Science.gov

Sample records for alleviate soil compaction

  1. How cultivation alleviates soil water repellency

    NASA Astrophysics Data System (ADS)

    Orfanus, Tomas; Dlapa, Pavel; Fodor, Nandor; Rajkai, Kalman

    2010-05-01

    Prolonged droughts are still more frequent and last longer in Central Europe. Under high temperature and low water content, the wettability of organic substances, which cover soil particles, decreases and the infiltration process can be retarded or even entirely prevented. This phenomenon (usually called the soil water repellency - SWR) is very common in sandy soils, especially under natural-state vegetation (forests, grasslands). The objective of this study was to examine to what extent the SWR can be alleviated by sandy soil cultivation. Two study sites in Pannonian basin were selected; Sekule in south-western Slovakia and Őrbottyán in northern Hungary. Both have sandy soils with similar textural composition and elementary structure. They differ only by land use. The first is an untreated meadow while the other has been cultivated for decades and contains small after-fertilization residual amount of carbonates. As the reference material, pure aeolian sand with no organic matter from the Sekule study site was taken, since no SWR has been detected there. Infiltration tests under small positive pressure and comparative infiltration tests with water and ethanol under small negative pressure were performed on the three materials, after several prolonged dry seasons. The results show that, water infiltration is considerably retarded in both sandy soils, which contain organic matter (meadow and arable) when compared to the reference material. In arable soil the effect was partially alleviated by cultivation. One evident reason is the presence of residual after-fertilization carbonates in this soil. Carbonates on the one side enlarged the hydrophilic/hydrophobic surface ratio and on the other increased pH, which causes enhanced dissociation of carboxylic groups and by this way also overall hydrophilicity of soil organic matter. This assumption was proved by laboratory experiments with the meadow soil from Sekule, when after calcite addition into the soil the

  2. Compost improves compacted urban soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Urban construction sites usually result in compacted soils that limit infiltration and root growth. The purpose of this study was to determine if compost, aeration, and/or prairie grasses can remediate a site setup as a simulated post-construction site (compacted). Five years after establishing the ...

  3. Soil compaction and structural morphology under tractor wheelings

    NASA Astrophysics Data System (ADS)

    Shanahan, Peter; Quinton, John; Binley, Andrew; Silgram, Martyn

    2010-05-01

    Compaction of cultivated soils is a major problem for agriculture in terms of yield decline and sustainable soil resource management. Tramline wheelings exacerbate runoff and increase erosion from arable land. The UK Department for Environment, Food and Rural Affairs (Defra) LINK Project - a joint venture between agri-business, land managers and research groups - is currently evaluating a number of methods for alleviating compaction in tractor wheelings across a range of soil types in England. Using innovative applications of agri-geophysics (e.g. ground penetrating radar, electrical resistivity, acoustics and x-ray tomography), this current project aims to determine relationships between properties derived from geophysical methods (e.g. soil moisture, porosity), soil compaction and structural morphology. Such relationships are important for a clearer understanding of hydrological and biogeochemical processes in compacted soils, to address land management practices and develop cost-effective mitigation measures. Our poster will present some early results of this study.

  4. Remediation to improve infiltration into compact soils.

    PubMed

    Olson, Nicholas C; Gulliver, John S; Nieber, John L; Kayhanian, Masoud

    2013-03-15

    Urban development usually involves soil compaction through converting large pervious land into developed land. This change typically increases runoff during runoff events and consequently may add to flooding and additional volume of runoff. The wash off of pollutants may also create numerous water quality and environmental problems for receiving waters. To alleviate this problem many municipalities are considering low impact development. One technique to reduce runoff in an urban area is to improve the soil infiltration. This study is specifically undertaken to investigate tilling and compost addition to improve infiltration rate, and to investigate measurement tools to assess the effectiveness of remediated soil. Soil remediation was performed at three sites in an urban area metropolitan area. Each site was divided into three plots: tilled, tilled with compost addition, and a control plot with no treatment. The infiltration effectiveness within each plot was assessed by measuring saturated hydraulic conductivity (K(sat)) using the modified Philip Dunne (MPD) infiltrometer during pre- and post-treatment. In addition, the use of soil bulk density and soil strength as surrogate parameters for K(sat) was investigated. Results showed that deep tillage was effective at reducing the level of soil strength. Soil strength was approximately half that of the control plot in the first six inches of soil. At two of the sites, tilling was also ineffective at improving the infiltration capacity of the soil. The geometric mean of K(sat) was 0.5-2.3 times that of the control plot, indicating little overall improvement. Compost addition was more effective than tilling by reducing the soil strength and compaction and increasing soil infiltration. The geometric mean of K(sat) on the compost plots was 2.7-5.7 times that of the control plot. No strong correlations were observed before remediation between either soil bulk density or soil strength and K(sat). Simulation results showed

  5. Deep Compaction Control of Sandy Soils

    NASA Astrophysics Data System (ADS)

    Bałachowski, Lech; Kurek, Norbert

    2015-02-01

    Vibroflotation, vibratory compaction, micro-blasting or heavy tamping are typical improvement methods for the cohesionless deposits of high thickness. The complex mechanism of deep soil compaction is related to void ratio decrease with grain rearrangements, lateral stress increase, prestressing effect of certain number of load cycles, water pressure dissipation, aging and other effects. Calibration chamber based interpretation of CPTU/DMT can be used to take into account vertical and horizontal stress and void ratio effects. Some examples of interpretation of soundings in pre-treated and compacted sands are given. Some acceptance criteria for compaction control are discussed. The improvement factors are analysed including the normalised approach based on the soil behaviour type index.

  6. Soil compaction across the old rotation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evaluating soil compaction levels across the Old Rotation, the world’s oldest continuous cotton (Gossypium hirsutum L.) experiment, has not been conducted since the experiment transitioned to conservation tillage and high residue cover crops with and without irrigation. Our objective was to charact...

  7. Soil compaction vulnerability at Organ Pipe Cactus National Monument, Arizona

    USGS Publications Warehouse

    Webb, Robert H.; Nussear, Kenneth E.; Carmichael, Shinji; Esque, Todd C.

    2014-01-01

    Compaction vulnerability of different types of soils by hikers and vehicles is poorly known, particularly for soils of arid and semiarid regions. Engineering analyses have long shown that poorly sorted soils (for example, sandy loams) compact to high densities, whereas well-sorted soils (for example, eolian sand) do not compact, and high gravel content may reduce compaction. Organ Pipe Cactus National Monument (ORPI) in southwestern Arizona, is affected greatly by illicit activities associated with the United States–Mexico border, and has many soils that resource managers consider to be highly vulnerable to compaction. Using geospatial soils data for ORPI, compaction vulnerability was estimated qualitatively based on the amount of gravel and the degree of sorting of sand and finer particles. To test this qualitative assessment, soil samples were collected from 48 sites across all soil map units, and undisturbed bulk densities were measured. A scoring system was used to create a vulnerability index for soils on the basis of particle-size sorting, soil properties derived from Proctor compaction analyses, and the field undisturbed bulk densities. The results of the laboratory analyses indicated that the qualitative assessments of soil compaction vulnerability underestimated the area of high vulnerability soils by 73 percent. The results showed that compaction vulnerability of desert soils, such as those at ORPI, can be quantified using laboratory tests and evaluated using geographic information system analyses, providing a management tool that managers potentially could use to inform decisions about activities that reduce this type of soil disruption in protected areas.

  8. Soybean nodulation and symbiotic nitrogen fixation in response to soil compaction and mulching

    NASA Astrophysics Data System (ADS)

    Siczek, A.; Lipiec, J.

    2009-04-01

    Symbiotic nitrogen fixation by legume crops such as soybean plays a key role in supplying nitrogen for agricultural systems. In symbiotic associations with Bradyrhizobium japonicum soybean can fix up to 200 kg N ha-1 yr-1. This reduces the need for expensive and often environmentally harmful because of leaching nitrogen fertilization. However both soybean nodulation and nitrogen fixation are sensitive to soil conditions. One of the critical soil constraints is soil compaction. Increasing use of heavy equipment and intensive cropping in modern agriculture leads to excessive soil compaction. Compaction often is found as a result of field operations that have to be performed in a very short period of time and when soils are wet and more susceptible to compaction. This results in unfavourable water content, temperature, aeration, pore size distribution, strength for plant growth and microbial activity. The surface mulching can alleviate the adverse effect of the environmental factors on soil by decreasing fluctuation of soil temperature, increasing moisture by controlling evaporation from the soil surface, decreasing bulk density, preventing soil crusting. The effect of mulch on soil conditions largely depends on soil compaction and weather conditions during growing season. The positive effect of the straw mulch on soil moisture has been seen under seasons with insufficient rainfalls. However thicker layers of mulch can act as diffusion barrier, especially when the mulch is wet. Additionally, low soil temperature prevalent during early spring under mulch can impede development of nodule, nodule size and delay onset of nodulation. The aim of this study was to determine the effect of the straw mulch on nodulation and nitrogen fixation of soybean in variously compacted soil. The experimental field was 192 m2and was divided into three parts composed of 6 micro-plots with area 7 m2. Three degrees of soil compaction obtained in each field part through tractor passes were

  9. Responses of methane effluxes and soil methane concentrations to compaction.

    NASA Astrophysics Data System (ADS)

    Plain, C.; Delogu, E.; Longdoz, B.; Epron, D.; Ranger, J.

    2015-12-01

    Forest soils host methanotrophic bacterial communities that make them a major methane sink worldwide. Soil compaction resulting from mechanization of forest operations is first affecting soil macroporosity, and thus gas and water transfer within the soil, leading to a reduced oxygenation of the soil. This reduction of soil aeration is expected to reduce the methanotrophic activity leading thus to less CH4 oxidation and more CH4 production, affecting the overall soil CH4budget. Compaction was applied in 2007 and had created linear ruts. We measured continuously since September 2014, in three different situations (compacted-mound, compacted hollow and control), soil CO2 and CH4 effluxes using closed chamber coupled to a cavity ring down spectrometer in an young oak plantation. Since December 2015, in addition to these measurements, we have implanted hydrophobic tubes to measure vertical soil profiles of CH4, O2 and CO2 concentrations in the 3 situations. The soil acts as CH4 sink, with no significant difference in net CH4uptake between control and both hollow and mound in the compacted treatment. However, the uptake of CH4 was significantly lower for the hollows than for the mounds resulting from both a lower diffusion of CH4 within soil and a higher production of CH4 in deeper layer when the soil is water saturated.

  10. The impact of soil compaction on runoff - a meta analysis

    NASA Astrophysics Data System (ADS)

    Rogger, Magdalena; Blöschl, Günter

    2016-04-01

    Soil compaction caused by intensive agricultural practices is known to influence runoff processes at the local scale and is often speculated to have an impact on flood events at much larger scales. Due to the complex and diverse mechanisms related to soil compaction, the key processes influencing runoff at different scales are still poorly understood. The impacts of soil compaction are, however, not only investigated by hydrologists, but also by agricultural scientists since changes in the soil structure and water availability have a direct impact on agricultural yield. Results from these studies are also of interest to hydrologists. This study presents a meta analysis of such agricultural studies with the aim to analyse and bring together the results related to runoff processes. The study identifies the most important parameters used to describe soil compaction effects and compares the observed impacts under different climatic and soil conditions. The specific type of agricultural practice causing the soil compaction is also taken into account. In a further step the results of this study shall be used to derive a toy model for scenario analysis in order to identify the potential impacts of soil compaction on runoff processes at larger scales then the plot scale.

  11. Recovery of compacted soils in Mojave Desert ghost towns.

    USGS Publications Warehouse

    Webb, R.H.; Steiger, J.W.; Wilshire, H.G.

    1986-01-01

    Residual compaction of soils was measured at seven sites in five Mojave Desert ghost towns. Soils in these Death Valley National Monument townsites were compacted by vehicles, animals, and human trampling, and the townsites had been completely abandoned and the buildings removed for 64 to 75 yr. Recovery times extrapolated using a linear recovery model ranged from 80 to 140 yr and averaged 100 yr. The recovery times were related to elevation, suggesting freeze-thaw loosening as an important factor in ameliorating soil compaction in the Mojave Desert. -from Authors

  12. Quantifying the heterogeneity of soil compaction, physical soil properties and soil moisture across multiple spatial scales

    NASA Astrophysics Data System (ADS)

    Coates, Victoria; Pattison, Ian; Sander, Graham

    2016-04-01

    England's rural landscape is dominated by pastoral agriculture, with 40% of land cover classified as either improved or semi-natural grassland according to the Land Cover Map 2007. Since the Second World War the intensification of agriculture has resulted in greater levels of soil compaction, associated with higher stocking densities in fields. Locally compaction has led to loss of soil storage and an increased in levels of ponding in fields. At the catchment scale soil compaction has been hypothesised to contribute to increased flood risk. Previous research (Pattison, 2011) on a 40km2 catchment (Dacre Beck, Lake District, UK) has shown that when soil characteristics are homogeneously parameterised in a hydrological model, downstream peak discharges can be 65% higher for a heavy compacted soil than for a lightly compacted soil. However, at the catchment scale there is likely to be a significant amount of variability in compaction levels within and between fields, due to multiple controlling factors. This research focusses in on one specific type of land use (permanent pasture with cattle grazing) and areas of activity within the field (feeding area, field gate, tree shelter, open field area). The aim was to determine if the soil characteristics and soil compaction levels are homogeneous in the four areas of the field. Also, to determine if these levels stayed the same over the course of the year, or if there were differences at the end of the dry (October) and wet (April) periods. Field experiments were conducted in the River Skell catchment, in Yorkshire, UK, which has an area of 120km2. The dynamic cone penetrometer was used to determine the structural properties of the soil, soil samples were collected to assess the bulk density, organic matter content and permeability in the laboratory and the Hydrosense II was used to determine the soil moisture content in the topsoil. Penetration results show that the tree shelter is the most compacted and the open field area

  13. Sensing and 3D Mapping of Soil Compaction

    PubMed Central

    Tekin, Yücel; Kul, Basri; Okursoy, Rasim

    2008-01-01

    Soil compaction is an important physical limiting factor for the root growth and plant emergence and is one of the major causes for reduced crop yield worldwide. The objective of this study was to generate 2D/3D soil compaction maps for different depth layers of the soil. To do so, a soil penetrometer was designed, which was mounted on the three-point hitch of an agricultural tractor, consisting of a mechanical system, data acquisition system (DAS), and 2D/3D imaging and analysis software. The system was successfully tested in field conditions, measuring soil penetration resistances as a function of depth from 0 to 40 cm at 1 cm intervals. The software allows user to either tabulate the measured quantities or generate maps as soon as data collection has been terminated. The system may also incorporate GPS data to create geo-referenced soil maps. The software enables the user to graph penetration resistances at a specified coordinate. Alternately, soil compaction maps could be generated using data collected from multiple coordinates. The data could be automatically stratified to determine soil compaction distribution at different layers of 5, 10,.…, 40 cm depths. It was concluded that the system tested in this study could be used to assess the soil compaction at topsoil and the randomly distributed hardpan formations just below the common tillage depths, enabling visualization of spatial variability through the imaging software.

  14. Using cover crops to alleviate compaction in organic grain farms: effects on weeds and yields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic producers heavily rely on tillage for mechanical weeding, creating compacted areas ideal for weedy species, and forming a vicious cycle of tillage, compaction and increasing weed populations. In an effort to address the concerns of certified organic farmers from Illinois, we explored the eff...

  15. Estimation of CI-based soil compaction status from soil apparent electrical conductivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Regionalization of soil properties is very important for successful site-specific field management. Soil compaction is a critical issue to be detected and managed due to its effects on crop growth. Soil compaction has been conventionally quantified as cone index (CI) measured by an ASABE-standard co...

  16. Experimental study of soil compaction effects on GPR signals

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Hu, Zhenqi; Zhao, Yanling; Li, Xinju

    2016-03-01

    Mechanical operations may lead to soil compaction hazard in land consolidation projects. Aiming to quantitatively guarantee soil compaction status with ground penetrating radar (GPR), we should clearly understand the relationship between bulk density/penetration resistance (PR) and GPR signals. This research adopted GPR with a central frequency of 500 MHz and the experimental design with laboratory test and outdoor test. Because soil dielectric constant receives combination influence of soil properties, statistical methods were used to analyze the influence of soil bulk density on electromagnetic wave velocity. Significant correlation exists between electromagnetic wave velocity and bulk density, with a partial correlation coefficient of 0.882 and two-tailed significance of 0.020. While soil dielectric constant strongly depends on soil water content, the growing of soil bulk density usually reduces free water content, increases bound water content and finally influences GPR signals. The results also showed that high soil PR value accompanied with low amplitude values of electromagnetic wave and fast decay rate of the amplitude back to noise level. More experimental data would be acquired for accurate quantification between soil compaction and GPR signals with statistic methods in the future research.

  17. Risk assessment of soil compaction in Walloon Region (Belgium)

    NASA Astrophysics Data System (ADS)

    Charlotte, Rosiere; Marie-France, Destain; Jean-Claude, Verbrugge

    2010-05-01

    The proposed Soil Framework Directive COM(2006)232 requires Member States to identify areas at risk of erosion, decline in organic matter, salinisation, compaction, sealing and landslides, as well as to set up an inventory of contaminated sites. The present project aims to identify the susceptibility to compaction of soils of the Walloon Region (Belgium) and to recommend good farming practices avoiding soil compaction as far as possible. Within this scope, the concept of precompression stress (Pc) (Horn and Fleige, 2003) was used. Pc is defined as the maximum major principal stress that a soil horizon can withstand against any applied external vertical stress. If applied stress is higher than Pc, the soil enters in a plastic state, not easily reversible. For a given soil, the intensity of soil compaction is mainly due to the applied load which depends on vehicle characteristics (axle load, tyre dimensions, tyre inflation pressure, and vehicle velocity). To determine soil precompression stress, pedotransfert functions of Lebert and Horn (1991) defined at two water suctions (pF 1.8 and 2.5) were used. Parameters required by these functions were found within several databases (Aardewerk and Digital Map of Walloon Soils) and literature. The validation of Pc was performed by measuring stress-strain relationships using automatic oedometers. Stresses of 15.6, 31, 3, 62.5, 125, 250, 500 and 1000 kPa were applied for 10 min each. In this study, the compaction due to beet harvesters was considered because the axle load can exceed 10 tons and these machines are often used during wet conditions. The compaction at two depth levels was considered: 30 and 50 cm. Compaction of topsoil was not taken into account because, under conventional tillage, the plough depth is lower than 25 cm. Before and after the passage of the machines, following measurements were performed: granulometry, density, soil moisture, pF curve, Atterberg limits, ... The software Soilflex (Keller et al., 2007

  18. Alleviating aluminium toxicity on an acid sulphate soils in Peninsular Malaysia with application of calcium silicate

    NASA Astrophysics Data System (ADS)

    Elisa, A. A.; Ninomiya, S.; Shamshuddin, J.; Roslan, I.

    2015-10-01

    A study was conducted to alleviate Al toxicity of an acid sulphate soils collected from paddy cultivation area in Kedah, Peninsular Malaysia. For this purpose, the collected acid sulphate soils were treated with calcium silicate. The treated soils were incubated for 120 days in submerged condition in a glasshouse. Subsamples were collected every 30 days throughout the incubation period. Soil pH and exchangeable Al showed positive effect; soil pH increased from 2.9 to 3.5, meanwhile exchangeable Al was reduced from 4.26 to 0.82 cmolc kg-1, which was well below the critical Al toxicity level for rice growth of 2 cmolc kg-1. It was noted that the dissolution of calcium silicate (CaSiO3) supplied substantial amount of Ca2+ and H4SiO42- ions into the soil, noted with increment in Si (silicate) content from 21.21 to 40 mg kg-1 at day 30 and reduction of exchangeable Al at day 90 from 4.26 to below 2 cmolc kg-1. During the first 60 days of incubation, Si content was positively correlated with soil pH, while the exchangeable Al was negatively correlated with Si content. It is believed that the silicate anions released by calcium silicate were active in neutralizing H+ ions that governs the high acidity (pH 2.90) of the acid sulphate soils. This scenario shows positive effect of calcium silicate to reduce soil acidity, therefore creates a favourable soil condition for good rice growth during its vegetative phase (30 days). Thus, application of calcium silicate to alleviate Al toxicity of acid sulphate soils for rice cultivation is a good soil amendment.

  19. Compton scattering tomography in soil compaction study

    NASA Astrophysics Data System (ADS)

    Balogun, F. A.; Cruvinel, P. E.

    2003-06-01

    Compton scattering imaging technique is investigated as a possible tool in soil density distribution mapping for agricultural purposes. In Compton scattering tomography, the number of photons that had been inelastically scattered from a well-defined volume of a sample is employed as a non-destructive technique to display soil density distribution. Images are also shown, of soil samples, at two closely related densities. Good contrast is recorded between the various inserts and their host matrix. Line scans through the images showed good contrast resolution, shape and edge definition. Spatial resolution could be enhanced by the use of a focussing collimator on the detector. This will also serve to increase the solid angle subtended at the detector by the scattering volume, with a possible reduction in counting time at the same precision level.

  20. Alleviating aluminum toxicity in an acid sulfate soil from Peninsular Malaysia by calcium silicate application

    NASA Astrophysics Data System (ADS)

    Elisa, A. A.; Ninomiya, S.; Shamshuddin, J.; Roslan, I.

    2016-03-01

    In response to human population increase, the utilization of acid sulfate soils for rice cultivation is one option for increasing production. The main problems associated with such soils are their low pH values and their associated high content of exchangeable Al, which could be detrimental to crop growth. The application of soil amendments is one approach for mitigating this problem, and calcium silicate is an alternative soil amendment that could be used. Therefore, the main objective of this study was to ameliorate soil acidity in rice-cropped soil. The secondary objective was to study the effects of calcium silicate amendment on soil acidity, exchangeable Al, exchangeable Ca, and Si content. The soil was treated with 0, 1, 2, and 3 Mg ha-1 of calcium silicate under submerged conditions and the soil treatments were sampled every 30 days throughout an incubation period of 120 days. Application of calcium silicate induced a positive effect on soil pH and exchangeable Al; soil pH increased from 2.9 (initial) to 3.5, while exchangeable Al was reduced from 4.26 (initial) to 0.82 cmolc kg-1. Furthermore, the exchangeable Ca and Si contents increased from 1.68 (initial) to 4.94 cmolc kg-1 and from 21.21 (initial) to 81.71 mg kg-1, respectively. Therefore, it was noted that calcium silicate was effective at alleviating Al toxicity in acid sulfate, rice-cropped soil, yielding values below the critical level of 2 cmolc kg-1. In addition, application of calcium silicate showed an ameliorative effect as it increased soil pH and supplied substantial amounts of Ca and Si.

  1. Elastic Properties of Compacted Clay Soils by Laser Ultrasonics

    NASA Astrophysics Data System (ADS)

    Navarrete, M.; Godínez, F. A.; Villagrán-Muniz, M.

    2013-09-01

    To evaluate the effect of the excitation frequency on the dynamic properties of soils, the elastic modulus , shear modulus , and Poisson’s ratio for three Mexican compacted clayey soils were determined using two techniques: laser ultrasonic and resonant column (RC) tests. For the first, the parameters were determined by measurements of the P- and S-waves at ultrasonic frequencies and variations of the height of the cylindrical soil specimens and for the second one, a harmonic excitation between 5 Hz and 7 Hz was applied. Large variations in the elastic parameters through an ultrasonic axial scanning of the soil specimens were observed; this reveals the heterogeneity of these materials, while a decrease of the sample aspect ratio mainly affects the determination of Poisson’s ratio. The ultrasonic data were integrated with those from RC data to obtain a shear modulus profile covering both high and low frequencies. The interpolation on whether the data are either linear or not is an indication of the viscoelastic behavior of the compacted clayey soils. The specimens were: (a) clay from Texcoco Valley, (b) clay from Mexico Valley, and (c) granular soils from the Parota. Experimental determination of the mechanical properties of soils is very important because soil constitutive models are traditionally calibrated from global boundary measurements taken from laboratory soil specimens. The most difficult parameter to obtain is the Poisson’s ratio, as well as the shear modulus, which is a fundamental parameter for establishing the soil response under low amplitude vibrations and it is extremely important to foundation design.

  2. Gas Transport Parameters for Landfill Cover Soils: Effects of Soil Compaction and Water Blockages

    NASA Astrophysics Data System (ADS)

    Wickramarachchi, P. N.; Hamamoto, S.; Kawamoto, K.; Nawagamuwa, U.; Komatsu, T.; Moldrup, P.

    2009-12-01

    Recently, landfill sites have been emerging in greenhouse warming scenarios as a significant source of atmospheric CH4. landfill management strategies have mainly addressed the problem of preventing groundwater contamination and reduction of leachate generation. Being one of the largest source of anthropogenic CH4 emission , the final cover system should also be designed for minimizing the biogas migration into the atmosphere or the areas surrounding the landfill. Compared to the intensive research efforts on hydraulic performances of landfill final cover soil , there are few studies about gas transport characteristics of landfill cover soils. Therefore, the effects of soil physical properties such as bulk density (i.e., compaction level), soil particle size and water blockage effects on the gas exchange in t highly compacted final cover soil are largely unknown. The gas exchange through the final cover soils is controlled by advective and diffusive gas transport. Air permeability (ka) governs the advective gas transport while the soil-gas diffusion coefficient (Dp) governs diffusive gas transport . In this study, the effects of compaction level and water blockage effects on ka and Dp for two landfill final cover soils were investigated. The disturbed soil samples were taken from landfill final covers in Japan and Sri Lanka. A compaction tests were performed for the soil samples with two different size fractions (< 35 mm and < 2.0 mm). In the compaction tests at field water content , the soil samples were repacked into soil cores (i.d. 15-cm, length 12-cm) at two different compaction levels (2700 kN/m2 and 600 kN/m2). After the compaction tests, ka and Dp were measured and then samples were saturated and subsequently drained at different soil-water matric potential (pF; pF equals to log(-ɛ) where ɛ is soil-water matric potential in cm H2O) of 1.5, 2.0, 3.0, 4.1, and with air-dried (pF 6.0) and oven-dried (pF 6.9) conditions. Results showed that measured Dp values

  3. Process for reduction of volume of contaminated soil by compaction

    SciTech Connect

    Johanan, W.L.

    1994-12-31

    Burial costs for low-level radioactive waste are assessed by the volume of the waste. These costs are presently at $10 per cubic foot and will continue to increase with time. A reduction in waste volume can be directly converted to a reduction in burial costs. A large amount of low-level contaminated soil exists throughout the DOE complex. The Nuclear Complex Modernization Task Force has identified over 5 million cubic feet of contaminated soil for eventual clean-up at the Mound site ($50,000,000 to bury at FY 1991 costs). By using a combination of a rock separator (trommel), crusher, clay soil compactor, automatic loading system, specially designed dust enclosures, and specifically designed containers for both on-site haulage and shipment to the Nevada Test Site (NTS), the total waste volume, and burial cost, can be reduced by up to 30% by compacting the soil into high-density bricks (depending upon the compaction quality of the soil). Several tests have been performed on Mound`s cold on-site soils, with resulting densities of 131 pounds per cubic foot. When this is compared to normal LSA metal box filling of 80--90 pounds per cubic foot, one can readily see the savings.

  4. Freeze-thaw cycles effects on soil compaction in a clay loam

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inappropriate soil management practices and heavier farm machinery and equipment have led to an increase in soil compaction in the last two decades prompting increased global concern regarding the impact of soil compaction on crop production and soil quality in modern mechanized agriculture. A 3-yr ...

  5. Statistical and Multifractal Evaluation of Soil Compaction in a Vineyard

    NASA Astrophysics Data System (ADS)

    Marinho, M.; Raposo, J. R.; Mirás Avalos, J. M.; Paz González, A.

    2012-04-01

    One of the detrimental effects caused by agricultural machines is soil compaction, which can be defined by an increase in soil bulk density. Soil compaction often has a negative impact on plant growth, since it reduces the macroporosity and soil permeability and increases resistance to penetration. Our research explored the effect of the agricultural machinery on soil when trafficking through a vineyard at a small spatial scale, based on the evaluation of the soil compaction status. The objectives of this study were: i) to quantify soil bulk density along transects following wine row, wheel track and outside track, and, ii) to characterize the variability of the bulk density along these transects using multifractal analysis. The field work was conducted at the experimental farm of EVEGA (Viticulture and Enology Centre of Galicia) located in Ponte San Clodio, Leiro, Orense, Spain. Three parallel transects were marked on positions with contrasting machine traffic effects, i.e. vine row, wheel-track and outside-track. Undisturbed samples were collected in 16 points of each transect, spaced 0.50 m apart, for bulk density determination using the cylinder method. Samples were taken in autumn 2011, after grape harvest. Since soil between vine rows was tilled and homogenized beginning spring 2011, cumulative effects of traffic during the vine growth period could be evaluated. The distribution patterns of soil bulk density were characterized by multifractal analysis carried out by the method of moments. Multifractality was assessed by several indexes derived from the mass exponent, τq, the generalized dimension, Dq, and the singularity spectrum, f(α), curves. Mean soil bulk density values determined for vine row, outside-track and wheel-track transects were 1.212 kg dm-3, 1.259 kg dm-3and 1.582 kg dm-3, respectively. The respective coefficients of variation (CV) for these three transects were 7.76%, 4.82% and 2.03%. Therefore mean bulk density under wheel-track was 30

  6. Interception of Vapor Flow near Soil Surface for Water Conservation and Drought Alleviation

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Wang, Y.; Gao, Z.; Hishida, K.; Zhang, Y.

    2015-12-01

    Liquid and vapor flow of water in soil and the eventual vaporization of all waters near the soil surface are mechanisms controlling the near-surface evaporation. Interception and prevention of the vapor form of flow is critical for soil water conservation and drought alleviation in the arid and semiarid regions. Researches are conducted to quantify the amount of near-surface vapor flow in the semi-arid Loess Plateau of China and the central California of USA. Quantitative leaf water absorption and desorption functions were derived and tested based on laboratory experiments. Results show that plant leaves absorb and release water at different speeds depending on species and varieties. The "ideal" native plants in the dry climates can quickly absorb water and slowly release it. This water-holding capacity of a plant is characterized by the plant's water retention curves. Field studies are conducted to measure the dynamic water movements from the soil surface to ten meters below the surface in an attempt to quantify the maximum depths of water extraction due to different vegetation types and mulching measures at the surface. Results show that condensation is usually formed on soil surface membranes during the daily hours when the temperature gradients are inverted toward the soil surface. The soil temperature becomes stable at 13 Degree Celsius below the 4-meter depth in the Loess Plateau of China thus vapor flow is not likely deriving from deeper layers. However, the liquid flow may move in and out depending on water potential gradients and hydraulic conductivity of the layers. The near-surface vapor flow can be effectively intercepted by various mulching measures including gravel-and-sand cover, plant residue and plastic membranes. New studies are attempted to quantify the role of vapor flow for the survival of giant sequoias in the southern Sierra Nevada Mountains of California.

  7. Diffusion of inorganic chemical species in compacted clay soil

    NASA Astrophysics Data System (ADS)

    Shackelford, Charles D.; Daniel, David E.; Liljestrand, Howard M.

    1989-08-01

    This research was conducted to study the diffusion of inorganic chemicals in compacted clay soil for the design of waste containment barriers. The effective diffusion coefficients ( D ∗) of anionic (Cl -, Br -, and I -) and cationic (K +, Cd 2+, and Zn 2+) species in a synthetic leachate were measured. Two clay soils were used in the study. The soils were compacted and pre-soaked to minimize mass transport due to suction in the soil. The results of the diffusion tests were analyzed using two analytical solutions to Fick's second law and a commercially available semi-analytical solution, POLLUTE 3.3. Mass balance calculations were performed to indicate possible sinks/sources in the diffusion system. Errors in mass balance were attributed to problems with the chemical analysis (I -), the inefficiency of the extraction procedure (K +), precipitation (Cd 2+ and Zn 2+), and chemical complexation (Cl - and Br -). The D ∗ values for Cl - reported in this study are in excellent agreement with previous findings for other types of soil. The D ∗ values for the metals (K +, Cd 2+, and Zn 2+) are thought to be high (conservative) due to: (1) Ca 2+ saturation of the exchange complex of the clays; (2) precipitation of Cd 2+ and Zn 2+; and (3) nonlinear adsorption behavior. In general, high D ∗ values and conservative designs of waste containment barriers will result if the procedures described in this study are used to determine D ∗ and the adsorption behavior of the solutes is similar to that described in this study.

  8. Continuous Cropping Systems Reduce Near-Surface Maximum Compaction in No-Till Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because of increased concerns over compaction in NT soils, it is important to assess how continuous cropping systems influence risks of soil compaction across a range of soils and NT management systems. We quantified differences in maximum bulk density (BDmax) and critical water content (CWC) by the...

  9. Resistance and resilience of the forest soil microbiome to logging-associated compaction

    PubMed Central

    Hartmann, Martin; Niklaus, Pascal A; Zimmermann, Stephan; Schmutz, Stefan; Kremer, Johann; Abarenkov, Kessy; Lüscher, Peter; Widmer, Franco; Frey, Beat

    2014-01-01

    Soil compaction is a major disturbance associated with logging, but we lack a fundamental understanding of how this affects the soil microbiome. We assessed the structural resistance and resilience of the microbiome using a high-throughput pyrosequencing approach in differently compacted soils at two forest sites and correlated these findings with changes in soil physical properties and functions. Alterations in soil porosity after compaction strongly limited the air and water conductivity. Compaction significantly reduced abundance, increased diversity, and persistently altered the structure of the microbiota. Fungi were less resistant and resilient than bacteria; clayey soils were less resistant and resilient than sandy soils. The strongest effects were observed in soils with unfavorable moisture conditions, where air and water conductivities dropped well below 10% of their initial value. Maximum impact was observed around 6–12 months after compaction, and microbial communities showed resilience in lightly but not in severely compacted soils 4 years post disturbance. Bacteria capable of anaerobic respiration, including sulfate, sulfur, and metal reducers of the Proteobacteria and Firmicutes, were significantly associated with compacted soils. Compaction detrimentally affected ectomycorrhizal species, whereas saprobic and parasitic fungi proportionally increased in compacted soils. Structural shifts in the microbiota were accompanied by significant changes in soil processes, resulting in reduced carbon dioxide, and increased methane and nitrous oxide emissions from compacted soils. This study demonstrates that physical soil disturbance during logging induces profound and long-lasting changes in the soil microbiome and associated soil functions, raising awareness regarding sustainable management of economically driven logging operations. PMID:24030594

  10. The impact of soil compaction and freezing-thawing cycles on soil structure and yield in Mollisol region of China

    NASA Astrophysics Data System (ADS)

    Wang, Enheng; Zhao, Yusen; Chen, Xiangwei

    2015-04-01

    Agricultural machinery tillage and alternating freezing and thawing are two critical factors associated with soil structure change and accelerates soil erosion in the black soil region of Northeast China. Combining practical machinery operation and natural freeze-thaw cycles with artificial machinery compaction in the field and artificial freeze-thaw cycles in the lab, the plus and minus benefits of machinery tillage, characterization of seasonal freeze-thaw cycles, and their effects on soil structure and yield were studied. Firstly,the effects of machinery type and antecedent water content on soil structure and soil available nutrient were investigated by measuring soil bulk density, soil strength, soil porosity, soil aggregate distribution and stability, and three soil phases. The results showed that: Machinery tillage had positive and negative influence on soil structure, soil in top cultivated layer can be loosened and ameliorated however the subsoil accumulation of compaction was resulted. For heavy and medium machinery, subsoil compaction formed in the soil depth of 41~60cm and 31~40cm, respectively; however during the soil depth of 17.5~30cm under medium machinery operation there was a new plow pan produced because of the depth difference between harvesting and subsoiling. Antecedent water content had a significant effect on soil structure under machinery operations. Higher water antecedent resulted in deeper subsoil compaction at 40cm,which was deeper by 10cm than lower water content and soil compaction accumulation occurred at the first pass under higher water content condition. Besides water content and bulk density, soil organic matter is another key factor for affecting compressive-resilient performance of tillage soil. Secondly, based on the soils sampled from fields of the black soil region, the effects of freeze-thaw cycles on soil structure at different soil depths (0 -- 40 cm, 40 -- 80 cm, 120 -- 160 cm) and size scales (field core sampling

  11. Influence of suction cycles on the soil fabric of compacted swelling soil

    NASA Astrophysics Data System (ADS)

    Nowamooz, Hossein; Masrouri, Farimah

    2010-12-01

    The soil fabric plays an important role in complex hydromechanical behaviour of the expansive soils. This article addresses the influence of the wetting and drying paths on the soil fabric of compacted bentonite and silt mixtures at two different initial dry densities corresponding to loose and dense states. To obtain the hydric response of the soil, two suction imposition techniques were used: osmotic technique for the suction range less than 8.5 MPa and the vapour equilibrium or the salt solution technique for the suction range between 8.5 and 287.9 MPa. Additionally, the soil fabric analysis was performed using mercury intrusion porosimetry (MIP) and nitrogen gas adsorption (BET) techniques. The dense samples produced cumulative swelling strains during the suction cycles, while shrinkage was observed for the loose samples. The suction cycles induced an equilibrium state indicative of the elastic behaviour of the samples. The soil fabric analysis showed that regardless of the soil's initial state (loose or dense), the samples obtained the same soil fabric at the equilibrium state. The experimental results illustrated also the existence of an elastic void ratio ( e0el) where the compacted soils at this state present an elastic hydric behaviour during the successive suction cycles.

  12. Reducing compaction effort and incorporating air permeability in Proctor testing for design of urban green spaces on cohesive soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is well established that compaction negatively affects agronomic productivity, that air permeability is a sensitive measure of the degree of soil compaction and therefore a good indicator of soil productivity impairment from compaction. Cohesive soils in urban settings are often heavily compacted...

  13. Recovery of severely compacted soils in the Mojave Desert, California, USA

    USGS Publications Warehouse

    Webb, R.H.

    2002-01-01

    Often as a result of large-scale military maneuvers in the past, many soils in the Mojave Desert are highly vulnerable to soil compaction, particularly when wet. Previous studies indicate that natural recovery of severely compacted desert soils is extremely slow, and some researchers have suggested that subsurface compaction may not recover. Poorly sorted soils, particularly those with a loamy sand texture, are most vulnerable to soil compaction, and these soils are the most common in alluvial fans of the Mojave Desert. Recovery of compacted soil is expected to vary as a function of precipitation amounts, wetting-and-drying cycles, freeze-thaw cycles, and bioturbation, particularly root growth. Compaction recovery, as estimated using penetration depth and bulk density, was measured at 19 sites with 32 site-time combinations, including the former World War II Army sites of Camps Ibis, Granite, Iron Mountain, Clipper, and Essex. Although compaction at these sites was caused by a wide variety of forces, ranging from human trampling to tank traffic, the data do not allow segregation of differences in recovery rates for different compaction forces. The recovery rate appears to be logarithmic, with the highest rate of change occurring in the first few decades following abandonment. Some higher-elevation sites have completely recovered from soil compaction after 70 years. Using a linear model of recovery, the full recovery time ranges from 92 to 100 years; using a logarithmic model, which asymptotically approaches full recovery, the time required for 85% recovery ranges from 105-124 years.

  14. Soil compaction effects on water status of ponderosa pine assessed through 13C/12C composition.

    PubMed

    Gomez, G Armando; Singer, Michael J; Powers, Robert F; Horwath, William R

    2002-05-01

    Soil compaction is a side effect of forest reestablishment practices resulting from use of heavy equipment and site preparation. Soil compaction often alters soil properties resulting in changes in plant-available water. The use of pressure chamber methods to assess plant water stress has two drawbacks: (1) the measurements are not integrative; and (2) the method is difficult to apply extensively to establish seasonal soil water status. We evaluated leaf carbon isotopic composition (delta13C) as a means of assessing effects of soil compaction on water status and growth of young ponderosa pine (Pinus ponderosa var. ponderosa Dougl. ex Laws) stands across a range of soil textures. Leaf delta13C in cellulose and whole foliar tissue were highly correlated. Leaf delta13C in both whole tissue and cellulose (holocellulose) was up to 1.0 per thousand lower in trees growing in non-compacted (NC) loam or clay soils than in compacted (SC) loam or clay soils. Soil compaction had the opposite effect on leaf delta13C in trees growing on sandy loam soil, indicating that compaction increased water availability in this soil type. Tree growth response to compaction also varied with soil texture, with no effect, a negative effect and a positive effect as a result of compaction of loam, clay and sandy loam soils, respectively. There was a significant correlation between 13C signature and tree growth along the range of soil textures. Leaf delta13C trends were correlated with midday stem water potentials. We conclude that leaf delta13C can be used to measure retrospective water status and to assess the impact of site preparation on tree growth. The advantage of the leaf delta13C approach is that it provides an integrative assessment of past water status in different aged leaves.

  15. Shrinkage/swelling of compacted clayey loose and dense soils

    NASA Astrophysics Data System (ADS)

    Nowamooz, Hossein; Masrouri, Farimah

    2009-11-01

    This Note presents an experimental study performed on expansive compacted loose and dense samples using osmotic oedometers. Several successive wetting and drying cycles were applied in a suction range between 0 and 8 MPa under different values of constant net vertical stress (15, 30, and 60 kPa). During the suction cycles, the dense samples showed cumulative swelling strains, while the loose samples showed volumetric shrinkage accumulation. At the end of the suction cycles, the volumetric strains converged to an equilibrium stage that indicated elastic behavior of the swelling soil for any further hydraulic variations. At this stage, the compression curves for the studied soil at the different imposed suctions (0, 2, and 8 MPa) converged towards the saturated state curve for the high applied vertical stresses. We defined this pressure as the saturation stress(P). The compression curves provided sufficient data to examine the soil mechanical behavior at the equilibrium stage. To cite this article: H. Nowamooz, F. Masrouri, C. R. Mecanique 337 (2009).

  16. A long-term soil structure observatory for post-compaction soil structure evolution: design and initial soil structure recovery observations

    NASA Astrophysics Data System (ADS)

    Keller, Thomas; Colombi, Tino; Ruiz, Siul; Grahm, Lina; Reiser, René; Rek, Jan; Oberholzer, Hans-Rudolf; Schymanski, Stanislaus; Walter, Achim; Or, Dani

    2016-04-01

    Soil compaction due to agricultural vehicular traffic alters the geometrical arrangement of soil constituents, thereby modifying mechanical properties and pore spaces that affect a range of soil hydro-ecological functions. The ecological and economic costs of soil compaction are dependent on the immediate impact on soil functions during the compaction event, and a function of the recovery time. In contrast to a wealth of soil compaction information, mechanisms and rates of soil structure recovery remain largely unknown. A long-term (>10-yr) soil structure observatory (SSO) was established in 2014 on a loamy soil in Zurich, Switzerland, to quantify rates and mechanisms of structure recovery of compacted arable soil under different post-compaction management treatments. We implemented three initial compaction treatments (using a two-axle agricultural vehicle with 8 Mg wheel load): compaction of the entire plot area (i.e. track-by-track), compaction in wheel tracks, and no compaction. After compaction, we implemented four post-compaction soil management systems: bare soil (BS), permanent grass (PG), crop rotation without mechanical loosening (NT), and crop rotation under conventional tillage (CT). BS and PG provide insights into uninterrupted natural processes of soil structure regeneration under reduced (BS) and normal biological activity (PG). The two cropping systems (NT and CT) enable insights into soil structure recovery under common agricultural practices with minimal (NT) and conventional mechanical soil disturbance (CT). Observations include periodic sampling and measurements of soil physical properties, earthworm abundance, crop measures, electrical resistivity and ground penetrating radar imaging, and continuous monitoring of state variables - soil moisture, temperature, CO2 and O2 concentrations, redox potential and oxygen diffusion rates - for which a network of sensors was installed at various depths (0-1 m). Initial compaction increased soil bulk density

  17. Effect of soil compaction on the degradation and ecotoxicological impact of isoproturon

    NASA Astrophysics Data System (ADS)

    Mamy, L.; Vrignaud, P.; Cheviron, N.; Perreau, F.; Belkacem, M.; Brault, A.; Breuil, S.; Delarue, G.; Touton, I.; Chaplain, V.

    2009-04-01

    Soil is essentially a non-renewable resource which performs many functions and delivers services vital to human activities and ecosystems survival. However the capacity of soil to keep on fully performing its broad variety of crucial functions is damaged by several threats and, among them, chemical contamination by pesticides and compaction due to intensive agriculture practices. How these two threats could interact is largely unknown: compaction may modify the fate of pesticides in soil therefore their effects on the biological functioning of soil. The aim of this work was to study the effect of soil compaction on (1) the degradation of one herbicide, isoproturon (2) the ecotoxicological impact of this herbicide measured through two enzyme activities involved in C (beta-glucosidase) and N (urease) cycles in soil. Undisturbed soil cylinders were sampled in the 2-4 cm layer of La Cage experimental site (INRA, Versailles, France), under intensive agriculture practices. Several soil samples were prepared with different bulk density then treated with isoproturon (IPU). The samples were incubated at 18 ± 1°C in darkness for 63 days. At 0, 2, 7, 14, 28 and 63 days, the concentrations of isoproturon and of two of its main metabolites in soil (monodesmethyl-isoproturon, IPPMU; didesmethyl-isoproturon, IPPU), and the enzyme activities were measured. The results showed that there was no significant difference in IPU degradation under no and moderate soil compaction. IPU was less persistent in the highly compacted soil, but this soil had also higher humidity which is known to increase the degradation. Only one metabolite, IPPMU, was detected independently of the conditions of compaction. The compaction did not modify the effect of IPU on beta-glucosidase and urease activities in the long term, but microbial communities were probably the same in all the soil samples that were initially not compacted. The communities developed in durably compacted zones in the field are

  18. [Effects of compaction on diurnal variaaton of soil respiration in Larix gmellini plantation in summer].

    PubMed

    He, Na; Wang, Li-hai

    2010-12-01

    Taking the Larix gmellinii plantation in the experimental forest farm of Northeast Forestry University as test object, and by using Li-8100 automatic instrument, the daily CO2 emission rate of soil in summer under different degrees of man-made compaction was measured, with the regression models established. There were significant differences in the diurnal variation of soil respiration rate under different degrees of man-made compaction. In CK (no compaction), the maximum value of soil respiration appeared at 15:30-17:30, and the minimum value appeared at 03:30-05:30, which were obviously lagged behind those in compaction treatments. The maximum and minimum values of soil respiration rate in main roads appeared at 09:30-11:30 and 23:30-01:30, and those in branch roads appeared at 11:30 and 01:30-03:30, respectively. In all treatments, soil respiration rate had significant correlations with surface temperature, relative humidity, and the temperature at 10 cm soil depth, but the correlation with the soil moisture at 5 cm depth tended to be not significant when the compaction degree was increasing. Compaction altered surface soil physical structure, decreased surface soil CO2 release rate. PMID:21442991

  19. Long-term effects of deep soil loosening on root distribution and soil physical parameters in compacted lignite mine soils

    NASA Astrophysics Data System (ADS)

    Badorreck, Annika; Krümmelbein, Julia; Raab, Thomas

    2015-04-01

    Soil compaction is a major problem of soils on dumped mining substrates in Lusatia, Germany. Deep ripping and cultivation of deep rooting plant species are considered to be effective ways of agricultural recultivation. Six years after experiment start, we studied the effect of initial deep soil loosening (i.e. down to 65 cm) on root systems of rye (Secale cereale) and alfalfa (Medicago sativa) and on soil physical parameters. We conducted a soil monolith sampling for each treatment (deep loosened and unloosened) and for each plant species (in three replicates, respectively) to determine root diameter, length density and dry mass as well as soil bulk density. Further soil physical analysis comprised water retention, hydraulic conductivity and texture in three depths. The results showed different reactions of the root systems of rye and alfalfa six years after deep ripping. In the loosened soil the root biomass of the rye was lower in depths of 20-40 cm and the root biomass of alfalfa was also decreased in depths of 20-50 cm together with a lower root diameter for both plant species. Moreover, total and fine root length density was higher for alfalfa and vice versa for rye. The soil physical parameters such as bulk density showed fewer differences, despite a higher bulk density in 30-40cm for the deep loosened rye plot which indicates a more pronounced plough pan.

  20. Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants--A soil microcosm experiment.

    PubMed

    Wang, Fayuan; Liu, Xueqin; Shi, Zhaoyong; Tong, Ruijian; Adams, Catharine A; Shi, Xiaojun

    2016-03-01

    ZnO nanoparticles (NPs) are considered an emerging contaminant when in high concentration, and their effects on crops and soil microorganisms pose new concerns and challenges. Arbuscular mycorrhizal (AM) fungi (AMF) form mutualistic symbioses with most vascular plants, and putatively contribute to reducing nanotoxicity in plants. Here, we studied the interactions between ZnO NPs and maize plants inoculated with or without AMF in ZnO NPs-spiked soil. ZnO NPs had no significant adverse effects at 400 mg/kg, but inhibited both maize growth and AM colonization at concentrations at and above 800 mg/kg. Sufficient addition of ZnO NPs decreased plant mineral nutrient acquisition, photosynthetic pigment concentrations, and root activity. Furthermore, ZnO NPs caused Zn concentrations in plants to increase in a dose-dependent pattern. As the ZnO NPs dose increased, we also found a positive correlation with soil diethylenetriaminepentaacetic acid (DTPA)-extractable Zn. However, AM inoculation significantly alleviated the negative effects induced by ZnO NPs: inoculated-plants experienced increased growth, nutrient uptake, photosynthetic pigment content, and SOD activity in leaves. Mycorrhizal plants also exhibited decreased ROS accumulation, Zn concentrations and bioconcentration factor (BCF), and lower soil DTPA-extractable Zn concentrations at high ZnO NPs doses. Our results demonstrate that, at high contamination levels, ZnO NPs cause toxicity to AM symbiosis, but AMF help alleviate ZnO NPs-induced phytotoxicity by decreasing Zn bioavailability and accumulation, Zn partitioning to shoots, and ROS production, and by increasing mineral nutrients and antioxidant capacity. AMF may play beneficial roles in alleviating the negative effects and environmental risks posed by ZnO NPs in agroecosystems. PMID:26761602

  1. Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants--A soil microcosm experiment.

    PubMed

    Wang, Fayuan; Liu, Xueqin; Shi, Zhaoyong; Tong, Ruijian; Adams, Catharine A; Shi, Xiaojun

    2016-03-01

    ZnO nanoparticles (NPs) are considered an emerging contaminant when in high concentration, and their effects on crops and soil microorganisms pose new concerns and challenges. Arbuscular mycorrhizal (AM) fungi (AMF) form mutualistic symbioses with most vascular plants, and putatively contribute to reducing nanotoxicity in plants. Here, we studied the interactions between ZnO NPs and maize plants inoculated with or without AMF in ZnO NPs-spiked soil. ZnO NPs had no significant adverse effects at 400 mg/kg, but inhibited both maize growth and AM colonization at concentrations at and above 800 mg/kg. Sufficient addition of ZnO NPs decreased plant mineral nutrient acquisition, photosynthetic pigment concentrations, and root activity. Furthermore, ZnO NPs caused Zn concentrations in plants to increase in a dose-dependent pattern. As the ZnO NPs dose increased, we also found a positive correlation with soil diethylenetriaminepentaacetic acid (DTPA)-extractable Zn. However, AM inoculation significantly alleviated the negative effects induced by ZnO NPs: inoculated-plants experienced increased growth, nutrient uptake, photosynthetic pigment content, and SOD activity in leaves. Mycorrhizal plants also exhibited decreased ROS accumulation, Zn concentrations and bioconcentration factor (BCF), and lower soil DTPA-extractable Zn concentrations at high ZnO NPs doses. Our results demonstrate that, at high contamination levels, ZnO NPs cause toxicity to AM symbiosis, but AMF help alleviate ZnO NPs-induced phytotoxicity by decreasing Zn bioavailability and accumulation, Zn partitioning to shoots, and ROS production, and by increasing mineral nutrients and antioxidant capacity. AMF may play beneficial roles in alleviating the negative effects and environmental risks posed by ZnO NPs in agroecosystems.

  2. Using Tension Infiltrometry to Assess the Effect of Subsoil Compaction on Soil Hydraulic Properties

    NASA Astrophysics Data System (ADS)

    Schwen, Andreas; Carrick, Sam; Buchan, Graeme

    2010-05-01

    Soil compaction is a major cause of soil degradation all over the world. The related changes in soil physical parameters are of growing importance in agricultural production. To understand fully the effects of different degrees of subsoil compaction on the growth and yield of arable plants requires knowledge of changes in both the soil hydraulic conductivity function, and in the soil water retention curve. In the present study measurements of the hydraulic properties were obtained on an arable field in the Canterbury Plains, South Island, New Zealand. The soil is classified as Templeton silt loam. The uppermost 15 cm of the soil were removed and replaced following five contrasting subsoil treatments. The subsoil was either cultivated (loosened), untreated, or compacted using a heavy roller with three different steps of compaction. Five randomised replications of each subsoil treatment were established. At each of the 25 plots, infiltration measurements were obtained at two depths: on the soil surface and within the compacted soil layer at 18 cm depth. Tension infiltrometry was used, as this method allows the precise and in situ determination of the hydraulic properties at near-saturated conditions. These conditions coincide with flow activation in the macro porosity of the soil. Thus, this method is also suitable to determine the amount and distribution of macro pores, as well as preferential flow paths in soils. Only a few studies have measured the near-saturated parts of the retention and conductivity curves of Templeton soils. The supply tensions were -15 cm, -10 cm, -4 cm, -1 cm, and 0 cm. Undisturbed soil samples were taken with steel cores before each measurement in the vicinity of each measurement site, enabling measurement of the initial and saturated water contents in the laboratory. Post-measurement samples were also taken directly below the infiltration disc to measure the final water content. The cumulative infiltration together with the initial and

  3. Soil microbial biomass nitrogen and Beta-Glucosaminidase activity response to compaction, poultry litter application and cropping in a claypan soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Compaction-induced changes in soil physical properties may significantly affect soil microbial activity, especially nitrogen-cycling processes, in many agroecosystems. The objective of this study was to determine the effect of soil compaction on soil microbiological properties related to N in a clay...

  4. Natural physical and biological processes compromise the long-term performance of compacted soil caps

    SciTech Connect

    Smith, E.D.

    1995-12-01

    Compacted soil barriers are components of essentially all caps placed on closed waste disposal sites. The intended functions of soil barriers in waste facility caps include restricting infiltration of water and release of gases and vapors, either independently or in combination with synthetic membrane barriers, and protecting other manmade or natural barrier components. Review of the performance of installed soil barriers and of natural processes affecting their performance indicates that compacted soil caps may function effectively for relatively short periods (years to decades), but natural physical and biological processes can be expected to cause them to fail in the long term (decades to centuries). This paper addresses natural physical and biological processes that compromise the performance of compacted soil caps and suggests measures that may reduce the adverse consequences of these natural failure mechanisms.

  5. Environmental impacts of different crop rotations in terms of soil compaction.

    PubMed

    Götze, Philipp; Rücknagel, Jan; Jacobs, Anna; Märländer, Bernward; Koch, Heinz-Josef; Christen, Olaf

    2016-10-01

    Avoiding soil compaction caused by agricultural management is a key aim of sustainable land management, and the soil compaction risk should be considered when assessing the environmental impacts of land use systems. Therefore this project compares different crop rotations in terms of soil structure and the soil compaction risk. It is based on a field trial in Germany, in which the crop rotations (i) silage maize (SM) monoculture, (ii) catch crop mustard (Mu)_sugar beet (SB)-winter wheat (WW)-WW, (iii) Mu_SM-WW-WW and (iv) SB-WW-Mu_SM are established since 2010. Based on the cultivation dates, the operation specific soil compaction risks and the soil compaction risk of the entire crop rotations are modelled at two soil depths (20 and 35 cm). To this end, based on assumptions of the equipment currently used in practice by a model farm, two scenarios are modelled (100 and 50% hopper load for SB and WW harvest). In addition, after one complete rotation, in 2013 and in 2014, the physical soil parameters saturated hydraulic conductivity (kS) and air capacity (AC) were determined at soil depths 2-8, 12-18, 22-28 and 32-38 cm in order to quantify the soil structure. At both soil depths, the modelled soil compaction risks for the crop rotations including SB (Mu_SB-WW-WW, SB-WW-Mu_SM) are higher (20 cm: medium to very high risks; 35 cm: no to medium risks) than for those without SB (SM monoculture, Mu_SM-WW-WW; 20 cm: medium risks; 35 cm: no to low risks). This increased soil compaction risk is largely influenced by the SB harvest in years where soil water content is high. Halving the hopper load and adjusting the tyre inflation pressure reduces the soil compaction risk for the crop rotation as a whole. Under these conditions, there are no to low soil compaction risks for all variants in the subsoil (soil depth 35 cm). Soil structure is mainly influenced in the topsoil (2-8 cm) related to the cultivation of Mu as a catch crop and WW as a preceding crop. Concerning k

  6. Environmental impacts of different crop rotations in terms of soil compaction.

    PubMed

    Götze, Philipp; Rücknagel, Jan; Jacobs, Anna; Märländer, Bernward; Koch, Heinz-Josef; Christen, Olaf

    2016-10-01

    Avoiding soil compaction caused by agricultural management is a key aim of sustainable land management, and the soil compaction risk should be considered when assessing the environmental impacts of land use systems. Therefore this project compares different crop rotations in terms of soil structure and the soil compaction risk. It is based on a field trial in Germany, in which the crop rotations (i) silage maize (SM) monoculture, (ii) catch crop mustard (Mu)_sugar beet (SB)-winter wheat (WW)-WW, (iii) Mu_SM-WW-WW and (iv) SB-WW-Mu_SM are established since 2010. Based on the cultivation dates, the operation specific soil compaction risks and the soil compaction risk of the entire crop rotations are modelled at two soil depths (20 and 35 cm). To this end, based on assumptions of the equipment currently used in practice by a model farm, two scenarios are modelled (100 and 50% hopper load for SB and WW harvest). In addition, after one complete rotation, in 2013 and in 2014, the physical soil parameters saturated hydraulic conductivity (kS) and air capacity (AC) were determined at soil depths 2-8, 12-18, 22-28 and 32-38 cm in order to quantify the soil structure. At both soil depths, the modelled soil compaction risks for the crop rotations including SB (Mu_SB-WW-WW, SB-WW-Mu_SM) are higher (20 cm: medium to very high risks; 35 cm: no to medium risks) than for those without SB (SM monoculture, Mu_SM-WW-WW; 20 cm: medium risks; 35 cm: no to low risks). This increased soil compaction risk is largely influenced by the SB harvest in years where soil water content is high. Halving the hopper load and adjusting the tyre inflation pressure reduces the soil compaction risk for the crop rotation as a whole. Under these conditions, there are no to low soil compaction risks for all variants in the subsoil (soil depth 35 cm). Soil structure is mainly influenced in the topsoil (2-8 cm) related to the cultivation of Mu as a catch crop and WW as a preceding crop. Concerning k

  7. Characterization of field compaction using shrinkage analysis and visual soil examination

    NASA Astrophysics Data System (ADS)

    Johannes, Alice; Keller, Thomas; Weisskopf, Peter; Schulin, Rainer; Boivin, Pascal

    2016-04-01

    Visual field examination of soil structure can be very useful in extension work, because it is easy to perform, does not require equipment or lab analyses and the result is immediately available. The main limitations of visual methods are subjectivity and variation with field conditions. To provide reliable reference information, methods for objective and quantitative assessment of soil structure quality are still necessary. Soil shrinkage analysis (ShA) (Braudeau et al., 2004) provides relevant parameters for soil functions that allow precise and accurate assessment of soil compaction. To test it, we applied ShA to samples taken from a soil structure observatory (SSO) set up in 2014 on a loamy soil in Zurich, Switzerland to quantify the structural recovery of compacted agricultural soil. The objective in this presentation is to compare the ability of a visual examination method and ShA to assess soil compaction and structural recovery on the SSO field plots. Eighteen undisturbed soil samples were taken in the topsoil (5-10 cm) and 9 samples in the subsoil (30-35 cm) of compacted plots and control. Each sample went through ShA, followed by a visual examination of the sample and analysis of soil organic carbon and texture. ShA combines simultaneous shrinkage with water retention measurements and, in addition to soil properties such as bulk density, coarse and fine porosity, also provides information on hydrostructural stability and plasma and structural porosity. For visual examination the VESS method of Ball et al. (2007) was adapted to core samples previously equilibrated at -100 hPa matric potential. The samples were randomly and anonymously scored to avoid subjectivity and were equilibrated to insure comparable conditions. Compaction decreased the total specific volume, as well as air and water content at all matric potentials. Structural porosity was reduced, while plasma porosity remained unchanged. Compaction also changed the shape of the shrinkage curve: (i

  8. [Effects of soil compaction stress on respiratory metabolism of cucumber root].

    PubMed

    Zheng, Jun-Xian; Sun, Yan; Han, Shou-Kun; Zhang, Hao

    2013-03-01

    A pot experiment with cucumber cultivar "Jingchun 4" was conducted to study the effects of soil compaction stress on the respiratory metabolism of cucumber root. Two treatments were installed, i.e. , soil bulk densities 1.20 and 1.55 g . cm-3. Under soil compaction stress, the activities of root pyruvate decarboxylase, alcohol dehydrogenase, and lactate dehydrogenase and the contents of root anaerobic respiration products alcohol, acetaldehyde, and lactate increased significantly, while the activities of the key enzymes involved in root aerobic respiration, including malate dehydrogenase, succinate dehydrogenase, and isocitrate dehydrogenase, decreased significantly, root pyruvate and succinate contents had significant increase, whereas root malate content decreased significantly. All the results illustrated that under soil compaction stress, the aerobic respiration of cucumber root was inhibited, while its anaerobic respiration was promoted.

  9. Evaluating energy sorghum harvest thresholds and tillage cropping systems to offset negative environmental impacts and harvesting equipment-induced soil compaction

    NASA Astrophysics Data System (ADS)

    Meki, M. N.; Snider, J. L.; Kiniry, J. R.; Raper, R. L.; Rocateli, A. C.

    2011-12-01

    Energy sorghum (Sorghum bicolor L. Moench) could be the ideal feedstock for the cellulosic ethanol industry because of its robust establishment, broader adaptability and drought tolerance, water and nutrient use efficiency, and the relatively high annual biomass yields. Of concern, however, is the limited research data on harvest thresholds, subsequent environmental impacts and the potential cumulative effects of harvesting equipment-induced soil compaction. Indiscriminate harvests of the high volume wet energy sorghum biomass, coupled with repeated field passes, could cause irreparable damage to the soil due to compaction. Furthermore, biomass harvests result in lower soil organic matter returns to the soil, making the soil even more susceptible to soil compaction. Compacted soils result in poor root zone aeration and drainage, more losses of nitrogen from denitrification, and restricted root growth, which reduces yields. Given the many positive attributes of conservation tillage and crop residue retention, our research and extension expectations are that sustainable energy sorghum cropping systems ought to include some form of conservation tillage. The challenge is to select cropping and harvesting systems that optimize feedstock production while ensuring adequate residue biomass to sustainably maintain soil structure and productivity. Producers may have to periodically subsoil-till or plow-back their lands to alleviate problems of soil compaction and drainage, weeds, insects and disease infestations. Little, however, is known about the potential impact of these tillage changes on soil productivity, environmental integrity, and sustainability of bioenergy agro-ecosystems. Furthermore, 'safe' energy sorghum feedstock removal thresholds have yet to be established. We will apply the ALMANAC biophysical model to evaluate permissible energy sorghum feedstock harvest thresholds and the effects of subsoil tillage and periodically plowing no-tilled (NT) energy sorghum

  10. Errors in determination of soil water content using time-domain reflectometry caused by soil compaction around wave guides

    SciTech Connect

    Ghezzehei, T.A.

    2008-05-29

    Application of time domain reflectometry (TDR) in soil hydrology often involves the conversion of TDR-measured dielectric permittivity to water content using universal calibration equations (empirical or physically based). Deviations of soil-specific calibrations from the universal calibrations have been noted and are usually attributed to peculiar composition of soil constituents, such as high content of clay and/or organic matter. Although it is recognized that soil disturbance by TDR waveguides may have impact on measurement errors, to our knowledge, there has not been any quantification of this effect. In this paper, we introduce a method that estimates this error by combining two models: one that describes soil compaction around cylindrical objects and another that translates change in bulk density to evolution of soil water retention characteristics. Our analysis indicates that the compaction pattern depends on the mechanical properties of the soil at the time of installation. The relative error in water content measurement depends on the compaction pattern as well as the water content and water retention properties of the soil. Illustrative calculations based on measured soil mechanical and hydrologic properties from the literature indicate that the measurement errors of using a standard three-prong TDR waveguide could be up to 10%. We also show that the error scales linearly with the ratio of rod radius to the interradius spacing.

  11. Errors in determination of soil water content using time domain reflectometry caused by soil compaction around waveguides

    NASA Astrophysics Data System (ADS)

    Ghezzehei, Teamrat A.

    2008-08-01

    Application of time domain reflectometry (TDR) in soil hydrology often involves the conversion of TDR-measured dielectric permittivity to water content using universal calibration equations (empirical or physically based). Deviations of soil-specific calibrations from the universal calibrations have been noted and are usually attributed to peculiar composition of soil constituents, such as high content of clay and/or organic matter. Although it is recognized that soil disturbance by TDR waveguides may have impact on measurement errors, to our knowledge, there has not been any quantification of this effect. In this paper, we introduce a method that estimates this error by combining two models: one that describes soil compaction around cylindrical objects and another that translates change in bulk density to evolution of soil water retention characteristics. Our analysis indicates that the compaction pattern depends on the mechanical properties of the soil at the time of installation. The relative error in water content measurement depends on the compaction pattern as well as the water content and water retention properties of the soil. Illustrative calculations based on measured soil mechanical and hydrologic properties from the literature indicate that the measurement errors of using a standard three-prong TDR waveguide could be up to 10%. We also show that the error scales linearly with the ratio of rod radius to the interradius spacing.

  12. Changes in hydraulic soil conductivity in the walls of zoogenic macropores due to the soil compaction

    NASA Astrophysics Data System (ADS)

    Pelíšek, Igor

    2015-04-01

    This study focuses on assessement of the hydric functions and effectiveness of the preferential zoogenic routes (preferentially lumbricid burrows), with primary focus on the hydric functions and parameters of individual vertical tubular macropores and on the analysis of selected possible detailed effects on these functions. The effect of earthworms (Lumbricidae) on the physical soil properties is notable. During burrowing, earthworms press the material in the vicinity of the hollowed burrows. Several variants of the relationship between the macropores and the soil compaction, permeability and erodibility were verified. Both measurements in the field and laboratory tests of intact collected samples and engineered samples were performed. With regard to preferential focus on the hydraulic processes in gravity macropores, to the limits of the instrumentation and the size of individual earthworms in agricultural soils in the Czech Republic, we assessed the processes in the macropores with diameter of ca 5 mm or larger. In some cases, saturated hydraulic conductivity of zoogenic macropore walls was reduced in order of tens of percent compared with hydraulic conductivity of soil matrix, and the increase of bulk density of soil in the macropore vicinity achieved 25%. The effect of repeated rise and water level stagnation (repeated macropore washing during multiple wetting cycles) was tested. Investigation of water erosion of macropores was limited by adjustable flow, vessel capacity and pump capacity of the accurate continuous infiltrometer. Investigation of the water inlet from above gave more data on the washed-off material in the selected time intervals. Analysis of water rise from below and macropore sealing provided one cumulative data for each testing period.

