Science.gov

Sample records for alleviate thermal stress

  1. Method for alleviating thermal stress damage in laminates

    NASA Technical Reports Server (NTRS)

    Hoffman, C. A.; Weeton, J. W.; Orth, N. W. (Inventor)

    1981-01-01

    The method is for metallic matrix composites, such as laminated sheet or foil composites. Non-intersecting discrete discontinuities are positively introduced into the interface between the layers so as to reduce the thermal stress produced by unequal expansion of the materials making up the composite. The discontinuities are preferably produced by drilling holes in the metallic matrix layer. However, a plurality of discrete elements may be used between the layers to carry out this purpose.

  2. Method for alleviating thermal stress damage in laminates. [metal matrix composites

    NASA Technical Reports Server (NTRS)

    Hoffman, C. A.; Weeton, J. W.; Orth, N. W. (Inventor)

    1980-01-01

    A method is provided for alleviating the stress damage in metallic matrix composites, such as laminated sheet or foil composites. Discontinuities are positively introduced into the interface between the layers so as to reduce the thermal stress produced by unequal expansion of the materials making up the composite. Although a number of discrete elements could be used to form one of the layers and thus carry out this purpose, the discontinuities are preferably produced by simply drilling holes in the metallic matrix layer or by forming grooves in a grid pattern in this layer.

  3. Do Carpets Alleviate Stress?

    PubMed Central

    HOKI, Yoko; SATO, Kunio; KASAI, Yuichi

    2016-01-01

    Background: Owing to increased complexity in the evolution of society, stress has become an important public health problem, and is responsible for more than 30 types of diseases. Most of the research on stress conducted to date has focused on physical and psychological aspects; however, there are very few reports about the association between psychological stress and elements within the residential environment, such as the home, room, and furniture. Therefore, in this study, we focused on the effects of indoor flooring in the residential environment on stress, as flooring is a feature that the human body is in contact with for long periods of time. We objectively measured the extent of psychological stress perceived while walking on carpeting and on wood flooring. Methods: Forty-two healthy subjects were recruited for this study, and were asked to walk on carpeting and wood flooring for 10 min each. Their electroencephalogram (EEG) and skin impedance values were measured for each task. Results: The α-wave content percentage in EEG data and skin impedance values were significantly higher just after walking on carpet than just after walking on wood flooring. Conclusion: Walking on carpeting induces less stress than walking on wood flooring.

  4. Do Carpets Alleviate Stress?

    PubMed Central

    HOKI, Yoko; SATO, Kunio; KASAI, Yuichi

    2016-01-01

    Background: Owing to increased complexity in the evolution of society, stress has become an important public health problem, and is responsible for more than 30 types of diseases. Most of the research on stress conducted to date has focused on physical and psychological aspects; however, there are very few reports about the association between psychological stress and elements within the residential environment, such as the home, room, and furniture. Therefore, in this study, we focused on the effects of indoor flooring in the residential environment on stress, as flooring is a feature that the human body is in contact with for long periods of time. We objectively measured the extent of psychological stress perceived while walking on carpeting and on wood flooring. Methods: Forty-two healthy subjects were recruited for this study, and were asked to walk on carpeting and wood flooring for 10 min each. Their electroencephalogram (EEG) and skin impedance values were measured for each task. Results: The α-wave content percentage in EEG data and skin impedance values were significantly higher just after walking on carpet than just after walking on wood flooring. Conclusion: Walking on carpeting induces less stress than walking on wood flooring. PMID:27648413

  5. Alleviative effects of α-lipoic acid supplementation on acute heat stress-induced thermal panting and the level of plasma nonesterified fatty acids in hypothyroid broiler chickens.

    PubMed

    Hamano, Y

    2012-01-01

    1. The present study was conducted to examine the effects of α-lipoic acid on hypothyroidism-induced negative growth performance and whether α-lipoic acid alleviates acute heat stress in relation to hypothyroid status. 2. Female broiler chickens (14 d-old) were fed diets supplemented with α-lipoic acid (100 mg/kg) and an antithyroid substance, propylthiouracil (200 mg/kg), for 20 d under thermoneutral conditions (25°C). At 42 d of age, chickens were exposed to a high ambient temperature (36°C, 60% RH) for 4 h. 3. Under the thermoneutral condition, propylthiouracil administration decreased feed efficiency and concomitantly increased adipose tissue and thyroid gland weights. Plasma nonesterified fatty acids and triacylglycerol were also increased by propylthiouracil administration. However, α-lipoic acid supplementation did not affect the hypothyroidism-induced effects. 4. In hypothyroid chickens, the rise in respiratory rate induced by heat exposure was greatly inhibited by α-lipoic acid administration at 1 h, but this effect had disappeared at 4 h. In addition, a similar inhibitory effect on the concentrations of plasma nonesterified fatty acids was subsequently observed at 4 h. 5. Therefore, the present study suggested that α-lipoic acid alleviates acute heat stress if chickens are in a hypothyroid status.

  6. Causes and Alleviation of Occupational Stress in Child Care Work

    ERIC Educational Resources Information Center

    Dillenburger, Karola

    2004-01-01

    Occupational stress in not a new phenomenon in the working population. However, in the helping professions it has only recently attracted attention. The survey reported here was carried out in order to assess the extent of occupational stress, identify its causes, and suggest ways in which occupational stress can be alleviated. Field social…

  7. Arbuscular mycorrhizal fungi in alleviation of salt stress: a review

    PubMed Central

    Evelin, Heikham; Kapoor, Rupam; Giri, Bhoopander

    2009-01-01

    Background Salt stress has become a major threat to plant growth and productivity. Arbuscular mycorrhizal fungi colonize plant root systems and modulate plant growth in various ways. Scope This review addresses the significance of arbuscular mycorrhiza in alleviation of salt stress and their beneficial effects on plant growth and productivity. It also focuses on recent progress in unravelling biochemical, physiological and molecular mechanisms in mycorrhizal plants to alleviate salt stress. Conclusions The role of arbuscular mycorrhizal fungi in alleviating salt stress is well documented. This paper reviews the mechanisms arbuscular mycorrhizal fungi employ to enhance the salt tolerance of host plants such as enhanced nutrient acquisition (P, N, Mg and Ca), maintenance of the K+ : Na+ ratio, biochemical changes (accumulation of proline, betaines, polyamines, carbohydrates and antioxidants), physiological changes (photosynthetic efficiency, relative permeability, water status, abscissic acid accumulation, nodulation and nitrogen fixation), molecular changes (the expression of genes: PIP, Na+/H+ antiporters, Lsnced, Lslea and LsP5CS) and ultra-structural changes. Theis review identifies certain lesser explored areas such as molecular and ultra-structural changes where further research is needed for better understanding of symbiosis with reference to salt stress for optimum usage of this technology in the field on a large scale. This review paper gives useful benchmark information for the development and prioritization of future research programmes. PMID:19815570

  8. Curcumin alleviates oxidative stress and mitochondrial dysfunction in astrocytes.

    PubMed

    Daverey, Amita; Agrawal, Sandeep K

    2016-10-01

    Oxidative stress plays a critical role in various neurodegenerative diseases, thus alleviating oxidative stress is a potential strategy for therapeutic intervention and/or prevention of neurodegenerative diseases. In the present study, alleviation of oxidative stress through curcumin is investigated in A172 (human glioblastoma cell line) and HA-sp (human astrocytes cell line derived from the spinal cord) astrocytes. H2O2 was used to induce oxidative stress in astrocytes (A172 and HA-sp). Data show that H2O2 induces activation of astrocytes in dose- and time-dependent manner as evident by increased expression of GFAP in A172 and HA-sp cells after 24 and 12h respectively. An upregulation of Prdx6 was also observed in A172 and HA-sp cells after 24h of H2O2 treatment as compared to untreated control. Our data also showed that curcumin inhibits oxidative stress-induced cytoskeleton disarrangement, and impedes the activation of astrocytes by inhibiting upregulation of GFAP, vimentin and Prdx6. In addition, we observed an inhibition of oxidative stress-induced inflammation, apoptosis and mitochondria fragmentation after curcumin treatment. Therefore, our results suggest that curcumin not only protects astrocytes from H2O2-induced oxidative stress but also reverses the mitochondrial damage and dysfunction induced by oxidative stress. This study also provides evidence for protective role of curcumin on astrocytes by showing its effects on attenuating reactive astrogliosis and inhibiting apoptosis.

  9. Focused grooming networks and stress alleviation in wild female baboons.

    PubMed

    Wittig, Roman M; Crockford, Catherine; Lehmann, Julia; Whitten, Patricia L; Seyfarth, Robert M; Cheney, Dorothy L

    2008-06-01

    We examine the relationship between glucocorticoid (GC) levels and grooming behavior in wild female baboons during a period of instability in the alpha male rank position. All females' GC levels rose significantly at the onset of the unstable period, though levels in females who were at lower risk of infanticide began to decrease sooner in the following weeks. Three factors suggest that females relied on a focused grooming network as a coping mechanism to alleviate stress. First, all females' grooming networks became less diverse in the weeks following the initial upheaval. Second, females whose grooming had already focused on a few predictable partners showed a less dramatic rise in GC levels than females whose grooming network had been more diverse. Third, females who contracted their grooming network the most experienced a greater decrease in GC levels in the following week. We conclude that close bonds with a few preferred partners allow female baboons to alleviate the stress associated with social instability.

  10. Dopamine alleviates salt-induced stress in Malus hupehensis.

    PubMed

    Li, Chao; Sun, Xiangkai; Chang, Cong; Jia, Dongfeng; Wei, Zhiwei; Li, Cuiying; Ma, Fengwang

    2015-04-01

    Dopamine mediates many physiological processes in plants. We investigated its role in regulating growth, ion homeostasis and the response to salinity in Malus hupehensis Rehd. Both hydroponics and field-pot experiments were conducted under saline conditions. Salt-stressed plants had reduced growth and a marked decline in their net photosynthetic rates, values for Fv /Fm and chlorophyll contents. However, pretreatment with 100 or 200 μM dopamine significantly alleviated this inhibition and enabled plants to maintain their photosynthetic capacity. In addition to changing stomatal behavior, supplementation with dopamine positively influenced the uptake of K, N, P, S, Cu and Mn ions but had an inhibitory effect on Na and Cl uptake, the balance of which is responsible for managing the response to salinity by Malus plants. Dopamine pretreatment also controlled the burst of hydrogen peroxide, possibly through direct scavenging and by enhancing the activities of antioxidative enzymes and the capacity of the ascorbate-glutathione cycle. We also investigated whether dopamine might regulate salt overly sensitive pathway genes under salinity. Here, MdHKT1, MdNHX1 and MdSOS1 were greatly upregulated in roots and leaves, which possibly contributed to the maintenance of ion homeostasis and, thus, improved salinity resistance in plants exposed earlier to exogenous dopamine. These results support our conclusion that dopamine alleviates salt-induced stress not only at the level of antioxidant defense but also by regulating other mechanisms of ion homeostasis.

  11. Coumarin pretreatment alleviates salinity stress in wheat seedlings.

    PubMed

    Saleh, Ahmed Mahmoud; Madany, M M Y

    2015-03-01

    The potentiality of COU to improve plant tolerance to salinity was investigated. Wheat grains were primed with COU (50 ppm) and then grown under different levels of NaCl (50, 100, 150 mM) for two weeks. COU pretreatment improved the growth of wheat seedling under salinity, relative to COU-untreated seedlings, due to the accumulation of osmolytes such as soluble sugars and proline. Moreover, COU treatment significantly improved K(+)/Na(+) ratio in the shoots of both salt stressed and un-stressed seedlings. However, in the roots, this ratio increased only under non-salinity. In consistent with phenylalanine ammonia lyase (PAL), phenolics and flavonoids were accumulated in COU-pretreated seedlings under the higher doses of salinity, relative to COU-untreated seedlings. COU primed seedlings showed higher content of the coumarin derivative, scopoletin, and salicylic, chlorogenic, syringic, vanillic, gallic and ferulic acids, under both salinity and non-salinity conditions. Salinity stress significantly improved the activity of peroxidase (POD) in COU-pretreated seedlings. However, the effect of COU on the total antioxidant capacity (TAC) was only obtained at the highest dose of NaCl (150 mM). The present results suggest that COU pretreatment could alleviate the adverse effect of salinity on the growth of wheat seedlings through enhancing, at least partly, the osmoregulation process and antioxidant defense system.

  12. Rhizospheric bacteria alleviate salt-produced stress in sunflower.

    PubMed

    Shilev, Stefan; Sancho, Enrique D; Benlloch-González, María

    2012-03-01

    The effect of isolate Pseudomonas fluorescens biotype F and P. fluorescens CECT 378(T) inoculation on fresh weight and ions accumulation was studied in sunflower plants grown in sand:peat substrate with addition of 100mM NaCl. The inoculation resulted in an increase in fresh weight of more than 10% in salt treatments and in an accumulation of less Na(+) and more K(+) in plant tissues in all cases. The bacterial inoculants favoured the K(+)/Na(+) ratio in all plant parts and in the case of the isolate CECT 378(T) conducted to 66% increment in leaves, 34% in stems and 16% in roots, while the effect of isolate inoculation was (only) more evident in leaves and stems with 30% and 26%, respectively. Both strains were found to produce indoleacetic acid and siderophores in in-vitro tests, thus the production of indoles was highly dependent on the exogenous tryptophan in the medium. The results suggest that salt stress in sunflower plants was alleviated partially by the inoculation with strains that produce indoles and siderophores, having also a positive effect on the K(+)/Na(+) ratio in the shoot. Moreover, those plants were characterized with better-developed roots. PMID:20685030

  13. Zinc supplementation alleviates heat stress in laying Japanese quail.

    PubMed

    Sahin, Kazim; Kucuk, Omer

    2003-09-01

    The study was conducted to determine whether zinc supplementation could alleviate the detrimental effects of high ambient temperature (34 degrees C) on egg production, digestibility of nutrients and antioxidant status in laying Japanese quail. Quail (n = 180; 52 d old) were divided into six groups (n = 30/group) and were fed a basal diet or the basal diet supplemented with 30 or 60 mg of zinc (ZnSO(4). H(2)O)/kg diet. Birds were kept at 22 degrees C and 58% relative humidity (RH). At 13 wk of age, the thermoneutral (TN) groups remained at the same temperature, whereas the heat-stress (HS) groups were kept in an environmentally controlled room at 34 degrees C and 42% RH for 3 wk. Heat exposure decreased egg production in birds fed the basal diet (P = 0.001). Linear increases in feed intake (P = 0.01) and egg production (P = 0.004) and improved feed efficiency (P = 0.01) and egg quality variables (P 0.05). Results of the present study suggest that supplementation with 60 mg zinc/kg diet protects quail by reducing the negative effects of heat stress.

  14. Metallic coating reduces thermal stress

    NASA Technical Reports Server (NTRS)

    Morgan, R. D.

    1977-01-01

    Addition of metallic outer layer deposited by standard plating method, having high thermal conductivity, substantially reduces thermal stress in high-temperature/high-strength materials, preventing structural overloads.

  15. Thermal stress and toxicity.

    PubMed

    Gordon, Christopher J; Johnstone, Andrew F M; Aydin, Cenk

    2014-07-01

    Elevating ambient temperature above thermoneutrality exacerbates toxicity of most air pollutants, insecticides, and other toxic chemicals. On the other hand, safety and toxicity testing of toxicants and drugs is usually performed in mice and rats maintained at sub-thermoneutral temperatures of ~22∘C. When exposed to chemical toxicants under these relatively cool conditions, rodents typically undergo a regulated hypothermic response, characterized by preference for cooler ambient temperatures and controlled reduction in core temperature. Reducing core temperature delays the clearance of most toxicants from the body; however, a mild hypothermia also improves recovery and survival from the toxicant. Raising ambient temperature to thermoneutrality and above increases the rate of clearance of the toxicant but also exacerbates toxicity. Furthermore, heat stress combined with work or exercise is likely to worsen toxicity. Body temperature of large mammals, including humans, does not decrease as much in response to exposure to a toxicant. However, heat stress can nonetheless worsen toxic outcome in humans through a variety of mechanisms. For example, heat-induced sweating and elevation in skin blood flow accelerates uptake of some insecticides. Epidemiological studies suggest that thermal stress may exacerbate the toxicity of airborne pollutants such as ozone and particulate matter. Overall, translating results of studies in rodents to that of humans is a formidable task attributed in part to the interspecies differences in thermoregulatory response to the toxicants and to thermal stress. PMID:24944028

  16. Verminoside mediates life span extension and alleviates stress in Caenorhabditis elegans.

    PubMed

    Pant, A; Asthana, J; Yadav, A K; Rathor, L; Srivastava, S; Gupta, M M; Pandey, R

    2015-01-01

    The discovery of bioactive molecules modulating aging in living organism promotes development of natural therapeutics for curing age-related afflictions. The progression in age-related disorders can be attributed to increment in intracellular reactive oxygen species (ROS) and oxidative stress level. To this end, we isolated an iridoid verminoside (VMS) from Stereospermum suaveolens (Roxb.) DC. and evaluated its effect on Caenorhabditis elegans. The present study delineates VMS-mediated alteration of intracellular ROS, oxidative stress, and life span in C. elegans. The different tested doses of VMS (5 μM, 25 μM, and 50 μM) were able to enhance ROS scavenging and extend mean life span in C. elegans. The maximal life span extension was observed in 25 μM VMS, that is, 20.79% (P < 0.0001) followed by 9.84% (P < 0.0001) in 5 μM VMS and 8.54% (P < 0.0001) in 50 μM VMS. VMS was able to alleviate juglone-induced oxidative stress and enhanced thermotolerance in worms. The stress-modulating and ROS-scavenging potential of VMS was validated by increment in mean survival by 29.54% (P < 0.0001) in VMS-treated oxidative stress hypersensitive mev-1 mutant strain. Furthermore, VMS modulates expression of DAF-16 (a FoxO transcription factor) promoting stress resistance and longevity. Altogether, our results suggest that VMS attenuates intracellular ROS and stress (oxidative and thermal) level promoting longevity. The longevity and stress modulation can be attributed to VMS-mediated alterations in daf-16 expression which regulates insulin signaling pathway. This study opens doors for development of phytomolecule-based therapeutics for prolonging life span and managing age-related severe disorders.

  17. Accurate Thermal Stresses for Beams: Normal Stress

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore F.; Pilkey, Walter D.

    2003-01-01

    Formulations for a general theory of thermoelasticity to generate accurate thermal stresses for structural members of aeronautical vehicles were developed in 1954 by Boley. The formulation also provides three normal stresses and a shear stress along the entire length of the beam. The Poisson effect of the lateral and transverse normal stresses on a thermally loaded beam is taken into account in this theory by employing an Airy stress function. The Airy stress function enables the reduction of the three-dimensional thermal stress problem to a two-dimensional one. Numerical results from the general theory of thermoelasticity are compared to those obtained from strength of materials. It is concluded that the theory of thermoelasticity for prismatic beams proposed in this paper can be used instead of strength of materials when precise stress results are desired.

  18. Accurate Thermal Stresses for Beams: Normal Stress

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore F.; Pilkey, Walter D.

    2002-01-01

    Formulations for a general theory of thermoelasticity to generate accurate thermal stresses for structural members of aeronautical vehicles were developed in 1954 by Boley. The formulation also provides three normal stresses and a shear stress along the entire length of the beam. The Poisson effect of the lateral and transverse normal stresses on a thermally loaded beam is taken into account in this theory by employing an Airy stress function. The Airy stress function enables the reduction of the three-dimensional thermal stress problem to a two-dimensional one. Numerical results from the general theory of thermoelasticity are compared to those obtained from strength of materials. It is concluded that the theory of thermoelasticity for prismatic beams proposed in this paper can be used instead of strength of materials when precise stress results are desired.

