning to air exposed levels within 3 days. However, lack of M2 macrophages in TCRδ-/- mice was associated with delayed clearance of inflammatory cells after cessation of ozone and increased accumulation of apoptotic macrophages in the lungs. Delayed restoration of normal lung architecture was also observed in TCRδ-/- mice. In summary, our data indicate that γδ T cells are required for the resolution of ozone-induced inflammation, likely because γδ T cells, through their secretion of IL-17A, contribute to changes in macrophage polarization that promote clearance of apoptotic cells.

  19. PRMT1 Upregulated by Epithelial Proinflammatory Cytokines Participates in COX2 Expression in Fibroblasts and Chronic Antigen-Induced Pulmonary Inflammation.

    PubMed

    Sun, Qingzhu; Liu, Li; Roth, Michael; Tian, Jia; He, Qirui; Zhong, Bo; Bao, Ruanjuan; Lan, Xi; Jiang, Congshan; Sun, Jian; Yang, Xudong; Lu, Shemin

    2015-07-01

    Protein arginine methyltransferase (PRMT)1, methylating both histones and key cellular proteins, has emerged as a key regulator of various cellular processes. This study aimed to identify the mechanism that regulates PRMT1 in chronic Ag-induced pulmonary inflammation (AIPI) in the E3 rat asthma model. E3 rats were challenged with OVA for 1 or 8 wk to induce acute or chronic AIPI. Expression of mRNAs was detected by real-time quantitative PCR. PRMT1, TGF-β, COX2, and vascular endothelial growth factor protein expression in lung tissues was determined by immunohistochemistry staining and Western blotting. In the in vitro study, IL-4-stimulated lung epithelial cell (A549) medium (ISEM) with or without anti-TGF-β Ab was applied to human fibroblasts from lung (HFL1). The proliferation of HFL1 was determined by MTT. AMI-1 (pan-PRMT inhibitor) was administered intranasally to chronic AIPI rats to determine PRMT effects on asthmatic parameters. In lung tissue sections, PRMT1 expression was significantly upregulated, mainly in epithelial cells, in acute AIPI lungs, whereas it was significantly upregulated mainly in fibroblasts in chronic AIPI lungs. The in vitro study revealed that ISEM elevates PRMT1, COX2, and vascular endothelial growth factor expressions, and it promoted fibroblast proliferation. The application of anti-TGF-β Ab suppressed COX2 upregulation by ISEM. AMI-1 inhibited the expression of COX2 in TGF-β-stimulated cells. In the in vivo experiment, AMI-1 administered to AIPI rats reduced COX2 production and humoral immune response, and it abrogated mucus secretion and collagen generation. These findings suggested that TGF-β-induced PRMT1 expression participates in fibroblast proliferation and chronic airway inflammation in AIPI. PMID:26026059

  20. Current and future biomarkers in allergic asthma.

    PubMed

    Zissler, U M; Esser-von Bieren, J; Jakwerth, C A; Chaker, A M; Schmidt-Weber, C B

    2016-04-01

    Diagnosis early in life, sensitization, asthma endotypes, monitoring of disease and treatment progression are key motivations for the exploration of biomarkers for allergic rhinitis and allergic asthma. The number of genes related to allergic rhinitis and allergic asthma increases steadily; however, prognostic genes have not yet entered clinical application. We hypothesize that the combination of multiple genes may generate biomarkers with prognostic potential. The current review attempts to group more than 161 different potential biomarkers involved in respiratory inflammation to pave the way for future classifiers. The potential biomarkers are categorized into either epithelial or infiltrate-derived or mixed origin, epithelial biomarkers. Furthermore, surface markers were grouped into cell-type-specific categories. The current literature provides multiple biomarkers for potential asthma endotypes that are related to T-cell phenotypes such as Th1, Th2, Th9, Th17, Th22 and Tregs and their lead cytokines. Eosinophilic and neutrophilic asthma endotypes are also classified by epithelium-derived CCL-26 and osteopontin, respectively. There are currently about 20 epithelium-derived biomarkers exclusively derived from epithelium, which are likely to innovate biomarker panels as they are easy to sample. This article systematically reviews and categorizes genes and collects current evidence that may promote these biomarkers to become part of allergic rhinitis or allergic asthma classifiers with high prognostic value. PMID:26706728

  1. Effects of Mikania glomerata Spreng. and Mikania laevigata Schultz Bip. ex Baker (Asteraceae) extracts on pulmonary inflammation and oxidative stress caused by acute coal dust exposure

    SciTech Connect

    Freitas, T.P.; Silveira, P.C.; Rocha, L.G.; Rezin, G.T.; Rocha, J.; Citadini-Zanette, V.; Romao, P.T.; Dal-Pizzol, F.; Pinho, R.A.; Andrade, V.M.; Streck, E.L.

    2008-12-15

    Several studies have reported biological effects of Mikania glomerata and Mikania laevigata, used in Brazilian folk medicine for respiratory diseases. Pneumoconiosis is characterized by pulmonary inflammation caused by coal dust exposure. In this work, we evaluated the effect of pretreatment with M. glomerata and M. laevigata extracts (MGE and MLE, respectively) (100 mg/kg, s.c.) on inflammatory and oxidative stress parameters in lung of rats subjected to a single coal dust intratracheal instillation. Rats were pretreated for 2 weeks with saline solution, MGE, or MLE. On day 15, the animals were anesthetized, and gross mineral coal dust or saline solutions were administered directly in the lung by intratracheal instillation. Fifteen days after coal dust instillation, the animals were killed. Bronchoalveolar lavage (BAL) was obtained; total cell count and lactate dehydrogenase (LDH) activity were determined. In the lung, myeloperoxidase activity, thiobarbituric acid-reactive substances (TBARS) level, and protein carbonyl and sulfhydryl contents were evaluated. In BAL of treated animals, we verified an increased total cell count and LDH activity. MGE and MLE prevented the increase in cell count, but only MLE prevented the increase in LDH. Myeloperoxidase and TBARS levels were not affected, protein carbonylation was increased, and the protein thiol levels were decreased by acute coal dust intratracheal administration. The findings also suggest that both extracts present an important protective effect on the oxidation of thiol groups. Moreover, pretreatment with MGE and MLE also diminished lung inflammatory infiltration induced by coal dust, as assessed by histopathologic analyses.

  2. Biodiesel versus diesel exposure: Enhanced pulmonary inflammation, oxidative stress, and differential morphological changes in the mouse lung

    PubMed Central

    Yanamala, Naveena; Hatfield, Meghan K.; Farcas, Mariana T.; Schwegler-Berry, Diane; Hummer, Jon A.; Shurin, Michael R.; Birch, M. Eileen; Gutkin, Dmitriy W.; Kisin, Elena; Kagan, Valerian E.; Bugarski, Aleksandar D.; Shvedova, Anna A.

    2015-01-01

    The use of biodiesel (BD) or its blends with petroleum diesel (D) is considered to be a viable approach to reduce occupational and environmental exposures to particulate matter (PM). Due to its lower particulate mass emissions compared to D, use of BD is thought to alleviate adverse health effects. Considering BD fuel is mainly composed of unsaturated fatty acids, we hypothesize that BD exhaust particles could induce pronounced adverse outcomes, due to their ability to readily oxidize. The main objective of this study was to compare the effects of particles generated by engine fueled with neat BD and neat petroleum-based D. Biomarkers of tissue damage and inflammation were significantly elevated in lungs of mice exposed to BD particulates. Additionally, BD particulates caused a significant accumulation of oxidatively modified proteins and an increase in 4-hydroxynonenal. The up-regulation of inflammatory cytokines/chemokines/growth factors was higher in lungs upon BD particulate exposure. Histological evaluation of lung sections indicated presence of lymphocytic infiltrate and impaired clearance with prolonged retention of BD particulate in pigment laden macrophages. Taken together, these results clearly indicate that BD exhaust particles could exert more toxic effects compared to D. PMID:23886933

  3. [Recent advances in allergic rhinitis].

    PubMed

    Liang, Meijun; Xu, Rui; Xu, Geng

    2015-02-01

    Allergic rhinitis (AR) clinically expressed by sneezing, rhinorrhea, nasal itching and congestion is an allergen-driven mucosal inflammatory disease which is modulated by immunoglobulin E. Epidemiological studies have indicated that prevalence of AR continues to increase, and it has been a worldwide health problem that places a significant healthcare burden on individuals and society. Given the evolving understanding of the process by which an allergen is recognized and the roles of mediators which account for AR progress, the pathogenesis of AR has become clearer. Current studies have demonstrated local allergic rhinitis (LAR) that patients with both sug- gestive symptoms of AR and a negative diagnostic test for atopy may have local allergic inflammation is a prevalent entity in patients evaluated with rhinitis, but further research remains needed. Management of AR includes aller- gen avoidance, pharmacological treatment and allergen-specific immunotherapy. Recently montelukast has exhibited previously undocumented anti-inflammatory properties, leukotriene receptor antagonists therefore may serve a more important role in the treatment of AR. Not only has immunotherapy proved its efficacy, but also been able to alter disease course and thereby mitigate progression to asthma. Thus immunotherapy can be initiated while receiving pharmacotherapy, especially in children with AR. As clinical guidelines, the ARIA (Allergic Rhinitis and its Impact on Asthma) provides basic principles of effective treatment of AR. Besides, choosing an appropriate treatment strategy should be based on the severity and chronicity of patient's symptom. The aim of this review was to provide an update mainly on the pathophysiology, epidemiology, and management of AR. PMID:26012287

  4. [Recent advances in allergic rhinitis].

    PubMed

    Liang, Meijun; Xu, Rui; Xu, Geng

    2015-02-01

    Allergic rhinitis (AR) clinically expressed by sneezing, rhinorrhea, nasal itching and congestion is an allergen-driven mucosal inflammatory disease which is modulated by immunoglobulin E. Epidemiological studies have indicated that prevalence of AR continues to increase, and it has been a worldwide health problem that places a significant healthcare burden on individuals and society. Given the evolving understanding of the process by which an allergen is recognized and the roles of mediators which account for AR progress, the pathogenesis of AR has become clearer. Current studies have demonstrated local allergic rhinitis (LAR) that patients with both sug- gestive symptoms of AR and a negative diagnostic test for atopy may have local allergic inflammation is a prevalent entity in patients evaluated with rhinitis, but further research remains needed. Management of AR includes aller- gen avoidance, pharmacological treatment and allergen-specific immunotherapy. Recently montelukast has exhibited previously undocumented anti-inflammatory properties, leukotriene receptor antagonists therefore may serve a more important role in the treatment of AR. Not only has immunotherapy proved its efficacy, but also been able to alter disease course and thereby mitigate progression to asthma. Thus immunotherapy can be initiated while receiving pharmacotherapy, especially in children with AR. As clinical guidelines, the ARIA (Allergic Rhinitis and its Impact on Asthma) provides basic principles of effective treatment of AR. Besides, choosing an appropriate treatment strategy should be based on the severity and chronicity of patient's symptom. The aim of this review was to provide an update mainly on the pathophysiology, epidemiology, and management of AR.

  5. sTREM-1 in bronchoalveolar lavage fluid in patients with pulmonary sarcoidosis, effect of smoking and inflammation.

    PubMed

    Suchankova, M; Bucova, M; E, Tibenska; Demian, J; Majer, I; Novosadova, H; Tedlova, E; Durmanova, V; Paulovicova, E

    2013-01-01

    Soluble TREM-1 (sTREM-1; Triggering receptor expressed on myelocytes) is a new inflammatory marker indicating the intensity of myeloid cells activation and the presence of infection caused by extracellular bacteria and mould.The aim of our work was to detect and compare the levels of sTREM-1 in bronchoalveolar lavage fluid (BALF) in patients with pulmonary sarcoidosis (PS) and other ILD of non-infectious origin. The sTREM-1 levels were assessed by ELISA in 46 patients suffering from ILD, out of them 22 with PS. The levels of BALF sTREM-1 in PS patients were higher than in control group of ILD patients of non-infectious origin, however, the difference was not statistically significant. Since all PS patients except one were non-smokers we compared non-smokers PS with non-smokers ILD patients and found four times higher levels of BALF sTREM-1 in PS patients (P = 0.001). We also recorded the effect of smoking, ILD smokers had higher sTREM-1 levels than non-smokers (P = 0.0019). Higher concentrations of sTREM-1 were detected in BALF of patients with lymphadenopathy and with elevated inflammatory markers in BALF. Our results show that BALF sTREM-1 could be a good inflammatory marker and could help in diagnosis and PS monitoring. Detection of sTREM-1 in BALF indirectly points to myeloid cells activation in the lungs and helps to complete the information about the number of myeloid cells commonly determined in BALF with additional information concerning the intensity of their activation. This is the first study that analyses BALF sTREM-1 levels in patients with PS (Tab. 8, Ref. 28). Text in PDF www.elis.sk.

  6. sTREM-1 in bronchoalveolar lavage fluid in patients with pulmonary sarcoidosis, effect of smoking and inflammation.