  13. Effect of rock fragment addition on hydro-dispersive properties of compacted soils

    NASA Astrophysics Data System (ADS)

    Gargiulo, Laura; Mele, Giacomo; Coppola, Antonio; De Mascellis, Roberto; Di Matteo, Bruno; Terribile, Fabio; Basile, Angelo

    2014-05-01

    Compaction of agricultural soils is an increasingly challenging problem for crop production and environment. Mechanization of agricultural practices is one of the main factors inducing degradation of soil structure, especially in fragile soils with little organic matter and low shrinking-swelling capacity. Moreover, rock picking from stony soils is a routine practice to avoid tillage problems in some agricultural productions, but stone removal can significantly increase soil compaction, which lowers water infiltration rates and increases surface runoff and soil erosion. The practice of crushing and returning smaller rock fragments to the field could reduce the above problems. The aim of this work was to test the addition of rock fragments as practice to restore soil physical quality of not-stony soils susceptible to compaction. We carried out a lab experiment mixing five different volume concentrations (5%, 10%, 15%, 25% and 35%) of 4-8mm rock fragments with an Alfisol and an Entisol, showing compact structure and water stagnation problems in field. The repacked samples have undergone nine wet/dry cycles in order to induce soil structure formation and its stabilization. Bulk density, porosity and soil hydraulic properties and hydro-dispersive characteristics were measured. Soil hydraulic properties, namely water retention and hydraulic conductivity, were inferred from an infiltration experiment performed by a tension infiltrometer disc coupled with an inverse parameter estimation method; hydro-dispersive characteristics were performed from a tracer inflow-outflow experiment conducted in unsaturated condition, followed by the analysis of the breakthrough curve. Soil image analysis was used to enhance parameterization of the hydrological models near saturation. Preliminary results showed that bulk density significantly changed only after addition of 35% of rock fragments and a good physical restoration was reached at 15% volume concentration in Entisol and at 25% in

  14. Inter- and Intra- Field variations in soil compaction levels and subsequent impacts on hydrological extremes

    NASA Astrophysics Data System (ADS)

    Pattison, Ian; Coates, Victoria

    2015-04-01

    The rural landscape in the UK is dominated by pastoral agriculture, with about 40% of land cover classified as either improved or semi-natural grassland according to the Land Cover Map 2007. Intensification has resulted in greater levels of compaction associated with higher stocking densities. However, there is likely to be a great amount of variability in compaction levels within and between fields due to multiple controlling factors. This research focusses in on two of these factors; firstly animal species, namely sheep, cattle and horses; and secondly field zonation e.g. feeding areas, field gates, open field. Field experiments have been conducted in multiple fields in the River Skell catchment, in Yorkshire, UK, which has an area of 140km2. The effect on physical and hydrologic soil characteristics such as bulk density and moisture contents have been quantified using a wide range of field and laboratory based experiments. Results have highlighted statistically different properties between heavily compacted areas where animals congregate and less-trampled open areas. Furthermore, soil compaction has been hypothesised to contribute to increased flood risk at larger spatial scales. Previous research (Pattison, 2011) on a ~40km2 catchment (Dacre Beck, Lake District, UK) has shown that when soil characteristics are homogeneously parameterised in a hydrological model, downstream peak discharges can be 65% higher for a heavy compacted soil than for a lightly compacted soil. Here we report results from spatially distributed hydrological modelling using soil parameters gained from the field experimentation. Results highlight the importance of both the percentage of the catchment which is heavily compacted and also the spatial distribution of these fields.

  15. An approach for modeling the influence of wheel tractor loads and vibration frequencies on soil compaction

    NASA Astrophysics Data System (ADS)

    Verotti, M.; Servadio, P.; Belfiore, N. P.; Bergonzoli, S.

    2012-04-01

    Both soil compaction and ground vibration are forms of environmental degradation that may be understood in the context of the vehicle-soil interaction process considered (Hildebrand et al., 2008). The transit of tractors on agricultural soil is often the main cause of soil compaction increasing. As known, this can be a serious problems for tillage and sowing and therefore the influence of all the affecting factors have been extensively studied in the last decades in order to understand their impact on the biosystem. There are factors related to the climate, namely to the rainfalls and temperature, and many others. Hence, it is not simple to figure out a complete model for predicting an index of compaction, for a given situation. Soil compaction models are important tools for controlling soil compaction due to agricultural field traffic and they are potentially useful technique to provide information concerning correct soil management. By means of such models, strategies and recommendations for prevention of soil compaction may be developed and specific advice may be given to farmers and advisers. In order to predict field wheeled and tracked vehicle performance, some empirical methods, used for off-road vehicle, were applied by Servadio (2010) on agricultural soil. The empirical indexes included, besides the soil strength, the load carried by the tire or track, some technical characteristics of the tire or track of the vehicle (tire or track width, tire or track wheel diameter, unloaded tire section height, number of wheel station in one track, tire deflection, total length of the belt track, the track pitch) as well as the vehicle passes. They have been validated with the tests results of agricultural vehicles over a range of soil in central Italy. Among the parameters which affect soil compaction, the water content of the soil, the axle load and number of vehicle passes proved to be the most important ones. The present paper concerns mainly vehicle-soil

  16. Nano-hydroxyapatite alleviates the detrimental effects of heavy metals on plant growth and soil microbes in e-waste-contaminated soil.

    PubMed

    Wei, Liu; Wang, Shutao; Zuo, Qingqing; Liang, Shuxuan; Shen, Shigang; Zhao, Chunxia

    2016-06-15

    The crude recycling activities of e-waste have led to the severe and complex contamination of e-waste workshop topsoil (0-10 cm) by heavy metals. After nano-hydroxyapatite (NHAp) application in June 2013, plant and soil samples were obtained in November 2013, December 2013, March 2014 and June 2014. The results showed that NHAp effectively reduced the concentration of CaCl2-extractable Pb, Cu, Cd, and Zn in the topsoil and significantly reduced the metal content in ryegrass and also increased the plant biomass compared with that of the control. Moreover, the concentrations of CaCl2-extractable metals in the soil decreased with increasing NHAp. NHAp application also increased the activities of soil urease, phosphatase and dehydrogenase. Moreover, the soil bacterial diversity and community structure were also altered after NHAp application. Particularly, Stenotrophomonas sp. and Bacteroides percentages were increased. Our work proves that NHAp application can alleviate the detrimental effects of heavy metals on plants grown in e-waste-contaminated soil and soil enzyme activities, as well as soil microbial diversity. PMID:27264778

  17. Effect of Aggregates Compaction in Soil Hydraulic Properties, due to Root Growth

    NASA Astrophysics Data System (ADS)

    Aravena, J. E.; Tyler, S. W.; Berli, M.

    2009-12-01

    The rhizosphere is critical for soil-root interactions, however, physical processes within the soil around roots and implications of these processes, such as plant water and nutrient uptake, continue to raise questions. Soil compaction, due to root growth, results in favorable physical conditions in the rhizosphere to foster plant growth by providing aeration under wet conditions and improving water storage and flow toward the roots under dry conditions. In unsaturated conditions, the air transfer occurs through the macropores, while the water transfer occurs through the aggregates; providing the plant with these two vital elements, continuously. At the aggregate-scale, compaction gives connectivity within the aggregates. As the contact area between the aggregates increases, more water may be transfer to the plant. As result, the hydraulic conductivity of the rhizosphere may be higher than that at initial conditions (i.e., before compaction). This idea is important, as usually compaction is associated with decreasing water conductivity. This study focuses on understanding the role of roots to modify the soil, and in particular, their impact on rhizosphere hydraulic properties at the aggregate-scale. Using HYDRUS 3D, an aggregate system was modeled. It was found that the saturated hydraulic conductivity of the system increased following an S-shape as contact area increased due to compaction. This result differs from previous studies that assumed a quadratic relation. In addition, it was found that the compaction of big pores within the aggregates will be more beneficial for water extraction purposes, than the change in pore-size distribution within the aggregates due to compaction.

  18. Hydraulic conductivity study of compacted clay soils used as landfill liners for an acidic waste

    SciTech Connect

    Hamdi, Noureddine; Srasra, Ezzeddine

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Examined the hydraulic conductivity evolution as function of dry density of Tunisian clay soil. Black-Right-Pointing-Pointer Follow the hydraulic conductivity evolution at long-term of three clay materials using the waste solution (pH=2.7). Black-Right-Pointing-Pointer Determined how compaction affects the hydraulic conductivity of clay soils. Black-Right-Pointing-Pointer Analyzed the concentration of F and P and examined the retention of each soil. - Abstract: Three natural clayey soils from Tunisia were studied to assess their suitability for use as a liner for an acid waste disposal site. An investigation of the effect of the mineral composition and mechanical compaction on the hydraulic conductivity and fluoride and phosphate removal of three different soils is presented. The hydraulic conductivity of these three natural soils are 8.5 Multiplication-Sign 10{sup -10}, 2.08 Multiplication-Sign 10{sup -9} and 6.8 Multiplication-Sign 10{sup -10} m/s for soil-1, soil-2 and soil-3, respectively. Soil specimens were compacted under various compaction strains in order to obtain three wet densities (1850, 1950 and 2050 kg/m{sup 3}). In this condition, the hydraulic conductivity (k) was reduced with increasing density of sample for all soils. The test results of hydraulic conductivity at long-term (>200 days) using acidic waste solution (pH = 2.7, charged with fluoride and phosphate ions) shows a decrease in k with time only for natural soil-1 and soil-2. However, the specimens of soil-2 compressed to the two highest densities (1950 and 2050 kg/m{sup 3}) are cracked after 60 and 20 days, respectively, of hydraulic conductivity testing. This damage is the result of a continued increase in the internal stress due to the swelling and to the effect of aggressive wastewater. The analysis of anions shows that the retention of fluoride is higher compared to phosphate and soil-1 has the highest sorption capacity.

  19. Soil compaction and organic matter affect conifer seedling nonmycorrhizal and ectomycorrhizal root tip abundance and diversity. Forest Service research paper

    SciTech Connect

    Amaranthus, M.P.; Page-Dumroese, D.; Harvey, A.; Cazares, E.; Bednar, L.F.

    1996-05-01

    Three levels of organic matter removal (bole only; bole and crowns; and bole, crowns, and forest floor) and three levels of mechanical soil compaction (no compaction, moderate compaction, and severe soil compaction) were studied as they influence Douglas-fir (Pseudotsuga menziesii var. glauca (Beissn.) Franco) and western white pine (Pinus monticola Dougl. ex D. Don) seedlings following outplanting. Moderate and severe soil compaction significantly reduced nonmycorrhizal root tip abundance on both Douglas-fir and western white pine seedlings (p less than or equal to 0.05). Ectomycorrhizal root tip abundance was significantly reduced on Douglas-fir seedlings in severely compacted areas with bole and crowns and bole, crowns, and forest floor removed. Ectomycorrhizal diversity also was significantly reduced on Douglas-fir seedlings in all severely compacted areas.

  20. Models of compacted fine-grained soils used as mineral liner for solid waste

    NASA Astrophysics Data System (ADS)

    Sivrikaya, Osman

    2008-02-01

    To prevent the leakage of pollutant liquids into groundwater and sublayers, the compacted fine-grained soils are commonly utilized as mineral liners or a sealing system constructed under municipal solid waste and other containment hazardous materials. This study presents the correlation equations of the compaction parameters required for construction of a mineral liner system. The determination of the characteristic compaction parameters, maximum dry unit weight ( γ dmax) and optimum water content ( w opt) requires considerable time and great effort. In this study, empirical models are described and examined to find which of the index properties correlate well with the compaction characteristics for estimating γ dmax and w opt of fine-grained soils at the standard compactive effort. The compaction data are correlated with different combinations of gravel content ( G), sand content ( S), fine-grained content (FC = clay + silt), plasticity index ( I p), liquid limit ( w L) and plastic limit ( w P) by performing multilinear regression (MLR) analyses. The obtained correlations with statistical parameters are presented and compared with the previous studies. It is found that the maximum dry unit weight and optimum water content have a considerably good correlation with plastic limit in comparison with liquid limit and plasticity index.

  1. Soil compaction and fertilization effects on nitrous oxide and methane fluxes in potato fields

    SciTech Connect

    Ruser, R.; Schilling, R.; Steindl, H.; Flessa, H.; Beese, F.

    1998-11-01

    This study was conducted to determine the effect of soil compaction and N fertilization on the fluxes of N{sub 2}O and CH{sub 4} in a soil planted with potato (Solanum tuberosum L.). Fluxes of N{sub 2}O and CH{sub 4} were measured weekly for 1 yr on two differently fertilized fields. For the potato cropping period (May-September) these fluxes were quantified separately for the ridges covering two-thirds of the total field area, and for the uncompacted and the tractor-traffic-compacted interrow soils, each of which made up one-sixth of the field area. The annual N{sub 2}O-N emissions for the low and the high rates of N fertilization were 8 and 16 kg ha{sup {minus}1}, respectively. The major part (68%) of the total N{sub 2}O release from the fields during the cropping period was emitted from the compacted tractor tramlines; emissions from the ridges made up only 23%. The annual CH{sub 4}-C uptake was 140 and 118 g ha{sup {minus}1} for the low and high levels of fertilization, respectively. The ridge soil and the uncompacted interrow had mean CH{sub 4}-C oxidation rates of 3.8 and 0.8 {micro}g m{sup {minus}2} h{sup {minus}1}, respectively; however, the tractor-compacted soil released CH{sub 4} at 2.1 {micro}g CH{sub 4}-C m{sup {minus}2} h{sup {minus}1}. The results indicate that soil compaction was probably the main reason for increased N{sub 2}O emission and reduced CH{sub 4} uptake of potato-cropped fields.

  2. Compaction and Wear Concerns on Sports Fields.

    ERIC Educational Resources Information Center

    Gillan, John

    1999-01-01

    Describes relatively simple measures athletic-facility managers can use to alleviate the turf destruction and compaction of athletic fields including seed and soil amendments and modifications on team practice. Ways of enhancing surface traction and lessen surface hardness are explored. (GR)

  3. Errors in determination of soil water content using time-domain reflectometry caused by soil compaction around wave guides

    NASA Astrophysics Data System (ADS)

    Ghezzehei, T. A.

    2007-12-01

    Application of time-domain reflectometry (TDR) in soil hydrology often involves the conversion of TDR-measured dielectric permittivity to water content using universal calibration equations (empirical or physically based). Deviations of soil-specific calibrations from the universal calibrations have been noted and are usually attributed with peculiar composition of soil constituents, such as high content of clay and/or organic matter. Although it is recognized that soil disturbance by TDR wave guides may have impact on measurement errors, to our knowledge, there has not been any quantification of this effect. In this presentation, we introduce a combined mechanical-hydrological method that estimates the measurement error. Our analysis indicates that soil compaction pattern depends on the mechanical properties of the soil at the time of installation. The relative error in water content measurement depends on the compaction pattern as well as the water content and water retention characteristics of the soil. Illustrative calculations based on measured soil mechanical and hydrologic properties from the literature show that the measurement errors of using a standard three-prong TDR wave guide could be up to 10 percent. We also show that the error scales linearly with the ratio of rod radius to the inter- radius spacing.

  4. Real-time soil compaction monitoring through pad strain measurements: modeling to inform strain gage placement

    NASA Astrophysics Data System (ADS)

    Kimmel, Shawn C.; Mooney, Michael A.

    2011-04-01

    Soil compaction monitoring is critical to earthwork projects, including roadways, earth dams, and levees. Current methods require a halt of production, and provide at best sparse coverage. A system is proposed for static pad foot soil compaction to provide real-time feedback at higher spatial resolutions through machine integrated sensors. The system is composed of pad sensors that measure total normal force and contact stress distribution (CSD), laser sensors that measure soil deflection, and GPS to spatially reference measurements. By combining these measurements, soil stiffness and potentially modulus can be determined. This paper discusses the development of the force and CSD sensing pad. The concept is to instrument individual pads with strain gages to determine loading conditions. Modeling is used to inform strain gage positioning through pad strain behavior analysis of different simulated soil conditions. The finite element analysis (FEA) of a Caterpillar pad is discussed, including formulation and rationale for the various model parameters. The loading parameters are explained, including the range of force magnitudes experienced throughout compaction and the CSD elicited by various soils. The results of this analysis are presented, and show that pad strain is sensitive to both force magnitude and CSD. Specific strain trends are identified in the sidewall and bottom face of the pad which are particularly sensitive to the loading variables. Strain gage placements are proposed that capture the identified trends, thereby providing definitive information on total normal force and CSD.

  5. Upscaling spatially heterogeneous parameterisations of soil compaction to investigate catchment scale flood risk.

    NASA Astrophysics Data System (ADS)

    Coates, Victoria; Pattison, Ian

    2016-04-01

    Upscaling land management signals observed at the point scale to the regional scale is challenging for three reasons. Individual catchments are unique and at the point scale land management signals are spatially and temporally variable, depending on topography, soil characteristics and on the individual characteristics of a rainfall event. However at larger scales land management effects diffuse and climatic or human induced signals have a larger impact. This does not mean that there is no influence on river flows, just that the effect is not discernible. Land management practices in different areas of the catchment vary spatially and temporally and their influence on the flood hydrograph will be different at different points within the catchment. Once the water enters the river, the land management effects are disturbed further by hydrodynamic and geomorphological dispersion. Pastoral agriculture is the dominant rural land cover in the UK (40% is classified as improved/ semi-natural grassland - Land Cover Map 2007). The intensification of agriculture has resulted in greater levels of soil compaction associated with higher stocking densities in fields. Natural flood management is the alteration, restoration or use of landscape features to reduce flood risk. Soil compaction has been shown to change the partitioning of rainfall into runoff. However the link between locally observed hydrological changes and catchment scale flood risk has not yet been proven. This paper presents the results of a hydrological modelling study on the impact of soil compaction on downstream flood risk. Field experiments have been conducted in multiple fields in the River Skell catchment, in Yorkshire, UK (area of 120km2) to determine soil characteristics and compaction levels under different types of land-use. We use this data to parameterise and validate the Distributed Physically-based Connectivity of Runoff model. A number of compaction scenarios have been tested that represent

  6. Can arbuscular mycorrhizal fungi reduce Cd uptake and alleviate Cd toxicity of Lonicera japonica grown in Cd-added soils?

    NASA Astrophysics Data System (ADS)

    Jiang, Qiu-Yun; Zhuo, Feng; Long, Shi-Hui; Zhao, Hai-Di; Yang, Dan-Jing; Ye, Zhi-Hong; Li, Shao-Shan; Jing, Yuan-Xiao

    2016-02-01

    A greenhouse pot experiment was conducted to study the impact of arbuscular mycorrhizal fungi‑Glomus versiforme (Gv) and Rhizophagus intraradices (Ri) on the growth, Cd uptake, antioxidant indices [glutathione reductase (GR), ascorbate peroxidase (APX), superoxide dismutase (SOD), catalase (CAT), ascorbate (ASA), glutathione (GSH) and malonaldehyde (MDA)] and phytochelatins (PCs) production of Lonicera japonica in Cd-amended soils. Gv and Ri significantly increased P acquisition, biomass of shoots and roots at all Cd treatments. Gv significantly decreased Cd concentrations in shoots and roots, and Ri also obviously reduced Cd concentrations in shoots but increased Cd concentrations in roots. Meanwhile, activities of CAT, APX and GR, and contents of ASA and PCs were remarkably higher in Gv/Ri-inoculated plants than those of uninoculated plants, but lower MDA and GSH contents in Gv/Ri-inoculated plants were found. In conclusion, Gv and Ri symbiosis alleviated Cd toxicity of L. japonica through the decline of shoot Cd concentrations and the improvement of P nutrition, PCs content and activities of GR, CAT, APX in inoculated plants, and then improved plant growth. The decrease of shoot Cd concentrations in L. japonica inoculated with Gv/Ri would provide a clue for safe production of this plant from Cd-contaminated soils.

  7. Can arbuscular mycorrhizal fungi reduce Cd uptake and alleviate Cd toxicity of Lonicera japonica grown in Cd-added soils?

    PubMed Central

    Jiang, Qiu-Yun; Zhuo, Feng; Long, Shi-Hui; Zhao, Hai-Di; Yang, Dan-Jing; Ye, Zhi-Hong; Li, Shao-Shan; Jing, Yuan-Xiao

    2016-01-01

    A greenhouse pot experiment was conducted to study the impact of arbuscular mycorrhizal fungi−Glomus versiforme (Gv) and Rhizophagus intraradices (Ri) on the growth, Cd uptake, antioxidant indices [glutathione reductase (GR), ascorbate peroxidase (APX), superoxide dismutase (SOD), catalase (CAT), ascorbate (ASA), glutathione (GSH) and malonaldehyde (MDA)] and phytochelatins (PCs) production of Lonicera japonica in Cd-amended soils. Gv and Ri significantly increased P acquisition, biomass of shoots and roots at all Cd treatments. Gv significantly decreased Cd concentrations in shoots and roots, and Ri also obviously reduced Cd concentrations in shoots but increased Cd concentrations in roots. Meanwhile, activities of CAT, APX and GR, and contents of ASA and PCs were remarkably higher in Gv/Ri-inoculated plants than those of uninoculated plants, but lower MDA and GSH contents in Gv/Ri-inoculated plants were found. In conclusion, Gv and Ri symbiosis alleviated Cd toxicity of L. japonica through the decline of shoot Cd concentrations and the improvement of P nutrition, PCs content and activities of GR, CAT, APX in inoculated plants, and then improved plant growth. The decrease of shoot Cd concentrations in L. japonica inoculated with Gv/Ri would provide a clue for safe production of this plant from Cd-contaminated soils. PMID:26892768

  8. Can arbuscular mycorrhizal fungi reduce Cd uptake and alleviate Cd toxicity of Lonicera japonica grown in Cd-added soils?

    PubMed

    Jiang, Qiu-Yun; Zhuo, Feng; Long, Shi-Hui; Zhao, Hai-Di; Yang, Dan-Jing; Ye, Zhi-Hong; Li, Shao-Shan; Jing, Yuan-Xiao

    2016-01-01

    A greenhouse pot experiment was conducted to study the impact of arbuscular mycorrhizal fungi--Glomus versiforme (Gv) and Rhizophagus intraradices (Ri) on the growth, Cd uptake, antioxidant indices [glutathione reductase (GR), ascorbate peroxidase (APX), superoxide dismutase (SOD), catalase (CAT), ascorbate (ASA), glutathione (GSH) and malonaldehyde (MDA)] and phytochelatins (PCs) production of Lonicera japonica in Cd-amended soils. Gv and Ri significantly increased P acquisition, biomass of shoots and roots at all Cd treatments. Gv significantly decreased Cd concentrations in shoots and roots, and Ri also obviously reduced Cd concentrations in shoots but increased Cd concentrations in roots. Meanwhile, activities of CAT, APX and GR, and contents of ASA and PCs were remarkably higher in Gv/Ri-inoculated plants than those of uninoculated plants, but lower MDA and GSH contents in Gv/Ri-inoculated plants were found. In conclusion, Gv and Ri symbiosis alleviated Cd toxicity of L. japonica through the decline of shoot Cd concentrations and the improvement of P nutrition, PCs content and activities of GR, CAT, APX in inoculated plants, and then improved plant growth. The decrease of shoot Cd concentrations in L. japonica inoculated with Gv/Ri would provide a clue for safe production of this plant from Cd-contaminated soils. PMID:26892768

  9. Can arbuscular mycorrhizal fungi reduce Cd uptake and alleviate Cd toxicity of Lonicera japonica grown in Cd-added soils?

    NASA Astrophysics Data System (ADS)

    Jiang, Qiu-Yun; Zhuo, Feng; Long, Shi-Hui; Zhao, Hai-Di; Yang, Dan-Jing; Ye, Zhi-Hong; Li, Shao-Shan; Jing, Yuan-Xiao

    2016-02-01

    A greenhouse pot experiment was conducted to study the impact of arbuscular mycorrhizal fungi-Glomus versiforme (Gv) and Rhizophagus intraradices (Ri) on the growth, Cd uptake, antioxidant indices [glutathione reductase (GR), ascorbate peroxidase (APX), superoxide dismutase (SOD), catalase (CAT), ascorbate (ASA), glutathione (GSH) and malonaldehyde (MDA)] and phytochelatins (PCs) production of Lonicera japonica in Cd-amended soils. Gv and Ri significantly increased P acquisition, biomass of shoots and roots at all Cd treatments. Gv significantly decreased Cd concentrations in shoots and roots, and Ri also obviously reduced Cd concentrations in shoots but increased Cd concentrations in roots. Meanwhile, activities of CAT, APX and GR, and contents of ASA and PCs were remarkably higher in Gv/Ri-inoculated plants than those of uninoculated plants, but lower MDA and GSH contents in Gv/Ri-inoculated plants were found. In conclusion, Gv and Ri symbiosis alleviated Cd toxicity of L. japonica through the decline of shoot Cd concentrations and the improvement of P nutrition, PCs content and activities of GR, CAT, APX in inoculated plants, and then improved plant growth. The decrease of shoot Cd concentrations in L. japonica inoculated with Gv/Ri would provide a clue for safe production of this plant from Cd-contaminated soils.

  10. Nanosiderite is effective to alleviate iron chlorosis in sensitive plants growing on calcareous soils

    NASA Astrophysics Data System (ADS)

    Sánchez-Alcalá, I.; del Campillo, M. C.; Barrón, V.; Torrent, J.

    2012-04-01

    Key words: siderite, iron chlorosis, calcareous soil, goethite, lepidocrocite Nanosized siderite (FeCO3) prepared by mixing FeSO4 and K2CO3 solutions [either alone or in presence of phosphate (siderites SID and SIDP, respectively)] was used in our experiments. The products of oxidation of siderite in a calcite suspension were goethite or a mixture of goethite and lepidocrocite when phosphate was present. These iron oxides were nanosized and acid NH4oxalate-soluble, which suggested they could be a good source of iron (Fe) for plants sensitive to Fe deficiency yellowing (chlorosis). To evaluate the effectiveness and long-term effects of suspensions of siderite mixed with calcareous soil to prevent Fe chlorosis, a pot growth experiment was carried out with five consecutive crops: chickpea (twice), peanut (twice) and strawberry. Suspensions of siderites (SID and SIDP) were mixed with 220 g of soil at the beginning of the experiment at rates of 0.24, 0.46, 0.93 and 1.40 g siderite (0.12, 0.22, 0.45, and 0.67 g Fe) kg-1 soil. A control (no Fe added) and a positive control (Fe-chelate as FeEDDHA before each cropping) were included. The concentration of chlorophyll in the youngest leaves was estimated three times for chickpea and peanut, and five times for strawberry via the SPAD value (SPAD 502 portable chlorophyll meter). The SPAD for the control plants was lower than that for Fe-fertilized plants. For all crops, times and siderite types, SPAD tended to systematically increase with increasing siderite dose, and SID and SIDP had similar effectiveness. At harvest, the SPAD for the plants fertilized with the highest siderite dose (1.40 g kg-1) did not differ significantly from that for FeEDDHA-fertilized plants. Our results suggest in summary that siderite is effective in preventing iron chlorosis and has a long-lasting effect, as the likely result of the high specific surface and high solubility of the crystalline Fe oxides resulting from its oxidation. Futhermore

  11. Evaluation of Soil Moisture Estimation in Vegetated Areas Using Compact Polarimetry

    NASA Astrophysics Data System (ADS)

    Yan, Jian; Chen, Lin; Yin, Qiang; Li, Yang; Hong, Wen

    2010-12-01

    Within the framework of the DRAGON project, in this paper, we preliminarily analyze the soil moisture estimation performance in vegetated areas based on Water-Cloud model and Dubois model using compact polarimetry. We compare the inversion results of the compact polarimetry (CP) data to those of the dual polarimetric data (DP, HH and VV) and to the in-situ data. The comparison indicates that the retrieved parameters from original DP data are mainly in consistence with ground measured values, but the estimated parameters from the reconstructed data of CP are not quite consistent with the in-situ values, especially for the moisture.

  12. Development of Soil Compaction Analysis Software (SCAN) Integrating a Low Cost GPS Receiver and Compactometer

    PubMed Central

    Hwang, Jinsang; Yun, Hongsik; Kim, Juhyong; Suh, Yongcheol; Hong, Sungnam; Lee, Dongha

    2012-01-01

    A software for soil compaction analysis (SCAN) has been developed for evaluating the compaction states using the data from the GPS as well as a compactometer attached on the roller. The SCAN is distinguished from other previous software for intelligent compaction (IC) in that it can use the results from various types of GPS positioning methods, and it also has an optimal structure for remotely managing the large amounts of data gathered from numerous rollers. For this, several methods were developed: (1) improving the accuracy of low cost GPS receiver’s positioning results; (2) modeling the trajectory of a moving roller using a GPS receiver’s results and linking it with the data from the compactometer; and (3) extracting the information regarding the compaction states of the ground from the modeled trajectory, using spatial analysis methods. The SCAN was verified throughout various field compaction tests, and it has been confirmed that it can be a very effective tool in evaluating field compaction states. PMID:22736955

  13. Synchrotron microtomographic quantification of geometrical soil pore characteristics affected by compaction

    NASA Astrophysics Data System (ADS)

    Udawatta, R. P.; Gantzer, C. J.; Anderson, S. H.; Assouline, S.

    2015-07-01

    Soil compaction degrades soil structure and affects water, heat, and gas exchange as well as root penetration and crop production. The objective of this study was to use X-ray computed microtomography (CMT) techniques to compare differences in geometrical soil pore parameters as influenced by compaction of two different aggregate size classes. Sieved (diam. < 2 mm and < 0.5 mm) and repacked (1.51 and 1.72 Mg m-3) Hamra soil cores of 5- by 5 mm (average porosities were 0.44 and 0.35) were imaged at 9.6-micrometer resolution at the Argonne Advanced Photon Source (synchrotron facility) using X-ray computed microtomography. Images of 58.9 mm3 volume were analyzed using 3-Dimensional Medial Axis (3DMA) software. Geometrical characteristics of the spatial distributions of pore structures (pore radii, volume, connectivity, path length, and tortuosity) were numerically investigated. Results show that the coordination number (CN) distribution and path length (PL) measured from the medial axis were reasonably fit by exponential relationships P(CN) = 10-CN/Co and P(PL) = 10-PL/PLo, respectively, where Co and PLo are the corresponding characteristic constants. Compaction reduced porosity, average pore size, number of pores, and characteristic constants. The average pore radii (63.7 and 61 μm; p < 0.04), largest pore volume (1.58 and 0.58 mm3; p = 0.06), number of pores (55 and 50; p = 0.09), characteristic coordination number (6.32 and 5.94; p = 0.09), and characteristic path length number (116 and 105; p = 0.001) were significantly greater in the low density than the high density treatment. Aggregate size also influenced measured geometrical pore parameters. This analytical technique provides a tool for assessing changes in soil pores that affect hydraulic properties and thereby provides information to assist in assessment of soil management systems.

  14. Synchrotron Microtomographic Quantification of Geometrical Soil Pore Characteristics Affected by Compaction

    NASA Astrophysics Data System (ADS)

    Udawatta, Ranjith; Gantzer, Clark; Anderson, Stephen; Assouline, Shmuel

    2015-04-01

    Soil compaction degrades soil structure and affects water, heat, and gas exchange as well as root penetration and crop production. The objective of this study was to use X-ray computed microtomography (CMT) techniques to compare differences in geometrical soil pore parameters as influenced by compaction of two different aggregate size classes. Sieved (diam. < 2mm and < 0.5mm) and repacked (1.51 and 1.72 Mg m-3) Hamra soil cores of 5- by 5-mm (average porosities were 0.44 and 0.35) were imaged at 9.6-micrometer resolution at the Argonne Advanced Photon Source (synchrotron facility) using X-ray computed microtomography. Images of 58.9 mm3 volume were analyzed using 3-Dimensional Medial Axis (3DMA) software. Geometrical characteristics of the spatial distributions of pore structures (pore radii, volume, connectivity, path length, and tortuosity) were numerically investigated. Results show that the coordination number (CN) distribution and path length (PL) measured from the medial axis were reasonably fit by exponential relationships P(CN)=10-CN/Co and P(PL)=10-PL/PLo, respectively, where Co and PLo are the corresponding characteristic constants. Compaction reduced porosity, average pore size, number of pores, and characteristic constants. The average pore radii (64 and 61 μm; p<0.04), largest pore volume (1.6 and 0.6 mm3; p=0.06), number of pores (55 and 50; p=0.09), characteristic coordination number (6.3 and 6.0; p=0.09), and characteristic path length number (116 and 105; p=0.001) were significantly greater in the low density than the high density treatment. Aggregate size also influenced measured geometrical pore parameters. This analytical technique provides a tool for assessing changes in soil pores that affect hydraulic properties and thereby provides information to assist in assessment of soil management systems.

  15. Synchrotron microtomographic quantification of geometrical soil pore characteristics affected by compaction

    NASA Astrophysics Data System (ADS)

    Udawatta, Ranjith P.; Gantzer, Clark J.; Anderson, Stephen H.; Assouline, Shmuel

    2016-05-01

    Soil compaction degrades soil structure and affects water, heat, and gas exchange as well as root penetration and crop production. The objective of this study was to use X-ray computed microtomography (CMT) techniques to compare differences in geometrical soil pore parameters as influenced by compaction of two different aggregate size classes. Sieved (diameter < 2 mm and < 0.5 mm) and repacked (1.51 and 1.72 Mg m-3) Hamra soil cores of 5 by 5 mm (average porosities were 0.44 and 0.35) were imaged at 9.6 μm resolution at the Argonne Advanced Photon Source (synchrotron facility) using X-ray CMT. Images of 58.9 mm3 volume were analyzed using 3-Dimensional Medial Axis (3-DMA) software. Geometrical characteristics of the spatial distributions of pore structures (pore radii, volume, connectivity, path length, and tortuosity) were numerically investigated. Results show that the coordination number (CN) distribution and path length (PL) measured from the medial axis were reasonably fit by exponential relationships P(CN) = 10-CN/Co and P(PL) = 10-PL/PLo, respectively, where Co and PLo are the corresponding characteristic constants. Compaction reduced porosity, average pore size, number of pores, and characteristic constants. The average pore radii (63.7 and 61 µm; p < 0.04), largest pore volume (1.58 and 0.58 mm3; p = 0.06), number of pores (55 and 50; p = 0.09), and characteristic coordination number (3.74 and 3.94; p = 0.02) were significantly different between the low-density than the high-density treatment. Aggregate size also influenced measured geometrical pore parameters. This analytical technique provides a tool for assessing changes in soil pores that affect hydraulic properties and thereby provides information to assist in assessment of soil management systems.

  16. The impact of dense willow stands (Salix purpurea L.) on the hydrology and soil stability of heavily compacted soils

    NASA Astrophysics Data System (ADS)

    Lammeranner, Walter; Obriejetan, Michael; Florineth, Florin

    2010-05-01

    Willows are often used in soil bioengineering techniques for stabilizing heavily compacted soils (e.g. embankments, landfills, levees etc.). Beyond reinforcing and anchoring effects by their root matrix, plants enhance soil stability by decreasing pore-water pressure due to evapotranspiration. In the common praxis of soil bioengineering, it is taken for granted that willow stands have higher evapotranspiration rates than grass-herb (turf) vegetation. But the positive effect of dense willow stands on pore water pressure from the soil bioengineering point of view is insufficiently studied and therefore difficult to quantify. Hence, the study investigates the effect of willow stands on evapotranspiration and seepage compared to grass-herb vegetation using a lysimeter-like setup. The weighable lysimeters are composed of two planted barrels (one with a dense willow stand grown from brush mattresses; one with turf vegetation) and one unplanted barrel. The fill material used is a mineral silt-sand-gravel classified as silty sand compacted to 97% Proctor [DPr], meaning a dry density [ρD] of 1.97 g/cm³. Each barrel is equipped with two soil moisture sensors, four tensiometers and seepage measurement devices. Furthermore the relevant meteorological parameters as precipitation, air temperature, air moisture wind speed and radiation are measured. Plant parameters such as biomass, leaf area index and root growth are observed in 17 additional barrels. The talk is going to deal with methodology and setup of the lysimeter investigations, showing the results of the first growing season of these two vegetation types compared to bare soil. As result of the first growing season, evapotranspiration rates of the willow stands were significantly higher than those found with grass-herb vegetation, whereas seepage was significantly lower.

  17. Operational methods for minimising soil compaction and diffuse pollution risk from wheelings in winter cereals

    NASA Astrophysics Data System (ADS)

    Jackson, Bob; Silgram, Martyn; Quinton, John

    2010-05-01

    Recent UK government-funded research has shown that compacted, unvegetated tramlines wheelings can represent an important source and transport pathway, which can account for 80% of surface runoff, sediment and phosphorus losses to edge-of-field from cereals on moderate slopes. For example, recent research found 5.5-15.8% of rainfall lost as runoff, and losses of 0.8-2.9 kg TP/ha and 0.3-4.8 T/ha sediment from tramline wheelings. When compaction was released by shallow cultivation, runoff was reduced to 0.2-1.7% of rainfall with losses of 0.0-0.2 kg TP/ha and 0.003-0.3 T/ha sediment respectively i.e. close to reference losses from control areas without tramlines. Recent independent assessments using novel tracer techniques have also shown that tramline wheelings can represent important sediment sources at river catchment scale. In response to these latest findings, a new project is now underway investigating the most cost-effective and practical ways of operationalising methods for managing tramline wheelings in autumn-sown cereal systems to reduce the risk of soil compaction from the autumn spray operation and the associated risk of surface runoff and diffuse pollution loss of sediment, phosphorus and nitrogen to edge of field. Research is focusing on the over-winter period when soils are close to field capacity and the physical protection of the soil surface granted by growing crop is limited. This paper outlines this new multi-disciplinary project and associated methodologies, which include hillslope-scale event-based evaluations of the effectiveness of novel mitigation methods on surface runoff and diffuse pollution losses to edge of field, assessments of the economic and practical viability of mitigation methods, and modelling the impact on water quality of implementation of the most promising techniques at both farm and catchment scale. The study involves a large consortium with 20 partners, including many industrial organisations representing tractor, crop

  18. Soil Compaction Due to Sugarcane (Saccharum officinarum) Mechanical Harvesting and the Effects of Subsoiling on the Improvement of Soil Physical Properties

    NASA Astrophysics Data System (ADS)

    Naseri, A. A.; Jafari, S.; Alimohammadi, M.

    The main purpose of this study was to shed light on the soil behaviour from compaction point of view before and after harvesting traffic and on the reaction to the subsoiling operation. In this regard two different experiments were conducted and to provide an alternative tool for this evaluation, High Resolution Computed Tomography (HRCT-Scan) was also used. The results showed positive correlation of clay with maximum dry bulk density, but it was found that sand and silt were more positively correlated with optimum moisture content than clay. These results indicated that in this region, the soils are most susceptible to compaction and harvesting traffic make them compacted. The maximum compaction occurred in the first layer (0-20 cm depth) and minimum or no compaction happened in the layer, beyond the 60 cm depth. These results also showed that subsoiling the soil can improve the soil physical properties. Furthermore, CT-Scan results indicated that compaction can be treated by subsoiling and soil physical properties can be improved. This type of managing soil compaction has been used in the field and high harvested sugarcane (Saccharum officinarum) yield indicates that it is a successful operation.

  19. Composition and structure of aggregates from compacted soil horizons in the southern steppe zone of European Russia

    NASA Astrophysics Data System (ADS)

    Sorokin, A. S.; Abrosimov, K. N.; Lebedeva, M. P.; Kust, G. S.

    2016-03-01

    The composition and structure of aggregates from different agrogenic soils in the southern steppe zone of European Russia have been studied. It is shown that the multi-level study (from the macro- to microlevel) of these horizons makes it possible to identify soil compaction caused by different elementary soil processes: solonetz-forming, vertisol-forming, and mechanical (wheel) compaction in the rainfed and irrigated soils. The understanding of the genesis of the compaction of soil horizons (natural or anthropogenic) is important for the economic evaluation of soil degradation. It should enable us to make more exact predictions of the rates of degradation processes and undertake adequate mitigation measures. The combined tomographic and micromorphological studies of aggregates of 1-2 and 3-5 mm in diameter from compacted horizons of different soils have been performed for the first time. Additional diagnostic features of negative solonetz- forming processes (low open porosity of aggregates seen on tomograms and filling of a considerable part of the intraped pores with mobile substance) and the vertisol-forming processes (large amount of fine intraaggregate pores seen on tomograms and a virtual absence of humus-clay plasma in the intraped zone)—have been identified. It is shown that the combination of microtomographic and micromorphological methods is helpful for studying the pore space of compacted horizons in cultivated soils.

  20. Modeling of permeability and compaction characteristics of soils using evolutionary polynomial regression

    NASA Astrophysics Data System (ADS)

    Ahangar-Asr, A.; Faramarzi, A.; Mottaghifard, N.; Javadi, A. A.

    2011-11-01

    This paper presents a new approach, based on evolutionary polynomial regression (EPR), for prediction of permeability ( K), maximum dry density (MDD), and optimum moisture content (OMC) as functions of some physical properties of soil. EPR is a data-driven method based on evolutionary computing aimed to search for polynomial structures representing a system. In this technique, a combination of the genetic algorithm (GA) and the least-squares method is used to find feasible structures and the appropriate parameters of those structures. EPR models are developed based on results from a series of classification, compaction, and permeability tests from the literature. The tests included standard Proctor tests, constant head permeability tests, and falling head permeability tests conducted on soils made of four components, bentonite, limestone dust, sand, and gravel, mixed in different proportions. The results of the EPR model predictions are compared with those of a neural network model, a correlation equation from the literature, and the experimental data. Comparison of the results shows that the proposed models are highly accurate and robust in predicting permeability and compaction characteristics of soils. Results from sensitivity analysis indicate that the models trained from experimental data have been able to capture many physical relationships between soil parameters. The proposed models are also able to represent the degree to which individual contributing parameters affect the maximum dry density, optimum moisture content, and permeability.

  1. Soil Penetration by Earthworms and Plant Roots--Mechanical Energetics of Bioturbation of Compacted Soils.

    PubMed

    Ruiz, Siul; Or, Dani; Schymanski, Stanislaus J

    2015-01-01

    We quantify mechanical processes common to soil penetration by earthworms and growing plant roots, including the energetic requirements for soil plastic displacement. The basic mechanical model considers cavity expansion into a plastic wet soil involving wedging by root tips or earthworms via cone-like penetration followed by cavity expansion due to pressurized earthworm hydroskeleton or root radial growth. The mechanical stresses and resulting soil strains determine the mechanical energy required for bioturbation under different soil hydro-mechanical conditions for a realistic range of root/earthworm geometries. Modeling results suggest that higher soil water content and reduced clay content reduce the strain energy required for soil penetration. The critical earthworm or root pressure increases with increased diameter of root or earthworm, however, results are insensitive to the cone apex (shape of the tip). The invested mechanical energy per unit length increase with increasing earthworm and plant root diameters, whereas mechanical energy per unit of displaced soil volume decreases with larger diameters. The study provides a quantitative framework for estimating energy requirements for soil penetration work done by earthworms and plant roots, and delineates intrinsic and external mechanical limits for bioturbation processes. Estimated energy requirements for earthworm biopore networks are linked to consumption of soil organic matter and suggest that earthworm populations are likely to consume a significant fraction of ecosystem net primary production to sustain their subterranean activities.

  2. Soil Penetration by Earthworms and Plant Roots--Mechanical Energetics of Bioturbation of Compacted Soils.

    PubMed

    Ruiz, Siul; Or, Dani; Schymanski, Stanislaus J

    2015-01-01

    We quantify mechanical processes common to soil penetration by earthworms and growing plant roots, including the energetic requirements for soil plastic displacement. The basic mechanical model considers cavity expansion into a plastic wet soil involving wedging by root tips or earthworms via cone-like penetration followed by cavity expansion due to pressurized earthworm hydroskeleton or root radial growth. The mechanical stresses and resulting soil strains determine the mechanical energy required for bioturbation under different soil hydro-mechanical conditions for a realistic range of root/earthworm geometries. Modeling results suggest that higher soil water content and reduced clay content reduce the strain energy required for soil penetration. The critical earthworm or root pressure increases with increased diameter of root or earthworm, however, results are insensitive to the cone apex (shape of the tip). The invested mechanical energy per unit length increase with increasing earthworm and plant root diameters, whereas mechanical energy per unit of displaced soil volume decreases with larger diameters. The study provides a quantitative framework for estimating energy requirements for soil penetration work done by earthworms and plant roots, and delineates intrinsic and external mechanical limits for bioturbation processes. Estimated energy requirements for earthworm biopore networks are linked to consumption of soil organic matter and suggest that earthworm populations are likely to consume a significant fraction of ecosystem net primary production to sustain their subterranean activities. PMID:26087130

  3. Soil Penetration by Earthworms and Plant Roots—Mechanical Energetics of Bioturbation of Compacted Soils

    PubMed Central

    2015-01-01

    We quantify mechanical processes common to soil penetration by earthworms and growing plant roots, including the energetic requirements for soil plastic displacement. The basic mechanical model considers cavity expansion into a plastic wet soil involving wedging by root tips or earthworms via cone-like penetration followed by cavity expansion due to pressurized earthworm hydroskeleton or root radial growth. The mechanical stresses and resulting soil strains determine the mechanical energy required for bioturbation under different soil hydro-mechanical conditions for a realistic range of root/earthworm geometries. Modeling results suggest that higher soil water content and reduced clay content reduce the strain energy required for soil penetration. The critical earthworm or root pressure increases with increased diameter of root or earthworm, however, results are insensitive to the cone apex (shape of the tip). The invested mechanical energy per unit length increase with increasing earthworm and plant root diameters, whereas mechanical energy per unit of displaced soil volume decreases with larger diameters. The study provides a quantitative framework for estimating energy requirements for soil penetration work done by earthworms and plant roots, and delineates intrinsic and external mechanical limits for bioturbation processes. Estimated energy requirements for earthworm biopore networks are linked to consumption of soil organic matter and suggest that earthworm populations are likely to consume a significant fraction of ecosystem net primary production to sustain their subterranean activities. PMID:26087130

  4. Mapping the spatial patterns of field traffic and traffic intensity to predict soil compaction risks at the field scale

    NASA Astrophysics Data System (ADS)

    Duttmann, Rainer; Kuhwald, Michael; Nolde, Michael

    2015-04-01

    Soil compaction is one of the main threats to cropland soils in present days. In contrast to easily visible phenomena of soil degradation, soil compaction, however, is obscured by other signals such as reduced crop yield, delayed crop growth, and the ponding of water, which makes it difficult to recognize and locate areas impacted by soil compaction directly. Although it is known that trafficking intensity is a key factor for soil compaction, until today only modest work has been concerned with the mapping of the spatially distributed patterns of field traffic and with the visual representation of the loads and pressures applied by farm traffic within single fields. A promising method for for spatial detection and mapping of soil compaction risks of individual fields is to process dGPS data, collected from vehicle-mounted GPS receivers and to compare the soil stress induced by farm machinery to the load bearing capacity derived from given soil map data. The application of position-based machinery data enables the mapping of vehicle movements over time as well as the assessment of trafficking intensity. It also facilitates the calculation of the trafficked area and the modeling of the loads and pressures applied to soil by individual vehicles. This paper focuses on the modeling and mapping of the spatial patterns of traffic intensity in silage maize fields during harvest, considering the spatio-temporal changes in wheel load and ground contact pressure along the loading sections. In addition to scenarios calculated for varying mechanical soil strengths, an example for visualizing the three-dimensional stress propagation inside the soil will be given, using the Visualization Toolkit (VTK) to construct 2D or 3D maps supporting to decision making due to sustainable field traffic management.

  5. The effect of mulching and soil compaction on fungi composition and microbial communities in the rhizosphere of soybean

    NASA Astrophysics Data System (ADS)

    Frac, M.; Siczek, A.; Lipiec, J.

    2009-04-01

    The soil environment is the habitat of pathogenic and saprotrophic microorganisms. The composition of the microbial community are related to biotic and abiotic factors, such as root exudates, crop residues, climate factors, mulching, mineral fertilization, pesticides introduction and soil compaction. The aim of the study was to determine the effect of the mulching and soil compaction on the microorganism communities in the rhizosphere soil of soybean. The studies were carried out on silty loam soil (Orthic Luvisol) developed from loess (Lublin, Poland). The experiment area was 192m2 divided into 3 sections consisted of 6 micro-plots (7m2). Three levels of soil compaction low, medium and heavy obtained through tractor passes were compared. The soil was compacted and loosened within seedbed layer 2 weeks before sowing. Soybean "Aldana" seeds were inoculated with Bradyrhizobium japonicum and were sown with interrow spacing of 0.3m. Wheat straw (as mulch) was uniformly spread on the half of each micro-plot at an amount of 0.5kg m-1 after sowing. Rhizosphere was collected three times during growing season of soybean. Microbiological analyses were conducted in 3 replications and included the determination of: the total number of bacteria and fungi, the number of bacteria Pseudomonas sp. and Bacillus sp., the genus identification of fungi isolated from rhizosphere of soybean. Results indicated a positive effect of mulching on the increase number of all groups of examined rhizosphere microorganisms (fungi, bacteria, Pseudomonas sp., Bacillus sp.). The highest number of the microorganisms was found in the low and medium compacted soil and markedly decreased in the most compacted soil. Relatively high number of antagonistic fungi (Penicillium sp., Trichoderma sp.) was recorded in the rhizosphere of low and medium compacted soil, particularly in mulched plots. The presence of these fungi can testify to considerable biological activity, which contributes to the improvement of

  6. Effectiveness of compacted soil liner as a gas barrier layer in the landfill final cover system.

    PubMed

    Moon, Seheum; Nam, Kyoungphile; Kim, Jae Young; Hwan, Shim Kyu; Chung, Moonkyung

    2008-01-01

    A compacted soil liner (CSL) has been widely used as a single barrier layer or a part of composite barrier layer in the landfill final cover system to prevent water infiltration into solid wastes for its acceptable hydraulic permeability. This study was conducted to test whether the CSL was also effective in prohibiting landfill gas emissions. For this purpose, three different compaction methods (i.e., reduced, standard, and modified Proctor methods) were used to prepare the soil specimens, with nitrogen as gas, and with water and heptane as liquid permeants. Measured gas permeability ranged from 2.03 x 10(-10) to 4.96 x 10(-9) cm(2), which was a magnitude of two or three orders greater than hydraulic permeability (9.60 x 10(-13) to 1.05 x 10(-11) cm(2)). The difference between gas and hydraulic permeabilities can be explained by gas slippage, which makes gas more permeable, and by soil-water interaction, which impedes water flow and then makes water less permeable. This explanation was also supported by the result that a liquid permeability measured with heptane as a non-polar liquid was similar to the intrinsic gas permeability. The data demonstrate that hydraulic requirement for the CSL is not enough to control the gas emissions from a landfill. PMID:17964132

  7. Field-scale investigation of infiltration into a compacted soil liner

    USGS Publications Warehouse

    Panno, Samuel V.; Herzog, Beverly L.; Cartwright, Keros; Rehfeldt, Kenneth R.; Krapac, Ivan G.; Hensel, Bruce R.

    1991-01-01

    The Illinois State Geological Survey constructed and instrumented an experimental compacted soil liner. Infiltration of water into the liner has been monitored for two years. The objectives of this investigation were to determine whether a soil liner could be constructed to meet the U.S. EPA's requirement for a saturated hydraulic conductivity of less than or equal to 1.0 ?? 10-7 cm/s, to quantify the areal variability of the hydraulic properties of the liner, and to determine the transit time for water and tracers through the liner. The liner measures 8m ?? 15m ?? 0.9m and was designed and constructed to simulate compacted soil liners built at waste disposal facilities. The surface of the liner was flooded to form a pond on April 12, 1988. Since flooding, infiltration has been monitored with four large-ring (LR) and 32 small-ring (SR) infiltrometers, and a water-balance (WB) method that accounted for total infiltration and evaporation. Ring-infiltrometer and WB data were analyzed using cumulative-infiltration curves to determine infiltration fluxes. The SR data are lognormally distributed, and the SR and LR data form two statistically distinct populations. Small-ring data are nearly identical with WB data; because there is evidence of leakage in the LRs, the SR and WB data are considered more reliable.

  8. Effectiveness of compacted soil liner as a gas barrier layer in the landfill final cover system.

    PubMed

    Moon, Seheum; Nam, Kyoungphile; Kim, Jae Young; Hwan, Shim Kyu; Chung, Moonkyung

    2008-01-01

    A compacted soil liner (CSL) has been widely used as a single barrier layer or a part of composite barrier layer in the landfill final cover system to prevent water infiltration into solid wastes for its acceptable hydraulic permeability. This study was conducted to test whether the CSL was also effective in prohibiting landfill gas emissions. For this purpose, three different compaction methods (i.e., reduced, standard, and modified Proctor methods) were used to prepare the soil specimens, with nitrogen as gas, and with water and heptane as liquid permeants. Measured gas permeability ranged from 2.03 x 10(-10) to 4.96 x 10(-9) cm(2), which was a magnitude of two or three orders greater than hydraulic permeability (9.60 x 10(-13) to 1.05 x 10(-11) cm(2)). The difference between gas and hydraulic permeabilities can be explained by gas slippage, which makes gas more permeable, and by soil-water interaction, which impedes water flow and then makes water less permeable. This explanation was also supported by the result that a liquid permeability measured with heptane as a non-polar liquid was similar to the intrinsic gas permeability. The data demonstrate that hydraulic requirement for the CSL is not enough to control the gas emissions from a landfill.

  9. An in-situ soil structure characterization methodology for measuring soil compaction

    NASA Astrophysics Data System (ADS)

    Dobos, Endre; Kriston, András; Juhász, András; Sulyok, Dénes

    2016-04-01

    The agricultural cultivation has several direct and indirect effects on the soil properties, among which the soil structure degradation is the best known and most detectable one. Soil structure degradation leads to several water and nutrient management problems, which reduce the efficiency of agricultural production. There are several innovative technological approaches aiming to reduce these negative impacts on the soil structure. The tests, validation and optimization of these methods require an adequate technology to measure the impacts on the complex soil system. This study aims to develop an in-situ soil structure and root development testing methodology, which can be used in field experiments and which allows one to follow the real time changes in the soil structure - evolution / degradation and its quantitative characterization. The method is adapted from remote sensing image processing technology. A specifically transformed A/4 size scanner is placed into the soil into a safe depth that cannot be reached by the agrotechnical treatments. Only the scanner USB cable comes to the surface to allow the image acquisition without any soil disturbance. Several images from the same place can be taken throughout the vegetation season to follow the soil consolidation and structure development after the last tillage treatment for the seedbed preparation. The scanned image of the soil profile is classified using supervised image classification, namely the maximum likelihood classification algorithm. The resulting image has two principal classes, soil matrix and pore space and other complementary classes to cover the occurring thematic classes, like roots, stones. The calculated data is calibrated with filed sampled porosity data. As the scanner is buried under the soil with no changes in light conditions, the image processing can be automated for better temporal comparison. Besides the total porosity each pore size fractions and their distributions can be calculated for

  10. Intrinsic degradation of volatile fatty acids in laboratory-compacted clayey soil.

    PubMed

    Hrapovic, L; Rowe, R K

    2002-10-01

    Volatile fatty acids (VFAs) represent the major organic constituent of landfill leachate and provide the greatest potential for leachate induced organic contamination of groundwater (e.g. as represented by an increase in the concentration of dissolved organic carbon and chemical oxygen demand). Long-term diffusion tests were performed for laboratory-compacted clayey soil plugs exposed to continuous supply of synthetic leachate containing VFAs. Significant microbial activity developed upon exposure of the soil's indigenous microorganisms to these degradable contaminants. The growth of heterotrophic aerobic bacteria (HAB, which include facultative anaerobes), sulfate reducing bacteria (SRB) and methanogenic bacteria carrying out fermentation and mineralization of the VFAs became evident after 30-50 days of testing. The maximum microbial counts of (2-8) x 10(8) and (0.1-1) x 10(8) cfu/g for HAB and SRB were localized in the soil layer at the interface with the source of organic and inorganic nutrients. Regardless of this rapid growth in microbial population, the VFA consumption was small and measurable only after a lag of 140-180 days. It is considered that this lag of otherwise readily degradable organic compounds (such as VFAs) persisted due to a combination of the effects of a high initial concentration of these acids (2.4 g/l as dissolved organic carbon, DOC) applied to carbon starved soil microorganisms and the small pore size of the compacted clay. Once the significant amounts of gas were generated from fermentation, conditions developed for improved mass transport and exchange of the nutrients and bacteria and the outcome of the intrinsic degradation was more apparent. The breakdown of VFAs that followed after the lag was localized near the top of the soil and was characterized by a short half-life of 0.75-5 days for DOC (total VFAs as dissolved organic carbon).

  11. Compact, Lightweight Dual- Frequency Microstrip Antenna Feed for Future Soil Moisture and Sea Surface Salinity Missions

    NASA Technical Reports Server (NTRS)

    Yueh, Simon H.; Wilson, William J.; Njoku, Eni; Hunter, Don; Dinardo, Steve; Kona, Keerti S.; Manteghi, Majid; Gies, Dennis; Rahmat-Samii, Yahya

    2004-01-01

    The development of a compact, lightweight, dual frequency antenna feed for future soil moisture and sea surface salinity (SSS) missions is described. The design is based on the microstrip stacked-patch array (MSPA) to be used to feed a large lightweight deployable rotating mesh antenna for spaceborne L-band (approx. 1 GHz) passive and active sensing systems. The design features will also enable applications to airborne sensors operating on small aircrafts. This paper describes the design of stacked patch elements, 16-element array configuration and power-divider beam forming network The test results from the fabrication of stacked patches and power divider were also described.

  12. Assessment of the methane oxidation capacity of compacted soils intended for use as landfill cover materials

    SciTech Connect

    Rachor, Ingke; Gebert, Julia; Groengroeft, Alexander; Pfeiffer, Eva-Maria

    2011-05-15

    The microbial oxidation of methane in engineered cover soils is considered a potent option for the mitigation of emissions from old landfills or sites containing wastes of low methane generation rates. A laboratory column study was conducted in order to derive design criteria that enable construction of an effective methane oxidising cover from the range of soils that are available to the landfill operator. Therefore, the methane oxidation capacity of different soils was assessed under simulated landfill conditions. Five sandy potential landfill top cover materials with varying contents of silt and clay were investigated with respect to methane oxidation and corresponding soil gas composition over a period of four months. The soils were compacted to 95% of their specific proctor density, resulting in bulk densities of 1.4-1.7 g cm{sup -3}, reflecting considerably unfavourable conditions for methane oxidation due to reduced air-filled porosity. The soil water content was adjusted to field capacity, resulting in water contents ranging from 16.2 to 48.5 vol.%. The investigated inlet fluxes ranged from 25 to about 100 g CH{sub 4} m{sup -2} d{sup -1}, covering the methane load proposed to allow for complete oxidation in landfill covers under Western European climate conditions and hence being suggested as a criterion for release from aftercare. The vertical distribution of gas concentrations, methane flux balances as well as stable carbon isotope studies allowed for clear process identifications. Higher inlet fluxes led to a reduction of the aerated zone, an increase in the absolute methane oxidation rate and a decline of the relative proportion of oxidized methane. For each material, a specific maximum oxidation rate was determined, which varied between 20 and 95 g CH{sub 4} m{sup -2} d{sup -1} and which was positively correlated to the air-filled porosity of the soil. Methane oxidation efficiencies and gas profile data imply a strong link between oxidation capacity

  13. Effects of compaction and wetting of laterite cover soil on development and survival of Musca domestica (Diptera: Muscidae) immatures.

    PubMed

    Abu Tahir, Nurita; Ahmad, Abu Hassan

    2013-09-01

    Effects of laterite cover soil with different characteristics on survival of buried eggs, third instar larvae, and pupae of Musca domestica (L.) were studied experimentally. Soil treatments were loose dry soil, loose wet soil, compacted dry soil, and compacted wet soil (CWS). Eggs, third instar larvae, and pupae were buried under 30 cm of the different soil treatments and placed under field conditions until adults emerged. Rearing medium was provided for eggs and larvae, and control treatments of all stages were unburied immatures placed on soil surface. Egg and pupal survival to adult were significantly affected by the cover soil treatments, but third instars were more resilient. Wet soil treatments (loose wet soil and CWS) resulted in significantly reduced pupal survival, but increased survival of eggs. However, CWS significantly reduced adult emergence from buried eggs. Though emergence of house flies buried as eggs was significantly reduced, some were able to hatch and emerging first instar larvae developed to pupation. Although cover soil does not completely prevent fly emergence, it did limit development and emergence of buried house flies. PMID:24180104

  14. Effects of compaction and wetting of laterite cover soil on development and survival of Musca domestica (Diptera: Muscidae) immatures.

    PubMed

    Abu Tahir, Nurita; Ahmad, Abu Hassan

    2013-09-01

    Effects of laterite cover soil with different characteristics on survival of buried eggs, third instar larvae, and pupae of Musca domestica (L.) were studied experimentally. Soil treatments were loose dry soil, loose wet soil, compacted dry soil, and compacted wet soil (CWS). Eggs, third instar larvae, and pupae were buried under 30 cm of the different soil treatments and placed under field conditions until adults emerged. Rearing medium was provided for eggs and larvae, and control treatments of all stages were unburied immatures placed on soil surface. Egg and pupal survival to adult were significantly affected by the cover soil treatments, but third instars were more resilient. Wet soil treatments (loose wet soil and CWS) resulted in significantly reduced pupal survival, but increased survival of eggs. However, CWS significantly reduced adult emergence from buried eggs. Though emergence of house flies buried as eggs was significantly reduced, some were able to hatch and emerging first instar larvae developed to pupation. Although cover soil does not completely prevent fly emergence, it did limit development and emergence of buried house flies.

  15. Non-invasive Observation of the Compacted Plough Pan Layer and Its Effect on Soil Water Regime

    NASA Astrophysics Data System (ADS)

    Jeřábek, J.; Zumr, D.

    2015-12-01

    A compaction of soils at agricultural areas is a known phenomenon influencing the water retention and runoff regimes. Nevertheless, an investigation of compacted soil layer position and (dis)continuity is complicated. Using of direct measurement methods is almost infeasible at larger areas due to excessive labour and cost demands of such an approach. Other disadvantage of direct methods is usually lack of continuous information, which may be desirable in some cases. The electrical resistivity tomography (ERT) is useful method for its relatively simple and non-invasive data acquisition and continuity of the measured data. However, reliability of the ERT measurement for exact plough pan delineation is still questionable. In this work we assessed the feasibility of the ERT to delineate the compacted soil layer. To do so, we compared soil electrical resistivity with soil penetration resistance. The field experiments took place at the experimental catchment in central part of the Czech Republic. Soil profile samples were taken to gain more complex information of soil physical characteristics possibly influencing the soil resistivity. All measurements were performed recurrently under different topsoil structure and soil saturation conditions. Classical methods of statistic and geo-statistis was used to evaluate the data. The effect of the compacted subsoil layer on soil water regime during heavy rainfall events was evaluated with the use of dual porosity numerical code S1D. Due to comparatively lower ratio of preferential pathways and macropores in the subsoil the percolating water accumulate on the plough pan causing local flooding of the fields or lateral shallow subsurface runoff. The research was performed within the framework of a postdoctoral project granted by Czech Science Foundation No. 13-20388P.

  16. Root Development of Salix purpurea L. on Heavily Compacted Levee Soils

    NASA Astrophysics Data System (ADS)

    Lammeranner, W.

    2012-04-01

    The effect of woody vegetation on levee stability is discussed controversially. On the one hand woody plants improve slope stability, prevent erosion failures and may aid in levee stability. On the other hand it is believed that woody vegetation has negative impacts which are largely related to the rooting system. Hence, root penetration can facilitate water movement - seepage or piping - as well as living and decaying roots can lead to voids and threaten the structural integrity of levees. In general root architecture is known for many plant species, but specific root characteristics and their interaction with soils are influenced by many factors, and therefore poorly understood. Consequently the current research investigates the rooting performance of woody vegetation by singling out a special type of vegetation which is often used within soil bioengineering techniques at river embankments. This vegetation type is a dense stand of shrubby willows (Salix purpurea L.), implemented with brush mattresses. The data is collected from a test site constructed in 2007, 5 km northeast of Vienna, Austria. Part of the test site is a research levee built true to natural scale. The fill material of the levee is a mineral silt-sand-gravel compound classified as silty sand, which was compacted to a dry density of 1.86 g/cm3. The planting of vegetation was applied directly to the compacted levee body using only a thin layer (2-4 cm) of humus topsoil. In 2009 the studies were supplemented with a lysimeter-like setup consisting of a total of 20 containers. The lysimeters were filled homogenously with the same soil as the levees and were consolidated to the same degree of compaction. They were planted similar to the research levees. Within the investigations a comprehensive annual vegetation monitoring program was carried out. Measured aboveground parameters were shoot diameter, shoot length, biomass and leaf area index (LAI). Monitored rooting parameters - examined by excavation

  17. Laboratory soil piping and internal erosion experiments: evaluation of a soil piping model for low-compacted soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil piping has been attributed as a potential mechanism of instability for embankments, hillslopes, dams, and streambanks. In fact, deterministic models have been proposed to predict soil piping and internal erosion. However, limited research has been conducted under controlled conditions to evalua...

  18. Evaluation of multidimensional transport through a field-scale compacted soil liner

    USGS Publications Warehouse

    Willingham, T.W.; Werth, C.J.; Valocchi, A.J.; Krapac, I.G.; Toupiol, C.; Stark, T.D.; Daniel, D.E.

    2004-01-01

    A field-scale compacted soil liner was constructed at the University of Illinois at Urbana-Champaign by the U.S. Environmental Protection Agency (USEPA) and Illinois State Geological Survey in 1988 to investigate chemical transport rates through low permeability compacted clay liners (CCLs). Four tracers (bromide and three benzoic acid tracers) were each added to one of four large ring infiltrometers (LRIs) while tritium was added to the pond water (excluding the infiltrometers). Results from the long-term transport of Br- from the localized source zone of LRI are presented in this paper. Core samples were taken radially outward from the center of the Br- LRI and concentration depth profiles were obtained. Transport properties were evaluated using an axially symmetric transport model. Results indicate that (1) transport was diffusion controlled; (2) transport due to advection was negligible and well within the regulatory limits of ksat???1 ?? 10-7 cm/s; (3) diffusion rates in the horizontal and vertical directions were the same; and (4) small positioning errors due to compression during soil sampling did not affect the best fit advection and diffusion values. The best-fit diffusion coefficient for bromide was equal to the molecular diffusion coefficient multiplied by a tortuosity factor of 0.27, which is within 8% of the tortuosity factor (0.25) found in a related study where tritium transport through the same liner was evaluated. This suggests that the governing mechanisms for the transport of tritium and bromide through the CCL were similar. These results are significant because they address transport through a composite liner from a localized source zone which occurs when defects or punctures in the geomembrane of a composite system are present. ?? ASCE.

  19. Does no-till wheat sowing in a rice-wheat cropping sequence cause surface-soil compaction?

    NASA Astrophysics Data System (ADS)

    Akhtar, M. Saleem; Nabi, Ghulam; Mahmood-Ul-Hassan, M.

    2008-11-01

    Wheat planting in rice-harvested fields without land preparation is more economical, but the physical characteristics of the plant root sphere are not well documented. Comparative changes in the soil compaction in parallel fields used for no-till and conventional tillage were measured in replicated field trials for two soil types and in three randomly selected farmers’ fields. Weakly to moderately developed soils on recent to old Pleistocene calcareous alluvium were studied. They differed in their clay content. No-till wheat sowing resulted in a greater soil bulk density and a lower total porosity in the heavy-textured soils compared to the light-textured soil. In the light-textured Jhakkar soil, the no-till regime resulted in a greater infiltration at the saturated state and under most suction levels and a greater macroporosity compared to the conventional tillage. The silty clay Kotly soil had greater macroporosity in the conventional tillage than in the no-till regime. The wheat root growth and penetration seemed to be favored by the relatively low bulk density resulting from the conventional tillage, particularly in the silty clay loam soil. The dense layer restricted root penetration in the silty clay loam soil, while there was less resistance in the sandy loam soil. The study demonstrated the suitability of the no-till regime for specific soil types.

  20. Remote Sensing-based Models of Soil Vulnerability to Compaction and Erosion from Off-highway Vehicles

    NASA Astrophysics Data System (ADS)

    Villarreal, M. L.; Webb, R. H.; Norman, L.; Psillas, J.; Rosenberg, A.; Carmichael, S.; Petrakis, R.; Sparks, P.

    2014-12-01

    Intensive off-road vehicle use for immigration, smuggling, and security of the United States-Mexico border has prompted concerns about long-term human impacts on sensitive desert ecosystems. To help managers identify areas susceptible to soil erosion from vehicle disturbances, we developed a series of erosion potential models based on factors from the Revised Universal Soil Loss Equation (RUSLE), with particular focus on the management factor (P-factor) and vegetation cover (C-factor). To better express the vulnerability of soils to human disturbances, a soil compaction index (applied as the P-factor) was calculated as the difference in saturated hydrologic conductivity (Ks) between disturbed and undisturbed soils, which was then scaled up to remote sensing-based maps of vehicle tracks and digital soils maps. The C-factor was improved using a satellite-based vegetation index, which was better correlated with estimated ground cover (r2 = 0.77) than data derived from regional land cover maps (r2 = 0.06). RUSLE factors were normalized to give equal weight to all contributing factors, which provided more management-specific information on vulnerable areas where vehicle compaction of sensitive soils intersects with steep slopes and low vegetation cover. Resulting spatial data on vulnerability and erosion potential provide land managers with information to identify critically disturbed areas and potential restoration sites where off-road driving should be restricted to reduce further degradation.