  19. Adaptation to hot climate and strategies to alleviate heat stress in livestock production.

    PubMed

    Renaudeau, D; Collin, A; Yahav, S; de Basilio, V; Gourdine, J L; Collier, R J

    2012-05-01

    Despite many challenges faced by animal producers, including environmental problems, diseases, economic pressure, and feed availability, it is still predicted that animal production in developing countries will continue to sustain the future growth of the world's meat production. In these areas, livestock performance is generally lower than those obtained in Western Europe and North America. Although many factors can be involved, climatic factors are among the first and crucial limiting factors of the development of animal production in warm regions. In addition, global warming will further accentuate heat stress-related problems. The objective of this paper was to review the effective strategies to alleviate heat stress in the context of tropical livestock production systems. These strategies can be classified into three groups: those increasing feed intake or decreasing metabolic heat production, those enhancing heat-loss capacities, and those involving genetic selection for heat tolerance. Under heat stress, improved production should be possible through modifications of diet composition that either promotes a higher intake or compensates the low feed consumption. In addition, altering feeding management such as a change in feeding time and/or frequency, are efficient tools to avoid excessive heat load and improve survival rate, especially in poultry. Methods to enhance heat exchange between the environment and the animal and those changing the environment to prevent or limit heat stress can be used to improve performance under hot climatic conditions. Although differences in thermal tolerance exist between livestock species (ruminants > monogastrics), there are also large differences between breeds of a species and within each breed. Consequently, the opportunity may exist to improve thermal tolerance of the animals using genetic tools. However, further research is required to quantify the genetic antagonism between adaptation and production traits to evaluate

  20. Residual stress alleviation of aircraft metal structures reinforced with filamentary composites

    NASA Technical Reports Server (NTRS)

    Kelly, J. B.; June, R. R.

    1973-01-01

    Methods to eliminate or reduce residual stresses in aircraft metal structures reinforced by filamentary composites are discussed. Residual stress level reductions were achieved by modifying the manufacturing procedures used during adhesive bonding. The residual stress alleviation techniques involved various forms of mechanical constraint which were applied to the components during bonding. Nine methods were evaluated, covering a wide range in complexity. All methods investigated during the program affected the residual stress level. In general, residual stresses were reduced by 70 percent or more from the stress level produced by conventional adhesive bonding procedures.

  1. Rosa rugosa Aqueous Extract Alleviates Endurance Exercise-Induced Stress.

    PubMed

    Seo, Eunjin; You, Yanghee; Yoon, Ho-Geun; Kim, Boemjeong; Kim, Kyungmi; Lee, Yoo-Hyun; Lee, Jeongmin; Chung, Jin Woong; Shim, Sangin; Jun, Woojin

    2015-06-01

    This study was performed to investigate the effect of water extract from Rosa rugosa (RRW) on endurance exercise-induced stress in mice. The mice were orally administered with distilled water or RRW, respectively. The endurance capacity was evaluated by exhaustive swimming using an adjustable-current water pool. Mice administered RRW swam longer before becoming exhausted. Also, RRW administration resulted in less lipid peroxidation, lower muscular antioxidant enzyme activities, and lower cortisol level. The results suggest that RRW can prevent exercise-induced stress by decreasing oxidative stress levels.

  2. Seed priming to alleviate salinity stress in germinating seeds.

    PubMed

    Ibrahim, Ehab A

    2016-03-15

    Salinity is one of the major abiotic stresses that affect crop production in arid and semiarid areas. Seed germination and seedling growth are the stages most sensitive to salinity. Salt stress causes adverse physiological and biochemical changes in germinating seeds. It can affect the seed germination and stand establishment through osmotic stress, ion-specific effects and oxidative stress. The salinity delays or prevents the seed germination through various factors, such as a reduction in water availability, changes in the mobilization of stored reserves and affecting the structural organization of proteins. Various techniques can improve emergence and stand establishment under salt conditions. One of the most frequently utilized is seed priming. The process of seed priming involves prior exposure to an abiotic stress, making a seed more resistant to future exposure. Seed priming stimulates the pre-germination metabolic processes and makes the seed ready for radicle protrusion. It increases the antioxidant system activity and the repair of membranes. These changes promote seed vigor during germination and emergence under salinity stress. The aim of this paper is to review the recent literature on the response of plants to seed priming under salinity stress. The mechanism of the effect of salinity on seed germination is discussed and the seed priming process is summarized. Physiological, biochemical and molecular changes induced by priming that lead to seed enhancement are covered. Plants' responses to some priming agents under salinity stress are reported based on the best available data. For a great number of crops, little information exists and further research is needed. PMID:26812088

  3. Seed priming to alleviate salinity stress in germinating seeds.

    PubMed

    Ibrahim, Ehab A

    2016-03-15

    Salinity is one of the major abiotic stresses that affect crop production in arid and semiarid areas. Seed germination and seedling growth are the stages most sensitive to salinity. Salt stress causes adverse physiological and biochemical changes in germinating seeds. It can affect the seed germination and stand establishment through osmotic stress, ion-specific effects and oxidative stress. The salinity delays or prevents the seed germination through various factors, such as a reduction in water availability, changes in the mobilization of stored reserves and affecting the structural organization of proteins. Various techniques can improve emergence and stand establishment under salt conditions. One of the most frequently utilized is seed priming. The process of seed priming involves prior exposure to an abiotic stress, making a seed more resistant to future exposure. Seed priming stimulates the pre-germination metabolic processes and makes the seed ready for radicle protrusion. It increases the antioxidant system activity and the repair of membranes. These changes promote seed vigor during germination and emergence under salinity stress. The aim of this paper is to review the recent literature on the response of plants to seed priming under salinity stress. The mechanism of the effect of salinity on seed germination is discussed and the seed priming process is summarized. Physiological, biochemical and molecular changes induced by priming that lead to seed enhancement are covered. Plants' responses to some priming agents under salinity stress are reported based on the best available data. For a great number of crops, little information exists and further research is needed.

  4. Herbaspirillum sp. strain GW103 alleviates salt stress in Brassica rapa L. ssp. pekinensis.

    PubMed

    Lee, Gun Woong; Lee, Kui-Jae; Chae, Jong-Chan

    2016-05-01

    Mutual interactions between plant and rhizosphere bacteria facilitate plant growth and reduce risks of biotic and abiotic stresses. The present study demonstrates alleviation of salt stress in Brassica rapa L. ssp. perkinensis (Chinese cabbage) by Herbaspirillum sp. strain GW103 isolated from rhizosphere soil of Phragmites australis. The strain was capable of producing plant beneficial factors, such as auxin, siderophore, and 1-aminocylopropane-1-carboxylic acid deaminase. Treatment of strain GW103 on Chinese cabbage under salt stress increased K(+)/Na(+) ratio in roots generating balance in the ratio of ion homeostasis and consequently contributed to the increase of biomass. In addition, root colonization potential of the strain was observed by green fluorescent protein (GFP)-tagging approach. These results strongly suggest the beneficial impact of strain GW103 by inducing the alleviation of salt stress and development of stress tolerance in Chinese cabbage via plant-microbe interaction.

  5. Herbaspirillum sp. strain GW103 alleviates salt stress in Brassica rapa L. ssp. pekinensis.

    PubMed

    Lee, Gun Woong; Lee, Kui-Jae; Chae, Jong-Chan

    2016-05-01

    Mutual interactions between plant and rhizosphere bacteria facilitate plant growth and reduce risks of biotic and abiotic stresses. The present study demonstrates alleviation of salt stress in Brassica rapa L. ssp. perkinensis (Chinese cabbage) by Herbaspirillum sp. strain GW103 isolated from rhizosphere soil of Phragmites australis. The strain was capable of producing plant beneficial factors, such as auxin, siderophore, and 1-aminocylopropane-1-carboxylic acid deaminase. Treatment of strain GW103 on Chinese cabbage under salt stress increased K(+)/Na(+) ratio in roots generating balance in the ratio of ion homeostasis and consequently contributed to the increase of biomass. In addition, root colonization potential of the strain was observed by green fluorescent protein (GFP)-tagging approach. These results strongly suggest the beneficial impact of strain GW103 by inducing the alleviation of salt stress and development of stress tolerance in Chinese cabbage via plant-microbe interaction. PMID:26358119

  6. Hyperoside Induces Endogenous Antioxidant System to Alleviate Oxidative Stress

    PubMed Central

    Park, Ji Young; Han, Xia; Piao, Mei Jing; Oh, Min Chang; Fernando, Pattage Madushan Dilhara Jayatissa; Kang, Kyoung Ah; Ryu, Yea Seong; Jung, Uhee; Kim, In Gyu; Hyun, Jin Won

    2016-01-01

    Background: Hyperoside, a flavonoid which is mainly found in Hypericum perforatum L., has many biological effects. One of the most important effects is to prevent the oxidative stress induced by reactive oxygen species. However, the molecular mechanisms underlying its effect are not fully understood. Oxidative stress is implicated in the occurrence of various physical diseases. A wide array of enzymatic antioxidant defense systems include NADH: quinone oxidoreductase 1, superoxide dismutase, and heme oxygenase-1 (HO-1). In the present study, the protective effects of hyperoside against hydrogen peroxide-induced oxidative stress in human lens epithelial cells, HLE-B3, were investigated in terms of HO-1 induction. Methods: The protein and mRNA expressions of HO-1 were examined by Western blotting and reverse transcriptase-PCR assays, respectively. To evaluate the ability of hyperoside to activate nuclear factor erythroid 2-related factor 2 (Nrf2), Western blotting and electrophoretic mobility shift assay were performed with nuclear extracts prepared from HLE-B3 cells treated with hyperoside. The activation of extracellular signal-regulated kinase (ERK), the upstream kinase of Nrf2 signaling, was monitored by Western blot analysis. The protective effect of hyperoside in HLE-B3 cells against hydrogen peroxide was performed by MTT assay. Results: Hyperoside increased both the mRNA and protein expression of HO-1 in a time- and dose-dependent manner. In addition, hyperoside elevated the level of of Nrf2 and its antioxidant response element-binding activity, which was modulated by upstream of ERK. Moreover, it activated ERK and restored cell viability which was decreased by hydrogen peroxide. Conclusions: Hyperoside is an effective compound to protect cells against oxidative stress via HO-1 induction. PMID:27051648

  7. Alleviation of salt stress in lemongrass by salicylic acid.

    PubMed

    Idrees, Mohd; Naeem, M; Khan, M Nasir; Aftab, Tariq; Khan, M Masroor A; Moinuddin

    2012-07-01

    Soil salinity is one of the key factors adversely affecting the growth, yield, and quality of crops. A pot study was conducted to find out whether exogenous application of salicylic acid could ameliorate the adverse effect of salinity in lemongrass (Cymbopogon flexuosus Steud. Wats.). Two Cymbopogon varieties, Krishna and Neema, were used in the study. Three salinity levels, viz, 50, 100, and 150 mM of NaCl, were applied to 30-day-old plants. Salicylic acid (SA) was applied as foliar spray at 10(-5) M concentration. Totally, six SA-sprays were carried out at 10-day intervals, following the first spray at 30 days after sowing. The growth parameters were progressively reduced with the increase in salinity level; however, growth inhibition was significantly reduced by the foliar application of SA. With the increase in salt stress, a gradual decrease in the activities of carbonic anhydrase and nitrate reductase was observed in both the varieties. SA-treatment not only ameliorated the adverse effects of NaCl but also showed a significant improvement in the activities of these enzymes compared with the untreated stressed-plants. The plants supplemented with NaCl exhibited a significant increase in electrolyte leakage, proline content, and phosphoenol pyruvate carboxylase activity. Content and yield of essential oil was also significantly decreased in plants that received salinity levels; however, SA overcame the unfavorable effects of salinity stress to a considerable extent. Lemongrass variety Krishna was found to be more adapted to salt stress than Neema, as indicated by the overall performance of the two varieties under salt conditions.

  8. Addition lens alleviates reading-induced ocular stress.

    PubMed

    Choy, Camus K; Siu, Andrew W; Lam, Frankie Y; Tse, Jesse T; Lau, Sylvania Y

    2000-01-01

    BACKGROUND: Near tasks have been associated with binocular stress to induce myopia. The aim of this study was to investigate the effects of accommodation on reading-induced near heterophoria. METHODS: We measured the near heterophoria of 22 young adults before and after 30 minutes of reading. The reading task comprised a column of local English newsletter studied monocularly at 33 cm. One of three addition lenses (that is, 0.00 D, +1.50 D and +3.00 D) was randomly incorporated into the optical prescription. The difference in near heterophoria between the pre- and post-reading task was recorded. The experiment was completed on separate days for the other lens powers. RESULTS: Reading for 30 minutes with a plano lens addition (control) increased the near heterophoria by 3.81 +/- 0.95 prism dioptres (SEM) toward exo-deviation (p < 0.002). Addition of a +3.00 D lens significantly decreased the reading-induced exophoric shift to 1.36 +/- 0.55 prism dioptres (SEM). Similarly, a +1.50 D lens reduced the exophoric shift to 3.14 +/- 0.85 prism dioptres (SEM) but the difference was not statistically significant when compared with the control. CONCLUSIONS: The results showed that close work might cause eye strain via the extraocular muscles. Incorporation of plus lens into the optical correction caused a power-dependent reduction in the stress, that is, smaller exophoric shift. Whether binocular stress contributes to myopia and its response to addition lens therapy deserve further investigation.

  9. Detection and classification of stress using thermal imaging technique

    NASA Astrophysics Data System (ADS)

    Hong, Kan; Yuen, Peter; Chen, Tong; Tsitiridis, Aristeidis; Kam, Firmin; Jackman, James; James, David; Richardson, Mark; Oxford, William; Piper, Jonathan; Thomas, Francis; Lightman, Stafford

    2009-09-01

    This paper reports how Electro-Optics (EO) technologies such as thermal and hyperspectral [1-3] imaging methods can be used for the detection of stress remotely. Emotional or physical stresses induce a surge of adrenaline in the blood stream under the command of the sympathetic nerve system, which, cannot be suppressed by training. The onset of this alleviated level of adrenaline triggers a number of physiological chain reactions in the body, such as dilation of pupil and an increased feed of blood to muscles etc. The capture of physiological responses, specifically the increase of blood volume to pupil, have been reported by Pavlidis's pioneer thermal imaging work [4-7] who has shown a remarkable increase of skin temperature in the periorbital region at the onset of stress. Our data has shown that other areas such as the forehead, neck and cheek also exhibit alleviated skin temperatures dependent on the types of stressors. Our result has also observed very similar thermal patterns due to physical exercising, to the one that induced by other physical stressors, apparently in contradiction to Pavlidis's work [8]. Furthermore, we have found patches of alleviated temperature regions in the forehead forming patterns characteristic to the types of stressors, dependent on whether they are physical or emotional in origin. These stress induced thermal patterns have been seen to be quite distinct to the one resulting from having high fever.

  10. Thermal anomalies in stressed Teflon.

    NASA Technical Reports Server (NTRS)

    Lee, S. H.; Wulff, C. A.

    1972-01-01

    In the course of testing polytetrafluoroethylene (Teflon) as a calorimetric gasketing material, serendipity revealed a thermal anomaly in stressed film that occurs concomitantly with the well-documented 25 C transition. The magnitude of the excess energy absorption - about 35 cal/g - is suggested to be related to the restricted thermal expansion of the film.

  11. Thermal stress and human performance.

    PubMed

    Enander, A E; Hygge, S

    1990-01-01

    There is evidence that the thermal stress encountered in many work environments may negatively affect various aspects of human performance and behavior. Evaluation of the empirical research is, however, complicated by differences in both the methodology and the definition of the basic stimulus. Effects of heat and cold stress are briefly reviewed, with particular regard to theoretical considerations. PMID:2189219

  12. Thermal stresses in composite tubes

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.

    1986-01-01

    This paper summarizes work to determine the thermally-induced stresses and deformations in specially-constructed angle-ply composite tubes subjected to a uniform temperature change relative to their stress-free cure state. The tubes are designed for application to space structures and have high axial stiffness. Four angle-ply designs are examined in an effort to determine which design might have the most favorable thermally-induced response. A planar elasticity solution is used, the solution being valid away from the ends of the tube. Of the four designs considered, none has any particular advantage as far as stress levels are concerned. However, despite the fact that the tube wall is a balanced laminate, one design exhibits a significant amount of thermally-induced twist.

  13. Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings.

    PubMed

    Mastouri, Fatemeh; Björkman, Thomas; Harman, Gary E

    2010-11-01

    Trichoderma spp. are endophytic plant symbionts that are widely used as seed treatments to control diseases and to enhance plant growth and yield. Although some recent work has been published on their abilities to alleviate abiotic stresses, specific knowledge of mechanisms, abilities to control multiple plant stress factors, their effects on seed and seedlings is lacking. We examined the effects of seed treatment with T. harzianum strain T22 on germination of seed exposed to biotic stress (seed and seedling disease caused by Pythium ultimum) and abiotic stresses (osmotic, salinity, chilling, or heat stress). We also evaluated the ability of the beneficial fungus to overcome physiological stress (poor seed quality induced by seed aging). If seed were not under any of the stresses noted above, T22 generally had little effect upon seedling performance. However, under stress, treated seed germinated consistently faster and more uniformly than untreated seeds whether the stress was osmotic, salt, or suboptimal temperatures. The consistent response to varying stresses suggests a common mechanism through which the plant-fungus association enhances tolerance to a wide range of abiotic stresses as well as biotic stress. A common factor that negatively affects plants under these stress conditions is accumulation of toxic reactive oxygen species (ROS), and we tested the hypothesis that T22 reduced damages resulting from accumulation of ROS in stressed plants. Treatment of seeds reduced accumulation of lipid peroxides in seedlings under osmotic stress or in aged seeds. In addition, we showed that the effect of exogenous application of an antioxidant, glutathione, or application of T22, resulted in a similar positive effect on seed germination under osmotic stress or in aged seed. This evidence supports the model that T. harzianum strain T22 increases seedling vigor and ameliorates stress by inducing physiological protection in plants against oxidative damage.

  14. Roles of meditation on alleviation of oxidative stress and improvement of antioxidant system.

    PubMed

    Mahagita, Chitrawina

    2010-11-01

    According to MEDLINE/Pubmed search to December 2009, the modulation effects of meditation on oxidative stress have been increasingly investigated for acute, short and long-term effects. Both invasive and noninvasive measurements have been utilized. Long-term transcendental and Zen meditators have been showed to diminish oxidative stress seen by a reduction of lipid peroxidation and biophoton emission. Glutathione level and activity of antioxidant enzymes (catalase, superoxide dismutase, glutathione peroxidase and glutathione reductase) have been facilitated in Yoga and Sudarshan Kriya practitioners. One year of Tai Chi training has been reported to promote superoxide dismutase activity and lessen lipid peroxidation. Performing diaphragmatic breathing after exhaustive exercise has attenuated oxidative stress faster than control. These data suggest possible roles of meditation and meditation-based techniques on the decrease of oxidative stress which may assist to prevent and/or alleviate deterioration of related diseases. However, further research needs to elucidate the cellular and molecular mechanisms which remain challenge to accomplish.

  15. Mechanisms of silicon-mediated alleviation of drought and salt stress in plants: a review.

    PubMed

    Rizwan, Muhammad; Ali, Shafaqat; Ibrahim, Muhammad; Farid, Mujahid; Adrees, Muhammad; Bharwana, Saima Aslam; Zia-Ur-Rehman, Muhammad; Qayyum, Muhammad Farooq; Abbas, Farhat

    2015-10-01

    Drought and salinity are the main abiotic stresses limiting crop yield and quality worldwide. Improving food production in drought- and salt-prone areas is the key to meet the increasing food demands in near future. It has been widely reported that silicon (Si), a second most abundant element in soil, could reduce drought and salt stress in plants. Here, we reviewed the emerging role of Si in enhancing drought and salt tolerance in plants and highlighted the mechanisms through which Si could alleviate both drought and salt stress in plants. Silicon application increased plant growth, biomass, photosynthetic pigments, straw and grain yield, and quality under either drought or salt stress. Under both salt and drought stress, the key mechanisms evoked are nutrient elements homeostasis, modification of gas exchange attributes, osmotic adjustment, regulating the synthesis of compatible solutes, stimulation of antioxidant enzymes, and gene expression in plants. In addition, Si application decreased Na(+) uptake and translocation while increased K(+) uptake and translocation under salt stress. However, these mechanisms vary with plant species, genotype, growth conditions, duration of stress imposed, and so on. This review article highlights the potential for improving plant resistance to drought and salt stress by Si application and provides a theoretical basis for application of Si in saline soils and arid and semiarid regions worldwide. This review article also highlights the future research needs about the role of Si under drought stress and in saline soils.