    PubMed

    Suchankova, M; Bucova, M; E, Tibenska; Demian, J; Majer, I; Novosadova, H; Tedlova, E; Durmanova, V; Paulovicova, E

    2013-01-01

    Soluble TREM-1 (sTREM-1; Triggering receptor expressed on myelocytes) is a new inflammatory marker indicating the intensity of myeloid cells activation and the presence of infection caused by extracellular bacteria and mould.The aim of our work was to detect and compare the levels of sTREM-1 in bronchoalveolar lavage fluid (BALF) in patients with pulmonary sarcoidosis (PS) and other ILD of non-infectious origin. The sTREM-1 levels were assessed by ELISA in 46 patients suffering from ILD, out of them 22 with PS. The levels of BALF sTREM-1 in PS patients were higher than in control group of ILD patients of non-infectious origin, however, the difference was not statistically significant. Since all PS patients except one were non-smokers we compared non-smokers PS with non-smokers ILD patients and found four times higher levels of BALF sTREM-1 in PS patients (P = 0.001). We also recorded the effect of smoking, ILD smokers had higher sTREM-1 levels than non-smokers (P = 0.0019). Higher concentrations of sTREM-1 were detected in BALF of patients with lymphadenopathy and with elevated inflammatory markers in BALF. Our results show that BALF sTREM-1 could be a good inflammatory marker and could help in diagnosis and PS monitoring. Detection of sTREM-1 in BALF indirectly points to myeloid cells activation in the lungs and helps to complete the information about the number of myeloid cells commonly determined in BALF with additional information concerning the intensity of their activation. This is the first study that analyses BALF sTREM-1 levels in patients with PS (Tab. 8, Ref. 28). Text in PDF www.elis.sk. PMID:24329508

  7. Benzaldehyde suppresses murine allergic asthma and rhinitis.

    PubMed

    Jang, Tae Young; Park, Chang-Shin; Kim, Kyu-Sung; Heo, Min-Jeong; Kim, Young Hyo

    2014-10-01

    To evaluate the antiallergic effects of oral benzaldehyde in a murine model of allergic asthma and rhinitis, we divided 20 female BALB/c mice aged 8-10 weeks into nonallergic (intraperitoneally sensitized and intranasally challenged to normal saline), allergic (intraperitoneally sensitized and intranasally challenged to ovalbumin), and 200- and 400-mg/kg benzaldehyde (allergic but treated) groups. The number of nose-scratching events in 10 min, levels of total and ovalbumin-specific IgE in serum, differential counts of inflammatory cells in bronchoalveolar lavage (BAL) fluid, titers of Th2 cytokines (IL-4, IL-5, IL-13) in BAL fluid, histopathologic findings of lung and nasal tissues, and expressions of proteins involved in apoptosis (Bcl-2, Bax, caspase-3), inflammation (COX-2), antioxidation (extracellular SOD, HO-1), and hypoxia (HIF-1α, VEGF) in lung tissue were evaluated. The treated mice had significantly fewer nose-scratching events, less inflammatory cell infiltration in lung and nasal tissues, and lower HIF-1α and VEGF expressions in lung tissue than the allergic group. The number of eosinophils and neutrophils and Th2 cytokine titers in BAL fluid significantly decreased after the treatment (P<0.05). These results imply that oral benzaldehyde exerts antiallergic effects in murine allergic asthma and rhinitis, possibly through inhibition of HIF-1α and VEGF.

  8. Novel delivery systems for anti-allergic agents: allergic disease and innovative treatments.

    PubMed

    Lopes, Carla M; Coelho, Pedro B; Oliveira, Rita

    2015-01-01

    Anti-allergic agents are used to treat a great variety of diseases which usually involve an inflammation reaction. These compounds act by inhibiting the release and the effects of inflammatory mediators (e.g. histamine) in the target tissue. The purpose of anti-allergy therapy is to deliver the drug to its local of action in a therapeutic concentration, minimizing the undesired side effects. In order to solve some of the anti-allergic agents' physicochemical drawbacks and the limitations associated to conventional pharmaceutical formulations (e.g. poor solubility and absorption, skin permeation, stability), novel drug delivery systems, such as cyclodextrins, liposomes, micelles, microemulsions, nano and microparticles, have been developed. Depending on the allergic condition, several administration routes are used to deliver anti-allergic agents, each with its own disadvantages to overcome. In the literature, there are a vast number of papers concerning novel delivery systems for anti-allergic agents, making it difficult to evaluate the information and the promising outcomes. The aim of the present review article is to compile the recent (i.e. in the new millennium) improvements of novel drug delivery technology focusing on the achievement of anti-allergic therapeutic delivery. The potential intrinsic benefits of these systems will reflect an increased therapeutic adherence and better patients' life quality. A critical prospect of future clinical trial directions will also be discussed. PMID:25895551

  9. Epigenomics and allergic disease.

    PubMed

    Lockett, Gabrielle A; Patil, Veeresh K; Soto-Ramírez, Nelís; Ziyab, Ali H; Holloway, John W; Karmaus, Wilfried

    2013-12-01

    Allergic disease development is affected by both genes and the environment, and epigenetic mechanisms are hypothesized to mediate these environmental effects. In this article, we discuss the link between the environment, DNA methylation and allergic disease, as well as questions of causality inherent to analyses of DNA methylation. From the practical side, we describe characteristics of allergic phenotypes and contrast different epidemiologic study designs used in epigenetic research. We examine methodological considerations, how best to conduct preprocessing and analysis of DNA methylation data sets, and the latest methods, technologies and discoveries in this rapidly advancing field. DNA methylation and other epigenetic marks are firmly entwined with allergic disease, a link that may hold the basis for future allergic disease diagnosis and treatment.

  10. Epigenomics and allergic disease

    PubMed Central

    Lockett, Gabrielle A; Patil, Veeresh K; Soto-Ramírez, Nelís; Ziyab, Ali H; Holloway, John W; Karmaus, Wilfried

    2014-01-01

    Allergic disease development is affected by both genes and the environment, and epigenetic mechanisms are hypothesized to mediate these environmental effects. In this article, we discuss the link between the environment, DNA methylation and allergic disease, as well as questions of causality inherent to analyses of DNA methylation. From the practical side, we describe characteristics of allergic phenotypes and contrast different epidemiologic study designs used in epigenetic research. We examine methodological considerations, how best to conduct preprocessing and analysis of DNA methylation data sets, and the latest methods, technologies and discoveries in this rapidly advancing field. DNA methylation and other epigenetic marks are firmly entwined with allergic disease, a link that may hold the basis for future allergic disease diagnosis and treatment. PMID:24283882

  11. Diesel Exhaust Exposure and Nasal Response to Attenuated Influenza in Normal and Allergic Volunteers

    EPA Science Inventory

    Rationale: Diesel exhaust enhances allergic inflammation, and pollutants are associated with heightened susceptibility to viral respiratory infections. The effects of combined diesel and virus exposure in humans are unknown. Objective: Test whether acute exposure to diesel modif...

  12. The C-C chemokine receptor 6 (CCR6) is crucial for Th2-driven allergic conjunctivitis.

    PubMed

    Chung, So-Hyang; Chang, Sun Young; Lee, Hyun Jung; Choi, Seong Hyun

    2015-12-01

    Allergic conjunctivitis from an allergen-driven Th2 response is characterized by conjunctival eosinophilic infiltration. Although CCL20-CCR6 axis has been reported to play a proinflammatory role in several murine models of autoimmune diseases including allergic diseases, their underlying mechanism needs to be investigated. We here examined whether CCL20-CCR6 axis could play a role in the development of allergic conjunctival inflammation using murine experimental allergic conjunctivitis (EAC) model induced by ovalbumin (OVA) allergen. Mice were challenged with consecutive 10days of OVA via conjunctival sac after systemic challenge with OVA and cholera toxin in alum. Several indicators for allergy were comparatively evaluated in wild-type and CCR6 KO EAC mice. Wild-type mice challenged with OVA via conjunctival sac following systemic challenge with OVA in alum had severe allergic conjunctivitis. The absence of CCR6 suppressed IgE secretion and allergic conjunctival inflammation. Reduced allergic inflammation was ascribable to reduced cytokine responses from Th-2 type in draining lymph node although Th17, regulatory T cells and dendritic cell subsets are not affected by the absence of CCR6. In addition, neutralization of CCR6 ligand, CCL20 could repress allergic conjunctival inflammation. Our findings suggested that CCR6 might be crucial for optimal development of Th2 immune responses and further allergic conjunctival inflammation in EAC model.

  13. The Effects of Antigen-Specific IgG1 Antibody for the Pulmonary-Hypertension-Phenotype and B Cells for Inflammation in Mice Exposed to Antigen and Fine Particles from Air Pollution.

    PubMed

    Park, Sung-Hyun; Chen, Wen-Chi; Durmus, Nedim; Bleck, Bertram; Reibman, Joan; Riemekasten, Gabriela; Grunig, Gabriele

    2015-01-01

    Air pollution is known to exacerbate chronic inflammatory conditions of the lungs including pulmonary hypertension, cardiovascular diseases and autoimmune diseases. Directly pathogenic antibodies bind pro-inflammatory cell receptors and cause or exacerbate inflammation. In contrast, anti-inflammatory antibody isotypes (e.g. mouse immunoglobulin G1, IgG1) bind inhibitory cell receptors and can inhibit inflammation. Our previous studies showed that co-exposure to antigen and urban ambient particulate matter (PM2.5) induced severe pulmonary arterial thickening and increased right ventricular systolic pressures in mice via T-cell produced cytokines, Interleukin (IL)-13 and IL-17A. The aim of the current study was to understand how B cell and antibody responses integrate into this T cell cytokine network for the pulmonary hypertension phenotype. Special focus was on antigen-specific IgG1 that is the predominant antibody in the experimental response to antigen and urban ambient PM2.5. Wild type and B cell-deficient mice were primed with antigen and then challenged with antigen and urban particulate matter and injected with antibodies as appropriate. Our data surprisingly showed that B cells were necessary for the development of increased right ventricular pressures and molecular changes in the right heart in response to sensitization and intranasal challenge with antigen and PM2.5. Further, our studies showed that both, the increase in right ventricular systolic pressure and right ventricular molecular changes were restored by reconstituting the B cell KO mice with antigen specific IgG1. In addition, our studies identified a critical, non-redundant role of B cells for the IL-17A-directed inflammation in response to exposure with antigen and PM2.5, which was not corrected with antigen-specific IgG1. In contrast, IL-13-directed inflammatory markers, as well as severe pulmonary arterial remodeling induced by challenge with antigen and PM2.5 were similar in B cell

  14. The Effects of Antigen-Specific IgG1 Antibody for the Pulmonary-Hypertension-Phenotype and B Cells for Inflammation in Mice Exposed to Antigen and Fine Particles from Air Pollution.

    PubMed

    Park, Sung-Hyun; Chen, Wen-Chi; Durmus, Nedim; Bleck, Bertram; Reibman, Joan; Riemekasten, Gabriela; Grunig, Gabriele

    2015-01-01

    Air pollution is known to exacerbate chronic inflammatory conditions of the lungs including pulmonary hypertension, cardiovascular diseases and autoimmune diseases. Directly pathogenic antibodies bind pro-inflammatory cell receptors and cause or exacerbate inflammation. In contrast, anti-inflammatory antibody isotypes (e.g. mouse immunoglobulin G1, IgG1) bind inhibitory cell receptors and can inhibit inflammation. Our previous studies showed that co-exposure to antigen and urban ambient particulate matter (PM2.5) induced severe pulmonary arterial thickening and increased right ventricular systolic pressures in mice via T-cell produced cytokines, Interleukin (IL)-13 and IL-17A. The aim of the current study was to understand how B cell and antibody responses integrate into this T cell cytokine network for the pulmonary hypertension phenotype. Special focus was on antigen-specific IgG1 that is the predominant antibody in the experimental response to antigen and urban ambient PM2.5. Wild type and B cell-deficient mice were primed with antigen and then challenged with antigen and urban particulate matter and injected with antibodies as appropriate. Our data surprisingly showed that B cells were necessary for the development of increased right ventricular pressures and molecular changes in the right heart in response to sensitization and intranasal challenge with antigen and PM2.5. Further, our studies showed that both, the increase in right ventricular systolic pressure and right ventricular molecular changes were restored by reconstituting the B cell KO mice with antigen specific IgG1. In addition, our studies identified a critical, non-redundant role of B cells for the IL-17A-directed inflammation in response to exposure with antigen and PM2.5, which was not corrected with antigen-specific IgG1. In contrast, IL-13-directed inflammatory markers, as well as severe pulmonary arterial remodeling induced by challenge with antigen and PM2.5 were similar in B cell

  15. The Effects of Antigen-Specific IgG1 Antibody for the Pulmonary-Hypertension-Phenotype and B Cells for Inflammation in Mice Exposed to Antigen and Fine Particles from Air Pollution

    PubMed Central

    Park, Sung-Hyun; Chen, Wen-Chi; Durmus, Nedim; Bleck, Bertram; Reibman, Joan; Riemekasten, Gabriela; Grunig, Gabriele

    2015-01-01

    Air pollution is known to exacerbate chronic inflammatory conditions of the lungs including pulmonary hypertension, cardiovascular diseases and autoimmune diseases. Directly pathogenic antibodies bind pro-inflammatory cell receptors and cause or exacerbate inflammation. In contrast, anti-inflammatory antibody isotypes (e.g. mouse immunoglobulin G1, IgG1) bind inhibitory cell receptors and can inhibit inflammation. Our previous studies showed that co-exposure to antigen and urban ambient particulate matter (PM2.5) induced severe pulmonary arterial thickening and increased right ventricular systolic pressures in mice via T-cell produced cytokines, Interleukin (IL)-13 and IL-17A. The aim of the current study was to understand how B cell and antibody responses integrate into this T cell cytokine network for the pulmonary hypertension phenotype. Special focus was on antigen-specific IgG1 that is the predominant antibody in the experimental response to antigen and urban ambient PM2.5. Wild type and B cell-deficient mice were primed with antigen and then challenged with antigen and urban particulate matter and injected with antibodies as appropriate. Our data surprisingly showed that B cells were necessary for the development of increased right ventricular pressures and molecular changes in the right heart in response to sensitization and intranasal challenge with antigen and PM2.5. Further, our studies showed that both, the increase in right ventricular systolic pressure and right ventricular molecular changes were restored by reconstituting the B cell KO mice with antigen specific IgG1. In addition, our studies identified a critical, non-redundant role of B cells for the IL-17A-directed inflammation in response to exposure with antigen and PM2.5, which was not corrected with antigen-specific IgG1. In contrast, IL-13-directed inflammatory markers, as well as severe pulmonary arterial remodeling induced by challenge with antigen and PM2.5 were similar in B cell

  16. Impact of Dietary Tomato Juice on Changes in Pulmonary Oxidative Stress, Inflammation and Structure Induced by Neonatal Hyperoxia in Mice (Mus musculus)