  1. [Effects of urease and nitrification inhibitors on alleviating the oxidation and leaching of soil urea's hydrolyzed product ammonium].

    PubMed

    Chen, Zhenhua; Chen, Lijun; Wu, Zhijie

    2005-02-01

    With simulation test of in-situ soil column, this paper studied the effects of urease inhibitor hydroquinone (HQ), nitrification inhibitors coated calcium carbide (ECC) and dicyandiamide (DCD),and their different combinations on the persistence, oxidation, and leaching of soil urea's hydrolyzed product ammonium. The results showed that compared with other treatments, the combination of HQ and DCD could effectively inhibit the oxidation of the ammonium, and make it as exchangeable form reserve in soil in a larger amount and a longer period. The inhibition of this oxidation not only decreased the accumulation of oxidized product NO3- in soil, but also decreased the potential of NO3- leaching, making the NO3- only leach to 5-10 cm in depth, and the leached amount significantly decreased. PMID:15852915

  2. [Effects of urease and nitrification inhibitors on alleviating the oxidation and leaching of soil urea's hydrolyzed product ammonium].

    PubMed

    Chen, Zhenhua; Chen, Lijun; Wu, Zhijie

    2005-02-01

    With simulation test of in-situ soil column, this paper studied the effects of urease inhibitor hydroquinone (HQ), nitrification inhibitors coated calcium carbide (ECC) and dicyandiamide (DCD),and their different combinations on the persistence, oxidation, and leaching of soil urea's hydrolyzed product ammonium. The results showed that compared with other treatments, the combination of HQ and DCD could effectively inhibit the oxidation of the ammonium, and make it as exchangeable form reserve in soil in a larger amount and a longer period. The inhibition of this oxidation not only decreased the accumulation of oxidized product NO3- in soil, but also decreased the potential of NO3- leaching, making the NO3- only leach to 5-10 cm in depth, and the leached amount significantly decreased.

  3. Influence of Organic Amendment and Compaction on Nutrient Dynamics in a Saturated Saline-Sodic Soil from the Riparian Zone.

    PubMed

    Miller, J J; Bremer, E; Curtis, T

    2016-07-01

    Cattle grazing in wet riparian pastures may influence nutrient dynamics due to nutrient deposition in feces and urine, soil compaction, and vegetation loss. We conducted a lab incubation study with a saline-sodic riparian soil to study nutrient (N, P, S, Fe, Mn, Cu, and Zn) dynamics in soil pore water using Plant Root Simulator (PRS) probes and release of nutrients into the overlying ponded water during flooding. The treatment factors were organic amendment (manure, roots, and unamended control), compaction (compacted, uncompacted), and burial time (3, 7, and 14 d). Amendment treatment had the greatest impact on nutrient dynamics, followed by burial time, whereas compaction had little impact. The findings generally supported our hypothesis that organic amendments should first increase nitrate loss, then increase Mn mobility, then Fe mobility and associated release of P, and finally increase sulfate loss. Declines in nitrate due to amendment addition were small because nitrate was at low levels in all treatments due to high denitrification potential instead of being released to soil pore water or overlying water. Addition of organic amendment strongly increased Mn and Fe concentrations in overlying water and of adsorbed Fe on PRS probes but only increased Mn on PRS probes on Day 3 due to subsequent displacement from ion exchange membranes. Transport of P to overlying water was increased by organic amendment addition but less so for manure than roots despite higher P on PRS probes. The findings showed that saline-sodic soils in riparian zones are generally a nutrient source for P and are a nutrient sink for N as measured using PRS probes after 3 to 7 d of flooding.

  4. Influence of Organic Amendment and Compaction on Nutrient Dynamics in a Saturated Saline-Sodic Soil from the Riparian Zone.

    PubMed

    Miller, J J; Bremer, E; Curtis, T

    2016-07-01

    Cattle grazing in wet riparian pastures may influence nutrient dynamics due to nutrient deposition in feces and urine, soil compaction, and vegetation loss. We conducted a lab incubation study with a saline-sodic riparian soil to study nutrient (N, P, S, Fe, Mn, Cu, and Zn) dynamics in soil pore water using Plant Root Simulator (PRS) probes and release of nutrients into the overlying ponded water during flooding. The treatment factors were organic amendment (manure, roots, and unamended control), compaction (compacted, uncompacted), and burial time (3, 7, and 14 d). Amendment treatment had the greatest impact on nutrient dynamics, followed by burial time, whereas compaction had little impact. The findings generally supported our hypothesis that organic amendments should first increase nitrate loss, then increase Mn mobility, then Fe mobility and associated release of P, and finally increase sulfate loss. Declines in nitrate due to amendment addition were small because nitrate was at low levels in all treatments due to high denitrification potential instead of being released to soil pore water or overlying water. Addition of organic amendment strongly increased Mn and Fe concentrations in overlying water and of adsorbed Fe on PRS probes but only increased Mn on PRS probes on Day 3 due to subsequent displacement from ion exchange membranes. Transport of P to overlying water was increased by organic amendment addition but less so for manure than roots despite higher P on PRS probes. The findings showed that saline-sodic soils in riparian zones are generally a nutrient source for P and are a nutrient sink for N as measured using PRS probes after 3 to 7 d of flooding. PMID:27380095

  5. Compact, Low-power Nitrous Oxide Monitor for Eddy Flux Soil Emission Measurements

    NASA Astrophysics Data System (ADS)

    Shorter, Joanne; Nelson, David; McManus, Barry; Zahniser, Mark

    2015-04-01

    Nitrous oxide, N2O, is one of the most important greenhouse and ozone-depleting gases. The concentration of N2O in the atmosphere has been increasing at a rate of 0.3% per year, with this rise believed to be largely due to soil emissions and agricultural practices (Park et al. 2011; Park et al. 2012). The eddy covariance technique, which requires fast (~10 Hz) measurement of mixing ratios and wind data, is perhaps the most effective technique available to quantify the exchange of gases between the atmosphere and the biosphere. It is very useful for addressing the high spatial and temporal variability of nitrous oxide emissions from soils. Nitrous oxide monitors appropriate for eddy covariance measurements generally require large flow rates (~10 - 15 slpm) and high speed, high power vacuum pumps (500 lpm, 600 W). These requirements complicate and in some environments prevent successful field deployment. We have addressed this by developing a compact, low-power nitrous oxide monitor for eddy flux or soil chamber measurements with a dramatically reduced sample cell volume. The sample volume is reduced nearly 5 fold (from 500 to 108 cm3) with only a two-fold reduction in optical path length (from 76 m to 36 m). The new multi-pass cell has an aluminum tube insert with a tapered internal volume that follows the mode envelope of the multi-pass spot pattern. This permits the use of a much smaller, lower power pump while still achieving high precision and fast response. Precision of 26 parts per trillion (ppt) in 1 sec was achieved with a 1/e response time of 0.14 s using a relatively low speed vacuum pump (100 lpm, 350 W). Further reductions in cell volume are planned which should permit sensitive eddy covariance measurements of nitrous oxide using an even smaller, lower power pump (60 lpm, 160 W) and modest sample flow rates (~2 slpm). We have also recently studied the application of a standard ARI nitrous oxide monitor to measurement of N2O isotopologues emitted into

  6. Long-term tritium transport through field-scale compacted soil liner

    USGS Publications Warehouse

    Toupiol, C.; Willingham, T.W.; Valocchi, A.J.; Werth, C.J.; Krapac, I.G.; Stark, T.D.; Daniel, D.E.

    2002-01-01

    A 13-year study of tritium transport through a field-scale earthen liner was conducted by the Illinois State Geological Survey to determine the long-term performance of compacted soil liners in limiting chemical transport. Two field-sampling procedures (pressure-vacuum lysimeter and core sampling) were used to determine the vertical tritium concentration profiles at different times and locations within the liner. Profiles determined by the two methods were similar and consistent. Analyses of the concentration profiles showed that the tritium concentration was relatively uniformly distributed horizontally at each sampling depth within the liner and thus there was no apparent preferential transport. A simple one-dimensional analytical solution to the advective-dispersive solute transport equation was used to model tritium transport through the liner. Modeling results showed that diffusion was the dominant contaminant transport mechanism. The measured tritium concentration profiles were accurately modeled with an effective diffusion coefficient of 6 ?? 10-4 mm2/s, which is in the middle of the range of values reported in the literature.

  7. Compact, Lightweight Dual-Frequency Microstrip Antenna Feed for Future Soil Moisture and Sea Surface Salinity Missions

    NASA Technical Reports Server (NTRS)

    Yueh, Simon; Wilson, William J.; Njoku, Eni; Dinardo, Steve; Hunter, Don; Rahmat-Samii, Yahya; Kona, Keerti S.; Manteghi, Majid

    2006-01-01

    The development of a compact, lightweight, dual-frequency antenna feed for future soil moisture and sea surface salinity (SSS) missions is described. The design is based on the microstrip stacked-patch array (MSPA) to be used to feed a large lightweight deployable rotating mesh antenna for spaceborne L-band (approx.1 GHz) passive and active sensing systems. The design features will also enable applications to airborne soil moisture and salinity remote sensing sensors operating on small aircrafts. This paper describes the design of stacked patch elements and 16-element array configuration. The results from the return loss, antenna pattern measurements and sky tests are also described.

  8. Desiccation-Induced Volumetric Shrinkage of Compacted Metakaolin-Treated Black Cotton Soil for a Hydraulic Barriers System

    NASA Astrophysics Data System (ADS)

    Moses, George; Peter, Oriola F. O.; Osinubi, Kolawole J.

    2016-03-01

    Black cotton soil treated with up to 24% metakaolin (MCL) content was prepared by molding water contents of -2, 0, 2, 4 and 6% of optimum moisture content (OMC) and compacted with British Standard Light (BSL) and West African Standard (WAS) or `Intermediate' energies. The specimens were extruded from the compaction molds and allowed to air dry in a laboratory in order to assess the effect of desiccation-induced shrinkage on the compacted mix for use as a hydraulic barrier in a waste containment application. The results recorded show that the volumetric shrinkage strain (VSS) values were large within the first 10 days of drying; the VSS values increased with a higher molding of the water content, relative to the OMC. The VSS generally increased with a higher initial degree of saturation for the two compactive efforts, irrespective of the level of MCL treatment. Generally, the VSS decreased with an increasing MCL content. Only specimens treated with a minimum 20% MCL content and compacted with the WAS energy satisfied the regulatory maximum VSS of 4% for use as a hydraulic barrier.

  9. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation

    PubMed Central

    Shrivastava, Pooja; Kumar, Rajesh

    2014-01-01

    Salinity is one of the most brutal environmental factors limiting the productivity of crop plants because most of the crop plants are sensitive to salinity caused by high concentrations of salts in the soil, and the area of land affected by it is increasing day by day. For all important crops, average yields are only a fraction – somewhere between 20% and 50% of record yields; these losses are mostly due to drought and high soil salinity, environmental conditions which will worsen in many regions because of global climate change. A wide range of adaptations and mitigation strategies are required to cope with such impacts. Efficient resource management and crop/livestock improvement for evolving better breeds can help to overcome salinity stress. However, such strategies being long drawn and cost intensive, there is a need to develop simple and low cost biological methods for salinity stress management, which can be used on short term basis. Microorganisms could play a significant role in this respect, if we exploit their unique properties such as tolerance to saline conditions, genetic diversity, synthesis of compatible solutes, production of plant growth promoting hormones, bio-control potential, and their interaction with crop plants. PMID:25737642

  10. C-SWAT: The Soil and Water Assessment Tool with consolidated input files in alleviating computational burden of recursive simulations

    NASA Astrophysics Data System (ADS)

    Yen, Haw; Ahmadi, Mehdi; White, Michael J.; Wang, Xiuying; Arnold, Jeffrey G.

    2014-11-01

    The temptation to include model parameters and high resolution input data together with the availability of powerful optimization and uncertainty analysis algorithms has significantly enhanced the complexity of hydrologic and water quality modeling. However, the ability to take advantage of sophisticated models is hindered in those models that need a large number of input files, such as the Soil and Water Assessment Tool (SWAT). The process of reading large amount of input files containing spatial and computational units used in SWAT is cumbersome and time-consuming. In this study, the Consolidated SWAT (C-SWAT) was developed to consolidate 13 groups of SWAT input files from subbasin and Hydrologic Response Unit (HRU) levels into a single file for each category. The utility of the consolidated inputs of model is exhibited for auto-calibration of the Little Washita River Basin (611 km2). The results of this study show that the runtime of the SWAT model could be reduced considerably with consolidating input files. The advantage of the proposed method was further promoted with application of the optimization method using a parallel computing technique. The concept is transferrable to other models that store input data in hundreds or thousands of files.

  11. STUDIES ON CONTAMINANT BIODEGRADATION IN SLURRY, WAFER, AND COMPACTED SOIL TUBE REACTORS

    EPA Science Inventory

    A systematic experimental approach is presented to quantitatively evaluate biodegradation rates in intact soil systems. Knowledge of bioremediation rates in intact soil systems is important for evaluating the efficacy of in-situ biodegradation and approaches for enhancing degrad...

  12. Soil compaction related to grazing and its effects on herbaceous roots frequency and soil organic matter content in rangelands of SW Spain

    NASA Astrophysics Data System (ADS)

    Pulido, Manuel; Schnabel, Susanne; Francisco Lavado Contador, Joaquín; Miralles Mellado, Isabel

    2016-04-01

    Rangelands in SW Spain occupy a total surface area of approximately 6 million ha and constitute the most representative extensive ranching system of the Iberian Peninsula gathering more than 13 million livestock heads. They are characterised by an herbaceous layer, mostly composed of therophytic species, with a disperse tree cover, mainly holm oak and cork oak (Quercus ilex rotundifolia and Q. suber), interspersed with shrubs in many places. This type of land system is of ancient origin and experienced frequent changes in land use in the past, since agricultural, livestock and forestry activities have coexisted within the same farms. In recent decades, livestock farming has become dominant due, in part, to the subsidies of the Common Agriculture Policy. Since Spain joined the European Union in 1986 until the year 2000, the number of domestic animals doubled, particularly cattle, and consequently animal stocking rates have increased on average from 0.40 AU ha-1 up to 0.70 AU ha-1. This increase in animal stocking rates, along with a progressive substitution of cattle instead of sheep in many farms, has led to the occurrence of land degradation processes such as the reduction of grass cover or soil compaction in heavily grazed areas. Previous research has evidenced higher values of soil bulk density and resistance to penetration as well as larger bare surface areas in spring in fenced areas with animal stocking rates above 1 AU ha-1. However, a better understanding of how increasing bulk density or resistance to penetration influence the frequency of herbaceous roots and how a reduction in the frequency of roots affects soil organic matter content in rangelands is still unknown. Therefore, the main goal of this study was to determine possible relationships between the frequencies of herbaceous roots and soil organic matter content in order to understand the effect of excessive animal numbers on the depletion of soil fertility by reducing progressively the quantity of

  13. Long term chemo-hydro-mechanical behavior of compacted soil bentonite polymer complex submitted to synthetic leachate.

    PubMed

    Razakamanantsoa, Andry Rico; Djeran-Maigre, Irini

    2016-07-01

    An experimental program is carried out to investigate the long term hydro-mechanical behavior correlated with chemical one of compacted soils with low concentration of Ca-bentonite and Ca-bentonite polymer mixture. The effect of prehydration on the hydraulic performance is compared to the polymer adding effect. All specimens are submitted to synthetic leachate (LS) under different permeation conditions. Several issues are studied: mechanical stability, hydraulic performance, chemical exchange of cations validated with microstructure observations. Scanning Electron Microscope (SEM) observations demonstrate two distinct behaviors: dispersive for Bentonite (B) and B with Polymer P1 (BP1) and flocculated for B with Polymer P2 (BP2). Direct shear tests show that bentonite adding increases the Soil (S) cohesion and decreases the friction angle. Polymer adding behaves similarly by maintaining the soil cohesion and increasing the friction angle. Hydraulic conductivity of prehydrated soil bentonite (SB) and direct permeation of polymer added soil bentonite are studied (SBP1 and SBP2). Hydraulic test duration are in range of 45days to 556days long. Prehydration allows to delay the aggressive effect of the LS in short term but seems to increase its negative effect on the hydraulic conductivity value in long term exposure. SB and SBP1 behave similarly and seem to act in the long term as a granular filler effect. SBP2 presents positive results comparing to the other mixtures: it maintains the hydraulic conductivity and the chemical resistance. Chemical analysis confirms that all specimens are subjected to Na(+) dissolution and Ca(2+) retention which are more pronounced for prehydrated specimen. The short term effect of prehydration and the positive effect of SBP2 are also confirmed. PMID:27156365

  14. Using Soil Apparent Electrical Conductivity to Optimize Sampling of Soil Penetration Resistance and to Improve the Estimations of Spatial Patterns of Soil Compaction

    PubMed Central

    Siqueira, Glécio Machado; Dafonte, Jorge Dafonte; Bueno Lema, Javier; Valcárcel Armesto, Montserrat; Silva, Ênio Farias França e

    2014-01-01

    This study presents a combined application of an EM38DD for assessing soil apparent electrical conductivity (ECa) and a dual-sensor vertical penetrometer Veris-3000 for measuring soil electrical conductivity (ECveris) and soil resistance to penetration (PR). The measurements were made at a 6 ha field cropped with forage maize under no-tillage after sowing and located in Northwestern Spain. The objective was to use data from ECa for improving the estimation of soil PR. First, data of ECa were used to determine the optimized sampling scheme of the soil PR in 40 points. Then, correlation analysis showed a significant negative relationship between soil PR and ECa, ranging from −0.36 to −0.70 for the studied soil layers. The spatial dependence of soil PR was best described by spherical models in most soil layers. However, below 0.50 m the spatial pattern of soil PR showed pure nugget effect, which could be due to the limited number of PR data used in these layers as the values of this parameter often were above the range measured by our equipment (5.5 MPa). The use of ECa as secondary variable slightly improved the estimation of PR by universal cokriging, when compared with kriging. PMID:25610899

  15. Using soil apparent electrical conductivity to optimize sampling of soil penetration resistance and to improve the estimations of spatial patterns of soil compaction.

    PubMed

    Machado Siqueira, Glécio; Dafonte Dafonte, Jorge; Bueno Lema, Javier; Valcárcel Armesto, Montserrat; França e Silva, Ênio Farias

    2014-01-01

    This study presents a combined application of an EM38DD for assessing soil apparent electrical conductivity (ECa) and a dual-sensor vertical penetrometer Veris-3000 for measuring soil electrical conductivity (ECveris) and soil resistance to penetration (PR). The measurements were made at a 6 ha field cropped with forage maize under no-tillage after sowing and located in Northwestern Spain. The objective was to use data from ECa for improving the estimation of soil PR. First, data of ECa were used to determine the optimized sampling scheme of the soil PR in 40 points. Then, correlation analysis showed a significant negative relationship between soil PR and ECa, ranging from -0.36 to -0.70 for the studied soil layers. The spatial dependence of soil PR was best described by spherical models in most soil layers. However, below 0.50 m the spatial pattern of soil PR showed pure nugget effect, which could be due to the limited number of PR data used in these layers as the values of this parameter often were above the range measured by our equipment (5.5 MPa). The use of ECa as secondary variable slightly improved the estimation of PR by universal cokriging, when compared with kriging.

  16. How to alleviate degradation of mangroves?

    PubMed

    Kathiresan, K

    2004-10-01

    This work has experimentally proved that hyper salinity, a major cause for degradation of coastal mangrove habitats, can be alleviated by flushing of hyper saline soil with tidal water and/or with rainwater. Over a period of three years after digging the creeks to flush hyper saline soil with tidal water, an appreciable reduction in soil salinity and a moderate increase in colonization of mangroves are observed. Soil analysis showed a significant reduction in salinity after 2 months of storage of rainwater with a significant and concomitant increase of heterotrophic bacterial counts and nutrients. This study raises the possibility of converting degrading mangrove habitats to luxuriant ones through man-made efforts.

  17. In-situ studies on the performance of landfill caps (compacted soil liners, geomembranes, geosynthetic clay liners, capillary barriers)

    SciTech Connect

    Melchior, S.

    1997-12-31

    Since 1986 different types of landfill covers have been studied in-situ on the Georgswerder landfill in Hamburg, Germany. Water balance data are available for eight years. The performance of different carriers has been measured by collecting the leakage on areas ranging from 100 m{sup 2} to 500 m{sup 2}. Composite liners with geomembranes performed best, showing no leakage. An extended capillary barrier also performed well. The performance of compacted soil liners, however, decreased severely within five years due to desiccation, shrinkage and plant root penetration (liner leakage now ranging from 150 mm/a to 200 mm/a). About 50 % of the water that reaches the surface of the liner is leaking through it. The maximum leakage rates have increased from 2 x 10{sup -10} m{sup 3} m{sup -2} s{sup -1} to 4 x 10{sup -8} m{sup 3} m{sup -2} s{sup -1}. Two types of geosynthetic clay liners (GCL) have been tested for two years now with disappointing results. The GCL desiccated during the first dry summer of the study. High percolation rates through the GCL were measured during the following winter (45 mm resp. 63 mm in four months). Wetting of the GCL did not significantly reduce the percolation rates.

  18. Microbiological assessment of the application of quicklime and limestone as a measure to stabilize the structure of compaction-prone soils

    NASA Astrophysics Data System (ADS)

    Deltedesco, Evi; Bauer, Lisa-Maria; Unterfrauner, Hans; Peticzka, Robert; Zehetner, Franz; Keiblinger, Katharina Maria

    2014-05-01

    Compaction of soils is caused by increasing mechanization of agriculture and forestry, construction of pipelines, surface mining and land recultivation. This results in degradation of aggregate stability and a decrease of pore space, esp. of macropores. It further impairs the water- and air permeability, and restricts the habitat of soil organisms. A promising approach to stabilize the structure and improve the permeability of soils is the addition of polyvalent ions like Ca2+ which can be added in form of quicklime (CaO) and limestone (CaCO3). In this study, we conducted a greenhouse pot experiment using these two different sources of calcium ions in order to evaluate their effect over time on physical properties and soil microbiology. We sampled silty and clayey soils from three different locations in Austria and incubated them with and without the liming materials (application 12.5 g) for 3 months in four replicates. In order to assess short-term and medium-term effects, soil samples were taken 2 days, 1 month and 3 months after application of quicklime and limestone, respectively. For these samples, we determined pH, bulk density, aggregate stability and water retention characteristics. Further, we measured microbiological parameters, such as potential enzyme activities (cellulase, phosphatase, chitinase, protease, phenoloxidase and peroxidase activity), PLFAs, microbial biomass carbon and nitrogen, dissolved organic carbon and nitrogen, nitrate nitrogen and ammonium nitrogen. In contrast to limestone, quicklime significantly improved soil aggregate stability in all tested soils only 2 days after application. Initially, soil pH was strongly increased by quicklime; however, after the second sampling (one month) the pH values of all tested soils returned to levels comparable to the soils treated with limestone. Our preliminary microbiological results show an immediate inhibition effect of quicklime on most potential hydrolytic enzyme activities and an increase in

  19. The Snow Must Go On: Ground Ice Encasement, Snow Compaction and Absence of Snow Differently Cause Soil Hypoxia, CO2 Accumulation and Tree Seedling Damage in Boreal Forest.

    PubMed

    Martz, Françoise; Vuosku, Jaana; Ovaskainen, Anu; Stark, Sari; Rautio, Pasi

    2016-01-01

    At high latitudes, the climate has warmed at twice the rate of the global average with most changes observed in autumn, winter and spring. Increasing winter temperatures and wide temperature fluctuations are leading to more frequent rain-on-snow events and freeze-thaw cycles causing snow compaction and formation of ice layers in the snowpack, thus creating ice encasement (IE). By decreasing the snowpack insulation capacity and restricting soil-atmosphere gas exchange, modification of the snow properties may lead to colder soil but also to hypoxia and accumulation of trace gases in the subnivean environment. To test the effects of these overwintering conditions changes on plant winter survival and growth, we established a snow manipulation experiment in a coniferous forest in Northern Finland with Norway spruce and Scots pine seedlings. In addition to ambient conditions and prevention of IE, we applied three snow manipulation levels: IE created by artificial rain-on-snow events, snow compaction and complete snow removal. Snow removal led to deeper soil frost during winter, but no clear effect of IE or snow compaction done in early winter was observed on soil temperature. Hypoxia and accumulation of CO2 were highest in the IE plots but, more importantly, the duration of CO2 concentration above 5% was 17 days in IE plots compared to 0 days in ambient plots. IE was the most damaging winter condition for both species, decreasing the proportion of healthy seedlings by 47% for spruce and 76% for pine compared to ambient conditions. Seedlings in all three treatments tended to grow less than seedlings in ambient conditions but only IE had a significant effect on spruce growth. Our results demonstrate a negative impact of winter climate change on boreal forest regeneration and productivity. Changing snow conditions may thus partially mitigate the positive effect of increasing growing season temperatures on boreal forest productivity.

  20. The Snow Must Go On: Ground Ice Encasement, Snow Compaction and Absence of Snow Differently Cause Soil Hypoxia, CO2 Accumulation and Tree Seedling Damage in Boreal Forest.

    PubMed

    Martz, Françoise; Vuosku, Jaana; Ovaskainen, Anu; Stark, Sari; Rautio, Pasi

    2016-01-01

    At high latitudes, the climate has warmed at twice the rate of the global average with most changes observed in autumn, winter and spring. Increasing winter temperatures and wide temperature fluctuations are leading to more frequent rain-on-snow events and freeze-thaw cycles causing snow compaction and formation of ice layers in the snowpack, thus creating ice encasement (IE). By decreasing the snowpack insulation capacity and restricting soil-atmosphere gas exchange, modification of the snow properties may lead to colder soil but also to hypoxia and accumulation of trace gases in the subnivean environment. To test the effects of these overwintering conditions changes on plant winter survival and growth, we established a snow manipulation experiment in a coniferous forest in Northern Finland with Norway spruce and Scots pine seedlings. In addition to ambient conditions and prevention of IE, we applied three snow manipulation levels: IE created by artificial rain-on-snow events, snow compaction and complete snow removal. Snow removal led to deeper soil frost during winter, but no clear effect of IE or snow compaction done in early winter was observed on soil temperature. Hypoxia and accumulation of CO2 were highest in the IE plots but, more importantly, the duration of CO2 concentration above 5% was 17 days in IE plots compared to 0 days in ambient plots. IE was the most damaging winter condition for both species, decreasing the proportion of healthy seedlings by 47% for spruce and 76% for pine compared to ambient conditions. Seedlings in all three treatments tended to grow less than seedlings in ambient conditions but only IE had a significant effect on spruce growth. Our results demonstrate a negative impact of winter climate change on boreal forest regeneration and productivity. Changing snow conditions may thus partially mitigate the positive effect of increasing growing season temperatures on boreal forest productivity. PMID:27254100

  1. The Snow Must Go On: Ground Ice Encasement, Snow Compaction and Absence of Snow Differently Cause Soil Hypoxia, CO2 Accumulation and Tree Seedling Damage in Boreal Forest

    PubMed Central

    Vuosku, Jaana; Ovaskainen, Anu; Stark, Sari; Rautio, Pasi

    2016-01-01

    At high latitudes, the climate has warmed at twice the rate of the global average with most changes observed in autumn, winter and spring. Increasing winter temperatures and wide temperature fluctuations are leading to more frequent rain-on-snow events and freeze-thaw cycles causing snow compaction and formation of ice layers in the snowpack, thus creating ice encasement (IE). By decreasing the snowpack insulation capacity and restricting soil-atmosphere gas exchange, modification of the snow properties may lead to colder soil but also to hypoxia and accumulation of trace gases in the subnivean environment. To test the effects of these overwintering conditions changes on plant winter survival and growth, we established a snow manipulation experiment in a coniferous forest in Northern Finland with Norway spruce and Scots pine seedlings. In addition to ambient conditions and prevention of IE, we applied three snow manipulation levels: IE created by artificial rain-on-snow events, snow compaction and complete snow removal. Snow removal led to deeper soil frost during winter, but no clear effect of IE or snow compaction done in early winter was observed on soil temperature. Hypoxia and accumulation of CO2 were highest in the IE plots but, more importantly, the duration of CO2 concentration above 5% was 17 days in IE plots compared to 0 days in ambient plots. IE was the most damaging winter condition for both species, decreasing the proportion of healthy seedlings by 47% for spruce and 76% for pine compared to ambient conditions. Seedlings in all three treatments tended to grow less than seedlings in ambient conditions but only IE had a significant effect on spruce growth. Our results demonstrate a negative impact of winter climate change on boreal forest regeneration and productivity. Changing snow conditions may thus partially mitigate the positive effect of increasing growing season temperatures on boreal forest productivity. PMID:27254100

  2. Nodulation by Sinorhizobium meliloti originated from a mining soil alleviates Cd toxicity and increases Cd-phytoextraction in Medicago sativa L.

    PubMed Central

    Ghnaya, Tahar; Mnassri, Majda; Ghabriche, Rim; Wali, Mariem; Poschenrieder, Charlotte; Lutts, Stanley; Abdelly, Chedly

    2015-01-01

    Besides their role in nitrogen supply to the host plants as a result of symbiotic N fixation, the association between legumes and Rhizobium could be useful for the rehabilitation of metal-contaminated soils by phytoextraction. A major limitation presents the metal-sensitivity of the bacterial strains. The aim of this work was to explore the usefulness of Sinorhizobium meliloti originated from a mining site for Cd phytoextraction by Medicago sativa. Inoculated and non-inoculated plants were cultivated for 60 d on soils containing 50 and/or 100 mg Cd kg−1 soil. The inoculation hindered the occurrence of Cd- induced toxicity symptoms that appeared in the shoots of non-inoculated plants. This positive effect of S. meliloti colonization was accompanied by an increase in biomass production and improved nutrient acquisition comparatively to non-inoculated plants. Nodulation enhanced Cd absorption by the roots and Cd translocation to the shoots. The increase of plant biomass concomitantly with the increase of Cd shoot concentration in inoculated plants led to higher potential of Cd-phytoextraction in these plants. In the presence of 50 mg Cd kg−1 in the soil, the amounts of Cd extracted in the shoots were 58 and 178 μg plant−1 in non-inoculated and inoculated plants, respectively. This study demonstrates that this association M. sativa-S. meliloti may be an efficient biological system to extract Cd from contaminated soils. PMID:26528320

  3. Metal-binding hydrogel particles alleviate soil toxicity and facilitate healthy plant establishment of the native metallophyte grass Astrebla lappacea in mine waste rock and tailings.

    PubMed

    Bigot, M; Guterres, J; Rossato, L; Pudmenzky, A; Doley, D; Whittaker, M; Pillai-McGarry, U; Schmidt, S

    2013-03-15

    Soil contaminants are potentially a major threat to human and ecosystem health and sustainable production of food and energy where mineral processing wastes are discharged into the environment. In extreme conditions, metal concentrations in wastes often exceed even the metal tolerance thresholds of metallophytes (metal-tolerant plants) and sites remain barren with high risks of contaminant leaching and dispersion into the environment via erosion. A novel soil amendment based on micron-size thiol functional cross-linked acrylamide polymer hydrogel particles (X3) binds toxic soluble metals irreversibly and significantly reduces their concentrations in the soil solution to below the phytotoxicity thresholds. X3 mixed into the top 50mm of phytotoxic mine waste materials in pots in glasshouse conditions reduced total soluble concentrations of toxic contaminants by 90.3-98.7% in waste rock, and 88.6-96.4% in tailings immediately after application. After 61 days, quality of unamended bottom layer of X3-treated pots was also significantly improved in both wastes. Combination of X3 and metallophytes was more efficient at improving soil solution quality than X3 alone. Addition of X3 to substrates increased substrate water retention and water availability to plants by up to 108% and 98% for waste rock and tailings respectively. Soil quality improvement by X3 allowed successful early establishment of the native metallophyte grass Astrebla lappacea on both wastes where plants failed to establish otherwise. PMID:23416487

  4. Metal-binding hydrogel particles alleviate soil toxicity and facilitate healthy plant establishment of the native metallophyte grass Astrebla lappacea in mine waste rock and tailings.

    PubMed

    Bigot, M; Guterres, J; Rossato, L; Pudmenzky, A; Doley, D; Whittaker, M; Pillai-McGarry, U; Schmidt, S

    2013-03-15

    Soil contaminants are potentially a major threat to human and ecosystem health and sustainable production of food and energy where mineral processing wastes are discharged into the environment. In extreme conditions, metal concentrations in wastes often exceed even the metal tolerance thresholds of metallophytes (metal-tolerant plants) and sites remain barren with high risks of contaminant leaching and dispersion into the environment via erosion. A novel soil amendment based on micron-size thiol functional cross-linked acrylamide polymer hydrogel particles (X3) binds toxic soluble metals irreversibly and significantly reduces their concentrations in the soil solution to below the phytotoxicity thresholds. X3 mixed into the top 50mm of phytotoxic mine waste materials in pots in glasshouse conditions reduced total soluble concentrations of toxic contaminants by 90.3-98.7% in waste rock, and 88.6-96.4% in tailings immediately after application. After 61 days, quality of unamended bottom layer of X3-treated pots was also significantly improved in both wastes. Combination of X3 and metallophytes was more efficient at improving soil solution quality than X3 alone. Addition of X3 to substrates increased substrate water retention and water availability to plants by up to 108% and 98% for waste rock and tailings respectively. Soil quality improvement by X3 allowed successful early establishment of the native metallophyte grass Astrebla lappacea on both wastes where plants failed to establish otherwise.

  5. The influence of liming on soil chemical properties and on the alleviation of manganese and copper toxicity in Juglans regia, Robinia pseudoacacia, Eucalyptus sp. and Populus sp. plantations.

    PubMed

    Chatzistathis, T; Alifragis, D; Papaioannou, A

    2015-03-01

    Juglans regia, Robinia pseudoacacia, Eucalyptus sp. and Populus sp. plantations, suffering from Mn and Cu toxicity, were limed in order to reduce Cu and Mn solubility in soil. The purposes of the present work were: i) to study the changes in soil chemical properties after the addition of CaCO3, ii) to investigate the influence of liming on the reduction of Mn and Cu toxicity. After the addition of CaCO3 (three applications, during three successive years), pH and CaCO3 content were significantly increased, while organic C and N were significantly reduced. Exchangeable Ca concentrations have been slightly, or significantly, increased, while those of Mg have been decreased; in addition, ratios Ca/Mg and C/N have been significantly increased after liming. Impressive reductions of DTPA extractable Cu and Mn concentrations (more than 10 times in most cases) were recorded. It was also found that trees without Mn and Cu toxicity symptoms (healthy tress) before liming did not have, in many cases, significantly greater leaf Mn, Cu and Fe concentrations, than trees after soil liming (all the trees were healthy). This probably happened because excess Mn and Cu quantities had been accumulated into their root system. Finally, leaf Mn, Cu and Zn concentrations of trees suffering from toxicity were significantly decreased after soil liming, while leaf Fe concentrations, in all the plant species studied, were increased. PMID:25485934

  6. The influence of liming on soil chemical properties and on the alleviation of manganese and copper toxicity in Juglans regia, Robinia pseudoacacia, Eucalyptus sp. and Populus sp. plantations.

    PubMed

    Chatzistathis, T; Alifragis, D; Papaioannou, A

    2015-03-01

    Juglans regia, Robinia pseudoacacia, Eucalyptus sp. and Populus sp. plantations, suffering from Mn and Cu toxicity, were limed in order to reduce Cu and Mn solubility in soil. The purposes of the present work were: i) to study the changes in soil chemical properties after the addition of CaCO3, ii) to investigate the influence of liming on the reduction of Mn and Cu toxicity. After the addition of CaCO3 (three applications, during three successive years), pH and CaCO3 content were significantly increased, while organic C and N were significantly reduced. Exchangeable Ca concentrations have been slightly, or significantly, increased, while those of Mg have been decreased; in addition, ratios Ca/Mg and C/N have been significantly increased after liming. Impressive reductions of DTPA extractable Cu and Mn concentrations (more than 10 times in most cases) were recorded. It was also found that trees without Mn and Cu toxicity symptoms (healthy tress) before liming did not have, in many cases, significantly greater leaf Mn, Cu and Fe concentrations, than trees after soil liming (all the trees were healthy). This probably happened because excess Mn and Cu quantities had been accumulated into their root system. Finally, leaf Mn, Cu and Zn concentrations of trees suffering from toxicity were significantly decreased after soil liming, while leaf Fe concentrations, in all the plant species studied, were increased.

  7. Compaction managed mirror bend achromat

    DOEpatents

    Douglas, David

    2005-10-18

    A method for controlling the momentum compaction in a beam of charged particles. The method includes a compaction-managed mirror bend achromat (CMMBA) that provides a beamline design that retains the large momentum acceptance of a conventional mirror bend achromat. The CMMBA also provides the ability to tailor the system momentum compaction spectrum as desired for specific applications. The CMMBA enables magnetostatic management of the longitudinal phase space in Energy Recovery Linacs (ERLs) thereby alleviating the need for harmonic linearization of the RF waveform.

  8. Mannitol alleviates chromium toxicity in wheat plants in relation to growth, yield, stimulation of anti-oxidative enzymes, oxidative stress and Cr uptake in sand and soil media.

    PubMed

    Adrees, Muhammad; Ali, Shafaqat; Iqbal, Muhammad; Aslam Bharwana, Saima; Siddiqi, Zeenat; Farid, Mujahid; Ali, Qasim; Saeed, Rashid; Rizwan, Muhammad

    2015-12-01

    Chromium (Cr) is one of the most phytotoxic metals in the agricultural soils and its concentration is continuously increasing mainly through anthropogenic activities. Little is known on the role of mannitol (M) on plant growth and physiology under metal stress. The aim of this study was to investigate the mechanism of growth amelioration and antioxidant enzyme activities in Cr-stressed wheat (Triticum aestivum L. cv. Lasani 2008) by exogenously applied mannitol. For this, wheat seedlings were sown in pots containing soil or sand and subjected to increasing Cr concentration (0, 0.25 and 0.5mM) in the form of of K2Cr2O7 with and without foliar application of 100mM mannitol. Plants were harvested after four months and data regarding growth characteristics, biomass, photosynthetic pigments, and antioxidant enzymes were recorded. Mannitol application increased plant biomass, photosynthetic pigments and antioxidant enzymes while decreased Cr uptake and accumulation in plants as compared to Cr treatments alone. In this study, we observed that M applied exogenously to Cr-stressed wheat plants, which normally cannot synthesize M, improved their Cr tolerance by increasing growth, photosynthetic pigments and enhancing activities of antioxidant enzymes and by decreasing Cr uptake and translocation in wheat plants. From this study, it can be concluded that M could be used to grow crops on marginally contaminated soils for which separate remediation techniques are time consuming and not cost effective.

  9. Buffet Load Alleviation

    NASA Technical Reports Server (NTRS)

    Ryall, T. G.; Moses, R. W.; Hopkins, M. A.; Henderson, D.; Zimcik, D. G.; Nitzsche, F.

    2004-01-01

    High performance aircraft are, by their very nature, often required to undergo maneuvers involving high angles of attack. Under these conditions unsteady vortices emanating from the wing and the fuselage will impinge on the twin fins (required for directional stability) causing excessive buffet loads, in some circumstances, to be applied to the aircraft. These loads result in oscillatory stresses, which may cause significant amounts of fatigue damage. Active control is a possible solution to this important problem. A full-scale test was carried out on an F/A-18 fuselage and fins using piezoceramic actuators to control the vibrations. Buffet loads were simulated using very powerful electromagnetic shakers. The first phase of this test was concerned with the open loop system identification whereas the second stage involved implementing linear time invariant control laws. This paper looks at some of the problems encountered as well as the corresponding solutions and some results. It is expected that flight trials of a similar control system to alleviate buffet will occur as early as 2001.

  10. Predicting Winter Wheat Yield Loss from Soil Compaction in the Central Great Plains of the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The extent to which no-till management improves water and wind erodibility parameters is not well understood. This study assessed changes in aggregate resistance to raindrops, dry aggregate wettability, and dry aggregate stability as well as their relationships with changes in soil organic carbon co...

  11. Hydraulic conductivity of compacted zeolites.

    PubMed

    Oren, A Hakan; Ozdamar, Tuğçe

    2013-06-01

    Hydraulic conductivities of compacted zeolites were investigated as a function of compaction water content and zeolite particle size. Initially, the compaction characteristics of zeolites were determined. The compaction test results showed that maximum dry unit weight (γ(dmax)) of fine zeolite was greater than that of granular zeolites. The γ(dmax) of compacted zeolites was between 1.01 and 1.17 Mg m(-3) and optimum water content (w(opt)) was between 38% and 53%. Regardless of zeolite particle size, compacted zeolites had low γ(dmax) and high w(opt) when compared with compacted natural soils. Then, hydraulic conductivity tests were run on compacted zeolites. The hydraulic conductivity values were within the range of 2.0 × 10(-3) cm s(-1) to 1.1 × 10(-7) cm s(-1). Hydraulic conductivity of all compacted zeolites decreased almost 50 times as the water content increased. It is noteworthy that hydraulic conductivity of compacted zeolite was strongly dependent on the zeolite particle size. The hydraulic conductivity decreased almost three orders of magnitude up to 39% fine content; then, it remained almost unchanged beyond 39%. Only one report was found in the literature on the hydraulic conductivity of compacted zeolite, which is in agreement with the findings of this study.

  12. VIBRATION COMPACTION

    DOEpatents

    Hauth, J.J.

    1962-07-01

    A method of compacting a powder in a metal container is described including the steps of vibrating the container at above and below the resonant frequency and also sweeping the frequency of vibration across the resonant frequency several times thereby following the change in resonant frequency caused by compaction of the powder. (AEC)

  13. A Compact L-band Radiometer for High Resolution sUAS-based Imaging of Soil Moisture and Surface Salinity Variations

    NASA Astrophysics Data System (ADS)

    Gasiewski, A. J.; Stachura, M.; Dai, E.; Elston, J.; McIntyre, E.; Leuski, V.

    2014-12-01

    Due to the long electrical wavelengths required along with practical aperture size limitations the scaling of passive microwave remote sensing of soil moisture and salinity from spaceborne low-resolution (~10-100 km) applications to high resolution (~10-1000 m) applications requires use of low flying aerial vehicles. This presentation summarizes the status of a project to develop a commercial small Unmanned Aerial System (sUAS) hosting a microwave radiometer for mapping of soil moisture in precision agriculture and sea surface salinity studies. The project is based on the Tempest electric-powered UAS and a compact L-band (1400-1427 MHz) radiometer developed specifically for extremely small and lightweight aerial platforms or man-portable, tractor, or tower-based applications. Notable in this combination are a highly integrated sUAS/radiometer antenna design and use of both the upwelling emitted signal from the surface and downwelling cold space signal for precise calibration using a unique lobe-differencing correlating radiometer architecture. The system achieves a spatial resolution comparable to the altitude of the UAS above the surface while referencing upwelling measurements to the constant and well-known background temperature of cold space. The radiometer has been tested using analog correlation detection, although future builds will include infrared, near-infrared, and visible (red) sensors for surface temperature and vegetation biomass correction and digital sampling for radio frequency interference mitigation. This NASA-sponsored project is being developed for commercial application in cropland water management (for example, high-value shallow root-zone crops), landslide risk assessment, NASA SMAP satellite validation, and NASA Aquarius salinity stratification studies. The system will ultimately be capable of observing salinity events caused by coastal glacier and estuary fresh water outflow plumes and open ocean rainfall events.

  14. Ureilite compaction

    NASA Astrophysics Data System (ADS)

    Walker, D.; Agee, C. B.

    1988-03-01

    Ureilite meteorites show the simple mineralogy and compact recrystallized textures of adcumulate rock or melting residues. A certain amount of controversy exists about whether they are in fact adcumulate rocks or melting residues and about the nature of the precursor liquid or solid assemblage. The authors undertook a limited experimental study which made possible the evaluation of the potential of the thermal migration mechanism (diffusion on a saturation gradient) for forming ureilite-like aggregates from carbonaceous chondrite precursors. They find that the process can produce compact recrystallized aggregates of silicate crystals which do resemble the ureilities and other interstitial-liquid-free adcumulate rocks in texture.

  15. Deep soil compaction as a method of ground improvement and to stabilization of wastes and slopes with danger of liquefaction, determining the modulus of deformation and shear strength parameters of loose rock.

    PubMed

    Lersow, M

    2001-01-01

    For the stabilization of dumps with the construction of hidden dams and for building ground improvement, for instance for traffic lines over dumps, nearly all applied compaction methods have the aim to reduce the pore volume in the loose rock. With these methods, a homogenization of the compacted loose rock will be obtained too. The compaction methods of weight compaction by falling weight, compaction by vibration and compaction by blasting have been introduced, and their applications and efficiencies have been shown. For the estimation of the effective depth of the compaction and for a safe planning of the bearing layer, respectively, the necessary material parameters have to be determined for each deep compaction method. Proposals for the determination of these parameters have been made within this paper. In connection with the stabilization of flow-slide-prone dump slopes, as well as for the improvement of dump areas for the use as building ground, it is necessary to assess the deformation behavior and the bearing capacity. To assess the resulting building ground improvement, deformation indexes (assessment of the flow-prone layer) and strength indexes (assessment of the bearing capacity) have to be determined with soil mechanical tests. Förster and Lersow, [Patentschrift DE 197 17 988. Verfahren, auf der Grundlage last- und/oder weggesteuerter Plattendruckversuche auf der Bohrlochsohle, zur Ermittlung des Spannungs-Verformungs-Verhaltens und/oder von Deformationsmoduln und/oder von Festigkeitseigenschaften in verschiedenen Tiefen insbesondere von Lockergesteinen und von Deponiekörpern in situ; Förster W, Lersow M. Plattendruckversuch auf der Bohrlochsohle, Ermittlung des Spannungs-Verformungs-Verhaltens von Lockergestein und Deponiematerial Braunkohle--Surface Mining, 1998;50(4): 369-77; Lersow M. Verfahren zur Ermittlung von Scherfestigkeitsparametern von Lockergestein und Deponiematerial aus Plattendruckversuchen auf der Bohrlochsohle. Braunkohle

  16. Compact accelerator

    DOEpatents

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.

    2007-02-06

    A compact linear accelerator having at least one strip-shaped Blumlein module which guides a propagating wavefront between first and second ends and controls the output pulse at the second end. Each Blumlein module has first, second, and third planar conductor strips, with a first dielectric strip between the first and second conductor strips, and a second dielectric strip between the second and third conductor strips. Additionally, the compact linear accelerator includes a high voltage power supply connected to charge the second conductor strip to a high potential, and a switch for switching the high potential in the second conductor strip to at least one of the first and third conductor strips so as to initiate a propagating reverse polarity wavefront(s) in the corresponding dielectric strip(s).

  17. Compact magnetograph

    NASA Technical Reports Server (NTRS)

    Title, A. M.; Gillespie, B. A.; Mosher, J. W.

    1982-01-01

    A compact magnetograph system based on solid Fabry-Perot interferometers as the spectral isolation elements was studied. The theory of operation of several Fabry-Perot systems, the suitability of various magnetic lines, signal levels expected for different modes of operation, and the optimal detector systems were investigated. The requirements that the lack of a polarization modulator placed upon the electronic signal chain was emphasized. The PLZT modulator was chosen as a satisfactory component with both high reliability and elatively low voltage requirements. Thermal control, line centering and velocity offset problems were solved by a Fabry-Perot configuration.

  18. Novel Alleviation Mechanisms of Aluminum Phytotoxicity via Released Biosilicon from Rice Straw-Derived Biochars

    NASA Astrophysics Data System (ADS)

    Qian, Linbo; Chen, Baoliang; Chen, Mengfang

    2016-07-01

    Replacing biosilicon and biocarbon in soil via biochar amendment is a novel approach for soil amelioration and pollution remediation. The unique roles of silicon (Si)-rich biochar in aluminum (Al) phytotoxicity alleviation have not been discovered. In this study, the alleviation of Al phytotoxicity to wheat plants (root tips cell death) by biochars fabricated from rice straw pyrolyzed at 400 and 700 °C (RS400 and RS700) and the feedstock (RS100) were studied using a slurry system containing typical acidic soils for a 15-day exposure experiment. The distributions of Al and Si in the slurry solution, soil and plant root tissue were monitored by staining methods, chemical extractions and SEM-EDS observations. We found that the biological sourced silicon in biochars served dual roles in Al phytotoxicity alleviation in acidic soil slurry. On one hand, the Si particles reduced the amount of soil exchangeable Al and prevented the migration of Al to the plant. More importantly, the Si released from biochars synchronously absorbed by the plants and coordinated with Al to form Al-Si compounds in the epidermis of wheat roots, which is a new mechanism for Al phytotoxicity alleviation in acidic soil slurry by biochar amendment. In addition, the steady release of Si from the rice straw-derived biochars was a sustainable Si source for aluminosilicate reconstruction in acidic soil.

  19. Novel Alleviation Mechanisms of Aluminum Phytotoxicity via Released Biosilicon from Rice Straw-Derived Biochars

    PubMed Central

    Qian, Linbo; Chen, Baoliang; Chen, Mengfang

    2016-01-01

    Replacing biosilicon and biocarbon in soil via biochar amendment is a novel approach for soil amelioration and pollution remediation. The unique roles of silicon (Si)-rich biochar in aluminum (Al) phytotoxicity alleviation have not been discovered. In this study, the alleviation of Al phytotoxicity to wheat plants (root tips cell death) by biochars fabricated from rice straw pyrolyzed at 400 and 700 °C (RS400 and RS700) and the feedstock (RS100) were studied using a slurry system containing typical acidic soils for a 15-day exposure experiment. The distributions of Al and Si in the slurry solution, soil and plant root tissue were monitored by staining methods, chemical extractions and SEM-EDS observations. We found that the biological sourced silicon in biochars served dual roles in Al phytotoxicity alleviation in acidic soil slurry. On one hand, the Si particles reduced the amount of soil exchangeable Al and prevented the migration of Al to the plant. More importantly, the Si released from biochars synchronously absorbed by the plants and coordinated with Al to form Al-Si compounds in the epidermis of wheat roots, which is a new mechanism for Al phytotoxicity alleviation in acidic soil slurry by biochar amendment. In addition, the steady release of Si from the rice straw-derived biochars was a sustainable Si source for aluminosilicate reconstruction in acidic soil. PMID:27385598

  20. Novel Alleviation Mechanisms of Aluminum Phytotoxicity via Released Biosilicon from Rice Straw-Derived Biochars.

    PubMed

    Qian, Linbo; Chen, Baoliang; Chen, Mengfang

    2016-01-01

    Replacing biosilicon and biocarbon in soil via biochar amendment is a novel approach for soil amelioration and pollution remediation. The unique roles of silicon (Si)-rich biochar in aluminum (Al) phytotoxicity alleviation have not been discovered. In this study, the alleviation of Al phytotoxicity to wheat plants (root tips cell death) by biochars fabricated from rice straw pyrolyzed at 400 and 700 °C (RS400 and RS700) and the feedstock (RS100) were studied using a slurry system containing typical acidic soils for a 15-day exposure experiment. The distributions of Al and Si in the slurry solution, soil and plant root tissue were monitored by staining methods, chemical extractions and SEM-EDS observations. We found that the biological sourced silicon in biochars served dual roles in Al phytotoxicity alleviation in acidic soil slurry. On one hand, the Si particles reduced the amount of soil exchangeable Al and prevented the migration of Al to the plant. More importantly, the Si released from biochars synchronously absorbed by the plants and coordinated with Al to form Al-Si compounds in the epidermis of wheat roots, which is a new mechanism for Al phytotoxicity alleviation in acidic soil slurry by biochar amendment. In addition, the steady release of Si from the rice straw-derived biochars was a sustainable Si source for aluminosilicate reconstruction in acidic soil. PMID:27385598

  1. Compact Radiometers Expand Climate Knowledge

    NASA Technical Reports Server (NTRS)

    2010-01-01

    To gain a better understanding of Earth's water, energy, and carbon cycles, NASA plans to embark on the Soil Moisture Active and Passive mission in 2015. To prepare, Goddard Space Flight Center provided Small Business Innovation Research (SBIR) funding to ProSensing Inc., of Amherst, Massachusetts, to develop a compact ultrastable radiometer for sea surface salinity and soil moisture mapping. ProSensing incorporated small, low-cost, high-performance elements into just a few circuit boards and now offers two lightweight radiometers commercially. Government research agencies, university research groups, and large corporations around the world are using the devices for mapping soil moisture, ocean salinity, and wind speed.

  2. Effective alleviation of aluminum phytotoxicity by manure-derived biochar.

    PubMed

    Qian, Linbo; Chen, Baoliang; Hu, Dingfei

    2013-03-19

    The alleviation of aluminum phytotoxicity to wheat plants in a hydroponic system through the amendment of biochar is investigated to explore the possibility of applying biochar in acidic soil amelioration. Biochar derived from cattle manure pyrolyzed at 400 °C (CM400) and the CM400 biochar washed with distilled-deionized water to remove alkalinity (WCM400) were prepared to determine the roles of the liming effect and adsorption during the alleviation of Al toxicity. Upon addition of 0.02% (W/V) CM400 to the exposure solution, the inhibition of plant growth by Al was significantly reduced while the toxic threshold was extended from 3 to 95 μmol/L Al(3+). Due to the biochar liming effect, the aluminum species were converted to Al(OH)(2+) and Al(OH)2(+) monomers, which were strongly adsorbed by biochar; furthermore, the highly toxic Al(3+) evolved to less toxic Al(OH)3 and Al(OH)4(-) species. Adsorption of Al by the biochar is dominated by surface complexation of the carboxyl groups with Al(OH)(2+)/Al(OH)2(+) rather than through electrostatic attraction of Al(3+) with negatively charged sites. Compared to the liming effect, the adsorption by biochar exhibited a sustainable effect on the alleviation of Al toxicity. Therefore, the biochar amendment appears to be a novel approach for aluminum detoxification in acidic soils. PMID:23398535

  3. Compaction Stress in Fine Powders

    SciTech Connect

    Hurd, A.J.; Kenkre, V.M.; Pease, E.A.; Scott, J.E.

    1999-04-01

    A vexing feature in granular materials compaction is density extrema interior to a compacted shape. Such inhomogeneities can lead to weaknesses and loss of dimensional control in ceramic parts, unpredictable dissolution of pharmaceuticals, and undesirable stress concentration in load-bearing soil. As an example, the centerline density in a cylindrical compact often does not decrease monotonically from the pressure source but exhibits local maxima and minima. Two lines of thought in the literature predict, respectively, diffusive and wavelike propagation of stress. Here, a general memory function approach has been formulated that unifies these previous treatments as special cases; by analyzing a convenient intermediate case, the telegrapher's equation, one sees that local density maxima arise via semidiffusive stress waves reflecting from the die walls and adding constructively at the centerline.

  4. Compact Reactor

    SciTech Connect

    Williams, Pharis E.

    2007-01-30

    Weyl's Gauge Principle of 1929 has been used to establish Weyl's Quantum Principle (WQP) that requires that the Weyl scale factor should be unity. It has been shown that the WQP requires the following: quantum mechanics must be used to determine system states; the electrostatic potential must be non-singular and quantified; interactions between particles with different electric charges (i.e. electron and proton) do not obey Newton's Third Law at sub-nuclear separations, and nuclear particles may be much different than expected using the standard model. The above WQP requirements lead to a potential fusion reactor wherein deuterium nuclei are preferentially fused into helium nuclei. Because the deuterium nuclei are preferentially fused into helium nuclei at temperatures and energies lower than specified by the standard model there is no harmful radiation as a byproduct of this fusion process. Therefore, a reactor using this reaction does not need any shielding to contain such radiation. The energy released from each reaction and the absence of shielding makes the deuterium-plus-deuterium-to-helium (DDH) reactor very compact when compared to other reactors, both fission and fusion types. Moreover, the potential energy output per reactor weight and the absence of harmful radiation makes the DDH reactor an ideal candidate for space power. The logic is summarized by which the WQP requires the above conditions that make the prediction of DDH possible. The details of the DDH reaction will be presented along with the specifics of why the DDH reactor may be made to cause two deuterium nuclei to preferentially fuse to a helium nucleus. The presentation will also indicate the calculations needed to predict the reactor temperature as a function of fuel loading, reactor size, and desired output and will include the progress achieved to date.

  5. Ceramic powder compaction

    SciTech Connect

    Glass, S.J.; Ewsuk, K.G.; Mahoney, F.M.

    1995-12-31

    With the objective of developing a predictive model for ceramic powder compaction we have investigated methods for characterizing density gradients in ceramic powder compacts, reviewed and compared existing compaction models, conducted compaction experiments on a spray dried alumina powder, and conducted mechanical tests and compaction experiments on model granular materials. Die filling and particle packing, and the behavior of individual granules play an important role in determining compaction behavior and should be incorporated into realistic compaction models. These results support the use of discrete element modeling techniques and statistical mechanics principals to develop a comprehensive model for compaction, something that should be achievable with computers with parallel processing capabilities.

  6. Carbon Sequestration in Forest Soils

    NASA Astrophysics Data System (ADS)

    Lal, R.

    2006-05-01

    Carbon (C) sequestration in soils and forests is an important strategy of reducing the net increase in atmospheric CO2 concentration by fossil fuel combustion, deforestation, biomass burning, soil cultivation and accelerated erosion. Further, the so-called "missing or fugitive CO2" is also probably being absorbed in a terrestrial sink. Three of the 15 strategies proposed to stabilize atmospheric CO2 concentrations by 2054, with each one to sequester 1 Pg Cyr-1, include: (i) biofuel plantations for bioethanol production, (ii) reforestation, afforestation and establishment of new plantations, and (iii) conversion of plow tillage to no-till farming. Enhancing soil organic carbon (SOC) pool is an important component in each of these three options, but especially so in conversion of degraded/marginal agricultural soils to short rotation woody perennials, and establishment of plantations for biofuel, fiber and timber production. Depending upon the prior SOC loss because of the historic land used and management-induced soil degradation, the rate of soil C sequestration in forest soils may be 0 to 3 Mg C ha-1 yr-1. Tropical forest ecosystems cover 1.8 billion hectares and have a SOC sequestration potential of 200 to 500 Tg C yr-1 over 59 years. However, increasing production of forest biomass may not always increase the SOC pool. Factors limiting the rate of SOC sequestration include C: N ratio, soil availability of N and other essential nutrients, concentration of recalcitrant macro-molecules (e.g., lignin, suberin), soil properties (e.g., clay content and mineralogy, aggregation), soil drainage, and climate (mean annual precipitation and temperature). The SOC pool can be enhanced by adopting recommended methods of forest harvesting and site preparation to minimize the "Covington effect," improving soil drainage, alleviating soil compaction, growing species with a high NPP, and improving soil fertility including the availability of micro-nutrients. Soil fertility

  7. Harnessing motivation to alleviate neglect.

    PubMed

    Russell, Charlotte; Li, Korina; Malhotra, Paresh A

    2013-01-01

    The syndrome of spatial neglect results from the combination of a number of deficits in attention, with patients demonstrating both spatially lateralized and non-lateralized impairments. Previous reports have hinted that there may be a motivational component to neglect and that modulating this might alleviate some of the debilitating symptoms. Additionally, recent work on the effects of reward on attention in healthy participants has revealed improvements across a number of paradigms. As the primary deficit in neglect has been associated with attention, this evidence for reward's effects is potentially important. However, until very recently there have been few empirical studies addressing this potential therapeutic avenue. Here we review the growing body of evidence that attentional impairments in neglect can be reduced by motivation, for example in the form of preferred music or anticipated monetary reward, and discuss the implications of this for treatments for these patients. Crucially these effects of positive motivation are not observed in all patients with neglect, suggesting that the consequences of motivation may relate to individual lesion anatomy. Given the key role of dopaminergic systems in motivational processes, we suggest that motivational stimulation might act as a surrogate for dopaminergic stimulation. In addition, we consider the relationship between clinical post stroke apathy and lack of response to motivation.

  8. Harnessing Motivation to Alleviate Neglect

    PubMed Central

    Russell, Charlotte; Li, Korina; Malhotra, Paresh A.

    2013-01-01

    The syndrome of spatial neglect results from the combination of a number of deficits in attention, with patients demonstrating both spatially lateralized and non-lateralized impairments. Previous reports have hinted that there may be a motivational component to neglect and that modulating this might alleviate some of the debilitating symptoms. Additionally, recent work on the effects of reward on attention in healthy participants has revealed improvements across a number of paradigms. As the primary deficit in neglect has been associated with attention, this evidence for reward’s effects is potentially important. However, until very recently there have been few empirical studies addressing this potential therapeutic avenue. Here we review the growing body of evidence that attentional impairments in neglect can be reduced by motivation, for example in the form of preferred music or anticipated monetary reward, and discuss the implications of this for treatments for these patients. Crucially these effects of positive motivation are not observed in all patients with neglect, suggesting that the consequences of motivation may relate to individual lesion anatomy. Given the key role of dopaminergic systems in motivational processes, we suggest that motivational stimulation might act as a surrogate for dopaminergic stimulation. In addition, we consider the relationship between clinical post stroke apathy and lack of response to motivation. PMID:23761744

  9. PROTOCOL FOR DETERMINING BIOAVAILABILITY AND BIOKINETICS OF ORGANIC POLLUTANTS IN DISPERSED, COMPACTED AND INTACT SOIL SYSTEMS TO ENHANCE IN SITU BIOREMEDIATION

    EPA Science Inventory

    The development of effective in situ and on-site bioremediation technologies can facilitate the cleanup of chemically-contaminated soil sites. Knowledge of biodegradation kinetics and bioavailability of organic pollutants can facilitate decisions on the efficacy of in situ and o...

  10. Shales and swelling soils

    NASA Astrophysics Data System (ADS)

    Franklin, J. A.; Dimillio, A. F.; Strohm, W. E., Jr.; Vandre, B. C.; Anderson, L. R.

    The thirteen (13) papers in this report deal with the following areas: a shale rating system and tentative applications to shale performance; technical guidelines for the design and construction of shale embankments; stability of waste shale embankments; dynamic response of raw and stabilized Oklahoma shales; laboratory studies of the stabilization of nondurable shales; swelling shale and collapsing soil; development of a laboratory compaction degradation test for shales; soil section approach for evaluation of swelling potential soil moisture properties of subgrade soils; volume changes in compacted clays and shales on saturation; characterization of expansive soils; pavement roughness on expansive clays; and deep vertical fabric moisture barriers in swelling soils.

  11. Mouse Embryo Compaction.

    PubMed

    White, M D; Bissiere, S; Alvarez, Y D; Plachta, N

    2016-01-01

    Compaction is a critical first morphological event in the preimplantation development of the mammalian embryo. Characterized by the transformation of the embryo from a loose cluster of spherical cells into a tightly packed mass, compaction is a key step in the establishment of the first tissue-like structures of the embryo. Although early investigation of the mechanisms driving compaction implicated changes in cell-cell adhesion, recent work has identified essential roles for cortical tension and a compaction-specific class of filopodia. During the transition from 8 to 16 cells, as the embryo is compacting, it must also make fundamental decisions regarding cell position, polarity, and fate. Understanding how these and other processes are integrated with compaction requires further investigation. Emerging imaging-based techniques that enable quantitative analysis from the level of cell-cell interactions down to the level of individual regulatory molecules will provide a greater understanding of how compaction shapes the early mammalian embryo. PMID:27475854

  12. Reversible DNA compaction.

    PubMed

    González-Pérez, Alfredo

    2014-01-01

    In this review we summarize and discuss the different methods we can use to achieve reversible DNA compaction in vitro. Reversible DNA compaction is a natural process that occurs in living cells and viruses. As a result these process long sequences of DNA can be concentrated in a small volume (compacted) to be decompacted only when the information carried by the DNA is needed. In the current work we review the main artificial compacting agents looking at their suitability for decompaction. The different approaches used for decompaction are strongly influenced by the nature of the compacting agent that determines the mechanism of compaction. We focus our discussion on two main artificial compacting agents: multivalent cations and cationic surfactants that are the best known compacting agents. The reversibility of the process can be achieved by adding chemicals like divalent cations, alcohols, anionic surfactants, cyclodextrins or by changing the chemical nature of the compacting agents via pH modifications, light induced conformation changes or by redox-reactions. We stress the relevance of electrostatic interactions and self-assembly as a main approach in order to tune up the DNA conformation in order to create an on-off switch allowing a transition between coil and compact states. The recent advances to control DNA conformation in vitro, by means of molecular self-assembly, result in a better understanding of the fundamental aspects involved in the DNA behavior in vivo and serve of invaluable inspiration for the development of potential biomedical applications. PMID:24444152

  13. Gust alleviation - Criteria and control laws

    NASA Technical Reports Server (NTRS)

    Rynaski, E. G.

    1979-01-01

    The relationships between criteria specified for aircraft gust alleviation and the form of the control laws that result from the criteria are considered. Open-loop gust alleviation based on the linearized, small perturbation equations of aircraft motion is discussed, and an approximate solution of the open-loop control law is presented for the case in which the number of degrees of freedom of the aircraft exceeds the rank of the control effectiveness matrix. Excessive actuator lag is compensated for by taking into account actuator dynamics in the equations of motion, resulting in the specification of a general load network. Criteria for gust alleviation when output motions are gust alleviated and the closed-loop control law derived from them are examined and linear optimal control law is derived. Comparisons of the control laws reveal that the effectiveness of an open-loop control law is greatest at low aircraft frequencies but deteriorates as the natural frequency of the actuators is approached, while closed-loop methods are found to be more effective at higher frequencies.

  14. Alleviation of Communication Apprehension: An Individualized Approach.

    ERIC Educational Resources Information Center

    Watson, Arden K.

    Communication apprehension (CA) affects from 15% to 20% of the college population, indicating inherent problems of negative cognitive appraisal, conditioned anxiety, or skills deficits. Use of an individualized approach to the alleviation of CA has been shown to increase students' class interaction and to improve their verbal skills. During an…

  15. Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: A review.

    PubMed

    Adrees, Muhammad; Ali, Shafaqat; Rizwan, Muhammad; Zia-Ur-Rehman, Muhammad; Ibrahim, Muhammad; Abbas, Farhat; Farid, Mujahid; Qayyum, Muhammad Farooq; Irshad, Muhammad Kashif

    2015-09-01

    In present era, heavy metal pollution is rapidly increasing which present many environmental problems. These heavy metals are mainly accumulated in soil and are transferred to food chain through plants grown on these soils. Silicon (Si) is the second most abundant element in the soil. It has been widely reported that Si can stimulate plant growth and alleviate various biotic and abiotic stresses, including heavy metal stress. Research to date has explored a number of mechanisms through which Si can alleviate heavy metal toxicity in plants at both plant and soil levels. Here we reviewed the mechanisms through which Si can alleviate heavy metal toxicity in plants. The key mechanisms evoked include reducing active heavy metal ions in growth media, reduced metal uptake and root-to-shoot translocation, chelation and stimulation of antioxidant systems in plants, complexation and co-precipitation of toxic metals with Si in different plant parts, compartmentation and structural alterations in plants and regulation of the expression of metal transport genes. However, these mechanisms might be associated with plant species, genotypes, metal elements, growth conditions, duration of the stress imposed and so on. Further research orientation is also discussed.

  16. Mechanics of tissue compaction.

    PubMed

    Turlier, Hervé; Maître, Jean-Léon

    2015-12-01

    During embryonic development, tissues deform by a succession and combination of morphogenetic processes. Tissue compaction is the morphogenetic process by which a tissue adopts a tighter structure. Recent studies characterized the respective roles of cells' adhesive and contractile properties in tissue compaction. In this review, we formalize the mechanical and molecular principles of tissue compaction and we analyze through the prism of this framework several morphogenetic events: the compaction of the early mouse embryo, the formation of the fly retina, the segmentation of somites and the separation of germ layers during gastrulation.