  16. Mechanisms of silicon-mediated alleviation of drought and salt stress in plants: a review.

    PubMed

    Rizwan, Muhammad; Ali, Shafaqat; Ibrahim, Muhammad; Farid, Mujahid; Adrees, Muhammad; Bharwana, Saima Aslam; Zia-Ur-Rehman, Muhammad; Qayyum, Muhammad Farooq; Abbas, Farhat

    2015-10-01

    Drought and salinity are the main abiotic stresses limiting crop yield and quality worldwide. Improving food production in drought- and salt-prone areas is the key to meet the increasing food demands in near future. It has been widely reported that silicon (Si), a second most abundant element in soil, could reduce drought and salt stress in plants. Here, we reviewed the emerging role of Si in enhancing drought and salt tolerance in plants and highlighted the mechanisms through which Si could alleviate both drought and salt stress in plants. Silicon application increased plant growth, biomass, photosynthetic pigments, straw and grain yield, and quality under either drought or salt stress. Under both salt and drought stress, the key mechanisms evoked are nutrient elements homeostasis, modification of gas exchange attributes, osmotic adjustment, regulating the synthesis of compatible solutes, stimulation of antioxidant enzymes, and gene expression in plants. In addition, Si application decreased Na(+) uptake and translocation while increased K(+) uptake and translocation under salt stress. However, these mechanisms vary with plant species, genotype, growth conditions, duration of stress imposed, and so on. This review article highlights the potential for improving plant resistance to drought and salt stress by Si application and provides a theoretical basis for application of Si in saline soils and arid and semiarid regions worldwide. This review article also highlights the future research needs about the role of Si under drought stress and in saline soils. PMID:26335528

  17. Dietary Astragalus polysaccharide alleviated immunological stress in broilers exposed to lipopolysaccharide.

    PubMed

    Liu, Lei; Shen, Jing; Zhao, Chao; Wang, Xiaofei; Yao, Junhu; Gong, Yuesheng; Yang, Xiaojun

    2015-01-01

    This study was conducted to investigate whether dietary Astragalus polysaccharide (APS) could alleviate immunological stress response of chickens after challenge with lipopolysaccharide (LPS). A total of 360 one-day-old commercial Arbor Acres broilers were randomly assigned in a 2 × 2 factorial design. The main factors were immunological stress (LPS or saline) and dietary APS (0 or 3g APS/kg feed). At 12, 14, 33 and 35 days of age, chickens were injected intramuscularly with either 500 μg/kg body weight of LPS or sterile saline. The results showed that the decreased daily feed intake and daily weight gain caused by immunological stress were dramatically attenuated by APS supplementation. The LPS challenge led to an increased mRNA abundance of TLR4, NF-κB, IL-1β, IL-6, avian uncoupling protein, α1-acid glycoprotein, hemopexin and y(+)LAT2. However, these negative effects of the LPS administration were ameliorated by APS supplementation. Moreover, dietary APS inhibited the LPS-induced depression of amino acid digestibilities. In conclusion, APS is able to alleviate LPS-induced immunological stress response in chickens. The beneficial effect may be attributed to suppressing the expression of pro-inflammatory cytokines through reducing the TLR4 and NF-κB genes transcription, and therewith improving energy and protein metabolism. PMID:25239195

  18. Dietary Astragalus polysaccharide alleviated immunological stress in broilers exposed to lipopolysaccharide.

    PubMed

    Liu, Lei; Shen, Jing; Zhao, Chao; Wang, Xiaofei; Yao, Junhu; Gong, Yuesheng; Yang, Xiaojun

    2015-01-01

    This study was conducted to investigate whether dietary Astragalus polysaccharide (APS) could alleviate immunological stress response of chickens after challenge with lipopolysaccharide (LPS). A total of 360 one-day-old commercial Arbor Acres broilers were randomly assigned in a 2 × 2 factorial design. The main factors were immunological stress (LPS or saline) and dietary APS (0 or 3g APS/kg feed). At 12, 14, 33 and 35 days of age, chickens were injected intramuscularly with either 500 μg/kg body weight of LPS or sterile saline. The results showed that the decreased daily feed intake and daily weight gain caused by immunological stress were dramatically attenuated by APS supplementation. The LPS challenge led to an increased mRNA abundance of TLR4, NF-κB, IL-1β, IL-6, avian uncoupling protein, α1-acid glycoprotein, hemopexin and y(+)LAT2. However, these negative effects of the LPS administration were ameliorated by APS supplementation. Moreover, dietary APS inhibited the LPS-induced depression of amino acid digestibilities. In conclusion, APS is able to alleviate LPS-induced immunological stress response in chickens. The beneficial effect may be attributed to suppressing the expression of pro-inflammatory cytokines through reducing the TLR4 and NF-κB genes transcription, and therewith improving energy and protein metabolism.

  19. Brassinosteroid alleviates polychlorinated biphenyls-induced oxidative stress by enhancing antioxidant enzymes activity in tomato.

    PubMed

    Ahammed, Golam Jalal; Ruan, Yi-Ping; Zhou, Jie; Xia, Xiao-Jian; Shi, Kai; Zhou, Yan-Hong; Yu, Jing-Quan

    2013-03-01

    Polychlorinated biphenyls (PCBs) are persistent organic pollutants often found in the atmosphere. Phytoremediation of airborne PCBs is an emerging new concept to minimize potential human exposure. However, effects of atmospheric PCBs on plant growth, photosynthesis and antioxidant defence system are poorly understood area. Brassinosteroids have been reported to alleviate different abiotic stresses including organic pollutants-induced stress. Hence, we studied the effects of PCBs and 24-epibrassinolide (EBR) on biomass accumulation, photosynthetic machinery and antioxidant system in tomato plants. PCBs (0.4, 2.0 and 10 μg/l) mist spray significantly decreased dry weight, photosynthesis, chlorophyll contents in a dose dependent manner. Both stomatal and non-stomatal factors were involved in PCBs-induced photosynthetic inhibition. Likewise, the maximal photochemical efficiency of PSII (Fv/Fm), the quantum efficiency of PSII photochemistry (Φ(PSII)) and photochemical quenching coefficient were increasingly decreased by various levels of PCBs, suggesting an induction of photoinhibition. Increased accumulation of H(2)O(2) and O(2)(-) accompanied with high lipid peroxidation confirmed occurrence of oxidative stress upon PCBs exposure. Meanwhile, antioxidant enzymes activity was decreased following exposure to PCBs. Foliar application of EBR (100 nM) increased biomass, photosynthetic capacity, chlorophyll contents and alleviated photoinhibition by enhancing Fv/Fm, Φ(PSII) and qP. EBR significantly decreased harmful ROS accumulation and lipid peroxidation through the induction of antioxidant enzymes activity. Our results suggest a protective role of EBR against PCBs stress which may strengthen phytoremediation approaches by enhancing plant tolerance.

  20. Potassium nitrate application alleviates sodium chloride stress in winter wheat cultivars differing in salt tolerance.

    PubMed

    Zheng, Yanhai; Jia, Aijun; Ning, Tangyuan; Xu, Jialin; Li, Zengjia; Jiang, Gaoming

    2008-09-29

    A sand culture experiment was conducted to answer the question whether or not exogenous KNO(3) can alleviate adverse effects of salt stress in winter wheat by monitoring plant growth, K(+)/Na(+) accumulation and the activity of some antioxidant enzymes. Seeds of two wheat cultivars (CVs), DK961 (salt-tolerant) and JN17 (salt-sensitive), were planted in sandboxes and controls germinated and raised with Hoagland nutrient solution (6 mM KNO(3), no NaCl). Experimental seeds were exposed to seven modified Hoagland solutions containing increased levels of KNO(3) (11, 16, 21 mM) or 100 mM NaCl in combination with the four KNO(3) concentrations (6, 11, 16 and 21 mM). Plants were harvested 30 d after imbibition, with controls approximately 22 cm in height. Both CVs showed significant reduction in plant height, root length and dry weight of shoots and roots under KNO(3) or NaCl stress. However, the combination of increased KNO(3) and NaCl alleviated symptoms of the individual salt stresses by improving growth of shoots and roots, reducing electrolyte leakage, malondialdehyde and soluble sugar contents and enhancing the activities of antioxidant enzymes. The salt-tolerant cultivar accumulated more K(+) in both shoots and roots compared with the higher Na(+) accumulation typical for the salt-sensitive cultivar. Soluble sugar content and activities of antioxidant enzymes were found to be more stable in the salt-tolerant cultivar. Our findings suggest that the optimal K(+)/Na(+) ratio of the nutrient solution should be 16:100 for both the salt-tolerant and the salt-sensitive cultivar under the experimental conditions used, and that the alleviation of NaCl stress symptoms through simultaneously applied elevated KNO(3) was more effective in the salt-tolerant than in the salt-sensitive cultivar.

  1. Membrane expansion alleviates endoplasmic reticulum stress independently of the unfolded protein response

    PubMed Central

    Prinz, William A.; Thorn, Kurt S.; Voss, Christiane; Walter, Peter

    2009-01-01

    Cells constantly adjust the sizes and shapes of their organelles according to need. In this study, we examine endoplasmic reticulum (ER) membrane expansion during the unfolded protein response (UPR) in the yeast Saccharomyces cerevisiae. We find that membrane expansion occurs through the generation of ER sheets, requires UPR signaling, and is driven by lipid biosynthesis. Uncoupling ER size control and the UPR reveals that membrane expansion alleviates ER stress independently of an increase in ER chaperone levels. Converting the sheets of the expanded ER into tubules by reticulon overexpression does not affect the ability of cells to cope with ER stress, showing that ER size rather than shape is the key factor. Thus, increasing ER size through membrane synthesis is an integral yet distinct part of the cellular program to overcome ER stress. PMID:19948500

  2. Kinetin applications alleviate salt stress and improve the antioxidant composition of leaf extracts in Salvia officinalis.

    PubMed

    Tounekti, Taïeb; Hernández, Iker; Müller, Maren; Khemira, Habib; Munné-Bosch, Sergi

    2011-10-01

    A pot experiment was carried out under glasshouse conditions with common sage (Salvia officinalis L.) to investigate the interactive effects of salt stress and kinetin on growth attributes and the abundance of pigments, ions, phenolic diterpenes and α-tocopherol in leaf extracts of this species. The plants were subjected to the following four treatments: (i) control (nutrient solution), (ii) control + 10 μM kinetin, (iii) salt stress (nutrient solution + 100 mM NaCl), and (iv) salt stress + 10 μM kinetin. Kinetin was applied as a foliar fertilizer. Salt stress reduced water contents, photosynthetic activity and pigment contents of sage leaves. In addition, it increased Na(+) contents, and reduced those of Ca(2+) and K(+) in leaves. Salt stress reduced carnosic acid and 12-O-methyl carnosic acid contents in leaves, while it did not affect carnosol and α-tocopherol contents. Foliar applications of kinetin seemed to counterbalance or alleviate the stress symptoms induced by salinity, improving ion and pigment contents, while leaf phenolic diterpene (mainly carnosol) and α-tocopherol contents also increased in both control and NaCl-treated plants; still this effect was much more obvious in salt-treated plants. A similar effect was also obtained when plants were sprayed with KNO(3) or Ca(NO(3))(2), thus suggesting that kinetin effects were at least partly due to an improvement of ion homeostasis. Kinetin applications resulted in increased transcript levels of the isoprenoid and tocopherol biosynthetic genes, DXPRI and VTE2 and VTE4 in control plants, but not in NaCl-treated plants. We conclude that kinetin can alleviate the negative impact of salt on sage plants cultivated under arid environments with salinity problems.

  3. Kinetin applications alleviate salt stress and improve the antioxidant composition of leaf extracts in Salvia officinalis.

    PubMed

    Tounekti, Taïeb; Hernández, Iker; Müller, Maren; Khemira, Habib; Munné-Bosch, Sergi

    2011-10-01

    A pot experiment was carried out under glasshouse conditions with common sage (Salvia officinalis L.) to investigate the interactive effects of salt stress and kinetin on growth attributes and the abundance of pigments, ions, phenolic diterpenes and α-tocopherol in leaf extracts of this species. The plants were subjected to the following four treatments: (i) control (nutrient solution), (ii) control + 10 μM kinetin, (iii) salt stress (nutrient solution + 100 mM NaCl), and (iv) salt stress + 10 μM kinetin. Kinetin was applied as a foliar fertilizer. Salt stress reduced water contents, photosynthetic activity and pigment contents of sage leaves. In addition, it increased Na(+) contents, and reduced those of Ca(2+) and K(+) in leaves. Salt stress reduced carnosic acid and 12-O-methyl carnosic acid contents in leaves, while it did not affect carnosol and α-tocopherol contents. Foliar applications of kinetin seemed to counterbalance or alleviate the stress symptoms induced by salinity, improving ion and pigment contents, while leaf phenolic diterpene (mainly carnosol) and α-tocopherol contents also increased in both control and NaCl-treated plants; still this effect was much more obvious in salt-treated plants. A similar effect was also obtained when plants were sprayed with KNO(3) or Ca(NO(3))(2), thus suggesting that kinetin effects were at least partly due to an improvement of ion homeostasis. Kinetin applications resulted in increased transcript levels of the isoprenoid and tocopherol biosynthetic genes, DXPRI and VTE2 and VTE4 in control plants, but not in NaCl-treated plants. We conclude that kinetin can alleviate the negative impact of salt on sage plants cultivated under arid environments with salinity problems. PMID:21856165

  4. Selenium alleviates chromium toxicity by preventing oxidative stress in cabbage (Brassica campestris L. ssp. Pekinensis) leaves.

    PubMed

    Qing, Xuejiao; Zhao, Xiaohu; Hu, Chengxiao; Wang, Peng; Zhang, Ying; Zhang, Xuan; Wang, Pengcheng; Shi, Hanzhi; Jia, Fen; Qu, Chanjuan

    2015-04-01

    The beneficial role of selenium (Se) in alleviation of chromium (Cr)-induced oxidative stress is well established. However, little is known about the underlying mechanism. The impacts of exogenous Se (0.1mg/L) on Cr(1mg/L)-induced oxidative stress and antioxidant systems in leaves of cabbage (Brassica campestris L. ssp. Pekinensis) were investigated by using cellular and biochemical approaches. The results showed that supplementation of the medium with Se was effective in reducing Cr-induced increased levels of lipid peroxides and superoxide free radicals (O(-)2(·)), as well as increasing activities of superoxide dismutase (SOD) and peroxidase (POD). Meanwhile, 1mg/L Cr induced loss of plasma membrane integrity, growth inhibition, as well as ultrastructural changes of leaves were significantly reversed due to Se supplementation in the medium. In addition, Se application significantly altered the subcellular distribution of Cr which transported from mitochondria, nucleus and the cell-wall material to the soluble fraction and chloroplasts. However, Se application did no significant alteration of Cr effects on osmotic adjustment accumulating products. The study suggested that Se is able to protect leaves of cabbage against Cr toxicity by alleviation of Cr induced oxidative stress, and re-distribution of Cr in the subcellular of the leaf. Furthermore, free radicals, lipid peroxides, activity of SOD and POD, and subcellular distribution of Cr can be considered the efficient biomarkers to indicate the efficiency of Se to detoxification Cr.

  5. Role of Ulva lactuca Extract in Alleviation of Salinity Stress on Wheat Seedlings

    PubMed Central

    Ibrahim, Wael M.; Ali, Refaat M.; Hemida, Khaulood A.; Sayed, Makram A.

    2014-01-01

    Seaweeds are potentially excellent sources of highly bioactive materials that could represent useful leads in the alleviation of salinity stress. The effects of presoaking wheat grains in water extract of Ulva lactuca on growth, some enzymatic activities, and protein pattern of salinized plants were investigated in this study. Algal presoaking of grains demonstrated a highly significant enhancement in the percentage of seed germination and growth parameters. The activity of superoxide dismutase (SOD) and catalase (CAT) increased with increasing the algal extract concentration while activity of ascorbate peroxidase (APX) and glutathione reductase (GR) was decreased with increasing concentration of algal extract more than 1% (w/v). The protein pattern of wheat seedling showed 12 newly formed bands as result of algal extract treatments compared with control. The bioactive components in U. lactuca extract such as ascorbic acid, betaine, glutathione, and proline could potentially participate in the alleviation of salinity stress. Therefore, algal presoaking is proved to be an effective technique to improve the growth of wheat seedlings under salt stress conditions. PMID:25436231

  6. Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants.

    PubMed

    Aroca, Ricardo; Ruiz-Lozano, Juan Manuel; Zamarreño, Angel María; Paz, José Antonio; García-Mina, José María; Pozo, María José; López-Ráez, Juan Antonio

    2013-01-01

    Arbuscular mycorrhizal (AM) symbiosis can alleviate salt stress in plants. However the intimate mechanisms involved, as well as the effect of salinity on the production of signalling molecules associated to the host plant-AM fungus interaction remains largely unknown. In the present work, we have investigated the effects of salinity on lettuce plant performance and production of strigolactones, and assessed its influence on mycorrhizal root colonization. Three different salt concentrations were applied to mycorrhizal and non-mycorrhizal plants, and their effects, over time, analyzed. Plant biomass, stomatal conductance, efficiency of photosystem II, as well as ABA content and strigolactone production were assessed. The expression of ABA biosynthesis genes was also analyzed. AM plants showed improved growth rates and a better performance of physiological parameters such as stomatal conductance and efficiency of photosystem II than non-mycorrhizal plants under salt stress since very early stages - 3 weeks - of plant colonization. Moreover, ABA levels were lower in those plants, suggesting that they were less stressed than non-colonized plants. On the other hand, we show that both AM symbiosis and salinity influence strigolactone production, although in a different way in AM and non-AM plants. The results suggest that AM symbiosis alleviates salt stress by altering the hormonal profiles and affecting plant physiology in the host plant. Moreover, a correlation between strigolactone production, ABA content, AM root colonization and salinity level is shown. We propose here that under these unfavourable conditions, plants increase strigolactone production in order to promote symbiosis establishment to cope with salt stress.

  7. Alleviation of drought stress of marigold (Tagetes erecta) plants by using arbuscular mycorrhizal fungi.

    PubMed

    Asrar, Abdul-Wasea A; Elhindi, Khalid M

    2011-01-01

    The effect of an arbuscular mycorrhizal fungus "AMF" (Glomus constrictum Trappe) on growth, pigments, and phosphorous content of marigold (Tagetes erecta) plant grown under different levels of drought stress was investigated. The applied drought stress levels reduced growth vigor (i.e. plant height, shoot dry weight, flower diameter as well as its fresh and dry weights) of mycorrhizal and non-mycorrhizal plant as compared to control plant (non-drought stressed plant). The presence of mycorrhizal fungus, however, stimulated all growth parameters of the treated plant comparing to non-mycorrhizal treated plant. The photosynthetic pigments (carotene in flowers and chlorophylls a and b in leaves) were also stimulated by the mycorrhizal fungi of well-watered as well as of water-stressed plants. The total pigments of mycorrhizal plants grown under well-watered conditions were higher than those of non-mycorrhizal ones by 60%. In most cases, drought-stressed mycorrhizal plants were significantly better than those of the non-mycorrhizal plants. So, the overall results suggest that mycorrhizal fungal colonization affects host plant positively on growth, pigments, and phosphorous content, flower quality and thereby alleviates the stress imposed by water with holding. PMID:23961109

  8. Nitrogen availability regulates proline and ethylene production and alleviates salinity stress in mustard (Brassica juncea).

    PubMed

    Iqbal, Noushina; Umar, Shahid; Khan, Nafees A

    2015-04-15

    Proline content and ethylene production have been shown to be involved in salt tolerance mechanisms in plants. To assess the role of nitrogen (N) in the protection of photosynthesis under salt stress, the effect of N (0, 5, 10, 20 mM) on proline and ethylene was studied in mustard (Brassica juncea). Sufficient N (10 mM) optimized proline production under non-saline conditions through an increase in proline-metabolizing enzymes, leading to osmotic balance and protection of photosynthesis through optimal ethylene production. Excess N (20 mM), in the absence of salt stress, inhibited photosynthesis and caused higher ethylene evolution but lower proline production compared to sufficient N. In contrast, under salt stress with an increased demand for N, excess N optimized ethylene production, which regulates the proline content resulting in recovered photosynthesis. The effect of excess N on photosynthesis under salt stress was further substantiated by the application of the ethylene biosynthesis inhibitor, 1-aminoethoxy vinylglycine (AVG), which inhibited proline production and photosynthesis. Without salt stress, AVG promoted photosynthesis in plants receiving excess N by inhibiting stress ethylene production. The results suggest that a regulatory interaction exists between ethylene, proline and N for salt tolerance. Nitrogen differentially regulates proline production and ethylene formation to alleviate the adverse effect of salinity on photosynthesis in mustard.