    PubMed Central

    Bouch, Sheena; Harding, Richard; O’Reilly, Megan; Wood, Lisa G.; Sozo, Foula

    2016-01-01

    Many preterm infants require hyperoxic gas for survival, although it can contribute to lung injury. Experimentally, neonatal hyperoxia leads to persistent alterations in lung structure and increases leukocytes in bronchoalveolar lavage fluid (BALF). These effects of hyperoxia on the lungs are considered to be caused, at least in part, by increased oxidative stress. Our objective was to determine if dietary supplementation with a known source of antioxidants (tomato juice, TJ) could protect the developing lung from injury caused by breathing hyperoxic gas. Neonatal mice (C57BL6/J) breathed either 65% O2 (hyperoxia) or room air from birth until postnatal day 7 (P7d); some underwent necropsy at P7d and others were raised in room air until adulthood (P56d). In subsets of both groups, drinking water was replaced with TJ (diluted 50:50 in water) from late gestation to necropsy. At P7d and P56d, we analyzed total antioxidant capacity (TAC), markers of oxidative stress (nitrotyrosine and heme oxygenase-1 expression), inflammation (interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) expression), collagen (COL) and smooth muscle in the lungs; we also assessed lung structure. We quantified macrophages in lung tissue (at P7d) and leukocytes in BALF (at P56d). At P7d, TJ increased pulmonary TAC and COL1α1 expression and attenuated the hyperoxia-induced increase in nitrotyrosine and macrophage influx; however, changes in lung structure were not affected. At P56d, TJ increased TAC, decreased oxidative stress and reversed the hyperoxia-induced increase in bronchiolar smooth muscle. Additionally, TJ alone decreased IL-1β expression, but following hyperoxia TJ increased TNF-α expression and did not alter the hyperoxia-induced increase in leukocyte number. We conclude that TJ supplementation during and after neonatal exposure to hyperoxia protects the lung from some but not all aspects of hyperoxia-induced injury, but may also have adverse side-effects. The effects of

  17. Relationship between Household Air Pollution from Biomass Smoke Exposure, and Pulmonary Dysfunction, Oxidant-Antioxidant Imbalance and Systemic Inflammation in Rural Women and Children in Nigeria

    PubMed Central

    Oluwole, Oluwafemi; Arinola, Ganiyu O.; Ana, Godson R.; Wiskel, Tess; Huo, Dezheng; Olopade, Olufunmilayo I.; Olopade, Christopher O.

    2013-01-01

    Background: Exposure to particulate matter from burning biomass fuels is believed to affect oxidant-antioxidant balance and to induce oxidative stress. Methods: Fifty-nine mother-child pairs from 59 households that used firewood exclusively for cooking in three rural communities in southwest Nigeria underwent blood test for albumin, pre-albumin, retinol-binding protein (RBP), superoxide dismutase (SOD), vitamins C, vitamin E, malondialdehyde (MDA) and C-reactive protein (CRP). Spirometry was performed and indoor levels of PM2.5 were determined. Results: Mean age (± SD; years) of mothers and children was 43.0±11.7 and 13.6±3.2, respectively. The median indoor PM2.5 level was 1575.1 µg/m3 (IQR 943.6–2847.0, p<0.001), which is substantially higher than the World Health Organization (WHO) standard of 25 µg/m3. The mean levels of pre-albumin (0.21±0.14 g/dL) and RBP (0.03±0.03 g/dL) in women were significantly lower than their respective normal ranges (1-3 g/dL and 0.2-0.6 g/dL, respectively, p<0.05). Similarly, the mean levels of pre-albumin (0.19±0.13 g/dL) and RBP (0.01±0.01 g/dL) in children were significantly lower than the respective normal ranges (1-3 g/dL and 0.2-0.6 g/dL, respectively, p<0.05). Mean serum concentrations of MDA in children (5.44±1.88 µmol/L) was positively correlated to serum concentrations of CRP (r=0.3, p=0.04) and negatively correlated to lung function (FEV1/FVC) in both mothers and children (both r=-0.3, p<0.05). Also, regression analysis indicates that CRP and SOD are associated with lung function impairment in mothers (-2.55±1.08, p<0.05) and children (-5.96±3.05, p=0.05) respectively. Conclusion: Exposure to HAP from biomass fuel is associated with pulmonary dysfunction, reduced antioxidant defense and inflammation of the airways. Further studies are needed to better define causal relationships and the mechanisms involved. PMID:23777718

  18. Immunoregulatory Role of HLA-G in Allergic Diseases

    PubMed Central

    Contini, Paola; Negrini, Simone; Ciprandi, Giorgio; Puppo, Francesco

    2016-01-01

    Allergic diseases are sustained by a T-helper 2 polarization leading to interleukin-4 secretion, IgE-dependent inflammation, and mast cell and eosinophil activation. HLA-G molecules, both in membrane-bound and in soluble forms, play a central role in modulation of immune responses. Elevated levels of soluble HLA-G (sHLA-G) molecules are detected in serum of patients with allergic rhinitis to seasonal and perennial allergens and correlate with allergen-specific IgE levels, clinical severity, drug consumption, and response to allergen-specific immunotherapy. sHLA-G molecules are also found in airway epithelium of patients with allergic asthma and high levels of sHLA-G molecules are detectable in plasma and bronchoalveolar lavage of asthmatic patients correlating with allergen-specific IgE levels. Finally, HLA-G molecules are expressed by T cells, monocytes-macrophages, and Langerhans cells infiltrating the dermis of atopic dermatitis patients. Collectively, although at present it is difficult to completely define the role of HLA-G molecules in allergic diseases, it may be suggested that they are expressed and secreted by immune cells during the allergic reaction in an attempt to suppress allergic inflammation. PMID:27413762

  19. Immunoregulatory Role of HLA-G in Allergic Diseases.

    PubMed

    Murdaca, Giuseppe; Contini, Paola; Negrini, Simone; Ciprandi, Giorgio; Puppo, Francesco

    2016-01-01

    Allergic diseases are sustained by a T-helper 2 polarization leading to interleukin-4 secretion, IgE-dependent inflammation, and mast cell and eosinophil activation. HLA-G molecules, both in membrane-bound and in soluble forms, play a central role in modulation of immune responses. Elevated levels of soluble HLA-G (sHLA-G) molecules are detected in serum of patients with allergic rhinitis to seasonal and perennial allergens and correlate with allergen-specific IgE levels, clinical severity, drug consumption, and response to allergen-specific immunotherapy. sHLA-G molecules are also found in airway epithelium of patients with allergic asthma and high levels of sHLA-G molecules are detectable in plasma and bronchoalveolar lavage of asthmatic patients correlating with allergen-specific IgE levels. Finally, HLA-G molecules are expressed by T cells, monocytes-macrophages, and Langerhans cells infiltrating the dermis of atopic dermatitis patients. Collectively, although at present it is difficult to completely define the role of HLA-G molecules in allergic diseases, it may be suggested that they are expressed and secreted by immune cells during the allergic reaction in an attempt to suppress allergic inflammation. PMID:27413762

  20. Allergic Host Defenses

    PubMed Central

    Palm, Noah W.; Rosenstein, Rachel K.

    2012-01-01

    Allergies are generally thought to be a detrimental outcome of a mistargeted immune response that evolved to provide immunity to macro-parasites. Here we present arguments to suggest that allergic immunity plays an important role in host defense against noxious environmental substances, including venoms, hematophagous fluids, environmental xenobiotics and irritants. We argue that appropriately targeted allergic reactions are beneficial, although they can become detrimental when excessive. Furthermore, we suggest that allergic hypersensitivity evolved to elicit anticipatory responses and to promote avoidance of suboptimal environments. PMID:22538607

  1. Airway Epithelial Regulation of Allergic Sensitization in Asthma

    PubMed Central

    Poynter, Matthew E.

    2012-01-01

    While many of the contributing cell types and mediators of allergic asthma are known, less well understood are the factors that influence the development of allergic responses that lead to the development of allergic asthma. As the first airway cell type to respond to inhaled factors, the epithelium orchestrates downstream interactions between dendritic cells (DCs) and CD4+ T cells that quantitatively and qualitatively dictate the degree and type of the allergic asthma phenotype, making the epithelium of critical importance for the genesis of allergies that later manifest in allergic asthma. Amongst the molecular processes of critical importance in airway epithelium is the transcription factor, nuclear factor-kappaB (NF-κB). This review will focus primarily on the genesis of pulmonary allergies and the participation of airway epithelial NF-κB activation therein, using examples from our own work on nitrogen dioxide (NO2) exposure and genetic modulation of airway epithelial NF-κB activation. In addition, the mechanisms through which Serum Amyloid A (SAA), an NF-κB-regulated, epithelial-derived mediator, influences allergic sensitization and asthma severity will be presented. Knowledge of the molecular and cellular processes regulating allergic sensitization in the airways has the potential to provide powerful insight into the pathogenesis of allergy, as well as targets for the prevention and treatment of asthma. PMID:22579987

  2. Programmed Death Ligand 1 Promotes Early-Life Chlamydia Respiratory Infection-Induced Severe Allergic Airway Disease.

    PubMed

    Starkey, Malcolm R; Nguyen, Duc H; Brown, Alexandra C; Essilfie, Ama-Tawiah; Kim, Richard Y; Yagita, Hideo; Horvat, Jay C; Hansbro, Philip M

    2016-04-01

    Chlamydia infections are frequent causes of respiratory illness, particularly pneumonia in infants, and are linked to permanent reductions in lung function and the induction of asthma. However, the immune responses that protect against early-life infection and the mechanisms that lead to chronic lung disease are incompletely understood. In the current study, we investigated the role of programmed death (PD)-1 and its ligands PD-L1 and PD-L2 in promoting early-life Chlamydia respiratory infection, and infection-induced airway hyperresponsiveness (AHR) and severe allergic airway disease in later life. Infection increased PD-1 and PD-L1, but not PD-L2, mRNA expression in the lung. Flow cytometric analysis of whole lung homogenates identified monocytes, dendritic cells, CD4(+), and CD8(+) T cells as major sources of PD-1 and PD-L1. Inhibition of PD-1 and PD-L1, but not PD-L2, during infection ablated infection-induced AHR in later life. Given that PD-L1 was the most highly up-regulated and its targeting prevented infection-induced AHR, subsequent analyses focused on this ligand. Inhibition of PD-L1 had no effect on Chlamydia load but suppressed infection-induced pulmonary inflammation. Infection decreased the levels of the IL-13 decoy receptor in the lung, which were restored to baseline levels by inhibition of PD-L1. Finally, inhibition of PD-L1 during infection prevented subsequent infection-induced severe allergic airways disease in later life by decreasing IL-13 levels, Gob-5 expression, mucus production, and AHR. Thus, early-life Chlamydia respiratory infection-induced PD-L1 promotes severe inflammation during infection, permanent reductions in lung function, and the development of more severe allergic airway disease in later life.

  3. Allergic rhinitis during pregnancy.

    PubMed

    2016-04-01

    During pregnancy, the first-choice drugs for allergic rhinitis are nasal or oral "non-sedating" antihistamines without antimuscarinic activity, in particular cetirizine, or loratadine after the first trimester. PMID:27186624

  4. Allergic reactions (image)

    MedlinePlus

    Allergic reaction is a sensitivity to a specific substance, called an allergen, that is contacted through the skin, inhaled into the lungs, swallowed or injected. The body's reaction to an allergen can be mild, such as ...

  5. Allergic Contact Dermatitis

    MedlinePlus

    ... causes of allergic contact dermatitis include nickel, chromates, rubber chemicals, and topical antibiotic ointments and creams. Frequent ... construction workers who are in contact with cement. Rubber chemicals are found in gloves, balloons, elastic in ...

  6. Management of Allergic Rhinitis

    PubMed Central

    Sausen, Verra O.; Marks, Katherine E.; Sausen, Kenneth P.; Self, Timothy H.

    2005-01-01

    Allergic rhinitis is the most common chronic childhood disease. Reduced quality of life is frequently caused by this IgE-mediated disease, including sleep disturbance with subsequent decreased school performance. Asthma and exercise-induced bronchospasm are commonly seen concurrently with allergic rhinitis, and poorly controlled allergic rhinitis negatively affects asthma outcomes. Nonsedating antihistamines or intranasal azelastine are effective agents to manage allergic rhinitis, often in combination with oral decongestants. For moderate to severe persistent disease, intranasal corticosteroids are the most effiective agents. Some patients require concomitant intranasal corticosteroids and nonsedating antihistamines for optimal management. Other available agents include leukotriene receptor antagonists, intranasal cromolyn, intranasal ipratropium, specific immunotherapy, and anti-IgE therapy. PMID:23118635

  7. Allergic Rhinitis Quiz

    MedlinePlus

    ... allergic conjunctivitis (eye allergy). Is it true that mold spores can trigger eye allergy symptoms? True False ... allergy) are seasonal allergens such as pollen and mold spores. Indoor allergens such as dust mites and ...

  8. Allergic Rhinitis: Antihistamines

    MedlinePlus

    MENU Return to Web version Allergic Rhinitis | Antihistamines What are antihistamines? Antihistamines are medicines that help stop allergy symptoms, such as itchy eyes, sneezing and a runny nose. Sometimes, an antihistamine ...

  9. [Therapy of allergic rhinitis].

    PubMed

    Klimek, Ludger; Sperl, Annette

    2016-03-01

    If the avoidance of the provoking allergen is insufficient or not possible, medical treatment can be tried. Therapeutics of the first choice for the treatment of the seasonal and persistent allergic rhinitis are antihistamines and topical glucocorticoids. Chromones are less effective so they should only be used for adults with a special indication, for example during pregnancy. Beside the avoidance of the allergen the immunotherapy is the only causal treatment of allergic diseases. PMID:27120870

  10. Genetics of Allergic Diseases

    PubMed Central

    Ortiz, Romina A.; Barnes, Kathleen C.