  17. Aerodynamic side-force alleviator means

    NASA Technical Reports Server (NTRS)

    Rao, D. M. (Inventor)

    1980-01-01

    An apparatus for alleviating high angle of attack side force on slender pointed cylindrical forebodies such as fighter aircraft, missiles and the like is described. A symmetrical pair of helical separation trips was employed to disrupt the leeside vortices normally attained. The symmetrical pair of trips starts at either a common point or at space points on the upper surface of the forebody and extends along separate helical paths along the circumference of the forebody.

  18. Gust Alleviation Using Direct Gust Measurement

    NASA Technical Reports Server (NTRS)

    Hoppe, Sven Marco

    2000-01-01

    The increasing competition in the market of civil aircraft leads to operating efficiency and passenger comfort being very important sales arguments. Continuous developments in jet propulsion technology helped to reduce energy consumption, as well as noise and vibrations due to the engines. The main problem with respect to ride comfort is, however, the transmittance of accelerations and jerkiness imposed by atmospheric turbulence from the wings to the fuselage. This 'gust' is also a design constraint: Light airplane structures help to save, energy, but are more critical to resist the loads imposed by turbulence. For both reasons, efficient gust alleviation is necessary to improve the performance of modern aircraft. Gust can be seen as a change in the angle of attack or as an additional varying vertical component of the headwind. The effect of gust can be very strong, since the same aerodynamic forces that keep the airplane flying are involved. Event though the frequency range of those changes is quite low, it is impossible for the pilot to alleviate gust manually. Besides, most of the time during the flight, the, autopilot maintains course and the attitude of flight. Certainly, most autopilots should be capable of damping the roughest parts of turbulence, but they are unable to provide satisfactory results in that field. A promising extension should be the application of subsidiary, control, where the inner (faster) control loop alleviates turbulence and the outer (slower) loop controls the attitude of flight. Besides the mentioned ride comfort, another reason for gust alleviation with respect to the fuselage is the sensibility of electrical devices to vibration and high values of acceleration. Many modern airplane designs--especially inherently instable military aircraft--are highly dependent on avionics. The lifetime and the reliability of these systems is thus essential.

  19. Compaction properties of isomalt.

    PubMed

    Bolhuis, Gerad K; Engelhart, Jeffrey J P; Eissens, Anko C

    2009-08-01

    Although other polyols have been described extensively as filler-binders in direct compaction of tablets, the polyol isomalt is rather unknown as pharmaceutical excipient, in spite of its description in all the main pharmacopoeias. In this paper the compaction properties of different types of ispomalt were studied. The types used were the standard product sieved isomalt, milled isomalt and two types of agglomerated isomalt with a different ratio between 6-O-alpha-d-glucopyranosyl-d-sorbitol (GPS) and 1-O-alpha-d-glucopyranosyl-d-mannitol dihydrate (GPM). Powder flow properties, specific surface area and densities of the different types were investigated. Compactibility was investigated by compression of the tablets on a compaction simulator, simulating the compression on high-speed tabletting machines. Lubricant sensitivity was measured by compressing unlubricated tablets and tablets lubricated with 1% magnesium stearate on an instrumented hydraulic press. Sieved isomalt had excellent flow properties but the compactibility was found to be poor whereas the lubricant sensitivity was high. Milling resulted in both a strong increase in compactibility as an effect of the higher surface area for bonding and a decrease in lubricant sensitivity as an effect of the higher surface area to be coated with magnesium stearate. However, the flow properties of milled isomalt were too bad for use as filler-binder in direct compaction. Just as could be expected, agglomeration of milled isomalt by fluid bed agglomeration improved flowability. The good compaction properties and the low lubricant sensitivity were maintained. This effect is caused by an early fragmentation of the agglomerated material during the compaction process, producing clean, lubricant-free particles and a high surface for bonding. The different GPS/GPM ratios of the agglomerated isomalt types studied had no significant effect on the compaction properties. PMID:19327398

  20. Stabilization of compactible waste

    SciTech Connect

    Franz, E.M.; Heiser, J.H. III; Colombo, P.

    1990-09-01

    This report summarizes the results of series of experiments performed to determine the feasibility of stabilizing compacted or compactible waste with polymers. The need for this work arose from problems encountered at disposal sites attributed to the instability of this waste in disposal. These studies are part of an experimental program conducted at Brookhaven National Laboratory (BNL) investigating methods for the improved solidification/stabilization of DOE low-level wastes. The approach taken in this study was to perform a series of survey type experiments using various polymerization systems to find the most economical and practical method for further in-depth studies. Compactible dry bulk waste was stabilized with two different monomer systems: styrene-trimethylolpropane trimethacrylate (TMPTMA) and polyester-styrene, in laboratory-scale experiments. Stabilization was accomplished by wetting or soaking compactible waste (before or after compaction) with monomers, which were subsequently polymerized. Three stabilization methods are described. One involves the in-situ treatment of compacted waste with monomers in which a vacuum technique is used to introduce the binder into the waste. The second method involves the alternate placement and compaction of waste and binder into a disposal container. In the third method, the waste is treated before compaction by wetting the waste with the binder using a spraying technique. A series of samples stabilized at various binder-to-waste ratios were evaluated through water immersion and compression testing. Full-scale studies were conducted by stabilizing two 55-gallon drums of real compacted waste. The results of this preliminary study indicate that the integrity of compacted waste forms can be readily improved to ensure their long-term durability in disposal environments. 9 refs., 10 figs., 2 tabs.

  1. Biochar impact on water infiltration and water quality through a compacted subsoil layer

    EPA Science Inventory

    Soils in the SE USA Coastal Plain region frequently have a compacted subsoil layer (E horizon), which is a barrier for water infiltration. Four different biochars were evaluated to increase water infiltration through a compacted horizon from a Norfolk soil (fine-loamy, kaolinitic...

  2. Compact microchannel system

    DOEpatents

    Griffiths, Stewart

    2003-09-30

    The present invention provides compact geometries for the layout of microchannel columns through the use of turns and straight channel segments. These compact geometries permit the use of long separation or reaction columns on a small microchannel substrate or, equivalently, permit columns of a fixed length to occupy a smaller substrate area. The new geometries are based in part on mathematical analyses that provide the minimum turn radius for which column performance in not degraded. In particular, we find that straight channel segments of sufficient length reduce the required minimum turn radius, enabling compact channel layout when turns and straight segments are combined. The compact geometries are obtained by using turns and straight segments in overlapped or nested arrangements to form pleated or coiled columns.

  3. Compact turbidity meter

    NASA Technical Reports Server (NTRS)

    Hirschberg, J. G.

    1979-01-01

    Proposed monitor that detects back-reflected infrared radiation makes in situ turbidity measurements of lakes, streams, and other bodies of water. Monitor is compact, works well in daylight as at night, and is easily operated in rough seas.

  4. Compact Microscope Imaging System Developed

    NASA Technical Reports Server (NTRS)

    McDowell, Mark

    2001-01-01

    The Compact Microscope Imaging System (CMIS) is a diagnostic tool with intelligent controls for use in space, industrial, medical, and security applications. The CMIS can be used in situ with a minimum amount of user intervention. This system, which was developed at the NASA Glenn Research Center, can scan, find areas of interest, focus, and acquire images automatically. Large numbers of multiple cell experiments require microscopy for in situ observations; this is only feasible with compact microscope systems. CMIS is a miniature machine vision system that combines intelligent image processing with remote control capabilities. The software also has a user-friendly interface that can be used independently of the hardware for post-experiment analysis. CMIS has potential commercial uses in the automated online inspection of precision parts, medical imaging, security industry (examination of currency in automated teller machines and fingerprint identification in secure entry locks), environmental industry (automated examination of soil/water samples), biomedical field (automated blood/cell analysis), and microscopy community. CMIS will improve research in several ways: It will expand the capabilities of MSD experiments utilizing microscope technology. It may be used in lunar and Martian experiments (Rover Robot). Because of its reduced size, it will enable experiments that were not feasible previously. It may be incorporated into existing shuttle orbiter and space station experiments, including glove-box-sized experiments as well as ground-based experiments.

  5. Neural predictive control for active buffet alleviation

    NASA Astrophysics Data System (ADS)

    Pado, Lawrence E.; Lichtenwalner, Peter F.; Liguore, Salvatore L.; Drouin, Donald

    1998-06-01

    The adaptive neural control of aeroelastic response (ANCAR) and the affordable loads and dynamics independent research and development (IRAD) programs at the Boeing Company jointly examined using neural network based active control technology for alleviating undesirable vibration and aeroelastic response in a scale model aircraft vertical tail. The potential benefits of adaptive control includes reducing aeroelastic response associated with buffet and atmospheric turbulence, increasing flutter margins, and reducing response associated with nonlinear phenomenon like limit cycle oscillations. By reducing vibration levels and thus loads, aircraft structures can have lower acquisition cost, reduced maintenance, and extended lifetimes. Wind tunnel tests were undertaken on a rigid 15% scale aircraft in Boeing's mini-speed wind tunnel, which is used for testing at very low air speeds up to 80 mph. The model included a dynamically scaled flexible fail consisting of an aluminum spar with balsa wood cross sections with a hydraulically powered rudder. Neural predictive control was used to actuate the vertical tail rudder in response to strain gauge feedback to alleviate buffeting effects. First mode RMS strain reduction of 50% was achieved. The neural predictive control system was developed and implemented by the Boeing Company to provide an intelligent, adaptive control architecture for smart structures applications with automated synthesis, self-optimization, real-time adaptation, nonlinear control, and fault tolerance capabilities. It is designed to solve complex control problems though a process of automated synthesis, eliminating costly control design and surpassing it in many instances by accounting for real world non-linearities.

  6. Physically detached 'compact groups'

    NASA Technical Reports Server (NTRS)

    Hernquist, Lars; Katz, Neal; Weinberg, David H.

    1995-01-01

    A small fraction of galaxies appear to reside in dense compact groups, whose inferred crossing times are much shorter than a Hubble time. These short crossing times have led to considerable disagreement among researchers attempting to deduce the dynamical state of these systems. In this paper, we suggest that many of the observed groups are not physically bound but are chance projections of galaxies well separated along the line of sight. Unlike earlier similar proposals, ours does not require that the galaxies in the compact group be members of a more diffuse, but physically bound entity. The probability of physically separated galaxies projecting into an apparent compact group is nonnegligible if most galaxies are distributed in thin filaments. We illustrate this general point with a specific example: a simulation of a cold dark matter universe, in which hydrodynamic effects are included to identify galaxies. The simulated galaxy distribution is filamentary and end-on views of these filaments produce apparent galaxy associations that have sizes and velocity dispersions similar to those of observed compact groups. The frequency of such projections is sufficient, in principle, to explain the observed space density of groups in the Hickson catalog. We discuss the implications of our proposal for the formation and evolution of groups and elliptical galaxies. The proposal can be tested by using redshift-independent distance estimators to measure the line-of-sight spatial extent of nearby compact groups.

  7. Herbaspirillum sp. strain GW103 alleviates salt stress in Brassica rapa L. ssp. pekinensis.

    PubMed

    Lee, Gun Woong; Lee, Kui-Jae; Chae, Jong-Chan

    2016-05-01

    Mutual interactions between plant and rhizosphere bacteria facilitate plant growth and reduce risks of biotic and abiotic stresses. The present study demonstrates alleviation of salt stress in Brassica rapa L. ssp. perkinensis (Chinese cabbage) by Herbaspirillum sp. strain GW103 isolated from rhizosphere soil of Phragmites australis. The strain was capable of producing plant beneficial factors, such as auxin, siderophore, and 1-aminocylopropane-1-carboxylic acid deaminase. Treatment of strain GW103 on Chinese cabbage under salt stress increased K(+)/Na(+) ratio in roots generating balance in the ratio of ion homeostasis and consequently contributed to the increase of biomass. In addition, root colonization potential of the strain was observed by green fluorescent protein (GFP)-tagging approach. These results strongly suggest the beneficial impact of strain GW103 by inducing the alleviation of salt stress and development of stress tolerance in Chinese cabbage via plant-microbe interaction.

  8. Herbaspirillum sp. strain GW103 alleviates salt stress in Brassica rapa L. ssp. pekinensis.

    PubMed

    Lee, Gun Woong; Lee, Kui-Jae; Chae, Jong-Chan

    2016-05-01

    Mutual interactions between plant and rhizosphere bacteria facilitate plant growth and reduce risks of biotic and abiotic stresses. The present study demonstrates alleviation of salt stress in Brassica rapa L. ssp. perkinensis (Chinese cabbage) by Herbaspirillum sp. strain GW103 isolated from rhizosphere soil of Phragmites australis. The strain was capable of producing plant beneficial factors, such as auxin, siderophore, and 1-aminocylopropane-1-carboxylic acid deaminase. Treatment of strain GW103 on Chinese cabbage under salt stress increased K(+)/Na(+) ratio in roots generating balance in the ratio of ion homeostasis and consequently contributed to the increase of biomass. In addition, root colonization potential of the strain was observed by green fluorescent protein (GFP)-tagging approach. These results strongly suggest the beneficial impact of strain GW103 by inducing the alleviation of salt stress and development of stress tolerance in Chinese cabbage via plant-microbe interaction. PMID:26358119

  9. Compact, Integrated Photoelectron Linacs

    NASA Astrophysics Data System (ADS)

    Yu, David

    2000-12-01

    The innovative compact high energy iniector which has been developed by DULY Research Inc., will have wide scientific industrial and medical applications. The new photoelectron injector integrates the photocathode directly into a multicell linear accelerator with no drift space between the injector and the linac. By focusing the beam with solenoid or permanent magnets, and producing high current with low emittance, extremely high brightness is achieved. In addition to providing a small footprint and improved beam quality in an integrated structure, the compact system considerably simplifies external subsystems required to operate the photoelectron linac, including rf power transport, beam focusing, vacuum and cooling. The photoelectron linac employs an innovative Plane-Wave-Transformer (PWT) design, which provides strong cell-to-cell coupling, relaxes manufacturing tolerance and facilitates the attachment of external ports to the compact structure with minimal field interference. DULY Research Inc. under the support of the DOE Small Business Innovation Research (SBIR) program, has developed, constructed and installed a 20-MeV, S-band compact electron source at UCLA. DULY Research is also presently engaged in the development of an X-band photoelectron linear accelerator in another SBIR project. The higher frequency structure when completed will be approximately three times smaller, and capable of a beam brightness ten times higher than the S-band structure.

  10. COMPACT SCHOOL AND $$ SAVINGS.

    ERIC Educational Resources Information Center

    BAIR, W.G.

    A REVIEW OF THE CRITERIA FOR CONSIDERING THE USE OF A TOTAL ENERGY SYSTEM WITHIN A SCHOOL BUILDING STATES THE WINDOWLESS, COMPACT SCHOOL OFFERS MORE EFFICIENT SPACE UTILIZATION WITH LESS AREA REQUIRED FOR GIVEN STUDENT POPULATION AND LOWER OPERATION COSTS. THE AUTHOR RECOMMENDS THAT THESE BUILDINGS BE WINDOWLESS TO REDUCE HEAT COSTS, HOWEVER, AT…

  11. Compact optical transconductance varistor

    SciTech Connect

    Sampayan, Stephen

    2015-09-22

    A compact radiation-modulated transconductance varistor device having both a radiation source and a photoconductive wide bandgap semiconductor material (PWBSM) integrally formed on a substrate so that a single interface is formed between the radiation source and PWBSM for transmitting PWBSM activation radiation directly from the radiation source to the PWBSM.

  12. Compact ultradense matter impactors.

    PubMed

    Rafelski, Johann; Labun, Lance; Birrell, Jeremiah

    2013-03-15

    We study interactions of meteorlike compact ultradense objects (CUDO), having nuclear or greater density, with Earth and other rocky bodies in the Solar System as a possible source of information about novel forms of matter. We study the energy loss in CUDO puncture of the body and discuss differences between regular matter and CUDO impacts.

  13. Mine soil classification and mapping

    SciTech Connect

    Darmody, R.

    1998-12-31

    This presentation covers the history of surface coal mining and reclamation methods and equipment for the pre-Federal law, interim-Federal law, and post-Federal law periods. It discusses the difficulties with traditional mine soil mapping methods on five soils series in Illinois. These methods fail to recognize the effects of compaction and methods to ameliorate compaction. The current status of mine soil mapping methods on eight soil series in Illinois are presented. Areas where additional work is needed and future potential difficulties are identified for mine soil mapping efforts.

  14. Progress in Compact Toroid Experiments

    SciTech Connect

    Dolan, Thomas James

    2002-09-01

    The term "compact toroids" as used here means spherical tokamaks, spheromaks, and field reversed configurations, but not reversed field pinches. There are about 17 compact toroid experiments under construction or operating, with approximate parameters listed in Table 1.

  15. Lactobacillus plantarum CCFM639 alleviates aluminium toxicity.

    PubMed

    Yu, Leilei; Zhai, Qixiao; Liu, Xiaoming; Wang, Gang; Zhang, Qiuxiang; Zhao, Jianxin; Narbad, Arjan; Zhang, Hao; Tian, Fengwei; Chen, Wei

    2016-02-01

    Aluminium (Al) is the most abundant metal in the earth's crust. Al exposure can cause a variety of adverse physiological effects in humans and animals. Our aim was to demonstrate that specific probiotic bacteria can play a special physiologically functional role in protection against Al toxicity in mice. Thirty strains of lactic acid bacteria (LAB) were tested for their aluminium-binding ability, aluminium tolerance, their antioxidative capacity, and their ability to survive the exposure to artificial gastrointestinal (GI) juices. Lactobacillus plantarum CCFM639 was selected for animal experiments because of its excellent performance in vitro. Forty mice were divided into four groups: control, Al only, Al plus CCFM639, and Al plus deferiprone (DFP). CCFM639 was administered at 10(9) CFU once daily for 10 days, followed by a single oral dose of aluminium chloride hexahydrate at 5.14 mg aluminium (LD50) for each mouse. The results showed that CCFM639 treatment led to a significant reduction in the mortality rates with corresponding decrease in intestinal aluminium absorption and in accumulation of aluminium in the tissues and amelioration of hepatic histopathological damage. This probiotic treatment also resulted in alleviation of hepatic, renal, and cerebral oxidative stress. The treatment of L. plantarum CCFM639 has potential as a therapeutic dietary strategy against acute aluminium toxicity.

  16. Wakeful rest alleviates interference-based forgetting.

    PubMed

    Mercer, Tom

    2015-01-01

    Retroactive interference (RI)--the disruptive influence of events occurring after the formation of a new memory--is one of the primary causes of forgetting. Placing individuals within an environment that postpones interference should, therefore, greatly reduce the likelihood of information being lost from memory. For example, a short period of wakeful rest should diminish interference-based forgetting. To test this hypothesis, participants took part in a foreign language learning activity and were shown English translations of 20 Icelandic words for immediate recall. Half of the participants were then given an 8-min rest before completing a similar or dissimilar interfering distractor task. The other half did not receive a rest until after the distractor task, at which point interference had already taken place. All participants were then asked to translate the Icelandic words for a second time. Results revealed that retention was significantly worse at the second recall test, but being allowed a brief rest before completing the distractor task helped reduce the amount of forgetting. Taking a short, passive break can shield new memories from RI and alleviate forgetting. PMID:24410154

  17. An Advanced Buffet Load Alleviation System

    NASA Technical Reports Server (NTRS)

    Burnham, Jay K.; Pitt, Dale M.; White, Edward V.; Henderson, Douglas A.; Moses, Robert W.

    2001-01-01

    This paper describes the development of an advanced buffet load alleviation (BLA) system that utilizes distributed piezoelectric actuators in conjunction with an active rudder to reduce the structural dynamic response of the F/A-18 aircraft vertical tails to buffet loads. The BLA system was defined analytically with a detailed finite-element-model of the tail structure and piezoelectric actuators. Oscillatory aerodynamics were included along with a buffet forcing function to complete the aeroservoelastic model of the tail with rudder control surface. Two single-input-single-output (SISO) controllers were designed, one for the active rudder and one for the active piezoelectric actuators. The results from the analytical open and closed loop simulations were used to predict the system performance. The objective of this BLA system is to extend the life of vertical tail structures and decrease their life-cycle costs. This system can be applied to other aircraft designs to address suppression of structural vibrations on military and commercial aircraft.

  18. Compact Spreader Schemes

    SciTech Connect

    Placidi, M.; Jung, J. -Y.; Ratti, A.; Sun, C.

    2014-07-25

    This paper describes beam distribution schemes adopting a novel implementation based on low amplitude vertical deflections combined with horizontal ones generated by Lambertson-type septum magnets. This scheme offers substantial compactness in the longitudinal layouts of the beam lines and increased flexibility for beam delivery of multiple beam lines on a shot-to-shot basis. Fast kickers (FK) or transverse electric field RF Deflectors (RFD) provide the low amplitude deflections. Initially proposed at the Stanford Linear Accelerator Center (SLAC) as tools for beam diagnostics and more recently adopted for multiline beam pattern schemes, RFDs offer repetition capabilities and a likely better amplitude reproducibility when compared to FKs, which, in turn, offer more modest financial involvements both in construction and operation. Both solutions represent an ideal approach for the design of compact beam distribution systems resulting in space and cost savings while preserving flexibility and beam quality.

  19. Compact torsatron reactors

    SciTech Connect

    Lyon, J.F.; Carreras, B.A.; Lynch, V.E.; Tolliver, J.S.; Sviatoslavsky, I.N.

    1988-05-01

    Low-aspect-ratio torsatron configurations could lead to compact stellarator reactors with R/sub 0/ = 8--11m, roughly one-half to one-third the size of more conventional stellarator reactor designs. Minimum-size torsatron reactors are found using various assumptions. Their size is relatively insensitive to the choice of the conductor parameters and depends mostly on geometrical constraints. The smallest size is obtained by eliminating the tritium breeding blanket under the helical winding on the inboard side and by reducing the radial depth of the superconducting coil. Engineering design issues and reactor performance are examined for three examples to illustrate the feasibility of this approach for compact reactors and for a medium-size (R/sub 0/ approx. = 4 m,/bar a/ /approx lt/ 1 m) copper-coil ignition experiment. 26 refs., 11 figs., 7 tabs.

  20. Compact spreader schemes

    NASA Astrophysics Data System (ADS)

    Placidi, M.; Jung, J.-Y.; Ratti, A.; Sun, C.

    2014-12-01

    This paper describes beam distribution schemes adopting a novel implementation based on low amplitude vertical deflections combined with horizontal ones generated by Lambertson-type septum magnets. This scheme offers substantial compactness in the longitudinal layouts of the beam lines and increased flexibility for beam delivery of multiple beam lines on a shot-to-shot basis. Fast kickers (FK) or transverse electric field RF Deflectors (RFD) provide the low amplitude deflections. Initially proposed at the Stanford Linear Accelerator Center (SLAC) as tools for beam diagnostics and more recently adopted for multiline beam pattern schemes, RFDs offer repetition capabilities and a likely better amplitude reproducibility when compared to FKs, which, in turn, offer more modest financial involvements both in construction and operation. Both solutions represent an ideal approach for the design of compact beam distribution systems resulting in space and cost savings while preserving flexibility and beam quality.

  1. Super-Compact Laser

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Microcosm, Inc. produced the portable Farfield-2 laser for field applications that require high power pulsed illumination. The compact design was conceived through research at Goddard Space Flight Center on laser instruments for space missions to carry out geoscience studies of Earth. An exclusive license to the key NASA patent for the compact laser design was assigned to Microcosm. The FarField-2 is ideal for field applications, has low power consumption, does not need water cooling or gas supplies, and produces nearly ideal beam quality. The properties of the laser also make it effective over long distances, which is one reason why NASA developed the technology for laser altimeters that can be toted aboard spacecraft. Applications for the FarField-2 include medicine, biology, and materials science and processing, as well as diamond marking, semiconductor line-cutting, chromosome surgery, and fluorescence microscopy.

  2. Compact power reactor

    DOEpatents

    Wetch, Joseph R.; Dieckamp, Herman M.; Wilson, Lewis A.

    1978-01-01

    There is disclosed a small compact nuclear reactor operating in the epithermal neutron energy range for supplying power at remote locations, as for a satellite. The core contains fuel moderator elements of Zr hydride with 7 w/o of 93% enriched uranium alloy. The core has a radial beryllium reflector and is cooled by liquid metal coolant such as NaK. The reactor is controlled and shut down by moving portions of the reflector.

  3. Agent Reward Shaping for Alleviating Traffic Congestion

    NASA Technical Reports Server (NTRS)

    Tumer, Kagan; Agogino, Adrian

    2006-01-01

    Traffic congestion problems provide a unique environment to study how multi-agent systems promote desired system level behavior. What is particularly interesting in this class of problems is that no individual action is intrinsically "bad" for the system but that combinations of actions among agents lead to undesirable outcomes, As a consequence, agents need to learn how to coordinate their actions with those of other agents, rather than learn a particular set of "good" actions. This problem is ubiquitous in various traffic problems, including selecting departure times for commuters, routes for airlines, and paths for data routers. In this paper we present a multi-agent approach to two traffic problems, where far each driver, an agent selects the most suitable action using reinforcement learning. The agent rewards are based on concepts from collectives and aim to provide the agents with rewards that are both easy to learn and that if learned, lead to good system level behavior. In the first problem, we study how agents learn the best departure times of drivers in a daily commuting environment and how following those departure times alleviates congestion. In the second problem, we study how agents learn to select desirable routes to improve traffic flow and minimize delays for. all drivers.. In both sets of experiments,. agents using collective-based rewards produced near optimal performance (93-96% of optimal) whereas agents using system rewards (63-68%) barely outperformed random action selection (62-64%) and agents using local rewards (48-72%) performed worse than random in some instances.

  4. Stratification Requirements for Seed Dormancy Alleviation in a Wetland Weed

    PubMed Central

    Boddy, Louis G.; Bradford, Kent J.; Fischer, Albert J.

    2013-01-01

    Echinochloaoryzicola(syn.E. phyllopogon) is an exotic weed of California rice paddies that has evolved resistance to multiple herbicides. Elimination of seedlingsthroughcertain weed control methods can limit the spread of this weed, but is contingent on accurate predictions of germination and emergence timing, which are influenced by seed dormancy levels.In summer annuals, dormancy can often be relieved through stratification, a period of prolonged exposure to cold and moist conditions.We used population-based threshold models to quantify the effects of stratification on seed germination of four E. Oryzicola populations at a range of water potential (Ψ) and oxygen levels. We also determined how stratification temperatures, moisture levels and durations contributed to dormancy release. Stratification released dormancy by decreasing base Ψ and hydrotimerequired for germination and by eliminating any germination sensitivity to oxygen. Stratification also increased average germination rates (GR), which were used as a proxy for relative dormancy levels. Alternating temperatures nearly doubled GR in all populations, indicating that seeds could be partially dormant despite achieving high final germination percentages. Stratification at Ψ = 0 MPa increased GR compared to stratification at lower water potentials, demonstrating that Ψ contributed to regulating dormancy release. Maximum GR occurred after 2-4 weeks of stratification at 0 MPa; GR were often more rapid for herbicide-resistant than for herbicide-susceptible seeds, implying greater dormancy in the latter. Manipulation of field conditions to promote dormancy alleviation of E. oryzicola seeds might improve the rate and uniformity of germination for seed bank depletion through seedling weed control. Our results suggest field soil saturation in winter would contribute towards E. oryzicola dormancy release and decrease the time to seedling emergence. PMID:24039714

  5. Compact gate valve

    DOEpatents

    Bobo, Gerald E.

    1977-01-01

    This invention relates to a double-disc gate valve which is compact, comparatively simple to construct, and capable of maintaining high closing pressures on the valve discs with low frictional forces. The valve casing includes axially aligned ports. Mounted in the casing is a sealed chamber which is pivotable transversely of the axis of the ports. The chamber contains the levers for moving the valve discs axially, and an actuator for the levers. When an external drive means pivots the chamber to a position where the discs are between the ports and axially aligned therewith, the actuator for the levers is energized to move the discs into sealing engagement with the ports.

  6. COMPACT CASCADE IMPACTS

    DOEpatents

    Lippmann, M.

    1964-04-01

    A cascade particle impactor capable of collecting particles and distributing them according to size is described. In addition the device is capable of collecting on a pair of slides a series of different samples so that less time is required for the changing of slides. Other features of the device are its compactness and its ruggedness making it useful under field conditions. Essentially the unit consists of a main body with a series of transverse jets discharging on a pair of parallel, spaced glass plates. The plates are capable of being moved incremental in steps to obtain the multiple samples. (AEC)

  7. Compact laser amplifier system

    DOEpatents

    Carr, R.B.

    1974-02-26

    A compact laser amplifier system is described in which a plurality of face-pumped annular disks, aligned along a common axis, independently radially amplify a stimulating light pulse. Partially reflective or lasing means, coaxially positioned at the center of each annualar disk, radially deflects a stimulating light directed down the common axis uniformly into each disk for amplification, such that the light is amplified by the disks in a parallel manner. Circumferential reflecting means coaxially disposed around each disk directs amplified light emission, either toward a common point or in a common direction. (Official Gazette)

  8. Compact Q-balls

    NASA Astrophysics Data System (ADS)

    Bazeia, D.; Losano, L.; Marques, M. A.; Menezes, R.; da Rocha, R.

    2016-07-01

    In this work we deal with non-topological solutions of the Q-ball type in two space-time dimensions, in models described by a single complex scalar field that engenders global symmetry. The main novelty is the presence of stable Q-balls solutions that live in a compact interval of the real line and appear from a family of models controlled by two distinct parameters. We find analytical solutions and study their charge and energy, and show how to control the parameters to make the Q-balls classically and quantum mechanically stable.

  9. Compact Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2004-01-01

    A plasma accelerator has been conceived for both material-processing and spacecraft-propulsion applications. This accelerator generates and accelerates ions within a very small volume. Because of its compactness, this accelerator could be nearly ideal for primary or station-keeping propulsion for spacecraft having masses between 1 and 20 kg. Because this accelerator is designed to generate beams of ions having energies between 50 and 200 eV, it could also be used for surface modification or activation of thin films.

  10. Compact LINAC for deuterons

    SciTech Connect

    Kurennoy, S S; O' Hara, J F; Rybarcyk, L J

    2008-01-01

    We are developing a compact deuteron-beam accelerator up to the deuteron energy of a few MeV based on room-temperature inter-digital H-mode (IH) accelerating structures with the transverse beam focusing using permanent-magnet quadrupoles (PMQ). Combining electromagnetic 3-D modeling with beam dynamics simulations and thermal-stress analysis, we show that IHPMQ structures provide very efficient and practical accelerators for light-ion beams of considerable currents at the beam velocities around a few percent of the speed of light. IH-structures with PMQ focusing following a short RFQ can also be beneficial in the front end of ion linacs.

  11. Can Earth Sciences Help Alleviate Global Poverty?

    NASA Astrophysics Data System (ADS)

    Mutter, J. C.

    2004-12-01

    essential and could hold the key to making gains toward alleviating the burden of global poverty.

  12. A compact SADM family

    NASA Astrophysics Data System (ADS)

    Barbet, Vincent; Le Quintrec, Cyrille; Jeandot, Xavier; Chaix, Alain; Grain, Eric; Roux, Jerome

    2005-07-01

    Alcatel Space has developed a new SADM family driven by cost, modularity, mass and performances. The modularity concept is based on separating the rotation drive function from the electrical transfer function. The drive actuator has been designed for various applications where pointing and reliability is needed. It can be associated with high dissipative rotary devices (SA collectors, RF joints..). The design goal was to minimize the number of parts in order to reach the most simple and compact mechanism. Mass reduction was achieved by reducing as much as possible the load path between the Solar Array interface and the spacecraft interface. Following these guidelines, the drive actuator was developed and qualified on ATV SADM (part od Alcatel Space Solar Array Drive Sub System for ATV). Further more a high power integrated collector was qualified inside the SADM for Geo-stationary telecom satellite (SPACEBUS platforms). Fine thermal and mechanical modeling was necessary to predict SADM behaviors for the numerous thermal environments over the missions (steady and transient cases). These modeling were well correlated through mechanical and thermal balances qualification tests. The challenging approach of thermal dissipation in a compact design leads to a family of 3 SADM capabilities form 2kW up to 15kW per SADM weighing less than 4.5 kg each.

  13. Compaction of Titanium Powders

    SciTech Connect

    Stephen J. Gerdemann; Paul D. Jablonski

    2010-11-01

    Accurate modeling of powder densification has been an area of active research for more than 60 years. The earliest efforts were focused on linearization of the data because computers were not readily available to assist with curve-fitting methods. In this work, eight different titanium powders (three different sizes of sponge fines <150 μm, <75 μm, and < 45 μm; two different sizes of a hydride-dehydride [HDH] <75 μm and < 45 μm; an atomized powder; a commercially pure [CP] Ti powder from International Titanium Powder [ITP]; and a Ti 6 4 alloy powder) were cold pressed in a single-acting die instrumented to collect stress and deformation data during compaction. From these data, the density of each compact was calculated and then plotted as a function of pressure. The results show that densification of all the powders, regardless of particle size, shape, or chemistry, can be modeled accurately as the sum of an initial density plus the sum of a rearrangement term and a work-hardening term. These last two terms are found to be a function of applied pressure and take the form of an exponential rise.

  14. Compaction of Titanium Powders

    NASA Astrophysics Data System (ADS)

    Gerdemann, Stephen J.; Jablonski, Paul D.

    2011-05-01

    Accurate modeling of powder densification has been an area of active research for more than 60 years. The earliest efforts were focused on linearization of the data because computers were not readily available to assist with curve-fitting methods. In this work, eight different titanium powders (three different sizes of sponge fines <150 μm, <75 μm, and < 45 μm; two different sizes of a hydride-dehydride [HDH] <75 μm and < 45 μm; an atomized powder; a commercially pure [CP] Ti powder from International Titanium Powder [ITP]; and a Ti 6 4 alloy powder) were cold pressed in a single-acting die instrumented to collect stress and deformation data during compaction. From these data, the density of each compact was calculated and then plotted as a function of pressure. The results show that densification of all the powders, regardless of particle size, shape, or chemistry, can be modeled accurately as the sum of an initial density plus the sum of a rearrangement term and a work-hardening term. These last two terms are found to be a function of applied pressure and take the form of an exponential rise.

  15. Effect of soil structure on the growth of bacteria in soil quantified using CARD-FISH

    NASA Astrophysics Data System (ADS)

    Juyal, Archana; Eickhorst, Thilo; Falconer, Ruth; Otten, Wilfred

    2014-05-01

    It has been reported that compaction of soil due to use of heavy machinery has resulted in the reduction of crop yield. Compaction affects the physical properties of soil such as bulk density, soil strength and porosity. This causes an alteration in the soil structure which limits the mobility of nutrients, water and air infiltration and root penetration in soil. Several studies have been conducted to explore the effect of soil compaction on plant growth and development. However, there is scant information on the effect of soil compaction on the microbial community and its activities in soil. Understanding the effect of soil compaction on microbial community is essential as microbial activities are very sensitive to abrupt environmental changes in soil. Therefore, the aim of this work was to investigate the effect of soil structure on growth of bacteria in soil. The bulk density of soil was used as a soil physical parameter to quantify the effect of soil compaction. To detect and quantify bacteria in soil the method of catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH) was used. This technique results in high intensity fluorescent signals which make it easy to quantify bacteria against high levels of autofluorescence emitted by soil particles and organic matter. In this study, bacterial strains Pseudomonas fluorescens SBW25 and Bacillus subtilis DSM10 were used. Soils of aggregate size 2-1mm were packed at five different bulk densities in polyethylene rings (4.25 cm3).The soil rings were sampled at four different days. Results showed that the total number of bacteria counts was reduced significantly (P

  16. METHOD OF FORMING ELONGATED COMPACTS

    DOEpatents

    Larson, H.F.

    1959-05-01

    A powder compacting procedure and apparatus which produces elongated compacts of Be is described. The powdered metal is placed in a thin metal tube which is chemically compatible to lubricant, powder, atmosphere, and die material and will undergo a high degree of plastic deformation and have intermediate hardness. The tube is capped and placed in the die, and punches are applied to the ends. During the compacting stroke the powder seizes the tube and a thickening and shortening of the tube occurs. The tube is easily removed from the die, split, and peeled from the compact. (T.R.H.)

  17. Relationship between the erosion properties of soils and other parameters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil parameters are essential for erosion process prediction and ultimately improved model development, especially as they relate to dam and levee failure. Soil parameters including soil texture and structure, soil classification, soil compaction, moisture content, and degree of saturation can play...

  18. Compact acoustic refrigerator

    SciTech Connect

    Bennett, G.A.

    1991-12-31

    This invention is comprised of a compact acoustic refrigeration system that actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment.

  19. Compact vacuum insulation embodiments

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1992-01-01

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  20. Compact vacuum insulation

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1993-01-01

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  1. Compact acoustic refrigerator

    DOEpatents

    Bennett, G.A.

    1992-11-24

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment. 18 figs.

  2. Multipurpose Compact Spectrometric Unit

    SciTech Connect

    Bocarov, Viktor; Cermak, Pavel; Mamedov, Fadahat; Stekl, Ivan

    2009-11-09

    A new standalone compact spectrometer was developed. The device consists of analog (peamplifier, amplifier) and digital parts. The digital part is based on the 160 MIPS Digital Signal Processor. It contains 20 Msps Flash-ADC, 1 MB RAM for spectra storage, 128 KB Flash/ROM for firmware storage, Real Time Clock and several voltage regulators providing the power for user peripherals (e.g. amplifier, temperature sensors, etc.). Spectrometer is connected with a notebook via high-speed USB 2.0 bus. The spectrometer is multipurpose device, which is planned to be used for measurements of Rn activities, energy of detected particles by CdTe pixel detector or for coincidence measurements.

  3. Multipurpose Compact Spectrometric Unit

    NASA Astrophysics Data System (ADS)

    Bočarov, Viktor; Čermák, Pavel; Mamedov, Fadahat; Štekl, Ivan

    2009-11-01

    A new standalone compact spectrometer was developed. The device consists of analog (peamplifier, amplifier) and digital parts. The digital part is based on the 160 MIPS Digital Signal Processor. It contains 20 Msps Flash-ADC, 1 MB RAM for spectra storage, 128 KB Flash/ROM for firmware storage, Real Time Clock and several voltage regulators providing the power for user peripherals (e.g. amplifier, temperature sensors, etc.). Spectrometer is connected with a notebook via high-speed USB 2.0 bus. The spectrometer is multipurpose device, which is planned to be used for measurements of Rn activities, energy of detected particles by CdTe pixel detector or for coincidence measurements.

  4. Compact vacuum insulation embodiments

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1992-04-28

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point' or line' contacts with the metal wall sheets. In the case of monolithic spacers that form line' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included. 26 figs.

  5. Compact vacuum insulation

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1993-01-05

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point'' or line'' contacts with the metal wall sheets. In the case of monolithic spacers that form line'' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point'' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  6. Compact acoustic refrigerator

    DOEpatents

    Bennett, Gloria A.

    1992-01-01

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits (22), in a borehole environment. An acoustic engine (12, 14) includes first thermodynamic elements (12) for generating a standing acoustic wave in a selected medium. An acoustic refrigerator (16, 26, 28) includes second thermodynamic elements (16) located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements (16) and a relatively hot temperature at a second end of the second thermodynamic elements (16). A resonator volume (18) cooperates with the first and second thermodynamic elements (12, 16) to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements (12, 16), first heat pipes (24, 26) transfer heat from the heat load (22) to the second thermodynamic elements (16) and second heat pipes (28, 32) transfer heat from first and second thermodynamic elements (12, 16) to the borehole environment.

  7. Compact reactor design automation

    NASA Technical Reports Server (NTRS)

    Nassersharif, Bahram; Gaeta, Michael J.

    1991-01-01

    A conceptual compact reactor design automation experiment was performed using the real-time expert system G2. The purpose of this experiment was to investigate the utility of an expert system in design; in particular, reactor design. The experiment consisted of the automation and integration of two design phases: reactor neutronic design and fuel pin design. The utility of this approach is shown using simple examples of formulating rules to ensure design parameter consistency between the two design phases. The ability of G2 to communicate with external programs even across networks provides the system with the capability of supplementing the knowledge processing features with conventional canned programs with possible applications for realistic iterative design tools.

  8. Compact artificial hand

    NASA Technical Reports Server (NTRS)

    Wiker, G. A.; Mann, W. A. (Inventor)

    1979-01-01

    A relatively simple, compact artificial hand, is described which includes hooks pivotally mounted on first frame to move together and apart. The first frame is rotatably mounted on a second frame to enable "turning at the wrist" movement without limitation. The second frame is pivotally mounted on a third frame to permit 'flexing at the wrist' movement. A hook-driving motor is fixed to the second frame but has a shaft that drives a speed reducer on the first frame which, in turn, drives the hooks. A second motor mounted on the second frame, turns a gear on the first frame to rotate the first frame and the hooks thereon. A third motor mounted on the third frame, turns a gear on a second frame to pivot it.

  9. Compaction of chernozems on the right bank of the Kuban River

    NASA Astrophysics Data System (ADS)

    Sorokin, A. S.; Kust, G. S.

    2015-01-01

    Overcompacted chernozems with vertic features are described for the first time on the right bank of the Kuban River in the Korenovsk and Ust-Labinsk districts of the Krasnodar region. These soils are mainly localized in depressions. The differences between the properties and genesis of these soils and the classical Vertisols or dark vertic soils are discussed. A grouping of the morphological characteristics of soil compaction (including bulk density, penetration resistance, structure characteristics, distribution of roots, porosity, and fissuring of the humus horizon) is suggested. It is shown that the morphological manifestation of soil compaction is weaker on the elevated elements of the topography in comparison with that of the local depressions. The morphological features of soil compaction are not directly correlated with physical properties of the soil. It can be concluded that the physicomechanical characteristics of the studied soils (light clayey texture with physical clay (<0.01 mm) content exceeding 50%, clay (<0.001 mm) content exceeding 30%, and a high portion of water-peptizable clay) attest to potential soil susceptibility to high compaction and appearance of vertic features.

  10. Compaction-based VLSI layout

    SciTech Connect

    Xiong, Xiao-Ming.

    1989-01-01

    Generally speaking, a compaction based VLSI layout system consists of two major parts: (1) a symbolic editor which maintains explicit connectivity and structural information about the circuit; (2) a compactor which translates the high level description of a circuit to the detailed layout needed for fabrication and tries to make as compact a layout as Possible without violating any design rules. Instead of developing a complete compaction based VLSI layout system, this thesis presents some theoretical concepts and several new compaction techniques, such as scan line based approach, which can either cooperate with a symbolic editor to form a layout system or work as a post-process step to improve the results obtained by an existing layout system. Also, some compaction related problems are solved and proposed. Based on the special property of channel routing, the author presents a geometric method for channel compaction. For a given channel routing topology, the minimum channel height is always achieved with the incorporation of sliding contacts and automatically inserting necessary jogs. The geometric compaction approach is then generalized and applied to compact the entire VLSI chip at the building-block level. With a systematic way of automatic jog insertion, he proves that under the given layout topology and design rules, the lower bound of one dimensional compaction with automatic jog insertion is achieved by the geometric compaction algorithm. A new simultaneous two-dimensional compaction algorithm is developed primarily for placement refinement of building-block layout. The algorithm is based on a set of defined graph operations on a mixed adjacency graph for a given placement. The mixed-adjacency graph can be updated efficiently if the placement is represented by tiles in the geometric domain.

  11. The Meaning of a Compact

    ERIC Educational Resources Information Center

    Wasescha, Anna

    2016-01-01

    To mark the 30th anniversary of "Campus Compact," leaders from across the network came together in the summer of 2015 to reaffirm a shared commitment to the public purposes of higher education. Campus Compact's 30th Anniversary Action Statement of Presidents and Chancellors is the product of that collective endeavor. In signing the…

  12. Compact vacuum insulation

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1992-10-27

    Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases there between are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and various laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels. 35 figs.

  13. Compact vacuum insulation

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1992-01-01

    Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases therebetween are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and variious laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels.

  14. A compact acoustic recorder

    NASA Astrophysics Data System (ADS)

    Stein, Ronald

    1989-09-01

    The design and operation of a portable compact acoustic recorder is discussed. Designed to be used in arctic conditions for applications that require portable equipment, the device is configured to fit into a lightweight briefcase. It will operate for eight hours at -40 F with heat provided by a hot water bottle. It has proven to be an effective scientific tool in the measurement of underwater acoustic signals in arctic experiments. It has also been used successfully in warmer climates, e.g., in recording acoustic signals from small boats with no ac power. The acoustic recorder's cost is moderate since it is based on a Sony Walkman Professional (WM-D6C) tape recorder playback unit. A speaker and battery assembly and a hydrophone interface electronic assembly complete the system electronics. The interface assembly supplies a number of functions, including a calibration tone generator, an audio amplifier, and a hydrophone interface. Calibrated acoustic recordings can be made by comparing the calibration tone amplitude with the acoustic signal amplitude. The distortion of the recording is minimized by using a high quality, consumer tape recorder.

  15. Compact plasma accelerator

    NASA Technical Reports Server (NTRS)

    Foster, John E. (Inventor)

    2004-01-01

    A compact plasma accelerator having components including a cathode electron source, an anodic ionizing gas source, and a magnetic field that is cusped. The components are held by an electrically insulating body having a central axis, a top axial end, and a bottom axial end. The cusped magnetic field is formed by a cylindrical magnet having an axis of rotation that is the same as the axis of rotation of the insulating body, and magnetized with opposite poles at its two axial ends; and an annular magnet coaxially surrounding the cylindrical magnet, magnetized with opposite poles at its two axial ends such that a top axial end has a magnetic polarity that is opposite to the magnetic polarity of a top axial end of the cylindrical magnet. The ionizing gas source is a tubular plenum that has been curved into a substantially annular shape, positioned above the top axial end of the annular magnet such that the plenum is centered in a ring-shaped cusp of the magnetic field generated by the magnets. The plenum has one or more capillary-like orifices spaced around its top such that an ionizing gas supplied through the plenum is sprayed through the one or more orifices. The plenum is electrically conductive and is positively charged relative to the cathode electron source such that the plenum functions as the anode; and the cathode is positioned above and radially outward relative to the plenum.

  16. Compact neutron generator

    DOEpatents

    Leung, Ka-Ngo; Lou, Tak Pui

    2005-03-22

    A compact neutron generator has at its outer circumference a toroidal shaped plasma chamber in which a tritium (or other) plasma is generated. A RF antenna is wrapped around the plasma chamber. A plurality of tritium ion beamlets are extracted through spaced extraction apertures of a plasma electrode on the inner surface of the toroidal plasma chamber and directed inwardly toward the center of neutron generator. The beamlets pass through spaced acceleration and focusing electrodes to a neutron generating target at the center of neutron generator. The target is typically made of titanium tubing. Water is flowed through the tubing for cooling. The beam can be pulsed rapidly to achieve ultrashort neutron bursts. The target may be moved rapidly up and down so that the average power deposited on the surface of the target may be kept at a reasonable level. The neutron generator can produce fast neutrons from a T-T reaction which can be used for luggage and cargo interrogation applications. A luggage or cargo inspection system has a pulsed T-T neutron generator or source at the center, surrounded by associated gamma detectors and other components for identifying explosives or other contraband.

  17. Compact Dexterous Robotic Hand

    NASA Technical Reports Server (NTRS)

    Lovchik, Christopher Scott (Inventor); Diftler, Myron A. (Inventor)

    2001-01-01

    A compact robotic hand includes a palm housing, a wrist section, and a forearm section. The palm housing supports a plurality of fingers and one or more movable palm members that cooperate with the fingers to grasp and/or release an object. Each flexible finger comprises a plurality of hingedly connected segments, including a proximal segment pivotally connected to the palm housing. The proximal finger segment includes at least one groove defining first and second cam surfaces for engagement with a cable. A plurality of lead screw assemblies each carried by the palm housing are supplied with power from a flexible shaft rotated by an actuator and output linear motion to a cable move a finger. The cable is secured within a respective groove and enables each finger to move between an opened and closed position. A decoupling assembly pivotally connected to a proximal finger segment enables a cable connected thereto to control movement of an intermediate and distal finger segment independent of movement of the proximal finger segment. The dexterous robotic hand closely resembles the function of a human hand yet is light weight and capable of grasping both heavy and light objects with a high degree of precision.

  18. Alleviating Contingency Violations through Visual Analytics and Suggested Actions

    SciTech Connect

    Rice, Mark J.; Huang, Zhenyu; Chen, Yousu; Allwardt, Craig H.; Mackey, Patrick S.

    2013-07-21

    Contingency analysis (CA) is essential in maintaining a stable and secure power grid. It is required by operating standards that contingency violations need to be alleviated within 30 minutes. In today’s practice, operators normally make decisions based on the information they have with limited support. This paper presents a new feature of user suggested actions integrated in the graphical contingency analysis (GCA) tool, developed by the authors to help the operator’s decision making process. This paper provides a few examples on showing how the decision support element of the GCA tool is further enhanced by this new feature to alleviate contingency violations for better grid reliability.

  19. Experimental investigations on wake vortices and their alleviation

    NASA Astrophysics Data System (ADS)

    Savaş, Ömer

    2005-05-01

    Recent wake vortex research in the laboratory has benefited considerably from concurrent analytical and numerical research on the instability of vortex systems. Tow tank, with dye flow visualization and particle image velocimetry is the most effective combination for laboratory research. Passive and active wake alleviation schemes have been successfully demonstrated in the laboratory. The passive alleviation systems exploit the natural evolution of vortex instabilities while the active systems rely on hastening selected instabilities by forcing the vortices individually or as a system. Their practical applicability, however, will have to meet further criteria beyond those dictated by fluid dynamics. To cite this article: Ö. Savaş, C. R. Physique 6 (2005).

  20. Restoring soil quality on construction sites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil at construction sites gets compacted reducing root growth and infiltration, which leads to runoff, erosion, and loss of nutrients. Adding compost and prairie grasses decreased the soil density, increased soil water storage, increased root penetration, and reduced runoff and erosion....

  1. COMPACTION CHARACTERISTICS AND CBR VALUES OF COMPACTED SAND UTILIZING BASSANITE -RECYCLING OF WASTE PLASTERBOARD-

    NASA Astrophysics Data System (ADS)

    Kamei, Takeshi; Shibi, Toshihide; Tsukamoto, Maki; Ito, Tetsuo; Deguchi, Munehiro

    The present situation in waste plasterboard disposal looks bleak due to a shift to the controlled disposal of waste plasterboard, an increase in the amount of discharged waste plasterboard, and other factors. To reduce the volume of waste plasterboard disposal, this paper investigates utilization in subgrade soil of bassanite reproduced from waste plasterboard. CBR tests of sands compacted with both 0-40% bassanite and 5% blast furnace slag cement (B type) were carried out. Optimum water content increased with increasing bassanite/soil (B/S) ratio. Maximum dry density fell at B/S ratio of 40%, but increased up to B/S ratio of 20%. The CBR value was the maximum at the optimum water content, at all B/S ratios. The CBR values at the optimum water content increased with increasing B/S ratio. Consequently, addition of a large volume of recycled bassanite to ground can create lightweight ground with large CBR values.

  2. Compact Grism Spectrometer

    NASA Astrophysics Data System (ADS)

    Teare, S. W.

    2003-05-01

    Many observatories and instrument builders are retrofitting visible and near-infrared spectrometers into their existing imaging cameras. Camera designs that reimage the focal plane and have the optical filters located in a pseudo collimated beam are ideal candidates for the addition of a spectrometer. One device commonly used as the dispersing element for such spectrometers is a grism. The traditional grism is constructed from a prism that has had a diffraction grating applied on one surface. The objective of such a design is to use the prism wedge angle to select the desired "in-line" or "zero-deviation" wavelength that passes through on axis. The grating on the surface of the prism provides much of the dispersion for the spectrometer. A grism can also be used in a "constant-dispersion" design which provides an almost linear spatial scale across the spectrum. In this paper we provide an overview of the development of a grism spectrometer for use in a near infrared camera and demonstrate that a compact grism spectrometer can be developed on a very modest budget that can be afforded at almost any facility. The grism design was prototyped using visible light and then a final device was constructed which provides partial coverage in the near infrared I, J, H and K astronomical bands using the appropriate band pass filter for order sorting. The near infrared grism presented here provides a spectral resolution of about 650 and velocity resolution of about 450 km/s. The design of this grism relied on a computer code called Xspect, developed by the author, to determine the various critical parameters of the grism. This work was supported by a small equipment grant from NASA and administered by the AAS.

  3. Compact Holographic Data Storage

    NASA Astrophysics Data System (ADS)

    Chao, T. H.; Reyes, G. F.; Zhou, H.

    2001-01-01

    NASA's future missions would require massive high-speed onboard data storage capability to Space Science missions. For Space Science, such as the Europa Lander mission, the onboard data storage requirements would be focused on maximizing the spacecraft's ability to survive fault conditions (i.e., no loss in stored science data when spacecraft enters the 'safe mode') and autonomously recover from them during NASA's long-life and deep space missions. This would require the development of non-volatile memory. In order to survive in the stringent environment during space exploration missions, onboard memory requirements would also include: (1) survive a high radiation environment (1 Mrad), (2) operate effectively and efficiently for a very long time (10 years), and (3) sustain at least a billion write cycles. Therefore, memory technologies requirements of NASA's Earth Science and Space Science missions are large capacity, non-volatility, high-transfer rate, high radiation resistance, high storage density, and high power efficiency. JPL, under current sponsorship from NASA Space Science and Earth Science Programs, is developing a high-density, nonvolatile and rad-hard Compact Holographic Data Storage (CHDS) system to enable large-capacity, high-speed, low power consumption, and read/write of data in a space environment. The entire read/write operation will be controlled with electrooptic mechanism without any moving parts. This CHDS will consist of laser diodes, photorefractive crystal, spatial light modulator, photodetector array, and I/O electronic interface. In operation, pages of information would be recorded and retrieved with random access and high-speed. The nonvolatile, rad-hard characteristics of the holographic memory will provide a revolutionary memory technology meeting the high radiation challenge facing the Europa Lander mission. Additional information is contained in the original extended abstract.

  4. Compact, Reliable EEPROM Controller

    NASA Technical Reports Server (NTRS)

    Katz, Richard; Kleyner, Igor

    2010-01-01

    A compact, reliable controller for an electrically erasable, programmable read-only memory (EEPROM) has been developed specifically for a space-flight application. The design may be adaptable to other applications in which there are requirements for reliability in general and, in particular, for prevention of inadvertent writing of data in EEPROM cells. Inadvertent writes pose risks of loss of reliability in the original space-flight application and could pose such risks in other applications. Prior EEPROM controllers are large and complex and do not provide all reasonable protections (in many cases, few or no protections) against inadvertent writes. In contrast, the present controller provides several layers of protection against inadvertent writes. The controller also incorporates a write-time monitor, enabling determination of trends in the performance of an EEPROM through all phases of testing. The controller has been designed as an integral subsystem of a system that includes not only the controller and the controlled EEPROM aboard a spacecraft but also computers in a ground control station, relatively simple onboard support circuitry, and an onboard communication subsystem that utilizes the MIL-STD-1553B protocol. (MIL-STD-1553B is a military standard that encompasses a method of communication and electrical-interface requirements for digital electronic subsystems connected to a data bus. MIL-STD- 1553B is commonly used in defense and space applications.) The intent was to both maximize reliability while minimizing the size and complexity of onboard circuitry. In operation, control of the EEPROM is effected via the ground computers, the MIL-STD-1553B communication subsystem, and the onboard support circuitry, all of which, in combination, provide the multiple layers of protection against inadvertent writes. There is no controller software, unlike in many prior EEPROM controllers; software can be a major contributor to unreliability, particularly in fault

  5. Spatial and temporal variability of soil penetration resistance transecting sugarbeet rows and inter-rows in tillage systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil compaction has detrimental consequences on soil quality and plant root growth. Soil compaction is a variable property due to tillage in both space and time. A field study was conducted near Sidney, MT, USA, in 2007 to evaluate spatial and temporal variations of soil penetration resistance (PR...

  6. Hydrogen sulfide alleviates hypoxia-induced root tip death in Pisum sativum.

    PubMed

    Cheng, Wei; Zhang, Liang; Jiao, Chengjin; Su, Miao; Yang, Tao; Zhou, Lina; Peng, Renyi; Wang, Ranran; Wang, Chongying

    2013-09-01

    Flooding of soils often results in hypoxic conditions surrounding plant roots, which is a harmful abiotic stress to crops. Hydrogen sulfide (H2S) is a highly diffusible, gaseous molecule that modulates cell signaling and is involved in hypoxia signaling in animal cells. However, there have been no previous studies of H2S in plant cells in response to hypoxia. The effects of H2S on hypoxia-induced root tip death were studied in pea (Pisum sativum) via analysis of endogenous H2S and reactive oxygen species (ROS) levels. The activities of key enzymes involved in antioxidative and H2S metabolic pathways were determined using spectrophotometric assays. Ethylene was measured by gas chromatography. We found that exogenous H2S pretreatment dramatically alleviated hypoxia-induced root tip death by protecting root tip cell membranes from ROS damage induced by hypoxia and by stimulating a quiescence strategy through inhibiting ethylene production. Conversely, root tip death induced by hypoxia was strongly enhanced by inhibition of the key enzymes responsible for endogenous H2S biosynthesis. Our results demonstrated that exogenous H2S pretreatment significantly alleviates hypoxia-induced root tip death in pea seedlings and, therefore, enhances the tolerance of the plant to hypoxic stress.

  7. Plant Species Recovery on a Compacted Skid Road

    PubMed Central

    Demir, Murat; Makineci, Ender; Gungor, Beyza Sat

    2008-01-01

    This study was executed to determine the plant species of herbaceous cover in a skid road subjected to soil compaction due to timber skidding in a beech (Fagus orientalis Lipsky.) stand. Our previous studies have shown that ground based timber skidding destroys the soils extremely, and degradations on ecosystem because of the timber skidding limit recovery and growth of plant cover on skid roads. However, some plant species show healthy habitat, recovery and they can survive after the extreme degradation in study area. We evaluated composition of these plant species and their cover-abundance scales in 100 m x 3 m transect. 15 plant species were determined belongs to 12 plant families and Liliaceae was the highest representative plant family. Smilax aspera L., Epimedium pubigerum (DC.) Moren et Decaisne, Carex distachya Desf. var. distachya Desf., Pteridium aquilinum (L.) Kuhn., Trachystemon orientalis (L.) G. Don, Hedera helix L. have the highest cover-abundance scale overall of determined species on compacted skid road.

  8. What Is Business's Social Compact?

    ERIC Educational Resources Information Center

    Avishai, Bernard

    1994-01-01

    Under the "new" social compact, businesses must focus on continuous learning and thus have both an obligation to support teaching and an opportunity to profit from it. Learning organizations must also be teaching organizations. (SK)

  9. A Compact Beam Measurement Setup

    NASA Astrophysics Data System (ADS)

    Graf, Urs U.

    2016-08-01

    We present the design of a compact measurement device to determine the position of a beam in a radio optical setup. The unit is used to align the Terahertz optics of the GREAT instrument on the airborne astronomical observatory SOFIA.

  10. MESOSCALE SIMULATIONS OF POWDER COMPACTION

    SciTech Connect

    Lomov, Ilya; Fujino, Don; Antoun, Tarabay; Liu, Benjamin

    2009-12-28

    Mesoscale 3D simulations of shock compaction of metal and ceramic powders have been performed with an Eulerian hydrocode GEODYN. The approach was validated by simulating a well-characterized shock compaction experiment of a porous ductile metal. Simulation results using the Steinberg material model and handbook values for solid 2024 aluminum showed good agreement with experimental compaction curves and wave profiles. Brittle ceramic materials are not as well studied as metals, so a simple material model for solid ceramic (tungsten carbide) has been calibrated to match experimental compaction curves. Direct simulations of gas gun experiments with ceramic powders have been performed and showed good agreement with experimental data. The numerical shock wave profile has same character and thickness as that measured experimentally using VISAR. The numerical results show reshock states above the single-shock Hugoniot line as observed in experiments. We found that for good quantitative agreement with experiments 3D simulations are essential.

  11. Mesoscale Simulations of Powder Compaction

    NASA Astrophysics Data System (ADS)

    Lomov, Ilya.; Fujino, Don; Antoun, Tarabay; Liu, Benjamin

    2009-12-01

    Mesoscale 3D simulations of shock compaction of metal and ceramic powders have been performed with an Eulerian hydrocode GEODYN. The approach was validated by simulating a well-characterized shock compaction experiment of a porous ductile metal. Simulation results using the Steinberg material model and handbook values for solid 2024 aluminum showed good agreement with experimental compaction curves and wave profiles. Brittle ceramic materials are not as well studied as metals, so a simple material model for solid ceramic (tungsten carbide) has been calibrated to match experimental compaction curves. Direct simulations of gas gun experiments with ceramic powders have been performed and showed good agreement with experimental data. The numerical shock wave profile has same character and thickness as that measured experimentally using VISAR. The numerical results show reshock states above the single-shock Hugoniot line as observed in experiments. We found that for good quantitative agreement with experiments 3D simulations are essential.

  12. An isolated compact galaxy triplet

    NASA Astrophysics Data System (ADS)

    Feng, Shuai; Shao, Zheng-Yi; Shen, Shi-Yin; Argudo-Fernández, Maria; Wu, Hong; Lam, Man-I.; Yang, Ming; Yuan, Fang-Ting

    2016-05-01

    We report the discovery of an isolated compact galaxy triplet SDSS J084843.45+164417.3, which is first detected by the LAMOST spectral survey and then confirmed by a spectroscopic observation of the BFOSC mounted on the 2.16 meter telescope located at Xinglong Station, which is administered by National Astronomical Observatories, Chinese Academy of Sciences. It is found that this triplet is an isolated and extremely compact system, which has an aligned configuration and very small radial velocity dispersion. The member galaxies have similar colors and show marginal star formation activities. These results support the opinion that the compact triplets are well-evolved systems rather than hierarchically forming structures. This serendipitous discovery reveals the limitations of fiber spectral redshift surveys in studying such a compact system, and demonstrates the necessity of additional observations to complete the current redshift sample.

  13. Physics of compaction of fine cohesive particles.

    PubMed

    Castellanos, A; Valverde, J M; Quintanilla, M A S

    2005-02-25

    Fluidized fractal clusters of fine particles display critical-like dynamics at the jamming transition, characterized by a power law relating consolidation stress with volume fraction increment [sigma--(c) proportional, variant(Deltaphi)(beta)]. At a critical stress clusters are disrupted and there is a crossover to a logarithmic law (Deltaphi = nu logsigma--(c)) resembling the phenomenology of soils. We measure lambda identical with- partial differentialDelta(1/phi)/ partial log(sigma--(c) proportional, variant Bo(0.2)(g), where Bo(g) is the ratio of interparticle attractive force (in the fluidlike regime) to particle weight. This law suggests that compaction is ruled by the internal packing structure of the jammed clusters at nearly zero consolidation.

  14. Compact Ho:YLF Laser

    NASA Technical Reports Server (NTRS)

    Hemmati, H.

    1988-01-01

    Longitudinal pumping by laser diodes increases efficiency. Improved holmium:yttrium lithium fluoride laser radiates as much as 56 mW of power at wavelength of 2.1 micrometer. New Ho:YLF laser more compact and efficient than older, more powerful devices of this type. Compact, efficient Ho:YLF laser based on recent successes in use of diode lasers to pump other types of solid-state lasers.

  15. Causes and Alleviation of Occupational Stress in Child Care Work

    ERIC Educational Resources Information Center

    Dillenburger, Karola

    2004-01-01

    Occupational stress in not a new phenomenon in the working population. However, in the helping professions it has only recently attracted attention. The survey reported here was carried out in order to assess the extent of occupational stress, identify its causes, and suggest ways in which occupational stress can be alleviated. Field social…

  16. Gust alleviation system to improve ride comfort of light airplanes

    NASA Technical Reports Server (NTRS)

    Stewart, E. C.; Phillips, W. H.; Hewes, D. E.

    1975-01-01

    System consists of movable auxiliary aerodynamic sensors mounted on fuselage and connected to trailing-edge flaps by rigid mechanical linkages. System achieves alleviation by reducing lift-curve slope of airplane to such a small value that gust-induced angles of attack will result in small changes in lift.

  17. Training Teachers as Key Players in Poverty Alleviation

    ERIC Educational Resources Information Center

    Benavente, Ana; Ralambomanana, Stangeline; Mbanze, Jorge

    2008-01-01

    This article presents several questions, reflections and suggestions on pre-service and in-service teacher training that arose during the project "Curricular innovation and poverty alleviation in sub-Saharan Africa". While recognizing that the situation in the nine countries taking part in the project, and in many other countries in the southern…

  18. Helping Alleviate Statistical Anxiety with Computer Aided Statistical Classes

    ERIC Educational Resources Information Center

    Stickels, John W.; Dobbs, Rhonda R.

    2007-01-01

    This study, Helping Alleviate Statistical Anxiety with Computer Aided Statistics Classes, investigated whether undergraduate students' anxiety about statistics changed when statistics is taught using computers compared to the traditional method. Two groups of students were questioned concerning their anxiety about statistics. One group was taught…

  19. Compaction/Liquefaction Properties of Some Model Sands

    NASA Astrophysics Data System (ADS)

    Sawicki, Andrzej; Mierczyński, Jacek; Sławińska, Justyna

    2015-12-01

    The compaction/liquefaction characteristics of two model sands are determined experimentally. One sand (Istanbul) is used in shaking table investigations, and the other (Dundee) in geotechnical centrifuge experiments. Both types of these highly sophisticated experiments are planned to be applied to test theories of seabed liquefaction. The first step of these experiments is to determine the parameters of model soils, which is the main goal of this paper.

  20. Foliar nickel application alleviates detrimental effects of glyphosate drift on yield and seed quality of wheat.

    PubMed

    Kutman, Bahar Yildiz; Kutman, Umit Baris; Cakmak, Ismail

    2013-09-01

    Glyphosate drift to nontarget crops causes growth aberrations and yield losses. This herbicide can also interact with divalent nutrients and form poorly soluble complexes. The possibility of using nickel (Ni), an essential divalent metal, for alleviating glyphosate drift damage to wheat was investigated in this study. Effects of Ni applications on various growth parameters, seed yield, and quality of durum wheat ( Triticum durum ) treated with sublethal glyphosate at different developmental stages were investigated in greenhouse experiments. Nickel concentrations of various plant parts and glyphosate-induced shikimate accumulation were measured. Foliar but not soil Ni applications significantly reduced glyphosate injuries including yield losses, stunting, and excessive tillering. Both shoot and grain Ni concentrations were enhanced by foliar Ni treatment. Seed germination and seedling vigor were impaired by glyphosate and improved by foliar Ni application to parental plants. Foliar Ni application appears to have a great potential to ameliorate glyphosate drift injury to wheat.

  1. Soil Quality Indexing Strategies for Evaluating Sugarcane Expansion in Brazil.

    PubMed

    Cherubin, Maurício R; Karlen, Douglas L; Cerri, Carlos E P; Franco, André L C; Tormena, Cássio A; Davies, Christian A; Cerri, Carlos C

    2016-01-01

    Increasing demand for biofuel has intensified land-use change (LUC) for sugarcane (Saccharum officinarum) expansion in Brazil. Assessments of soil quality (SQ) response to this LUC are essential for quantifying and monitoring sustainability of sugarcane production over time. Since there is not a universal methodology for assessing SQ, we conducted a field-study at three sites within the largest sugarcane-producing region of Brazil to develop a SQ index (SQI). The most common LUC scenario (i.e., native vegetation to pasture to sugarcane) was evaluated using six SQI strategies with varying complexities. Thirty eight soil indicators were included in the total dataset. Two minimum datasets were selected: one using principal component analysis (7 indicators) and the other based on expert opinion (5 indicators). Non-linear scoring curves were used to interpret the indicator values. Weighted and non-weighted additive methods were used to combine individual indicator scores into an overall SQI. Long-term conversion from native vegetation to extensive pasture significantly decreased overall SQ. In contrast, conversion from pasture to sugarcane had no significant impact on overall SQ at the regional scale, but site-specific responses were found. In general, sugarcane production improved chemical attributes (i.e., higher macronutrient levels and lower soil acidity); however it has negative effects on physical and biological attributes (i.e., higher soil compaction and structural degradation as well as lower soil organic carbon (SOC), abundance and diversity of macrofauna and microbial activity). Overall, we found that simple, user-friendly strategies were as effective as more complex ones for identifying SQ changes. Therefore, as a protocol for SQ assessments in Brazilian sugarcane areas, we recommend using a small number of indicators (e.g., pH, P, K, Visual Evaluation of Soil Structure -VESS scores and SOC concentration) and proportional weighting to reflect chemical

  2. Soil Quality Indexing Strategies for Evaluating Sugarcane Expansion in Brazil

    PubMed Central

    Cherubin, Maurício R.; Karlen, Douglas L.; Cerri, Carlos E. P.; Franco, André L. C.; Tormena, Cássio A.; Davies, Christian A.; Cerri, Carlos C.

