Science.gov

Sample records for alleviate heat stress

  1. Zinc supplementation alleviates heat stress in laying Japanese quail.

    PubMed

    Sahin, Kazim; Kucuk, Omer

    2003-09-01

    The study was conducted to determine whether zinc supplementation could alleviate the detrimental effects of high ambient temperature (34 degrees C) on egg production, digestibility of nutrients and antioxidant status in laying Japanese quail. Quail (n = 180; 52 d old) were divided into six groups (n = 30/group) and were fed a basal diet or the basal diet supplemented with 30 or 60 mg of zinc (ZnSO(4). H(2)O)/kg diet. Birds were kept at 22 degrees C and 58% relative humidity (RH). At 13 wk of age, the thermoneutral (TN) groups remained at the same temperature, whereas the heat-stress (HS) groups were kept in an environmentally controlled room at 34 degrees C and 42% RH for 3 wk. Heat exposure decreased egg production in birds fed the basal diet (P = 0.001). Linear increases in feed intake (P = 0.01) and egg production (P = 0.004) and improved feed efficiency (P = 0.01) and egg quality variables (P Heat exposure decreased digestibility of nutrients (P = 0.001), and these decreases were ameliorated by zinc supplementation (P 0.05). Results of the present study suggest that supplementation with 60 mg zinc/kg diet protects quail by reducing the negative effects of heat stress.

  2. Dietary chromium methionine supplementation could alleviate immunosuppressive effects of heat stress in broiler chicks.

    PubMed

    Jahanian, R; Rasouli, E

    2015-07-01

    circulation. Supplementation of CrMet to heat-stressed chicks modulated (P < 0.01) plasma corticosterone level. The present findings indicate that dietary CrMet supplementation could alleviate heat-stress-induced growth retardation in broiler chicks. Moreover, supplemental CrMet modulated suppressive effects of heat stress on cellular and humoral immune responses.

  3. Adaptation to hot climate and strategies to alleviate heat stress in livestock production.

    PubMed

    Renaudeau, D; Collin, A; Yahav, S; de Basilio, V; Gourdine, J L; Collier, R J

    2012-05-01

    Despite many challenges faced by animal producers, including environmental problems, diseases, economic pressure, and feed availability, it is still predicted that animal production in developing countries will continue to sustain the future growth of the world's meat production. In these areas, livestock performance is generally lower than those obtained in Western Europe and North America. Although many factors can be involved, climatic factors are among the first and crucial limiting factors of the development of animal production in warm regions. In addition, global warming will further accentuate heat stress-related problems. The objective of this paper was to review the effective strategies to alleviate heat stress in the context of tropical livestock production systems. These strategies can be classified into three groups: those increasing feed intake or decreasing metabolic heat production, those enhancing heat-loss capacities, and those involving genetic selection for heat tolerance. Under heat stress, improved production should be possible through modifications of diet composition that either promotes a higher intake or compensates the low feed consumption. In addition, altering feeding management such as a change in feeding time and/or frequency, are efficient tools to avoid excessive heat load and improve survival rate, especially in poultry. Methods to enhance heat exchange between the environment and the animal and those changing the environment to prevent or limit heat stress can be used to improve performance under hot climatic conditions. Although differences in thermal tolerance exist between livestock species (ruminants > monogastrics), there are also large differences between breeds of a species and within each breed. Consequently, the opportunity may exist to improve thermal tolerance of the animals using genetic tools. However, further research is required to quantify the genetic antagonism between adaptation and production traits to evaluate

  4. Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation

    PubMed Central

    Khan, M Iqbal R; Iqbal, Noushina; Masood, Asim; Per, Tasir S; Khan, Nafees A

    2013-01-01

    We investigated the potential of salicylic acid (SA) in alleviating the adverse effects of heat stress on photosynthesis in wheat (Triticum aestivum L.) cv WH 711. Activity of ribulose 1,5-bisphosphate carboxylase (Rubisco), photosynthetic-nitrogen use efficiency (NUE), and net photosynthesis decreased in plants subjected to heat stress (40°C for 6 h), but proline metabolism increased. SA treatment (0.5 mM) alleviated heat stress by increasing proline production through the increase in γ-glutamyl kinase (GK) and decrease in proline oxidase (PROX) activity, resulting in promotion of osmotic potential and water potential necessary for maintaining photosynthetic activity. Together with this, SA treatment restricted the ethylene formation in heat-stressed plants to optimal range by inhibiting activity of 1-aminocyclopropane carboxylic acid (ACC) synthase (ACS). This resulted in improved proline metabolism, N assimilation and photosynthesis. The results suggest that SA interacts with proline metabolism and ethylene formation to alleviate the adverse effects of heat stress on photosynthesis in wheat. PMID:24022274

  5. Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation.

    PubMed

    Khan, M Iqbal R; Iqbal, Noushina; Masood, Asim; Per, Tasir S; Khan, Nafees A

    2013-11-01

    We investigated the potential of salicylic acid (SA) in alleviating the adverse effects of heat stress on photosynthesis in wheat (Triticum aestivum L.) cv WH 711. Activity of ribulose 1,5-bisphosphate carboxylase (Rubisco), photosynthetic-nitrogen use efficiency (NUE), and net photosynthesis decreased in plants subjected to heat stress (40 °C for 6 h), but proline metabolism increased. SA treatment (0.5 mM) alleviated heat stress by increasing proline production through the increase in γ-glutamyl kinase (GK) and decrease in proline oxidase (PROX) activity, resulting in promotion of osmotic potential and water potential necessary for maintaining photosynthetic activity. Together with this, SA treatment restricted the ethylene formation in heat-stressed plants to optimal range by inhibiting activity of 1-aminocyclopropane carboxylic acid (ACC) synthase (ACS). This resulted in improved proline metabolism, N assimilation and photosynthesis. The results suggest that SA interacts with proline metabolism and ethylene formation to alleviate the adverse effects of heat stress on photosynthesis in wheat.

  6. Carbon dioxide enrichment alleviates heat stress by improving cellular redox homeostasis through an ABA-independent process in tomato plants.

    PubMed

    Li, X; Ahammed, G J; Zhang, Y Q; Zhang, G Q; Sun, Z H; Zhou, J; Zhou, Y H; Xia, X J; Yu, J Q; Shi, K

    2015-01-01

    Plant responses to elevated CO₂ and high temperature are critically regulated through a complex network of phytohormones and redox homeostasis. However, the involvement of abscisic acid (ABA) in plant adaptation to heat stress under elevated CO₂ conditions has not been thoroughly studied. This study investigated the interactive effects of elevated CO₂ (800 μmol·mol(-1) ) and heat stress (42 °C for 24 h) on the endogenous level of ABA and the cellular redox state of two genotypes of tomato with different ABA biosynthesis capacities. Heat stress significantly decreased maximum photochemical efficiency of PSII (Fv/Fm) and leaf water potential, but also increased levels of malondialdehyde (MDA) and electrolyte leakage (EL) in both genotypes. Heat-induced damage was more severe in the ABA-deficient mutant notabilis (not) than in its parental cultivar Ailsa Craig (Ailsa), suggesting that a certain level of endogenous ABA is required to minimise the heat-induced oxidative damage to the photosynthetic apparatus. Irrespective of genotype, the enrichment of CO₂ remarkably stimulated Fv/Fm, MDA and EL in heat-stressed plants towards enhanced tolerance. In addition, elevated CO₂ significantly strengthened the antioxidant capacity of heat-stressed tomato seedlings towards a reduced cellular redox state for a prolonged period, thereby mitigating oxidative stress. However, elevated CO₂ and heat stress did not alter the endogenous level of ABA or the expression of its biosynthetic gene NCED2 in either genotype, indicating that ABA is not involved in elevated CO₂ -induced heat stress alleviation. The results of this study suggest that elevated CO₂ alleviated heat stress through efficient regulation of the cellular redox poise in an ABA-independent manner in tomato plants.

  7. Nutritional Interventions to Alleviate the Negative Consequences of Heat Stress12

    PubMed Central

    Rhoads, Robert P.; Baumgard, Lance H.; Suagee, Jessica K.; Sanders, Sara R.

    2013-01-01

    Energy metabolism is a highly coordinated process, and preferred fuel(s) differ among tissues. The hierarchy of substrate use can be affected by physiological status and environmental factors including high ambient temperature. Unabated heat eventually overwhelms homeothermic mechanisms resulting in heat stress, which compromises animal health, farm animal production, and human performance. Various aspects of heat stress physiology have been extensively studied, yet a clear understanding of the metabolic changes occurring at the cellular, tissue, and whole-body levels in response to an environmental heat load remains ill-defined. For reasons not yet clarified, circulating nonesterified fatty acid levels are reduced during heat stress, even in the presence of elevated stress hormones (epinephrine, glucagon, and cortisol), and heat-stressed animals often have a blunted lipolytic response to catabolic signals. Either directly because of or in coordination with this, animals experiencing environmental hyperthermia exhibit a shift toward carbohydrate use. These metabolic alterations occur coincident with increased circulating basal and stimulated plasma insulin concentrations. Limited data indicate that proper insulin action is necessary to effectively mount a response to heat stress and minimize heat-induced damage. Consistent with this idea, nutritional interventions targeting increased insulin action may improve tolerance and productivity during heat stress. Further research is warranted to uncover the effects of heat on parameters associated with energy metabolism so that more appropriate and effective treatment methodologies can be designed. PMID:23674792

  8. Yeast Culture and Vitamin E Supplementation Alleviates Heat Stress in Dairy Goats.

    PubMed

    Wang, Lizhi; Wang, Zhisheng; Zou, Huawei; Peng, Quanhui

    2016-06-01

    This study was conducted to determine and compare the effects of yeast yeast culture (YC) and vitamin E (VE) supplementation on endotoxin absorption and antioxidant status in lactating dairy goats suffering from heat stress (HS). Three first lactation Saanen dairy goats (body weight 30±1.5 kg) were surgically fitted with indwelling catheters in the portal vein, mesenteric vein and carotid artery, and were randomly assigned to a 3×3 Latin square design. Dietary treatments were the basal diet, and the basal diet supplemented with either 100 IU VE or 30 g YC. Goats were kept in temperature and humidity-controlled room at 35°C from 8:00 to 20:00 and at 24°C from 20:00 till the next morning at 8:00. The relative humidity was kept at 55%. HS increased dairy goats' rectum temperature and respiration frequency (p<0.01). HS reduced plasma flux rate of milk goats (p<0.01), but the plasma flux rate increased when the animal was under the conditions of the thermo-neutral period (p<0.01). The VE supplementation lowered dairy goats' rectum temperature during thermo-neutral period (p<0.01). Meanwhile, no significant differences were observed between the control and YC treatment in rectum temperature and respiration frequency (p>0.05). Dietary supplementation of VE and YC reduced heat stressed dairy goats' endotoxin concentration of the carotid artery and portal vein (p<0.01). However, the endotoxin concentration of the YC treatment was higher than that of the VE treatment (p<0.01). Both VE and YC supplementation decreased heat stressed dairy goats' absorption of endotoxin in portal vein (p<0.01). The endotoxin absorption of YC treatment was higher than the VE treatment (p<0.01). The addition of VE and YC decreased dairy goats' superoxide dismutase (SOD) concentration during HS and the whole experiment period (p<0.01). The addition of VE lowered SOD concentration during thermo-neutral period (p<0.01). Likewise, the addition of VE and YC lowered dairy goats' malonaldehyde (MDA

  9. Yeast Culture and Vitamin E Supplementation Alleviates Heat Stress in Dairy Goats.

    PubMed

    Wang, Lizhi; Wang, Zhisheng; Zou, Huawei; Peng, Quanhui

    2016-06-01

    This study was conducted to determine and compare the effects of yeast yeast culture (YC) and vitamin E (VE) supplementation on endotoxin absorption and antioxidant status in lactating dairy goats suffering from heat stress (HS). Three first lactation Saanen dairy goats (body weight 30±1.5 kg) were surgically fitted with indwelling catheters in the portal vein, mesenteric vein and carotid artery, and were randomly assigned to a 3×3 Latin square design. Dietary treatments were the basal diet, and the basal diet supplemented with either 100 IU VE or 30 g YC. Goats were kept in temperature and humidity-controlled room at 35°C from 8:00 to 20:00 and at 24°C from 20:00 till the next morning at 8:00. The relative humidity was kept at 55%. HS increased dairy goats' rectum temperature and respiration frequency (p<0.01). HS reduced plasma flux rate of milk goats (p<0.01), but the plasma flux rate increased when the animal was under the conditions of the thermo-neutral period (p<0.01). The VE supplementation lowered dairy goats' rectum temperature during thermo-neutral period (p<0.01). Meanwhile, no significant differences were observed between the control and YC treatment in rectum temperature and respiration frequency (p>0.05). Dietary supplementation of VE and YC reduced heat stressed dairy goats' endotoxin concentration of the carotid artery and portal vein (p<0.01). However, the endotoxin concentration of the YC treatment was higher than that of the VE treatment (p<0.01). Both VE and YC supplementation decreased heat stressed dairy goats' absorption of endotoxin in portal vein (p<0.01). The endotoxin absorption of YC treatment was higher than the VE treatment (p<0.01). The addition of VE and YC decreased dairy goats' superoxide dismutase (SOD) concentration during HS and the whole experiment period (p<0.01). The addition of VE lowered SOD concentration during thermo-neutral period (p<0.01). Likewise, the addition of VE and YC lowered dairy goats' malonaldehyde (MDA

  10. Yeast Culture and Vitamin E Supplementation Alleviates Heat Stress in Dairy Goats

    PubMed Central

    Wang, Lizhi; Wang, Zhisheng; Zou, Huawei; Peng, Quanhui

    2016-01-01

    This study was conducted to determine and compare the effects of yeast yeast culture (YC) and vitamin E (VE) supplementation on endotoxin absorption and antioxidant status in lactating dairy goats suffering from heat stress (HS). Three first lactation Saanen dairy goats (body weight 30±1.5 kg) were surgically fitted with indwelling catheters in the portal vein, mesenteric vein and carotid artery, and were randomly assigned to a 3×3 Latin square design. Dietary treatments were the basal diet, and the basal diet supplemented with either 100 IU VE or 30 g YC. Goats were kept in temperature and humidity-controlled room at 35°C from 8:00 to 20:00 and at 24°C from 20:00 till the next morning at 8:00. The relative humidity was kept at 55%. HS increased dairy goats’ rectum temperature and respiration frequency (p<0.01). HS reduced plasma flux rate of milk goats (p<0.01), but the plasma flux rate increased when the animal was under the conditions of the thermo-neutral period (p<0.01). The VE supplementation lowered dairy goats’ rectum temperature during thermo-neutral period (p<0.01). Meanwhile, no significant differences were observed between the control and YC treatment in rectum temperature and respiration frequency (p>0.05). Dietary supplementation of VE and YC reduced heat stressed dairy goats’ endotoxin concentration of the carotid artery and portal vein (p<0.01). However, the endotoxin concentration of the YC treatment was higher than that of the VE treatment (p<0.01). Both VE and YC supplementation decreased heat stressed dairy goats’ absorption of endotoxin in portal vein (p<0.01). The endotoxin absorption of YC treatment was higher than the VE treatment (p<0.01). The addition of VE and YC decreased dairy goats’ superoxide dismutase (SOD) concentration during HS and the whole experiment period (p<0.01). The addition of VE lowered SOD concentration during thermo-neutral period (p<0.01). Likewise, the addition of VE and YC lowered dairy goats

  11. Berberis vulgaris root extract alleviates the adverse effects of heat stress via modulating hepatic nuclear transcription factors in quails.

    PubMed

    Sahin, Kazim; Orhan, Cemal; Tuzcu, Mehmet; Borawska, Maria H; Jabłonski, Jakub; Guler, Osman; Sahin, Nurhan; Hayirli, Armagan

    2013-08-01

    To evaluate the action mode of Berberis vulgaris root extract in the alleviation of oxidative stress, female Japanese quails (n 180, aged 5 weeks) were reared, either at 22°C for 24 h/d (thermoneutral, TN) or 34°C for 8 h/d (heat stress, HS), and fed one of three diets: diets containing 0, 100 or 200 mg of B. vulgaris root extract per kg for 12 weeks. Exposure to HS depressed feed intake by 8·5% and egg production by 12·1%, increased hepatic malondialdehyde (MDA) level by 98·0% and decreased hepatic superoxide dismutase, catalase and glutathione peroxidase activities by 23·5, 35·4 and 55·7%, respectively (P<0·001 for all). There were also aggravations in expressions of hepatic NF-κB and heat-shock protein 70 (HSP70) by 42 and 43%, respectively and suppressions in expressions of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and haeme-oxygenase 1 (HO-1) by 57 and 61%, respectively, in heat-stressed quails (P<0·001 for all). As supplemental B. vulgaris extract increased, there were linear increases in performance parameters, activities of antioxidant enzymes and hepatic Nrf2 and HO-1 expressions (P<0·001 for all) and linear decreases in hepatic MDA level and NF-κB and HSP70 expressions at a greater extent in quails reared under TN condition and those reared under HS condition. In conclusion, dietary supplementation of B. vulgaris root extract to quails reduces the detrimental effects of oxidative stress and lipid peroxidation resulting from HS via activating the host defence system at the cellular level.

  12. Do Carpets Alleviate Stress?

    PubMed Central

    HOKI, Yoko; SATO, Kunio; KASAI, Yuichi

    2016-01-01

    Background: Owing to increased complexity in the evolution of society, stress has become an important public health problem, and is responsible for more than 30 types of diseases. Most of the research on stress conducted to date has focused on physical and psychological aspects; however, there are very few reports about the association between psychological stress and elements within the residential environment, such as the home, room, and furniture. Therefore, in this study, we focused on the effects of indoor flooring in the residential environment on stress, as flooring is a feature that the human body is in contact with for long periods of time. We objectively measured the extent of psychological stress perceived while walking on carpeting and on wood flooring. Methods: Forty-two healthy subjects were recruited for this study, and were asked to walk on carpeting and wood flooring for 10 min each. Their electroencephalogram (EEG) and skin impedance values were measured for each task. Results: The α-wave content percentage in EEG data and skin impedance values were significantly higher just after walking on carpet than just after walking on wood flooring. Conclusion: Walking on carpeting induces less stress than walking on wood flooring.

  13. Do Carpets Alleviate Stress?

    PubMed Central

    HOKI, Yoko; SATO, Kunio; KASAI, Yuichi

    2016-01-01

    Background: Owing to increased complexity in the evolution of society, stress has become an important public health problem, and is responsible for more than 30 types of diseases. Most of the research on stress conducted to date has focused on physical and psychological aspects; however, there are very few reports about the association between psychological stress and elements within the residential environment, such as the home, room, and furniture. Therefore, in this study, we focused on the effects of indoor flooring in the residential environment on stress, as flooring is a feature that the human body is in contact with for long periods of time. We objectively measured the extent of psychological stress perceived while walking on carpeting and on wood flooring. Methods: Forty-two healthy subjects were recruited for this study, and were asked to walk on carpeting and wood flooring for 10 min each. Their electroencephalogram (EEG) and skin impedance values were measured for each task. Results: The α-wave content percentage in EEG data and skin impedance values were significantly higher just after walking on carpet than just after walking on wood flooring. Conclusion: Walking on carpeting induces less stress than walking on wood flooring. PMID:27648413

  14. Thermotolerance induced at a mild temperature of 40°C alleviates heat shock-induced ER stress and apoptosis in HeLa cells.

    PubMed

    Bettaieb, Ahmed; Averill-Bates, Diana A

    2015-01-01

    Hyperthermia (39-45°C) has emerged as an alternate prospect for cancer therapy in combination with radiation and chemotherapy. Despite promising progress in the clinic, molecular mechanisms involved in hyperthermia-induced cell death are not clear. Hyperthermia causes protein denaturation/aggregation, which results in cell death by apoptosis and/or necrosis. Hyperthermia also induces thermotolerance, which renders cells resistant to subsequent exposure to lethal heat shock. This study investigates the role of both lethal (42-43°C) and mild (40°C) hyperthermia in regulating ER stress and ER stress-induced apoptosis in HeLa cells. The ability of mild thermotolerance induced at 40°C to alleviate either or both of these processes is also determined. Hyperthermia (42-43°C) induced ER stress, revealed by phosphorylation of PERK, eIF2α and IRE1α, cleavage of ATF6 and increased expression of BiP and sXBP1. Real-time PCR revealed that mRNA levels of ATF6, ATF4, BiP, sXBP1 and CHOP increased in cells exposed to hyperthermia. Moreover, hyperthermia caused disruption of calcium homeostasis and activated the calpain-calpastatin proteolytic system and ER resident caspase 4. Pre-exposure to mild hyperthermia (40°C) alleviated the induction of cytotoxicity and ER stress by hyperthermia (42-43°C) and protected cells against ER stress-induced apoptosis. ShRNA-mediated depletion of Hsp72 abrogated protective effects of mild thermotolerance (40°C) against heat-shock induced ER stress and sensitized cells to ER stress-mediated apoptosis. Our findings show that Hsp72 contributes to the protective effects of mild hyperthermia (40°C) against hyperthermia-induced ER stress and apoptosis.

  15. Growth performance and reproductive traits at first parity of New Zealand white female rabbits as affected by heat stress and its alleviation under Egyptian conditions.

    PubMed

    Marai, I F; Ayyat, M S; Abd el-Monem, U M

    2001-12-01

    Exposing growing and adult New Zealand White (NZW) female rabbits to severe heat stress (temperature-humidity index = 28.9) during summer adversely affected their growth and reproductive traits. The traits that declined significantly (p < 0.01) were the live body weight, daily weight gain and feed intake of growing rabbits, and the litter size and litter weight at weaning (p < 0.05) and the pre-weaning weight gain of pups (p < 0.01) for adult females. The conception rate declined considerably with heat stress. The declines in the values of the digestibility coefficients due to heat stress were 7.9% (p < 0.05) for dry matter (DM), 8.1% (p < 0.05) for crude protein (CP) and 1.0% for crude fibre (CF). The traits that increased significantly (p < 0.01) due to heat stress were water intake, water/feed ratio and rectal temperature in growing rabbits and pre-weaning mortality for adult females. Alleviation of heat stress in the growing and adult female NZW rabbits was more efficient with drinking cool water (10-15 degrees C; between 10:00 and 17:00) than with supplementation with palm oil (as a source of energy) or natural clay (as a natural enhancer to growth and milk production). Supplying the animals with cool drinking water gave the highest body weight and weight gain, conception rate, litter size and weight and digestibility coefficients for DM and CP and the lowest rectal temperature, respiration rate and pre-weaning mortality. The loss in rabbit production pertaining to heat stress estimated from the percentages of decline in conception rate x pre-weaning mortality x litter weight at weaning was 73.0%. The provision of cool water restored 11/12 of heat loss. PMID:11770200

  16. Alleviative effects of α-lipoic acid supplementation on acute heat stress-induced thermal panting and the level of plasma nonesterified fatty acids in hypothyroid broiler chickens.

    PubMed

    Hamano, Y

    2012-01-01

    1. The present study was conducted to examine the effects of α-lipoic acid on hypothyroidism-induced negative growth performance and whether α-lipoic acid alleviates acute heat stress in relation to hypothyroid status. 2. Female broiler chickens (14 d-old) were fed diets supplemented with α-lipoic acid (100 mg/kg) and an antithyroid substance, propylthiouracil (200 mg/kg), for 20 d under thermoneutral conditions (25°C). At 42 d of age, chickens were exposed to a high ambient temperature (36°C, 60% RH) for 4 h. 3. Under the thermoneutral condition, propylthiouracil administration decreased feed efficiency and concomitantly increased adipose tissue and thyroid gland weights. Plasma nonesterified fatty acids and triacylglycerol were also increased by propylthiouracil administration. However, α-lipoic acid supplementation did not affect the hypothyroidism-induced effects. 4. In hypothyroid chickens, the rise in respiratory rate induced by heat exposure was greatly inhibited by α-lipoic acid administration at 1 h, but this effect had disappeared at 4 h. In addition, a similar inhibitory effect on the concentrations of plasma nonesterified fatty acids was subsequently observed at 4 h. 5. Therefore, the present study suggested that α-lipoic acid alleviates acute heat stress if chickens are in a hypothyroid status.

  17. Pre-anthesis high-temperature acclimation alleviates damage to the flag leaf caused by post-anthesis heat stress in wheat.

    PubMed

    Wang, Xiao; Cai, Jian; Jiang, Dong; Liu, Fulai; Dai, Tingbo; Cao, Weixing

    2011-04-15

    The objective of this study was to investigate the effect of pre-anthesis high-temperature acclimation on leaf physiology of winter wheat in response to post-anthesis heat stress. The results showed that both pre- and post-anthesis heat stresses significantly depressed flag leaf photosynthesis and enhanced cell membrane peroxidation, as exemplified by increased O₂⁻(·) production rate and reduction in activities of antioxiditave enzymes. However, under post-anthesis heat stress, plants with pre-anthesis high-temperature acclimation (HH) showed much higher photosynthetic rates than those without pre-anthesis high-temperature acclimation (CH). Leaves of HH plants exhibited a higher Chl a/b ratio and lower chlorophyll/carotenoid ratio and superoxide anion radical release rate compared with those of the CH plants. In addition, antioxidant enzyme activities in HH plants were significantly higher than in CH. Coincidently, expressions of photosythesis-responsive gene encoding Rubisco activase B (RcaB) and antioxidant enzyme-related genes encoding mitochondrial manganese superoxide dismutase (Mn-SOD), chloroplastic Cu/Zn superoxide dismutase (Cu/Zn-SOD), catalase (CAT) and cytosolic glutathione reductase (GR) were all up-regulated under HH, whereas a gene encoding a major chlorophyll a/b-binding protein (Cab) was up-regulated by post-anthesis heat stress at 10 DAA, but was down-regulated at 13 DAA. The changes in the expression levels of the HH plants were more pronounced than those for the CH. Collectively, the results indicated that pre-anthesis high-temperature acclimation could effectively alleviate the photosynthetic and oxidative damage caused by post-anthesis heat stress in wheat flag leaves, which was partially attributable to modifications in the expression of the photosythesis-responsive and antioxidant enzymes-related genes.

  18. Alleviation of Photoinhibition by Co-ordination of Chlororespiration and Cyclic Electron Flow Mediated by NDH under Heat Stressed Condition in Tobacco

    PubMed Central

    Li, Qinghua; Yao, Zheng-Ju; Mi, Hualing

    2016-01-01

    much more in the mutant. The results suggest that chlororespiration and cyclic electron flow mediated by NDH may coordinate to alleviate the over-reduction of stroma, thus to keep operation of CO2 assimilation at certain extent under heat stress condition. PMID:27066014

  19. Heat Stress

    MedlinePlus

    ... Stress Learn some tips to protect workers including: acclimatization, rest breaks, and fluid recommendations. NIOSH Workplace Solution: ... Blog: Adjusting to Work in the Heat: Why Acclimatization Matters The natural adaptation to the heat takes ...

  20. Dietary rosemary oil alleviates heat stress-induced structural and functional damage through lipid peroxidation in the testes of growing Japanese quail.

    PubMed

    Türk, Gaffari; Çeribaşı, Ali O; Şimşek, Ülkü G; Çeribaşı, Songül; Güvenç, Mehmet; Özer Kaya, Şeyma; Çiftçi, Mehmet; Sönmez, Mustafa; Yüce, Abdurrauf; Bayrakdar, Ali; Yaman, Mine; Tonbak, Fadime

    2016-01-01

    Supplementation of natural antioxidants to diets of male poultry has been reported to be effective in reducing or completely eliminating heat stress (HS)-induced reproductive failures. In this study, the aim is to investigate whether rosemary oil (RO) has a protective effect on HS-induced damage in spermatozoa production, testicular histologic structures, apoptosis, and androgenic receptor (AR) through lipid peroxidation mechanisms in growing Japanese quail. Male chicks (n=90) at 15-days of age were assigned to two groups. The first group (n=45) was kept in a thermo-neutral (TN) room at 22°C for 24h/d. The second group (n=45) was kept in a room with a greater ambient temperature of 34°C for 8h/d (from 9:00 AM to 5:00 PM) and 22°C for 16h/d. Animals in each of these two groups were randomly assigned to three subgroups (RO groups: 0, 125, 250ppm), consisting of 15 chicks (six treatment groups in 2×3 factorial design). Each of subgroups was replicated three times with each replicate including five chicks. The HS treatment significantly reduced the testicular spermatogenic cell counts, amount of testicular Bcl-2 (anti-apoptotic marker) and amount of AR. In addition, it significantly increased testicular lipid peroxidation, Bax (apoptotic marker) immunopositive staining, and the Bax/Bcl-2 ratio in conjunction with some histopathologic damage. Dietary supplementation of RO to diets of quail where the HS treatment was imposed alleviated HS-induced almost all negative changes such as increased testicular lipid peroxidation, decreased numbers of spermatogenic cells, and decreased amounts of Bcl-2 and AR, increased ratio of Bax/Bcl-2 and some testicular histopathologic lesion. In conclusion, dietary supplementation of RO for growing male Japanese quail reared in HS environmental conditions alleviates the HS-induced structural and functional damage by providing a decrease in lipid peroxidation.

  1. Feasibility assessment of a tunnel-ventilated, water-padded barn on alleviation of heat stress for lactating Holstein cows in a humid area.

    PubMed

    Shiao, T F; Chen, J C; Yang, D W; Lee, S N; Lee, C F; Cheng, W T K

    2011-11-01

    The use of evaporative cooling for mitigating heat stress in lactating cows in humid areas is controversial. In Taiwan, Holstein cow performance is significantly restricted by hot and humid weather. This study investigated the efficacy of using a tunnel-ventilated, water-padded freestall (TP) barn for reducing heat stress in lactating cows. From August to October 2006, 36 cows allocated in a 3×3 Latin square were raised in 3 barn cooling treatments: a conventional freestall barn with fans and sprinklers in the feed line (Fan+SP, control), a TP barn, and a TP barn with sprinkler cooling (TP+SP). Daytime air speeds in the 3 barns were 1.23, 2.38, and 2.06 m/s, respectively. Both TP barns were more efficient than the control in reducing the daytime temperature and temperature-humidity index. The barn temperature was <26°C for an extra 4.2h per day, but the relative humidity was >96% in both TP barns. Cows in both TP barns had higher respiration rates and skin temperatures at 0300 h than cows in the Fan+SP barn. The TP environment increased the cows' serum cholesterol level and the activities of alkaline phosphatase and alanine aminotransferase, but blood partial pressure of CO(2) was not affected. Vaginal temperature was persistently high in cows in the TP barn; in the 2 SP barns, it decreased 0.4 to 0.6°C following sprinkling and milking. The intake activity and rumen digestion of cows raised in the 3 environments were similar. Cows in both TP barns ingested more dry matter. Cows in the TP+SP barn tended to produce more milk than those in the Fan+SP barn (25.4 vs. 24.7 kg). Although heat stress was not completely alleviated in these 3 barns, the TP+SP treatment resolved the negative effect of a previous TP barn built in 2004 on intake and milk yield by increasing air speed and using sprinkler cooling. Thus, it is expected that TP+SP barns will be beneficial in regions with high humidity. Adequate air speed and sprinkler cooling are likely to be key factors for

  2. Dietary L-arginine supplement alleviates hepatic heat stress and improves feed conversion ratio of Pekin ducks exposed to high environmental temperature.

    PubMed

    Zhu, W; Jiang, W; Wu, L Y

    2014-12-01

    The current intensive indoor production system of commercial Pekin ducks never allows adequate water for swimming or wetting. Therefore, heat stress is a key factor affecting health and growth of ducks in the hot regions and season. Experiment 1 was conducted to study whether heat stress was deleterious to certain organs of ducks. Forty-one-day-old mixed-sex Pekin ducks were randomly allocated to four electrically heated battery brooders comprised of 10 ducks each. Ducks were suddenly exposed to 37 °C ambient temperature for 3 h and then slaughtered, in one brooder at 21 days and in another brooder at 49 days of age. The results showed that body weight and weight of immune organs, particularly liver markedly decreased in acute heat stress ducks compared with the control. Experiment 2 was carried out to investigate the influences of dietary L-arginine (Arg) supplement on weight and compositions of certain lymphoid organs, and growth performance in Pekin ducks, under daily cyclic hot temperature environment. A total of 151-day-old mixed-sex Pekin ducks were randomly divided into one negative control and two treatment groups, fed experimental diets supplemented with 0, 5, and 10 g L-Arginine (L-Arg)/kg to the basal diet respectively. Ducks were exposed to cyclic high temperature simulating natural summer season. The results showed that the addition of L-Arg improves feed conversion ratio (FCR) during a period of 7-week trial, as well as increases hepatic weight relative to body weight at 21 days, while decreases the hepatic water content at 49 days of age. This study indicated that the liver was more sensitive to acute heat stress, and the hepatic relative weight and chemical composition could be regulated by dietary L-Arg supplementation in Pekin ducks being reared at high ambient temperature. These beneficial effects of Arg on liver might be a cause of improved FCR.

  3. Causes and Alleviation of Occupational Stress in Child Care Work

    ERIC Educational Resources Information Center

    Dillenburger, Karola

    2004-01-01

    Occupational stress in not a new phenomenon in the working population. However, in the helping professions it has only recently attracted attention. The survey reported here was carried out in order to assess the extent of occupational stress, identify its causes, and suggest ways in which occupational stress can be alleviated. Field social…

  4. Alleviation of chronic heat stress in broilers by dietary supplementation of betaine and turmeric rhizome powder: dynamics of performance, leukocyte profile, humoral immunity, and antioxidant status.

    PubMed

    Akhavan-Salamat, Hossein; Ghasemi, Hossein Ali

    2016-01-01

    Heat stress (HS), one of the most serious climate problems of tropical and subtropical countries, negatively affects the production performance of broilers. Keeping this in view, the current study was aimed at elucidating the effects of supplementing betaine (Bet) and dried turmeric rhizome powder (TRP), either singly or in combination, on growth performance, leukocyte profile, humoral immunity, and antioxidant status in broilers kept under chronic HS. A total of 625 one-day-old Ross male chicks were randomly assigned to five treatment groups (5 replicates of 25 birds per replicate pen). From day 1, the birds were either kept at the thermoneutral zone (TN) or exposed to HS (33 ± 1°C) to the conclusion of study, day 42. THeat stress (HS), one of the most serious climate problems of tropical and subtropical countries, negatively affects the production performance of broilers. Keeping this in view, the current study was aimed at elucidating the effects of supplementing betaine (Bet) and dried turmeric rhizome powder (TRP), either singly or in combination, on growth performance, leukocyte profile, humoral immunity, and antioxidant status in broilers kept under chronic HS. A total of 625 one-day-old Ross male chicks were randomly assigned to five treatment groups (5 replicates of 25 birds per replicate pen). From day 1, the birds were either kept at the thermoneutral zone (TN) or exposed to HS (33 ± 1°C) to the conclusion of study, day 42. The treatment groups were as follows: thermoneutral control (TN-CON), HS-CON, HS-Bet, HS-TRP, and HS-BT (fed Bet and TRP). The results showed that decreases in body weight gain, feed intake, and increases in feed-to-gain ratio and mortality induced by HS were partially restored by dietary supplementation of Bet and TRP. The heterophil/lymphocyte ratio, total, and IgG antibody titers against sheep red blood cell for secondary responses in the HS-TRP and HS-BT groups were also similar to those of the broilers in the TN

  5. Arbuscular mycorrhizal fungi in alleviation of salt stress: a review

    PubMed Central

    Evelin, Heikham; Kapoor, Rupam; Giri, Bhoopander

    2009-01-01

    Background Salt stress has become a major threat to plant growth and productivity. Arbuscular mycorrhizal fungi colonize plant root systems and modulate plant growth in various ways. Scope This review addresses the significance of arbuscular mycorrhiza in alleviation of salt stress and their beneficial effects on plant growth and productivity. It also focuses on recent progress in unravelling biochemical, physiological and molecular mechanisms in mycorrhizal plants to alleviate salt stress. Conclusions The role of arbuscular mycorrhizal fungi in alleviating salt stress is well documented. This paper reviews the mechanisms arbuscular mycorrhizal fungi employ to enhance the salt tolerance of host plants such as enhanced nutrient acquisition (P, N, Mg and Ca), maintenance of the K+ : Na+ ratio, biochemical changes (accumulation of proline, betaines, polyamines, carbohydrates and antioxidants), physiological changes (photosynthetic efficiency, relative permeability, water status, abscissic acid accumulation, nodulation and nitrogen fixation), molecular changes (the expression of genes: PIP, Na+/H+ antiporters, Lsnced, Lslea and LsP5CS) and ultra-structural changes. Theis review identifies certain lesser explored areas such as molecular and ultra-structural changes where further research is needed for better understanding of symbiosis with reference to salt stress for optimum usage of this technology in the field on a large scale. This review paper gives useful benchmark information for the development and prioritization of future research programmes. PMID:19815570

  6. Curcumin alleviates oxidative stress and mitochondrial dysfunction in astrocytes.

    PubMed

    Daverey, Amita; Agrawal, Sandeep K

    2016-10-01

    Oxidative stress plays a critical role in various neurodegenerative diseases, thus alleviating oxidative stress is a potential strategy for therapeutic intervention and/or prevention of neurodegenerative diseases. In the present study, alleviation of oxidative stress through curcumin is investigated in A172 (human glioblastoma cell line) and HA-sp (human astrocytes cell line derived from the spinal cord) astrocytes. H2O2 was used to induce oxidative stress in astrocytes (A172 and HA-sp). Data show that H2O2 induces activation of astrocytes in dose- and time-dependent manner as evident by increased expression of GFAP in A172 and HA-sp cells after 24 and 12h respectively. An upregulation of Prdx6 was also observed in A172 and HA-sp cells after 24h of H2O2 treatment as compared to untreated control. Our data also showed that curcumin inhibits oxidative stress-induced cytoskeleton disarrangement, and impedes the activation of astrocytes by inhibiting upregulation of GFAP, vimentin and Prdx6. In addition, we observed an inhibition of oxidative stress-induced inflammation, apoptosis and mitochondria fragmentation after curcumin treatment. Therefore, our results suggest that curcumin not only protects astrocytes from H2O2-induced oxidative stress but also reverses the mitochondrial damage and dysfunction induced by oxidative stress. This study also provides evidence for protective role of curcumin on astrocytes by showing its effects on attenuating reactive astrogliosis and inhibiting apoptosis.

  7. Focused grooming networks and stress alleviation in wild female baboons.

    PubMed

    Wittig, Roman M; Crockford, Catherine; Lehmann, Julia; Whitten, Patricia L; Seyfarth, Robert M; Cheney, Dorothy L

    2008-06-01

    We examine the relationship between glucocorticoid (GC) levels and grooming behavior in wild female baboons during a period of instability in the alpha male rank position. All females' GC levels rose significantly at the onset of the unstable period, though levels in females who were at lower risk of infanticide began to decrease sooner in the following weeks. Three factors suggest that females relied on a focused grooming network as a coping mechanism to alleviate stress. First, all females' grooming networks became less diverse in the weeks following the initial upheaval. Second, females whose grooming had already focused on a few predictable partners showed a less dramatic rise in GC levels than females whose grooming network had been more diverse. Third, females who contracted their grooming network the most experienced a greater decrease in GC levels in the following week. We conclude that close bonds with a few preferred partners allow female baboons to alleviate the stress associated with social instability.

  8. Dopamine alleviates salt-induced stress in Malus hupehensis.

    PubMed

    Li, Chao; Sun, Xiangkai; Chang, Cong; Jia, Dongfeng; Wei, Zhiwei; Li, Cuiying; Ma, Fengwang

    2015-04-01

    Dopamine mediates many physiological processes in plants. We investigated its role in regulating growth, ion homeostasis and the response to salinity in Malus hupehensis Rehd. Both hydroponics and field-pot experiments were conducted under saline conditions. Salt-stressed plants had reduced growth and a marked decline in their net photosynthetic rates, values for Fv /Fm and chlorophyll contents. However, pretreatment with 100 or 200 μM dopamine significantly alleviated this inhibition and enabled plants to maintain their photosynthetic capacity. In addition to changing stomatal behavior, supplementation with dopamine positively influenced the uptake of K, N, P, S, Cu and Mn ions but had an inhibitory effect on Na and Cl uptake, the balance of which is responsible for managing the response to salinity by Malus plants. Dopamine pretreatment also controlled the burst of hydrogen peroxide, possibly through direct scavenging and by enhancing the activities of antioxidative enzymes and the capacity of the ascorbate-glutathione cycle. We also investigated whether dopamine might regulate salt overly sensitive pathway genes under salinity. Here, MdHKT1, MdNHX1 and MdSOS1 were greatly upregulated in roots and leaves, which possibly contributed to the maintenance of ion homeostasis and, thus, improved salinity resistance in plants exposed earlier to exogenous dopamine. These results support our conclusion that dopamine alleviates salt-induced stress not only at the level of antioxidant defense but also by regulating other mechanisms of ion homeostasis.

  9. Coumarin pretreatment alleviates salinity stress in wheat seedlings.

    PubMed

    Saleh, Ahmed Mahmoud; Madany, M M Y

    2015-03-01

    The potentiality of COU to improve plant tolerance to salinity was investigated. Wheat grains were primed with COU (50 ppm) and then grown under different levels of NaCl (50, 100, 150 mM) for two weeks. COU pretreatment improved the growth of wheat seedling under salinity, relative to COU-untreated seedlings, due to the accumulation of osmolytes such as soluble sugars and proline. Moreover, COU treatment significantly improved K(+)/Na(+) ratio in the shoots of both salt stressed and un-stressed seedlings. However, in the roots, this ratio increased only under non-salinity. In consistent with phenylalanine ammonia lyase (PAL), phenolics and flavonoids were accumulated in COU-pretreated seedlings under the higher doses of salinity, relative to COU-untreated seedlings. COU primed seedlings showed higher content of the coumarin derivative, scopoletin, and salicylic, chlorogenic, syringic, vanillic, gallic and ferulic acids, under both salinity and non-salinity conditions. Salinity stress significantly improved the activity of peroxidase (POD) in COU-pretreated seedlings. However, the effect of COU on the total antioxidant capacity (TAC) was only obtained at the highest dose of NaCl (150 mM). The present results suggest that COU pretreatment could alleviate the adverse effect of salinity on the growth of wheat seedlings through enhancing, at least partly, the osmoregulation process and antioxidant defense system.

  10. Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings.

    PubMed

    Mastouri, Fatemeh; Björkman, Thomas; Harman, Gary E

    2010-11-01

    Trichoderma spp. are endophytic plant symbionts that are widely used as seed treatments to control diseases and to enhance plant growth and yield. Although some recent work has been published on their abilities to alleviate abiotic stresses, specific knowledge of mechanisms, abilities to control multiple plant stress factors, their effects on seed and seedlings is lacking. We examined the effects of seed treatment with T. harzianum strain T22 on germination of seed exposed to biotic stress (seed and seedling disease caused by Pythium ultimum) and abiotic stresses (osmotic, salinity, chilling, or heat stress). We also evaluated the ability of the beneficial fungus to overcome physiological stress (poor seed quality induced by seed aging). If seed were not under any of the stresses noted above, T22 generally had little effect upon seedling performance. However, under stress, treated seed germinated consistently faster and more uniformly than untreated seeds whether the stress was osmotic, salt, or suboptimal temperatures. The consistent response to varying stresses suggests a common mechanism through which the plant-fungus association enhances tolerance to a wide range of abiotic stresses as well as biotic stress. A common factor that negatively affects plants under these stress conditions is accumulation of toxic reactive oxygen species (ROS), and we tested the hypothesis that T22 reduced damages resulting from accumulation of ROS in stressed plants. Treatment of seeds reduced accumulation of lipid peroxides in seedlings under osmotic stress or in aged seeds. In addition, we showed that the effect of exogenous application of an antioxidant, glutathione, or application of T22, resulted in a similar positive effect on seed germination under osmotic stress or in aged seed. This evidence supports the model that T. harzianum strain T22 increases seedling vigor and ameliorates stress by inducing physiological protection in plants against oxidative damage.

  11. Protecting Yourself from Heat Stress

    MedlinePlus

    ... Contact NIOSH NIOSH Fast Facts: Protecting Yourself from Heat Stress Language: English Español (Spanish) Kreyol Haitien (Haitian ... as heat stroke, heat exhaustion, or heat cramps. Heat Stroke A condition that occurs when the body ...

  12. Stress and heat flow

    SciTech Connect

    Lachenbrunch, A.H.; McGarr, A.

    1990-01-01

    As the Pacific plate slides northward past the North American plate along the San Andreas fault, the frictional stress that resists plate motion there is overcome to cause earthquakes. However, the frictional heating predicted for the process has never been detected. Thus, in spite of its importance to an understanding of both plate motion and earthquakes, the size of this frictional stress is still uncertain, even in order of magnitude.

  13. Mechanisms of orthostatic intolerance during heat stress.

    PubMed

    Schlader, Zachary J; Wilson, Thad E; Crandall, Craig G

    2016-04-01

    Heat stress profoundly and unanimously reduces orthostatic tolerance. This review aims to provide an overview of the numerous and multifactorial mechanisms by which this occurs in humans. Potential causal factors include changes in arterial and venous vascular resistance and blood distribution, and the modulation of cardiac output, all of which contribute to the inability to maintain cerebral perfusion during heat and orthostatic stress. A number of countermeasures have been established to improve orthostatic tolerance during heat stress, which alleviate heat stress induced central hypovolemia (e.g., volume expansion) and/or increase peripheral vascular resistance (e.g., skin cooling). Unfortunately, these countermeasures can often be cumbersome to use with populations prone to syncopal episodes. Identifying the mechanisms of inter-individual differences in orthostatic intolerance during heat stress has proven elusive, but could provide greater insights into the development of novel and personalized countermeasures for maintaining or improving orthostatic tolerance during heat stress. This development will be especially impactful in occuational settings and clinical situations that present with orthostatic intolerance and/or central hypovolemia. Such investigations should be considered of vital importance given the impending increased incidence of heat events, and associated cardiovascular challenges that are predicted to occur with the ensuing changes in climate. PMID:26723547

  14. Rhizospheric bacteria alleviate salt-produced stress in sunflower.

    PubMed

    Shilev, Stefan; Sancho, Enrique D; Benlloch-González, María

    2012-03-01

    The effect of isolate Pseudomonas fluorescens biotype F and P. fluorescens CECT 378(T) inoculation on fresh weight and ions accumulation was studied in sunflower plants grown in sand:peat substrate with addition of 100mM NaCl. The inoculation resulted in an increase in fresh weight of more than 10% in salt treatments and in an accumulation of less Na(+) and more K(+) in plant tissues in all cases. The bacterial inoculants favoured the K(+)/Na(+) ratio in all plant parts and in the case of the isolate CECT 378(T) conducted to 66% increment in leaves, 34% in stems and 16% in roots, while the effect of isolate inoculation was (only) more evident in leaves and stems with 30% and 26%, respectively. Both strains were found to produce indoleacetic acid and siderophores in in-vitro tests, thus the production of indoles was highly dependent on the exogenous tryptophan in the medium. The results suggest that salt stress in sunflower plants was alleviated partially by the inoculation with strains that produce indoles and siderophores, having also a positive effect on the K(+)/Na(+) ratio in the shoot. Moreover, those plants were characterized with better-developed roots. PMID:20685030

  15. Features of heat stress control

    SciTech Connect

    Bernard, T.E. )

    1989-08-01

    Heat stress is caused by hot environments and physical demands of work. It is further complicated by protective clothing requirements commonly found in the nuclear power industry. The resulting physiological strain is reflected in increased sweating, heart rate and body temperature. Uncontrolled exposures to heat stress will lead to decreased personnel performance and increased risk of accidents and heat disorders. The article describes major heat disorders, a method of heat stress evaluation, and some basic interventions to reduce the stress and strain of working in the heat.

  16. Heat Stress Monitor

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The heavy, cumbersome body protection suits worn by members of hazardous materials response teams cause marked elevation of body temperatures, which can reduce effectiveness and lead to heat stress and injury. The CorTemp System, marketed by Human Technologies, Inc., provides the basis for a body temperature monitoring alarm system. Encased in a three-quarter-inch ingestible capsule, the system includes a mini-thermometer, miniature telemetry system, a microbattery and temperature sensor. It makes its way through the digestive system, continuously monitoring temperature. Findings are sent to the recorder by telemetry, and then displayed and stored for transfer to a computer.

  17. Advances in the Breeding and Genetics of Heat Tolerance to Alleviate the Effects of Climate Change, with a Focus on Common Bean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop plants are broadly sensitive to high ambient temperatures during reproductive development while breeding efforts are helping to alleviate the impact of heat stress. Common bean, Phaseolus vulgaris L., is sensitive to moderately high ambient temperature, where temperatures greater than 25C have ...

  18. Alleviation of cyclic heat stress in broilers by dietary supplementation of mannan-oligosaccharide and Lactobacillus-based probiotic: dynamics of cortisol, thyroid hormones, cholesterol, C-reactive protein, and humoral immunity.

    PubMed

    Sohail, M U; Ijaz, A; Yousaf, M S; Ashraf, K; Zaneb, H; Aleem, M; Rehman, H

    2010-09-01

    Heat stress (HS), one of the major problems of tropical and subtropical countries, adversely affects the production performance of poultry. Keeping this in view, the present study was designed to investigate some of the biological markers of HS in broilers as modulated by dietary supplementation of mannan-oligosaccharide (MOS) and a Lactobacillus-based probiotic (LBP), either alone or in combination. Two hundred fifty 1-d-old-chicks were randomly divided into 5 groups. From d 22, the birds were either kept at the thermoneutral zone (TN) or exposed to HS to the conclusion of study, d 42. Birds were fed either a corn-based basal diet (TN and HS groups) or the same diet supplemented with 0.5% MOS (HS-MOS group), 0.1% LBP (HS-LBP group), or their combination. Birds were immunized against Newcastle disease virus on d 4 (intraocular; live attenuated) and d 20 (drinking water; live attenuated) and infectious bursal disease virus on d 8 (intraocular; live intermediate strain) and d 24 (drinking water; live attenuated). Birds were killed on d 42 to collect serum for determination of cortisol, thyroid hormones, cholesterol, C-reactive protein, and postvaccinal antibody titers. Results revealed that dietary supplementations decreased (P < 0.05) the serum cortisol and cholesterol concentrations and increased (P < 0.05) thyroxine concentration compared with the HS group without affecting triiodothyronine concentration. The percentage of the C-reactive protein-positive birds was higher (P < 0.05) in the HS group compared with the TN group. Dietary supplementations improved humoral immunity against Newcastle disease virus and infectious bursal disease virus during HS. In conclusion, dietary supplementation of either MOS or LBP alone or in combination can reduce some of the detrimental effects of HS in broilers.

  19. Residual stress alleviation of aircraft metal structures reinforced with filamentary composites

    NASA Technical Reports Server (NTRS)

    Kelly, J. B.; June, R. R.

    1973-01-01

    Methods to eliminate or reduce residual stresses in aircraft metal structures reinforced by filamentary composites are discussed. Residual stress level reductions were achieved by modifying the manufacturing procedures used during adhesive bonding. The residual stress alleviation techniques involved various forms of mechanical constraint which were applied to the components during bonding. Nine methods were evaluated, covering a wide range in complexity. All methods investigated during the program affected the residual stress level. In general, residual stresses were reduced by 70 percent or more from the stress level produced by conventional adhesive bonding procedures.

  20. Rosa rugosa Aqueous Extract Alleviates Endurance Exercise-Induced Stress.

    PubMed

    Seo, Eunjin; You, Yanghee; Yoon, Ho-Geun; Kim, Boemjeong; Kim, Kyungmi; Lee, Yoo-Hyun; Lee, Jeongmin; Chung, Jin Woong; Shim, Sangin; Jun, Woojin

    2015-06-01

    This study was performed to investigate the effect of water extract from Rosa rugosa (RRW) on endurance exercise-induced stress in mice. The mice were orally administered with distilled water or RRW, respectively. The endurance capacity was evaluated by exhaustive swimming using an adjustable-current water pool. Mice administered RRW swam longer before becoming exhausted. Also, RRW administration resulted in less lipid peroxidation, lower muscular antioxidant enzyme activities, and lower cortisol level. The results suggest that RRW can prevent exercise-induced stress by decreasing oxidative stress levels.

  1. Seed priming to alleviate salinity stress in germinating seeds.

    PubMed

    Ibrahim, Ehab A

    2016-03-15

    Salinity is one of the major abiotic stresses that affect crop production in arid and semiarid areas. Seed germination and seedling growth are the stages most sensitive to salinity. Salt stress causes adverse physiological and biochemical changes in germinating seeds. It can affect the seed germination and stand establishment through osmotic stress, ion-specific effects and oxidative stress. The salinity delays or prevents the seed germination through various factors, such as a reduction in water availability, changes in the mobilization of stored reserves and affecting the structural organization of proteins. Various techniques can improve emergence and stand establishment under salt conditions. One of the most frequently utilized is seed priming. The process of seed priming involves prior exposure to an abiotic stress, making a seed more resistant to future exposure. Seed priming stimulates the pre-germination metabolic processes and makes the seed ready for radicle protrusion. It increases the antioxidant system activity and the repair of membranes. These changes promote seed vigor during germination and emergence under salinity stress. The aim of this paper is to review the recent literature on the response of plants to seed priming under salinity stress. The mechanism of the effect of salinity on seed germination is discussed and the seed priming process is summarized. Physiological, biochemical and molecular changes induced by priming that lead to seed enhancement are covered. Plants' responses to some priming agents under salinity stress are reported based on the best available data. For a great number of crops, little information exists and further research is needed. PMID:26812088

  2. Seed priming to alleviate salinity stress in germinating seeds.

    PubMed

    Ibrahim, Ehab A

    2016-03-15

    Salinity is one of the major abiotic stresses that affect crop production in arid and semiarid areas. Seed germination and seedling growth are the stages most sensitive to salinity. Salt stress causes adverse physiological and biochemical changes in germinating seeds. It can affect the seed germination and stand establishment through osmotic stress, ion-specific effects and oxidative stress. The salinity delays or prevents the seed germination through various factors, such as a reduction in water availability, changes in the mobilization of stored reserves and affecting the structural organization of proteins. Various techniques can improve emergence and stand establishment under salt conditions. One of the most frequently utilized is seed priming. The process of seed priming involves prior exposure to an abiotic stress, making a seed more resistant to future exposure. Seed priming stimulates the pre-germination metabolic processes and makes the seed ready for radicle protrusion. It increases the antioxidant system activity and the repair of membranes. These changes promote seed vigor during germination and emergence under salinity stress. The aim of this paper is to review the recent literature on the response of plants to seed priming under salinity stress. The mechanism of the effect of salinity on seed germination is discussed and the seed priming process is summarized. Physiological, biochemical and molecular changes induced by priming that lead to seed enhancement are covered. Plants' responses to some priming agents under salinity stress are reported based on the best available data. For a great number of crops, little information exists and further research is needed.

  3. Herbaspirillum sp. strain GW103 alleviates salt stress in Brassica rapa L. ssp. pekinensis.

    PubMed

    Lee, Gun Woong; Lee, Kui-Jae; Chae, Jong-Chan

    2016-05-01

    Mutual interactions between plant and rhizosphere bacteria facilitate plant growth and reduce risks of biotic and abiotic stresses. The present study demonstrates alleviation of salt stress in Brassica rapa L. ssp. perkinensis (Chinese cabbage) by Herbaspirillum sp. strain GW103 isolated from rhizosphere soil of Phragmites australis. The strain was capable of producing plant beneficial factors, such as auxin, siderophore, and 1-aminocylopropane-1-carboxylic acid deaminase. Treatment of strain GW103 on Chinese cabbage under salt stress increased K(+)/Na(+) ratio in roots generating balance in the ratio of ion homeostasis and consequently contributed to the increase of biomass. In addition, root colonization potential of the strain was observed by green fluorescent protein (GFP)-tagging approach. These results strongly suggest the beneficial impact of strain GW103 by inducing the alleviation of salt stress and development of stress tolerance in Chinese cabbage via plant-microbe interaction.

  4. Herbaspirillum sp. strain GW103 alleviates salt stress in Brassica rapa L. ssp. pekinensis.

    PubMed

    Lee, Gun Woong; Lee, Kui-Jae; Chae, Jong-Chan

    2016-05-01

    Mutual interactions between plant and rhizosphere bacteria facilitate plant growth and reduce risks of biotic and abiotic stresses. The present study demonstrates alleviation of salt stress in Brassica rapa L. ssp. perkinensis (Chinese cabbage) by Herbaspirillum sp. strain GW103 isolated from rhizosphere soil of Phragmites australis. The strain was capable of producing plant beneficial factors, such as auxin, siderophore, and 1-aminocylopropane-1-carboxylic acid deaminase. Treatment of strain GW103 on Chinese cabbage under salt stress increased K(+)/Na(+) ratio in roots generating balance in the ratio of ion homeostasis and consequently contributed to the increase of biomass. In addition, root colonization potential of the strain was observed by green fluorescent protein (GFP)-tagging approach. These results strongly suggest the beneficial impact of strain GW103 by inducing the alleviation of salt stress and development of stress tolerance in Chinese cabbage via plant-microbe interaction. PMID:26358119

  5. Method for alleviating thermal stress damage in laminates

    NASA Technical Reports Server (NTRS)

    Hoffman, C. A.; Weeton, J. W.; Orth, N. W. (Inventor)

    1981-01-01

    The method is for metallic matrix composites, such as laminated sheet or foil composites. Non-intersecting discrete discontinuities are positively introduced into the interface between the layers so as to reduce the thermal stress produced by unequal expansion of the materials making up the composite. The discontinuities are preferably produced by drilling holes in the metallic matrix layer. However, a plurality of discrete elements may be used between the layers to carry out this purpose.

  6. Hyperoside Induces Endogenous Antioxidant System to Alleviate Oxidative Stress

    PubMed Central

    Park, Ji Young; Han, Xia; Piao, Mei Jing; Oh, Min Chang; Fernando, Pattage Madushan Dilhara Jayatissa; Kang, Kyoung Ah; Ryu, Yea Seong; Jung, Uhee; Kim, In Gyu; Hyun, Jin Won

    2016-01-01

    Background: Hyperoside, a flavonoid which is mainly found in Hypericum perforatum L., has many biological effects. One of the most important effects is to prevent the oxidative stress induced by reactive oxygen species. However, the molecular mechanisms underlying its effect are not fully understood. Oxidative stress is implicated in the occurrence of various physical diseases. A wide array of enzymatic antioxidant defense systems include NADH: quinone oxidoreductase 1, superoxide dismutase, and heme oxygenase-1 (HO-1). In the present study, the protective effects of hyperoside against hydrogen peroxide-induced oxidative stress in human lens epithelial cells, HLE-B3, were investigated in terms of HO-1 induction. Methods: The protein and mRNA expressions of HO-1 were examined by Western blotting and reverse transcriptase-PCR assays, respectively. To evaluate the ability of hyperoside to activate nuclear factor erythroid 2-related factor 2 (Nrf2), Western blotting and electrophoretic mobility shift assay were performed with nuclear extracts prepared from HLE-B3 cells treated with hyperoside. The activation of extracellular signal-regulated kinase (ERK), the upstream kinase of Nrf2 signaling, was monitored by Western blot analysis. The protective effect of hyperoside in HLE-B3 cells against hydrogen peroxide was performed by MTT assay. Results: Hyperoside increased both the mRNA and protein expression of HO-1 in a time- and dose-dependent manner. In addition, hyperoside elevated the level of of Nrf2 and its antioxidant response element-binding activity, which was modulated by upstream of ERK. Moreover, it activated ERK and restored cell viability which was decreased by hydrogen peroxide. Conclusions: Hyperoside is an effective compound to protect cells against oxidative stress via HO-1 induction. PMID:27051648

  7. Alleviation of salt stress in lemongrass by salicylic acid.

    PubMed

    Idrees, Mohd; Naeem, M; Khan, M Nasir; Aftab, Tariq; Khan, M Masroor A; Moinuddin

    2012-07-01

    Soil salinity is one of the key factors adversely affecting the growth, yield, and quality of crops. A pot study was conducted to find out whether exogenous application of salicylic acid could ameliorate the adverse effect of salinity in lemongrass (Cymbopogon flexuosus Steud. Wats.). Two Cymbopogon varieties, Krishna and Neema, were used in the study. Three salinity levels, viz, 50, 100, and 150 mM of NaCl, were applied to 30-day-old plants. Salicylic acid (SA) was applied as foliar spray at 10(-5) M concentration. Totally, six SA-sprays were carried out at 10-day intervals, following the first spray at 30 days after sowing. The growth parameters were progressively reduced with the increase in salinity level; however, growth inhibition was significantly reduced by the foliar application of SA. With the increase in salt stress, a gradual decrease in the activities of carbonic anhydrase and nitrate reductase was observed in both the varieties. SA-treatment not only ameliorated the adverse effects of NaCl but also showed a significant improvement in the activities of these enzymes compared with the untreated stressed-plants. The plants supplemented with NaCl exhibited a significant increase in electrolyte leakage, proline content, and phosphoenol pyruvate carboxylase activity. Content and yield of essential oil was also significantly decreased in plants that received salinity levels; however, SA overcame the unfavorable effects of salinity stress to a considerable extent. Lemongrass variety Krishna was found to be more adapted to salt stress than Neema, as indicated by the overall performance of the two varieties under salt conditions.

  8. Addition lens alleviates reading-induced ocular stress.

    PubMed

    Choy, Camus K; Siu, Andrew W; Lam, Frankie Y; Tse, Jesse T; Lau, Sylvania Y

    2000-01-01

    BACKGROUND: Near tasks have been associated with binocular stress to induce myopia. The aim of this study was to investigate the effects of accommodation on reading-induced near heterophoria. METHODS: We measured the near heterophoria of 22 young adults before and after 30 minutes of reading. The reading task comprised a column of local English newsletter studied monocularly at 33 cm. One of three addition lenses (that is, 0.00 D, +1.50 D and +3.00 D) was randomly incorporated into the optical prescription. The difference in near heterophoria between the pre- and post-reading task was recorded. The experiment was completed on separate days for the other lens powers. RESULTS: Reading for 30 minutes with a plano lens addition (control) increased the near heterophoria by 3.81 +/- 0.95 prism dioptres (SEM) toward exo-deviation (p < 0.002). Addition of a +3.00 D lens significantly decreased the reading-induced exophoric shift to 1.36 +/- 0.55 prism dioptres (SEM). Similarly, a +1.50 D lens reduced the exophoric shift to 3.14 +/- 0.85 prism dioptres (SEM) but the difference was not statistically significant when compared with the control. CONCLUSIONS: The results showed that close work might cause eye strain via the extraocular muscles. Incorporation of plus lens into the optical correction caused a power-dependent reduction in the stress, that is, smaller exophoric shift. Whether binocular stress contributes to myopia and its response to addition lens therapy deserve further investigation.

  9. The Chlamydomonas heat stress response.

    PubMed

    Schroda, Michael; Hemme, Dorothea; Mühlhaus, Timo

    2015-05-01

    Heat waves occurring at increased frequency as a consequence of global warming jeopardize crop yield safety. One way to encounter this problem is to genetically engineer crop plants toward increased thermotolerance. To identify entry points for genetic engineering, a thorough understanding of how plant cells perceive heat stress and respond to it is required. Using the unicellular green alga Chlamydomonas reinhardtii as a model system to study the fundamental mechanisms of the plant heat stress response has several advantages. Most prominent among them is the suitability of Chlamydomonas for studying stress responses system-wide and in a time-resolved manner under controlled conditions. Here we review current knowledge on how heat is sensed and signaled to trigger temporally and functionally grouped sub-responses termed response elements to prevent damage and to maintain cellular homeostasis in plant cells.

  10. Improved Heat-Stress Algorithm

    NASA Technical Reports Server (NTRS)

    Teets, Edward H., Jr.; Fehn, Steven

    2007-01-01

    NASA Dryden presents an improved and automated site-specific algorithm for heat-stress approximation using standard atmospheric measurements routinely obtained from the Edwards Air Force Base weather detachment. Heat stress, which is the net heat load a worker may be exposed to, is officially measured using a thermal-environment monitoring system to calculate the wet-bulb globe temperature (WBGT). This instrument uses three independent thermometers to measure wet-bulb, dry-bulb, and the black-globe temperatures. By using these improvements, a more realistic WBGT estimation value can now be produced. This is extremely useful for researchers and other employees who are working on outdoor projects that are distant from the areas that the Web system monitors. Most importantly, the improved WBGT estimations will make outdoor work sites safer by reducing the likelihood of heat stress.

  11. Salicylic acid and heat acclimation pretreatment protects Laminaria japonica sporophyte (Phaeophyceae) from heat stress

    NASA Astrophysics Data System (ADS)

    Zhou, Bin; Tang, Xuexi; Wang, You

    2010-07-01

    Possible mediatory roles of heat acclimation and salicylic acid in protecting the sporophyte of marine macroalga Laminaria japonica (Phaeophyceae) from heat stress were studied. Heat stress resulted in oxidative injury in the kelp blades. Under heat stress significant accumulation of hydrogen peroxide (H2O2) and malonaldehyde (MDA), a membrane lipid peroxidation product, and a drastic decrease in chlorophyll a content were recorded. Activity of the enzymatic antioxidant system was drastically affected by heat stress. The activity of superoxide dismutase (SOD) was significantly increased while peroxidase (POD), catalase (CAT) and glutathione peroxidase (GPX) were greatly inhibited and, simultaneously, phenylalanine ammonia-lyase was activated while polyphenol oxidase (PPO) was inhibited. Both heat acclimation pretreatment and exogenous application of salicylic acid alleviated oxidative damage in kelp blades. Blades receiving heat acclimation pretreatment and exogenous salicylic acid prior to heat stress exhibited a reduced increase in H2O2 and MDA content, and a lower reduction in chlorophyll a content. Pretreatment with heat acclimation and salicylic acid elevated activities of SOD, POD, CAT, GPX and PPO. Considering these results collectively, we speculate that the inhibition of antioxidant enzymes is a possible cause of the heat-stress-induced oxidative stress in L. japonica, and enhanced thermotolerance may be associated, at least in part, with the elevated activity of the enzymatic antioxidant system.

  12. Method for alleviating thermal stress damage in laminates. [metal matrix composites

    NASA Technical Reports Server (NTRS)

    Hoffman, C. A.; Weeton, J. W.; Orth, N. W. (Inventor)

    1980-01-01

    A method is provided for alleviating the stress damage in metallic matrix composites, such as laminated sheet or foil composites. Discontinuities are positively introduced into the interface between the layers so as to reduce the thermal stress produced by unequal expansion of the materials making up the composite. Although a number of discrete elements could be used to form one of the layers and thus carry out this purpose, the discontinuities are preferably produced by simply drilling holes in the metallic matrix layer or by forming grooves in a grid pattern in this layer.

  13. Roles of meditation on alleviation of oxidative stress and improvement of antioxidant system.

    PubMed

    Mahagita, Chitrawina

    2010-11-01

    According to MEDLINE/Pubmed search to December 2009, the modulation effects of meditation on oxidative stress have been increasingly investigated for acute, short and long-term effects. Both invasive and noninvasive measurements have been utilized. Long-term transcendental and Zen meditators have been showed to diminish oxidative stress seen by a reduction of lipid peroxidation and biophoton emission. Glutathione level and activity of antioxidant enzymes (catalase, superoxide dismutase, glutathione peroxidase and glutathione reductase) have been facilitated in Yoga and Sudarshan Kriya practitioners. One year of Tai Chi training has been reported to promote superoxide dismutase activity and lessen lipid peroxidation. Performing diaphragmatic breathing after exhaustive exercise has attenuated oxidative stress faster than control. These data suggest possible roles of meditation and meditation-based techniques on the decrease of oxidative stress which may assist to prevent and/or alleviate deterioration of related diseases. However, further research needs to elucidate the cellular and molecular mechanisms which remain challenge to accomplish.

  14. Mechanisms of silicon-mediated alleviation of drought and salt stress in plants: a review.

    PubMed

    Rizwan, Muhammad; Ali, Shafaqat; Ibrahim, Muhammad; Farid, Mujahid; Adrees, Muhammad; Bharwana, Saima Aslam; Zia-Ur-Rehman, Muhammad; Qayyum, Muhammad Farooq; Abbas, Farhat

    2015-10-01

    Drought and salinity are the main abiotic stresses limiting crop yield and quality worldwide. Improving food production in drought- and salt-prone areas is the key to meet the increasing food demands in near future. It has been widely reported that silicon (Si), a second most abundant element in soil, could reduce drought and salt stress in plants. Here, we reviewed the emerging role of Si in enhancing drought and salt tolerance in plants and highlighted the mechanisms through which Si could alleviate both drought and salt stress in plants. Silicon application increased plant growth, biomass, photosynthetic pigments, straw and grain yield, and quality under either drought or salt stress. Under both salt and drought stress, the key mechanisms evoked are nutrient elements homeostasis, modification of gas exchange attributes, osmotic adjustment, regulating the synthesis of compatible solutes, stimulation of antioxidant enzymes, and gene expression in plants. In addition, Si application decreased Na(+) uptake and translocation while increased K(+) uptake and translocation under salt stress. However, these mechanisms vary with plant species, genotype, growth conditions, duration of stress imposed, and so on. This review article highlights the potential for improving plant resistance to drought and salt stress by Si application and provides a theoretical basis for application of Si in saline soils and arid and semiarid regions worldwide. This review article also highlights the future research needs about the role of Si under drought stress and in saline soils.

  15. Mechanisms of silicon-mediated alleviation of drought and salt stress in plants: a review.

    PubMed

    Rizwan, Muhammad; Ali, Shafaqat; Ibrahim, Muhammad; Farid, Mujahid; Adrees, Muhammad; Bharwana, Saima Aslam; Zia-Ur-Rehman, Muhammad; Qayyum, Muhammad Farooq; Abbas, Farhat

    2015-10-01

    Drought and salinity are the main abiotic stresses limiting crop yield and quality worldwide. Improving food production in drought- and salt-prone areas is the key to meet the increasing food demands in near future. It has been widely reported that silicon (Si), a second most abundant element in soil, could reduce drought and salt stress in plants. Here, we reviewed the emerging role of Si in enhancing drought and salt tolerance in plants and highlighted the mechanisms through which Si could alleviate both drought and salt stress in plants. Silicon application increased plant growth, biomass, photosynthetic pigments, straw and grain yield, and quality under either drought or salt stress. Under both salt and drought stress, the key mechanisms evoked are nutrient elements homeostasis, modification of gas exchange attributes, osmotic adjustment, regulating the synthesis of compatible solutes, stimulation of antioxidant enzymes, and gene expression in plants. In addition, Si application decreased Na(+) uptake and translocation while increased K(+) uptake and translocation under salt stress. However, these mechanisms vary with plant species, genotype, growth conditions, duration of stress imposed, and so on. This review article highlights the potential for improving plant resistance to drought and salt stress by Si application and provides a theoretical basis for application of Si in saline soils and arid and semiarid regions worldwide. This review article also highlights the future research needs about the role of Si under drought stress and in saline soils. PMID:26335528

  16. Dietary Astragalus polysaccharide alleviated immunological stress in broilers exposed to lipopolysaccharide.

    PubMed

    Liu, Lei; Shen, Jing; Zhao, Chao; Wang, Xiaofei; Yao, Junhu; Gong, Yuesheng; Yang, Xiaojun

    2015-01-01

    This study was conducted to investigate whether dietary Astragalus polysaccharide (APS) could alleviate immunological stress response of chickens after challenge with lipopolysaccharide (LPS). A total of 360 one-day-old commercial Arbor Acres broilers were randomly assigned in a 2 × 2 factorial design. The main factors were immunological stress (LPS or saline) and dietary APS (0 or 3g APS/kg feed). At 12, 14, 33 and 35 days of age, chickens were injected intramuscularly with either 500 μg/kg body weight of LPS or sterile saline. The results showed that the decreased daily feed intake and daily weight gain caused by immunological stress were dramatically attenuated by APS supplementation. The LPS challenge led to an increased mRNA abundance of TLR4, NF-κB, IL-1β, IL-6, avian uncoupling protein, α1-acid glycoprotein, hemopexin and y(+)LAT2. However, these negative effects of the LPS administration were ameliorated by APS supplementation. Moreover, dietary APS inhibited the LPS-induced depression of amino acid digestibilities. In conclusion, APS is able to alleviate LPS-induced immunological stress response in chickens. The beneficial effect may be attributed to suppressing the expression of pro-inflammatory cytokines through reducing the TLR4 and NF-κB genes transcription, and therewith improving energy and protein metabolism. PMID:25239195

  17. Dietary Astragalus polysaccharide alleviated immunological stress in broilers exposed to lipopolysaccharide.

    PubMed

    Liu, Lei; Shen, Jing; Zhao, Chao; Wang, Xiaofei; Yao, Junhu; Gong, Yuesheng; Yang, Xiaojun

    2015-01-01

    This study was conducted to investigate whether dietary Astragalus polysaccharide (APS) could alleviate immunological stress response of chickens after challenge with lipopolysaccharide (LPS). A total of 360 one-day-old commercial Arbor Acres broilers were randomly assigned in a 2 × 2 factorial design. The main factors were immunological stress (LPS or saline) and dietary APS (0 or 3g APS/kg feed). At 12, 14, 33 and 35 days of age, chickens were injected intramuscularly with either 500 μg/kg body weight of LPS or sterile saline. The results showed that the decreased daily feed intake and daily weight gain caused by immunological stress were dramatically attenuated by APS supplementation. The LPS challenge led to an increased mRNA abundance of TLR4, NF-κB, IL-1β, IL-6, avian uncoupling protein, α1-acid glycoprotein, hemopexin and y(+)LAT2. However, these negative effects of the LPS administration were ameliorated by APS supplementation. Moreover, dietary APS inhibited the LPS-induced depression of amino acid digestibilities. In conclusion, APS is able to alleviate LPS-induced immunological stress response in chickens. The beneficial effect may be attributed to suppressing the expression of pro-inflammatory cytokines through reducing the TLR4 and NF-κB genes transcription, and therewith improving energy and protein metabolism.

  18. Brassinosteroid alleviates polychlorinated biphenyls-induced oxidative stress by enhancing antioxidant enzymes activity in tomato.

    PubMed

    Ahammed, Golam Jalal; Ruan, Yi-Ping; Zhou, Jie; Xia, Xiao-Jian; Shi, Kai; Zhou, Yan-Hong; Yu, Jing-Quan

    2013-03-01

    Polychlorinated biphenyls (PCBs) are persistent organic pollutants often found in the atmosphere. Phytoremediation of airborne PCBs is an emerging new concept to minimize potential human exposure. However, effects of atmospheric PCBs on plant growth, photosynthesis and antioxidant defence system are poorly understood area. Brassinosteroids have been reported to alleviate different abiotic stresses including organic pollutants-induced stress. Hence, we studied the effects of PCBs and 24-epibrassinolide (EBR) on biomass accumulation, photosynthetic machinery and antioxidant system in tomato plants. PCBs (0.4, 2.0 and 10 μg/l) mist spray significantly decreased dry weight, photosynthesis, chlorophyll contents in a dose dependent manner. Both stomatal and non-stomatal factors were involved in PCBs-induced photosynthetic inhibition. Likewise, the maximal photochemical efficiency of PSII (Fv/Fm), the quantum efficiency of PSII photochemistry (Φ(PSII)) and photochemical quenching coefficient were increasingly decreased by various levels of PCBs, suggesting an induction of photoinhibition. Increased accumulation of H(2)O(2) and O(2)(-) accompanied with high lipid peroxidation confirmed occurrence of oxidative stress upon PCBs exposure. Meanwhile, antioxidant enzymes activity was decreased following exposure to PCBs. Foliar application of EBR (100 nM) increased biomass, photosynthetic capacity, chlorophyll contents and alleviated photoinhibition by enhancing Fv/Fm, Φ(PSII) and qP. EBR significantly decreased harmful ROS accumulation and lipid peroxidation through the induction of antioxidant enzymes activity. Our results suggest a protective role of EBR against PCBs stress which may strengthen phytoremediation approaches by enhancing plant tolerance.

  19. Potassium nitrate application alleviates sodium chloride stress in winter wheat cultivars differing in salt tolerance.

    PubMed

    Zheng, Yanhai; Jia, Aijun; Ning, Tangyuan; Xu, Jialin; Li, Zengjia; Jiang, Gaoming

    2008-09-29

    A sand culture experiment was conducted to answer the question whether or not exogenous KNO(3) can alleviate adverse effects of salt stress in winter wheat by monitoring plant growth, K(+)/Na(+) accumulation and the activity of some antioxidant enzymes. Seeds of two wheat cultivars (CVs), DK961 (salt-tolerant) and JN17 (salt-sensitive), were planted in sandboxes and controls germinated and raised with Hoagland nutrient solution (6 mM KNO(3), no NaCl). Experimental seeds were exposed to seven modified Hoagland solutions containing increased levels of KNO(3) (11, 16, 21 mM) or 100 mM NaCl in combination with the four KNO(3) concentrations (6, 11, 16 and 21 mM). Plants were harvested 30 d after imbibition, with controls approximately 22 cm in height. Both CVs showed significant reduction in plant height, root length and dry weight of shoots and roots under KNO(3) or NaCl stress. However, the combination of increased KNO(3) and NaCl alleviated symptoms of the individual salt stresses by improving growth of shoots and roots, reducing electrolyte leakage, malondialdehyde and soluble sugar contents and enhancing the activities of antioxidant enzymes. The salt-tolerant cultivar accumulated more K(+) in both shoots and roots compared with the higher Na(+) accumulation typical for the salt-sensitive cultivar. Soluble sugar content and activities of antioxidant enzymes were found to be more stable in the salt-tolerant cultivar. Our findings suggest that the optimal K(+)/Na(+) ratio of the nutrient solution should be 16:100 for both the salt-tolerant and the salt-sensitive cultivar under the experimental conditions used, and that the alleviation of NaCl stress symptoms through simultaneously applied elevated KNO(3) was more effective in the salt-tolerant than in the salt-sensitive cultivar.

  20. Membrane expansion alleviates endoplasmic reticulum stress independently of the unfolded protein response

    PubMed Central

    Prinz, William A.; Thorn, Kurt S.; Voss, Christiane; Walter, Peter

    2009-01-01

    Cells constantly adjust the sizes and shapes of their organelles according to need. In this study, we examine endoplasmic reticulum (ER) membrane expansion during the unfolded protein response (UPR) in the yeast Saccharomyces cerevisiae. We find that membrane expansion occurs through the generation of ER sheets, requires UPR signaling, and is driven by lipid biosynthesis. Uncoupling ER size control and the UPR reveals that membrane expansion alleviates ER stress independently of an increase in ER chaperone levels. Converting the sheets of the expanded ER into tubules by reticulon overexpression does not affect the ability of cells to cope with ER stress, showing that ER size rather than shape is the key factor. Thus, increasing ER size through membrane synthesis is an integral yet distinct part of the cellular program to overcome ER stress. PMID:19948500

  1. Kinetin applications alleviate salt stress and improve the antioxidant composition of leaf extracts in Salvia officinalis.