    2015-01-01

    The allergic diseases are complex phenotypes for which a strong genetic basis has been firmly established. Genome-wide association studies (GWAS) has been widely employed in the field of allergic disease, and to date significant associations have been published for nearly 100 asthma genes/loci, in addition to multiple genes/loci for AD, AR and IgE levels, for which the overwhelming number of candidates are novel and have given a new appreciation for the role of innate as well as adaptive immune-response genes in allergic disease. A major outcome of GWAS in allergic disease has been the formation of national and international collaborations leading to consortia meta-analyses, and an appreciation for the specificity of genetic associations to sub-phenotypes of allergic disease. Molecular genetics has undergone a technological revolution, leading to next generation sequencing (NGS) strategies that are increasingly employed to hone in on the causal variants associated with allergic diseases. Unmet needs in the field include the inclusion of ethnically and racially diverse cohorts, and strategies for managing ‘big data’ that is an outcome of technological advances such as sequencing. PMID:25459575

  11. The combination of Bifidobacterium breve with non-digestible oligosaccharides suppresses airway inflammation in a murine model for chronic asthma.

    PubMed

    Sagar, Seil; Vos, Arjan P; Morgan, Mary E; Garssen, Johan; Georgiou, Niki A; Boon, Louis; Kraneveld, Aletta D; Folkerts, Gert

    2014-04-01

    Over the last decade, there has been a growing interest in the use of interventions that target the intestinal microbiota as a treatment approach for asthma. This study is aimed at exploring the therapeutic effects of long-term treatment with a combination of Bifidobacterium breve with non-digestible oligosaccharides on airway inflammation and remodeling. A murine ovalbumin-induced chronic asthma model was used. Pulmonary airway inflammation; mRNA expression of pattern recognition receptors, Th-specific cytokines and transcription factors in lung tissue; expression of Foxp3 in blood Th cells; in vitro T cell activation; mast cell degranulation; and airway remodeling were examined. The combination of B. breve with non-digestible oligosaccharides suppressed pulmonary airway inflammation; reduced T cell activation and mast cell degranulation; modulated expression of pattern recognition receptors, cytokines and transcription factors; and reduced airway remodeling. The treatment induced regulatory T cell responses, as shown by increased Il10 and Foxp3 transcription in lung tissue, and augmented Foxp3 protein expression in blood CD4+CD25+Foxp3+ T cells. This specific combination of beneficial bacteria with non-digestible oligosaccharides has strong anti-inflammatory properties, possibly via the induction of a regulatory T cell response, resulting in reduced airway remodeling and, therefore, may be beneficial in the treatment of chronic inflammation in allergic asthma.

  12. Long term evaluation of mesenchymal stem cell therapy in a feline model of chronic allergic asthma

    PubMed Central

    Trzil, Julie E; Masseau, Isabelle; Webb, Tracy L; Chang, Chee-hoon; Dodam, John R; Cohn, Leah A; Liu, Hong; Quimby, Jessica M; Dow, Steven W; Reinero, Carol R

    2014-01-01

    Background Mesenchymal stem cells (MSCs) decrease airway eosinophilia, airway hyperresponsiveness (AHR), and remodeling in murine models of acutely induced asthma. We hypothesized that MSCs would diminish these hallmark features in a chronic feline asthma model. Objective To document effects of allogeneic, adipose-derived MSCs on airway inflammation, airway hyperresponsiveness (AHR), and remodeling over time and investigate mechanisms by which MSCs alter local and systemic immunologic responses in chronic experimental feline allergic asthma. Methods Cats with chronic, experimentally-induced asthma received six intravenous infusions of MSCs (0.36–2.5X10E7 MSCs/infusion) or placebo bimonthly at the time of study enrollment. Cats were evaluated at baseline and longitudinally for one year. Outcome measures included: bronchoalveolar lavage fluid cytology to assess airway eosinophilia; pulmonary mechanics and clinical scoring to assess AHR; and thoracic computed tomographic (CT) scans to assess structural changes (airway remodeling). CT scans were evaluated using a scoring system for lung attenuation (LA) and bronchial wall thickening (BWT). To assess mechanisms of MSC action, immunologic assays including allergen-specific IgE, cellular IL-10 production, and allergen-specific lymphocyte proliferation were performed. Results There were no differences between treatment groups or over time with respect to airway eosinophilia or AHR. However, significantly lower LA and BWT scores were noted in CT images of MSC-treated animals compared to placebo-treated cats at month 8 of the study (LA p=0.0311; BWT p=0.0489). No differences were noted between groups in the immunologic assays. Conclusions and Clinical Relevance When administered after development of chronic allergic feline asthma, MSCs failed to reduce airway inflammation and AHR. However, repeated administration of MSCs at the start of study did reduce computed tomographic measures of airway remodeling by month 8, though

  13. Size effects of latex nanomaterials on lung inflammation in mice

    SciTech Connect

    Inoue, Ken-ichiro Takano, Hirohisa; Yanagisawa, Rie; Koike, Eiko; Shimada, Akinori

    2009-01-01

    Effects of nano-sized materials (nanomaterials) on sensitive population have not been well elucidated. This study examined the effects of pulmonary exposure to (latex) nanomaterials on lung inflammation related to lipopolysaccharide (LPS) or allergen in mice, especially in terms of their size-dependency. In protocol 1, ICR male mice were divided into 8 experimental groups that intratracheally received a single exposure to vehicle, latex nanomaterials (250 {mu}g/animal) with three sizes (25, 50, and 100 nm), LPS (75 {mu}g/animal), or LPS plus latex nanomaterials. In protocol 2, ICR male mice were divided into 8 experimental groups that intratracheally received repeated exposure to vehicle, latex nanomaterials (100 {mu}g/animal), allergen (ovalbumin: OVA; 1 {mu}g/animal), or allergen plus latex nanomaterials. In protocol 1, latex nanomaterials with all sizes exacerbated lung inflammation elicited by LPS, showing an overall trend of amplified lung expressions of proinflammatory cytokines. Furthermore, LPS plus nanomaterials, especially with size less than 50 nm, significantly elevated circulatory levels of fibrinogen, macrophage chemoattractant protein-1, and keratinocyte-derived chemoattractant, and von Willebrand factor as compared with LPS alone. The enhancement tended overall to be greater with the smaller nanomaterials than with the larger ones. In protocol 2, latex nanomaterials with all sizes did not significantly enhance the pathophysiology of allergic asthma, characterized by eosinophilic lung inflammation and Igs production, although latex nanomaterials with less than 50 nm significantly induced/enhanced neutrophilic lung inflammation. These results suggest that latex nanomaterials differentially affect two types of (innate and adaptive immunity-dominant) lung inflammation.

  14. Phenotype of asthma-chronic obstructive pulmonary disease overlap syndrome.

    PubMed

    Rhee, Chin Kook

    2015-07-01

    Many patients with asthma or chronic obstructive pulmonary disease (COPD) have overlapping characteristics of both diseases. By spirometric definition, patients with both fixed airflow obstruction (AO) and bronchodilator reversibility or fixed AO and bronchial hyperresponsiveness can be considered to have asthma-COPD overlap syndrome (ACOS). However, patients regarded to have ACOS by spirometric criteria alone are heterogeneous and can be classified by phenotype. Eosinophilic inflammation, a history of allergic disease, and smoke exposure are important components in the classification of ACOS. Each phenotype has a different underlying pathophysiology, set of characteristics, and prognosis. Medical treatment for ACOS should be tailored according to phenotype. A narrower definition of ACOS that includes both spirometric and clinical criteria is needed.

  15. SUPPRESSION OF ALLERGIC IMMUNE RESPONSES TO HOUSE DUST MITE (HDM) IN RATS EXPOSED TO 2,3,7,8-TCDD

    EPA Science Inventory

    Abstract
    Exposure to various xenobiotics, including oxidant gases, diesel exhaust and certain pesticides, has been reported to exacerbate pulmonary allergic hypersensitivity responses. Increased lymphocyte proliferative responses to parasite antigens or increased antibody r...

  16. Cardiomyopathy confers susceptibility to particulate matter-induced oxidative stress, vagal dominance, arrhythmia, pulmonary inflammation in heart failure-prone rats

    EPA Science Inventory

    Acute exposure to ambient fine particulate matter (PM2.5) is tied to cardiovascular morbidity and mortality, especially among those with prior cardiac injury. The mechanisms and pathophysiologic events precipitating these outcomes remain poorly understood but may involve inflamm...

  17. [Cytokines and allergic response].

    PubMed

    Guenounou, M

    1998-01-01

    Allergic reactions are under the control of several events that occur sequentially following allergen exposure, recognition by the immune system, IgE production and their interaction with effector cells bearing Fc epsilon receptors. The lymphocyte activation in response to allergens determines the intensity and the nature of the immune response. Cytokines produced by T (and non-T) cells are involved in the polarized development of the specific immune response. In particular, type 1 and type 2 cytokines are responsible for the control of the different steps during allergic reactions. Th2 cytokines and particularly IL4 are responsible for switching the immunoglobulin synthesis by B cells to IgE production. They also play a key role in the activation of effector cells that occurs following allergen interaction with fixed specific IgE and participate to the local inflammatory reaction. Cytokine profile determination appears to represent a helpful laboratory parameter in the understanding of the mechanisms underlying allergic diseases. The development of new technological tools may allow the use of cell activation parameters, and cytokine profiles determination in clinical biology. This review aims to analyze the involvement of the cytokine network in the mechanisms leading to IgE production and the involvement of cytokines in effector mechanisms of allergic reactions. It also analyses the potential use of cytokine profile determination for diagnosis purpose and survey of immune desensitization of allergic diseases.

  18. Allergen-encoded signals that control allergic responses

    PubMed Central

    Tung, Hui-Ying; Landers, Cameron; Li, Evan; Porter, Paul; Kheradmand, Farrah; Corry, David B.

    2016-01-01

    Purpose of review The purpose is to review the important recent advances made in how innate immune cells, microbes, and the environment contribute to the expression of allergic disease, emphasizing the allergen-related signals that drive allergic responses. Recent findings The last few years have seen crucial advances in how innate immune cells such as innate lymphoid cells group 2 and airway epithelial cells and related molecular pathways through organismal proteinases and innate immune cytokines, such as thymic stromal lymphopoietin, IL-25, and IL-33 contribute to allergy and asthma. Simultaneously with these advances, important progress has been made in our understanding of how the environment, and especially pathogenic organisms, such as bacteria, viruses, helminths, and especially fungi derived from the natural and built environments, either promote or inhibit allergic inflammation and disease. Of specific interest are how lipopolysaccharide mediates its antiallergic effect through the ubiquitin modifying factor A20 and the antiallergic activity of both helminths and protozoa. Summary Innate immune cells and molecular pathways, often activated by allergen-derived proteinases acting on airway epithelium and macrophages as well as additional unknown factors, are essential to the expression of allergic inflammation and disease. These findings suggest numerous future research opportunities and new opportunities for therapeutic intervention in allergic disease. PMID:26658015

  19. Immune allergic response in Asperger syndrome.

    PubMed

    Magalhães, Elizabeth S; Pinto-Mariz, Fernanda; Bastos-Pinto, Sandra; Pontes, Adailton T; Prado, Evandro A; deAzevedo, Leonardo C

    2009-11-30

    Asperger's syndrome is a subgroup of autism characterized by social deficits without language delay, and high cognitive performance. The biological nature of autism is still unknown but there are controversial evidence associating an immune imbalance and autism. Clinical findings, including atopic family history, serum IgE levels as well as cutaneous tests showed that incidence of atopy was higher in the Asperger group compared to the healthy controls. These findings suggest that atopy is frequent in this subgroup of autism implying that allergic inflammation might be an important feature in Asperger syndrome.

  20. DUOX1 mediates persistent epithelial EGFR activation, mucous cell metaplasia, and airway remodeling during allergic asthma

    PubMed Central

    Habibovic, Aida; Hristova, Milena; Heppner, David E.; Danyal, Karamatullah; Ather, Jennifer L.; Janssen-Heininger, Yvonne M.W.; Irvin, Charles G.; Poynter, Matthew E.; Lundblad, Lennart K.; Dixon, Anne E.; Geiszt, Miklos

    2016-01-01

    Chronic inflammation with mucous metaplasia and airway remodeling are hallmarks of allergic asthma, and these outcomes have been associated with enhanced expression and activation of EGFR signaling. Here, we demonstrate enhanced expression of EGFR ligands such as amphiregulin as well as constitutive EGFR activation in cultured nasal epithelial cells from asthmatic subjects compared with nonasthmatic controls and in lung tissues of mice during house dust mite–induced (HDM-induced) allergic inflammation. EGFR activation was associated with cysteine oxidation within EGFR and the nonreceptor tyrosine kinase Src, and both amphiregulin production and oxidative EGFR activation were diminished by pharmacologic or genetic inhibition of the epithelial NADPH oxidase dual oxidase 1 (DUOX1). DUOX1 deficiency also attenuated several EGFR-dependent features of HDM-induced allergic airway inflammation, including neutrophilic inflammation, type 2 cytokine production (IL-33, IL-13), mucous metaplasia, subepithelial fibrosis, and central airway resistance. Moreover, targeted inhibition of airway DUOX1 in mice with previously established HDM-induced allergic inflammation, by intratracheal administration of DUOX1-targeted siRNA or pharmacological NADPH oxidase inhibitors, reversed most of these outcomes. Our findings indicate an important function for DUOX1 in allergic inflammation related to persistent EGFR activation and suggest that DUOX1 targeting may represent an attractive strategy in asthma management. PMID:27812543