  9. Alleviating versus stimulating effects of bicarbonate on the growth of Vallisneria natans under ammonia stress.

    PubMed

    Dou, Yanyan; Wang, Baozhong; Chen, Liangyan; Yin, Daqiang

    2013-08-01

    Bicarbonate plays a crucial role in limiting the growth of submersed aquatic macrophytes in eutrophic lakes, and high ammonia is often toxic to macrophytes. In order to evaluate the combined effect of HCO3 (-) and total ammonia (i.e., the total of NH3 and NH4 (+)) on submersed macrophytes Vallisneria natans, the growth and physiological response of V. natans in the presence of HCO3 (-) and ammonia were studied. The results showed that with the increase of ammonia, morphological parameters of V. natans declined. In contrast, increased HCO3 (-) concentration stimulated the growth of V. natans, especially when the NH4 (+)-N/NO3 (-)-N ratio was 1:7. High ammonia concentration induced excess free amino acids (FAA) accumulation and soluble carbohydrates (SC) depletion in plant tissues. However, the elevated HCO3 (-) promoted the synthesis of SC and rendered the decrease of FAA/SC ratio. The results also suggested that HCO3 (-) could partially alleviate the stress of ammonia, as evidenced by the decrease of FAA/SC ratio and the growth enhancement of V. natans when the ammonia concentration was 0.58 mg L(-1). Given the fact that HCO3 (-) is probably the dominant available carbon source in most eutrophic lakes, the ability of V. natans to use HCO3 (-) for SC synthesis may explain the alleviating effect of HCO3 (-) on V. natans under ammonia stress. PMID:23381797

  10. Elevated CO2 alleviates high PAR and UV stress in the unicellular chlorophyte Dunaliella tertiolecta.

    PubMed

    García-Gómez, Candela; Gordillo, Francisco J L; Palma, Armando; Lorenzo, M Rosario; Segovia, María

    2014-09-01

    The effects of increased CO2 and irradiance on the physiological performance of the chlorophyte Dunaliella tertiolecta were studied at different PAR and UVR (UVA + UVB) irradiances, simulating the solar radiation at different depths, at present (390 ppmv, LC) and predicted CO2 levels for the year 2100 (1000 ppmv, HC). Elevated CO2 resulted in higher optimum and effective quantum yields (F(v)/F(m) and ϕPSII, respectively), electron transport rates (ETR) and specific growth rates (μ). Cell stress was alleviated in HC with respect to LC as evidenced by a decrease in reactive oxygen species (ROS) accumulation. DNA damage showed a 42-fold increase in cyclobutane-pyrimidine dimer (CPD) formation under the highest irradiance (1100 μmol quanta m(-2) s(-1)) in LC with respect to the lowest irradiance (200 μmol quanta m(-2) s(-1)). Photolyase (CII-PCD-PL) gene expression was upregulated under HC resulting in a drastic decrease in CPD accumulation to only 25% with respect to LC. Proliferating cell nuclear antigen (PCNA) accumulation was always higher in HC and the accumulation pattern indicated its involvement in repair or growth depending on the irradiance dose. The repressor of silencing (ROS1) was only marginally involved in the response, suggesting that photoreactivation was the most relevant mechanism to overcome UVR damage. Our results demonstrate that future scenarios of global change result in alleviation of irradiance stress by CO2-induced photoprotection in D. tertiolecta.

  11. Dietary chromium methionine supplementation could alleviate immunosuppressive effects of heat stress in broiler chicks.

    PubMed

    Jahanian, R; Rasouli, E

    2015-07-01

    circulation. Supplementation of CrMet to heat-stressed chicks modulated (P < 0.01) plasma corticosterone level. The present findings indicate that dietary CrMet supplementation could alleviate heat-stress-induced growth retardation in broiler chicks. Moreover, supplemental CrMet modulated suppressive effects of heat stress on cellular and humoral immune responses.

  12. Black tea protects against hypertension-associated endothelial dysfunction through alleviation of endoplasmic reticulum stress.

    PubMed

    San Cheang, Wai; Yuen Ngai, Ching; Yen Tam, Ye; Yu Tian, Xiao; Tak Wong, Wing; Zhang, Yang; Wai Lau, Chi; Chen, Zhen Yu; Bian, Zhao-Xiang; Huang, Yu; Ping Leung, Fung

    2015-01-01

    Hypertensive patients have been found to be associated with elevated levels of homocysteine, known as hyperhomocysteinemia. Homocysteine (Hcy) can induce endoplasmic reticulum (ER) stress in endothelial cells. This study aims to investigate whether black tea (BT) protects against hypertension-associated endothelial dysfunction through alleviation of ER stress. Rat aortae and cultured rat aortic endothelial cells were treated with Hcy, BT extract, and theaflavin-3,3'-digallate (TF3). Male Sprague Dawley rats were infused with angiotensin II (Ang II) to induce hypertension and orally administrated with BT extract at 15 mg/kg/day for 2 weeks. Hcy impaired endothelium-dependent relaxations of rat aortae and led to ER stress in endothelial cells, which were ameliorated by co-incubation of BT extract and TF3. The blood pressure of Ang II-infused rats and plasma Hcy level were normalized by BT consumption. Impaired endothelium-dependent relaxations in renal arteries, carotid arteries and aortae, and flow-mediated dilatations in third-order mesenteric resistance arteries were improved. Elevations of ER stress markers and ROS level, plus down-regulation of Hcy metabolic enzymes in aortae from Ang II-infused rats were prevented by BT treatment. Our data reveal the novel cardiovascular benefits of BT in ameliorating vascular dysfunctions, providing insight into developing BT into beneficial dietary supplements in hypertensive patients. PMID:25976123

  13. Alleviation of exogenous oligochitosan on wheat seedlings growth under salt stress.

    PubMed

    Ma, Lianju; Li, Yueying; Yu, Cuimei; Wang, Yan; Li, Xuemei; Li, Na; Chen, Qiang; Bu, Ning

    2012-04-01

    Hydroponic experiments were carried out to study the role of oligochitosan in enhancing wheat (Triticum aestivum L.) resistance to salt stress. Data were collected on plant biomass, chlorophyll content, photosynthetic rate (P (n)), stomatal conductance (g (s)), proline content, antioxidant enzyme activities, and malondialdehyde (MDA) content. Under 150 mM salt stress, plant growth was significantly inhibited. Shoot length, root length, and dry weight were sharply reduced by 26%, 31%, and 20%, respectively, of the control. Superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) were increased by 28%, 13%, and 26%, respectively, of the control and MDA content largely accumulated, which was 1.5-fold of the control. However, 0.0625% oligochitosan pretreatment alleviated the adverse effects of salt stress, which was reflected by increasing root length, shoot length, dry weight, chlorophyll content, P (n,) and g (s). Furthermore, it also showed that oligochitosan pretreatment significantly increased antioxidant enzyme (SOD, CAT and POD) activities, and reduced MDA content in leaves. Meanwhile, the accumulation of proline was markedly accelerated. The results indicated that oligochitosan pretreatment ameliorated the adverse effects and partially protected the seedlings from salt stress during the following growth period.

  14. Black tea protects against hypertension-associated endothelial dysfunction through alleviation of endoplasmic reticulum stress

    PubMed Central

    San Cheang, Wai; Yuen Ngai, Ching; Yen Tam, Ye; Yu Tian, Xiao; Tak Wong, Wing; Zhang, Yang; Wai Lau, Chi; Chen, Zhen Yu; Bian, Zhao-Xiang; Huang, Yu; Ping Leung, Fung

    2015-01-01

    Hypertensive patients have been found to be associated with elevated levels of homocysteine, known as hyperhomocysteinemia. Homocysteine (Hcy) can induce endoplasmic reticulum (ER) stress in endothelial cells. This study aims to investigate whether black tea (BT) protects against hypertension-associated endothelial dysfunction through alleviation of ER stress. Rat aortae and cultured rat aortic endothelial cells were treated with Hcy, BT extract, and theaflavin-3,3’-digallate (TF3). Male Sprague Dawley rats were infused with angiotensin II (Ang II) to induce hypertension and orally administrated with BT extract at 15 mg/kg/day for 2 weeks. Hcy impaired endothelium-dependent relaxations of rat aortae and led to ER stress in endothelial cells, which were ameliorated by co-incubation of BT extract and TF3. The blood pressure of Ang II-infused rats and plasma Hcy level were normalized by BT consumption. Impaired endothelium-dependent relaxations in renal arteries, carotid arteries and aortae, and flow-mediated dilatations in third-order mesenteric resistance arteries were improved. Elevations of ER stress markers and ROS level, plus down-regulation of Hcy metabolic enzymes in aortae from Ang II-infused rats were prevented by BT treatment. Our data reveal the novel cardiovascular benefits of BT in ameliorating vascular dysfunctions, providing insight into developing BT into beneficial dietary supplements in hypertensive patients. PMID:25976123

  15. Transient thermal stress recovery for structural models

    NASA Technical Reports Server (NTRS)

    Walls, William

    1992-01-01

    A method for computing transient thermal stress vectors from temperature vectors is described. The three step procedure involves the use of NASTRAN to generate an influence coefficient matrix which relates temperatures to stresses in the structural model. The transient thermal stresses are then recovered and sorted for maximum and minimum values. Verification data for the procedure is also provided.

  16. β-aminobutyric acid mediated drought stress alleviation in maize (Zea mays L.).

    PubMed

    Shaw, Arun K; Bhardwaj, Pardeep K; Ghosh, Supriya; Roy, Sankhajit; Saha, Suman; Sherpa, Ang R; Saha, Samir K; Hossain, Zahed

    2016-02-01

    The present study highlights the role of β-aminobutyric acid (BABA) in alleviating drought stress effects in maize (Zea mays L.). Chemical priming was imposed by pretreating 1-week-old plants with 600 μM BABA prior to applying drought stress. Specific activities of key antioxidant enzymes and metabolites (ascorbate and glutathione) levels of ascorbate-glutathione cycle were studied to unravel the priming-induced modulation of plant defense system. Furthermore, changes in endogenous ABA and JA concentrations as well as mRNA expressions of key genes involved in their respective biosynthesis pathways were monitored in BABA-primed (BABA+) and non-primed (BABA-) leaves of drought-challenged plants to better understand the mechanistic insights into the BABA-induced hormonal regulation of plant response to water-deficit stress. Accelerated stomatal closure, high relative water content, and less membrane damage were observed in BABA-primed leaves under water-deficit condition. Elevated APX and SOD activity in non-primed leaves found to be insufficient to scavenge all H2O2 and O2 (·-) resulting in oxidative burst as evident after histochemical staining with NBT and DAB. A higher proline accumulation in non-primed leaves also does not give much protection against drought stress. Increased GR activity supported with the enhanced mRNA and protein expressions might help the BABA-primed plants to maintain a high GSH pool essential for sustaining balanced redox status to counter drought-induced oxidative stress damages. Hormonal analysis suggests that in maize, BABA-potentiated drought tolerance is primarily mediated through JA-dependent pathway by the activation of antioxidant defense systems while ABA biosynthesis pathway also plays an important role in fine-tuning of drought stress response.

  17. Hesperidin alleviates acetaminophen induced toxicity in Wistar rats by abrogation of oxidative stress, apoptosis and inflammation.

    PubMed

    Ahmad, Shiekh Tanveer; Arjumand, Wani; Nafees, Sana; Seth, Amlesh; Ali, Nemat; Rashid, Summya; Sultana, Sarwat

    2012-01-25

    Acetaminophen (APAP) is a widely used analgesic and antipyretic drug, but at high dose it leads to undesirable side effects, such as hepatotoxicity and nephrotoxicity. The present study demonstrates the comparative hepatoprotective and nephroprotective activity of hesperidin (HD), a naturally occurring bioflavonoid against APAP induced toxicity. APAP induces hepatotoxicity and nephrotoxicity as was evident by abnormal deviation in the levels of antioxidant enzymes. Moreover, APAP induced renal damage by inducing apoptotic death and inflammation in renal tubular cells, manifested by an increase in the expression of caspase-3, caspase-9, NFkB, iNOS, Kim-1 and decrease in Bcl-2 expression. These results were further supported by the histopathological examination of kidney. All these features of APAP toxicity were reversed by the co-administration of HD. Therefore, our study favors the view that HD may be a useful modulator in alleviating APAP induced oxidative stress and toxicity.

  18. Naringenin Alleviates Cadmium-Induced Toxicity through the Abrogation of Oxidative Stress in Swiss Albino Mice.

    PubMed

    Das, Avratanu; Roy, Amrita; Das, Ruma; Bhattacharya, Sanjib; Haldar, Pallab Kanti

    2016-01-01

    The present study evaluates the protective potential of the flavonoid naringenin (NRG) against experimentally induced cadmium (Cd) toxicity in Swiss albino mice. NRG (4 and 8 mg/kg) was orally administered to mice 30 min before oral administration of CdCl2 (12 mg/kg) for 11 consecutive days. On the 12th day, we evaluated body and organ weights, hematological profiles, serum biochemical profiles, and hepatic and renal tissue antioxidative parameters including lipid peroxidation, reduced and oxidized glutathione, glutathione-S-transferase, glutathione peroxidase, glutathione reductase, superoxide dismutase, and catalase. Cotreatment with NRG markedly and significantly normalized body and organ weights, hematological profiles, and serum biochemical profiles and significantly modulated all of the hepatic and renal tissue biochemical parameters in Cd-intoxicated mice. The present findings show that NRG possesses a remarkable alleviative effect against Cd-induced toxicity in albino mice, mediated by abrogation of Cd-induced oxidative stress by multiple mechanisms. PMID:27481493

  19. Naringin Alleviates Diabetic Kidney Disease through Inhibiting Oxidative Stress and Inflammatory Reaction

    PubMed Central

    Chen, Fenqin; Zhang, Ning; Ma, Xiaoyu; Huang, Ting; Shao, Ying; Wu, Can; Wang, Qiuyue

    2015-01-01

    Naringin, a flavanone glycoside extracted from Citrus grandis Osbeck, has a wide range of pharmacological effects. In the present study we aimed at demonstrating the protective effect of naringin against diabetic kidney disease (DKD) and elucidating its possible molecular mechanism underlying. The beneficial effect of naringin was assessed in rats with streptozotocin (STZ)-induced diabetes and high glucose-induced HBZY-1 cells. According to our results, first we found that naringin relieved kidney injury, improved renal function and inhibited collagen formation and renal interstitial fibrosis. Second, we confirmed that naringin restrained oxidative stress by activating Nrf2 antioxidant pathway. Moreover, the results suggested that naringin significantly resisted inflammatory reaction by inhibiting NF- κ B signaling pathway. Taken together, our results demonstrate that naringin effectively alleviates DKD, which provide theoretical basis for naringin clinically used to treatment of DKD. PMID:26619044

  20. Sulfur Dioxide Enhances Endogenous Hydrogen Sulfide Accumulation and Alleviates Oxidative Stress Induced by Aluminum Stress in Germinating Wheat Seeds.

    PubMed

    Zhu, Dong-Bo; Hu, Kang-Di; Guo, Xi-Kai; Liu, Yong; Hu, Lan-Ying; Li, Yan-Hong; Wang, Song-Hua; Zhang, Hua

    2015-01-01

    Aluminum ions are especially toxic to plants in acidic soils. Here we present evidences that SO2 protects germinating wheat grains against aluminum stress. SO2 donor (NaHSO3/Na2SO3) pretreatment at 1.2 mM reduced the accumulation of superoxide anion, hydrogen peroxide, and malondialdehyde, enhanced the activities of guaiacol peroxidase, catalase, and ascorbate peroxidase, and decreased the activity of lipoxygenase in germinating wheat grains exposed to Al stress. We also observed higher accumulation of hydrogen sulfide (H2S) in SO2-pretreated grain, suggesting the tight relation between sulfite and sulfide. Wheat grains geminated in water for 36 h were pretreated with or without 1 mM SO2 donor for 12 h prior to exposure to Al stress for 48 h and the ameliorating effects of SO2 on wheat radicles were studied. SO2 donor pretreatment reduced the content of reactive oxygen species, protected membrane integrity, and reduced Al accumulation in wheat radicles. Gene expression analysis showed that SO2 donor pretreatment decreased the expression of Al-responsive genes TaWali1, TaWali2, TaWali3, TaWali5, TaWali6, and TaALMT1 in radicles exposed to Al stress. These results suggested that SO2 could increase endogenous H2S accumulation and the antioxidant capability and decrease endogenous Al content in wheat grains to alleviate Al stress. PMID:26078810

  1. Nitrogen fertilizer improves boron phytoextraction by Brassica juncea grown in contaminated sediments and alleviates plant stress.

    PubMed

    Giansoldati, Virginia; Tassi, Eliana; Morelli, Elisabetta; Gabellieri, Edi; Pedron, Francesca; Barbafieri, Meri

    2012-06-01

    In this study we evaluated the effect of different fertilizer treatments on Brassica plants grown on boron-contaminated sediments. Experiments were conducted in the laboratory and on the lysimeter scale. At laboratory scale (microcosm), five different fertilizers were tested for a 35-d period. On the lysimeter scale, nitrogen fertilization was tested at three different doses and plants were allowed to grow until the end of the vegetative phase (70 d). Results showed that nitrogen application had effectively increased plant biomass production, while B uptake was not affected. Total B phytoextracted increased three-fold when the highest nitrogen dose was applied. Phytotoxicity on Brassica was evaluated by biochemical parameters. In plants grown in unfertilized B-contaminated sediments, the activity of antioxidant enzymes superoxide dismutase (SOD), ascorbate peroxidase (APX) and pyrogallol peroxidase (PPX) increased, whereas catalase (CAT) decreased with respect to control plants. Addition of N progressively mitigated the alteration of enzymatic activity, thus suggesting that N can aid in alleviating B-induced oxidative stress. SOD activity was restored to control levels just at the lowest N treatment, whereas the CAT inhibition was partially restored only at the highest one. N application also lowered the B-induced increase in APX and PPX activities. Increased glutathione reductase activity indicated the need to restore the oxidative balance of glutathione. Data also suggest a role of glutathione and phytochelatins in B defense mechanisms. Results suggest that the nitrogen fertilizer was effective in improving B phytoextraction by increasing Brassica biomass and by alleviating B-induced oxidative stress. PMID:22382070

  2. Melatonin alleviates cadmium-induced cellular stress and germ cell apoptosis in testes.

    PubMed

    Ji, Yan-Li; Wang, Hua; Meng, Can; Zhao, Xian-Feng; Zhang, Cheng; Zhang, Ying; Zhao, Mei; Chen, Yuan-Hua; Meng, Xiu-Hong; Xu, De-Xiang

    2012-01-01

    Increasing evidence demonstrates that melatonin has an anti-apoptotic effect in somatic cells. However, whether melatonin can protect against germ cell apoptosis remains obscure. Cadmium (Cd) is a testicular toxicant and induces germ cell apoptosis. In this study, we investigated the effects of melatonin on Cd-evoked germ cell apoptosis in testes. Male ICR mice were intraperitoneally (i.p.) injected with melatonin (5 mg/kg) every 8 hr, beginning at 8 hr before CdCl(2) (2.0 mg/kg, i.p.). As expected, acute Cd exposure resulted in germ cell apoptosis in testes, as determined by terminal dUTP nick-end labeling (TUNEL) staining. Melatonin significantly alleviated Cd-induced testicular germ cell apoptosis. An additional experiment showed that spliced form of XBP-1, the target of the IRE-1 pathway, was significantly increased in testes of mice injected with CdCl(2). GRP78, an endoplasmic reticulum (ER) chaperone, and CHOP, a downstream target of the PERK pathway, were upregulated in testes of Cd-treated mice. In addition, acute Cd exposure significantly increased testicular eIF2α and JNK phosphorylation, indicating that the unfolded protein response (UPR) pathway was activated by CdCl(2). Interestingly, melatonin almost completely inhibited Cd-induced ER stress and the UPR in testes. In addition, melatonin obviously attenuated Cd-induced heme oxygenase (HO)-1 expression and protein nitration in testes. Taken together, these results suggest that melatonin alleviates Cd-induced cellular stress and germ cell apoptosis in testes. Melatonin may be useful as pharmacological agents to protect against Cd-induced testicular toxicity. PMID:21793897

  3. Proteus mirabilis alleviates zinc toxicity by preventing oxidative stress in maize (Zea mays) plants.

    PubMed

    Islam, Faisal; Yasmeen, Tahira; Riaz, Muhammad; Arif, Muhammad Saleem; Ali, Shafaqat; Raza, Syed Hammad

    2014-12-01

    Plant-associated bacteria can have beneficial effects on the growth and health of their host. However, the role of plant growth promoting bacteria (PGPR), under metal stress, has not been widely investigated. The present study investigated the possible mandatory role of plant growth promoting rhizobacteria in protecting plants from zinc (Zn) toxicity. The exposure of maize plants to 50µM zinc inhibited biomass production, decreased chlorophyll, total soluble protein and strongly increased accumulation of Zn in both root and shoot. Similarly, Zn enhanced hydrogen peroxide, electrolyte leakage and lipid peroxidation as indicated by malondaldehyde accumulation. Pre-soaking with novel Zn tolerant bacterial strain Proteus mirabilis (ZK1) isolated zinc (Zn) contaminated soil, alleviated the negative effect of Zn on growth and led to a decrease in oxidative injuries caused by Zn. Furthermore, strain ZK1 significantly enhanced the activities of catalase, guaiacol peroxidase, superoxide dismutase and ascorbic acid but lowered the Proline accumulation in Zn stressed plants. The results suggested that the inoculation of Zea mays plants with P. mirabilis during an earlier growth period could be related to its plant growth promoting activities and avoidance of cumulative damage upon exposure to Zn, thus reducing the negative consequences of oxidative stress caused by heavy metal toxicity.