    PubMed

    Tounekti, Taïeb; Hernández, Iker; Müller, Maren; Khemira, Habib; Munné-Bosch, Sergi

    2011-10-01

    A pot experiment was carried out under glasshouse conditions with common sage (Salvia officinalis L.) to investigate the interactive effects of salt stress and kinetin on growth attributes and the abundance of pigments, ions, phenolic diterpenes and α-tocopherol in leaf extracts of this species. The plants were subjected to the following four treatments: (i) control (nutrient solution), (ii) control + 10 μM kinetin, (iii) salt stress (nutrient solution + 100 mM NaCl), and (iv) salt stress + 10 μM kinetin. Kinetin was applied as a foliar fertilizer. Salt stress reduced water contents, photosynthetic activity and pigment contents of sage leaves. In addition, it increased Na(+) contents, and reduced those of Ca(2+) and K(+) in leaves. Salt stress reduced carnosic acid and 12-O-methyl carnosic acid contents in leaves, while it did not affect carnosol and α-tocopherol contents. Foliar applications of kinetin seemed to counterbalance or alleviate the stress symptoms induced by salinity, improving ion and pigment contents, while leaf phenolic diterpene (mainly carnosol) and α-tocopherol contents also increased in both control and NaCl-treated plants; still this effect was much more obvious in salt-treated plants. A similar effect was also obtained when plants were sprayed with KNO(3) or Ca(NO(3))(2), thus suggesting that kinetin effects were at least partly due to an improvement of ion homeostasis. Kinetin applications resulted in increased transcript levels of the isoprenoid and tocopherol biosynthetic genes, DXPRI and VTE2 and VTE4 in control plants, but not in NaCl-treated plants. We conclude that kinetin can alleviate the negative impact of salt on sage plants cultivated under arid environments with salinity problems.

  2. Kinetin applications alleviate salt stress and improve the antioxidant composition of leaf extracts in Salvia officinalis.

    PubMed

    Tounekti, Taïeb; Hernández, Iker; Müller, Maren; Khemira, Habib; Munné-Bosch, Sergi

    2011-10-01

    A pot experiment was carried out under glasshouse conditions with common sage (Salvia officinalis L.) to investigate the interactive effects of salt stress and kinetin on growth attributes and the abundance of pigments, ions, phenolic diterpenes and α-tocopherol in leaf extracts of this species. The plants were subjected to the following four treatments: (i) control (nutrient solution), (ii) control + 10 μM kinetin, (iii) salt stress (nutrient solution + 100 mM NaCl), and (iv) salt stress + 10 μM kinetin. Kinetin was applied as a foliar fertilizer. Salt stress reduced water contents, photosynthetic activity and pigment contents of sage leaves. In addition, it increased Na(+) contents, and reduced those of Ca(2+) and K(+) in leaves. Salt stress reduced carnosic acid and 12-O-methyl carnosic acid contents in leaves, while it did not affect carnosol and α-tocopherol contents. Foliar applications of kinetin seemed to counterbalance or alleviate the stress symptoms induced by salinity, improving ion and pigment contents, while leaf phenolic diterpene (mainly carnosol) and α-tocopherol contents also increased in both control and NaCl-treated plants; still this effect was much more obvious in salt-treated plants. A similar effect was also obtained when plants were sprayed with KNO(3) or Ca(NO(3))(2), thus suggesting that kinetin effects were at least partly due to an improvement of ion homeostasis. Kinetin applications resulted in increased transcript levels of the isoprenoid and tocopherol biosynthetic genes, DXPRI and VTE2 and VTE4 in control plants, but not in NaCl-treated plants. We conclude that kinetin can alleviate the negative impact of salt on sage plants cultivated under arid environments with salinity problems. PMID:21856165

  3. Selenium alleviates chromium toxicity by preventing oxidative stress in cabbage (Brassica campestris L. ssp. Pekinensis) leaves.

    PubMed

    Qing, Xuejiao; Zhao, Xiaohu; Hu, Chengxiao; Wang, Peng; Zhang, Ying; Zhang, Xuan; Wang, Pengcheng; Shi, Hanzhi; Jia, Fen; Qu, Chanjuan

    2015-04-01

    The beneficial role of selenium (Se) in alleviation of chromium (Cr)-induced oxidative stress is well established. However, little is known about the underlying mechanism. The impacts of exogenous Se (0.1mg/L) on Cr(1mg/L)-induced oxidative stress and antioxidant systems in leaves of cabbage (Brassica campestris L. ssp. Pekinensis) were investigated by using cellular and biochemical approaches. The results showed that supplementation of the medium with Se was effective in reducing Cr-induced increased levels of lipid peroxides and superoxide free radicals (O(-)2(·)), as well as increasing activities of superoxide dismutase (SOD) and peroxidase (POD). Meanwhile, 1mg/L Cr induced loss of plasma membrane integrity, growth inhibition, as well as ultrastructural changes of leaves were significantly reversed due to Se supplementation in the medium. In addition, Se application significantly altered the subcellular distribution of Cr which transported from mitochondria, nucleus and the cell-wall material to the soluble fraction and chloroplasts. However, Se application did no significant alteration of Cr effects on osmotic adjustment accumulating products. The study suggested that Se is able to protect leaves of cabbage against Cr toxicity by alleviation of Cr induced oxidative stress, and re-distribution of Cr in the subcellular of the leaf. Furthermore, free radicals, lipid peroxides, activity of SOD and POD, and subcellular distribution of Cr can be considered the efficient biomarkers to indicate the efficiency of Se to detoxification Cr.

  4. Role of Ulva lactuca Extract in Alleviation of Salinity Stress on Wheat Seedlings

    PubMed Central

    Ibrahim, Wael M.; Ali, Refaat M.; Hemida, Khaulood A.; Sayed, Makram A.

    2014-01-01

    Seaweeds are potentially excellent sources of highly bioactive materials that could represent useful leads in the alleviation of salinity stress. The effects of presoaking wheat grains in water extract of Ulva lactuca on growth, some enzymatic activities, and protein pattern of salinized plants were investigated in this study. Algal presoaking of grains demonstrated a highly significant enhancement in the percentage of seed germination and growth parameters. The activity of superoxide dismutase (SOD) and catalase (CAT) increased with increasing the algal extract concentration while activity of ascorbate peroxidase (APX) and glutathione reductase (GR) was decreased with increasing concentration of algal extract more than 1% (w/v). The protein pattern of wheat seedling showed 12 newly formed bands as result of algal extract treatments compared with control. The bioactive components in U. lactuca extract such as ascorbic acid, betaine, glutathione, and proline could potentially participate in the alleviation of salinity stress. Therefore, algal presoaking is proved to be an effective technique to improve the growth of wheat seedlings under salt stress conditions. PMID:25436231

  5. Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants.

    PubMed

    Aroca, Ricardo; Ruiz-Lozano, Juan Manuel; Zamarreño, Angel María; Paz, José Antonio; García-Mina, José María; Pozo, María José; López-Ráez, Juan Antonio

    2013-01-01

    Arbuscular mycorrhizal (AM) symbiosis can alleviate salt stress in plants. However the intimate mechanisms involved, as well as the effect of salinity on the production of signalling molecules associated to the host plant-AM fungus interaction remains largely unknown. In the present work, we have investigated the effects of salinity on lettuce plant performance and production of strigolactones, and assessed its influence on mycorrhizal root colonization. Three different salt concentrations were applied to mycorrhizal and non-mycorrhizal plants, and their effects, over time, analyzed. Plant biomass, stomatal conductance, efficiency of photosystem II, as well as ABA content and strigolactone production were assessed. The expression of ABA biosynthesis genes was also analyzed. AM plants showed improved growth rates and a better performance of physiological parameters such as stomatal conductance and efficiency of photosystem II than non-mycorrhizal plants under salt stress since very early stages - 3 weeks - of plant colonization. Moreover, ABA levels were lower in those plants, suggesting that they were less stressed than non-colonized plants. On the other hand, we show that both AM symbiosis and salinity influence strigolactone production, although in a different way in AM and non-AM plants. The results suggest that AM symbiosis alleviates salt stress by altering the hormonal profiles and affecting plant physiology in the host plant. Moreover, a correlation between strigolactone production, ABA content, AM root colonization and salinity level is shown. We propose here that under these unfavourable conditions, plants increase strigolactone production in order to promote symbiosis establishment to cope with salt stress.

  6. Effects of heat stress on mammalian reproduction

    PubMed Central

    Hansen, Peter J.

    2009-01-01

    Heat stress can have large effects on most aspects of reproductive function in mammals. These include disruptions in spermatogenesis and oocyte development, oocyte maturation, early embryonic development, foetal and placental growth and lactation. These deleterious effects of heat stress are the result of either the hyperthermia associated with heat stress or the physiological adjustments made by the heat-stressed animal to regulate body temperature. Many effects of elevated temperature on gametes and the early embryo involve increased production of reactive oxygen species. Genetic adaptation to heat stress is possible both with respect to regulation of body temperature and cellular resistance to elevated temperature. PMID:19833646

  7. Alleviation of drought stress of marigold (Tagetes erecta) plants by using arbuscular mycorrhizal fungi.

    PubMed

    Asrar, Abdul-Wasea A; Elhindi, Khalid M

    2011-01-01

    The effect of an arbuscular mycorrhizal fungus "AMF" (Glomus constrictum Trappe) on growth, pigments, and phosphorous content of marigold (Tagetes erecta) plant grown under different levels of drought stress was investigated. The applied drought stress levels reduced growth vigor (i.e. plant height, shoot dry weight, flower diameter as well as its fresh and dry weights) of mycorrhizal and non-mycorrhizal plant as compared to control plant (non-drought stressed plant). The presence of mycorrhizal fungus, however, stimulated all growth parameters of the treated plant comparing to non-mycorrhizal treated plant. The photosynthetic pigments (carotene in flowers and chlorophylls a and b in leaves) were also stimulated by the mycorrhizal fungi of well-watered as well as of water-stressed plants. The total pigments of mycorrhizal plants grown under well-watered conditions were higher than those of non-mycorrhizal ones by 60%. In most cases, drought-stressed mycorrhizal plants were significantly better than those of the non-mycorrhizal plants. So, the overall results suggest that mycorrhizal fungal colonization affects host plant positively on growth, pigments, and phosphorous content, flower quality and thereby alleviates the stress imposed by water with holding. PMID:23961109

  8. Nitrogen availability regulates proline and ethylene production and alleviates salinity stress in mustard (Brassica juncea).

    PubMed

    Iqbal, Noushina; Umar, Shahid; Khan, Nafees A

    2015-04-15

    Proline content and ethylene production have been shown to be involved in salt tolerance mechanisms in plants. To assess the role of nitrogen (N) in the protection of photosynthesis under salt stress, the effect of N (0, 5, 10, 20 mM) on proline and ethylene was studied in mustard (Brassica juncea). Sufficient N (10 mM) optimized proline production under non-saline conditions through an increase in proline-metabolizing enzymes, leading to osmotic balance and protection of photosynthesis through optimal ethylene production. Excess N (20 mM), in the absence of salt stress, inhibited photosynthesis and caused higher ethylene evolution but lower proline production compared to sufficient N. In contrast, under salt stress with an increased demand for N, excess N optimized ethylene production, which regulates the proline content resulting in recovered photosynthesis. The effect of excess N on photosynthesis under salt stress was further substantiated by the application of the ethylene biosynthesis inhibitor, 1-aminoethoxy vinylglycine (AVG), which inhibited proline production and photosynthesis. Without salt stress, AVG promoted photosynthesis in plants receiving excess N by inhibiting stress ethylene production. The results suggest that a regulatory interaction exists between ethylene, proline and N for salt tolerance. Nitrogen differentially regulates proline production and ethylene formation to alleviate the adverse effect of salinity on photosynthesis in mustard.

  9. Alleviating versus stimulating effects of bicarbonate on the growth of Vallisneria natans under ammonia stress.

    PubMed

    Dou, Yanyan; Wang, Baozhong; Chen, Liangyan; Yin, Daqiang

    2013-08-01

    Bicarbonate plays a crucial role in limiting the growth of submersed aquatic macrophytes in eutrophic lakes, and high ammonia is often toxic to macrophytes. In order to evaluate the combined effect of HCO3 (-) and total ammonia (i.e., the total of NH3 and NH4 (+)) on submersed macrophytes Vallisneria natans, the growth and physiological response of V. natans in the presence of HCO3 (-) and ammonia were studied. The results showed that with the increase of ammonia, morphological parameters of V. natans declined. In contrast, increased HCO3 (-) concentration stimulated the growth of V. natans, especially when the NH4 (+)-N/NO3 (-)-N ratio was 1:7. High ammonia concentration induced excess free amino acids (FAA) accumulation and soluble carbohydrates (SC) depletion in plant tissues. However, the elevated HCO3 (-) promoted the synthesis of SC and rendered the decrease of FAA/SC ratio. The results also suggested that HCO3 (-) could partially alleviate the stress of ammonia, as evidenced by the decrease of FAA/SC ratio and the growth enhancement of V. natans when the ammonia concentration was 0.58 mg L(-1). Given the fact that HCO3 (-) is probably the dominant available carbon source in most eutrophic lakes, the ability of V. natans to use HCO3 (-) for SC synthesis may explain the alleviating effect of HCO3 (-) on V. natans under ammonia stress. PMID:23381797

  10. Elevated CO2 alleviates high PAR and UV stress in the unicellular chlorophyte Dunaliella tertiolecta.

    PubMed

    García-Gómez, Candela; Gordillo, Francisco J L; Palma, Armando; Lorenzo, M Rosario; Segovia, María

    2014-09-01

    The effects of increased CO2 and irradiance on the physiological performance of the chlorophyte Dunaliella tertiolecta were studied at different PAR and UVR (UVA + UVB) irradiances, simulating the solar radiation at different depths, at present (390 ppmv, LC) and predicted CO2 levels for the year 2100 (1000 ppmv, HC). Elevated CO2 resulted in higher optimum and effective quantum yields (F(v)/F(m) and ϕPSII, respectively), electron transport rates (ETR) and specific growth rates (μ). Cell stress was alleviated in HC with respect to LC as evidenced by a decrease in reactive oxygen species (ROS) accumulation. DNA damage showed a 42-fold increase in cyclobutane-pyrimidine dimer (CPD) formation under the highest irradiance (1100 μmol quanta m(-2) s(-1)) in LC with respect to the lowest irradiance (200 μmol quanta m(-2) s(-1)). Photolyase (CII-PCD-PL) gene expression was upregulated under HC resulting in a drastic decrease in CPD accumulation to only 25% with respect to LC. Proliferating cell nuclear antigen (PCNA) accumulation was always higher in HC and the accumulation pattern indicated its involvement in repair or growth depending on the irradiance dose. The repressor of silencing (ROS1) was only marginally involved in the response, suggesting that photoreactivation was the most relevant mechanism to overcome UVR damage. Our results demonstrate that future scenarios of global change result in alleviation of irradiance stress by CO2-induced photoprotection in D. tertiolecta.

  11. Verminoside mediates life span extension and alleviates stress in Caenorhabditis elegans.

    PubMed

    Pant, A; Asthana, J; Yadav, A K; Rathor, L; Srivastava, S; Gupta, M M; Pandey, R

    2015-01-01

    The discovery of bioactive molecules modulating aging in living organism promotes development of natural therapeutics for curing age-related afflictions. The progression in age-related disorders can be attributed to increment in intracellular reactive oxygen species (ROS) and oxidative stress level. To this end, we isolated an iridoid verminoside (VMS) from Stereospermum suaveolens (Roxb.) DC. and evaluated its effect on Caenorhabditis elegans. The present study delineates VMS-mediated alteration of intracellular ROS, oxidative stress, and life span in C. elegans. The different tested doses of VMS (5 μM, 25 μM, and 50 μM) were able to enhance ROS scavenging and extend mean life span in C. elegans. The maximal life span extension was observed in 25 μM VMS, that is, 20.79% (P < 0.0001) followed by 9.84% (P < 0.0001) in 5 μM VMS and 8.54% (P < 0.0001) in 50 μM VMS. VMS was able to alleviate juglone-induced oxidative stress and enhanced thermotolerance in worms. The stress-modulating and ROS-scavenging potential of VMS was validated by increment in mean survival by 29.54% (P < 0.0001) in VMS-treated oxidative stress hypersensitive mev-1 mutant strain. Furthermore, VMS modulates expression of DAF-16 (a FoxO transcription factor) promoting stress resistance and longevity. Altogether, our results suggest that VMS attenuates intracellular ROS and stress (oxidative and thermal) level promoting longevity. The longevity and stress modulation can be attributed to VMS-mediated alterations in daf-16 expression which regulates insulin signaling pathway. This study opens doors for development of phytomolecule-based therapeutics for prolonging life span and managing age-related severe disorders.

  12. Black tea protects against hypertension-associated endothelial dysfunction through alleviation of endoplasmic reticulum stress.

    PubMed

    San Cheang, Wai; Yuen Ngai, Ching; Yen Tam, Ye; Yu Tian, Xiao; Tak Wong, Wing; Zhang, Yang; Wai Lau, Chi; Chen, Zhen Yu; Bian, Zhao-Xiang; Huang, Yu; Ping Leung, Fung

    2015-01-01

    Hypertensive patients have been found to be associated with elevated levels of homocysteine, known as hyperhomocysteinemia. Homocysteine (Hcy) can induce endoplasmic reticulum (ER) stress in endothelial cells. This study aims to investigate whether black tea (BT) protects against hypertension-associated endothelial dysfunction through alleviation of ER stress. Rat aortae and cultured rat aortic endothelial cells were treated with Hcy, BT extract, and theaflavin-3,3'-digallate (TF3). Male Sprague Dawley rats were infused with angiotensin II (Ang II) to induce hypertension and orally administrated with BT extract at 15 mg/kg/day for 2 weeks. Hcy impaired endothelium-dependent relaxations of rat aortae and led to ER stress in endothelial cells, which were ameliorated by co-incubation of BT extract and TF3. The blood pressure of Ang II-infused rats and plasma Hcy level were normalized by BT consumption. Impaired endothelium-dependent relaxations in renal arteries, carotid arteries and aortae, and flow-mediated dilatations in third-order mesenteric resistance arteries were improved. Elevations of ER stress markers and ROS level, plus down-regulation of Hcy metabolic enzymes in aortae from Ang II-infused rats were prevented by BT treatment. Our data reveal the novel cardiovascular benefits of BT in ameliorating vascular dysfunctions, providing insight into developing BT into beneficial dietary supplements in hypertensive patients. PMID:25976123

  13. Alleviation of exogenous oligochitosan on wheat seedlings growth under salt stress.

    PubMed

    Ma, Lianju; Li, Yueying; Yu, Cuimei; Wang, Yan; Li, Xuemei; Li, Na; Chen, Qiang; Bu, Ning

    2012-04-01

    Hydroponic experiments were carried out to study the role of oligochitosan in enhancing wheat (Triticum aestivum L.) resistance to salt stress. Data were collected on plant biomass, chlorophyll content, photosynthetic rate (P (n)), stomatal conductance (g (s)), proline content, antioxidant enzyme activities, and malondialdehyde (MDA) content. Under 150 mM salt stress, plant growth was significantly inhibited. Shoot length, root length, and dry weight were sharply reduced by 26%, 31%, and 20%, respectively, of the control. Superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) were increased by 28%, 13%, and 26%, respectively, of the control and MDA content largely accumulated, which was 1.5-fold of the control. However, 0.0625% oligochitosan pretreatment alleviated the adverse effects of salt stress, which was reflected by increasing root length, shoot length, dry weight, chlorophyll content, P (n,) and g (s). Furthermore, it also showed that oligochitosan pretreatment significantly increased antioxidant enzyme (SOD, CAT and POD) activities, and reduced MDA content in leaves. Meanwhile, the accumulation of proline was markedly accelerated. The results indicated that oligochitosan pretreatment ameliorated the adverse effects and partially protected the seedlings from salt stress during the following growth period.

  14. Black tea protects against hypertension-associated endothelial dysfunction through alleviation of endoplasmic reticulum stress

    PubMed Central

    San Cheang, Wai; Yuen Ngai, Ching; Yen Tam, Ye; Yu Tian, Xiao; Tak Wong, Wing; Zhang, Yang; Wai Lau, Chi; Chen, Zhen Yu; Bian, Zhao-Xiang; Huang, Yu; Ping Leung, Fung

    2015-01-01

    Hypertensive patients have been found to be associated with elevated levels of homocysteine, known as hyperhomocysteinemia. Homocysteine (Hcy) can induce endoplasmic reticulum (ER) stress in endothelial cells. This study aims to investigate whether black tea (BT) protects against hypertension-associated endothelial dysfunction through alleviation of ER stress. Rat aortae and cultured rat aortic endothelial cells were treated with Hcy, BT extract, and theaflavin-3,3’-digallate (TF3). Male Sprague Dawley rats were infused with angiotensin II (Ang II) to induce hypertension and orally administrated with BT extract at 15 mg/kg/day for 2 weeks. Hcy impaired endothelium-dependent relaxations of rat aortae and led to ER stress in endothelial cells, which were ameliorated by co-incubation of BT extract and TF3. The blood pressure of Ang II-infused rats and plasma Hcy level were normalized by BT consumption. Impaired endothelium-dependent relaxations in renal arteries, carotid arteries and aortae, and flow-mediated dilatations in third-order mesenteric resistance arteries were improved. Elevations of ER stress markers and ROS level, plus down-regulation of Hcy metabolic enzymes in aortae from Ang II-infused rats were prevented by BT treatment. Our data reveal the novel cardiovascular benefits of BT in ameliorating vascular dysfunctions, providing insight into developing BT into beneficial dietary supplements in hypertensive patients. PMID:25976123

  15. β-aminobutyric acid mediated drought stress alleviation in maize (Zea mays L.).

    PubMed

    Shaw, Arun K; Bhardwaj, Pardeep K; Ghosh, Supriya; Roy, Sankhajit; Saha, Suman; Sherpa, Ang R; Saha, Samir K; Hossain, Zahed

    2016-02-01

    The present study highlights the role of β-aminobutyric acid (BABA) in alleviating drought stress effects in maize (Zea mays L.). Chemical priming was imposed by pretreating 1-week-old plants with 600 μM BABA prior to applying drought stress. Specific activities of key antioxidant enzymes and metabolites (ascorbate and glutathione) levels of ascorbate-glutathione cycle were studied to unravel the priming-induced modulation of plant defense system. Furthermore, changes in endogenous ABA and JA concentrations as well as mRNA expressions of key genes involved in their respective biosynthesis pathways were monitored in BABA-primed (BABA+) and non-primed (BABA-) leaves of drought-challenged plants to better understand the mechanistic insights into the BABA-induced hormonal regulation of plant response to water-deficit stress. Accelerated stomatal closure, high relative water content, and less membrane damage were observed in BABA-primed leaves under water-deficit condition. Elevated APX and SOD activity in non-primed leaves found to be insufficient to scavenge all H2O2 and O2 (·-) resulting in oxidative burst as evident after histochemical staining with NBT and DAB. A higher proline accumulation in non-primed leaves also does not give much protection against drought stress. Increased GR activity supported with the enhanced mRNA and protein expressions might help the BABA-primed plants to maintain a high GSH pool essential for sustaining balanced redox status to counter drought-induced oxidative stress damages. Hormonal analysis suggests that in maize, BABA-potentiated drought tolerance is primarily mediated through JA-dependent pathway by the activation of antioxidant defense systems while ABA biosynthesis pathway also plays an important role in fine-tuning of drought stress response.

  16. Hesperidin alleviates acetaminophen induced toxicity in Wistar rats by abrogation of oxidative stress, apoptosis and inflammation.

    PubMed

    Ahmad, Shiekh Tanveer; Arjumand, Wani; Nafees, Sana; Seth, Amlesh; Ali, Nemat; Rashid, Summya; Sultana, Sarwat

    2012-01-25

    Acetaminophen (APAP) is a widely used analgesic and antipyretic drug, but at high dose it leads to undesirable side effects, such as hepatotoxicity and nephrotoxicity. The present study demonstrates the comparative hepatoprotective and nephroprotective activity of hesperidin (HD), a naturally occurring bioflavonoid against APAP induced toxicity. APAP induces hepatotoxicity and nephrotoxicity as was evident by abnormal deviation in the levels of antioxidant enzymes. Moreover, APAP induced renal damage by inducing apoptotic death and inflammation in renal tubular cells, manifested by an increase in the expression of caspase-3, caspase-9, NFkB, iNOS, Kim-1 and decrease in Bcl-2 expression. These results were further supported by the histopathological examination of kidney. All these features of APAP toxicity were reversed by the co-administration of HD. Therefore, our study favors the view that HD may be a useful modulator in alleviating APAP induced oxidative stress and toxicity.

  17. Naringenin Alleviates Cadmium-Induced Toxicity through the Abrogation of Oxidative Stress in Swiss Albino Mice.

    PubMed

    Das, Avratanu; Roy, Amrita; Das, Ruma; Bhattacharya, Sanjib; Haldar, Pallab Kanti

    2016-01-01

    The present study evaluates the protective potential of the flavonoid naringenin (NRG) against experimentally induced cadmium (Cd) toxicity in Swiss albino mice. NRG (4 and 8 mg/kg) was orally administered to mice 30 min before oral administration of CdCl2 (12 mg/kg) for 11 consecutive days. On the 12th day, we evaluated body and organ weights, hematological profiles, serum biochemical profiles, and hepatic and renal tissue antioxidative parameters including lipid peroxidation, reduced and oxidized glutathione, glutathione-S-transferase, glutathione peroxidase, glutathione reductase, superoxide dismutase, and catalase. Cotreatment with NRG markedly and significantly normalized body and organ weights, hematological profiles, and serum biochemical profiles and significantly modulated all of the hepatic and renal tissue biochemical parameters in Cd-intoxicated mice. The present findings show that NRG possesses a remarkable alleviative effect against Cd-induced toxicity in albino mice, mediated by abrogation of Cd-induced oxidative stress by multiple mechanisms. PMID:27481493

  18. Naringin Alleviates Diabetic Kidney Disease through Inhibiting Oxidative Stress and Inflammatory Reaction

    PubMed Central

    Chen, Fenqin; Zhang, Ning; Ma, Xiaoyu; Huang, Ting; Shao, Ying; Wu, Can; Wang, Qiuyue

    2015-01-01

    Naringin, a flavanone glycoside extracted from Citrus grandis Osbeck, has a wide range of pharmacological effects. In the present study we aimed at demonstrating the protective effect of naringin against diabetic kidney disease (DKD) and elucidating its possible molecular mechanism underlying. The beneficial effect of naringin was assessed in rats with streptozotocin (STZ)-induced diabetes and high glucose-induced HBZY-1 cells. According to our results, first we found that naringin relieved kidney injury, improved renal function and inhibited collagen formation and renal interstitial fibrosis. Second, we confirmed that naringin restrained oxidative stress by activating Nrf2 antioxidant pathway. Moreover, the results suggested that naringin significantly resisted inflammatory reaction by inhibiting NF- κ B signaling pathway. Taken together, our results demonstrate that naringin effectively alleviates DKD, which provide theoretical basis for naringin clinically used to treatment of DKD. PMID:26619044

  19. Water Replacement Schedules in Heat Stress

    ERIC Educational Resources Information Center

    Londeree, Ben R.; and others

    1969-01-01

    Although early ingestion of cold water appears to lead to greater relief from heat stress during physical exertion than late ingestion, this difference is reduced toward the end of an hour's work in high heat and humidity. (CK)

  20. Sulfur Dioxide Enhances Endogenous Hydrogen Sulfide Accumulation and Alleviates Oxidative Stress Induced by Aluminum Stress in Germinating Wheat Seeds.

    PubMed

    Zhu, Dong-Bo; Hu, Kang-Di; Guo, Xi-Kai; Liu, Yong; Hu, Lan-Ying; Li, Yan-Hong; Wang, Song-Hua; Zhang, Hua

    2015-01-01

    Aluminum ions are especially toxic to plants in acidic soils. Here we present evidences that SO2 protects germinating wheat grains against aluminum stress. SO2 donor (NaHSO3/Na2SO3) pretreatment at 1.2 mM reduced the accumulation of superoxide anion, hydrogen peroxide, and malondialdehyde, enhanced the activities of guaiacol peroxidase, catalase, and ascorbate peroxidase, and decreased the activity of lipoxygenase in germinating wheat grains exposed to Al stress. We also observed higher accumulation of hydrogen sulfide (H2S) in SO2-pretreated grain, suggesting the tight relation between sulfite and sulfide. Wheat grains geminated in water for 36 h were pretreated with or without 1 mM SO2 donor for 12 h prior to exposure to Al stress for 48 h and the ameliorating effects of SO2 on wheat radicles were studied. SO2 donor pretreatment reduced the content of reactive oxygen species, protected membrane integrity, and reduced Al accumulation in wheat radicles. Gene expression analysis showed that SO2 donor pretreatment decreased the expression of Al-responsive genes TaWali1, TaWali2, TaWali3, TaWali5, TaWali6, and TaALMT1 in radicles exposed to Al stress. These results suggested that SO2 could increase endogenous H2S accumulation and the antioxidant capability and decrease endogenous Al content in wheat grains to alleviate Al stress. PMID:26078810

  1. Nitrogen fertilizer improves boron phytoextraction by Brassica juncea grown in contaminated sediments and alleviates plant stress.

    PubMed

    Giansoldati, Virginia; Tassi, Eliana; Morelli, Elisabetta; Gabellieri, Edi; Pedron, Francesca; Barbafieri, Meri

    2012-06-01

    In this study we evaluated the effect of different fertilizer treatments on Brassica plants grown on boron-contaminated sediments. Experiments were conducted in the laboratory and on the lysimeter scale. At laboratory scale (microcosm), five different fertilizers were tested for a 35-d period. On the lysimeter scale, nitrogen fertilization was tested at three different doses and plants were allowed to grow until the end of the vegetative phase (70 d). Results showed that nitrogen application had effectively increased plant biomass production, while B uptake was not affected. Total B phytoextracted increased three-fold when the highest nitrogen dose was applied. Phytotoxicity on Brassica was evaluated by biochemical parameters. In plants grown in unfertilized B-contaminated sediments, the activity of antioxidant enzymes superoxide dismutase (SOD), ascorbate peroxidase (APX) and pyrogallol peroxidase (PPX) increased, whereas catalase (CAT) decreased with respect to control plants. Addition of N progressively mitigated the alteration of enzymatic activity, thus suggesting that N can aid in alleviating B-induced oxidative stress. SOD activity was restored to control levels just at the lowest N treatment, whereas the CAT inhibition was partially restored only at the highest one. N application also lowered the B-induced increase in APX and PPX activities. Increased glutathione reductase activity indicated the need to restore the oxidative balance of glutathione. Data also suggest a role of glutathione and phytochelatins in B defense mechanisms. Results suggest that the nitrogen fertilizer was effective in improving B phytoextraction by increasing Brassica biomass and by alleviating B-induced oxidative stress. PMID:22382070

  2. Melatonin alleviates cadmium-induced cellular stress and germ cell apoptosis in testes.

    PubMed

    Ji, Yan-Li; Wang, Hua; Meng, Can; Zhao, Xian-Feng; Zhang, Cheng; Zhang, Ying; Zhao, Mei; Chen, Yuan-Hua; Meng, Xiu-Hong; Xu, De-Xiang

    2012-01-01

    Increasing evidence demonstrates that melatonin has an anti-apoptotic effect in somatic cells. However, whether melatonin can protect against germ cell apoptosis remains obscure. Cadmium (Cd) is a testicular toxicant and induces germ cell apoptosis. In this study, we investigated the effects of melatonin on Cd-evoked germ cell apoptosis in testes. Male ICR mice were intraperitoneally (i.p.) injected with melatonin (5 mg/kg) every 8 hr, beginning at 8 hr before CdCl(2) (2.0 mg/kg, i.p.). As expected, acute Cd exposure resulted in germ cell apoptosis in testes, as determined by terminal dUTP nick-end labeling (TUNEL) staining. Melatonin significantly alleviated Cd-induced testicular germ cell apoptosis. An additional experiment showed that spliced form of XBP-1, the target of the IRE-1 pathway, was significantly increased in testes of mice injected with CdCl(2). GRP78, an endoplasmic reticulum (ER) chaperone, and CHOP, a downstream target of the PERK pathway, were upregulated in testes of Cd-treated mice. In addition, acute Cd exposure significantly increased testicular eIF2α and JNK phosphorylation, indicating that the unfolded protein response (UPR) pathway was activated by CdCl(2). Interestingly, melatonin almost completely inhibited Cd-induced ER stress and the UPR in testes. In addition, melatonin obviously attenuated Cd-induced heme oxygenase (HO)-1 expression and protein nitration in testes. Taken together, these results suggest that melatonin alleviates Cd-induced cellular stress and germ cell apoptosis in testes. Melatonin may be useful as pharmacological agents to protect against Cd-induced testicular toxicity. PMID:21793897

  3. Proteus mirabilis alleviates zinc toxicity by preventing oxidative stress in maize (Zea mays) plants.

    PubMed

    Islam, Faisal; Yasmeen, Tahira; Riaz, Muhammad; Arif, Muhammad Saleem; Ali, Shafaqat; Raza, Syed Hammad

    2014-12-01

    Plant-associated bacteria can have beneficial effects on the growth and health of their host. However, the role of plant growth promoting bacteria (PGPR), under metal stress, has not been widely investigated. The present study investigated the possible mandatory role of plant growth promoting rhizobacteria in protecting plants from zinc (Zn) toxicity. The exposure of maize plants to 50µM zinc inhibited biomass production, decreased chlorophyll, total soluble protein and strongly increased accumulation of Zn in both root and shoot. Similarly, Zn enhanced hydrogen peroxide, electrolyte leakage and lipid peroxidation as indicated by malondaldehyde accumulation. Pre-soaking with novel Zn tolerant bacterial strain Proteus mirabilis (ZK1) isolated zinc (Zn) contaminated soil, alleviated the negative effect of Zn on growth and led to a decrease in oxidative injuries caused by Zn. Furthermore, strain ZK1 significantly enhanced the activities of catalase, guaiacol peroxidase, superoxide dismutase and ascorbic acid but lowered the Proline accumulation in Zn stressed plants. The results suggested that the inoculation of Zea mays plants with P. mirabilis during an earlier growth period could be related to its plant growth promoting activities and avoidance of cumulative damage upon exposure to Zn, thus reducing the negative consequences of oxidative stress caused by heavy metal toxicity.

  4. Rootstock alleviates PEG-induced water stress in grafted pepper seedlings: physiological responses.

    PubMed

    Penella, Consuelo; Nebauer, Sergio G; Bautista, Alberto San; López-Galarza, Salvador; Calatayud, Ángeles

    2014-06-15

    nitrate reductase activity in the roots was observed, mainly in plants grafted onto the sensitive rootstocks, as well as the ungrafted plants, and this was associated with the lessened flux to the leaves. This study suggests that PEG-induced water stress can be partially alleviated by using tolerant accessions as rootstocks.

  5. Alleviating effects of exogenous NO on tomato seedlings under combined Cu and Cd stress.

    PubMed

    Wang, Yi-Jun; Dong, Yu-Xiu; Wang, Juan; Cui, Xiu-Min

    2016-03-01

    To investigate the effect of NO on the different origin and regulation of oxidative stress of Cu and/or Cd, tomato seedlings were treated with Cu, Cd, or Cu + Cd in a nutrient solution culture system. The main effect of Cu(2+) was a significant reduction in root activity and nitrate reductase (NR) activity, which was similar to that under 50 μM Cd treatment, but promoted Cu accumulation. The supply of Cu under Cd treatment decreased Cd concentration, while not altered Cu concentration by contrast with Cu treatment, which is suggestive of a replacement of Cu(2+) with Cd(2+) and effective decrease in the boiotoxicity of 50 μM Cd(2+) to tomato seedlings. However, NO alleviated the restriction to NR activity significantly and made the biomass of tomato seedlings recover under Cd treatment, and also increased root activity under Cu and Cu + Cd treatment. Exogenous NO markedly reduced the absorption and transportation of Cu but did not obviously change the translocation of Cd to the aboveground parts under Cu + Cd treatment. Both metals induced lipid peroxidation via the decreasing activation of antioxidant enzymes. The antioxidant enzyme system worked differently under Cu, Cd, or Cu + Cd stress. The activities of peroxidase (POD) and catalase (CAT) were higher under single Cd stress than under the control. Meanwhile, Cu + Cd treatment decreased the activities of POD, superoxide dismutase (SOD), and ascorbic acid peroxidase (APX). Exogenous NO increased POD and SOD activities in the leaves and roots, and CAT activity in the roots under combined Cu and Cd stress. These results suggest that a different response and regulation mechanism that involves exogenous NO is present in tomato seedlings under Cu and Cd stress.

  6. Priming of seeds with nitric oxide donor sodium nitroprusside (SNP) alleviates the inhibition on wheat seed germination by salt stress.

    PubMed

    Duan, Pei; Ding, Feng; Wang, Fang; Wang, Bao-Shan

    2007-06-01

    The effect of SNP, an NO donor, on seed germination of wheat (Triticum aestivum L. cv. 'DK961') under salt stress was studied. The results showed that priming of seeds with 0.06 mmol/L SNP for 24 h markedly alleviated the decrease of the germination percentage, germination index, vigor index and imbibition rate of wheat seeds under salt stress. SNP significantly alleviated the decrease of the beta-amylase activity but almost did not affect the alpha-amylase activity of wheat seeds under salt stress. SNP slightly increased the alpha-amylase isoenzymes (especially isoenzyme 3) and significantly increased the beta-amylase isoenzymes (especially isoenzyme d, e, f and g). SNP pretreatment decreased Na(+) content, but increased the K(+) content, resulting in a mark increase of K(+)/Na(+) ratio of wheat seedlings under salt stress. These results suggested that NO is involved in promoting wheat seed germination under salt stress by increasing the beta-amylase activity.

  7. Silicon improves seed germination and alleviates oxidative stress of bud seedlings in tomato under water deficit stress.

    PubMed

    Shi, Yu; Zhang, Yi; Yao, Hejin; Wu, Jiawen; Sun, Hao; Gong, Haijun

    2014-05-01

    The beneficial effects of silicon on plant growth and development under drought have been widely reported. However, little information is available on the effects of silicon on seed germination under drought. In this work, the effects of exogenous silicon (0.5 mM) on the seed germination and tolerance performance of tomato (Solanum lycopersicum L.) bud seedlings under water deficit stress simulated by 10% (w/v) polyethylene glycol (PEG-6000) were investigated in four cultivars ('Jinpengchaoguan', 'Zhongza No.9', 'Houpi L402' and 'Oubao318'). The results showed that the seed germination percentage was notably decreased in the four cultivars under water stress, and it was significantly improved by added silicon. Compared with the non-silicon treatment, silicon addition increased the activities of superoxide dismutase (SOD) and catalase (CAT), and decreased the production of superoxide anion (O2·) and hydrogen peroxide (H2O2) in the radicles of bud seedlings under water stress. Addition of silicon decreased the total phenol concentrations in radicles under water stress, which might contribute to the decrease of peroxidase (POD) activity, as observed in the in vivo and in vitro experiments. The decrease of POD activity might contribute to a less accumulation of hydroxyl radical (·OH) under water stress. Silicon addition also decreased the concentrations of malondialdehyde (MDA) in the radicles under stress, indicating decreased lipid peroxidation. These results suggest that exogenous silicon could improve seed germination and alleviate oxidative stress to bud seedling of tomato by enhancing antioxidant defense. The positive effects of silicon observed in a silicon-excluder also suggest the active involvement of silicon in biochemical processes in plants.

  8. Human cardiovascular responses to passive heat stress.

    PubMed

    Crandall, Craig G; Wilson, Thad E

    2015-01-01

    Heat stress increases human morbidity and mortality compared to normothermic conditions. Many occupations, disease states, as well as stages of life are especially vulnerable to the stress imposed on the cardiovascular system during exposure to hot ambient conditions. This review focuses on the cardiovascular responses to heat stress that are necessary for heat dissipation. To accomplish this regulatory feat requires complex autonomic nervous system control of the heart and various vascular beds. For example, during heat stress cardiac output increases up to twofold, by increases in heart rate and an active maintenance of stroke volume via increases in inotropy in the presence of decreases in cardiac preload. Baroreflexes retain the ability to regulate blood pressure in many, but not all, heat stress conditions. Central hypovolemia is another cardiovascular challenge brought about by heat stress, which if added to a subsequent central volumetric stress, such as hemorrhage, can be problematic and potentially dangerous, as syncope and cardiovascular collapse may ensue. These combined stresses can compromise blood flow and oxygenation to important tissues such as the brain. It is notable that this compromised condition can occur at cardiac outputs that are adequate during normothermic conditions but are inadequate in heat because of the increased systemic vascular conductance associated with cutaneous vasodilation. Understanding the mechanisms within this complex regulatory system will allow for the development of treatment recommendations and countermeasures to reduce risks during the ever-increasing frequency of severe heat events that are predicted to occur.

  9. Human Cardiovascular Responses to Passive Heat Stress

    PubMed Central

    Crandall, Craig G.; Wilson, Thad E.

    2016-01-01

    Heat stress increases human morbidity and mortality compared to normothermic conditions. Many occupations, disease states, as well as stages of life are especially vulnerable to the stress imposed on the cardiovascular system during exposure to hot ambient conditions. This review focuses on the cardiovascular responses to heat stress that are necessary for heat dissipation. To accomplish this regulatory feat requires complex autonomic nervous system control of the heart and various vascular beds. For example, during heat stress cardiac output increases up to twofold, by increases in heart rate and an active maintenance of stroke volume via increases in inotropy in the presence of decreases in cardiac preload. Baroreflexes retain the ability to regulate blood pressure in many, but not all, heat stress conditions. Central hypovolemia is another cardiovascular challenge brought about by heat stress, which if added to a subsequent central volumetric stress, such as hemorrhage, can be problematic and potentially dangerous, as syncope and cardiovascular collapse may ensue. These combined stresses can compromise blood flow and oxygenation to important tissues such as the brain. It is notable that this compromised condition can occur at cardiac outputs that are adequate during normothermic conditions but are inadequate in heat because of the increased systemic vascular conductance associated with cutaneous vasodilation. Understanding the mechanisms within this complex regulatory system will allow for the development of treatment recommendations and countermeasures to reduce risks during the ever-increasing frequency of severe heat events that are predicted to occur. PMID:25589263

  10. Polyhydroxyfullerene binds cadmium ions and alleviates metal-induced oxidative stress in Saccharomyces cerevisiae.

    PubMed

    Pradhan, Arunava; Pinheiro, José Paulo; Seena, Sahadevan; Pascoal, Cláudia; Cássio, Fernanda

    2014-09-01

    The water-soluble polyhydroxyfullerene (PHF) is a functionalized carbon nanomaterial with several industrial and commercial applications. There have been controversial reports on the toxicity and/or antioxidant properties of fullerenes and their derivatives. Conversely, metals have been recognized as toxic mainly due to their ability to induce oxidative stress in living organisms. We investigated the interactive effects of PHF and cadmium ions (Cd) on the model yeast Saccharomyces cerevisiae by exposing cells to Cd (≤5 mg liter(-1)) in the absence or presence of PHF (≤500 mg liter(-1)) at different pHs (5.8 to 6.8). In the absence of Cd, PHF stimulated yeast growth up to 10.4%. Cd inhibited growth up to 79.7%, induced intracellular accumulation of reactive oxygen species (ROS), and promoted plasma membrane disruption in a dose- and pH-dependent manner. The negative effects of Cd on growth were attenuated by the presence of PHF, and maximum growth recovery (53.8%) was obtained at the highest PHF concentration and pH. The coexposure to Cd and PHF decreased ROS accumulation up to 36.7% and membrane disruption up to 30.7% in a dose- and pH-dependent manner. Two mechanisms helped to explain the role of PHF in alleviating Cd toxicity to yeasts: PHF decreased Cd-induced oxidative stress and bound significant amounts of Cd in the extracellular medium, reducing its bioavailability to the cells.

  11. Polyhydroxyfullerene Binds Cadmium Ions and Alleviates Metal-Induced Oxidative Stress in Saccharomyces cerevisiae

    PubMed Central

    Pradhan, Arunava; Pinheiro, José Paulo; Seena, Sahadevan; Pascoal, Cláudia

    2014-01-01

    The water-soluble polyhydroxyfullerene (PHF) is a functionalized carbon nanomaterial with several industrial and commercial applications. There have been controversial reports on the toxicity and/or antioxidant properties of fullerenes and their derivatives. Conversely, metals have been recognized as toxic mainly due to their ability to induce oxidative stress in living organisms. We investigated the interactive effects of PHF and cadmium ions (Cd) on the model yeast Saccharomyces cerevisiae by exposing cells to Cd (≤5 mg liter−1) in the absence or presence of PHF (≤500 mg liter−1) at different pHs (5.8 to 6.8). In the absence of Cd, PHF stimulated yeast growth up to 10.4%. Cd inhibited growth up to 79.7%, induced intracellular accumulation of reactive oxygen species (ROS), and promoted plasma membrane disruption in a dose- and pH-dependent manner. The negative effects of Cd on growth were attenuated by the presence of PHF, and maximum growth recovery (53.8%) was obtained at the highest PHF concentration and pH. The coexposure to Cd and PHF decreased ROS accumulation up to 36.7% and membrane disruption up to 30.7% in a dose- and pH-dependent manner. Two mechanisms helped to explain the role of PHF in alleviating Cd toxicity to yeasts: PHF decreased Cd-induced oxidative stress and bound significant amounts of Cd in the extracellular medium, reducing its bioavailability to the cells. PMID:25038095

  12. Strawberry consumption alleviates doxorubicin-induced toxicity by suppressing oxidative stress.

    PubMed

    Giampieri, Francesca; Alvarez-Suarez, Jose M; Gasparrini, Massimiliano; Forbes-Hernandez, Tamara Y; Afrin, Sadia; Bompadre, Stefano; Rubini, Corrado; Zizzi, Antonio; Astolfi, Paola; Santos-Buelga, Celestino; González-Paramás, Ana M; Quiles, Josè L; Mezzetti, Bruno; Battino, Maurizio

    2016-08-01

    Doxorubicin (Dox), one of the most used chemotherapeutic agents, is known to generate oxidative stress and block DNA synthesis, which result in severe dose-limiting toxicity. A strategy to protect against Dox toxic effects could be to use dietary antioxidants of which fruits and vegetable are a rich source. In this context, strawberry consumption is associated with the maintenance of good health and the prevention of several diseases, thanks to the antioxidant capacities of its bioactive compounds. The aim of the present study was to evaluate the protective effects of strawberry consumption against oxidative stress induced by Dox in rats. Animals were fed with strawberry enriched diet (15% of the total calories) for two months and Dox (10 mg/kg; i.p.) was injected at the end of the experimental period. Strawberry consumption significantly inhibited ROS production and oxidative damage biomarkers accumulation in plasma and liver tissue and alleviated histopathological changes in rat livers treated with Dox. The reduction of antioxidant enzyme activities was significantly mitigated after strawberry consumption. In addition, strawberry enriched diet ameliorated liver mitochondrial antioxidant levels and functionality. In conclusion, strawberry intake protects against Dox-induced toxicity, at plasma, liver and mitochondrial levels thanks to its high contents of bioactive compounds. PMID:27286747

  13. Turning Anxiety into Creativity: Using Postmodern Principles to Alleviate Anxiety and Stress through the Art Curriculum and Beyond

    ERIC Educational Resources Information Center

    Ferry, Lisa Marie

    2016-01-01

    The purpose of this action research study is to help students alleviate their anxiety and stress symptoms using activities based on Olivia Gude's postmodern principles. The activities included are the participants own take-along visual art journal kit and classroom projects. Professional learning outcomes include the knowledge to equip teachers…

  14. Plant Heat Adaptation: priming in response to heat stress

    PubMed Central

    Bäurle, Isabel

    2016-01-01

    Abiotic stress is a major threat to crop yield stability. Plants can be primed by heat stress, which enables them to subsequently survive temperatures that are lethal to a plant in the naïve state. This is a rapid response that has been known for many years and that is highly conserved across kingdoms. Interestingly, recent studies in Arabidopsis and rice show that this thermo-priming lasts for several days at normal growth temperatures and that it is an active process that is genetically separable from the priming itself. This is referred to as maintenance of acquired thermotolerance or heat stress memory. Such a memory conceivably has adaptive advantages under natural conditions, where heat stress often is chronic or recurring. In this review, I will focus on recent advances in the mechanistic understanding of heat stress memory. PMID:27134736

  15. Exogenous glycinebetaine alleviates the detrimental effect of Cd stress on perennial ryegrass.

    PubMed

    Lou, Yanhong; Yang, Yong; Hu, Longxing; Liu, Hongmei; Xu, Qingguo

    2015-08-01

    Glycinebetaine (GB) is an important organic osmolyte that accumulates in many plant species in response to abiotic stresses including heavy metals. The objective of this study was to investigate whether exogenous GB would ameliorate the adverse effect of cadmium (Cd) stress on perennial ryegrass (Lolium perenne). Fifty-three days old seedlings were exposed to hydroponic culture for 7 days with six treatments: T1 (control), T2 (0 mM Cd + 20 mM GB), T3 (0 mM Cd + 50 mM GB), T4 (0.5 mM Cd + 0 mM GB), T5 (0.5 mM Cd + 20 mM GB), T6 (0.5 mM Cd + 50 mM GB). Cd stress resulted in a remarkable decrease in turf quality, vertical shoot growth rate (VSGR), normalized relative transpiration (NRT) and Chlorophyll (Chl) content; with significant increases in electric conductivity (EL), malondialdehyde (MDA) content, superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) activity, oxalic and tartaric acid content. Exogenous application of GB decreased EL and MDA content in Cd stressed plants, and increased turf quality, VSGR, NRT, Chl content, SOD, CAT, POD activity, oxalic, tartaric acid content, and the gene expression level of SOD and POD when compared with Cd stressed without GB. Perennial ryegrass with 20 mM GB application suppressed the Cd accumulation in both shoots and roots. A lower translocation factor of Cd was found in GB treated plants than non-GB treated plants, and the lowest translocation factor was observed in the 20 mM GB application. These results suggested that GB could alleviate the detrimental effect of Cd on perennial ryegrass and the amelioration was mainly related to the elevation in SOD, CAT, and POD at enzyme and gene expression levels, which reduced Cd content in shoots and improved cell membrane stability by reducing oxidation of membrane lipids. These findings lead us to conclude that application of GB with 20 mM is the best strategy to ameliorate the detrimental impacts of Cd stress on perennial ryegrass. PMID:26135319

  16. Alleviation of heat damage to photosystem II by nitric oxide in tall fescue.

    PubMed

    Chen, Ke; Chen, Liang; Fan, Jibiao; Fu, Jinmin

    2013-09-01

    Nitric oxide (NO) has been found to mediate plant responses to heat stress. The objective of this study was to investigate the protective role of NO in the recovery process of photosystem II (PSII) in tall fescue (Festuca arundinacea) against heat stress. Treatment of tall fescue leaves with NO donor sodium nitroprusside significantly improved the overall behavior of PSII probed by the chlorophyll a fluorescence transients, while the inhibition of NO accumulation by 2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide (PTIO, a NO scavenger) plus N (G)-nitro-L-arginine-methyl ester (L-NAME, NO synthase inhibitor) dramatically disrupted the operation of PSII. Specifically, under heat stress, the exogenous NO reduced the initial fluorescence (F 0), increased the maximal quantum yield (F V/F M), and disappeared the K-step of 0.3 ms. By the analysis of the JIP-test, the exogenous NO improved the quantum yield of the electron transport flux from Q A to Q B (ET0/ABS), and decreased the trapped excitation flux per reaction center (RC) (TR0/RC), electron transport flux per RC (ET0/RC), and electron flux reducing end electron acceptors per RC (RE0/RC). In addition, the exogenous NO reduced the content of H2O2, O 2 (•-) , and malondialdehyde and electrolyte leakage of tall fescue leaves. These data suggest that exogenous NO could protect plants, increase the amount of activated RC and improve the electron transport from oxygen evolving complex to D1 protein. Moreover, quantitative RT-PCR revealed that, in the presence of hydrogen peroxide, NO induced the gene expression of psbA, psbB, and psbC, which encode proteins belonging to subunits of PSII core reaction center (Psb) complex. These findings indicate that, as an important strategy to protect plants against heat stress, NO could improve the recovery process of PSII by the up regulation of the transcriptions of genes encoding PSII core proteins. PMID:23832593

  17. Heat Stress in Older Adults

    MedlinePlus

    ... well as young people to sudden changes in temperature. They are more likely to have a chronic ... that impair the body's ability to regulate its temperature or that inhibit perspiration. Heat Stroke Heat stroke ...

  18. Distinct physiological responses of tomato and cucumber plants in silicon-mediated alleviation of cadmium stress

    PubMed Central

    Wu, Jiawen; Guo, Jia; Hu, Yanhong; Gong, Haijun

    2015-01-01

    The alleviative effects of silicon (Si) on cadmium (Cd) toxicity were investigated in cucumber (Cucumis sativus L.) and tomato (Solanum lycopersicum L.) grown hydroponically. The growth of both plant species was inhibited by 100 μM Cd, but Si application counteracted the adverse effects on growth. Si application significantly decreased the Cd concentrations in shoots of both species and roots of cucumber. The root-to-shoot transport of Cd was depressed by added Si in tomato whereas it was increased by added Si in cucumber. The total content of organic acids was decreased in tomato leaves but increased in cucumber roots and leaves by Si application under Cd stress. Si application also increased the cell wall polysaccharide levels in the roots of both species under Cd toxicity. Si-mediated changes in levels of organic acids and cell wall polysaccharides might contribute to the differences in Cd transport in the two species. In addition, Si application also mitigated Cd-induced oxidative damage in both species. The results indicate that there were different mechanisms for Si-mediated decrease in shoot Cd accumulation: in tomato, Si supply decreased root-to-shoot Cd transport; whereas in cucumber, Si supply reduced the Cd uptake by roots. It is suggested that Si-mediated Cd tolerance is associated with different physiological responses in tomato and cucumber plants. PMID:26136764

  19. Selenium alleviates cadmium toxicity by preventing oxidative stress in sunflower (Helianthus annuus) seedlings.

    PubMed

    Saidi, Issam; Chtourou, Yacine; Djebali, Wahbi

    2014-03-01

    The present study investigated the possible mediatory role of selenium (Se) in protecting plants from cadmium (Cd) toxicity. The exposure of sunflower seedlings to 20μM Cd inhibited biomass production, decreased chlorophyll and carotenoid concentrations and strongly increased accumulation of Cd in both roots and shoots. Similarly, Cd enhanced hydrogen peroxides content and lipid peroxidation as indicated by malondialdehyde accumulation. Pre-soaking seeds with Se (5, 10 and 20μM) alleviated the negative effect of Cd on growth and led to a decrease in oxidative injuries caused by Cd. Furthermore, Se enhanced the activities of catalase, ascorbate peroxidase and glutathione reductase, but lowered that of superoxide dismutase and guaiacol peroxidase. As important antioxidants, ascorbate and glutathione contents in sunflower leaves exposed to Cd were significantly decreased by Se treatment. The data suggest that the beneficial effect of Se during an earlier growth period could be related to avoidance of cumulative damage upon exposure to Cd, thus reducing the negative consequences of oxidative stress caused by heavy metal toxicity.

  20. Treadmill exercise alleviates chronic mild stress-induced depression in rats.

    PubMed

    Lee, Taeck-Hyun; Kim, Kijeong; Shin, Mal-Soon; Kim, Chang-Ju; Lim, Baek-Vin

    2015-12-01

    Depression is a major cause of disability and one of the most common public health problems. In the present study, antidepressive effect of treadmill exercise on chronic mild stress (CMS)-induced depression in rats was investigated. For this, sucrose intake test, immunohistochemistry for 5-bromo-2'-deoxyuridine, terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling staining, and Western blot analysis for brain-derived neurotrophic factor, cyclic adenosine monophosphate response element binding protein, and endothelial nitric oxide synthase were conducted. Following adaptation to the animal vivarium and two baseline fluid intake tests, the animals were divided into four groups: the control group, the CMS-induced depression group, the CMS-induced depression and exercise group, and the CMS-induced depression and fluoxetine-treated group. The animals in the CMS groups were exposed to the CMS conditions for 8 weeks and those in the control group were exposed to the control conditions for 8 weeks. After 4 weeks of CMS, the rats in the CMS-induced depression and exercise group were made to run on a motorized treadmill for 30 min once a day for 4 weeks. In the present results, treadmill exercise alleviated CMS-induced depressive symptoms. Treadmill exercise restored sucrose consumption, increased cell proliferation, and decreased apoptotic cell death. The present results suggest the possibility that exercise may improve symptoms of depression. PMID:26730380

  1. Prepubertal Exposure to Genistein Alleviates Di-(2-ethylhexyl) Phthalate Induced Testicular Oxidative Stress in Adult Rats

    PubMed Central

    Zhang, Lian-Dong; Li, He-Cheng; Chong, Tie; Gao, Ming; Yin, Jian; Fu, De-Lai; Deng, Qian; Wang, Zi-Ming

    2014-01-01

    Di-(2-ethylhexyl) phthalate (DEHP) is the most widely used plastizer in the world and can suppress testosterone production via activation of oxidative stress. Genistein (GEN) is one of the isoflavones ingredients exhibiting weak estrogenic and potentially antioxidative effects. However, study on reproductive effects following prepubertal multiple endocrine disrupters exposure has been lacking. In this study, DEHP and GEN were administrated to prepubertal male Sprague-Dawley rats by gavage from postnatal day 22 (PND22) to PND35 with vehicle control, GEN at 50 mg/kg body weight (bw)/day (G), DEHP at 50, 150, 450 mg/kg bw/day (D50, D150, D450) and their mixture (G + D50, G + D150, G + D450). On PND90, general morphometry (body weight, AGD, organ weight, and organ coefficient), testicular redox state, and testicular histology were studied. Our results indicated that DEHP could significantly decrease sex organs weight, organ coefficient, and testicular antioxidative ability, which largely depended on the dose of DEHP. However, coadministration of GEN could partially alleviate DEHP-induced reproductive injuries via enhancement of testicular antioxidative enzymes activities, which indicates that GEN has protective effects on DEHP-induced male reproductive system damage after prepubertal exposure and GEN may have promising future in its curative antioxidative role for reproductive disorders caused by other environmental endocrine disruptors. PMID:25530965

  2. Does a sorghum-cowpea composite porridge hold promise for contributing to alleviating oxidative stress?

    PubMed

    Apea-Bah, Franklin B; Minnaar, Amanda; Bester, Megan J; Duodu, Kwaku G

    2014-08-15

    The effect of compositing red non-tannin sorghum with cream-coloured cowpea and porridge preparation on phenolic profile and radical scavenging activity was studied. A maize-soybean composite porridge representing a similar product on the South African market was used as reference sample. UPLC-QToF-MS-ESI was used to determine phenolic composition of the grain flours, their composites and porridges. Total phenolic content was determined using Folin-Ciocalteu method while radical scavenging activity was determined using the ABTS, DPPH and NO radical scavenging assays. Four benzoic acid derivatives and five cinnamic acid derivatives were identified in the samples. The predominant flavonoid subclasses identified in sorghum were flavan-3-ols, flavanones and flavones while cowpea had mainly flavan-3-ols and flavonols with soybean having mainly isoflavones. Compositing the cereals with legumes significantly (p<0.01) increased their total flavonoid content and radical scavenging activities. Sorghum-cowpea composite porridge showed better promise in contributing to alleviating radical induced oxidative stress than maize-soybean composite porridge.

  3. Arbuscular mycorrhizal fungi alleviate oxidative stress induced by ADOR and enhance antioxidant responses of tomato plants.

    PubMed

    García-Sánchez, Mercedes; Palma, José Manuel; Ocampo, Juan Antonio; García-Romera, Inmaculada; Aranda, Elisabet

    2014-03-15

    The behaviour of tomato plants inoculated with arbuscular mycorrhizal (AM) fungi grown in the presence of aqueous extracts from dry olive residue (ADOR) was studied in order to understand how this symbiotic relationship helps plants to cope with oxidative stress caused by ADOR. The influence of AM symbiosis on plant growth and other physiological parameters was also studied. Tomato plants were inoculated with the AM fungus Funneliformis mosseae and were grown in the presence of ADOR bioremediated and non-bioremediated by Coriolopsis floccosa and Penicillium chrysogenum-10. The antioxidant response as well as parameters of oxidative damage were examined in roots and leaves. The data showed a significant increase in the biomass of AM plant growth in the presence of ADOR, regardless of whether it was bioremediated. The establishment and development of the symbiosis were negatively affected after plants were exposed to ADOR. No differences were observed in the relative water content (RWC) or PS II efficiency between non-AM and AM plants. The increase in the enzymatic activities of superoxide dismutase (SOD; EC 1.15.1.1), catalase (CAT; EC 1.11.1.6) and glutathione-S-transferase (GST; EC 2.5.1.18) were simultaneous to the reduction of MDA levels and H2O2 content in AM root growth in the presence of ADOR. Similar H2O2 levels were observed among non-AM and AM plants, although only AM plants showed reduced lipid peroxidation content, probably due to the involvement of antioxidant enzymes. The results highlight how the application of both bioremediated ADOR and AM fungi can alleviate the oxidative stress conditions, improving the growth and development of tomato plants.

  4. Arbuscular mycorrhizal fungi alleviate oxidative stress induced by ADOR and enhance antioxidant responses of tomato plants.

    PubMed

    García-Sánchez, Mercedes; Palma, José Manuel; Ocampo, Juan Antonio; García-Romera, Inmaculada; Aranda, Elisabet

    2014-03-15

    The behaviour of tomato plants inoculated with arbuscular mycorrhizal (AM) fungi grown in the presence of aqueous extracts from dry olive residue (ADOR) was studied in order to understand how this symbiotic relationship helps plants to cope with oxidative stress caused by ADOR. The influence of AM symbiosis on plant growth and other physiological parameters was also studied. Tomato plants were inoculated with the AM fungus Funneliformis mosseae and were grown in the presence of ADOR bioremediated and non-bioremediated by Coriolopsis floccosa and Penicillium chrysogenum-10. The antioxidant response as well as parameters of oxidative damage were examined in roots and leaves. The data showed a significant increase in the biomass of AM plant growth in the presence of ADOR, regardless of whether it was bioremediated. The establishment and development of the symbiosis were negatively affected after plants were exposed to ADOR. No differences were observed in the relative water content (RWC) or PS II efficiency between non-AM and AM plants. The increase in the enzymatic activities of superoxide dismutase (SOD; EC 1.15.1.1), catalase (CAT; EC 1.11.1.6) and glutathione-S-transferase (GST; EC 2.5.1.18) were simultaneous to the reduction of MDA levels and H2O2 content in AM root growth in the presence of ADOR. Similar H2O2 levels were observed among non-AM and AM plants, although only AM plants showed reduced lipid peroxidation content, probably due to the involvement of antioxidant enzymes. The results highlight how the application of both bioremediated ADOR and AM fungi can alleviate the oxidative stress conditions, improving the growth and development of tomato plants. PMID:24594394

  5. [Alleviation of salt stress during maize seed germination by presoaking with exogenous sugar].

    PubMed

    Zhao, Ying; Yang, Ke-jun; Li, Zuo-tong; Zhao, Chang-jiang; Xu, Jing-yu; Hu, Xue- wei; Shi, Xin-xin; Ma, Li-feng

    2015-09-01

    The maize variety Kenyu 6 was used to study the effects of exogenous glucose (Glc) and sucrose (Suc) on salt tolerance of maize seeds at germination stage under 150 mmol · L(-1) NaCl treatment. Results showed that under salt stress condition, 0.5 mmol · L(-1) exogenous Glc and Suc presoaking could promote seed germination and early seedling growth. Compared with the salt treatment, Glc presoaking increased the shoot length, radicle length and corresponding dry mass up to 1.5, 1.3, 2.1 and 1.8 times, and those of the Suc presoaking treatment increased up to 1.7, 1.3. 2.7 and 1.9 times, respectively. Exogenous Glc and Suc presoaking resulted in decreased levels of thiobarbituric acid reactive substances (TBARS) and hydrogen peroxide (H2O2) content of maize shoot under salt stress, which were lowered by 24.9% and 20.6% respectively. Exogenous Glc and Suc presoaking could increase the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione peroxidase (GPX), glutathione reductase (GR) and induce glucose-6-phosphate dehydrogenase (G6PDH) activity of maize shoot under salt stress. Compared with the salt treatment. Glc presoaking increased the activity of SOD, APX, GPX, GR and G6PDH by 66.2%, 62.9%, 32.0%, 38.5% and 50.5%, and those of the Suc presoaking increased by 67.5%, 59.8%, 30.0%, 38.5% and 50.4%, respectively. Glc and Suc presoaking also significantly increased the contents of ascorbic acid (ASA) and glutathione (GSH), ASA/DHA and GSH/GSSG. The G6PDH activity was found closely related with the strong antioxidation capacity induced by exogenous sugars. In addition, Glc and Suc presoaking enhanced K+/Na+ in maize shoot by 1.3 and 1.4 times of water soaking salt treatment, respectively. These results indicated that exogenous Glc and Suc presoaking could improve antioxidation capacity of maize seeds and maintain the in vivo K+/Na+ ion balance to alleviate the inhibitory effect of salt stress on maize seed germination.

  6. [Alleviation of salt stress during maize seed germination by presoaking with exogenous sugar].

    PubMed

    Zhao, Ying; Yang, Ke-jun; Li, Zuo-tong; Zhao, Chang-jiang; Xu, Jing-yu; Hu, Xue- wei; Shi, Xin-xin; Ma, Li-feng

    2015-09-01

    The maize variety Kenyu 6 was used to study the effects of exogenous glucose (Glc) and sucrose (Suc) on salt tolerance of maize seeds at germination stage under 150 mmol · L(-1) NaCl treatment. Results showed that under salt stress condition, 0.5 mmol · L(-1) exogenous Glc and Suc presoaking could promote seed germination and early seedling growth. Compared with the salt treatment, Glc presoaking increased the shoot length, radicle length and corresponding dry mass up to 1.5, 1.3, 2.1 and 1.8 times, and those of the Suc presoaking treatment increased up to 1.7, 1.3. 2.7 and 1.9 times, respectively. Exogenous Glc and Suc presoaking resulted in decreased levels of thiobarbituric acid reactive substances (TBARS) and hydrogen peroxide (H2O2) content of maize shoot under salt stress, which were lowered by 24.9% and 20.6% respectively. Exogenous Glc and Suc presoaking could increase the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione peroxidase (GPX), glutathione reductase (GR) and induce glucose-6-phosphate dehydrogenase (G6PDH) activity of maize shoot under salt stress. Compared with the salt treatment. Glc presoaking increased the activity of SOD, APX, GPX, GR and G6PDH by 66.2%, 62.9%, 32.0%, 38.5% and 50.5%, and those of the Suc presoaking increased by 67.5%, 59.8%, 30.0%, 38.5% and 50.4%, respectively. Glc and Suc presoaking also significantly increased the contents of ascorbic acid (ASA) and glutathione (GSH), ASA/DHA and GSH/GSSG. The G6PDH activity was found closely related with the strong antioxidation capacity induced by exogenous sugars. In addition, Glc and Suc presoaking enhanced K+/Na+ in maize shoot by 1.3 and 1.4 times of water soaking salt treatment, respectively. These results indicated that exogenous Glc and Suc presoaking could improve antioxidation capacity of maize seeds and maintain the in vivo K+/Na+ ion balance to alleviate the inhibitory effect of salt stress on maize seed germination. PMID:26785556

  7. Bacillus amyloliquefaciens supplementation alleviates immunological stress in lipopolysaccharide-challenged broilers at early age.

    PubMed

    Li, Y; Zhang, H; Chen, Y P; Yang, M X; Zhang, L L; Lu, Z X; Zhou, Y M; Wang, T

    2015-07-01

    This study was conducted to investigate the effect of Bacillus amyloliquefaciens ( BA: ) on the immune function of broilers challenged with lipopolysaccharide ( LPS: ). 192 one-day-old male Arbor Acre broiler chickens were randomly distributed into four treatments: 1) broilers fed a basal diet; 2) broilers fed a basal diet supplemented with BA; 3) LPS-challenged broilers fed a basal diet; and 4) LPS-challenged broilers fed a basal diet supplemented with BA. Each treatment consisted of six replicates with eight broilers per replicate. Broilers were intraperitoneally injected with either 500 μg LPS per kg body weight or sterile saline at 16, 18 and 20 d of age. LPS decreased the average daily gain ( ADG: , P = 0.001) and average daily feed intake (P = 0.001). The decreased ADG (P = 0.009) and increased feed conversion ratio (P = 0.047) in LPS-challenged broilers were alleviated by BA. LPS increased the relative spleen weight (P = 0.001). Relative spleen (P = 0.014) and bursa (P = 0.024) weights in the LPS-challenged broilers were reduced by BA. LPS increased white blood cell ( WBC: ) numbers (P = 0.001). However, the WBC numbers (P = 0.042) and the ratio of lymphocytes to WBC (P = 0.020) in LPS-challenged broilers were decreased with BA treatment. LPS decreased plasma lysozyme activity (P = 0.001), but increased concentrations of plasma corticosterone (P = 0.012) and IL-2 (P = 0.020). In contrast, BA increased lysozyme activity in plasma (P = 0.040). LPS increased mRNA abundances of splenic toll-like receptor 4 (P = 0.046), interferon γ (P = 0.008), IL-1β (P = 0.045) and IL-6, (P = 0.006). IL-2 (P = 0.014) and IL-6 (P = 0.074) mRNA abundances in LPS-challenged broilers were reduced by BA, although BA had an opposite effect for IL-10 mRNA expression in those broilers (P = 0.004). In conclusion, BA supplementation could partially alleviate the compromised growth performance and immune status of broilers under immune stress induced by LPS challenge at early age. PMID

  8. Drivers and barriers to heat stress resilience.

    PubMed

    Hatvani-Kovacs, Gertrud; Belusko, Martin; Skinner, Natalie; Pockett, John; Boland, John

    2016-11-15

    Heatwaves are the most dangerous natural hazard to health in Australia. The frequency and intensity of heatwaves will increase due to climate change and urban heat island effects in cities, aggravating the negative impacts of heatwaves. Two approaches exist to develop population heat stress resilience. Firstly, the most vulnerable social groups can be identified and public health services can prepare for the increased morbidity. Secondly, the population level of adaptation and the heat stress resistance of the built environment can be increased. The evaluation of these measures and their efficiencies has been fragmented across research disciplines. This study explored the relationships between the elements of heat stress resilience and their potential demographic and housing drivers and barriers. The responses of a representative online survey (N=393) about heat stress resilience at home and work from Adelaide, South Australia were analysed. The empirical findings demonstrate that heat stress resistant buildings increased adaptation capacity and decreased the number of health problems. Air-conditioning increased dependence upon it, limited passive adaptation and only people living in homes with whole-house air-conditioning had less health problems during heatwaves. Tenants and respondents with pre-existing health conditions were the most vulnerable, particularly as those with health conditions were not aware of their vulnerability. The introduction of an Energy Performance Certificate is proposed and discussed as an effective incentive to increase the heat stress resistance of and the general knowledge about the built environment. PMID:27432732

  9. Alleviation of salt stress-induced inhibition of seed germination in cucumber (Cucumis sativus L.) by ethylene and glutamate.

    PubMed

    Chang, Chenshuo; Wang, Baolan; Shi, Lei; Li, Yinxin; Duo, Lian; Zhang, Wenhao

    2010-09-15

    Ethylene is an important plant gas hormone, and the amino acid Glu is emerging as a messenger molecule in plants. To evaluate the role of ethylene and Glu in seed germination and radicle growth under salt stress, effects of 1-aminocyclopropane-1-carboxylic acid (ACC), Ethephon and Glu on germination and radicle growth of cucumber (Cucumis sativus L.) seeds in the absence and presence of 200 mM NaCl were investigated. Seed germination was markedly inhibited by salt stress, and this effect was alleviated by ACC and Ethephon. In contrast to seed germination, ACC and Ethephon had little effect on radicle growth under salt stress. In addition to ethylene, we found exogenous supply of Glu was effective in alleviating the salt stress-induced inhibition of seed germination and radicle growth. The effect of Glu on the seed germination and radicle growth was specific to L-Glu, whereas D-Glu and Gln had no effect. There was an increase in ethylene production during seed imbibition, and salt stress suppressed ethylene production. Exogenous L-Glu evoked ethylene evolution from the imbibed seeds and attenuated the reduction in ethylene evolution induced by salt stress. The alleviative effect of L-Glu on seed germination was diminished by antagonists of ethylene synthesis, aminoethoxyvinylglycine (AVG) and CoCl(2), suggesting that L-Glu is likely to exert its effect on seed germination by modulation of ethylene evolution. These findings demonstrate that ethylene is associated with suppression of seed germination under salt stress and that L-Glu interacts with ethylene in regulation of seed germination under salt stress.

  10. Protective clothing and heat stress.

    PubMed

    Holmér, I

    1995-01-01

    The high level of protection required by protective clothing (PPC) severely impedes heat exchange by sweat evaporation. As a result work associated with wearing PPC, particularly in hot environments, implies considerable physiological strain and may render workers exhausted in a short time. Current methods of describing evaporative heat exchange with PPC are insufficient, will overestimate evaporative heat loss and should not be recommended. More reliable measures of the resistance to evaporative heat transfer by PPC should be developed and standardized. Direct measurements of evaporative resistance of PPC may be carried. However, a more promising method appears to be the definition of evaporative resistance on the basis of the icl-index for the fabric layers. The icl-index is a permeation efficiency ratio, which in combination with clothing insulation determines the evaporative heat transfer. Current methods should be further developed to account for effects of moisture condensation and microclimate ventilation.

  11. Protective clothing and heat stress.

    PubMed

    Holmér, I

    1995-01-01

    The high level of protection required by protective clothing (PPC) severely impedes heat exchange by sweat evaporation. As a result work associated with wearing PPC, particularly in hot environments, implies considerable physiological strain and may render workers exhausted in a short time. Current methods of describing evaporative heat exchange with PPC are insufficient, will overestimate evaporative heat loss and should not be recommended. More reliable measures of the resistance to evaporative heat transfer by PPC should be developed and standardized. Direct measurements of evaporative resistance of PPC may be carried. However, a more promising method appears to be the definition of evaporative resistance on the basis of the icl-index for the fabric layers. The icl-index is a permeation efficiency ratio, which in combination with clothing insulation determines the evaporative heat transfer. Current methods should be further developed to account for effects of moisture condensation and microclimate ventilation. PMID:7875118

  12. Exogenous ascorbic acid and glutathione alleviate oxidative stress induced by salt stress in the chloroplasts of Oryza sativa L.

    PubMed

    Wang, Renlei; Liu, Shaohua; Zhou, Feng; Ding, Chunxia; Hua, Chun

    2014-01-01

    The effects of exogenous ascorbic acid (AsA) and reduced glutathione (GSH) on antioxidant enzyme activities [superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR)] and the contents of malondialdehyde (MDA) and H2O2, as well as of endogenous AsA and GSH, in the chloroplasts of two rice cultivars, the salt-tolerant cultivar Pokkali and the salt-sensitive cultivar Peta, were investigated. Exogenous AsA and GSH enhanced SOD, APX, and GR activities, increased endogenous AsA and GSH contents, and reduced those of H2O2 and MDA in the chloroplasts of both cultivars under salt stress (200 mM NaCl), but the effects were significantly more pronounced in cv. Pokkali. GSH acted more strongly than AsA on the plastidial reactive oxygen scavenging systems. These results indicated that exogenous AsA and GSH differentially enhanced salinity tolerance and alleviated salinity-induced damage in the two rice cultivars.

  13. Acute heat stress induces oxidative stress and decreases adaptation in young white leghorn cockerels by downregulation of avian uncoupling protein.

    PubMed

    Mujahid, A; Akiba, Y; Toyomizu, M

    2007-02-01

    Reactive oxygen species-induced damage of cells and molecules is one of the mechanisms responsible for the decline in an animal's performance due to heat stress. Mitochondria are the main producers of cellular superoxide, a process that is sensitive to proton motive force, and this superoxide production can be decreased by mild uncoupling. We studied the effects of heat stress on the production of mitochondrial superoxide as well as heat stress effects on the expression of avian uncoupling protein (avUCP) and avian A nucleotide translocator (avANT) in skeletal muscles of chicks and young cockerels. Male White Leghorn (Julia) chicks at 16 d and cockerels at 87 d of age were exposed to acute heat stress, 34 degrees C for 18 h, or kept at moderate ambient temperature (25 and 21 degrees C, respectively). There was no difference in mitochondrial superoxide production between heat-exposed and control chicks, whereas significant differences were observed in the case of young cockerels. Greater substrate-independent superoxide production was found in muscle mitochondria from heat-stressed young cockerels. In chicks, neither avUCP nor avANT transcript expression was changed by heat exposure, whereas in young cockerels avUCP transcript was decreased, but avANT transcript level was not changed. Thus, in heat-stressed young cockerels, increased mitochondrial superoxide production was accompanied by downregulation of avUCP. Taken together, these results suggest that exposure of young cockerels to heat stress stimulates mitochondrial superoxide production, possibly via downregulation of avUCP. Chicks with persistent avUCP expression, on the other hand, are relatively better adapted to high temperature. It can be assumed that appropriate expression of avUCP may alleviate overproduction of mitochondrial superoxide and could help birds adapt to oxidative stress resulting from acute heat stress.

  14. Involvement of ethylene in gibberellic acid-induced sulfur assimilation, photosynthetic responses, and alleviation of cadmium stress in mustard.

    PubMed

    Masood, Asim; Khan, M Iqbal R; Fatma, Mehar; Asgher, Mohd; Per, Tasir S; Khan, Nafees A

    2016-07-01

    The role of gibberellic acid (GA) or sulfur (S) in stimulation of photosynthesis is known. However, information on the involvement of ethylene in GA-induced photosynthetic responses and cadmium (Cd) tolerance is lacking. This work shows that ethylene is involved in S-assimilation, photosynthetic responses and alleviation of Cd stress by GA in mustard (Brassica juncea L.). Plants grown with 200 mg Cd kg(-1) soil were less responsive to ethylene despite high ethylene evolution and showed photosynthetic inhibition. Plants receiving 10 μM GA spraying plus 100 mg S kg(-1) soil supplementation exhibited increased S-assimilation and photosynthetic responses under Cd stress. Application of GA plus S decreased oxidative stress of plants grown with Cd and limited stress ethylene formation to the range suitable for promoting sulfur use efficiency (SUE), glutathione (GSH) production and photosynthesis. The role of ethylene in GA-induced S-assimilation and reversal of photosynthetic inhibition by Cd was substantiated by inhibiting ethylene biosynthesis with the use of aminoethoxyvinylglycine (AVG). The suppression of S-assimilation and photosynthetic responses by inhibiting ethylene in GA plus S treated plants under Cd stress indicated the involvement of ethylene in GA-induced S-assimilation and Cd stress alleviation. The outcome of the study is important to unravel the interaction between GA and ethylene and their role in Cd tolerance in plants. PMID:26998941

  15. Involvement of ethylene in gibberellic acid-induced sulfur assimilation, photosynthetic responses, and alleviation of cadmium stress in mustard.