  1. ALLERGIC DISEASES AND ASTHMA IN ADOLESCENTS.

    PubMed

    Adamia, N; Jorjoliani, L; Khachapuridze, D; Katamadze, N; Chkuaseli, N

    2015-06-01

    common accompanying disease. Subjects with non-specific hyperresponsiveness of bronchi and asthma before age of 12, were classified only as being in remission and having accompanying allergic disease and subjects without obstruction and asthma were classified as absence of asthma and were designated as independent group. Population was divided into "active" (indicate presence of symptoms or are subjected to treatment) and "ever" (diagnosis was made before involvement into the study) groups. Main finding is identification of correlation between airways inflammation and phenotype accompanying asthma in children of age from 2 to 16. Research showed than of 860 children (398 males and 462 females) of age from 2 to 8, 62 children had asthma (17 females and 45 males) with at least accompanying disease. Of 590 children (311 males and 279 females) of age from 9 to 17, 81 children had asthma (26 females and 55 males) with at least accompanying allergic disease. The most common asthma phenotype was only asthma, in 32.8%, further asthma and allergic rhinitis (27.9%), asthma with allergic rhinitis and atopic dermatitis (13%), asthma with atopic dermatitis (4.9%). Asthma phenotypes did not differ significantly, with respect of asthma severity and need of anti-inflammation medication. Gender was notably correlated with only one phenotype of asthma; boys are more susceptible to asthma and allergic rhinitis, compared with the girls (9.5% boys and 4.9% girls) p=0.001. Lung function is significantly correlated with hyperresponsiveness of bronchi associated with asthma phenotype with the lowest FEV 2% data - in case of asthma, allergic rhinitis and atopic dermatitis. Our research showed than asthma in adults is accompanied with allergic rhinitis or atopic dermatitis (approximately 14.9%). In puberty, asthma phenotypes with allergic rhinitis was mostly associated with non-specific hyperresponsiveness of bronchi and airways inflammation (p>0.05). In the combinations of allergic diseases the

  2. Local Allergic Rhinitis.

    PubMed

    Campo, Paloma; Salas, María; Blanca-López, Natalia; Rondón, Carmen

    2016-05-01

    This review focuses on local allergic rhinitis, a new phenotype of allergic rhinitis, commonly misdiagnosed as nonallergic rhinitis. It has gained attention over last decade and can affect patients from all countries, ethnic groups and ages, impairing their quality of life, and is frequently associated with conjunctivitis and asthma. Diagnosis is based on clinical history, the demonstration of a positive response to nasal allergen provocation test and/or the detection of nasal sIgE. A positive basophil activation test may support the diagnosis. Recent studies have demonstrated that allergen immunotherapy is an effective immune-modifying treatment, highlighting the importance of early diagnosis. PMID:27083105

  3. Pulmonary C Fibers Modulate MMP-12 Production via PAR2 and Are Involved in the Long-Term Airway Inflammation and Airway Hyperresponsiveness Induced by Respiratory Syncytial Virus Infection

    PubMed Central

    Zang, Na; Zhuang, Jianguo; Deng, Yu; Yang, Zhimei; Ye, Zhixu; Xie, Xiaohong; Ren, Luo; Fu, Zhou; Luo, Zhengxiu; Xu, Fadi

    2015-01-01

    ABSTRACT Children with acute respiratory syncytial virus (RSV) infection often develop sequelae of persistent airway inflammation and wheezing. Pulmonary C fibers (PCFs) are involved in the generation of airway inflammation and resistance; however, their role in persistent airway diseases after RSV is unexplored. Here, we elucidated the pathogenesis of PCF activation in RSV-induced persistent airway disorders. PCF-degenerated and intact mice were used in the current study. Airway inflammation and airway resistance were evaluated. MMP408 and FSLLRY-NH2 were the selective antagonists for MMP-12 and PAR2, respectively, to investigate the roles of MMP-12 and PAR2 in PCFs mediating airway diseases. As a result, PCF degeneration significantly reduced the following responses to RSV infection: augmenting of inflammatory cells, especially macrophages, and infiltrating of inflammatory cells in lung tissues; specific airway resistance (sRaw) response to methacholine; and upregulation of MMP-12 and PAR2 expression. Moreover, the inhibition of MMP-12 reduced the total number of cells and macrophages in bronchiolar lavage fluid (BALF), as well infiltrating inflammatory cells, and decreased the sRaw response to methacholine. In addition, PAR2 was upregulated especially at the later stage of RSV infection. Downregulation of PAR2 ameliorated airway inflammation and resistance following RSV infection and suppressed the level of MMP-12. In all, the results suggest that PCF involvement in long-term airway inflammation and airway hyperresponsiveness occurred at least partially via modulating MMP-12, and the activation of PAR2 might be related to PCF-modulated MMP-12 production. Our initial findings indicated that the inhibition of PCF activity would be targeted therapeutically for virus infection-induced long-term airway disorders. IMPORTANCE The current study is critical to understanding that PCFs are involved in long-term airway inflammation and airway resistance after RSV infection

  4. Inhaled extended-release microparticles of heparin elicit improved pulmonary pharmacodynamics against antigen-mediated airway hyper-reactivity and inflammation.

    PubMed

    Yildiz, Ayca; John, Elinor; Özsoy, Yildiz; Araman, Ahmet; Birchall, James C; Broadley, Kenneth J; Gumbleton, Mark

    2012-09-10

    Inhaled heparin appears to provide benefit in the management of airway hyper-reactivity and inflammation. The pharmacodynamics of inhaled heparin are however transient. Providing sustained heparin concentrations in the respiratory tract should provide for an extended duration of action. We examined the in-vivo efficacy of a nebulised controlled-release microparticle formulation of heparin in modifying antigen-induced airway hyper-reactivity (AHR) and lung inflammation. Heparin-loaded biodegradable poly (D,L-lactide-co-glycolide) microparticles were prepared by spray-drying. Aerosol properties for both nebulised heparin solution and heparin microparticles displayed characteristics consistent with heparin delivery to the respiratory tract. In vitro release assays showed heparin to be released from the microparticles over 8-12 h and for the heparin to remain functional. Temporal pharmacodynamic responses were studied in an ovalbumin-sensitised in vivo model exhibiting AHR and airway inflammation. Despite a reduced total dose of heparin deposited in the airways following nebulisation with heparin microparticles, this treatment led to a more sustained inhibitory effect upon AHR and airway inflammation than equivalent doses of nebulised heparin solution. The work supports extended-release heparin as an inhalation dosing strategy in experimental therapeutic applications aimed at improving the pharmacodynamics of heparin in the treatment of AHR and lung inflammation.

  5. Allergic Contact Dermatitis Is Associated with Significant Oxidative Stress

    PubMed Central

    Kaur, S.; Zilmer, K.; Leping, V.; Zilmer, M.

    2014-01-01

    Background. Research has confirmed the involvement of oxidative stress (OxS) in allergic contact dermatitis whilst other inflammation-related biomarkers have been less studied. Objective. To evaluate systemic levels of selected inflammatory markers, OxS indices and adipokines as well as their associations in allergic contact dermatitis. Methods. In 40 patients, interleukin- (IL-) 6, monocyte chemoattractant protein (MCP-1), and IL-10 levels were measured in sera with the Evidence Investigator Cytokine & Growth factors High-Sensitivity Array, total peroxide concentration (TPX) and total antioxidant capacity (TAC) by means of spectrophotometry, and the plasma concentrations of adiponectin and leptin by the quantitative sandwich enzyme immunoassay technique. Results. TNF-α level (P < 0.01) and TPX (P < 0.0001) were increased whilst IL-10 (P < 0.05) and TAC (P < 0.0001) were decreased in the patients as compared to controls. Correlation and multiple linear regression analysis identified both, TPX and TAC (inversely), as possible independent markers for evaluating allergic contact dermatitis. Adiponectin level in patients was increased (P < 0.0001), but neither adiponectin nor leptin correlated significantly with the biomarkers of inflammation or OxS. Conclusion. OxS parameters, especially TPX and OSI, reflect the degree of systemic inflammation associated with allergic contact dermatitis in the best way. The relation between OxS and adiponectin level warrants further studies. PMID:25183967

  6. Sinobronchial allergic aspergillosis with allergic bronchopulmonary aspergillosis: a less common co-existence

    PubMed Central

    Upadhyay, Rashmi; Kant, Surya; Prakash, Ved; Saheer, S

    2014-01-01

    Allergic bronchopulmonary aspergillosis (ABPA) is an immunological pulmonary disorder that is characterised by a hyper-responsiveness of the airways to Aspergillus fumigatus. Although several other fungi may also present with similar clinical conditions, Aspergillus remains the most common fungal pathogen causing airway infections. Co-existence of ABPA with allergic Aspergillus sinusitis (AAS) is an uncommon presentation. The concept of one airway/one disease justifies the co-existence of ABPA with AAS, but it does not always hold true. We report a case of a 35-year-old woman who presented with symptoms suggestive of bronchial asthma. On further investigation, the radiological pattern showed fleeting shadows and CT scan showed central cystic bronchiectatic changes characteristic of ABPA. The nasal secretions were investigated for the presence of Aspergillus and were found to be positive. Hence a diagnosis of ABPA with AAS was established. The patient was treated with oral steroids and antifungal drugs. PMID:25371437

  7. The ocular surface: from physiology to the ocular allergic diseases.

    PubMed

    Galicia-Carreón, Jorge; Santacruz, Concepción; Hong, Enrique; Jiménez-Martínez, María C

    2013-01-01

    Allergic conjunctivitis (AC) is an inflammation of the conjunctiva secondary to an immune response to exogenous antigens, usually called allergens. In fact, AC is a syndrome that involves the entire ocular surface, including conjunctiva, lids, cornea, and tear film. The signs and symptoms of AC have a meaningful effect on comfort and patient health, and could be influenced by environment, genetics and immune regulation mechanisms, all of which work together in a complex immunological homeostasis. Dysregulation in such immune responses could turn into a variety of ocular allergic diseases (OAD). This review describes some of the current understanding of cellular and molecular pathways involved in different OAD.

  8. Allergic rhinitis: meaningful and less meaningful combination treatments including reminiscences.

    PubMed

    Szelenyi, I

    2014-06-01

    Allergic rhinitis (AR) results from a complex allergen-driven mucosal inflammation in the nasal cavity. Current guideline-based therapy for allergic rhinitis include oral and nasal antihistamines, topical and systemic glucocorticoids, decongestants, antimuscarinic agents, mast cell stabilizing drugs, leukotriene-receptor antagonists, and others. In spite of guideline recommendations, most patients are using multiple therapies in an attempt to achieve symptom control. Therefore, more effective therapies for the management of AR are clearly required. Recently, a novel fixed dose combination containing azelastine and fluticasone propionate has successfully been introduced. At present, it represents the only meaningful topical drug combination. Perhaps, it will be followed by others. PMID:24974572

  9. Efficacy and Pharmacology of the NLRP3 Inflammasome Inhibitor CP-456,773 (CRID3) in Murine Models of Dermal and Pulmonary Inflammation.

    PubMed

    Primiano, Michael J; Lefker, Bruce A; Bowman, Michael R; Bree, Andrea G; Hubeau, Cedric; Bonin, Paul D; Mangan, Matthew; Dower, Ken; Monks, Brian G; Cushing, Leah; Wang, Stephen; Guzova, Julia; Jiao, Aiping; Lin, Lih-Ling; Latz, Eicke; Hepworth, David; Hall, J Perry

    2016-09-15

    A critical component of innate immune response to infection and tissue damage is the NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome, and this pathway and its activation products have been implicated in the pathophysiology of a variety of diseases. NLRP3 inflammasome activation leads to the cleavage of pro-IL-1β and pro-IL-18, as well as the subsequent release of biologically active IL-1β, IL-18, and other soluble mediators of inflammation. In this study, we further define the pharmacology of the previously reported NLRP3 inflammasome-selective, IL-1β processing inhibitor CP-456,773 (also known as MCC950), and we demonstrate its efficacy in two in vivo models of inflammation. Specifically, we show that in human and mouse innate immune cells CP-456,773 is an inhibitor of the cellular release of IL-1β, IL-1α, and IL-18, that CP-456,773 prevents inflammasome activation induced by disease-relevant soluble and crystalline NLRP3 stimuli, and that CP-456,773 inhibits R848- and imiquimod-induced IL-1β release. In mice, CP-456,773 demonstrates potent inhibition of the release of proinflammatory cytokines following acute i.p. challenge with LPS plus ATP in a manner that is proportional to the free/unbound concentrations of the drug, thereby establishing an in vivo pharmacokinetic/pharmacodynamic model for CP-456,773. Furthermore, CP-456,773 reduces ear swelling in an imiquimod cream-induced mouse model of skin inflammation, and it reduces airway inflammation in mice following acute challenge with house dust mite extract. These data implicate the NLRP3 inflammasome in the pathogenesis of dermal and airway inflammation, and they highlight the utility of CP-456,773 for interrogating the contribution of the NLRP3 inflammasome and its outputs in preclinical models of inflammation and disease. PMID:27521339

  10. Efficacy and Pharmacology of the NLRP3 Inflammasome Inhibitor CP-456,773 (CRID3) in Murine Models of Dermal and Pulmonary Inflammation.

    PubMed

    Primiano, Michael J; Lefker, Bruce A; Bowman, Michael R; Bree, Andrea G; Hubeau, Cedric; Bonin, Paul D; Mangan, Matthew; Dower, Ken; Monks, Brian G; Cushing, Leah; Wang, Stephen; Guzova, Julia; Jiao, Aiping; Lin, Lih-Ling; Latz, Eicke; Hepworth, David; Hall, J Perry

    2016-09-15

    A critical component of innate immune response to infection and tissue damage is the NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome, and this pathway and its activation products have been implicated in the pathophysiology of a variety of diseases. NLRP3 inflammasome activation leads to the cleavage of pro-IL-1β and pro-IL-18, as well as the subsequent release of biologically active IL-1β, IL-18, and other soluble mediators of inflammation. In this study, we further define the pharmacology of the previously reported NLRP3 inflammasome-selective, IL-1β processing inhibitor CP-456,773 (also known as MCC950), and we demonstrate its efficacy in two in vivo models of inflammation. Specifically, we show that in human and mouse innate immune cells CP-456,773 is an inhibitor of the cellular release of IL-1β, IL-1α, and IL-18, that CP-456,773 prevents inflammasome activation induced by disease-relevant soluble and crystalline NLRP3 stimuli, and that CP-456,773 inhibits R848- and imiquimod-induced IL-1β release. In mice, CP-456,773 demonstrates potent inhibition of the release of proinflammatory cytokines following acute i.p. challenge with LPS plus ATP in a manner that is proportional to the free/unbound concentrations of the drug, thereby establishing an in vivo pharmacokinetic/pharmacodynamic model for CP-456,773. Furthermore, CP-456,773 reduces ear swelling in an imiquimod cream-induced mouse model of skin inflammation, and it reduces airway inflammation in mice following acute challenge with house dust mite extract. These data implicate the NLRP3 inflammasome in the pathogenesis of dermal and airway inflammation, and they highlight the utility of CP-456,773 for interrogating the contribution of the NLRP3 inflammasome and its outputs in preclinical models of inflammation and disease.