    2016-01-01

    Increasing demand for biofuel has intensified land-use change (LUC) for sugarcane (Saccharum officinarum) expansion in Brazil. Assessments of soil quality (SQ) response to this LUC are essential for quantifying and monitoring sustainability of sugarcane production over time. Since there is not a universal methodology for assessing SQ, we conducted a field-study at three sites within the largest sugarcane-producing region of Brazil to develop a SQ index (SQI). The most common LUC scenario (i.e., native vegetation to pasture to sugarcane) was evaluated using six SQI strategies with varying complexities. Thirty eight soil indicators were included in the total dataset. Two minimum datasets were selected: one using principal component analysis (7 indicators) and the other based on expert opinion (5 indicators). Non-linear scoring curves were used to interpret the indicator values. Weighted and non-weighted additive methods were used to combine individual indicator scores into an overall SQI. Long-term conversion from native vegetation to extensive pasture significantly decreased overall SQ. In contrast, conversion from pasture to sugarcane had no significant impact on overall SQ at the regional scale, but site-specific responses were found. In general, sugarcane production improved chemical attributes (i.e., higher macronutrient levels and lower soil acidity); however it has negative effects on physical and biological attributes (i.e., higher soil compaction and structural degradation as well as lower soil organic carbon (SOC), abundance and diversity of macrofauna and microbial activity). Overall, we found that simple, user-friendly strategies were as effective as more complex ones for identifying SQ changes. Therefore, as a protocol for SQ assessments in Brazilian sugarcane areas, we recommend using a small number of indicators (e.g., pH, P, K, Visual Evaluation of Soil Structure -VESS scores and SOC concentration) and proportional weighting to reflect chemical

  3. Soil Quality Indexing Strategies for Evaluating Sugarcane Expansion in Brazil.

    PubMed

    Cherubin, Maurício R; Karlen, Douglas L; Cerri, Carlos E P; Franco, André L C; Tormena, Cássio A; Davies, Christian A; Cerri, Carlos C

    2016-01-01

    Increasing demand for biofuel has intensified land-use change (LUC) for sugarcane (Saccharum officinarum) expansion in Brazil. Assessments of soil quality (SQ) response to this LUC are essential for quantifying and monitoring sustainability of sugarcane production over time. Since there is not a universal methodology for assessing SQ, we conducted a field-study at three sites within the largest sugarcane-producing region of Brazil to develop a SQ index (SQI). The most common LUC scenario (i.e., native vegetation to pasture to sugarcane) was evaluated using six SQI strategies with varying complexities. Thirty eight soil indicators were included in the total dataset. Two minimum datasets were selected: one using principal component analysis (7 indicators) and the other based on expert opinion (5 indicators). Non-linear scoring curves were used to interpret the indicator values. Weighted and non-weighted additive methods were used to combine individual indicator scores into an overall SQI. Long-term conversion from native vegetation to extensive pasture significantly decreased overall SQ. In contrast, conversion from pasture to sugarcane had no significant impact on overall SQ at the regional scale, but site-specific responses were found. In general, sugarcane production improved chemical attributes (i.e., higher macronutrient levels and lower soil acidity); however it has negative effects on physical and biological attributes (i.e., higher soil compaction and structural degradation as well as lower soil organic carbon (SOC), abundance and diversity of macrofauna and microbial activity). Overall, we found that simple, user-friendly strategies were as effective as more complex ones for identifying SQ changes. Therefore, as a protocol for SQ assessments in Brazilian sugarcane areas, we recommend using a small number of indicators (e.g., pH, P, K, Visual Evaluation of Soil Structure -VESS scores and SOC concentration) and proportional weighting to reflect chemical

  4. Compact Optoelectronic Compass

    NASA Technical Reports Server (NTRS)

    Christian, Carl

    2004-01-01

    A compact optoelectronic sensor unit measures the apparent motion of the Sun across the sky. The data acquired by this chip are processed in an external processor to estimate the relative orientation of the axis of rotation of the Earth. Hence, the combination of this chip and the external processor finds the direction of true North relative to the chip: in other words, the combination acts as a solar compass. If the compass is further combined with a clock, then the combination can be used to establish a threeaxis inertial coordinate system. If, in addition, an auxiliary sensor measures the local vertical direction, then the resulting system can determine the geographic position. This chip and the software used in the processor are based mostly on the same design and operation as those of the unit described in Micro Sun Sensor for Spacecraft (NPO-30867) elsewhere in this issue of NASA Tech Briefs. Like the unit described in that article, this unit includes a small multiple-pinhole camera comprising a micromachined mask containing a rectangular array of microscopic pinholes mounted a short distance in front of an image detector of the active-pixel sensor (APS) type (see figure). Further as in the other unit, the digitized output of the APS in this chip is processed to compute the centroids of the pinhole Sun images on the APS. Then the direction to the Sun, relative to the compass chip, is computed from the positions of the centroids (just like a sundial). In the operation of this chip, one is interested not only in the instantaneous direction to the Sun but also in the apparent path traced out by the direction to the Sun as a result of rotation of the Earth during an observation interval (during which the Sun sensor must remain stationary with respect to the Earth). The apparent path of the Sun across the sky is projected on a sphere. The axis of rotation of the Earth lies at the center of the projected circle on the sphere surface. Hence, true North (not magnetic

  5. Mechanisms of silicon-mediated alleviation of drought and salt stress in plants: a review.

    PubMed

    Rizwan, Muhammad; Ali, Shafaqat; Ibrahim, Muhammad; Farid, Mujahid; Adrees, Muhammad; Bharwana, Saima Aslam; Zia-Ur-Rehman, Muhammad; Qayyum, Muhammad Farooq; Abbas, Farhat

    2015-10-01

    Drought and salinity are the main abiotic stresses limiting crop yield and quality worldwide. Improving food production in drought- and salt-prone areas is the key to meet the increasing food demands in near future. It has been widely reported that silicon (Si), a second most abundant element in soil, could reduce drought and salt stress in plants. Here, we reviewed the emerging role of Si in enhancing drought and salt tolerance in plants and highlighted the mechanisms through which Si could alleviate both drought and salt stress in plants. Silicon application increased plant growth, biomass, photosynthetic pigments, straw and grain yield, and quality under either drought or salt stress. Under both salt and drought stress, the key mechanisms evoked are nutrient elements homeostasis, modification of gas exchange attributes, osmotic adjustment, regulating the synthesis of compatible solutes, stimulation of antioxidant enzymes, and gene expression in plants. In addition, Si application decreased Na(+) uptake and translocation while increased K(+) uptake and translocation under salt stress. However, these mechanisms vary with plant species, genotype, growth conditions, duration of stress imposed, and so on. This review article highlights the potential for improving plant resistance to drought and salt stress by Si application and provides a theoretical basis for application of Si in saline soils and arid and semiarid regions worldwide. This review article also highlights the future research needs about the role of Si under drought stress and in saline soils.

  6. Mechanisms of silicon-mediated alleviation of drought and salt stress in plants: a review.

    PubMed

    Rizwan, Muhammad; Ali, Shafaqat; Ibrahim, Muhammad; Farid, Mujahid; Adrees, Muhammad; Bharwana, Saima Aslam; Zia-Ur-Rehman, Muhammad; Qayyum, Muhammad Farooq; Abbas, Farhat

    2015-10-01

    Drought and salinity are the main abiotic stresses limiting crop yield and quality worldwide. Improving food production in drought- and salt-prone areas is the key to meet the increasing food demands in near future. It has been widely reported that silicon (Si), a second most abundant element in soil, could reduce drought and salt stress in plants. Here, we reviewed the emerging role of Si in enhancing drought and salt tolerance in plants and highlighted the mechanisms through which Si could alleviate both drought and salt stress in plants. Silicon application increased plant growth, biomass, photosynthetic pigments, straw and grain yield, and quality under either drought or salt stress. Under both salt and drought stress, the key mechanisms evoked are nutrient elements homeostasis, modification of gas exchange attributes, osmotic adjustment, regulating the synthesis of compatible solutes, stimulation of antioxidant enzymes, and gene expression in plants. In addition, Si application decreased Na(+) uptake and translocation while increased K(+) uptake and translocation under salt stress. However, these mechanisms vary with plant species, genotype, growth conditions, duration of stress imposed, and so on. This review article highlights the potential for improving plant resistance to drought and salt stress by Si application and provides a theoretical basis for application of Si in saline soils and arid and semiarid regions worldwide. This review article also highlights the future research needs about the role of Si under drought stress and in saline soils. PMID:26335528

  7. Effects of nonlinear reservoir compaction on casing behavior

    SciTech Connect

    Chia, Y.P.; Bradley, D.A.

    1988-08-01

    Depletion of overpressured, undercompacted reservoirs can cause large reservoir pressure drops and sediment compaction, which may result in casing deformation and well failure. To predict soil and casing deformation during depletion, a finite-element model was developed. Nonlinear elastic and plastic behavior of the soils and slippage along the wellbore boundary are major advancements in this study. This axisymmetric model is composed of casing wall, cement column, slippage interface, and sediments from 11,400 to 13,200 ft (3475 to 4025 m) in depth with a radius of 3,400 ft (1035 m). This study features a process of concurrent fluid flow, nonlinear elastic and plastic soil deformation, slippage from the wellbore boundary, and casing deformation. The modeling results show that the decline in near-wellbore reservoir pressure during depletion causes vertical compaction in both the sand reservoirs and the confining shale formations. Slippage next to the wellbore decreases the axial shear load placed on the casing by the sediments. Nonlinear elastic and plastic soils show a greater tendency for casing deformation with depletion than do linear elastic soils. Axial strains in the casing above the yield strain eventually developed as near-wellbore reservoir pressure was allowed to decline to a minimum. Because this effect is quantified, the production rate may be held to a safe maximum so that the operating limits of the casing are not exceeded. Criteria are given to improve both completion design and production rate specification.

  8. Soil Vapor Extraction of PCE/TCE Contaminated Soil

    SciTech Connect

    Bradley, J.M.; Morgenstern, M.R.

    1998-08-01

    The A/M Area of the Savannah River Site soil and groundwater is contaminated with tetrachloroethylene (PCE) and trichloroethylene (TCE). Contamination is the result of previous waste disposal practices, once considered state-of-the-art. Soil Vapor Extraction (SVE) units have been installed to remediate the A/M Area vadose zone. SVE is a proven in-situ method for removing volatile organics from a soil matrix with minimal site disturbance. SVE alleviates the infiltration of contaminants into the groundwater and reduces the total time required for groundwater remediation. Lessons learned and optimization of the SVE units are also discussed.

  9. Directional Oscillations, Concentrations, and Compensated Compactness via Microlocal Compactness Forms

    NASA Astrophysics Data System (ADS)

    Rindler, Filip

    2015-01-01

    This work introduces microlocal compactness forms (MCFs) as a new tool to study oscillations and concentrations in L p -bounded sequences of functions. Decisively, MCFs retain information about the location, value distribution, and direction of oscillations and concentrations, thus extending at the same time the theories of (generalized) Young measures and H-measures. In L p -spaces oscillations and concentrations precisely discriminate between weak and strong compactness, and thus MCFs allow one to quantify the difference in compactness. The definition of MCFs involves a Fourier variable, whereby differential constraints on the functions in the sequence can also be investigated easily—a distinct advantage over Young measure theory. Furthermore, pointwise restrictions are reflected in the MCF as well, paving the way for applications to Tartar's framework of compensated compactness; consequently, we establish a new weak-to-strong compactness theorem in a "geometric" way. After developing several aspects of the abstract theory, we consider three applications; for lamination microstructures, the hierarchy of oscillations is reflected in the MCF. The directional information retained in an MCF is harnessed in the relaxation theory for anisotropic integral functionals. Finally, we indicate how the theory pertains to the study of propagation of singularities in certain systems of PDEs. The proofs combine measure theory, Young measures, and harmonic analysis.

  10. Isolation and characterization of ACC deaminase-producing fluorescent pseudomonads, to alleviate salinity stress on canola (Brassica napus L.) growth.

    PubMed

    Jalili, Farzad; Khavazi, Kazem; Pazira, Ebrahim; Nejati, Alireza; Rahmani, Hadi Asadi; Sadaghiani, Hasan Rasuli; Miransari, Mohammad

    2009-04-01

    Salinity stress is of great importance in arid and semi-arid areas of the world due to its impact in reducing crop yield. Under salinity stress, the amount of 1-aminocyclopropane-1-carboxylate (ACC), a precursor for ethylene production in plants, increases. Here, we conducted research under the hypothesis that isolated ACC deaminase-producing Pseudomonas fluorescens and Pseudomonas putida can alleviate the stressful effects of salinity on canola (Brassica napus L.) growth. The experiments were conducted in the Soil and Water Research Institute, Tehran, Iran. Seven experimental stages were conducted to isolate and characterize ACC deaminase-producing Pseudomonas fluorescens strains and to determine factors enhancing their growth and, consequently, their effects on the germination of canola seeds. Under salinity stress, in 14% of the isolates, ACC deaminase activity was observed, indicating that they were able to utilize ACC as the sole N-source. Bacterial strains differed in their ability to synthesize auxin and hydrogen cyanide compounds, as well as in their ACC deaminase activity. Under salinity stress, the rate of germinating seeds inoculated with the strains of ACC deaminase-producing Pseudomonas fluorescens and Pseudomonas putida, and seedling growth was significantly higher. These results indicate the significance of soil biological activities, including the activities of plant growth-promoting bacteria, in the alleviation of soil stresses such as salinity on plant growth.

  11. The Non-finished, Non-well Compacted Soil of the Crest of Zayzoun Dam, the Technical and Administrative Errors, and the Correct Ways of its Reinforcement and Renovation

    NASA Astrophysics Data System (ADS)

    Hamze, Youssef; Stanivska, Anna

    Zayzoun dam is one of the irrigation elements of the valley of (Alkhab) in northern Syria; its exploitation started in 1996 and breached on June 4th, 2002. There were many experts searching for the causes of its failure and the correct ways of its renovation. There were many reports written about the failure with different opinions, and we have been one of these experts with an objective opinion. The principal aim was to study all the technical and administrative components of the dam, and to analyze the existing and the new laboratory testing. The soil of the unfinished summit of the dam, in the end, was found to be the real cause that led to its failure. These causes will be analyzed in order to avoid them in the future and to find the suitable ways of its renovation and reinforcement.

  12. Blue ellipticals in compact groups

    NASA Technical Reports Server (NTRS)

    Zepf, Stephen E.; Whitmore, Bradley C.

    1990-01-01

    By studying galaxies in compact groups, the authors examine the hypothesis that mergers of spiral galaxies make elliptical galaxies. The authors combine dynamical models of the merger-rich compact group environment with stellar evolution models and predict that roughly 15 percent of compact group ellipticals should be 0.15 mag bluer in B - R color than normal ellipticals. The published colors of these galaxies suggest the existence of this predicted blue population, but a normal distribution with large random errors can not be ruled out based on these data alone. However, the authors have new ultraviolet blue visual data which confirm the blue color of the two ellipticals with blue B - R colors for which they have their own colors. This confirmation of a population of blue ellipticals indicates that interactions are occurring in compact groups, but a blue color in one index alone does not require that these ellipticals are recent products of the merger of two spirals. The authors demonstrate how optical spectroscopy in the blue may distinguish between a true spiral + spiral merger and the swallowing of a gas-rich system by an already formed elliptical. The authors also show that the sum of the luminosity of the galaxies in each group is consistent with the hypothesis that the final stage in the evolution of compact group is an elliptical galaxy.

  13. Viral RNAs Are Unusually Compact

    PubMed Central

    Gopal, Ajaykumar; Egecioglu, Defne E.; Yoffe, Aron M.; Ben-Shaul, Avinoam; Rao, Ayala L. N.; Knobler, Charles M.; Gelbart, William M.

    2014-01-01

    A majority of viruses are composed of long single-stranded genomic RNA molecules encapsulated by protein shells with diameters of just a few tens of nanometers. We examine the extent to which these viral RNAs have evolved to be physically compact molecules to facilitate encapsulation. Measurements of equal-length viral, non-viral, coding and non-coding RNAs show viral RNAs to have among the smallest sizes in solution, i.e., the highest gel-electrophoretic mobilities and the smallest hydrodynamic radii. Using graph-theoretical analyses we demonstrate that their sizes correlate with the compactness of branching patterns in predicted secondary structure ensembles. The density of branching is determined by the number and relative positions of 3-helix junctions, and is highly sensitive to the presence of rare higher-order junctions with 4 or more helices. Compact branching arises from a preponderance of base pairing between nucleotides close to each other in the primary sequence. The density of branching represents a degree of freedom optimized by viral RNA genomes in response to the evolutionary pressure to be packaged reliably. Several families of viruses are analyzed to delineate the effects of capsid geometry, size and charge stabilization on the selective pressure for RNA compactness. Compact branching has important implications for RNA folding and viral assembly. PMID:25188030

  14. Tillage Effects on Soil Properties & Respiration

    NASA Astrophysics Data System (ADS)

    Rusu, Teodor; Bogdan, Ileana; Moraru, Paula; Pop, Adrian; Duda, Bogdan; Cacovean, Horea; Coste, Camelia

    2015-04-01

    Soil tillage systems can be able to influence soil compaction, water dynamics, soil temperature and soil structural condition. These processes can be expressed as changes of soil microbiological activity, soil respiration and sustainability of agriculture. Objectives of this study were: 1) to assess the effects of tillage systems (Conventional System-CS, Minimum Tillage-MT, No-Tillage-NT) on soil compaction, soil temperature, soil moisture and soil respiration and 2) to establish the relationship that exists in changing soil properties. Three treatments were installed: CS-plough + disc; MT-paraplow + rotary grape; NT-direct sowing. The study was conducted on an Argic-Stagnic Faeoziom. The MT and NT applications reduce or completely eliminate the soil mobilization, due to this, soil is compacted in the first year of application. The degree of compaction is directly related to soil type and its state of degradation. The state of soil compaction diminished over time, tending toward a specific type of soil density. Soil moisture was higher in NT and MT at the time of sowing and in the early stages of vegetation and differences diminished over time. Moisture determinations showed statistically significant differences. The MT and NT applications reduced the thermal amplitude in the first 15 cm of soil depth and increased the soil temperature by 0.5-2.20C. The determinations confirm the effect of soil tillage system on soil respiration; the daily average was lower at NT (315-1914 mmoli m-2s-1) and followed by MT (318-2395 mmoli m-2s-1) and is higher in the CS (321-2480 mmol m-2s-1). Comparing with CS, all the two conservation tillage measures decreased soil respiration, with the best effects of no-tillage. An exceeding amount of CO2 produced in the soil and released into the atmosphere, resulting from aerobic processes of mineralization of organic matter (excessive loosening) is considered to be not only a way of increasing the CO2 in the atmosphere, but also a loss of

  15. Compact orthogonal NMR field sensor

    SciTech Connect

    Gerald, II, Rex E.; Rathke, Jerome W.

    2009-02-03

    A Compact Orthogonal Field Sensor for emitting two orthogonal electro-magnetic fields in a common space. More particularly, a replacement inductor for existing NMR (Nuclear Magnetic Resonance) sensors to allow for NMR imaging. The Compact Orthogonal Field Sensor has a conductive coil and a central conductor electrically connected in series. The central conductor is at least partially surrounded by the coil. The coil and central conductor are electrically or electro-magnetically connected to a device having a means for producing or inducing a current through the coil and central conductor. The Compact Orthogonal Field Sensor can be used in NMR imaging applications to determine the position and the associated NMR spectrum of a sample within the electro-magnetic field of the central conductor.

  16. Omeprazole Alleviates Aristolochia manshuriensis Kom-Induced Acute Nephrotoxicity

    PubMed Central

    Wang, Lianmei; Zhang, Hongbing; Li, Chunying; Yi, Yan; Liu, Jing; Zhao, Yong; Tian, Jingzhuo; Zhang, Yushi; Wei, Xiaolu; Gao, Yue; Liang, Aihua

    2016-01-01

    Aristolochia manshuriensis Kom (AMK) is a member of the Aristolochiaceae family and is a well-known cause of aristolochic acid (AA) nephropathy. In this study, we investigated the potential of omeprazole (OM) to alleviate AMK-induced nephrotoxicity. We found that OM reduced mouse mortality caused by AMK and attenuated AMK-induced acute nephrotoxicity in rats. OM enhanced hepatic Cyp 1a1/2 and renal Cyp 1a1 expression in rats, as well as CYP 1A1 expression in human renal tubular epithelial cells (HKCs). HKCs with ectopic CYP 1A1 expression were more tolerant to AA than the control cells. Therefore, OM may alleviate AMK-mediated acute nephrotoxicity through induction of CYP 1A1. We suggest that the coadministration of OM might be beneficial for reducing of AA-induced nephrotoxicity. PMID:27716846

  17. Alleviating α quenching by solar wind and meridional flows

    NASA Astrophysics Data System (ADS)

    Mitra, D.; Moss, D.; Tavakol, R.; Brandenburg, A.

    2011-02-01

    Aims: We study the ability of magnetic helicity expulsion to alleviate catastrophic α-quenching in mean field dynamos in two-dimensional spherical wedge domains. Methods: Motivated by the physical state of the outer regions of the Sun, we consider α^2Ω mean field models with a dynamical α quenching. We include two mechanisms which have the potential to facilitate helicity expulsion, namely advection by a mean flow ("solar wind") and meridional circulation. Results: We find that a wind alone can prevent catastrophic quenching, with the field saturating at finite amplitude. In certain parameter ranges, the presence of a large-scale meridional circulation can reinforce this alleviation. However, the saturated field strengths are typically below the equipartition field strength. We discuss possible mechanisms that might increase the saturated field.

  18. Focused grooming networks and stress alleviation in wild female baboons.

    PubMed

    Wittig, Roman M; Crockford, Catherine; Lehmann, Julia; Whitten, Patricia L; Seyfarth, Robert M; Cheney, Dorothy L

    2008-06-01

    We examine the relationship between glucocorticoid (GC) levels and grooming behavior in wild female baboons during a period of instability in the alpha male rank position. All females' GC levels rose significantly at the onset of the unstable period, though levels in females who were at lower risk of infanticide began to decrease sooner in the following weeks. Three factors suggest that females relied on a focused grooming network as a coping mechanism to alleviate stress. First, all females' grooming networks became less diverse in the weeks following the initial upheaval. Second, females whose grooming had already focused on a few predictable partners showed a less dramatic rise in GC levels than females whose grooming network had been more diverse. Third, females who contracted their grooming network the most experienced a greater decrease in GC levels in the following week. We conclude that close bonds with a few preferred partners allow female baboons to alleviate the stress associated with social instability.

  19. Bending and Torsion Load Alleviator With Automatic Reset

    NASA Technical Reports Server (NTRS)

    delaFuente, Horacio M. (Inventor); Eubanks, Michael C. (Inventor); Dao, Anthony X. (Inventor)

    1996-01-01

    A force transmitting load alleviator apparatus and method are provided for rotatably and pivotally driving a member to be protected against overload torsional and bending (moment) forces. The load alleviator includes at least one bias spring to resiliently bias cam followers and cam surfaces together and to maintain them in locked engagement unless a predetermined load is exceeded whereupon a center housing is pivotal or rotational with respect to a crown assembly. This pivotal and rotational movement results in frictional dissipation of the overload force by an energy dissipator. The energy dissipator can be provided to dissipate substantially more energy from the overload force than from the bias force that automatically resets the center housing and crown assembly to the normally fixed centered alignment. The torsional and bending (moment) overload levels can designed independently of each other.

  20. Active control landing gear for ground loads alleviation

    NASA Technical Reports Server (NTRS)

    Mcgehee, J. R.

    1985-01-01

    An active landing gear has been created by connecting the hydraulic piston in an oleo strut to a hydraulic supply. A controller modulates the pressure in the oleo to achieve the desired dynamic characteristics. Tests on ground rigs (documented by a film) have demonstrated the successful alleviation of induced structural ground loads and the next step will be a flight test using a fighter aircraft.

  1. Damage in the dorsal striatum alleviates addictive behavior.

    PubMed

    Muskens, J B; Schellekens, A F A; de Leeuw, F E; Tendolkar, I; Hepark, S

    2012-01-01

    The ventral striatum has been assigned a major role in addictive behavior. In addition, clinical lesion studies have described involvement of the insula and globus pallidus. To the best of our knowledge, this is the first report of alleviation of alcohol and nicotine addiction after a cerebrovascular incident in the dorsal striatum. The patient was still abstinent from alcohol and nicotine at follow-up. This observation suggests that the dorsal striatum may play a critical role in addiction to alcohol and nicotine.

  2. Compact monolithic capacitive discharge unit

    DOEpatents

    Roesler, Alexander W.; Vernon, George E.; Hoke, Darren A.; De Marquis, Virginia K.; Harris, Steven M.

    2007-06-26

    A compact monolithic capacitive discharge unit (CDU) is disclosed in which a thyristor switch and a flyback charging circuit are both sandwiched about a ceramic energy storage capacitor. The result is a compact rugged assembly which provides a low-inductance current discharge path. The flyback charging circuit preferably includes a low-temperature co-fired ceramic transformer. The CDU can further include one or more ceramic substrates for enclosing the thyristor switch and for holding various passive components used in the flyback charging circuit. A load such as a detonator can also be attached directly to the CDU.

  3. Compact intermediates in RNA folding

    SciTech Connect

    Woodson, S.A.

    2011-12-14

    Large noncoding RNAs fold into their biologically functional structures via compact yet disordered intermediates, which couple the stable secondary structure of the RNA with the emerging tertiary fold. The specificity of the collapse transition, which coincides with the assembly of helical domains, depends on RNA sequence and counterions. It determines the specificity of the folding pathways and the magnitude of the free energy barriers to the ensuing search for the native conformation. By coupling helix assembly with nascent tertiary interactions, compact folding intermediates in RNA also play a crucial role in ligand binding and RNA-protein recognition.

  4. Compact accelerator for medical therapy

    DOEpatents

    Caporaso, George J.; Chen, Yu-Jiuan; Hawkins, Steven A.; Sampayan, Stephen E.; Paul, Arthur C.

    2010-05-04

    A compact accelerator system having an integrated particle generator-linear accelerator with a compact, small-scale construction capable of producing an energetic (.about.70-250 MeV) proton beam or other nuclei and transporting the beam direction to a medical therapy patient without the need for bending magnets or other hardware often required for remote beam transport. The integrated particle generator-accelerator is actuable as a unitary body on a support structure to enable scanning of a particle beam by direction actuation of the particle generator-accelerator.

  5. Growth and cadmium uptake of Swiss chard, Thlaspi caerulescens and corn in pH adjusted biosolids amended soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Before regulations were established, some biosolids applications added higher Cd levels than presently permitted. Cadmium phytoextraction from such soils would alleviate constraints on land use. Unamended farm soil, and biosolids amended farm soil and mine soil were obtained from Fulton County, Il...

  6. A study of helicopter gust response alleviation by automatic control

    NASA Technical Reports Server (NTRS)

    Saito, S.

    1983-01-01

    Two control schemes designed to alleviate gust-induced vibration are analytically investigated for a helicopter with four articulated blades. One is an individual blade pitch control scheme. The other is an adaptive blade pitch control algorithm based on linear optimal control theory. In both controllers, control inputs to alleviate gust response are superimposed on the conventional control inputs required to maintain the trim condition. A sinusoidal vertical gust model and a step gust model are used. The individual blade pitch control, in this research, is composed of sensors and a pitch control actuator for each blade. Each sensor can detect flapwise (or lead-lag or torsionwise) deflection of the respective blade. The acturator controls the blade pitch angle for gust alleviation. Theoretical calculations to predict the performance of this feedback system have been conducted by means of the harmonic method. The adaptive blade pitch control system is composed of a set of measurements (oscillatory hub forces and moments), an identification system using a Kalman filter, and a control system based on the minimization of the quadratic performance function.

  7. Arbuscular mycorrhizal fungi in alleviation of salt stress: a review

    PubMed Central

    Evelin, Heikham; Kapoor, Rupam; Giri, Bhoopander

    2009-01-01

    Background Salt stress has become a major threat to plant growth and productivity. Arbuscular mycorrhizal fungi colonize plant root systems and modulate plant growth in various ways. Scope This review addresses the significance of arbuscular mycorrhiza in alleviation of salt stress and their beneficial effects on plant growth and productivity. It also focuses on recent progress in unravelling biochemical, physiological and molecular mechanisms in mycorrhizal plants to alleviate salt stress. Conclusions The role of arbuscular mycorrhizal fungi in alleviating salt stress is well documented. This paper reviews the mechanisms arbuscular mycorrhizal fungi employ to enhance the salt tolerance of host plants such as enhanced nutrient acquisition (P, N, Mg and Ca), maintenance of the K+ : Na+ ratio, biochemical changes (accumulation of proline, betaines, polyamines, carbohydrates and antioxidants), physiological changes (photosynthetic efficiency, relative permeability, water status, abscissic acid accumulation, nodulation and nitrogen fixation), molecular changes (the expression of genes: PIP, Na+/H+ antiporters, Lsnced, Lslea and LsP5CS) and ultra-structural changes. Theis review identifies certain lesser explored areas such as molecular and ultra-structural changes where further research is needed for better understanding of symbiosis with reference to salt stress for optimum usage of this technology in the field on a large scale. This review paper gives useful benchmark information for the development and prioritization of future research programmes. PMID:19815570

  8. Vortex wake alleviation studies with a variable twist wing

    NASA Technical Reports Server (NTRS)

    Holbrook, G. T.; Dunham, D. M.; Greene, G. C.

    1985-01-01

    Vortex wake alleviation studies were conducted in a wind tunnel and a water towing tank using a multisegmented wing model which provided controlled and measured variations in span load. Fourteen model configurations are tested at a Reynolds number of one million and a lift coefficient of 0.6 in the Langley 4- by 7-Meter Tunnel and the Hydronautics Ship Model Basin water tank at Hydronautics, Inc., Laurel, Md. Detailed measurements of span load and wake velocities at one semispan downstream correlate well with each other, with inviscid predictions of span load and wake roll up, and with peak trailing-wing rolling moments measured in the far wake. Average trailing-wing rolling moments are found to be an unreliable indicator of vortex wake intensity because vortex meander does not scale between test facilities and free-air conditions. A tapered-span-load configuration, which exhibits little or no drag penalty, is shown to offer significant downstream wake alleviation to a small trailing wing. The greater downstream wake alleviation achieved with the addition of spoilers to a flapped-wing configuration is shown to result directly from the high incremental drag and turbulence associated with the spoilers and not from the span load alteration they cause.

  9. Coherent Lidar Turbulence Measurement for Gust Load Alleviation

    NASA Technical Reports Server (NTRS)

    Bogue, Rodney K.; Ehernberger, L. J.; Soreide, David; Bagley, Hal

    1996-01-01

    Atmospheric turbulence adversely affects operation of commercial and military aircraft and is a design constraint. The airplane structure must be designed to survive the loads imposed by turbulence. Reducing these loads allows the airplane structure to be lighter, a substantial advantage for a commercial airplane. Gust alleviation systems based on accelerometers mounted in the airplane can reduce the maximum gust loads by a small fraction. These systems still represent an economic advantage. The ability to reduce the gust load increases tremendously if the turbulent gust can be measured before the airplane encounters it. A lidar system can make measurements of turbulent gusts ahead of the airplane, and the NASA Airborne Coherent Lidar for Advanced In-Flight Measurements (ACLAIM) program is developing such a lidar. The ACLAIM program is intended to develop a prototype lidar system for use in feasibility testing of gust load alleviation systems and other airborne lidar applications, to define applications of lidar with the potential for improving airplane performance, and to determine the feasibility and benefits of these applications. This paper gives an overview of the ACLAIM program, describes the lidar architecture for a gust alleviation system, and describes the prototype ACLAIM lidar system.

  10. Burial trench dynamic compaction demonstration at a humid site

    SciTech Connect

    Spalding, B.P.

    1985-01-01

    This task has the objective of determining the degree of consolidation which can be achieved by dynamic compaction of a closed burial trench within a cohesive soil formation. A seven-year-old burial trench in Solid Waste Storage Area (SWSA) 6 of Oak Ridge National Laboratory (ORNL) was selected for this demonstration. This 251 m/sup 3/ trench contained about 80 Ci of mixed radionuclides, mostly /sup 90/Sr, in 25 m/sup 3/ of waste consisting of contaminated equipment, dry solids, and demolition debris. Prior to compaction, a total trench void space of 79 m/sup 3/ was measured by pumping the trench full of water with corrections for seepage. Additional pre-compaction characterization included trench cap bulk density (1.68 kg/L), trench cap permeability (3 x 10/sup -7/ m/s), and subsurface waste/backfill hydraulic conductivity (>0.01 m/s). Compaction was achieved by repeatedly dropping a 4-ton steel-reinforced concrete cylinder from heights of 4 to 8 m using the whipline of a 70-ton crane. The average trench ground surface was depressed 0.79 m, with some sections over 2 m, yielding a surveyed volumetric depression which totaled to 64% of the measured trench void space. Trench cap (0 to 60 cm) bulk density and permeability were not affected by compaction indicating that the consolidation was largely subsurface. Neither surface nor airborne radioactive contamination were observed during repeated monitoring during the demonstration. Dynamic compaction was shown to be an excellent and inexpensive (i.e., about $20/m/sup 2/) method to collapse trench void space, thereby hastening subsidence and stabilizing the land surface. 15 refs., 10 figs., 3 tabs.

  11. Helicopter gust alleviation, attitude stabilization, and vibration alleviation using individual-blade-control through a conventional swash plate

    NASA Technical Reports Server (NTRS)

    Ham, N. D.

    1985-01-01

    The novel active control system presented for helicopter rotor aerodynamic and aeroelastic problems involves the individual control of each blade in the rotating frame over a wide range of frequencies (up to the sixth harmonic of rotor speed). This Individual Blade Control (IBC) system controls blade pitch by means of broadband electrohydraulic actuators attached to the swash plate (in the case of three blades) or individually to each blade, using acceleratometer signals to furnish control commands to the actuators. Attention is given to IBC's application to blade lag, flapping, and bending dynamics. It is shown that gust alleviation, attitude stabilization, vibration alleviation, and air/ground resonance suppression, are all achievable with a conventional helicopter swash plate.

  12. Compact Circuit Preprocesses Accelerometer Output

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr.

    1993-01-01

    Compact electronic circuit transfers dc power to, and preprocesses ac output of, accelerometer and associated preamplifier. Incorporated into accelerometer case during initial fabrication or retrofit onto commercial accelerometer. Made of commercial integrated circuits and other conventional components; made smaller by use of micrologic and surface-mount technology.

  13. Generalized high order compact methods.

    SciTech Connect

    Spotz, William F.; Kominiarczuk, Jakub

    2010-09-01

    The fundamental ideas of the high order compact method are combined with the generalized finite difference method. The result is a finite difference method that works on unstructured, nonuniform grids, and is more accurate than one would classically expect from the number of grid points employed.

  14. Upwind Compact Finite Difference Schemes

    NASA Astrophysics Data System (ADS)

    Christie, I.

    1985-07-01

    It was shown by Ciment, Leventhal, and Weinberg ( J. Comput. Phys.28 (1978), 135) that the standard compact finite difference scheme may break down in convection dominated problems. An upwinding of the method, which maintains the fourth order accuracy, is suggested and favorable numerical results are found for a number of test problems.

  15. Mesoscale Simulations of Power Compaction

    SciTech Connect

    Lomov, I; Fujino, D; Antoun, T; Liu, B

    2009-08-06

    Mesoscale 3D simulations of metal and ceramic powder compaction in shock waves have been performed with an Eulerian hydrocode GEODYN. The approach was validated by simulating shock compaction of porous well-characterized ductile metal using Steinberg material model. Results of the simulations with handbook values for parameters of solid 2024 aluminum have good agreement with experimental compaction curves and wave profiles. Brittle ceramic materials are not so well studied as metals, so material model for ceramic (tungsten carbide) has been fitted to shock compression experiments of non-porous samples and further calibrated to match experimental compaction curves. Direct simulations of gas gun experiments with ceramic powder have been performed and showed good agreement with experimental data. Numerical shock wave profile has same character and thickness as measured with VISAR. Numerical results show reshock states above the single-shock Hugoniot line also observed in experiments. They found that to receive good quantitative agreement with experiment it is essential to perform 3D simulations.

  16. Mesoscale simulations of powder compaction

    NASA Astrophysics Data System (ADS)

    Lomov, Ilya; Antoun, Tarabay; Liu, Benjamin

    2009-06-01

    Mesoscale 3D simulations of metal and ceramic powder compaction in shock waves have been performed with an Eulerian hydrocode GEODYN. The approach was validated by simulating shock compaction of porous well-characterized ductile metal using Steinberg material model. Results of the simulations with handbook values for parameters of solid 2024 aluminum have good agreement with experimental compaction curves and wave profiles. Brittle ceramic materials are not so well studied as metals, so material model for ceramic (tungsten carbide) has been fitted to shock compression experiments of non-porous samples and further calibrated to experimental match compaction curves. Direct simulations of gas gun experiments with ceramic powder have been performed and showed good agreement with experimental data. Numerical shock wave profile has same character and thickness as measured with VISAR. Numerical results show evidence of hard-to-explain reshock states above the single-shock Hugoniot line, which have also been observed in the experiments. We found that to receive good quantitative agreement with experiment it is essential to perform 3D simulations, since 2D results tend to underpredict stress levels for high-porosity powders regardless of material properties. We developed a process to extract macroscale information for the simulation which can be directly used in calibration of continuum model for heterogeneous media.

  17. Properties of dynamically compacted WIPP salt

    SciTech Connect

    Brodsky, N.S.; Hansen, F.D.; Pfeifle, T.W.

    1996-07-01

    Dynamic compaction of mine-run salt is being investigated for the Waste Isolation Pilot Plant (WIPP), where compacted salt is being considered for repository sealing applications. One large-scale and two intermediate-scale dynamic compaction demonstrations were conducted. Initial fractional densities of the compacted salt range form 0.85 to 0.90, and permeabilities vary. Dynamically-compacted specimens were further consolidated in the laboratory by application of hydrostatic pressure. Permeability as a function of density was determined, and consolidation microprocesses were studied. Experimental results, in conjunction with modeling results, indicate that the compacted salt will function as a viable seal material.

  18. Involvement of ethylene in gibberellic acid-induced sulfur assimilation, photosynthetic responses, and alleviation of cadmium stress in mustard.

    PubMed

    Masood, Asim; Khan, M Iqbal R; Fatma, Mehar; Asgher, Mohd; Per, Tasir S; Khan, Nafees A

    2016-07-01

    The role of gibberellic acid (GA) or sulfur (S) in stimulation of photosynthesis is known. However, information on the involvement of ethylene in GA-induced photosynthetic responses and cadmium (Cd) tolerance is lacking. This work shows that ethylene is involved in S-assimilation, photosynthetic responses and alleviation of Cd stress by GA in mustard (Brassica juncea L.). Plants grown with 200 mg Cd kg(-1) soil were less responsive to ethylene despite high ethylene evolution and showed photosynthetic inhibition. Plants receiving 10 μM GA spraying plus 100 mg S kg(-1) soil supplementation exhibited increased S-assimilation and photosynthetic responses under Cd stress. Application of GA plus S decreased oxidative stress of plants grown with Cd and limited stress ethylene formation to the range suitable for promoting sulfur use efficiency (SUE), glutathione (GSH) production and photosynthesis. The role of ethylene in GA-induced S-assimilation and reversal of photosynthetic inhibition by Cd was substantiated by inhibiting ethylene biosynthesis with the use of aminoethoxyvinylglycine (AVG). The suppression of S-assimilation and photosynthetic responses by inhibiting ethylene in GA plus S treated plants under Cd stress indicated the involvement of ethylene in GA-induced S-assimilation and Cd stress alleviation. The outcome of the study is important to unravel the interaction between GA and ethylene and their role in Cd tolerance in plants. PMID:26998941

  19. Involvement of ethylene in gibberellic acid-induced sulfur assimilation, photosynthetic responses, and alleviation of cadmium stress in mustard.

    PubMed

    Masood, Asim; Khan, M Iqbal R; Fatma, Mehar; Asgher, Mohd; Per, Tasir S; Khan, Nafees A

    2016-07-01

    The role of gibberellic acid (GA) or sulfur (S) in stimulation of photosynthesis is known. However, information on the involvement of ethylene in GA-induced photosynthetic responses and cadmium (Cd) tolerance is lacking. This work shows that ethylene is involved in S-assimilation, photosynthetic responses and alleviation of Cd stress by GA in mustard (Brassica juncea L.). Plants grown with 200 mg Cd kg(-1) soil were less responsive to ethylene despite high ethylene evolution and showed photosynthetic inhibition. Plants receiving 10 μM GA spraying plus 100 mg S kg(-1) soil supplementation exhibited increased S-assimilation and photosynthetic responses under Cd stress. Application of GA plus S decreased oxidative stress of plants grown with Cd and limited stress ethylene formation to the range suitable for promoting sulfur use efficiency (SUE), glutathione (GSH) production and photosynthesis. The role of ethylene in GA-induced S-assimilation and reversal of photosynthetic inhibition by Cd was substantiated by inhibiting ethylene biosynthesis with the use of aminoethoxyvinylglycine (AVG). The suppression of S-assimilation and photosynthetic responses by inhibiting ethylene in GA plus S treated plants under Cd stress indicated the involvement of ethylene in GA-induced S-assimilation and Cd stress alleviation. The outcome of the study is important to unravel the interaction between GA and ethylene and their role in Cd tolerance in plants.

  20. Improving root-zone soil properties for Trembling Aspen in a reconstructed mine-site soil

    NASA Astrophysics Data System (ADS)

    Dyck, M. F.; Sabbagh, P.; Bockstette, S.; Landhäusser, S.; Pinno, B.

    2014-12-01

    Surface mining activities have significantly depleted natural tree cover, especially trembling aspen (Populus tremuloides), in the Boreal Forest and Aspen Parkland Natural Regions of Alberta. The natural soil profile is usually destroyed during these mining activities and soil and landscape reconstruction is typically the first step in the reclamation process. However, the mine tailings and overburden materials used for these new soils often become compacted during the reconstruction process because they are subjected to high amounts of traffic with heavy equipment. Compacted soils generally have low porosity and low penetrability through increased soil strength, making it difficult for roots to elongate and explore the soil. Compaction also reduces infiltration capacity and drainage, which can cause excessive runoff and soil erosion. To improve the pore size distribution and water transmission, subsoil ripping was carried out in a test plot at Genesee Prairie Mine, Alberta. Within the site, six replicates with two treatments each, unripped (compacted) and ripped (decompacted), were established with 20-m buffers between them. The main objective of this research was to characterize the effects of subsoil ripping on soil physical properties and the longevity of those effects.as well as soil water dynamics during spring snowmelt. Results showed improved bulk density, pore size distribution and water infiltration in the soil as a result of the deep ripping, but these improvements appear to be temporary.

  1. DEVELOPMENT OF BIOAVAILABILITY AND BIOKINETICS DETERMINATION METHODS FOR ORGANIC POLLUTANTS IN SOIL TO ENHANCE IN-SITU AND ON-SITE BIOREMEDIATION

    EPA Science Inventory

    Determination of biodegradation rates of organics in soil slurry and compacted soil systems is essential for evaluating the efficacy of bioremediation for treatment of contaminated soils. In this paper, a systematic protocol has been developed for evaluating bioknetic and transp...

  2. Parallel Mitogenome Sequencing Alleviates Random Rooting Effect in Phylogeography

    PubMed Central

    Hirase, Shotaro; Takeshima, Hirohiko; Nishida, Mutsumi; Iwasaki, Wataru

    2016-01-01

    Reliably rooted phylogenetic trees play irreplaceable roles in clarifying diversification in the patterns of species and populations. However, such trees are often unavailable in phylogeographic studies, particularly when the focus is on rapidly expanded populations that exhibit star-like trees. A fundamental bottleneck is known as the random rooting effect, where a distant outgroup tends to root an unrooted tree “randomly.” We investigated whether parallel mitochondrial genome (mitogenome) sequencing alleviates this effect in phylogeography using a case study on the Sea of Japan lineage of the intertidal goby Chaenogobius annularis. Eighty-three C. annularis individuals were collected and their mitogenomes were determined by high-throughput and low-cost parallel sequencing. Phylogenetic analysis of these mitogenome sequences was conducted to root the Sea of Japan lineage, which has a star-like phylogeny and had not been reliably rooted. The topologies of the bootstrap trees were investigated to determine whether the use of mitogenomes alleviated the random rooting effect. The mitogenome data successfully rooted the Sea of Japan lineage by alleviating the effect, which hindered phylogenetic analysis that used specific gene sequences. The reliable rooting of the lineage led to the discovery of a novel, northern lineage that expanded during an interglacial period with high bootstrap support. Furthermore, the finding of this lineage suggested the existence of additional glacial refugia and provided a new recent calibration point that revised the divergence time estimation between the Sea of Japan and Pacific Ocean lineages. This study illustrates the effectiveness of parallel mitogenome sequencing for solving the random rooting problem in phylogeographic studies. PMID:27016485

  3. Invariant distributions on compact homogeneous spaces

    SciTech Connect

    Gorbatsevich, V V

    2013-12-31

    In this paper, we study distributions on compact homogeneous spaces, including invariant distributions and also distributions admitting a sub-Riemannian structure. We first consider distributions of dimension 1 and 2 on compact homogeneous spaces. After this, we study the cases of compact homogeneous spaces of dimension 2, 3, and 4 in detail. Invariant distributions on simply connected compact homogeneous spaces are also treated. Bibliography: 18 titles.

  4. Ganokendra: An Innovative Model for Poverty Alleviation In Bangladesh

    NASA Astrophysics Data System (ADS)

    Alam, Kazi Rafiqul

    2006-05-01

    Ganokendras (people's learning centers) employ a literacy-based approach to alleviating poverty in Bangladesh. They give special attention to empowering rural women, among whom poverty is widespread. The present study reviews the Ganokendra-approach to facilitating increased political and economic awareness and improving community conditions in line with government initiatives for poverty reduction. Many Ganokendras implement programmes geared towards income-generating activities and establish linkages with other service providers, both governmental and non-governmental. As is shown, one particularly successful strategy for facilitating women's economic empowerment involves co-ordinating micro-credit available through other agencies.

  5. A Comprehensive Robust Adaptive Controller for Gust Load Alleviation

    PubMed Central

    Quagliotti, Fulvia

    2014-01-01

    The objective of this paper is the implementation and validation of an adaptive controller for aircraft gust load alleviation. The contribution of this paper is the design of a robust controller that guarantees the reduction of the gust loads, even when the nominal conditions change. Some preliminary results are presented, considering the symmetric aileron deflection as control device. The proposed approach is validated on subsonic transport aircraft for different mass and flight conditions. Moreover, if the controller parameters are tuned for a specific gust model, even if the gust frequency changes, no parameter retuning is required. PMID:24688411

  6. 7 CFR 51.582 - Fairly compact.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Standards for Celery Definitions § 51.582 Fairly compact. Fairly compact means that the branches on the... 7 Agriculture 2 2010-01-01 2010-01-01 false Fairly compact. 51.582 Section 51.582 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections,...

  7. 7 CFR 51.572 - Compact.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Standards for Celery Definitions § 51.572 Compact. Compact means that the branches on the stalk are fairly... 7 Agriculture 2 2010-01-01 2010-01-01 false Compact. 51.572 Section 51.572 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections,...

  8. 7 CFR 51.572 - Compact.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Standards for Celery Definitions § 51.572 Compact. Compact means that the branches on the stalk are fairly... 7 Agriculture 2 2011-01-01 2011-01-01 false Compact. 51.572 Section 51.572 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections,...

  9. 7 CFR 51.582 - Fairly compact.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Standards for Celery Definitions § 51.582 Fairly compact. Fairly compact means that the branches on the... 7 Agriculture 2 2011-01-01 2011-01-01 false Fairly compact. 51.582 Section 51.582 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections,...

  10. Rapid compaction during RNA folding

    NASA Astrophysics Data System (ADS)

    Russell, Rick; Millett, Ian S.; Tate, Mark W.; Kwok, Lisa W.; Nakatani, Bradley; Gruner, Sol M.; Mochrie, Simon G. J.; Pande, Vijay; Doniach, Sebastian; Herschlag, Daniel; Pollack, Lois

    2002-04-01

    We have used small angle x-ray scattering and computer simulations with a coarse-grained model to provide a time-resolved picture of the global folding process of the Tetrahymena group I RNA over a time window of more than five orders of magnitude. A substantial phase of compaction is observed on the low millisecond timescale, and the overall compaction and global shape changes are largely complete within one second, earlier than any known tertiary contacts are formed. This finding indicates that the RNA forms a nonspecifically collapsed intermediate and then searches for its tertiary contacts within a highly restricted subset of conformational space. The collapsed intermediate early in folding of this RNA is grossly akin to molten globule intermediates in protein folding.

  11. Compact torus studies: Final report

    SciTech Connect

    Morse, E.C.

    1987-06-01

    The compact torus (CT) device has been proposed for use in some applications which are of interest in Laboratory programs in the areas of pulsed power and inertial confinement fusion. These applications involve compression and acceleration of CT plasmas. The RACE (Ring Accelerator Experiment) experimental program at Livermore has been initiated to study these applications. The work reported here involves studies of plasma physics and other aspects of these compact torus applications. The studies conducted identify specific problem areas associated with the CT device and examine these areas in some detail. This report contains studies of three particular problem areas of the CT applications. These three areas are: the general nonlinear properties of the CT as a magnetohydrodynamic (MHD) equilibrium, particle simulation of the compression of the CT, with a focus on the non-MHD effects, and nonlinear RF interaction problems in the CT.

  12. Compact portable diffraction moire interferometer

    DOEpatents

    Deason, V.A.; Ward, M.B.

    1988-05-23

    A compact and portable moire interferometer used to determine surface deformations of an object. The improved interferometer is comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent wave splitters, and collimating lenses directing the split beam at one or more specimen gratings. Observations means including film and video cameras may be used to view and record the resultant fringe patterns. 7 figs.

  13. Compact portable diffraction moire interferometer

    DOEpatents

    Deason, Vance A.; Ward, Michael B.

    1989-01-01

    A compact and portable moire interferometer used to determine surface deformations of an object. The improved interferometer is comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent wave splitters, and collimating lenses directing the split beam at one or more specimen gratings. Observation means including film and video cameras may be used to view and record the resultant fringe patterns.

  14. Compact planar microwave blocking filters

    NASA Technical Reports Server (NTRS)

    U-Yen, Kongpop (Inventor); Wollack, Edward J. (Inventor)

    2012-01-01

    A compact planar microwave blocking filter includes a dielectric substrate and a plurality of filter unit elements disposed on the substrate. The filter unit elements are interconnected in a symmetrical series cascade with filter unit elements being organized in the series based on physical size. In the filter, a first filter unit element of the plurality of filter unit elements includes a low impedance open-ended line configured to reduce the shunt capacitance of the filter.

  15. Compact magnetic energy storage module

    DOEpatents

    Prueitt, M.L.

    1994-12-20

    A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module. 4 figures.

  16. Compact magnetic energy storage module

    DOEpatents

    Prueitt, Melvin L.

    1994-01-01

    A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module.

  17. COMB: Compact embedded object simulations

    NASA Astrophysics Data System (ADS)

    McEwen, Jason D.

    2016-06-01

    COMB supports the simulation on the sphere of compact objects embedded in a stochastic background process of specified power spectrum. Support is provided to add additional white noise and convolve with beam functions. Functionality to support functions defined on the sphere is provided by the S2 code (ascl:1606.008); HEALPix (ascl:1107.018) and CFITSIO (ascl:1010.001) are also required.

  18. 78 FR 61384 - Meeting of the Compact Council for the National Crime Prevention and Privacy Compact

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-03

    ... Federal Bureau of Investigation Meeting of the Compact Council for the National Crime Prevention and... of this notice is to announce a meeting of the National Crime Prevention and Privacy Compact Council (Council) created by the National Crime Prevention and Privacy Compact Act of 1998 (Compact). Thus far,...

  19. 76 FR 20044 - Meeting of the Compact Council for the National Crime Prevention and Privacy Compact

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-11

    ... Federal Bureau of Investigation Meeting of the Compact Council for the National Crime Prevention and... this notice is to announce a meeting of the National Crime Prevention and Privacy Compact Council (Council) created by the National Crime Prevention and Privacy Compact Act of 1998 (Compact). Thus far,...

  20. 75 FR 62568 - Meeting of the Compact Council for the National Crime Prevention and Privacy Compact

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-12

    ... Federal Bureau of Investigation Meeting of the Compact Council for the National Crime Prevention and... this notice is to announce a meeting of the National Crime Prevention and Privacy Compact Council (Council) created by the National Crime Prevention and Privacy Compact Act of 1998 (Compact). Thus far,...

  1. 75 FR 17161 - Meeting of the Compact Council for the National Crime Prevention and Privacy Compact

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-05

    ... Federal Bureau of Investigation Meeting of the Compact Council for the National Crime Prevention and... purpose of this notice is to announce a meeting of the National Crime Prevention and Privacy Compact Council (Council) created by the National Crime Prevention and Privacy Compact Act of 1998 (Compact)....

  2. Compaction Waves in Granular HMX

    SciTech Connect

    E. Kober; R. Menikoff

    1999-01-01

    Piston driven compaction waves in granular HMX are simulated with a two-dimensional continuum mechanics code in which individual grains are resolved. The constitutive properties of the grains are modeled with a hydrostatic pressure and a simple elastic-plastic model for the shear stress. Parameters are chosen to correspond to inert HMX. For a tightly packed random grain distribution (with initial porosity of 19%) we varied the piston velocity to obtain weak partly compacted waves and stronger fully compacted waves. The average stress and wave speed are compatible with the porous Hugoniot locus for uni- axial strain. However, the heterogeneities give rise to stress concentrations, which lead to localized plastic flow. For weak waves, plastic deformation is the dominant dissipative mechanism and leads to dispersed waves that spread out in time. In addition to dispersion, the granular heterogeneities give rise to subgrain spatial variation in the thermodynamic variables. The peaks in the temperature fluctuations, known as hot spots, are in the range such that they are the critical factor for initiation sensitivity.

  3. Compact Stellarator Path to DEMO

    NASA Astrophysics Data System (ADS)

    Lyon, J. F.

    2007-11-01

    Issues for a DEMO reactor are sustaining an ignited/high-Q plasma in steady state, avoiding disruptions and large variations in power flux to the wall, adequate confinement of thermal plasma and alpha-particles, control of a burning plasma, particle and power handling, etc. Compact stellarators have key advantages -- steady-state high-plasma-density operation without external current drive or disruptions, stability without a close conducting wall or active feedback systems, and low recirculating power -- in addition to moderate plasma aspect ratio, good confinement, and high-beta potential. The ARIES-CS study established that compact stellarators can be competitive with tokamaks as reactors. Many of the issues for a compact stellarator DEMO can be answered using results from large tokamaks, ITER D-T experiments and fusion materials, technology and component development programs, in addition to stellarators in operation, under construction or in development. However, a large next-generation stellarator will be needed to address some physics issues: size scaling and confinement at higher parameters, burning plasma issues, and operation with a strongly radiative divertor. Technology issues include simpler coils, structure, and divertor fabrication, and better cost information.

  4. Compacted microcatchments with local earth materials for rainwater harvesting in the semiarid region of China

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Yan; Gong, Jia-Dong

    2002-02-01

    Low cost microcatchment treatments for rainwater harvesting are needed under the local poor economic conditions in the semiarid loess regions of northwest China. This paper was intended to study the effectiveness of runoff yield from compacted catchments with some local earth materials under the natural rainfall. The compacted catchments were constructed with uniformly mixed loess, laterite and fine sand at the ratio of 1:1:1. The results showed that rainfall-runoff efficiency from such compacted plots was 33% of the total rainfall as compared to 8.7% from the untreated plots. The compacted catchments had low infiltration rate, and the minimum precipitation required to produce runoff (threshold rainfall) was 4 mm under no antecedent rainfall effects and 1.9 mm under antecedent rainfall effects. In contrast, the threshold rainfall was about 8.5 mm for the untreated catchments under no antecedent rainfall effects and 6 mm under antecedent rainfall effects. The compacted catchment with local soils has a great potential for rainfall harvesting in the semiarid regions of China, but soil erosion is a problem, some form of soil stabilization would be needed in future use.

  5. Animal waste containment in anaerobic lagoons lined with compacted clays

    SciTech Connect

    Reddi, L.N.; Davalos, H.

    2000-03-01

    The practice of animal waste containment has recently drawn much interest from public and regulatory agencies in agriculture-oriented states such as Kansas and North Carolina. In this paper, the debate surrounding the practice is outlined, and results from a research investigation pertinent to the state of Kansas are presented. The research investigation involved two phases. In the first phase, compacted specimens of Kansas soils were tested with animal waste as the influent. The key objective of this phase of research was to assess the range of seepage quantities and the transport characteristics of nitrogen in the ammonium form (NH{sub 4}-N) through the compacted soils. Results from this phase indicated a steady increase of microbial counts in the liquid effluent. However, biological clogging did not appear to be prominent during the NH{sub 4}-N breakthrough time period. The results indicate significant differences in microbial uptake of NH{sub 4}-N among samples of the same soil type. In the second phase, analytical and numerical solutions were used to simulate ammonium transport in the field-scale liners and to estimated upper-bound travel times and final concentrations of NH{sub 4}-N in the underlying soils. Results form this phase showed drastic differences in travel times and end concentrations of NH{sub 4}-N among liners prepared from the same soil type. The potential for significant retardation, decay, and saturation levels of NH{sub 4}-N in clay liners suggests that liner thickness is an important parameter. It is concluded that mass transfer characteristics of liner material, cation exchange capacity and microbial uptake in particular, should be important considerations in the design of animal waste lagoon liners.

  6. Role of magnesium in alleviation of aluminium toxicity in plants.

    PubMed

    Bose, Jayakumar; Babourina, Olga; Rengel, Zed

    2011-04-01

    Magnesium is pivotal for activating a large number of enzymes; hence, magnesium plays an important role in numerous physiological and biochemical processes affecting plant growth and development. Magnesium can also ameliorate aluminium phytotoxicity, but literature reports on the dynamics of magnesium homeostasis upon exposure to aluminium are rare. Herein existing knowledge on the magnesium transport mechanisms and homeostasis maintenance in plant cells is critically reviewed. Even though overexpression of magnesium transporters can alleviate aluminium toxicity in plants, the mechanisms governing such alleviation remain obscure. Possible magnesium-dependent mechanisms include (i) better carbon partitioning from shoots to roots; (ii) increased synthesis and exudation of organic acid anions; (iii) enhanced acid phosphatase activity; (iv) maintenance of proton-ATPase activity and cytoplasmic pH regulation; (v) protection against an aluminium-induced cytosolic calcium increase; and (vi) protection against reactive oxygen species. Future research should concentrate on assessing aluminium toxicity and tolerance in plants with overexpressed or antisense magnesium transporters to increase understanding of the aluminium-magnesium interaction.

  7. Active smart material control system for buffet alleviation

    NASA Astrophysics Data System (ADS)

    Sheta, Essam F.; Moses, Robert W.; Huttsell, Lawrence J.

    2006-05-01

    Vertical tail buffeting is a serious multidisciplinary problem that limits the performance and maneuverability of twin-tail fighter aircraft. The buffet problem occurs at high angles of attack when the vortical flow breaks down ahead of the vertical tails resulting in unsteady and unbalanced loads on the tails leading to their premature fatigue failure. An active smart material control system, using distributed piezoelectric (PZT) actuators, is developed for buffet alleviation and is presented. The surfaces of the vertical tail are equipped with PZT actuators to control the buffet responses in the first bending and torsion modes. The electrodynamics of the PZT actuators are modeled using a finite-element model. A single-input/single-output controller is designed to drive the active PZT actuators. High-fidelity analysis modules for the fluid dynamics, structural dynamics, electrodynamics of the PZT actuators, control law, fluid-structure interfacing, and grid motion are integrated into a multidisciplinary computing environment that controls the temporal synchronization of the analysis modules. The results of this study indicate that the actively controlled PZT actuators are an effective tool for buffet alleviation over wide range of angels of attack. Peak values of power spectral density of tail-tip acceleration are reduced by as much as 22% in the first bending mode and by as much as 82% in the first torsion mode. The root mean square values of tail-tip acceleration are reduced by as much as 12%.

  8. Hypoxic Preconditioning Alleviates Ethanol Neurotoxicity: the Involvement of Autophagy

    PubMed Central

    Wang, Haiping; Bower, Kimberly A.; Frank, Jacqueline A.; Xu, Mei; Luo, Jia

    2013-01-01

    Ethanol is a neuroteratogen and neurodegeneration is the most devastating consequence of developmental exposure to ethanol. A sublethal preconditioning has been proposed as a neuroprotective strategy against several central nervous system (CNS) neurodegenerative diseases. We have recently demonstrated that autophagy is a protective response to alleviate ethanol toxicity. A modest hypoxic preconditioning (1% oxygen) did not cause neurotoxicity but induced autophagy (Tzeng et al., 2010). We therefore hypothesize that the modest hypoxic preconditioning may offer a protection against ethanol-induced neurotoxicity. We showed here that the modest hypoxic preconditioning (1% oxygen) for 8 hours significantly alleviated ethanol-induced death of SH-SY5Y neuroblastoma cells. Under the normoxia condition, cell viability in ethanol-exposed cultures (316 mg/dl for 48 hrs) was 49 ± 6% of untreated controls; however, with hypoxic preconditioning, cell viability in the ethanol-exposed group increased to 78 ± 7% of the controls (p < 0.05; n = 3). Bafilomycin A1, an inhibitor of autophagosome and lysosome fusion, blocked hypoxic preconditioning-mediated protection. Similarly, inhibition of autophagic initiation by wortmannin also eliminated hypoxic preconditioning-mediated protection. In contrast, activation of autophagy by rapamycin further enhanced neuroprotection caused by hypoxic preconditioning. Taken together, the results confirm that autophagy is a protective response against ethanol neurotoxicity and the modest hypoxic preconditioning can offer neuroprotection by activating autophagic pathways. PMID:23568540

  9. Curcumin alleviates oxidative stress and mitochondrial dysfunction in astrocytes.

    PubMed

    Daverey, Amita; Agrawal, Sandeep K

    2016-10-01

    Oxidative stress plays a critical role in various neurodegenerative diseases, thus alleviating oxidative stress is a potential strategy for therapeutic intervention and/or prevention of neurodegenerative diseases. In the present study, alleviation of oxidative stress through curcumin is investigated in A172 (human glioblastoma cell line) and HA-sp (human astrocytes cell line derived from the spinal cord) astrocytes. H2O2 was used to induce oxidative stress in astrocytes (A172 and HA-sp). Data show that H2O2 induces activation of astrocytes in dose- and time-dependent manner as evident by increased expression of GFAP in A172 and HA-sp cells after 24 and 12h respectively. An upregulation of Prdx6 was also observed in A172 and HA-sp cells after 24h of H2O2 treatment as compared to untreated control. Our data also showed that curcumin inhibits oxidative stress-induced cytoskeleton disarrangement, and impedes the activation of astrocytes by inhibiting upregulation of GFAP, vimentin and Prdx6. In addition, we observed an inhibition of oxidative stress-induced inflammation, apoptosis and mitochondria fragmentation after curcumin treatment. Therefore, our results suggest that curcumin not only protects astrocytes from H2O2-induced oxidative stress but also reverses the mitochondrial damage and dysfunction induced by oxidative stress. This study also provides evidence for protective role of curcumin on astrocytes by showing its effects on attenuating reactive astrogliosis and inhibiting apoptosis.

  10. Dopamine alleviates salt-induced stress in Malus hupehensis.

    PubMed

    Li, Chao; Sun, Xiangkai; Chang, Cong; Jia, Dongfeng; Wei, Zhiwei; Li, Cuiying; Ma, Fengwang

    2015-04-01

    Dopamine mediates many physiological processes in plants. We investigated its role in regulating growth, ion homeostasis and the response to salinity in Malus hupehensis Rehd. Both hydroponics and field-pot experiments were conducted under saline conditions. Salt-stressed plants had reduced growth and a marked decline in their net photosynthetic rates, values for Fv /Fm and chlorophyll contents. However, pretreatment with 100 or 200 μM dopamine significantly alleviated this inhibition and enabled plants to maintain their photosynthetic capacity. In addition to changing stomatal behavior, supplementation with dopamine positively influenced the uptake of K, N, P, S, Cu and Mn ions but had an inhibitory effect on Na and Cl uptake, the balance of which is responsible for managing the response to salinity by Malus plants. Dopamine pretreatment also controlled the burst of hydrogen peroxide, possibly through direct scavenging and by enhancing the activities of antioxidative enzymes and the capacity of the ascorbate-glutathione cycle. We also investigated whether dopamine might regulate salt overly sensitive pathway genes under salinity. Here, MdHKT1, MdNHX1 and MdSOS1 were greatly upregulated in roots and leaves, which possibly contributed to the maintenance of ion homeostasis and, thus, improved salinity resistance in plants exposed earlier to exogenous dopamine. These results support our conclusion that dopamine alleviates salt-induced stress not only at the level of antioxidant defense but also by regulating other mechanisms of ion homeostasis.

  11. Resource Assessment for Afghanistan and Alleviation of Terrorism

    NASA Astrophysics Data System (ADS)

    Shroder, J. F.

    2002-05-01

    Mineral and water resources in Afghanistan may be the best means by which redevelopment of the country can be used to alleviate future terrorism. Remote-sensing analysis of snow, ice, resources, and topography in Afghanistan, and development of digital elevation models with ASTER imagery and previously classified, large scale topographic maps from the Department of Defense enable better assessment and forecasting resources in the country. Adequate resource assessment and planning is viewed as critical to alleviation of one cause of the problems associated with the fertilization of terrorism in Afghanistan. Long-term diminution of meltwater resources in Afghanistan is exemplified by the disastrous and famine-inducing droughts of the present time and three decades prior, as well as by the early Landsat assessment of glacier resources sponsored by USGS and now brought up-to-date with current imagery. Extensive cold-war projects undertaken by both the USSR and USA generated plentiful essential mineral, hydrocarbon, hydrogeological, and hydrological data, including an extensive stream gauging and vital irrigation network now adversly affected or destroyed entirely by decades of war. Analysis, measurement, prediction, rehabilitation, and reconstruction of critical resource projects are regarded as most critical elements in the war on terrorism in this portion of the world. The GLIMS (Global Land Ice Measurements from Space) Project, initially sponsored by USGS, has established our group as the Regional Center for Afghanistan and Pakistan, in which the above concepts serve as guiding research precepts.

  12. Gynura procumbens Extract Alleviates Postprandial Hyperglycemia in Diabetic Mice

    PubMed Central

    Choi, Sung-In; Park, Mi Hwa; Han, Ji-Sook

    2016-01-01

    This study was designed to investigate the inhibitory effect of Gynura procumbens extract against carbohydrate digesting enzymes and its ability to ameliorate postprandial hyperglycemia in streptozotocin (STZ)-induced diabetic mice. G. procumbens extract showed prominent α-glucosidase and α-amylase inhibitory effects. The half-maximal inhibitory concentration (IC50) of G. procumbens extract against α-glucosidase and α-amylase was 0.092±0.018 and 0.084±0.027 mg/mL, respectively, suggesting that the α-amylase inhibition activity of the G. procumbens extract was more effective than that of the positive control, acarbose (IC50=0.164 mg/mL). The increase in postprandial blood glucose levels was more significantly alleviated in the G. procumbens extract group than in the control group of STZ-induced diabetic mice. Moreover, the area under the curve significantly decreased with G. procumbens extract administration in STZ-induced diabetic mice. These results suggest that G. procumbens extract may help alleviate postprandial hyperglycemia by inhibiting carbohydrate digesting enzymes. PMID:27752493

  13. Compaction by impact of unconsolidated lunar fines

    NASA Technical Reports Server (NTRS)

    Ahrens, T. J.