    PubMed

    Masood, Asim; Khan, M Iqbal R; Fatma, Mehar; Asgher, Mohd; Per, Tasir S; Khan, Nafees A

    2016-07-01

    The role of gibberellic acid (GA) or sulfur (S) in stimulation of photosynthesis is known. However, information on the involvement of ethylene in GA-induced photosynthetic responses and cadmium (Cd) tolerance is lacking. This work shows that ethylene is involved in S-assimilation, photosynthetic responses and alleviation of Cd stress by GA in mustard (Brassica juncea L.). Plants grown with 200 mg Cd kg(-1) soil were less responsive to ethylene despite high ethylene evolution and showed photosynthetic inhibition. Plants receiving 10 μM GA spraying plus 100 mg S kg(-1) soil supplementation exhibited increased S-assimilation and photosynthetic responses under Cd stress. Application of GA plus S decreased oxidative stress of plants grown with Cd and limited stress ethylene formation to the range suitable for promoting sulfur use efficiency (SUE), glutathione (GSH) production and photosynthesis. The role of ethylene in GA-induced S-assimilation and reversal of photosynthetic inhibition by Cd was substantiated by inhibiting ethylene biosynthesis with the use of aminoethoxyvinylglycine (AVG). The suppression of S-assimilation and photosynthetic responses by inhibiting ethylene in GA plus S treated plants under Cd stress indicated the involvement of ethylene in GA-induced S-assimilation and Cd stress alleviation. The outcome of the study is important to unravel the interaction between GA and ethylene and their role in Cd tolerance in plants.

  16. Isolation and characterization of ACC deaminase-producing fluorescent pseudomonads, to alleviate salinity stress on canola (Brassica napus L.) growth.

    PubMed

    Jalili, Farzad; Khavazi, Kazem; Pazira, Ebrahim; Nejati, Alireza; Rahmani, Hadi Asadi; Sadaghiani, Hasan Rasuli; Miransari, Mohammad

    2009-04-01

    Salinity stress is of great importance in arid and semi-arid areas of the world due to its impact in reducing crop yield. Under salinity stress, the amount of 1-aminocyclopropane-1-carboxylate (ACC), a precursor for ethylene production in plants, increases. Here, we conducted research under the hypothesis that isolated ACC deaminase-producing Pseudomonas fluorescens and Pseudomonas putida can alleviate the stressful effects of salinity on canola (Brassica napus L.) growth. The experiments were conducted in the Soil and Water Research Institute, Tehran, Iran. Seven experimental stages were conducted to isolate and characterize ACC deaminase-producing Pseudomonas fluorescens strains and to determine factors enhancing their growth and, consequently, their effects on the germination of canola seeds. Under salinity stress, in 14% of the isolates, ACC deaminase activity was observed, indicating that they were able to utilize ACC as the sole N-source. Bacterial strains differed in their ability to synthesize auxin and hydrogen cyanide compounds, as well as in their ACC deaminase activity. Under salinity stress, the rate of germinating seeds inoculated with the strains of ACC deaminase-producing Pseudomonas fluorescens and Pseudomonas putida, and seedling growth was significantly higher. These results indicate the significance of soil biological activities, including the activities of plant growth-promoting bacteria, in the alleviation of soil stresses such as salinity on plant growth.

  17. Differential expression of heat shock transcription factors and heat shock proteins after acute and chronic heat stress in laying chickens (Gallus gallus).

    PubMed

    Xie, Jingjing; Tang, Li; Lu, Lin; Zhang, Liyang; Xi, Lin; Liu, Hsiao-Ching; Odle, Jack; Luo, Xugang

    2014-01-01

    Heat stress due to high environmental temperature negatively influences animal performances. To better understand the biological impact of heat stress, laying broiler breeder chickens were subjected either to acute (step-wisely increasing temperature from 21 to 35°C within 24 hours) or chronic (32°C for 8 weeks) high temperature exposure. High temperature challenges significantly elevated body temperature of experimental birds (P<0.05). However, oxidation status of lipid and protein and expression of heat shock transcription factors (HSFs) and heat shock proteins (HSPs) 70 and 90 were differently affected by acute and chronic treatment. Tissue-specific responses to thermal challenge were also found among heart, liver and muscle. In the heart, acute heat challenge affected lipid oxidation (P = 0.05) and gene expression of all 4 HSF gene expression was upregulated (P<0.05). During chronic heat treatment, the HSP 70 mRNA level was increased (P<0.05) and HSP 90 mRNA (P<0.05) was decreased. In the liver, oxidation of protein was alleviated during acute heat challenge (P<0.05), however, gene expression HSF2, 3 and 4 and HSP 70 were highly induced (P<0.05). HSP90 expression was increased by chronic thermal treatment (P<0.05). In the muscle, both types of heat stress increased protein oxidation, but HSFs and HSPs gene expression remained unaltered. Only tendencies to increase were observed in HSP 70 (P = 0.052) and 90 (P = 0.054) gene expression after acute heat stress. The differential expressions of HSF and HSP genes in different tissues of laying broiler breeder chickens suggested that anti-heat stress mechanisms might be provoked more profoundly in the heart, by which the muscle was least protected during heat stress. In addition to HSP, HSFs gene expression could be used as a marker during acute heat stress.

  18. Pea lectin receptor-like kinase functions in salinity adaptation without yield penalty, by alleviating osmotic and ionic stresses and upregulating stress-responsive genes.

    PubMed

    Vaid, Neha; Pandey, Prashant; Srivastava, Vineet Kumar; Tuteja, Narendra

    2015-05-01

    Lectin receptor-like kinases (LecRLKs) are members of RLK family composed of lectin-like extracellular recognition domain, transmembrane domain and cytoplasmic kinase domain. LecRLKs are plasma membrane proteins believed to be involved in signal transduction. However, most of the members of the protein family even in plants have not been functionally well characterized. Herein, we show that Pisum sativum LecRLK (PsLecRLK) localized in plasma membrane systems and/or other regions of the cell and its transcript upregulated under salinity stress. Overexpression of PsLecRLK in transgenic tobacco plants confers salinity stress tolerance by alleviating both the ionic as well the osmotic component of salinity stress. The transgenic plants show better tissue compartmentalization of Na(+) and higher ROS scavenging activity which probably results in lower membrane damage, improved growth and yield maintenance even under salinity stress. Also, expression of several genes involved in cellular homeostasis is perturbed by PsLecRLK overexpression. Alleviation of osmotic and ionic components of salinity stress along with reduced oxidative damage and upregulation of stress-responsive genes in transgenic plants under salinity stress conditions could be possible mechanism facilitating enhanced stress tolerance. This study presents PsLecRLK as a promising candidate for crop improvement and also opens up new avenue to investigate its signalling pathway.

  19. Role of brassinosteroids in alleviation of phenanthrene–cadmium co-contamination-induced photosynthetic inhibition and oxidative stress in tomato

    PubMed Central

    Ahammed, Golam Jalal; Yu, Jingquan

    2013-01-01

    Heavy metal pollution often occurs together with organic contaminants. Brassinosteroids (BRs) induce plant tolerance to several abiotic stresses, including phenanthrene (PHE) and cadmium (Cd) stress. However, the role of BRs in PHE+Cd co-contamination-induced stress amelioration is unknown. Here, the interactive effects of PHE, Cd, and 24-epibrassinolide (EBR; a biologically active BR) were investigated in tomato plants. The application of Cd (100 µM) alone was more phytotoxic than PHE applied alone (100 µM); however, their combined application resulted in slightly improved photosynthetic activity and pigment content compared with Cd alone after a 40 d exposure. Accumulation of reactive oxygen species and membrane lipid peroxidation were induced by PHE and/or Cd; however, the differences in effect were insignificant between Cd and PHE+Cd. The foliar application of EBR (0.1 µM) to PHE- and/or Cd-stressed plants alleviated photosynthetic inhibition and oxidative stress by causing enhancement of the activity of the enzymes and related transcript levels of the antioxidant system, secondary metabolism, and the xenobiotic detoxification system. Additionally, PHE and/or Cd residues were significantly decreased in both the leaves and roots after application of EBR, more specifically in PHE+Cd-stressed plants when treated with EBR, indicating a possible improvement in detoxification of these pollutants. The findings thus suggest a potential interaction of EBR and PHE for Cd stress alleviation. These results advocate a positive role for EBR in reducing pollutant residues for food safety and also strengthening phytoremediation. PMID:23201830

  20. Role of brassinosteroids in alleviation of phenanthrene-cadmium co-contamination-induced photosynthetic inhibition and oxidative stress in tomato.

    PubMed

    Ahammed, Golam Jalal; Choudhary, Sikander Pal; Chen, Shuangchen; Xia, Xiaojian; Shi, Kai; Zhou, Yanhong; Yu, Jingquan

    2013-01-01

    Heavy metal pollution often occurs together with organic contaminants. Brassinosteroids (BRs) induce plant tolerance to several abiotic stresses, including phenanthrene (PHE) and cadmium (Cd) stress. However, the role of BRs in PHE+Cd co-contamination-induced stress amelioration is unknown. Here, the interactive effects of PHE, Cd, and 24-epibrassinolide (EBR; a biologically active BR) were investigated in tomato plants. The application of Cd (100 µM) alone was more phytotoxic than PHE applied alone (100 µM); however, their combined application resulted in slightly improved photosynthetic activity and pigment content compared with Cd alone after a 40 d exposure. Accumulation of reactive oxygen species and membrane lipid peroxidation were induced by PHE and/or Cd; however, the differences in effect were insignificant between Cd and PHE+Cd. The foliar application of EBR (0.1 µM) to PHE- and/or Cd-stressed plants alleviated photosynthetic inhibition and oxidative stress by causing enhancement of the activity of the enzymes and related transcript levels of the antioxidant system, secondary metabolism, and the xenobiotic detoxification system. Additionally, PHE and/or Cd residues were significantly decreased in both the leaves and roots after application of EBR, more specifically in PHE+Cd-stressed plants when treated with EBR, indicating a possible improvement in detoxification of these pollutants. The findings thus suggest a potential interaction of EBR and PHE for Cd stress alleviation. These results advocate a positive role for EBR in reducing pollutant residues for food safety and also strengthening phytoremediation.

  1. Effect of drought and heat stresses on plant growth and yield: a review

    NASA Astrophysics Data System (ADS)

    Lipiec, J.; Doussan, C.; Nosalewicz, A.; Kondracka, K.

    2013-12-01

    Drought and heat stresses are important threat limitations to plant growth and sustainable agriculture worldwide. Our objective is to provide a review of plant responses and adaptations to drought and elevated temperature including roots, shoots, and final yield and management approaches for alleviating adverse effects of the stresses based mostly on recent literature. The sections of the paper deal with plant responses including root growth, transpiration, photosynthesis, water use efficiency, phenotypic flexibility, accumulation of compounds of low molecular mass (eg proline and gibberellins), and expression of some genes and proteins for increasing the tolerance to the abiotic stresses. Soil and crop management practices to alleviate negative effects of drought and heat stresses are also discussed. Investigations involving determination of plant assimilate partitioning, phenotypic plasticity, and identification of most stress-tolerant plant genotypes are essential for understanding the complexity of the responses and for future plant breeding. The adverse effects of drought and heat stress can be mitigated by soil management practices, crop establishment, and foliar application of growth regulators by maintaining an appropriate level of water in the leaves due to osmotic adjustment and stomatal performance.

  2. Stress response and virulence of heat-stressed Campylobacter jejuni.

    PubMed

    Klančnik, Anja; Vučković, Darinka; Jamnik, Polona; Abram, Maja; Možina, Sonja Smole

    2014-01-01

    Thermotolerant Campylobacter spp. frequently cause bacterial gastroenteritis in humans commonly infected through the consumption of undercooked poultry meat. We examined Campylobacter jejuni heat-stress responses in vitro after exposure to 48°C and 55°C. The in vivo modulation of its pathogenicity was also investigated using BALB/c mice intravenously infected with stressed C. jejuni. Regardless of the bacterial growth phase, the culturability and viability of C. jejuni in vitro was reduced after exposure to 55°C. This correlated with the altered protein profile and decreased virulence properties observed in vivo. Heat stress at 48°C elicited the transition to more resistant bacterial forms, independent of morphological changes or the appearance of shorter spiral and coccoid cells. This treatment did not cause marked changes in bacterial virulence properties in vivo. These results indicated that the characteristics and pathogenicity of C. jejuni in response to heat stress are temperature dependent. Further studies on the responses of C. jejuni to stresses used during food processing, as well as the modulation of its virulence, are important for a better understanding of its contamination and infective cycle, and will, thus, contribute to improved safety in the food production chain.

  3. Restoration of autophagy alleviates hepatic ER stress and impaired insulin signalling transduction in high fructose-fed male mice.

    PubMed

    Wang, Hao; Sun, Ruo-Qiong; Zeng, Xiao-Yi; Zhou, Xiu; Li, Songpei; Jo, Eunjung; Molero, Juan C; Ye, Ji-Ming

    2015-01-01

    High-carbohydrate (mainly fructose) consumption is a major dietary factor for hepatic insulin resistance, involving endoplasmic reticulum (ER) stress and lipid accumulation. Because autophagy has been implicated in ER stress, the present study investigated the role of autophagy in high-fructose (HFru) diet-induced hepatic ER stress and insulin resistance in male C57BL/6J mice. The results show that chronic HFru feeding induced glucose intolerance and impaired insulin signaling transduction in the liver, associated with ER stress and the accumulation of lipids. Intriguingly, hepatic autophagy was suppressed as a result of activation of mammalian target of rapamycin. The suppressed autophagy was detected within 6 hours after HFru feeding along with activation of both inositol-requiring enzyme 1 and protein kinase RNA-like endoplasmic reticulum kinase pathways. These events occurred prior to lipid accumulation or lipogenesis and were sufficient to blunt insulin signaling transduction with activation of c-Jun N-terminal kinase/inhibitory-κB kinase and serine phosphorylation of insulin receptor substrate 1. The stimulation of autophagy attenuated ER stress- and c-Jun N-terminal kinase/inhibitory-κB kinase-associated impairment in insulin signaling transduction in a mammalian target of rapamycin -independent manner. Taken together, our data suggest that restoration of autophagy functions disrupted by fructose is able to alleviate ER stress and improve insulin signaling transduction.

  4. Alleviation of exogenous 6-benzyladenine on two genotypes of eggplant (Solanum melongena Mill.) growth under salt stress.

    PubMed

    Wu, Xuexia; He, Jie; Chen, Jianlin; Yang, Shaojun; Zha, Dingshi

    2014-01-01

    Cytokinins were recently shown to control plant adaptation to environmental stresses. To characterize the roles of cytokinins in the tolerance of eggplant (Solanum melongena Mill.) to salt stress, the protective effects of 6-benzyladenine (6-BA) on the growth, photosynthesis, and antioxidant capacity in the leaves of two eggplant cultivars Huqie12 (salt-sensitive) and Huqie4 (salt-tolerant) were investigated. Under 90 mM NaCl stress, Huqie4 showed higher biomass accumulation and less oxidative damage compared to the Huqie12. Application of exogenous 10 μM 6-BA significantly alleviated the growth suppression caused by salt stress in two eggplant genotypes. In parallel with the growth, 6-BA application in salt-stressed plants resulted in enhanced chlorophyll contents, as well as photosynthetic parameters such as net CO2 assimilation rate (P n), stomatal conductance (g s), transpiration rate (E), and intercellular CO2 concentration (C i). Furthermore, exogenous 6-BA also significantly reduced the O2 (-) production rate and malondialdehyde content and markedly increased the antioxidant enzymes superoxide dismutase and peroxidase, the antioxidant metabolites ascorbate and reduced glutathione (GSH), and proline in both genotypes under salt stress. The results indicate that exogenous 6-BA is useful to improve the salt resistance of eggplant, which is most likely related to the increase in photosynthesis and antioxidant capacity.

  5. Treadmill exercise alleviates stress-induced impairment of social interaction through 5-hydroxytryptamine 1A receptor activation in rats

    PubMed Central

    Kim, Tae-Woon; Lim, Baek-Vin; Kim, Kijeong; Seo, Jin-Hee; Kim, Chang-Ju

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) and its receptors tyrosine kinase B (trkB), and cyclic adenosine monophosphate response element binding protein (CREB) have been suggested as the neurobiological risk factors causing depressive disorder. Serotonin (5-hydroxytryptamine, 5-HT) plays an important role in the pathogenesis of depression. We in-vestigated the effect of treadmill exercise on social interaction in relation with BDNF and 5-HT expressions following stress in rats. Stress was induced by applying inescapable 0.2 mA electric foot shock to the rats for 7 days. The rats in the exercise groups were forced to run on a motorized treadmill for 30 min once a day for 4 weeks. Social interaction test and western blot for BDNF, TrkB, pCREB, and 5-HT1A in the hippocampus were performed. The results indicate that the spend time with unfamiliar partner was decreased by stress, in contrast, treadmill exercise increased the spending time in the stress-induced rats. Expressions of BDNF, TrkB, and pCREB were decreased by stress, in contrast, treadmill exercise enhanced expressions of BDNF, TrkB, and pCREB in the stress-induced rats. In addition, 5-HT1A receptor expression was de-creased by stress, in contrast, treadmill exercise enhanced 5-HT1A expression in the stress-induced rats. In the present study, treadmill exercise alleviated stress-induced social interaction impairment through enhancing hippocampal plasticity and serotonergic function in the hippocampus. These effects of treadmill exercise are achieved through 5-HT1A receptor activation. PMID:26331133

  6. Treadmill exercise alleviates stress-induced impairment of social interaction through 5-hydroxytryptamine 1A receptor activation in rats.

    PubMed

    Kim, Tae-Woon; Lim, Baek-Vin; Kim, Kijeong; Seo, Jin-Hee; Kim, Chang-Ju

    2015-08-01

    Brain-derived neurotrophic factor (BDNF) and its receptors tyrosine kinase B (trkB), and cyclic adenosine monophosphate response element binding protein (CREB) have been suggested as the neurobiological risk factors causing depressive disorder. Serotonin (5-hydroxytryptamine, 5-HT) plays an important role in the pathogenesis of depression. We in-vestigated the effect of treadmill exercise on social interaction in relation with BDNF and 5-HT expressions following stress in rats. Stress was induced by applying inescapable 0.2 mA electric foot shock to the rats for 7 days. The rats in the exercise groups were forced to run on a motorized treadmill for 30 min once a day for 4 weeks. Social interaction test and western blot for BDNF, TrkB, pCREB, and 5-HT1A in the hippocampus were performed. The results indicate that the spend time with unfamiliar partner was decreased by stress, in contrast, treadmill exercise increased the spending time in the stress-induced rats. Expressions of BDNF, TrkB, and pCREB were decreased by stress, in contrast, treadmill exercise enhanced expressions of BDNF, TrkB, and pCREB in the stress-induced rats. In addition, 5-HT1A receptor expression was de-creased by stress, in contrast, treadmill exercise enhanced 5-HT1A expression in the stress-induced rats. In the present study, treadmill exercise alleviated stress-induced social interaction impairment through enhancing hippocampal plasticity and serotonergic function in the hippocampus. These effects of treadmill exercise are achieved through 5-HT1A receptor activation.

  7. Teacher Stress: What It Is, Why It's Important, How It Can Be Alleviated

    ERIC Educational Resources Information Center

    Prilleltensky, Isaac; Neff, Marilyn; Bessell, Ann

    2016-01-01

    Teacher stress can be conceptualized as an imbalance between risk and protective factors. Stress emanates from risk factors at the personal, interpersonal, and organizational levels. When risk factors exceed protective factors, teacher ability to cope with adversity is inhibited, likely resulting in stress and pernicious consequences. In this…

  8. How Do You Spell Relief? Alleviating Job Stress Caused by Organizations and Executives.

    ERIC Educational Resources Information Center

    Ginsburg, Sigmund G.

    1991-01-01

    College business officers should examine whether they and their institutions are practicing stress-inducing activities, and modify current practice to reduce stress on employees. Stresses can originate in the organizational framework, managerial style, or manager personality. Review of individual and organizational actions possible causing stress…

  9. Setting heat stress limits for acclimatised soldiers exercising in heat.

    PubMed

    Bricknell, M C

    1997-02-01

    Heat illness is a recognised risk of military training. The Combat Fitness Test (CFT) has been identified as an activity that has been associated with heat casualties. The aim of this study was to establish whether a heat stress limit could be set for acclimatised soldiers performing the CFT by measuring the group mean rises in core temperature whilst performing the CFT at various environmental temperatures. The study showed that CFTs should not be undertaken when the start or expected end Wet Bulb Globe Test (WBGT) is greater than 25 degrees C if the group mean rise in core temperature is not to exceed 0.6 degree C (95% CI 0.2 degree C to 1 degree C).

  10. Carbon monoxide alleviates ethanol-induced oxidative damage and inflammatory stress through activating p38 MAPK pathway

    SciTech Connect

    Li, Yanyan; Gao, Chao; Shi, Yanru; Tang, Yuhan; Liu, Liang; Xiong, Ting; Du, Min; Xing, Mingyou; Liu, Liegang; Yao, Ping

    2013-11-15

    Stress-inducible protein heme oxygenase-1(HO-1) is well-appreciative to counteract oxidative damage and inflammatory stress involving the pathogenesis of alcoholic liver diseases (ALD). The potential role and signaling pathways of HO-1 metabolite carbon monoxide (CO), however, still remained unclear. To explore the precise mechanisms, ethanol-dosed adult male Balb/c mice (5.0 g/kg.bw.) or ethanol-incubated primary rat hepatocytes (100 mmol/L) were pretreated by tricarbonyldichlororuthenium (II) dimmer (CORM-2, 8 mg/kg for mice or 20 μmol/L for hepatocytes), as well as other pharmacological reagents. Our data showed that CO released from HO-1 induction by quercetin prevented ethanol-derived oxidative injury, which was abolished by CO scavenger hemoglobin. The protection was mimicked by CORM-2 with the attenuation of GSH depletion, SOD inactivation, MDA overproduction, and the leakage of AST, ALT or LDH in serum and culture medium induced by ethanol. Moreover, CORM-2 injection or incubation stimulated p38 phosphorylation and suppressed abnormal Tnfa and IL-6, accompanying the alleviation of redox imbalance induced by ethanol and aggravated by inflammatory factors. The protective role of CORM-2 was abolished by SB203580 (p38 inhibitor) but not by PD98059 (ERK inhibitor) or SP600125 (JNK inhibitor). Thus, HO-1 released CO prevented ethanol-elicited hepatic oxidative damage and inflammatory stress through activating p38 MAPK pathway, suggesting a potential therapeutic role of gaseous signal molecule on ALD induced by naturally occurring phytochemicals. - Highlights: • CO alleviated ethanol-derived liver oxidative and inflammatory stress in mice. • CO eased ethanol and inflammatory factor-induced oxidative damage in hepatocytes. • The p38 MAPK is a key signaling mechanism for the protective function of CO in ALD.

  11. Nitric oxide and hydrogen peroxide alleviate drought stress in marigold explants and promote its adventitious root development.

    PubMed

    Liao, Wei-Biao; Huang, Gao-Bao; Yu, Ji-Hua; Zhang, Mei-Ling

    2012-09-01

    Drought stress is one of the most important environmental factors that regulates plant growth and development. In this study, we examined the effects of nitric oxide (NO) and hydrogen peroxide (H(2)O(2)) on adventitious rooting in marigold (Tagetes erecta L.) under drought stress. The results showed that the promoting effect of NO or H(2)O(2) on rooting under drought stress was dose-dependent, with a maximal biological response at 10 μM NO donor sodium nitroprusside (SNP) or 600 μM H(2)O(2). Results also indicated that endogenous NO and H(2)O(2) may play crucial roles in rooting under drought conditions, and H(2)O(2) may be involved in rooting promoted by NO under drought stress. NO or H(2)O(2) treatment attenuated the destruction of mesophyll cells ultrastructure by drought stress. Similarly, NO or H(2)O(2) increased leaf chlorophyll content, chlorophyll fluorescence parameters (Fv/Fm, ΦPS II and qP), and hypocotyls soluble carbohydrate and protein content, while decreasing starch content. Results suggest that the protection of mesophyll cells ultrastructure by NO or H(2)O(2) under drought conditions improves the photosynthetic performance of leaves and alleviates the negative effects of drought on carbohydrate and nitrogen accumulation in explants, thereby adventitious rooting being promoted. PMID:22771430

  12. Spermine alleviates drought stress in white clover with different resistance by influencing carbohydrate metabolism and dehydrins synthesis.

    PubMed

    Li, Zhou; Jing, Wen; Peng, Yan; Zhang, Xin Quan; Ma, Xiao; Huang, Lin Kai; Yan, Yan-Hong

    2015-01-01

    The objective of this research was to analyse whether ameliorating drought stress through exogenously applied spermine (Spm) was related to carbohydrate metabolism, dehydrins accumulation and the transcription of genes encoding dehydrins in two white clovers (drought-susceptible cv. 'Ladino' and drought-resistant cv. 'Haifa') under controlled drying conditions for 10 days. The results show that the application of Spm effectively alleviates negative effects caused by drought stress in both cultivars. Exogenous Spm led to accumulation of more water-soluble carbohydrates (WSC), sucrose, fructose and sorbitol in both cultivars under drought stress, and also significantly elevated glucose content in leaves of drought-resistant cv. 'Haifa', but had no effect on drought-susceptible cv. 'Ladino'. Accordingly, the key enzyme activities of sucrose and sorbitol metabolism changed along with the application of Spm under drought stress. Spm induced a significant increase in sucrose phosphate synthase (SPS) or sorbitol dehydrogenase (SDH) activity, but decrease in sucrose synthetase (SS) activity when two cultivars were subjected to drought. In addition, the improved accumulation of dehydrins induced by exogenous Spm coincided with three genes expression which was responsible for dehydrins synthesis. But Spm-induced transcript level of dehydrin genes increased earlier in cv. 'Ladino' than that in cv. 'Haifa'. Thus, these results suggest that ameliorating drought stress through exogenously applied Spm may be associated with increased carbohydrate accumulation and dehydrins synthesis. There are differences between drought-susceptible and -resistant white clover cultivars related to Spm regulation of WSC metabolism and dehydrins expression.

  13. Cooling vests with phase change materials: the effects of melting temperature on heat strain alleviation in an extremely hot environment.

    PubMed

    Gao, Chuansi; Kuklane, Kalev; Holmér, Ingvar

    2011-06-01

    A previous study by the authors using a heated thermal manikin showed that the cooling rates of phase change material (PCM) are dependent on temperature gradient, mass, and covering area. The objective of this study was to investigate if the cooling effects of the temperature gradient observed on a thermal manikin could be validated on human subjects in extreme heat. The subjects wore cooling vests with PCMs at two melting temperatures (24 and 28°C) and fire-fighting clothing and equipment, thus forming three test groups (vest24, vest28 and control group without the vest). They walked on a treadmill at a speed of 5 km/h in a climatic chamber (air temperature = 55°C, relative humidity = 30%, vapour pressure = 4,725 Pa, and air velocity = 0.4 m/s). The results showed that the PCM vest with a lower melting temperature (24°C) has a stronger cooling effect on the torso and mean skin temperatures than that with a higher melting temperature (28°C). Both PCM vests mitigate peak core temperature increase during the resting recovery period. The two PCM vests tested, however, had no significant effect on the alleviation of core temperature increase during exercise in the heat. To study the possibility of effective cooling of core temperature, cooling garments with PCMs at even lower melting temperatures (e.g. 15°C) and a larger covering area should be investigated.

  14. Tank waste remediation system heat stress control program report, 1995

    SciTech Connect

    Carls, D.R.

    1995-09-28

    Protecting employees from heat stress within tank farms during the summer months is challenging. Work constraints typically experienced in tank farms complicate the measures taken to protect employees from heat stress. TWRS-Industrial Hygiene (IH) has endeavored to control heat stress injuries by anticipating, recognizing, evaluating and controlling the factors which lead or contribute to heat stress in Tank Farms. The TWRS Heat Stress Control Program covers such areas as: employee and PIC training, communication of daily heat stress alerts to tank farm personnel, setting work/rest regimens, and the use of engineering and personal protective controls when applicable. The program has increased worker awareness of heat stress and prevention, established provisions for worker rest periods, increased drinking water availability to help ensure worker hydration, and allowed for the increased use of other protective controls to combat heat stress. The TWRS Heat Stress Control Program is the cornerstone for controlling heat stress among tank farm employees. The program has made great strides since it`s inception during the summer of 1994. Some improvements can still be made to enhance the program for the summer of 1996, such as: (1) procurement and use of personal heat stress monitoring equipment to ensure appropriate application of administrative controls, (2) decrease the need for use of containment tents and anti-contamination clothing, and (3) providing a wider variety of engineering and personal protective controls for heat stress prevention

  15. Nitric Oxide Alleviates Salt Stress Inhibited Photosynthetic Performance by Interacting with Sulfur Assimilation in Mustard.

    PubMed

    Fatma, Mehar; Masood, Asim; Per, Tasir S; Khan, Nafees A

    2016-01-01

    The role of nitric oxide (NO) and sulfur (S) on stomatal responses and photosynthetic performance was studied in mustard (Brassica juncea L.) in presence or absence of salt stress. The combined application of 100 μM NO (as sodium nitroprusside) and 200 mg S kg(-1) soil (S) more prominently influenced stomatal behavior, photosynthetic and growth performance both in the absence and presence of salt stress. The chloroplasts from salt-stressed plants had disorganized chloroplast thylakoids, but combined application of NO and S resulted in well-developed chloroplast thylakoids and properly stacked grana. The leaves from plants receiving NO plus S exhibited lower superoxide ion accumulation under salt stress than the plants receiving NO or S. These plants also exhibited increased activity of ATP-sulfurylase (ATPS), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) and optimized NO generation that helped in minimizing oxidative stress. The enhanced S-assimilation of these plants receiving NO plus S resulted in increased production of cysteine (Cys) and reduced glutathione (GSH). These findings indicated that NO influenced photosynthesis under salt stress by regulating oxidative stress and its effects on S-assimilation, an antioxidant system and NO generation. The results suggest that NO improves photosynthetic performance of plants grown under salt stress more effectively when plants received S. PMID:27200007

  16. Nitric Oxide Alleviates Salt Stress Inhibited Photosynthetic Performance by Interacting with Sulfur Assimilation in Mustard

    PubMed Central

    Fatma, Mehar; Masood, Asim; Per, Tasir S.; Khan, Nafees A.

    2016-01-01

    The role of nitric oxide (NO) and sulfur (S) on stomatal responses and photosynthetic performance was studied in mustard (Brassica juncea L.) in presence or absence of salt stress. The combined application of 100 μM NO (as sodium nitroprusside) and 200 mg S kg−1 soil (S) more prominently influenced stomatal behavior, photosynthetic and growth performance both in the absence and presence of salt stress. The chloroplasts from salt-stressed plants had disorganized chloroplast thylakoids, but combined application of NO and S resulted in well-developed chloroplast thylakoids and properly stacked grana. The leaves from plants receiving NO plus S exhibited lower superoxide ion accumulation under salt stress than the plants receiving NO or S. These plants also exhibited increased activity of ATP-sulfurylase (ATPS), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) and optimized NO generation that helped in minimizing oxidative stress. The enhanced S-assimilation of these plants receiving NO plus S resulted in increased production of cysteine (Cys) and reduced glutathione (GSH). These findings indicated that NO influenced photosynthesis under salt stress by regulating oxidative stress and its effects on S-assimilation, an antioxidant system and NO generation. The results suggest that NO improves photosynthetic performance of plants grown under salt stress more effectively when plants received S. PMID:27200007

  17. Silicon (Si) alleviates cotton (Gossypium hirsutum L.) from zinc (Zn) toxicity stress by limiting Zn uptake and oxidative damage.

    PubMed

    Anwaar, Shad Ali; Ali, Shafaqat; Ali, Skhawat; Ishaque, Wajid; Farid, Mujahid; Farooq, Muhammad Ahsan; Najeeb, Ullah; Abbas, Farhat; Sharif, Muhammad

    2015-03-01

    Silicon (Si) is as an important fertilizer element, which has been found effective in enhancing plant tolerance to variety of biotic and a-biotic stresses. This study investigates the Si potential to alleviate zinc (Zn) toxicity stress in cotton (Gossypium hirsutum L.). Cotton plants were grown in hydroponics and exposed to different Zn concentration, 0, 25, and 50 μM, alone and/or in combination with 1 mM Si. Incremental Zn concentration in growth media instigated the cellular oxidative damage that was evident from elevated levels of hydrogen peroxide (H2O2), electrolyte leakage, and malondialdehyde (MDA) and consequently inhibited cotton growth, biomass, chlorophyll pigments, and photosynthetic process. Application of Si significantly suppressed Zn accumulation in various plant parts, i.e., roots, stems, and leaves and thus promoted biomass, photosynthetic, growth parameters, and antioxidant enzymes activity of Zn-stressed as well unstressed plants. In addition, Si reduced the MDA and H2O2 production and electrolyte leakage suggesting its role in protecting cotton plants from Zn toxicity-induced oxidative damage. Thus, the study indicated that exogenous Si application could improve growth and development of cotton crop experiencing Zn toxicity stress by limiting Zn bioavailability and oxidative damage.

  18. Current developments in arbuscular mycorrhizal fungi research and its role in salinity stress alleviation: a biotechnological perspective.

    PubMed

    Kumar, Ashwani; Dames, Joanna F; Gupta, Aditi; Sharma, Satyawati; Gilbert, Jack A; Ahmad, Parvaiz

    2015-01-01

    Arbuscular mycorrhizal fungi (AMF) form widespread symbiotic associations with 80% of known land plants. They play a major role in plant nutrition, growth, water absorption, nutrient cycling and protection from pathogens, and as a result, contribute to ecosystem processes. Salinity stress conditions undoubtedly limit plant productivity and, therefore, the role of AMF as a biological tool for improving plant salt stress tolerance, is gaining economic importance worldwide. However, this approach requires a better understanding of how plants and AMF intimately interact with each other in saline environments and how this interaction leads to physiological changes in plants. This knowledge is important to develop sustainable strategies for successful utilization of AMF to improve plant health under a variety of stress conditions. Recent advances in the field of molecular biology, "omics" technology and advanced microscopy can provide new insight about these mechanisms of interaction between AMF and plants, as well as other microbes. This review mainly discusses the effect of salinity on AMF and plants, and role of AMF in alleviation of salinity stress including insight on methods for AMF identification. The focus remains on latest advancements in mycorrhizal research that can potentially offer an integrative understanding of the role of AMF in salinity tolerance and sustainable crop production. PMID:24708070

  19. Evaluation of arbuscular mycorrhizal fungi capacity to alleviate abiotic stress of olive (Olea europaea L.) plants at different transplant conditions.

    PubMed

    Bompadre, María Josefina; Pérgola, Mariana; Fernández Bidondo, Laura; Colombo, Roxana Paula; Silvani, Vanesa Analía; Pardo, Alejandro Guillermo; Ocampo, Juan Antonio; Godeas, Alicia Margarita

    2014-01-01

    The capacity of roots to sense soil physicochemical parameters plays an essential role in maintaining plant nutritional and developmental functions under abiotic stress. These conditions generate reactive oxygen species (ROS) in plant tissues causing oxidation of proteins and lipids among others. Some plants have developed adaptive mechanisms to counteract such adverse conditions such as symbiotic association with arbuscular mycorrhizal fungi (AMF). AMF enhance plant growth and improve transplant survival by protecting host plants against environmental stresses. The aim of this study was to evaluate the alleviation of transplanting stress by two strains of Rhizophagus irregularis (GC2 and GA5) in olive. Our results show that olive plants have an additional energetic expense in growth due to an adaptative response to the growing stage and to the mycorrhizal colonization at the first transplant. However, at the second transplant the coinoculation improves olive plant growth and protects against oxidative stress followed by the GA5-inoculation. In conclusion, a combination of two AMF strains at the beginning of olive propagation produces vigorous plants successfully protected in field cultivation even with an additional cost at the beginning of growth.

  20. Evaluation of Arbuscular Mycorrhizal Fungi Capacity to Alleviate Abiotic Stress of Olive (Olea europaea L.) Plants at Different Transplant Conditions

    PubMed Central

    Bompadre, María Josefina; Pérgola, Mariana; Fernández Bidondo, Laura; Colombo, Roxana Paula; Silvani, Vanesa Analía; Pardo, Alejandro Guillermo; Ocampo, Juan Antonio; Godeas, Alicia Margarita

    2014-01-01

    The capacity of roots to sense soil physicochemical parameters plays an essential role in maintaining plant nutritional and developmental functions under abiotic stress. These conditions generate reactive oxygen species (ROS) in plant tissues causing oxidation of proteins and lipids among others. Some plants have developed adaptive mechanisms to counteract such adverse conditions such as symbiotic association with arbuscular mycorrhizal fungi (AMF). AMF enhance plant growth and improve transplant survival by protecting host plants against environmental stresses. The aim of this study was to evaluate the alleviation of transplanting stress by two strains of Rhizophagus irregularis (GC2 and GA5) in olive. Our results show that olive plants have an additional energetic expense in growth due to an adaptative response to the growing stage and to the mycorrhizal colonization at the first transplant. However, at the second transplant the coinoculation improves olive plant growth and protects against oxidative stress followed by the GA5-inoculation. In conclusion, a combination of two AMF strains at the beginning of olive propagation produces vigorous plants successfully protected in field cultivation even with an additional cost at the beginning of growth. PMID:24688382

  1. Evaluation of arbuscular mycorrhizal fungi capacity to alleviate abiotic stress of olive (Olea europaea L.) plants at different transplant conditions.

    PubMed

    Bompadre, María Josefina; Pérgola, Mariana; Fernández Bidondo, Laura; Colombo, Roxana Paula; Silvani, Vanesa Analía; Pardo, Alejandro Guillermo; Ocampo, Juan Antonio; Godeas, Alicia Margarita

    2014-01-01

    The capacity of roots to sense soil physicochemical parameters plays an essential role in maintaining plant nutritional and developmental functions under abiotic stress. These conditions generate reactive oxygen species (ROS) in plant tissues causing oxidation of proteins and lipids among others. Some plants have developed adaptive mechanisms to counteract such adverse conditions such as symbiotic association with arbuscular mycorrhizal fungi (AMF). AMF enhance plant growth and improve transplant survival by protecting host plants against environmental stresses. The aim of this study was to evaluate the alleviation of transplanting stress by two strains of Rhizophagus irregularis (GC2 and GA5) in olive. Our results show that olive plants have an additional energetic expense in growth due to an adaptative response to the growing stage and to the mycorrhizal colonization at the first transplant. However, at the second transplant the coinoculation improves olive plant growth and protects against oxidative stress followed by the GA5-inoculation. In conclusion, a combination of two AMF strains at the beginning of olive propagation produces vigorous plants successfully protected in field cultivation even with an additional cost at the beginning of growth. PMID:24688382

  2. Activation of NRF2/ARE by isosilybin alleviates Aβ25-35-induced oxidative stress injury in HT-22 cells.

    PubMed

    Zhou, Jing; Chao, Gao; Li, YuLei; Wu, Min; Zhong, ShuZhi; Feng, ZunYong

    2016-10-01

    Aβ-mediated oxidative stress damage is considered a direct cause of Alzheimer's disease (AD). Therefore, drugs that have been developed to block oxidative stress are considered effective for AD treatment. Isosilybin is a flavonoid compound extracted from Silybum marianum, and it has been confirmed to have many pharmacological activities. This study aimed to verify that isosilybin could alleviate the Aβ25-35-induced oxidative stress damage in HT-22 hippocampal cells and to investigate the specific targets of isosilybin. A non-toxic dose of isosilybin significantly inhibited the production of reactive oxygen species (ROS), the release of malondialdehyde (MDA) and lactate dehydrogenase (LDH), and the Aβ25-35-stimulated reduction in total antioxidant capacity (T-AOC). Subsequent studies showed that isosilybin significantly increased the protein and mRNA expression of antioxidases, including heme oxygenase-1 (HO-1), glutathione S-transferase (GST), and aldo-keto reductases 1C1 and 1C2 (AKR1C2). Moreover, isosilybin stimulated the activity of an antioxidant-response element (ARE)-driven luciferase reporter gene. Further studies showed that isosilybin induced the expression of NFR-2 in a time- and dose-dependent manner and promoted its translocation to the nucleus. This result indicated that the antioxidant function of isosilybin might be achieved through the activation of NRF2/ARE signalling. Subsequent studies showed that the NRF2-specific agonist t-BHQ effectively inhibited ROS, MDA and LDH release and T-AOC reduction under Aβ25-35 stimulation. In addition, t-BHQ induced the expression of HO-1, GST, and AKR1C2, as well as the activity of ARE luciferase reporter plasmids. NRF2 siRNA blocked the antioxidative stress damage function of isosilybin. Therefore, NRF2 is likely to be a key mediator of isosilybin's anti-Aβ25-35-mediated oxidative stress damage function. Overall, our results confirmed that isosilybin regulates the expression of HO-1, GST, and AKR1C2 through

  3. The wheat MAP kinase phosphatase 1 alleviates salt stress and increases antioxidant activities in Arabidopsis.

    PubMed

    Zaidi, Ikram; Ebel, Chantal; Belgaroui, Nibras; Ghorbel, Mouna; Amara, Imène; Hanin, Moez

    2016-04-01

    Mitogen-activated protein kinase phosphatases (MKPs) are important negative regulators in the MAPK signaling pathways, which play crucial roles in plant growth, development and stress responses. We have previously shown that the heterologous expression of a durum wheat MKP, TMKP1, results in increased tolerance to salt stress in yeast but its particular contribution in salt stress tolerance in plants was not investigated. Here, TMKP1 was overexpressed in Arabidopsis thaliana and physiological changes were assessed in transgenic plants exposed to stress conditions. Under salt stress and especially LiCl, the TMKP1 overexpressors displayed higher germination rates in comparison to wild type plants. The enhancement of salt stress tolerance was accompanied by increased antioxidant enzyme activities, namely superoxide dismutase, catalase and peroxydases. Such increases in antioxidant activities were concomitant with lower malondialdehyde, superoxide anion O2(-) and hydrogen peroxide levels in the TMKP1 transgenic seedlings. Moreover, we provide evidence that, in contrast to the Arabidopsis ortholog AtMKP1, TMKP1 acts as a positive regulator of salt stress tolerance via its ectopic expression in the Arabidopsis mkp1 mutant. PMID:26927025

  4. Haem oxygenase-1 is involved in salicylic acid-induced alleviation of oxidative stress due to cadmium stress in Medicago sativa

    PubMed Central

    Shen, Wenbiao

    2012-01-01

    This work examines the involvement of haem oxygenase-1 (HO-1) in salicylic acid (SA)-induced alleviation of oxidative stress as a result of cadmium (Cd) stress in alfalfa (Medicago sativa L.) seedling roots. CdCl2 exposure caused severe growth inhibition and Cd accumulation, which were potentiated by pre-treatment with zinc protoporphyrin (ZnPPIX), a potent HO-1 inhibitor. Pre-treatment of plants with the HO-1 inducer haemin or SA, both of which could induce MsHO1 gene expression, significantly reduced the inhibition of growth and Cd accumulation. The alleviation effects were also evidenced by a decreased content of thiobarbituric acid-reactive substances (TBARS). The antioxidant behaviour was confirmed by histochemical staining for the detection of lipid peroxidation and the loss of plasma membrane integrity. Furthermore, haemin and SA pre-treatment modulated the activities of ascorbate peroxidase (APX), superoxide dismutase (SOD), and guaiacol peroxidase (POD), or their corresponding transcripts. Significant enhancement of the ratios of reduced/oxidized homoglutathione (hGSH), ascorbic acid (ASA)/dehydroascorbate (DHA), and NAD(P)H/NAD(P)+, and expression of their metabolism genes was observed, consistent with a decreased reactive oxygen species (ROS) distribution in the root tips. These effects are specific for HO-1, since ZnPPIX blocked the above actions, and the aggravated effects triggered by SA plus ZnPPIX were differentially reversed when carbon monoxide (CO) or bilirubin (BR), two catalytic by-products of HO-1, was added. Together, the results suggest that HO-1 is involved in the SA-induced alleviation of Cd-triggered oxidative stress by re-establishing redox homeostasis. PMID:22915740

  5. Comparison of the heat stress induced variations in DNA methylation between heat-tolerant and heat-sensitive rapeseed seedlings

    PubMed Central

    Gao, Guizhen; Li, Jun; Li, Hao; Li, Feng; Xu, Kun; Yan, Guixin; Chen, Biyun; Qiao, Jiangwei; Wu, Xiaoming

    2014-01-01

    DNA methylation is responsive to various biotic and abiotic stresses. Heat stress is a serious threat to crop growth and development worldwide. Heat stress results in an array of morphological, physiological and biochemical changes in plants. The relationship between DNA methylation and heat stress in crops is relatively unknown. We investigated the differences in methylation levels and changes in the cytosine methylation patterns in seedlings of two rapeseed genotypes (heat-sensitive and heat-tolerant) under heat stress. Our results revealed that the methylation levels were different between a heat-tolerant genotype and a heat-sensitive one under control conditions. Under heat treatment, methylation increased more in the heat-sensitive genotype than in the heat-tolerant genotype. More DNA demethylation events occurred in the heat-tolerant genotype, while more DNA methylation occurred in the heat-sensitive genotype. A large and diverse set of genes were affected by heat stress via cytosine methylation changes, suggesting that these genes likely play important roles in the response and adaption to heat stress in Brassica napus L. This study indicated that the changes in DNA methylation differed between heat-tolerant and heat-sensitive genotypes of B. napus in response to heat stress, which further illuminates the molecular mechanisms of the adaption to heat stress in B. napus. PMID:24987298

  6. Overexpression of Arabidopsis AnnAt8 Alleviates Abiotic Stress in Transgenic Arabidopsis and Tobacco

    PubMed Central

    Yadav, Deepanker; Ahmed, Israr; Shukla, Pawan; Boyidi, Prasanna; Kirti, Pulugurtha Bharadwaja

    2016-01-01

    Abiotic stress results in massive loss of crop productivity throughout the world. Because of our limited knowledge of the plant defense mechanisms, it is very difficult to exploit the plant genetic resources for manipulation of traits that could benefit multiple stress tolerance in plants. To achieve this, we need a deeper understanding of the plant gene regulatory mechanisms involved in stress responses. Understanding the roles of different members of plant gene families involved in different stress responses, would be a step in this direction. Arabidopsis, which served as a model system for the plant research, is also the most suitable system for the functional characterization of plant gene families. Annexin family in Arabidopsis also is one gene family which has not been fully explored. Eight annexin genes have been reported in the genome of Arabidopsis thaliana. Expression studies of different Arabidopsis annexins revealed their differential regulation under various abiotic stress conditions. AnnAt8 (At5g12380), a member of this family has been shown to exhibit ~433 and ~175 fold increase in transcript levels under NaCl and dehydration stress respectively. To characterize Annexin8 (AnnAt8) further, we have generated transgenic Arabidopsis and tobacco plants constitutively expressing AnnAt8, which were evaluated under different abiotic stress conditions. AnnAt8 overexpressing transgenic plants exhibited higher seed germination rates, better plant growth, and higher chlorophyll retention when compared to wild type plants under abiotic stress treatments. Under stress conditions transgenic plants showed comparatively higher levels of proline and lower levels of malondialdehyde compared to the wild-type plants. Real-Time PCR analyses revealed that the expression of several stress-regulated genes was altered in AnnAt8 over-expressing transgenic tobacco plants, and the enhanced tolerance exhibited by the transgenic plants can be correlated with altered expressions of

  7. Investigation of Urban Heat Stress from Satellite Atmospheric Profiles

    NASA Astrophysics Data System (ADS)

    Hu, L.; Brunsell, N. A.

    2014-12-01

    Heat stress is the leading cause of weather-related human mortality in the United States and in many countries world-wide. Heat stress is usually enhanced by the urban heat island effect. Here, we investigate the ability to use remotely sensed atmospheric profiles to detect and monitor heat stress in the urban environment. MODIS atmospheric profiles at 5 km are used to quantify the spatial distribution of heat stress across Chicago during summer periods from 2003-2013. Four heat stress indices are investigated (Discomfort Index (DI), NWS Heat Index (HI), Humidex, and Simplified Wet Bulb Globe Temperature (SWBGT)) from the near-surface temperature and humidity observed at ground sites and retrieved from satellite atmospheric profiles. The heat stress climatology indicates that the urban effects are similar to the heat stress in top 5% hot days and 11 summers during the daytime. There is a lack of relationship between urban fraction and the heat stress on the warmest nights. The nighttime heat stress in the hottest 5% suggests a larger stress compared to the normal conditions during 11 summers. A case study of the heat wave in 2012 is assessed to identify the key pre-heat wave spatial patterns, which may potentially apply to predict future high heat-stress events. In addition, the role of the temporal persistence on the spatial dynamics of the heat wave is also examined. This research illustrates the spatial heat pattern under normal and heat wave conditions, which may help to make public heat health protection strategies. Also, the remotely sensed temperature and humidity information are invaluable to assess urban heat island impact spatially and temporally.

  8. Chewing gum alleviates negative mood and reduces cortisol during acute laboratory psychological stress.

    PubMed

    Scholey, Andrew; Haskell, Crystal; Robertson, Bernadette; Kennedy, David; Milne, Anthea; Wetherell, Mark

    2009-06-22

    The notion that chewing gum may relieve stress was investigated in a controlled setting. A multi-tasking framework which reliably evokes stress and also includes performance measures was used to induce acute stress in the laboratory. Using a randomised crossover design forty participants (mean age 21.98 years) performed on the multi-tasking framework at two intensities (on separate days) both while chewing and not chewing. Order of workload intensity and chewing conditions were counterbalanced. Before and after undergoing the platform participants completed the state portion of the State-Trait Anxiety Inventory, Bond-Lader visual analogue mood scales, a single Stress Visual Analogue Scale and provided saliva samples for cortisol measurement. Baseline measures showed that both levels of the multi-tasking framework were effective in significantly reducing self-rated alertness, calmness and contentment while increasing self-rated stress and state anxiety. Cortisol levels fell during both levels of the stressor during the morning, reflecting the predominance of a.m. diurnal changes, but this effect was reversed in the afternoon which may reflect a measurable stress response. Pre-post stressor changes (Delta) for each measure at baseline were subtracted from Delta scores under chewing and no chewing conditions. During both levels of stress the chewing gum condition was associated with significantly better alertness and reduced state anxiety, stress and salivary cortisol. Overall performance on the framework was also significantly better in the chewing condition. The mechanisms underlying these effects are unknown but may involve improved cerebral blood flow and/or effects secondary to performance improvement during gum chewing. PMID:19268676

  9. Heat stress in the A-10 cockpit: flights over desert.

    PubMed

    Nunneley, S A; Flick, C F

    1981-09-01

    Heat stress is a significant problem during low-level flight in hot climates, especially in aircraft that impose high task loads and repetitive maneuvering forces. The A-10 close-support aircraft presents such a combined-stress environment. This report summarizes data from 15 low-level flights over desert. Ground dry-bulb temperature (Tdb,g) was 26-42 degrees C. Cockpit temperature (Tdb,c) was commonly over 40 degrees C on the ground and tended to drop progressively from taxi-out through flight to the range and return; for any given phase it was a linear function of Tdb,g. Small (50-mm) black globe temperature (Tbg,s) exceeded Tdb,c by 2-5 degrees C on the ground and by 4-8 degrees C in flight. The pilot's mean skin temperature was a linear function of Tdb,c in each phase. Auditory canal temperature (Tac) rose from a control value of 37.0 to a mean of 37.4 degrees C in flight, with one pilot reaching 37.8 degrees C. Sweat rate was a linear function of Tdb,g, with weight loss up to 2.3%. These data are compared to earlier studies of the F-4 and F-111 aircraft. Although the performance of the A-10's cooling system resembles that in other aircraft and is somewhat better than the F-4 on the ground, the effects of cockpit heat are exacerbated by its close-support role. Pilots noted lowered G-tolerance and increased general fatigue on the hotter flights. The foot- and leg-area temperatures exceeded those at the head; planned changes in air distribution should partly alleviate that situation.

  10. Weak microwave can alleviate water deficit induced by osmotic stress in wheat seedlings.

    PubMed

    Chen, Yi-Ping; Jia, Jing-Fen; Han, Xiao-Ling

    2009-01-01

    The aim of the investigation is to determine the effect of microwave pretreatment of wheat seeds on the resistance of seedlings to osmotic stress. Changes in biophysical, physiological and biochemical characters were measured. The results showed: (1) The magnetic field intensity and seeds temperature increased progressively with microwave pretreatments of 5, 10, 15, 20 s and 25 s compared with controls. Although each microwave pretreatment resulted in an increase in alpha-amylase activity and photon emission intensity, the increase of alpha-amylase activity and photon emission intensity was maximal at a microwave pretreatment of 10 s. (2) Osmotic stress induced by PEG treatment enhanced the concentration of malondialdehyde, while decreasing the activities of nitricoxide synthase, catalase, peroxidase, superoxide dismutase and the concentration of nitric oxide, ascorbic acid, glutathione in the seedlings compared with controls. However, compared to osmotic stress alone, in the seedlings treated with microwave irradiation plus osmotic stress the concentration of malondialdehyde decreased, while the activities of nitricoxide synthase, catalase, peroxidase, superoxide dismutase and the concentration of nitric oxide, ascorbic acid and glutathione increased. These results suggest that a suitable dose of microwave radiation can enhance the capability to eliminate free radicals induced by osmotic stress in wheat seedlings resulting in an increase in resistance to osmotic stress.

  11. Betaine prevented fructose-induced NAFLD by regulating LXRα/PPARα pathway and alleviating ER stress in rats.

    PubMed

    Ge, Chen-Xu; Yu, Rong; Xu, Min-Xuan; Li, Pei-Qin; Fan, Chen-Yu; Li, Jian-Mei; Kong, Ling-Dong

    2016-01-01

    Betaine has been proven effective in treating nonalcoholic fatty liver disease (NAFLD) in animal models, however, its molecular mechanisms remain elusive. The aims of this study were to explore the mechanisms mediating the anti-inflammatory and anti-lipogenic actions of betaine in fructose-fed rats. In this study, betaine improved insulin resistance, reduced body weight gain and serum lipid levels, and prevented hepatic lipid accumulation in fructose-fed rats. It up-regulated hepatic expression of liver X receptor-alpha (LXRα) and peroxisome proliferator-activated receptor-alpha (PPARα), with the attenuation of the changes of their target genes, including hepatic carnitine palmitoyl transferase (CPT) 1α, glycosylphosphatidylinositol anchored high density lipoprotein binding protein 1, apolipoprotein B, sterol regulatory element-binding protein 1c and adipocyte differentiation-related protein, involved in fatty acid oxidation and lipid storage in these model rats. Furthermore, betaine alleviated ER stress and inhibited acetyl-CoA carboxylase α, CPT II, stearoyl-CoA desaturase 1 and fatty acid synthase expression involved in fatty acid synthesis in the liver of fructose-fed rats. Betaine suppressed hepatic gluconeogenesis in fructose-fed rats by moderating protein kinase B -forkhead box protein O1 pathway, as well as p38 mitogen-activated protein kinase and mammalian target of rapamycin activity. Moreover, betaine inhibited hepatic nuclear factor kappa B /nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 inflammasome activation-mediated inflammation in this animal model. These results demonstrated that betaine ameliorated hepatic lipid accumulation, gluconeogenesis, and inflammation through restoring LXRα and PPARα expression and alleviating ER stress in fructose-fed rats. This study provides the potential mechanisms of betaine involved in the treatment of NAFLD.

  12. Biochar alleviates combined stress of ammonium and acids by firstly enriching Methanosaeta and then Methanosarcina.

    PubMed

    Lü, Fan; Luo, Chenghao; Shao, Liming; He, Pinjing

    2016-03-01

    This investigation evaluated the effectiveness of biochar of different particle sizes in alleviating ammonium (NH4(+)) inhibition (up to 7 g-N/L) during anaerobic digestion of 6 g/L glucose. Compared to the control treatment without biochar addition, treatments that included biochar particles 2-5 mm, 0.5-1 mm and 75-150 μm in size reduced the methanization lag phase by 23.9%, 23.8% and 5.9%, respectively, and increased the maximum methane production rate by 47.1%, 23.5% and 44.1%, respectively. These results confirmed that biochar accelerated the initiation of methanization during anaerobic digestion under double inhibition risk from both ammonium and acids. Furthermore, fine biochar significantly promoted the production of volatile fatty acids (VFAs). Comparative analysis on the archaeal and bacterial diversity at the early and later stages of digestion, and in the suspended, biochar loosely bound, and biochar tightly bound fractions suggested that, in suspended fractions, hydrogenotrophic Methanobacterium was actively resistant to ammonium. However, acetoclastic Methanosaeta can survive at VFAs concentrations up to 60-80 mmol-C/L by improved affinity to conductive biochar, resulting in the accelerated initiation of acetate degradation. Improved methanogenesis was followed by the colonization of the biochar tightly bound fractions by Methanosarcina. The selection of appropriate biochar particles sizes was important in facilitating the initial colonization of microbial cells.

  13. Bilobalide alleviates depression-like behavior and cognitive deficit induced by chronic unpredictable mild stress in mice.

    PubMed

    Wu, Ruiyong; Shui, Li; Wang, Siyang; Song, Zhenzhen; Tai, Fadao

    2016-10-01

    Bilobalide (BB), a unique constituent of Ginkgo biloba, has powerful neuroprotection and stress-alleviating properties. However, whether BB exerts a positive effect on depression and cognitive deficit induced by chronic stress is not known. The present study was designed to investigate the influence of BB on depression and cognitive impairments induced by chronic unpredictable mild stress (CUMS) in mice. During daily exposure to stressors for 5 consecutive weeks, mice were administered BB at the doses of 0, 3, or 6 mg/kg/day intraperitoneally. We replicated the finding that CUMS induced depression-like behavior and cognitive deficits as the CUMS+vehicle (VEH) group showed a significant increase in immobility in the tail suspension test, a decrease in the discrimination index of the novel object recognition task, and increased latency to platform and decreased number of platform crossings in the Morris water maze compared with the control+VEH group. Chronic administration of BB effectively reversed these alterations. In addition, the CUMS+VEH group showed significantly higher levels of baseline serum corticosterone than those of the control+VEH group and BB dose-dependently inhibited this effect. Our results suggest that BB may be useful for inhibition of depression-like behavior and cognitive deficits, and this protective effect was possibly exerted partly through an action on the hypothalamic-pituitary-adrenal axis. PMID:27509313

  14. Brassinolide Increases Potato Root Growth In Vitro in a Dose-Dependent Way and Alleviates Salinity Stress

    PubMed Central

    Xia, Shitou; Su, Yi; Wang, Huiqun; Luo, Weigui; Su, Shengying

    2016-01-01

    Brassinosteroids (BRs) are steroidal phytohormones that regulate various physiological processes, such as root development and stress tolerance. In the present study, we showed that brassinolide (BL) affects potato root in vitro growth in a dose-dependent manner. Low BL concentrations (0.1 and 0.01 μg/L) promoted root elongation and lateral root development, whereas high BL concentrations (1–100 μg/L) inhibited root elongation. There was a significant (P < 0.05) positive correlation between root activity and BL concentrations within a range from 0.01 to 100 μg/L, with the peak activity of 8.238 mg TTC·g−1 FW·h−1 at a BL concentration of 100 μg/L. Furthermore, plants treated with 50 μg/L BL showed enhanced salt stress tolerance through in vitro growth. Under this scenario, BL treatment enhanced the proline content and antioxidant enzymes' (superoxide dismutase, peroxidase, and catalase) activity and reduced malondialdehyde content in potato shoots. Application of BL maintain K+ and Na+ homeostasis by improving tissue K+/Na+ ratio. Therefore, we suggested that the effects of BL on root development from stem fragments explants as well as on primary root development are dose-dependent and that BL application alleviates salt stress on potato by improving root activity, root/shoot ratio, and antioxidative capacity in shoots and maintaining K+/Na+ homeostasis in potato shoots and roots. PMID:27803931

  15. Bilobalide alleviates depression-like behavior and cognitive deficit induced by chronic unpredictable mild stress in mice.

    PubMed

    Wu, Ruiyong; Shui, Li; Wang, Siyang; Song, Zhenzhen; Tai, Fadao

    2016-10-01

    Bilobalide (BB), a unique constituent of Ginkgo biloba, has powerful neuroprotection and stress-alleviating properties. However, whether BB exerts a positive effect on depression and cognitive deficit induced by chronic stress is not known. The present study was designed to investigate the influence of BB on depression and cognitive impairments induced by chronic unpredictable mild stress (CUMS) in mice. During daily exposure to stressors for 5 consecutive weeks, mice were administered BB at the doses of 0, 3, or 6 mg/kg/day intraperitoneally. We replicated the finding that CUMS induced depression-like behavior and cognitive deficits as the CUMS+vehicle (VEH) group showed a significant increase in immobility in the tail suspension test, a decrease in the discrimination index of the novel object recognition task, and increased latency to platform and decreased number of platform crossings in the Morris water maze compared with the control+VEH group. Chronic administration of BB effectively reversed these alterations. In addition, the CUMS+VEH group showed significantly higher levels of baseline serum corticosterone than those of the control+VEH group and BB dose-dependently inhibited this effect. Our results suggest that BB may be useful for inhibition of depression-like behavior and cognitive deficits, and this protective effect was possibly exerted partly through an action on the hypothalamic-pituitary-adrenal axis.

  16. Physical and virtual water transfers for regional water stress alleviation in China

    PubMed Central

    Zhao, Xu; Liu, Junguo; Liu, Qingying; Tillotson, Martin R.; Guan, Dabo; Hubacek, Klaus

    2015-01-01

    Water can be redistributed through, in physical terms, water transfer projects and virtually, embodied water for the production of traded products. Here, we explore whether such water redistributions can help mitigate water stress in China. This study, for the first time to our knowledge, both compiles a full inventory for physical water transfers at a provincial level and maps virtual water flows between Chinese provinces in 2007 and 2030. Our results show that, at the national level, physical water flows because of the major water transfer projects amounted to 4.5% of national water supply, whereas virtual water flows accounted for 35% (varies between 11% and 65% at the provincial level) in 2007. Furthermore, our analysis shows that both physical and virtual water flows do not play a major role in mitigating water stress in the water-receiving regions but exacerbate water stress for the water-exporting regions of China. Future water stress in the main water-exporting provinces is likely to increase further based on our analysis of the historical trajectory of the major governing socioeconomic and technical factors and the full implementation of policy initiatives relating to water use and economic development. Improving water use efficiency is key to mitigating water stress, but the efficiency gains will be largely offset by the water demand increase caused by continued economic development. We conclude that much greater attention needs to be paid to water demand management rather than the current focus on supply-oriented management. PMID:25583516

  17. Spermine Alleviates Drought Stress in White Clover with Different Resistance by Influencing Carbohydrate Metabolism and Dehydrins Synthesis

    PubMed Central

    Li, Zhou; Jing, Wen; Peng, Yan; Zhang, Xin Quan; Ma, Xiao; Huang, Lin Kai; Yan, Yan-hong

    2015-01-01

    The objective of this research was to analyse whether ameliorating drought stress through exogenously applied spermine (Spm) was related to carbohydrate metabolism, dehydrins accumulation and the transcription of genes encoding dehydrins in two white clovers (drought-susceptible cv. ‘Ladino’ and drought-resistant cv. ‘Haifa’) under controlled drying conditions for 10 days. The results show that the application of Spm effectively alleviates negative effects caused by drought stress in both cultivars. Exogenous Spm led to accumulation of more water-soluble carbohydrates (WSC), sucrose, fructose and sorbitol in both cultivars under drought stress, and also significantly elevated glucose content in leaves of drought-resistant cv. ‘Haifa’, but had no effect on drought-susceptible cv. ‘Ladino’. Accordingly, the key enzyme activities of sucrose and sorbitol metabolism changed along with the application of Spm under drought stress. Spm induced a significant increase in sucrose phosphate synthase (SPS) or sorbitol dehydrogenase (SDH) activity, but decrease in sucrose synthetase (SS) activity when two cultivars were subjected to drought. In addition, the improved accumulation of dehydrins induced by exogenous Spm coincided with three genes expression which was responsible for dehydrins synthesis. But Spm-induced transcript level of dehydrin genes increased earlier in cv. ‘Ladino’ than that in cv. ‘Haifa’. Thus, these results suggest that ameliorating drought stress through exogenously applied Spm may be associated with increased carbohydrate accumulation and dehydrins synthesis. There are differences between drought-susceptible and -resistant white clover cultivars related to Spm regulation of WSC metabolism and dehydrins expression. PMID:25835290

  18. Effects of Heat Stress on the Well-Being, Fertility, and Hatchability of Chickens in the Northern Guinea Savannah Zone of Nigeria: A Review

    PubMed Central

    Ayo, J. O.; Obidi, J. A.; Rekwot, P. I.

    2011-01-01

    The paper examines heat stress and its adverse effects as a hindrance to profitable poultry production in the tropics, with emphasis on the Northern Guinea Savannah zone of Nigeria. It elucidates the general negative effects of heat stress on physiological parameters of domestic chickens, and the specific impact of the stress on reproduction in the tropics. The deleterious effects are expressed in poor poultry well-being and reproductive performance. It is concluded that measures aimed at alleviating heat stress in domestic chickens must be adopted in order to enhance reproductive and, consequently, efficiency of modern poultry production in the tropics. PMID:23738109

  19. Contrasting urban and rural heat stress responses to climate change

    NASA Astrophysics Data System (ADS)

    Fischer, E. M.; Oleson, K. W.; Lawrence, D. M.

    2012-02-01

    Hot temperatures in combination with high humidity cause human discomfort and may increase morbidity and mortality. A global climate model with an embedded urban model is used to explore the urban-rural contrast in the wet-bulb globe temperature, a heat stress index accounting for temperature and humidity. Wet-bulb globe temperatures are calculated at each model time step to resolve the heat stress diurnal cycle. The model simulates substantially higher heat stress in urban areas compared to neighbouring rural areas. Urban humidity deficit only weakly offsets the enhanced heat stress due to the large night-time urban heat island. The urban-rural contrast in heat stress is most pronounced at night and over mid-latitudes and subtropics. During heatwaves, the urban heat stress amplification is particularly pronounced. Heat stress strongly increases with doubled CO2 concentrations over both urban and rural surfaces. The tropics experience the greatest increase in number of high-heat-stress nights, despite a relatively weak ˜2°C warming. Given the lack of a distinct annual cycle and high relative humidity, the modest tropical warming leads to exceedance of the present-day record levels during more than half of the year in tropical regions, where adaptive capacity is often low. While the absolute urban and rural heat stress response to 2 × CO2 is similar, the occurrence of nights with extremely high heat stress increases more in cities than surrounding rural areas.

  20. Ethylene production is associated with alleviation of cadmium-induced oxidative stress by sulfur in mustard types differing in ethylene sensitivity.

    PubMed

    Asgher, Mohd; Khan, Nafees A; Khan, M Iqbal R; Fatma, Mehar; Masood, Asim

    2014-08-01

    We studied the response of ethylene-sensitive (Pusa Jai Kisan) and ethylene-insensitive (SS2) mustard (Brassica juncea) cultivars to 0, 0.5, 1.0 and 2.0 mM SO₄(2-), and the effect of 1.0 mM SO₄(2-) was studied in the amelioration of 50 µM cadmium (Cd). The Cd-induced oxidative stress and Cd accumulation were greater in SS2 than Pusa Jai Kisan, but sulfur (S) application alleviated Cd-induced oxidative stress more prominently in Pusa Jai Kisan by increasing S-metabolism and synthesis of reduced glutathione (GSH) and ethylene production; and promoted photosynthesis and plant dry mass under Cd stress. The ethylene-sensitive cultivar responded more to S treatment under Cd stress and showed increased activity of antioxidant system resulting in increased photosynthesis and growth. Cadmium treatment resulted in rapid increase in ethylene formation which adversely influenced photosynthesis and plant dry mass. However, S and ethephon application to Cd-treated plants lowered ethylene formation to optimal range responsible for maximal GSH synthesis and protection against Cd-induced oxidative stress. The similarity of the effectiveness of 1.0 mM SO₄(2-) with 200 µL L(-1) ethylene source as ethephon in alleviation of 50 µM Cd further verifies that differential alleviation of Cd toxicity in the two cultivars by S was dependent on ethylene production. The results suggest that ethylene production determines Cd stress alleviation by S via regulatory interaction with antioxidant metabolism. Thus, ethylene production and sensitivity bear a prominent role in alleviation of Cd stress by S and can be used as a criterion for developing Cd tolerant genotypes.

  1. Brassinolide alleviates salt stress and increases antioxidant activity of cowpea plants (Vigna sinensis).

    PubMed

    El-Mashad, Ali Abdel Aziz; Mohamed, Heba Ibrahim

    2012-07-01

    Soil salinity is one of the most severe factors limiting growth and physiological response in Vigna sinensis plants. Plant salt stress tolerance requires the activation of complex metabolic activities including antioxidative pathways, especially reactive oxygen species and scavenging systems within the cells which can contribute to continued growth under water stress. The present investigation was carried out to study the role of brassinolide in enhancing tolerance of cowpea plants to salt stress (NaCl). Treatment with 0.05 ppm brassinolide as foliar spray mitigated salt stress by inducing enzyme activities responsible for antioxidation, e.g., superoxide dismutase, peroxidase, polyphenol oxidase, and detoxification as well as by elevating contents of ascorbic acid, tocopherol, and glutathione. On the other hand, total soluble proteins decreased with increasing NaCl concentrations in comparison with control plants. However, lipid peroxidation increased with increasing concentrations of NaCl. In addition to, the high concentrations of NaCl (100 and 150 mM) decreased total phenol of cowpea plants as being compared with control plants. SDS-PAGE of protein revealed that NaCl treatments alone or in combination with 0.05 ppm brassinolide were associated with the disappearance of some bands or appearance of unique ones in cowpea plants. Electrophoretic studies of α-esterase, β-esterase, polyphenol oxidase, peroxidase, acid phosphatase, and superoxide dismutase isoenzymes showed wide variations in their intensities and densities among all treatments.

  2. Comparative proteomic analysis of β-aminobutyric acid-mediated alleviation of salt stress in barley.

    PubMed

    Mostek, Agnieszka; Börner, Andreas; Weidner, Stanisław

    2016-02-01

    The non-protein amino acid β-aminobutyric acid (BABA) is known to induce plant resistance to a broad spectrum of biotic and abiotic stresses. This is the first study describing the effect of BABA seed priming on physiological and proteomic changes under salt stress conditions in barley (Hordeum vulgare). The aim of our study was to investigate the changes of fresh weight, dry weight and relative water content (RWC) as well as root proteome changes of two barley lines contrasting in salt tolerance (DH14, DH 187) in response to salt stress after seed priming in water or in 800 μM BABA. Seed priming with BABA significantly increased (p ≤ 0.05) RWC in both barley lines, which indicates considerably lower water loss in BABA-primed plants than in the non-primed control plants. Dry and fresh matter increased significantly in line DH 187, whereas no changes were detected in line DH14. BABA-primed plants of both lines showed different proteomic patterns than the non-primed control plants. The root proteins exhibiting significant abundance changes (1.75-fold change, p ≤ 0.05) were separated by two-dimensional polyacrylamide gel electrophoresis (2D- PAGE). Thirty-one spots, representing 24 proteins, were successfully identified by MALDI TOF/TOF mass spectrometry. The most prominent differences include the up-regulation of antioxidant enzymes (catalase, peroxidase and superoxide dismutase), PR proteins (chitinase, endo-1,3-β-glucosidase), and chaperones (cyclophilin, HSC 70). Our results indicate that BABA induces defence and detoxification processes which may enable faster and more effective responses to salt stress, increasing the chances of survival under adverse environmental conditions.

  3. Ageing-Associated Oxidative Stress and Inflammation Are Alleviated by Products from Grapes

    PubMed Central

    Petersen, K. S.

    2016-01-01

    Advanced age is associated with increased incidence of a variety of chronic disease states which share oxidative stress and inflammation as causative role players. Furthermore, data point to a role for both cumulative oxidative stress and low grade inflammation in the normal ageing process, independently of disease. Therefore, arguably the best route with which to address premature ageing, as well as age-associated diseases such as diabetes, cardiovascular disease, and dementia, is preventative medicine aimed at modulation of these two responses, which are intricately interlinked. In this review, we provide a detailed account of the literature on the communication of these systems in the context of ageing, but with inclusion of relevant data obtained in other models. In doing so, we attempted to more clearly elucidate or identify the most probable cellular or molecular targets for preventative intervention. In addition, given the absence of a clear pharmaceutical solution in this context, together with the ever-increasing consumer bias for natural medicine, we provide an overview of the literature on grape (Vitis vinifera) derived products, for which beneficial effects are consistently reported in the context of both oxidative stress and inflammation. PMID:27034739

  4. Overexpression of a tomato carotenoid ε-hydroxylase gene alleviates sensitivity to chilling stress in transgenic tobacco.

    PubMed

    Zhou, Bin; Deng, Yong-Sheng; Kong, Fan-Ying; Li, Bin; Meng, Qing-Wei

    2013-09-01

    Chilling is one of the most serious environmental stresses that disrupt the metabolic balance of cells and enhance the production of reactive oxygen species (ROS). Lutein plays important roles in dissipating excess excitation energy and eliminating ROS to maintain the normal physiological function of cells. A tomato carotenoid epsilon-ring hydroxylase gene (LeLUT1) was isolated, and the LeLUT1-GFP fusion protein was localized in the chloroplast of Arabidopsis mesophyll protoplast. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis indicated that the expression of LeLUT1 was the highest in the leaves and was down-regulated by various abiotic stresses in tomato. The transgenic tobacco plants overexpressing LeLUT1 had higher lutein content, which was decreased in cold condition. Under chilling stress, the non-photochemical quenching (NPQ) values were higher in the transgenic plants than in the wild type (WT) plants. Compared with the WT plants, the transgenic plants showed lower levels of hydrogen peroxide (H2O2), superoxide radical (O2(·-)), relative electrical conductivity, and malondialdehyde content (MDA), and relatively higher values of maximal photochemical efficiency of photosystem II (Fv/Fm), oxidizable P700 of PSI, and net photosynthetic rate (Pn). Therefore, the transgenic seedlings were less suppressed in growth and lost less cotyledon chlorophyll than the WT seedlings. These results suggested that the overexpression of LeLUT1 had a key function in alleviating photoinhibition and photooxidation, and decreased the sensitivity of photosynthesis to chilling stress. PMID:23796723

  5. Alleviation of Drought Stress by Hydrogen Sulfide Is Partially Related to the Abscisic Acid Signaling Pathway in Wheat

    PubMed Central

    Wang, Chenyang; Qin, Haixia; Han, Qiaoxia; Hou, Junfeng; Lu, Hongfang; Xie, Yingxin; Guo, Tiancai

    2016-01-01

    Little information is available describing the effects of exogenous H2S on the ABA pathway in the acquisition of drought tolerance in wheat. In this study, we investigated the physiological parameters, the transcription levels of several genes involved in the abscisic acid (ABA) metabolism pathway, and the ABA and H2S contents in wheat leaves and roots under drought stress in response to exogenous NaHS treatment. The results showed that pretreatment with NaHS significantly increased plant height and the leaf relative water content of seedlings under drought stress. Compared with drought stress treatment alone, H2S application increased antioxidant enzyme activities and reduced MDA and H2O2 contents in both leaves and roots. NaHS pretreatment increased the expression levels of ABA biosynthesis and ABA reactivation genes in leaves; whereas the expression levels of ABA biosynthesis and ABA catabolism genes were up-regulated in roots. These results indicated that ABA participates in drought tolerance induced by exogenous H2S, and that the responses in leaves and roots are different. The transcription levels of genes encoding ABA receptors were up-regulated in response to NaHS pretreatment under drought conditions in both leaves and roots. Correspondingly, the H2S contents in leaves and roots were increased by NaHS pretreatment, while the ABA contents of leaves and roots decreased. This implied that there is complex crosstalk between these two signal molecules, and that the alleviation of drought stress by H2S, at least in part, involves the ABA signaling pathway. PMID:27649534

  6. Alleviation of Drought Stress by Hydrogen Sulfide Is Partially Related to the Abscisic Acid Signaling Pathway in Wheat.

    PubMed

    Ma, Dongyun; Ding, Huina; Wang, Chenyang; Qin, Haixia; Han, Qiaoxia; Hou, Junfeng; Lu, Hongfang; Xie, Yingxin; Guo, Tiancai

    2016-01-01

    Little information is available describing the effects of exogenous H2S on the ABA pathway in the acquisition of drought tolerance in wheat. In this study, we investigated the physiological parameters, the transcription levels of several genes involved in the abscisic acid (ABA) metabolism pathway, and the ABA and H2S contents in wheat leaves and roots under drought stress in response to exogenous NaHS treatment. The results showed that pretreatment with NaHS significantly increased plant height and the leaf relative water content of seedlings under drought stress. Compared with drought stress treatment alone, H2S application increased antioxidant enzyme activities and reduced MDA and H2O2 contents in both leaves and roots. NaHS pretreatment increased the expression levels of ABA biosynthesis and ABA reactivation genes in leaves; whereas the expression levels of ABA biosynthesis and ABA catabolism genes were up-regulated in roots. These results indicated that ABA participates in drought tolerance induced by exogenous H2S, and that the responses in leaves and roots are different. The transcription levels of genes encoding ABA receptors were up-regulated in response to NaHS pretreatment under drought conditions in both leaves and roots. Correspondingly, the H2S contents in leaves and roots were increased by NaHS pretreatment, while the ABA contents of leaves and roots decreased. This implied that there is complex crosstalk between these two signal molecules, and that the alleviation of drought stress by H2S, at least in part, involves the ABA signaling pathway. PMID:27649534

  7. A positive feedback loop between HEAT SHOCK PROTEIN101 and HEAT STRESS-ASSOCIATED 32-KD PROTEIN modulates long-term acquired thermotolerance illustrating diverse heat stress responses in rice varieties.