  11. DIESEL PARTICLE INSTILLATION ENHANCES INFLAMMATORY AND NEUROTROPHIN RESPONSES IN THE LUNGS OF ALLERGIC BALB/C MICE

    EPA Science Inventory

    Neurotrophins, including nerve growth factor (NGF) partially mediate many features of allergic airways disease including airways resistance and inflammation. Antibody blockade of NGF attenuates airways resistance associated with the allergen-specific airways responses in mice. ...

  12. Allergic contact dermatitis.

    PubMed

    Becker, Detlef

    2013-07-01

    Allergic contact dermatitis is a frequent inflammatory skin disease. The suspected diagnosis is based on clinical symptoms, a plausible contact to allergens and a suitable history of dermatitis. Differential diagnoses should be considered only after careful exclusion of any causal contact sensitization. Hence, careful diagnosis by patch testing is of great importance. Modifications of the standardized test procedure are the strip patch test and the repeated open application test. The interpretation of the SLS (sodium lauryl sulfate) patch test as well as testing with the patients' own products and working materials are potential sources of error. Accurate patch test reading is affected in particular by the experience and individual factors of the examiner. Therefore, a high degree of standardization and continuous quality control is necessary and may be supported by use of an online patch test reading course made available by the German Contact Dermatitis Research Group. A critical relevance assessment of allergic patch test reactions helps to avoid relapses and the consideration of differential diagnoses. Any allergic test reaction should be documented in an allergy ID card including the INCI name, if appropriate. The diagnostics of allergic contact dermatitis is endangered by a seriously reduced financing of patch testing by the German statutory health insurances. Restrictive regulations by the German Drug Law block the approval of new contact allergens for routine patch testing. Beside the consistent avoidance of allergen contact, temporary use of systemic and topical corticosteroids is the therapy of first choice.

  13. Exposure to particulate hexavalent chromium exacerbates allergic asthma pathology

    SciTech Connect

    Schneider, Brent C.; Constant, Stephanie L.; Patierno, Steven R.; Jurjus, Rosalyn A.; Ceryak, Susan M.

    2012-02-15

    Airborne hexavalent chromate, Cr(VI), has been identified by the Environmental Protection Agency as a possible health threat in urban areas, due to the carcinogenic potential of some of its forms. Particulate chromates are produced in many different industrial settings, with high levels of aerosolized forms historically documented. Along with an increased risk of lung cancer, a high incidence of allergic asthma has been reported in workers exposed to certain inhaled particulate Cr(VI) compounds. However, a direct causal association between Cr(VI) and allergic asthma has not been established. We recently showed that inhaled particulate Cr(VI) induces an innate neutrophilic inflammatory response in BALB/c mice. In the current studies we investigated how the inflammation induced by inhaled particulate Cr(VI) might alter the pathology of an allergic asthmatic response. We used a well-established mouse model of allergic asthma. Groups of ovalbumin protein (OVA)-primed mice were challenged either with OVA alone, or with a combination of OVA and particulate zinc chromate, and various parameters associated with asthmatic responses were measured. Co-exposure to particulate Cr(VI) and OVA mediated a mixed form of asthma in which both eosinophils and neutrophils are present in airways, tissue pathology is markedly exacerbated, and airway hyperresponsiveness is significantly increased. Taken together these findings suggest that inhalation of particulate forms of Cr(VI) may augment the severity of ongoing allergic asthma, as well as alter its phenotype. Such findings may have implications for asthmatics in settings in which airborne particulate Cr(VI) compounds are present at high levels. -- Highlights: ► Allergic asthma correlated with exposure to certain inhaled particulate chromates. ► Direct causal association between Cr(VI) and allergic asthma not established. ► Cr exacerbated pathology and airway hyperresponsiveness in an OVA-challenged mouse. ► Particulate Cr

  14. Allergic sensitization: host-immune factors

    PubMed Central

    2014-01-01

    Allergic sensitization is the outcome of a complex interplay between the allergen and the host in a given environmental context. The first barrier encountered by an allergen on its way to sensitization is the mucosal epithelial layer. Allergic inflammatory diseases are accompanied by increased permeability of the epithelium, which is more susceptible to environmental triggers. Allergens and co-factors from the environment interact with innate immune receptors, such as Toll-like and protease-activated receptors on epithelial cells, stimulating them to produce cytokines that drive T-helper 2-like adaptive immunity in allergy-prone individuals. In this milieu, the next cells interacting with allergens are the dendritic cells lying just underneath the epithelium: plasmacytoid DCs, two types of conventional DCs (CD11b + and CD11b-), and monocyte-derived DCs. It is now becoming clear that CD11b+, cDCs, and moDCs are the inflammatory DCs that instruct naïve T cells to become Th2 cells. The simple paradigm of non-overlapping stable Th1 and Th2 subsets of T-helper cells is now rapidly being replaced by that of a more complex spectrum of different Th cells that together drive or control different aspects of allergic inflammation and display more plasticity in their cytokine profiles. At present, these include Th9, Th17, Th22, and Treg, in addition to Th1 and Th2. The spectrum of co-stimulatory signals coming from DCs determines which subset-characteristics will dominate. When IL-4 and/or IL-13 play a dominant role, B cells switch to IgE-production, a process that is more effective at young age. IgE-producing plasma cells have been shown to be long-lived, hiding in the bone-marrow or inflammatory tissues where they cannot easily be targeted by therapeutic intervention. Allergic sensitization is a complex interplay between the allergen in its environmental context and the tendency of the host’s innate and adaptive immune cells to be skewed towards allergic inflammation

  15. Environmental risk factors and allergic bronchial asthma.

    PubMed

    D'Amato, G; Liccardi, G; D'Amato, M; Holgate, S

    2005-09-01

    The prevalence of allergic respiratory diseases such as bronchial asthma has increased in recent years, especially in industrialized countries. A change in the genetic predisposition is an unlikely cause of the increase in allergic diseases because genetic changes in a population require several generations. Consequently, this increase may be explained by changes in environmental factors, including indoor and outdoor air pollution. Over the past two decades, there has been increasing interest in studies of air pollution and its effects on human health. Although the role played by outdoor pollutants in allergic sensitization of the airways has yet to be clarified, a body of evidence suggests that urbanization, with its high levels of vehicle emissions, and a westernized lifestyle are linked to the rising frequency of respiratory allergic diseases observed in most industrialized countries, and there is considerable evidence that asthmatic persons are at increased risk of developing asthma exacerbations with exposure to ozone, nitrogen dioxide, sulphur dioxide and inhalable particulate matter. However, it is not easy to evaluate the impact of air pollution on the timing of asthma exacerbations and on the prevalence of asthma in general. As concentrations of airborne allergens and air pollutants are frequently increased contemporaneously, an enhanced IgE-mediated response to aeroallergens and enhanced airway inflammation could account for the increasing frequency of allergic respiratory allergy and bronchial asthma. Pollinosis is frequently used to study the interrelationship between air pollution and respiratory allergy. Climatic factors (temperature, wind speed, humidity, thunderstorms, etc) can affect both components (biological and chemical) of this interaction. By attaching to the surface of pollen grains and of plant-derived particles of paucimicronic size, pollutants could modify not only the morphology of these antigen-carrying agents but also their allergenic

  16. Environmental risk factors and allergic bronchial asthma.

    PubMed

    D'Amato, G; Liccardi, G; D'Amato, M; Holgate, S

    2005-09-01

    The prevalence of allergic respiratory diseases such as bronchial asthma has increased in recent years, especially in industrialized countries. A change in the genetic predisposition is an unlikely cause of the increase in allergic diseases because genetic changes in a population require several generations. Consequently, this increase may be explained by changes in environmental factors, including indoor and outdoor air pollution. Over the past two decades, there has been increasing interest in studies of air pollution and its effects on human health. Although the role played by outdoor pollutants in allergic sensitization of the airways has yet to be clarified, a body of evidence suggests that urbanization, with its high levels of vehicle emissions, and a westernized lifestyle are linked to the rising frequency of respiratory allergic diseases observed in most industrialized countries, and there is considerable evidence that asthmatic persons are at increased risk of developing asthma exacerbations with exposure to ozone, nitrogen dioxide, sulphur dioxide and inhalable particulate matter. However, it is not easy to evaluate the impact of air pollution on the timing of asthma exacerbations and on the prevalence of asthma in general. As concentrations of airborne allergens and air pollutants are frequently increased contemporaneously, an enhanced IgE-mediated response to aeroallergens and enhanced airway inflammation could account for the increasing frequency of allergic respiratory allergy and bronchial asthma. Pollinosis is frequently used to study the interrelationship between air pollution and respiratory allergy. Climatic factors (temperature, wind speed, humidity, thunderstorms, etc) can affect both components (biological and chemical) of this interaction. By attaching to the surface of pollen grains and of plant-derived particles of paucimicronic size, pollutants could modify not only the morphology of these antigen-carrying agents but also their allergenic

  17. Airway inflammation and IgE production induced by dust mite allergen-specific memory/effector Th2 cell line can be effectively attenuated by IL-35.

    PubMed

    Huang, Chiung-Hui; Loo, Evelyn Xiu-Ling; Kuo, I-Chun; Soh, Gim Hooi; Goh, Denise Li-Meng; Lee, Bee Wah; Chua, Kaw Yan

    2011-07-01

    CD4(+) memory/effector T cells play a central role in orchestrating the rapid and robust immune responses upon re-encounter with specific Ags. However, the immunologic mechanism(s) underlying these responses are still not fully understood. To investigate this, we generated an allergen (major house dust mite allergen, Blo t 5)-specific murine Th2 cell line that secreted IL-4, IL-5, IL-10, and IL-13, but not IL-9 or TNF-α, upon activation by the cognate Ag. These cells also exhibited CD44(high)CD62L(-) and CD127(+) (IL-7Rα(+)) phenotypes, which are characteristics of memory/effector T cells. Experiments involving adoptive transfer of this Th2 cell line in mice, followed by three intranasal challenges with Blo t 5, induced a dexamethasone-sensitive eosinophilic airway inflammation. This was accompanied by elevation of Th2 cytokines and CC- and CXC-motif chemokines, as well as recruitment of lymphocytes and polymorphic mononuclear cells into the lungs. Moreover, Blo t 5-specific IgE was detected 4 d after the last intranasal challenge, whereas elevation of Blo t 5-specific IgG1 was found at week two. Finally, pulmonary delivery of the pVAX-IL-35 DNA construct effectively downregulated Blo t 5-specific allergic airway inflammation, and i.m. injection of pVAX-IL-35 led to long-lasting suppression of circulating Blo t 5-specific and total IgE. This model provides a robust research tool to elucidate the immunopathogenic role of memory/effector Th2 cells in allergic airway inflammation. Our results suggested that IL-35 could be a potential therapeutic target for allergic asthma through its attenuating effects on allergen-specific CD4(+) memory/effector Th2 cell-mediated airway inflammation.

  18. An Allergic Lung Microenvironment Suppresses Carbon Nanotube-Induced Inflammasome Activation via STAT6-Dependent Inhibition of Caspase-1

    PubMed Central

    Shipkowski, Kelly A.; Taylor, Alexia J.; Thompson, Elizabeth A.; Glista-Baker, Ellen E.; Sayers, Brian C.; Messenger, Zachary J.; Bauer, Rebecca N.; Jaspers, Ilona; Bonner, James C.

    2015-01-01

    Background Multi-walled carbon nanotubes (MWCNTs) represent a human health risk as mice exposed by inhalation display pulmonary fibrosis. Production of IL-1β via inflammasome activation is a mechanism of MWCNT-induced acute inflammation and has been implicated in chronic fibrogenesis. Mice sensitized to allergens have elevated T-helper 2 (Th2) cytokines, IL-4 and IL-13, and are susceptible to MWCNT-induced airway fibrosis. We postulated that Th2 cytokines would modulate MWCNT-induced inflammasome activation and IL-1β release in vitro and in vivo during allergic inflammation. Methods THP-1 macrophages were primed with LPS, exposed to MWCNTs and/or IL-4 or IL-13 for 24 hours, and analyzed for indicators of inflammasome activation. C57BL6 mice were sensitized to house dust mite (HDM) allergen and MWCNTs were delivered to the lungs by oropharyngeal aspiration. Mice were euthanized 1 or 21 days post-MWCNT exposure and evaluated for lung inflammasome components and allergic inflammatory responses. Results Priming of THP-1 macrophages with LPS increased pro-IL-1β and subsequent exposure to MWCNTs induced IL-1β secretion. IL-4 or IL-13 decreased MWCNT-induced IL-1β secretion by THP-1 cells and reduced pro-caspase-1 but not pro-IL-1β. Treatment of THP-1 cells with STAT6 inhibitors, either Leflunomide or JAK I inhibitor, blocked suppression of caspase activity by IL-4 and IL-13. In vivo, MWCNTs alone caused neutrophilic infiltration into the lungs of mice 1 day post-exposure and increased IL-1β in bronchoalveolar lavage fluid (BALF) and pro-caspase-1 immuno-staining in macrophages and airway epithelium. HDM sensitization alone caused eosinophilic inflammation with increased IL-13. MWCNT exposure after HDM sensitization increased total cell numbers in BALF, but decreased numbers of neutrophils and IL-1β in BALF as well as reduced pro-caspase-1 in lung tissue. Despite reduced IL-1β mice exposed to MWCNTs after HDM developed more severe airway fibrosis by 21 days and

  19. Shoe allergic contact dermatitis.

    PubMed

    Matthys, Erin; Zahir, Amir; Ehrlich, Alison

    2014-01-01

    Foot dermatitis is a widespread condition, affecting men and women of all ages. Because of the location, this condition may present as a debilitating problem to those who have it. Allergic contact dermatitis involving the feet is frequently due to shoes or socks. The allergens that cause shoe dermatitis can be found in any constituent of footwear, including rubber, adhesives, leather, dyes, metals, and medicaments. The goal of treatment is to identify and minimize contact with the offending allergen(s). The lack of product information released from shoe manufacturers and the continually changing trends in footwear present a challenge in treating this condition. The aim of this study is to review the current literature on allergic contact shoe dermatitis; clinical presentation, allergens, patch testing, and management will be discussed. PubMed and MEDLINE databases were used for the search, with a focus on literature updates from the last 15 years.