    1975-01-01

    New Hugoniot and release adiabat data for 1.8 g/cu cm lunar fines in the approximately 2 to 70 kbar range demonstrate that upon shock compression intrinsic crystal density (approximately 3.1 g/cu cm) is achieved under shock stress of 15 to 20 kbar. Release adiabat determinations indicate that measurable irreversible compaction occurs upon achieving shock pressures above approximately 4 kbar. For shocks in the approximately 7 to 15 kbar range, the inferred post-shock specific volumes observed decrease nearly linearly with increasing peak shock pressures. Upon shocking to approximately 15 kbar the post-shock density is approximately that of the intrinsic minerals. If the present data are taken to be representative of the response to impact of unconsolidated regolith material on the moon, it is inferred that the formation of appreciable quantities of soil breccia can be associated with the impact of meteoroids or ejecta at speeds as low as approximately 1 km/sec.

  14. CONSTRUCTION, MONITORING, AND PERFORMANCE OF TWO SOIL LINERS

    EPA Science Inventory

    A prototype soil liner and a field-scale soil liner were constructed to test whether compacted soil barrier systems could be built to meet the standard set by the U.S. Environmental Protection Agency (EPA) for saturated hydraulic conductivity (< 1 x 10'7 cm/s). In situ ponded inf...

  15. Unified compaction curve model for tensile strength of tablets made by roller compaction and direct compression.

    PubMed

    Farber, Leon; Hapgood, Karen P; Michaels, James N; Fu, Xi-Young; Meyer, Robert; Johnson, Mary-Ann; Li, Feng

    2008-01-01

    A model that describes the relationship between roller-compaction conditions and tablet strength is proposed. The model assumes that compaction is cumulative during roller compaction and subsequent granule compaction, and compact strength (ribbon and tablet) is generated irreversibly as if strength is controlled by plastic deformation of primary particles only. Roller-compaction is treated as a compaction step where the macroscopic ribbon strength is subsequently destroyed in milling. This loss in strength is irreversible and tablets compressed from the resulting granulation are weaker than those compressed by direct compression at the same compression force. Roller-compacted ribbons were produced at a range of roll forces for three formulations and subsequently milled and compacted into tablets. Once the total compaction history is taken in account, the compaction behavior of the uncompacted blends and the roller-compacted granules ultimately follow a single master compaction curve--a unified compaction curve (UCC). The model successfully described the compaction behavior of DC grade starch and formulations of lactose monohydrate with 50% or more microcrystalline cellulose, and may be more generally applicable to systems containing significant proportions of any plastically deforming material, including MCC and starch. PMID:17689211

  16. Compaction of Space Mission Wastes

    NASA Technical Reports Server (NTRS)

    Fisher, John; Pisharody, Suresh; Wignarajah, K.

    2004-01-01

    The current solid waste management system employed on the International Space Station (ISS) consists of compaction, storage, and disposal. Wastes such plastic food packaging and trash are compacted manually and wrapped in duct tape footballs by the astronauts. Much of the waste is simply loaded either into the empty Russian Progress vehicle for destruction on reentry or into Shuttle for return to Earth. This manual method is wasteful of crew time and does not transition well to far term missions. Different wastes onboard spacecraft vary considerably in their characteristics and in the appropriate method of management. In advanced life support systems for far term missions, recovery of resources such as water from the wastes becomes important. However waste such as plastic food packaging, which constitutes a large fraction of solid waste (roughly 21% on ISS, more on long duration missions), contains minimal recoverable resource. The appropriate management of plastic waste is waste stabilization and volume minimization rather than resource recovery. This paper describes work that has begun at Ames Research Center on development of a heat melt compactor that can be used on near term and future missions, that can minimize crew interaction, and that can handle wastes with a significant plastic composition. The heat melt compactor takes advantage of the low melting point of plastics to compact plastic materials using a combination of heat and pressure. The US Navy has demonstrated successful development of a similar unit for shipboard application. Ames is building upon the basic approach demonstrated by the Navy to develop an advanced heat melt type compactor for space mission type wastes.

  17. Two Piece Compaction Die Design

    SciTech Connect

    Coffey, Ethan N

    2010-03-01

    Compaction dies used to create europium oxide and tantalum control plates were modeled using ANSYS 11.0. Two-piece designs were considered in order to make the dies easier to assemble than the five-piece dies that were previously used. The two areas of concern were the stresses at the interior corner of the die cavity and the distortion of the cavity wall due to the interference fit between the two pieces and the pressure exerted on the die during the compaction process. A successful die design would have stresses less than the yield stress of the material and a maximum wall distortion on the order of 0.0001 in. Design factors that were investigated include the inner corner radius, the value of the interference fit, the compaction force, the size of the cavity, and the outer radius and geometry of the outer ring. The results show that for the europium oxide die, a 0.01 in. diameter wire can be used to create the cavity, leading to a 0.0055 in. radius corner, if the radial interference fit is 0.003 in. For the tantalum die, the same wire can be used with a radial interference fit of 0.001 in. Also, for the europium oxide die with a 0.003 in. interference fit, it is possible to use a wire with a diameter of 0.006 in. for the wire burning process. Adding a 10% safety factor to the compaction force tends to lead to conservative estimates of the stresses but not for the wall distortion. However, when the 10% safety factor is removed, the wall distortion is not affected enough to discard the design. Finally, regarding the europium oxide die, when the cavity walls are increased by 0.002 in. per side or the outer ring is made to the same geometry as the tantalum die, all the stresses and wall distortions are within the desired range. Thus, the recommendation is to use a 0.006 in. diameter wire and a 0.003 in. interference fit for the europium oxide die and a 0.01 in. diameter wire and a 0.001 in. interference fit for the tantalum die. The dies can also be made to have the

  18. Shock compaction of molybdenum powder

    NASA Technical Reports Server (NTRS)

    Ahrens, T. J.; Kostka, D.; Vreeland, T., Jr.; Schwarz, R. B.; Kasiraj, P.

    1983-01-01

    Shock recovery experiments which were carried out in the 9 to 12 GPa range on 1.4 distension Mo and appear adequate to compact to full density ( 45 (SIGMA)m) powders were examined. The stress levels, however, are below those calculated to be from 100 to approx. 22 GPa which a frictional heating model predicts are required to consolidate approx. 10 to 50 (SIGMA)m particles. The model predicts that powders that have a distension of m=1.6 shock pressures of 14 to 72 GPa are required to consolidate Mo powders in the 50 to 10 (SIGMA)m range.

  19. New charged anisotropic compact models

    NASA Astrophysics Data System (ADS)

    Kileba Matondo, D.; Maharaj, S. D.

    2016-07-01

    We find new exact solutions to the Einstein-Maxwell field equations which are relevant in the description of highly compact stellar objects. The relativistic star is charged and anisotropic with a quark equation of state. Exact solutions of the field equations are found in terms of elementary functions. It is interesting to note that we regain earlier quark models with uncharged and charged matter distributions. A physical analysis indicates that the matter distributions are well behaved and regular throughout the stellar structure. A range of stellar masses are generated for particular parameter values in the electric field. In particular the observed mass for a binary pulsar is regained.

  20. Compact objects in Horndeski gravity

    NASA Astrophysics Data System (ADS)

    Silva, Hector O.; Maselli, Andrea; Minamitsuji, Masato; Berti, Emanuele

    2016-04-01

    Horndeski gravity holds a special position as the most general extension of Einstein’s theory of general relativity (GR) with a single scalar degree of freedom and second-order field equations. Because of these features, Horndeski gravity is an attractive phenomenological playground to investigate the consequences of modifications of GR in cosmology and astrophysics. We present a review of the progress made so far in the study of compact objects (black holes (BHs) and neutron stars (NSs)) within Horndeski gravity. In particular, we review our recent work on slowly rotating BHs and present some new results on slowly rotating NSs.

  1. Simplified compact containment BWR plant

    SciTech Connect

    Heki, H.; Nakamaru, M.; Tsutagawa, M.; Hiraiwa, K.; Arai, K.; Hida, T.

    2004-07-01

    The reactor concept considered in this paper has a small power output, a compact containment and a simplified BWR configuration with comprehensive safety features. The Compact Containment Boiling Water Reactor (CCR), which is being developed with matured BWR technologies together with innovative systems/components, is expected to prove attractive in the world energy markets due to its flexibility in regard to both energy demands and site conditions, its high potential for reducing investment risk and its safety features facilitating public acceptance. The flexibility is achieved by CCR's small power output of 300 MWe class and capability of long operating cycle (refueling intervals). CCR is expected to be attractive from view point of investment due to its simplification/innovation in design such as natural circulation core cooling with the bottom located short core, internal upper entry control rod drives (CRDs) with ring-type dryers and simplified ECCS system with high pressure containment concept. The natural circulation core eliminates recirculation pumps and the maintenance of such pumps. The internal upper entry CRDs reduce the height of the reactor vessel (RPV) and consequently reduce the height of the primary containment vessel (PCV). The safety features mainly consist of large water inventory above the core without large penetration below the top of the core, passive cooling system by isolation condenser (IC), passive auto catalytic recombiner and in-vessel retention (IVR) capability. The large inventory increases the system response time in the case of design-base accidents, including loss of coolant accidents. The IC suppresses PCV pressure by steam condensation without any AC power. The recombiner decreases hydrogen concentration in the PCV in the case of a severe accident. Cooling the molten core inside the RPV if the core should be damaged by loss of core coolability could attain the IVR. The feasibility of CCR safety system has been confirmed by LOCA

  2. Non-pharmacological approaches to alleviate distress in dementia care.

    PubMed

    Mitchell, Gary; Agnelli, Joanne

    2015-11-25

    Distress is one of the most common clinical manifestations associated with dementia. Pharmacological intervention may be appropriate in managing distress in some people. However, best practice guidelines advocate non-pharmacological interventions as the preferred first-line treatment. The use of non-pharmacological interventions encourages healthcare professionals to be more person-centred in their approach, while considering the causes of distress. This article provides healthcare professionals with an overview of some of the non-pharmacological approaches that can assist in alleviating distress for people living with dementia including: reminiscence therapy, reality orientation, validation therapy, music therapy, horticultural therapy, doll therapy and pet therapy. It provides a summary of their use in clinical practice and links to the relevant literature. PMID:26602678

  3. Microbial community dynamics alleviate stoichiometric constraints during litter decay.

    PubMed

    Kaiser, Christina; Franklin, Oskar; Dieckmann, Ulf; Richter, Andreas

    2014-06-01

    Under the current paradigm, organic matter decomposition and nutrient cycling rates are a function of the imbalance between substrate and microbial biomass stoichiometry. Challenging this view, we demonstrate that in an individual-based model, microbial community dynamics alter relative C and N limitation during litter decomposition, leading to a system behaviour not predictable from stoichiometric theory alone. Rather, the dynamics of interacting functional groups lead to an adaptation at the community level, which accelerates nitrogen recycling in litter with high initial C : N ratios and thus alleviates microbial N limitation. This mechanism allows microbial decomposers to overcome large imbalances between resource and biomass stoichiometry without the need to decrease carbon use efficiency (CUE), which is in contrast to predictions of traditional stoichiometric mass balance equations. We conclude that identifying and implementing microbial community-driven mechanisms in biogeochemical models are necessary for accurately predicting terrestrial C fluxes in response to changing environmental conditions. PMID:24628731

  4. Flight investigation of insect contamination and its alleviation

    NASA Technical Reports Server (NTRS)

    Peterson, J. B., Jr.; Fisher, D. F.

    1978-01-01

    An investigation of leading edge contamination by insects was conducted with a JetStar airplane instrumented to detect transition on the outboard leading edge flap and equipped with a system to spray the leading edge in flight. The results of airline type flights with the JetStar indicated that insects can contaminate the leading edge during takeoff and climbout. The results also showed that the insects collected on the leading edges at 180 knots did not erode at cruise conditions for a laminar flow control airplane and caused premature transition of the laminar boundary layer. None of the superslick and hydrophobic surfaces tested showed any significant advantages in alleviating the insect contamination problem. While there may be other solutions to the insect contamination problem, the results of these tests with a spray system showed that a continouous water spray while encountering the insects is effective in preventing insect contamination of the leading edges.

  5. Microbial community dynamics alleviate stoichiometric constraints during litter decay.

    PubMed

    Kaiser, Christina; Franklin, Oskar; Dieckmann, Ulf; Richter, Andreas

    2014-06-01

    Under the current paradigm, organic matter decomposition and nutrient cycling rates are a function of the imbalance between substrate and microbial biomass stoichiometry. Challenging this view, we demonstrate that in an individual-based model, microbial community dynamics alter relative C and N limitation during litter decomposition, leading to a system behaviour not predictable from stoichiometric theory alone. Rather, the dynamics of interacting functional groups lead to an adaptation at the community level, which accelerates nitrogen recycling in litter with high initial C : N ratios and thus alleviates microbial N limitation. This mechanism allows microbial decomposers to overcome large imbalances between resource and biomass stoichiometry without the need to decrease carbon use efficiency (CUE), which is in contrast to predictions of traditional stoichiometric mass balance equations. We conclude that identifying and implementing microbial community-driven mechanisms in biogeochemical models are necessary for accurately predicting terrestrial C fluxes in response to changing environmental conditions.

  6. Music-reading training alleviates crowding with musical notation.

    PubMed

    Wong, Yetta Kwailing; Wong, Alan C-N

    2016-06-01

    Crowding refers to the disrupted recognition of an object by nearby distractors. Prior work has shown that real-world music-reading experts experience reduced crowding specifically for musical stimuli. However, it is unclear whether music-reading training reduced the magnitude of crowding or whether individuals showing less crowding are more likely to learn and excel in music reading later. To examine the first possibility, we tested whether crowding can be alleviated by music-reading training in the laboratory. Intermediate-level music readers completed 8 hr of music-reading training within 2 weeks. Their threshold duration for reading musical notes dropped by 44.1% after training to a level comparable with that of extant expert music readers. Importantly, crowding was reduced with musical stimuli but not with the nonmusical stimuli Landolt Cs. In sum, the reduced crowding for musical stimuli in expert music readers can be explained by music-reading training.

  7. Microbial community dynamics alleviate stoichiometric constraints during litter decay

    PubMed Central

    Kaiser, Christina; Franklin, Oskar; Dieckmann, Ulf; Richter, Andreas

    2014-01-01

    Under the current paradigm, organic matter decomposition and nutrient cycling rates are a function of the imbalance between substrate and microbial biomass stoichiometry. Challenging this view, we demonstrate that in an individual-based model, microbial community dynamics alter relative C and N limitation during litter decomposition, leading to a system behaviour not predictable from stoichiometric theory alone. Rather, the dynamics of interacting functional groups lead to an adaptation at the community level, which accelerates nitrogen recycling in litter with high initial C : N ratios and thus alleviates microbial N limitation. This mechanism allows microbial decomposers to overcome large imbalances between resource and biomass stoichiometry without the need to decrease carbon use efficiency (CUE), which is in contrast to predictions of traditional stoichiometric mass balance equations. We conclude that identifying and implementing microbial community-driven mechanisms in biogeochemical models are necessary for accurately predicting terrestrial C fluxes in response to changing environmental conditions. PMID:24628731

  8. Optimal control alleviation of tilting proprotor gust response

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1975-01-01

    Optimal control theory is applied to the design of a control system for alleviation of the gust response of tilting proprotor aircraft. Using a proprotor and cantilever wing analytical model, the uncontrolled and controlled gust response is examined over the entire operating range of the aircraft except for hover: helicopter mode, conversion, and airplane mode flight. Substantial improvements in the loads, ride quality, and aeroelastic stability are possible with a properly designed controller. A single controller, nominally optimal only at the design point speed (160 knots here), operated efficiently over the entire speed range, with the possible exception of very low speed in helicopter mode. Kalman-Bucy filters were used as compensation networks to provide state estimates from various measurements in the wing motion, rotor speed perturbation, and tip-path-plane tilt.

  9. Wake vortex alleviation using rapidly actuated segmented Gurney flaps

    NASA Astrophysics Data System (ADS)

    Matalanis, Claude G.

    All bodies that generate lift also generate circulation. The circulation generated by large commercial aircraft remains in their wake in the form of trailing vortices. These vortices can be hazardous to following aircraft due to their strength and persistence. To account for this, airports abide by spacing rules which govern the frequency with which aircraft can use their runways when operating in instrument flight rules. These spacing rules are the limiting factor on increasing airport capacity. We conducted an experimental and computational study to assess the potential for using rapidly actuated segmented Gurney flaps, also known as Miniature Trailing Edge Effectors (MiTEs), for active wake vortex alleviation. Wind tunnel tests were performed on a half-span model NACA 0012 wing equipped with an array of 13 independent MITE pairs. The chord-based Reynolds number was around 350,000. Each MiTE could extend 0.015 chord lengths perpendicular to the freestream on the pressure side of the wing. Pressure profiles and a five-hole probe survey in the near wake were used to examine the influence that the MiTEs had upon the wing aerodynamics and the vortex rollup process. Particle image velocimetry was used to measure the static and time-dependent response of the vortex in the intermediate wake to various MiTE actuation schemes. These results were used to form complete initial conditions for vortex filament computations of the far wake evolution. Results from these computations showed that the perturbations created by MiTEs could be used to excite a variety of three-dimensional inviscid vortex instabilities. Finally, the research performed on MiTEs led to the invention of a more practical wake alleviation device: the spanwise actuating Gurney flap. Prototype tests showed that this device could produce similar perturbations to the MiTEs.

  10. Oral carbohydrate loading with 18% carbohydrate beverage alleviates insulin resistance.

    PubMed

    Tamura, Takahiko; Yatabe, Tomoaki; Kitagawa, Hiroyuki; Yamashita, Koichi; Hanazaki, Kazuhiro; Yokoyama, Masataka

    2013-01-01

    Preoperative 12.6% oral carbohydrate loading is an element of the Enhanced Recovery After Surgery (ERAS) protocol aimed at alleviating postoperative insulin resistance; however, in Japan, beverages with 18% carbohydrate content are generally used for preoperative carbohydrate loading. We investigated the effect of 18% carbohydrate loading on alleviating insulin resistance. Six healthy volunteers participated in this crossover-randomized study and were segregated into 2 groups: volunteers in the carbohydrate-loading group (group A) who fasted from after 9 pm and ingested 375 mL of a beverage containing 18% carbohydrate (ArginaidWaterTM; Nestle, Tokyo, Japan) between 9 pm and 12 pm, and 250 mL of the same liquid at 6:30 am. Volunteers in control group (group B) drank only water. At 8:30 am, a hyperinsulinemic normoglycemic clamp was initiated. Glucose infusion rate (GIR) and levels of ketone bodies and cytokines (IL-1β, IL-6, and TNF-α) before clamping were evaluated. p<0.05 was considered statistically significant. Levels of blood glucose, insulin, and cytokines at the start of the clamp were similar in both the groups. The GIR in group A was significantly higher than that in group B (11.5±2.4 vs 6.2±2.2 mg/kg/min, p=0.005), while blood ketone body levels were significantly lower in group A (22±4 vs 124±119 μmol/L, p=0.04). Preoperative 18% carbohydrate loading could prevent the decrease in insulin sensitivity and suppress catabolism in healthy volunteers. Thus, carbohydrate loading with a beverage with 18% carbohydrate content might contribute to improvements in perioperative management. PMID:23353610

  11. Proteus mirabilis alleviates zinc toxicity by preventing oxidative stress in maize (Zea mays) plants.

    PubMed

    Islam, Faisal; Yasmeen, Tahira; Riaz, Muhammad; Arif, Muhammad Saleem; Ali, Shafaqat; Raza, Syed Hammad

    2014-12-01

    Plant-associated bacteria can have beneficial effects on the growth and health of their host. However, the role of plant growth promoting bacteria (PGPR), under metal stress, has not been widely investigated. The present study investigated the possible mandatory role of plant growth promoting rhizobacteria in protecting plants from zinc (Zn) toxicity. The exposure of maize plants to 50µM zinc inhibited biomass production, decreased chlorophyll, total soluble protein and strongly increased accumulation of Zn in both root and shoot. Similarly, Zn enhanced hydrogen peroxide, electrolyte leakage and lipid peroxidation as indicated by malondaldehyde accumulation. Pre-soaking with novel Zn tolerant bacterial strain Proteus mirabilis (ZK1) isolated zinc (Zn) contaminated soil, alleviated the negative effect of Zn on growth and led to a decrease in oxidative injuries caused by Zn. Furthermore, strain ZK1 significantly enhanced the activities of catalase, guaiacol peroxidase, superoxide dismutase and ascorbic acid but lowered the Proline accumulation in Zn stressed plants. The results suggested that the inoculation of Zea mays plants with P. mirabilis during an earlier growth period could be related to its plant growth promoting activities and avoidance of cumulative damage upon exposure to Zn, thus reducing the negative consequences of oxidative stress caused by heavy metal toxicity.

  12. Thermal treatment and leaching of biochar alleviates plant growth inhibition from mobile organic compounds

    PubMed Central

    Sackett, Tara E.; Thomas, Sean C.

    2016-01-01

    Recent meta-analyses of plant responses to biochar boast positive average effects of between 10 and 40%. Plant responses, however, vary greatly across systems, and null or negative biochar effects are increasingly reported. The mechanisms responsible for such responses remain unclear. In a glasshouse experiment we tested the effects of three forestry residue wood biochars, applied at five dosages (0, 5, 10, 20, and 50 t/ha) to a temperate forest drystic cambisol as direct surface applications and as complete soil mixes on the herbaceous pioneers Lolium multiflorum and Trifolium repens. Null and negative effects of biochar on growth were found in most cases. One potential cause for null and negative plant responses to biochar is plant exposure to mobile compounds produced during pyrolysis that leach or evolve following additions of biochars to soil. In a second glasshouse experiment we examined the effects of simple leaching and heating techniques to ameliorate potentially phytotoxic effects of volatile and leachable compounds released from biochar. We used Solid Phase Microextraction (SPME)–gas chromatography–mass spectrometry (GC-MS) to qualitatively describe organic compounds in both biochar (through headspace extraction), and in the water leachates (through direct injection). Convection heating and water leaching of biochar prior to application alleviated growth inhibition. Additionally, growth was inhibited when filtrate from water-leached biochar was applied following germination. SPME-GC-MS detected primarily short-chained carboxylic acids and phenolics in both the leachates and solid chars, with relatively high concentrations of several known phytotoxic compounds including acetic acid, butyric acid, 2,4-di-tert-butylphenol and benzoic acid. We speculate that variable plant responses to phytotoxic organic compounds leached from biochars may largely explain negative plant growth responses and also account for strongly species-specific patterns of plant

  13. Thermal treatment and leaching of biochar alleviates plant growth inhibition from mobile organic compounds.

    PubMed

    Gale, Nigel V; Sackett, Tara E; Thomas, Sean C

    2016-01-01

    Recent meta-analyses of plant responses to biochar boast positive average effects of between 10 and 40%. Plant responses, however, vary greatly across systems, and null or negative biochar effects are increasingly reported. The mechanisms responsible for such responses remain unclear. In a glasshouse experiment we tested the effects of three forestry residue wood biochars, applied at five dosages (0, 5, 10, 20, and 50 t/ha) to a temperate forest drystic cambisol as direct surface applications and as complete soil mixes on the herbaceous pioneers Lolium multiflorum and Trifolium repens. Null and negative effects of biochar on growth were found in most cases. One potential cause for null and negative plant responses to biochar is plant exposure to mobile compounds produced during pyrolysis that leach or evolve following additions of biochars to soil. In a second glasshouse experiment we examined the effects of simple leaching and heating techniques to ameliorate potentially phytotoxic effects of volatile and leachable compounds released from biochar. We used Solid Phase Microextraction (SPME)-gas chromatography-mass spectrometry (GC-MS) to qualitatively describe organic compounds in both biochar (through headspace extraction), and in the water leachates (through direct injection). Convection heating and water leaching of biochar prior to application alleviated growth inhibition. Additionally, growth was inhibited when filtrate from water-leached biochar was applied following germination. SPME-GC-MS detected primarily short-chained carboxylic acids and phenolics in both the leachates and solid chars, with relatively high concentrations of several known phytotoxic compounds including acetic acid, butyric acid, 2,4-di-tert-butylphenol and benzoic acid. We speculate that variable plant responses to phytotoxic organic compounds leached from biochars may largely explain negative plant growth responses and also account for strongly species-specific patterns of plant

  14. Thermal treatment and leaching of biochar alleviates plant growth inhibition from mobile organic compounds

    PubMed Central

    Sackett, Tara E.; Thomas, Sean C.

    2016-01-01

    Recent meta-analyses of plant responses to biochar boast positive average effects of between 10 and 40%. Plant responses, however, vary greatly across systems, and null or negative biochar effects are increasingly reported. The mechanisms responsible for such responses remain unclear. In a glasshouse experiment we tested the effects of three forestry residue wood biochars, applied at five dosages (0, 5, 10, 20, and 50 t/ha) to a temperate forest drystic cambisol as direct surface applications and as complete soil mixes on the herbaceous pioneers Lolium multiflorum and Trifolium repens. Null and negative effects of biochar on growth were found in most cases. One potential cause for null and negative plant responses to biochar is plant exposure to mobile compounds produced during pyrolysis that leach or evolve following additions of biochars to soil. In a second glasshouse experiment we examined the effects of simple leaching and heating techniques to ameliorate potentially phytotoxic effects of volatile and leachable compounds released from biochar. We used Solid Phase Microextraction (SPME)–gas chromatography–mass spectrometry (GC-MS) to qualitatively describe organic compounds in both biochar (through headspace extraction), and in the water leachates (through direct injection). Convection heating and water leaching of biochar prior to application alleviated growth inhibition. Additionally, growth was inhibited when filtrate from water-leached biochar was applied following germination. SPME-GC-MS detected primarily short-chained carboxylic acids and phenolics in both the leachates and solid chars, with relatively high concentrations of several known phytotoxic compounds including acetic acid, butyric acid, 2,4-di-tert-butylphenol and benzoic acid. We speculate that variable plant responses to phytotoxic organic compounds leached from biochars may largely explain negative plant growth responses and also account for strongly species-specific patterns of plant

  15. Thermal treatment and leaching of biochar alleviates plant growth inhibition from mobile organic compounds.

    PubMed

    Gale, Nigel V; Sackett, Tara E; Thomas, Sean C

    2016-01-01

    Recent meta-analyses of plant responses to biochar boast positive average effects of between 10 and 40%. Plant responses, however, vary greatly across systems, and null or negative biochar effects are increasingly reported. The mechanisms responsible for such responses remain unclear. In a glasshouse experiment we tested the effects of three forestry residue wood biochars, applied at five dosages (0, 5, 10, 20, and 50 t/ha) to a temperate forest drystic cambisol as direct surface applications and as complete soil mixes on the herbaceous pioneers Lolium multiflorum and Trifolium repens. Null and negative effects of biochar on growth were found in most cases. One potential cause for null and negative plant responses to biochar is plant exposure to mobile compounds produced during pyrolysis that leach or evolve following additions of biochars to soil. In a second glasshouse experiment we examined the effects of simple leaching and heating techniques to ameliorate potentially phytotoxic effects of volatile and leachable compounds released from biochar. We used Solid Phase Microextraction (SPME)-gas chromatography-mass spectrometry (GC-MS) to qualitatively describe organic compounds in both biochar (through headspace extraction), and in the water leachates (through direct injection). Convection heating and water leaching of biochar prior to application alleviated growth inhibition. Additionally, growth was inhibited when filtrate from water-leached biochar was applied following germination. SPME-GC-MS detected primarily short-chained carboxylic acids and phenolics in both the leachates and solid chars, with relatively high concentrations of several known phytotoxic compounds including acetic acid, butyric acid, 2,4-di-tert-butylphenol and benzoic acid. We speculate that variable plant responses to phytotoxic organic compounds leached from biochars may largely explain negative plant growth responses and also account for strongly species-specific patterns of plant

  16. Incompletely compacted equilibrated ordinary chondrites

    SciTech Connect

    Sasso, M.R.; Macke, R.J.; Boesenberg, J.S.; Britt, D.T.; Rovers, M.L.; Ebel, D.S.; Friedrich, J.M.

    2010-01-22

    We document the size distributions and locations of voids present within five highly porous equilibrated ordinary chondrites using high-resolution synchrotron X-ray microtomography ({mu}CT) and helium pycnometry. We found total porosities ranging from {approx}10 to 20% within these chondrites, and with {mu}CT we show that up to 64% of the void space is located within intergranular voids within the rock. Given the low (S1-S2) shock stages of the samples and the large voids between mineral grains, we conclude that these samples experienced unusually low amounts of compaction and shock loading throughout their entire post accretionary history. With Fe metal and FeS metal abundances and grain size distributions, we show that these chondrites formed naturally with greater than average porosities prior to parent body metamorphism. These materials were not 'fluffed' on their parent body by impact-related regolith gardening or events caused by seismic vibrations. Samples of all three chemical types of ordinary chondrites (LL, L, H) are represented in this study and we conclude that incomplete compaction is common within the asteroid belt.

  17. High flux compact neutron generators

    SciTech Connect

    Reijonen, J.; Lou, T.-P.; Tolmachoff, B.; Leung, K.-N.; Verbeke, J.; Vujic, J.

    2001-06-15

    Compact high flux neutron generators are developed at the Lawrence Berkeley National Laboratory. The neutron production is based on D-D or D-T reaction. The deuterium or tritium ions are produced from plasma using either a 2 MHz or 13.56 MHz radio frequency (RF) discharge. RF-discharge yields high fraction of atomic species in the beam which enables higher neutron output. In the first tube design, the ion beam is formed using a multiple hole accelerator column. The beam is accelerated to energy of 80 keV by means of a three-electrode extraction system. The ion beam then impinges on a titanium target where either the 2.4 MeV D-D or 14 MeV D-T neutrons are generated. The MCNP computation code has predicted a neutron flux of {approximately}10{sup 11} n/s for the D-D reaction at beam intensity of 1.5 A at 150 kV. The neutron flux measurements of this tube design will be presented. Recently new compact high flux tubes are being developed which can be used for various applications. These tubes also utilize RF-discharge for plasma generation. The design of these tubes and the first measurements will be discussed in this presentation.

  18. Manufacturability of compact synchrotron mirrors

    NASA Astrophysics Data System (ADS)

    Douglas, Gary M.

    1997-11-01

    While many of the government funded research communities over the years have put their faith and money into increasingly larger synchrotrons, such as Spring8 in Japan, and the APS in the United States, a viable market appears to exist for smaller scale, research and commercial grade, compact synchrotrons. These smaller, and less expensive machines, provide the research and industrial communities with synchrotron radiation beamline access at a portion of the cost of their larger and more powerful counterparts. A compact synchrotron, such as the Aurora-2D, designed and built by Sumitomo Heavy Industries, Ltd. of japan (SHI), is a small footprint synchrotron capable of sustaining 20 beamlines. Coupled with a Microtron injector, with 150 MeV of injection energy, an entire facility fits within a 27 meter [88.5 ft] square floorplan. The system, controlled by 2 personal computers, is capable of producing 700 MeV electron energy and 300 mA stored current. Recently, an Aurora-2D synchrotron was purchased from SHI by the University of Hiroshima. The Rocketdyne Albuquerque Operations Beamline Optics Group was approached by SHI with a request to supply a group of 16 beamline mirrors for this machine. These mirrors were sufficient to supply 3 beamlines for the Hiroshima machine. This paper will address engineering issues which arose during the design and manufacturing of these mirrors.

  19. Compacted carbon for electrochemical cells

    DOEpatents

    Greinke, Ronald Alfred; Lewis, Irwin Charles

    1997-01-01

    This invention provides compacted carbon that is useful in the electrode of an alkali metal/carbon electrochemical cell of improved capacity selected from the group consisting of: (a) coke having the following properties: (i) an x-ray density of at least 2.00 grams per cubic centimeters, (ii) a closed porosity of no greater than 5%, and (iii) an open porosity of no greater than 47%; and (b) graphite having the following properties: (i) an x-ray density of at least 2.20 grams per cubic centimeters, (ii) a closed porosity of no greater than 5%, and (iii) an open porosity of no greater than 25%. This invention also relates to an electrode for an alkali metal/carbon electrochemical cell comprising compacted carbon as described above and a binder. This invention further provides an alkali metal/carbon electrochemical cell comprising: (a) an electrode as described above, (b) a non-aqueous electrolytic solution comprising an organic aprotic solvent and an electrolytically conductive salt and an alkali metal, and (c) a counterelectrode.

  20. Compacted carbon for electrochemical cells

    DOEpatents

    Greinke, R.A.; Lewis, I.C.

    1997-10-14

    This invention provides compacted carbon that is useful in the electrode of an alkali metal/carbon electrochemical cell of improved capacity selected from the group consisting of: (a) coke having the following properties: (1) an x-ray density of at least 2.00 grams per cubic centimeters, (2) a closed porosity of no greater than 5%, and (3) an open porosity of no greater than 47%; and (b) graphite having the following properties: (1) an x-ray density of at least 2.20 grams per cubic centimeters, (2) a closed porosity of no greater than 5%, and (3) an open porosity of no greater than 25%. This invention also relates to an electrode for an alkali metal/carbon electrochemical cell comprising compacted carbon as described above and a binder. This invention further provides an alkali metal/carbon electrochemical cell comprising: (a) an electrode as described above, (b) a non-aqueous electrolytic solution comprising an organic aprotic solvent and an electrolytically conductive salt and an alkali metal, and (c) a counter electrode. 10 figs.

  1. A compact THz imaging system

    NASA Astrophysics Data System (ADS)

    Sešek, Aleksander; Å vigelj, Andrej; Trontelj, Janez

    2015-03-01

    The objective of this paper is the development of a compact low cost imaging THz system, usable for observation of the objects near to the system and also for stand-off detection. The performance of the system remains at the high standard of more expensive and bulkiest system on the market. It is easy to operate as it is not dependent on any fine mechanical adjustments. As it is compact and it consumes low power, also a portable system was developed for stand-off detection of concealed objects under textile or inside packages. These requirements rule out all optical systems like Time Domain Spectroscopy systems which need fine optical component positioning and requires a large amount of time to perform a scan and the image capture pixel-by-pixel. They are also almost not suitable for stand-off detection due to low output power. In the paper the antenna - bolometer sensor microstructure is presented and the THz system described. Analysis and design guidelines for the bolometer itself are discussed. The measurement results for both near and stand-off THz imaging are also presented.

  2. Compact submanifolds supporting singular interactions

    SciTech Connect

    Kaynak, Burak Tevfik Teoman Turgut, O.

    2013-12-15

    A quantum particle moving under the influence of singular interactions on embedded surfaces furnish an interesting example from the spectral point of view. In these problems, the possible occurrence of a bound-state is perhaps the most important aspect. Such systems can be introduced as quadratic forms and generically they do not require renormalization. Yet an alternative path through the resolvent is also beneficial to study various properties. In the present work, we address these issues for compact surfaces embedded in a class of ambient manifolds. We discover that there is an exact bound state solution written in terms of the heat kernel of the ambient manifold for a range of coupling strengths. Moreover, we develop techniques to estimate bounds on the ground state energy when several surfaces, each of which admits a bound state solution, coexist. -- Highlights: •Schrödinger operator with singular interactions supported on compact submanifolds. •Exact bound-state solution in terms of the heat kernel of the ambient manifold. •Generalization of the variational approach to a collection of submanifolds. •Existence of a lower bound for a unique ground state energy.

  3. Hydrostatic compaction of Microtherm HT.

    SciTech Connect

    Broome, Scott Thomas; Bauer, Stephen J.

    2010-09-01

    Two samples of jacketed Microtherm{reg_sign}HT were hydrostatically pressurized to maximum pressures of 29,000 psi to evaluate both pressure-volume response and change in bulk modulus as a function of density. During testing, each of the two samples exhibited large irreversible compactive volumetric strains with only small increases in pressure; however at volumetric strains of approximately 50%, the Microtherm{reg_sign}HT stiffened noticeably at ever increasing rates. At the maximum pressure of 29,000 psi, the volumetric strains for both samples were approximately 70%. Bulk modulus, as determined from hydrostatic unload/reload loops, increased by more than two-orders of magnitude (from about 4500 psi to over 500,000 psi) from an initial material density of {approx}0.3 g/cc to a final density of {approx}1.1 g/cc. An empirical fit to the density vs. bulk modulus data is K = 492769{rho}{sup 4.6548}, where K is the bulk modulus in psi, and {rho} is the material density in g/cm{sup 3}. The porosity decreased from 88% to {approx}20% indicating that much higher pressures would be required to compact the material fully.

  4. Cold compaction of water ice

    USGS Publications Warehouse

    Durham, W.B.; McKinnon, W.B.; Stern, L.A.

    2005-01-01

    Hydrostatic compaction of granulated water ice was measured in laboratory experiments at temperatures 77 K to 120 K. We performed step-wise hydrostatic pressurization tests on 5 samples to maximum pressures P of 150 MPa, using relatively tight (0.18-0.25 mm) and broad (0.25-2.0 mm) starting grain-size distributions. Compaction change of volume is highly nonlinear in P, typical for brittle, granular materials. No time-dependent creep occurred on the lab time scale. Significant residual porosity (???0.10) remains even at highest P. Examination by scanning electron microscopy (SEM) reveals a random configuration of fractures and broad distribution of grain sizes, again consistent with brittle behavior. Residual porosity appears as smaller, well-supported micropores between ice fragments. Over the interior pressures found in smaller midsize icy satellites and Kuiper Belt objects (KBOs), substantial porosity can be sustained over solar system history in the absence of significant heating and resultant sintering. Copyright 2005 by the American Geophysical Union.

  5. Dense and Homogeneous Compaction of Fine Ceramic and Metallic Powders: High-Speed Centrifugal Compaction Process

    SciTech Connect

    Suzuki, Hiroyuki Y.

    2008-02-15

    High-Speed Centrifugal Compaction Process (HCP) is a variation of colloidal compacting method, in which the powders sediment under huge centrifugal force. Compacting mechanism of HCP differs from conventional colloidal process such as slip casting. The unique compacting mechanism of HCP leads to a number of characteristics such as a higher compacting speed, wide applicability for net shape formation, flawless microstructure of the green compacts, etc. However, HCP also has several deteriorative characteristics that must be overcome to fully realize this process' full potential.

  6. Brittle and compaction creep in porous sandstone

    NASA Astrophysics Data System (ADS)

    Heap, Michael; Brantut, Nicolas; Baud, Patrick; Meredith, Philip

    2015-04-01

    Strain localisation in the Earth's crust occurs at all scales, from the fracture of grains at the microscale to crustal-scale faulting. Over the last fifty years, laboratory rock deformation studies have exposed the variety of deformation mechanisms and failure modes of rock. Broadly speaking, rock failure can be described as either dilatant (brittle) or compactive. While dilatant failure in porous sandstones is manifest as shear fracturing, their failure in the compactant regime can be characterised by either distributed cataclastic flow or the formation of localised compaction bands. To better understand the time-dependency of strain localisation (shear fracturing and compaction band growth), we performed triaxial deformation experiments on water-saturated Bleurswiller sandstone (porosity = 24%) under a constant stress (creep) in the dilatant and compactive regimes, with particular focus on time-dependent compaction band formation in the compactive regime. Our experiments show that inelastic strain accumulates at a constant stress in the brittle and compactive regimes leading to the development of shear fractures and compaction bands, respectively. While creep in the dilatant regime is characterised by an increase in porosity and, ultimately, an acceleration in axial strain to shear failure (as observed in previous studies), compaction creep is characterised by a reduction in porosity and a gradual deceleration in axial strain. The overall deceleration in axial strain, AE activity, and porosity change during creep compaction is punctuated by excursions interpreted as the formation of compaction bands. The growth rate of compaction bands formed during creep is lower as the applied differential stress, and hence background creep strain rate, is decreased, although the inelastic strain required for a compaction band remains constant over strain rates spanning several orders of magnitude. We find that, despite the large differences in strain rate and growth rate

  7. Compact Solid State Cooling Systems: Compact MEMS Electrocaloric Module

    SciTech Connect

    2010-10-01

    BEETIT Project: UCLA is developing a novel solid-state cooling technology to translate a recent scientific discovery of the so-called giant electrocaloric effect into commercially viable compact cooling systems. Traditional air conditioners use noisy, vapor compression systems that include a polluting liquid refrigerant to circulate within the air conditioner, absorb heat, and pump the heat out into the environment. Electrocaloric materials achieve the same result by heating up when placed within an electric field and cooling down when removed—effectively pumping heat out from a cooler to warmer environment. This electrocaloric-based solid state cooling system is quiet and does not use liquid refrigerants. The innovation includes developing nano-structured materials and reliable interfaces for heat exchange. With these innovations and advances in micro/nano-scale manufacturing technologies pioneered by semiconductor companies, UCLA is aiming to extend the performance/reliability of the cooling module.

  8. Rapid Sintering of Nano-Diamond Compacts

    SciTech Connect

    Osipov, A.; Nauyoks, S; Zerda, T; Zaporozhets, O

    2009-01-01

    Diamond compacts were sintered from nano-size diamond crystals at high pressure, 8 GPa, and temperature above 1500 degrees C for very short times ranging from 5 to 11 s. Structure and mechanical properties of the compacts have been characterized. Although we have not completely avoided graphitization of diamonds, the amount of graphite produced was low, less than 2%, and despite relatively high porosity, the compacts were characterized by high hardness, bulk and Young moduli.

  9. Method for preparing porous metal hydride compacts

    DOEpatents

    Ron, Moshe; Gruen, Dieter M.; Mendelsohn, Marshall H.; Sheft, Irving

    1981-01-01

    A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.

  10. Method for preparing porous metal hydride compacts

    DOEpatents

    Ron, M.; Gruen, D.M.; Mendelsohn, M.H.; Sheft, I.

    1980-01-21

    A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.

  11. [Soil moisture dynamics of apple orchard in Loess Plateau dryland].

    PubMed

    Zhao, Gang; Fan, Ting-lu; Li, Shang-zhong; Zhang, Jian-jun; Wang, Yong; Dang, Yi; Wang, Lei

    2015-04-01

    The soil moisture of 0-500 cm soil layer in a dryland orchard at its full fruit period was measured from 2009 to 2013 to explore the soil moisture dynamics. Results indicated that soil water consumption mainly occurred in the soil layer of 0-300 cm in normal rainfall year and below the 300 cm soil layer when the annual rainfall was less than 400 mm. The soil moisture in the 200-300 cm soil layer fluctuated most and was affected by rainfall and apple consumption. Seasonal drought usually happened between April and late June, while the accumulation of soil moisture mainly occurred in the rainy season from July to mid-October to alleviate the drought effectively in next spring.

  12. A compact versatile femtosecond spectrometer

    NASA Astrophysics Data System (ADS)

    Nagarajan, V.; Johnson, E.; Schellenberg, P.; Parson, W.; Windeler, R.

    2002-12-01

    A compact apparatus for femtosecond pump-probe experiments is described. The apparatus is based on a cavity-dumped titanium:sapphire laser. Probe pulses are generated by focusing weak (˜1 nJ) pulses into a microstructure fiber that produces broadband continuum pulses with high efficiency. With the pump pulses compressed and probe pulses uncompressed, the rise time of the pump-probe signals is <100 fs. The 830 nm pump pulses are also frequency doubled to generate light for excitation at 415 nm. The versatility of the spectrometer is demonstrated by exciting molecules at either 830 or 415 nm, and probing at wavelengths ranging from 500 to 950 nm. Some results on the green fluorescent protein are presented.

  13. A Compact Wakefield Measurement Facility

    NASA Astrophysics Data System (ADS)

    Power, J. G.; Gai, W.

    2015-10-01

    The conceptual design of a compact, photoinjector-based, facility for high precision measurements of wakefields is presented. This work is motivated by the need for a thorough understanding of beam induced wakefield effects for any future linear collider. We propose to use a high brightness photoinjector to generate (approximately) a 2 nC, 2 mm-mrad drive beam at 20 MeV to excite wakefields and a second photoinjector to generate a 5 MeV, variably delayed, trailing witness beam to probe both the longitudinal and transverse wakefields in the structure under test. Initial estimates show that we can detect a minimum measurable dipole transverse wake function of 0.1 V/pC/m/mm and a minimum measurable monopole longitudinal wake function of 2.5 V/pC/m. Simulations results for the high brightness photoinjector, calculations of the facility's wakefield measurement resolution, and the facility layout are presented.

  14. Compact anti-radon facility

    SciTech Connect

    Fajt, L.; Kouba, P.; Mamedov, F.; Smolek, K.; Štekl, I.

    2015-08-17

    Suppression of radon background is one of main tasks in ultra-low background experiments. The most promising technique for suppression of radon is its adsorption on charcoal. Within the frame of the NEMO-3 experiment, radon trapping facility (RTF) was installed in Modane underground laboratory in 2004. Based on long-term experience with this facility a new compact transportable anti-radon facility was constructed in cooperation among IEAP CTU, SÚRO and ATEKO company. The device provides 20m{sup 3}/h of purified air (air radon activity at the output ∼10mBq/m{sup 3}). The basic features and preliminary results of anti-radon device testing are presented.

  15. Compact Microwave Fourier Spectrum Analyzer

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Matsko, Andrey; Strekalov, Dmitry

    2009-01-01

    A compact photonic microwave Fourier spectrum analyzer [a Fourier-transform microwave spectrometer, (FTMWS)] with no moving parts has been proposed for use in remote sensing of weak, natural microwave emissions from the surfaces and atmospheres of planets to enable remote analysis and determination of chemical composition and abundances of critical molecular constituents in space. The instrument is based on a Bessel beam (light modes with non-zero angular momenta) fiber-optic elements. It features low power consumption, low mass, and high resolution, without a need for any cryogenics, beyond what is achievable by the current state-of-the-art in space instruments. The instrument can also be used in a wide-band scatterometer mode in active radar systems.

  16. Compact hybrid particulate collector (COHPAC)

    SciTech Connect

    Chang, R.

    1992-10-27

    This patent describes a method for retrofit filtering of particulates in a flue gas from a combustion source having an existing conventional electrostatic precipitator connected thereto and a smoke stack connected to the precipitator. It comprises: removing at least one discharge electrode and collecting electrode from within the housing of the electrostatic precipitator; attaching a tubesheet within the housing; supporting a compact baghouse filter within the separate filter section by the tubesheet; whereby the remaining discharge electrodes and corresponding collecting electrodes in the electrostatis precipitator serve to remove a majority of particulates form the flue gas and impart a residual charge on remaining particulates discharged to the separate filter section, and the remaining particulates are collected by the baghouse filter before the residual electric charge substantially dissipates.

  17. Compact Quantum Cascade Laser Transmitter

    SciTech Connect

    Anheier, Norman C.; Hatchell, Brian K.; Gervais, Kevin L.; Wojcik, Michael D.; Krishnaswami, Kannan; Bernacki, Bruce E.

    2009-04-01

    ): In this paper we present design considerations, thermal and optical modeling results, and device performance for a ruggedized, compact laser transmitter that utilizes a room temperature quantum cascade (QC) laser source. The QC laser transmitter is intended for portable mid-infrared (3-12 µm) spectroscopy applications, where the atmospheric transmission window is relatively free of water vapor interference and where the molecular rotational vibration absorption features can be used to detect and uniquely identify chemical compounds of interest. Initial QC laser-based sensor development efforts were constrained by the complications of cryogenic operation. However, improvements in both QC laser designs and fabrication processes have provided room-temperature devices that now enable significant miniaturization and integration potential for national security, environmental monitoring, atmospheric science, and industrial safety applications.

  18. Experimental studies of compact toroids

    SciTech Connect

    Not Available

    1991-01-01

    The Berkeley Compact Toroid Experiment (BCTX) device is a plasma device with a Marshall-gun generated, low aspect ratio toroidal plasma. The device is capable of producing spheromak-type discharges and may, with some modification, produce low-aspect ratio tokamak configurations. A unique aspect of this experimenal devie is its large lower hybrid (LH) heating system, which consists of two 450MHz klystron tubes generating 20 megawatts each into a brambilla-type launching structure. Successful operation with one klystron at virtually full power (18 MW) has been accomplished with 110 {mu}s pulse length. A second klystron is currently installed in its socket and magnet but has not been added to the RF drive system. This report describes current activities and accomplishments and describes the anticipated results of next year's activity.

  19. General Relativity&Compact Stars

    SciTech Connect

    Glendenning, Norman K.

    2005-08-16

    Compact stars--broadly grouped as neutron stars and white dwarfs--are the ashes of luminous stars. One or the other is the fate that awaits the cores of most stars after a lifetime of tens to thousands of millions of years. Whichever of these objects is formed at the end of the life of a particular luminous star, the compact object will live in many respects unchanged from the state in which it was formed. Neutron stars themselves can take several forms--hyperon, hybrid, or strange quark star. Likewise white dwarfs take different forms though only in the dominant nuclear species. A black hole is probably the fate of the most massive stars, an inaccessible region of spacetime into which the entire star, ashes and all, falls at the end of the luminous phase. Neutron stars are the smallest, densest stars known. Like all stars, neutron stars rotate--some as many as a few hundred times a second. A star rotating at such a rate will experience an enormous centrifugal force that must be balanced by gravity or else it will be ripped apart. The balance of the two forces informs us of the lower limit on the stellar density. Neutron stars are 10{sup 14} times denser than Earth. Some neutron stars are in binary orbit with a companion. Application of orbital mechanics allows an assessment of masses in some cases. The mass of a neutron star is typically 1.5 solar masses. They can therefore infer their radii: about ten kilometers. Into such a small object, the entire mass of our sun and more, is compressed.

  20. Ductile compaction in volcanic conduits

    NASA Astrophysics Data System (ADS)

    Wadsworth, Fabian; Vasseur, Jeremie; Lavallée, Yan; Scheu, Bettina; Dingwell, Donald

    2014-05-01

    Silicic magmas typically outgas through connected pore and crack networks with a high gas permeability without the need for decoupled movement of pores in the melt. It is the efficiency with which this process can occur which governs the pressure in the pore network. However, such a connected coupled network is generally mechanically unstable and will relax until volume equilibrium when the pores become smaller and isolated. Consequently, gas permeability can be reduced during densification. Cycles of outgassing events recorded in gas monitoring data show that permeable flow of volatiles is often transient, which is interpreted to reflect magma densification and the closing of pore-networks. Understanding the timescale over which this densification process occurs is critical to refining conduit models that seek to predict the pressure evolution in a pore-network leading to eruptions. We conduct uniaxial compaction experiments to parameterize non-linear creep and relaxation processes that occur in magmas with total pore fractions 0.2-0.85. We analyze our results by applying both viscous sintering and viscoelastic deformation theory to test the applicability of currently accepted models to flow dynamics in the uppermost conduit involving highly porous magmas. We show that purely ductile compaction can occur rapidly and that pore networks can close over timescales analogous to the inter-eruptive periods observed during classic cyclic eruptions such as those at Soufriere Hills volcano, Montserrat, in 1997. At upper-conduit axial stresses (0.1-5 MPa) and magmatic temperatures (830-900 oC), we show that magmas can evolve to porosities analogous to dome lavas erupted at the same volcano. Such dramatic densification events over relatively short timescales and in the absence of brittle deformation show that permeable flow will be inhibited at upper conduit levels. We therefore propose that outgassing is a key feature at many silicic volcanoes and should be incorporated into

  1. Soil physics: a Moroccan perspective

    NASA Astrophysics Data System (ADS)

    Lahlou, Sabah; Mrabet, Rachid; Ouadia, Mohamed

    2004-06-01

    Research on environmental pollution and degradation of soil and water resources is now of highest priority worldwide. To address these problems, soil physics should be conceived as a central core to this research. This paper objectives are to: (1) address the role and importance of soil physics, (2) demonstrate progress in this discipline, and (3) present various uses of soil physics in research, environment and industry. The study of dynamic processes at and within the soil vadose zone (flow, dispersion, transport, sedimentation, etc.), and ephemeral phenomena (deformation, compaction, etc.), form an area of particular interest in soil physics. Soil physics has changed considerably over time. These changes are due to needed precision in data collection for accurate interpretation of space and time variation of soil properties. Soil physics interacts with other disciplines and sciences such as hydro(geo)logy, agronomy, environment, micro-meteorology, pedology, mathematics, physics, water sciences, etc. These interactions prompted the emergence of advanced theories and comprehensive mechanisms of most natural processes, development of new mathematical tools (modeling and computer simulation, fractals, geostatistics, transformations), creation of high precision instrumentation (computer assisted, less time constraint, increased number of measured parameters) and the scale sharpening of physical measurements which ranges from micro to watershed. The environment industry has contributed to an enlargement of many facets of soil physics. In other words, research demand in soil physics has increased considerably to satisfy specific and environmental problems (contamination of water resources, global warming, etc.). Soil physics research is still at an embryonic stage in Morocco. Consequently, soil physicists can take advantage of developments occurring overseas, and need to build up a database of soil static and dynamic properties and to revise developed models to meet

  2. Crosstalk between exercise and galanin system alleviates insulin resistance.

    PubMed

    Fang, Penghua; He, Biao; Shi, Mingyi; Zhu, Yan; Bo, Ping; Zhang, Zhenwen

    2015-12-01

    Studies have demonstrated that aerobic exercise can enhance insulin sensitivity, however, the precise mechanism for this outcome is not entirely identified. Emerging evidences point out that exercise can upregulate galanin protein and mRNA expression, resulting in improvement of insulin sensitivity via an increase in translocation of glucose transporter 4 and subsequent glucose uptake in myocytes and adipocytes of healthy and type 2 diabetic rats, which may be blocked by galanin antagonist. In return, galanin can exert the exercise-protective roles to prevent excessive movement of skeletal muscle and to accelerate exercise trauma repair in exercise-relative tissues. Studies also implicated that combination of aerobic exercise and activation of galanin system may make more significant improvement in insulin sensitivity than that of either one did. These suggest that galanin system is essential for physical activity to alleviate insulin resistance, namely, the beneficial effect of physical activity on glucose uptake is at least partly mediated by galanin system. Besides, co-treatment with galanin and exercise is an effective therapeutic strategy for reducing insulin resistance.

  3. Wake Vortex Alleviation Using Rapidly Actuated Segmented Gurney Flaps

    NASA Astrophysics Data System (ADS)

    Matalanis, Claude; Eaton, John

    2006-11-01

    A study to assess the potential for using rapidly actuated segmented Gurney flaps, also known as Miniature Trailing Edge Effectors (MiTEs), for active wake vortex alleviation is conducted using a half-span model wing with NACA 0012 shape and an aspect ratio of 4.1. All tests are performed with the wing at an 8.9 degree angle of attack and chord based Reynolds number around 350,000. The wing is equipped with an array of 13 MiTE pairs. Each MiTE has a flap that in the neutral position rests behind the blunt trailing edge of the wing, and in the down position extends 0.015 chord lengths perpendicular to the freestream on the pressure side of the wing. Dynamic PIV is used to measure the time dependent response of the vortex in the intermediate wake to various MiTE actuation schemes that deflect the vortex in both the spanwise and liftwise directions. A maximum spanwise deflection of 0.041 chord lengths is possible while nearly conserving lift. These intermediate wake results as well as pressure profile, five-hole probe, and static PIV measurements are used to form complete, experimentally-based initial conditions for vortex filament computations that are used to compute the far wake evolution. Results from these computations show that the perturbations created by MiTEs can be used to excite vortex instability.

  4. Cathepsin K knockout alleviates aging-induced cardiac dysfunction.

    PubMed

    Hua, Yinan; Robinson, Timothy J; Cao, Yongtao; Shi, Guo-Ping; Ren, Jun; Nair, Sreejayan

    2015-06-01

    Aging is a major risk factor for cardiovascular disease. It has previously been shown that protein levels of cathepsin K, a lysosomal cysteine protease, are elevated in the failing heart and that genetic ablation of cathepsin K protects against pressure overload-induced cardiac hypertrophy and contractile dysfunction. Here we test the hypothesis that cathepsin K knockout alleviates age-dependent decline in cardiac function. Cardiac geometry, contractile function, intracellular Ca(2+) properties, and cardiomyocyte apoptosis were evaluated using echocardiography, fura-2 technique, immunohistochemistry, Western blot and TUNEL staining, respectively. Aged (24-month-old) mice exhibited significant cardiac remodeling (enlarged chamber size, wall thickness, myocyte cross-sectional area, and fibrosis), decreased cardiac contractility, prolonged relengthening along with compromised intracellular Ca(2+) release compared to young (6-month-old) mice, which were attenuated in the cathepsin K knockout mice. Cellular markers of senescence, including cardiac lipofuscin, p21 and p16, were lower in the aged-cathepsin K knockout mice compared to their wild-type counterpart. Mechanistically, cathepsin K knockout mice attenuated an age-induced increase in cardiomyocyte apoptosis and nuclear translocation of mitochondrial apoptosis-inducing factor (AIF). In cultured H9c2 cells, doxorubicin stimulated premature senescence and apoptosis. Silencing of cathepsin K blocked the doxorubicin-induced translocation of AIF from the mitochondria to the nuclei. Collectively, these results suggest that cathepsin K knockout attenuates age-related decline in cardiac function via suppressing caspase-dependent and caspase-independent apoptosis. PMID:25692548

  5. Cathepsin K knockout alleviates aging-induced cardiac dysfunction

    PubMed Central

    Hua, Yinan; Robinson, Timothy J; Cao, Yongtao; Shi, Guo-Ping; Ren, Jun; Nair, Sreejayan

    2015-01-01

    Aging is a major risk factor for cardiovascular disease. It has previously been shown that protein levels of cathepsin K, a lysosomal cysteine protease, are elevated in the failing heart and that genetic ablation of cathepsin K protects against pressure overload-induced cardiac hypertrophy and contractile dysfunction. Here we test the hypothesis that cathepsin K knockout alleviates age-dependent decline in cardiac function. Cardiac geometry, contractile function, intracellular Ca2+ properties, and cardiomyocyte apoptosis were evaluated using echocardiography, fura-2 technique, immunohistochemistry, Western blot and TUNEL staining, respectively. Aged (24-month-old) mice exhibited significant cardiac remodeling (enlarged chamber size, wall thickness, myocyte cross-sectional area, and fibrosis), decreased cardiac contractility, prolonged relengthening along with compromised intracellular Ca2+ release compared to young (6-month-old) mice, which were attenuated in the cathepsin K knockout mice. Cellular markers of senescence, including cardiac lipofuscin, p21 and p16, were lower in the aged-cathepsin K knockout mice compared to their wild-type counterpart. Mechanistically, cathepsin K knockout mice attenuated an age-induced increase in cardiomyocyte apoptosis and nuclear translocation of mitochondrial apoptosis-inducing factor (AIF). In cultured H9c2 cells, doxorubicin stimulated premature senescence and apoptosis. Silencing of cathepsin K blocked the doxorubicin-induced translocation of AIF from the mitochondria to the nuclei. Collectively, these results suggest that cathepsin K knockout attenuates age-related decline in cardiac function via suppressing caspase-dependent and caspase-independent apoptosis. PMID:25692548

  6. Flutter suppression and gust alleviation using active controls

    NASA Technical Reports Server (NTRS)

    Nissim, E.

    1974-01-01

    The effects of active controls on the suppression of flutter and gust alleviation of two different types of subsonic aircraft (the Arava, twin turboprop STOL transport, and the Westwind twin-jet business transport) are investigated. The active controls are introduced in pairs which include, in any chosen wing strip, a leading-edge (LE) control and a trailing-edge (TE) control. Each control surface is allowed to be driven by a combined linear-rotational sensor system, located on the activated strip. The control law, which translates the sensor signals into control surface rotations, is based on the concept of aerodynamic energy. The results indicate the extreme effectiveness of the active systems in controlling flutter. A single system spanning 10% of the wing semispan made the Arava flutter-free, and a similar active system, for the Westwind aircraft, yielded a reduction of 75% in the maximum bending moment of the wing and a reduction of 90% in the acceleration of the cg of the aircraft. Results for simultaneous activation of several LE - TE systems are presented. Further work needed to bring the investigation to completion is also discussed.

  7. Gust alleviation of highly flexible UAVs with artificial hair sensors

    NASA Astrophysics Data System (ADS)

    Su, Weihua; Reich, Gregory W.

    2015-04-01

    Artificial hair sensors (AHS) have been recently developed in Air Force Research Laboratory (AFRL) using carbon nanotube (CNT). The deformation of CNT in air flow causes voltage and current changes in the circuit, which can be used to quantify the dynamic pressure and aerodynamic load along the wing surface. AFRL has done a lot of essential work in design, manufacturing, and measurement of AHSs. The work in this paper is to bridge the current AFRL's work on AHSs and their feasible applications in flight dynamics and control (e.g., the gust alleviation) of highly flexible aircraft. A highly flexible vehicle is modeled using a strain-based geometrically nonlinear beam formulation, coupled with finite-state inflow aerodynamics. A feedback control algorithm for the rejection of gust perturbations will be developed. A simplified Linear Quadratic Regulator (LQR) controller will be implemented based on the state-space representation of the linearized system. All AHS measurements will be used as the control input, i.e., wing sectional aerodynamic loads will be defined as the control output for designing the feedback gain. Once the controller is designed, closed-loop aeroelastic simulations will be performed to evaluate the performance of different controllers with the force feedback and be compared to traditional controller designs with the state feedback. From the study, the feasibility of AHSs in flight control will be assessed. The whole study will facilitate in building a fly-by-feel simulation environment for autonomous vehicles.

  8. ICAM-1 Targeted Nanogels Loaded with Dexamethasone Alleviate Pulmonary Inflammation

    PubMed Central

    Coll Ferrer, M. Carme; Shuvaev, Vladimir V.; Zern, Blaine J.; Composto, Russell J.; Muzykantov, Vladimir R.; Eckmann, David M.

    2014-01-01

    Lysozyme dextran nanogels (NG) have great potential in vitro as a drug delivery platform, combining simple chemistry with rapid uptake and cargo release in target cells with “stealth” properties and low toxicity. In this work, we study for the first time the potential of targeted NG as a drug delivery platform in vivo to alleviate acute pulmonary inflammation in animal model of LPS-induced lung injury. NG are targeted to the endothelium via conjugation with an antibody (Ab) directed to Intercellular Adhesion Molecule-1(ICAM-NG), whereas IgG conjugated NG (IgG-NG) are used for control formulations. The amount of Ab conjugated to the NG and distribution in the body after intravenous (IV) injection have been quantitatively analyzed using a tracer isotope-labeled [125I]IgG. As a proof of concept, Ab-NG are loaded with dexamethasone, an anti-inflammatory therapeutic, and the drug uptake and release kinetics are measured by HPLC. In vivo studies in mice showed that: i) ICAM-NG accumulates in mouse lungs (∼120% ID/g vs ∼15% ID/g of IgG-NG); and, ii) DEX encapsulated in ICAM-NG, but not in IgG-NG practically blocks LPS-induced overexpression of pro-inflammatory cell adhesion molecules including ICAM-1 in the pulmonary inflammation. PMID:25019304

  9. Cathepsin K knockout alleviates aging-induced cardiac dysfunction.

    PubMed

    Hua, Yinan; Robinson, Timothy J; Cao, Yongtao; Shi, Guo-Ping; Ren, Jun; Nair, Sreejayan

    2015-06-01

    Aging is a major risk factor for cardiovascular disease. It has previously been shown that protein levels of cathepsin K, a lysosomal cysteine protease, are elevated in the failing heart and that genetic ablation of cathepsin K protects against pressure overload-induced cardiac hypertrophy and contractile dysfunction. Here we test the hypothesis that cathepsin K knockout alleviates age-dependent decline in cardiac function. Cardiac geometry, contractile function, intracellular Ca(2+) properties, and cardiomyocyte apoptosis were evaluated using echocardiography, fura-2 technique, immunohistochemistry, Western blot and TUNEL staining, respectively. Aged (24-month-old) mice exhibited significant cardiac remodeling (enlarged chamber size, wall thickness, myocyte cross-sectional area, and fibrosis), decreased cardiac contractility, prolonged relengthening along with compromised intracellular Ca(2+) release compared to young (6-month-old) mice, which were attenuated in the cathepsin K knockout mice. Cellular markers of senescence, including cardiac lipofuscin, p21 and p16, were lower in the aged-cathepsin K knockout mice compared to their wild-type counterpart. Mechanistically, cathepsin K knockout mice attenuated an age-induced increase in cardiomyocyte apoptosis and nuclear translocation of mitochondrial apoptosis-inducing factor (AIF). In cultured H9c2 cells, doxorubicin stimulated premature senescence and apoptosis. Silencing of cathepsin K blocked the doxorubicin-induced translocation of AIF from the mitochondria to the nuclei. Collectively, these results suggest that cathepsin K knockout attenuates age-related decline in cardiac function via suppressing caspase-dependent and caspase-independent apoptosis.

  10. Coumarin pretreatment alleviates salinity stress in wheat seedlings.

    PubMed

    Saleh, Ahmed Mahmoud; Madany, M M Y

    2015-03-01

    The potentiality of COU to improve plant tolerance to salinity was investigated. Wheat grains were primed with COU (50 ppm) and then grown under different levels of NaCl (50, 100, 150 mM) for two weeks. COU pretreatment improved the growth of wheat seedling under salinity, relative to COU-untreated seedlings, due to the accumulation of osmolytes such as soluble sugars and proline. Moreover, COU treatment significantly improved K(+)/Na(+) ratio in the shoots of both salt stressed and un-stressed seedlings. However, in the roots, this ratio increased only under non-salinity. In consistent with phenylalanine ammonia lyase (PAL), phenolics and flavonoids were accumulated in COU-pretreated seedlings under the higher doses of salinity, relative to COU-untreated seedlings. COU primed seedlings showed higher content of the coumarin derivative, scopoletin, and salicylic, chlorogenic, syringic, vanillic, gallic and ferulic acids, under both salinity and non-salinity conditions. Salinity stress significantly improved the activity of peroxidase (POD) in COU-pretreated seedlings. However, the effect of COU on the total antioxidant capacity (TAC) was only obtained at the highest dose of NaCl (150 mM). The present results suggest that COU pretreatment could alleviate the adverse effect of salinity on the growth of wheat seedlings through enhancing, at least partly, the osmoregulation process and antioxidant defense system.

  11. Rhizospheric bacteria alleviate salt-produced stress in sunflower.

    PubMed

    Shilev, Stefan; Sancho, Enrique D; Benlloch-González, María

    2012-03-01

    The effect of isolate Pseudomonas fluorescens biotype F and P. fluorescens CECT 378(T) inoculation on fresh weight and ions accumulation was studied in sunflower plants grown in sand:peat substrate with addition of 100mM NaCl. The inoculation resulted in an increase in fresh weight of more than 10% in salt treatments and in an accumulation of less Na(+) and more K(+) in plant tissues in all cases. The bacterial inoculants favoured the K(+)/Na(+) ratio in all plant parts and in the case of the isolate CECT 378(T) conducted to 66% increment in leaves, 34% in stems and 16% in roots, while the effect of isolate inoculation was (only) more evident in leaves and stems with 30% and 26%, respectively. Both strains were found to produce indoleacetic acid and siderophores in in-vitro tests, thus the production of indoles was highly dependent on the exogenous tryptophan in the medium. The results suggest that salt stress in sunflower plants was alleviated partially by the inoculation with strains that produce indoles and siderophores, having also a positive effect on the K(+)/Na(+) ratio in the shoot. Moreover, those plants were characterized with better-developed roots. PMID:20685030

  12. Synthesis of individual rotor blade control system for gust alleviation

    NASA Technical Reports Server (NTRS)

    Wang, Ji C.; Chu, Alphonse Y.; Talbot, Peter D.

    1990-01-01

    The utilization of rotor flapping in synthesizing an Individual Blade Control (IBC) system for gust alleviation is demonstrated. The objective is to illustrate and seek to improve Ham's IBC method. A sensor arrangement with two accelerometers mounted on the root and tip of a blade is proposed for estimating of flapping states for feedback control. Equivalent swash plate implementation of IBC is also deliberated. The study concludes by addressing the concept of general rotor states feedback, of which the IBC method is a special case. The blade flapping equation of motion is derived. Ham's original IBC method and a modified IBC scheme called Model Reference (MRIBC) are examined, followed by simulation study with ideal measurements and relative performances of the two methods. The practical aspects of IBC implementation are presented. Different configuration of sensors and their merits are considered. The realization of IBC using equivalent swash plate instead of direct actuator motion is discussed. It is shown that IBC is a particular case of rotor states feedback. The idea of general rotor states feedback is further elaborated. Finally, major conclusions are given.