    PubMed

    Lin, Meng-yi; Chai, Kuo-hsing; Ko, Swee-suak; Kuang, Lin-yun; Lur, Huu-sheng; Charng, Yee-yung

    2014-04-01

    Heat stress is an important factor that has a negative impact on rice (Oryza sativa) production. To alleviate this problem, it is necessary to extensively understand the genetic basis of heat tolerance and adaptability to heat stress in rice. Here, we report the molecular mechanism underlying heat acclimation memory that confers long-term acquired thermotolerance (LAT) in this monocot plant. Our results showed that a positive feedback loop formed by two heat-inducible genes, HEAT SHOCK PROTEIN101 (HSP101) and HEAT STRESS-ASSOCIATED 32-KD PROTEIN (HSA32), at the posttranscriptional level prolongs the effect of heat acclimation in rice seedlings. The interplay between HSP101 and HSA32 also affects basal thermotolerance of rice seeds. These findings are similar to those reported for the dicot plant Arabidopsis (Arabidopsis thaliana), suggesting a conserved function in plant heat stress response. Comparison between two rice cultivars, japonica Nipponbare and indica N22 showed opposite performance in basal thermotolerance and LAT assays. 'N22' seedlings have a higher basal thermotolerance level than cv Nipponbare and vice versa at the LAT level, indicating that these two types of thermotolerance can be decoupled. The HSP101 and HSA32 protein levels were substantially higher in cv Nipponbare than in cv N22 after a long recovery following heat acclimation treatment, at least partly explaining the difference in the LAT phenotype. Our results point out the complexity of thermotolerance diversity in rice cultivars, which may need to be taken into consideration when breeding for heat tolerance for different climate scenarios.

  8. Heat stress and strain in exercise and sport.

    PubMed

    Brotherhood, John R

    2008-01-01

    Heat stress arising from the thermal environment is of concern to sports medicine and to sports administration because of the perceived risk of heat casualties, in particular heat stroke. Many sports organizations recommend environmental indices such as the WBGT for assessing risk and setting environmental limits for training and competition. But the limits are not justified by evidence. This article describes the nature of heat stress in sport and how it may be assessed objectively. Heat stress and the principal human responses to exercise heat stress are reviewed briefly. Metabolic heat production and the thermal environment provoke separate and largely independent physiological strains. Metabolic heat production drives body core temperature, and the thermal environment drives skin temperature; the combined stresses are integrated to drive sweat rate. Control of core temperature depends on adequate sweat production and the capacity of the environment to evaporate the sweat. The nature of exercise heat stress is demonstrated by rational analysis of the physical heat exchanges between the body and the environment. The principles of this analysis are applied to critical review of current practice in the assessment of heat stress in sport. The article concludes with discussion of research to establish methods for objective sport-specific assessment of heat stress.

  9. Lactobacillus rhamnosus GG improves glucose tolerance through alleviating ER stress and suppressing macrophage activation in db/db mice

    PubMed Central

    Park, Kun-Young; Kim, Bobae; Hyun, Chang-Kee

    2015-01-01

    Although recent studies have reported that Lactobacillus rhamnosus GG (LGG), the most extensively studied probiotic strain, exerts an anti-hyperglycemic effect on several rodent models, the underlying mechanism remains unclear. In this study, twenty male C57BL/KsJ-db/db (db/db) mice were divided into 2 groups, LGG-treated and control group, which received a daily dose of LGG (1 × 108 CFU per mouse) and PBS orally for 4 weeks, respectively. We observed that glucose tolerance was significantly improved in LGG-treated db/db mice. Insulin-stimulated Akt phosphorylation and GLUT4 translocation were higher in skeletal muscle of LGG-treated mice relative to their controls. It was also observed that LGG treatment caused significant reductions in endoplasmic reticulum (ER) stress in skeletal muscle and M1-like macrophage activation in white adipose tissues. Our results indicate that the anti-diabetic effect of LGG in db/db mice is associated with alleviated ER stress and suppressed macrophage activation, resulting in enhanced insulin sensitivity. These findings suggest a therapeutic potential of probiotics for prevention and treatment of type 2 diabetes. PMID:26060355

  10. Alleviation effect of arbutin on oxidative stress generated through tyrosinase reaction with l-tyrosine and l-DOPA

    PubMed Central

    2014-01-01

    Background Hydroxyl radical that has the highest reactivity among reactive oxygen species (ROS) is generated through l-tyrosine-tyrosinase reaction. Thus, the melanogenesis might induce oxidative stress in the skin. Arbutin (p-hydroxyphenyl-β-d-glucopyranoside), a well-known tyrosinase inhibitor has been widely used for the purpose of skin whitening. The aim of the present study was to examine if arbutin could suppress the hydroxyl radical generation via tyrosinase reaction with its substrates, l-tyrosine and l-DOPA. Results The hydroxyl radical, which was determined by an electron spin resonance-spin trapping technique, was generated by the addition of not only l-tyrosine but l-DOPA to tyrosinase in a concentration dependent manner. Arbutin could inhibit the hydroxyl radical generation in the both reactions. Conclusion It is presumed that arbutin could alleviate oxidative stress derived from the melanogenic pathway in the skin in addition to its function as a whitening agent in cosmetics. PMID:25297374

  11. Carvedilol alleviates adjuvant-induced arthritis and subcutaneous air pouch edema: modulation of oxidative stress and inflammatory mediators.

    PubMed

    Arab, Hany H; El-Sawalhi, Maha M

    2013-04-15

    Rheumatoid arthritis (RA) is a systemic inflammatory disease with cardiovascular complications as the leading cause of morbidity. Carvedilol is an adrenergic antagonist which has been safely used in treatment of several cardiovascular disorders. Given that carvedilol has powerful antioxidant/anti-inflammatory properties, we aimed to investigate its protective potential against arthritis that may add further benefits for its clinical usefulness especially in RA patients with concomitant cardiovascular disorders. Two models were studied in the same rat; adjuvant arthritis and subcutaneous air pouch edema. Carvedilol (10mg/kg/day p.o. for 21days) effectively suppressed inflammation in both models with comparable efficacy to the standard anti-inflammatory diclofenac (5mg/kg/day p.o.). Notably, carvedilol inhibited paw edema and abrogated the leukocyte invasion to air pouch exudates. The latter observation was confirmed by the histopathological assessment of the pouch lining that revealed mitigation of immuno-inflammatory cell influx. Carvedilol reduced/normalized oxidative stress markers (lipid peroxides, nitric oxide and protein thiols) and lowered the release of inflammatory cytokines (TNF-α & IL-6), and eicosanoids (PGE2 & LTB4) in sera and exudates of arthritic rats. Interestingly, carvedilol, per se, didn't present any effect on assessed biochemical parameters in normal rats. Together, the current study highlights evidences for the promising anti-arthritic effects of carvedilol that could be mediated through attenuation of leukocyte migration, alleviation of oxidative stress and suppression of proinflammatory cytokines and eicosanoids.

  12. Protective Effects of Ferulic Acid against Heat Stress-Induced Intestinal Epithelial Barrier Dysfunction In Vitro and In Vivo

    PubMed Central

    He, Shasha; Liu, Fenghua; Xu, Lei; Yin, Peng; Li, Deyin; Mei, Chen; Jiang, Linshu; Ma, Yunfei; Xu, Jianqin

    2016-01-01

    Heat stress is important in the pathogenesis of intestinal epithelial barrier dysfunction. Ferulic acid (FA), a phenolic acid widely found in fruits and vegetables, can scavenge free radicals and activate cell stress responses. This study is aimed at investigating protective effects of FA on heat stress-induced dysfunction of the intestinal epithelial barrier in vitro and in vivo. Intestinal epithelial (IEC-6) cells were pretreated with FA for 4 h and then exposed to heat stress. Heat stress caused decreased transepithelial electrical resistance (TER) and increased permeability to 4-kDa fluorescein isothiocyanate (FITC)-dextran (FD4). Both effects were inhibited by FA in a dose-dependent manner. FA significantly attenuated the decrease in occludin, ZO-1 and E-cadherin expression observed with heat stress. The distortion and redistribution of occludin, ZO-1 and E-cadherin proteins were also effectively prevented by FA pretreatment. Moreover, heat stress diminished electron-dense material detected in tight junctions (TJs), an effect also alleviated by FA in a dose-dependent manner. In an in vivo heat stress model, FA (50 mg/kg) was administered to male Sprague–Dawley rats for 7 consecutive days prior to exposure to heat stress. FA pretreatment significantly attenuated the effects of heat stress on the small intestine, including the increased FD4 permeability, disrupted tight junctions and microvilli structure, and reduced occludin, ZO-1 and E-cadherin expression. Taken together, our results demonstrate that FA pretreatment is potentially protective against heat stress-induced intestinal epithelial barrier dysfunction. PMID:26894689

  13. Protective Effects of Ferulic Acid against Heat Stress-Induced Intestinal Epithelial Barrier Dysfunction In Vitro and In Vivo.

    PubMed

    He, Shasha; Liu, Fenghua; Xu, Lei; Yin, Peng; Li, Deyin; Mei, Chen; Jiang, Linshu; Ma, Yunfei; Xu, Jianqin

    2016-01-01

    Heat stress is important in the pathogenesis of intestinal epithelial barrier dysfunction. Ferulic acid (FA), a phenolic acid widely found in fruits and vegetables, can scavenge free radicals and activate cell stress responses. This study is aimed at investigating protective effects of FA on heat stress-induced dysfunction of the intestinal epithelial barrier in vitro and in vivo. Intestinal epithelial (IEC-6) cells were pretreated with FA for 4 h and then exposed to heat stress. Heat stress caused decreased transepithelial electrical resistance (TER) and increased permeability to 4-kDa fluorescein isothiocyanate (FITC)-dextran (FD4). Both effects were inhibited by FA in a dose-dependent manner. FA significantly attenuated the decrease in occludin, ZO-1 and E-cadherin expression observed with heat stress. The distortion and redistribution of occludin, ZO-1 and E-cadherin proteins were also effectively prevented by FA pretreatment. Moreover, heat stress diminished electron-dense material detected in tight junctions (TJs), an effect also alleviated by FA in a dose-dependent manner. In an in vivo heat stress model, FA (50 mg/kg) was administered to male Sprague-Dawley rats for 7 consecutive days prior to exposure to heat stress. FA pretreatment significantly attenuated the effects of heat stress on the small intestine, including the increased FD4 permeability, disrupted tight junctions and microvilli structure, and reduced occludin, ZO-1 and E-cadherin expression. Taken together, our results demonstrate that FA pretreatment is potentially protective against heat stress-induced intestinal epithelial barrier dysfunction. PMID:26894689

  14. Modeling heat stress under different environmental conditions.

    PubMed

    Carabaño, M J; Logar, B; Bormann, J; Minet, J; Vanrobays, M-L; Díaz, C; Tychon, B; Gengler, N; Hammami, H

    2016-05-01

    Renewed interest in heat stress effects on livestock productivity derives from climate change, which is expected to increase temperatures and the frequency of extreme weather events. This study aimed at evaluating the effect of temperature and humidity on milk production in highly selected dairy cattle populations across 3 European regions differing in climate and production systems to detect differences and similarities that can be used to optimize heat stress (HS) effect modeling. Milk, fat, and protein test day data from official milk recording for 1999 to 2010 in 4 Holstein populations located in the Walloon Region of Belgium (BEL), Luxembourg (LUX), Slovenia (SLO), and southern Spain (SPA) were merged with temperature and humidity data provided by the state meteorological agencies. After merging, the number of test day records/cows per trait ranged from 686,726/49,655 in SLO to 1,982,047/136,746 in BEL. Values for the daily average and maximum temperature-humidity index (THIavg and THImax) ranges for THIavg/THImax were largest in SLO (22-74/28-84) and shortest in SPA (39-76/46-83). Change point techniques were used to determine comfort thresholds, which differed across traits and climatic regions. Milk yield showed an inverted U-shaped pattern of response across the THI scale with a HS threshold around 73 THImax units. For fat and protein, thresholds were lower than for milk yield and were shifted around 6 THI units toward larger values in SPA compared with the other countries. Fat showed lower HS thresholds than protein traits in all countries. The traditional broken line model was compared with quadratic and cubic fits of the pattern of response in production to increasing heat loads. A cubic polynomial model allowing for individual variation in patterns of response and THIavg as heat load measure showed the best statistical features. Higher/lower producing animals showed less/more persistent production (quantity and quality) across the THI scale. The

  15. Sprint performance under heat stress: A review.

    PubMed

    Girard, O; Brocherie, F; Bishop, D J

    2015-06-01

    Training and competition in major track-and-field events, and for many team or racquet sports, often require the completion of maximal sprints in hot (>30 °C) ambient conditions. Enhanced short-term (<30 s) power output or single-sprint performance, resulting from transient heat exposure (muscle temperature rise), can be attributed to improved muscle contractility. Under heat stress, elevations in skin/core temperatures are associated with increased cardiovascular and metabolic loads in addition to decreasing voluntary muscle activation; there is also compelling evidence to suggest that large performance decrements occur when repeated-sprint exercise (consisting of brief recovery periods between sprints, usually <60 s) is performed in hot compared with cool conditions. Conversely, poorer intermittent-sprint performance (recovery periods long enough to allow near complete recovery, usually 60-300 s) in hotter conditions is solely observed when exercise induces marked hyperthermia (core temperature >39 °C). Here we also discuss strategies (heat acclimatization, precooling, hydration strategies) employed by "sprint" athletes to mitigate the negative influence of higher environmental temperatures.

  16. Sprint performance under heat stress: A review.

    PubMed

    Girard, O; Brocherie, F; Bishop, D J

    2015-06-01

    Training and competition in major track-and-field events, and for many team or racquet sports, often require the completion of maximal sprints in hot (>30 °C) ambient conditions. Enhanced short-term (<30 s) power output or single-sprint performance, resulting from transient heat exposure (muscle temperature rise), can be attributed to improved muscle contractility. Under heat stress, elevations in skin/core temperatures are associated with increased cardiovascular and metabolic loads in addition to decreasing voluntary muscle activation; there is also compelling evidence to suggest that large performance decrements occur when repeated-sprint exercise (consisting of brief recovery periods between sprints, usually <60 s) is performed in hot compared with cool conditions. Conversely, poorer intermittent-sprint performance (recovery periods long enough to allow near complete recovery, usually 60-300 s) in hotter conditions is solely observed when exercise induces marked hyperthermia (core temperature >39 °C). Here we also discuss strategies (heat acclimatization, precooling, hydration strategies) employed by "sprint" athletes to mitigate the negative influence of higher environmental temperatures. PMID:25943658

  17. Resveratrol alleviates endotoxemia-associated adrenal insufficiency by suppressing oxidative/nitrative stress.

    PubMed

    Duan, Guo-Li; Wang, Chang-Nan; Liu, Yu-Jian; Yu, Qing; Tang, Xiao-Lu; Ni, Xin; Zhu, Xiao-Yan

    2016-06-30

    We have recently demonstrated that endotoxin causes oxidative stress and overproduction of nitric oxide in adrenal glands, thereby leading to adrenocortical insufficiency. The aim of this study is to investigate the effects of resveratrol, a natural plant polyphenol with anti-oxidant and anti-nitrative properties, on endotoxemia-associated adrenocortical insufficiency. Resveratrol was administered immediately before injection of lipopolysaccharide (LPS). Twenty four hours later, the adrenocorticotropic hormone (ACTH) stimulation tests was been performed to measure the plasma corticosterone level and the adrenal gland tissues were collected for histopathologic examination, and determination of malondialdehyde (MDA), total antioxidant capacity (T-AOC), superoxide dismutase (SOD) activity, catalase (CAT) activity, inducible nitric oxide synthase (iNOS) expression, nitric oxide (NO) and peroxynitrite production. Treatment with resveratrol significantly inhibited endotoxemia-induced iNOS expression, NO production, and peroxynitrite formation and also attenuated LPS-induced oxidative stress in the adrenal gland, as evidenced by the decrease of pro-oxidant biomarker (MDA), and the increases of anti-oxidant biomarkers (T-AOC, CAT and SOD activity). H&E staining demonstrated that administration of LPS resulted in increased into the adrenal gland. H&E-stained sections of adrenal glands demonstrated signs of leukocyte infiltration and hemorrhage during endotoxemia, which were significantly improved by resveratrol treatment. In addition, resveratrol reversed the LPS-induced downregulation of ACTH receptor and silent information regulator 1 (SIRT1) in adrenal gland, as well as adrenocortical hyporesponsiveness to ACTH. Resveratrol exerts protective effects against endotoxemia-associated adrenocortical insufficiency by suppressing oxidative/nitrative stress. These findings support the potential for resveratrol as a possible pharmacological agent to improve adrenocortical

  18. Mamao Pomace Extract Alleviates Hypertension and Oxidative Stress in Nitric Oxide Deficient Rats

    PubMed Central

    Kukongviriyapan, Upa; Kukongviriyapan, Veerapol; Pannangpetch, Patchareewan; Donpunha, Wanida; Sripui, Jintana; Sae-Eaw, Amporn; Boonla, Orachorn

    2015-01-01

    Reactive oxygen species (ROS)-induced oxidative stress plays a major role in pathogenesis of hypertension. Antidesma thwaitesianum (local name: Mamao) is a tropical plant distributed in the tropical/subtropical areas of the world, including Thailand. Mamao pomace (MP), a by-product generated from Mamao fruits, contains large amounts of antioxidant polyphenolic compounds. The aim of this study was to investigate the antihypertensive and antioxidative effects of MP using hypertensive rats. For this purpose, male Sprague-Dawley rats were given Nω-nitro-l-arginine methyl ester (l-NAME), an inhibitor of endothelial nitric oxide synthase (eNOS), in drinking water (50 mg/kg) for three weeks. MP extract was orally administered daily at doses of 100 and 300 mg/kg. l-NAME administration induced marked increase in blood pressure, peripheral vascular resistance, and oxidative stress. MP treatment significantly prevented the increase in blood pressure, hindlimb blood flow and hindlimb vascular resistance of l-NAME treated hypertensive rats (p < 0.05). The antihypertensive effect of MP treatment was associated with suppression of superoxide production from carotid strips and also with an increase in eNOS protein expression and nitric oxide bioavailability. The present results provide evidence for the antihypertensive effect of MP and suggest that MP might be useful as a dietary supplement against hypertension. PMID:26225998

  19. Exogenous Application of Citric Acid Ameliorates the Adverse Effect of Heat Stress in Tall Fescue (Lolium arundinaceum)

    PubMed Central

    Hu, Longxing; Zhang, Zhifei; Xiang, Zuoxiang; Yang, Zhijian

    2016-01-01

    Citric acid may be involved in plant response to high temperature. The objective of this study was to investigate whether exogenous citric acid could improve heat tolerance in a cool-season turfgrass species, tall fescue (Lolium arundinaceum), and to determine the physiological mechanisms of citric acid effects on heat stress tolerance. The grasses were subjected to four citric acid levels (0, 0.2, 2, and 20 mM) and two temperature levels (25/20 and 35/30 ± 0.5°C, day/night) treatments in growth chambers. Heat stress increased an electrolyte leakage (EL) and malonaldehyde (MDA) content, while reduced plant growth, chlorophyll (Chl) content, photochemical efficiency (Fv/Fm), root activity and antioxidant enzyme activities (superoxide dismutase, SOD; catalase, CAT; peroxidase, POD). External citric acid alleviated the detrimental effects of heat stress on tall fescue, which was evidenced by decreased EL and MDA content, and improved plant growth under stress conditions. Additionally, the reduction in Chl content, Fv/Fm, SOD, POD, CAT and root activity were ameliorated in citric acid treated plants under heat stressed conditions. High temperature induced the expression of heat shock protein (HSP) genes, which exhibited greater expression levels after citric acid treatment under heat stress. These results suggest that exogenous citric acid application may alleviate growth and physiological damage caused by high temperature. In addition, the exogenously applied citric acid might be responsible for maintaining membrane stability, root activity, and activation of antioxidant response and HSP genes which could contribute to the protective roles of citric acid in tall fescue responses to heat stress. PMID:26925085

  20. Exogenous Application of Citric Acid Ameliorates the Adverse Effect of Heat Stress in Tall Fescue (Lolium arundinaceum).

    PubMed

    Hu, Longxing; Zhang, Zhifei; Xiang, Zuoxiang; Yang, Zhijian

    2016-01-01

    Citric acid may be involved in plant response to high temperature. The objective of this study was to investigate whether exogenous citric acid could improve heat tolerance in a cool-season turfgrass species, tall fescue (Lolium arundinaceum), and to determine the physiological mechanisms of citric acid effects on heat stress tolerance. The grasses were subjected to four citric acid levels (0, 0.2, 2, and 20 mM) and two temperature levels (25/20 and 35/30 ± 0.5°C, day/night) treatments in growth chambers. Heat stress increased an electrolyte leakage (EL) and malonaldehyde (MDA) content, while reduced plant growth, chlorophyll (Chl) content, photochemical efficiency (Fv/Fm), root activity and antioxidant enzyme activities (superoxide dismutase, SOD; catalase, CAT; peroxidase, POD). External citric acid alleviated the detrimental effects of heat stress on tall fescue, which was evidenced by decreased EL and MDA content, and improved plant growth under stress conditions. Additionally, the reduction in Chl content, Fv/Fm, SOD, POD, CAT and root activity were ameliorated in citric acid treated plants under heat stressed conditions. High temperature induced the expression of heat shock protein (HSP) genes, which exhibited greater expression levels after citric acid treatment under heat stress. These results suggest that exogenous citric acid application may alleviate growth and physiological damage caused by high temperature. In addition, the exogenously applied citric acid might be responsible for maintaining membrane stability, root activity, and activation of antioxidant response and HSP genes which could contribute to the protective roles of citric acid in tall fescue responses to heat stress.

  1. Exogenous Application of Citric Acid Ameliorates the Adverse Effect of Heat Stress in Tall Fescue (Lolium arundinaceum).

    PubMed

    Hu, Longxing; Zhang, Zhifei; Xiang, Zuoxiang; Yang, Zhijian

    2016-01-01

    Citric acid may be involved in plant response to high temperature. The objective of this study was to investigate whether exogenous citric acid could improve heat tolerance in a cool-season turfgrass species, tall fescue (Lolium arundinaceum), and to determine the physiological mechanisms of citric acid effects on heat stress tolerance. The grasses were subjected to four citric acid levels (0, 0.2, 2, and 20 mM) and two temperature levels (25/20 and 35/30 ± 0.5°C, day/night) treatments in growth chambers. Heat stress increased an electrolyte leakage (EL) and malonaldehyde (MDA) content, while reduced plant growth, chlorophyll (Chl) content, photochemical efficiency (Fv/Fm), root activity and antioxidant enzyme activities (superoxide dismutase, SOD; catalase, CAT; peroxidase, POD). External citric acid alleviated the detrimental effects of heat stress on tall fescue, which was evidenced by decreased EL and MDA content, and improved plant growth under stress conditions. Additionally, the reduction in Chl content, Fv/Fm, SOD, POD, CAT and root activity were ameliorated in citric acid treated plants under heat stressed conditions. High temperature induced the expression of heat shock protein (HSP) genes, which exhibited greater expression levels after citric acid treatment under heat stress. These results suggest that exogenous citric acid application may alleviate growth and physiological damage caused by high temperature. In addition, the exogenously applied citric acid might be responsible for maintaining membrane stability, root activity, and activation of antioxidant response and HSP genes which could contribute to the protective roles of citric acid in tall fescue responses to heat stress. PMID:26925085

  2. Dietary sodium butyrate alleviates the oxidative stress induced by corticosterone exposure and improves meat quality in broiler chickens.

    PubMed

    Zhang, W H; Gao, F; Zhu, Q F; Li, C; Jiang, Y; Dai, S F; Zhou, G H

    2011-11-01

    The present study was to investigate the effects of dietary microencapsulated sodium butyrate (SB) and acute pre-slaughter stress, mimicked by subcutaneous corticosterone (CORT) administration, on BW, carcass characteristics, muscle antioxidant status, and meat quality of broiler chickens. A total of 120 1-d-old broiler chickens were fed a control diet (without SB) or a 0.4-g microencapsulated SB/kg diet. On 42 d, half of the birds from each treatment were given 1 single subcutaneous injection of CORT (4 mg/kg of BW in corn oil) to mimic acute stress, whereas the other half were injected with the same amount of corn oil (sham control). Three hours later, BW loss was determined and breast meat samples were collected. The results showed that the BW of the CORT-challenged groups lost much more than the sham control group (P < 0.001), whereas it was alleviated by the dietary microencapsulated SB (P < 0.05). Meanwhile, the catalase activity was decreased and malondialdehyde level was increased by the stress (P < 0.05), and the microencapsulated-SB diet significantly inhibited this effect (P < 0.05). Lower pH values and higher yellowness values were also observed in CORT-challenged chickens (P < 0.05), and the microencapsulated-SB diet treatment partially exerted a preventive effect. Microencapsulated SB significantly decreased the contents of saturated fatty acids and C18:0 (P < 0.01 and P < 0.001), and increased C20:0 and C20:4 contents. However, the effect of the stress treatment on fatty acid composition was insignificant (P > 0.05). In addition, diet and stress did not significantly influence carcass characteristics and the chemical composition of breast meat (P > 0.05). These results suggest that microencapsulated SB was favorable for chickens in the presence of stress, which may be partially ascribed to the ability of SB to decrease catabolism and oxidative injury of tissues.

  3. Carvedilol alleviates adjuvant-induced arthritis and subcutaneous air pouch edema: Modulation of oxidative stress and inflammatory mediators

    SciTech Connect

    Arab, Hany H.; El-Sawalhi, Maha M.

    2013-04-15

    Rheumatoid arthritis (RA) is a systemic inflammatory disease with cardiovascular complications as the leading cause of morbidity. Carvedilol is an adrenergic antagonist which has been safely used in treatment of several cardiovascular disorders. Given that carvedilol has powerful antioxidant/anti-inflammatory properties, we aimed to investigate its protective potential against arthritis that may add further benefits for its clinical usefulness especially in RA patients with concomitant cardiovascular disorders. Two models were studied in the same rat; adjuvant arthritis and subcutaneous air pouch edema. Carvedilol (10 mg/kg/day p.o. for 21 days) effectively suppressed inflammation in both models with comparable efficacy to the standard anti-inflammatory diclofenac (5 mg/kg/day p.o.). Notably, carvedilol inhibited paw edema and abrogated the leukocyte invasion to air pouch exudates. The latter observation was confirmed by the histopathological assessment of the pouch lining that revealed mitigation of immuno-inflammatory cell influx. Carvedilol reduced/normalized oxidative stress markers (lipid peroxides, nitric oxide and protein thiols) and lowered the release of inflammatory cytokines (TNF-α and IL-6), and eicosanoids (PGE{sub 2} and LTB{sub 4}) in sera and exudates of arthritic rats. Interestingly, carvedilol, per se, didn't present any effect on assessed biochemical parameters in normal rats. Together, the current study highlights evidences for the promising anti-arthritic effects of carvedilol that could be mediated through attenuation of leukocyte migration, alleviation of oxidative stress and suppression of proinflammatory cytokines and eicosanoids. - Highlights: ► Carvedilol possesses promising anti-arthritic properties. ► It markedly suppressed inflammation in adjuvant arthritis and air pouch edema. ► It abrogated the leukocyte invasion to air pouch exudates and linings. ► It reduced/normalized oxidative stress markers in sera and exudates of

  4. Arbuscular mycorrhizal symbiosis elicits shoot proteome changes that are modified during cadmium stress alleviation in Medicago truncatula

    PubMed Central

    2011-01-01

    Background Arbuscular mycorrhizal (AM) fungi, which engage a mutualistic symbiosis with the roots of most plant species, have received much attention for their ability to alleviate heavy metal stress in plants, including cadmium (Cd). While the molecular bases of Cd tolerance displayed by mycorrhizal plants have been extensively analysed in roots, very little is known regarding the mechanisms by which legume aboveground organs can escape metal toxicity upon AM symbiosis. As a model system to address this question, we used Glomus irregulare-colonised Medicago truncatula plants, which were previously shown to accumulate and tolerate heavy metal in their shoots when grown in a substrate spiked with 2 mg Cd kg-1. Results The measurement of three indicators for metal phytoextraction showed that shoots of mycorrhizal M. truncatula plants have a capacity for extracting Cd that is not related to an increase in root-to-shoot translocation rate, but to a high level of allocation plasticity. When analysing the photosynthetic performance in metal-treated mycorrhizal plants relative to those only Cd-supplied, it turned out that the presence of G. irregulare partially alleviated the negative effects of Cd on photosynthesis. To test the mechanisms by which shoots of Cd-treated mycorrhizal plants avoid metal toxicity, we performed a 2-DE/MALDI/TOF-based comparative proteomic analysis of the M. truncatula shoot responses upon mycorrhization and Cd exposure. Whereas the metal-responsive shoot proteins currently identified in non-mycorrhizal M. truncatula indicated that Cd impaired CO2 assimilation, the mycorrhiza-responsive shoot proteome was characterised by an increase in photosynthesis-related proteins coupled to a reduction in glugoneogenesis/glycolysis and antioxidant processes. By contrast, Cd was found to trigger the opposite response coupled the up-accumulation of molecular chaperones in shoot of mycorrhizal plants relative to those metal-free. Conclusion Besides drawing a

  5. Effects of heat stress on baroreflex function in humans

    NASA Technical Reports Server (NTRS)

    Crandall, Craig G.; Cui, Jian; Wilson, Thad E.

    2003-01-01

    INTRODUCTION: Heat stress significantly reduces orthostatic tolerance in humans. The mechanism(s) causing this response remain unknown. The purpose of this review article is to present data pertaining to the hypothesis that reduced orthostatic tolerance in heat stressed individuals is a result of heat stress induced alterations in baroflex function. METHODS: In both normothermic and heat stressed conditions baroreflex responsiveness was assessed via pharmacological and non-pharmacological methods. In addition, the effects of heat stress on post-synaptic vasoconstrictor responsiveness were assessed. RESULTS: Generally, whole body heating did not alter baroreflex sensitivity defined as the gain of the linear portion of the baroreflex curve around the operating point. However, whole body heating shifted the baroreflex curve to the prevailing (i.e. elevated) heart rate and muscle sympathetic nerve activity. Finally, the heat stress impaired vasoconstrictor responses to exogenous administration of adrenergic agonists. CONCLUSION: Current data do not support the hypothesis that reduced orthostatic tolerance associated with heat stress in humans is due to impaired baroreflex responsiveness. This phenomenon may be partially due to the effects of heat stress on reducing vasoconstrictor responsiveness.

  6. Water availability as dominant control of heat stress responses in two contrasting tree species.

    PubMed

    Ruehr, Nadine K; Gast, Andreas; Weber, Christina; Daub, Baerbel; Arneth, Almut

    2016-02-01

    Heat waves that trigger severe droughts are predicted to increase globally; however, we lack an understanding of how trees respond to the combined change of extreme temperatures and water availability. Here, we studied the impacts of two consecutive heat waves as well as post-stress recovery in young Pseudotsuga menziesii (Mirb.) Franco (Douglas-fir) and Robinia pseudoacacia L. (black locust) growing under controlled conditions. Responses were compared under water supply close to the long-term average and under reduced irrigation to represent drought. Exposure to high temperatures (+10 °C above ambient) and vapour pressure deficit strongly affected the trees in terms of water relations, photosynthesis and growth. Douglas-fir used water resources conservatively, and transpiration decreased in response to mild soil water limitation. In black locust, heat stress led to pronounced tree water deficits (stem diameter shrinkage), accompanied by leaf shedding to alleviate stress on the hydraulic system. The importance of water availability during the heat waves became further apparent by a concurrent decline in photosynthesis and stomatal conductance with increasing leaf temperatures in both species, reaching the lowest rates in the heat-drought treatments. Stress severity determined both the speed and the amount of recovery. Upon release of stress, photosynthesis recovered rapidly in drought-treated black locust, while it remained below control rates in heat (t = -2.4, P < 0.05) and heat-drought stressed trees (t = 2.96, P < 0.05). In Douglas-fir, photosynthesis recovered quickly, while water-use efficiency increased in heat-drought trees because stomatal conductance remained reduced (t = -2.92, P < 0.05). Moreover, Douglas-fir was able to compensate for stem-growth reductions following heat (-40%) and heat-drought stress (-68%), but most likely at the expense of storage and other growth processes. Our results highlight the importance of studying heat waves alongside

  7. Water availability as dominant control of heat stress responses in two contrasting tree species.

    PubMed

    Ruehr, Nadine K; Gast, Andreas; Weber, Christina; Daub, Baerbel; Arneth, Almut

    2016-02-01

    Heat waves that trigger severe droughts are predicted to increase globally; however, we lack an understanding of how trees respond to the combined change of extreme temperatures and water availability. Here, we studied the impacts of two consecutive heat waves as well as post-stress recovery in young Pseudotsuga menziesii (Mirb.) Franco (Douglas-fir) and Robinia pseudoacacia L. (black locust) growing under controlled conditions. Responses were compared under water supply close to the long-term average and under reduced irrigation to represent drought. Exposure to high temperatures (+10 °C above ambient) and vapour pressure deficit strongly affected the trees in terms of water relations, photosynthesis and growth. Douglas-fir used water resources conservatively, and transpiration decreased in response to mild soil water limitation. In black locust, heat stress led to pronounced tree water deficits (stem diameter shrinkage), accompanied by leaf shedding to alleviate stress on the hydraulic system. The importance of water availability during the heat waves became further apparent by a concurrent decline in photosynthesis and stomatal conductance with increasing leaf temperatures in both species, reaching the lowest rates in the heat-drought treatments. Stress severity determined both the speed and the amount of recovery. Upon release of stress, photosynthesis recovered rapidly in drought-treated black locust, while it remained below control rates in heat (t = -2.4, P < 0.05) and heat-drought stressed trees (t = 2.96, P < 0.05). In Douglas-fir, photosynthesis recovered quickly, while water-use efficiency increased in heat-drought trees because stomatal conductance remained reduced (t = -2.92, P < 0.05). Moreover, Douglas-fir was able to compensate for stem-growth reductions following heat (-40%) and heat-drought stress (-68%), but most likely at the expense of storage and other growth processes. Our results highlight the importance of studying heat waves alongside

  8. Epalrestat protects against diabetic peripheral neuropathy by alleviating oxidative stress and inhibiting polyol pathway

    PubMed Central

    Li, Qing-rong; Wang, Zhuo; Zhou, Wei; Fan, Shou-rui; Ma, Run; Xue, Li; Yang, Lu; Li, Ya-shan; Tan, Hong-li; Shao, Qing-hua; Yang, Hong-ying

    2016-01-01

    Epalrestat is a noncompetitive and reversible aldose reductase inhibitor used for the treatment of diabetic neuropathy. This study assumed that epalrestat had a protective effect on diabetic peripheral nerve injury by suppressing the expression of aldose reductase in peripheral nerves of diabetes mellitus rats. The high-fat and high-carbohydrate model rats were established by intraperitoneal injection of streptozotocin. Peripheral neuropathy occurred in these rats after sustaining high blood glucose for 8 weeks. At 12 weeks after streptozotocin injection, rats were intragastrically administered epalrestat 100 mg/kg daily for 6 weeks. Transmission electron microscope revealed that the injuries to myelinated nerve fibers, non-myelinated nerve fibers and Schwann cells of rat sciatic nerves had reduced compared to rats without epalrestat administuation. Western blot assay and immunohistochemical results demonstrated that after intervention with epalrestat, the activities of antioxidant enzymes such as superoxide dismutase, catalase and glutathione peroxidase gradually increased, but aldose reductase protein expression gradually diminished. Results confirmed that epalrestat could protect against diabetic peripheral neuropathy by relieving oxidative stress and suppressing the polyol pathway. PMID:27073391

  9. Autophagy protects intestinal epithelial cells against deoxynivalenol toxicity by alleviating oxidative stress via IKK signaling pathway.

    PubMed

    Tang, Yulong; Li, Jianjun; Li, Fengna; Hu, Chien-An A; Liao, Peng; Tan, Kunrong; Tan, Bie; Xiong, Xia; Liu, Gang; Li, Tiejun; Yin, Yulong

    2015-12-01

    Autophagy is an intracellular process of homeostatic degradation that promotes cell survival under various stressors. Deoxynivalenol (DON), a fungal toxin, often causes diarrhea and disturbs the homeostasis of the intestinal system. To investigate the function of intestinal autophagy in response to DON and associated mechanisms, we firstly knocked out ATG5 (autophagy-related gene 5) in porcine intestinal epithelial cells (IPEC-J2) using CRISPR-Cas9 technology. When treated with DON, autophagy was induced in IPEC-J2 cells but not in IPEC-J2.Atg5ko cells. The deficiency in autophagy increased DON-induced apoptosis in IPEC-J2.atg5ko cells, in part, through the generation of reactive oxygen species (ROS). The cellular stress response can be restored in IPEC-J2.atg5ko cells by overexpressing proteins involved in protein folding. Interestingly, we found that autophagy deficiency downregulated the expression of endoplasmic reticulum folding proteins BiP and PDI when IPEC-J2.atg5ko cells were treated with DON. In addition, we investigated the molecular mechanism of autophagy involved in the IKK, AMPK, and mTOR signaling pathway and found that Bay-117082 and Compound C, specific inhibitors for IKK and AMPK, respectively, inhibited the induction of autophagy. Taken together, our results suggest that autophagy is pivotal for protection against DON in pig intestinal cells.

  10. Oxidative Stress Alleviation by Sage Essential Oil in Co-amoxiclav induced Hepatotoxicity in Rats.

    PubMed

    El-Hosseiny, L S; Alqurashy, N N; Sheweita, S A

    2016-06-01

    Clinical studies have shown that several classes of antibiotics are evidenced in drug induced liver injury. The combination of amoxicillin with clavulanic acid is commonly cited in such cases. Accordingly, the present study investigated the potential hepatoprotective and in vivo antioxidant efficacy of sage essential oil in Co-amoxiclav induced hepatotoxicity in rats. Sage essential oil was hydrodistilled from the aerial parts of Salvia officinalis L. and its compositional analysis was characterized by Gas chromatography-Mass spectroscopy. Rats were treated singly or concomitantly with Co-amoxiclav and sage essential oil for a period of seven days. The major components of sage oil as identified by GC-MS were 1,8-cineole, β-pinene, camphor, β-caryophyllene, α-pinene and α-caryophyllene comprising 26.3%, 14.4%, 10.9%, 7.8%, 6% and 2.5% respectively. The in vivo exposure of rats to Co-amoxiclav resulted in hepatotoxicity biochemically evidenced by the significant elevation of serum AST, ALT, ALP, γ-GT, total bilirubin and histologically conveyed by hydropic, inflammatory and cholestatic changes in rats' liver. Oxidative stress mediated the hepatic injury as indicated by the significant escalation in lipid peroxidation, as well as, the significant depletion of both glutathione level and glutathione dependent enzymes' activities. The concomitant administration of sage essential oil with Co-amoxiclav exerted a hepatoprotective effect via inducing an in vivo antioxidant defense response eventually regressing, to some extent, the hepatoarchitectural changes induced by Co-amoxiclav. Results suggest that sage essential oil is a potential candidate for counteracting hepatic injury associating Co-amoxiclav and this effect is in part related to the complexity of its chemical composition. PMID:27493593

  11. Oxidative Stress Alleviation by Sage Essential Oil in Co-amoxiclav induced Hepatotoxicity in Rats

    PubMed Central

    El-Hosseiny, L. S.; Alqurashy, N. N.; Sheweita, S. A.

    2016-01-01

    Clinical studies have shown that several classes of antibiotics are evidenced in drug induced liver injury. The combination of amoxicillin with clavulanic acid is commonly cited in such cases. Accordingly, the present study investigated the potential hepatoprotective and in vivo antioxidant efficacy of sage essential oil in Co-amoxiclav induced hepatotoxicity in rats. Sage essential oil was hydrodistilled from the aerial parts of Salvia officinalis L. and its compositional analysis was characterized by Gas chromatography-Mass spectroscopy. Rats were treated singly or concomitantly with Co-amoxiclav and sage essential oil for a period of seven days. The major components of sage oil as identified by GC-MS were 1,8-cineole, β-pinene, camphor, β-caryophyllene, α-pinene and α-caryophyllene comprising 26.3%, 14.4%, 10.9%, 7.8%, 6% and 2.5% respectively. The in vivo exposure of rats to Co-amoxiclav resulted in hepatotoxicity biochemically evidenced by the significant elevation of serum AST, ALT, ALP, γ-GT, total bilirubin and histologically conveyed by hydropic, inflammatory and cholestatic changes in rats’ liver. Oxidative stress mediated the hepatic injury as indicated by the significant escalation in lipid peroxidation, as well as, the significant depletion of both glutathione level and glutathione dependent enzymes’ activities. The concomitant administration of sage essential oil with Co-amoxiclav exerted a hepatoprotective effect via inducing an in vivo antioxidant defense response eventually regressing, to some extent, the hepatoarchitectural changes induced by Co-amoxiclav. Results suggest that sage essential oil is a potential candidate for counteracting hepatic injury associating Co-amoxiclav and this effect is in part related to the complexity of its chemical composition. PMID:27493593

  12. Oxidative Stress Alleviation by Sage Essential Oil in Co-amoxiclav induced Hepatotoxicity in Rats.

    PubMed

    El-Hosseiny, L S; Alqurashy, N N; Sheweita, S A

    2016-06-01

    Clinical studies have shown that several classes of antibiotics are evidenced in drug induced liver injury. The combination of amoxicillin with clavulanic acid is commonly cited in such cases. Accordingly, the present study investigated the potential hepatoprotective and in vivo antioxidant efficacy of sage essential oil in Co-amoxiclav induced hepatotoxicity in rats. Sage essential oil was hydrodistilled from the aerial parts of Salvia officinalis L. and its compositional analysis was characterized by Gas chromatography-Mass spectroscopy. Rats were treated singly or concomitantly with Co-amoxiclav and sage essential oil for a period of seven days. The major components of sage oil as identified by GC-MS were 1,8-cineole, β-pinene, camphor, β-caryophyllene, α-pinene and α-caryophyllene comprising 26.3%, 14.4%, 10.9%, 7.8%, 6% and 2.5% respectively. The in vivo exposure of rats to Co-amoxiclav resulted in hepatotoxicity biochemically evidenced by the significant elevation of serum AST, ALT, ALP, γ-GT, total bilirubin and histologically conveyed by hydropic, inflammatory and cholestatic changes in rats' liver. Oxidative stress mediated the hepatic injury as indicated by the significant escalation in lipid peroxidation, as well as, the significant depletion of both glutathione level and glutathione dependent enzymes' activities. The concomitant administration of sage essential oil with Co-amoxiclav exerted a hepatoprotective effect via inducing an in vivo antioxidant defense response eventually regressing, to some extent, the hepatoarchitectural changes induced by Co-amoxiclav. Results suggest that sage essential oil is a potential candidate for counteracting hepatic injury associating Co-amoxiclav and this effect is in part related to the complexity of its chemical composition.

  13. Trichosanthes dioica fruit ameliorates experimentally induced arsenic toxicity in male albino rats through the alleviation of oxidative stress.

    PubMed

    Bhattacharya, Sanjib; Haldar, Pallab Kanti

    2012-08-01

    The present work was focused to evaluate the ameliorative property of aqueous extract of Trichosanthes dioica fruit (AQ T. dioica fruit) against arsenic-induced toxicity in male Wistar albino rats. AQ T. dioica fruit was administered orally to rats at 50 and 100 mg/kg body weight for 20 consecutive days prior to oral administration of sodium arsenite (10 mg/kg) for 10 days. Then the rats were sacrificed for the evaluation of body weights, organ weights, hematological profile, serum biochemical profile, and hepatic and renal antioxidative parameters viz. lipid peroxidation, reduced and oxidized glutathione, glutathione-S-transferase, glutathione peroxidase, glutathione reductase, superoxide dismutase, catalase, and DNA fragmentation. Pretreatment with AQ T. dioica fruit at both doses markedly and significantly normalized body weights, organ weights, hematological profiles, and serum biochemical profile in arsenic-treated animals. Further, AQ T. dioica fruit pretreatment significantly modulated all the aforesaid hepatic and renal biochemical perturbations and reduced DNA fragmentation in arsenic-intoxicated rats. Therefore, from the present findings, it can be concluded that T. dioica fruit possessed remarkable value in amelioration of arsenic-induced hepatic and renal toxicity, mediated by alleviation of arsenic-induced oxidative stress by multiple mechanisms in male albino rats.

  14. Treadmill exercise alleviates post-traumatic stress disorder-induced impairment of spatial learning memory in rats.

    PubMed

    Kim, Bo-Kyun; Seo, Jin-Hee

    2013-01-01

    Post-traumatic stress disorder (PTSD) is a condition which occurs after a person has experienced unusual stress. The neurons in the hippocampus are especially vulnerable to the PTSD. In the present study, the effect of treadmill exercise on spatial learning memory and cell proliferation in the hippocampus of rats with PTSD. Radial 8-arm maze test and immunohistochemistr for 5-bromo-2'-deoxyridine (BrdU) and double-cortin (DCX) were conducted for this experiment. For the inducing PTSD, the rats were exposure to 0.2 mA electric foot shock for 7 consecutive days. Electric foot shock continued 6 seconds, repeated 10 times with a 30 sec interval per one trial, and repeated 3 trials per day. The rats in the exercise groups were forced to run on a motorized treadmill for 30 min once a day for 4 weeks, stating one day after finishing last electric food shock. Presently, the PTSD rats showed longer time of successful performance, higher error number, and lower correct number in the radial-8-arm maze test. Cell proliferation and DCX expression in the hippocampal dentate gyrus were suppressed in the PTSD rats. In contrast, treadmill exercise alleviated PTSD-induced impairment of spatial learning memory. The rats performed treadmill exercise showed longer time of successful performance, higher error number, and lower correct number in the radial-8-arm maze test. Treadmill exercise also enhanced cell proliferation and DCX expression in the hippocampal dentate gyrus of PTSD rats. The present study demonstrated that treadmill exercise ameliorated PTSD-induced memory impairment through enhancing cell proliferation in the hippocampus.

  15. Autophagy, a Conserved Mechanism for Protein Degradation, Responds to Heat, and Other Abiotic Stresses in Capsicum annuum L.

    PubMed Central

    Zhai, Yufei; Guo, Meng; Wang, Hu; Lu, Jinping; Liu, Jinhong; Zhang, Chong; Gong, Zhenhui; Lu, Minghui

    2016-01-01

    Abiotic stresses negatively affect plants growth and development by inducing protein denaturation, and autophagy degrades the damaged proteins to alleviate their toxicity, however, little is known about the involvement of autophagy in pepper (Capsicum annuum L.) tolerances to abiotic stresses. In this study, we identified autophagy-related gene (ATG) members in the whole genome of pepper by HMM method and analyzed their expression profiles in response to heat and other abiotic stresses by quantitative real-time PCR. The results showed that the CaATG contained 15 core ATG members including 29 ATG proteins with their respective conserved functional domains, involving the whole process of autophagy. Under normal environmental condition, the expression of CaATG genes showed tissue- and developmental stage-specific patterns, while under abiotic stresses of salt, drought, heat, cold and carbohydrate starvation, the accumulation of autophagosome punctate increased and the expression level of CaATG genes changed with stress type-dependent pattern, which indicates the linkage of autophagy in pepper response to abiotic stresses. After treated with heat stress, both the number of up-regulated CaATG genes and the increment of autophagosome punctate were higher in pepper thermotolerant line R9 than those in thermosensitive line B6, implying an association of autophagy with heat tolerance. In addition, CaATG6 was predicted to interact with CaHSP90 family members. Our study suggests that autophagy is connected to pepper tolerances to heat and other abiotic stresses. PMID:26904087

  16. Autophagy, a Conserved Mechanism for Protein Degradation, Responds to Heat, and Other Abiotic Stresses in Capsicum annuum L.

    PubMed

    Zhai, Yufei; Guo, Meng; Wang, Hu; Lu, Jinping; Liu, Jinhong; Zhang, Chong; Gong, Zhenhui; Lu, Minghui

    2016-01-01

    Abiotic stresses negatively affect plants growth and development by inducing protein denaturation, and autophagy degrades the damaged proteins to alleviate their toxicity, however, little is known about the involvement of autophagy in pepper (Capsicum annuum L.) tolerances to abiotic stresses. In this study, we identified autophagy-related gene (ATG) members in the whole genome of pepper by HMM method and analyzed their expression profiles in response to heat and other abiotic stresses by quantitative real-time PCR. The results showed that the CaATG contained 15 core ATG members including 29 ATG proteins with their respective conserved functional domains, involving the whole process of autophagy. Under normal environmental condition, the expression of CaATG genes showed tissue- and developmental stage-specific patterns, while under abiotic stresses of salt, drought, heat, cold and carbohydrate starvation, the accumulation of autophagosome punctate increased and the expression level of CaATG genes changed with stress type-dependent pattern, which indicates the linkage of autophagy in pepper response to abiotic stresses. After treated with heat stress, both the number of up-regulated CaATG genes and the increment of autophagosome punctate were higher in pepper thermotolerant line R9 than those in thermosensitive line B6, implying an association of autophagy with heat tolerance. In addition, CaATG6 was predicted to interact with CaHSP90 family members. Our study suggests that autophagy is connected to pepper tolerances to heat and other abiotic stresses.

  17. Re-evaluating Occupational Heat Stress in a Changing Climate

    PubMed Central

    Spector, June T.; Sheffield, Perry E.

    2014-01-01

    The potential consequences of occupational heat stress in a changing climate on workers, workplaces, and global economies are substantial. Occupational heat stress risk is projected to become particularly high in middle- and low-income tropical and subtropical regions, where optimal controls may not be readily available. This commentary presents occupational heat stress in the context of climate change, reviews its impacts, and reflects on implications for heat stress assessment and control. Future efforts should address limitations of existing heat stress assessment methods and generate economical, practical, and universal approaches that can incorporate data of varying levels of detail, depending on resources. Validation of these methods should be performed in a wider variety of environments, and data should be collected and analyzed centrally for both local and large-scale hazard assessments and to guide heat stress adaptation planning. Heat stress standards should take into account variability in worker acclimatization, other vulnerabilities, and workplace resources. The effectiveness of controls that are feasible and acceptable should be evaluated. Exposure scientists are needed, in collaboration with experts in other areas, to effectively prevent and control occupational heat stress in a changing climate. PMID:25261455

  18. Re-evaluating occupational heat stress in a changing climate.

    PubMed

    Spector, June T; Sheffield, Perry E

    2014-10-01

    The potential consequences of occupational heat stress in a changing climate on workers, workplaces, and global economies are substantial. Occupational heat stress risk is projected to become particularly high in middle- and low-income tropical and subtropical regions, where optimal controls may not be readily available. This commentary presents occupational heat stress in the context of climate change, reviews its impacts, and reflects on implications for heat stress assessment and control. Future efforts should address limitations of existing heat stress assessment methods and generate economical, practical, and universal approaches that can incorporate data of varying levels of detail, depending on resources. Validation of these methods should be performed in a wider variety of environments, and data should be collected and analyzed centrally for both local and large-scale hazard assessments and to guide heat stress adaptation planning. Heat stress standards should take into account variability in worker acclimatization, other vulnerabilities, and workplace resources. The effectiveness of controls that are feasible and acceptable should be evaluated. Exposure scientists are needed, in collaboration with experts in other areas, to effectively prevent and control occupational heat stress in a changing climate. PMID:25261455

  19. Rubisco activase and wheat productivity under heat stress conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rubisco activase (RCA) constrains the photosynthetic potential of plants at high temperature (heat stress). We hypothesized that endogenous levels of RCA could serve as an important determinant of plant productivity under heat stress conditions. In this study, we investigated the possible relation...

  20. Influence of arbuscular mycorrhiza on the growth and antioxidative activity in cyclamen under heat stress.

    PubMed

    Maya, Moslama Aktar; Matsubara, Yoh-ichi

    2013-07-01

    The influence of the arbuscular mycorrhizal (AM) fungus, Glomus fasciculatum, on the growth, heat stress responses and the antioxidative activity in cyclamen (Cyclamen persicum Mill.) plants was studied. Cyclamen plants (inoculated or not with the AM fungus) were placed in a commercial potting media at 17-20 °C for 12 weeks in a greenhouse and subsequently subjected to two temperature conditions in a growth chamber. Initially, plants were grown at 20 °C for 4 weeks as a no heat stress (HS-) condition, followed by 30 °C for another 4 weeks as a heat stress (HS+) condition. Different morphological and physiological growth parameters were compared between G. fasciculatum-inoculated and noninoculated plants. The mycorrhizal symbiosis markedly enhanced biomass production and HS + responses in plants compared to that in the controls. A severe rate of leaf browning (80-100%) was observed in control plants, whereas the mycorrhizal plants showed a minimum rate of leaf browning under HS + conditions. The mycorrhizal plants showed an increase activity of antioxidative enzymes such as superoxide dismutase and ascorbate peroxidase, as well as an increase in ascorbic acid and polyphenol contents. The 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity also showed a greater response in mycorrhizal plants than in the control plants under each temperature condition. The results indicate that in cyclamen plants, AM fungal colonisation alleviated heat stress damage through an increased antioxidative activity and that the mycorrhizal symbiosis strongly enhanced temperature stress tolerance which promoted plant growth and increased the host biomass under heat stress.

  1. Quantifying Livestock Heat Stress Impacts in the Sahel

    NASA Astrophysics Data System (ADS)

    Broman, D.; Rajagopalan, B.; Hopson, T. M.

    2014-12-01

    Livestock heat stress, especially in regions of the developing world with limited adaptive capacity, has a largely unquantified impact on food supply. Though dominated by ambient air temperature, relative humidity, wind speed, and solar radiation all affect heat stress, which can decrease livestock growth, milk production, reproduction rates, and mortality. Indices like the thermal-humidity index (THI) are used to quantify the heat stress experienced from climate variables. Livestock experience differing impacts at different index critical thresholds that are empirically determined and specific to species and breed. This lack of understanding has been highlighted in several studies with a limited knowledge of the critical thresholds of heat stress in native livestock breeds, as well as the current and future impact of heat stress,. As adaptation and mitigation strategies to climate change depend on a solid quantitative foundation, this knowledge gap has limited such efforts. To address the lack of study, we have investigated heat stress impacts in the pastoral system of Sub-Saharan West Africa. We used a stochastic weather generator to quantify both the historic and future variability of heat stress. This approach models temperature, relative humidity, and precipitation, the climate variables controlling heat stress. Incorporating large-scale climate as covariates into this framework provides a better historical fit and allows us to include future CMIP5 GCM projections to examine the climate change impacts on heat stress. Health and production data allow us to examine the influence of this variability on livestock directly, and are considered in conjunction with the confounding impacts of fodder and water access. This understanding provides useful information to decision makers looking to mitigate the impacts of climate change and can provide useful seasonal forecasts of heat stress risk. A comparison of the current and future heat stress conditions based on

  2. Heat stress increases insulin sensitivity in pigs

    PubMed Central

    Sanz Fernandez, M Victoria; Stoakes, Sara K; Abuajamieh, Mohannad; Seibert, Jacob T; Johnson, Jay S; Horst, Erin A; Rhoads, Robert P; Baumgard, Lance H

    2015-01-01

    Proper insulin homeostasis appears critical for adapting to and surviving a heat load. Further, heat stress (HS) induces phenotypic changes in livestock that suggest an increase in insulin action. The current study objective was to evaluate the effects of HS on whole-body insulin sensitivity. Female pigs (57 ± 4 kg body weight) were subjected to two experimental periods. During period 1, all pigs remained in thermoneutral conditions (TN; 21°C) and were fed ad libitum. During period 2, pigs were exposed to: (i) constant HS conditions (32°C) and fed ad libitum (n = 6), or (ii) TN conditions and pair-fed (PFTN; n = 6) to eliminate the confounding effects of dissimilar feed intake. A hyperinsulinemic euglycemic clamp (HEC) was conducted on d3 of both periods; and skeletal muscle and adipose tissue biopsies were collected prior to and after an insulin tolerance test (ITT) on d5 of period 2. During the HEC, insulin infusion increased circulating insulin and decreased plasma C-peptide and nonesterified fatty acids, similarly between treatments. From period 1 to 2, the rate of glucose infusion in response to the HEC remained similar in HS pigs while it decreased (36%) in PFTN controls. Prior to the ITT, HS increased (41%) skeletal muscle insulin receptor substrate-1 protein abundance, but did not affect protein kinase B or their phosphorylated forms. In adipose tissue, HS did not alter any of the basal or stimulated measured insulin signaling markers. In summary, HS increases whole-body insulin-stimulated glucose uptake. PMID:26243213

  3. Regulation of Photochemical Energy Transfer Accompanied by Structural Changes in Thylakoid Membranes of Heat-Stressed Wheat

    PubMed Central

    Marutani, Yoko; Yamauchi, Yasuo; Miyoshi, Akihito; Inoue, Kanako; Ikeda, Ken-ichi; Mizutani, Masaharu; Sugimoto, Yukihiro

    2014-01-01

    Photosystems of higher plants alleviate heat-induced damage in the presence of light under moderate stressed conditions; however, in the absence of light (i.e., in the dark), the same plants are damaged more easily. (Yamauchi and Kimura, 2011) We demonstrate that regulating photochemical energy transfer in heat-treated wheat at 40 °C with light contributed to heat tolerance of the photosystem. Chlorophyll fluorescence analysis using heat-stressed wheat seedlings in light showed increased non-photochemical quenching (NPQ) of chlorophyll fluorescence, which was due to thermal dissipation that was increased by state 1 to state 2 transition. Transmission electron microscopy revealed structural changes in thylakoid membranes, including unstacking of grana regions under heat stress in light. It was accompanied by the phosphorylation of thylakoid proteins such as D1 and D2 proteins and the light harvesting complex II proteins Lhcb1 and Lhcb2. These results suggest that heat stress at 40 °C in light induces state 1 to state 2 transition for the preferential excitation of photosystem I (PSI) by phosphorylating thylakoid proteins more strongly. Structural changes of thylakoid membrane also assist the remodeling of photosystems and regulation of energy distribution by transition toward state 2 probably contributes to plastoquione oxidation; thus, light-driven electrons flowing through PSI play a protective role against PSII damage under heat stress. PMID:25514410

  4. Effect of acute heat stress on plant nutrient metabolism proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abrupt heating decreased the levels (per unit total root protein) of all but one of the nutrient metabolism proteins examined, and for most of the proteins, effects were greater for severe vs. moderate heat stress. For many of the nutrient metabolism proteins, initial effects of heat (1 d) were r...

  5. Molecular mechanisms of the plant heat stress response

    SciTech Connect

    Qu, Ai-Li; Ding, Yan-Fei; Jiang, Qiong; Zhu, Cheng

    2013-03-08

    Highlights: ► This review elaborates the response networks of heat stress in plants. ► It elaborates proteins responding to heat stress in special physiological period. ► The proteins and pathways have formed a basic network of the heat stress response. ► Achievements of the various technologies are also combined. -- Abstract: High temperature has become a global concern, which seriously affects the growth and production of plants, particularly crops. Thus, the molecular mechanism of the heat stress response and breeding of heat-tolerant plants is necessary to protect food production and ensure crop safety. This review elaborates on the response networks of heat stress in plants, including the Hsf and Hsp response pathways, the response of ROS and the network of the hormones. In addition, the production of heat stress response elements during particular physiological periods of the plant is described. We also discuss the existing problems and future prospects concerning the molecular mechanisms of the heat stress response in plants.

  6. Alleviation of salt stress in citrus seedlings inoculated with arbuscular mycorrhizal fungi depends on the rootstock salt tolerance.

    PubMed

    Navarro, Josefa M; Pérez-Tornero, Olaya; Morte, Asunción

    2014-01-01

    Seedlings of Cleopatra mandarin (Citrus reshni Hort. ex Tan.) and Alemow (Citrus macrophylla Wester) were inoculated with a mixture of AM fungi (Rhizophagus irregularis and Funneliformis mosseae) (+AM), or left non-inoculated (-AM). From forty-five days after fungal inoculation onwards, half of +AM or -AM plants were irrigated with nutrient solution containing 50 mM NaCl. Three months later, AM significantly increased plant growth in both Cleopatra mandarin and Alemow rootstocks. Plant growth was higher in salinized +AM plants than in non-salinized -AM plants, demonstrating that AM compensates the growth limitations imposed by salinity. Whereas AM-inoculated Cleopatra mandarin seedlings had a very good response under saline treatment, inoculation in Alemow did not alleviate the negative effect of salinity. The beneficial effect of mycorrhization is unrelated with protection against the uptake of Na or Cl and the effect of AM on these ions did not explain the different response of rootstocks. This response was related with the nutritional status since our findings confirm that AM fungi can alter host responses to salinity stress, improving more the P, K, Fe and Cu plant nutrition in Cleopatra mandarin than in Alemow plants. AM inoculation under saline treatments also increased root Mg concentration but it was higher in Cleopatra mandarin than in Alemow. This could explain why AM fungus did not completely recovered chlorophyll concentrations in Alemow and consequently it had lower photosynthesis rate than control plants. AM fungi play an essential role in citrus rootstock growth and biomass production although the intensity of this response depends on the rootstock salinity tolerance.

  7. Occupational Heat Stress Profiles in Selected Workplaces in India.

    PubMed

    Venugopal, Vidhya; Chinnadurai, Jeremiah S; Lucas, Rebekah A I; Kjellstrom, Tord

    2016-01-01

    Health and productivity impacts from occupational heat stress have significant ramifications for the large workforce of India. This study profiled occupational heat stress impacts on the health and productivity of workers in select organized and unorganized Indian work sectors. During hotter and cooler seasons, Wet Bulb Globe Temperatures (WBGT) were used to quantify the risk of heat stress, according to International workplace guidelines. Questionnaires assessed workers' perceived health and productivity impacts from heat stress. A total of 442 workers from 18 Indian workplaces participated (22% and 78% from the organized and unorganized sector, respectively). Overall 82% and 42% of workers were exposed to higher than recommended WBGT during hotter and cooler periods, respectively. Workers with heavy workloads reported more heat-related health issues (chi square = 23.67, p ≤ 0.001) and reduced productivity (chi square = 15.82, p ≤ 0.001), especially the outdoor workers. Heat-rashes, dehydration, heat-syncope and urinogenital symptoms were self-reported health issues. Cited reasons for productivity losses were: extended-work hours due to fatigue/exhaustion, sickness/hospitalization and wages lost. Reducing workplace heat stress will benefit industries and workers via improving worker health and productivity. Adaptation and mitigation measures to tackle heat stress are imperative to protect the present and future workforce as climate change progresses. PMID:26729144

  8. Occupational Heat Stress Profiles in Selected Workplaces in India

    PubMed Central

    Venugopal, Vidhya; Chinnadurai, Jeremiah S.; Lucas, Rebekah A. I.; Kjellstrom, Tord

    2015-01-01

    Health and productivity impacts from occupational heat stress have significant ramifications for the large workforce of India. This study profiled occupational heat stress impacts on the health and productivity of workers in select organized and unorganized Indian work sectors. During hotter and cooler seasons, Wet Bulb Globe Temperatures (WBGT) were used to quantify the risk of heat stress, according to International workplace guidelines. Questionnaires assessed workers’ perceived health and productivity impacts from heat stress. A total of 442 workers from 18 Indian workplaces participated (22% and 78% from the organized and unorganized sector, respectively). Overall 82% and 42% of workers were exposed to higher than recommended WBGT during hotter and cooler periods, respectively. Workers with heavy workloads reported more heat-related health issues (chi square = 23.67, p ≤ 0.001) and reduced productivity (chi square = 15.82, p ≤ 0.001), especially the outdoor workers. Heat-rashes, dehydration, heat-syncope and urinogenital symptoms were self-reported health issues. Cited reasons for productivity losses were: extended-work hours due to fatigue/exhaustion, sickness/hospitalization and wages lost. Reducing workplace heat stress will benefit industries and workers via improving worker health and productivity. Adaptation and mitigation measures to tackle heat stress are imperative to protect the present and future workforce as climate change progresses. PMID:26729144

  9. Occupational Heat Stress Profiles in Selected Workplaces in India.

    PubMed

    Venugopal, Vidhya; Chinnadurai, Jeremiah S; Lucas, Rebekah A I; Kjellstrom, Tord

    2016-01-01

    Health and productivity impacts from occupational heat stress have significant ramifications for the large workforce of India. This study profiled occupational heat stress impacts on the health and productivity of workers in select organized and unorganized Indian work sectors. During hotter and cooler seasons, Wet Bulb Globe Temperatures (WBGT) were used to quantify the risk of heat stress, according to International workplace guidelines. Questionnaires assessed workers' perceived health and productivity impacts from heat stress. A total of 442 workers from 18 Indian workplaces participated (22% and 78% from the organized and unorganized sector, respectively). Overall 82% and 42% of workers were exposed to higher than recommended WBGT during hotter and cooler periods, respectively. Workers with heavy workloads reported more heat-related health issues (chi square = 23.67, p ≤ 0.001) and reduced productivity (chi square = 15.82, p ≤ 0.001), especially the outdoor workers. Heat-rashes, dehydration, heat-syncope and urinogenital symptoms were self-reported health issues. Cited reasons for productivity losses were: extended-work hours due to fatigue/exhaustion, sickness/hospitalization and wages lost. Reducing workplace heat stress will benefit industries and workers via improving worker health and productivity. Adaptation and mitigation measures to tackle heat stress are imperative to protect the present and future workforce as climate change progresses.

  10. A systems biology approach to heat stress, heat injury, and heat stroke

    NASA Astrophysics Data System (ADS)

    Stallings, Jonathan D.; Ippolito, Danielle L.

    2015-05-01

    Heat illness is a major source of injury for military populations in both deployed and training settings. Developing tools to help leaders enhance unit performance while reducing the risk of injury is of paramount importance to the military. Here, we review our recent systems biology approaches to heat stress in order to develop a 3-dimensional (3D) realistic thermoregulation model, identify the molecular basis and mediators of injury, and characterize associated biomarkers. We discuss the implications of our work, future directions, and the type of tools necessary to enhance force health protection in the future.

  11. Perceived heat stress and health effects on construction workers

    PubMed Central

    Dutta, Priya; Rajiva, Ajit; Andhare, Dileep; Azhar, Gulrez Shah; Tiwari, Abhiyant; Sheffield, Perry

    2015-01-01

    Introduction: Increasing heat waves-particularly in urban areas where construction is most prevalent, highlight a need for heat exposure assessment of construction workers. This study aims to characterize the effects of heat on construction workers from a site in Gandhinagar. Materials and Methods: This study involved a mixed methods approach consisting of a cross sectional survey with anthropometric measurements (n = 219) and four focus groups with construction workers, as well as environmental measurements of heat stress exposure at a construction site. Survey data was collected in two seasons i.e., summer and winter months, and heat illness and symptoms were compared between the two time periods. Thematic coding of focus group data was used to identify vulnerability factors and coping mechanisms of the workers. Heat stress, recorded using a wet bulb globe temperature monitor, was compared to international safety standards. Results: The survey findings suggest that heat-related symptoms increased in summer; 59% of all reports in summer were positive for symptoms (from Mild to Severe) as compared to 41% in winter. Focus groups revealed four dominant themes: (1) Non-occupational stressors compound work stressors; (2) workers were particularly attuned to the impact of heat on their health; (3) workers were aware of heat-related preventive measures; and (4) few resources were currently available to protect workers from heat stress. Working conditions often exceed international heat stress safety thresholds. Female workers and new employees might be at increased risk of illness or injury. Conclusion: This study suggests significant health impacts on construction workers from heat stress exposure in the workplace, showed that heat stress levels were higher than those prescribed by international standards and highlights the need for revision of work practices, increased protective measures, and possible development of indigenous work safety standards for heat exposure

  12. Higher Ammonium Transamination Capacity Can Alleviate Glutamate Inhibition on Winter Wheat (Triticum aestivum L.) Root Growth under High Ammonium Stress.

    PubMed

    Wang, Feng; Gao, Jingwen; Liu, Yang; Tian, Zhongwei; Muhammad, Abid; Zhang, Yixuan; Jiang, Dong; Cao, Weixing; Dai, Tingbo

    2016-01-01

    Most of the studies about NH4+ stress mechanism simply address the effects of free NH4+, failing to recognize the changed nitrogen assimilation products. The objective of this study was to elucidate the effects of glutamate on root growth under high ammonium (NH4+) conditions in winter wheat (Triticum aestivum L.). Hydroponic experiments were conducted using two wheat cultivars, AK58 (NH4+-sensitive) and Xumai25 (NH4+-tolerant) with either 5 mM NH4+ nitrogen (AN) as stress treatment or 5 mM nitrate (NO3-) nitrogen as control. To evaluate the effects of NH4+-assimilation products on plant growth, 1 μM L-methionine sulfoximine (MSO) (an inhibitor of glutamine synthetase (GS)) and 1 mM glutamates (a primary N assimilation product) were added to the solutions, respectively. The AN significantly reduced plant biomass, total root length, surface area and root volume in both cultivars, but less effect was observed in Xumai25. The inhibition effects were alleviated by the application of MSO but strengthened by the application of glutamate. The AN increased the activities of GS, glutamate dehydrogenase (GDH) in both cultivars, resulting in higher glutamate contents. However, its contents were decreased by the application of MSO. Compared to AK58, Xumai25 showed lower glutamate contents due to its higher activities of glutamic-oxaloacetic transaminase (GOT) and glutamic-pyruvic transaminase (GPT). With the indole-3-acetic acid (IAA) contents decreasing in roots, the ratio of shoot to root in IAA was increased, and further increased by the application of glutamate, and reduced by the application of MSO, but the ratio was lower in Xumai25. Meanwhile, the total soluble sugar contents and its root to shoot ratio also showed similar trends. These results indicate that the NH4+-tolerant cultivar has a greater transamination ability to prevent glutamate over-accumulation to maintain higher IAA transport ability, and consequently promoted soluble sugar transport to roots, further

  13. Higher Ammonium Transamination Capacity Can Alleviate Glutamate Inhibition on Winter Wheat (Triticum aestivum L.) Root Growth under High Ammonium Stress

    PubMed Central

    Liu, Yang; Tian, Zhongwei; Muhammad, Abid; Zhang, Yixuan; Jiang, Dong; Cao, Weixing; Dai, Tingbo

    2016-01-01

    Most of the studies about NH4+ stress mechanism simply address the effects of free NH4+, failing to recognize the changed nitrogen assimilation products. The objective of this study was to elucidate the effects of glutamate on root growth under high ammonium (NH4+) conditions in winter wheat (Triticum aestivum L.). Hydroponic experiments were conducted using two wheat cultivars, AK58 (NH4+-sensitive) and Xumai25 (NH4+-tolerant) with either 5 mM NH4+ nitrogen (AN) as stress treatment or 5 mM nitrate (NO3-) nitrogen as control. To evaluate the effects of NH4+-assimilation products on plant growth, 1 μM L-methionine sulfoximine (MSO) (an inhibitor of glutamine synthetase (GS)) and 1 mM glutamates (a primary N assimilation product) were added to the solutions, respectively. The AN significantly reduced plant biomass, total root length, surface area and root volume in both cultivars, but less effect was observed in Xumai25. The inhibition effects were alleviated by the application of MSO but strengthened by the application of glutamate. The AN increased the activities of GS, glutamate dehydrogenase (GDH) in both cultivars, resulting in higher glutamate contents. However, its contents were decreased by the application of MSO. Compared to AK58, Xumai25 showed lower glutamate contents due to its higher activities of glutamic-oxaloacetic transaminase (GOT) and glutamic-pyruvic transaminase (GPT). With the indole-3-acetic acid (IAA) contents decreasing in roots, the ratio of shoot to root in IAA was increased, and further increased by the application of glutamate, and reduced by the application of MSO, but the ratio was lower in Xumai25. Meanwhile, the total soluble sugar contents and its root to shoot ratio also showed similar trends. These results indicate that the NH4+-tolerant cultivar has a greater transamination ability to prevent glutamate over-accumulation to maintain higher IAA transport ability, and consequently promoted soluble sugar transport to roots, further

  14. Heat stress and societal impacts in the 21st century

    NASA Astrophysics Data System (ADS)

    Coffel, E.; Horton, R. M.; de Sherbinin, A. M.

    2015-12-01

    Heat is the number-one weather related killer in the US and around the world. As a result of rising temperatures and steady or slightly rising levels of specific humidity, heat stress is projected to become increasingly severe. Here we show that heat stress as measured by two common indices -- the heat index and the wet-bulb temperature -- is projected to rapidly and dramatically increase, and that by mid-century crippling summertime conditions are possible across some of the most densely populated regions of the planet. Many of these regions are places where cooling infrastructure is scarce, adaptive capacity is low, and populations are rapidly rising. We find that by the end of the 21st century, the habitability of some regions of the planet may be questionable due to heat stress alone, and in many other regions severe impacts to human health, infrastructure, agriculture, and economic performance will create significant societal stress and necessitate rapid adaptation.

  15. Climate change and occupational heat stress: methods for assessment

    PubMed Central

    Holmér, Ingvar

    2010-01-01

    Background Presumed effects of global warming on occupational heat stress aggravate conditions in many parts of the world, in particular in developing countries. In order to assess and evaluate conditions, heat stress must be described and measured correctly. Objective Assessment of heat stress using internationally recognized methods. Design Two such methods are wet bulb globe temperature (WBGT; ISO 7243) and predicted heat strain (PHS; ISO 7933). Both methods measure relevant climatic factors and provide recommendations for limit values in terms of time when heat stress becomes imminent. The WBGT as a heat stress index is empirical and widely recognized. It requires, however, special sensors for the climatic factors that can introduce significant measurement errors if prescriptions in ISO 7243 are not followed. The PHS (ISO 7933) is based on climatic factors that can easily be measured with traditional instruments. It evaluates the conditions for heat balance in a more rational way and it applies equally to all combinations of climates. Results Analyzing similar climatic conditions with WBGT and PHS indicates that WBGT provides a more conservative assessment philosophy that allows much shorter working time than predicted with PHS. Conclusions PHS prediction of physiological strain appears to fit better with published data from warm countries. Both methods should be used and validated more extensively worldwide in order to give reliable and accurate information about the actual heat stress. PMID:21139697

  16. Overexpression of gamma-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: physiological and chlorophyll a fluorescence measurements.

    PubMed

    Yusuf, Mohd Aslam; Kumar, Deepak; Rajwanshi, Ravi; Strasser, Reto Jörg; Tsimilli-Michael, Merope; Govindjee; Sarin, Neera Bhalla

    2010-08-01

    Tocopherols (vitamin E) are lipid soluble antioxidants synthesized by plants and some cyanobacteria. We have earlier reported that overexpression of the gamma-tocopherol methyl transferase (gamma-TMT) gene from Arabidopsis thaliana in transgenic Brassica juncea plants resulted in an over six-fold increase in the level of alpha-tocopherol, the most active form of all the tocopherols. Tocopherol levels have been shown to increase in response to a variety of abiotic stresses. In the present study on Brassica juncea, we found that salt, heavy metal and osmotic stress induced an increase in the total tocopherol levels. Measurements of seed germination, shoot growth and leaf disc senescence showed that transgenic Brassica juncea plants overexpressing the gamma-TMT gene had enhanced tolerance to the induced stresses. Analysis of the chlorophyll a fluorescence rise kinetics, from the initial "O" level to the "P" (the peak) level, showed that there were differential effects of the applied stresses on different sites of the photosynthetic machinery; further, these effects were alleviated in the transgenic (line 16.1) Brassica juncea plants. We show that alpha-tocopherol plays an important role in the alleviation of stress induced by salt, heavy metal and osmoticum in Brassica juncea. PMID:20144585

  17. Alleviating salt stress in tomato seedlings using Arthrobacter and Bacillus megaterium isolated from the rhizosphere of wild plants grown on saline-alkaline lands.

    PubMed

    Fan, Pengfei; Chen, Daitao; He, Yanan; Zhou, Qingxia; Tian, Yongqiang; Gao, Lihong

    2016-11-01

    Salt-induced soil degradation is common in farmlands and limits the growth and development of numerous crop plants in the world. In this study, we isolated salt-tolerant bacteria from the rhizosphere of Tamarix chinensis, Suaeda salsa and Zoysia sinica, which are common wild plants grown on a saline-alkaline land, to test these bacteria's efficiency in alleviating salt stress in tomato plants. We screened out seven strains (TF1-7) that are efficient in reducing salt stress in tomato seedlings. The sequence data of 16S rRNA genes showed that these strains belong to Arthrobacter and Bacillus megaterium. All strains could hydrolyze casein and solubilize phosphate, and showed at least one plant growth promotion (PGP)-related gene, indicating their potential in promoting plant growth. The Arthrobacter strains TF1 and TF7 and the Bacillus megaterium strain TF2 and TF3 could produce indole acetic acid under salt stress, further demonstrating their PGP potential. Tomato seed germination, seedling length, vigor index, and plant fresh and dry weight were enhanced by inoculation of Arthrobacter and B. megaterium strains under salt stress. Our results demonstrated that salt-tolerant bacteria isolated from the rhizosphere of wild plants grown on saline-alkaline lands could be used for alleviating salt stress in crop plants. PMID:27196364

  18. [Regulation of different calcium forms on the photosynthesis of tomato leaves under heat stress].

    PubMed

    Qi, Hong-yan; Wang, Dan; Qi, Ming-fang; Liu, Yu-feng; He, Yu; Li, Tian-lai

    2014-12-01

    The regulation of different calcium forms, namely CaCl2, Nano-calcium and Manntiol-calcuim, on the gas exchange and fluorescence of tomato leaves under heat stress was investigated. The results showed that all forms of calcium alleviated the decrease of chlorophyll a and carotenoid contents in leaves of tomato seedlings under heat stress, enhanced the net photosynthesis rate (Pn), transpiration rate (Tr) and stomatal conductance (g(s)) to varying degrees, reduced the quantum yield of non-regulated energy dissipation [Y(NO)] of PSII and quantum yield of non-photochemical energy dissipation in PSI due to acceptor side limitation [Y(NA)], promoted the regulated energy dissipation [Y(NPQ)] and quantum yield of non-photochemical energy dissipation in PSI due to donor side limitation [Y(ND)], and increased the calcium content in leaves. Generally, manntiol-calcium and nano-calcium were more effective than CaCl2, and more suitable to enhance the photosynthesis of leaves oftomato seedlings under heat stress.

  19. Extreme Heat Stress trends in ERA Interim 1979-2011

    NASA Astrophysics Data System (ADS)

    Buzan, J. R.; Huber, M.

    2012-12-01

    Heat stress is a function of temperature and humidity, and is therefore subject to the covariance of the two quantities. One of the robust predictions from climate change is an increase in temperatures across the planet, and therefore heat stress is projected to increase, however the covariance with humidity is less sure. It has been proposed that in future climate, significant portions of the land surface become subject to life threatening heat stress levels to humans and mammals. There are numerous methods and metrics for calculating heat stress, however, the majority use atmospheric state variables (pressure, temperature, and specific humidity), to measure the thermodynamic state of the atmosphere or estimate thermal load on humans and mammals. Here we present calculations of the evolution of heat stress for the past 3 decades using the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA Interim reanalysis data product from near surface boundary layer state variables. We characterize both spatial and temporal trends with a variety of the most commonly used heat stress metrics (wet bulb temperatures, heat index, etc.). The metrics are calculated from 4x daily values to capture both the diurnal cycle and the daily peak values for these indices.