  20. [Allergic risk in anaesthesia].

    PubMed

    Mertes, Paul Michel; De Blay, Frédéric; Dong, Siwei

    2013-03-01

    Anaphylactic reactions may be either of immune(allergy, usually IgE-mediated, sometimes IgG-mediated) or non-immune origin. The incidence of anaphylactic reactions during anaesthesia varies between countries ranging from 1/1250 to 1/13,000 per procedure. In France, the estimated incidence of allergic reactions is 100.6 [76.2-125.3]/million procedures with a high female predominance (male: 55.4 [42.0-69.0], female: 154.9 [117.2-193.1]). This predominance is not observed in children. In adults, the most frequently incriminated substances are neuromuscular blocking agents, followed by latex and antibiotics. The estimated incidence of allergic reactions to neuromuscular blocking agents is 184.0 [139.3-229.7]/million procedure. In most cases there is a close reaction between clinical symptoms and drug administration. When the reaction is delayed, occurring during the surgical procedure, a reaction involving latex, a vital dye, an antiseptic or a volume expanding fluid should be suspected. Reaction severity may vary. The most frequently reported initial symptoms are pulselessness, erythema, increased airway pressure, desaturation or decreased end-tidal CO2. Clinical symptoms may occur as an isolated condition, making proper diagnosis difficult. In some cases a cardiovascular arrest can be observed. Reaction mechanism identification relies on mediators (tryptase, histamine) measurement at the time of the reaction. In case of allergic reaction, the responsible drug can be identified by the detection of specific IgE using immunoassays or by skin tests performed 6 weeks after the reaction. Predictive allergy investigation to latex or anaesthetics in the absence of history of reaction should be restricted to at-risk patients. Premedication cannot prevent the onset of an allergic reaction. Providing a latex-free environment can be used for primary or secondary prevention. Treatment is based on allergen administration interruption, epinephrine administration in a titrated

  1. [Pseudotumoral allergic bronchopulmonary aspergillosis].

    PubMed

    Otero González, I; Montero Martínez, C; Blanco Aparicio, M; Valiño López, P; Verea Hernando, H

    2000-06-01

    Allergic bronchopulmonary aspergillosis (ABPA) develops as the result of a hypersensitivity reaction to fungi of the genus Aspergillus. Clinical and radiological presentation can be atypical, requiring a high degree of suspicion on the part of the physician who treats such patients. We report the cases of two patients with APBA in whom the form of presentation--with few asthma symptoms, images showing lobar atelectasia and hilar adenopathy--led to an initial suspicion of lung cancer. PMID:10932345

  2. Food and Natural Materials Target Mechanisms to Effectively Regulate Allergic Responses.

    PubMed

    Shin, Hee Soon; Shon, Dong-Hwa

    2015-01-01

    An immune hypersensitivity disorder called allergy is caused by diverse allergens entering the body via skin contact, injection, ingestion, and/or inhalation. These allergic responses may develop into allergic disorders, including inflammations such as atopic dermatitis, asthma, anaphylaxis, food allergies, and allergic rhinitis. Several drugs have been developed to treat these allergic disorders; however, long-term intake of these drugs could have adverse effects. As an alternative to these medicines, food and natural materials that ameliorate allergic disorder symptoms without producing any side effects can be consumed. Food and natural materials can effectively regulate successive allergic responses in an allergic chain-reaction mechanism in the following ways: [1] Inhibition of allergen permeation via paracellular diffusion into epithelial cells, [2] suppression of type 2 T-helper (Th) cell-related cytokine production by regulating Th1/Th2 balance, [3] inhibition of pathogenic effector CD4(+) T cell differentiation by inducing regulatory T cells (Treg), and [4] inhibition of degranulation in mast cells. The immunomodulatory effects of food and natural materials on each target mechanism were scientifically verified and shown to alleviate allergic disorder symptoms. Furthermore, consumption of certain food and natural materials such as fenugreek, skullcap, chitin/chitosan, and cheonggukjang as anti-allergics have merits such as safety (no adverse side effects), multiple suppressive effects (as a mixture would contain various components that are active against allergic responses), and ease of consumption when required. These merits and anti-allergic properties of food and natural materials help control various allergic disorders. PMID:26598817

  3. Food and Natural Materials Target Mechanisms to Effectively Regulate Allergic Responses.

    PubMed

    Shin, Hee Soon; Shon, Dong-Hwa

    2015-01-01

    An immune hypersensitivity disorder called allergy is caused by diverse allergens entering the body via skin contact, injection, ingestion, and/or inhalation. These allergic responses may develop into allergic disorders, including inflammations such as atopic dermatitis, asthma, anaphylaxis, food allergies, and allergic rhinitis. Several drugs have been developed to treat these allergic disorders; however, long-term intake of these drugs could have adverse effects. As an alternative to these medicines, food and natural materials that ameliorate allergic disorder symptoms without producing any side effects can be consumed. Food and natural materials can effectively regulate successive allergic responses in an allergic chain-reaction mechanism in the following ways: [1] Inhibition of allergen permeation via paracellular diffusion into epithelial cells, [2] suppression of type 2 T-helper (Th) cell-related cytokine production by regulating Th1/Th2 balance, [3] inhibition of pathogenic effector CD4(+) T cell differentiation by inducing regulatory T cells (Treg), and [4] inhibition of degranulation in mast cells. The immunomodulatory effects of food and natural materials on each target mechanism were scientifically verified and shown to alleviate allergic disorder symptoms. Furthermore, consumption of certain food and natural materials such as fenugreek, skullcap, chitin/chitosan, and cheonggukjang as anti-allergics have merits such as safety (no adverse side effects), multiple suppressive effects (as a mixture would contain various components that are active against allergic responses), and ease of consumption when required. These merits and anti-allergic properties of food and natural materials help control various allergic disorders.

  4. Management of allergic rhinitis

    PubMed Central

    Solelhac, Geoffroy

    2014-01-01

    In this paper, we review the current management of allergic rhinitis and new directions for future treatment. Currently, management includes pharmacotherapy, allergen avoidance and possibly immunotherapy. The simple washing of nasal cavities using isotonic saline provides a significant improvement and is useful, particularly in children. The most effective medication in persistent rhinitis used singly is topical corticosteroid, which decreases all symptoms, including ocular ones. Antihistamines reduce nasal itch, sneeze and rhinorrhea and can be used orally or topically. When intranasal antihistamine is used together with topical corticosteroid, the combination is more effective and acts more rapidly than either drug used alone. Alternative therapies, such as homeopathy, acupuncture and intranasal carbon dioxide, or devices such nasal air filters or intranasal cellulose, have produced some positive results in small trials but are not recommended by Allergic Rhinitis and its Impact on Asthma (ARIA). In the field of allergic immunotherapy, subcutaneous and sublingual routes are currently used, the former being perhaps more efficient and the latter safer. Sublingual tablets are now available. Their efficacy compared to standard routes needs to be evaluated. Efforts have been made to develop more effective and simpler immunotherapy by modifying allergens and developing alternative routes. Standard allergen avoidance procedures used alone do not provide positive results. A comprehensive, multi-trigger, multi-component approach is needed, including avoidance of pollutants such as cigarette smoke. PMID:25374672

  5. Potential of Immunoglobulin A to Prevent Allergic Asthma

    PubMed Central

    Gloudemans, Anouk K.; Lambrecht, Bart N.; Smits, Hermelijn H.

    2013-01-01

    Allergic asthma is characterized by bronchial hyperresponsiveness, a defective barrier function, and eosinophilic lower airway inflammation in response to allergens. The inflammation is dominated by Th2 cells and IgE molecules and supplemented with Th17 cells in severe asthma. In contrast, in healthy individuals, allergen-specific IgA and IgG4 molecules are found but no IgE, and their T cells fail to proliferate in response to allergens, probably because of the development of regulatory processes that actively suppress responses to allergens. The presence of allergen-specific secretory IgA has drawn little attention so far, although a few epidemiological studies point at a reverse association between IgA levels and the incidence of allergic airway disease. This review highlights the latest literature on the role of mucosal IgA in protection against allergic airway disease, the mechanisms described to induce secretory IgA, and the role of (mucosal) dendritic cells in this process. Finally, we discuss how this information can be used to translate into the development of new therapies for allergic diseases based on, or supplemented with, IgA boosting strategies. PMID:23690823

  6. Pulmonary edema

    MedlinePlus

    ... congestion; Lung water; Pulmonary congestion; Heart failure - pulmonary edema ... Pulmonary edema is often caused by congestive heart failure . When the heart is not able to pump efficiently, blood ...

  7. Efficacy of Simple Short-Term in Vitro Assays for Predicting the Potential of Metal Oxide Nanoparticles to Cause Pulmonary Inflammation

    PubMed Central

    Lu, Senlin; Duffin, Rodger; Poland, Craig; Daly, Paul; Murphy, Fiona; Drost, Ellen; MacNee, William; Stone, Vicki; Donaldson, Ken

    2009-01-01

    Background There has been concern regarding risks from inhalation exposure to nanoparticles (NPs). The large number of particles requiring testing means that alternative approaches to animal testing are needed. Objectives We set out to determine whether short-term in vitro assays that assess intrinsic oxidative stress potential and membrane-damaging potency of a panel of metal oxide NPs can be used to predict their inflammogenic potency. Methods For a panel of metal oxide NPs, we investigated intrinsic free radical generation, oxidative activity in an extracellular environment, cytotoxicity to lung epithelial cells, hemolysis, and inflammation potency in rat lungs. All exposures were carried out at equal surface area doses. Results Only nickel oxide (NiO) and alumina 2 caused significant lung inflammation when instilled into rat lungs at equal surface area, suggesting that these two had extra surface reactivity. We observed significant free radical generation with 4 of 13 metal oxides, only one of which was inflammogenic. Only 3 of 13 were significantly hemolytic, two of which were inflammogenic. Conclusions Potency in generating free radicals in vitro did not predict inflammation, whereas alumina 2 had no free radical activity but was inflammogenic. The hemolysis assay was correct in predicting the proinflammatory potential of 12 of 13 of the particles examined. Using a battery of simple in vitro tests, it is possible to predict the inflammogenicity of metal oxide NPs, although some false-positive results are likely. More research using a larger panel is needed to confirm the efficacy and generality of this approach for metal oxide NPs. PMID:19270794

  8. Cannabinoids for the treatment of inflammation.

    PubMed

    Ashton, John C

    2007-05-01

    Cannabinoids are effective at suppressing immune and inflammation functions in leukocytes in vitro, and in animal models of acute inflammation, such as the mouse hind paw, ear and air pouch models, as well as gastrointestinal, pulmonary, myocardial, vascular, periodontal, neural, hepatic, pancreatic and arthritic inflammation models. The non-psychoactive cannabinoid receptor CB2 is emerging as a critical target for cannabinoid regulation of inflammation, and thus CB2-selective agonists are undergoing intense investigation and research. This review discusses the evidence for cannabinoid regulation of inflammation across a range of models and highlights the most promising drug candidates.

  9. The anatomical and functional relationship between allergic conjunctivitis and allergic rhinitis

    PubMed Central

    Bielory, Leonard

    2013-01-01

    There are numerous anatomic connections between the allergic conjunctivitis and allergic rhinitis. The most obvious reason is the physical connection via the nasolacrimal apparatus. However, a closer look at innervation, circulatory, lymphatic, and neurogenic systems reveals much more than a physical connection. The eye is richly innervated by parasympathetic nerves that enter the eyes after traveling in conjunction with the parasympathetic input to the nasal cavity. Parasympathetic innervation governing the tear film and nasal secretion can intersect at the pterygopalatine ganglion. Neurogenic inflammation affects both the eye and the nose as evidenced by the presence of the same neurogenic factors. Venous flow is in the SOV area connecting the eye and the nose, once thought to be without valves. In the past, this thinking is the basis for concern about the danger triangle of the face. Recent literature has shown otherwise. Although valves are present, there are still pathways where bidirectional flow exists and a venous connection is made. The most likely area for venous communication is the pterygoid plexus and cavernous sinus. The venous flow and connections also offers a pathway for allergic shiners. Understanding the mutual connections between the nasal mucosa and the ocular surface can also affect treatment strategies. PMID:24498515

  10. Acute allergic interstitial pneumonitis induced by hydrochlorothiazide.

    PubMed Central

    Biron, P; Dessureault, J; Napke, E

    1991-01-01

    OBJECTIVE: To examine the clinical features of 4 unpublished cases and 26 published cases of acute allergic interstitial pneumonitis induced by hydrochlorothiazide (HCT). DATA SOURCES: The unpublished cases were found in the database of the Drug Adverse Reaction Program, Health Protection Branch, Department of National Health and Welfare, and the database of the Programme conjoint de pharmacovigilance, in Quebec. The published cases were retrieved from MEDLINE and EMBASE. STUDY SELECTION: Reported cases were selected if they were sufficiently documented. All published cases were selected because a differential diagnosis had been made in each one. DATA SYNTHESIS: The onset was acute and dramatic; the average time to onset of symptoms was 44 minutes. Sex was a predominant risk factor, since 27 (90%) of the 30 patients were women. The average age was 56 years; thus, most of the women were postmenopausal. Over two-thirds of the patients had one to three positive prechallenges or rechallenges, 3 of the 52 documented adverse events occurred after a voluntary rechallenge, some were life-threatening and necessitated mechanical ventilation, and 1 was fatal. Treatment was supportive; avoidance of HCT was the only prevention. CONCLUSION: Acute allergic interstitial pneumonitis due to HCT is extremely rare and potentially fatal. Such a reaction can be diagnosed only if the clinician suspects it when presented with a case of unexplained acute pulmonary edema. PMID:2049694

  11. Allergic reactions to insect secretions.

    PubMed

    Pecquet, Catherine

    2013-01-01

    Some products derived from insects can induce allergic reactions. The main characteristics of some products from honeybees, cochineal and silkworms are summarised here. We review allergic reactions from honey-derived products (propolis, wax, royal jelly), from cochineal products (shellac and carmine) and from silk : clinical features, allergological investigations and allergens if they are known.