  4. Rootstock alleviates PEG-induced water stress in grafted pepper seedlings: physiological responses.

    PubMed

    Penella, Consuelo; Nebauer, Sergio G; Bautista, Alberto San; López-Galarza, Salvador; Calatayud, Ángeles

    2014-06-15

    nitrate reductase activity in the roots was observed, mainly in plants grafted onto the sensitive rootstocks, as well as the ungrafted plants, and this was associated with the lessened flux to the leaves. This study suggests that PEG-induced water stress can be partially alleviated by using tolerant accessions as rootstocks.

  5. Alleviating effects of exogenous NO on tomato seedlings under combined Cu and Cd stress.

    PubMed

    Wang, Yi-Jun; Dong, Yu-Xiu; Wang, Juan; Cui, Xiu-Min

    2016-03-01

    To investigate the effect of NO on the different origin and regulation of oxidative stress of Cu and/or Cd, tomato seedlings were treated with Cu, Cd, or Cu + Cd in a nutrient solution culture system. The main effect of Cu(2+) was a significant reduction in root activity and nitrate reductase (NR) activity, which was similar to that under 50 μM Cd treatment, but promoted Cu accumulation. The supply of Cu under Cd treatment decreased Cd concentration, while not altered Cu concentration by contrast with Cu treatment, which is suggestive of a replacement of Cu(2+) with Cd(2+) and effective decrease in the boiotoxicity of 50 μM Cd(2+) to tomato seedlings. However, NO alleviated the restriction to NR activity significantly and made the biomass of tomato seedlings recover under Cd treatment, and also increased root activity under Cu and Cu + Cd treatment. Exogenous NO markedly reduced the absorption and transportation of Cu but did not obviously change the translocation of Cd to the aboveground parts under Cu + Cd treatment. Both metals induced lipid peroxidation via the decreasing activation of antioxidant enzymes. The antioxidant enzyme system worked differently under Cu, Cd, or Cu + Cd stress. The activities of peroxidase (POD) and catalase (CAT) were higher under single Cd stress than under the control. Meanwhile, Cu + Cd treatment decreased the activities of POD, superoxide dismutase (SOD), and ascorbic acid peroxidase (APX). Exogenous NO increased POD and SOD activities in the leaves and roots, and CAT activity in the roots under combined Cu and Cd stress. These results suggest that a different response and regulation mechanism that involves exogenous NO is present in tomato seedlings under Cu and Cd stress.

  6. Contribution to encyclopedia of thermal stresses

    NASA Astrophysics Data System (ADS)

    Taler, Jan; Ocłoń, Pawel

    2015-06-01

    This paper lists the contribution in the international interdisciplinary reference - Encyclopedia of Thermal Stresses (ETS). The ETS, edited by the world famous expert in field of Thermal Stresses - Professor Richard Hetnarski from Rochester Institute of Technology, was published by Springer in 2014. This unique Encyclopedia, subdivided into 11 volumes is the most extensive and comprehensive work related to the Thermal Stresses topic. The entries were carefully prepared by specialists in the field of thermal stresses, elasticity, heat conduction, optimization among others. The Polish authors' contribution within this work is significant; over 70 entries were prepared by them.

  7. Priming of seeds with nitric oxide donor sodium nitroprusside (SNP) alleviates the inhibition on wheat seed germination by salt stress.

    PubMed

    Duan, Pei; Ding, Feng; Wang, Fang; Wang, Bao-Shan

    2007-06-01

    The effect of SNP, an NO donor, on seed germination of wheat (Triticum aestivum L. cv. 'DK961') under salt stress was studied. The results showed that priming of seeds with 0.06 mmol/L SNP for 24 h markedly alleviated the decrease of the germination percentage, germination index, vigor index and imbibition rate of wheat seeds under salt stress. SNP significantly alleviated the decrease of the beta-amylase activity but almost did not affect the alpha-amylase activity of wheat seeds under salt stress. SNP slightly increased the alpha-amylase isoenzymes (especially isoenzyme 3) and significantly increased the beta-amylase isoenzymes (especially isoenzyme d, e, f and g). SNP pretreatment decreased Na(+) content, but increased the K(+) content, resulting in a mark increase of K(+)/Na(+) ratio of wheat seedlings under salt stress. These results suggested that NO is involved in promoting wheat seed germination under salt stress by increasing the beta-amylase activity.

  8. Silicon improves seed germination and alleviates oxidative stress of bud seedlings in tomato under water deficit stress.

    PubMed

    Shi, Yu; Zhang, Yi; Yao, Hejin; Wu, Jiawen; Sun, Hao; Gong, Haijun

    2014-05-01

    The beneficial effects of silicon on plant growth and development under drought have been widely reported. However, little information is available on the effects of silicon on seed germination under drought. In this work, the effects of exogenous silicon (0.5 mM) on the seed germination and tolerance performance of tomato (Solanum lycopersicum L.) bud seedlings under water deficit stress simulated by 10% (w/v) polyethylene glycol (PEG-6000) were investigated in four cultivars ('Jinpengchaoguan', 'Zhongza No.9', 'Houpi L402' and 'Oubao318'). The results showed that the seed germination percentage was notably decreased in the four cultivars under water stress, and it was significantly improved by added silicon. Compared with the non-silicon treatment, silicon addition increased the activities of superoxide dismutase (SOD) and catalase (CAT), and decreased the production of superoxide anion (O2·) and hydrogen peroxide (H2O2) in the radicles of bud seedlings under water stress. Addition of silicon decreased the total phenol concentrations in radicles under water stress, which might contribute to the decrease of peroxidase (POD) activity, as observed in the in vivo and in vitro experiments. The decrease of POD activity might contribute to a less accumulation of hydroxyl radical (·OH) under water stress. Silicon addition also decreased the concentrations of malondialdehyde (MDA) in the radicles under stress, indicating decreased lipid peroxidation. These results suggest that exogenous silicon could improve seed germination and alleviate oxidative stress to bud seedling of tomato by enhancing antioxidant defense. The positive effects of silicon observed in a silicon-excluder also suggest the active involvement of silicon in biochemical processes in plants.

  9. Polyhydroxyfullerene binds cadmium ions and alleviates metal-induced oxidative stress in Saccharomyces cerevisiae.

    PubMed

    Pradhan, Arunava; Pinheiro, José Paulo; Seena, Sahadevan; Pascoal, Cláudia; Cássio, Fernanda

    2014-09-01

    The water-soluble polyhydroxyfullerene (PHF) is a functionalized carbon nanomaterial with several industrial and commercial applications. There have been controversial reports on the toxicity and/or antioxidant properties of fullerenes and their derivatives. Conversely, metals have been recognized as toxic mainly due to their ability to induce oxidative stress in living organisms. We investigated the interactive effects of PHF and cadmium ions (Cd) on the model yeast Saccharomyces cerevisiae by exposing cells to Cd (≤5 mg liter(-1)) in the absence or presence of PHF (≤500 mg liter(-1)) at different pHs (5.8 to 6.8). In the absence of Cd, PHF stimulated yeast growth up to 10.4%. Cd inhibited growth up to 79.7%, induced intracellular accumulation of reactive oxygen species (ROS), and promoted plasma membrane disruption in a dose- and pH-dependent manner. The negative effects of Cd on growth were attenuated by the presence of PHF, and maximum growth recovery (53.8%) was obtained at the highest PHF concentration and pH. The coexposure to Cd and PHF decreased ROS accumulation up to 36.7% and membrane disruption up to 30.7% in a dose- and pH-dependent manner. Two mechanisms helped to explain the role of PHF in alleviating Cd toxicity to yeasts: PHF decreased Cd-induced oxidative stress and bound significant amounts of Cd in the extracellular medium, reducing its bioavailability to the cells.

  10. Polyhydroxyfullerene Binds Cadmium Ions and Alleviates Metal-Induced Oxidative Stress in Saccharomyces cerevisiae

    PubMed Central

    Pradhan, Arunava; Pinheiro, José Paulo; Seena, Sahadevan; Pascoal, Cláudia

    2014-01-01

    The water-soluble polyhydroxyfullerene (PHF) is a functionalized carbon nanomaterial with several industrial and commercial applications. There have been controversial reports on the toxicity and/or antioxidant properties of fullerenes and their derivatives. Conversely, metals have been recognized as toxic mainly due to their ability to induce oxidative stress in living organisms. We investigated the interactive effects of PHF and cadmium ions (Cd) on the model yeast Saccharomyces cerevisiae by exposing cells to Cd (≤5 mg liter−1) in the absence or presence of PHF (≤500 mg liter−1) at different pHs (5.8 to 6.8). In the absence of Cd, PHF stimulated yeast growth up to 10.4%. Cd inhibited growth up to 79.7%, induced intracellular accumulation of reactive oxygen species (ROS), and promoted plasma membrane disruption in a dose- and pH-dependent manner. The negative effects of Cd on growth were attenuated by the presence of PHF, and maximum growth recovery (53.8%) was obtained at the highest PHF concentration and pH. The coexposure to Cd and PHF decreased ROS accumulation up to 36.7% and membrane disruption up to 30.7% in a dose- and pH-dependent manner. Two mechanisms helped to explain the role of PHF in alleviating Cd toxicity to yeasts: PHF decreased Cd-induced oxidative stress and bound significant amounts of Cd in the extracellular medium, reducing its bioavailability to the cells. PMID:25038095

  11. Strawberry consumption alleviates doxorubicin-induced toxicity by suppressing oxidative stress.

    PubMed

    Giampieri, Francesca; Alvarez-Suarez, Jose M; Gasparrini, Massimiliano; Forbes-Hernandez, Tamara Y; Afrin, Sadia; Bompadre, Stefano; Rubini, Corrado; Zizzi, Antonio; Astolfi, Paola; Santos-Buelga, Celestino; González-Paramás, Ana M; Quiles, Josè L; Mezzetti, Bruno; Battino, Maurizio

    2016-08-01

    Doxorubicin (Dox), one of the most used chemotherapeutic agents, is known to generate oxidative stress and block DNA synthesis, which result in severe dose-limiting toxicity. A strategy to protect against Dox toxic effects could be to use dietary antioxidants of which fruits and vegetable are a rich source. In this context, strawberry consumption is associated with the maintenance of good health and the prevention of several diseases, thanks to the antioxidant capacities of its bioactive compounds. The aim of the present study was to evaluate the protective effects of strawberry consumption against oxidative stress induced by Dox in rats. Animals were fed with strawberry enriched diet (15% of the total calories) for two months and Dox (10 mg/kg; i.p.) was injected at the end of the experimental period. Strawberry consumption significantly inhibited ROS production and oxidative damage biomarkers accumulation in plasma and liver tissue and alleviated histopathological changes in rat livers treated with Dox. The reduction of antioxidant enzyme activities was significantly mitigated after strawberry consumption. In addition, strawberry enriched diet ameliorated liver mitochondrial antioxidant levels and functionality. In conclusion, strawberry intake protects against Dox-induced toxicity, at plasma, liver and mitochondrial levels thanks to its high contents of bioactive compounds. PMID:27286747

  12. Turning Anxiety into Creativity: Using Postmodern Principles to Alleviate Anxiety and Stress through the Art Curriculum and Beyond

    ERIC Educational Resources Information Center

    Ferry, Lisa Marie

    2016-01-01

    The purpose of this action research study is to help students alleviate their anxiety and stress symptoms using activities based on Olivia Gude's postmodern principles. The activities included are the participants own take-along visual art journal kit and classroom projects. Professional learning outcomes include the knowledge to equip teachers…

  13. Thermal stress fracture of ceramic coatings

    NASA Technical Reports Server (NTRS)

    Andersson, C. A.

    1983-01-01

    Thermal stress failures of ceramic coatings are discussed in terms of fracture mechanics concepts. The effects of transient and residual stresses on single and multiple cycle failure mechanisms are considered. A specific example of a zirconia thermal barrier coating is presented and its endurance calculated using the proposed relationships.

  14. Exogenous glycinebetaine alleviates the detrimental effect of Cd stress on perennial ryegrass.

    PubMed

    Lou, Yanhong; Yang, Yong; Hu, Longxing; Liu, Hongmei; Xu, Qingguo

    2015-08-01

    Glycinebetaine (GB) is an important organic osmolyte that accumulates in many plant species in response to abiotic stresses including heavy metals. The objective of this study was to investigate whether exogenous GB would ameliorate the adverse effect of cadmium (Cd) stress on perennial ryegrass (Lolium perenne). Fifty-three days old seedlings were exposed to hydroponic culture for 7 days with six treatments: T1 (control), T2 (0 mM Cd + 20 mM GB), T3 (0 mM Cd + 50 mM GB), T4 (0.5 mM Cd + 0 mM GB), T5 (0.5 mM Cd + 20 mM GB), T6 (0.5 mM Cd + 50 mM GB). Cd stress resulted in a remarkable decrease in turf quality, vertical shoot growth rate (VSGR), normalized relative transpiration (NRT) and Chlorophyll (Chl) content; with significant increases in electric conductivity (EL), malondialdehyde (MDA) content, superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) activity, oxalic and tartaric acid content. Exogenous application of GB decreased EL and MDA content in Cd stressed plants, and increased turf quality, VSGR, NRT, Chl content, SOD, CAT, POD activity, oxalic, tartaric acid content, and the gene expression level of SOD and POD when compared with Cd stressed without GB. Perennial ryegrass with 20 mM GB application suppressed the Cd accumulation in both shoots and roots. A lower translocation factor of Cd was found in GB treated plants than non-GB treated plants, and the lowest translocation factor was observed in the 20 mM GB application. These results suggested that GB could alleviate the detrimental effect of Cd on perennial ryegrass and the amelioration was mainly related to the elevation in SOD, CAT, and POD at enzyme and gene expression levels, which reduced Cd content in shoots and improved cell membrane stability by reducing oxidation of membrane lipids. These findings lead us to conclude that application of GB with 20 mM is the best strategy to ameliorate the detrimental impacts of Cd stress on perennial ryegrass. PMID:26135319

  15. Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation

    PubMed Central

    Khan, M Iqbal R; Iqbal, Noushina; Masood, Asim; Per, Tasir S; Khan, Nafees A

    2013-01-01

    We investigated the potential of salicylic acid (SA) in alleviating the adverse effects of heat stress on photosynthesis in wheat (Triticum aestivum L.) cv WH 711. Activity of ribulose 1,5-bisphosphate carboxylase (Rubisco), photosynthetic-nitrogen use efficiency (NUE), and net photosynthesis decreased in plants subjected to heat stress (40°C for 6 h), but proline metabolism increased. SA treatment (0.5 mM) alleviated heat stress by increasing proline production through the increase in γ-glutamyl kinase (GK) and decrease in proline oxidase (PROX) activity, resulting in promotion of osmotic potential and water potential necessary for maintaining photosynthetic activity. Together with this, SA treatment restricted the ethylene formation in heat-stressed plants to optimal range by inhibiting activity of 1-aminocyclopropane carboxylic acid (ACC) synthase (ACS). This resulted in improved proline metabolism, N assimilation and photosynthesis. The results suggest that SA interacts with proline metabolism and ethylene formation to alleviate the adverse effects of heat stress on photosynthesis in wheat. PMID:24022274

  16. Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation.

    PubMed

    Khan, M Iqbal R; Iqbal, Noushina; Masood, Asim; Per, Tasir S; Khan, Nafees A

    2013-11-01

    We investigated the potential of salicylic acid (SA) in alleviating the adverse effects of heat stress on photosynthesis in wheat (Triticum aestivum L.) cv WH 711. Activity of ribulose 1,5-bisphosphate carboxylase (Rubisco), photosynthetic-nitrogen use efficiency (NUE), and net photosynthesis decreased in plants subjected to heat stress (40 °C for 6 h), but proline metabolism increased. SA treatment (0.5 mM) alleviated heat stress by increasing proline production through the increase in γ-glutamyl kinase (GK) and decrease in proline oxidase (PROX) activity, resulting in promotion of osmotic potential and water potential necessary for maintaining photosynthetic activity. Together with this, SA treatment restricted the ethylene formation in heat-stressed plants to optimal range by inhibiting activity of 1-aminocyclopropane carboxylic acid (ACC) synthase (ACS). This resulted in improved proline metabolism, N assimilation and photosynthesis. The results suggest that SA interacts with proline metabolism and ethylene formation to alleviate the adverse effects of heat stress on photosynthesis in wheat.

  17. Distinct physiological responses of tomato and cucumber plants in silicon-mediated alleviation of cadmium stress

    PubMed Central

    Wu, Jiawen; Guo, Jia; Hu, Yanhong; Gong, Haijun

    2015-01-01

    The alleviative effects of silicon (Si) on cadmium (Cd) toxicity were investigated in cucumber (Cucumis sativus L.) and tomato (Solanum lycopersicum L.) grown hydroponically. The growth of both plant species was inhibited by 100 μM Cd, but Si application counteracted the adverse effects on growth. Si application significantly decreased the Cd concentrations in shoots of both species and roots of cucumber. The root-to-shoot transport of Cd was depressed by added Si in tomato whereas it was increased by added Si in cucumber. The total content of organic acids was decreased in tomato leaves but increased in cucumber roots and leaves by Si application under Cd stress. Si application also increased the cell wall polysaccharide levels in the roots of both species under Cd toxicity. Si-mediated changes in levels of organic acids and cell wall polysaccharides might contribute to the differences in Cd transport in the two species. In addition, Si application also mitigated Cd-induced oxidative damage in both species. The results indicate that there were different mechanisms for Si-mediated decrease in shoot Cd accumulation: in tomato, Si supply decreased root-to-shoot Cd transport; whereas in cucumber, Si supply reduced the Cd uptake by roots. It is suggested that Si-mediated Cd tolerance is associated with different physiological responses in tomato and cucumber plants. PMID:26136764

  18. Selenium alleviates cadmium toxicity by preventing oxidative stress in sunflower (Helianthus annuus) seedlings.

    PubMed

    Saidi, Issam; Chtourou, Yacine; Djebali, Wahbi

    2014-03-01

    The present study investigated the possible mediatory role of selenium (Se) in protecting plants from cadmium (Cd) toxicity. The exposure of sunflower seedlings to 20μM Cd inhibited biomass production, decreased chlorophyll and carotenoid concentrations and strongly increased accumulation of Cd in both roots and shoots. Similarly, Cd enhanced hydrogen peroxides content and lipid peroxidation as indicated by malondialdehyde accumulation. Pre-soaking seeds with Se (5, 10 and 20μM) alleviated the negative effect of Cd on growth and led to a decrease in oxidative injuries caused by Cd. Furthermore, Se enhanced the activities of catalase, ascorbate peroxidase and glutathione reductase, but lowered that of superoxide dismutase and guaiacol peroxidase. As important antioxidants, ascorbate and glutathione contents in sunflower leaves exposed to Cd were significantly decreased by Se treatment. The data suggest that the beneficial effect of Se during an earlier growth period could be related to avoidance of cumulative damage upon exposure to Cd, thus reducing the negative consequences of oxidative stress caused by heavy metal toxicity.