  20. Evaluation of Transient Pin-Stress Requirements for Spacecraft Launching in Lightning Environments. Pain Free Analysis to Alleviate Those Pin Stress Headaches

    NASA Technical Reports Server (NTRS)

    Edwards, Paul; Terseck, Alex; Trout, Dawn

    2016-01-01

    Spacecraft are generally protected from direct lightning attachment by encapsulation within the payload fairing of a launch vehicle and the ground structures that exist at the launch site. Regardless of where lightning strikes, potentially damaging indirect effects prevail from the coupling of electromagnetic fields into a loop created by outer shield of the payload umbilical. The energy coupled into individual spacecraft circuits is dependent on the umbilical current drive, the cable transfer impedance and the source/ load circuitry, and the reference potential used. Lightning induced transient susceptibility of the spacecraft avionics needs to be fully understood in order to define realistic re-test criteria in the event of a lightning occurrence during the launch campaign. Use of standards such as RTCA/DO-160 & SAE 5412 has some applicability but do not represent the indirect environment adequately. This paper evaluates the launch pad environments, the measurement data available, and computer simulations to provide pain-free analysis to alleviate the transient pin-stress headaches for spacecraft launching in Lightning environments.

  1. Heat stress preconditioning improves cognitive outcome after diffuse axonal injury in rats.

    PubMed

    Su, Zhangjie; Han, Dadong; Sun, Bo; Qiu, Jiaheng; Li, Ying; Li, Mu; Zhang, Tao; Yang, Zhuo

    2009-10-01

    This study investigates the influence of heat stress preconditioning on cognitive outcome for rats with diffuse axonal injury (DAI), and attempts to examine the underlying mechanisms. Wistar rats were divided into four groups: rats subjected to heat stress preconditioning 24 h before induction of DAI (n = 10; HSDAI group), a DAI alone group (n = 10), a heat stress alone group (n = 10), and a sham-injury group (n = 10). From day 14 post-injury, the rats' learning abilities and memory were tested using the Morris water maze (MWM) task, followed by long-term potentiation (LTP) recording of the hippocampus. In addition, hematoxylin and eosin staining (H&E) and immunohistochemical staining (IHC) were conducted to determine the presence of brain lesions and expression of heat shock protein 70 (HSP70) at 24 h, and on days 14 and 20 post-injury. The rats in the DAI group displayed impaired MWM performance and attenuated LTP compared to the sham group (p < 0.05); the rats in the HSDAI and HS groups showed significant improvement in both MWM and LTP compared with the DAI group (p < 0.05), and no significant differences with the sham group (p > 0.05). Following injury, retraction balls, shrunken neurons, and HSP70 expression were visible in the brains of rats from the DAI and HSDAI groups; recovery was expedited in the rats belonging to the HSDAI group, as these pathological changes were alleviated, coincident with higher expression of HSP70. The rats' abilities for learning and memory were impaired following DAI; this may be due to the disconnection of brain regions, damage to neurons in the hippocampus, and a decrease in synaptic plasticity. Heat stress preconditioning is able to significantly attenuate this cognitive impairment, possibly mediated by the neuroprotective effect of HSP70.

  2. Proteomics Analysis of Alfalfa Response to Heat Stress

    PubMed Central

    Li, Weimin; Wei, Zhenwu; Qiao, Zhihong; Wu, Zinian; Cheng, Lixiang; Wang, Yuyang

    2013-01-01

    The proteome responses to heat stress have not been well understood. In this study, alfalfa (Medicago sativa L. cv. Huaiyin) seedlings were exposed to 25°C (control) and 40°C (heat stress) in growth chambers, and leaves were collected at 24, 48 and 72 h after treatment, respectively. The morphological, physiological and proteomic processes were negatively affected under heat stress. Proteins were extracted and separated by two-dimensional polyacrylamide gel electrophoresis (2-DE), and differentially expressed protein spots were identified by mass spectrometry (MS). Totally, 81 differentially expressed proteins were identified successfully by MALDI-TOF/TOF. These proteins were categorized into nine classes: including metabolism, energy, protein synthesis, protein destination/storage, transporters, intracellular traffic, cell structure, signal transduction and disease/defence. Five proteins were further analyzed for mRNA levels. The results of the proteomics analyses provide a better understanding of the molecular basis of heat-stress responses in alfalfa. PMID:24324825

  3. Telemetric heat stress monitor (THSM) spin-offs

    SciTech Connect

    Berkbigler, L.; Bradley, O.; Lopez, R.; Martinez, D.; Stampfer, J.

    1996-07-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project sought to investigate spin-offs of the telemetric heat stress monitoring system (THSM) developed at LANL. Hazardous-materials workers and firefighters wear clothing that protects them from external hazards, but the sealed environment of a protective suit makes its wearer susceptible to heat stress. Heat stress occurs when the body`s natural cooling mechanisms fail: it can cause collapse and death. The THSM warns both workers and remote monitoring personnel of incipient heat stress by monitoring and responding to elevations of workers` skin temperatures and heart rates. The technology won a 1994 R & D 100 award.

  4. Deep-brain magnetic stimulation promotes adult hippocampal neurogenesis and alleviates stress-related behaviors in mouse models for neuropsychiatric disorders

    PubMed Central

    2014-01-01

    Background Repetitive Transcranial Magnetic Stimulation (rTMS)/ Deep-brain Magnetic Stimulation (DMS) is an effective therapy for various neuropsychiatric disorders including major depression disorder. The molecular and cellular mechanisms underlying the impacts of rTMS/DMS on the brain are not yet fully understood. Results Here we studied the effects of deep-brain magnetic stimulation to brain on the molecular and cellular level. We examined the adult hippocampal neurogenesis and hippocampal synaptic plasticity of rodent under stress conditions with deep-brain magnetic stimulation treatment. We found that DMS promotes adult hippocampal neurogenesis significantly and facilitates the development of adult new-born neurons. Remarkably, DMS exerts anti-depression effects in the learned helplessness mouse model and rescues hippocampal long-term plasticity impaired by restraint stress in rats. Moreover, DMS alleviates the stress response in a mouse model for Rett syndrome and prolongs the life span of these animals dramatically. Conclusions Deep-brain magnetic stimulation greatly facilitates adult hippocampal neurogenesis and maturation, also alleviates depression and stress-related responses in animal models. PMID:24512669

  5. A virtual rat for simulating environmental and exertional heat stress.

    PubMed

    Rakesh, Vineet; Stallings, Jonathan D; Reifman, Jaques

    2014-12-01

    Severe cases of environmental or exertional heat stress can lead to varying degrees of organ dysfunction. To understand heat-injury progression and develop efficient management and mitigation strategies, it is critical to determine the thermal response in susceptible organs under different heat-stress conditions. To this end, we used our previously published virtual rat, which is capable of computing the spatiotemporal temperature distribution in the animal, and extended it to simulate various heat-stress scenarios, including 1) different environmental conditions, 2) exertional heat stress, 3) circadian rhythm effect on the thermal response, and 4) whole body cooling. Our predictions were consistent with published in vivo temperature measurements for all cases, validating our simulations. We observed a differential thermal response in the organs, with the liver experiencing the highest temperatures for all environmental and exertional heat-stress cases. For every 3°C rise in the external temperature from 40 to 46°C, core and organ temperatures increased by ∼0.8°C. Core temperatures increased by 2.6 and 4.1°C for increases in exercise intensity from rest to 75 and 100% of maximal O2 consumption, respectively. We also found differences as large as 0.8°C in organ temperatures for the same heat stress induced at different times during the day. Even after whole body cooling at a relatively low external temperature (1°C for 20 min), average organ temperatures were still elevated by 2.3 to 2.5°C compared with normothermia. These results can be used to optimize experimental protocol designs, reduce the amount of animal experimentation, and design and test improved heat-stress prevention and management strategies.

  6. Carcass and meat quality traits of chickens fed diets concurrently supplemented with vitamins C and E under constant heat stress.

    PubMed

    Zeferino, C P; Komiyama, C M; Pelícia, V C; Fascina, V B; Aoyagi, M M; Coutinho, L L; Sartori, J R; Moura, A S A M T

    2016-01-01

    The objective of this study was to determine if a diet supplemented simultaneously with vitamins C and E would alleviate the negative effects of heat stress, applied between 28 and 42 days of age, on performance, carcass and meat quality traits of broiler chickens. A total of 384 male broiler chickens were assigned to a completely randomized design, with a 2×3 factorial arrangement (diet with or without vitamin supplementation and two ambient temperatures plus a pair-feeding group) and 16 replicates. Chickens were kept in thermoneutral conditions up to 28 days of age. They were then housed in groups of four per cage, in three environmentally controlled chambers: two thermoneutral (22.5 and 22.6°C) and one for heat stress (32°C). Half the chickens were fed a diet supplemented with vitamins C (257 to 288 mg/kg) and E (93 to 109 mg/kg). In the thermoneutral chambers, half of the chickens were pair-fed to heat stressed chickens, receiving each day the average feed intake recorded in the heat stress chamber in the previous day. Meat physical quality analyses were performed on the pectoralis major muscle. No ambient temperature×diet supplementation interaction effects were detected on performance, carcass, or meat quality traits. The supplemented diet resulted in lower growth performance, attributed either to a carry-over effect of the lower initial BW, or to a possible catabolic effect of vitamins C and E when supplemented simultaneously at high levels. Heat stress reduced slaughter and carcass weights, average daily gain and feed intake, and increased feed conversion. Growth performance of pair-fed chickens was similar to that of heat stressed chickens. Exposure to heat stress increased carcass and abdominal fat percentages, but reduced breast, liver and heart percentages. Pair-fed chickens showed the lowest fat percentage and their breast percentage was similar to controls. Heat stress increased meat pH and negatively affected meat color and cooking loss. In pair

  7. Transcriptome Profiles of Populus euphratica upon Heat Shock stress.

    PubMed

    Chen, Jinhuan; Yin, Weilun; Xia, Xinli

    2014-10-01

    Heat stress, which strongly affects plant performance and often results in reduced vegetative growth and yields depression, has become an increasingly serious global problem. Populus euphratica Oliv. which has been considered as a tree model for the study of plant response to abiotic stresses, could be resistant to an extremely wide environmental temperature range (-40 °C to 45 °C). Previous study is mainly focused on its gene regulation upon drought and salt stress. However, little is known about gene regulation at the global transcriptome level upon heat stress. To understand the gene network controlling heat stress in P. euphratica, a transcriptome sequencing using Illumina Hiseq 2000 was performed to generate a 10 gigabases depth for each sample in the tissue of leaf. 119,573 unigeneswere generated with an average length of 474 bp. Approximately 49,605 (41.49%) unigenes exhibited significantly different expressions between two libraries. Among these unigenes, 11,165 (9.34%) were upregulated and 38,440 (32.15%) were down regulated. Heat shock proteins classified as molecular chaperones showed a significant percentage (1.13%) in the up regulated group. Heat responsive genes, such as polyubiquitins, were over expressed in heat treated sample. GO enrichment analysis revealed that the Go terms for differentially expressed unigenes were significantly enriched in hormone-mediated signal, biological process regulation and metabolic process regulation. Our data revealed a global transcriptome picture of P. euphratica in response to heat shock. The identified potential heat stress-related transcripts can be used to infer the gene regulation networks underlying the molecular mechanisms of heat response in P. euphratica.

  8. TORC2 mediates the heat stress response in Drosophila by promoting the formation of stress granules

    PubMed Central

    Jevtov, Irena; Zacharogianni, Margarita; van Oorschot, Marinke M.; van Zadelhoff, Guus; Aguilera-Gomez, Angelica; Vuillez, Igor; Braakman, Ineke; Hafen, Ernst; Stocker, Hugo; Rabouille, Catherine

    2015-01-01

    ABSTRACT The kinase TOR is found in two complexes, TORC1, which is involved in growth control, and TORC2, whose roles are less well defined. Here, we asked whether TORC2 has a role in sustaining cellular stress. We show that TORC2 inhibition in Drosophila melanogaster leads to a reduced tolerance to heat stress, whereas sensitivity to other stresses is not affected. Accordingly, we show that upon heat stress, both in the animal and Drosophila cultured S2 cells, TORC2 is activated and is required for maintaining the level of its known target, Akt1 (also known as PKB). We show that the phosphorylation of the stress-activated protein kinases is not modulated by TORC2 nor is the heat-induced upregulation of heat-shock proteins. Instead, we show, both in vivo and in cultured cells, that TORC2 is required for the assembly of heat-induced cytoprotective ribonucleoprotein particles, the pro-survival stress granules. These granules are formed in response to protein translation inhibition imposed by heat stress that appears to be less efficient in the absence of TORC2 function. We propose that TORC2 mediates heat resistance in Drosophila by promoting the cell autonomous formation of stress granules. PMID:26054799

  9. Inhibition of the oxidative stress response by heat stress in Caenorhabditis elegans.

    PubMed

    Crombie, Timothy A; Tang, Lanlan; Choe, Keith P; Julian, David

    2016-07-15

    It has long been recognized that simultaneous exposure to heat stress and oxidative stress shows a synergistic interaction that reduces organismal fitness, but relatively little is known about the mechanisms underlying this interaction. We investigated the role of molecular stress responses in driving this synergistic interaction using the nematode Caenorhabditis elegans To induce oxidative stress, we used the pro-oxidant compounds acrylamide, paraquat and juglone. As expected, we found that heat stress and oxidative stress interact synergistically to reduce survival. Compared with exposure to each stressor alone, during simultaneous sublethal exposure to heat stress and oxidative stress the normal induction of key oxidative-stress response (OxSR) genes was generally inhibited, whereas the induction of key heat-shock response (HSR) genes was not. Genetically activating the SKN-1-dependent OxSR increased a marker for protein aggregation and decreased whole-worm survival during heat stress alone, with the latter being independent of HSF-1. In contrast, compared with wild-type worms, inactivating the HSR by HSF-1 knockdown, which would be expected to decrease basal heat shock protein expression, increased survival during oxidative stress alone. Taken together, these data suggest that, in C. elegans, the HSR and OxSR cannot be simultaneously activated to the same extent that each can be activated during a single stressor exposure. We conclude that the observed synergistic reduction in survival during combined exposure to heat stress and oxidative stress is due, at least in part, to inhibition of the OxSR during activation of the HSR.

  10. Alleviation of salt stress by enterobacter sp. EJ01 in tomato and Arabidopsis is accompanied by up-regulation of conserved salinity responsive factors in plants.

    PubMed

    Kim, Kangmin; Jang, Ye-Jin; Lee, Sang-Myeong; Oh, Byung-Taek; Chae, Jong-Chan; Lee, Kui-Jae

    2014-02-01

    Microbiota in the niches of the rhizosphere zones can affect plant growth and responses to environmental stress conditions via mutualistic interactions with host plants. Specifically, some beneficial bacteria, collectively referred to as Plant Growth Promoting Rhizobacteria (PGPRs), increase plant biomass and innate immunity potential. Here, we report that Enterobacter sp. EJ01, a bacterium isolated from sea china pink (Dianthus japonicus thunb) in reclaimed land of Gyehwa-do in Korea, improved the vegetative growth and alleviated salt stress in tomato and Arabidopsis. EJ01 was capable of producing 1-aminocy-clopropane-1-carboxylate (ACC) deaminase and also exhibited indole-3-acetic acid (IAA) production. The isolate EJ01 conferred increases in fresh weight, dry weight, and plant height of tomato and Arabidopsis under both normal and high salinity conditions. At the molecular level, short-term treatment with EJ01 increased the expression of salt stress responsive genes such as DREB2b, RD29A, RD29B, and RAB18 in Arabidopsis. The expression of proline biosynthetic genes (i.e. P5CS1 and P5CS2) and of genes related to priming processes (i.e. MPK3 and MPK6) were also up-regulated. In addition, reactive oxygen species scavenging activities were enhanced in tomatoes treated with EJ01 in stressed conditions. GFP-tagged EJ01 displayed colonization in the rhizosphere and endosphere in the roots of Arabidopsis. In conclusion, the newly isolated Enterobacter sp. EJ01 is a likely PGPR and alleviates salt stress in host plants through multiple mechanisms, including the rapid up-regulation of conserved plant salt stress responsive signaling pathways.

  11. Alleviation of Salt Stress by Enterobacter sp. EJ01 in Tomato and Arabidopsis Is Accompanied by Up-Regulation of Conserved Salinity Responsive Factors in Plants

    PubMed Central

    Kim, Kangmin; Jang, Ye-Jin; Lee, Sang-Myeong; Oh, Byung-Taek; Chae, Jong-Chan; Lee, Kui-Jae

    2014-01-01

    Microbiota in the niches of the rhizosphere zones can affect plant growth and responses to environmental stress conditions via mutualistic interactions with host plants. Specifically, some beneficial bacteria, collectively referred to as Plant Growth Promoting Rhizobacteria (PGPRs), increase plant biomass and innate immunity potential. Here, we report that Enterobacter sp. EJ01, a bacterium isolated from sea china pink (Dianthus japonicus thunb) in reclaimed land of Gyehwa-do in Korea, improved the vegetative growth and alleviated salt stress in tomato and Arabidopsis. EJ01 was capable of producing 1-aminocy-clopropane-1-carboxylate (ACC) deaminase and also exhibited indole-3-acetic acid (IAA) production. The isolate EJ01 conferred increases in fresh weight, dry weight, and plant height of tomato and Arabidopsis under both normal and high salinity conditions. At the molecular level, short-term treatment with EJ01 increased the expression of salt stress responsive genes such as DREB2b, RD29A, RD29B, and RAB18 in Arabidopsis. The expression of proline biosynthetic genes (i.e. P5CS1 and P5CS2) and of genes related to priming processes (i.e. MPK3 and MPK6) were also up-regulated. In addition, reactive oxygen species scavenging activities were enhanced in tomatoes treated with EJ01 in stressed conditions. GFP-tagged EJ01 displayed colonization in the rhizosphere and endosphere in the roots of Arabidopsis. In conclusion, the newly isolated Enterobacter sp. EJ01 is a likely PGPR and alleviates salt stress in host plants through multiple mechanisms, including the rapid up-regulation of conserved plant salt stress responsive signaling pathways. PMID:24598995

  12. Effects of passive heat stress on human somatosensory processing.

    PubMed

    Nakata, Hiroki; Oshiro, Misaki; Namba, Mari; Shibasaki, Manabu

    2015-12-01

    Herein, we investigated the effects of passive heat stress on human somatosensory processing recorded by somatosensory-evoked potentials (SEPs). Fifteen healthy subjects received a median nerve stimulation at the left wrist under two thermal conditions: Heat Stress and normothermic Time Control. The latencies and amplitudes of P14, N20, P25, N35, P45, and N60 at C4' and P14, N18, P22, and N30 at Fz were evaluated. Under the Heat Stress condition, SEPs were recorded at normothermic baseline (1st), early in heat stress (2nd), when esophageal temperature had increased by ~1.0°C (3rd) and ~2.0°C (4th), and after heat stress (5th). In the Time Control condition, SEPs were measured at the same time intervals as those in the Heat Stress condition. The peak latencies and amplitudes of SEPs did not change early in heat stress. However, the latencies of P14, N20, and N60 at C4' and P14, N18, and P22 at Fz were significantly shorter in the 4th session than in the 1st session. Furthermore, the peak amplitudes of P25 and N60 at C4', and P22 and N30 at Fz decreased with increases in body temperature. On the other hand, under the Time Control condition, no significant differences were observed in the amplitudes or latencies of any component of SEPs. These results suggested that the conduction velocity of the ascending somatosensory input was accelerated by increases in body temperature, and hyperthermia impaired the neural activity of cortical somatosensory processing. PMID:26468258

  13. Production and physiological responses of heat-stressed lactating dairy cattle to conductive cooling.

    PubMed

    Perano, Kristen M; Usack, Joseph G; Angenent, Largus T; Gebremedhin, Kifle G

    2015-08-01

    The objective of this research was to test the effectiveness of conductive cooling in alleviating heat stress of lactating dairy cows. A conductive cooling system was built with waterbeds (Dual Chamber Cow Waterbeds, Advanced Comfort Technology Inc., Reedsburg, WI) modified to circulate chilled water. The experiment lasted 7 wk. Eight first-lactation Holstein cows producing 34.4±3.7kg/d of milk at 166±28 d in milk were used in the study. Milk yield, dry matter intake (DMI), and rectal temperature were recorded twice daily, and respiration rate was recorded 5 times per day. During wk 1, the cows were not exposed to experimental heat stress or conductive cooling. For the remaining 6 wk, the cows were exposed to heat stress from 0900 to 1700h each day. During these 6 wk, 4 of the 8 cows were cooled with conductive cooling (experimental cows), and the other 4 were not cooled (control cows). The study consisted of 2 thermal environment exposures (temperature-humidity index mean ± standard deviation of 80.7±0.9 and 79.0±1.0) and 2 cooling water temperatures (circulating water through the water mattresses at temperatures of 4.5°C and 10°C). Thus, a total of 4 conductive cooling treatments were tested, with each treatment lasting 1 wk. During wk 6, the experimental and control cows were switched and the temperature-humidity index of 79.0±1.0 with 4.5°C cooling water treatment was repeated. During wk 7, waterbeds were placed directly on concrete stalls without actively cooling the water. Least squares means and P-values for the different treatments were calculated with multivariate mixed models. Conductively cooling the cows with 4.5°C water decreased rectal temperature by 1.0°C, decreased respiration rate by 18 breaths/min, increased milk yield by 5%, and increased DMI by 14% compared with the controls. When the results from the 2 cooling water temperatures (4.5°C and 10°C circulating water) were compared, we found that the rectal temperature from 4.5

  14. The interactive association between heat shock factor 1 and heat shock proteins in primary myocardial cells subjected to heat stress.

    PubMed

    Tang, Shu; Chen, Hongbo; Cheng, Yanfen; Nasir, Mohammad Abdel; Kemper, Nicole; Bao, Endong

    2016-01-01

    Heat shock factor 1 (HSF1) is a heat shock transcription factor that rapidly induces heat shock gene transcription following thermal stress. In this study, we subjected primary neonatal rat myocardial cells to heat stress in vitro to create a model system for investigating the trends in expression and association between various heat shock proteins (HSPs) and HSF1 under adverse environmental conditions. After the cells were subjected to heat stress at 42˚C for different periods of time, HSP and HSF1 mRNA and protein levels were detected by qPCR and western blot analysis in the heat-stressed cells. The HSF1 expression levels significantly increased in the cells following 120 min of exposure to heat stess compared to the levels observed at the beginning of heat stress exposure. HSP90 followed a similar trend in expression to HSF1, whereas HSP70 followed an opposite trend. However, no significant changes were observed in the crystallin, alpha B (CRYAB, also known as HSP beta-5) expression levels during the 480‑min period of exposure to heat stress. The interaction between the HSPs and HSF1 was analyzed by STRING 9.1, and it was found that HSF1 interacted with HSP90 and HSP70, and that it did not play a role in regulating CRYAB expression. Based on our findings, HSP70 may suppress HSF1 in rat myocardial cells under conditions of heat stress. Furthermore, our data demonstrate that HSF1 is not the key factor for all HSPs, and this was particularly the case for CRYAB.

  15. The Plant Heat Stress Transcription Factors (HSFs): Structure, Regulation, and Function in Response to Abiotic Stresses

    PubMed Central

    Guo, Meng; Liu, Jin-Hong; Ma, Xiao; Luo, De-Xu; Gong, Zhen-Hui; Lu, Ming-Hui

    2016-01-01

    Abiotic stresses such as high temperature, salinity, and drought adversely affect the survival, growth, and reproduction of plants. Plants respond to such unfavorable changes through developmental, physiological, and biochemical ways, and these responses require expression of stress-responsive genes, which are regulated by a network of transcription factors (TFs), including heat stress transcription factors (HSFs). HSFs play a crucial role in plants response to several abiotic stresses by regulating the expression of stress-responsive genes, such as heat shock proteins (Hsps). In this review, we describe the conserved structure of plant HSFs, the identification of HSF gene families from various plant species, their expression profiling under abiotic stress conditions, regulation at different levels and function in abiotic stresses. Despite plant HSFs share highly conserved structure, their remarkable diversification across plants reflects their numerous functions as well as their integration into the complex stress signaling and response networks, which can be employed in crop improvement strategies via biotechnological intervention. PMID:26904076

  16. The Plant Heat Stress Transcription Factors (HSFs): Structure, Regulation, and Function in Response to Abiotic Stresses.

    PubMed

    Guo, Meng; Liu, Jin-Hong; Ma, Xiao; Luo, De-Xu; Gong, Zhen-Hui; Lu, Ming-Hui

    2016-01-01

    Abiotic stresses such as high temperature, salinity, and drought adversely affect the survival, growth, and reproduction of plants. Plants respond to such unfavorable changes through developmental, physiological, and biochemical ways, and these responses require expression of stress-responsive genes, which are regulated by a network of transcription factors (TFs), including heat stress transcription factors (HSFs). HSFs play a crucial role in plants response to several abiotic stresses by regulating the expression of stress-responsive genes, such as heat shock proteins (Hsps). In this review, we describe the conserved structure of plant HSFs, the identification of HSF gene families from various plant species, their expression profiling under abiotic stress conditions, regulation at different levels and function in abiotic stresses. Despite plant HSFs share highly conserved structure, their remarkable diversification across plants reflects their numerous functions as well as their integration into the complex stress signaling and response networks, which can be employed in crop improvement strategies via biotechnological intervention.

  17. Dynamics of urban heat stress events in climate models

    NASA Astrophysics Data System (ADS)

    Yang, David

    2016-04-01

    Extreme heat stress events as measured by the wet-bulb temperature require extraordinarily high air temperatures coupled with high humidity. These conditions are rare, as relative humidity rapidly falls with rising air temperature, and this effect often results in decreasing heat stress as temperature rises. However, in certain coastal locations in the Middle East recent heat waves have resulted in wet-bulb temperatures of 33-35 degrees C, which approach the theoretical limits of human tolerance. These conditions result from the combination of extreme desert heat and humid winds off of the warm ocean waters. It is unclear if climate models properly simulate these dynamics. This study will analyse the ability of the CMIP5 model suite to replicate observed dynamics during extreme heat events in major urban areas.

  18. Unraveling Main Limiting Sites of Photosynthesis under Below- and Above-Ground Heat Stress in Cucumber and the Alleviatory Role of Luffa Rootstock

    PubMed Central

    Li, Hao; Ahammed, Golam J.; Zhou, Guona; Xia, Xiaojian; Zhou, Jie; Shi, Kai; Yu, Jingquan; Zhou, Yanhong

    2016-01-01

    Photosynthesis is one of the most thermo-sensitive processes in plants. Although the severity of heat stress could be attenuated by grafting approach, the primary damaged site of photosynthesis system under heat stress and the regulatory mechanism of rootstock-mediated heat tolerance are poorly understood. In the current study, cucumber plants grafted onto their own roots and heat-tolerant luffa roots were exposed to root-zone heat (25/40°C) and aerial heat (40/25°C) individually and in combination (40/40°C) to understand the response of photosynthetic process by investigating energy absorption and distribution, electron transport in photosystem (PS) II and I, and CO2 assimilation. According to the results, root-zone heat stress inhibited photosynthesis mainly through decreasing Rubisco activity, while aerial heat stress mainly through inhibiting PSII acceptor side. The imbalance in light absorption and utilization resulted in accumulation of reactive oxygen species that caused damage to photosynthetic apparatus, forming a vicious cycle. On the contrary, grafting cucumber onto heat-tolerant luffa rootstock alleviated heat-induced photosynthetic inhibition and oxidative stress by maintaining higher root vitality, HSP70 accumulation, and antioxidant potential. PMID:27313587

  19. Unraveling Main Limiting Sites of Photosynthesis under Below- and Above-Ground Heat Stress in Cucumber and the Alleviatory Role of Luffa Rootstock.

    PubMed

    Li, Hao; Ahammed, Golam J; Zhou, Guona; Xia, Xiaojian; Zhou, Jie; Shi, Kai; Yu, Jingquan; Zhou, Yanhong

    2016-01-01

    Photosynthesis is one of the most thermo-sensitive processes in plants. Although the severity of heat stress could be attenuated by grafting approach, the primary damaged site of photosynthesis system under heat stress and the regulatory mechanism of rootstock-mediated heat tolerance are poorly understood. In the current study, cucumber plants grafted onto their own roots and heat-tolerant luffa roots were exposed to root-zone heat (25/40°C) and aerial heat (40/25°C) individually and in combination (40/40°C) to understand the response of photosynthetic process by investigating energy absorption and distribution, electron transport in photosystem (PS) II and I, and CO2 assimilation. According to the results, root-zone heat stress inhibited photosynthesis mainly through decreasing Rubisco activity, while aerial heat stress mainly through inhibiting PSII acceptor side. The imbalance in light absorption and utilization resulted in accumulation of reactive oxygen species that caused damage to photosynthetic apparatus, forming a vicious cycle. On the contrary, grafting cucumber onto heat-tolerant luffa rootstock alleviated heat-induced photosynthetic inhibition and oxidative stress by maintaining higher root vitality, HSP70 accumulation, and antioxidant potential. PMID:27313587

  20. Low, medium, and high heat tolerant strains of Listeria monocytogenes and increased heat stress resistance after exposure to sublethal heat.

    PubMed

    Shen, Qian; Jangam, Priyanka M; Soni, Kamlesh A; Nannapaneni, Ramakrishna; Schilling, Wes; Silva, Juan L

    2014-08-01

    A group of 37 strains representing all 13 serotypes of Listeria monocytogenes with an initial cell density of 10(7) CFU/ml were analyzed for their heat tolerance at 60°C for 10 min. These L. monocytogenes strains were categorized into three heat tolerance groups: low (<2 log CFU/ml survival), medium (2 to 4 log CFU/ml survival), and high (4 to 6 log CFU/ml survival). Serotype 1/2a strains had relatively low heat tolerance; seven of the eight tested strains were classified as low heat tolerant. Of the two serotype 1/2b strains tested, one was very heat sensitive (not detectable) and the other was very heat resistant (5.4 log CFU/ml survival). Among the 16 serotype 4b strains, survival ranged from not detectable to 4 log CFU/ml. When one L. monocytogenes strain from each heat tolerance group was subjected to sublethal heat stress at 48°C for 30 or 60 min, the survival of heat-stressed cells at 60°C for 10 min increased by 5 log CFU/ml (D60°C-values nearly doubled) compared with the nonstressed control cells. Sublethal heat stress at 48°C for 60 or 90 min increased the lag phase of L. monocytogenes in tryptic soy broth supplemented with 0.6% yeast extract at room temperature by 3 to 5 h compared with nonstressed control cells. The heat stress adaptation in L. monocytogenes was reversed after 2 h at room temperature but was maintained for up to 24 h at 4°C. Our results indicate a high diversity in heat tolerance among strains of L. monocytogenes, and once acquired this heat stress adaptation persists after cooling, which should be taken into account while conducting risk analyses for this pathogen.

  1. Can heavy metal pollution defend seed germination against heat stress? Effect of heavy metals (Cu(2+), Cd(2+) and Hg(2+)) on maize seed germination under high temperature.

    PubMed

    Deng, Benliang; Yang, Kejun; Zhang, Yifei; Li, Zuotong

    2016-09-01

    Heavy metal pollution, as well as greenhouse effect, has become a serious threat today. Both heavy metal and heat stresses can arrest seed germination. What response can be expected for seed germination under both stress conditions? Here, the effects of heavy metals (Cu(2+), Cd(2+) and Hg(2+)) on maize seed germination were investigated at 20 °C and 40 °C. Compared with 20 °C, heat stress induced thermodormancy. However, this thermodormancy could be significantly alleviated by the addition of a low concentration of heavy metals. Heavy metals, as well as heat stress induced H2O2 accumulation in germinating seeds. Interestingly, this low concentration of heavy metal that promoted seed germination could be partly blocked by DMTU (a specific ROS scavenger), irrespective of temperature. Accordingly, H2O2 addition reinforced this promoting effect on seed germination, which was induced by a low concentration of heavy metal. Furthermore, we found that the NADPH oxidase derived ROS was required for seed germination promoted by the heavy metals. Subsequently, treatment of seeds with fluridone (a specific inhibitor of ABA) or ABA significantly alleviated or aggravated thermodormancy, respectively. However, this alleviation or aggravation could be partly attenuated by a low concentration of heavy metals. In addition, germination that was inhibited by high concentrations of heavy metals was also partly reversed by fluridone. The obtained results support the idea that heavy metal-mediated ROS and hormone interaction can finally affect the thermodormancy release or not. PMID:27239687

  2. Can heavy metal pollution defend seed germination against heat stress? Effect of heavy metals (Cu(2+), Cd(2+) and Hg(2+)) on maize seed germination under high temperature.

    PubMed

    Deng, Benliang; Yang, Kejun; Zhang, Yifei; Li, Zuotong

    2016-09-01

    Heavy metal pollution, as well as greenhouse effect, has become a serious threat today. Both heavy metal and heat stresses can arrest seed germination. What response can be expected for seed germination under both stress conditions? Here, the effects of heavy metals (Cu(2+), Cd(2+) and Hg(2+)) on maize seed germination were investigated at 20 °C and 40 °C. Compared with 20 °C, heat stress induced thermodormancy. However, this thermodormancy could be significantly alleviated by the addition of a low concentration of heavy metals. Heavy metals, as well as heat stress induced H2O2 accumulation in germinating seeds. Interestingly, this low concentration of heavy metal that promoted seed germination could be partly blocked by DMTU (a specific ROS scavenger), irrespective of temperature. Accordingly, H2O2 addition reinforced this promoting effect on seed germination, which was induced by a low concentration of heavy metal. Furthermore, we found that the NADPH oxidase derived ROS was required for seed germination promoted by the heavy metals. Subsequently, treatment of seeds with fluridone (a specific inhibitor of ABA) or ABA significantly alleviated or aggravated thermodormancy, respectively. However, this alleviation or aggravation could be partly attenuated by a low concentration of heavy metals. In addition, germination that was inhibited by high concentrations of heavy metals was also partly reversed by fluridone. The obtained results support the idea that heavy metal-mediated ROS and hormone interaction can finally affect the thermodormancy release or not.

  3. Short communication: genotype by environment interaction due to heat stress.

    PubMed

    Bohmanova, J; Misztal, I; Tsuruta, S; Norman, H D; Lawlor, T J

    2008-02-01

    Heat stress was evaluated as a factor in differences between regional evaluations for milk yield in the United States. The national data set (NA) consisted of 56 million first-parity, test-day milk yields on 6 million Holsteins. The Northeastern subset (NE) included 12.5 million records on 1.3 million first-calved heifers from 8 states, and the Southeastern subset (SE) included 3.5 million records on 0.4 million heifers from 11 states. Climatic data were available from 202 public weather stations. Each herd was assigned to the nearest weather station. Average daily temperature-humidity index (mean THI) 3 d before test date was used as an indicator of heat stress. Two test-day repeatability models were implemented. Effects included in both models were herd-test date, age at calving class, frequency of milking, days in milk x season class, additive genetic (regular breeding value) and permanent environmental effects. Additionally, the second model included random regressions on degrees of heat stress (t = max[0, mean THI - 72]) for additive genetic (breeding value for heat tolerance) and permanent environmental effects. Both models were fitted with the national and regional data sets. Correlations involved estimated breeding values (EBV) from SE and NE for sires with >or=100 and >or=300 daughters in each region. When heat stress was ignored (first model) the correlations of regular EBV between SE and NE for sires with >or=100 (>or=300) daughters were 0.85 (0.87). When heat stress was considered (second model), the correlation increased by up to 0.01. The correlations of heat stress EBV between NE and SE for sires with >or=100 (>or=300, >or=700) daughters were 0.58 (0.72, 0.81). Evaluations for heat tolerance were similar in cooler and hotter regions for high-reliability sires. Heat stress as modeled explains only a small amount of regional differences, partly because test-day records depict only snapshots of heat stress.

  4. Reductions in labour capacity from heat stress under climate warming

    NASA Astrophysics Data System (ADS)

    Dunne, John P.; Stouffer, Ronald J.; John, Jasmin G.

    2013-06-01

    A fundamental aspect of greenhouse-gas-induced warming is a global-scale increase in absolute humidity. Under continued warming, this response has been shown to pose increasingly severe limitations on human activity in tropical and mid-latitudes during peak months of heat stress. One heat-stress metric with broad occupational health applications is wet-bulb globe temperature. We combine wet-bulb globe temperatures from global climate historical reanalysis and Earth System Model (ESM2M) projections with industrial and military guidelines for an acclimated individual's occupational capacity to safely perform sustained labour under environmental heat stress (labour capacity)--here defined as a global population-weighted metric temporally fixed at the 2010 distribution. We estimate that environmental heat stress has reduced labour capacity to 90% in peak months over the past few decades. ESM2M projects labour capacity reduction to 80% in peak months by 2050. Under the highest scenario considered (Representative Concentration Pathway 8.5), ESM2M projects labour capacity reduction to less than 40% by 2200 in peak months, with most tropical and mid-latitudes experiencing extreme climatological heat stress. Uncertainties and caveats associated with these projections include climate sensitivity, climate warming patterns, CO2 emissions, future population distributions, and technological and societal change.

  5. Chloroplast Retrograde Regulation of Heat Stress Responses in Plants.

    PubMed

    Sun, Ai-Zhen; Guo, Fang-Qing

    2016-01-01

    It is well known that intracellular signaling from chloroplast to nucleus plays a vital role in stress responses to survive environmental perturbations. The chloroplasts were proposed as sensors to heat stress since components of the photosynthetic apparatus housed in the chloroplast are the major targets of thermal damage in plants. Thus, communicating subcellular perturbations to the nucleus is critical during exposure to extreme environmental conditions such as heat stress. By coordinating expression of stress specific nuclear genes essential for adaptive responses to hostile environment, plants optimize different cell functions and activate acclimation responses through retrograde signaling pathways. The efficient communication between plastids and the nucleus is highly required for such diverse metabolic and biosynthetic functions during adaptation processes to environmental stresses. In recent years, several putative retrograde signals released from plastids that regulate nuclear genes have been identified and signaling pathways have been proposed. In this review, we provide an update on retrograde signals derived from tetrapyrroles, carotenoids, reactive oxygen species (ROS) and organellar gene expression (OGE) in the context of heat stress responses and address their roles in retrograde regulation of heat-responsive gene expression, systemic acquired acclimation, and cellular coordination in plants. PMID:27066042

  6. Chloroplast Retrograde Regulation of Heat Stress Responses in Plants

    PubMed Central

    Sun, Ai-Zhen; Guo, Fang-Qing

    2016-01-01

    It is well known that intracellular signaling from chloroplast to nucleus plays a vital role in stress responses to survive environmental perturbations. The chloroplasts were proposed as sensors to heat stress since components of the photosynthetic apparatus housed in the chloroplast are the major targets of thermal damage in plants. Thus, communicating subcellular perturbations to the nucleus is critical during exposure to extreme environmental conditions such as heat stress. By coordinating expression of stress specific nuclear genes essential for adaptive responses to hostile environment, plants optimize different cell functions and activate acclimation responses through retrograde signaling pathways. The efficient communication between plastids and the nucleus is highly required for such diverse metabolic and biosynthetic functions during adaptation processes to environmental stresses. In recent years, several putative retrograde signals released from plastids that regulate nuclear genes have been identified and signaling pathways have been proposed. In this review, we provide an update on retrograde signals derived from tetrapyrroles, carotenoids, reactive oxygen species (ROS) and organellar gene expression (OGE) in the context of heat stress responses and address their roles in retrograde regulation of heat-responsive gene expression, systemic acquired acclimation, and cellular coordination in plants. PMID:27066042

  7. Caffeine Induces the Stress Response and Up-Regulates Heat Shock Proteins in Caenorhabditis elegans.

    PubMed

    Al-Amin, Mohammad; Kawasaki, Ichiro; Gong, Joomi; Shim, Yhong-Hee

    2016-02-01

    Caffeine has both positive and negative effects on physiological functions in a dose-dependent manner. C. elegans has been used as an animal model to investigate the effects of caffeine on development. Caffeine treatment at a high dose (30 mM) showed detrimental effects and caused early larval arrest. We performed a comparative proteomic analysis to investigate the mode of action of high-dose caffeine treatment in C. elegans and found that the stress response proteins, heat shock protein (HSP)-4 (endoplasmic reticulum [ER] chaperone), HSP-6 (mitochondrial chaperone), and HSP-16 (cytosolic chaperone), were induced and their expression was regulated at the transcriptional level. These findings suggest that high-dose caffeine intake causes a strong stress response and activates all three stress-response pathways in the worms, including the ER-, mitochondrial-, and cytosolic pathways. RNA interference of each hsp gene or in triple combination retarded growth. In addition, caffeine treatment stimulated a food-avoidance behavior (aversion phenotype), which was enhanced by RNAi depletion of the hsp-4 gene. Therefore, up-regulation of hsp genes after caffeine treatment appeared to be the major responses to alleviate stress and protect against developmental arrest.

  8. Development of a telemetric heat stress monitor. Final report

    SciTech Connect

    1996-10-21

    Hazardous-materials workers and firefighters wear clothing that protects them from external hazards, but the sealed environment of a protective suit makes its wearer susceptible to heat stress. A prototype of the Telemetric Heat Stress Monitor (THSM) was developed at LANL to warn workers, and personnel monitoring the workers, of incipient heat stress by detecting the workers` elevated temperatures and heart rates. The purpose of this CRADA was to transfer the information and technology from LANL to the industrial partner, and to assist in the further development of a commercial THSM product. The THSM is the first extensive telemetric physiological monitor to be developed; previous monitors used wires between the sensors and the recording and display equipment. Developing a reliable, small, battery-powered, inexpensive telemetry system to share the RF spectrum with today`s proliferating wireless devices was a significant technical accomplishment.

  9. Decision support for subjects exposed to heat stress.

    PubMed

    Seeberg, Trine M; Vardøy, Astrid-Sofie B; Taklo, Maaike M Visser; Austad, Hanne Opsahl

    2013-03-01

    The physiological and activity strain index (PASI) has been developed to improve the online decision support for workers exposed to heat stress. Fire fighters (smoke divers) which are exposed to both heat-stress and high-risk situations have been used as test case. PASI combines a modified version of the relatively well-known physiological strain index (PSI) with activity data from accelerometers. The algorithm has been developed based on tests in a laboratory, and it has been verified in two field tests performed by smoke divers exposed to heat stress. The verification demonstrates that it is possible to distinguish between high- and low-risk situations when data from accelerometers are added to the situation analysis. This indicates that PASI can contribute to an improved risk assessment and online decision support for smoke divers compared to using PSI alone. PMID:24235112

  10. Observation of silicon-mediated alleviation of cadmium stress in maize (Zea mays L.) seedlings via LED-induced chlorophyll fluorescence

    NASA Astrophysics Data System (ADS)

    Gouveia-Neto, Artur S.; Silva, Elias A.; da Silva, Airon José; do Nascimento, Clístenes W. A.

    2013-02-01

    LED-induced chlorophyll fluorescence analysis is exploited to observe, and monitor the time evolution of silicon-induced alleviation of toxicity in maize (Zea mays L.) seedlings in cadmium contaminated soil. Red, and far-red emissions were examined as a function of cadmium-silicon concentrations, during the 20 days period of the seedlings growing process under stress. The chlorophyll fluorescence spectral analysis provided detection, and evaluation of the damage imposed by the metal stress in the early stages of the plant growing process. The technique also provided the time evolution evaluation of the silicon-induced tolerance enhancement of maize plants to cadmium, which is not viable using conventional in vitro spectral analysis techniques

  11. Nitrogen Nutrition Improves the Potential of Wheat (Triticum aestivum L.) to Alleviate the Effects of Drought Stress during Vegetative Growth Periods

    PubMed Central

    Abid, Muhammad; Tian, Zhongwei; Ata-Ul-Karim, Syed Tahir; Cui, Yakun; Liu, Yang; Zahoor, Rizwan; Jiang, Dong; Dai, Tingbo

    2016-01-01

    Efficient nitrogen (N) nutrition has the potential to alleviate drought stress in crops by maintaining metabolic activities even at low tissue water potential. This study was aimed to understand the potential of N to minimize the effects of drought stress applied/occur during tillering (Feekes stage 2) and jointing (Feekes stage 6) growth stages of wheat by observing the regulations and limitations of physiological activities, crop growth rate during drought periods as well as final grain yields at maturity. In present study, pot cultured plants of a wheat cultivar Yangmai-16 were exposed to three water levels [severe stress at 35–40% field capacity (FC), moderate stress at 55–60% FC and well-watered at 75–80% FC] under two N rates (0.24 g and 0.16 g/kg soil). The results showed that the plants under severe drought stress accompanied by low N exhibited highly downregulated photosynthesis, and chlorophyll (Chl) fluorescence during the drought stress periods, and showed an accelerated grain filling rate with shortened grain filling duration (GFD) at post-anthesis, and reduced grain yields. Severe drought-stressed plants especially at jointing, exhibited lower Chl and Rubisco contents, lower efficiency of photosystem II and greater grain yield reductions. In contrast, drought-stressed plants under higher N showed tolerance to drought stress by maintaining higher leaf water potential, Chl and Rubisco content; lower lipid peroxidation associated with higher superoxide dismutase and ascorbate peroxidase activities during drought periods. The plants under higher N showed delayed senescence, increased GFD and lower grain yield reductions. The results of the study suggested that higher N nutrition contributed to drought tolerance in wheat by maintaining higher photosynthetic activities and antioxidative defense system during vegetative growth periods. PMID:27446197

  12. Influence of selenium on heat shock protein 70 expression in heat stressed turkey embryos (Meleagris gallopavo).

    PubMed

    Rivera, Rafael E; Christensen, V L; Edens, F W; Wineland, M J

    2005-12-01

    Heat shock protein 70 (hsp70) family of proteins, which functions as molecular chaperones, has been associated with tolerance to stressors in avian species. Selenium (Se) is an essential trace mineral incorporated into the seleno-enzymes such as glutathione peroxidase (GSHpx). GSHpx reduces oxidized glutathione (GSSG) to reduced glutathione (GSH) in the GSH/GSSG antioxidant system and protects cells from oxidative damage. This study was conducted to examine if the relationship between dietary supplementation of selenium to turkey (Meleagris gallopavo) hens and the embryonic expression of hsp70 and GSHpx activity in heat stressed embryos. Livers of embryos developing in eggs from turkey hens fed diets with or without supplemental Se were analyzed for hsp70 concentration and GSHpx activity before and after recovery from a heating episode. Before heat stress, hsp70 concentrations were equivalent in each treatment, but GSHpx activity was maximized in the SE treatment group. After recovery from the heating episode, hsp70 concentrations were significantly higher (P<0.05) in the non-Se-supplemented groups, but in the Se-supplemented groups the hsp70 concentrations were not different from pre-stress concentrations. In the pre-stress Se-supplemented group, liver GSHpx activity was significantly higher than GSHpx activity in the non-Se-supplemented embryo livers, and in the livers from embryos recovering from heat stress, GSHpx activity in the non-Se-supplemented group was lower than the pre-stress activity and significantly lower than the GSHpx activity in liver from Se-supplemented embryos recovering from heat distress. Se supplementation to the dams resulted in a significant increase in their embryos and that condition would facilitate a decreased incidence of oxidative damage to cells. A more reduced redox status in embryos from Se-supplemented dams decreased the need for cellular protection attributed to stress induced hsp70 and presumably allows heat distressed embryos

  13. Enemies with benefits: parasitic endoliths protect mussels against heat stress

    PubMed Central

    Zardi, G. I.; Nicastro, K. R.; McQuaid, C. D.; Ng, T. P. T.; Lathlean, J.; Seuront, L.

    2016-01-01

    Positive and negative aspects of species interactions can be context dependant and strongly affected by environmental conditions. We tested the hypothesis that, during periods of intense heat stress, parasitic phototrophic endoliths that fatally degrade mollusc shells can benefit their mussel hosts. Endolithic infestation significantly reduced body temperatures of sun-exposed mussels and, during unusually extreme heat stress, parasitised individuals suffered lower mortality rates than non-parasitised hosts. This beneficial effect was related to the white discolouration caused by the excavation activity of endoliths. Under climate warming, species relationships may be drastically realigned and conditional benefits of phototrophic endolithic parasites may become more important than the costs of infestation. PMID:27506855

  14. Enemies with benefits: parasitic endoliths protect mussels against heat stress.

    PubMed

    Zardi, G I; Nicastro, K R; McQuaid, C D; Ng, T P T; Lathlean, J; Seuront, L

    2016-01-01

    Positive and negative aspects of species interactions can be context dependant and strongly affected by environmental conditions. We tested the hypothesis that, during periods of intense heat stress, parasitic phototrophic endoliths that fatally degrade mollusc shells can benefit their mussel hosts. Endolithic infestation significantly reduced body temperatures of sun-exposed mussels and, during unusually extreme heat stress, parasitised individuals suffered lower mortality rates than non-parasitised hosts. This beneficial effect was related to the white discolouration caused by the excavation activity of endoliths. Under climate warming, species relationships may be drastically realigned and conditional benefits of phototrophic endolithic parasites may become more important than the costs of infestation. PMID:27506855

  15. Enemies with benefits: parasitic endoliths protect mussels against heat stress.

    PubMed

    Zardi, G I; Nicastro, K R; McQuaid, C D; Ng, T P T; Lathlean, J; Seuront, L

    2016-08-10

    Positive and negative aspects of species interactions can be context dependant and strongly affected by environmental conditions. We tested the hypothesis that, during periods of intense heat stress, parasitic phototrophic endoliths that fatally degrade mollusc shells can benefit their mussel hosts. Endolithic infestation significantly reduced body temperatures of sun-exposed mussels and, during unusually extreme heat stress, parasitised individuals suffered lower mortality rates than non-parasitised hosts. This beneficial effect was related to the white discolouration caused by the excavation activity of endoliths. Under climate warming, species relationships may be drastically realigned and conditional benefits of phototrophic endolithic parasites may become more important than the costs of infestation.

  16. Sequence determinants of prokaryotic gene expression level under heat stress.

    PubMed

    Xiong, Heng; Yang, Yi; Hu, Xiao-Pan; He, Yi-Ming; Ma, Bin-Guang

    2014-11-01

    Prokaryotic gene expression is environment-dependent and temperature plays an important role in shaping the gene expression profile. Revealing the regulation mechanisms of gene expression pertaining to temperature has attracted tremendous efforts in recent years particularly owning to the yielding of transcriptome and proteome data by high-throughput techniques. However, most of the previous works concentrated on the characterization of the gene expression profile of individual organism and little effort has been made to disclose the commonality among organisms, especially for the gene sequence features. In this report, we collected the transcriptome and proteome data measured under heat stress condition from recently published literature and studied the sequence determinants for the expression level of heat-responsive genes on multiple layers. Our results showed that there indeed exist commonness and consistent patterns of the sequence features among organisms for the differentially expressed genes under heat stress condition. Some features are attributed to the requirement of thermostability while some are dominated by gene function. The revealed sequence determinants of bacterial gene expression level under heat stress complement the knowledge about the regulation factors of prokaryotic gene expression responding to the change of environmental conditions. Furthermore, comparisons to thermophilic adaption have been performed to reveal the similarity and dissimilarity of the sequence determinants for the response to heat stress and for the adaption to high habitat temperature, which elucidates the complex landscape of gene expression related to the same physical factor of temperature.

  17. Overexpression of violaxanthin de-epoxidase gene alleviates photoinhibition of PSII and PSI in tomato during high light and chilling stress.

    PubMed

    Han, Han; Gao, Shan; Li, Bin; Dong, Xin-Chun; Feng, Hai-Long; Meng, Qing-Wei

    2010-02-15

    A tomato (Lycopersicon esculentum) violaxanthin de-epoxidase gene (LeVDE) was isolated. The deduced amino acid sequence of LeVDE showed high identities with violaxanthin de-epoxidase in other plant species. RNA gel blot analysis showed that the mRNA accumulation of LeVDE in the wild-type (WT) was regulated by diurnal rhythm and temperature. RNA and protein gel blot analyses confirmed that the sense LeVDE was transferred into the tomato genome and overexpressed under the control of 35S-CaMV. The ratio of (A+Z)/(V+A+Z) and the values of non-photochemical quenching (NPQ) were higher in transgenic plants than those in WT under high light and chilling stress (4 degrees C). The net photosynthetic rate (Pn) decreased markedly in WT compared to transgenic lines under high light stress. The maximum quantum yield of primary photochemistry of PSII (Fv/Fm) in transgenic plants decreased more slowly during stresses and recovered faster than that in WT under optimal conditions. The oxidizable P700 in transgenic plants was higher than that in WT under chilling stress. These results suggest that overexpression of LeVDE increased the function of the xanthophyll cycle and alleviated photoinhibition of PSII and PSI in tomato during high light and chilling stress with low irradiance.

  18. Postnatal Treadmill Exercise Alleviates Prenatal Stress-Induced Anxiety in Offspring Rats by Enhancing Cell Proliferation Through 5-Hydroxytryptamine 1A Receptor Activation

    PubMed Central

    2016-01-01

    Purpose: Stress during pregnancy is a risk factor for the development of anxiety-related disorders in offspring later in life. The effects of treadmill exercise on anxiety-like behaviors and hippocampal cell proliferation were investigated using rats exposed to prenatal stress. Methods: Exposure of pregnant rats to a hunting dog in an enclosed room was used to induce stress. Anxiety-like behaviors of offspring were evaluated using the elevated plus maze test. Immunohistochemistry for the detection of 5-bromo-2ʹ- deoxyuridine and doublecortin (DCX) in the hippocampal dentate gyrus and 5-hydroxytryptamine 1A receptors (5-HT1A) in the dorsal raphe was conducted. Brain-derived neurotrophic factor (BDNF) and tyrosine kinase B (TrkB) levels in the hippocampus were evaluated by western blot analysis. Results: Offspring of maternal rats exposed to stress during pregnancy showed anxiety-like behaviors. Offspring also showed reduced expression of BDNF, TrkB, and DCX in the dentate gyrus, decreased cell proliferation in the hippocampus, and reduced 5-HT1A expression in the dorsal raphe. Postnatal treadmill exercise by offspring, but not maternal exercise during pregnancy, enhanced cell proliferation and expression of these proteins. Conclusions: Postnatal treadmill exercise ameliorated anxiety-like behaviors in offspring of stressed pregnant rats, and the alleviating effect of exercise on these behaviors is hypothesized to result from enhancement of cell proliferation through 5-HT1A activation in offspring rats. PMID:27230461

  19. Low, medium and high heat tolerant strains of Listeria monocytogenes and increased heat stress resistance after exposure to sublethal heat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Listeria monocytogenes exhibits sophisticated adaptive mechanisms to counteract higher levels of lethal acid, heat, salt or oxidative stresses after pre-exposure to sublethal concentrations of homogenous stress. A group of 37 strains representing all 13 serotypes of Listeria monocytogenes with initi...

  20. Kinetin Enhanced 1-Aminocyclopropane-1-Carboxylic Acid Utilization during Alleviation of High Temperatures Stress in Lettuce Seeds.

    PubMed

    Khan, A A; Prusinski, J

    1989-10-01

    The thermoinhibition at 35 and 32 degrees C of pregermination ethylene production and germination in lettuce (Lactuca sativa L. cv Mesa 659) seeds was synergistically or additively alleviated by 0.05 millimolar kinetin (KIN) and 10 millimolar 1-aminocyclopropane-1-carboxylic acid (ACC). The synergistic effect of KIN + ACC on ethylene production and germination at 35 degrees C was inhibited by Co(2+) (44-46%) but not by aminoethoxyvinyl glycine (AVG). The uptake of ACC by the seed was not influenced by KIN. Upon slitting of the seed coats (composed of pericarp, testa and endosperm), following the uptake of chemicals, ACC was readily converted into ethylene at all temperatures, and the synergistic effects of KIN + ACC at 35 degrees C were lost. At 35 degrees C, KIN acted synergistically with ACC or ethephon (ETH) in alleviating the osmotic restraint. At 25 degrees C, ETH was more active than KIN or KIN + ACC in overcoming the osmotic restraint. Thus, the integrity of the seed coats, the KIN-enhanced ACC utilization, and an interaction of KIN with the ethylene produced may be the basis for the synergistic or additive effects of KIN + ACC at high temperature.

  1. Hypersonic Composites Resist Extreme Heat and Stress

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Through research contracts with NASA, Materials and Electrochemical Research Corporation (MER), of Tucson, Arizona, contributed a number of technologies to record-breaking hypersonic flights. Through this research, MER developed a coating that successfully passed testing to simulate Mach 10 conditions, as well as provide several additional carbon-carbon (C-C) composite components for the flights. MER created all of the leading edges for the X-43A test vehicles at Dryden-considered the most critical parts of this experimental craft. In addition to being very heat resistant, the coating had to be very lightweight and thin, as the aircraft was designed to very precise specifications and could not afford to have a bulky coating. MER patented its carbon-carbon (C-C) composite process and then formed a spinoff company, Frontier Materials Corporation (FMC), also based in Tucson. FMC is using the patent in conjunction with low-cost PAN (polyacrylonitrile)-based fibers to introduce these materials to the commercial markets. The C-C composites are very lightweight and exceptionally strong and stiff, even at very high temperatures. The composites have been used in industrial heating applications, the automotive and aerospace industries, as well as in glass manufacturing and on semiconductors. Applications also include transfer components for glass manufacturing and structural members for carrier support in semiconductor processing.

  2. Survival of heat stress with and without heat hardening in Drosophila melanogaster: interactions with larval density.

    PubMed

    Arias, Leticia N; Sambucetti, Pablo; Scannapieco, Alejandra C; Loeschcke, Volker; Norry, Fabian M

    2012-07-01

    Survival of a potentially lethal high temperature stress is a genetically variable thermal adaptation trait in many organisms. Organisms cope with heat stress by basal or induced thermoresistance. Here, we tested quantitative trait loci (QTL) for heat stress survival (HSS) in Drosophila melanogaster, with and without a cyclic heat-hardening pre-treatment, for flies that were reared at low (LD) or high (HD) density. Mapping populations were two panels of recombinant inbred lines (RIL), which were previously constructed from heat stress-selected stocks: RIL-D48 and RIL-SH2, derived from backcrosses to stocks of low and high heat resistance, respectively. HSS increased with heat hardening in both LD and HD flies. In addition, HSS increased consistently with density in non-hardened flies. There was a significant interaction between heat hardening and density effects in RIL-D48. Several QTL were significant for both density and hardening treatments. Many QTL overlapped with thermotolerance QTL identified for other traits in previous studies based on LD cultures only. However, three new QTL were found in HD only (cytological ranges: 12E-16F6; 30A3-34C2; 49C-50C). Previously found thermotolerance QTL were also significant for flies from HD cultures.

  3. Sympathetic activity during passive heat stress in healthy aged humans

    PubMed Central

    Gagnon, Daniel; Schlader, Zachary J; Crandall, Craig G

    2015-01-01

    Abstract Cardiovascular adjustments during heat stress are generally attenuated in healthy aged humans, which could be due to lower increases in sympathetic activity compared to the young. We compared muscle sympathetic nerve activity (MSNA) between 11 young (Y: 28 ± 4 years) and 10 aged (A: 70 ± 5 years) subjects prior to and during passive heating. Furthermore, MSNA responses were compared when a cold pressor test (CPT) and lower body negative pressure (LBNP) were superimposed upon heating. Baseline MSNA burst frequency (Y: 15 ± 4 vs. A: 31 ± 3 bursts min−1, P ≤ 0.01) and burst incidence (Y: 26 ± 8 vs. A: 50 ± 7 bursts (100 cardiac cycles (CC))−1, P ≤ 0.01) were greater in the aged. Heat stress increased core temperature to a similar extent in both groups (Y: +1.2 ± 0.1 vs. A: +1.2 ± 0.0°C, P = 0.99). Absolute levels of MSNA remained greater in the aged during heat stress (burst frequency: Y: 47 ± 6 vs. A: 63 ± 11 bursts min−1, P ≤ 0.01; burst incidence: Y: 48 ± 8 vs. A: 67 ± 9 bursts (100 CC)−1, P ≤ 0.01); however, the increase in both variables was similar between groups (both P ≥ 0.1). The CPT and LBNP further increased MSNA burst frequency and burst incidence, although the magnitude of increase was similar between groups (both P ≥ 0.07). These results suggest that increases in sympathetic activity during heat stress are not attenuated in healthy aged humans. Key points Cardiovascular adjustments to heat stress are attenuated in healthy aged individuals, which could contribute to their greater prevalence of heat-related illnesses and deaths during heat waves. The attenuated cardiovascular adjustments in the aged could be due to lower increases in sympathetic nerve activity during heat stress. We examined muscle sympathetic nerve activity (MSNA) and plasma catecholamine concentrations in healthy young and aged individuals during whole-body passive heat stress. The main finding

  4. Climate Change and the Emergent Epidemic of CKD from Heat Stress in Rural Communities: The Case for Heat Stress Nephropathy.

    PubMed

    Glaser, Jason; Lemery, Jay; Rajagopalan, Balaji; Diaz, Henry F; García-Trabanino, Ramón; Taduri, Gangadhar; Madero, Magdalena; Amarasinghe, Mala; Abraham, Georgi; Anutrakulchai, Sirirat; Jha, Vivekanand; Stenvinkel, Peter; Roncal-Jimenez, Carlos; Lanaspa, Miguel A; Correa-Rotter, Ricardo; Sheikh-Hamad, David; Burdmann, Emmanuel A; Andres-Hernando, Ana; Milagres, Tamara; Weiss, Ilana; Kanbay, Mehmet; Wesseling, Catharina; Sánchez-Lozada, Laura Gabriela; Johnson, Richard J

    2016-08-01

    Climate change has led to significant rise of 0.8°C-0.9°C in global mean temperature over the last century and has been linked with significant increases in the frequency and severity of heat waves (extreme heat events). Climate change has also been increasingly connected to detrimental human health. One of the consequences of climate-related extreme heat exposure is dehydration and volume loss, leading to acute mortality from exacerbations of pre-existing chronic disease, as well as from outright heat exhaustion and heat stroke. Recent studies have also shown that recurrent heat exposure with physical exertion and inadequate hydration can lead to CKD that is distinct from that caused by diabetes, hypertension, or GN. Epidemics of CKD consistent with heat stress nephropathy are now occurring across the world. Here, we describe this disease, discuss the locations where it appears to be manifesting, link it with increasing temperatures, and discuss ongoing attempts to prevent the disease. Heat stress nephropathy may represent one of the first epidemics due to global warming. Government, industry, and health policy makers in the impacted regions should place greater emphasis on occupational and community interventions.

  5. Climate Change and the Emergent Epidemic of CKD from Heat Stress in Rural Communities: The Case for Heat Stress Nephropathy.

    PubMed

    Glaser, Jason; Lemery, Jay; Rajagopalan, Balaji; Diaz, Henry F; García-Trabanino, Ramón; Taduri, Gangadhar; Madero, Magdalena; Amarasinghe, Mala; Abraham, Georgi; Anutrakulchai, Sirirat; Jha, Vivekanand; Stenvinkel, Peter; Roncal-Jimenez, Carlos; Lanaspa, Miguel A; Correa-Rotter, Ricardo; Sheikh-Hamad, David; Burdmann, Emmanuel A; Andres-Hernando, Ana; Milagres, Tamara; Weiss, Ilana; Kanbay, Mehmet; Wesseling, Catharina; Sánchez-Lozada, Laura Gabriela; Johnson, Richard J

    2016-08-01

    Climate change has led to significant rise of 0.8°C-0.9°C in global mean temperature over the last century and has been linked with significant increases in the frequency and severity of heat waves (extreme heat events). Climate change has also been increasingly connected to detrimental human health. One of the consequences of climate-related extreme heat exposure is dehydration and volume loss, leading to acute mortality from exacerbations of pre-existing chronic disease, as well as from outright heat exhaustion and heat stroke. Recent studies have also shown that recurrent heat exposure with physical exertion and inadequate hydration can lead to CKD that is distinct from that caused by diabetes, hypertension, or GN. Epidemics of CKD consistent with heat stress nephropathy are now occurring across the world. Here, we describe this disease, discuss the locations where it appears to be manifesting, link it with increasing temperatures, and discuss ongoing attempts to prevent the disease. Heat stress nephropathy may represent one of the first epidemics due to global warming. Government, industry, and health policy makers in the impacted regions should place greater emphasis on occupational and community interventions. PMID:27151892

  6. A combined application of biochar and phosphorus alleviates heat-induced adversities on physiological, agronomical and quality attributes of rice.

    PubMed

    Fahad, Shah; Hussain, Saddam; Saud, Shah; Hassan, Shah; Tanveer, Mohsin; Ihsan, Muhammad Zahid; Shah, Adnan Noor; Ullah, Abid; Nasrullah; Khan, Fahad; Ullah, Sami; Alharby, Hesham; Nasim, Wajid; Wu, Chao; Huang, Jianliang

    2016-06-01

    Present study examined the influence of high-temperature stress and different biochar and phosphorus (P) fertilization treatments on the growth, grain yield and quality of two rice cultivars (IR-64 and Huanghuazhan). Plants were subjected to high day temperature-HDT (35 °C ± 2), high night temperature-HNT (32 °C ± 2), and control temperature-CT (28 °C ± 2) in controlled growth chambers. The different fertilization treatments were control, biochar alone, phosphorous (P) alone and biochar + P. High-temperature stress severely reduced the photosynthesis, stomatal conductance, water use efficiency, and increased the leaf water potential of both rice cultivars. Grain yield and its related attributes except for number of panicles, were reduced under high temperature. The HDT posed more negative effects on rice physiological attributes, while HNT was more destructive for grain yield. High temperature stress also hampered the grain appearance and milling quality traits in both rice cultivars. The Huanghuazhan performed better than IR-64 under high-temperature stress with better growth and higher grain yield. Different soil fertilization treatments were helpful in ameliorating the detrimental effects of high temperature. Addition of biochar alone improved some growth and yield parameters but such positive effects were lower when compared with the combined application of biochar and P. The biochar+P application recorded 7% higher grain yield (plant(-1)) of rice compared with control averaged across different temperature treatments and cultivars. The highest grain production and better grain quality in biochar+P treatments might be due to enhanced photosynthesis, water use efficiency, and grain size, which compensated the adversities of high temperature stress. PMID:26995314

  7. Carotid baroreflex responsiveness in heat-stressed humans

    NASA Technical Reports Server (NTRS)

    Crandall, C. G.

    2000-01-01

    The effects of whole body heating on human baroreflex function are relatively unknown. The purpose of this project was to identify whether whole body heating reduces the maximal slope of the carotid baroreflex. In 12 subjects, carotid-vasomotor and carotid-cardiac baroreflex responsiveness were assessed in normothermia and during whole body heating. Whole body heating increased sublingual temperature (from 36.4 +/- 0.1 to 37.4 +/- 0.1 degrees C, P < 0.01) and increased heart rate (from 59 +/- 3 to 83 +/- 3 beats/min, P < 0. 01), whereas mean arterial blood pressure (MAP) was slightly decreased (from 88 +/- 2 to 83 +/- 2 mmHg, P < 0.01). Carotid-vasomotor and carotid-cardiac responsiveness were assessed by identifying the maximal gain of MAP and heart rate to R wave-triggered changes in carotid sinus transmural pressure. Whole body heating significantly decreased the responsiveness of the carotid-vasomotor baroreflex (from -0.20 +/- 0.02 to -0.13 +/- 0.02 mmHg/mmHg, P < 0.01) without altering the responsiveness of the carotid-cardiac baroreflex (from -0.40 +/- 0.05 to -0.36 +/- 0.02 beats x min(-1) x mmHg(-1), P = 0.21). Carotid-vasomotor and carotid-cardiac baroreflex curves were shifted downward and upward, respectively, to accommodate the decrease in blood pressure and increase in heart rate that accompanied the heat stress. Moreover, the operating point of the carotid-cardiac baroreflex was shifted closer to threshold (P = 0.02) by the heat stress. Reduced carotid-vasomotor baroreflex responsiveness, coupled with a reduction in the functional reserve for the carotid baroreflex to increase heart rate during a hypotensive challenge, may contribute to increased susceptibility to orthostatic intolerance during a heat stress.

  8. Genetic solutions to infertility caused by heat stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reproductive function in mammals is very susceptible to disruption by heat stress. In lactating dairy cows, for example, pregnancy rates per insemination can be as low as 10-15% in the summer vs. 25-40% in cool weather. Reduced fertility in females is caused by a combination of 1) the negative cons...

  9. Peripheral vascular responses to heat stress after hindlimb suspension

    NASA Technical Reports Server (NTRS)

    Looft-Wilson, Robin C.; Gisolfi, Carl V.

    2002-01-01

    PURPOSE: The purpose of this study was to determine whether hindlimb suspension (which simulates the effects of microgravity) results in impaired hemodynamic responses to heat stress or alterations in mesenteric small artery sympathetic nerve innervation. METHODS: Over 28 d, 16 male Sprague-Dawley rats were hindlimb-suspended, and 13 control rats were housed in the same type of cage. After the treatment, mean arterial pressure (MAP), colonic temperature (Tcol), and superior mesenteric and iliac artery resistances (using Doppler flowmetry) were measured during heat stress [exposure to 42 degrees C until the endpoint of 80 mm Hg blood pressure was reached (75 +/- 9 min); endpoint Tcore = 43.6 +/- 0.2] while rats were anesthetized (sodium pentobarbital, 50 mg x kg(-1) BW). RESULTS: Hindlimb-suspended and control rats exhibited similar increases in Tcol, MAP, and superior mesenteric artery resistance, and similar decreases in iliac resistance during heat stress (endpoint was a fall in MAP below 80 mm Hg). Tyrosine hydroxylase immunostaining indicated similar sympathetic nerve innervation in small mesenteric arteries from both groups. CONCLUSION: Hindlimb suspension does not alter the hemodynamic or thermoregulatory responses to heat stress in the anesthetized rat or mesenteric sympathetic nerve innervation, suggesting that this sympathetic pathway is intact.

  10. Simulating canopy temperature for modelling heat stress in cereals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop models must be improved to account for the large effects of heat stress effects on crop yields. To date, most approaches in crop models use air temperature despite evidence that crop canopy temperature better explains yield reductions associated with high temperature events. This study presents...

  11. Boundary element techniques - Applications in stress analysis and heat transfer

    SciTech Connect

    Brebbia, C.A.; Venturini, W.S.

    1987-01-01

    This volume includes contributions in the field of stress analysis, soil and rock mechanics, non-linear problems, dynamics and vibrations, plate bending and heat transfer. The companion volume includes contributions dealing with viscous and inviscid fluid flow, aerodynamics and hydrodynamics applications, elastostatics and computational and mathematical aspects.

  12. Heat Stress Screening of Peanut Seedlings for Acquired Thermotolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this research was to develop a user-friendly and medium throughput laboratory protocol using acquired thermotolerance (ATT) in peanut seedlings as a measure of one mechanism of heat stress tolerance. Sixteen genotypes, including selected accessions of the U.S. peanut min...

  13. Body Temperature Versus Microclimate Selection in Heat Stressed Dairy Cows

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this study is to characterize the thermoregulatory responses of unrestrained heat-stressed dairy cows within a freestall environment using fan and spray configurations for cooling cows while lying or standing. An experimental treatment sprayed individual cows lying in freestalls from ...

  14. Short Communication: Genotype by Environment Interaction Due to Heat Stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heat stress was evaluated as a factor in differences between regional evaluations for milk yield in the United States. The national data set (NA) consisted of 56 million first-parity test-day milk yields on 6 million Holsteins. The Northeastern subset (NE) included 12.5 million records on 1.3 millio...

  15. 3,4-Dihydroxyphenylethanol alleviates early brain injury by modulating oxidative stress and Akt and nuclear factor-κB pathways in a rat model of subarachnoid hemorrhage

    PubMed Central

    FU, PENG; HU, QUAN

    2016-01-01

    3,4-Dihydroxyphenylethanol (DOPET) is a naturally occurring polyphenolic compound, present in olive oil and in the wastewater generated during olive oil processing. DOPET has various biological and pharmacological activities, including anticancer, antibacterial and anti-inflammatory effects. This study was designed to determine whether DOPET alleviates early brain injury (EBI) associated with subarachnoid hemorrhage (SAH) through suppression of oxidative stress and Akt and nuclear factor (NF)-κB pathways. Rats were randomly divided into the following groups: Sham group, SAH group, SAH + vehicle group and SAH + DOPET group. Mortality, blood-brain barrier (BBB) permeability and brain water content were assessed. Oxidative stress, Akt, NF-κB p65 and caspase-3 assays were also performed. DOPET induced a reduction in brain water content, and decreased the BBB permeability of SAH model rats. Furthermore, DOPET effectively controlled oxidative stress, NF-κB p65 and caspase-3 levels, in addition to significantly increasing Akt levels in the cortex following SAH. These results provide evidence that DOPET attenuates apoptosis in a rat SAH model through modulating oxidative stress and Akt and NF-κB signaling pathways. PMID:27168841

  16. Pomegranate extract decreases oxidative stress and alleviates mitochondrial impairment by activating AMPK-Nrf2 in hypothalamic paraventricular nucleus of spontaneously hypertensive rats

    PubMed Central

    Sun, Wenyan; Yan, Chunhong; Frost, Bess; Wang, Xin; Hou, Chen; Zeng, Mengqi; Gao, Hongli; Kang, Yuming; Liu, Jiankang

    2016-01-01

    High blood pressure, or “hypertension,” is associated with high levels of oxidative stress in the paraventricular nucleus of the hypothalamus. While pomegranate extract is a known antioxidant that is thought to have antihypertensive effects, the mechanism whereby pomegranate extract lowers blood pressure and the tissue that mediates its antihypertensive effects are currently unknown. We have used a spontaneously hypertensive rat model to investigate the antihypertensive properties of pomegranate extract. We found that chronic treatment of hypertensive rats with pomegranate extract significantly reduced blood pressure and cardiac hypertrophy. Furthermore, pomegranate extract reduced oxidative stress, increased the antioxidant defense system, and decreased inflammation in the paraventricular nucleus of hypertensive rats. We determined that pomegranate extract reduced mitochondrial superoxide anion levels and increased mitochondrial function in the paraventricular nucleus of hypertensive rats by promoting mitochondrial biogenesis and improving mitochondrial dynamics and clearance. We went on to identify the AMPK-nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) pathway as a mechanism whereby pomegranate extract reduces oxidative stress in the paraventricular nucleus to relieve hypertension. Our findings demonstrate that pomegranate extract alleviates hypertension by reducing oxidative stress and improving mitochondrial function in the paraventricular nucleus, and reveal multiple novel targets for therapeutic treatment of hypertension. PMID:27713551

  17. Study of heat-stress levels in naturally ventilated sheep barns during heat waves: development and assessment of regression models

    NASA Astrophysics Data System (ADS)

    Papanastasiou, D. K.; Bartzanas, T.; Panagakis, P.; Zhang, G.; Kittas, C.

    2016-03-01

    It is well documented that heat-stress burdens sheep welfare and productivity. Peak heat-stress levels are observed when high temperatures prevail, i.e. during heat waves; however, continuous measurements inside livestock buildings are not usually available for long periods so as to study the variation of summer heat-stress levels for several years, especially during extreme hot weather. Α methodology to develop a long time series of summer temperature and relative humidity inside naturally ventilated sheep barns is proposed. The accuracy and the transferability of the developed linear regression models were verified. Temperature Humidity Index (THI) was used to assess sheep's potential heat-stress. Τhe variation of THI inside a barn during heat wave and non-heat wave days was examined, and the results were comparatively assessed. The analysis showed that sheep were exposed to moderate, severe, and extreme severe heat-stress in 10, 21 and 66 % of hours, respectively, during heat wave days, while the corresponding values during non-heat wave days were 14, 33 and 43 %, respectively. The heat load on sheep was much higher during heat wave events than during non-heat wave periods. Additionally, based on the averaged diurnal variation of THI, it was concluded that extreme severe heat-stress conditions were prevailing between 1000 and 2400 hours local time during heat wave days. Cool off night periods were never and extremely rarely detected during heat wave and non-heat wave days, respectively.

  18. Causes, effects and molecular mechanisms of testicular heat stress.

    PubMed

    Durairajanayagam, Damayanthi; Agarwal, Ashok; Ong, Chloe

    2015-01-01

    The process of spermatogenesis is temperature-dependent and occurs optimally at temperatures slightly lower than that of the body. Adequate thermoregulation is imperative to maintain testicular temperatures at levels lower than that of the body core. Raised testicular temperature has a detrimental effect on mammalian spermatogenesis and the resultant spermatozoa. Therefore, thermoregulatory failure leading to heat stress can compromise sperm quality and increase the risk of infertility. In this paper, several different types of external and internal factors that may contribute towards testicular heat stress are reviewed. The effects of heat stress on the process of spermatogenesis, the resultant epididymal spermatozoa and on germ cells, and the consequent changes in the testis are elaborated upon. We also discuss the molecular response of germ cells to heat exposure and the possible mechanisms involved in heat-induced germ cell damage, including apoptosis, DNA damage and autophagy. Further, the intrinsic and extrinsic pathways that are involved in the intricate mechanism of germ cell apoptosis are explained. Ultimately, these complex mechanisms of apoptosis lead to germ cell death.

  19. Differential expression pattern of heat shock protein 70 gene in tissues and heat stress phenotypes in goats during peak heat stress period.

    PubMed

    Rout, P K; Kaushik, R; Ramachandran, N

    2016-07-01

    It has been established that the synthesis of heat shock protein 70 (Hsp70) is temperature-dependent. The Hsp70 response is considered as a cellular thermometer in response to heat stress and other stimuli. The variation in Hsp70 gene expression has been positively correlated with thermotolerance in Drosophila melanogaster, Caenorhabditis elegans, rodents and human. Goats have a wide range of ecological adaptability due to their anatomical and physiological characteristics; however, the productivity of the individual declines during thermal stress. The present study was carried out to analyze the expression of heat shock proteins in different tissues and to contrast heat stress phenotypes in response to chronic heat stress. The investigation has been carried out in Jamunapari, Barbari, Jakhrana and Sirohi goats. These breeds differ in size, coat colour and production performance. The heat stress assessment in goats was carried out at a temperature humidity index (THI) ranging from 85.36-89.80 over the period. Phenotyping for heat stress susceptibility was carried out by combining respiration rate (RR) and heart rate (HR). Based on the distribution of RR and HR over the breeds in the population, individual animals were recognized as heat stress-susceptible (HSS) and heat stress-tolerant (HST). Based on their physiological responses, the selected animals were slaughtered for tissue collection during peak heat stress periods. The tissue samples from different organs such as liver, spleen, heart, testis, brain and lungs were collected and stored at -70 °C for future use. Hsp70 concentrations were analyzed from tissue extract with ELISA. mRNA expression levels were evaluated using the SYBR green method. Kidney, liver and heart had 1.5-2.0-fold higher Hsp70 concentrations as compared to other organs in the tissue extracts. Similarly, the gene expression pattern of Hsp70 in different organs indicated that the liver, spleen, brain and kidney exhibited 5.94, 4.96, 5

  20. Finger millet bran supplementation alleviates obesity-induced oxidative stress, inflammation and gut microbial derangements in high-fat diet-fed mice.