  12. Effects of Ex Vivo y-Tocopherol on Airway Macrophage Function in Healthy and Mild Allergic Asthmatics

    EPA Science Inventory

    Elevated inflammation and altered immune responses are features found in atopic asthmatic airways. Recent studies indicate y-tocopherol (GT) supplementation can suppress airway inflammation in allergic asthma. We studied the effects of in vitro GT supplementation on receptor-med...

  13. Baicalein inhibits pulmonary carcinogenesis-associated inflammation and interferes with COX-2, MMP-2 and MMP-9 expressions in-vivo

    SciTech Connect

    Chandrashekar, Naveenkumar; Selvamani, Asokkumar; Subramanian, Raghunandhakumar; Pandi, Anandakumar; Thiruvengadam, Devaki

    2012-05-15

    The objective of the present study is to investigate the therapeutic efficacy of baicalein (BE) on inflammatory cytokines, which is in line with tumor invasion factors and antioxidant defensive system during benzo(a)pyrene [B(a)P] (50 mg/kg body weight) induced pulmonary carcinogenesis in Swiss albino mice. After experimental period, increased levels of total and differential cell count in bronchoalveolar lavage fluid were observed. Accompanied by marked increase in immature mast cell by toluidine blue staining and mature mast cell by safranin–alcian blue staining in B(a)P-induced lung cancer bearing animals. Protein expression levels studied by immunohistochemistry and immunoblot analysis of cytokines such as tumor necrosis factor-α, interleukin-1β and inducible nitric oxide synthase were also found to be significantly increased in lung cancer bearing animals. B(a)P-exposed mice lung exhibits activated expression of nuclear transcription factor kappa-B as confirmed by immunofluorescence and immunoblot analysis. Administration of BE (12 mg/kg body weight) significantly counteracted all the above deleterious changes. Moreover, assessment of tumor invasion factors on protein levels by immunoblot and mRNA expression levels by RT-PCR revealed that BE treatment effectively negates B(a)P-induced upregulated expression of matrix metalloproteinase-2, matrix metalloproteinase-9 and cyclo-oxygenase-2. Further analysis of lipid peroxidation markers such as thiobarbituric acid reactive substances, hydro-peroxides and antioxidants such as glutathione-S-transferase and reduced glutathione in lung tissue was carried out to substantiate the antioxidant effect of BE. The chemotherapeutic effect observed in the present study is attributed to the potent anti-inflammatory and antioxidant potential by BE against pulmonary carcinogenesis. -- Highlights: ► BE treatment protects from inflammatory cells and mast-cells accumulation in lungs. ► BE altered the expressions of TNF

  14. Soy biodiesel emissions have reduced inflammatory effects compared to diesel emissions in healthy and allergic mice.

    PubMed

    Gavett, Stephen H; Wood, Charles E; Williams, Marc A; Cyphert, Jaime M; Boykin, Elizabeth H; Daniels, Mary J; Copeland, Lisa B; King, Charly; Krantz, Todd Q; Richards, Judy H; Andrews, Debora L; Jaskot, Richard H; Gilmour, M Ian

    2015-01-01

    Toxicity of exhaust from combustion of petroleum diesel (B0), soy-based biodiesel (B100), or a 20% biodiesel/80% petrodiesel mix (B20) was compared in healthy and house dust mite (HDM)-allergic mice. Fuel emissions were diluted to target fine particulate matter (PM(2.5)) concentrations of 50, 150, or 500 μg/m(3). Studies in healthy mice showed greater levels of neutrophils and MIP-2 in bronchoalveolar lavage (BAL) fluid 2 h after a single 4-h exposure to B0 compared with mice exposed to B20 or B100. No consistent differences in BAL cells and biochemistry, or hematological parameters, were observed after 5 d or 4 weeks of exposure to any of the emissions. Air-exposed HDM-allergic mice had significantly increased responsiveness to methacholine aerosol challenge compared with non-allergic mice. Exposure to any of the emissions for 4 weeks did not further increase responsiveness in either non-allergic or HDM-allergic mice, and few parameters of allergic inflammation in BAL fluid were altered. Lung and nasal pathology were not significantly different among B0-, B20-, or B100-exposed groups. In HDM-allergic mice, exposure to B0, but not B20 or B100, significantly increased resting peribronchiolar lymph node cell proliferation and production of T(H)2 cytokines (IL-4, IL-5, and IL-13) and IL-17 in comparison with air-exposed allergic mice. These results suggest that diesel exhaust at a relatively high concentration (500 μg/m(3)) can induce inflammation acutely in healthy mice and exacerbate some components of allergic responses, while comparable concentrations of B20 or B100 soy biodiesel fuels did not elicit responses different from those caused by air exposure alone.

  15. Toxocara canis and the allergic process

    PubMed Central

    Zaia, Mauricio Grecco; de Oliveira, Sandra Regina Pereira; de Castro, Cynthia Aparecida; Soares, Edson Garcia; Afonso, Ana; Monnazzi, Luis Gustavo S; Peitl, Oscar; Faccioli, Lúcia Helena; Anibal, Fernanda de Freitas

    2015-01-01

    The protective effect of infectious agents against allergic reactions has been thoroughly investigated. Current studies have demonstrated the ability of some helminths to modulate the immune response of infected hosts. The objective of the present study was to investigate the relationship between Toxocara canis infection and the development of an allergic response in mice immunised with ovalbumin (OVA). We determined the total and differential blood and bronchoalveolar lavage fluid cells using BALB/c mice as a model. To this end, the levels of interleukin (IL)-4, IL-5 and IL-10 and anti-OVA-IgE were measured using an ELISA. The inflammatory process in the lungs was observed using histology slides stained with haematoxylin and eosin. The results showed an increase in the total number of leukocytes and eosinophils in the blood of infected and immunised animals at 18 days after infection. We observed a slight lymphocytic inflammatory infiltrate in the portal space in all infected mice. Anti-OVA-IgE levels were detected in smaller proportions in the plasma of immunised and infected mice compared with mice that were only infected. Therefore, we concluded that T. canis potentiates inflammation in the lungs in response to OVA, although anti-OVA-IgE levels suggest a potential reduction of the inflammatory process through this mechanism. PMID:26517650

  16. Toxocara canis and the allergic process.

    PubMed

    Zaia, Mauricio Grecco; Oliveira, Sandra Regina Pereira de; Castro, Cynthia Aparecida de; Soares, Edson Garcia; Afonso, Ana; Monnazzi, Luis Gustavo S; Peitl Filho, Oscar; Faccioli, Lúcia Helena; Anibal, Fernanda de Freitas

    2015-09-01

    The protective effect of infectious agents against allergic reactions has been thoroughly investigated. Current studies have demonstrated the ability of some helminths to modulate the immune response of infected hosts. The objective of the present study was to investigate the relationship between Toxocara canis infection and the development of an allergic response in mice immunised with ovalbumin (OVA). We determined the total and differential blood and bronchoalveolar lavage fluid cells using BALB/c mice as a model. To this end, the levels of interleukin (IL)-4, IL-5 and IL-10 and anti-OVA-IgE were measured using an ELISA. The inflammatory process in the lungs was observed using histology slides stained with haematoxylin and eosin. The results showed an increase in the total number of leukocytes and eosinophils in the blood of infected and immunised animals at 18 days after infection. We observed a slight lymphocytic inflammatory infiltrate in the portal space in all infected mice. Anti-OVA-IgE levels were detected in smaller proportions in the plasma of immunised and infected mice compared with mice that were only infected. Therefore, we concluded that T. canis potentiates inflammation in the lungs in response to OVA, although anti-OVA-IgE levels suggest a potential reduction of the inflammatory process through this mechanism. PMID:26517650

  17. The effects of engineered nanoparticles on pulmonary immune homeostasis.

    PubMed

    Mohamud, Rohimah; Xiang, Sue D; Selomulya, Cordelia; Rolland, Jennifer M; O'Hehir, Robyn E; Hardy, Charles L; Plebanski, Magdalena

    2014-05-01

    Engineered nanoparticles (ENP), which could be composed of inorganic metals, metal oxides, metalloids, organic biodegradable and inorganic biocompatible polymers, are being used as carriers for vaccine and drug delivery. There is also increasing interest in their application as delivery agents for the treatment of a variety of lung diseases. Although many studies have shown ENP can be effectively and safely used to enhance the delivery of drugs and vaccines in the periphery, there is concern that some ENP could promote inflammation, with unknown consequences for lung immune homeostasis. In this study, we review research on the effects of ENP on lung immunity, focusing on recent studies using diverse animal models of human lung disease. We summarize how the inflammatory and immune response to ENP is influenced by the diverse biophysical and chemical characteristics of the particles including composition, size and mode of delivery. We further discuss newly described unexpected beneficial properties of ENP administered into the lung, where biocompatible polystyrene or silver nanoparticles can by themselves decrease susceptibility to allergic airways inflammation. Increasing our understanding of the differential effects of diverse types of nanoparticles on pulmonary immune homeostasis, particularly previously underappreciated beneficial outcomes, supports rational ENP translation into novel therapeutics for prevention and/or treatment of inflammatory lung disorders.

  18. Vitamin E Isoforms as Modulators of Lung Inflammation

    PubMed Central

    Abdala-Valencia, Hiam; Berdnikovs, Sergejs; Cook-Mills, Joan M.

    2013-01-01

    Asthma and allergic diseases are complex conditions caused by a combination of genetic and environmental factors. Clinical studies suggest a number of protective dietary factors for asthma, including vitamin E. However, studies of vitamin E in allergy commonly result in seemingly conflicting outcomes. Recent work indicates that allergic inflammation is inhibited by supplementation with the purified natural vitamin E isoform α-tocopherol but elevated by the isoform γ-tocopherol when administered at physiological tissue concentrations. In this review, we discuss opposing regulatory effects of α-tocopherol and γ-tocopherol on allergic lung inflammation in clinical trials and in animal studies. A better understanding of the differential regulation of inflammation by isoforms of vitamin E provides a basis towards the design of clinical studies and diets that would effectively modulate inflammatory pathways in lung disease. PMID:24184873

  19. Arctigenin Protects against Lipopolysaccharide-Induced Pulmonary Oxidative Stress and Inflammation in a Mouse Model via Suppression of MAPK, HO-1, and iNOS Signaling.

    PubMed

    Zhang, Wen-zhou; Jiang, Zheng-kui; He, Bao-xia; Liu, Xian-ben

    2015-08-01

    Arctigenin, a bioactive component of Arctium lappa (Nubang), has anti-inflammatory activity. Here, we investigated the effects of arctigenin on lipopolysaccharide (LPS)-induced acute lung injury. Mice were divided into four groups: control, LPS, LPS + DMSO, and LPS + Arctigenin. Mice in the LPS + Arctigenin group were injected intraperitoneally with 50 mg/kg of arctigenin 1 h before an intratracheal administration of LPS (5 mg/kg). Lung tissues and bronchoalveolar lavage fluids (BALFs) were collected. Histological changes of the lung were analyzed by hematoxylin and eosin staining. Arctigenin decreased LPS-induced acute lung inflammation, infiltration of inflammatory cells into BALF, and production of pro-inflammatory cytokines. Moreover, arctigenin pretreatment reduced the malondialdehyde level and increased superoxide dismutase and catalase activities and glutathione peroxidase/glutathione disulfide ratio in the lung. Mechanically, arctigenin significantly reduced the production of nitric oxygen and inducible nitric oxygen synthase (iNOS) expression, enhanced the expression of heme oxygenase-1, and decreased the phosphorylation of mitogen-activated protein kinases (MAPKs). Arctigenin has anti-inflammatory and antioxidative effects on LPS-induced acute lung injury, which are associated with modulation of MAPK, HO-1, and iNOS signaling.

  20. Lipids Derived from Virulent Francisella tularensis Broadly Inhibit Pulmonary Inflammation via Toll-Like Receptor 2 and Peroxisome Proliferator-Activated Receptor α

    PubMed Central

    Crane, Deborah D.; Ireland, Robin; Alinger, Joshua B.; Small, Pamela

    2013-01-01

    Francisella tularensis is a Gram-negative facultative intracellular pathogen that causes an acute lethal respiratory disease in humans. The heightened virulence of the pathogen is linked to its unique ability to inhibit Toll-like receptor (TLR)-mediated inflammatory responses. The bacterial component and mechanism of this inhibition are unknown. Here we show that lipids isolated from virulent but not attenuated strains of F. tularensis are not detected by host cells, inhibit production of proinflammatory cytokines by primary macrophages in response to known TLR ligands, and suppress neutrophil recruitment in vivo. We further show that lipid-mediated inhibition of inflammation is dependent on TLR2, MyD88, and the nuclear hormone and fatty acid receptor peroxisome proliferator-activated receptor α (PPARα). Pathogen lipid-mediated interference with inflammatory responses through the engagement of TLR2 and PPARα represents a novel manipulation of host signaling pathways consistent with the ability of highly virulent F. tularensis to efficiently evade host immune responses. PMID:23925884