  19. Treadmill exercise alleviates chronic mild stress-induced depression in rats.

    PubMed

    Lee, Taeck-Hyun; Kim, Kijeong; Shin, Mal-Soon; Kim, Chang-Ju; Lim, Baek-Vin

    2015-12-01

    Depression is a major cause of disability and one of the most common public health problems. In the present study, antidepressive effect of treadmill exercise on chronic mild stress (CMS)-induced depression in rats was investigated. For this, sucrose intake test, immunohistochemistry for 5-bromo-2'-deoxyuridine, terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling staining, and Western blot analysis for brain-derived neurotrophic factor, cyclic adenosine monophosphate response element binding protein, and endothelial nitric oxide synthase were conducted. Following adaptation to the animal vivarium and two baseline fluid intake tests, the animals were divided into four groups: the control group, the CMS-induced depression group, the CMS-induced depression and exercise group, and the CMS-induced depression and fluoxetine-treated group. The animals in the CMS groups were exposed to the CMS conditions for 8 weeks and those in the control group were exposed to the control conditions for 8 weeks. After 4 weeks of CMS, the rats in the CMS-induced depression and exercise group were made to run on a motorized treadmill for 30 min once a day for 4 weeks. In the present results, treadmill exercise alleviated CMS-induced depressive symptoms. Treadmill exercise restored sucrose consumption, increased cell proliferation, and decreased apoptotic cell death. The present results suggest the possibility that exercise may improve symptoms of depression. PMID:26730380

  20. Prepubertal Exposure to Genistein Alleviates Di-(2-ethylhexyl) Phthalate Induced Testicular Oxidative Stress in Adult Rats

    PubMed Central

    Zhang, Lian-Dong; Li, He-Cheng; Chong, Tie; Gao, Ming; Yin, Jian; Fu, De-Lai; Deng, Qian; Wang, Zi-Ming

    2014-01-01

    Di-(2-ethylhexyl) phthalate (DEHP) is the most widely used plastizer in the world and can suppress testosterone production via activation of oxidative stress. Genistein (GEN) is one of the isoflavones ingredients exhibiting weak estrogenic and potentially antioxidative effects. However, study on reproductive effects following prepubertal multiple endocrine disrupters exposure has been lacking. In this study, DEHP and GEN were administrated to prepubertal male Sprague-Dawley rats by gavage from postnatal day 22 (PND22) to PND35 with vehicle control, GEN at 50 mg/kg body weight (bw)/day (G), DEHP at 50, 150, 450 mg/kg bw/day (D50, D150, D450) and their mixture (G + D50, G + D150, G + D450). On PND90, general morphometry (body weight, AGD, organ weight, and organ coefficient), testicular redox state, and testicular histology were studied. Our results indicated that DEHP could significantly decrease sex organs weight, organ coefficient, and testicular antioxidative ability, which largely depended on the dose of DEHP. However, coadministration of GEN could partially alleviate DEHP-induced reproductive injuries via enhancement of testicular antioxidative enzymes activities, which indicates that GEN has protective effects on DEHP-induced male reproductive system damage after prepubertal exposure and GEN may have promising future in its curative antioxidative role for reproductive disorders caused by other environmental endocrine disruptors. PMID:25530965

  1. Does a sorghum-cowpea composite porridge hold promise for contributing to alleviating oxidative stress?

    PubMed

    Apea-Bah, Franklin B; Minnaar, Amanda; Bester, Megan J; Duodu, Kwaku G

    2014-08-15

    The effect of compositing red non-tannin sorghum with cream-coloured cowpea and porridge preparation on phenolic profile and radical scavenging activity was studied. A maize-soybean composite porridge representing a similar product on the South African market was used as reference sample. UPLC-QToF-MS-ESI was used to determine phenolic composition of the grain flours, their composites and porridges. Total phenolic content was determined using Folin-Ciocalteu method while radical scavenging activity was determined using the ABTS, DPPH and NO radical scavenging assays. Four benzoic acid derivatives and five cinnamic acid derivatives were identified in the samples. The predominant flavonoid subclasses identified in sorghum were flavan-3-ols, flavanones and flavones while cowpea had mainly flavan-3-ols and flavonols with soybean having mainly isoflavones. Compositing the cereals with legumes significantly (p<0.01) increased their total flavonoid content and radical scavenging activities. Sorghum-cowpea composite porridge showed better promise in contributing to alleviating radical induced oxidative stress than maize-soybean composite porridge.

  2. Arbuscular mycorrhizal fungi alleviate oxidative stress induced by ADOR and enhance antioxidant responses of tomato plants.

    PubMed

    García-Sánchez, Mercedes; Palma, José Manuel; Ocampo, Juan Antonio; García-Romera, Inmaculada; Aranda, Elisabet

    2014-03-15

    The behaviour of tomato plants inoculated with arbuscular mycorrhizal (AM) fungi grown in the presence of aqueous extracts from dry olive residue (ADOR) was studied in order to understand how this symbiotic relationship helps plants to cope with oxidative stress caused by ADOR. The influence of AM symbiosis on plant growth and other physiological parameters was also studied. Tomato plants were inoculated with the AM fungus Funneliformis mosseae and were grown in the presence of ADOR bioremediated and non-bioremediated by Coriolopsis floccosa and Penicillium chrysogenum-10. The antioxidant response as well as parameters of oxidative damage were examined in roots and leaves. The data showed a significant increase in the biomass of AM plant growth in the presence of ADOR, regardless of whether it was bioremediated. The establishment and development of the symbiosis were negatively affected after plants were exposed to ADOR. No differences were observed in the relative water content (RWC) or PS II efficiency between non-AM and AM plants. The increase in the enzymatic activities of superoxide dismutase (SOD; EC 1.15.1.1), catalase (CAT; EC 1.11.1.6) and glutathione-S-transferase (GST; EC 2.5.1.18) were simultaneous to the reduction of MDA levels and H2O2 content in AM root growth in the presence of ADOR. Similar H2O2 levels were observed among non-AM and AM plants, although only AM plants showed reduced lipid peroxidation content, probably due to the involvement of antioxidant enzymes. The results highlight how the application of both bioremediated ADOR and AM fungi can alleviate the oxidative stress conditions, improving the growth and development of tomato plants.

  3. Arbuscular mycorrhizal fungi alleviate oxidative stress induced by ADOR and enhance antioxidant responses of tomato plants.

    PubMed

    García-Sánchez, Mercedes; Palma, José Manuel; Ocampo, Juan Antonio; García-Romera, Inmaculada; Aranda, Elisabet

    2014-03-15

    The behaviour of tomato plants inoculated with arbuscular mycorrhizal (AM) fungi grown in the presence of aqueous extracts from dry olive residue (ADOR) was studied in order to understand how this symbiotic relationship helps plants to cope with oxidative stress caused by ADOR. The influence of AM symbiosis on plant growth and other physiological parameters was also studied. Tomato plants were inoculated with the AM fungus Funneliformis mosseae and were grown in the presence of ADOR bioremediated and non-bioremediated by Coriolopsis floccosa and Penicillium chrysogenum-10. The antioxidant response as well as parameters of oxidative damage were examined in roots and leaves. The data showed a significant increase in the biomass of AM plant growth in the presence of ADOR, regardless of whether it was bioremediated. The establishment and development of the symbiosis were negatively affected after plants were exposed to ADOR. No differences were observed in the relative water content (RWC) or PS II efficiency between non-AM and AM plants. The increase in the enzymatic activities of superoxide dismutase (SOD; EC 1.15.1.1), catalase (CAT; EC 1.11.1.6) and glutathione-S-transferase (GST; EC 2.5.1.18) were simultaneous to the reduction of MDA levels and H2O2 content in AM root growth in the presence of ADOR. Similar H2O2 levels were observed among non-AM and AM plants, although only AM plants showed reduced lipid peroxidation content, probably due to the involvement of antioxidant enzymes. The results highlight how the application of both bioremediated ADOR and AM fungi can alleviate the oxidative stress conditions, improving the growth and development of tomato plants. PMID:24594394

  4. [Alleviation of salt stress during maize seed germination by presoaking with exogenous sugar].

    PubMed

    Zhao, Ying; Yang, Ke-jun; Li, Zuo-tong; Zhao, Chang-jiang; Xu, Jing-yu; Hu, Xue- wei; Shi, Xin-xin; Ma, Li-feng

    2015-09-01

    The maize variety Kenyu 6 was used to study the effects of exogenous glucose (Glc) and sucrose (Suc) on salt tolerance of maize seeds at germination stage under 150 mmol · L(-1) NaCl treatment. Results showed that under salt stress condition, 0.5 mmol · L(-1) exogenous Glc and Suc presoaking could promote seed germination and early seedling growth. Compared with the salt treatment, Glc presoaking increased the shoot length, radicle length and corresponding dry mass up to 1.5, 1.3, 2.1 and 1.8 times, and those of the Suc presoaking treatment increased up to 1.7, 1.3. 2.7 and 1.9 times, respectively. Exogenous Glc and Suc presoaking resulted in decreased levels of thiobarbituric acid reactive substances (TBARS) and hydrogen peroxide (H2O2) content of maize shoot under salt stress, which were lowered by 24.9% and 20.6% respectively. Exogenous Glc and Suc presoaking could increase the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione peroxidase (GPX), glutathione reductase (GR) and induce glucose-6-phosphate dehydrogenase (G6PDH) activity of maize shoot under salt stress. Compared with the salt treatment. Glc presoaking increased the activity of SOD, APX, GPX, GR and G6PDH by 66.2%, 62.9%, 32.0%, 38.5% and 50.5%, and those of the Suc presoaking increased by 67.5%, 59.8%, 30.0%, 38.5% and 50.4%, respectively. Glc and Suc presoaking also significantly increased the contents of ascorbic acid (ASA) and glutathione (GSH), ASA/DHA and GSH/GSSG. The G6PDH activity was found closely related with the strong antioxidation capacity induced by exogenous sugars. In addition, Glc and Suc presoaking enhanced K+/Na+ in maize shoot by 1.3 and 1.4 times of water soaking salt treatment, respectively. These results indicated that exogenous Glc and Suc presoaking could improve antioxidation capacity of maize seeds and maintain the in vivo K+/Na+ ion balance to alleviate the inhibitory effect of salt stress on maize seed germination.

  5. [Alleviation of salt stress during maize seed germination by presoaking with exogenous sugar].

    PubMed

    Zhao, Ying; Yang, Ke-jun; Li, Zuo-tong; Zhao, Chang-jiang; Xu, Jing-yu; Hu, Xue- wei; Shi, Xin-xin; Ma, Li-feng

    2015-09-01

    The maize variety Kenyu 6 was used to study the effects of exogenous glucose (Glc) and sucrose (Suc) on salt tolerance of maize seeds at germination stage under 150 mmol · L(-1) NaCl treatment. Results showed that under salt stress condition, 0.5 mmol · L(-1) exogenous Glc and Suc presoaking could promote seed germination and early seedling growth. Compared with the salt treatment, Glc presoaking increased the shoot length, radicle length and corresponding dry mass up to 1.5, 1.3, 2.1 and 1.8 times, and those of the Suc presoaking treatment increased up to 1.7, 1.3. 2.7 and 1.9 times, respectively. Exogenous Glc and Suc presoaking resulted in decreased levels of thiobarbituric acid reactive substances (TBARS) and hydrogen peroxide (H2O2) content of maize shoot under salt stress, which were lowered by 24.9% and 20.6% respectively. Exogenous Glc and Suc presoaking could increase the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione peroxidase (GPX), glutathione reductase (GR) and induce glucose-6-phosphate dehydrogenase (G6PDH) activity of maize shoot under salt stress. Compared with the salt treatment. Glc presoaking increased the activity of SOD, APX, GPX, GR and G6PDH by 66.2%, 62.9%, 32.0%, 38.5% and 50.5%, and those of the Suc presoaking increased by 67.5%, 59.8%, 30.0%, 38.5% and 50.4%, respectively. Glc and Suc presoaking also significantly increased the contents of ascorbic acid (ASA) and glutathione (GSH), ASA/DHA and GSH/GSSG. The G6PDH activity was found closely related with the strong antioxidation capacity induced by exogenous sugars. In addition, Glc and Suc presoaking enhanced K+/Na+ in maize shoot by 1.3 and 1.4 times of water soaking salt treatment, respectively. These results indicated that exogenous Glc and Suc presoaking could improve antioxidation capacity of maize seeds and maintain the in vivo K+/Na+ ion balance to alleviate the inhibitory effect of salt stress on maize seed germination. PMID:26785556

  6. Bacillus amyloliquefaciens supplementation alleviates immunological stress in lipopolysaccharide-challenged broilers at early age.

    PubMed

    Li, Y; Zhang, H; Chen, Y P; Yang, M X; Zhang, L L; Lu, Z X; Zhou, Y M; Wang, T

    2015-07-01

    This study was conducted to investigate the effect of Bacillus amyloliquefaciens ( BA: ) on the immune function of broilers challenged with lipopolysaccharide ( LPS: ). 192 one-day-old male Arbor Acre broiler chickens were randomly distributed into four treatments: 1) broilers fed a basal diet; 2) broilers fed a basal diet supplemented with BA; 3) LPS-challenged broilers fed a basal diet; and 4) LPS-challenged broilers fed a basal diet supplemented with BA. Each treatment consisted of six replicates with eight broilers per replicate. Broilers were intraperitoneally injected with either 500 μg LPS per kg body weight or sterile saline at 16, 18 and 20 d of age. LPS decreased the average daily gain ( ADG: , P = 0.001) and average daily feed intake (P = 0.001). The decreased ADG (P = 0.009) and increased feed conversion ratio (P = 0.047) in LPS-challenged broilers were alleviated by BA. LPS increased the relative spleen weight (P = 0.001). Relative spleen (P = 0.014) and bursa (P = 0.024) weights in the LPS-challenged broilers were reduced by BA. LPS increased white blood cell ( WBC: ) numbers (P = 0.001). However, the WBC numbers (P = 0.042) and the ratio of lymphocytes to WBC (P = 0.020) in LPS-challenged broilers were decreased with BA treatment. LPS decreased plasma lysozyme activity (P = 0.001), but increased concentrations of plasma corticosterone (P = 0.012) and IL-2 (P = 0.020). In contrast, BA increased lysozyme activity in plasma (P = 0.040). LPS increased mRNA abundances of splenic toll-like receptor 4 (P = 0.046), interferon γ (P = 0.008), IL-1β (P = 0.045) and IL-6, (P = 0.006). IL-2 (P = 0.014) and IL-6 (P = 0.074) mRNA abundances in LPS-challenged broilers were reduced by BA, although BA had an opposite effect for IL-10 mRNA expression in those broilers (P = 0.004). In conclusion, BA supplementation could partially alleviate the compromised growth performance and immune status of broilers under immune stress induced by LPS challenge at early age. PMID

  7. Thermal stress effects in intermetallic matrix composites

    NASA Technical Reports Server (NTRS)

    Wright, P. K.; Sensmeier, M. D.; Kupperman, D. S.; Wadley, H. N. G.

    1993-01-01

    Intermetallic matrix composites develop residual stresses from the large thermal expansion mismatch (delta-alpha) between the fibers and matrix. This work was undertaken to: establish improved techniques to measure these thermal stresses in IMC's; determine residual stresses in a variety of IMC systems by experiments and modeling; and, determine the effect of residual stresses on selected mechanical properties of an IMC. X ray diffraction (XRD), neutron diffraction (ND), synchrotron XRD (SXRD), and ultrasonics (US) techniques for measuring thermal stresses in IMC were examined and ND was selected as the most promising technique. ND was demonstrated on a variety of IMC systems encompassing Ti- and Ni-base matrices, SiC, W, and Al2O3 fibers, and different fiber fractions (Vf). Experimental results on these systems agreed with predictions of a concentric cylinder model. In SiC/Ti-base systems, little yielding was found and stresses were controlled primarily by delta-alpha and Vf. In Ni-base matrix systems, yield strength of the matrix and Vf controlled stress levels. The longitudinal residual stresses in SCS-6/Ti-24Al-llNb composite were modified by thermomechanical processing. Increasing residual stress decreased ultimate tensile strength in agreement with model predictions. Fiber pushout strength showed an unexpected inverse correlation with residual stress. In-plane shear yield strength showed no dependence on residual stress. Higher levels of residual tension led to higher fatigue crack growth rates, as suggested by matrix mean stress effects.

  8. Thermal stress effects in intermetallic matrix composites

    NASA Astrophysics Data System (ADS)

    Wright, P. K.; Sensmeier, M. D.; Kupperman, D. S.; Wadley, H. N. G.

    1993-09-01

    Intermetallic matrix composites develop residual stresses from the large thermal expansion mismatch (delta-alpha) between the fibers and matrix. This work was undertaken to: establish improved techniques to measure these thermal stresses in IMC's; determine residual stresses in a variety of IMC systems by experiments and modeling; and, determine the effect of residual stresses on selected mechanical properties of an IMC. X ray diffraction (XRD), neutron diffraction (ND), synchrotron XRD (SXRD), and ultrasonics (US) techniques for measuring thermal stresses in IMC were examined and ND was selected as the most promising technique. ND was demonstrated on a variety of IMC systems encompassing Ti- and Ni-base matrices, SiC, W, and Al2O3 fibers, and different fiber fractions (Vf). Experimental results on these systems agreed with predictions of a concentric cylinder model. In SiC/Ti-base systems, little yielding was found and stresses were controlled primarily by delta-alpha and Vf. In Ni-base matrix systems, yield strength of the matrix and Vf controlled stress levels. The longitudinal residual stresses in SCS-6/Ti-24Al-llNb composite were modified by thermomechanical processing. Increasing residual stress decreased ultimate tensile strength in agreement with model predictions. Fiber pushout strength showed an unexpected inverse correlation with residual stress. In-plane shear yield strength showed no dependence on residual stress. Higher levels of residual tension led to higher fatigue crack growth rates, as suggested by matrix mean stress effects.

  9. Alleviation of salt stress-induced inhibition of seed germination in cucumber (Cucumis sativus L.) by ethylene and glutamate.

    PubMed

    Chang, Chenshuo; Wang, Baolan; Shi, Lei; Li, Yinxin; Duo, Lian; Zhang, Wenhao

    2010-09-15

    Ethylene is an important plant gas hormone, and the amino acid Glu is emerging as a messenger molecule in plants. To evaluate the role of ethylene and Glu in seed germination and radicle growth under salt stress, effects of 1-aminocyclopropane-1-carboxylic acid (ACC), Ethephon and Glu on germination and radicle growth of cucumber (Cucumis sativus L.) seeds in the absence and presence of 200 mM NaCl were investigated. Seed germination was markedly inhibited by salt stress, and this effect was alleviated by ACC and Ethephon. In contrast to seed germination, ACC and Ethephon had little effect on radicle growth under salt stress. In addition to ethylene, we found exogenous supply of Glu was effective in alleviating the salt stress-induced inhibition of seed germination and radicle growth. The effect of Glu on the seed germination and radicle growth was specific to L-Glu, whereas D-Glu and Gln had no effect. There was an increase in ethylene production during seed imbibition, and salt stress suppressed ethylene production. Exogenous L-Glu evoked ethylene evolution from the imbibed seeds and attenuated the reduction in ethylene evolution induced by salt stress. The alleviative effect of L-Glu on seed germination was diminished by antagonists of ethylene synthesis, aminoethoxyvinylglycine (AVG) and CoCl(2), suggesting that L-Glu is likely to exert its effect on seed germination by modulation of ethylene evolution. These findings demonstrate that ethylene is associated with suppression of seed germination under salt stress and that L-Glu interacts with ethylene in regulation of seed germination under salt stress.

  10. Exogenous ascorbic acid and glutathione alleviate oxidative stress induced by salt stress in the chloroplasts of Oryza sativa L.

    PubMed

    Wang, Renlei; Liu, Shaohua; Zhou, Feng; Ding, Chunxia; Hua, Chun

    2014-01-01

    The effects of exogenous ascorbic acid (AsA) and reduced glutathione (GSH) on antioxidant enzyme activities [superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR)] and the contents of malondialdehyde (MDA) and H2O2, as well as of endogenous AsA and GSH, in the chloroplasts of two rice cultivars, the salt-tolerant cultivar Pokkali and the salt-sensitive cultivar Peta, were investigated. Exogenous AsA and GSH enhanced SOD, APX, and GR activities, increased endogenous AsA and GSH contents, and reduced those of H2O2 and MDA in the chloroplasts of both cultivars under salt stress (200 mM NaCl), but the effects were significantly more pronounced in cv. Pokkali. GSH acted more strongly than AsA on the plastidial reactive oxygen scavenging systems. These results indicated that exogenous AsA and GSH differentially enhanced salinity tolerance and alleviated salinity-induced damage in the two rice cultivars.

  11. Involvement of ethylene in gibberellic acid-induced sulfur assimilation, photosynthetic responses, and alleviation of cadmium stress in mustard.