    PubMed

    Murtaza, Nida; Baboota, Ritesh K; Jagtap, Sneha; Singh, Dhirendra P; Khare, Pragyanshu; Sarma, Siddhartha M; Podili, Koteswaraiah; Alagesan, Subramanian; Chandra, T S; Bhutani, K K; Boparai, Ravneet K; Bishnoi, Mahendra; Kondepudi, Kanthi Kiran

    2014-11-14

    Several epidemiological studies have shown that the consumption of finger millet (FM) alleviates diabetes-related complications. In the present study, the effect of finger millet whole grain (FM-WG) and bran (FM-BR) supplementation was evaluated in high-fat diet-fed LACA mice for 12 weeks. Mice were divided into four groups: control group fed a normal diet (10 % fat as energy); a group fed a high-fat diet; a group fed the same high-fat diet supplemented with FM-BR; a group fed the same high-fat diet supplemented with FM-WG. The inclusion of FM-BR at 10 % (w/w) in a high-fat diet had more beneficial effects than that of FM-WG. FM-BR supplementation prevented body weight gain, improved lipid profile and anti-inflammatory status, alleviated oxidative stress, regulated the expression levels of several obesity-related genes, increased the abundance of beneficial gut bacteria (Lactobacillus, Bifidobacteria and Roseburia) and suppressed the abundance of Enterobacter in caecal contents (P≤ 0·05). In conclusion, FM-BR supplementation could be an effective strategy for preventing high-fat diet-induced changes and developing FM-BR-enriched functional foods.

  1. Hormetic modulation of aging and longevity by mild heat stress.

    PubMed

    Rattan, Suresh I S

    2006-05-22

    Aging is characterized by a stochastic accumulation of molecular damage, progressive failure of maintenance and repair, and consequent onset of age-related diseases. Applying hormesis in aging research and therapy is based on the principle of stimulation of maintenance and repair pathways by repeated exposure to mild stress. In a series of experimental studies we have shown that repetitive mild heat stress has anti-aging hormetic effects on growth and various other cellular and biochemical characteristics of human skin fibroblasts undergoing aging in vitro. These effects include the maintenance of stress protein profiles, reduction in the accumulation of oxidatively and glycoxidatively damaged proteins, stimulation of the proteasomal activities for the degradation of abnormal proteins, improved cellular resistance to ethanol, hydrogen peroxide and ultraviolet-B rays, and enhanced levels of various antioxidant enzymes. Anti-aging hormetic effects of mild heat shock appear to be facilitated by reducing protein damage and protein aggregation by activating internal antioxidant, repair and degradation processes.

  2. Alleviation of cadmium stress in Solanum lycopersicum L. by arbuscular mycorrhizal fungi via induction of acquired systemic tolerance.

    PubMed

    Hashem, Abeer; Abd Allah, E F; Alqarawi, A A; Al Huqail, Asma A; Egamberdieva, D; Wirth, S

    2016-03-01

    Experiments were conducted to evaluate cadmium (Cd) stress-induced changes in growth, antioxidants and lipid composition of Solanum lycopersicum with and without arbuscular mycorrhizal fungi (AMF). Cadmium stress (50 μM) caused significant changes in the growth and physio-biochemical attributes studied. AMF mitigated the deleterious impact of Cd on the parameters studied. Cadmium stress increased malonaldehyde and hydrogen peroxide production but AMF reduced these parameters by mitigating oxidative stress. The activity of antioxidant enzymes enhanced under Cd treatment and AMF inoculation further enhanced their activity, thus strengthening the plant's defense system. Proline and phenol content increased in Cd-treated as well as AMF-inoculated plants providing efficient protection against Cd stress. Cadmium treatment resulted in great alterations in the main lipid classes leading to a marked change in their composition. Cadmium stress caused a significant reduction in polyunsaturated fatty acids resulting in enhanced membrane leakage. The present study supports the use of AMF as a biological means to ameliorate Cd stress-induced changes in tomato. PMID:26981010

  3. Alleviation of cadmium stress in Solanum lycopersicum L. by arbuscular mycorrhizal fungi via induction of acquired systemic tolerance

    PubMed Central

    Hashem, Abeer; Abd_Allah, E.F.; Alqarawi, A.A.; Al Huqail, Asma A.; Egamberdieva, D.; Wirth, S.

    2015-01-01

    Experiments were conducted to evaluate cadmium (Cd) stress-induced changes in growth, antioxidants and lipid composition of Solanum lycopersicum with and without arbuscular mycorrhizal fungi (AMF). Cadmium stress (50 μM) caused significant changes in the growth and physio-biochemical attributes studied. AMF mitigated the deleterious impact of Cd on the parameters studied. Cadmium stress increased malonaldehyde and hydrogen peroxide production but AMF reduced these parameters by mitigating oxidative stress. The activity of antioxidant enzymes enhanced under Cd treatment and AMF inoculation further enhanced their activity, thus strengthening the plant’s defense system. Proline and phenol content increased in Cd-treated as well as AMF-inoculated plants providing efficient protection against Cd stress. Cadmium treatment resulted in great alterations in the main lipid classes leading to a marked change in their composition. Cadmium stress caused a significant reduction in polyunsaturated fatty acids resulting in enhanced membrane leakage. The present study supports the use of AMF as a biological means to ameliorate Cd stress-induced changes in tomato. PMID:26981010

  4. Stress alleviates reduced expression of cell adhesion molecules (NCAM, L1), and deficits in learning and corticosterone regulation of apolipoprotein E knockout mice.

    PubMed

    Grootendorst, J; Oitzl, M S; Dalm, S; Enthoven, L; Schachner, M; de Kloet, E R; Sandi, C

    2001-11-01

    Cell adhesion molecules (CAMs) involved in synaptic changes underlying learning and memory processes, are implicated in the effect of stress on behavioural performance. The present study was designed to test the hypothesis that (i) expression of CAMs is apolipoprotein E- (apoE) genotype dependent and (ii) repeated exposure to stress modulates the synthesis of CAMs in an apoE-genotype dependent manner. Using ELISA we tested this hypothesis and measured expression of NCAM and L1 in different brain regions of naïve and stressed apolipoprotein E-knockout (apoE0/0) and C57Bl6 (wild-type) mice. Naïve apoE0/0 mice had elevated basal morning corticosterone and ACTH concentrations and decreased expression of NCAM and L1 compared to wild-type mice. Repeated exposure of mice to rats, as the common stressor, alleviated the reduction in expression of CAMs in apoE0/0 mice; seven days after the last rat exposure, expression of NCAM was increased in frontal brain and hippocampus whereas expression of L1 was increased in hippocampus and cerebellum. Rat stress attenuated the elevation of basal morning corticosterone concentration in apoE0/0 mice towards concentrations detected in wild-type mice. Moreover, rat stress improved learning and memory of apoE0/0 mice in the water maze. In conclusion, repeated exposure to stress eliminated apoE-genotype-related differences in expression of CAMs. Under these same conditions the differences in cognitive performance and corticosterone concentrations were abolished between wild type and apoE0/0 mice.

  5. Salicylic Acid Alleviates the Adverse Effects of Salt Stress in Torreya grandis cv. Merrillii Seedlings by Activating Photosynthesis and Enhancing Antioxidant Systems

    PubMed Central

    Du, Xuhua; Tang, Hui; Shen, Chaohua; Wu, Jiasheng

    2014-01-01

    Background Salt stress is a major factor limiting plant growth and productivity. Salicylic acid (SA) has been shown to ameliorate the adverse effects of environmental stress on plants. To investigate the protective role of SA in ameliorating salt stress on Torreya grandis (T. grandis) trees, a pot experiment was conducted to analyze the biomass, relative water content (RWC), chlorophyll content, net photosynthesis (Pn), gas exchange parameters, relative leakage conductivity (REC), malondialdehyde (MDA) content, and activities of superoxide dismutase (SOD) and peroxidase (POD) of T. grandis under 0.2% and 0.4% NaCl conditions with and without SA. Methodology/Principal Findings The exposure of T. grandis seedlings to salt conditions resulted in reduced growth rates, which were associated with decreases in RWC and Pn and increases in REC and MDA content. The foliar application of SA effectively increased the chlorophyll (chl (a+b)) content, RWC, net CO2 assimilation rates (Pn), and proline content, enhanced the activities of SOD, CAT and POD, and minimized the increases in the REC and MDA content. These changes increased the capacity of T. grandis in acclimating to salt stress and thus increased the shoot and root dry matter. However, when the plants were under 0% and 0.2% NaCl stress, the dry mass of the shoots and roots did not differ significantly between SA-treated plants and control plants. Conclusions SA induced the salt tolerance and increased the biomass of T. grandis cv. by enhancing the chlorophyll content and activity of antioxidative enzymes, activating the photosynthetic process, and alleviating membrane injury. A better understanding about the effect of salt stress in T. grandis is vital, in order gain knowledge over expanding the plantations to various regions and also for the recovery of T. grandis species in the future. PMID:25302987

  6. Alleviation of Drought Stress and Metabolic Changes in Timothy (Phleum pratense L.) Colonized with Bacillus subtilis B26

    PubMed Central

    Gagné-Bourque, François; Bertrand, Annick; Claessens, Annie; Aliferis, Konstantinos A.; Jabaji, Suha

    2016-01-01

    Drought is a major limiting factor of crop productivity worldwide and its incidence is predicted to increase under climate change. Drought adaptation of cool-season grasses is thus a major challenge to secure the agricultural productivity under current and future climate conditions. Endophytes are non-pathogenic plant-associated bacteria that can play an important role in conferring resistance and improving plant tolerance to drought. In this study, the effect of inoculation of the bacterial endophyte Bacillus subtilis strain B26 on growth, water status, photosynthetic activity and metabolism of timothy (Phleum pratense L.) subjected to drought stress was investigated under controlled conditions. Under both drought-stress and non-stressed conditions, strain B26 successfully colonized the internal tissues of timothy and had a positive impact on plant growth. Exposure of inoculated plant to a 8-week drought-stress led to significant increase in shoot and root biomass by 26.6 and 63.8%, and in photosynthesis and stomatal conductance by 55.2 and 214.9% respectively, compared to non-inoculated plants grown under similar conditions. There was a significant effect of the endophyte on plant metabolism; higher levels of several sugars, notably sucrose and fructans and an increase of key amino acids such as, asparagine, glutamic acid and glutamine were recorded in shoots and roots of colonized plants compared to non-colonized ones. The accumulation of the non-protein amino acid GABA in shoots of stressed plants and in roots of stressed and unstressed plants was increased in the presence of the endophyte. Taken together, our results indicate that B. subtilis B26 improves timothy growth under drought stress through the modification of osmolyte accumulation in roots and shoots. These results will contribute to the development of a microbial agent to improve the yield of grass species including forage crops and cereals exposed to environmental stresses. PMID:27200057

  7. Histone hyperacetylation modulates spinal type II metabotropic glutamate receptor alleviating stress-induced visceral hypersensitivity in female rats

    PubMed Central

    Cao, Dong-Yuan; Bai, Guang; Ji, Yaping; Karpowicz, Jane

    2016-01-01

    Stress is often a trigger to exacerbate chronic pain including visceral hypersensitivity associated with irritable bowel syndrome, a female predominant functional bowel disorder. Epigenetic mechanisms that mediate stress responses are a potential target to interfere with visceral pain. The purpose of this study was to examine the effect of a histone deacetylase inhibitor, suberoylanilide hydroxamic acid, on visceral hypersensitivity induced by a subchronic stressor in female rats and to investigate the involvement of spinal glutamate receptors. Three daily sessions of forced swim induced visceral hypersensitivity. Intrathecal suberoylanilide hydroxamic acid prevented or reversed the stress-induced visceral hypersensitivity, increased spinal histone 3 acetylation and increased mGluR2 and mGluR3 expression. Chromatin immunoprecipitation (ChIP) analysis revealed enrichment of H3K9Ac and H3K18Ac at several promoter Grm2 and Grm3 regions. The mGluR2/3 antagonist LY341495 reversed the inhibitory effect of suberoylanilide hydroxamic acid on the stress-induced visceral hypersensitivity. In surprising contrast, stress and/or suberoylanilide hydroxamic acid had no effect on spinal NMDA receptor expression or function. These data reveal histone modification modulates mGluR2/3 expression in the spinal cord to attenuate stress-induced visceral hypersensitivity. HDAC inhibitors may provide a potential approach to relieve visceral hypersensitivity associated with irritable bowel syndrome. PMID:27385724

  8. Heat shock proteins in relation to heat stress tolerance of creeping bentgrass at different N levels.

    PubMed

    Wang, Kehua; Zhang, Xunzhong; Goatley, Mike; Ervin, Erik

    2014-01-01

    Heat stress is a primary factor causing summer bentgrass decline. Changes in gene expression at the transcriptional and/or translational level are thought to be a fundamental mechanism in plant response to environmental stresses. Heat stress redirects protein synthesis in higher plants and results in stress protein synthesis, particularly heat shock proteins (HSPs). The goal of this work was to analyze the expression pattern of major HSPs in creeping bentgrass (Agrostis stolonifera L.) during different heat stress periods and to study the influence of nitrogen (N) on the HSP expression patterns. A growth chamber study on 'Penn-A4' creeping bentgrass subjected to 38/28°C day/night for 50 days, was conducted with four nitrate rates (no N-0, low N-2.5, medium N-7.5, and high N-12.5 kg N ha-1) applied biweekly. Visual turfgrass quality (TQ), normalized difference vegetation index (NDVI), photochemical efficiency of photosystem II (Fv/Fm), shoot electrolyte leakage (ShEL), and root viability (RV) were monitored, along with the expression pattern of HSPs. There was no difference in measured parameters between treatments until week seven, except TQ at week five. At week seven, grass at medium N had better TQ, NDVI, and Fv/Fm accompanied by lower ShEL and higher RV, suggesting a major role in improved heat tolerance. All the investigated HSPs (HSP101, HSP90, HSP70, and sHSPs) were up-regulated by heat stress. Their expression patterns indicated cooperation between different HSPs and their roles in bentgrass thermotolerance. In addition, their production seems to be resource dependent. This study could further improve our understanding about how different N levels affect bentgrass thermotolerance.

  9. Heat Shock Proteins in Relation to Heat Stress Tolerance of Creeping Bentgrass at Different N Levels

    PubMed Central

    Wang, Kehua; Zhang, Xunzhong; Goatley, Mike; Ervin, Erik

    2014-01-01

    Heat stress is a primary factor causing summer bentgrass decline. Changes in gene expression at the transcriptional and/or translational level are thought to be a fundamental mechanism in plant response to environmental stresses. Heat stress redirects protein synthesis in higher plants and results in stress protein synthesis, particularly heat shock proteins (HSPs). The goal of this work was to analyze the expression pattern of major HSPs in creeping bentgrass (Agrostis stolonifera L.) during different heat stress periods and to study the influence of nitrogen (N) on the HSP expression patterns. A growth chamber study on ‘Penn-A4’ creeping bentgrass subjected to 38/28°C day/night for 50 days, was conducted with four nitrate rates (no N-0, low N-2.5, medium N-7.5, and high N-12.5 kg N ha−1) applied biweekly. Visual turfgrass quality (TQ), normalized difference vegetation index (NDVI), photochemical efficiency of photosystem II (Fv/Fm), shoot electrolyte leakage (ShEL), and root viability (RV) were monitored, along with the expression pattern of HSPs. There was no difference in measured parameters between treatments until week seven, except TQ at week five. At week seven, grass at medium N had better TQ, NDVI, and Fv/Fm accompanied by lower ShEL and higher RV, suggesting a major role in improved heat tolerance. All the investigated HSPs (HSP101, HSP90, HSP70, and sHSPs) were up-regulated by heat stress. Their expression patterns indicated cooperation between different HSPs and their roles in bentgrass thermotolerance. In addition, their production seems to be resource dependent. This study could further improve our understanding about how different N levels affect bentgrass thermotolerance. PMID:25050702

  10. Antioxidant potential of Cymbopogon citratus extract: alleviation of carbon tetrachloride-induced hepatic oxidative stress and toxicity.

    PubMed

    Koh, Pei Hoon; Mokhtar, Ruzaidi Azli Mohd; Iqbal, Mohammad

    2012-01-01

    This study was aimed to evaluate the effect of Cymbopogon citratus against carbon tetrachloride (CCl(4))-mediated hepatic oxidative damage in rats. Rats were administrated with C. citratus extract (100, 200 and 300 mg/kg b.w.) for 14 days before the challenge of CCl(4) (1.2 ml/kg b.w. p.o) on 13th and 14th days. Hepatic damage was evaluated by employing serum biochemical parameters (alanine aminotransferase-ALT, aspartate aminotransferase-AST and lactate dehydrogenase-LDH), malondialdehye (MDA) level, reduced GSH and antioxidant enzymes (catalase: CAT, glutathione peroxidase: GPX, quinone reductase: QR, glutathione S-transferase: GST, glutathione reductase: GR, glucose-6-phosphate dehyrogenase: G6PD). In addition, CCl(4)-mediated hepatic damage was further evaluated by histopathological examination. However, most of these changes were alleviated by prophylactic treatment of animals with C. citratus dose dependently (p < 0.05). The protection was further evident through decreased histopathological alterations in liver. The results of the present study indicated that the hepatoprotective effect of C. citratus might be ascribable to its antioxidant and free radical scavenging property.

  11. An adaptability limit to climate change due to heat stress.

    PubMed

    Sherwood, Steven C; Huber, Matthew

    2010-05-25

    Despite the uncertainty in future climate-change impacts, it is often assumed that humans would be able to adapt to any possible warming. Here we argue that heat stress imposes a robust upper limit to such adaptation. Peak heat stress, quantified by the wet-bulb temperature T(W), is surprisingly similar across diverse climates today. T(W) never exceeds 31 degrees C. Any exceedence of 35 degrees C for extended periods should induce hyperthermia in humans and other mammals, as dissipation of metabolic heat becomes impossible. While this never happens now, it would begin to occur with global-mean warming of about 7 degrees C, calling the habitability of some regions into question. With 11-12 degrees C warming, such regions would spread to encompass the majority of the human population as currently distributed. Eventual warmings of 12 degrees C are possible from fossil fuel burning. One implication is that recent estimates of the costs of unmitigated climate change are too low unless the range of possible warming can somehow be narrowed. Heat stress also may help explain trends in the mammalian fossil record.

  12. Intermediate filaments take the heat as stress proteins

    PubMed Central

    Toivola, D.M.; Strnad, P.; Habtezion, A.; Omary, M.B.

    2010-01-01

    Intermediate filament (IF) proteins and heat shock proteins (HSPs) are large multi-membered families that share several features. These features include protein abundance, significant up-regulation in response to a variety of stresses, function as cytoprotectors, and the phenocopying of several human diseases upon IF protein or HSP mutation. We are now coming to understand that these common elements point to IFs as important cellular stress proteins with some roles akin to those already well-characterized for HSPs. Unique functional roles for IFs include protection from mechanical stress while HSPs are characteristically involved in protein folding and as chaperones. Shared IF and HSP cytoprotective roles include inhibition of apoptosis, organelle homeostasis, and scaffolding. We review here recent data that corroborate the view that IFs function as highly-specialized cytoskeletal stress proteins that promote cellular organization and homeostasis. PMID:20045331

  13. EXPRESS: Histone hyperacetylation modulates spinal type II metabotropic glutamate receptor alleviating stress-induced visceral hypersensitivity in female rats.

    PubMed

    Cao, Dong-Yuan; Bai, Guang; Ji, Yaping; Karpowicz, Jane M; Traub, Richard J

    2016-01-01

    Stress is often a trigger to exacerbate chronic pain including visceral hypersensitivity associated with irritable bowel syndrome, a female predominant functional bowel disorder. Epigenetic mechanisms that mediate stress responses are a potential target to interfere with visceral pain. The purpose of this study was to examine the effect of a histone deacetylase inhibitor, suberoylanilide hydroxamic acid, on visceral hypersensitivity induced by a subchronic stressor in female rats and to investigate the involvement of spinal glutamate receptors. Three daily sessions of forced swim induced visceral hypersensitivity. Intrathecal suberoylanilide hydroxamic acid prevented or reversed the stress-induced visceral hypersensitivity, increased spinal histone 3 acetylation and increased mGluR2 and mGluR3 expression. Chromatin immunoprecipitation (ChIP) analysis revealed enrichment of H3K9Ac and H3K18Ac at several promoter Grm2 and Grm3 regions. The mGluR2/3 antagonist LY341495 reversed the inhibitory effect of suberoylanilide hydroxamic acid on the stress-induced visceral hypersensitivity. In surprising contrast, stress and/or suberoylanilide hydroxamic acid had no effect on spinal NMDA receptor expression or function. These data reveal histone modification modulates mGluR2/3 expression in the spinal cord to attenuate stressinduced visceral hypersensitivity. HDAC inhibitors may provide a potential approach to relieve visceral hypersensitivity associated with irritable bowel syndrome. PMID:27385724

  14. Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption.

    PubMed

    Chen, Wei; Yao, Xiaoqin; Cai, Kunzheng; Chen, Jining

    2011-07-01

    Drought is a major constraint for rice production in the rainfed lowlands in China. Silicon (Si) has been verified to play an important role in enhancing plant resistance to environmental stress. Two near-isogenic lines of rice (Oryza sativa L.), w-14 (drought susceptible) and w-20 (drought resistant), were selected to study the effects of exogenous Si application on the physiological traits and nutritional status of rice under drought stress. In wet conditions, Si supply had no effects on growth and physiological parameters of rice plants. Drought stress was found to reduce dry weight, root traits, water potential, photosynthetic parameters, basal quantum yield (F(v)/F(0)), and maximum quantum efficiency of PSII photochemistry (F(v)/F(m)) in rice plants, while Si application significantly increased photosynthetic rate (Pr), transpiration rate (Tr), F(v)/F(0), and F(v)/F(m) of rice plants under drought stress. In addition, water stress increased K, Na, Ca, Mg, Fe content of rice plants, but Si treatment significantly reduced these nutrient level. These results suggested that silicon application was useful to increase drought resistance of rice through the enhancement of photochemical efficiency and adjustment of the mineral nutrient absorption in rice plants.

  15. Heat stress monitoring system. Innovative technology summary report

    SciTech Connect

    1998-11-01

    The US Department of Energy`s (DOE) nuclear facility decontamination and decommissioning (D and D) program involves the need to decontaminate and decommission buildings expeditiously and cost-effectively. Simultaneously, the health and safety of personnel involved in the D and D activities is of primary concern. Often, D and D workers must perform duties in inclement weather, and because they also frequently work in contaminated areas, they must wear personal protective clothing and/or respirators. Monitoring the health status of workers under these conditions is an important component of ensuring their safety. The MiniMitter VitalSense Telemetry System`s heat stress monitoring system (HSMS) is designed to monitor the vital signs of individual workers as they perform work in conditions that might be conducive to heat exhaustion or heat stress. The HSMS provides real-time data on the physiological condition of workers which can be monitored to prevent heat stress or other adverse health situations. This system is particularly useful when workers are wearing personal protective clothing or respirators that make visual observation of their condition more difficult. The MiniMitter VitalSense Telemetry System can monitor up to four channels (e.g., heart rate, body activity, ear canal, and skin temperature) and ten workers from a single supervisory station. The monitors are interfaced with a portable computer that updates and records information on individual workers. This innovative technology, even though it costs more, is an attractive alternative to the traditional (baseline) technology, which measures environmental statistics and predicts the average worker`s reaction to those environmental conditions without taking the physical condition of the individual worker into consideration. Although use of the improved technology might be justified purely on the basis of improved safety, it has the potential to pay for itself by reducing worker time lost caused by heat

  16. Treadmill exercise alleviates prenatal noise stress-induced impairment of spatial learning ability through enhancing hippocampal neurogenesis in rat pups.

    PubMed

    Kim, Tae-Woon; Shin, Mal-Soon; Park, Joon-Ki; Shin, Mi-Ai; Lee, Hee-Hyuk; Lee, Sam-Jun

    2013-01-01

    Stress alters brain cell properties and then disturbs cognitive processes, such as learning and memory. In this study, we investigated the effect of postnatal treadmill exercise on hippocampal neurogenesis and spatial learning ability of rat pups following prenatal noise stress. The impact of exercise intensity (mild-intensity exercise vs heavy-intensity exercise) was also compared. The pregnant rats in the stress-applied group were exposed to a 95 dB supersonic machine sound for 1 h once a day from the 15th day after mating until delivery. After birth, the rat pups in the exercise groups were made to run on a treadmill for 30 min once a day for 7 consecutive days, starting 4 weeks after birth. The spatial learning ability was tested using radial-arm maze task and hippocampal neurogenesis was determined by 5-bromo-2'-deoxyuridine (BrdU) immunohistochemistry. The rat pups born from the stress-applied maternal rats spent more time for the seeking of water and showed higher number of error in the radial-arm maze task compared to the control group. These rat pups showed suppressed neurogenesis in the hippocampus. In contrast, the rat pups performed postnatal treadmill exercise saved time for seeking of water and showed lower number of error compared to the stress-applied group. Postnatal treadmill exercise also enhanced neurogenesis in the hippocampus. The mild-intensity exercise showed more potent impact compared to the heavy-intensity exercise. The present results reveal that postnatal treadmill exercise lessens prenatal stress-induced deterioration of brain function in offspring.

  17. Microclimate and Heat Stress of Runners in Mass Participation Events.

    NASA Astrophysics Data System (ADS)

    de Freitas, C. R.; Dawson, N. J.; Young, A. A.; Mackey, W. J.

    1985-02-01

    The largest mass participation fun run in the world took place in Auckland, New Zealand where an estimated 80000 participants ran 10.4 km `Round the Bays' in the early fall of 1982. Even in the relatively mild climate of Auckland, heat stroke and other types of heat illness occur during this annual event. Techniques for thermal assessment of human bioclimate have not been applied to an exercising crowd although it is widely accepted that crowding will reduce the heat loss of individuals. To quantify the possible heat load brought about by running in a large crowd, those components of the microenvironment that affect radiant, evaporative and convective heat exchange were measured, both within the mass of runners and separately from it. These data were used as input for two detailed body-environment heat exchange models which show the effect of the runners themselves on the thermal environment. Since it is assumed that changes longwave radiation exchange and convective losses from the body are likely to be the major causes of differences between solo and group running, these avenues of heat exchange are carefully assessed . The results show that longwave radiative losses can be reduced substantially by running in a lame group compared to solo running, but the absolute size of the increase in net heat load on the individual is small. However, heat loss by convection for group runners is less than half that for sole runners. This may be the result of entertainment of air within an atmospheric envelope below head level in which wind speed and direction are the same as the runner's and direction. For the weather conditions prevailing at the time of the experiment, jogging in the main bunch of runners is estimated to cause, on occasions, more than three times the heat stress on the body compared to that experienced when running solo along the same route at the same time of day during identical weather conditions.

  18. Modelling the heat stress and the recovery of bacterial spores.

    PubMed

    Mafart, P; Leguérinel, I

    1997-07-22

    After heat treatment, the temperature incubation and the medium composition, (pH and sodium chloride content) influence the capacity of injured spores to repair heat damage. The concept of heat resistance D- (decimal reduction time) and z-values (temperature increase which results in a ten fold reduction of the D value) is not sufficient and the ratio of spore recovery after incubation should be considered in calculations used in thermal processing of food. This paper aims to derive a model describing the recovery of injured spores as a function of both the heat treatment intensity and the environmental conditions. According to data from numerous investigators, when spores are incubated in unfavorable conditions, the ratio of cell recovery and the apparent D-value are reduced. Moreover the ratio of the apparent D-value and the estimated in optimal incubation D-value is constant and independent of the heat treatment conditions. Beyond these observations it is shown that the ratio of cell recovery with respect to the heat treatment F-value (exposure time, in minutes, at 121.1 degrees C which results in the same destruction ratio that the considered heat treatment does) is linear and can be quantified by using two factors independent of the heat treatment: the gamma-factor reflects the degree of precariousness due to the heat stress while the epsilon-factor reflects more intrinsically the incubation conditions without previous heat treatment. The gamma-factor varies as a function of the incubation temperature according to an Arrhenius law.

  19. Reduced tolerance for heat stress environments caused by protective lotions.

    PubMed

    Spaul, W A; Boatman, J A; Emling, S W; Dirks, H G; Flohr, S B; Crocker, W H; Glazeski, M A

    1985-08-01

    There have been complaints of excessive heat after applying skin protective lotions. The purpose of this study was to determine if oil-base or alcohol-base protective lotions interfere with the body's cooling mechanisms during moderate work in heat stress conditions, and if so, then to identify the mechanisms. This was accomplished by evaluating the effect of lotions on thermoregulation as measured by rectal temperatures, local sweat rates, and total water losses during exercise at elevated temperatures. In comparison to the control, after about thirty minutes, the skin lotion tests resulted in a more hyperthermic condition, as measured by rectal temperatures.

  20. Quantifying livestock responses for heat stress management: a review.

    PubMed

    Nienaber, J A; Hahn, G L; Eigenberg, R A

    1999-04-01

    Hot weather challenges livestock production but technology exists to offset the challenge if producers have made appropriate strategic decisions. Key issues include understanding the hazards of heat stress, being prepared to offer relief from the heat, recognizing when an animal is in danger, and taking appropriate action. This paper describes our efforts to develop biological response functions; assesses climatic probabilities and performs associated risk analyses; provides inputs for computer models used to make environmental management decisions; and evaluates threshold temperatures as estimates of critical temperature limits for swine, cattle and sheep. PMID:10232054

  1. Quantifying livestock responses for heat stress management: a review

    NASA Astrophysics Data System (ADS)

    Nienaber, J. A.; Hahn, G. L.; Eigenberg, R. A.

    Hot weather challenges livestock production but technology exists to offset the challenge if producers have made appropriate strategic decisions. Key issues include understanding the hazards of heat stress, being prepared to offer relief from the heat, recognizing when an animal is in danger, and taking appropriate action. This paper describes our efforts to develop biological response functions; assesses climatic probabilities and performs associated risk analyses; provides inputs for computer models used to make environmental management decisions; and evaluates threshold temperatures as estimates of critical temperature limits for swine, cattle and sheep.

  2. Can intradermal administration of angiotensin II influence human heat loss responses during whole body heat stress?

    PubMed Central

    Fujii, Naoto; Meade, Robert D.; Paull, Gabrielle; McGinn, Ryan; Foudil-bey, Imane; Akbari, Pegah

    2015-01-01

    It is unclear if angiotensin II, which can increase the production of reactive oxygen species (oxidative stress), modulates heat loss responses of cutaneous blood flow and sweating. We tested the hypothesis that angiotensin II-induced increases in oxidative stress impair cutaneous perfusion and sweating during rest and exercise in the heat. Eleven young (24 ± 4 yr) healthy adults performed two 30-min cycling bouts at a fixed rate of metabolic heat production (400 W) in the heat (35°C). The first and second exercises were followed by a 20- and 40-min recovery. Four microdialysis fibers were placed in the forearm skin for continuous administration of either: 1) lactated Ringer (control), 2) 10 μM angiotensin II, 3) 10 mM ascorbate (an antioxidant), or 4) a combination of 10 μM angiotensin II + 10 mM ascorbate. Cutaneous vascular conductance (CVC; laser-Doppler perfusion units/mean arterial pressure) and sweating (ventilated capsule) were evaluated at each skin site. Compared with control, angiotensin II reduced both CVC and sweating at baseline resting and during each recovery in the heat (all P < 0.05). However, during both exercise bouts, there were no differences in CVC or sweating between the treatment sites (all P > 0.05). When ascorbate was coinfused with angiotensin II, the effect of angiotensin II on sweating was abolished (all P > 0.05); however, its effect on CVC at baseline resting and during each recovery remained intact (all P < 0.05). We show angiotensin II impairs cutaneous perfusion independent of oxidative stress, while it impairs sweating through increasing oxidative stress during exposure to an ambient heat stress before and following exercise. PMID:25767030

  3. Tolerance response to in situ ammonia stress in a pilot-scale anaerobic digestion reactor for alleviating ammonia inhibition.

    PubMed

    Gao, Shumei; Zhao, Mingxing; Chen, Yang; Yu, Meijuan; Ruan, Wenquan

    2015-12-01

    The anaerobic digestion (AD) of protein-rich substrates is generally inhibited by ammonia. In this study, ammonia-tolerant acclimation was exposed to a stepwise in situ ammonia stress during the continuous AD of solid residual kitchen waste by using a continuous stirred tank reactor with a 50 L active volume. The reactor worked well during the acclimation process, with an average daily biogas production of 58 L/d, an effluent soluble chemical oxygen demand of 7238 mg/L, a volatile fatty acid (VFA) content of 578 mg/L, and a VFA/alkalinity ratio of less than 0.4. Moreover, ammonia stress enhanced the activity of Coenzyme F420. The results of high-throughput 16S rDNA sequencing showed that ammonia stress increased the relative abundance of Firmicutes bacteria and hydrogenotrophic methanogens but decreased the abundance of acetotrophic methanogens. This microbial community shift was proposed to be an in situ response strategy for ammonia stress adaptation.

  4. Cinnamon intake alleviates the combined effects of dietary-induced insulin resistance and acute stress on brain mitochondria.

    PubMed

    Couturier, Karine; Hininger, Isabelle; Poulet, Laurent; Anderson, Richard A; Roussel, Anne-Marie; Canini, Frédéric; Batandier, Cécile

    2016-02-01

    Insulin resistance (IR), which is a leading cause of the metabolic syndrome, results in early brain function alterations which may alter brain mitochondrial functioning. Previously, we demonstrated that rats fed a control diet and submitted to an acute restraint stress exhibited a delayed mitochondrial permeability transition pore (mPTP) opening. In this study, we evaluated the combined effects of dietary and emotional stressors as found in western way of life. We studied, in rats submitted or not to an acute stress, the effects of diet-induced IR on brain mitochondria, using a high fat/high fructose diet (HF(2)), as an IR inducer, with addition or not of cinnamon as an insulin sensitizer. We measured Ca(2+) retention capacity, respiration, ROS production, enzymatic activities and cell signaling activation. Under stress, HF(2) diet dramatically decreased the amount of Ca(2+) required to open the mPTP (13%) suggesting an adverse effect on mitochondrial survival. Cinnamon added to the diet corrected this negative effect and resulted in a partial recovery (30%). The effects related to cinnamon addition to the diet could be due to its antioxidant properties or to the observed modulation of PI3K-AKT-GSK3β and MAPK-P38 pathways or to a combination of both. These data suggest a protective effect of cinnamon on brain mitochondria against the negative impact of an HF(2) diet. Cinnamon could be beneficial to counteract deleterious dietary effects in stressed conditions. PMID:26878796

  5. l-Arginine Enhances Resistance against Oxidative Stress and Heat Stress in Caenorhabditis elegans

    PubMed Central

    Ma, Heran; Ma, Yudan; Zhang, Zhixian; Zhao, Ziyuan; Lin, Ran; Zhu, Jinming; Guo, Yi; Xu, Li

    2016-01-01

    The antioxidant properties of l-arginine (l-Arg) in vivo, and its effect on enhancing resistance to oxidative stress and heat stress in Caenorhabditis elegans were investigated. C. elegans, a worm model popularly used in molecular and developmental biology, was used in the present study. Here, we report that l-Arg, at a concentration of 1 mM, prolonged C. elegans life by 26.98% and 37.02% under oxidative and heat stress, respectively. Further experiments indicated that the longevity-extending effects of l-Arg may be exerted by its free radical scavenging capacity and the upregulation of aging-associated gene expression in worms. This work is important in the context of numerous recent studies that concluded that environment stresses are associated with an increased population death rate. PMID:27690079

  6. Pulmonary Artery and Intestinal Temperatures during Heat Stress and Cooling

    PubMed Central

    Pearson, James; Ganio, Matthew S; Seifert, Thomas; Overgaard, Morten; Secher, Niels H; Crandall, Craig G

    2011-01-01

    Introduction/Purpose In humans, whole body heating and cooling are used to address physiological questions where core temperature is central to the investigated hypotheses. Core temperature can be measured in various locations throughout the human body. The measurement of intestinal temperature is increasingly used in laboratory settings as well as in athletics. However, it is unknown whether intestinal temperature accurately tracks pulmonary artery blood temperature, the gold standard, during thermal stimuli in resting humans, which is the investigated hypothesis. Methods This study compared pulmonary artery blood temperature (via thermistor in a pulmonary artery catheter) with intestinal temperature (telemetry pill) during whole-body heat stress (n=8), followed by whole-body cooling in healthy humans (mean ± SD age 24 ± 3 yrs; height 183 ± 8 cm; mass 78.1 ± 8.2 kg). Heat stress and subsequent cooling were performed by perfusing warm followed by cold water through a tube-lined suit worn by each subject. Results Prior to heat stress blood temperature (36.69 ± 0.25°C) was less than intestinal temperature (36.96 ± 0.21°C, P = 0.004). The increase in blood temperature after 20 min of heat stress was greater than intestinal temperature (0.70 ± 0.24 vs. 0.47 ± 0.18; P = 0.001). However, the increase in temperatures at the end of heat stress were similar between sites (blood Δ = 1.32 ± 0.20°C vs. intestinal Δ = 1.21 ± 0.36°C; P = 0.30). Subsequent cooling decreased blood temperature (Δ = −1.03 ± 0.34°C) to a greater extent than intestinal temperature (Δ = −0.41 ± 0.30°C, P = 0.04). Conclusion In response to the applied thermal provocations, early temperature changes in the intestine are less than the temperature changes in pulmonary artery blood. PMID:22015711

  7. Modelflow underestimates cardiac output in heat-stressed individuals

    PubMed Central

    Shibasaki, Manabu; Wilson, Thad E.; Bundgaard-Nielsen, Morten; Seifert, Thomas; Secher, Niels H.

    2011-01-01

    An estimation of cardiac output can be obtained from arterial pressure waveforms using the Modelflow method. However, whether the assumptions associated with Modelflow calculations are accurate during whole body heating is unknown. This project tested the hypothesis that cardiac output obtained via Modelflow accurately tracks thermodilution-derived cardiac outputs during whole body heat stress. Acute changes of cardiac output were accomplished via lower-body negative pressure (LBNP) during normothermic and heat-stressed conditions. In nine healthy normotensive subjects, arterial pressure was measured via brachial artery cannulation and the volume-clamp method of the Finometer. Cardiac output was estimated from both pressure waveforms using the Modeflow method. In normothermic conditions, cardiac outputs estimated via Modelflow (arterial cannulation: 6.1 ± 1.0 l/min; Finometer 6.3 ± 1.3 l/min) were similar with cardiac outputs measured by thermodilution (6.4 ± 0.8 l/min). The subsequent reduction in cardiac output during LBNP was also similar among these methods. Whole body heat stress elevated internal temperature from 36.6 ± 0.3 to 37.8 ± 0.4°C and increased cardiac output from 6.4 ± 0.8 to 10.9 ± 2.0 l/min when evaluated with thermodilution (P < 0.001). However, the increase in cardiac output estimated from the Modelflow method for both arterial cannulation (2.3 ± 1.1 l/min) and Finometer (1.5 ± 1.2 l/min) was attenuated compared with thermodilution (4.5 ± 1.4 l/min, both P < 0.01). Finally, the reduction in cardiac output during LBNP while heat stressed was significantly attenuated for both Modelflow methods (cannulation: −1.8 ± 1.2 l/min, Finometer: −1.5 ± 0.9 l/min) compared with thermodilution (−3.8 ± 1.19 l/min). These results demonstrate that the Modelflow method, regardless of Finometer or direct arterial waveforms, underestimates cardiac output during heat stress and during subsequent reductions in cardiac output via LBNP. PMID

  8. Heat stress during the Black Saturday event in Melbourne, Australia

    NASA Astrophysics Data System (ADS)

    Jacobs, Stephanie J.; Vihma, Timo; Pezza, Alexandre B.

    2015-06-01

    The Black Saturday bushfire event of February 7, 2009, devastated the state of Victoria, Australia, resulting in 173 deaths. On this day, the maximum temperature in Melbourne (state capital of Victoria, population 4 million people) exceeded 46 °C, there were wind gusts of over 80 km h-1 and the relative humidity dropped below 5 %. We investigated the severe meteorological conditions of Black Saturday and the risk of heat stress and dehydration for the residents of Melbourne. This was through the analysis of weather station data, air pollution data, the apparent temperature (AT) and the COMfort FormulA human energy budget model. A very strong pressure gradient caused hot and dry air to be advected to Melbourne from the desert interior of Australia creating the extreme weather conditions. The AT showed that on Black Saturday, heat stress conditions were present, though underrepresented due to assumptions in the AT formula. Further investigation into the human energy budget revealed that the conditions required a sweating rate of 1.4 kg h-1 to prevent heat accumulation into the body. If sweating stopped, hyperthermia could occur in 15 min. Sensitivity tests indicated that the dry air and strong winds on Black Saturday helped to release latent heat, but the required sweating rate was virtually unattainable for an average person and would result in intense dehydration. Air particulates were at dangerous concentrations in Melbourne on Black Saturday, further intensifying the stresses to the human body. In the future, we recommend that the AT is not used as a thermal comfort measure as it underestimates the physical stress people experience.

  9. Protective effects of ectoine on heat-stressed Daphnia magna.

    PubMed

    Adam, Bownik; Zofia, Stępniewska; Tadeusz, Skowroński

    2014-12-01

    Ectoine (ECT) is an amino acid produced and accumulated by halophilic bacteria in stressful conditions in order to prevent the loss of water from the cell. There is a lack of knowledge on the effects of ECT in heat-stressed aquatic animals. The purpose of our study was to determine the influence of ECT on Daphnia magna subjected to heat stress with two temperature gradients: 1 and 0.1 °C/min in the range of 23-42 °C. Time to immobilisation, survival during recovery, swimming performance, heart rate, thoracic limb movement and the levels of heat shock protein 70 kDa 1A (HSP70 1A), catalase (CAT) and nitric oxide species (NOx) were determined in ECT-exposed and unexposed daphnids; we showed protective effects of ECT on Daphnia magna subjected to heat stress. Time to immobilisation of daphnids exposed to ECT was longer when compared to the unexposed animals. Also, survival rate during the recovery of daphnids previously treated with ECT was higher. ECT significantly attenuated a rapid increase of mean swimming velocity which was elevated in the unexposed daphnids. Moreover, we observed elevation of thoracic limb movement and modulation of heart rate in ECT-exposed animals. HSP70 1A and CAT levels were reduced in the presence of ECT. On the other hand, NOx level was slightly elevated in both ECT-treated and unexposed daphnids, however slightly higher NOx level was found in ECT-treated animals. We conclude that the exposure to ectoine has thermoprotective effects on Daphnia magna, however their mechanisms are not associated with the induction of HSP70 1A.

  10. Protective effects of ectoine on heat-stressed Daphnia magna.

    PubMed

    Adam, Bownik; Zofia, Stępniewska; Tadeusz, Skowroński

    2014-12-01

    Ectoine (ECT) is an amino acid produced and accumulated by halophilic bacteria in stressful conditions in order to prevent the loss of water from the cell. There is a lack of knowledge on the effects of ECT in heat-stressed aquatic animals. The purpose of our study was to determine the influence of ECT on Daphnia magna subjected to heat stress with two temperature gradients: 1 and 0.1 °C/min in the range of 23-42 °C. Time to immobilisation, survival during recovery, swimming performance, heart rate, thoracic limb movement and the levels of heat shock protein 70 kDa 1A (HSP70 1A), catalase (CAT) and nitric oxide species (NOx) were determined in ECT-exposed and unexposed daphnids; we showed protective effects of ECT on Daphnia magna subjected to heat stress. Time to immobilisation of daphnids exposed to ECT was longer when compared to the unexposed animals. Also, survival rate during the recovery of daphnids previously treated with ECT was higher. ECT significantly attenuated a rapid increase of mean swimming velocity which was elevated in the unexposed daphnids. Moreover, we observed elevation of thoracic limb movement and modulation of heart rate in ECT-exposed animals. HSP70 1A and CAT levels were reduced in the presence of ECT. On the other hand, NOx level was slightly elevated in both ECT-treated and unexposed daphnids, however slightly higher NOx level was found in ECT-treated animals. We conclude that the exposure to ectoine has thermoprotective effects on Daphnia magna, however their mechanisms are not associated with the induction of HSP70 1A. PMID:25223383

  11. Heat stress during the Black Saturday event in Melbourne, Australia.

    PubMed

    Jacobs, Stephanie J; Vihma, Timo; Pezza, Alexandre B

    2015-06-01

    The Black Saturday bushfire event of February 7, 2009, devastated the state of Victoria, Australia, resulting in 173 deaths. On this day, the maximum temperature in Melbourne (state capital of Victoria, population 4 million people) exceeded 46 °C, there were wind gusts of over 80 km h(-1) and the relative humidity dropped below 5 %. We investigated the severe meteorological conditions of Black Saturday and the risk of heat stress and dehydration for the residents of Melbourne. This was through the analysis of weather station data, air pollution data, the apparent temperature (AT) and the COMfort FormulA human energy budget model. A very strong pressure gradient caused hot and dry air to be advected to Melbourne from the desert interior of Australia creating the extreme weather conditions. The AT showed that on Black Saturday, heat stress conditions were present, though underrepresented due to assumptions in the AT formula. Further investigation into the human energy budget revealed that the conditions required a sweating rate of 1.4 kg h(-1) to prevent heat accumulation into the body. If sweating stopped, hyperthermia could occur in 15 min. Sensitivity tests indicated that the dry air and strong winds on Black Saturday helped to release latent heat, but the required sweating rate was virtually unattainable for an average person and would result in intense dehydration. Air particulates were at dangerous concentrations in Melbourne on Black Saturday, further intensifying the stresses to the human body. In the future, we recommend that the AT is not used as a thermal comfort measure as it underestimates the physical stress people experience. PMID:25172086

  12. Heat stress during the Black Saturday event in Melbourne, Australia.

    PubMed

    Jacobs, Stephanie J; Vihma, Timo; Pezza, Alexandre B

    2015-06-01

    The Black Saturday bushfire event of February 7, 2009, devastated the state of Victoria, Australia, resulting in 173 deaths. On this day, the maximum temperature in Melbourne (state capital of Victoria, population 4 million people) exceeded 46 °C, there were wind gusts of over 80 km h(-1) and the relative humidity dropped below 5 %. We investigated the severe meteorological conditions of Black Saturday and the risk of heat stress and dehydration for the residents of Melbourne. This was through the analysis of weather station data, air pollution data, the apparent temperature (AT) and the COMfort FormulA human energy budget model. A very strong pressure gradient caused hot and dry air to be advected to Melbourne from the desert interior of Australia creating the extreme weather conditions. The AT showed that on Black Saturday, heat stress conditions were present, though underrepresented due to assumptions in the AT formula. Further investigation into the human energy budget revealed that the conditions required a sweating rate of 1.4 kg h(-1) to prevent heat accumulation into the body. If sweating stopped, hyperthermia could occur in 15 min. Sensitivity tests indicated that the dry air and strong winds on Black Saturday helped to release latent heat, but the required sweating rate was virtually unattainable for an average person and would result in intense dehydration. Air particulates were at dangerous concentrations in Melbourne on Black Saturday, further intensifying the stresses to the human body. In the future, we recommend that the AT is not used as a thermal comfort measure as it underestimates the physical stress people experience.

  13. Suppressed peripheral blood lymphocyte blastogenesis in pre- and postpartal sheep by chronic heat-stress, and suppressive property of heat-stressed sheep serum on lymphocytes.

    PubMed

    Niwano, Y; Becker, B A; Mitra, R; Caldwell, C W; Abdalla, E B; Johnson, H D

    1990-01-01

    Phytohemagglutinin (PHA) and concanavalin A (Con A)-induced blastogenesis of peripheral blood lymphocytes was examined in heat-stressed pre- and postpartal sheep. The peak responses of lymphocytes to PHA and Con A in heat-stressed sheep revealed significant reduction before and after parturition compared with those in the corresponding control animals kept under thermoneutral conditions. Furthermore, the effect of serum from control or heat-stressed sheep on PHA-induced lymphocyte blastogenesis was examined. Supplementation of serum from heat-stressed sheep significantly suppressed the blastogenesis of lymphocytes obtained from healthy sheep, bovine, and human donors. Unlike dexamethasone, heat-stressed sheep serum did not inhibit IL-2 production by PHA-stimulated human peripheral blood lymphocytes. These results indicate that the immunosuppression of heat-stressed sheep is in part mediated by serum factor(s) that can modulate T-cell function in a species nonspecific manner.

  14. Heat stress causes substantial labour productivity loss in Australia

    NASA Astrophysics Data System (ADS)

    Zander, Kerstin K.; Botzen, Wouter J. W.; Oppermann, Elspeth; Kjellstrom, Tord; Garnett, Stephen T.

    2015-07-01

    Heat stress at the workplace is an occupational health hazard that reduces labour productivity. Assessment of productivity loss resulting from climate change has so far been based on physiological models of heat exposure. These models suggest productivity may decrease by 11-27% by 2080 in hot regions such as Asia and the Caribbean, and globally by up to 20% in hot months by 2050. Using an approach derived from health economics, we describe self-reported estimates of work absenteeism and reductions in work performance caused by heat in Australia during 2013/2014. We found that the annual costs were US$655 per person across a representative sample of 1,726 employed Australians. This represents an annual economic burden of around US$6.2 billion (95% CI: 5.2-7.3 billion) for the Australian workforce. This amounts to 0.33 to 0.47% of Australia’s GDP. Although this was a period when many Australians experienced what is at present considered exceptional heat, our results suggest that adaptation measures to reduce heat effects should be adopted widely if severe economic impacts from labour productivity loss are to be avoided if heat waves become as frequent as predicted.

  15. The Edible Marine Alga Gracilariopsis chorda Alleviates Hypoxia/Reoxygenation-Induced Oxidative Stress in Cultured Hippocampal Neurons

    PubMed Central

    Mohibbullah, Md.; Hannan, Md. Abdul; Choi, Ji-Young; Bhuiyan, Mohammad Maqueshudul Haque; Hong, Yong-Ki; Choi, Jae-Suk; Choi, In Soon; Moon, Il Soo

    2015-01-01

    Abstract Age-related neurological disorders are of growing concern among the elderly, and natural products with neuroprotective properties have been attracting increasing attention as candidates for the prevention or treatment of neurological disorders induced by oxidative stress. In an effort to explore natural resources, we collected some common marine seaweed from the Korean peninsula and Indonesia and screened them for neuroprotective activity against hypoxia/reoxygenation (H/R)-induced oxidative stress. Of the 23 seaweeds examined, the ethanol extract of Gracilariopsis chorda (GCE) provided maximum neuroprotection at an optimum concentration of 15 μg/mL, followed by Undaria pinnatifida. GCE increased cell viability after H/R, decreased the formation of reactive oxygen species (measured by 2′,7′-dichlorodihydrofluorescein diacetate [DCF-DA] staining), and inhibited the double-stranded DNA breaks (measured by H2AX immunocytochemistry), apoptosis (measured by Annexin V/propidium iodide staining), internucleosomal DNA fragmentation (measured by DNA laddering), and dissipation of mitochondrial membrane potential (measured by JC-1 staining). Using reverse-phase high-pressure liquid chromatography, we quantitated the arachidonic acid (AA) in GCE, which provides neuroprotection against H/R-induced oxidative stress. This neuroprotective effect of AA was comparable to that of GCE. These findings suggest that the neuroprotective effect of GCE against H/R-induced neuronal death is due, at least in part, to the AA content that suppresses neuronal apoptosis. PMID:26106876

  16. The Edible Marine Alga Gracilariopsis chorda Alleviates Hypoxia/Reoxygenation-Induced Oxidative Stress in Cultured Hippocampal Neurons.

    PubMed

    Mohibbullah, Md; Hannan, Md Abdul; Choi, Ji-Young; Bhuiyan, Mohammad Maqueshudul Haque; Hong, Yong-Ki; Choi, Jae-Suk; Choi, In Soon; Moon, Il Soo

    2015-09-01

    Age-related neurological disorders are of growing concern among the elderly, and natural products with neuroprotective properties have been attracting increasing attention as candidates for the prevention or treatment of neurological disorders induced by oxidative stress. In an effort to explore natural resources, we collected some common marine seaweed from the Korean peninsula and Indonesia and screened them for neuroprotective activity against hypoxia/reoxygenation (H/R)-induced oxidative stress. Of the 23 seaweeds examined, the ethanol extract of Gracilariopsis chorda (GCE) provided maximum neuroprotection at an optimum concentration of 15 μg/mL, followed by Undaria pinnatifida. GCE increased cell viability after H/R, decreased the formation of reactive oxygen species (measured by 2',7'-dichlorodihydrofluorescein diacetate [DCF-DA] staining), and inhibited the double-stranded DNA breaks (measured by H2AX immunocytochemistry), apoptosis (measured by Annexin V/propidium iodide staining), internucleosomal DNA fragmentation (measured by DNA laddering), and dissipation of mitochondrial membrane potential (measured by JC-1 staining). Using reverse-phase high-pressure liquid chromatography, we quantitated the arachidonic acid (AA) in GCE, which provides neuroprotection against H/R-induced oxidative stress. This neuroprotective effect of AA was comparable to that of GCE. These findings suggest that the neuroprotective effect of GCE against H/R-induced neuronal death is due, at least in part, to the AA content that suppresses neuronal apoptosis.

  17. Hepatitis C Virus Infection Induces Autophagy as a Prosurvival Mechanism to Alleviate Hepatic ER-Stress Response

    PubMed Central

    Dash, Srikanta; Chava, Srinivas; Aydin, Yucel; Chandra, Partha K.; Ferraris, Pauline; Chen, Weina; Balart, Luis A.; Wu, Tong; Garry, Robert F.

    2016-01-01

    Hepatitis C virus (HCV) infection frequently leads to chronic liver disease, liver cirrhosis and hepatocellular carcinoma (HCC). The molecular mechanisms by which HCV infection leads to chronic liver disease and HCC are not well understood. The infection cycle of HCV is initiated by the attachment and entry of virus particles into a hepatocyte. Replication of the HCV genome inside hepatocytes leads to accumulation of large amounts of viral proteins and RNA replication intermediates in the endoplasmic reticulum (ER), resulting in production of thousands of new virus particles. HCV-infected hepatocytes mount a substantial stress response. How the infected hepatocyte integrates the viral-induced stress response with chronic infection is unknown. The unfolded protein response (UPR), an ER-associated cellular transcriptional response, is activated in HCV infected hepatocytes. Over the past several years, research performed by a number of laboratories, including ours, has shown that HCV induced UPR robustly activates autophagy to sustain viral replication in the infected hepatocyte. Induction of the cellular autophagy response is required to improve survival of infected cells by inhibition of cellular apoptosis. The autophagy response also inhibits the cellular innate antiviral program that usually inhibits HCV replication. In this review, we discuss the physiological implications of the HCV-induced chronic ER-stress response in the liver disease progression. PMID:27223299

  18. Single nucleotide polymorphisms associated with thermoregulation in lactating dairy cows exposed to heat stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dairy cows with increased rectal temperature during heat stress experience lower milk yield and fertility. Given that rectal temperature during heat stress is heritable in dairy cattle, genetic selection for regulation of body temperature should reduce effects of heat stress on production. One goal...

  19. Nonconventional thermodynamics, indeterminate couple stress elasticity and heat conduction

    NASA Astrophysics Data System (ADS)

    Alber, H.-D.; Hutter, K.; Tsakmakis, Ch.

    2016-05-01

    We present a phenomenological thermodynamic framework for continuum systems exhibiting responses which may be nonlocal in space and for which short time scales may be important. Nonlocality in space is engendered by state variables of gradient type, while nonlocalities over time can be modelled, e.g. by assuming the rate of the heat flux vector to enter into the heat conduction law. The central idea is to restate the energy budget of the system by postulating further balance laws of energy, besides the classical one. This allows for the proposed theory to deal with nonequilibrium state variables, which are excluded by the second law in conventional thermodynamics. The main features of our approach are explained by discussing micropolar indeterminate couple stress elasticity and heat conduction theories.

  20. Exogenous proline mediates alleviation of cadmium stress by promoting photosynthetic activity, water status and antioxidative enzymes activities of young date palm (Phoenix dactylifera L.).

    PubMed

    Zouari, M; Ben Ahmed, Ch; Zorrig, W; Elloumi, N; Rabhi, M; Delmail, D; Ben Rouina, B; Labrousse, P; Ben Abdallah, F

    2016-06-01

    The ability of exogenous compatible solutes, such as proline, to counteract cadmium (Cd) inhibitory effects in young date palm plants (Phoenix dactylifera L. cv Deglet Nour) was investigated. Two-year-old date palm plants were subjected for five months at different Cd stress levels (0, 10 and 30 mg CdCl2 kg(-1) soil) whether supplied or not with exogenous proline (20mM) added through the irrigation water. Different levels of Cd stress altered plant growth, gas exchanges and chlorophyll content as well as water status, but at different extent among them. In contrast, an increase of antioxidant enzymes activities of Cd-treated plants in association with high amounts of proline content, hydrogen peroxide (H2O2), thiobarbituric acid reactive substances (TBARS) and electrolyte leakage (EL) were observed. Interestingly, exogenous proline mitigated the adverse effects of Cd on young date palm. Indeed, it alleviated the oxidative damage induced by Cd accumulation and established better levels of plant growth, water status and photosynthetic activity. Moreover, proline-treated plants showed high antioxidant enzymes activities (superoxide dismutase, catalase and glutathione peroxydase) in roots and leaves as compared to Cd-treated plants. PMID:26901506

  1. Mechanisms of hormesis through mild heat stress on human cells.

    PubMed

    Rattan, Suresh I S

    2004-06-01

    In a series of experimental studies, it was shown that repetitive mild heat stress has antiaging hormetic effects on growth and various other cellular and biochemical characteristics of human skin fibroblasts undergoing aging in vitro. We have reported the hormetic effects of repeated challenge at the levels of maintenance of stress protein profile; reduction in the accumulation of oxidatively and glycoxidatively damaged proteins; stimulation of the proteasomal activities for the degradation of abnormal proteins; improved cellular resistance to ethanol, hydrogen peroxide, and ultraviolet-B rays; and enhanced levels of various antioxidant enzymes. Detailed analysis of the signal transduction pathways to determine alterations in the phosphorylation and dephosphorylation states of ERK, JNK, and p38 MAP kinases as a measure of cellular responsiveness to mild and severe heat stress is in progress. Furthermore, comparative studies using nonaging immortal cell lines, such as SV40-transformed human fibroblasts, spontaneous osteosarcoma cells, and telomerase-immortalized human bone marrow cells are also in progress for establishing differences in normal and cancerous cells for their responsiveness to mild and severe stresses.

  2. Biologically Synthesized Gold Nanoparticles Ameliorate Cold and Heat Stress-Induced Oxidative Stress in Escherichia coli.

    PubMed

    Zhang, Xi-Feng; Shen, Wei; Gurunathan, Sangiliyandi

    2016-01-01

    Due to their unique physical, chemical, and optical properties, gold nanoparticles (AuNPs) have recently attracted much interest in the field of nanomedicine, especially in the areas of cancer diagnosis and photothermal therapy. Because of the enormous potential of these nanoparticles, various physical, chemical, and biological methods have been adopted for their synthesis. Synthetic antioxidants are dangerous to human health. Thus, the search for effective, nontoxic natural compounds with effective antioxidative properties is essential. Although AuNPs have been studied for use in various biological applications, exploration of AuNPs as antioxidants capable of inhibiting oxidative stress induced by heat and cold stress is still warranted. Therefore, one goal of our study was to produce biocompatible AuNPs using biological methods that are simple, nontoxic, biocompatible, and environmentally friendly. Next, we aimed to assess the antioxidative effect of AuNPs against oxidative stress induced by cold and heat in Escherichia coli, which is a suitable model for stress responses involving AuNPs. The response of aerobically grown E. coli cells to cold and heat stress was found to be similar to the oxidative stress response. Upon exposure to cold and heat stress, the viability and metabolic activity of E. coli was significantly reduced compared to the control. In addition, levels of reactive oxygen species (ROS) and malondialdehyde (MDA) and leakage of proteins and sugars were significantly elevated, and the levels of lactate dehydrogenase activity (LDH) and adenosine triphosphate (ATP) significantly lowered compared to in the control. Concomitantly, AuNPs ameliorated cold and heat-induced oxidative stress responses by increasing the expression of antioxidants, including glutathione (GSH), glutathione S-transferase (GST), super oxide dismutase (SOD), and catalase (CAT). These consistent physiology and biochemical data suggest that AuNPs can ameliorate cold and heat stress

  3. Hydroalcoholic seed extract of Coriandrum sativum (Coriander) alleviates lead-induced oxidative stress in different regions of rat brain.

    PubMed

    Velaga, Manoj Kumar; Yallapragada, Prabhakara Rao; Williams, Dale; Rajanna, Sharada; Bettaiya, Rajanna

    2014-06-01

    Lead exposure is known to cause apoptotic neurodegeneration and neurobehavioral abnormalities in developing and adult brain by impairing cognition and memory. Coriandrum sativum is an herb belonging to Umbelliferae and is reported to have a protective effect against lead toxicity. In the present investigation, an attempt has been made to evaluate the protective activity of the hydroalcoholic extract of C. sativum seed against lead-induced oxidative stress. Male Wistar strain rats (100-120 g) were divided into four groups: control group: 1,000 mg/L of sodium acetate; exposed group: 1,000 mg/L lead acetate for 4 weeks; C. sativum treated 1 (CST1) group: 250 mg/kg body weight/day for seven consecutive days after 4 weeks of lead exposure; C. sativum treated 2 (CST2) group: 500 mg/kg body weight/day for seven consecutive days after 4 weeks of lead exposure. After the exposure and treatment periods, rats were sacrificed by cervical dislocation, and the whole brain was immediately isolated and separated into four regions: cerebellum, hippocampus, frontal cortex, and brain stem along with the control group. After sacrifice, blood was immediately collected into heparinized vials and stored at 4 °C. In all the tissues, reactive oxygen species (ROS), lipid peroxidation products (LPP), and total protein carbonyl content (TPCC) were estimated following standard protocols. An indicator enzyme for lead toxicity namely delta-amino levulinic acid dehydratase (δ-ALAD) activity was determined in the blood. A significant (p<0.05) increase in ROS, LPP, and TPCC levels was observed in exposed rat brain regions, while δ-ALAD showed a decrease indicating lead-induced oxidative stress. Treatment with the hydroalcoholic seed extract of C. sativum resulted in a tissue-specific amelioration of oxidative stress produced by lead.

  4. [Effect of cadmium stress on physiological characteristics of garlic seedlings and the alleviation effects of exogenous calcium].

    PubMed

    Li, He; Lian, Hai-feng; Liu, Shi-qi; Yu, Xin-hui; Sun, Ya-li; Guo, Hui-ping

    2015-04-01

    In the experiment, the effects of exogenous cadmium (Cd2+) and calcium (Ca2+) in nutrient solution on growth, photosynthetic characteristics, enzymes activities, main mineral elements absorption of garlic seedlings were studied. The results showed that cadmium could obviously inhibit the growth of garlic seedlings, decrease the pigment contents and photosynthetic parameters (P(n), E, g(s)) of leaves, reduced the enzymes (SOD, POD, CAT) activities and increase the MDA content of leaves, and also could reduce the N, P, K, Ca, Mg contents and increase the Cd content of roots. The growth was promoted after adding exogenous calcium to garlic seedlings under cadmium stress, which reflected that the morphological indexes were increased at first and then decreased with the increase of exogenous calcium concentrations, and were maximized when the exogenous calcium was 2 or 3 mmol x L(-1). At the same time, the pigment contents and photosynthetic parameters (P(n), E, g(s)) of leaves showed a similar tendency with the morphological indexes, and they were the highest when the exogenous calcium was 2 or 3 mmol x L(-1). In addition, adding exogenous calcium to garlic seedlings under cadmium stress enhanced the enzymes (SOD, POD, CAT) activities and decreased the MDA content of leaves, also added the N, P, K, Ca, Mg contents and reduced the Cd content of roots, and the effect was best when the exogenous calcium concentration was 2 or 3 mmol x L(-1).

  5. Melatonin alleviates hyperthyroidism induced oxidative stress and neuronal cell death in hippocampus of aged female golden hamster, Mesocricetus auratus.

    PubMed

    Rao, Geeta; Verma, Rakesh; Mukherjee, Arun; Haldar, Chandana; Agrawal, Neeraj Kumar

    2016-09-01

    Oxidative stress is a well known phenomenon under hyperthyroid condition that induces various physiological and neural problems with a higher prevalence in females. We, therefore investigated the antioxidant potential of melatonin (Mel) on hyperthyroidism-induced oxidative stress and neuronal cell death in the hippocampus region of brain (cognition and memory centre) of aged female golden hamster, Mesocricetus auratus. Aged female hamsters were randomly divided into four experimental groups (n=7); group-I: control, group-II: Melatonin (5mgkg(-1)day(-1), i.p., for one week), group-III: Hyperthyroid (100μg kg(-1)day(-1), i.p., for two weeks) and group-IV- Hyper+Mel. Hormonal profiles (thyroid and melatonin), activity of antioxidant enzymes (SOD, CAT and GPX), lipid peroxidation level (TBARS) and the specific apoptotic markers (Bax/Bcl-2 ratio and Caspase-3) expression were evaluated. A significant increase in the profile of total thyroid hormone (tT3 and tT4) in hyperthyroidic group as compared to control while tT3 significantly decreased in melatonin treated hyperthyroidic group. However, Mel level significantly decreased in hyperthyroidic group but increased in melatonin treated hyperthyroidic group. Further, the number of immune-positive cells for thyroid hormone receptor-alpha (TR-α) decreased in the hippocampus of hyperthyroidic group and increased in melatonin treated hyperthyroidic group. Profiles of antioxidant enzymes showed a significant decrease in hyperthyroidic group with a simultaneous increase in lipid peroxidation (TBARS). Melatonin treatment to hyperthyroidic group lead to decreased TBARS level with a concomitant increase in antioxidant enzyme activity. Moreover, increased expression of Bax/Bcl-2 ratio and Caspase-3, in hyperthyroidic group had elevated neuronal cell death in hippocampal area and melatonin treatment reduced its expression in hyperthyroidic group. Our findings thus indicate that melatonin reduced the hyperthyroidism

  6. Plastic and evolutionary responses to heat stress in a temperate dung fly: negative correlation between basal and induced heat tolerance?

    PubMed

    Esperk, T; Kjaersgaard, A; Walters, R J; Berger, D; Blanckenhorn, W U

    2016-05-01

    Extreme weather events such as heat waves are becoming more frequent and intense. Populations can cope with elevated heat stress by evolving higher basal heat tolerance (evolutionary response) and/or stronger induced heat tolerance (plastic response). However, there is ongoing debate about whether basal and induced heat tolerance are negatively correlated and whether adaptive potential in heat tolerance is sufficient under ongoing climate warming. To evaluate the evolutionary potential of basal and induced heat tolerance, we performed experimental evolution on a temperate source population of the dung fly Sepsis punctum. Offspring of flies adapted to three thermal selection regimes (Hot, Cold and Reference) were subjected to acute heat stress after having been exposed to either a hot-acclimation or non-acclimation pretreatment. As different traits may respond differently to temperature stress, several physiological and life history traits were assessed. Condition dependence of the response was evaluated by exposing juveniles to different levels of developmental (food restriction/rearing density) stress. Heat knockdown times were highest, whereas acclimation effects were lowest in the Hot selection regime, indicating a negative association between basal and induced heat tolerance. However, survival, adult longevity, fecundity and fertility did not show such a pattern. Acclimation had positive effects in heat-shocked flies, but in the absence of heat stress hot-acclimated flies had reduced life spans relative to non-acclimated ones, thereby revealing a potential cost of acclimation. Moreover, body size positively affected heat tolerance and unstressed individuals were less prone to heat stress than stressed flies, offering support for energetic costs associated with heat tolerance. Overall, our results indicate that heat tolerance of temperate insects can evolve under rising temperatures, but this response could be limited by a negative relationship between basal and

  7. Thermoregulatory disorders and illness related to heat and cold stress.

    PubMed

    Cheshire, William P

    2016-04-01

    Thermoregulation is a vital function of the autonomic nervous system in response to cold and heat stress. Thermoregulatory physiology sustains health by keeping body core temperature within a degree or two of 37°C, which enables normal cellular function. Heat production and dissipation are dependent on a coordinated set of autonomic responses. The clinical detection of thermoregulatory impairment provides important diagnostic and localizing information in the evaluation of disorders that impair thermoregulatory pathways, including autonomic neuropathies and ganglionopathies. Failure of neural thermoregulatory mechanisms or exposure to extreme or sustained temperatures that overwhelm the body's thermoregulatory capacity can also result in potentially life-threatening departures from normothermia. Hypothermia, defined as a core temperature of <35.0°C, may present with shivering, respiratory depression, cardiac dysrhythmias, impaired mental function, mydriasis, hypotension, and muscle dysfunction, which can progress to cardiac arrest or coma. Management includes warming measures, hydration, and cardiovascular support. Deaths from hypothermia are twice as frequent as deaths from hyperthermia. Hyperthermia, defined as a core temperature of >40.5°C, may present with sweating, flushing, tachycardia, fatigue, lightheadedness, headache, and paresthesia, progressing to weakness, muscle cramps, oliguria, nausea, agitation, hypotension, syncope, confusion, delirium, seizures, and coma. Mental status changes and core temperature distinguish potentially fatal heat stroke from heat exhaustion. Management requires the immediate reduction of core temperature. Ice water immersion has been shown to be superior to alternative cooling measures. Avoidance of thermal risk and early recognition of cold or heat stress are the cornerstones of preventive therapy. PMID:26794588

  8. Oral treatment with the herbal formula B307 alleviates cardiac toxicity in doxorubicin-treated mice via suppressing oxidative stress, inflammation, and apoptosis

    PubMed Central

    Lien, Chia-Ying; Chuang, Tai-Yuan; Hsu, Chih-Hsiang; Lin, Ching-Lung; Wang, Sheue-Er; Sheu, Shuenn-Jyi; Chien, Chiang-Ting; Wu, Chung-Hsin

    2015-01-01

    Objective This study aimed to investigate whether the herbal formula B307 could alleviate doxorubicin (DOX)-induced acute cardiotoxicity. If so, we further unraveled possible molecular mechanisms of cardiac protection under treatment with the herbal formula B307. Methods Before the animal experiment, we examined relative viabilities of Huh7 cancer cells under treatment with the herbal formula B307. To test whether oral treatment with the herbal formula B307 could alleviate cardiotoxicity, equal volumes of B307 (50 mg/kg) or saline (sham treatment) were administered to 20-week-old male mice once daily for 14 consecutive days. Then, DOX (10 mg/kg; ip) was administered to male mice under B307 and sham treatments at 22–23 weeks of age. Cardiac functions in these mice were assessed via echocardiography at 23–24 weeks of age. Then, expressions of oxidative stress, inflammation, and apoptosis-related proteins were examined in the heart tissue by immunohistochemistry and Western blotting at 24–25 weeks of age. Apart from this, mortality rate and body weight were measured during the experiment. Results In vitro, the relative viabilities of Huh7 cancer cells under treatment with the herbal formula B307 had shown no obvious change at doses of 10–160 ng/mL. Furthermore, the relative viabilities of Huh7 cancer cells were significantly reduced under DOX treatment but showed no significant change under DOX only and DOX plus B307 treatment. In vivo, the mortality rate, body weight, and cardiac function of DOX-treated mice were obviously improved under oral treatment with the herbal formula B307. Furthermore, cardiac expressions of endothelial nitric oxide synthase, superoxide dismutase 2, and B-cell lymphoma 2 were significantly enhanced, but tumor necrosis factor alpha, NFKB1 (p50 and its precursor, p105), neurotrophin-3, Bcl-2-associated X protein, calpain, caspase 12, caspase 9, and caspase 3 were significantly suppressed in DOX-treated mice under oral treatment with

  9. Aloin Protects Skin Fibroblasts from Heat Stress-Induced Oxidative Stress Damage by Regulating the Oxidative Defense System

    PubMed Central

    Wang, Yu-Ren; Tsai, Hsin-I; Yu, Huang-Ping

    2015-01-01

    Oxidative stress is commonly involved in the pathogenesis of skin damage induced by environmental factors, such as heat stress. Skin fibroblasts are responsible for the connective tissue regeneration and the skin recovery from injury. Aloin, a bioactive compound in Aloe vera, has been reported to have various pharmacological activities, such as anti-inflammatory effects. The aim of this study was to investigate the protective effect of aloin against heat stress-mediated oxidative stress in human skin fibroblast Hs68 cells. Hs68 cells were first incubated at 43°C for 30 min to mimic heat stress. The study was further examined if aloin has any effect on heat stress-induced oxidative stress. We found that aloin protected Hs68 cells against heat stress-induced damage, as assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assay. Aloin protected Hs68 cells by regulating reactive oxygen species production and increasing the levels of glutathione, cytosolic and mitochondrial superoxide dismutase. Aloin also prevented the elevation of thiobarbituric acid reactive substances and the reduction of 8-OH-dG induced by heat stress. These results indicated that aloin protected human skin fibroblasts from heat stress-induced oxidative stress damage by regulating the oxidative defense system. PMID:26637174

  10. Aloin Protects Skin Fibroblasts from Heat Stress-Induced Oxidative Stress Damage by Regulating the Oxidative Defense System.

    PubMed

    Liu, Fu-Wei; Liu, Fu-Chao; Wang, Yu-Ren; Tsai, Hsin-I; Yu, Huang-Ping

    2015-01-01

    Oxidative stress is commonly involved in the pathogenesis of skin damage induced by environmental factors, such as heat stress. Skin fibroblasts are responsible for the connective tissue regeneration and the skin recovery from injury. Aloin, a bioactive compound in Aloe vera, has been reported to have various pharmacological activities, such as anti-inflammatory effects. The aim of this study was to investigate the protective effect of aloin against heat stress-mediated oxidative stress in human skin fibroblast Hs68 cells. Hs68 cells were first incubated at 43°C for 30 min to mimic heat stress. The study was further examined if aloin has any effect on heat stress-induced oxidative stress. We found that aloin protected Hs68 cells against heat stress-induced damage, as assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assay. Aloin protected Hs68 cells by regulating reactive oxygen species production and increasing the levels of glutathione, cytosolic and mitochondrial superoxide dismutase. Aloin also prevented the elevation of thiobarbituric acid reactive substances and the reduction of 8-OH-dG induced by heat stress. These results indicated that aloin protected human skin fibroblasts from heat stress-induced oxidative stress damage by regulating the oxidative defense system. PMID:26637174

  11. Historical Temperature Variability Affects Coral Response to Heat Stress

    PubMed Central

    Carilli, Jessica; Donner, Simon D.; Hartmann, Aaron C.

    2012-01-01

    Coral bleaching is the breakdown of symbiosis between coral animal hosts and their dinoflagellate algae symbionts in response to environmental stress. On large spatial scales, heat stress is the most common factor causing bleaching, which is predicted to increase in frequency and severity as the climate warms. There is evidence that the temperature threshold at which bleaching occurs varies with local environmental conditions and background climate conditions. We investigated the influence of past temperature variability on coral susceptibility to bleaching, using the natural gradient in peak temperature variability in the Gilbert Islands, Republic of Kiribati. The spatial pattern in skeletal growth rates and partial mortality scars found in massive Porites sp. across the central and northern islands suggests that corals subject to larger year-to-year fluctuations in maximum ocean temperature were more resistant to a 2004 warm-water event. In addition, a subsequent 2009 warm event had a disproportionately larger impact on those corals from the island with lower historical heat stress, as indicated by lower concentrations of triacylglycerol, a lipid utilized for energy, as well as thinner tissue in those corals. This study indicates that coral reefs in locations with more frequent warm events may be more resilient to future warming, and protection measures may be more effective in these regions. PMID:22479626

  12. Short term post-partum heat stress in dairy cows

    NASA Astrophysics Data System (ADS)

    Fuquay, J. W.; Chapin, L. T.; Brown, W. H.

    1980-06-01

    Since many dairy cows calve during late summer, the objective was to determine if heat stress immediately post-partum would (1) alter metabolism, thus, increasing susceptibility to metabolic disorders, (2) affect lactation and/or (3) affect reproduction. Forty four cows, calving during late summer, were paired with one member of each pair stressed (HS) for the first 10 post-partum days in a hot barn. Controls (CC) were kept in a cooled section of the barn. Plasma drawn weekly for 7 weeks was analyzed in an autoanalyzer for calcium, inor. phosphorus, protein, glucose and cholesterol and by radioimmunoassay for cortisol and progesterone. Ovaries and uteri were palpated weekly. Rectal temperatures were significant higher for HS during the first 10 post-partum days. No significant effects on plasma constituents were observed during the 10-day treatment period. For the 7-week period, glucose and cholesterol were lower in HS, as were cyclic peaks of progesterone and cortisol. Both calcium and inorganic phosphorus remained clinically low for the 7 weeks, but no treatment effects were seen. Uteri of HS involuted more rapidly than the CC. Treatment did not affect reproductive efficiency. Lactation milk yields did not differ, but milk fat percent was lower in HS. Heat stress immediately post-partum altered lipid metabolism, but the animal's compensatory mechanisms prevented reduction in milk production or reproductive efficiency.

  13. Bilberries potentially alleviate stress-related retinal gene expression induced by a high-fat diet in mice

    PubMed Central

    Kalesnykas, Giedrius; Adriaens, Michiel; Evelo, Chris T.; Törrönen, Riitta; Kaarniranta, Kai

    2012-01-01

    displayed differential regulation of genes in ontology groups, mainly pathways for apoptosis, inflammation, and oxidative stress, especially systemic lupus erythematosus, mitogen-activated protein kinase, and glutathione metabolism. Mice fed a HFD had increased retinal gene expression of several crystallins, while the HFD+BB mice showed potential downregulation of these crystallins when compared to the HFD mice. Bilberries also reduced the expression of genes in the mitogen-activated protein kinase (MAPK) pathway and increased those in the glutathione metabolism pathway. Conclusions HFD feeding induces differential expression of several stress-related genes in the mouse retina. Despite minor effects in the phenotype, a diet rich in bilberries mitigates the upregulation of crystallins otherwise induced by HFD. Thus, the early stages of obesity-associated and stress-related gene expression changes in the retina may be prevented with bilberries in the diet. PMID:22993483

  14. Alleviation of salt stress by halotolerant and halophilic plant growth-promoting bacteria in wheat (Triticum aestivum).