  13. Visually induced motion sickness can be alleviated by pleasant odors.

    PubMed

    Keshavarz, Behrang; Stelzmann, Daniela; Paillard, Aurore; Hecht, Heiko

    2015-05-01

    Visually induced motion sickness (VIMS) is a common side effect in virtual environments and simulators. Several countermeasures against VIMS exist, but a reliable method to prevent or ease VIMS is unfortunately still missing. In the present study, we tested whether olfactory cues can alleviate VIMS. Sixty-two participants were exposed to a 15-min-long video showing a first-person-view bicycle ride that had successfully induced VIMS in previous studies. Participants were randomly assigned to one of three groups; the first group was exposed to a pleasant odor (rose) while watching the video, the second group was exposed to an unpleasant odor (leather), and the third group was not exposed to any odor. VIMS was measured using a verbal rating scale (0-20) and the Simulator Sickness Questionnaire. Results showed that only half of the participants who were exposed to the odor did notice it (n = 21), whereas the other half failed to detect the odor. However, among those participants who did notice the odor, the rose scent significantly reduced the severity of VIMS compared to the group that did not notice the odor. A moderate positive correlation between odor sensitivity and VIMS showed that participants with higher odor sensitivity also reported stronger VIMS. Our results demonstrate that olfaction can modulate VIMS and that a pleasant odor can potentially reduce VIMS. The relationship between olfactory perception, olfactory sensibility, and VIMS is discussed.

  14. Alleviating bias leads to accurate and personalized recommendation

    NASA Astrophysics Data System (ADS)

    Qiu, Tian; Wang, Tian-Tian; Zhang, Zi-Ke; Zhong, Li-Xin; Chen, Guang

    2013-11-01

    Recommendation bias towards objects has been found to have an impact on personalized recommendation, since objects present heterogeneous characteristics in some network-based recommender systems. In this article, based on a biased heat conduction recommendation algorithm (BHC) which considers the heterogeneity of the target objects, we propose a heterogeneous heat conduction algorithm (HHC), by further taking the heterogeneity of the source objects into account. Tested on three real datasets, the Netflix, RYM and MovieLens, the HHC algorithm is found to present better recommendation in both the accuracy and diversity than two benchmark algorithms, i.e., the original BHC and a hybrid algorithm of heat conduction and mass diffusion (HHM), while not requiring any other accessorial information or parameter. Moreover, the HHC algorithm also elevates the recommendation accuracy on cold objects, referring to the so-called cold-start problem. Eigenvalue analyses show that, the HHC algorithm effectively alleviates the recommendation bias towards objects with different level of popularity, which is beneficial to solving the accuracy-diversity dilemma.

  15. ATF3 deficiency in chondrocytes alleviates osteoarthritis development.

    PubMed

    Iezaki, Takashi; Ozaki, Kakeru; Fukasawa, Kazuya; Inoue, Makoto; Kitajima, Shigetaka; Muneta, Takeshi; Takeda, Shu; Fujita, Hiroyuki; Onishi, Yuki; Horie, Tetsuhiro; Yoneda, Yukio; Takarada, Takeshi; Hinoi, Eiichi

    2016-08-01

    Activating transcription factor 3 (Atf3) has been implicated in the pathogenesis of various diseases, including cancer and inflammation, as well as in the regulation of cell proliferation and differentiation. However, the involvement of Atf3 in developmental skeletogenesis and joint disease has not been well studied to date. Here, we show that Atf3 is a critical mediator of osteoarthritis (OA) development through its expression in chondrocytes. ATF3 expression was markedly up-regulated in the OA cartilage of both mice and humans. Conditional deletion of Atf3 in chondrocytes did not result in skeletal abnormalities or affect the chondrogenesis, but alleviated the development of OA generated by surgically inducing knee joint instability in mice. Inflammatory cytokines significantly up-regulated Atf3 expression through the nuclear factor-kB (NF-kB) pathway, while cytokine-induced interleukin-6 (Il6) expression was repressed, in ATF3-deleted murine and human chondrocytes. Mechanistically, Atf3 deficiency decreased cytokine-induced Il6 transcription in chondrocytes through repressing NF-kB signalling by the attenuation of the phosphorylation status of IkB and p65. These findings suggest that Atf3 is implicated in the pathogenesis of OA through modulation of inflammatory cytokine expression in chondrocytes, and the feed-forward loop of inflammatory cytokines/NF-kB/Atf3 in chondrocytes may be a novel therapeutic target for the treatment for OA. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  16. Stereotype threat and working memory: mechanisms, alleviation, and spillover.

    PubMed

    Beilock, Sian L; Rydell, Robert J; McConnell, Allen R

    2007-05-01

    Stereotype threat (ST) occurs when the awareness of a negative stereotype about a social group in a particular domain produces suboptimal performance by members of that group. Although ST has been repeatedly demonstrated, far less is known about how its effects are realized. Using mathematical problem solving as a test bed, the authors demonstrate in 5 experiments that ST harms math problems that rely heavily on working memory resources--especially phonological aspects of this system. Moreover, by capitalizing on an understanding of the cognitive mechanisms by which ST exerts its impact, the authors show (a) how ST can be alleviated (e.g., by heavily practicing once-susceptible math problems such that they are retrieved directly from long-term memory rather than computed via a working-memory-intensive algorithm) and (b) when it will spill over onto subsequent tasks unrelated to the stereotype in question but dependent on the same cognitive resources that stereotype threat also uses. The current work extends the knowledge of the causal mechanisms of stereotype threat and demonstrates how its effects can be attenuated and propagated.

  17. Ergosterol Alleviates Kidney Injury in Streptozotocin-Induced Diabetic Mice

    PubMed Central

    Ang, Li; Yuguang, Liu; Liying, Wang; Shuying, Zhang; Liting, Xu; Shumin, Wang

    2015-01-01

    Ergosterol (ERG) has been widely used in the development of novel drugs due to its unique physiological function. However, little is known about the protective effects of ERG on diabetes. Hence, the current study was designed to evaluate the positive role of ergosterol on streptozotocin- (STZ-) induced diabetes in mice. Oral glucose tolerance test (OGTT) was carried out to assess blood glucose level. Biochemical parameters such as uric acid, creatinine, serum insulin, triglycerides (TG), and total cholesterol (TC) were also measured. Pathological condition of kidney was examined by hematoxylin-eosin (H&E) staining. The expressions of PI3K, p-PI3K, Akt, p-Akt, NF-κBp65, p-NF-κBp65, IκBα, and p-IκBα were analyzed by western blot. ERG significantly reduced the concentrations of blood glucose, uric acid, creatinine, TG, and TC. Serum insulin was elevated with ERG treatment. In addition, renal pathologic changes of diabetes mice were also alleviated by ERG. Obtained data revealed that ERG restored the levels of PI3K/Akt/NF-κB signaling-related proteins in comparison with diabetes mice. Above all, it could be assumed that ERG might play a positive role in regulating STZ-induced diabetes through suppressing PI3K/Akt/NF-κB pathway. PMID:26664454

  18. Compact Process Development at Babcock & Wilcox

    SciTech Connect

    Eric Shaber; Jeffrey Phillips

    2012-03-01

    Multiple process approaches have been used historically to manufacture cylindrical nuclear fuel compacts. Scale-up of fuel compacting was required for the Next Generation Nuclear Plant (NGNP) project to achieve an economically viable automated production process capable of providing a minimum of 10 compacts/minute with high production yields. In addition, the scale-up effort was required to achieve matrix density equivalent to baseline historical production processes, and allow compacting at fuel packing fractions up to 46% by volume. The scale-up approach of jet milling, fluid-bed overcoating, and hot-press compacting adopted in the U.S. Advanced Gas Reactor (AGR) Fuel Development Program involves significant paradigm shifts to capitalize on distinct advantages in simplicity, yield, and elimination of mixed waste. A series of compaction trials have been completed to optimize compaction conditions of time, temperature, and forming pressure using natural uranium oxycarbide (NUCO) fuel at packing fractions exceeding 46% by volume. Results from these trials are included. The scale-up effort is nearing completion with the process installed and operable using nuclear fuel materials. Final process testing is in progress to certify the process for manufacture of qualification test fuel compacts in 2012.

  19. Strength of field compacted clayey embankments

    NASA Astrophysics Data System (ADS)

    Liang, Y.; Lovell, C. W.

    1982-02-01

    The shearing behavior of a plastic Indiana clay (St. Croix) was studied for both laboratory and field compaction. This interim report deals with the field compacted phase. The strength tests were performed by unconsolidated undrained (UU) and saturated consolidated undrained (CIU) triaxials. These were run at various confining pressures to approximate the end of construction and long term conditions at several embankment depths.

  20. The non-compact Weyl equation

    NASA Astrophysics Data System (ADS)

    Doikou, Anastasia; Ioannidou, Theodora

    2011-04-01

    A non-compact version of the Weyl equation is proposed, based on the infinite dimensional spin zero representation of the mathfrak{s}{mathfrak{l}_2} algebra. Solutions of the aforementioned equation are obtained in terms of the Kummer functions. In this context, we discuss the ADHMN approach in order to construct the corresponding non-compact BPS monopoles.

  1. Load dissipation by corn residue on tilled soil in laboratory and field-wheeling conditions.

    PubMed

    Reichert, José M; Brandt, André A; Rodrigues, Miriam F; Reinert, Dalvan J; Braida, João A

    2016-06-01

    Crop residues may partially dissipate applied loads and reduce soil compaction. We evaluated the effect of corn residue on energy-applied dissipation during wheeling. The experiment consisted of a preliminary laboratory test and a confirmatory field test on a Paleaudalf soil. In the laboratory, an adapted Proctor test was performed with three energy levels, with and without corn residue. Field treatments consisted of three 5.1 Mg tractor wheeling intensities (0, 2, and 6), with and without 12 Mg ha(-1) corn residue on the soil surface. Corn residue on the soil surface reduced soil bulk density in the adapted Proctor test. By applying energy of 52.6 kN m m(-3) , soil dissipated 2.98% of applied energy, whereas with 175.4 kN m m(-3) a dissipation of 8.60% was obtained. This result confirms the hypothesis that surface mulch absorbs part of the compaction effort. Residue effects on soil compaction observed in the adapted Proctor test was not replicated under subsoiled soil field conditions, because of differences in applied pressure and soil conditions (structure, moisture and volume confinement). Nevertheless, this negative result does not mean that straw has no effect in the field. Such effects should be measured via stress transmission and compared to soil load-bearing capacity, rather than on bulk deformations. Wheeling by heavy tractor on subsoiled soil increased compaction, independently of surface residue. Two wheelings produced a significantly increase, but six wheelings did not further increase compaction. Reduced traffic intensity on recently tilled soil is necessary to minimize soil compaction, since traffic intensity show a greater effect than surface mulch on soil protection from excessive compaction. © 2015 Society of Chemical Industry. PMID:26304050

  2. Dynamic compaction of granular materials

    PubMed Central

    Favrie, N.; Gavrilyuk, S.

    2013-01-01

    An Eulerian hyperbolic multiphase flow model for dynamic and irreversible compaction of granular materials is constructed. The reversible model is first constructed on the basis of the classical Hertz theory. The irreversible model is then derived in accordance with the following two basic principles. First, the entropy inequality is satisfied by the model. Second, the corresponding ‘intergranular stress’ coming from elastic energy owing to contact between grains decreases in time (the granular media behave as Maxwell-type materials). The irreversible model admits an equilibrium state corresponding to von Mises-type yield limit. The yield limit depends on the volume fraction of the solid. The sound velocity at the yield surface is smaller than that in the reversible model. The last one is smaller than the sound velocity in the irreversible model. Such an embedded model structure assures a thermodynamically correct formulation of the model of granular materials. The model is validated on quasi-static experiments on loading–unloading cycles. The experimentally observed hysteresis phenomena were numerically confirmed with a good accuracy by the proposed model. PMID:24353466

  3. Compact Nanowire Sensors Probe Microdroplets.

    PubMed

    Schütt, Julian; Ibarlucea, Bergoi; Illing, Rico; Zörgiebel, Felix; Pregl, Sebastian; Nozaki, Daijiro; Weber, Walter M; Mikolajick, Thomas; Baraban, Larysa; Cuniberti, Gianaurelio

    2016-08-10

    The conjunction of miniature nanosensors and droplet-based microfluidic systems conceptually opens a new route toward sensitive, optics-less analysis of biochemical processes with high throughput, where a single device can be employed for probing of thousands of independent reactors. Here we combine droplet microfluidics with the compact silicon nanowire based field effect transistor (SiNW FET) for in-flow electrical detection of aqueous droplets one by one. We chemically probe the content of numerous (∼10(4)) droplets as independent events and resolve the pH values and ionic strengths of the encapsulated solution, resulting in a change of the source-drain current ISD through the nanowires. Further, we discuss the specificities of emulsion sensing using ion sensitive FETs and study the effect of droplet sizes with respect to the sensor area, as well as its role on the ability to sense the interior of the aqueous reservoir. Finally, we demonstrate the capability of the novel droplets based nanowire platform for bioassay applications and carry out a glucose oxidase (GOx) enzymatic test for glucose detection, providing also the reference readout with an integrated parallel optical detector.

  4. Compact drilling and sample system

    NASA Technical Reports Server (NTRS)

    Gillis-Smith, Greg R.; Petercsak, Doug

    1998-01-01

    The Compact Drilling and Sample System (CDSS) was developed to drill into terrestrial, cometary, and asteroid material in a cryogenic, vacuum environment in order to acquire subsurface samples. Although drills were used by the Apollo astronauts some 20 years ago, this drill is a fraction of the mass and power and operates completely autonomously, able to drill, acquire, transport, dock, and release sample containers in science instruments. The CDSS has incorporated into its control system the ability to gather science data about the material being drilled by measuring drilling rate per force applied and torque. This drill will be able to optimize rotation and thrust in order to achieve the highest drilling rate possible in any given sample. The drill can be commanded to drill at a specified force, so that force imparted on the rover or lander is limited. This paper will discuss the cryo dc brush motors, carbide gears, cryogenic lubrication, quick-release interchangeable sampling drill bits, percussion drilling and the control system developed to achieve autonomous, cryogenic, vacuum, lightweight drilling.

  5. Ultra Compact Imaging Spectrometer (UCIS)

    NASA Astrophysics Data System (ADS)

    Blaney, Diana L.; Green, Robert; Mouroulis, Pantazis; Cable, Morgan; Ehlmann, Bethany; Haag, Justin; Lamborn, Andrew; McKinley, Ian; Rodriguez, Jose; van Gorp, Byron

    2016-10-01

    The Ultra Compact Imaging Spectrometer (UCIS) is a modular visible to short wavelength infrared imaging spectrometer architecture which could be adapted to a variety of mission concepts requiring low mass and low power. Imaging spectroscopy is an established technique to address complex questions of geologic evolution by mapping diagnostic absorption features due to minerals, organics, and volatiles throughout our solar system. At the core of UCIS is an Offner imaging spectrometer using M3 heritage and a miniature pulse tube cryo-cooler developed under the NASA Maturation of Instruments for Solar System Exploration (MatISSE) program to cool the focal plane array. The TRL 6 integrated spectrometer and cryo-cooler provide a basic imaging spectrometer capability that is used with a variety of fore optics to address lunar, mars, and small body science goals. Potential configurations include: remote sensing from small orbiters and flyby spacecraft; in situ panoramic imaging spectroscopy; and in situ micro-spectroscopy. A micro-spectroscopy front end is being developed using MatISSE funding with integration and testing planned this summer.

  6. Compact Nanowire Sensors Probe Microdroplets.

    PubMed

    Schütt, Julian; Ibarlucea, Bergoi; Illing, Rico; Zörgiebel, Felix; Pregl, Sebastian; Nozaki, Daijiro; Weber, Walter M; Mikolajick, Thomas; Baraban, Larysa; Cuniberti, Gianaurelio

    2016-08-10

    The conjunction of miniature nanosensors and droplet-based microfluidic systems conceptually opens a new route toward sensitive, optics-less analysis of biochemical processes with high throughput, where a single device can be employed for probing of thousands of independent reactors. Here we combine droplet microfluidics with the compact silicon nanowire based field effect transistor (SiNW FET) for in-flow electrical detection of aqueous droplets one by one. We chemically probe the content of numerous (∼10(4)) droplets as independent events and resolve the pH values and ionic strengths of the encapsulated solution, resulting in a change of the source-drain current ISD through the nanowires. Further, we discuss the specificities of emulsion sensing using ion sensitive FETs and study the effect of droplet sizes with respect to the sensor area, as well as its role on the ability to sense the interior of the aqueous reservoir. Finally, we demonstrate the capability of the novel droplets based nanowire platform for bioassay applications and carry out a glucose oxidase (GOx) enzymatic test for glucose detection, providing also the reference readout with an integrated parallel optical detector. PMID:27417510

  7. Compact stellarators with modular coils

    PubMed Central

    Garabedian, P. R.

    2000-01-01

    Compact stellarator designs with modular coils and only two or three field periods are now available; these designs have both good stability and quasiaxial symmetry providing adequate transport for a magnetic fusion reactor. If the bootstrap current assumes theoretically predicted values a three field period configuration is optimal, but if that net current turns out to be lower, a device with two periods and just 12 modular coils might be better. There are also attractive designs with quasihelical symmetry and four or five periods whose properties depend less on the bootstrap current. Good performance requires that there be a satisfactory magnetic well in the vacuum field, which is a property lacking in a stellarator-tokamak hybrid that has been proposed for a proof of principle experiment. In this paper, we present an analysis of stability for these configurations that is based on a mountain pass theorem asserting that, if two solutions of the problem of magnetohydrodynamic equilibrium can be found, then there has to be an unstable solution. We compare results of our theory of equilibrium, stability, and transport with recently announced measurements from the large LHD experiment in Japan. PMID:10899993

  8. Daily Enteral DHA Supplementation Alleviates Deficiency in Premature Infants.

    PubMed

    Baack, Michelle L; Puumala, Susan E; Messier, Stephen E; Pritchett, Deborah K; Harris, William S

    2016-04-01

    Docosahexaenoic acid (DHA) is an essential fatty acid (FA) important for health and neurodevelopment. Premature infants are at risk of DHA deficiency and circulating levels directly correlate with health outcomes. Most supplementation strategies have focused on increasing DHA content in mother's milk or infant formula. However, extremely premature infants may not reach full feedings for weeks and commercially available parenteral lipid emulsions do not contain preformed DHA, so blood levels decline rapidly after birth. Our objective was to develop a DHA supplementation strategy to overcome these barriers. This double-blind, randomized, controlled trial determined feasibility, tolerability and efficacy of daily enteral DHA supplementation (50 mg/day) in addition to standard nutrition for preterm infants (24-34 weeks gestational age) beginning in the first week of life. Blood FA levels were analyzed at baseline, full feedings and near discharge in DHA (n = 31) or placebo supplemented (n = 29) preterm infants. Term peers (n = 30) were analyzed for comparison. Preterm infants had lower baseline DHA levels (p < 0.0001). Those receiving DHA had a progressive increase in circulating DHA over time (from 3.33 to 4.09 wt% or 2.88 to 3.55 mol%, p < 0.0001) while placebo-supplemented infants (receiving standard neonatal nutrition) had no increase over time (from 3.35 to 3.32 wt% or 2.91 to 2.87 mol%). Although levels increased with additional DHA supplementation, preterm infants still had lower blood DHA levels than term peers (4.97 wt% or 4.31 mol%) at discharge (p = 0.0002). No differences in adverse events were observed between the groups. Overall, daily enteral DHA supplementation is feasible and alleviates deficiency in premature infants. PMID:26846324

  9. Zinc supplementation alleviates heat stress in laying Japanese quail.

    PubMed

    Sahin, Kazim; Kucuk, Omer

    2003-09-01

    The study was conducted to determine whether zinc supplementation could alleviate the detrimental effects of high ambient temperature (34 degrees C) on egg production, digestibility of nutrients and antioxidant status in laying Japanese quail. Quail (n = 180; 52 d old) were divided into six groups (n = 30/group) and were fed a basal diet or the basal diet supplemented with 30 or 60 mg of zinc (ZnSO(4). H(2)O)/kg diet. Birds were kept at 22 degrees C and 58% relative humidity (RH). At 13 wk of age, the thermoneutral (TN) groups remained at the same temperature, whereas the heat-stress (HS) groups were kept in an environmentally controlled room at 34 degrees C and 42% RH for 3 wk. Heat exposure decreased egg production in birds fed the basal diet (P = 0.001). Linear increases in feed intake (P = 0.01) and egg production (P = 0.004) and improved feed efficiency (P = 0.01) and egg quality variables (P 0.05). Results of the present study suggest that supplementation with 60 mg zinc/kg diet protects quail by reducing the negative effects of heat stress.

  10. Cellular Recycling of Proteins in Seed Dormancy Alleviation and Germination

    PubMed Central

    Oracz, Krystyna; Stawska, Marlena

    2016-01-01

    Each step of the seed-to-seed cycle of plant development including seed germination is characterized by a specific set of proteins. The continual renewal and/or replacement of these biomolecules are crucial for optimal plant adaptation. As proteins are the main effectors inside the cells, their levels need to be tightly regulated. This is partially achieved by specific proteolytic pathways via multicatalytic protease complexes defined as 20S and 26S proteasomes. In plants, the 20S proteasome is responsible for degradation of carbonylated proteins, while the 26S being a part of ubiquitin-proteasome pathway is known to be involved in proteolysis of phytohormone signaling regulators. On the other hand, the role of translational control of plant development is also well-documented, especially in the context of pollen tube growth and light signaling. Despite the current progress that has been made in seed biology, the sequence of cellular events that determine if the seed can germinate or not are still far from complete understanding. The role and mechanisms of regulation of proteome composition during processes occurring in the plant’s photosynthetic tissues have been well-characterized since many years, but in non-photosynthetic seeds it has emerged as a tempting research task only since the last decade. This review discusses the recent discoveries providing insights into the role of protein turnover in seed dormancy alleviation, and germination, with a focus on the control of translation and proteasomal proteolysis. The presented novel data of translatome profiling in seeds highlighted that post-transcriptional regulation of germination results from a timely regulated initiation of translation. In addition, the importance of 26S proteasome in the degradation of regulatory elements of cellular signaling and that of the 20S complex in proteolysis of specific carbonylated proteins in hormonal- and light-dependent processes occurring in seeds is discussed. Based on the

  11. Losartan alleviates hyperuricemia-induced atherosclerosis in a rabbit model

    PubMed Central

    Zheng, Hongchao; Li, Ning; Ding, Yueyou; Miao, Peizhi

    2015-01-01

    Objective: To investigate the mechanisms underlying the therapeutic effects of losartan on hyperuricemia-induced aortic atherosclerosis, in an experimental rabbit model. Methods: Male rabbits (n = 48) were divided into control, hyperuricemia (HU), hypercholesterolemia + hyperuricemia (HC + HU) and high-purine with 30-mg/kg/d losartan (HU + losartan) groups. Serum uric acid (UA) and plasma renin and angiotensin II activities were determined. Aortic tissue specimens were analyzed for histological changes and proliferating cell nuclear antigen (PCNA). Liver tissues were sampled for quantitative analyses of liver low-density lipoprotein receptor (LDLR) mRNA and protein via reverse transcription polymerase chain reaction and western blotting. Results: After 12 weeks, serum UA and plasma renin and plasma angiotensin II activities were enhanced in the HU and HU + HC groups (P < 0.001) compared to the control, whereas in the HU + losartan group plasma renin activity was not different and serum UA concentrations as well as plasma angiotensin II activity were moderately enhanced (P < 0.05). Smooth muscle cell (SMC) PCNA expression increased strongly in the HU and HU + HC groups (P < 0.001), but was less pronounced in the HU + losartan group. In contrast, transcription and expression of LDLR mRNA and protein were significantly higher in the control and HU + losartan groups compared to the HU and HU + HC groups. Both the HU and HU + HC groups had elevated intima thickness and intima areas compared to the control and HU + losartan groups. Conclusions: Losartan can alleviate experimental atherosclerosis induced by hyperuricemia. PMID:26617751

  12. Cellular Recycling of Proteins in Seed Dormancy Alleviation and Germination.

    PubMed

    Oracz, Krystyna; Stawska, Marlena

    2016-01-01

    Each step of the seed-to-seed cycle of plant development including seed germination is characterized by a specific set of proteins. The continual renewal and/or replacement of these biomolecules are crucial for optimal plant adaptation. As proteins are the main effectors inside the cells, their levels need to be tightly regulated. This is partially achieved by specific proteolytic pathways via multicatalytic protease complexes defined as 20S and 26S proteasomes. In plants, the 20S proteasome is responsible for degradation of carbonylated proteins, while the 26S being a part of ubiquitin-proteasome pathway is known to be involved in proteolysis of phytohormone signaling regulators. On the other hand, the role of translational control of plant development is also well-documented, especially in the context of pollen tube growth and light signaling. Despite the current progress that has been made in seed biology, the sequence of cellular events that determine if the seed can germinate or not are still far from complete understanding. The role and mechanisms of regulation of proteome composition during processes occurring in the plant's photosynthetic tissues have been well-characterized since many years, but in non-photosynthetic seeds it has emerged as a tempting research task only since the last decade. This review discusses the recent discoveries providing insights into the role of protein turnover in seed dormancy alleviation, and germination, with a focus on the control of translation and proteasomal proteolysis. The presented novel data of translatome profiling in seeds highlighted that post-transcriptional regulation of germination results from a timely regulated initiation of translation. In addition, the importance of 26S proteasome in the degradation of regulatory elements of cellular signaling and that of the 20S complex in proteolysis of specific carbonylated proteins in hormonal- and light-dependent processes occurring in seeds is discussed. Based on the

  13. Cellular Recycling of Proteins in Seed Dormancy Alleviation and Germination.

    PubMed

    Oracz, Krystyna; Stawska, Marlena

    2016-01-01

    Each step of the seed-to-seed cycle of plant development including seed germination is characterized by a specific set of proteins. The continual renewal and/or replacement of these biomolecules are crucial for optimal plant adaptation. As proteins are the main effectors inside the cells, their levels need to be tightly regulated. This is partially achieved by specific proteolytic pathways via multicatalytic protease complexes defined as 20S and 26S proteasomes. In plants, the 20S proteasome is responsible for degradation of carbonylated proteins, while the 26S being a part of ubiquitin-proteasome pathway is known to be involved in proteolysis of phytohormone signaling regulators. On the other hand, the role of translational control of plant development is also well-documented, especially in the context of pollen tube growth and light signaling. Despite the current progress that has been made in seed biology, the sequence of cellular events that determine if the seed can germinate or not are still far from complete understanding. The role and mechanisms of regulation of proteome composition during processes occurring in the plant's photosynthetic tissues have been well-characterized since many years, but in non-photosynthetic seeds it has emerged as a tempting research task only since the last decade. This review discusses the recent discoveries providing insights into the role of protein turnover in seed dormancy alleviation, and germination, with a focus on the control of translation and proteasomal proteolysis. The presented novel data of translatome profiling in seeds highlighted that post-transcriptional regulation of germination results from a timely regulated initiation of translation. In addition, the importance of 26S proteasome in the degradation of regulatory elements of cellular signaling and that of the 20S complex in proteolysis of specific carbonylated proteins in hormonal- and light-dependent processes occurring in seeds is discussed. Based on the

  14. Predicting ice accretion and alleviating galloping on overhead power lines

    NASA Astrophysics Data System (ADS)

    Lu, Mingliang

    2002-04-01

    Both the static and dynamic effects of an ice storm on an overhead power line are investigated fairly comprehensively in this thesis. To determine the static, extreme ice load as well as the combined ice and wind load, a systematic procedure is established based on extensive freezing rain experiments and a Monte Carlo simulation. On the other hand, a dynamic effect---galloping---is examined quite extensively with the objective of better understanding its behavior. A novel add-on device---the hybrid nutation damper (HND)---is proposed to control galloping. Its effectiveness is assessed numerically by using a modified, 3DOF based, galloping software. The present investigations lead to the following findings. (i) Goodwin's simple theoretical model surprisingly predicts, quite accurately, the temporally changing weight of not only a dry ice growth but also a wet ice growth for a fixed, unheated conductor sample. (ii) The maximum ice loading may vary significantly over a power line's planned lifetime because of the randomness of an ice storm and its characteristics as well as the uncertainty involved in identifying the extreme probability distribution of the ice loading. Consequently, backup protection is presently essential for a power line in an ice prone area. (iii) A conductor's torsional flexibility does not appear to affect the growth of the accreted ice weight but it modifies the ice shape significantly. (iv) Three representative ice shapes (a crescent, D-like and icicle pendant) can initiate galloping so that galloping may occur in any icing condition. (v) A noticeable swingback or twist appears to develop only when their respective natural frequencies coincide with the plunge's natural frequency. (vi) A hydraulic jump is the major source of energy dissipation in a nutation damper. A properly induced rotation can significantly enhance a nutation damper's performance. (vii) A hybrid nutation damper has been demonstrated to be a promising means of alleviating

  15. Accuracy of quantitative visual soil assessment

    NASA Astrophysics Data System (ADS)

    van Leeuwen, Maricke; Heuvelink, Gerard; Stoorvogel, Jetse; Wallinga, Jakob; de Boer, Imke; van Dam, Jos; van Essen, Everhard; Moolenaar, Simon; Verhoeven, Frank; Stoof, Cathelijne

    2016-04-01

    Visual soil assessment (VSA) is a method to assess soil quality visually, when standing in the field. VSA is increasingly used by farmers, farm organisations and companies, because it is rapid and cost-effective, and because looking at soil provides understanding about soil functioning. Often VSA is regarded as subjective, so there is a need to verify VSA. Also, many VSAs have not been fine-tuned for contrasting soil types. This could lead to wrong interpretation of soil quality and soil functioning when contrasting sites are compared to each other. We wanted to assess accuracy of VSA, while taking into account soil type. The first objective was to test whether quantitative visual field observations, which form the basis in many VSAs, could be validated with standardized field or laboratory measurements. The second objective was to assess whether quantitative visual field observations are reproducible, when used by observers with contrasting backgrounds. For the validation study, we made quantitative visual observations at 26 cattle farms. Farms were located at sand, clay and peat soils in the North Friesian Woodlands, the Netherlands. Quantitative visual observations evaluated were grass cover, number of biopores, number of roots, soil colour, soil structure, number of earthworms, number of gley mottles and soil compaction. Linear regression analysis showed that four out of eight quantitative visual observations could be well validated with standardized field or laboratory measurements. The following quantitative visual observations correlated well with standardized field or laboratory measurements: grass cover with classified images of surface cover; number of roots with root dry weight; amount of large structure elements with mean weight diameter; and soil colour with soil organic matter content. Correlation coefficients were greater than 0.3, from which half of the correlations were significant. For the reproducibility study, a group of 9 soil scientists and 7

  16. Intestinal parasitic infections amongst Orang Asli (indigenous) in Malaysia: has socioeconomic development alleviated the problem?

    PubMed

    Lim, Y A L; Romano, N; Colin, N; Chow, S C; Smith, H V

    2009-08-01

    Orang Asli are the indigenous minority peoples of peninsular Malaysia. Despite proactive socioeconomic development initiated by the Malaysian Government in upgrading the quality of life of the Orang Asli communities since 1978, they still remained poor with a current poverty rate of 76.9%. Poverty exacerbates the health problems faced by these communities which include malnourishment, high incidences of infectious diseases (eg. tuberculosis, leprosy, malaria) and the perpetual problem with intestinal parasitic infections. Studies reported that the mean infection rate of intestinal parasitic infections in Orang Asli communities has reduced from 91.1% in 1978, to 64.1% in the subsequent years. Although the results was encouraging, it has to be interpreted with caution because nearly 80% of studies carried out after 1978 still reported high prevalence (i.e. >50%) of soil-transmitted helminthiases (STH) among Orang Asli communities. Prior to 1978, hookworm infection is the most predominant STH but today, trichuriasis is the most common STH infections. The risk factors for intestinal parasitic infections remained unchanged and studies conducted in recent years suggested that severe STH infections contributed to malnutrition, iron deficiency anaemia and low serum retinol in Orang Asli communities. In addition, STH may also contribute to poor cognitive functions and learning ability. Improvements in socioeconomic status in Malaysia have shown positive impact on the reduction of intestinal parasitic infections in other communities however, this positive impact is less significant in the Orang Asli communities. In view of this, a national parasitic infections baseline data on morbidity and mortality in the 18 subgroups of Orang Asli, will assist in identifying intervention programmes required by these communities. It is hope that the adoption of strategies highlighted in the World Health Organisation- Healthy Village Initiatives (WHO-HVI) into Orang Asli communities will

  17. Intestinal parasitic infections amongst Orang Asli (indigenous) in Malaysia: has socioeconomic development alleviated the problem?

    PubMed

    Lim, Y A L; Romano, N; Colin, N; Chow, S C; Smith, H V

    2009-08-01

    Orang Asli are the indigenous minority peoples of peninsular Malaysia. Despite proactive socioeconomic development initiated by the Malaysian Government in upgrading the quality of life of the Orang Asli communities since 1978, they still remained poor with a current poverty rate of 76.9%. Poverty exacerbates the health problems faced by these communities which include malnourishment, high incidences of infectious diseases (eg. tuberculosis, leprosy, malaria) and the perpetual problem with intestinal parasitic infections. Studies reported that the mean infection rate of intestinal parasitic infections in Orang Asli communities has reduced from 91.1% in 1978, to 64.1% in the subsequent years. Although the results was encouraging, it has to be interpreted with caution because nearly 80% of studies carried out after 1978 still reported high prevalence (i.e. >50%) of soil-transmitted helminthiases (STH) among Orang Asli communities. Prior to 1978, hookworm infection is the most predominant STH but today, trichuriasis is the most common STH infections. The risk factors for intestinal parasitic infections remained unchanged and studies conducted in recent years suggested that severe STH infections contributed to malnutrition, iron deficiency anaemia and low serum retinol in Orang Asli communities. In addition, STH may also contribute to poor cognitive functions and learning ability. Improvements in socioeconomic status in Malaysia have shown positive impact on the reduction of intestinal parasitic infections in other communities however, this positive impact is less significant in the Orang Asli communities. In view of this, a national parasitic infections baseline data on morbidity and mortality in the 18 subgroups of Orang Asli, will assist in identifying intervention programmes required by these communities. It is hope that the adoption of strategies highlighted in the World Health Organisation- Healthy Village Initiatives (WHO-HVI) into Orang Asli communities will

  18. Citric acid enhances the phytoextraction of chromium, plant growth, and photosynthesis by alleviating the oxidative damages in Brassica napus L.

    PubMed

    Afshan, Sehar; Ali, Shafaqat; Bharwana, Saima Aslam; Rizwan, Muhammad; Farid, Mujahid; Abbas, Farhat; Ibrahim, Muhammad; Mehmood, Muhammad Aamer; Abbasi, Ghulam Hasan

    2015-08-01

    Chromium (Cr) toxicity is widespread in crops grown on Cr-contaminated soils and has become a serious environmental issue which requires affordable strategies for the remediation of such soils. This study was performed to assess the performance of citric acid (CA) through growing Brassica napus in the phytoextraction of Cr from contaminated soil. Different Cr (0, 100, and 500 μM) and citric acid (0, 2.5, and 5.0 mM) treatments were applied alone and in combinations to 4-week-old seedlings of B. napus plants in soil under wire house condition. Plants were harvested after 12 weeks of sowing, and the data was recorded regarding growth characteristics, biomass, photosynthetic pigments, malondialdehyde (MDA), electrolytic leakage (EL), antioxidant enzymes, and Cr uptake and accumulation. The results showed that the plant growth, biomass, chlorophyll contents, and carotenoid as well as soluble protein concentrations significantly decreased under Cr stress alone while these adverse effects were alleviated by application of CA. Cr concentration in roots, stem, and leaves of CA-supplied plant was significantly reduced while total uptake of Cr increased in all plant parts with CA application. Furthermore, in comparison with Cr treatments alone, CA supply reduced the MDA and EL values in both shoots and roots. Moreover, the activity of superoxide dismutase (SOD), guaiacol peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) in shoots and roots markedly increased by 100 μM Cr exposure, while decreased at 500 μM Cr stress. CA application enhanced the activities of antioxidant enzymes compared to the same Cr treatment alone. Thus, the data indicate that exogenous CA application can increase Cr uptake and can minimize Cr stress in plants and may be beneficial in accelerating the phytoextraction of Cr through hyper-accumulating plants such as B. napus. PMID:25850739

  19. Citric acid enhances the phytoextraction of chromium, plant growth, and photosynthesis by alleviating the oxidative damages in Brassica napus L.

    PubMed

    Afshan, Sehar; Ali, Shafaqat; Bharwana, Saima Aslam; Rizwan, Muhammad; Farid, Mujahid; Abbas, Farhat; Ibrahim, Muhammad; Mehmood, Muhammad Aamer; Abbasi, Ghulam Hasan

    2015-08-01

    Chromium (Cr) toxicity is widespread in crops grown on Cr-contaminated soils and has become a serious environmental issue which requires affordable strategies for the remediation of such soils. This study was performed to assess the performance of citric acid (CA) through growing Brassica napus in the phytoextraction of Cr from contaminated soil. Different Cr (0, 100, and 500 μM) and citric acid (0, 2.5, and 5.0 mM) treatments were applied alone and in combinations to 4-week-old seedlings of B. napus plants in soil under wire house condition. Plants were harvested after 12 weeks of sowing, and the data was recorded regarding growth characteristics, biomass, photosynthetic pigments, malondialdehyde (MDA), electrolytic leakage (EL), antioxidant enzymes, and Cr uptake and accumulation. The results showed that the plant growth, biomass, chlorophyll contents, and carotenoid as well as soluble protein concentrations significantly decreased under Cr stress alone while these adverse effects were alleviated by application of CA. Cr concentration in roots, stem, and leaves of CA-supplied plant was significantly reduced while total uptake of Cr increased in all plant parts with CA application. Furthermore, in comparison with Cr treatments alone, CA supply reduced the MDA and EL values in both shoots and roots. Moreover, the activity of superoxide dismutase (SOD), guaiacol peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) in shoots and roots markedly increased by 100 μM Cr exposure, while decreased at 500 μM Cr stress. CA application enhanced the activities of antioxidant enzymes compared to the same Cr treatment alone. Thus, the data indicate that exogenous CA application can increase Cr uptake and can minimize Cr stress in plants and may be beneficial in accelerating the phytoextraction of Cr through hyper-accumulating plants such as B. napus.

  20. A compaction front in North Sea chalk

    NASA Astrophysics Data System (ADS)

    Japsen, P.; Dysthe, D. K.; Hartz, E. H.; Jamtveit, B.

    2012-04-01

    North Sea chalk from 18 wells shows a pronounced porosity drop, from ˜20% to less than 10% over a compaction front of less than 300 m. The position of the compaction frontis independent of stratigraphic position, temperature, and actual depth, but closely tied to an effective stress of ˜17 MPa. These observations require a strongly nonlinear rheology with a marked increase in compaction rate at a specific effective stress. Grain-scale observations demonstrate that the compaction front coincides with marked grain coarsening and recrystallization of fossils and fossil fragments. We propose that this nonlinear rheology is caused by stress-driven failure of the larger pores and the associated generation of reactive surface area by subcritical crack propagation away from these pores. Before the onset of this instability, compaction by pressure solution is slowed down by the inhibitory effect of organic compounds associated with the fossils. Although the compaction mechanism is mainly by pressure solution, the rheological response to burial may still be dominantly plastic and controlled by the (fracturing controlled) rate of exposure of reactive surface area. The nonlinear compaction of chalk has significant implications for the evolution of petroleum systems in the central North Sea, both with respect to sea-floor subsidence above hydrocarbon-producing chalk reservoirs and for the formation of low-porosity pressure seals within the chalk.

  1. A compaction front in North Sea chalk

    NASA Astrophysics Data System (ADS)

    Japsen, P.; Dysthe, D. K.; Hartz, E. H.; Stipp, S. L. S.; Yarushina, V. M.; Jamtveit, B.

    2011-11-01

    North Sea chalk from 18 wells shows a pronounced porosity drop, from ˜20% to less than 10% over a compaction front of less than 300 m. The position of the compaction front is independent of stratigraphic position, temperature, and actual depth, but closely tied to an effective stress (load stress minus fluid pressure) of ˜17 MPa. These observations require a strongly nonlinear rheology with a marked increase in compaction rate at a specific effective stress. Grain-scale observations demonstrate that the compaction front coincides with marked grain coarsening and recrystallization of fossils and fossil fragments. We propose that this nonlinear rheology is caused by stress-driven failure of the larger pores and the associated generation of reactive surface area by subcritical crack propagation away from these pores. Before the onset of this instability, compaction by pressure solution is slowed down by the inhibitory effect of organic compounds associated with the fossils. Although the compaction mechanism is mainly by pressure solution, the rheological response to burial may still be dominantly plastic and controlled by the (fracturing controlled) rate of exposure of reactive surface area. The nonlinear compaction of chalk has significant implications for the evolution of petroleum systems in the central North Sea, both with respect to sea-floor subsidence above hydrocarbon-producing chalk reservoirs and for the formation of low-porosity pressure seals within the chalk.

  2. Thermodynamic analysis of compact formation; compaction, unloading, and ejection. I. Design and development of a compaction calorimeter and mechanical and thermal energy determinations of powder compaction.

    PubMed

    DeCrosta, M T; Schwartz, J B; Wigent, R J; Marshall, K

    2000-03-30

    The aim of this investigation was to determine and evaluate the thermodynamic properties, i.e. heat, work, and internal energy change, of the compaction process by developing a 'Compaction Calorimeter'. Compaction of common excipients and acetaminophen was performed by a double-ended, constant-strain tableting waveform utilizing an instrumented 'Compaction Simulator.' A constant-strain waveform provides a specific quantity of applied compaction work. A calorimeter, built around the dies, used a metal oxide thermistor to measure the temperature of the system. A resolution of 0.0001 degrees C with a sampling time of 5 s was used to monitor the temperature. An aluminum die within a plastic insulating die, in conjunction with fiberglass punches, comprised the calorimeter. Mechanical (work) and thermal (heat) calibrations of the elastic punch deformation were performed. An energy correction method was outlined to account for system heat effects and mechanical work of the punches. Compaction simulator transducers measured upper and lower punch forces and displacements. Measurements of the effective heat capacity of the samples were performed utilizing an electrical resistance heater. Specific heat capacities of the samples were determined by differential scanning calorimetry. The calibration techniques were utilized to determine heat, work, and the change in internal energies of powder compaction. Future publications will address the thermodynamic evaluation of the tablet sub-processes of unloading and ejection. PMID:10722955

  3. The classification of 2 -compact groups

    NASA Astrophysics Data System (ADS)

    Andersen, Kasper K. S.; Grodal, Jesper

    2009-04-01

    We prove that any connected 2 -compact group is classified by its 2 -adic root datum, and in particular the exotic 2 -compact group operatorname{DI}(4) , constructed by Dwyer-Wilkerson, is the only simple 2 -compact group not arising as the 2 -completion of a compact connected Lie group. Combined with our earlier work with Mo/ller and Viruel for p odd, this establishes the full classification of p -compact groups, stating that, up to isomorphism, there is a one-to-one correspondence between connected p -compact groups and root data over the p -adic integers. As a consequence we prove the maximal torus conjecture, giving a one-to-one correspondence between compact Lie groups and finite loop spaces admitting a maximal torus. Our proof is a general induction on the dimension of the group, which works for all primes. It refines the Andersen-Grodal-Mo/ller-Viruel methods by incorporating the theory of root data over the p -adic integers, as developed by Dwyer-Wilkerson and the authors. Furthermore we devise a different way of dealing with the rigidification problem by utilizing obstruction groups calculated by Jackowski-McClure-Oliver in the early 1990s.

  4. Compaction of North-sea chalk

    NASA Astrophysics Data System (ADS)

    Keszthelyi, Dániel; Dysthe, Dag Kristian; Jamtveit, Bjørn

    2014-05-01

    The Ekofisk field is the largest petroleum field in the Norwegian North Sea territory where oil is produced from chalk formations. Early stage of oil production caused considerable changes in pore fluid pressure which led to a reservoir compaction. Pore collapse mechanism caused by the dramatic increase of effective stress, which in turn was caused by the pressure reduction by hydrocarbon depletion, was early identified as a principal reason for the reservoir compaction (Sulak et al. 1991). There have been several attempts to model this compaction. They performed with variable success on predicting the Ekofisk subsidence. However, the most of these models are based on empirical relations and do not investigate in detail the phenomena involved in the compaction. In sake of predicting the Ekofisk subsidence while using only independently measurable variables we used a chalk compaction model valid on geological time-scales (Japsen et al. 2011) assuming plastic pore-collapse mechanism at a threshold effective stress level. We identified the phenomena involved in the pore collapse. By putting them in a sequential order we created a simple statistical analytical model. We also investigated the time-dependence of the phenomena involved and by assuming that one of the phenomena is rate-limiting we could make estimations of the compaction rate at smaller length-scales. By carefully investigating the nature of pressure propagation we could upscale our model to reservoir scale. We found that the predicted compaction rates are close enough to the measured rates. We believe that we could further increase accuracy by refining our model. Sulak, R. M., Thomas, L. K., Boade R. R. (1991) 3D reservoir simulation of Ekofisk compaction drive. Journal of Petroleum Technology, 43(10):1272-1278, 1991. Japsen, P., Dysthe, D. K., Hartz, E. H., Stipp, S. L. S., Yarushina, V. M., Jamtveit. (2011) A compaction front in North Sea chalk. Journal of Geophysical Research: Solid Earth (1978

  5. Compacting Plastic-Bonded Explosive Molding Powders to Dense Solids

    SciTech Connect

    B. Olinger

    2005-04-15

    Dense solid high explosives are made by compacting plastic-bonded explosive molding powders with high pressures and temperatures for extended periods of time. The density is influenced by manufacturing processes of the powders, compaction temperature, the magnitude of compaction pressure, pressure duration, and number of repeated applications of pressure. The internal density variation of compacted explosives depends on method of compaction and the material being compacted.

  6. Strategy Guideline. Compact Air Distribution Systems

    SciTech Connect

    Burdick, Arlan

    2013-06-01

    This guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.

  7. Compacting a Kentucky coal for quality logs

    SciTech Connect

    Lin, Y.; Li, Z.; Mao, S.

    1999-07-01

    A Kentucky coal was found more difficult to be compacted into large size strong logs. Study showed that compaction parameters affecting the strength of compacted coal logs could be categorized into three groups. The first group is coal inherent properties such as elasticity and coefficient of friction, the second group is machine properties such as mold geometry, and the third group is the coal mixture preparation parameters such as particle size distribution. Theoretical analysis showed that an appropriate backpressure can reduce surface cracks occurring during ejection. This has been confirmed by the experiments conducted.

  8. Influence of Microsprinkler Irrigation Amount on Water, Soil, and pH Profiles in a Coastal Saline Soil

    PubMed Central

    Chu, Linlin; Kang, Yaohu; Wan, Shuqin

    2014-01-01

    Microsprinkler irrigation is a potential method to alleviate soil salinization. After conducting a homogeneous, highly saline, clayey, and coastal soil from the Bohai Gulf in northern China in a column experiment, the results show that the depth of the wetting front increased as the water amount applied increased, low-salinity and low-SAR enlarged after irrigation and water redistribution, and the soil pH increased with an increase in irrigation amount. We concluded that a water amount of 207 mm could be used to reclaim the coastal saline soil in northern China. PMID:25147843

  9. Influence of microsprinkler irrigation amount on water, soil, and pH profiles in a coastal saline soil.

    PubMed

    Chu, Linlin; Kang, Yaohu; Wan, Shuqin

    2014-01-01

    Microsprinkler irrigation is a potential method to alleviate soil salinization. After conducting a homogeneous, highly saline, clayey, and coastal soil from the Bohai Gulf in northern China in a column experiment, the results show that the depth of the wetting front increased as the water amount applied increased, low-salinity and low-SAR enlarged after irrigation and water redistribution, and the soil pH increased with an increase in irrigation amount. We concluded that a water amount of 207 mm could be used to reclaim the coastal saline soil in northern China.

  10. Autophagy alleviates neurodegeneration caused by mild impairment of oxidative metabolism.

    PubMed

    Meng, Ya; Yong, Yue; Yang, Guang; Ding, Hanqing; Fan, Zhiqin; Tang, Yifen; Luo, Jia; Ke, Zun-Ji

    2013-09-01

    Thiamine deficiency (TD) causes mild impairment of oxidative metabolism and region-selective neuronal loss in the brain, which may be mediated by neuronal oxidative stress, endoplasmic reticulum (ER) stress, and neuroinflammation. TD-induced brain damage is used to model neurodegenerative disorders, and the mechanism for the neuronal death is still unclear. We hypothesized that autophagy might be activated in the TD brain and play a protective role in TD-induced neuronal death. Our results demonstrated that TD induced the accumulation of autophagosomes in thalamic neurons measured by transmission electron microscopy, and the up-regulation of autophagic markers LC3-II, Atg5, and Beclin1 as measured with western blotting. TD also increased the expression of autophagic markers and induced LC3 puncta in SH-SY5Y neuroblastoma cells. TD-induced expression of autophagic markers was reversed once thiamine was re-administered. Both inhibition of autophagy by wortmannin and Beclin1 siRNA potentiated TD-induced death of SH-SY5Y cells. In contrast, activation of autophagy by rapamycin alleviated cell death induced by TD. Intraperitoneal injection of rapamycin stimulated neuronal autophagy and attenuated TD-induced neuronal death and microglia activation in the submedial thalamus nucleus (SmTN). TD inhibited the phosphorylation of p70S6 kinase, suggesting mTOR/p70S6 kinase pathway was involved in the TD-induced autophagy. These results suggest that autophagy is neuroprotective in response to TD-induced neuronal death in the central nervous system. This opens a potential therapeutic avenue for neurodegenerative diseases caused by mild impairment of oxidative metabolism. Autophagy is neuroprotective in response to thiamine deficiency (TD)-induced neuronal death. TD caused neuronal damage and induced the formation of autophagosome, and increased the expression of autophagy-related proteins. Autophagy sequestered damaged and dysfunctional organelles/protein, and transported them to

  11. Blended Buffet-Load-Alleviation System for Fighter Airplane

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.

    2005-01-01

    The capability of modern fighter airplanes to sustain flight at high angles of attack and/or moderate angles of sideslip often results in immersion of part of such an airplane in unsteady, separated, vortical flow emanating from its forebody or wings. The flows from these surfaces become turbulent and separated during flight under these conditions. These flows contain significant levels of energy over a frequency band coincident with that of low-order structural vibration modes of wings, fins, and control surfaces. The unsteady pressures applied to these lifting surfaces as a result of the turbulent flows are commonly denoted buffet loads, and the resulting vibrations of the affected structures are known as buffeting. Prolonged exposure to buffet loads has resulted in fatigue of structures on several airplanes. Damage to airplanes caused by buffeting has led to redesigns of airplane structures and increased support costs for the United States Air Force and Navy as well as the armed forces of other countries. Time spent inspecting, repairing, and replacing structures adversely affects availability of aircraft for missions. A blend of rudder-control and piezoelectric- actuator engineering concepts was selected as a basis for the design of a vertical-tail buffet-load-alleviation system for the F/A-18 airplane. In this system, the rudder actuator is used to control the response of the first tail vibrational mode (bending at a frequency near 15 Hz), while directional patch piezoelectric actuators are used to control the second tail vibrational mode (tip torsion at a frequency near 45 Hz). This blend of two types of actuator utilizes the most effective features of each. An analytical model of the aeroservoelastic behavior of the airplane equipped with this system was validated by good agreement with measured results from a full-scale ground test, flight-test measurement of buffet response, and an in-flight commanded rudder frequency sweep. The overall performance of the

  12. Steady state compact toroidal plasma production

    DOEpatents

    Turner, William C.

    1986-01-01

    Apparatus and method for maintaining steady state compact toroidal plasmas. A compact toroidal plasma is formed by a magnetized coaxial plasma gun and held in close proximity to the gun electrodes by applied magnetic fields or magnetic fields produced by image currents in conducting walls. Voltage supply means maintains a constant potential across the electrodes producing an increasing magnetic helicity which drives the plasma away from a minimum energy state. The plasma globally relaxes to a new minimum energy state, conserving helicity according to Taylor's relaxation hypothesis, and injecting net helicity into the core of the compact toroidal plasma. Controlling the voltage so as to inject net helicity at a predetermined rate based on dissipative processes maintains or increases the compact toroidal plasma in a time averaged steady state mode.

  13. Diagnostics for the National Compact Stellarator Experiment

    SciTech Connect

    B.C. Stratton; D. Johnson; R. Feder; E. Fredrickson; H. Neilson; H. Takahashi; M. Zarnstorf; M. Cole; P. Goranson; E. Lazarus; B. Nelson

    2003-09-16

    The status of planning of the National Compact Stellarator Experiment (NCSX) diagnostics is presented, with the emphasis on resolution of diagnostics access issues and on diagnostics required for the early phases of operation.

  14. Compact reflective imaging spectrometer utilizing immersed gratings

    DOEpatents

    Chrisp, Michael P.

    2006-05-09

    A compact imaging spectrometer comprising an entrance slit for directing light, a first mirror that receives said light and reflects said light, an immersive diffraction grating that diffracts said light, a second mirror that focuses said light, and a detector array that receives said focused light. The compact imaging spectrometer can be utilized for remote sensing imaging spectrometers where size and weight are of primary importance.

  15. Compact Proton Accelerator for Cancer Therapy

    SciTech Connect

    Chen, Y; Paul, A C

    2007-06-12

    An investigation is being made into the feasibility of making a compact proton dielectric wall (DWA) accelerator for medical radiation treatment based on the high gradient insulation (HGI) technology. A small plasma device is used for the proton source. Using only electric focusing fields for transporting and focusing the beam on the patient, the compact DWA proton accelerator m system can deliver wide and independent variable ranges of beam currents, energies and spot sizes.

  16. Alleviation of high light-induced photoinhibition in cyanobacteria by artificially conferred biosilica shells.

    PubMed

    Xiong, Wei; Yang, Zhou; Zhai, Hailei; Wang, Guangchuan; Xu, Xurong; Ma, Weimin; Tang, Ruikang

    2013-09-01

    Bioinspired by diatoms, biomimetic silicification confers an artificial shell on cyanobacteria to alleviate photoinhibition; thus, the photosynthesis of the resulting cyanobacteria@SiO2 becomes more efficient under high light conditions.

  17. Energy for conservation tillage in coastal plain soils

    SciTech Connect

    Khalilian, A.; Garner, T.H.; Musen, H.L.; Dodd, R.B.

    1986-01-01

    Draft and energy data are presented for six reduced tillage treatments on Dothan sandy soil. The implements included a paraplow, KMC subsoiler, chisel plow and A.C. no-till planter. Plant height, yield, taproot length and harvest population were evaluated with respect to tillage treatments. Statistical relationships between tillage system, soil compaction, taproot length and crop yield are given.

  18. Compaction of Ductile and Fragile Grains

    NASA Astrophysics Data System (ADS)

    Creissac, S.; Pouliquen, O.; Dalloz-Dubrujeaud, B.

    2009-06-01

    The compaction of powders into tablets is widely used in several industries (cosmetics, food, pharmaceutics…). In all these industries, the composition of the initial powder is complex, and the behaviour under compaction is not well known, also the mechanical behaviour of the tablets. The aim of this paper is to understand the behaviour (pressure vs density) of a simplified media made of fragile and ductile powders, varying the relative ratio of each powder. Some compaction experiments were carried out with glass beads (fragile) and Polyethylen Glycol powder (ductile). We observe two typical behaviours, depending on the relative volumic fraction of each component. A transition is pointed out, observing the evolution of the slope of the curve pressure/density. This transition is explained by geometrical considerations during compaction. A model is proposed, based on the assumption that the studied media can be compare to a diphasic material with a continuous phase (the ductile powder) and a discrete phase (the fragile powder). The result of this model is compare to the experimental results of compaction, and give a good prediction of the behaviour of the different mixing, knowing the behaviour of the ductile and the fragile phase separately. These results were also interpreted in terms of Heckel parameter which characterizes the ability of the powder to deform plastically under compaction. Some mechanical tests were also performed to compare the mechanical resitance of the obtained tablets.

  19. Technology Selections for Cylindrical Compact Fabrication

    SciTech Connect

    Jeffrey A. Phillips

    2010-10-01

    A variety of process approaches are available and have been used historically for manufacture of cylindrical fuel compacts. The jet milling, fluid bed overcoating, and hot press compacting approach being adopted in the U.S. AGR Fuel Development Program for scale-up of the compacting process involves significant paradigm shifts from historical approaches. New methods are being pursued because of distinct advantages in simplicity, yield, and elimination of process mixed waste. Recent advances in jet milling technology allow simplified dry matrix powder preparation. The matrix preparation method is well matched with patented fluid bed powder overcoating technology recently developed for the pharmaceutical industry and directly usable for high density fuel particle matrix overcoating. High density overcoating places fuel particles as close as possible to their final position in the compact and is matched with hot press compacting which fully fluidizes matrix resin to achieve die fill at low compacting pressures and without matrix end caps. Overall the revised methodology provides a simpler process that should provide very high yields, improve homogeneity, further reduce defect fractions, eliminate intermediate grading and QC steps, and allow further increases in fuel packing fractions.

  20. Dynamic compaction of tungsten carbide powder.

    SciTech Connect

    Gluth, Jeffrey Weston; Hall, Clint Allen; Vogler, Tracy John; Grady, Dennis Edward

    2005-04-01

    The shock compaction behavior of a tungsten carbide powder was investigated using a new experimental design for gas-gun experiments. This design allows the Hugoniot properties to be measured with reasonably good accuracy despite the inherent difficulties involved with distended powders. The experiments also provide the first reshock state for the compacted powder. Experiments were conducted at impact velocities of 245, 500, and 711 m/s. A steady shock wave was observed for some of the sample thicknesses, but the remainder were attenuated due to release from the back of the impactor or the edge of the sample. The shock velocity for the powder was found to be quite low, and the propagating shock waves were seen to be very dispersive. The Hugoniot density for the 711 m/s experiment was close to ambient crystal density for tungsten carbide, indicating nearly complete compaction. When compared with quasi-static compaction results for the same material, the dynamic compaction data is seen to be significantly stiffer for the regime over which they overlap. Based on these initial results, recommendations are made for improving the experimental technique and for future work to improve our understanding of powder compaction.

  1. Compact fission counter for DANCE

    SciTech Connect

    Wu, C Y; Chyzh, A; Kwan, E; Henderson, R; Gostic, J; Carter, D; Bredeweg, T; Couture, A; Jandel, M; Ullmann, J

    2010-11-06

    and still be able to maintain a stable operation under extreme radioactivity and the ability to separate fission fragments from {alpha}'s. In the following sections, the description is given for the design and performance of this new compact PPAC, for studying the neutron-induced reactions on actinides using DANCE at LANL.

  2. Stylolite compaction and stress models

    NASA Astrophysics Data System (ADS)

    Koehn, D.; Ebner, M.; Renard, F.; Toussaint, R.

    2009-04-01

    Stylolites are rough dissolution seams that develop during pressure solution in the Earth's crust. Especially in limestone quarries they exhibit a spectacular roughness with spikes and large columns. They are visible as dark lines of residual clays and other non-dissolvable components in the white limestone. The roughening phenomena seems to be universal since stylolites can also be found in quarzites, mylonites and all kinds of rocks that undergo pressure solution. The genesis of stylolites is not well understood even though they have been used to estimate compaction and to determine the direction of the main compressive stress. We have developed a numerical model to study the dynamic development of the roughness and its dependence on stress. Based on the model we present estimates of finite strain and depth of burial. The numerical stylolites are studied in two ways: the temporal evolution of the roughness on one hand and the fractal characteristics of the roughness on the other hand. In addition we vary the noise in the model and illustrate the importance of the grain size on the roughening process. Surface energies are dominant for small wavelengths and the initial stylolite growth is non-linear and as slow as a diffusive process. However, once a critical wavelength is reached the elastic regime becomes dominant and the growth is still non-linear but not as strong as in the surface energy dominated case. The growth of the roughness speeds up and teeth structures develop. Depending on the system size the growth will reach a third regime where saturation is reached and the roughness stays constant. We will present a scaling law based on these findings that can be used to estimate finite strain from natural stylolites. The roughness of the stylolite itself is self-affine with two different roughness exponents. The switch from one exponent to the other is dependent on stress. We show how stylolites can thus be used as palaeo-stress-gauges. A variation of the

  3. Motionless phase stepping in X-ray phase contrast imaging with a compact source

    PubMed Central

    Miao, Houxun; Chen, Lei; Bennett, Eric E.; Adamo, Nick M.; Gomella, Andrew A.; DeLuca, Alexa M.; Patel, Ajay; Morgan, Nicole Y.; Wen, Han

    2013-01-01

    X-ray phase contrast imaging offers a way to visualize the internal structures of an object without the need to deposit significant radiation, and thereby alleviate the main concern in X-ray diagnostic imaging procedures today. Grating-based differential phase contrast imaging techniques are compatible with compact X-ray sources, which is a key requirement for the majority of clinical X-ray modalities. However, these methods are substantially limited by the need for mechanical phase stepping. We describe an electromagnetic phase-stepping method that eliminates mechanical motion, thus removing the constraints in speed, accuracy, and flexibility. The method is broadly applicable to both projection and tomography imaging modes. The transition from mechanical to electromagnetic scanning should greatly facilitate the translation of X-ray phase contrast techniques into mainstream applications. PMID:24218599

  4. Geotechnical characteristics of residual soils

    SciTech Connect

    Townsend, F.C.

    1985-01-01

    Residual soils are products of chemical weathering and thus their characteristics are dependent upon environmental factors of climate, parent material, topography and drainage, and age. These conditions are optimized in the tropics where well-drained regions produce reddish lateritic soils rich in iron and aluminum sesquioxides and kaolinitic clays. Conversely, poorly drained areas tend towards montmorillonitic expansive black clays. Andosols develop over volcanic ash and rock regions and are rich in allophane (amorphous silica) and metastable halloysite. The geological origins greatly affect the resulting engineering characteristics. Both lateritic soils and andosols are susceptible to property changes upon drying, and exhibit compaction and strength properties not indicative of their classification limits. Both soils have been used successfully in earth dam construction, but attention must be given to seepage control through the weathered rock. Conversely, black soils are unpopular for embankments. Lateritic soils respond to cement stabilization and, in some cases, lime stabilization. Andosols should also respond to lime treatment and cement treatments if proper mixing can be achieved. Black expansive residual soils respond to lime treatment by demonstrating strength gains and decreased expansiveness. Rainfall induced landslides are typical of residual soil deposits.

  5. Impact of Site Disturbances from Harvesting and Logging on Soil Physical Properties and Pinus kesiya Tree Growth.

    PubMed

    Missanjo, Edward; Kamanga-Thole, Gift

    2014-01-01

    A study was conducted to determine the impacts of soil disturbance and compaction on soil physical properties and tree growth and the effectiveness of tillage in maintaining or enhancing site productivity for intensively managed Pinus kesiya Royle ex Gordon sites in Dedza, Malawi. The results indicate that about fifty-two percent of the area of compacted plots was affected by the vehicular traffic. Seventy percent of the trees were planted on microsites with some degree of soil disturbance. Soil bulk density at 0-20 cm depth increased from 0.45 to 0.66 Mg m(-3) in the most compacted portions of traffic lanes. Soil strength in traffic lanes increased at all 60 cm depth but never exceeded 1200 kPa. Volumetric soil water content in compacted traffic lanes was greater than that in noncompacted soil. Total soil porosity decreased 13.8% to 16.1% with compaction, while available water holding capacity increased. The study revealed no detrimental effects on tree height and diameter from soil disturbance or compaction throughout the three growing season. At the ages of two and three, a tree volume index was actually greater for trees planted on traffic lanes than those on nondisturbed soil. PMID:27355043

  6. Impact of Site Disturbances from Harvesting and Logging on Soil Physical Properties and Pinus kesiya Tree Growth

    PubMed Central

    Missanjo, Edward

    2014-01-01

    A study was conducted to determine the impacts of soil disturbance and compaction on soil physical properties and tree growth and the effectiveness of tillage in maintaining or enhancing site productivity for intensively managed Pinus kesiya Royle ex Gordon sites in Dedza, Malawi. The results indicate that about fifty-two percent of the area of compacted plots was affected by the vehicular traffic. Seventy percent of the trees were planted on microsites with some degree of soil disturbance. Soil bulk density at 0–20 cm depth increased from 0.45 to 0.66 Mg m−3 in the most compacted portions of traffic lanes. Soil strength in traffic lanes increased at all 60 cm depth but never exceeded 1200 kPa. Volumetric soil water content in compacted traffic lanes was greater than that in noncompacted soil. Total soil porosity decreased 13.8% to 16.1% with compaction, while available water holding capacity increased. The study revealed no detrimental effects on tree height and diameter from soil disturbance or compaction throughout the three growing season. At the ages of two and three, a tree volume index was actually greater for trees planted on traffic lanes than those on nondisturbed soil. PMID:27355043

  7. Effects of easter Arkansas production systems on soil strength and electrical conductivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eastern Arkansas cotton-growing soils are especially susceptible to soil compaction due to the large percentage of clay content present in these soils and the use of extensive tillage systems that require large equipment and frequent field trips. In this study, the effect of reduced tillage and cove...

  8. Windblown soil crust formation under light rainfall in a semiarid region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many soils in arid and semi-arid regions of the world are affected by crusting, the process of forming a compact layer or thin mantle of consolidated material at the soil surface. Our objective was to evaluate the effect of rainfall quantity on crust formation of five soil types prominent in the Col...

  9. Roller compaction of moist pharmaceutical powders.

    PubMed

    Wu, C-Y; Hung, W-L; Miguélez-Morán, A M; Gururajan, B; Seville, J P K

    2010-05-31

    The compression behaviour of powders during roller compaction is dominated by a number of factors, such as process conditions (roll speed, roll gap, feeding mechanisms and feeding speed) and powder properties (particle size, shape, moisture content). The moisture content affects the powder properties, such as the flowability and cohesion, but it is not clear how the moisture content will influence the powder compression behaviour during roller compaction. In this study, the effect of moisture contents on roller compaction behaviour of microcrystalline cellulose (MCC, Avicel PH102) was investigated experimentally. MCC samples of different moisture contents were prepared by mixing as-received MCC powder with different amount of water that was sprayed onto the powder bed being agitated in a rotary mixer. The flowability of these samples were evaluated in terms of the poured angle of repose and flow functions. The moist powders were then compacted using the instrumented roller compactor developed at the University of Birmingham. The flow and compression behaviour during roller compaction and the properties of produced ribbons were examined. It has been found that, as the moisture content increases, the flowability of moist MCC powders decreases and the powder becomes more cohesive. As a consequence of non-uniform flow of powder into the compaction zone induced by the friction between powder and side cheek plates, all produced ribbons have a higher density in the middle and lower densities at the edges. For the ribbons made of powders with high moisture contents, different hydration states across the ribbon width were also identified from SEM images. Moreover, it was interesting to find that these ribbons were split into two halves. This is attributed to the reduction in the mechanical strength of moist powder compacts with high moisture contents produced at high compression pressures.