    PubMed

    Masood, Asim; Khan, M Iqbal R; Fatma, Mehar; Asgher, Mohd; Per, Tasir S; Khan, Nafees A

    2016-07-01

    The role of gibberellic acid (GA) or sulfur (S) in stimulation of photosynthesis is known. However, information on the involvement of ethylene in GA-induced photosynthetic responses and cadmium (Cd) tolerance is lacking. This work shows that ethylene is involved in S-assimilation, photosynthetic responses and alleviation of Cd stress by GA in mustard (Brassica juncea L.). Plants grown with 200 mg Cd kg(-1) soil were less responsive to ethylene despite high ethylene evolution and showed photosynthetic inhibition. Plants receiving 10 μM GA spraying plus 100 mg S kg(-1) soil supplementation exhibited increased S-assimilation and photosynthetic responses under Cd stress. Application of GA plus S decreased oxidative stress of plants grown with Cd and limited stress ethylene formation to the range suitable for promoting sulfur use efficiency (SUE), glutathione (GSH) production and photosynthesis. The role of ethylene in GA-induced S-assimilation and reversal of photosynthetic inhibition by Cd was substantiated by inhibiting ethylene biosynthesis with the use of aminoethoxyvinylglycine (AVG). The suppression of S-assimilation and photosynthetic responses by inhibiting ethylene in GA plus S treated plants under Cd stress indicated the involvement of ethylene in GA-induced S-assimilation and Cd stress alleviation. The outcome of the study is important to unravel the interaction between GA and ethylene and their role in Cd tolerance in plants. PMID:26998941

  12. Involvement of ethylene in gibberellic acid-induced sulfur assimilation, photosynthetic responses, and alleviation of cadmium stress in mustard.

    PubMed

    Masood, Asim; Khan, M Iqbal R; Fatma, Mehar; Asgher, Mohd; Per, Tasir S; Khan, Nafees A

    2016-07-01

    The role of gibberellic acid (GA) or sulfur (S) in stimulation of photosynthesis is known. However, information on the involvement of ethylene in GA-induced photosynthetic responses and cadmium (Cd) tolerance is lacking. This work shows that ethylene is involved in S-assimilation, photosynthetic responses and alleviation of Cd stress by GA in mustard (Brassica juncea L.). Plants grown with 200 mg Cd kg(-1) soil were less responsive to ethylene despite high ethylene evolution and showed photosynthetic inhibition. Plants receiving 10 μM GA spraying plus 100 mg S kg(-1) soil supplementation exhibited increased S-assimilation and photosynthetic responses under Cd stress. Application of GA plus S decreased oxidative stress of plants grown with Cd and limited stress ethylene formation to the range suitable for promoting sulfur use efficiency (SUE), glutathione (GSH) production and photosynthesis. The role of ethylene in GA-induced S-assimilation and reversal of photosynthetic inhibition by Cd was substantiated by inhibiting ethylene biosynthesis with the use of aminoethoxyvinylglycine (AVG). The suppression of S-assimilation and photosynthetic responses by inhibiting ethylene in GA plus S treated plants under Cd stress indicated the involvement of ethylene in GA-induced S-assimilation and Cd stress alleviation. The outcome of the study is important to unravel the interaction between GA and ethylene and their role in Cd tolerance in plants.

  13. Isolation and characterization of ACC deaminase-producing fluorescent pseudomonads, to alleviate salinity stress on canola (Brassica napus L.) growth.

    PubMed

    Jalili, Farzad; Khavazi, Kazem; Pazira, Ebrahim; Nejati, Alireza; Rahmani, Hadi Asadi; Sadaghiani, Hasan Rasuli; Miransari, Mohammad

    2009-04-01

    Salinity stress is of great importance in arid and semi-arid areas of the world due to its impact in reducing crop yield. Under salinity stress, the amount of 1-aminocyclopropane-1-carboxylate (ACC), a precursor for ethylene production in plants, increases. Here, we conducted research under the hypothesis that isolated ACC deaminase-producing Pseudomonas fluorescens and Pseudomonas putida can alleviate the stressful effects of salinity on canola (Brassica napus L.) growth. The experiments were conducted in the Soil and Water Research Institute, Tehran, Iran. Seven experimental stages were conducted to isolate and characterize ACC deaminase-producing Pseudomonas fluorescens strains and to determine factors enhancing their growth and, consequently, their effects on the germination of canola seeds. Under salinity stress, in 14% of the isolates, ACC deaminase activity was observed, indicating that they were able to utilize ACC as the sole N-source. Bacterial strains differed in their ability to synthesize auxin and hydrogen cyanide compounds, as well as in their ACC deaminase activity. Under salinity stress, the rate of germinating seeds inoculated with the strains of ACC deaminase-producing Pseudomonas fluorescens and Pseudomonas putida, and seedling growth was significantly higher. These results indicate the significance of soil biological activities, including the activities of plant growth-promoting bacteria, in the alleviation of soil stresses such as salinity on plant growth.

  14. Assessing Cumulative Thermal Stress in Fish During Chronic Exposure to High Temperature

    SciTech Connect

    Bevelhimer, M.S.; Bennett, W.R.

    1999-11-14

    As environmental laws become increasingly protective, and with possible future changes in global climate, thermal effects on aquatic resources are likely to receive increasing attention. Lethal temperatures for a variety of species have been determined for situations where temperatures rise rapidly resulting in lethal effects. However, less is known about the effects of chronic exposure to high (but not immediately lethal) temperatures and even less about stress accumulation during periods of fluctuating temperatures. In this paper we present a modeling framework for assessing cumulative thermal stress in fish. The model assumes that stress accumulation occurs above a threshold temperature at a rate depending on the degree to which the threshold is exceeded. The model also includes stress recovery (or alleviation) when temperatures drop below the threshold temperature as in systems with large daily variation. In addition to non-specific physiological stress, the model also simulates thermal effects on growth.

  15. Thermal stress in high temperature cylindrical fasteners

    NASA Technical Reports Server (NTRS)

    Blosser, Max L.

    1988-01-01

    Uninsulated structures fabricated from carbon or silicon-based materials, which are allowed to become hot during flight, are attractive for the design of some components of hypersonic vehicles. They have the potential to reduce weight and increase vehicle efficiency. Because of manufacturing contraints, these structures will consist of parts which must be fastened together. The thermal expansion mismatch between conventional metal fasteners and carbon or silicon-based structural materials may make it difficult to design a structural joint which is tight over the operational temperature range without exceeding allowable stress limits. In this study, algebraic, closed-form solutions for calculating the thermal stresses resulting from radial thermal expansion mismatch around a cylindrical fastener are developed. These solutions permit a designer to quickly evaluate many combinations of materials for the fastener and the structure. Using the algebraic equations developed, material properties and joint geometry were varied to determine their effect on thermal stresses. Finite element analyses were used to verify that the closed-form solutions derived give the correct thermal stress distribution around a cylindrical fastener and to investigate the effect of some of the simplifying assumptions made in developing the closed-form solutions for thermal stresses.

  16. Rotor thermal stress monitoring in steam turbines

    NASA Astrophysics Data System (ADS)

    Antonín, Bouberle; Jan, Jakl; Jindřich, Liška

    2015-11-01

    One of the issues of steam turbines diagnostics is monitoring of rotor thermal stress that arises from nonuniform temperature field. The effort of steam turbine operator is to operate steam turbine in such conditions, that rotor thermal stress doesn't exceed the specified limits. If rotor thermal stress limits are exceeded for a long time during machine operation, the rotor fatigue life is shortened and this may lead to unexpected machine failure. Thermal stress plays important role during turbine cold startup, when occur the most significant differences of temperatures through rotor cross section. The temperature field can't be measured directly in the entire rotor cross section and standardly the temperature is measured by thermocouple mounted in stator part. From this reason method for numerical solution of partial differential equation of heat propagation through rotor cross section must be combined with method for calculation of temperature on rotor surface. In the first part of this article, the application of finite volume method for calculation of rotor thermal stress is described. The second part of article deals with optimal trend generation of thermal flux, that could be used for optimal machine loading.

  17. Carbon dioxide enrichment alleviates heat stress by improving cellular redox homeostasis through an ABA-independent process in tomato plants.

    PubMed

    Li, X; Ahammed, G J; Zhang, Y Q; Zhang, G Q; Sun, Z H; Zhou, J; Zhou, Y H; Xia, X J; Yu, J Q; Shi, K

    2015-01-01

    Plant responses to elevated CO₂ and high temperature are critically regulated through a complex network of phytohormones and redox homeostasis. However, the involvement of abscisic acid (ABA) in plant adaptation to heat stress under elevated CO₂ conditions has not been thoroughly studied. This study investigated the interactive effects of elevated CO₂ (800 μmol·mol(-1) ) and heat stress (42 °C for 24 h) on the endogenous level of ABA and the cellular redox state of two genotypes of tomato with different ABA biosynthesis capacities. Heat stress significantly decreased maximum photochemical efficiency of PSII (Fv/Fm) and leaf water potential, but also increased levels of malondialdehyde (MDA) and electrolyte leakage (EL) in both genotypes. Heat-induced damage was more severe in the ABA-deficient mutant notabilis (not) than in its parental cultivar Ailsa Craig (Ailsa), suggesting that a certain level of endogenous ABA is required to minimise the heat-induced oxidative damage to the photosynthetic apparatus. Irrespective of genotype, the enrichment of CO₂ remarkably stimulated Fv/Fm, MDA and EL in heat-stressed plants towards enhanced tolerance. In addition, elevated CO₂ significantly strengthened the antioxidant capacity of heat-stressed tomato seedlings towards a reduced cellular redox state for a prolonged period, thereby mitigating oxidative stress. However, elevated CO₂ and heat stress did not alter the endogenous level of ABA or the expression of its biosynthetic gene NCED2 in either genotype, indicating that ABA is not involved in elevated CO₂ -induced heat stress alleviation. The results of this study suggest that elevated CO₂ alleviated heat stress through efficient regulation of the cellular redox poise in an ABA-independent manner in tomato plants.

  18. Yeast Culture and Vitamin E Supplementation Alleviates Heat Stress in Dairy Goats.

    PubMed

    Wang, Lizhi; Wang, Zhisheng; Zou, Huawei; Peng, Quanhui

    2016-06-01

    This study was conducted to determine and compare the effects of yeast yeast culture (YC) and vitamin E (VE) supplementation on endotoxin absorption and antioxidant status in lactating dairy goats suffering from heat stress (HS). Three first lactation Saanen dairy goats (body weight 30±1.5 kg) were surgically fitted with indwelling catheters in the portal vein, mesenteric vein and carotid artery, and were randomly assigned to a 3×3 Latin square design. Dietary treatments were the basal diet, and the basal diet supplemented with either 100 IU VE or 30 g YC. Goats were kept in temperature and humidity-controlled room at 35°C from 8:00 to 20:00 and at 24°C from 20:00 till the next morning at 8:00. The relative humidity was kept at 55%. HS increased dairy goats' rectum temperature and respiration frequency (p<0.01). HS reduced plasma flux rate of milk goats (p<0.01), but the plasma flux rate increased when the animal was under the conditions of the thermo-neutral period (p<0.01). The VE supplementation lowered dairy goats' rectum temperature during thermo-neutral period (p<0.01). Meanwhile, no significant differences were observed between the control and YC treatment in rectum temperature and respiration frequency (p>0.05). Dietary supplementation of VE and YC reduced heat stressed dairy goats' endotoxin concentration of the carotid artery and portal vein (p<0.01). However, the endotoxin concentration of the YC treatment was higher than that of the VE treatment (p<0.01). Both VE and YC supplementation decreased heat stressed dairy goats' absorption of endotoxin in portal vein (p<0.01). The endotoxin absorption of YC treatment was higher than the VE treatment (p<0.01). The addition of VE and YC decreased dairy goats' superoxide dismutase (SOD) concentration during HS and the whole experiment period (p<0.01). The addition of VE lowered SOD concentration during thermo-neutral period (p<0.01). Likewise, the addition of VE and YC lowered dairy goats' malonaldehyde (MDA

  19. Yeast Culture and Vitamin E Supplementation Alleviates Heat Stress in Dairy Goats.

    PubMed

    Wang, Lizhi; Wang, Zhisheng; Zou, Huawei; Peng, Quanhui

    2016-06-01

    This study was conducted to determine and compare the effects of yeast yeast culture (YC) and vitamin E (VE) supplementation on endotoxin absorption and antioxidant status in lactating dairy goats suffering from heat stress (HS). Three first lactation Saanen dairy goats (body weight 30±1.5 kg) were surgically fitted with indwelling catheters in the portal vein, mesenteric vein and carotid artery, and were randomly assigned to a 3×3 Latin square design. Dietary treatments were the basal diet, and the basal diet supplemented with either 100 IU VE or 30 g YC. Goats were kept in temperature and humidity-controlled room at 35°C from 8:00 to 20:00 and at 24°C from 20:00 till the next morning at 8:00. The relative humidity was kept at 55%. HS increased dairy goats' rectum temperature and respiration frequency (p<0.01). HS reduced plasma flux rate of milk goats (p<0.01), but the plasma flux rate increased when the animal was under the conditions of the thermo-neutral period (p<0.01). The VE supplementation lowered dairy goats' rectum temperature during thermo-neutral period (p<0.01). Meanwhile, no significant differences were observed between the control and YC treatment in rectum temperature and respiration frequency (p>0.05). Dietary supplementation of VE and YC reduced heat stressed dairy goats' endotoxin concentration of the carotid artery and portal vein (p<0.01). However, the endotoxin concentration of the YC treatment was higher than that of the VE treatment (p<0.01). Both VE and YC supplementation decreased heat stressed dairy goats' absorption of endotoxin in portal vein (p<0.01). The endotoxin absorption of YC treatment was higher than the VE treatment (p<0.01). The addition of VE and YC decreased dairy goats' superoxide dismutase (SOD) concentration during HS and the whole experiment period (p<0.01). The addition of VE lowered SOD concentration during thermo-neutral period (p<0.01). Likewise, the addition of VE and YC lowered dairy goats' malonaldehyde (MDA

  20. Yeast Culture and Vitamin E Supplementation Alleviates Heat Stress in Dairy Goats

    PubMed Central

    Wang, Lizhi; Wang, Zhisheng; Zou, Huawei; Peng, Quanhui

    2016-01-01

    This study was conducted to determine and compare the effects of yeast yeast culture (YC) and vitamin E (VE) supplementation on endotoxin absorption and antioxidant status in lactating dairy goats suffering from heat stress (HS). Three first lactation Saanen dairy goats (body weight 30±1.5 kg) were surgically fitted with indwelling catheters in the portal vein, mesenteric vein and carotid artery, and were randomly assigned to a 3×3 Latin square design. Dietary treatments were the basal diet, and the basal diet supplemented with either 100 IU VE or 30 g YC. Goats were kept in temperature and humidity-controlled room at 35°C from 8:00 to 20:00 and at 24°C from 20:00 till the next morning at 8:00. The relative humidity was kept at 55%. HS increased dairy goats’ rectum temperature and respiration frequency (p<0.01). HS reduced plasma flux rate of milk goats (p<0.01), but the plasma flux rate increased when the animal was under the conditions of the thermo-neutral period (p<0.01). The VE supplementation lowered dairy goats’ rectum temperature during thermo-neutral period (p<0.01). Meanwhile, no significant differences were observed between the control and YC treatment in rectum temperature and respiration frequency (p>0.05). Dietary supplementation of VE and YC reduced heat stressed dairy goats’ endotoxin concentration of the carotid artery and portal vein (p<0.01). However, the endotoxin concentration of the YC treatment was higher than that of the VE treatment (p<0.01). Both VE and YC supplementation decreased heat stressed dairy goats’ absorption of endotoxin in portal vein (p<0.01). The endotoxin absorption of YC treatment was higher than the VE treatment (p<0.01). The addition of VE and YC decreased dairy goats’ superoxide dismutase (SOD) concentration during HS and the whole experiment period (p<0.01). The addition of VE lowered SOD concentration during thermo-neutral period (p<0.01). Likewise, the addition of VE and YC lowered dairy goats

  1. Thermal deformations and stresses in composite materials

    NASA Technical Reports Server (NTRS)

    Daniel, I. M.

    1980-01-01

    Residual stresses are induced during curing in angle-ply laminates as a result of anisotropic thermal deformations of the variously oriented plies. Residual strains are measured experimentally using embedded strain gage techniques, and residual stresses are computed using orthotropic stress-strain relations. The results show that, for graphite and Kevlar laminates, residual stresses at room temperature are high enough to cause damage in the plies in the transverse to the fiber direction. It is also shown that residual stresses do not relax appreciably. The ply stacking sequence is found to have no effect on the magnitude of average residual stresses. Residual stresses and susceptibility to cracking during curing depend to a marked extent on ply layup.

  2. Pea lectin receptor-like kinase functions in salinity adaptation without yield penalty, by alleviating osmotic and ionic stresses and upregulating stress-responsive genes.

    PubMed

    Vaid, Neha; Pandey, Prashant; Srivastava, Vineet Kumar; Tuteja, Narendra

    2015-05-01

    Lectin receptor-like kinases (LecRLKs) are members of RLK family composed of lectin-like extracellular recognition domain, transmembrane domain and cytoplasmic kinase domain. LecRLKs are plasma membrane proteins believed to be involved in signal transduction. However, most of the members of the protein family even in plants have not been functionally well characterized. Herein, we show that Pisum sativum LecRLK (PsLecRLK) localized in plasma membrane systems and/or other regions of the cell and its transcript upregulated under salinity stress. Overexpression of PsLecRLK in transgenic tobacco plants confers salinity stress tolerance by alleviating both the ionic as well the osmotic component of salinity stress. The transgenic plants show better tissue compartmentalization of Na(+) and higher ROS scavenging activity which probably results in lower membrane damage, improved growth and yield maintenance even under salinity stress. Also, expression of several genes involved in cellular homeostasis is perturbed by PsLecRLK overexpression. Alleviation of osmotic and ionic components of salinity stress along with reduced oxidative damage and upregulation of stress-responsive genes in transgenic plants under salinity stress conditions could be possible mechanism facilitating enhanced stress tolerance. This study presents PsLecRLK as a promising candidate for crop improvement and also opens up new avenue to investigate its signalling pathway.

  3. Role of brassinosteroids in alleviation of phenanthrene–cadmium co-contamination-induced photosynthetic inhibition and oxidative stress in tomato

    PubMed Central

    Ahammed, Golam Jalal; Yu, Jingquan

    2013-01-01

    Heavy metal pollution often occurs together with organic contaminants. Brassinosteroids (BRs) induce plant tolerance to several abiotic stresses, including phenanthrene (PHE) and cadmium (Cd) stress. However, the role of BRs in PHE+Cd co-contamination-induced stress amelioration is unknown. Here, the interactive effects of PHE, Cd, and 24-epibrassinolide (EBR; a biologically active BR) were investigated in tomato plants. The application of Cd (100 µM) alone was more phytotoxic than PHE applied alone (100 µM); however, their combined application resulted in slightly improved photosynthetic activity and pigment content compared with Cd alone after a 40 d exposure. Accumulation of reactive oxygen species and membrane lipid peroxidation were induced by PHE and/or Cd; however, the differences in effect were insignificant between Cd and PHE+Cd. The foliar application of EBR (0.1 µM) to PHE- and/or Cd-stressed plants alleviated photosynthetic inhibition and oxidative stress by causing enhancement of the activity of the enzymes and related transcript levels of the antioxidant system, secondary metabolism, and the xenobiotic detoxification system. Additionally, PHE and/or Cd residues were significantly decreased in both the leaves and roots after application of EBR, more specifically in PHE+Cd-stressed plants when treated with EBR, indicating a possible improvement in detoxification of these pollutants. The findings thus suggest a potential interaction of EBR and PHE for Cd stress alleviation. These results advocate a positive role for EBR in reducing pollutant residues for food safety and also strengthening phytoremediation. PMID:23201830

  4. Role of brassinosteroids in alleviation of phenanthrene-cadmium co-contamination-induced photosynthetic inhibition and oxidative stress in tomato.