    PubMed

    Orhan, Furkan

    2016-01-01

    In the current study, 18 halotolerant and halophilic bacteria have been investigated for their plant growth promoting abilities in vitro and in a hydroponic culture. The bacterial strains have been investigated for ammonia, indole-3-acetic acid and 1-aminocyclopropane-1-carboxylate-deaminase production, phosphate solubilisation and nitrogen fixation activities. Of the tested bacteria, eight were inoculated with Triticum aestivum in a hydroponic culture. The investigated bacterial strains were found to have different plant-growth promoting activities in vitro. Under salt stress (200mM NaCl), the investigated bacterial strains significantly increased the root and shoot length and total fresh weight of the plants. The growth rates of the plants inoculated with bacterial strains ranged from 62.2% to 78.1%. Identifying of novel halophilic and halotolerant bacteria that promote plant growth can be used as alternatives for salt sensitive plants. Extensive research has been conducted on several halophilic and halotolerant bacterial strains to investigate their plant growth promoting activities. However, to the best of my knowledge, this is the first study to inoculate these bacterial strains with wheat. PMID:27133557

  15. Leukotriene D4 receptor antagonist montelukast alleviates water avoidance stress-induced degeneration of the gastrointestinal mucosa.

    PubMed

    Ersoy, Yasemin; Cikler, Esra; Cetinel, Sule; Sener, Göksel; Ercan, Feriha

    2008-03-01

    We investigated the role of montelukast (ML), a cysteinyl leukotriene-1 receptor antagonist, on the water avoidance stress (WAS)-induced degeneration of the rat gastric, ileal and colonic mucosa. One group of Wistar albino rats were exposed to chronic WAS (WAS group) 2h daily for 5 days. Another group was administered ML (10mg/kg; i.p.; WAS+ML group) following every WAS exposure for 5 days. Control rats were injected with the vehicle solution only. The stomach, ileum and colon were dissected and investigated for histopathological changes with a light microscope as well as for topographical changes with a scanning electron microscope. The levels of malondialdehyde (MDA, a biomarker of oxidative damage) and glutathione (GSH, a biomarker of protective oxidative injury) were also determined in all dissected tissues. In the WAS group, the stomach epithelium showed ulceration in some areas, dilatations of the gastric glands, degeneration of gastric glandular cells, and prominent congestion of the capillaries. In a similar fashion, degenerated epithelium and severe vascular congestions were observed in the ileum and colon. In all the tissues dense inflammatory cell infiltration and mast cell degranulation in mucosa were observed. The levels of MDA were significantly increased whereas those of GSH were significantly decreased in all test tissues in the WAS group compared to the control group. The morphology of gastric, ileal and colonic mucosa in WAS+ML group showed a significant amelioration showing a reduction in inflammatory cell infiltration and mast cell degranulation. Increased MDA and decreased GSH levels in the WAS group were also ameliorated with ML treatment. Based on the results, ML supplement seems attenuated inflammatory effects of WAS induction in gastrointestinal mucosa.

  16. Heat stress abatement during the dry period influences prolactin signaling in lymphocytes Heat stress abatement during the dry period influences prolactin signaling in lymphocytes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heat stress perturbs PRL release and affects dairy cow lactational performance and immune cell function. We hypothesized that greater PRL concentration in plasma of heat-stressed cows would decrease expression of PRL-R mRNA and increase mRNA expression of suppressors of cytokine signaling (SOCS) in ...

  17. Self organizing maps in urban heat stress projections

    NASA Astrophysics Data System (ADS)

    Lee, Kyoung

    2016-04-01

    A self organizing map (SOM) is an unsupervised machine learning algorithm well suited for identifying patterns in large datasets. It has been used successfully to classify atmospheric states in climate data and as part of statistical downscaling procedures. This study aims to use SOMs to produce downscaled CMIP5-based projections of wet-bulb temperature in urban areas, taking into account the regional atmospheric state and learned local dynamics. These downscaled projections will be compared to the CMIP5 models as well as to observations and then used to project local extreme heat stress events in the future.

  18. Effect of treatment of cow's urine "Gomutra" and antioxidants in alleviating the lindane-induced oxidative stress in kidney of Swiss mice (Mus musculus).

    PubMed

    Nagda, Girima; Bhatt, Devendra Kumar

    2014-01-01

    The study aimed to evaluate the effect of cow urine and combination of antioxidants against lindane induced oxidative stress in Swiss mice. Male healthy mice, 8-10 weeks old, weighing 30 ± 5 g were randomly selected and divided into eight groups, namely, control (C); lindane (L); antioxidant (A), antioxidant+lindane (A+L), cow urine (U), cow urine+lindane (U+L), cow urine+antioxidants (U+A) and cow urine+antioxidants+lindane (U+A+L). Group C animals were administered only the vehicle (olive oil); doses selected for other treatments were: lindane: 40 mg/kg b.w.; antioxidants: 125 mg/kg b.w. (vitamin C: 50 mg/kg b.w., vitamin E: 50 mg/kg b.w., α-lipoic acid: 25 mg/kg b.w.) and cow urine: 0.25 ml/kg b.w. In group A+L and U+L antioxidants and cow urine were administered 1 h prior to lindane administration and in group U+A and U+A+L cow urine was administered 10 min before antioxidants. All treatments were administered orally continuously for 60 days. Lindane treated group showed increased lipid peroxidation, whereas glutathione, glutathione peroxidase, superoxide dismutase, catalase, protein and endogenous levels of vitamin C and E were significantly decreased compared to control. Administration of cow urine and antioxidants alleviated the levels of these biochemical parameters.

  19. Acute Heat Stress and Reduced Nutrient Intake Alter Intestinal Proteomic Profile and Gene Expression in Pigs

    PubMed Central

    Pearce, Sarah C.; Lonergan, Steven M.; Huff-Lonergan, Elisabeth; Baumgard, Lance H.; Gabler, Nicholas K.

    2015-01-01

    Heat stress and reduced feed intake negatively affect intestinal integrity and barrier function. Our objective was to compare ileum protein profiles of pigs subjected to 12 hours of HS, thermal neutral ad libitum feed intake, or pair-fed to heat stress feed intake under thermal neutral conditions (pair-fed thermal neutral). 2D-Differential In Gel Electrophoresis and gene expression were performed. Relative abundance of 281 and 138 spots differed due to heat stress, compared to thermal neutral and pair-fed thermal neutral pigs, respectively. However, only 20 proteins were different due to feed intake (thermal neutral versus pair-fed thermal neutral). Heat stress increased mRNA expression of heat shock proteins and protein abundance of heat shock proteins 27, 70, 90-α and β were also increased. Heat stress reduced ileum abundance of several metabolic enzymes, many of which are involved in the glycolytic or TCA pathways, indicating a change in metabolic priorities. Stress response enzymes peroxiredoxin-1 and peptidyl-prolyl cis-trans isomerase A were decreased in pair-fed thermal neutral and thermal neutral pigs compared to heat stress. Heat stress increased mRNA abundance markers of ileum hypoxia. Altogether, these data show that heat stress directly alters intestinal protein and mRNA profiles largely independent of reduced feed intake. These changes may be related to the reduced intestinal integrity associated with heat stress. PMID:26575181

  20. Role of the Red Ginseng in Defense against the Environmental Heat Stress in Sprague Dawley Rats.

    PubMed

    Kim, Kui-Jin; Yoon, Kye-Yoon; Hong, Hee-Do; Lee, Boo-Yong

    2015-01-01

    Global temperature change causes heat stress related disorders in humans. A constituent of red ginseng has been known the beneficial effect on the resistance to many diseases. However, the mechanism of red ginseng (RG) against heat stress still remains unclear. To determine the effect of RG on heat stress, we examined the effect of the RG on the gene expression profiles in rats subjected to environmental heat stress. We evaluated the transcripts associated with hepatic lipid accumulation and oxidative stress in rats subjected to heat stress. We also analyzed the reactive oxygen species (ROS) contents. Our results suggested RG inhibited heat stress mediated altering mRNA expressions include HSPA1, DEAF1, HMGCR, and FMO1. We also determined RG attenuated fat accumulation in the liver by altering C/EBPβ expression. RG promoted to repress the heat stress mediated hepatic cell death by inhibiting of Bcl-2 expression in rats subjected to heat stress. Moreover, RG administered group during heat stress dramatically decreased the malondialdehyde (MDA) contents and ROS associated genes compared with the control group. Thus, we suggest that RG might influence inhibitory effect on environmental heat stress induced abnormal conditions in humans. PMID:26569207

  1. Hormonal modulation of the heat shock response: insights from fish with divergent cortisol stress responses.

    PubMed

    LeBlanc, Sacha; Höglund, Erik; Gilmour, Kathleen M; Currie, Suzanne

    2012-01-01

    Acute temperature stress in animals results in increases in heat shock proteins (HSPs) and stress hormones. There is evidence that stress hormones influence the magnitude of the heat shock response; however, their role is equivocal. To determine whether and how stress hormones may affect the heat shock response, we capitalized on two lines of rainbow trout specifically bred for their high (HR) and low (LR) cortisol response to stress. We predicted that LR fish, with a low cortisol but high catecholamine response to stress, would induce higher levels of HSPs after acute heat stress than HR trout. We found that HR fish have significantly higher increases in both catecholamines and cortisol compared with LR fish, and LR fish had no appreciable stress hormone response to heat shock. This unexpected finding prevented further interpretation of the hormonal modulation of the heat shock response but provided insight into stress-coping styles and environmental stress. HR fish also had a significantly greater and faster heat shock response and less oxidative protein damage than LR fish. Despite these clear differences in the physiological and cellular responses to heat shock, there were no differences in the thermal tolerance of HR and LR fish. Our results support the hypothesis that responsiveness to environmental change underpins the physiological differences in stress-coping styles. Here, we demonstrate that the heat shock response is a distinguishing feature of the HR and LR lines and suggest that it may have been coselected with the hormonal responses to stress.

  2. Factors of subjective heat stress of urban citizens in contexts of everyday life

    NASA Astrophysics Data System (ADS)

    Kunz-Plapp, Tina; Hackenbruch, Julia; Schipper, Janus Willem

    2016-04-01

    Heat waves and the consequent heat stress of urban populations have a growing relevance in urban risk management and strategies of urban adaptation to climate change. In this context, social science studies on subjective experiencing of heat as stress by urban citizens are a new emerging field. To contribute to the understanding of self-reported subjective heat stress and its major determinants in a daily life perspective, we conducted a questionnaire survey with 323 respondents in Karlsruhe, Germany, after heat waves in July and August 2013. Statistical data analysis showed that subjective heat stress is an issue permeating everyday activities. Subjective heat stress at home was lower than at work and in general. Subjective heat stress in general, at home, and at work was determined by the health impairments experienced during the heat and the feeling of being helplessly exposed to the heat. For subjective heat stress at home, characteristics of the residential building and the built environment additionally played a role. Although the rate of implemented coping measures was rather high, coping measures showed no uniform effect for the subjective heat stress. We conclude that in terms of urban adaptation strategies, further research is needed to understand how various processes of daily social (work) life enable or limit individual coping and that communication strategies are important for building capacities to better cope with future heat waves.

  3. Resveratrol alleviates diabetes-induced testicular dysfunction by inhibiting oxidative stress and c-Jun N-terminal kinase signaling in rats.

    PubMed

    Faid, Iman; Al-Hussaini, Heba; Kilarkaje, Narayana

    2015-12-15

    Diabetes adversely affects reproductive functions in humans and animals. The present study investigated the effects of Resveratrol on diabetes-induced alterations in oxidative stress, c-Jun N-terminal kinase (JNK) signaling and apoptosis in the testis. Adult male Wistar rats (13-15 weeks; n=6/group) were segregated into 1) normal control, 2) Resveratrol-treated (5mg/kg; ip; given during last 3 weeks), 3) Streptozotocin-induced diabetic and, 4) Resveratrol-treated diabetic groups, and euthanized on day 42 after the confirmation of diabetes. Resveratrol did not normalize blood glucose levels in diabetic rats. Resveratrol supplementation recovered diabetes-induced decreases in reproductive organ weights, sperm count and motility, intra-testicular levels of superoxide dismutase, catalase, and glutathione peroxidase and an increase in 4-hydroxynonenal activities (P<0.05). Resveratrol also recovered diabetes-induced increases in JNK signaling pathway proteins, namely, ASK1 (apoptosis signal-regulating kinase 1), JNKs (46 and 54 kDa isoforms) and p-JNK to normal control levels (P<0.05). Interestingly, the expression of a down-stream target of ASK1, MKK4 (mitogen-activated protein kinase kinase 4) and its phosphorylated form (p-MKK4) did not change in experimental groups. Resveratrol inhibited diabetes-induced increases in AP-1 (activator protein-1) components, c-Jun and ATF2 (activating transcription factor 2), but not their phosphorylated forms, to normal control levels (P<0.05). Further, Resveratrol inhibited diabetes-induced increase in cleaved-caspase-3 to normal control levels. In conclusion, Resveratrol alleviates diabetes-induced apoptosis in testis by modulating oxidative stress, JNK signaling pathway and caspase-3 activities, but not by inhibiting hyperglycemia, in rats. These results suggest that Resveratrol supplementation may be a useful strategy to treat diabetes-induced testicular dysfunction.

  4. Twelve hours of heat stress induces inflammatory signaling in porcine skeletal muscle.

    PubMed

    Ganesan, Shanthi; Reynolds, Carmen; Hollinger, Katrin; Pearce, Sarah C; Gabler, Nicholas K; Baumgard, Lance H; Rhoads, Robert P; Selsby, Joshua T

    2016-06-01

    Heat stress causes morbidity and mortality in humans and animals and threatens food security by limiting livestock productivity. Inflammatory signaling may contribute to heat stress-mediated skeletal muscle dysfunction. Previously, we discovered increased circulating endotoxin and intramuscular oxidative stress and TNF-α protein abundance, but not inflammatory signaling following 24 and 72 h of heat stress. Thus the purpose of this investigation was to clarify the role of inflammatory signaling in heat-stressed skeletal muscle. Crossbred gilts (n = 8/group) were assigned to either thermal neutral (24°C), heat stress (37°C), or pair-fed thermal neutral (24°C) conditions for 12 h. Following treatment, animals were euthanized, and the semitendinosus red (STR) and white (STW) were recovered. Heat stress did not alter inflammatory signaling in STW. In STR, relative heat shock protein abundance was similar between groups, as was nuclear content of heat shock factor 1. In whole homogenate, relative abundance of the NF-κB activator inhibitory κB kinase-α was increased by heat stress, although abundance of NF-κB was similar between groups. Relative abundance of phosphorylated NF-κB was increased by heat stress in nuclear fractions. Activator protein-1 (AP-1) signaling was similar between groups. While there were few differences in transcript expression between thermal neutral and heat stress, 80 and 56% of measured transcripts driven by NF-κB or AP-1, respectively, were increased by heat stress compared with pair-fed thermal neutral. Heat stress also caused a reduction in IL-6 transcript and relative protein abundance. These data demonstrate that short-term heat stress causes inflammatory signaling through NF-κB in oxidative, but not glycolytic, skeletal muscle. PMID:27009052

  5. Does the hair influence heat extraction from the head during head cooling under heat stress?

    PubMed Central

    SHIN, Sora; PARK, Joonhee; LEE, Joo-Young

    2015-01-01

    The purpose of this study was to investigate the effects of head hair on thermoregulatory responses when cooling the head under heat stress. Eight young males participated in six experimental conditions: normal hair (100–130 mm length) and cropped hair (5 mm length) with three water inlet temperatures of 10, 15, and 20°C. The head and neck of subjects were cooled by a liquid perfused hood while immersing legs at 42°C water for 60 min in a sitting position at the air temperature of 28°C with 30% RH. The results showed that heat removal from the normal hair condition was not significantly different from the cropped hair condition. Rectal and mean skin temperatures, and sweat rate showed no significant differences between the normal and cropped hair conditions. Heat extraction from the head was significantly greater in 10°C than in 15 or 20°C cooling (p<0.05) for both normal and cropped hair, whereas subjects preferred the 15°C more than the 10 or 20°C cooling regimen. These results indicate that the selection of effective cooling temperature is more crucial than the length of workers’ hair during head cooling under heat stress, and such selection should be under the consideration of subjective perceptions with physiological responses. PMID:26165361

  6. Oral treatment with herbal formula B307 alleviates cardiac failure in aging R6/2 mice with Huntington's disease via suppressing oxidative stress, inflammation, and apoptosis.

    PubMed

    Lin, Ching-Lung; Wang, Sheue-Er; Hsu, Chih-Hsiang; Sheu, Shuenn-Jyi; Wu, Chung-Hsin

    2015-01-01

    Cardiac failure is often observed in aging patients with Huntington's disease (HD). However, conventional pharmacological treatments for cardiac failure in HD patients have rarely been studied. Chinese herbal medicines, especially combined herbal formulas, have been widely used to treat cardiac dysfunctions over the centuries. Thus, we assess whether oral treatment with herbal formula B307 can alleviate cardiac failure in transgenic mice with HD. After oral B307 or vehicle treatment for 2 weeks, cardiac function and cardiomyocytes in 12-week-old male R6/2 HD mice and their wild-type littermate controls (WT) were examined and then compared via echocardiography, immunohistochemistry, and Western blotting. We found that cardiac performance in aging R6/2 HD mice had significantly deteriorated in comparison with their WT (P<0.01). Cardiac expressions of superoxide dismutase 2 (SOD2) and B-cell lymphoma 2 (Bcl-2) in aging R6/2 HD mice were significantly lower than their WT (P<0.01), but cardiac expressions of tumor necrosis factor alpha (TNF-α), neurotrophin-3 (3-NT), 4-hydroxynonenal (4-HNE), Bcl-2-associated X protein (Bax), calpain, caspase 12, caspase 9, and caspase 3 of aging R6/2 HD mice were significantly higher than their WT (P<0.05). Furthermore, we found that cardiac performance in aging R6/2 HD mice had significantly improved under oral B307 treatment (P<0.05). Cardiac expressions of SOD2 and Bcl-2 of aging R6/2 HD mice were significantly higher under oral B307 treatment (P<0.01), but cardiac expressions of TNF-α, 3-NT, 4-HNE, Bax, calpain, caspase 12, caspase 9, and caspase 3 of aging R6/2 HD mice were significantly reduced under oral B307 treatment (P<0.05). Oral B307 treatment may briefly alleviate cardiac failure in aging HD R6/2 mice via suppressing cardiac oxidative stress, inflammation, and apoptosis. We suggested that the herbal formula B307 may be further developed as a potential health supplement for ameliorating cardiac failure associated with

  7. Effects of cold stress and heat stress on coral fluorescence in reef-building corals

    PubMed Central

    Roth, Melissa S.; Deheyn, Dimitri D.

    2013-01-01

    Widespread temperature stress has caused catastrophic coral bleaching events that have been devastating for coral reefs. Here, we evaluate whether coral fluorescence could be utilized as a noninvasive assessment for coral health. We conducted cold and heat stress treatments on the branching coral Acropora yongei, and found that green fluorescent protein (GFP) concentration and fluorescence decreased with declining coral health, prior to initiation of bleaching. Ultimately, cold-treated corals acclimated and GFP concentration and fluorescence recovered. In contrast, heat-treated corals eventually bleached but showed strong fluorescence despite reduced GFP concentration, likely resulting from the large reduction in shading from decreased dinoflagellate density. Consequently, GFP concentration and fluorescence showed distinct correlations in non-bleached and bleached corals. Green fluorescence was positively correlated with dinoflagellate photobiology, but its closest correlation was with coral growth suggesting that green fluorescence could be used as a physiological proxy for health in some corals. PMID:23478289

  8. Arabidopsis HIT4, a regulator involved in heat-triggered reorganization of chromatin and release of transcriptional gene silencing, relocates from chromocenters to the nucleolus in response to heat stress.

    PubMed

    Wang, Lian-Chin; Wu, Jia-Rong; Hsu, Yi-Ju; Wu, Shaw-Jye

    2015-01-01

    Arabidopsis HIT4 is known to mediate heat-induced decondensation of chromocenters and release from transcriptional gene silencing (TGS) with no change in the level of DNA methylation. It is unclear whether HIT4 and MOM1, a well-known DNA methylation-independent transcriptional silencer, have overlapping regulatory functions. A hit4-1/mom1 double mutant strain was generated. Its nuclear morphology and TGS state were compared with those of wild-type, hit4-1, and mom1 plants. Fluorescent protein tagging was employed to track the fates of HIT4, hit4-1 and MOM1 in vivo under heat stress. HIT4- and MOM1-mediated TGS were distinguishable. Both HIT4 and MOM1 were localized normally to chromocenters. Under heat stress, HIT4 relocated to the nucleolus, whereas MOM1 dispersed with the chromocenters. hit4-1 was able to relocate to the nucleolus under heat stress, but its relocation was insufficient to trigger the decompaction of chromocenters. The hypersensitivity to heat associated with the impaired reactivation of TGS in hit4-1 was not alleviated by mom1-induced release from TGS. HIT4 delineates a novel and MOM1-independent TGS regulation pathway. The involvement of a currently unidentified component that links HIT4 relocation and the large-scale reorganization of chromatin, and which is essential for heat tolerance in plants is hypothesized.

  9. Arabidopsis HIT4, a regulator involved in heat-triggered reorganization of chromatin and release of transcriptional gene silencing, relocates from chromocenters to the nucleolus in response to heat stress.

    PubMed

    Wang, Lian-Chin; Wu, Jia-Rong; Hsu, Yi-Ju; Wu, Shaw-Jye

    2015-01-01

    Arabidopsis HIT4 is known to mediate heat-induced decondensation of chromocenters and release from transcriptional gene silencing (TGS) with no change in the level of DNA methylation. It is unclear whether HIT4 and MOM1, a well-known DNA methylation-independent transcriptional silencer, have overlapping regulatory functions. A hit4-1/mom1 double mutant strain was generated. Its nuclear morphology and TGS state were compared with those of wild-type, hit4-1, and mom1 plants. Fluorescent protein tagging was employed to track the fates of HIT4, hit4-1 and MOM1 in vivo under heat stress. HIT4- and MOM1-mediated TGS were distinguishable. Both HIT4 and MOM1 were localized normally to chromocenters. Under heat stress, HIT4 relocated to the nucleolus, whereas MOM1 dispersed with the chromocenters. hit4-1 was able to relocate to the nucleolus under heat stress, but its relocation was insufficient to trigger the decompaction of chromocenters. The hypersensitivity to heat associated with the impaired reactivation of TGS in hit4-1 was not alleviated by mom1-induced release from TGS. HIT4 delineates a novel and MOM1-independent TGS regulation pathway. The involvement of a currently unidentified component that links HIT4 relocation and the large-scale reorganization of chromatin, and which is essential for heat tolerance in plants is hypothesized. PMID:25329561

  10. On thermal stress failure of the SNAP-19A RTG heat shield

    NASA Technical Reports Server (NTRS)

    Pitts, W. C.; Anderson, L. A.

    1974-01-01

    Results of a study on thermal stress problems in an amorphous graphite heat shield that is part of the launch-abort protect system for the SNAP-19A radio-isotope thermoelectric generators (RTG) that will be used on the Viking Mars Lander are presended. The first result is from a thermal stress analysis of a full-scale RTG heat source that failed to survive a suborbital entry flight test, possibly due to thermal stress failure. It was calculated that the maximum stress in the heat shield was only 50 percent of the ultimate strength of the material. To provide information on the stress failure criterion used for this calculation, some heat shield specimens were fractured under abort entry conditions in a plasma arc facility. It was found that in regions free of stress concentrations the POCO graphite heat shield material did fracture when the local stress reached the ultimate uniaxial stress of the material.

  11. Singlet oxygen production in Chlamydomonas reinhardtii under heat stress.

    PubMed

    Prasad, Ankush; Ferretti, Ursula; Sedlářová, Michaela; Pospíšil, Pavel

    2016-01-01

    In the current study, singlet oxygen formation by lipid peroxidation induced by heat stress (40 °C) was studied in vivo in unicellular green alga Chlamydomonas reinhardtii. Primary and secondary oxidation products of lipid peroxidation, hydroperoxide and malondialdehyde, were generated under heat stress as detected using swallow-tailed perylene derivative fluorescence monitored by confocal laser scanning microscopy and high performance liquid chromatography, respectively. Lipid peroxidation was initiated by enzymatic reaction as inhibition of lipoxygenase by catechol and caffeic acid prevented hydroperoxide formation. Ultra-weak photon emission showed formation of electronically excited species such as triplet excited carbonyl, which, upon transfer of excitation energy, leads to the formation of either singlet excited chlorophyll or singlet oxygen. Alternatively, singlet oxygen is formed by direct decomposition of hydroperoxide via Russell mechanisms. Formation of singlet oxygen was evidenced by the nitroxyl radical 2,2,6,6-tetramethylpiperidine-1-oxyl detected by electron paramagnetic resonance spin-trapping spectroscopy and the imaging of green fluorescence of singlet oxygen sensor green detected by confocal laser scanning microscopy. Suppression of singlet oxygen formation by lipoxygenase inhibitors indicates that singlet oxygen may be formed via enzymatic lipid peroxidation initiated by lipoxygenase. PMID:26831215

  12. Singlet oxygen production in Chlamydomonas reinhardtii under heat stress

    PubMed Central

    Prasad, Ankush; Ferretti, Ursula; Sedlářová, Michaela; Pospíšil, Pavel

    2016-01-01

    In the current study, singlet oxygen formation by lipid peroxidation induced by heat stress (40 °C) was studied in vivo in unicellular green alga Chlamydomonas reinhardtii. Primary and secondary oxidation products of lipid peroxidation, hydroperoxide and malondialdehyde, were generated under heat stress as detected using swallow-tailed perylene derivative fluorescence monitored by confocal laser scanning microscopy and high performance liquid chromatography, respectively. Lipid peroxidation was initiated by enzymatic reaction as inhibition of lipoxygenase by catechol and caffeic acid prevented hydroperoxide formation. Ultra-weak photon emission showed formation of electronically excited species such as triplet excited carbonyl, which, upon transfer of excitation energy, leads to the formation of either singlet excited chlorophyll or singlet oxygen. Alternatively, singlet oxygen is formed by direct decomposition of hydroperoxide via Russell mechanisms. Formation of singlet oxygen was evidenced by the nitroxyl radical 2,2,6,6-tetramethylpiperidine-1-oxyl detected by electron paramagnetic resonance spin-trapping spectroscopy and the imaging of green fluorescence of singlet oxygen sensor green detected by confocal laser scanning microscopy. Suppression of singlet oxygen formation by lipoxygenase inhibitors indicates that singlet oxygen may be formed via enzymatic lipid peroxidation initiated by lipoxygenase. PMID:26831215

  13. Heat stress and a countermeasure in the Shuttle rescueman's suit

    NASA Technical Reports Server (NTRS)

    Doerr, D. F.; Reed, H.; Convertino, V. A.

    1992-01-01

    Rescue of the astronaut flight crew from a contingency landing may risk exposure of the rescue crew to toxic propellants spilling from potentially ruptured tanks in the crew module area. An Aquala dry diver's suit has been in service by the rescue team to preclude exposure, especially in the water rescue scenario. Heat stress has become a factor of concern in recent years when older and less physically-fit team members work in this suit. Methods: Field testing was initiated using fully instrumented rescue men in a simulated scenario to determine the extent of heat stress. Two tests were accomplished, one in the normal (N) configuration and one with a proposed cooling countermeasure, the Steele vest (S). Results: Heat stress was high as indicated by average rectal temperatures (Tre) of 38.28 degrees C(100.9 degrees F) after the 45 minute protocol. Slopes of the regression equations describing the increase in Tre with time were greater (P less than 0.05) with N (0.073 plus or minus .008) compared to S (0.060 plus or minus .007). Projection of time to the 38.89 degree C (102 degree F) limit was increased by 15.3 percent with the vest. Mean skin temperature (Tsk) was higher (P less than 0.05) in N (38.33 plus or minus .11 degrees C) compared to S (34.33 plus or minus .39 degrees C). Average heart rate was higher (P less than 0.05 in N than S. Sweat loss, as measured by weight loss, was more (P less than 0.05) for N (1.09 plus or minus .09 kg versus 0.77 plus or minus .06 kg). Air usage, while slightly less for S, was not statistically different. Conclusion: The use of the cool vest provided significant relief from thermal stress in spite of the addition of 3.4 kg (7.5 pounds) weight and some loss in mobility.

  14. Use of heat stress responsive gene expression levels for early selection of heat tolerant cabbage (Brassica oleracea L.).

    PubMed

    Park, Hyun Ji; Jung, Won Yong; Lee, Sang Sook; Song, Jun Ho; Kwon, Suk-Yoon; Kim, Hyeran; Kim, Chulwook; Ahn, Jun Cheul; Cho, Hye Sun

    2013-06-04

    Cabbage is a relatively robust vegetable at low temperatures. However, at high temperatures, cabbage has disadvantages, such as reduced disease tolerance and lower yields. Thus, selection of heat-tolerant cabbage is an important goal in cabbage breeding. Easier or faster selection of superior varieties of cabbage, which are tolerant to heat and disease and have improved taste and quality, can be achieved with molecular and biological methods. We compared heat-responsive gene expression between a heat-tolerant cabbage line (HTCL), "HO", and a heat-sensitive cabbage line (HSCL), "JK", by Genechip assay. Expression levels of specific heat stress-related genes were increased in response to high-temperature stress, according to Genechip assays. We performed quantitative RT-PCR (qRT-PCR) to compare expression levels of these heat stress-related genes in four HTCLs and four HSCLs. Transcript levels for heat shock protein BoHsp70 and transcription factor BoGRAS (SCL13) were more strongly expressed only in all HTCLs compared to all HSCLs, showing much lower level expressions at the young plant stage under heat stress (HS). Thus, we suggest that expression levels of these genes may be early selection markers for HTCLs in cabbage breeding. In addition, several genes that are involved in the secondary metabolite pathway were differentially regulated in HTCL and HSCL exposed to heat stress.

  15. Antioxidant defence and stress protein induction following heat stress in the Mediterranean snail Xeropicta derbentina.

    PubMed

    Troschinski, Sandra; Dieterich, Andreas; Krais, Stefanie; Triebskorn, Rita; Köhler, Heinz-R

    2014-12-15

    The Mediterranean snail Xeropicta derbentina (Pulmonata, Hygromiidae), being highly abundant in Southern France, has the need for efficient physiological adaptations to desiccation and over-heating posed by dry and hot environmental conditions. As a consequence of heat, oxidative stress manifests in these organisms, which, in turn, leads to the formation of reactive oxygen species (ROS). In this study, we focused on adaptations at the biochemical level by investigation of antioxidant defences and heat shock protein 70 (Hsp70) induction, both essential mechanisms of the heat stress response. We exposed snails to elevated temperature (25, 38, 40, 43 and 45°C) in the laboratory and measured the activity of the antioxidant enzymes catalase (CAT) and glutathione peroxidase (GPx), determined the Hsp70 level and quantified lipid peroxidation. In general, we found a high constitutive level of CAT activity in all treatments, which may be interpreted as a permanent protection against ROS, i.e. hydrogen peroxide. CAT and GPx showed temperature-dependent activity: CAT activity was significantly increased in response to high temperatures (43 and 45°C), whereas GPx exhibited a significantly increased activity at 40°C, probably in response to high levels of lipid peroxides that occurred in the 38°C treatment. Hsp70 showed a maximum induction at 40°C, followed by a decrease at higher temperatures. Our results reveal that X. derbentina possesses a set of efficient mechanisms to cope with the damaging effects of heat. Furthermore, we demonstrated that, besides the well-documented Hsp70 stress response, antioxidant defence plays a crucial role in the snails' competence to survive extreme temperatures.

  16. Genome-wide association mapping for identification of quantitative trait loci for rectal temperature during heat stress in Holstein cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heat stress negatively affects the production, fertility, and health of dairy cattle. One strategy to reduce the magnitude of heat stress is to select individuals that are genetically resistant to heat stress. Most of the negative effects of heat stress on animal performance are a consequence of eit...

  17. Mechanisms of aerobic performance impairment with heat stress and dehydration.

    PubMed

    Cheuvront, Samuel N; Kenefick, Robert W; Montain, Scott J; Sawka, Michael N

    2010-12-01

    Environmental heat stress can challenge the limits of human cardiovascular and temperature regulation, body fluid balance, and thus aerobic performance. This minireview proposes that the cardiovascular adjustments accompanying high skin temperatures (T(sk)), alone or in combination with high core body temperatures (T(c)), provide a primary explanation for impaired aerobic exercise performance in warm-hot environments. The independent (T(sk)) and combined (T(sk) + T(c)) effects of hyperthermia reduce maximal oxygen uptake (Vo(2max)), which leads to higher relative exercise intensity and an exponential decline in aerobic performance at any given exercise workload. Greater relative exercise intensity increases cardiovascular strain, which is a prominent mediator of rated perceived exertion. As a consequence, incremental or constant-rate exercise is more difficult to sustain (earlier fatigue) or requires a slowing of self-paced exercise to achieve a similar sensation of effort. It is proposed that high T(sk) and T(c) impair aerobic performance in tandem primarily through elevated cardiovascular strain, rather than a deterioration in central nervous system (CNS) function or skeletal muscle metabolism. Evaporative sweating is the principal means of heat loss in warm-hot environments where sweat losses frequently exceed fluid intakes. When dehydration exceeds 3% of total body water (2% of body mass) then aerobic performance is consistently impaired independent and additive to heat stress. Dehydration augments hyperthermia and plasma volume reductions, which combine to accentuate cardiovascular strain and reduce Vo(2max). Importantly, the negative performance consequences of dehydration worsen as T(sk) increases.

  18. Effect of γ-aminobutyric acid on digestive enzymes, absorption function, and immune function of intestinal mucosa in heat-stressed chicken.

    PubMed

    Chen, Z; Xie, J; Wang, B; Tang, J

    2014-10-01

    To explore the effect of dietary γ-aminobutyric acid (GABA) on digestive enzyme activity, absorption function and immune function of intestinal mucosa in heat-stressed Wenchang chicken were studied. One-day-old male Wenchang chickens were randomly divided into a control group (CK), heat stress group (HS), and GABA+HS group. The chickens from the GABA+HS group were administered with 0.2 mL of GABA solution daily. Chickens from HS and GABA+HS groups were subjected to heat stress treatment at 40 ± 0.5°C for 2 h during 1300 to 1500 h every day. Blood was drawn and 0.5 cm-long duodenum, jejunum, and ileum were collected from the chickens on d 3, 5, 7, 9, 12, and 15. Results showed that the activity of Ca²⁺-Mg²⁺-adenosine triphosphatase (ATPase), Na⁺-K⁺-ATPase, maltase, sucrase, and alkaline phosphatase, the contents of secretory IgA, glutathione, and d-xylose, and the number of lymphocytes in HS group were significantly lower than those in the CK group. Among them, some were rescued after the treatment of GABA as the time extension. For maltase, d-xylose, alkaline phosphatase, and Na⁺-K⁺-ATPase, it required 5 to 7 d for achieving the significant effect. For sucrase, 12 d for the alleviation effect was required. In the case of other parameters, no alleviation was observed during the whole period of the study. We have concluded that HS can inhibit the activity of digestive enzymes and reduce absorption and immune functions of intestinal mucosa. γ-Aminobutyric acid can effectively alleviate these inhibitory effects.

  19. Humid heat exposure induced oxidative stress and apoptosis in cardiomyocytes through the angiotensin II signaling pathway.

    PubMed

    Wang, Xiaowu; Yuan, Binbin; Dong, Wenpeng; Yang, Bo; Yang, Yongchao; Lin, Xi; Gong, Gu

    2015-05-01

    Exposure to humid heat stress leads to the initiation of serious physiological dysfunction that may result in heat-related diseases, including heat stroke, heat cramp, heat exhaustion, and even death. Increasing evidences have shown that the humid heat stress-induced dysfunction of the cardiovascular system was accompanied with severe cardiomyocyte injury; however, the precise mechanism of heat stress-induced injury of cardiomyocyte remains unknown. In the present study, we hypothesized that humid heat stress promoted oxidative stress through the activation of angiotensin II (Ang II) in cardiomyocytes. To test our hypothesis, we established mouse models of humid heat stress. Using the animal models, we found that Ang II levels in serum were significantly up-regulated and that the Ang II receptor AT1 was increased in cardiomyocytes. The antioxidant ability in plasma and heart tissues which was detected by the ferric reducing/antioxidant power assay was also decreased with the increased ROS production under humid heat stress, as was the expression of antioxidant genes (SOD2, HO-1, GPx). Furthermore, we demonstrated that the Ang II receptor antagonist, valsartan, effectively relieved oxidative stress, blocked Ang II signaling pathway and suppressed cardiomyocyte apoptosis induced by humid heat stress. In addition, overexpression of antioxidant genes reversed cardiomyocyte apoptosis induced by Ang II. Overall, these results implied that humid heat stress increased oxidative stress and caused apoptosis of cardiomyocytes through the Ang II signaling pathway. Thus, targeting the Ang II signaling pathway may provide a promising approach for the prevention and treatment of cardiovascular diseases caused by humid heat stress.

  20. Testing the responses of four wheat crop models to heat stress at anthesis and grain filling.

    PubMed

    Liu, Bing; Asseng, Senthold; Liu, Leilei; Tang, Liang; Cao, Weixing; Zhu, Yan

    2016-05-01

    Higher temperatures caused by future climate change will bring more frequent heat stress events and pose an increasing risk to global wheat production. Crop models have been widely used to simulate future crop productivity but are rarely tested with observed heat stress experimental datasets. Four wheat models (DSSAT-CERES-Wheat, DSSAT-Nwheat, APSIM-Wheat, and WheatGrow) were evaluated with 4 years of environment-controlled phytotron experimental datasets with two wheat cultivars under heat stress at anthesis and grain filling stages. Heat stress at anthesis reduced observed grain numbers per unit area and individual grain size, while heat stress during grain filling mainly decreased the size of the individual grains. The observed impact of heat stress on grain filling duration, total aboveground biomass, grain yield, and grain protein concentration (GPC) varied depending on cultivar and accumulated heat stress. For every unit increase of heat degree days (HDD, degree days over 30 °C), grain filling duration was reduced by 0.30-0.60%, total aboveground biomass was reduced by 0.37-0.43%, and grain yield was reduced by 1.0-1.6%, but GPC was increased by 0.50% for cv Yangmai16 and 0.80% for cv Xumai30. The tested crop simulation models could reproduce some of the observed reductions in grain filling duration, final total aboveground biomass, and grain yield, as well as the observed increase in GPC due to heat stress. Most of the crop models tended to reproduce heat stress impacts better during grain filling than at anthesis. Some of the tested models require improvements in the response to heat stress during grain filling, but all models need improvements in simulating heat stress effects on grain set during anthesis. The observed significant genetic variability in the response of wheat to heat stress needs to be considered through cultivar parameters in future simulation studies.

  1. Biochemical analysis of ‘kerosene tree’ Hymenaea courbaril L. under heat stress

    PubMed Central

    Gupta, Dinesh; Eldakak, Moustafa; Rohila, Jai S; Basu, Chhandak

    2014-01-01

    Hymenaea courbaril or jatoba is a tropical tree known for its medically important secondary metabolites production. Considering climate change, the goal of this study was to investigate differential expression of proteins and lipids produced by this tree under heat stress conditions. Total lipid was extracted from heat stressed plant leaves and various sesquiterpenes produced by the tree under heat stress were identified. Gas chromatographic and mass spectrometric analysis were used to study lipid and volatile compounds produced by the plant. Several volatiles, isoprene, 2-methyl butanenitrile, β ocimene and a numbers of sesquiterpenes differentially produced by the plant under heat stress were identified. We propose these compounds were produced by the tree to cope up with heat stress. A protein gel electrophoresis (2-D DIGE) was performed to study differential expression of proteins in heat stressed plants. Several proteins were found to be expressed many folds different in heat stressed plants compared to the control. These proteins included heat shock proteins, histone proteins, oxygen evolving complex, and photosynthetic proteins, which, we believe, played key roles in imparting thermotolerance in Hymenaea tree. To the best of our knowledge, this is the first report of extensive molecular physiological study of Hymenaea trees under heat stress. This work will open avenues of further research on effects of heat stress in Hymenaea and the findings can be applied to understand how global warming can affect physiology of other plants. PMID:25482765

  2. Biochemical analysis of 'kerosene tree' Hymenaea courbaril L. under heat stress.

    PubMed

    Gupta, Dinesh; Eldakak, Moustafa; Rohila, Jai S; Basu, Chhandak

    2014-01-01

    Hymenaea courbaril or jatoba is a tropical tree known for its medically important secondary metabolites production. Considering climate change, the goal of this study was to investigate differential expression of proteins and lipids produced by this tree under heat stress conditions. Total lipid was extracted from heat stressed plant leaves and various sesquiterpenes produced by the tree under heat stress were identified. Gas chromatographic and mass spectrometric analysis were used to study lipid and volatile compounds produced by the plant. Several volatiles, isoprene, 2-methyl butanenitrile, β ocimene and a numbers of sesquiterpenes differentially produced by the plant under heat stress were identified. We propose these compounds were produced by the tree to cope up with heat stress. A protein gel electrophoresis (2-D DIGE) was performed to study differential expression of proteins in heat stressed plants. Several proteins were found to be expressed many folds different in heat stressed plants compared to the control. These proteins included heat shock proteins, histone proteins, oxygen evolving complex, and photosynthetic proteins, which, we believe, played key roles in imparting thermotolerance in Hymenaea tree. To the best of our knowledge, this is the first report of extensive molecular physiological study of Hymenaea trees under heat stress. This work will open avenues of further research on effects of heat stress in Hymenaea and the findings can be applied to understand how global warming can affect physiology of other plants. PMID:25482765

  3. Exercise-induced dehydration with and without environmental heat stress results in increased oxidative stress.

    PubMed

    Hillman, Angela R; Vince, Rebecca V; Taylor, Lee; McNaughton, Lars; Mitchell, Nigel; Siegler, Jason

    2011-10-01

    While in vitro work has revealed that dehydration and hyperthermia can elicit increased cellular and oxidative stress, in vivo research linking dehydration, hyperthermia, and oxidative stress is limited. The purpose of this study was to investigate the effects of exercise-induced dehydration with and without hyperthermia on oxidative stress. Seven healthy male, trained cyclists (power output (W) at lactate threshold (LT): 199 ± 19 W) completed 90 min of cycling exercise at 95% LT followed by a 5-km time trial (TT) in 4 trials: (i) euhydration in a warm environment (EU-W, control), (ii) dehydration in a warm environment (DE-W), (iii) euhydration in a thermoneutral environment (EU-T), and (iv) dehydration in a thermoneutral environment (DE-T) (W: 33.9 ± 0.9 °C; T: 23.0 ± 1.0 °C). Oxidized glutathione (GSSG) increased significantly postexercise in dehydration trials only (DE-W: p < 0.01, DE-T: p = 0.03), and while not significant, total glutathione (TGSH) and thiobarbituric acid reactive substances (TBARS) tended to increase postexercise in dehydration trials (p = 0.08 for both). Monocyte heat shock protein 72 (HSP72) concentration was increased (p = 0.01) while lymphocyte HSP32 concentration was decreased for all trials (p = 0.02). Exercise-induced dehydration led to an increase in GSSG concentration while maintenance of euhydration attenuated these increases regardless of environmental condition. Additionally, we found evidence of increased cellular stress (measured via HSP) during all trials independent of hydration status and environment. Finally, both 90-min and 5-km TT performances were reduced during only the DE-W trial, likely a result of combined cellular stress, hyperthermia, and dehydration. These findings highlight the importance of fluid consumption during exercise to attenuate thermal and oxidative stress during prolonged exercise in the heat.

  4. Finite element residual stress analysis of induction heating bended ferritic steel piping

    NASA Astrophysics Data System (ADS)

    Kima, Jong Sung; Kim, Kyoung-Soo; Oh, Young-Jin; Chang, Hyung-Young; Park, Heung-Bae

    2014-10-01

    Recently, there is a trend to apply the piping bended by induction heating process to nuclear power plants. Residual stress can be generated due to thermo-mechanical mechanism during the induction heating bending process. It is well-known that the residual stress has important effect on crack initiation and growth. The previous studies have focused on the thickness variation. In part, some studies were performed for residual stress evaluation of the austenitic stainless steel piping bended by induction heating. It is difficult to find the residual stresses of the ferritic steel piping bended by the induction heating. The study assessed the residual stresses of induction heating bended ferriticsteel piping via finite element analysis. As a result, it was identified that high residual stresses are generated on local outersurface region of the induction heating bended ferritic piping.

  5. Finite element residual stress analysis of induction heating bended ferritic steel piping

    SciTech Connect

    Kima, Jong Sung; Kim, Kyoung-Soo; Oh, Young-Jin; Chang, Hyung-Young; Park, Heung-Bae

    2014-10-06

    Recently, there is a trend to apply the piping bended by induction heating process to nuclear power plants. Residual stress can be generated due to thermo-mechanical mechanism during the induction heating bending process. It is well-known that the residual stress has important effect on crack initiation and growth. The previous studies have focused on the thickness variation. In part, some studies were performed for residual stress evaluation of the austenitic stainless steel piping bended by induction heating. It is difficult to find the residual stresses of the ferritic steel piping bended by the induction heating. The study assessed the residual stresses of induction heating bended ferriticsteel piping via finite element analysis. As a result, it was identified that high residual stresses are generated on local outersurface region of the induction heating bended ferritic piping.

  6. Heat stress activates the yeast high-osmolarity glycerol mitogen-activated protein kinase pathway, and protein tyrosine phosphatases are essential under heat stress.

    PubMed

    Winkler, Astrid; Arkind, Christopher; Mattison, Christopher P; Burkholder, Anne; Knoche, Kathryn; Ota, Irene

    2002-04-01

    The yeast high-osmolarity glycerol (HOG) mitogen-activated protein kinase (MAPK) pathway has been characterized as being activated solely by osmotic stress. In this work, we show that the Hog1 MAPK is also activated by heat stress and that Sho1, previously identified as a membrane-bound osmosensor, is required for heat stress activation of Hog1. The two-component signaling protein, Sln1, the second osmosensor in the HOG pathway, was not involved in heat stress activation of Hog1, suggesting that the Sho1 and Sln1 sensors discriminate between stresses. The possible function of Hog1 activation during heat stress was examined, and it was found that the hog1 delta strain does not recover as rapidly from heat stress as well as the wild type. It was also found that protein tyrosine phosphatases (PTPs) Ptp2 and Ptp3, which inactivate Hog1, have two functions during heat stress. First, they are essential for survival at elevated temperatures, preventing lethality due to Hog1 hyperactivation. Second, they block inappropriate cross talk between the HOG and the cell wall integrity MAPK pathways, suggesting that PTPs are important for maintaining specificity in MAPK signaling pathways. PMID:12455951

  7. Heat Stress Activates the Yeast High-Osmolarity Glycerol Mitogen-Activated Protein Kinase Pathway, and Protein Tyrosine Phosphatases Are Essential under Heat Stress

    PubMed Central

    Winkler, Astrid; Arkind, Christopher; Mattison, Christopher P.; Burkholder, Anne; Knoche, Kathryn; Ota, Irene

    2002-01-01

    The yeast high-osmolarity glycerol (HOG) mitogen-activated protein kinase (MAPK) pathway has been characterized as being activated solely by osmotic stress. In this work, we show that the Hog1 MAPK is also activated by heat stress and that Sho1, previously identified as a membrane-bound osmosensor, is required for heat stress activation of Hog1. The two-component signaling protein, Sln1, the second osmosensor in the HOG pathway, was not involved in heat stress activation of Hog1, suggesting that the Sho1 and Sln1 sensors discriminate between stresses. The possible function of Hog1 activation during heat stress was examined, and it was found that the hog1Δ strain does not recover as rapidly from heat stress as well as the wild type. It was also found that protein tyrosine phosphatases (PTPs) Ptp2 and Ptp3, which inactivate Hog1, have two functions during heat stress. First, they are essential for survival at elevated temperatures, preventing lethality due to Hog1 hyperactivation. Second, they block inappropriate cross talk between the HOG and the cell wall integrity MAPK pathways, suggesting that PTPs are important for maintaining specificity in MAPK signaling pathways. PMID:12455951

  8. Treatment with bone marrow mesenchymal stem cells combined with plumbagin alleviates spinal cord injury by affecting oxidative stress, inflammation, apoptotis and the activation of the Nrf2 pathway.

    PubMed

    Yang, Wencheng; Yang, Yan; Yang, Jian-Yi; Liang, Ming; Song, Jiangtao

    2016-04-01

    The aim of the present study was to investigate the protective effect exerted by bone marrow mesenchymal stem cells (BMSCs) in combination with plumbagin on spinal cord injury (SCI) and explore the mechanism behind this protective effect. Firstly, BMSCs were extracted from male Sprague-Dawley rats, cultured in vitro, and identified by hematoxylin. Sprague-Dawley rats were then randomly divided into a control group, SCI model group, BMSC-treated group, a plumbagin-treated group, and a BMSC and plumbagin-treated group. After treatment with BMSCs combined with plumbagin, a Basso, Beattie and Bresnahan (BBB) test was carried out and the spinal cord water content was examined in order to analyze the effect of BMSCs combined with plumbagin on SCI. The myeloperoxidase (MPO), superoxide dismutase (SOD), malondialdehyde (MDA), nuclear factor-κB (NF-κB) p65 unit, tumor necrosis factor-α (TNF-α) levels were also detected. Moreover, nuclear factor erythroid 2‑related factor 2 (Nrf2), phosphoinositide 3-kinase (PI3K), phosphorylated (p-)Akt, p-p38 mitogen-activated protein kinase (MAPK), and p-extracellular-signal-regulated kinase (ERK) protein expression levels were measured using western blot analysis. Treatment with BMSCs combined with plumbagin significantly improved locomotor recovery and reduced the spinal cord water content after SCI. The increased MPO, MDA, NF-κB p65 and TNF-α levels were significantly suppressed and the decreased SOD was significantly increased in SCI rats. The suppression of Nrf2, p-Akt and p-ERK, as well as the promotion of p-p38 MAPK, were reversed by treatment with BMSCs combined with plumbagin. These effects suggest that treatment with BMSCs combined with plumbagin alleviates SCI through its effects on oxidative stress, inflammation, apoptotis and activation of the Nrf2 pathway. PMID:26936518

  9. Genome Analysis of Pseudomonas fluorescens PCL1751: A Rhizobacterium that Controls Root Diseases and Alleviates Salt Stress for Its Plant Host

    PubMed Central

    Cho, Shu-Ting; Chang, Hsing-Hua; Egamberdieva, Dilfuza; Kamilova, Faina; Lugtenberg, Ben; Kuo, Chih-Horng

    2015-01-01

    Pseudomonas fluorescens PCL1751 is a rod-shaped Gram-negative bacterium isolated from the rhizosphere of a greenhouse-grown tomato plant in Uzbekistan. It controls several plant root diseases caused by Fusarium fungi through the mechanism of competition for nutrients and niches (CNN). This mechanism does not rely on the production of antibiotics, so it avoids the concerns of resistance development and is environmentally safe. Additionally, this bacterium promotes plant growth by alleviating salt stress for its plant host. To investigate the genetic mechanisms that may explain these observations, we determined the complete genome sequence of this bacterium, examined its gene content, and performed comparative genomics analysis with other Pseudomonas strains. The genome of P. fluorescens PCL1751 consisted of one circular chromosome that is 6,143,950 base-pairs (bp) in size; no plasmid was found. The annotation included 19 rRNA, 70 tRNA, and 5,534 protein-coding genes. The gene content analysis identified a large number of genes involved in chemotaxis and motility, colonization of the rhizosphere, siderophore biosynthesis, and osmoprotectant production. In contrast, the pathways involved in the biosynthesis of phytohormones or antibiotics were not found. Comparison with other Pseudomonas genomes revealed extensive variations in their genome size and gene content. The presence and absence of secretion system genes were highly variable. As expected, the synteny conservation among strains decreased as a function of phylogenetic divergence. The integration of prophages appeared to be an important driver for genome rearrangements. The whole-genome gene content analysis of this plant growth-promoting rhizobacterium (PGPR) provided some genetic explanations to its phenotypic characteristics. The extensive and versatile substrate utilization pathways, together with the presence of many genes involved in competitive root colonization, provided further support for the finding

  10. Long Chain Omega-3 Polyunsaturated Fatty Acid Supplementation Alleviates Doxorubicin-Induced Depressive-Like Behaviors and Neurotoxicity in Rats: Involvement of Oxidative Stress and Neuroinflammation.

    PubMed

    Wu, Yan-Qin; Dang, Rui-Li; Tang, Mi-Mi; Cai, Hua-Lin; Li, Huan-De; Liao, De-Hua; He, Xin; Cao, Ling-Juan; Xue, Ying; Jiang, Pei

    2016-04-23

    Doxorubicin (DOX) is a chemotherapeutic agent widely used in human malignancies. Its long-term use can cause neurobiological side-effects associated with depression. Omega-3 polyunsaturated fatty acids (ω-3 PUFAs), the essential fatty acids found in fish oil, possess neuroprotecitve and antidepressant activities. Thus, the aim of this study was to explore the potential protective effects of ω-3 PUFAs against DOX-induced behavioral changes and neurotoxicity. ω-3 PUFAs were given daily by gavage (1.5 g/kg) over three weeks starting seven days before DOX administration (2.5 mg/kg). Open-field test (OFT) and forced swimming test (FST) were conducted to assess exploratory activity and despair behavior, respectively. Our data showed that ω-3 PUFAs supplementation significantly mitigated the behavioral changes induced by DOX. ω-3 PUFAs pretreatment also alleviated the DOX-induced neural apoptosis. Meanwhile, ω-3 PUFAs treatment ameliorated DOX-induced oxidative stress in the prefrontal cortex and hippocampus. Additionally, gene expression of pro-inflammatory cytokines, including IL-1β, IL-6, and TNF-α, and the protein levels of NF-κB and iNOS were significantly increased in brain tissues of DOX-treated group, whereas ω-3 PUFAs supplementation significantly attenuated DOX-induced neuroinflammation. In conclusion, ω-3 PUFAs can effectively protect against DOX-induced depressive-like behaviors, and the mechanisms underlying the neuroprotective effect are potentially associated with its anti-oxidant, anti-inflammatory, and anti-apoptotic properties.

  11. Genome Analysis of Pseudomonas fluorescens PCL1751: A Rhizobacterium that Controls Root Diseases and Alleviates Salt Stress for Its Plant Host.

    PubMed

    Cho, Shu-Ting; Chang, Hsing-Hua; Egamberdieva, Dilfuza; Kamilova, Faina; Lugtenberg, Ben; Kuo, Chih-Horng

    2015-01-01

    Pseudomonas fluorescens PCL1751 is a rod-shaped Gram-negative bacterium isolated from the rhizosphere of a greenhouse-grown tomato plant in Uzbekistan. It controls several plant root diseases caused by Fusarium fungi through the mechanism of competition for nutrients and niches (CNN). This mechanism does not rely on the production of antibiotics, so it avoids the concerns of resistance development and is environmentally safe. Additionally, this bacterium promotes plant growth by alleviating salt stress for its plant host. To investigate the genetic mechanisms that may explain these observations, we determined the complete genome sequence of this bacterium, examined its gene content, and performed comparative genomics analysis with other Pseudomonas strains. The genome of P. fluorescens PCL1751 consisted of one circular chromosome that is 6,143,950 base-pairs (bp) in size; no plasmid was found. The annotation included 19 rRNA, 70 tRNA, and 5,534 protein-coding genes. The gene content analysis identified a large number of genes involved in chemotaxis and motility, colonization of the rhizosphere, siderophore biosynthesis, and osmoprotectant production. In contrast, the pathways involved in the biosynthesis of phytohormones or antibiotics were not found. Comparison with other Pseudomonas genomes revealed extensive variations in their genome size and gene content. The presence and absence of secretion system genes were highly variable. As expected, the synteny conservation among strains decreased as a function of phylogenetic divergence. The integration of prophages appeared to be an important driver for genome rearrangements. The whole-genome gene content analysis of this plant growth-promoting rhizobacterium (PGPR) provided some genetic explanations to its phenotypic characteristics. The extensive and versatile substrate utilization pathways, together with the presence of many genes involved in competitive root colonization, provided further support for the finding

  12. Stress and Heat Transfer Analyses for Different Channel Arrangements of PCHE

    SciTech Connect

    Jong B. Lim; Robert G. Shrake; Eung S. Kim; Chang H. Oh

    2008-11-01

    Stress and heat transfer analyses are being performed on the different channel arrangements of Printed Circuit Heat Exchanger (PCHE) proposed for application of VHTRs using ABAQUS [ABAQUS, 2007] and COMSOL [COMSOL, 2007], respectively. The work is being done to determine the configuration that would result in minimum stress for the same heat performance. This paper discusses the effects of shifting the coolant channels in every other row to reduce stress.

  13. Exogenous IAA differentially affects growth, oxidative stress and antioxidants system in Cd stressed Trigonella foenum-graecum L. seedlings: Toxicity alleviation by up-regulation of ascorbate-glutathione cycle.

    PubMed

    Bashri, Gausiya; Prasad, Sheo Mohan

    2016-10-01

    In the present study, effect of exogenous indole-3-acetic acid at their different levels (i.e. low; IAAL, 10µM and high; IAAH, 100µM) were studied on growth, oxidative stress biomarkers and antioxidant enzymes (SOD, POD, CAT and GST), and metabolites (AsA and GSH) as well as enzymes (APX, GR and DHAR) of ascorbate-glutathione cycle in Trigonella foenum-graecum L. seedlings grown under cadmium (Cd1, 3mgCd kg(-1) soil and Cd2, 9mgCd kg(-1) soil) stress. Cadmium (Cd) at both doses caused reduction in growth which was correlated with enhanced lipid peroxidation and damage to membrane as a result of excess accumulation of O2(•-) and H2O2. Cd also enhanced the oxidation of AsA and GSH to DHA and GSSG, respectively which give a clear sign of oxidative stress, despite of accelerated activity of enzymatic antioxidants: SOD, CAT, POD, GST as well as APX, DHAR (except in Cd2 stress) and GR. Exogenous application of IAAL resulted further rise in the activities of these enzymes, and maintained the redox status (> ratios: AsA/DHA and GSH/GSSG) of cells. The maintained redox status of cells under IAAL treatment declined the level of ROS in Cd1 and Cd2 treated seedlings thereby alleviated the Cd toxicity and this effect was more pronounced under Cd1 stress. Contrary to this, exogenous IAAH suppressed the activity of DHAR and GR and disturbed the redox status (< ratios: AsA/DHA and GSH/GSSG) of cells, hence excess accumulation of ROS further aggravated the Cd induced damage. Thus, overall results suggest that IAA at low (IAAL) and high (IAAH) doses affected the Cd toxicity differently by regulating the ascorbate-glutathione cycle as well as activity of other antioxidants in Trigonella seedlings. PMID:27344401

  14. ROLE OF ENVIRONMENTAL HEAT AND COLD STRESS ON THE PHYSIOLOGICAL RESPONSE TO ORGANOPHOSPHATES AND OTHER TOXICANTS.

    EPA Science Inventory

    Most toxicological and pharmacological studies are performed in laboratory rodents maintained under comfortable environmental conditions. However, exposure to toxicants as well as some drugs can occur under stressful conditions during rest or while exercising. Heat stress can exa...

  15. Comparison of heat dissipation response between Malaysian and Japanese males during exercise in humid heat stress

    NASA Astrophysics Data System (ADS)

    Wakabayashi, Hitoshi; Wijayanto, Titis; Lee, Joo-Young; Hashiguchi, Nobuko; Saat, Mohamed; Tochihara, Yutaka

    2011-07-01

    This study investigated the differences in heat dissipation response to intense heat stress during exercise in hot and humid environments between tropical and temperate indigenes with matched physical characteristics. Ten Japanese (JP) and ten Malaysian (MY) males participated in this study. Subjects performed exercise for 60 min at 55% peak oxygen uptake in 32°C air with 70% relative humidity, followed by 30 min recovery. The increase in rectal temperature ( T re) was smaller in MY during exercise compared to JP. The local sweat rate and total body mass loss were similar in both groups. Both skin blood flow and mean skin temperature was lower in MY compared to JP. A significantly greater increase in hand skin temperature was observed in MY during exercise, which is attributable to heat loss due to the greater surface area to mass ratio and large number of arteriovenous anastomoses. Also, the smaller increase in T re in MY may be explained by the presence of a significantly greater core-skin temperature gradient in MY than JP. The thermal gradient is also a major factor in increasing the convective heat transfer from core to skin as well as skin blood flow. It is concluded that the greater core-skin temperature gradient observed in MY is responsible for the smaller increase in T re.

  16. Regulation of Non-coding RNAs in Heat Stress Responses of Plants

    PubMed Central

    Zhao, Jianguo; He, Qingsong; Chen, Gang; Wang, Li; Jin, Biao

    2016-01-01

    Heat stress is an important factor limiting plant growth, development, and productivity; thus, plants have evolved special adaptive mechanisms to cope with high-temperature stress. Non-coding RNAs (ncRNAs) are a class of regulatory RNAs that play an important role in many biological processes. Recently developed advanced technologies, such as genome-wide transcriptomic analysis, have revealed that abundant ncRNAs are expressed under heat stress. Although this area of research is still in its infancy, an increasing number of several classes of regulatory ncRNA (i.e., miRNA, siRNA, and lncRNA) related to heat stress responses have been reported. In this mini-review, we discuss our current understanding of the role of ncRNAs in heat stress responses in plants, especially miRNAs, siRNAs, and their targets. For example, the miR398-CSD/CCS-HSF, miR396-WRKY6, miR159-GAMYB, and TAS1-HTT-HSF pathways regulate plant heat tolerance. We highlight the hormone/development-related miRNAs involved in heat stress, and discuss the regulatory networks of miRNA-targets. We also note that DNA methylation and alternative splicing could affect miRNA expression under heat stress, and some lncRNAs could respond to heat stress. Finally, we briefly discuss future prospects concerning the ncRNA-related mechanisms of heat stress responses in plants. PMID:27588021

  17. Adverse impact of heat stress on embryo production: causes and strategies for mitigation.

    PubMed

    Hansen, P J; Drost, M; Rivera, R M; Paula-Lopes, F F; al-Katanani, Y M; Krininger, C E; Chase, C C

    2001-01-01

    The production of embryos by superovulation is often reduced in periods of heat stress. The associated reduction in the number of transferable embryos is due to reduced superovulatory response, lower fertilization rate, and reduced embryo quality. There are also reports that success of in vitro fertilization procedures is reduced during warm periods of the year. Heat stress can compromise the reproductive events required for embryo production by decreasing expression of estrus behavior, altering follicular development, compromising oocyte competence, and inhibiting embryonic development. While preventing effects of heat stress can be difficult, several strategies exist to improve embryo production during heat stress. Among these strategies are changing animal housing to reduce the magnitude of heat stress, utilization of cows with increased resistance to heat stress (i.e., cows with lower milk yield or from thermally-adapted breeds), and manipulation of physiological and cellular function to overcome deleterious consequences of heat stress. Effects of heat stress on estrus behavior can be mitigated by use of estrus detection aids or utilization of ovulation synchronization treatments to allow timed embryo transfer. There is some evidence that embryonic survival can be improved by antioxidant administration and that pharmacological treatments can be developed that reduce the degree of hyperthermia experienced by cows exposed to heat stress.

  18. Regulation of Non-coding RNAs in Heat Stress Responses of Plants.

    PubMed

    Zhao, Jianguo; He, Qingsong; Chen, Gang; Wang, Li; Jin, Biao

    2016-01-01

    Heat stress is an important factor limiting plant growth, development, and productivity; thus, plants have evolved special adaptive mechanisms to cope with high-temperature stress. Non-coding RNAs (ncRNAs) are a class of regulatory RNAs that play an important role in many biological processes. Recently developed advanced technologies, such as genome-wide transcriptomic analysis, have revealed that abundant ncRNAs are expressed under heat stress. Although this area of research is still in its infancy, an increasing number of several classes of regulatory ncRNA (i.e., miRNA, siRNA, and lncRNA) related to heat stress responses have been reported. In this mini-review, we discuss our current understanding of the role of ncRNAs in heat stress responses in plants, especially miRNAs, siRNAs, and their targets. For example, the miR398-CSD/CCS-HSF, miR396-WRKY6, miR159-GAMYB, and TAS1-HTT-HSF pathways regulate plant heat tolerance. We highlight the hormone/development-related miRNAs involved in heat stress, and discuss the regulatory networks of miRNA-targets. We also note that DNA methylation and alternative splicing could affect miRNA expression under heat stress, and some lncRNAs could respond to heat stress. Finally, we briefly discuss future prospects concerning the ncRNA-related mechanisms of heat stress responses in plants. PMID:27588021

  19. Regulation of Non-coding RNAs in Heat Stress Responses of Plants.

    PubMed

    Zhao, Jianguo; He, Qingsong; Chen, Gang; Wang, Li; Jin, Biao

    2016-01-01

    Heat stress is an important factor limiting plant growth, development, and productivity; thus, plants have evolved special adaptive mechanisms to cope with high-temperature stress. Non-coding RNAs (ncRNAs) are a class of regulatory RNAs that play an important role in many biological processes. Recently developed advanced technologies, such as genome-wide transcriptomic analysis, have revealed that abundant ncRNAs are expressed under heat stress. Although this area of research is still in its infancy, an increasing number of several classes of regulatory ncRNA (i.e., miRNA, siRNA, and lncRNA) related to heat stress responses have been reported. In this mini-review, we discuss our current understanding of the role of ncRNAs in heat stress responses in plants, especially miRNAs, siRNAs, and their targets. For example, the miR398-CSD/CCS-HSF, miR396-WRKY6, miR159-GAMYB, and TAS1-HTT-HSF pathways regulate plant heat tolerance. We highlight the hormone/development-related miRNAs involved in heat stress, and discuss the regulatory networks of miRNA-targets. We also note that DNA methylation and alternative splicing could affect miRNA expression under heat stress, and some lncRNAs could respond to heat stress. Finally, we briefly discuss future prospects concerning the ncRNA-related mechanisms of heat stress responses in plants.

  20. Enhanced economic connectivity to foster heat stress-related losses.

    PubMed

    Wenz, Leonie; Levermann, Anders

    2016-06-01

    Assessing global impacts of unexpected meteorological events in an increasingly connected world economy is important for estimating the costs of climate change. We show that since the beginning of the 21st century, the structural evolution of the global supply network has been such as to foster an increase of climate-related production losses. We compute first- and higher-order losses from heat stress-induced reductions in productivity under changing economic and climatic conditions between 1991 and 2011. Since 2001, the economic connectivity has augmented in such a way as to facilitate the cascading of production loss. The influence of this structural change has dominated over the effect of the comparably weak climate warming during this decade. Thus, particularly under future warming, the intensification of international trade has the potential to amplify climate losses if no adaptation measures are taken. PMID:27386555

  1. Effects of dietary arginine and glutamine on alleviating the impairment induced by deoxynivalenol stress and immune relevant cytokines in growing pigs.

    PubMed

    Wu, Li; Wang, Wence; Yao, Kang; Zhou, Ting; Yin, Jie; Li, Tiejun; Yang, Lin; He, Liuqin; Yang, Xiaojian; Zhang, Hongfu; Wang, Qi; Huang, Ruilin; Yin, Yulong

    2013-01-01

    glutamine on alleviating the impairment induced by DON stress and immune relevant cytokines in growing pigs.

  2. Climate Change Impact on Evapotranspiration, Heat Stress and Chill Requirements

    NASA Astrophysics Data System (ADS)

    Snyder, R. L.; Marras, S.; Spano, D.

    2013-12-01

    Carbon dioxide concentration scenarios project an increase in CO2 from 372 ppm to between 500 and 950 ppm by the year 2100, and the potential effect on temperature, humidity, and plant responses to environmental factors are complex and concerning. For 2100, mean daily temperature increase projections range from 1.2oC to 6.8oC depending on greenhouse gas emissions. On the bad side, higher temperatures are often associated with increases in evapotranspiration (ET), heat stress, and pest infestations. On the good side, increased temperature is commonly related to less frost damage, faster growth, and higher production in some cases. One misconception is that global warming will increase evapotranspiration and, hence, agricultural water demand. As the oceans and other water bodies warm, evaporation and humidity are likely to increase globally, but higher humidity tends to reduce plant transpiration and hence ET. Higher CO2 concentrations also tend to reduce ET, and, in the end, the increase in ET due to higher temperature is likely to be offset by a decrease in ET due to higher humidity and CO2. With a decrease in daytime evapotranspiration, the canopy temperature is likely to rise relative to the air temperature, and this implies that heat stress could be worse than predicted by increased air temperature. Daily minimum temperatures are generally increasing about twice as fast as maximum temperatures presumably because of the increasing dew point temperatures as more water vapor is added to the atmosphere. This could present a serious problem to meet the chill requirement for fruit and nut crops. Growing seasons, i.e., from the last spring to the first fall frost, are likely to increase, but the crop growth period is likely to shorten due to higher temperature. Thus, spring frost damage is unlikely to change but there should be fewer damaging fall frost events. In this paper, we will present some ideas on the possible impact of climate change on evapotranspiration and

  3. Effects of cyclic heat stress or vitamin C supplementation during cyclic heat stress on HSP70, inflammatory cytokines, and the antioxidant defense system in Sprague Dawley rats.

    PubMed

    Yun, Seo-Hyun; Moon, Yang-Soo; Sohn, Sea-Hwan; Jang, In-Surk

    2012-01-01

    A total of 21 male SD rats were divided into three groups to investigate the effects of consecutive cyclic heat stress or vitamin C under heat stress on heat shock protein (HSP) 70, inflammatory cytokines, and antioxidant systems. The heat stress (HS) and vitamin C supplementation during heat stress (HS+VC) groups were exposed to cyclic heat stress (23 to 38 to 23°C) for 2 h on each of seven consecutive days. The HS+VC group had free access to water containing 0.5% vitamin C throughout the experiment. Hepatic HSP70 mRNA in the HS group was significantly (P<0.05) higher than that in the control (CON) or HS+VC group. The mRNA levels of tumor necrosis factor (TNF)-α and inducible nitric oxide synthase (iNOS) in the HS group were greater (P<0.05) than those in the CON group. The HS+VC group showed significantly (P<0.05) lower mRNA levels of hepatic interleukin-6 and TNF-α than the HS group. However, thymic HSP70 and inflammatory cytokines were unaffected by treatments. In the hepatic antioxidant system, the mRNA and activity of glutathione peroxidase (GPX) were greater (P<0.05) in the HS than in the CON group, whereas the HS+VC group showed markedly (P<0.05) lower GPX mRNA and activity than the HS group. However, superoxide dismutase, glutathione S-transferase, and malondialdehyde were unaffected by treatments. In conclusion, cyclic heat stress activated hepatic HSP70, TNF-α, iNOS, and GPX genes, whereas vitamin C during heat stress ameliorated heat stress-induced cellular responses in rats.

  4. Genome-wide analysis of the CaHsp20 gene family in pepper: comprehensive sequence and expression profile analysis under heat stress

    PubMed Central

    Guo, Meng; Liu, Jin-Hong; Lu, Jin-Ping; Zhai, Yu-Fei; Wang, Hu; Gong, Zhen-Hui; Wang, Shu-Bin; Lu, Ming-Hui

    2015-01-01

    The Hsp20 genes are present in all plant species and play important roles in alleviating heat stress and enhancing plant thermotolerance by preventing the irreversible aggregation of denaturing proteins. However, very little is known about the CaHsp20 gene family in pepper (Capsicum annuum L.), an important vegetable crop with character of temperate but thermosensitive. In this study, a total of 35 putative pepper Hsp20 genes (CaHsp20s) were identified and renamed on the basis of their molecular weight, and then their gene structure, genome location, gene duplication, phylogenetic relationship, and interaction network were also analyzed. The expression patterns of CaHsp20 genes in four different tissues (root, stem, leaf, and flower) from the thermotolerant line R9 under heat stress condition were measured using semi-quantitative RT-PCR. The transcripts of most CaHsp20 genes maintained a low level in all of the four tissues under normal temperature condition, but were highly induced by heat stress, while the expression of CaHsp16.6b, 16.7, and 23.8 were only detected in specific tissues and were not so sensitive to heat stress like other CaHsp20 genes. In addition, compared to those in thermotolerant line R9, the expression peak of most CaHsp20 genes in thermosensitive line B6 under heat stress was hysteretic, and several CaHsp20 genes (CaHsp16.4, 18.2a, 18.7, 21.2, 22.0, 25.8, and 25.9) showed higher expression levels in both line B6 and R9. These data suggest that the CaHsp20 genes may be involved in heat stress and defense responses in pepper, which provides the basis for further functional analyses of CaHsp20s in the formation of pepper acquired thermotoleance. PMID:26483820

  5. Infant's physiological response to short heat stress during sauna bath.

    PubMed

    Rissmann, A; Al-Karawi, J; Jorch, G

    2002-01-01

    Thermoregulatory response to Finnish sauna bath was investigated in 47 infants (age 3 - 14 month). Before taking a short sauna bath lasting 3 min, the infants stayed in a swimming pool for 15 min. Under these conditions sauna bathing did not increase the rectal temperature. Unexpectedly rectal temperature even decreased by 0.2 degrees C (p < 0.05) probably due to redistribution of cold peripheral blood into the core of the body. Mean systolic and diastolic arterial blood pressure and mean heart rate remained unchanged after sauna bathing. The blood pressure amplitude decreased significantly after the swimming period from 47 mm Hg to 38 mm Hg (p < 0.05) and rose again after sauna bathing to 42 mm Hg. All infants tolerated short heat exposure in the sauna without side effects. The circulatory adjustment was efficient. Even young infants were able to cope with the acute circulatory changes imposed by heat stress. Adequate thermoregulatory and cardiovascular adaptive responses to sauna bathing could be shown for the first time in infants between 3 and 14 months of age.

  6. Age, splanchnic vasoconstriction, and heat stress during tilting

    NASA Technical Reports Server (NTRS)

    Minson, C. T.; Wladkowski, S. L.; Pawelczyk, J. A.; Kenney, W. L.

    1999-01-01

    During upright tilting, blood is translocated to the dependent veins of the legs and compensatory circulatory adjustments are necessary to maintain arterial pressure. For examination of the effect of age on these responses, seven young (23 +/- 1 yr) and seven older (70 +/- 3 yr) men were head-up tilted to 60 degrees in a thermoneutral condition and during passive heating with water-perfused suits. Measurements included heart rate (HR), cardiac output (Qc; acetylene rebreathing technique), central venous pressure (CVP), blood pressures, forearm blood flow (venous occlusion plethysmography), splanchnic and renal blood flows (indocyanine green and p-aminohippurate clearance), and esophageal and mean skin temperatures. In response to tilting in the thermoneutral condition, CVP and stroke volume decreased to a greater extent in the young men, but HR increased more, such that the fall in Qc was similar between the two groups in the upright posture. The rise in splanchnic vascular resistance (SVR) was greater in the older men, but the young men increased forearm vascular resistance (FVR) to a greater extent than the older men. The fall in Qc during combined heat stress and tilting was greater in the young compared with older men. Only four of the young men versus six of the older men were able to finish the second tilt without becoming presyncopal. In summary, the older men relied on a greater increase in SVR to compensate for a reduced ability to constrict the skin and muscle circulations (as determined by changes in FVR) during head-up tilting.

  7. Cerebral Vascular Control and Metabolism in Heat Stress.

    PubMed

    Bain, Anthony R; Nybo, Lars; Ainslie, Philip N

    2015-07-01

    This review provides an in-depth update on the impact of heat stress on cerebrovascular functioning. The regulation of cerebral temperature, blood flow, and metabolism are discussed. We further provide an overview of vascular permeability, the neurocognitive changes, and the key clinical implications and pathologies known to confound cerebral functioning during hyperthermia. A reduction in cerebral blood flow (CBF), derived primarily from a respiratory-induced alkalosis, underscores the cerebrovascular changes to hyperthermia. Arterial pressures may also become compromised because of reduced peripheral resistance secondary to skin vasodilatation. Therefore, when hyperthermia is combined with conditions that increase cardiovascular strain, for example, orthostasis or dehydration, the inability to preserve cerebral perfusion pressure further reduces CBF. A reduced cerebral perfusion pressure is in turn the primary mechanism for impaired tolerance to orthostatic challenges. Any reduction in CBF attenuates the brain's convective heat loss, while the hyperthermic-induced increase in metabolic rate increases the cerebral heat gain. This paradoxical uncoupling of CBF to metabolism increases brain temperature, and potentiates a condition whereby cerebral oxygenation may be compromised. With levels of experimentally viable passive hyperthermia (up to 39.5-40.0 °C core temperature), the associated reduction in CBF (∼ 30%) and increase in cerebral metabolic demand (∼ 10%) is likely compensated by increases in cerebral oxygen extraction. However, severe increases in whole-body and brain temperature may increase blood-brain barrier permeability, potentially leading to cerebral vasogenic edema. The cerebrovascular challenges associated with hyperthermia are of paramount importance for populations with compromised thermoregulatory control--for example, spinal cord injury, elderly, and those with preexisting cardiovascular diseases. PMID:26140721

  8. The relationship between yield and the antioxidant defense system in tomatoes grown under heat stress.

    PubMed

    Rainwater, D T; Gossett, D R; Millhollon, E P; Hanna, H Y; Banks, S W; Lucas, M C

    1996-11-01

    Four putative heat-tolerant tomato (Lycopersicum esculentum) cultivars (Tamasabro, Heat Wave, LHT-24, and Solar Set) and one putative heat-sensitive tomato cultivar (Floradade) were grown in the field under non-stress (average daily temperature of 26 degrees C) and heat-stress (average daily temperature of 34 degrees C) conditions. At anthesis, approximately five weeks after being transplanted to the field, leaf samples were collected for antioxidant analyses. Yield was determined by harvesting ripe fruit seven weeks after the collection of leaf samples. Heat stress resulted in a 79.1% decrease in yield for the heat-sensitive Floradade, while the fruit yield in the heat-tolerant cultivars Heat Wave, LHT-24, Solar Set, and Tamasabro was reduced 51.5%, 22.1%, 43.8%, and 34.8% respectively. When grown under heat stress, antioxidant activities were also greater in the heat-tolerant cultivars. Superoxide dismutase (SOD) activity increased up to 9-fold in the heat-tolerant cultivars but decreased 83.1% in the heat-sensitive Floradade. Catalase, peroxidase, and ascorbate peroxidase activity increased significantly in all cultivars. Only Heat Wave showed a significant increase in glutathione reductase in response to heat stress but all heat-tolerant cultivars exhibited significantly lower oxidized ascorbate/reduced ascorbate ratios, greater reduced glutathione/oxidized glutathione rations, and greater alpha-tocopherol concentrations compared to the heat-sensitive cultivar Floridade. These data indicate that the more heat-tolerant cultivars had an enhanced capacity for scavenging active oxygen species and a more active ascorbate-glutathione cycle and suggest a strong correlation between the ability to up-regulate the antioxidant defense system and the ability of tomatoes to produce greater yields when grown under heat stress.

  9. Alterations in protein synthesis and levels of heat shock 70 proteins in response to salt stress of the halotolerant yeast Rhodotorula mucilaginosa.