  10. Roller compaction of moist pharmaceutical powders.

    PubMed

    Wu, C-Y; Hung, W-L; Miguélez-Morán, A M; Gururajan, B; Seville, J P K

    2010-05-31

    The compression behaviour of powders during roller compaction is dominated by a number of factors, such as process conditions (roll speed, roll gap, feeding mechanisms and feeding speed) and powder properties (particle size, shape, moisture content). The moisture content affects the powder properties, such as the flowability and cohesion, but it is not clear how the moisture content will influence the powder compression behaviour during roller compaction. In this study, the effect of moisture contents on roller compaction behaviour of microcrystalline cellulose (MCC, Avicel PH102) was investigated experimentally. MCC samples of different moisture contents were prepared by mixing as-received MCC powder with different amount of water that was sprayed onto the powder bed being agitated in a rotary mixer. The flowability of these samples were evaluated in terms of the poured angle of repose and flow functions. The moist powders were then compacted using the instrumented roller compactor developed at the University of Birmingham. The flow and compression behaviour during roller compaction and the properties of produced ribbons were examined. It has been found that, as the moisture content increases, the flowability of moist MCC powders decreases and the powder becomes more cohesive. As a consequence of non-uniform flow of powder into the compaction zone induced by the friction between powder and side cheek plates, all produced ribbons have a higher density in the middle and lower densities at the edges. For the ribbons made of powders with high moisture contents, different hydration states across the ribbon width were also identified from SEM images. Moreover, it was interesting to find that these ribbons were split into two halves. This is attributed to the reduction in the mechanical strength of moist powder compacts with high moisture contents produced at high compression pressures. PMID:20176096

  11. Key soil functional properties affected by soil organic matter - evidence from published literature

    NASA Astrophysics Data System (ADS)

    Murphy, Brian

    2015-07-01

    The effect of varying the amount of soil organic matter on a range of individual soil properties was investigated using a literature search of published information largely from Australia, but also included relevant information from overseas. Based on published pedotransfer functions, soil organic matter was shown to increase plant available water by 2 to 3 mm per 10 cm for each 1% increase in soil organic carbon, with the largest increases being associated with sandy soils. Aggregate stability increased with increasing soil organic carbon, with aggregate stability decreasing rapidly when soil organic carbon fell below 1.2 to 1.5 5%. Soil compactibility, friability and soil erodibility were favourably improved by increasing the levels of soil organic carbon. Nutrient cycling was a major function of soil organic matter. Substantial amounts of N, P and S become available to plants when the soil organic matter is mineralised. Soil organic matter also provides a food source for the microorganisms involved in the nutrient cycling of N, P, S and K. In soils with lower clay contents, and less active clays such as kaolinites, soil organic matter can supply a significant amount of the cation exchange capacity and buffering capacity against acidification. Soil organic matter can have a cation exchange capacity of 172 to 297 cmol(+)/kg. As the cation exchange capacity of soil organic matter varies with pH, the effectiveness of soil organic matter to contribute to cation exchange capacity below pH 5.5 is often minimal. Overall soil organic matter has the potential to affect a range of functional soil properties.

  12. The effect of dynamic changes in soil bulk density on hydraulic properties: modeling approaches

    NASA Astrophysics Data System (ADS)

    Assouline, Shmuel

    2014-05-01

    Natural and artificial processes, like rainfall-induced soil surface sealing or mechanical compaction, disturb the soil structure and enhance dynamic changes of the related pore size distribution. These changes may influence many aspects of the soil-water-plant-atmosphere system. One of the easiest measurable variables is the soil bulk density. Approaches are suggested that could model the effect of the change in soil bulk density on soil permeability, water retention curve (WRC) and unsaturated hydraulic conductivity function (HCF). The resulting expressions were calibrated and validated against experimental data corresponding to different soil types at various levels of compaction, and enable a relatively good prediction of the effect of bulk density on the soil hydraulic properties. These models allow estimating the impact of such changes on flow processes and on transport properties of heterogeneous soil profiles.

  13. COMPACT PROTON INJECTOR AND FIRST ACCELERATOR SYSTEM TEST FOR COMPACT PROTON DIELECTRIC WALL CANCER THERAPY ACCELERATOR

    SciTech Connect

    Chen, Y; Guethlein, G; Caporaso, G; Sampayan, S; Blackfield, D; Cook, E; Falabella, S; Harris, J; Hawkins, S; Nelson, S; Poole, B; Richardson, R; Watson, J; Weir, J; Pearson, D

    2009-04-23

    A compact proton accelerator for cancer treatment is being developed by using the high-gradient dielectric insulator wall (DWA) technology [1-4]. We are testing all the essential DWA components, including a compact proton source, on the First Article System Test (FAST). The configuration and progress on the injector and FAST will be presented.

  14. Modeling of planetesimal compaction by hot pressing

    NASA Astrophysics Data System (ADS)

    Neumann, W.; Breuer, D.; Spohn, T.

    2014-07-01

    Compaction of initially porous material prior to melting is an important process that has influenced the interior structure and the thermal evolution of planetesimals in their early history. On one hand, compaction decreases the porosity resulting in a reduction of the radius. On the other hand, the loss of porosity results in an increase of the thermal conductivity of the material and, thus, in a more efficient cooling. Porosity loss by hot pressing is the most efficient process of compaction in planetesimals and can be described by creep flow, which depends on temperature and stress. Hot pressing has been repeatedly modeled using a simplified approach, for which the porosity is gradually reduced in some fixed temperature interval between ~650 K and 700 K [see e.g. 1--3]. This approach neglects the dependence of compaction on stress. In the present study [see 4], we compare this ''parametrized'' method with a self-consistent calculation of porosity loss via a ''creep-related'' approach. We use our thermal evolution model from previous studies [5] to model compaction of an initially porous ordinary chondritic body and consider four basic packings of spherical dust grains (simple cubic, orthorhombic, rhombohedral, and body-centered cubic). Depending on the grain packing, we calculate the effective stress and the associated porosity change via the thermally activated creep flow. For comparison, compaction is also modeled by simply reducing the initial porosity linearly to zero between 650 and 700 K. Since we are interested in thermal metamorphism and not melting, we only consider bodies that experience a maximum temperature below the solidus temperature of the metal phase. For the creep related approach, the temperature interval in which compaction takes place depends strongly on the size of the planetesimal and is not fixed as assumed in the parametrized approach. Depending on the radius, the initial grain size, the activation energy, the initial porosity, and the

  15. Mixing and compaction temperatures for Superpave mixes

    NASA Astrophysics Data System (ADS)

    Yildirim, Yetkin

    According to Superpave mixture design, gyratory specimens are mixed and compacted at equiviscous binder temperatures corresponding to viscosities of 0.17 and 0.28 Pa.s. respectively. These were the values previously used in the Marshal mix design method to determine optimal mixing and compaction temperatures. In order to estimate the appropriate mixing and compaction temperatures for Superpave mixture design, a temperature-viscosity relationship for the binder needs to be developed (ASTM D 2493, Calculation of Mixing and Compaction Temperatures). The current approach is simple and provides reasonable temperatures for unmodified binders. However, some modified binders have exhibited unreasonably high temperatures for mixing and compaction using this technique. These high temperatures can result in construction problems, damage of asphalt, and production of fumes. Heating asphalt binder to very high temperatures during construction oxidizes the binder and separates the polymer from asphalt binder. It is known that polymer modified asphalt binders have many benefits to the roads, such as; increasing rutting resistance, enhancing low temperature cracking resistance, improving traction, better adhesion and cohesion, elevating tensile strength which are directly related to the service life of the pavement. Therefore, oxidation and separation of the polymer from the asphalt binder results in reduction of the service life. ASTM D 2493 was established for unmodified asphalt binders which are Newtonian fluids at high temperatures. For these materials, viscosity does not depend on shear rate. However, most of the modified asphalt binders exhibit a phenomenon known as pseudoplasticity, where viscosity does depend on shear rate. Thus, at the high shear rates occurring during mixing and compaction, it is not necessary to go to very high temperatures. This research was undertaken to determine the shear rate during compaction such that the effect of this parameter could be

  16. Experimental shock metamorphism of lunar soil

    NASA Technical Reports Server (NTRS)

    Schaal, R. B.; Horz, F.

    1980-01-01

    Shock experiments in the pressure range 15-73 GPa were performed on lunar soil 15101 in order to investigate the effect of a single impact event on the formation of soil breccias and agglutinates. The study has demonstrated that the propagation of a shock wave emanating from a single impact in porous particulate samples causes collision and shear of grains, collapse of pore spaces, and compaction which is sufficient to indurate soil at low pressures (15-18 GPa) without significant melting (less than 5%). These low pressures create soil breccias or weakly shocked soil fragments from loose regolith. At pressures above 65 GPa, shock melting produces a pumiceous whole-soil glass which is equivalent to agglutinate glass, glass fragments, or ropy glasses depending on the abundance of lithic fragments and relict grains.

  17. Quicklime application instantly increases soil aggregate stability

    NASA Astrophysics Data System (ADS)

    Keiblinger, Katharina M.; Bauer, Lisa M.; Deltedesco, Evi; Holawe, Franz; Unterfrauner, Hans; Zehetner, Franz; Peticzka, Robert

    2016-01-01

    Agricultural intensification, especially enhanced mechanisation of soil management, can lead to the deterioration of soil structure and to compaction. A possible amelioration strategy is the application of (structural) lime. In this study, we tested the effect of two different liming materials, ie limestone (CaCO3) and quicklime (CaO), on soil aggregate stability in a 3-month greenhouse pot experiment with three agricultural soils. The liming materials were applied in the form of pulverised additives at a rate of 2 000 kg ha-1. Our results show a significant and instantaneous increase of stable aggregates after quicklime application whereas no effects were observed for limestone. Quicklime application seems to improve aggregate stability more efficiently in soils with high clay content and cation exchange capacity. In conclusion, quicklime application may be a feasible strategy for rapid improvement of aggregate stability of fine textured agricultural soils.

  18. Soil Aeration deficiencies in urban sites

    NASA Astrophysics Data System (ADS)

    Weltecke, Katharina; Gaertig, Thorsten

    2010-05-01

    Soil aeration deficiencies in urban sites Katharina Weltecke and Thorsten Gaertig On urban tree sites reduction of soil aeration by compaction or sealing is an important but frequently underestimated factor for tree growth. Up to 50% of the CO2 assimilated during the vegetation period is respired in the root space (Qi et al. 1994). An adequate supply of the soil with oxygen and a proper disposal of the exhaled carbon dioxide are essential for an undisturbed root respiration. If the soil surface is smeared, compacted or sealed, soil aeration is interrupted. Several references show that root activity and fine root growth are controlled by the carbon dioxide concentration in soil air (Qi et al.1994, Burton et al. 1997). Gaertig (2001) found that decreasing topsoil gas permeability leads to reduced fine root density and hence to injury in crown structure of oaks. In forest soils a critical CO2 concentration of more than 0.6 % indicates a bad aeration status (Gaertig 2001). The majority of urban tree sites are compacted or sealed. The reduction of soil aeration may lead to dysfunctions in the root space and consequently to stress during periods of drought, which has its visible affects in crown structure. It is reasonable to assume that disturbances in soil aeration lead to reduced tree vigour and roadworthiness, resulting in high maintenance costs. The assessment of soil aeration in urban sites is difficult. In natural ecosystems the measurement of gas diffusivity and the gas-chromatical analysis of CO2 in soil air are accepted procedures in analyzing the state of aeration (Schack-Kirchner et al. 2001, Gaertig 2001). It has been found that these methods can also be applied for analyzing urban sites. In particular CO2 concentration in the soil atmosphere can be considered as a rapidly assessable, relevant and integrating indicator of the aeration situation of urban soils. This study tested the working hypothesis that soil aeration deficiencies lead to a decrease of fine

  19. DNA compaction by azobenzene-containing surfactant

    NASA Astrophysics Data System (ADS)

    Zakrevskyy, Yuriy; Kopyshev, Alexey; Lomadze, Nino; Morozova, Elena; Lysyakova, Ludmila; Kasyanenko, Nina; Santer, Svetlana

    2011-08-01

    We report on the interaction of cationic azobenzene-containing surfactant with DNA investigated by absorption and fluorescence spectroscopy, dynamic light scattering, and atomic force microscopy. The properties of the surfactant can be controlled with light by reversible switching of the azobenzene unit, incorporated into the surfactant tail, between a hydrophobic trans (visible irradiation) and a hydrophilic cis (UV irradiation) configuration. The influence of the trans-cis isomerization of the azobenzene on the compaction process of DNA molecules and the role of both isomers in the formation and colloidal stability of DNA-surfactant complexes is discussed. It is shown that the trans isomer plays a major role in the DNA compaction process. The influence of the cis isomer on the DNA coil configuration is rather small. The construction of a phase diagram of the DNA concentration versus surfactant/DNA charge ratio allows distancing between three major phases: colloidally stable and unstable compacted globules, and extended coil conformation. There is a critical concentration of DNA above which the compacted globules can be hindered from aggregation and precipitation by adding an appropriate amount of the surfactant in the trans configuration. This is because of the compensation of hydrophobicity of the globules with an increasing amount of the surfactant. Below the critical DNA concentration, the compacted globules are colloidally stable and can be reversibly transferred with light to an extended coil state.

  20. DNA compaction by azobenzene-containing surfactant

    SciTech Connect

    Zakrevskyy, Yuriy; Kopyshev, Alexey; Lomadze, Nino; Santer, Svetlana

    2011-08-15

    We report on the interaction of cationic azobenzene-containing surfactant with DNA investigated by absorption and fluorescence spectroscopy, dynamic light scattering, and atomic force microscopy. The properties of the surfactant can be controlled with light by reversible switching of the azobenzene unit, incorporated into the surfactant tail, between a hydrophobic trans (visible irradiation) and a hydrophilic cis (UV irradiation) configuration. The influence of the trans-cis isomerization of the azobenzene on the compaction process of DNA molecules and the role of both isomers in the formation and colloidal stability of DNA-surfactant complexes is discussed. It is shown that the trans isomer plays a major role in the DNA compaction process. The influence of the cis isomer on the DNA coil configuration is rather small. The construction of a phase diagram of the DNA concentration versus surfactant/DNA charge ratio allows distancing between three major phases: colloidally stable and unstable compacted globules, and extended coil conformation. There is a critical concentration of DNA above which the compacted globules can be hindered from aggregation and precipitation by adding an appropriate amount of the surfactant in the trans configuration. This is because of the compensation of hydrophobicity of the globules with an increasing amount of the surfactant. Below the critical DNA concentration, the compacted globules are colloidally stable and can be reversibly transferred with light to an extended coil state.

  1. Strategy Guideline: Compact Air Distribution Systems

    SciTech Connect

    Burdick, A.

    2013-06-01

    This Strategy Guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. Traditional systems sized by 'rule of thumb' (i.e., 1 ton of cooling per 400 ft2 of floor space) that 'wash' the exterior walls with conditioned air from floor registers cannot provide appropriate air mixing and moisture removal in low-load homes. A compact air distribution system locates the HVAC equipment centrally with shorter ducts run to interior walls, and ceiling supply outlets throw the air toward the exterior walls along the ceiling plane; alternatively, high sidewall supply outlets throw the air toward the exterior walls. Potential drawbacks include resistance from installing contractors or code officials who are unfamiliar with compact air distribution systems, as well as a lack of availability of low-cost high sidewall or ceiling supply outlets to meet the low air volumes with good throw characteristics. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.

  2. Dynamic magnetic compaction of porous materials

    SciTech Connect

    1998-10-29

    IAP Research began development of the Dynamic Magnetic Compaction (DMC) process three years before the CRADA was established. IAP Research had experimentally demonstrated the feasibility of the process, and conducted a basic market survey. IAP identified and opened discussions with industrial partners and established the basic commercial cost structure. The purpose of this CRADA project was to predict and verify optimum pressure vs. time history for the compaction of porous copper and tungsten. LLNL modeled the rapid compaction of powdered material from an initial density of about 30% theoretical maximum to more than 90% theoretical maximum. The compaction simulations were benchmarked against existing data and new data was acquired by IAP Research. The modeling was used to perform parameter studies on the pressure loading time history, initial porosity and temperature. LLNL ran simulations using codes CALE or NITO and compared the simulations with published compaction data and equation of state (EOS) data. This project did not involve the development or modification of software code. CALE and NITO were existing software programs at LLNL. No modification of these programs occurred within the scope of the CRADA effort.

  3. Phased array compaction cell for measurement of the transversely isotropic elastic properties of compacting sediments

    SciTech Connect

    Nihei, K.T.; Nakagawa, S.; Reverdy, F.; Meyer, L.R.; Duranti, L.; Ball, G.

    2010-12-15

    Sediments undergoing compaction typically exhibit transversely isotropic (TI) elastic properties. We present a new experimental apparatus, the phased array compaction cell, for measuring the TI elastic properties of clay-rich sediments during compaction. This apparatus uses matched sets of P- and S-wave ultrasonic transducers located along the sides of the sample and an ultrasonic P-wave phased array source, together with a miniature P-wave receiver on the top and bottom ends of the sample. The phased array measurements are used to form plane P-waves that provide estimates of the phase velocities over a range of angles. From these measurements, the five TI elastic constants can be recovered as the sediment is compacted, without the need for sample unloading, recoring, or reorienting. This paper provides descriptions of the apparatus, the data processing, and an application demonstrating recovery of the evolving TI properties of a compacting marine sediment sample.

  4. Conserving Soil.

    ERIC Educational Resources Information Center

    Soil Conservation Service (USDA), Washington, DC.

    Designed as enrichment materials for grades six through nine, this program is an interdisciplinary study of soils. As part of the program students: (1) examine soil organisms; (2) research history of local Native Americans to see how they and others have used the land and its soils; (3) investigate how soils are degraded and how they are conserved…

  5. Capability enhancement in compact digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Qu, Weijuan; Wen, Yongfu; Wang, Zhaomin; Yang, Fang; Asundi, Anand

    2015-03-01

    A compact reflection digital holographic microscopy (DHM) system integrated with the light source and optical interferometer is developed for 3D topographic characterization and real-time dynamic inspection for Microelectromechanical systems (MEMS). Capability enhancement methods in lateral resolution, axial resolving range and large field of view for the compact DHM system are presented. To enhance the lateral resolution, the numerical aperture of a reflection DHM system is analyzed and optimum designed. To enhance the axial resolving range, dual wavelengths are used to extend the measuring range. To enable the large field of view, stitching of the measurement results is developed in the user-friendly software. Results from surfaces structures on silicon wafer, micro-optics on fused silica and dynamic inspection of MEMS structures demonstrate applications of this compact reflection digital holographic microscope for technical inspection in material science.

  6. Compaction and Sintering of Mo Powders

    SciTech Connect

    Nunn, Stephen D; Kiggans, Jim; Bryan, Chris

    2013-01-01

    To support the development of Mo-99 production by NorthStar Medical Technologies, LLC, Mo metal powders were evaluated for compaction and sintering characteristics as they relate to Mo-100 accelerator target disk fabrication. Powders having a natural isotope distribution and enriched Mo-100 powder were examined. Various powder characteristics are shown to have an effect on both the compaction and sintering behavior. Natural Mo powders could be cold pressed directly to >90% density. All of the powders, including the Mo-100 samples, could be sintered after cold pressing to >90% density. As an example, a compacted Mo-100 disk reached 89.7% density (9.52 g/cm3) after sintering at 1000 C for 1 hr. in flowing Ar/4%H2. Higher sintering temperatures were required for other powder samples. The relationships between processing conditions and the resulting densities of consolidated Mo disks will be presented.

  7. Lacunary Fourier Series for Compact Quantum Groups

    NASA Astrophysics Data System (ADS)

    Wang, Simeng

    2016-05-01

    This paper is devoted to the study of Sidon sets, {Λ(p)} -sets and some related notions for compact quantum groups. We establish several different characterizations of Sidon sets, and in particular prove that any Sidon set in a discrete group is a strong Sidon set in the sense of Picardello. We give several relations between Sidon sets, {Λ(p)} -sets and lacunarities for L p -Fourier multipliers, generalizing a previous work by Blendek and Michalic̆ek. We also prove the existence of {Λ(p)} -sets for orthogonal systems in noncommutative L p -spaces, and deduce the corresponding properties for compact quantum groups. Central Sidon sets are also discussed, and it turns out that the compact quantum groups with the same fusion rules and the same dimension functions have identical central Sidon sets. Several examples are also included.

  8. Activation analysis of the compact ignition tokamak

    SciTech Connect

    Selcow, E.C.

    1986-01-01

    The US fusion program has completed the conceptual design of a compact tokamak device that achieves ignition. The high neutron wall loadings associated with this compact deuterium-tritium-burning device indicate that radiation-related issues may be significant considerations in the overall system design. Sufficient shielding will be requied for the radiation protection of both reactor components and occupational personnel. A close-in igloo shield has been designed around the periphery of the tokamak structure to permit personnel access into the test cell after shutdown and limit the total activation of the test cell components. This paper describes the conceptual design of the igloo shield system and discusses the major neutronic concerns related to the design of the Compact Ignition Tokamak.

  9. Shock compaction of high- Tc superconductors

    SciTech Connect

    Weir, S.T.; Nellis, W.J.; McCandless, P.C.; Brocious, W.F. ); Seaman, C.L.; Early, E.A.; Maple, M.B. . Dept. of Physics); Kramer, M.J. ); Syono, Y.; Kikuchi, M. )

    1990-09-01

    We present the results of shock compaction experiments on high-{Tc} superconductors and describe the way in which shock consolidation addresses critical problems concerning the fabrication of high J{sub c} bulk superconductors. In particular, shock compaction experiments on YBa{sub 2}Cu{sub 3}O{sub 7} show that shock-induced defects can greatly increase intragranular critical current densities. The fabrication of crystallographically aligned Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} samples by shock-compaction is also described. These experiments demonstrate the potential of the shock consolidation method as a means for fabricating bulk high-{Tc} superconductors having high critical current densities.

  10. Impacts by Compact Ultra Dense Objects

    NASA Astrophysics Data System (ADS)

    Birrell, Jeremey; Labun, Lance; Rafelski, Johann

    2012-03-01

    We propose to search for nuclear density or greater compact ultra dense objects (CUDOs), which could constitute a significant fraction of the dark matter [1]. Considering their high density, the gravitational tidal forces are significant and atomic-density matter cannot stop an impacting CUDO, which punctures the surface of the target body, pulverizing, heating and entraining material near its trajectory through the target [2]. Because impact features endure over geologic timescales, the Earth, Moon, Mars, Mercury and large asteroids are well-suited to act as time-integrating CUDO detectors. There are several potential candidates for CUDO structure such as strangelet fragments or more generally dark matter if mechanisms exist for it to form compact objects. [4pt] [1] B. J. Carr, K. Kohri, Y. Sendouda, & J.'i. Yokoyama, Phys. Rev. D81, 104019 (2010). [0pt] [2] L. Labun, J. Birrell, J. Rafelski, Solar System Signatures of Impacts by Compact Ultra Dense Objects, arXiv:1104.4572.

  11. Hall MHD Equilibrium of Accelerated Compact Toroids

    NASA Astrophysics Data System (ADS)

    Howard, S. J.; Hwang, D. Q.; Horton, R. D.; Evans, R. W.; Brockington, S. J.

    2007-11-01

    We examine the structure and dynamics of the compact toroid's magnetic field. The compact toroid is dramatically accelerated by a large rail-gun Lorentz force density equal to j xB. We use magnetic data from the Compact Toroid Injection Experiment to answer the question of exactly where in the system j xB has nonzero values, and to what extent we can apply the standard model of force-free equilibrium. In particular we present a method of analysis of the magnetic field probe signals that allows direct comparison to the predictions of the Woltjer-Taylor force-free model and Turner's generalization of magnetic relaxation in the presence of a non-zero Hall term and fluid vorticity.

  12. Soil water characteristics of two soil catenas in Illinois: Implications for irrigation

    SciTech Connect

    Schaetzl, R.J. ); Kirsch, S.W. ); Hendrie, L.K.

    1989-10-01

    Soil water was monitored by neutron scattering in six soils, three each within two drainage catenas in east-central Illinois, over a 15-month time span. The prairie soils have formed in: (1) 76-152 cm of silt loam, eolian sediments (loess) over glacial till (Catlin-Flanagan-Drummer catena), and (2) loess greater than 152 cm in thickness (Tama-Ipava-Sable catena). The authors characterized the water content of these soils over the total time span and for wet and dry climatic subsets, as an aid to potential irrigation decisions. Soils of the thin loess, C-F-D catena dried out to lower water contents and had greater soil water variability than did the thick loess soils. Under wet conditions, soil water contents in the two catenas were quite similar. Alleviation of surface and subsurface drying via irrigation would thus be more advantageous to yields on the C-F-D soils than on the T-I-S soils.

  13. Remote vacuum compaction of compressible hazardous waste

    DOEpatents

    Coyne, Martin J.; Fiscus, Gregory M.; Sammel, Alfred G.

    1998-01-01

    A system for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut.

  14. Remote vacuum compaction of compressible hazardous waste

    DOEpatents

    Coyne, M.J.; Fiscus, G.M.; Sammel, A.G.

    1998-10-06

    A system is described for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut. 8 figs.

  15. Portable compact cold atoms clock topology

    NASA Astrophysics Data System (ADS)

    Pechoneri, R. D.; Müller, S. T.; Bueno, C.; Bagnato, V. S.; Magalhães, D. V.

    2016-07-01

    The compact frequency standard under development at USP Sao Carlos is a cold atoms system that works with a distributed hardware system principle and temporal configuration of the interrogation method of the atomic sample, in which the different operation steps happen in one place: inside the microwave cavity. This type of operation allows us to design a standard much more compact than a conventional one, where different interactions occur in the same region of the apparatus. In this sense, it is necessary to redefine all the instrumentation associated with the experiment. This work gives an overview of the topology we are adopting for the new system.

  16. Microstructure of explosively compacted aluminum nitride ceramic

    SciTech Connect

    Gourdin, W.H.; Echer, C.J.; Cline, C.F.; Tanner, L.E.

    1981-05-01

    Observations are reported of the microstructure of aluminum nitride (A1N) ceramic produced by explosive consolidation of the powder. Similarities between the grain structure of the compact and the starting powders are striking. Grain growth does not occur during densification and the 0.1 ..mu.. particle size of the powder is retained, although considerable deformation is introduced into individual grains. Of particular interest is an intergranular phase which appears throughout the compact. Observations in the transmission electron microscope indicate that this phase is amorphous.The influence of this glassy intergranular phase on bonding is discussed. 5 figures.

  17. Hollow fibers for compact infrared gas sensors

    NASA Astrophysics Data System (ADS)

    Lambrecht, A.; Hartwig, S.; Herbst, J.; Wöllenstein, J.

    2008-02-01

    Hollow fibers can be used for compact infrared gas sensors. The guided light is absorbed by the gas introduced into the hollow core. High sensitivity and a very small sampling volume can be achieved depending on fiber parameters i.e. attenuation, flexibility, and gas exchange rates. Different types of infrared hollow fibers including photonic bandgap fibers were characterized using quantum cascade lasers and thermal radiation sources. Obtained data are compared with available product specifications. Measurements with a compact fiber based ethanol sensor are compared with a system simulation. First results on the detection of trace amounts of the explosive material TATP using hollow fibers and QCL will be shown.

  18. COMPACT ACCELERATOR CONCEPT FOR PROTON THERAPY

    SciTech Connect

    Caporaso, G; Sampayan, S; Chen, Y; Harris, J; Hawkins, S; Holmes, C; Krogh, M; Nelson, S; Nunnally, W; Paul, A; Poole, B; Rhodes, M; Sanders, D; Selenes, K; Sullivan, J; Wang, L; Watson, J

    2006-08-18

    A new type of compact induction accelerator is under development at the Lawrence Livermore National Laboratory that promises to increase the average accelerating gradient by at least an order of magnitude over that of existing induction machines. The machine is based on the use of high gradient vacuum insulators, advanced dielectric materials and switches and is being developed as a compact flash x-ray radiography source. Research describing an extreme variant of this technology aimed at proton therapy for cancer will be presented.

  19. Compact Focal Plane Assembly for Planetary Science

    NASA Technical Reports Server (NTRS)

    Brown, Ari; Aslam, Shahid; Huang, Wei-Chung; Steptoe-Jackson, Rosalind

    2013-01-01

    A compact radiometric focal plane assembly (FPA) has been designed in which the filters are individually co-registered over compact thermopile pixels. This allows for construction of an ultralightweight and compact radiometric instrument. The FPA also incorporates micromachined baffles in order to mitigate crosstalk and low-pass filter windows in order to eliminate high-frequency radiation. Compact metal mesh bandpass filters were fabricated for the far infrared (FIR) spectral range (17 to 100 microns), a game-changing technology for future planetary FIR instruments. This fabrication approach allows the dimensions of individual metal mesh filters to be tailored with better than 10- micron precision. In contrast, conventional compact filters employed in recent missions and in near-term instruments consist of large filter sheets manually cut into much smaller pieces, which is a much less precise and much more labor-intensive, expensive, and difficult process. Filter performance was validated by integrating them with thermopile arrays. Demonstration of the FPA will require the integration of two technologies. The first technology is compact, lightweight, robust against cryogenic thermal cycling, and radiation-hard micromachined bandpass filters. They consist of a copper mesh supported on a deep reactive ion-etched silicon frame. This design architecture is advantageous when constructing a lightweight and compact instrument because (1) the frame acts like a jig and facilitates filter integration with the FPA, (2) the frame can be designed so as to maximize the FPA field of view, (3) the frame can be simultaneously used as a baffle for mitigating crosstalk, and (4) micron-scale alignment features can be patterned so as to permit high-precision filter stacking and, consequently, increase the filter bandwidth and sharpen the out-of-band rolloff. The second technology consists of leveraging, from another project, compact and lightweight Bi0.87Sb0.13/Sb arrayed thermopiles

  20. Compact, Robust Chips Integrate Optical Functions

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Located in Bozeman, Montana, AdvR Inc. has been an active partner in NASA's Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs. Langley Research Center engineers partnered with AdvR through the SBIR program to develop new, compact, lightweight electro-optic components for remote sensing systems. While the primary customer for this technology will be NASA, AdvR foresees additional uses for its NASA-derived circuit chip in the fields of academic and industrial research anywhere that compact, low-cost, stabilized single-frequency lasers are needed.

  1. Momentum compaction and phase slip factor

    SciTech Connect

    Ng, K.Y.; /Fermilab

    2010-10-01

    Section 2.3.11 of the Handbook of Accelerator Physics and Engineering on Landau damping is updated. The slip factor and its higher orders are given in terms of the various orders of the momentum compaction. With the aid of a simplified FODO lattice, formulas are given for the alteration of the lower orders of the momentum compaction by various higher multipole magnets. The transition to isochronicity is next demonstrated. Formulas are given for the extraction of the first three orders of the slip factor from the measurement of the synchrotron tune while changing the rf frequency. Finally bunch-length compression experiments in semi-isochronous rings are reported.

  2. Construction of weighted upwind compact scheme

    NASA Astrophysics Data System (ADS)

    Wang, Zhengjie

    Enormous endeavor has been devoted in spatial high order high resolution schemes in more than twenty five years previously, like total variation diminishing (TVD), essentially non-oscillatory scheme, weighted essentially non-oscillatory scheme for finite difference, and Discontinuous Galerkin methods for finite element and the finite volume. In this dissertation, a high order finite difference Weighted Upwind Compact Scheme has been constructed by dissipation and dispersion analysis. Secondly, a new method to construct global weights has been tested. Thirdly, a methodology to compromise dissipation and dispersion in constructing Weighted Upwind Compact Scheme has been derived. Finally, several numerical test cases have been shown.

  3. Dynamic Compaction Modeling of Porous Silica Powder

    NASA Astrophysics Data System (ADS)

    Borg, John P.; Schwalbe, Larry; Cogar, John; Chapman, D. J.; Tsembelis, K.; Ward, Aaron; Lloyd, Andrew

    2006-07-01

    A computational analysis of the dynamic compaction of porous silica is presented and compared with experimental measurements. The experiments were conducted at Cambridge University's one-dimensional flyer plate facility. The experiments shock loaded samples of silica dust of various initial porous densities up to a pressure of 2.25 GPa. The computational simulations utilized a linear Us-Up Hugoniot. The compaction events were modeled with CTH, a 3D Eulerian hydrocode developed at Sandia National Laboratory. Simulated pressures at two test locations are presented and compared with measurements.

  4. Alleviation of salt stress in lemongrass by salicylic acid.

    PubMed

    Idrees, Mohd; Naeem, M; Khan, M Nasir; Aftab, Tariq; Khan, M Masroor A; Moinuddin

    2012-07-01

    Soil salinity is one of the key factors adversely affecting the growth, yield, and quality of crops. A pot study was conducted to find out whether exogenous application of salicylic acid could ameliorate the adverse effect of salinity in lemongrass (Cymbopogon flexuosus Steud. Wats.). Two Cymbopogon varieties, Krishna and Neema, were used in the study. Three salinity levels, viz, 50, 100, and 150 mM of NaCl, were applied to 30-day-old plants. Salicylic acid (SA) was applied as foliar spray at 10(-5) M concentration. Totally, six SA-sprays were carried out at 10-day intervals, following the first spray at 30 days after sowing. The growth parameters were progressively reduced with the increase in salinity level; however, growth inhibition was significantly reduced by the foliar application of SA. With the increase in salt stress, a gradual decrease in the activities of carbonic anhydrase and nitrate reductase was observed in both the varieties. SA-treatment not only ameliorated the adverse effects of NaCl but also showed a significant improvement in the activities of these enzymes compared with the untreated stressed-plants. The plants supplemented with NaCl exhibited a significant increase in electrolyte leakage, proline content, and phosphoenol pyruvate carboxylase activity. Content and yield of essential oil was also significantly decreased in plants that received salinity levels; however, SA overcame the unfavorable effects of salinity stress to a considerable extent. Lemongrass variety Krishna was found to be more adapted to salt stress than Neema, as indicated by the overall performance of the two varieties under salt conditions.

  5. Impacts of snow and organic soils parameterization on northern Eurasian soil temperature profiles simulated by the ISBA land surface model

    NASA Astrophysics Data System (ADS)

    Decharme, Bertrand; Brun, Eric; Boone, Aaron; Delire, Christine; Le Moigne, Patrick; Morin, Samuel

    2016-04-01

    In this study we analyzed how an improved representation of snowpack processes and soil properties in the multilayer snow and soil schemes of the Interaction Soil-Biosphere-Atmosphere (ISBA) land surface model impacts the simulation of soil temperature profiles over northern Eurasian regions. For this purpose, we refine ISBA's snow layering algorithm and propose a parameterization of snow albedo and snow compaction/densification adapted from the detailed Crocus snowpack model. We also include a dependency on soil organic carbon content for ISBA's hydraulic and thermal soil properties. First, changes in the snowpack parameterization are evaluated against snow depth, snow water equivalent, surface albedo, and soil temperature at a 10 cm depth observed at the Col de Porte field site in the French Alps. Next, the new model version including all of the changes is used over northern Eurasia to evaluate the model's ability to simulate the snow depth, the soil temperature profile, and the permafrost characteristics. The results confirm that an adequate simulation of snow layering and snow compaction/densification significantly impacts the snowpack characteristics and the soil temperature profile during winter, while the impact of the more accurate snow albedo computation is dominant during the spring. In summer, the accounting for the effect of soil organic carbon on hydraulic and thermal soil properties improves the simulation of the soil temperature profile. Finally, the results confirm that this last process strongly influences the simulation of the permafrost active layer thickness and its spatial distribution.

  6. Soil Quality and Colloid Transport under Biodegradable Mulches

    NASA Astrophysics Data System (ADS)

    Sintim, Henry; Bandopadhyay, Sreejata; Ghimire, Shuresh; Flury, Markus; Bary, Andy; Schaeffer, Sean; DeBruyn, Jennifer; Miles, Carol; Inglis, Debra

    2016-04-01

    Polyethylene (PE) mulch is commonly used in agriculture to increase water use efficiency, to control weeds, manage plant diseases, and maintain a favorable micro-climate for plant growth. However, producers need to retrieve and safely dispose PE mulch after usage, which creates enormous amounts of plastic waste. Substituting PE mulch with biodegradable plastic mulches could alleviate disposal needs. However, repeated applications of biodegradable mulches, which are incorporated into the soil after the growing season, may cause deterioration of soil quality through breakdown of mulches into colloidal fragments, which can be transported through soil. Findings from year 1 of a 5-year field experiment will be presented.

  7. Compaction Scale Up and Optimization of Cylindrical Fuel Compacts for the Next Generation Nuclear Plant

    SciTech Connect

    Jeffrey J. Einerson; Jeffrey A. Phillips; Eric L. Shaber; Scott E. Niedzialek; W. Clay Richardson; Scott G. Nagley

    2012-10-01

    Multiple process approaches have been used historically to manufacture cylindrical nuclear fuel compacts. Scale-up of fuel compacting was required for the Next Generation Nuclear Plant (NGNP) project to achieve an economically viable automated production process capable of providing a minimum of 10 compacts/minute with high production yields. In addition, the scale-up effort was required to achieve matrix density equivalent to baseline historical production processes, and allow compacting at fuel packing fractions up to 46% by volume. The scale-up approach of jet milling, fluid-bed overcoating, and hot-press compacting adopted in the U.S. Advanced Gas Reactor (AGR) Fuel Development Program involves significant paradigm shifts to capitalize on distinct advantages in simplicity, yield, and elimination of mixed waste. A series of designed experiments have been completed to optimize compaction conditions of time, temperature, and forming pressure using natural uranium oxycarbide (NUCO) fuel. Results from these experiments are included. The scale-up effort is nearing completion with the process installed and operational using nuclear fuel materials. The process is being certified for manufacture of qualification test fuel compacts for the AGR-5/6/7 experiment at the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL).

  8. Effects of Tillage Practices on Soil Organic Carbon and Soil Respiration

    NASA Astrophysics Data System (ADS)

    Rusu, Teodor; Ioana Moraru, Paula; Bogdan, Ileana; Ioan Pop, Adrian

    2016-04-01

    Soil tillage system and its intensity modify by direct and indirect action soil temperature, moisture, bulk density, porosity, penetration resistance and soil structural condition. Minimum tillage and no-tillage application reduce or completely eliminate the soil mobilization, due to this, soil is compacted in the first years of application. The degree of compaction is directly related to soil type and its state of degradation. All this physicochemical changes affect soil biology and soil respiration. Soil respiration leads to CO2 emissions from soil to the atmosphere, in significant amounts for the global carbon cycle. Soil respiration is one measure of biological activity and decomposition. Soil capacity to produce CO2 varies depending on soil, season, intensity and quality of agrotechnical tillage, soil water, cultivated plant and fertilizer. Our research follows the effects of the three tillage systems: conventional system, minimum tillage and no-tillage on soil respiration and finally on soil organic carbon on rotation soybean - wheat - maize, obtained on an Argic Faeoziom from the Somes Plateau, Romania. To quantify the change in soil respiration under different tillage practices, determinations were made for each crop in four vegetative stages (spring, 5-6 leaves, bean forming, harvest). Soil monitoring system of CO2 and O2 included gradient method, made by using a new generation of sensors capable of measuring CO2 concentration in-situ and quasi-instantaneous in gaseous phase. At surface soil respiration is made by using ACE Automated Soil CO2 Exchange System. These areas were was our research presents a medium multi annual temperature of 8.20C medium of multi annual rain drowns: 613 mm. The experimental variants chosen were: i). Conventional system: reversible plough (22-25 cm) + rotary grape (8-10 cm); ii). Minimum tillage system: paraplow (18-22 cm) + rotary grape (8-10 cm); iii). No-tillage. The experimental design was a split-plot design with three

  9. Mechanical compaction in Bleurswiller sandstone: effective pressure law and compaction localization

    NASA Astrophysics Data System (ADS)

    Baud, Patrick; Reuschlé, Thierry; Ji, Yuntao; Wong, Teng-fong

    2016-04-01

    We performed a systematic investigation of mechanical compaction and strain localization in Bleurswiller sandstone of 24% porosity. 70 conventional triaxial compression experiments were performed at confining pressures up to 200 MPa and pore pressures ranging from 5 to 100 MPa. Our new data show that the effective pressure principle can be applied in both the brittle faulting and cataclastic flow regimes, with an effective pressure coefficient close to but somewhat less than 1. Under relatively high confinement, the samples typically fail by development of compaction bands. X-ray computed tomography (CT) was used to resolve preexisting porosity clusters, as well as the initiation and propagation of the compaction bands in deformed samples. Synthesis of the CT and microstructural data indicates that there is no casual relation between collapse of the porosity clusters in Bleurswiller sandstone and nucleation of the compaction bands. Instead, the collapsed porosity clusters may represent barriers for the propagation of compaction localization, rendering the compaction bands to propagate along relatively tortuous paths so as to avoid the porosity clusters. The diffuse and tortuous geometry of compaction bands results in permeability reduction that is significantly lower than that associated with compaction band formation in other porous sandstones. Our data confirm that Bleurswiller sandstone stands out as the only porous sandstone associated with a compactive cap that is linear, and our CT and microstructural observation show that it is intimately related to collapse of the porosity clusters. We demonstrate that the anomalous linear caps and their slopes are in agreement with a micromechanical model based on the collapse of a spherical pore embedded in an elastic-plastic matrix that obeys the Coulomb failure criterion.

  10. Effectiveness of compost use in salt-affected soil.

    PubMed

    Lakhdar, Abdelbasset; Rabhi, Mokded; Ghnaya, Tahar; Montemurro, Francesco; Jedidi, Naceur; Abdelly, Chedly

    2009-11-15

    Soil degradation and salinization are two of the utmost threat affecting agricultural areas, derived from the increasing use of low quality water and inappropriate cultural practices. The problem of low productivity of saline soils may be ascribed not only to their salt toxicity or damage caused by excess amounts of soluble salts but also arising from the lack of organic matter and available mineral nutrients especially N, P, and K. Concerns about salinization risk and environmental quality and productivity of agro-ecosystems have emphasized the need to develop management practices that maintain soil resources. Composted municipal solid waste (MSW) was commonly used to enhance soil productivity in the agricultural lands and rebuild fertility. However, their application could be also a promising alternative to alleviate the adverse effects caused by soil salinization. MSW compost, with high organic matter content and low concentrations of inorganic and organic pollutants allow an improvement of physical, chemical and biochemical characteristics and constitute low cost soil recovery.

  11. The role of forestry development in China in alleviating greenhouse effects

    SciTech Connect

    Liu Hong

    1996-12-31

    Forestry development in China has gained great achievements and made great progress in realizing sustainable forest management and alleviating global climate change. The main measures to mitigate greenhouse effects through the means of forestry development include afforestation to increase the forested area, fuel wood forest development, management improvement, wise utilization, international cooperation, investment increase, forest related scientific research, strengthening the forest law enforcement system. Climate change as well as how to alleviate the greenhouse effects is a hot topic at present. This paper describes the achievements of China`s forestry development and its role to alleviate the greenhouse effects, and puts forward the measures to mitigate greenhouse effects through the means of forestry development.

  12. Courses for "Soil Practitioner" and other measures for raising soil awareness

    NASA Astrophysics Data System (ADS)

    Hartl, Wilfried

    2014-05-01

    Today, unfortunately, little use is made of the findings of rhizosphere research in practice. Therefore the author, together with the organic farmers` associations Distelverein and Bio Austria, developed the education programme "Soil Practitioner" for organic farmers. The 9-days` course focuses on the topics nutrient dynamics in soil, plant-root interactions, soil management, humus management and practical evaluation of soil functions. A second series of courses developed by Bio Forschung Austria aims at improving organic matter management on farm level. In order to enable the farmers to estimate if the humus content of their fields is increasing or decreasing, they are familiarized with the humus balancing method. In a second step, humus balances of farmers' fields are calculated and the results are discussed together. Another activity to raise soil awareness is the "Mobile Soil Laboratory", which is presented at various events. The soil functions are demonstrated to the public using special exhibits, which illustrate for example infiltration rate in soils with and without earthworms, or water holding capacity of soils with and without earthworms or erosion intensity on soil blocks from adjacent plots which had been cultivated with different crop rotations. The habitat function of soil is illustrated with portable rhizotrons, which show the ability of plants to root surprisingly deep and to penetrate compacted soil layers. Another exhibit shows a habitat preference test between differently fertilized soils with earthworms as indicator organisms. In the "Mobile Soil Laboratory", visitors are also invited to watch live soil animals through the binocular microscope. They are supplied with information on the soil animals` habitat and behaviour and on how agriculture benefits from biologically active soil. And last but not least, the "Root Demonstration Arena" at our institute features a 3-m-deep excavation lined with large viewing windows into the soil profile, where

  13. Soil experiment

    NASA Technical Reports Server (NTRS)

    Hutcheson, Linton; Butler, Todd; Smith, Mike; Cline, Charles; Scruggs, Steve; Zakhia, Nadim

    1987-01-01

    An experimental procedure was devised to investigate the effects of the lunar environment on the physical properties of simulated lunar soil. The test equipment and materials used consisted of a vacuum chamber, direct shear tester, static penetrometer, and fine grained basalt as the simulant. The vacuum chamber provides a medium for applying the environmental conditions to the soil experiment with the exception of gravity. The shear strength parameters are determined by the direct shear test. Strength parameters and the resistance of soil penetration by static loading will be investigated by the use of a static cone penetrometer. In order to conduct a soil experiment without going to the moon, a suitable lunar simulant must be selected. This simulant must resemble lunar soil in both composition and particle size. The soil that most resembles actual lunar soil is basalt. The soil parameters, as determined by the testing apparatus, will be used as design criteria for lunar soil engagement equipment.

  14. Contrasting effects of biochar, compost and farm manure on alleviation of nickel toxicity in maize (Zea mays L.) in relation to plant growth, photosynthesis and metal uptake.

    PubMed

    Rehman, Muhammad Zia-Ur; Rizwan, Muhammad; Ali, Shafaqat; Fatima, Nida; Yousaf, Balal; Naeem, Asif; Sabir, Muhammad; Ahmad, Hamaad Raza; Ok, Yong Sik

    2016-11-01

    Nickel (Ni) toxicity in agricultural crops is a widespread problem while little is known about the role of biochar (BC) and other organic amendments like farm manure (FM) from cattle farm and compost (Cmp) on its alleviation. A greenhouse experiment was conducted to evaluate the effects of BC, Cmp and FM on physiological and biochemical characteristics of maize (Zea mays L.) under Ni stress. Maize was grown in Ni spiked soil without and with two rates of the amendments (equivalent to 1% and 2% organic carbon, OC) applied separately to the soil. After harvest, plant height, root length, dry weight, chlorophyll contents, gas exchange characteristics and trace elements in plants were determined. In addition, post-harvest soil characteristics like pHs, ECe and bioavailable Ni were also determined. Compared to the control, all of the amendments increased plant height, root length, shoot and root dry weight with the maximum increase in all parameters by FM (2% OC) treatment. Similarly, total chlorophyll contents and gas exchange characteristics significantly increased with the application of amendments being maximum with FM (2% OC) application. Amendments significantly increased copper, zinc, manganese and iron concentrations and decreased Ni concentrations in the plants. The highest reduction in shoot Ni concentration was recorded with FM (2% OC) followed by BC (2% OC) being 73.2% and 61.1% lower compared to the control, respectively. The maximum increase in soil pH and decrease in AB-DTPA extractable Ni was recorded with BC (2% OC) followed by FM (2% OC). It is concluded that FM (2% OC) was the most effective in reducing Ni toxicity to plants by reducing Ni uptake while BC (2% OC) was the most effective in decreasing bioavailable Ni in the soil through increasing soil pH. However, long-term field studies are needed to evaluate the effects of these amendments in reducing Ni toxicity in plants. PMID:27467022

  15. Contrasting effects of biochar, compost and farm manure on alleviation of nickel toxicity in maize (Zea mays L.) in relation to plant growth, photosynthesis and metal uptake.

    PubMed

    Rehman, Muhammad Zia-Ur; Rizwan, Muhammad; Ali, Shafaqat; Fatima, Nida; Yousaf, Balal; Naeem, Asif; Sabir, Muhammad; Ahmad, Hamaad Raza; Ok, Yong Sik

    2016-11-01

    Nickel (Ni) toxicity in agricultural crops is a widespread problem while little is known about the role of biochar (BC) and other organic amendments like farm manure (FM) from cattle farm and compost (Cmp) on its alleviation. A greenhouse experiment was conducted to evaluate the effects of BC, Cmp and FM on physiological and biochemical characteristics of maize (Zea mays L.) under Ni stress. Maize was grown in Ni spiked soil without and with two rates of the amendments (equivalent to 1% and 2% organic carbon, OC) applied separately to the soil. After harvest, plant height, root length, dry weight, chlorophyll contents, gas exchange characteristics and trace elements in plants were determined. In addition, post-harvest soil characteristics like pHs, ECe and bioavailable Ni were also determined. Compared to the control, all of the amendments increased plant height, root length, shoot and root dry weight with the maximum increase in all parameters by FM (2% OC) treatment. Similarly, total chlorophyll contents and gas exchange characteristics significantly increased with the application of amendments being maximum with FM (2% OC) application. Amendments significantly increased copper, zinc, manganese and iron concentrations and decreased Ni concentrations in the plants. The highest reduction in shoot Ni concentration was recorded with FM (2% OC) followed by BC (2% OC) being 73.2% and 61.1% lower compared to the control, respectively. The maximum increase in soil pH and decrease in AB-DTPA extractable Ni was recorded with BC (2% OC) followed by FM (2% OC). It is concluded that FM (2% OC) was the most effective in reducing Ni toxicity to plants by reducing Ni uptake while BC (2% OC) was the most effective in decreasing bioavailable Ni in the soil through increasing soil pH. However, long-term field studies are needed to evaluate the effects of these amendments in reducing Ni toxicity in plants.

  16. Comparison of Shear-wave Profiles for a Compacted Fill in a Geotechnical Test Pit

    NASA Astrophysics Data System (ADS)

    Sylvain, M. B.; Pando, M. A.; Whelan, M.; Bents, D.; Park, C.; Ogunro, V.

    2014-12-01

    This paper investigates the use of common methods for geological seismic site characterization including: i) multichannel analysis of surface waves (MASW),ii) crosshole seismic surveys, and iii) seismic cone penetrometer tests. The in-situ tests were performed in a geotechnical test pit located at the University of North Carolina at Charlotte High Bay Laboratory. The test pit has dimensions of 12 feet wide by 12 feet long by 10 feet deep. The pit was filled with a silty sand (SW-SM) soil, which was compacted in lifts using a vibratory plate compactor. The shear wave velocity values from the 3 techniques are compared in terms of magnitude versus depth as well as spatially. The comparison was carried out before and after inducing soil disturbance at controlled locations to evaluate which methods were better suited to captured the induced soil disturbance.

  17. Soil pore structure and substrate C mineralization

    NASA Astrophysics Data System (ADS)

    Sleutel, Steven; Maenhout, Peter; Vanhoorebeke, Luc; Cnudde, Veerle; De Neve, Stefaan

    2014-05-01

    Our aim was to investigate the complex interactions between soil pore structure, soil biota and decomposition of added OM substrates. We report on a lab incubation experiment in which CO2 respiration from soil cores was monitored (headspace GC analysis) and an X-ray CT approach yielded soil pore size distributions. Such combined use of X-ray CT with soil incubation studies was obstructed, until now, by many practical constraints such as CT-volume quality, limited resolution, scanning time and complex soil pore network quantification, which have largely been overcome in this study. We incubated a sandy loam soil (with application of ground grass or sawdust) in 18 small aluminium rings (Ø 1 cm, h 1 cm). Bulk density was adjusted to 1.1 or 1.3 Mg m-3 (compaction) and 6 rings were filled at a coarser Coarse Sand:Fine Sand:Silt+Clay ratio. While compaction induced a strong reduction in the cumulative C mineralization for both grass and sawdust substrates, artificial change to a coarser soil texture only reduced net C mineralization from the added sawdust. There thus appears to be a strong interaction effect between soil pore structure and substrate type on substrate decomposition. Correlation coefficients between the C mineralization rates and volumes of 7 pore size classes (from the X-ray CT data) also showed an increasing positive correlation with increasing pore size. Since any particulate organic matter initially present in the soil was removed prior to the experiment (sieving, ashing the >53µm fraction and recombining with the <53µm fraction), the added OM can be localized by means of X-ray CT. Through on-going image analysis the surrounding porosity of the added grass or sawdust particles is being quantified to further study the interaction between the soil pore structure and substrate decomposition.

  18. 7 CFR 51.608 - Fairly compact.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Fairly compact. 51.608 Section 51.608 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF...

  19. 7 CFR 51.608 - Fairly compact.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Fairly compact. 51.608 Section 51.608 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF...

  20. A compact transportable Josephson voltage standard

    SciTech Connect

    Hamilton, C.A.; Burroughs, C.J.; Kupferman, S.L.

    1996-06-01

    The development of a compact, portable 10 V Josephson calibration system is described. Its accuracy is the same as typical laboratory systems and its weight and volume are reduced by more than a factor of three. The new system will replace travelling voltage standards used within several NASA and DOE standards laboratories.

  1. Materials needs for compact fusion reactors

    SciTech Connect

    Krakowski, R.A.

    1983-01-01

    The economic prospects for magnetic fusion energy can be dramatically improved if for the same total power output the fusion neutron first-wall (FW) loading and the system power density can be increased by factors of 3 to 5 and 10 to 30, respectively. A number of compact fusion reactor embodiments have been proposed, all of which would operate with increased FW loadings, would use thin (0.5 to 0.6 m) blankets, and would confine quasi-steady-state plasma with resistive, water-cooled copper or aluminum coils. Increased system power density (5 to 15 MWt/m/sup 3/ versus 0.3 to 0.5 MW/m/sup 3/), considerably reduced physical size of the fusion power core (FPC), and appreciably reduced economic leverage exerted by the FPC and associated physics result. The unique materials requirements anticipated for these compact reactors are outlined against the well documented backdrop provided by similar needs for the mainline approaches. Surprisingly, no single materials need that is unique to the compact systems is identified; crucial uncertainties for the compact approaches must also be addressed by the mainline approaches, particularly for in-vacuum components (FWs, limiters, divertors, etc.).

  2. Compact range for variable-zone measurements

    DOEpatents

    Burnside, Walter D.; Rudduck, Roger C.; Yu, Jiunn S.

    1988-08-02

    A compact range for testing antennas or radar targets includes a source for directing energy along a feedline toward a parabolic reflector. The reflected wave is a spherical wave with a radius dependent on the distance of the source from the focal point of the reflector.

  3. Rotation and gravitational compaction in asteroids

    NASA Astrophysics Data System (ADS)

    Halling, R.

    A theoretical model of gravitational compaction during the formation of asteroids is developed on the basis of the planetesimal-accretion theory of Alfven and Arrhenius (1976) and applied to the observational data of Dermott and Murray (1982) on nonfamily main-belt C, S, and M asteroids of diameter 50 km or greater (assumed to be primordial objects). Three phases of accretion are defined: initial accretion of porous material at constant density until a critical radius and central pressure (of the order of 1 MPa) are attained, breakdown and compaction proceeding outward and resulting in a reduction of asteroid radius, and continued accretion with an increase in the volume friction in the compact state. A spin-frequency/diameter relation is derived by fitting this model to the data and found to give porous-state densities between 0.75 and 1.60 g/cu cm, compact-state densities 2.20-4.50 g/cu cm, critical radii 55-101 km, and postbreakdown radii 53-90 km.

  4. Compact range for variable-zone measurements

    DOEpatents

    Burnside, Walter D.; Rudduck, Roger C.; Yu, Jiunn S.

    1988-01-01

    A compact range for testing antennas or radar targets includes a source for directing energy along a feedline toward a parabolic reflector. The reflected wave is a spherical wave with a radius dependent on the distance of the source from the focal point of the reflector.

  5. Compact range for variable-zone measurements

    DOEpatents

    Burnside, W.D.; Rudduck, R.C.; Yu, J.S.

    1987-02-27

    A compact range for testing antennas or radar targets includes a source for directing energy along a feedline toward a parabolic reflector. The reflected wave is a spherical wave with a radius dependent on the distance of the source from the focal point of the reflector. 2 figs.

  6. Compact Translating-Head Magnetic Memories

    NASA Technical Reports Server (NTRS)

    Katti, Romney R.

    1992-01-01

    Stationary magnetic media stores information at densities up to 6.5 Gb/cm(Sup 2). High-density memory devices combine features of advanced rotating-disk magnetic recording and playback systems with compact two-axis high-acceleration linear actuators. New devices weigh less, occupy less space, and consume less power than disk and tape recorders.

  7. COMPACT DISCLOSURE: Realizing CD-ROM's Potential.

    ERIC Educational Resources Information Center

    Halperin, Michael; Pagell, Ruth A.

    1986-01-01

    The advantages and disadvantages of the compact disk version of the DISCLOSURE database are compared to the print version and other online formats. Currentness of information, searching methods, users' perceptions taken from a student survey, price, availability, response time, and browsabiity are considered. Sample menus and screen displays are…

  8. Compact continuum brain model for human electroencephalogram

    NASA Astrophysics Data System (ADS)

    Kim, J. W.; Shin, H.-B.; Robinson, P. A.

    2007-12-01

    A low-dimensional, compact brain model has recently been developed based on physiologically based mean-field continuum formulation of electric activity of the brain. The essential feature of the new compact model is a second order time-delayed differential equation that has physiologically plausible terms, such as rapid corticocortical feedback and delayed feedback via extracortical pathways. Due to its compact form, the model facilitates insight into complex brain dynamics via standard linear and nonlinear techniques. The model successfully reproduces many features of previous models and experiments. For example, experimentally observed typical rhythms of electroencephalogram (EEG) signals are reproduced in a physiologically plausible parameter region. In the nonlinear regime, onsets of seizures, which often develop into limit cycles, are illustrated by modulating model parameters. It is also shown that a hysteresis can occur when the system has multiple attractors. As a further illustration of this approach, power spectra of the model are fitted to those of sleep EEGs of two subjects (one with apnea, the other with narcolepsy). The model parameters obtained from the fittings show good matches with previous literature. Our results suggest that the compact model can provide a theoretical basis for analyzing complex EEG signals.

  9. Compact imaging spectrometer utilizing immersed gratings

    DOEpatents

    Lerner, Scott A.

    2005-12-20

    A compact imaging spectrometer comprising an entrance slit for directing light, lens means for receiving the light, refracting the light, and focusing the light; an immersed diffraction grating that receives the light from the lens means and defracts the light, the immersed diffraction grating directing the detracted light back to the lens means; and a detector that receives the light from the lens means.

  10. Analytic vortex solutions on compact hyperbolic surfaces

    NASA Astrophysics Data System (ADS)

    Maldonado, Rafael; Manton, Nicholas S.

    2015-06-01

    We construct, for the first time, abelian Higgs vortices on certain compact surfaces of constant negative curvature. Such surfaces are represented by a tessellation of the hyperbolic plane by regular polygons. The Higgs field is given implicitly in terms of Schwarz triangle functions and analytic solutions are available for certain highly symmetric configurations.

  11. Pathway to a compact SASE FEL device

    NASA Astrophysics Data System (ADS)

    Dattoli, G.; Di Palma, E.; Petrillo, V.; Rau, Julietta V.; Sabia, E.; Spassovsky, I.; Biedron, S. G.; Einstein, J.; Milton, S. V.

    2015-10-01

    Newly developed high peak power lasers have opened the possibilities of driving coherent light sources operating with laser plasma accelerated beams and wave undulators. We speculate on the combination of these two concepts and show that the merging of the underlying technologies could lead to new and interesting possibilities to achieve truly compact, coherent radiator devices.

  12. Compact, Lightweight Servo-Controllable Brakes

    NASA Technical Reports Server (NTRS)

    Lovchik, Christopher S.; Townsend, William; Guertin, Jeffrey; Matsuoka, Yoky

    2010-01-01

    Compact, lightweight servo-controllable brakes capable of high torques are being developed for incorporation into robot joints. A brake of this type is based partly on the capstan effect of tension elements. In a brake of the type under development, a controllable intermediate state of torque is reached through on/off switching at a high frequency.

  13. MTI compact electronic meter testing program

    SciTech Connect

    O`Rourke, E.L.

    1995-12-31

    MTI has completed an extensive test program to ensure a new compact electronic gas meter meets all specifications and standards customarily employed by the U.S. gas industry. Thirty (30) test plans were developed to cover all American National Standards Institute (ANSI) performance requirements. (1) The prototype meters have met or exceeded the ANSI B109.1 standards. (2) The prototype meters have demonstrated the feasibility of GRI`s decision to seek a compact meter for early market entry. (3) Several leading U.S. utilities have participated in sponsoring the project and have expressed keen interest in field testing the compact meter. (4) American Meter Company (AMC), the predominant U.S. meter manufacturer, has participated in the sponsorship and testing of the compact meter and has formed a joint venture with Select Corporation to bring the meter to the U.S. and world-wide marketplace. (5) The meter generates the necessary electronic output for either telephonic or radio based automatic meter reading (AMR). The pre-production meters for the North American market are being fabricated currently by AMC. Following their completion, an extensive field test program will take place. Three hundred units will be installed at ten to fifteen utilities and tested for a period of up to one year.

  14. Mitotic chromosome compaction via active loop extrusion

    NASA Astrophysics Data System (ADS)

    Goloborodko, Anton; Imakaev, Maxim; Marko, John; Mirny, Leonid; MIT-Northwestern Team

    During cell division, two copies of each chromosome are segregated from each other and compacted more than hundred-fold into the canonical X-shaped structures. According to earlier microscopic observations and the recent Hi-C study, chromosomes are compacted into arrays of consecutive loops of ~100 kilobases. Mechanisms that lead to formation of such loop arrays are largely unknown. Here we propose that, during cell division, chromosomes can be compacted by enzymes that extrude loops on chromatin fibers. First, we use computer simulations and analytical modeling to show that a system of loop-extruding enzymes on a chromatin fiber self-organizes into an array of consecutive dynamic loops. Second, we model the process of loop extrusion in 3D and show that, coupled with the topo II strand-passing activity, it leads to robust compaction and segregation of sister chromatids. This mechanism of chromosomal condensation and segregation does not require additional proteins or specific DNA markup and is robust against variations in the number and properties of such loop extruding enzymes. Work at NU was supported by the NSF through Grants DMR-1206868 and MCB-1022117, and by the NIH through Grants GM105847 and CA193419. Work at MIT was supported by the NIH through Grants GM114190 R01HG003143.

  15. Holographic Compact Disk Read-Only Memories

    NASA Technical Reports Server (NTRS)

    Liu, Tsuen-Hsi

    1996-01-01

    Compact disk read-only memories (CD-ROMs) of proposed type store digital data in volume holograms instead of in surface differentially reflective elements. Holographic CD-ROM consist largely of parts similar to those used in conventional CD-ROMs. However, achieves 10 or more times data-storage capacity and throughput by use of wavelength-multiplexing/volume-hologram scheme.

  16. Compact microwave cavity for hydrogen atomic clock

    NASA Technical Reports Server (NTRS)

    Zhang, Dejun; Zhang, Yan; Fu, Yigen; Zhang, Yanjun

    1992-01-01

    A summary is presented that introduces the compact microwave cavity used in the hydrogen atomic clock. Special emphasis is placed on derivation of theoretical calculating equations of main parameters of the microwave cavity. A brief description is given of several methods for discriminating the oscillating modes. Experimental data and respective calculated values are also presented.

  17. Kinematics of luminous blue compact galaxies

    NASA Astrophysics Data System (ADS)

    Östlin, Göran; Amram, Philippe; Boulesteix, Jaques; Bergvall, Nils; Masegosa, Josefa; Márquez, Isabel

    We present results from a Fabry-Perot study of the Hα velocity fields and morphologies of a sample of luminous blue compact galaxies. We estimate masses from photometry and kinematics and show that many of these BCGs are not rotationally supported. Mergers or strong interactions appear to be the triggering mechanism of the extreme starbursts seen in these galaxies.

  18. Salicylic acid alleviates aluminum toxicity in rice seedlings better than magnesium and calcium by reducing aluminum uptake, suppressing oxidative damage and increasing antioxidative defense.

    PubMed

    Pandey, Poonam; Srivastava, Rajneesh Kumar; Dubey, R S

    2013-05-01

    Aluminum toxicity is a major constraint to crop production in acid soils. The present study was undertaken to examine the comparative ameliorating effects of salicylic acid, Ca and Mg on Al toxicity in rice (Oryza sativa L.) seedlings grown in hydroponics. Al treatment (0.5 mM AlCl3) caused decrease in plant vigour, loss of root plasma membrane integrity, increased contents of O 2 (∙-) , H2O2, lipid peroxidation, protein carbonyls and decline in the level of protein thiol. Al treatment caused significant changes in activity of antioxidative enzymes in rice seedlings. Exogenously added salicylic acid (60 μM), Ca (1 mM) and Mg (0.25 mM) significantly alleviated Al toxicity effects in the seedlings marked by restoration of growth, suppression of Al uptake, restoration of root plasma membrane integrity and decline in O 2 (∙-) , H2O2, lipid peroxidation and protein carbonyl contents. Salicylic acid, Ca and Mg suppressed Al-induced increase in SOD, GPX and APX activities while it elevated Al-induced decline in CAT activity. By histochemical staining of O 2 (∙-) using NBT and H2O2 using DAB, it was further confirmed that added salicylic acid, Ca or Mg decreased Al-induced accumulation of O 2 (∙-) and H2O2 in the leaf tissues. Results indicate that exogenously added salicylic acid, Ca or Mg alleviates Al toxicity in rice seedlings by suppressing Al uptake, restoring root membrane integrity, reducing ROS level and ROS induced oxidative damage and regulating the level of antioxidative enzyme activities. Further salicylic appears to be superior to Mg and Ca in alleviating Al toxicity effects in rice plants.

  19. Corynebacterium glutamicum harbours a molybdenum cofactor-dependent formate dehydrogenase which alleviates growth inhibition in the presence of formate.

    PubMed

    Witthoff, Sabrina; Eggeling, Lothar; Bott, Michael; Polen, Tino

    2012-09-01

    Here, we show that Corynebacterium glutamicum ATCC 13032 co-metabolizes formate when it is grown with glucose as the carbon and energy source. CO(2) measurements during bioreactor cultivation and use of (13)C-labelled formate demonstrated that formate is almost completely oxidized to CO(2). The deletion of fdhF (cg0618), annotated as formate dehydrogenase (FDH) and located in a cluster of genes conserved in the family Corynebacteriaceae, prevented formate utilization. Similarly, deletion of fdhD (cg0616) resulted in the inability to metabolize formate and deletion of cg0617 markedly reduced formate utilization. These results illustrated that all three gene products are required for FDH activity. Growth studies with molybdate and tungstate indicated that the FDH from C. glutamicum ATCC 13032 is a molybdenum-dependent enzyme. The presence of 100 mM formate caused a 25 % lowered growth rate during cultivation of C. glutamicum ATCC 13032 wild-type in glucose minimal medium. This inhibitory effect was increased in the strains lacking FDH activity. Our data demonstrate that C. glutamicum ATCC 13032 possesses an FDH with a currently unknown electron acceptor. The presence of the FDH might help the soil bacterium C. glutamicum ATCC 13032 to alleviate growth retardation caused by formate, which is ubiquitously present in the environment. PMID:22767548

  20. Sulfur Dioxide Enhances Endogenous Hydrogen Sulfide Accumulation and Alleviates Oxidative Stress Induced by Aluminum Stress in Germinating Wheat Seeds.

    PubMed

    Zhu, Dong-Bo; Hu, Kang-Di; Guo, Xi-Kai; Liu, Yong; Hu, Lan-Ying; Li, Yan-Hong; Wang, Song-Hua; Zhang, Hua

    2015-01-01

    Aluminum ions are especially toxic to plants in acidic soils. Here we present evidences that SO2 protects germinating wheat grains against aluminum stress. SO2 donor (NaHSO3/Na2SO3) pretreatment at 1.2 mM reduced the accumulation of superoxide anion, hydrogen peroxide, and malondialdehyde, enhanced the activities of guaiacol peroxidase, catalase, and ascorbate peroxidase, and decreased the activity of lipoxygenase in germinating wheat grains exposed to Al stress. We also observed higher accumulation of hydrogen sulfide (H2S) in SO2-pretreated grain, suggesting the tight relation between sulfite and sulfide. Wheat grains geminated in water for 36 h were pretreated with or without 1 mM SO2 donor for 12 h prior to exposure to Al stress for 48 h and the ameliorating effects of SO2 on wheat radicles were studied. SO2 donor pretreatment reduced the content of reactive oxygen species, protected membrane integrity, and reduced Al accumulation in wheat radicles. Gene expression analysis showed that SO2 donor pretreatment decreased the expression of Al-responsive genes TaWali1, TaWali2, TaWali3, TaWali5, TaWali6, and TaALMT1 in radicles exposed to Al stress. These results suggested that SO2 could increase endogenous H2S accumulation and the antioxidant capability and decrease endogenous Al content in wheat grains to alleviate Al stress. PMID:26078810