    PubMed

    Lahav, Ron; Nejidat, Ali; Abeliovich, Aharon

    2004-05-01

    Responses of the halotolerant yeast Rhodotorula mucilaginosa YRH2 to salt stress was studied. Strain YRH2 was isolated from chemical industry park wastewater evaporation ponds that are characterized by large fluctuations in salinity and pH. Upon shift to high salt medium there is a shutdown of protein synthesis. Radiolabeling and separation of proteins from salt stressed and non-stressed cells identified down-regulated heat shock 70 proteins Ssb1/2p, by N-terminal sequencing and Western blotting. Ssb's role in salt stress in both R. mucilaginosa and S. cerevisiae was examined and we show that its response to salt stress and amino acid limitation is similar. Other proteins such as the heat shock 70 protein Kar2p/BiP and Protein Disulfide Isomerase were strongly induced in response to a shift to high salt in R. mucilaginosa and reacted in a manner similar to the effect of tunicamycin, a known unfolded protein response inducer. Also, assaying carboxypeptidase Y, we showed that high salt medium reduces the specific activity of the enzyme in R. mucilaginosa. It is suggested that the changes in the expression of the heat shock 70 proteins is a part of a mechanism which alleviates the damaging effects of high salt on protein folding in the yeast Rhodotorula mucilaginosa.

  10. Epigenetic responses to heat stress at different time scales and the involvement of small RNAs

    PubMed Central

    Stief, Anna; Brzezinka, Krzysztof; Lämke, Jörn; Bäurle, Isabel

    2014-01-01

    The hypothesis that plants can benefit from a memory of past stress exposure has recently attracted a lot of attention. Here, we discuss two different examples of heat stress memory to elucidate the potential benefits that epigenetic responses may provide at both the level of acclimation of the individual plant and adaptation at a species-wide level. Specifically, we discuss how microRNAs regulate the heat stress memory and thereby increase survival upon a recurring heat stress. Secondly, we review how a prolonged heat stress in a small interfering RNA-deficient background induces retrotransposition that is transmitted to the next generation, thus creating genetic variation for natural selection to act on. Collectively, these studies reveal a crucial role of short RNAs in heat stress memory across different time scales. PMID:25482804

  11. An assessment of heat stress in the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Rasilla Álvarez, D.; Fernandez García, F.

    2010-09-01

    of heat extremes (PET > 35 °C) was compared with the occurrence of several circulation patterns, in other to validate the circulation pattern catalogue and obtain a regional signal. In order to gain a comprehensive understanding of the sources and thermodynamic characteristics of the air masses involved in those events, the atmospheric circulation prior selected episodes of heat stress was analyzed using a sequential classification procedure (up to three days) and compared with the backward trajectories supplied by the HYSPLIT model (Hybrid Single-Particle Lagrangian Integrated Trajectory model; http://ready.arl.noaa.gov/HYSPLIT.php). The dependence of the PET on some geographical controls (e.g. topography, latitude, distance to sea) results on marked variation between the values calculated for different stations. Low/middle-altitude continental stations (eg. Madrid, Seville) show much higher thermal stress than coastal stations (Barcelona, Málaga) or stations in elevated areas (e.g. Burgos, Navacerrada). Besides, coastal stations display an asymmetric monthly distribution, with larger probability in August, while July is the most typical month in the interior of Iberia. 5 regions resulted from the analysis of daily PET fields: Northern, Atlantic North, Atlantic South, Mediterranean North and Mediterranean South. The extreme heat events occurrence on each region showed strong links with the atmospheric circulation, but two basic mechanisms are involved in most of them. Coastal stations experience such events when the regional atmospheric circulation overrules local circulations, replacing the cooler and moist air masses by continental downslope flows. In continental Iberia the advection of hot air masses from a diverse precedence and embedded into a weak atmospheric circulation (radiative processes) trigger most of the situations of heat stress.

  12. Sm-Like Protein-Mediated RNA Metabolism Is Required for Heat Stress Tolerance in Arabidopsis

    PubMed Central

    Okamoto, Masanori; Matsui, Akihiro; Tanaka, Maho; Morosawa, Taeko; Ishida, Junko; Iida, Kei; Mochizuki, Yoshiki; Toyoda, Tetsuro; Seki, Motoaki

    2016-01-01

    Sm-like proteins play multiple functions in RNA metabolism, which is essential for biological processes such as stress responses in eukaryotes. The Arabidopsis thaliana sad1 mutant has a mutation of sm-like protein 5 (LSM5) and shows impaired drought and salt stress tolerances. The lsm5/sad1 mutant also showed hypersensitivity to heat stress. GFP-fused LSM5/SAD1 was localized in the nucleus under optimal growth conditions. After heat stress treatment, GFP-fused LSM5/SAD1 fluorescence was also observed as small cytoplasmic dots, in addition to nuclear localization. Whole genome transcriptome analysis revealed that many genes in Arabidopsis were drastically changed in response to heat stress. More heat-responsive genes were highly expressed in lsm5/sad1 mutant at both 2 and 6 h after heat stress treatment. Additionally, intron-retained and capped transcripts accumulated in the lsm5/sad1 mutant after heat stress treatment. In this study, we also identified non-Arabidopsis Genome Initiative transcripts that were expressed from unannotated regions. Most of these transcripts were antisense transcripts, and many capped non-AGI transcripts accumulated in the lsm5/sad1 mutant during heat stress treatment. These results indicated that LSM5/SAD1 functions to degrade aberrant transcripts through appropriate mRNA splicing and decapping, and precise RNA metabolic machinery is required for heat stress tolerance. PMID:27493656

  13. Sm-Like Protein-Mediated RNA Metabolism Is Required for Heat Stress Tolerance in Arabidopsis.

    PubMed

    Okamoto, Masanori; Matsui, Akihiro; Tanaka, Maho; Morosawa, Taeko; Ishida, Junko; Iida, Kei; Mochizuki, Yoshiki; Toyoda, Tetsuro; Seki, Motoaki

    2016-01-01

    Sm-like proteins play multiple functions in RNA metabolism, which is essential for biological processes such as stress responses in eukaryotes. The Arabidopsis thaliana sad1 mutant has a mutation of sm-like protein 5 (LSM5) and shows impaired drought and salt stress tolerances. The lsm5/sad1 mutant also showed hypersensitivity to heat stress. GFP-fused LSM5/SAD1 was localized in the nucleus under optimal growth conditions. After heat stress treatment, GFP-fused LSM5/SAD1 fluorescence was also observed as small cytoplasmic dots, in addition to nuclear localization. Whole genome transcriptome analysis revealed that many genes in Arabidopsis were drastically changed in response to heat stress. More heat-responsive genes were highly expressed in lsm5/sad1 mutant at both 2 and 6 h after heat stress treatment. Additionally, intron-retained and capped transcripts accumulated in the lsm5/sad1 mutant after heat stress treatment. In this study, we also identified non-Arabidopsis Genome Initiative transcripts that were expressed from unannotated regions. Most of these transcripts were antisense transcripts, and many capped non-AGI transcripts accumulated in the lsm5/sad1 mutant during heat stress treatment. These results indicated that LSM5/SAD1 functions to degrade aberrant transcripts through appropriate mRNA splicing and decapping, and precise RNA metabolic machinery is required for heat stress tolerance. PMID:27493656

  14. Sm-Like Protein-Mediated RNA Metabolism Is Required for Heat Stress Tolerance in Arabidopsis.

    PubMed

    Okamoto, Masanori; Matsui, Akihiro; Tanaka, Maho; Morosawa, Taeko; Ishida, Junko; Iida, Kei; Mochizuki, Yoshiki; Toyoda, Tetsuro; Seki, Motoaki

    2016-01-01

    Sm-like proteins play multiple functions in RNA metabolism, which is essential for biological processes such as stress responses in eukaryotes. The Arabidopsis thaliana sad1 mutant has a mutation of sm-like protein 5 (LSM5) and shows impaired drought and salt stress tolerances. The lsm5/sad1 mutant also showed hypersensitivity to heat stress. GFP-fused LSM5/SAD1 was localized in the nucleus under optimal growth conditions. After heat stress treatment, GFP-fused LSM5/SAD1 fluorescence was also observed as small cytoplasmic dots, in addition to nuclear localization. Whole genome transcriptome analysis revealed that many genes in Arabidopsis were drastically changed in response to heat stress. More heat-responsive genes were highly expressed in lsm5/sad1 mutant at both 2 and 6 h after heat stress treatment. Additionally, intron-retained and capped transcripts accumulated in the lsm5/sad1 mutant after heat stress treatment. In this study, we also identified non-Arabidopsis Genome Initiative transcripts that were expressed from unannotated regions. Most of these transcripts were antisense transcripts, and many capped non-AGI transcripts accumulated in the lsm5/sad1 mutant during heat stress treatment. These results indicated that LSM5/SAD1 functions to degrade aberrant transcripts through appropriate mRNA splicing and decapping, and precise RNA metabolic machinery is required for heat stress tolerance.

  15. Aspergillus oryzae AoSO is a novel component of stress granules upon heat stress in filamentous fungi.

    PubMed

    Huang, Hsiang-Ting; Maruyama, Jun-ichi; Kitamoto, Katsuhiko

    2013-01-01

    Stress granules are a type of cytoplasmic messenger ribonucleoprotein (mRNP) granule formed in response to the inhibition of translation initiation, which typically occurs when cells are exposed to stress. Stress granules are conserved in eukaryotes; however, in filamentous fungi, including Aspergillus oryzae, stress granules have not yet been defined. For this reason, here we investigated the formation and localization of stress granules in A. oryzae cells exposed to various stresses using an EGFP fusion protein of AoPab1, a homolog of Saccharomyces cerevisiae Pab1p, as a stress granule marker. Localization analysis showed that AoPab1 was evenly distributed throughout the cytoplasm under normal growth conditions, and accumulated as cytoplasmic foci mainly at the hyphal tip in response to stress. AoSO, a homolog of Neurospora crassa SO, which is necessary for hyphal fusion, colocalized with stress granules in cells exposed to heat stress. The formation of cytoplasmic foci of AoSO was blocked by treatment with cycloheximide, a known inhibitor of stress granule formation. Deletion of the Aoso gene had effects on the formation and localization of stress granules in response to heat stress. Our results suggest that AoSO is a novel component of stress granules specific to filamentous fungi. The authors would specially like to thank Hiroyuki Nakano and Kei Saeki for generously providing experimental and insightful opinions.

  16. Effects of rumen-protected γ-aminobutyric acid on performance and nutrient digestibility in heat-stressed dairy cows.

    PubMed

    Cheng, J B; Bu, D P; Wang, J Q; Sun, X Z; Pan, L; Zhou, L Y; Liu, W

    2014-09-01

    This experiment was conducted to investigate the effects of rumen-protected γ-aminobutyric acid (GABA) on performance and nutrient digestibility in heat-stressed dairy cows. Sixty Holstein dairy cows (141±15 d in milk, 35.9±4.3kg of milk/d, and parity 2.0±1.1) were randomly assigned to 1 of 4 treatments according to a completely randomized block design. Treatments consisted of 0 (control), 40, 80, or 120mg of true GABA/kg of dry matter (DM). The trial lasted 10wk. The average temperature-humidity indices at 0700, 1400, and 2200h were 78.4, 80.2, and 78.7, respectively. Rectal temperatures decreased linearly at 0700, 1400, and 2200h with increasing GABA concentration. Supplementation of GABA had no effect on respiration rates at any time point. Dry matter intake, energy-corrected milk, 4% fat-corrected milk, and milk fat yield tended to increase linearly with increasing GABA concentration. Supplementation of GABA affected, in a quadratic manner, milk protein and lactose concentrations, and milk protein yield, and the peak values were reached at a dose of 40mg of GABA/kg. Milk urea nitrogen concentration responded quadratically. Total solids content increased linearly with increasing GABA concentration. Supplementation of GABA had no effect on milk yield, lactose production, total solids, milk fat concentration, somatic cell score, or feed efficiency. Apparent total-tract digestibilities of DM, organic matter, crude protein, neutral detergent fiber, and acid detergent fiber were similar among treatments. These results indicate that rumen-protected GABA supplementation to dairy cows can alleviate heat stress by reducing rectal temperature, increase DM intake and milk production, and improve milk composition. The appropriate supplemental GABA level for heat-stressed dairy cows is 40mg/kg of DM.

  17. Heat-stress and light-stress induce different cellular pathologies in the symbiotic dinoflagellate during coral bleaching.

    PubMed

    Downs, C A; McDougall, Kathleen E; Woodley, Cheryl M; Fauth, John E; Richmond, Robert H; Kushmaro, Ariel; Gibb, Stuart W; Loya, Yossi; Ostrander, Gary K; Kramarsky-Winter, Esti

    2013-01-01

    Coral bleaching is a significant contributor to the worldwide degradation of coral reefs and is indicative of the termination of symbiosis between the coral host and its symbiotic algae (dinoflagellate; Symbiodinium sp. complex), usually by expulsion or xenophagy (symbiophagy) of its dinoflagellates. Herein, we provide evidence that during the earliest stages of environmentally induced bleaching, heat stress and light stress generate distinctly different pathomorphological changes in the chloroplasts, while a combined heat- and light-stress exposure induces both pathomorphologies; suggesting that these stressors act on the dinoflagellate by different mechanisms. Within the first 48 hours of a heat stress (32°C) under low-light conditions, heat stress induced decomposition of thylakoid structures before observation of extensive oxidative damage; thus it is the disorganization of the thylakoids that creates the conditions allowing photo-oxidative-stress. Conversely, during the first 48 hours of a light stress (2007 µmoles m(-2) s(-1) PAR) at 25°C, condensation or fusion of multiple thylakoid lamellae occurred coincidently with levels of oxidative damage products, implying that photo-oxidative stress causes the structural membrane damage within the chloroplasts. Exposure to combined heat- and light-stresses induced both pathomorphologies, confirming that these stressors acted on the dinoflagellate via different mechanisms. Within 72 hours of exposure to heat and/or light stresses, homeostatic processes (e.g., heat-shock protein and anti-oxidant enzyme response) were evident in the remaining intact dinoflagellates, regardless of the initiating stressor. Understanding the sequence of events during bleaching when triggered by different environmental stressors is important for predicting both severity and consequences of coral bleaching.

  18. Heat-Stress and Light-Stress Induce Different Cellular Pathologies in the Symbiotic Dinoflagellate during Coral Bleaching

    PubMed Central

    Downs, C. A.; McDougall, Kathleen E.; Woodley, Cheryl M.; Fauth, John E.; Richmond, Robert H.; Kushmaro, Ariel; Gibb, Stuart W.; Loya, Yossi; Ostrander, Gary K.; Kramarsky-Winter, Esti

    2013-01-01

    Coral bleaching is a significant contributor to the worldwide degradation of coral reefs and is indicative of the termination of symbiosis between the coral host and its symbiotic algae (dinoflagellate; Symbiodinium sp. complex), usually by expulsion or xenophagy (symbiophagy) of its dinoflagellates. Herein, we provide evidence that during the earliest stages of environmentally induced bleaching, heat stress and light stress generate distinctly different pathomorphological changes in the chloroplasts, while a combined heat- and light-stress exposure induces both pathomorphologies; suggesting that these stressors act on the dinoflagellate by different mechanisms. Within the first 48 hours of a heat stress (32°C) under low-light conditions, heat stress induced decomposition of thylakoid structures before observation of extensive oxidative damage; thus it is the disorganization of the thylakoids that creates the conditions allowing photo-oxidative-stress. Conversely, during the first 48 hours of a light stress (2007 µmoles m−2 s−1 PAR) at 25°C, condensation or fusion of multiple thylakoid lamellae occurred coincidently with levels of oxidative damage products, implying that photo-oxidative stress causes the structural membrane damage within the chloroplasts. Exposure to combined heat- and light-stresses induced both pathomorphologies, confirming that these stressors acted on the dinoflagellate via different mechanisms. Within 72 hours of exposure to heat and/or light stresses, homeostatic processes (e.g., heat-shock protein and anti-oxidant enzyme response) were evident in the remaining intact dinoflagellates, regardless of the initiating stressor. Understanding the sequence of events during bleaching when triggered by different environmental stressors is important for predicting both severity and consequences of coral bleaching. PMID:24324575

  19. Correlation between heat stability of thylakoid membranes and loss of chlorophyll in winter wheat under heat stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objectives of this study were to (1) investigate the relationship between the heat stability of thylakoid membranes/PS II and loss of chlorophyll in winter wheat under heat stress conditions, and (2) to test the possibility of using chlorophyll loss, as determined by SPAD chlorophyll meter, as a...

  20. Root zone calcium modulates the response of potato plants to heat stress.

    PubMed

    Kleinhenz, Matthew D; Palta, Jiwan P

    2002-05-01

    Potato plant growth and development are known to be severely impacted by heat stress. Here plants grown in a chemically inert medium of 1 : 1 quartzite : perlite (v : v) were subjected to either 35/25 degrees C (stress) or 20/15 degrees C (control) day/night air temperatures and four concentrations of root zone calcium (5, 25, 125 and 600 &mgr;M Ca) for 3 weeks. We report for the first time that potato plant growth under heat stress can persist at specific levels of Ca2+ in the root zone and that the Ca2+ level required for growth under heat stress exceeds that required for growth under normal temperatures. We also provide strong, initial evidence that the ability of high Ca2+ levels to mitigate heat stress effects results from shifts in meristematic activity. Total foliar mass and leaf area were essentially unaffected by Ca2+ level under control temperatures. Under heat stress, leaf area was reduced to about 5% of the control at 5 and 25 &mgr;M Ca but to only 70% of the control at 125 and 600 &mgr;M Ca. Likewise, total foliar mass was reduced under heat stress to about 30% of the control at 5 and 25 &mgr;M Ca but total foliar mass was greater under heat stress than control conditions at 125 and 600 &mgr;M Ca. This increase at higher Ca2+ concentrations was due primarily to axillary shoot growth. Anatomical studies of leaves grown under heat stress show that cell expansion was impaired by heat stress and this impairment was overcome by increasing root zone calcium levels. These results provide insight into the mechanism by which root zone Ca2+ may modulate plant response to heat stress. PMID:12010474

  1. Transient heat-stress compromises the resistance of wheat seedlings to Hessian fly (Diptera: Cecidomyiidae) infestation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heat-stress exerts profound impact on resistance of plants to parasites. In this research, we investigated the impact of an acute, transient heat-stress on the resistance of the wheat line 'Molly', which contains the resistance gene H13, to an avirulent Hessian fly [Mayetiola destructor (Say)] popu...

  2. Heat Stress Alters Ruminal Fermentation and Digesta Characteristics, and Behavior in Lactating Dairy Cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In a study designed to assess the impact and interaction of nonfiber carbohydrates (NFC) and ruminally degradable protein (RDP) on ruminal characteristics and animal behavior, animals experienced heat stress in the first period (HS), and no/greatly reduced heat stress (NHS) in the second period, all...

  3. Effect of γ-Aminobutyric Acid-producing Lactobacillus Strain on Laying Performance, Egg Quality and Serum Enzyme Activity in Hy-Line Brown Hens under Heat Stress

    PubMed Central

    Zhu, Y. Z.; Cheng, J. L.; Ren, M.; Yin, L.; Piao, X. S.

    2015-01-01

    Heat-stress remains a costly issue for animal production, especially for poultry as they lack sweat glands, and alleviating heat-stress is necessary for ensuring animal production in hot environment. A high γ-aminobutyric acid (GABA)-producer Lactobacillus strain was used to investigate the effect of dietary GABA-producer on laying performance and egg quality in heat-stressed Hy-line brown hens. Hy-Line brown hens (n = 1,164) at 280 days of age were randomly divided into 4 groups based on the amount of freeze-dried GABA-producer added to the basal diet as follows: i) 0 mg/kg, ii) 25 mg/kg, iii) 50 mg/kg, and iv) 100 mg/kg. All hens were subjected to heat-stress treatment through maintaining the temperature and the relative humidity at 28.83±3.85°C and 37% to 53.9%, respectively. During the experiment, laying rate, egg weight and feed intake of hens were recorded daily. At the 30th and 60th day after the start of the experiment, biochemical parameters, enzyme activity and immune activity in serum were measured. Egg production, average egg weight, average daily feed intake, feed conversion ratio and percentage of speckled egg, soft shell egg and misshaped egg were significantly improved (p<0.05) by the increasing supplementation of the dietary GABA-producer. Shape index, eggshell thickness, strength and weight were increased linearly with increasing GABA-producer supplementation. The level of calcium, phosphorus, glucose, total protein and albumin in serum of the hens fed GABA-producing strain supplemented diet was significantly higher (p<0.05) than that of the hens fed the basal diet, whereas cholesterol level was decreased. Compared with the basal diet, GABA-producer strain supplementation increased serum level of glutathione peroxidase (p = 0.009) and superoxide dismutase. In conclusion, GABA-producer played an important role in alleviating heat-stress, the isolated GABA-producer strain might be a potential natural and safe probiotic to use to improve laying

  4. Effect of γ-Aminobutyric Acid-producing Lactobacillus Strain on Laying Performance, Egg Quality and Serum Enzyme Activity in Hy-Line Brown Hens under Heat Stress.

    PubMed

    Zhu, Y Z; Cheng, J L; Ren, M; Yin, L; Piao, X S

    2015-07-01

    Heat-stress remains a costly issue for animal production, especially for poultry as they lack sweat glands, and alleviating heat-stress is necessary for ensuring animal production in hot environment. A high γ-aminobutyric acid (GABA)-producer Lactobacillus strain was used to investigate the effect of dietary GABA-producer on laying performance and egg quality in heat-stressed Hy-line brown hens. Hy-Line brown hens (n = 1,164) at 280 days of age were randomly divided into 4 groups based on the amount of freeze-dried GABA-producer added to the basal diet as follows: i) 0 mg/kg, ii) 25 mg/kg, iii) 50 mg/kg, and iv) 100 mg/kg. All hens were subjected to heat-stress treatment through maintaining the temperature and the relative humidity at 28.83±3.85°C and 37% to 53.9%, respectively. During the experiment, laying rate, egg weight and feed intake of hens were recorded daily. At the 30th and 60th day after the start of the experiment, biochemical parameters, enzyme activity and immune activity in serum were measured. Egg production, average egg weight, average daily feed intake, feed conversion ratio and percentage of speckled egg, soft shell egg and misshaped egg were significantly improved (p<0.05) by the increasing supplementation of the dietary GABA-producer. Shape index, eggshell thickness, strength and weight were increased linearly with increasing GABA-producer supplementation. The level of calcium, phosphorus, glucose, total protein and albumin in serum of the hens fed GABA-producing strain supplemented diet was significantly higher (p<0.05) than that of the hens fed the basal diet, whereas cholesterol level was decreased. Compared with the basal diet, GABA-producer strain supplementation increased serum level of glutathione peroxidase (p = 0.009) and superoxide dismutase. In conclusion, GABA-producer played an important role in alleviating heat-stress, the isolated GABA-producer strain might be a potential natural and safe probiotic to use to improve laying

  5. Magnolol pretreatment attenuates heat stress-induced IEC-6 cell injury*

    PubMed Central

    Mei, Chen; He, Sha-sha; Yin, Peng; Xu, Lei; Shi, Ya-ran; Yu, Xiao-hong; Lyu, An; Liu, Feng-hua; Jiang, Lin-shu

    2016-01-01

    Objective: Heat stress (HS) is an important environmental stressor that adversely influences livestock during the summer. The aim of this study was to investigate whether magnolol protects against HS-induced intestinal epithelial cell injury. Materials and methods: An intestinal epithelial cell line (IEC-6) was subjected to HS at 42 °C, with and without magnolol pretreatment. Cell injury was detected by monitoring lactate dehydrogenase (LDH) release. MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay was used to assess cell proliferation and viability, including identifying effective concentrations of magnolol. Flow cytometry confirmed G1-phase cell-cycle arrest and its alleviation by magnolol. Active DNA synthesis was measured by incorporation of nucleic acid 5-ethynyl-2'-deoxyuridine (EdU). G1-phase cell-cycle-related gene expression was assessed by real-time reverse transcription polymerase chain reaction (RT-PCR) and levels of G1-phase-related proteins by Western blotting. Results: HS induced IEC-6 cell injury and decreased cell viability, as demonstrated by data from LDH and MTS assays, respectively. Based on a number of criteria, IEC-6 cells subjected to HS were arrested in the G1 phase of the cell cycle. Magnolol pretreatment decreased HS-induced cell injury through relief of this cell-cycle arrest. Conclusions: Magnolol pretreatment attenuates HS-induced injury in IEC-6 cells. Magnolol is potentially promising as a protective strategy for HS in livestock. PMID:27256675

  6. Response of restraint stress-selected lines of Japanese quail to heat stress and Escherichia coli challenge.

    PubMed

    Huff, G R; Huff, W E; Wesley, I V; Anthony, N B; Satterlee, D G

    2013-03-01

    Japanese quail selected for divergent corticosterone response to restraint stress were evaluated for their susceptibility to heat stress and challenge with Escherichia coli. These quail lines are designated as high stress (HS), low stress (LS), and the random-bred control (CS) lines. Heat stress (35°C, 8 h/d) began at 24 d until the end of the study at 39 d. Birds were challenged with an aerosol spray containing 2 × 10(9) cfu of E. coli at 25 and 32 d. At 38 d, the surviving birds were necropsied and the intestinal tract was screened for both Salmonella and Campylobacter. Body weights of the CS birds were higher than both HS and LS at 17, 25, and 32 d. At 32 d, there was no difference in mortality between males and females and the CS line had higher mortality compared with the LS line with the HS line being intermediate. At 38 d, females of the CS line that were both heat stressed and challenged had a mortality incidence of 25%, which was significantly higher than male birds of the same line and treatment (5.3%). There was an increased incidence in Salmonella enterica serotype Agona isolation after heat stress, with the LS birds having less isolation than the HS birds. Mean corticosterone levels of male birds were not significantly affected by line, heat stress, or E. coli challenge; however, the LS line subjected to heat stress had one-third the level of the HS line, a difference identical to that seen in the original selection for response to restraint stress.

  7. Streptococcus mutans copes with heat stress by multiple transcriptional regulons modulating virulence and energy metabolism

    PubMed Central

    Liu, Chengcheng; Niu, Yulong; Zhou, Xuedong; Zheng, Xin; Wang, Shida; Guo, Qiang; Li, Yuqing; Li, Mingyun; Li, Jiyao; Yang, Yi; Ding, Yi; Lamont, Richard J.; Xu, Xin

    2015-01-01

    Dental caries is closely associated with the virulence of Streptococcus mutans. The virulence expression of S. mutans is linked to its stress adaptation to the changes in the oral environment. In this work we used whole-genome microarrays to profile the dynamic transcriptomic responses of S. mutans during physiological heat stress. In addition, we evaluated the phenotypic changes, including, eDNA release, initial biofilm formation, extracellular polysaccharides generation, acid production/acid tolerance, and ATP turnover of S. mutans during heat stress. There were distinct patterns observed in the way that S. mutans responded to heat stress that included 66 transcription factors for the expression of functional genes being differentially expressed. Especially, response regulators of two component systems (TCSs), the repressors of heat shock proteins and regulators involved in sugar transporting and metabolism co-ordinated to enhance the cell’s survival and energy generation against heat stress in S. mutans. PMID:26251057

  8. Mitigation of heat stress-related complications by a yeast fermentate product.

    PubMed

    Giblot Ducray, Henri Alexandre; Globa, Ludmila; Pustovyy, Oleg; Reeves, Stuart; Robinson, Larry; Vodyanoy, Vitaly; Sorokulova, Iryna

    2016-08-01

    Heat stress results in a multitude of biological and physiological responses which can become lethal if not properly managed. It has been shown that heat stress causes significant adverse effects in both human and animals. Different approaches have been proposed to mitigate the adverse effects caused by heat stress, among which are special diet and probiotics. We characterized the effect of the yeast fermentate EpiCor (EH) on the prevention of heat stress-related complications in rats. We found that increasing the body temperature of animals from 37.1±0.2 to 40.6±0.2°C by exposure to heat (45°C for 25min) resulted in significant morphological changes in the intestine. Villi height and total mucosal thickness decreased in heat-stressed rats pre-treated with PBS in comparison with control animals not exposed to the heat. Oral treatment of rats with EH before heat stress prevented the traumatic effects of heat on the intestine. Changes in intestinal morphology of heat-stressed rats, pre-treated with PBS resulted in significant elevation of lipopolysaccharides (LPS) level in the serum of these animals. Pre-treatment with EH was effective in the prevention of LPS release into the bloodstream of heat-stressed rats. Our study revealed that elevation of body temperature also resulted in a significant increase of the concentration of vesicles released by erythrocytes in rats, pre-treated with PBS. This is an indication of a pathological impact of heat on the erythrocyte structure. Treatment of rats with EH completely protected their erythrocytes from this heat-induced pathology. Finally, exposure to heat stress conditions resulted in a significant increase of white blood cells in rats. In the group of animals pre-treated with EH before heat stress, the white blood cell count remained the same as in non-heated controls. These results showed the protective effect of the EH product in the prevention of complications, caused by heat stress. PMID:27503713

  9. [Effects of exogenous silicon on the pollination and fertility characteristics of hybrid rice under heat stress during anthesis].

    PubMed

    Wu, Chen-Yang; Chen, Dan; Luo, Hai-Wei; Yao, Yi-min; Wang, Zhi-Wei; Tsutomu, Matsui; Tian, Xiao-Hai

    2013-11-01

    Taking two medium-maturing indica rice hybrids Jinyou 63 and Shanyou 63 as test materials, this paper studied the effects of applying silicon fertilizer on the flag leaf chlorophyll content, photosynthetic properties, antioxidant enzyme activities, malondialdehyde (MDA) content, pollen vigor, anther acid invertase activity, pollination, and seed-setting of hybrid rice under the heat stress during anthesis. This study was conducted in pots and under growth chamber. Soluble solution of silicon fertilizer applied as Na2SiO3 x 9H2O was sprayed on the growing plants after early jointing stage, with three times successively and at an interval of one week. The pots were then moved into growth chamber to subject to normal temperature vs. high temperature (termed as heat stress) for five days. In treatment normal temperature, the average daily temperature was set at 26.6 degrees C, and the maximum daily temperature was set at 29.4 degres C; in treatment high temperature, the average and the maximum daily temperature were set at 33.2 degrees C and 40.1 degrees C, respectively. As compared with the control, applying silicon increased the flag leaf chlorophyll content significantly, improved the net photosynthetic rate and stomatal conductance, decreased the accumulative inter- cellular CO2 concentration, improved the leaf photosynthesis, reduced the MDA content, and improved the activities of SOD, POD and CAT under heat stress. In addition, applying silicon improved the anther acid invertase activity and the pollen vigor, increased the anther basal dehiscence width, total number of pollination per stigma, germinated number, germination rate of pollen, and percentage of florets with more than 10 germinated pollen grains, decreased the percentage of florets with fewer than 20 germinated pollen grains, and thus, alleviated the fertility loss of Jinyou 63 and Shanyou 63 under heat stress by 13.4% and 14.1%, respectively. It was suggested that spraying exogenous silicon in the

  10. [Effects of exogenous silicon on the pollination and fertility characteristics of hybrid rice under heat stress during anthesis].

    PubMed

    Wu, Chen-Yang; Chen, Dan; Luo, Hai-Wei; Yao, Yi-min; Wang, Zhi-Wei; Tsutomu, Matsui; Tian, Xiao-Hai

    2013-11-01

    Taking two medium-maturing indica rice hybrids Jinyou 63 and Shanyou 63 as test materials, this paper studied the effects of applying silicon fertilizer on the flag leaf chlorophyll content, photosynthetic properties, antioxidant enzyme activities, malondialdehyde (MDA) content, pollen vigor, anther acid invertase activity, pollination, and seed-setting of hybrid rice under the heat stress during anthesis. This study was conducted in pots and under growth chamber. Soluble solution of silicon fertilizer applied as Na2SiO3 x 9H2O was sprayed on the growing plants after early jointing stage, with three times successively and at an interval of one week. The pots were then moved into growth chamber to subject to normal temperature vs. high temperature (termed as heat stress) for five days. In treatment normal temperature, the average daily temperature was set at 26.6 degrees C, and the maximum daily temperature was set at 29.4 degres C; in treatment high temperature, the average and the maximum daily temperature were set at 33.2 degrees C and 40.1 degrees C, respectively. As compared with the control, applying silicon increased the flag leaf chlorophyll content significantly, improved the net photosynthetic rate and stomatal conductance, decreased the accumulative inter- cellular CO2 concentration, improved the leaf photosynthesis, reduced the MDA content, and improved the activities of SOD, POD and CAT under heat stress. In addition, applying silicon improved the anther acid invertase activity and the pollen vigor, increased the anther basal dehiscence width, total number of pollination per stigma, germinated number, germination rate of pollen, and percentage of florets with more than 10 germinated pollen grains, decreased the percentage of florets with fewer than 20 germinated pollen grains, and thus, alleviated the fertility loss of Jinyou 63 and Shanyou 63 under heat stress by 13.4% and 14.1%, respectively. It was suggested that spraying exogenous silicon in the

  11. Gene expression changes in response to aging compared to heat stress, oxidative stress and ionizing radiation in Drosophila melanogaster.

    PubMed

    Landis, Gary; Shen, Jie; Tower, John

    2012-11-01

    Gene expression changes in response to aging, heat stress, hyperoxia, hydrogen peroxide, and ionizing radiation were compared using microarrays. A set of 18 genes were up-regulated across all conditions, indicating a general stress response shared with aging, including the heat shock protein (Hsp) genes Hsp70, Hsp83 and l(2)efl, the glutathione-S-transferase gene GstD2, and the mitochondrial unfolded protein response (mUPR) gene ref(2)P. Selected gene expression changes were confirmed using quantitative PCR, Northern analysis and GstD-GFP reporter constructs. Certain genes were altered in only a subset of the conditions, for example, up-regulation of numerous developmental pathway and signaling genes in response to hydrogen peroxide. While aging shared features with each stress, aging was more similar to the stresses most associated with oxidative stress (hyperoxia, hydrogen peroxide, ionizing radiation) than to heat stress. Aging is associated with down-regulation of numerous mitochondrial genes, including electron-transport-chain (ETC) genes and mitochondrial metabolism genes, and a sub-set of these changes was also observed upon hydrogen peroxide stress and ionizing radiation stress. Aging shared the largest number of gene expression changes with hyperoxia. The extensive down-regulation of mitochondrial and ETC genes during aging is consistent with an aging-associated failure in mitochondrial maintenance, which may underlie the oxidative stress-like and proteotoxic stress-like responses observed during aging.

  12. Gene expression changes in response to aging compared to heat stress, oxidative stress and ionizing radiation in Drosophila melanogaster.

    PubMed

    Landis, Gary; Shen, Jie; Tower, John

    2012-11-01

    Gene expression changes in response to aging, heat stress, hyperoxia, hydrogen peroxide, and ionizing radiation were compared using microarrays. A set of 18 genes were up-regulated across all conditions, indicating a general stress response shared with aging, including the heat shock protein (Hsp) genes Hsp70, Hsp83 and l(2)efl, the glutathione-S-transferase gene GstD2, and the mitochondrial unfolded protein response (mUPR) gene ref(2)P. Selected gene expression changes were confirmed using quantitative PCR, Northern analysis and GstD-GFP reporter constructs. Certain genes were altered in only a subset of the conditions, for example, up-regulation of numerous developmental pathway and signaling genes in response to hydrogen peroxide. While aging shared features with each stress, aging was more similar to the stresses most associated with oxidative stress (hyperoxia, hydrogen peroxide, ionizing radiation) than to heat stress. Aging is associated with down-regulation of numerous mitochondrial genes, including electron-transport-chain (ETC) genes and mitochondrial metabolism genes, and a sub-set of these changes was also observed upon hydrogen peroxide stress and ionizing radiation stress. Aging shared the largest number of gene expression changes with hyperoxia. The extensive down-regulation of mitochondrial and ETC genes during aging is consistent with an aging-associated failure in mitochondrial maintenance, which may underlie the oxidative stress-like and proteotoxic stress-like responses observed during aging. PMID:23211361

  13. Sub-lethal heat stress causes apoptosis in an Antarctic fish that lacks an inducible heat shock response.

    PubMed

    Sleadd, Isaac M; Lee, Marissa; Hassumani, Daniel O; Stecyk, Tonya M A; Zeitz, Otto K; Buckley, Bradley A

    2014-08-01

    The endemic fish fauna of the Southern Ocean are cold-adapted stenotherms and are acutely sensitive to elevated temperature. Many of these species lack a heat shock response and cannot increase the production of heat shock proteins in their tissues. However, some species retain the ability to induce other stress-responsive genes, some of which are involved in cell cycle arrest and apoptosis. Here, the effect of heat on cell cycle stage and its ability to induce apoptosis were tested in thermally stressed hepatocytes from a common Antarctic fish species from McMurdo Sound in the Ross Sea. Levels of proliferating cell nuclear antigen were also measured as a marker of progression through the cell cycle. The results of these studies demonstrate that even sub-lethal heat stress can have deleterious impacts at the cellular level on these environmentally sensitive species. PMID:25086982

  14. ABA Is Required for Plant Acclimation to a Combination of Salt and Heat Stress.

    PubMed

    Suzuki, Nobuhiro; Bassil, Elias; Hamilton, Jason S; Inupakutika, Madhuri A; Zandalinas, Sara Izquierdo; Tripathy, Deesha; Luo, Yuting; Dion, Erin; Fukui, Ginga; Kumazaki, Ayana; Nakano, Ruka; Rivero, Rosa M; Verbeck, Guido F; Azad, Rajeev K; Blumwald, Eduardo; Mittler, Ron

    2016-01-01

    Abiotic stresses such as drought, heat or salinity are a major cause of yield loss worldwide. Recent studies revealed that the acclimation of plants to a combination of different environmental stresses is unique and cannot be directly deduced from studying the response of plants to each of the different stresses applied individually. Here we report on the response of Arabidopsis thaliana to a combination of salt and heat stress using transcriptome analysis, physiological measurements and mutants deficient in abscisic acid, salicylic acid, jasmonic acid or ethylene signaling. Arabidopsis plants were found to be more susceptible to a combination of salt and heat stress compared to each of the different stresses applied individually. The stress combination resulted in a higher ratio of Na+/K+ in leaves and caused the enhanced expression of 699 transcripts unique to the stress combination. Interestingly, many of the transcripts that specifically accumulated in plants in response to the salt and heat stress combination were associated with the plant hormone abscisic acid. In accordance with this finding, mutants deficient in abscisic acid metabolism and signaling were found to be more susceptible to a combination of salt and heat stress than wild type plants. Our study highlights the important role abscisic acid plays in the acclimation of plants to a combination of two different abiotic stresses.

  15. ABA Is Required for Plant Acclimation to a Combination of Salt and Heat Stress

    PubMed Central

    Suzuki, Nobuhiro; Bassil, Elias; Hamilton, Jason S.; Inupakutika, Madhuri A.; Zandalinas, Sara Izquierdo; Tripathy, Deesha; Luo, Yuting; Dion, Erin; Fukui, Ginga; Kumazaki, Ayana; Nakano, Ruka; Rivero, Rosa M.; Verbeck, Guido F.; Azad, Rajeev K.; Blumwald, Eduardo; Mittler, Ron

    2016-01-01

    Abiotic stresses such as drought, heat or salinity are a major cause of yield loss worldwide. Recent studies revealed that the acclimation of plants to a combination of different environmental stresses is unique and cannot be directly deduced from studying the response of plants to each of the different stresses applied individually. Here we report on the response of Arabidopsis thaliana to a combination of salt and heat stress using transcriptome analysis, physiological measurements and mutants deficient in abscisic acid, salicylic acid, jasmonic acid or ethylene signaling. Arabidopsis plants were found to be more susceptible to a combination of salt and heat stress compared to each of the different stresses applied individually. The stress combination resulted in a higher ratio of Na+/K+ in leaves and caused the enhanced expression of 699 transcripts unique to the stress combination. Interestingly, many of the transcripts that specifically accumulated in plants in response to the salt and heat stress combination were associated with the plant hormone abscisic acid. In accordance with this finding, mutants deficient in abscisic acid metabolism and signaling were found to be more susceptible to a combination of salt and heat stress than wild type plants. Our study highlights the important role abscisic acid plays in the acclimation of plants to a combination of two different abiotic stresses. PMID:26824246

  16. ABA Is Required for Plant Acclimation to a Combination of Salt and Heat Stress.

    PubMed

    Suzuki, Nobuhiro; Bassil, Elias; Hamilton, Jason S; Inupakutika, Madhuri A; Zandalinas, Sara Izquierdo; Tripathy, Deesha; Luo, Yuting; Dion, Erin; Fukui, Ginga; Kumazaki, Ayana; Nakano, Ruka; Rivero, Rosa M; Verbeck, Guido F; Azad, Rajeev K; Blumwald, Eduardo; Mittler, Ron

    2016-01-01

    Abiotic stresses such as drought, heat or salinity are a major cause of yield loss worldwide. Recent studies revealed that the acclimation of plants to a combination of different environmental stresses is unique and cannot be directly deduced from studying the response of plants to each of the different stresses applied individually. Here we report on the response of Arabidopsis thaliana to a combination of salt and heat stress using transcriptome analysis, physiological measurements and mutants deficient in abscisic acid, salicylic acid, jasmonic acid or ethylene signaling. Arabidopsis plants were found to be more susceptible to a combination of salt and heat stress compared to each of the different stresses applied individually. The stress combination resulted in a higher ratio of Na+/K+ in leaves and caused the enhanced expression of 699 transcripts unique to the stress combination. Interestingly, many of the transcripts that specifically accumulated in plants in response to the salt and heat stress combination were associated with the plant hormone abscisic acid. In accordance with this finding, mutants deficient in abscisic acid metabolism and signaling were found to be more susceptible to a combination of salt and heat stress than wild type plants. Our study highlights the important role abscisic acid plays in the acclimation of plants to a combination of two different abiotic stresses. PMID:26824246

  17. Temperature and blood flow distribution in the human leg during passive heat stress

    PubMed Central

    Chiesa, Scott T.; Trangmar, Steven J.

    2016-01-01

    The influence of temperature on the hemodynamic adjustments to direct passive heat stress within the leg's major arterial and venous vessels and compartments remains unclear. Fifteen healthy young males were tested during exposure to either passive whole body heat stress to levels approaching thermal tolerance [core temperature (Tc) + 2°C; study 1; n = 8] or single leg heat stress (Tc + 0°C; study 2; n = 7). Whole body heat stress increased perfusion and decreased oscillatory shear index in relation to the rise in leg temperature (Tleg) in all three major arteries supplying the leg, plateauing in the common and superficial femoral arteries before reaching severe heat stress levels. Isolated leg heat stress increased arterial blood flows and shear patterns to a level similar to that obtained during moderate core hyperthermia (Tc + 1°C). Despite modest increases in great saphenous venous (GSV) blood flow (0.2 l/min), the deep venous system accounted for the majority of returning flow (common femoral vein 0.7 l/min) during intense to severe levels of heat stress. Rapid cooling of a single leg during severe whole body heat stress resulted in an equivalent blood flow reduction in the major artery supplying the thigh deep tissues only, suggesting central temperature-sensitive mechanisms contribute to skin blood flow alone. These findings further our knowledge of leg hemodynamic responses during direct heat stress and provide evidence of potentially beneficial vascular alterations during isolated limb heat stress that are equivalent to those experienced during exposure to moderate levels of whole body hyperthermia. PMID:26823344

  18. BAG3 affects the nucleocytoplasmic shuttling of HSF1 upon heat stress

    SciTech Connect

    Jin, Young-Hee; Ahn, Sang-Gun; Kim, Soo-A.

    2015-08-21

    Bcl2-associated athoanogene (BAG) 3 is a member of the co-chaperone BAG family. It is induced by stressful stimuli such as heat shock and heavy metals, and it regulates cellular adaptive responses against stressful conditions. In this study, we identified a novel role for BAG3 in regulating the nuclear shuttling of HSF1 during heat stress. The expression level of BAG3 was induced by heat stress in HeLa cells. Interestingly, BAG3 rapidly translocalized to the nucleus upon heat stress. Immunoprecipitation assay showed that BAG3 interacts with HSF1 under normal and stressed conditions and co-translocalizes to the nucleus upon heat stress. We also demonstrated that BAG3 interacts with HSF1 via its BAG domain. Over-expression of BAG3 down-regulates the level of nuclear HSF1 by exporting it to the cytoplasm during the recovery period. Depletion of BAG3 using siRNA results in reduced nuclear HSF1 and decreased Hsp70 promoter activity. BAG3 in MEF(hsf1{sup −/−}) cells actively translocalizes to the nucleus upon heat stress suggesting that BAG3 plays a key role in the processing of the nucleocytoplasmic shuttling of HSF1 upon heat stress. - Highlights: • The expression level of BAG3 is induced by heat stress. • BAG3 translocates to the nucleus upon heat stress. • BAG3 interacts with HSF1 and co-localizes to the nucleus. • BAG3 is a key regulator for HSF1 nuclear shuttling.

  19. Prostaglandin E synthase interacts with inducible heat shock protein 70 after heat stress in bovine primary dermal fibroblast cells.

    PubMed

    Richter, Constanze; Viergutz, Torsten; Schwerin, Manfred; Weitzel, Joachim M

    2015-01-01

    Exposure to heat stress in dairy cows leads to undesired side effects that are reflected by complex alterations in endocrine parameters, such as reduced progesterone, estradiol, and thyroid hormone concentrations. These endocrine maladaptation leads to failure to resume cyclicity, a poor uterine environment and inappropriate immune responses in postpartum dairy cows. Prostaglandins (PG's) are lipid mediators, which serve as signal molecules in response to various external stimuli as well as to cell-specific internal signal molecules. A central role in PG synthesis plays prostaglandin E synthase (PGES) that catalyzes the isomerization of PGH2 to PGE2 .The present study was conducted to investigate heat stress associated PGES expression. Expression of PGES and inducible heat shock protein 70 (HSP70), as a putative chaperonic protein, was studied in bovine primary fibroblasts under different heat shock conditions. Bovine primary fibroblasts produce PGE2 at homoiothermical norm temperature (38.5°C in bovine), but reduce PGE2 production rates under extreme heat stress (at 45°C for 6 h). By contrast, PGE2 production rates are maintained after a milder heat stress (at 41.5°C for 6 h). PGE2 synthesis is abolished by application of cyclooxygenase inhibitor indomethacin, indicating de novo synthesis. Heat stress increases HSP70 but not PGES protein concentrations. HSP70 physically interacts with PGES and the PGES-HSP70 complex did not dissociate upon heat stress at 45°C even after returning the cells to 37°C. The PGE2 production negatively correlates with the portion of PGES-HSP70 complex. These results suggest a protein interaction between HSP70 and PGES in dermal fibroblast cells. Blockage of PGES protein by HSP70 seems to interfere with the regulatory processes essential for cellular adaptive protection. © 2014 International Society for Advancement of Cytometry.

  20. Exercise intensity prescription during heat stress: A brief review.

    PubMed

    Wingo, J E

    2015-06-01

    Exercise intensity can be prescribed using a variety of indices, such as rating of perceived exertion, heart rate, levels of absolute intensity (e.g., metabolic equivalents), and levels of relative intensity [e.g., percentage of maximal aerobic capacity (% V ˙ O 2 m a x ) or percentage of oxygen uptake reserve (% V ˙ O 2 R )]. Heart rate has a linear relationship with oxygen uptake, is easy to measure, and requires relatively inexpensive monitoring equipment, so it is commonly used to monitor exercise intensity. During heat stress, however, cardiovascular adjustments - including a rise in heart rate that is disproportionate to absolute intensity - result in diminished aerobic capacity and performance. These adjustments include cardiovascular drift, the progressive rise in heart rate and fall in stroke volume over time during prolonged, constant-rate exercise. A variety of factors have been shown to modulate the magnitude of cardiovascular drift, e.g., hyperthermia, dehydration, exercise intensity, and ambient temperature. Regardless of the mode of manipulation, decreases in stroke volume with cardiovascular drift are associated with proportionally similar decreases in V ˙ O 2 m a x , which affects the relationship between heart rate and relative metabolic intensity (% V ˙ O 2 m a x or % V ˙ O 2 R ). This review summarizes the current state of knowledge regarding the influence of cardiovascular drift and reduced V ˙ O 2 m a x on exercise intensity prescription in hot conditions.

  1. Buffet Load Alleviation

    NASA Technical Reports Server (NTRS)

    Ryall, T. G.; Moses, R. W.; Hopkins, M. A.; Henderson, D.; Zimcik, D. G.; Nitzsche, F.

    2004-01-01

    High performance aircraft are, by their very nature, often required to undergo maneuvers involving high angles of attack. Under these conditions unsteady vortices emanating from the wing and the fuselage will impinge on the twin fins (required for directional stability) causing excessive buffet loads, in some circumstances, to be applied to the aircraft. These loads result in oscillatory stresses, which may cause significant amounts of fatigue damage. Active control is a possible solution to this important problem. A full-scale test was carried out on an F/A-18 fuselage and fins using piezoceramic actuators to control the vibrations. Buffet loads were simulated using very powerful electromagnetic shakers. The first phase of this test was concerned with the open loop system identification whereas the second stage involved implementing linear time invariant control laws. This paper looks at some of the problems encountered as well as the corresponding solutions and some results. It is expected that flight trials of a similar control system to alleviate buffet will occur as early as 2001.

  2. Role and regulation of autophagy in heat stress responses of tomato plants.

    PubMed

    Zhou, Jie; Wang, Jian; Yu, Jing-Quan; Chen, Zhixiang

    2014-01-01

    As sessile organisms, plants are constantly exposed to a wide spectrum of stress conditions such as high temperature, which causes protein misfolding. Misfolded proteins are highly toxic and must be efficiently removed to reduce cellular proteotoxic stress if restoration of native conformations is unsuccessful. Although selective autophagy is known to function in protein quality control by targeting degradation of misfolded and potentially toxic proteins, its role and regulation in heat stress responses have not been analyzed in crop plants. In the present study, we found that heat stress induced expression of autophagy-related (ATG) genes and accumulation of autophagosomes in tomato plants. Virus-induced gene silencing (VIGS) of tomato ATG5 and ATG7 genes resulted in increased sensitivity of tomato plants to heat stress based on both increased development of heat stress symptoms and compromised photosynthetic parameters of heat-stressed leaf tissues. Silencing of tomato homologs for the selective autophagy receptor NBR1, which targets ubiquitinated protein aggregates, also compromised tomato heat tolerance. To better understand the regulation of heat-induced autophagy, we found that silencing of tomato ATG5, ATG7, or NBR1 compromised heat-induced expression of not only the targeted genes but also other autophagy-related genes. Furthermore, we identified two tomato genes encoding proteins highly homologous to Arabidopsis WRKY33 transcription factor, which has been previously shown to interact physically with an autophagy protein. Silencing of tomato WRKY33 genes compromised tomato heat tolerance and reduced heat-induced ATG gene expression and autophagosome accumulation. Based on these results, we propose that heat-induced autophagy in tomato is subject to cooperative regulation by both WRKY33 and ATG proteins and plays a critical role in tomato heat tolerance, mostly likely through selective removal of heat-induced protein aggregates.

  3. Effect of heat stress on the porcine small intestine: a morphological and gene expression study.

    PubMed

    Yu, Jin; Yin, Peng; Liu, Fenghua; Cheng, Guilin; Guo, Kaijun; Lu, An; Zhu, Xiaoyu; Luan, Weili; Xu, Jianqin

    2010-05-01

    With the presence of global warming, the occurrence of extreme heat is becoming more common, especially during the summer, increasing pig susceptibility to severe heat stress. The aim of the current study was to investigate changes in morphology and gene expression in the pig small intestine in response to heat stress. Forty eight Chinese experimental mini pigs (Sus scrofa) were subjected to 40 degrees C for 5h each day for 10 successive days. Pigs were euthanized at 1, 3, 6, and 10 days after heat treatment and sections of the small intestine epithelial tissue were excised for morphological examination and microarray analyses. After heat treatment, the pig rectal temperature, the body surface temperature and serum cortisol levels were all significantly increased. The duodenum and jejunum displayed significant damage, most severe after 3 days of treatment. Microarray analysis found 93 genes to be up-regulated and 110 genes to be down-regulated in response to heat stress. Subsequent bioinformatic analysis (including gene ontology and KEGG pathway analysis) revealed the genes altered in response to heat stress related to unfolded protein, regulation of translation initiation, regulation of cell proliferation, cell migration and antioxidant regulation. Heat stress caused significant damage to the pig small intestine and altered gene expression in the pig jejunum. The results of the bioinformatic analysis from the present study will be beneficial to further investigate the underlying mechanisms involved in heat stress-induced damage in the pig small intestine.

  4. Heat stress management program improving worker health and operational effectiveness: a case study.

    PubMed

    Huss, Rosalyn G; Skelton, Scott B; Alvis, Kimberly L; Shane, Leigh A

    2013-03-01

    Heat stress monitoring is a vital component of an effective health and safety program when employees work in exceptionally warm environments. Workers at hazardous waste sites often wear personal protective equipment (PPE), which increases the body heat stress load. No specific Occupational Safety and Health Administration (OSHA) regulations address heat stress; however, OSHA does provide several guidance documents to assist employers in addressing this serious workplace health hazard. This article describes a heat stress and surveillance plan implemented at a hazardous waste site as part of the overall health and safety program. The PPE requirement for work at this site, coupled with extreme environmental temperatures, made heat stress a significant concern. Occupational health nurses and industrial hygienists developed a monitoring program for heat stress designed to prevent the occurrence of significant heat-related illness in site workers. The program included worker education on the signs of heat-related illness and continuous physiologic monitoring to detect early signs of heat-related health problems. Biological monitoring data were collected before workers entered the exclusion zone and on exiting the zone following decontamination. Sixty-six site workers were monitored throughout site remediation. More than 1,700 biological monitoring data points were recorded. Outcomes included improved worker health and safety, and increased operational effectiveness. PMID:23429639

  5. Heat stress management program improving worker health and operational effectiveness: a case study.

    PubMed

    Huss, Rosalyn G; Skelton, Scott B; Alvis, Kimberly L; Shane, Leigh A

    2013-03-01

    Heat stress monitoring is a vital component of an effective health and safety program when employees work in exceptionally warm environments. Workers at hazardous waste sites often wear personal protective equipment (PPE), which increases the body heat stress load. No specific Occupational Safety and Health Administration (OSHA) regulations address heat stress; however, OSHA does provide several guidance documents to assist employers in addressing this serious workplace health hazard. This article describes a heat stress and surveillance plan implemented at a hazardous waste site as part of the overall health and safety program. The PPE requirement for work at this site, coupled with extreme environmental temperatures, made heat stress a significant concern. Occupational health nurses and industrial hygienists developed a monitoring program for heat stress designed to prevent the occurrence of significant heat-related illness in site workers. The program included worker education on the signs of heat-related illness and continuous physiologic monitoring to detect early signs of heat-related health problems. Biological monitoring data were collected before workers entered the exclusion zone and on exiting the zone following decontamination. Sixty-six site workers were monitored throughout site remediation. More than 1,700 biological monitoring data points were recorded. Outcomes included improved worker health and safety, and increased operational effectiveness.

  6. Interactive effects of water, light and heat stress on photosynthesis in Fremont cottonwood.

    PubMed

    Tozzi, Emily S; Easlon, Hsien Ming; Richards, James H

    2013-08-01

    Fremont cottonwood seedlings are vulnerable to water stress from rapid water-table decline during river recession in spring. Water stress is usually cited as the reason for reduced establishment, but interactions of water stress with microclimate extremes are more likely the causes of mortality. We assessed photosynthetic responses of Fremont cottonwood seedlings to water, light and heat stresses, which commonly co-occur in habitats where seedlings establish. Under moderate temperature and light conditions, water stress did not affect photosynthetic function. However, stomatal closure during water stress predisposed Fremont cottonwood leaves to light and heat stress, resulting in greatly reduced photosynthesis beginning at 31 °C versus at 41 °C for well-watered plants. Ontogenetic shifts in leaf orientation from horizontal to vertical, which occur as seedlings mature, reduce heat and light stress, especially during water stress. When compared with naturally occurring microclimate extremes, seedling stress responses suggest that reduced assimilation and photoprotection are common for Fremont cottonwood seedlings on exposed point bars where they establish. These reductions in photosynthesis likely have negative impacts on growth and may predispose young (<90-day-old) seedlings to early mortality during rapid water-table declines. Interactions with heat and light stress are more important in these effects than water stress alone.

  7. Lipocalin 2 regulation by thermal stresses: Protective role of Lcn2/NGAL against cold and heat stresses

    SciTech Connect

    Roudkenar, Mehryar Habibi; Halabian, Raheleh; Roushandeh, Amaneh Mohammadi; Nourani, Mohammad Reza; Masroori, Nasser; Ebrahimi, Majid; Nikogoftar, Mahin; Rouhbakhsh, Mehdi; Bahmani, Parisa; Najafabadi, Ali Jahanian; Shokrgozar, Mohammad Ali

    2009-11-01

    Environmental temperature variations are the most common stresses experienced by a wide range of organisms. Lipocalin 2 (Lcn2/NGAL) is expressed in various normal and pathologic conditions. However, its precise functions have not been fully determined. Here we report the induction of Lcn2 by thermal stresses in vivo, and its role following exposure to cold and heat stresses in vitro. Induction of Lcn2 in liver, heart and kidney was detected by RT-PCR, Western blot and immunohistochemistry following exposure of mice to heat and cold stresses. When CHO and HEK293T cells overexpressing NGAL were exposed to cold stress, cell proliferation was higher compared to controls. Down-regulatrion of NGAL by siRNA in A549 cells resulted in less proliferation when exposed to cold stress compared to control cells. The number of apoptotic cells and expression of pro-apoptotic proteins were lower in the NGAL overexpressing CHO and HEK293T cells, but were higher in the siRNA-transfected A549 cells compared to controls, indicating that NGAL protects cells against cold stress. Following exposure of the cells to heat stress, ectopic expression of NGAL protected cells while addition of exogenous recombinant NGAL to the cell culture medium exacerbated the toxicity of heat stress specially when there was low or no endogenous expression of NGAL. It had a dual effect on apoptosis following heat stress. NGAL also increased the expression of HO-1. Lcn2/NGAL may have the potential to improve cell proliferation and preservation particularly to prevent cold ischemia injury of transplanted organs or for treatment of some cancers by hyperthermia.

  8. Expression of HSPs: an adaptive mechanism during long-term heat stress in goats ( Capra hircus)

    NASA Astrophysics Data System (ADS)

    Dangi, Satyaveer Singh; Gupta, Mahesh; Dangi, Saroj K.; Chouhan, Vikrant Singh; Maurya, V. P.; Kumar, Puneet; Singh, Gyanendra; Sarkar, Mihir

    2015-08-01

    Menacing global rise in surface temperature compelled more focus of research over understanding heat stress response mechanism of animals and mitigation of heat stress. Twenty-four goats divided into four groups ( n = 6) such as NHS (non-heat-stressed), HS (heat-stressed), HS + VC (heat-stressed administered with vitamin C), and HS + VE + Se (heat-stressed administered with vitamin E and selenium). Except NHS group, other groups were exposed to repeated heat stress (42 °C) for 6 h on 16 consecutive days. Blood samples were collected at the end of heat exposure on days 1, 6, 11, and 16. When groups compared between days, expression of all heat shock proteins (HSPs) showed a similar pattern as first peak on day 1, reached to basal level on the sixth day, and followed by second peak on day 16. The relative messenger RNA (mRNA) and protein expression of HSP 60, HSP70, and HSP90 was observed highest ( P < 0.05) in HS group, followed by antioxidant-administered group on days 1 and 16, which signifies that antioxidants have dampening effect on HSP expression. HSP105/110 expression was highest ( P < 0.05) on day 16. We conclude that HSP expression pattern is at least two-peak phenomenon, i.e., primary window of HSP protection on the first day followed by second window of protection on day 16. HSP60, HSP70, and HSP90 play an important role during the initial phase of heat stress acclimation whereas HSP105/110 joins this cascade at later phase. Antioxidants may possibly attenuate the HSP expression by reducing the oxidative stress.

  9. The American Football Uniform: Uncompensable Heat Stress and Hyperthermic Exhaustion

    PubMed Central

    Armstrong, Lawrence E.; Johnson, Evan C.; Casa, Douglas J.; Ganio, Matthew S.; McDermott, Brendon P.; Yamamoto, Linda M.; Lopez, Rebecca M.; Emmanuel, Holly

    2010-01-01

    volume, plasma lactate, plasma glucose, or plasma osmolality. Exhaustion occurred during the FULL and PART conditions at the same Tre (39.2°C). Systolic and diastolic blood pressures (n  =  9) indicated that hypotension developed throughout exercise (all treatments). Compared with the PART condition, the FULL condition resulted in a faster rate of Tre increase (P < .001, d  =  0.79), decreased treadmill exercise time (P  =  .005, d  =  0.48), and fewer completed exercise bouts. Interestingly, Tre increase was correlated with lean body mass during the FULL condition (R2  =  0.71, P  =  .005), and treadmill exercise time was correlated with total fat mass during the CON (R2  =  0.90, P < .001) and PART (R2  =  0.69, P  =  .005) conditions. Conclusions: The FULL and PART conditions resulted in greater physiologic strain than the CON condition. These findings indicated that critical internal temperature and hypotension were concurrent with exhaustion during uncompensable (FULL) or nearly uncompensable (PART) heat stress and that anthropomorphic characteristics influenced heat storage and exercise time to exhaustion. PMID:20210615

  10. Phosphoproteomic analysis of the response of maize leaves to drought, heat and their combination stress

    PubMed Central

    Hu, Xiuli; Wu, Liuji; Zhao, Feiyun; Zhang, Dayong; Li, Nana; Zhu, Guohui; Li, Chaohao; Wang, Wei

    2015-01-01

    Drought and heat stress, especially their combination, greatly affect crop production. Many studies have described transcriptome, proteome and phosphoproteome changes in response of plants to drought or heat stress. However, the study about the phosphoproteomic changes in response of crops to the combination stress is scare. To understand the mechanism of maize responses to the drought and heat combination stress, phosphoproteomic analysis was performed on maize leaves by using multiplex iTRAQ-based quantitative proteomic and LC-MS/MS methods. Five-leaf-stage maize was subjected to drought, heat or their combination, and the leaves were collected. Globally, heat, drought and the combined stress significantly changed the phosphorylation levels of 172, 149, and 144 phosphopeptides, respectively. These phosphopeptides corresponded to 282 proteins. Among them, 23 only responded to the combined stress and could not be predicted from their responses to single stressors; 30 and 75 only responded to drought and heat, respectively. Notably, 19 proteins were phosphorylated on different sites in response to the single and combination stresses. Of the seven significantly enriched phosphorylation motifs identified, two were common for all stresses, two were common for heat and the combined stress, and one was specific to the combined stress. The signaling pathways in which the phosphoproteins were involved clearly differed among the three stresses. Functional characterization of the phosphoproteins and the pathways identified here could lead to new targets for the enhancement of crop stress tolerance, which will be particularly important in the face of climate change and the increasing prevalence of abiotic stressors. PMID:25999967

  11. Effects of heat shock protein 90 expression on pectoralis major oxidation in broilers exposed to acute heat stress.

    PubMed

    Hao, Y; Gu, X H

    2014-11-01

    This study was conducted to determine the effects of heat shock protein 90 (HSP90) expression on pH, lipid peroxidation, heat shock protein 70 (HSP70), and glucocorticoid receptor (GR) expression of pectoralis major in broilers exposed to acute heat stress. In total, 90 male broilers were randomly allocated to 3 groups: control (CON), heat stress (HS), or geldanamycin treatment (GA). On d 41, the broilers in the GA group were injected intraperitoneally with GA (5 μg/kg of BW), and the broilers in the CON and HS groups were injected intraperitoneally with saline. Twenty-four hours later, the broilers in the CON group were moved to environmental chambers controlled at 22°C for 2 h, and the broilers in the HS and GA groups were moved to environmental chambers controlled at 40°C for 2 h. The pH values of the pectoralis major after 30 min and 24 h of chilling after slaughter of HS and GA broilers were significantly lower (P < 0.01) than those of the CON broilers. Heat stress caused significant increases in sera corticosterone and lactic dehydrogenase, the activity of malondialdehyde and superoxide dismutase, the expression of HSP90 and HSP70, and nuclear expression of GR protein in the pectoralis major (P < 0.05). Heat stress induced a significant decrease in GR protein expression in the cytoplasm and GR mRNA expression. Furthermore, the low expression of HSP90 significantly increased levels of lactic dehydrogenase and malondialdehyde and GR protein expression in the cytoplasm under heat stress (P < 0.01), and significantly decreased nuclear GR protein expression (P < 0.01). Heat shock protein 90 was positively correlated with corticosterone and superoxide dismutase activities (P < 0.01), and HSP90 mRNA was negatively correlated with pH after chilling for 24 h. The results demonstrated that HSP90 plays a pivotal role in protecting cells from oxidation.

  12. Effect of dietary supplementation of prebiotics and probiotics on intestinal microarchitecture in broilers reared under cyclic heat stress.

    PubMed

    Ashraf, S; Zaneb, H; Yousaf, M S; Ijaz, A; Sohail, M U; Muti, S; Usman, M M; Ijaz, S; Rehman, H

    2013-05-01

    This study was designed to evaluate the effect of dietary supplementation of prebiotics, mannanoligosaccharides (MOS) and/or probiotics (LBP) on intraepithelial lymphocytes (IEL) count, goblet cells (GC) count and differentiation and intestinal micro-architecture in broilers reared under cyclic heat stress. Day-old broilers (n = 250) were randomly divided into five groups. Fifty birds were reared within the thermoneutral zone (TNZ). Remaining birds were subjected to cyclic heat stress from day 21 to 42 (35° C, 75% RH, 8 h/d). The birds were fed corn-soy-based basal diet or the same diet supplemented with 0.5% MOS (HS-MOS), or 0.1% LBP (HS-LBP), or their combination (HS-SYN). The birds were slaughtered on day 42. Tissue samples were collected from mid-duodenum, jejunum and ileum, and stained with haematoxylin and eosin or combined Alcian blue and PAS technique. All differences were considered significant at p < 0.05. The IEL count increased in all intestinal segments of the HS group compared with the TNZ group and decreased in all supplemented groups compared with the HS group. Compared with the TNZ, heat stress reduced villus height, crypt depth and surface area in duodenum and ileum, and increased crypt depth in ileum. Villus width decreased in duodenum and jejunum compared with the TNZ group. Supplementation of LBP, MOS and SYN reversed all these changes in duodenum, while only increased villus height and surface area in ileum. In jejunum, the villus height and surface area increased with HS-LBP, and crypt depth increased with HS-MOS. The number of GC containing acid mucins (duodenum and ileum) and mixed mucins (ileum) were increased in the HS compared with the TNZ. Supplementation of MOS, LBP and SYN maintained the enhanced activity of goblet cells. In conclusion, dietary supplementation of MOS and/or LBP may be helpful in alleviating some of the detrimental effects of heat stress on microstructure of the broiler gut.

  13. Growth, immune, antioxidant, and bone responses of heat stress-exposed broilers fed diets supplemented with tomato pomace

    NASA Astrophysics Data System (ADS)

    Hosseini-Vashan, S. J.; Golian, A.; Yaghobfar, A.

    2016-08-01

    for secondary antibody response to sheep red blood cells and titer against Newcastle disease virus and increased the heterophil/lymphocyte ratio. The supplementation with 5 % of DTP completely alleviated the negative effects of HS on immune responses. The ash, Ca, and P contents of the tibia bone were decreased under HS. The ash and Ca contents of the tibia were not significantly different between thermoneutral and heat-stressed broilers supplemented with 5 % DTP. In conclusion, dietary supplementation of DTP, particularly 5 % DTP, to broiler diet attenuated the detrimental effects of HS on the activities of serum enzymes, oxidative status, immune response, and bone composition.

  14. Dynamics of locomotor activity and heat production in rats after acute stress.

    PubMed

    Pertsov, S S; Alekseeva, I V; Koplik, E V; Sharanova, N E; Kirbaeva, N V; Gapparov, M M G

    2014-05-01

    The dynamics of locomotor activity and heat production were studied in rats demonstrating passive and active behavior in the open field test at different time after exposure to acute emotional stress caused by 12-h immobilization during dark hours. The most pronounced changes in behavior and heat production followed by disturbances in circadian rhythms of these parameters were detected within the first 2 days after stress. In contrast to behaviorally active rats, the most significant decrease in locomotor activity and heat production of passive animals subjected to emotional stress was observed during dark hours. Circadian rhythms of behavior and heat production in rats tended to recover on day 3 after immobilization stress. These data illustrate the specificity of metabolic and behavioral changes reflecting the shift of endogenous biological rhythms in individuals with different prognostic resistance to stress at different terms after exposure to negative emotiogenic stimuli. PMID:24906959

  15. Heat stress attenuates skeletal muscle atrophy of extensor digitorum longus in streptozotocin-induced diabetic rats.

    PubMed

    Nonaka, K; Une, S; Akiyama, J

    2015-09-01

    To investigate whether heat stress attenuates skeletal muscle atrophy of the extensor digitorum longus (EDL) muscle in streptozotocin-induced diabetic rats, 12-week-old male Wistar rats were randomly assigned to four groups (n = 6 per group): control (Con), heat stress (HS), diabetes mellitus (DM), and diabetes mellitus/heat stress (DM + HS). Diabetes was induced by intraperitoneal injection of streptozotocin (50 mg/kg). Heat stress was induced in the HS and DM + HS groups by immersion of the lower half of the body in hot water at 42 °C for 30 min; it was initiated 7 days after injection of streptozotocin, and was performed once a day, five times a week for 3 weeks. The muscle fiber cross-sectional area of EDL muscles from diabetic and non-diabetic rats was determined; heat stress protein (HSP) 72 and HSP25 expression levels were also analyzed by western blotting. Diabetes-induced muscle fiber atrophy was attenuated upon heat stress treatment in diabetic rats. HSP72 and HSP25 expression was upregulated in the DM + HS group compared with the DM group. Our findings suggest that heat stress attenuates atrophy of the EDL muscle by upregulating HSP72 and HSP25 expression. PMID:26551745

  16. Soybean Roots Grown under Heat Stress Show Global Changes in Their Transcriptional and Proteomic Profiles

    PubMed Central

    Valdés-López, Oswaldo; Batek, Josef; Gomez-Hernandez, Nicolas; Nguyen, Cuong T.; Isidra-Arellano, Mariel C.; Zhang, Ning; Joshi, Trupti; Xu, Dong; Hixson, Kim K.; Weitz, Karl K.; Aldrich, Joshua T.; Paša-Tolić, Ljiljana; Stacey, Gary

    2016-01-01

    Heat stress is likely to be a key factor in the negative impact of climate change on crop production. Heat stress significantly influences the functions of roots, which provide support, water, and nutrients to other plant organs. Likewise, roots play an important role in the establishment of symbiotic associations with different microorganisms. Despite the physiological relevance of roots, few studies have examined their response to heat stress. In this study, we performed genome-wide transcriptomic and proteomic analyses on isolated root hairs, which are a single, epidermal cell type, and compared their response to stripped roots. On average, we identified 1849 and 3091 genes differentially regulated in root hairs and stripped roots, respectively, in response to heat stress. Our gene regulatory module analysis identified 10 key modules that might control the majority of the transcriptional response to heat stress. We also conducted proteomic analysis on membrane fractions isolated from root hairs and compared these responses to stripped roots. These experiments identified a variety of proteins whose expression changed within 3 h of application of heat stress. Most of these proteins were predicted to play a significant role in thermo-tolerance, as well as in chromatin remodeling and post-transcriptional regulation. The data presented represent an in-depth analysis of the heat stress response of a single cell type in soybean. PMID:27200004

  17. A tomato chloroplast-targeted DnaJ protein protects Rubisco activity under heat stress.

    PubMed

    Wang, Guodong; Kong, Fanying; Zhang, Song; Meng, Xia; Wang, Yong; Meng, Qingwei

    2015-06-01

    Photosynthesis is one of the biological processes most sensitive to heat stress in plants. Carbon assimilation, which depends on ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), is one of the major sites sensitive to heat stress in photosynthesis. In this study, the roles of a tomato (Solanum lycopersicum) chloroplast-targeted DnaJ protein (SlCDJ2) in resisting heat using sense and antisense transgenic tomatoes were examined. SlCDJ2 was found to be uniformly distributed in the thylakoids and stroma of the chloroplasts. Under heat stress, sense plants exhibited higher chlorophyll contents and fresh weights, and lower accumulation of reactive oxygen species (ROS) and membrane damage. Moreover, Rubisco activity, Rubisco large subunit (RbcL) content, and CO2 assimilation capacity were all higher in sense plants and lower in antisense plants compared with wild-type plants. Thus, SlCDJ2 contributes to maintenance of CO2 assimilation capacity mainly by protecting Rubisco activity under heat stress. SlCDJ2 probably achieves this by keeping the levels of proteolytic enzymes low, which prevents accelerated degradation of Rubisco under heat stress. Furthermore, a chloroplast heat-shock protein 70 was identified as a binding partner of SlCDJ2 in yeast two-hybrid assays. Taken together, these findings establish a role for SlCDJ2 in maintaining Rubisco activity in plants under heat stress. PMID:25801077

  18. Characterization of physiological response and identification of associated genes under heat stress in rice seedlings.

    PubMed

    Xue, Da-Wei; Jiang, Hua; Hu, Jiang; Zhang, Xiao-Qin; Guo, Long-Biao; Zeng, Da-Li; Dong, Guo-Jun; Sun, Guo-Chang; Qian, Qian

    2012-12-01

    Global warming, which is caused by greenhouse gas emissions, makes food crops more vulnerable to heat stress. Understanding the heat stress-related mechanisms in crops and classifying heat stress-related genes can increase our knowledge in heat-resistant molecular biology and propel developments in molecular design breeding, which can help rice cope with unfavorable temperatures. In this study, we carried out a physiological analysis of rice plants after heat stress. The results show a dramatic increase in malondialdehyde contents and SOD activities. We successfully isolated 11 heat-related rice genes with known function annotation through DNSH, which is an improved SSH method for screening long cDNA fragments. The reanalysis of microarray data from public database revealed that all these genes displayed various expression patterns after heat stress, drought, cold and salt. Quantitative real-time reverse transcription PCR was also performed to validate the expression of these genes after heat stress. The expressions in 10 genes were all significantly changed except for contig 77, which is a CBL-interacting protein kinase. Several reports have been published about the members of the same gene family.

  19. Leaf Proteome Analysis Reveals Prospective Drought and Heat Stress Response Mechanisms in Soybean.

    PubMed

    Das, Aayudh; Eldakak, Moustafa; Paudel, Bimal; Kim, Dea-Wook; Hemmati, Homa; Basu, Chhandak; Rohila, Jai S

    2016-01-01

    Drought and heat are among the major abiotic stresses that affect soybean crops worldwide. During the current investigation, the effect of drought, heat, and drought plus heat stresses was compared in the leaves of two soybean varieties, Surge and Davison, combining 2D-DIGE proteomic data with physiology and biochemical analyses. We demonstrated how 25 differentially expressed photosynthesis-related proteins affect RuBisCO regulation, electron transport, Calvin cycle, and carbon fixation during drought and heat stress. We also observed higher abundance of heat stress-induced EF-Tu protein in Surge. It is possible that EF-Tu might have activated heat tolerance mechanisms in the soybean. Higher level expressions of heat shock-related protein seem to be regulating the heat tolerance mechanisms. This study identifies the differential expression of various abiotic stress-responsive proteins that regulate various molecular processes and signaling cascades. One inevitable outcome from the biochemical and proteomics assays of this study is that increase of ROS levels during drought stress does not show significant changes at the phenotypic level in Davison and this seems to be due to a higher amount of carbonic anhydrase accumulation in the cell which aids the cell to become more resistant to cytotoxic concentrations of H2O2. PMID:27034942

  20. A tomato chloroplast-targeted DnaJ protein protects Rubisco activity under heat stress.

    PubMed

    Wang, Guodong; Kong, Fanying; Zhang, Song; Meng, Xia; Wang, Yong; Meng, Qingwei

    2015-06-01

    Photosynthesis is one of the biological processes most sensitive to heat stress in plants. Carbon assimilation, which depends on ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), is one of the major sites sensitive to heat stress in photosynthesis. In this study, the roles of a tomato (Solanum lycopersicum) chloroplast-targeted DnaJ protein (SlCDJ2) in resisting heat using sense and antisense transgenic tomatoes were examined. SlCDJ2 was found to be uniformly distributed in the thylakoids and stroma of the chloroplasts. Under heat stress, sense plants exhibited higher chlorophyll contents and fresh weights, and lower accumulation of reactive oxygen species (ROS) and membrane damage. Moreover, Rubisco activity, Rubisco large subunit (RbcL) content, and CO2 assimilation capacity were all higher in sense plants and lower in antisense plants compared with wild-type plants. Thus, SlCDJ2 contributes to maintenance of CO2 assimilation capacity mainly by protecting Rubisco activity under heat stress. SlCDJ2 probably achieves this by keeping the levels of proteolytic enzymes low, which prevents accelerated degradation of Rubisco under heat stress. Furthermore, a chloroplast heat-shock protein 70 was identified as a binding partner of SlCDJ2 in yeast two-hybrid assays. Taken together, these findings establish a role for SlCDJ2 in maintaining Rubisco activity in plants under heat stress.

  1. Characterization of physiological response and identification of associated genes under heat stress in rice seedlings.

    PubMed

    Xue, Da-Wei; Jiang, Hua; Hu, Jiang; Zhang, Xiao-Qin; Guo, Long-Biao; Zeng, Da-Li; Dong, Guo-Jun; Sun, Guo-Chang; Qian, Qian

    2012-12-01

    Global warming, which is caused by greenhouse gas emissions, makes food crops more vulnerable to heat stress. Understanding the heat stress-related mechanisms in crops and classifying heat stress-related genes can increase our knowledge in heat-resistant molecular biology and propel developments in molecular design breeding, which can help rice cope with unfavorable temperatures. In this study, we carried out a physiological analysis of rice plants after heat stress. The results show a dramatic increase in malondialdehyde contents and SOD activities. We successfully isolated 11 heat-related rice genes with known function annotation through DNSH, which is an improved SSH method for screening long cDNA fragments. The reanalysis of microarray data from public database revealed that all these genes displayed various expression patterns after heat stress, drought, cold and salt. Quantitative real-time reverse transcription PCR was also performed to validate the expression of these genes after heat stress. The expressions in 10 genes were all significantly changed except for contig 77, which is a CBL-interacting protein kinase. Several reports have been published about the members of the same gene family. PMID:23037947

  2. Leaf Proteome Analysis Reveals Prospective Drought and Heat Stress Response Mechanisms in Soybean

    PubMed Central

    Das, Aayudh; Eldakak, Moustafa; Paudel, Bimal; Kim, Dea-Wook; Hemmati, Homa; Basu, Chhandak

    2016-01-01

    Drought and heat are among the major abiotic stresses that affect soybean crops worldwide. During the current investigation, the effect of drought, heat, and drought plus heat stresses was compared in the leaves of two soybean varieties, Surge and Davison, combining 2D-DIGE proteomi