    PubMed

    Ahammed, Golam Jalal; Choudhary, Sikander Pal; Chen, Shuangchen; Xia, Xiaojian; Shi, Kai; Zhou, Yanhong; Yu, Jingquan

    2013-01-01

    Heavy metal pollution often occurs together with organic contaminants. Brassinosteroids (BRs) induce plant tolerance to several abiotic stresses, including phenanthrene (PHE) and cadmium (Cd) stress. However, the role of BRs in PHE+Cd co-contamination-induced stress amelioration is unknown. Here, the interactive effects of PHE, Cd, and 24-epibrassinolide (EBR; a biologically active BR) were investigated in tomato plants. The application of Cd (100 µM) alone was more phytotoxic than PHE applied alone (100 µM); however, their combined application resulted in slightly improved photosynthetic activity and pigment content compared with Cd alone after a 40 d exposure. Accumulation of reactive oxygen species and membrane lipid peroxidation were induced by PHE and/or Cd; however, the differences in effect were insignificant between Cd and PHE+Cd. The foliar application of EBR (0.1 µM) to PHE- and/or Cd-stressed plants alleviated photosynthetic inhibition and oxidative stress by causing enhancement of the activity of the enzymes and related transcript levels of the antioxidant system, secondary metabolism, and the xenobiotic detoxification system. Additionally, PHE and/or Cd residues were significantly decreased in both the leaves and roots after application of EBR, more specifically in PHE+Cd-stressed plants when treated with EBR, indicating a possible improvement in detoxification of these pollutants. The findings thus suggest a potential interaction of EBR and PHE for Cd stress alleviation. These results advocate a positive role for EBR in reducing pollutant residues for food safety and also strengthening phytoremediation.

  5. Thermal stresses in thick laminated composite shells

    NASA Technical Reports Server (NTRS)

    Yuan, F. G.

    1993-01-01

    The paper provides an analytical formulation to investigate the thermomechanical behavior of thick composite shells subjected to a temperature distribution which varies arbitrarily in the radial direction. For illustrative purposes, shells under uniform temperature change are presented. It is found that thermal twist would occur even for symmetric laminated shells. Under uniform temperature rise, results for off-axis graphite/epoxy shells show that extensional-shear coupling can cause tensile radial stress throughout the shell and tensile hoop stress in the inner region. Laminated graphite/epoxy shells can exhibit negative effective thermal expansion coefficients in the longitudinal and transverse directions. Finally, the stacking sequence has a strong influence on the thermal stress distributions.

  6. Residual Stresses Modeled in Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Freborg, A. M.; Ferguson, B. L.; Petrus, G. J.; Brindley, W. J.

    1998-01-01

    Thermal barrier coating (TBC) applications continue to increase as the need for greater engine efficiency in aircraft and land-based gas turbines increases. However, durability and reliability issues limit the benefits that can be derived from TBC's. A thorough understanding of the mechanisms that cause TBC failure is a key to increasing, as well as predicting, TBC durability. Oxidation of the bond coat has been repeatedly identified as one of the major factors affecting the durability of the ceramic top coat during service. However, the mechanisms by which oxidation facilitates TBC failure are poorly understood and require further characterization. In addition, researchers have suspected that other bond coat and top coat factors might influence TBC thermal fatigue life, both separately and through interactions with the mechanism of oxidation. These other factors include the bond coat coefficient of thermal expansion, the bond coat roughness, and the creep behavior of both the ceramic and bond coat layers. Although it is difficult to design an experiment to examine these factors unambiguously, it is possible to design a computer modeling "experiment" to examine the action and interaction of these factors, as well as to determine failure drivers for TBC's. Previous computer models have examined some of these factors separately to determine their effect on coating residual stresses, but none have examined all the factors concurrently. The purpose of this research, which was performed at DCT, Inc., in contract with the NASA Lewis Research Center, was to develop an inclusive finite element model to characterize the effects of oxidation on the residual stresses within the TBC system during thermal cycling as well as to examine the interaction of oxidation with the other factors affecting TBC life. The plasma sprayed, two-layer thermal barrier coating that was modeled incorporated a superalloy substrate, a NiCrAlY bond coat, and a ZrO2-8 wt % Y2O3 ceramic top coat. We

  7. Thermal analysis of thermoelectric power generator; Including thermal stresses

    NASA Astrophysics Data System (ADS)

    Al-Merbati, Abdulrahman Salman

    In recent years, the energy demand is increasing leads to use and utilization of clean energy becomes target of countries all over the world. Thermoelectric generator is one type of clean energy generators which is a solid-state device that converts heat energy into electrical energy through the Seebeck effect. With availability of, heat from different sources such as solar energy and waste energy from systems, thermoelectric research becomes important research topic and researchers investigates efficient means of generating electricity from thermoelectric generators. One of the important problems with a thermoelectric is development of high thermal stresses due to formation of temperature gradient across the thermoelectric generator. High thermal stress causes device failure through cracks or fractures and these short comings may reduce the efficiency or totally fail the device. In this thesis work, thermodynamic efficiency and thermal stresses developed in thermoelectric generator are analyzed numerically. The bismuth telluride (Bi2Te3) properties are used in simulation. Stress levels in thermoelectric device pins are computed for various pin geometric configurations. MASTER.

  8. Restoration of autophagy alleviates hepatic ER stress and impaired insulin signalling transduction in high fructose-fed male mice.

    PubMed

    Wang, Hao; Sun, Ruo-Qiong; Zeng, Xiao-Yi; Zhou, Xiu; Li, Songpei; Jo, Eunjung; Molero, Juan C; Ye, Ji-Ming

    2015-01-01

    High-carbohydrate (mainly fructose) consumption is a major dietary factor for hepatic insulin resistance, involving endoplasmic reticulum (ER) stress and lipid accumulation. Because autophagy has been implicated in ER stress, the present study investigated the role of autophagy in high-fructose (HFru) diet-induced hepatic ER stress and insulin resistance in male C57BL/6J mice. The results show that chronic HFru feeding induced glucose intolerance and impaired insulin signaling transduction in the liver, associated with ER stress and the accumulation of lipids. Intriguingly, hepatic autophagy was suppressed as a result of activation of mammalian target of rapamycin. The suppressed autophagy was detected within 6 hours after HFru feeding along with activation of both inositol-requiring enzyme 1 and protein kinase RNA-like endoplasmic reticulum kinase pathways. These events occurred prior to lipid accumulation or lipogenesis and were sufficient to blunt insulin signaling transduction with activation of c-Jun N-terminal kinase/inhibitory-κB kinase and serine phosphorylation of insulin receptor substrate 1. The stimulation of autophagy attenuated ER stress- and c-Jun N-terminal kinase/inhibitory-κB kinase-associated impairment in insulin signaling transduction in a mammalian target of rapamycin -independent manner. Taken together, our data suggest that restoration of autophagy functions disrupted by fructose is able to alleviate ER stress and improve insulin signaling transduction.

  9. Alleviation of exogenous 6-benzyladenine on two genotypes of eggplant (Solanum melongena Mill.) growth under salt stress.

    PubMed

    Wu, Xuexia; He, Jie; Chen, Jianlin; Yang, Shaojun; Zha, Dingshi

    2014-01-01

    Cytokinins were recently shown to control plant adaptation to environmental stresses. To characterize the roles of cytokinins in the tolerance of eggplant (Solanum melongena Mill.) to salt stress, the protective effects of 6-benzyladenine (6-BA) on the growth, photosynthesis, and antioxidant capacity in the leaves of two eggplant cultivars Huqie12 (salt-sensitive) and Huqie4 (salt-tolerant) were investigated. Under 90 mM NaCl stress, Huqie4 showed higher biomass accumulation and less oxidative damage compared to the Huqie12. Application of exogenous 10 μM 6-BA significantly alleviated the growth suppression caused by salt stress in two eggplant genotypes. In parallel with the growth, 6-BA application in salt-stressed plants resulted in enhanced chlorophyll contents, as well as photosynthetic parameters such as net CO2 assimilation rate (P n), stomatal conductance (g s), transpiration rate (E), and intercellular CO2 concentration (C i). Furthermore, exogenous 6-BA also significantly reduced the O2 (-) production rate and malondialdehyde content and markedly increased the antioxidant enzymes superoxide dismutase and peroxidase, the antioxidant metabolites ascorbate and reduced glutathione (GSH), and proline in both genotypes under salt stress. The results indicate that exogenous 6-BA is useful to improve the salt resistance of eggplant, which is most likely related to the increase in photosynthesis and antioxidant capacity.

  10. Thermal stress and diabetic complications

    NASA Astrophysics Data System (ADS)

    Ohtsuka, Yoshinori; Yabunaka, Noriyuki; Watanabe, Ichiro; Noro, Hiroshi; Fujisawa, Hiroyuki; Agishi, Yuko

    1995-06-01

    Activities of erythrocyte aldose reductase were compared in 34 normal subjects, 45 diabetic patients, and nine young men following immersion in water at 25, 39, and 42° C. Mean basal enzyme activity was 1.11 (SEM 0.12) U/g Hb and 2.07 (SEM 0.14) U/g Hb in normal controls and diabetic patients, respectively ( P<0.0001). Activities of the enzyme showed a good correlation with hemaglobin A1 (HbA1) concentrations ( P<0.01) but not with fasting plasma glucose concentrations. After immersion at 42° C for 10 min, enzyme activity was increased by 37.6% ( P<0.01); however, the activity decreased by 52.2% ( P<0.005) after immersion for 10 min at 39° C and by 47.0% ( P<0.05) at 25° C. These changes suggest that heat stress might aggravate diabetic complications, and body exposure to hot environmental conditions is not recommended for diabetic patients.

  11. Treadmill exercise alleviates stress-induced impairment of social interaction through 5-hydroxytryptamine 1A receptor activation in rats

    PubMed Central

    Kim, Tae-Woon; Lim, Baek-Vin; Kim, Kijeong; Seo, Jin-Hee; Kim, Chang-Ju

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) and its receptors tyrosine kinase B (trkB), and cyclic adenosine monophosphate response element binding protein (CREB) have been suggested as the neurobiological risk factors causing depressive disorder. Serotonin (5-hydroxytryptamine, 5-HT) plays an important role in the pathogenesis of depression. We in-vestigated the effect of treadmill exercise on social interaction in relation with BDNF and 5-HT expressions following stress in rats. Stress was induced by applying inescapable 0.2 mA electric foot shock to the rats for 7 days. The rats in the exercise groups were forced to run on a motorized treadmill for 30 min once a day for 4 weeks. Social interaction test and western blot for BDNF, TrkB, pCREB, and 5-HT1A in the hippocampus were performed. The results indicate that the spend time with unfamiliar partner was decreased by stress, in contrast, treadmill exercise increased the spending time in the stress-induced rats. Expressions of BDNF, TrkB, and pCREB were decreased by stress, in contrast, treadmill exercise enhanced expressions of BDNF, TrkB, and pCREB in the stress-induced rats. In addition, 5-HT1A receptor expression was de-creased by stress, in contrast, treadmill exercise enhanced 5-HT1A expression in the stress-induced rats. In the present study, treadmill exercise alleviated stress-induced social interaction impairment through enhancing hippocampal plasticity and serotonergic function in the hippocampus. These effects of treadmill exercise are achieved through 5-HT1A receptor activation. PMID:26331133

  12. Treadmill exercise alleviates stress-induced impairment of social interaction through 5-hydroxytryptamine 1A receptor activation in rats.

    PubMed

    Kim, Tae-Woon; Lim, Baek-Vin; Kim, Kijeong; Seo, Jin-Hee; Kim, Chang-Ju

    2015-08-01

    Brain-derived neurotrophic factor (BDNF) and its receptors tyrosine kinase B (trkB), and cyclic adenosine monophosphate response element binding protein (CREB) have been suggested as the neurobiological risk factors causing depressive disorder. Serotonin (5-hydroxytryptamine, 5-HT) plays an important role in the pathogenesis of depression. We in-vestigated the effect of treadmill exercise on social interaction in relation with BDNF and 5-HT expressions following stress in rats. Stress was induced by applying inescapable 0.2 mA electric foot shock to the rats for 7 days. The rats in the exercise groups were forced to run on a motorized treadmill for 30 min once a day for 4 weeks. Social interaction test and western blot for BDNF, TrkB, pCREB, and 5-HT1A in the hippocampus were performed. The results indicate that the spend time with unfamiliar partner was decreased by stress, in contrast, treadmill exercise increased the spending time in the stress-induced rats. Expressions of BDNF, TrkB, and pCREB were decreased by stress, in contrast, treadmill exercise enhanced expressions of BDNF, TrkB, and pCREB in the stress-induced rats. In addition, 5-HT1A receptor expression was de-creased by stress, in contrast, treadmill exercise enhanced 5-HT1A expression in the stress-induced rats. In the present study, treadmill exercise alleviated stress-induced social interaction impairment through enhancing hippocampal plasticity and serotonergic function in the hippocampus. These effects of treadmill exercise are achieved through 5-HT1A receptor activation.

  13. Teacher Stress: What It Is, Why It's Important, How It Can Be Alleviated

    ERIC Educational Resources Information Center

    Prilleltensky, Isaac; Neff, Marilyn; Bessell, Ann

    2016-01-01

    Teacher stress can be conceptualized as an imbalance between risk and protective factors. Stress emanates from risk factors at the personal, interpersonal, and organizational levels. When risk factors exceed protective factors, teacher ability to cope with adversity is inhibited, likely resulting in stress and pernicious consequences. In this…

  14. How Do You Spell Relief? Alleviating Job Stress Caused by Organizations and Executives.

    ERIC Educational Resources Information Center

    Ginsburg, Sigmund G.

    1991-01-01

    College business officers should examine whether they and their institutions are practicing stress-inducing activities, and modify current practice to reduce stress on employees. Stresses can originate in the organizational framework, managerial style, or manager personality. Review of individual and organizational actions possible causing stress…

  15. Carbon monoxide alleviates ethanol-induced oxidative damage and inflammatory stress through activating p38 MAPK pathway

    SciTech Connect

    Li, Yanyan; Gao, Chao; Shi, Yanru; Tang, Yuhan; Liu, Liang; Xiong, Ting; Du, Min; Xing, Mingyou; Liu, Liegang; Yao, Ping

    2013-11-15

    Stress-inducible protein heme oxygenase-1(HO-1) is well-appreciative to counteract oxidative damage and inflammatory stress involving the pathogenesis of alcoholic liver diseases (ALD). The potential role and signaling pathways of HO-1 metabolite carbon monoxide (CO), however, still remained unclear. To explore the precise mechanisms, ethanol-dosed adult male Balb/c mice (5.0 g/kg.bw.) or ethanol-incubated primary rat hepatocytes (100 mmol/L) were pretreated by tricarbonyldichlororuthenium (II) dimmer (CORM-2, 8 mg/kg for mice or 20 μmol/L for hepatocytes), as well as other pharmacological reagents. Our data showed that CO released from HO-1 induction by quercetin prevented ethanol-derived oxidative injury, which was abolished by CO scavenger hemoglobin. The protection was mimicked by CORM-2 with the attenuation of GSH depletion, SOD inactivation, MDA overproduction, and the leakage of AST, ALT or LDH in serum and culture medium induced by ethanol. Moreover, CORM-2 injection or incubation stimulated p38 phosphorylation and suppressed abnormal Tnfa and IL-6, accompanying the alleviation of redox imbalance induced by ethanol and aggravated by inflammatory factors. The protective role of CORM-2 was abolished by SB203580 (p38 inhibitor) but not by PD98059 (ERK inhibitor) or SP600125 (JNK inhibitor). Thus, HO-1 released CO prevented ethanol-elicited hepatic oxidative damage and inflammatory stress through activating p38 MAPK pathway, suggesting a potential therapeutic role of gaseous signal molecule on ALD induced by naturally occurring phytochemicals. - Highlights: • CO alleviated ethanol-derived liver oxidative and inflammatory stress in mice. • CO eased ethanol and inflammatory factor-induced oxidative damage in hepatocytes. • The p38 MAPK is a key signaling mechanism for the protective function of CO in ALD.

  16. Thermal stress depletes energy reserves in Drosophila

    PubMed Central

    Klepsatel, Peter; Gáliková, Martina; Xu, Yanjun; Kühnlein, Ronald P.

    2016-01-01

    Understanding how environmental temperature affects metabolic and physiological functions is of crucial importance to assess the impacts of climate change on organisms. Here, we used different laboratory strains and a wild-caught population of the fruit fly Drosophila melanogaster to examine the effect of temperature on the body energy reserves of an ectothermic organism. We found that permanent ambient temperature elevation or transient thermal stress causes significant depletion of body fat stores. Surprisingly, transient thermal stress induces a lasting “memory effect” on body fat storage, which also reduces survivorship of the flies upon food deprivation later after stress exposure. Functional analyses revealed that an intact heat-shock response is essential to protect flies from temperature-dependent body fat decline. Moreover, we found that the temperature-dependent body fat reduction is caused at least in part by apoptosis of fat body cells, which might irreversibly compromise the fat storage capacity of the flies. Altogether, our results provide evidence that thermal stress has a significant negative impact on organismal energy reserves, which in turn might affect individual fitness. PMID:27641694

  17. Thermal stress depletes energy reserves in Drosophila.

    PubMed

    Klepsatel, Peter; Gáliková, Martina; Xu, Yanjun; Kühnlein, Ronald P

    2016-09-19

    Understanding how environmental temperature affects metabolic and physiological functions is of crucial importance to assess the impacts of climate change on organisms. Here, we used different laboratory strains and a wild-caught population of the fruit fly Drosophila melanogaster to examine the effect of temperature on the body energy reserves of an ectothermic organism. We found that permanent ambient temperature elevation or transient thermal stress causes significant depletion of body fat stores. Surprisingly, transient thermal stress induces a lasting "memory effect" on body fat storage, which also reduces survivorship of the flies upon food deprivation later after stress exposure. Functional analyses revealed that an intact heat-shock response is essential to protect flies from temperature-dependent body fat decline. Moreover, we found that the temperature-dependent body fat reduction is caused at least in part by apoptosis of fat body cells, which might irreversibly compromise the fat storage capacity of the flies. Altogether, our results provide evidence that thermal stress has a significant negative impact on organismal energy reserves, which in turn might affect individual fitness.

  18. Thermal stress depletes energy reserves in Drosophila.

    PubMed

    Klepsatel, Peter; Gáliková, Martina; Xu, Yanjun; Kühnlein, Ronald P

    2016-01-01

    Understanding how environmental temperature affects metabolic and physiological functions is of crucial importance to assess the impacts of climate change on organisms. Here, we used different laboratory strains and a wild-caught population of the fruit fly Drosophila melanogaster to examine the effect of temperature on the body energy reserves of an ectothermic organism. We found that permanent ambient temperature elevation or transient thermal stress causes significant depletion of body fat stores. Surprisingly, transient thermal stress induces a lasting "memory effect" on body fat storage, which also reduces survivorship of the flies upon food deprivation later after stress exposure. Functional analyses revealed that an intact heat-shock response is essential to protect flies from temperature-dependent body fat decline. Moreover, we found that the temperature-dependent body fat reduction is caused at least in part by apoptosis of fat body cells, which might irreversibly compromise the fat storage capacity of the flies. Altogether, our results provide evidence that thermal stress has a significant negative impact on organismal energy reserves, which in turn might affect individual fitness. PMID:27641694

  19. Nitric oxide and hydrogen peroxide alleviate drought stress in marigold explants and promote its adventitious root development.

    PubMed

    Liao, Wei-Biao; Huang, Gao-Bao; Yu, Ji-Hua; Zhang, Mei-Ling

    2012-09-01

    Drought stress is one of the most important environmental factors that regulates plant growth and development. In this study, we examined the effects of nitric oxide (NO) and hydrogen peroxide (H(2)O(2)) on adventitious rooting in marigold (Tagetes erecta L.) under drought stress. The results showed that the promoting effect of NO or H(2)O(2) on rooting under drought stress was dose-dependent, with a maximal biological response at 10 μM NO donor sodium nitroprusside (SNP) or 600 μM H(2)O(2). Results also indicated that endogenous NO and H(2)O(2) may play crucial roles in rooting under drought conditions, and H(2)O(2) may be involved in rooting promoted by NO under drought stress. NO or H(2)O(2) treatment attenuated the destruction of mesophyll cells ultrastructure by drought stress. Similarly, NO or H(2)O(2) increased leaf chlorophyll content, chlorophyll fluorescence parameters (Fv/Fm, ΦPS II and qP), and hypocotyls soluble carbohydrate and protein content, while decreasing starch content. Results suggest that the protection of mesophyll cells ultrastructure by NO or H(2)O(2) under drought conditions improves the photosynthetic performance of leaves and alleviates the negative effects of drought on carbohydrate and nitrogen accumulation in explants, thereby adventitious rooting being promoted. PMID:22771430

  20. Spermine alleviates drought stress in white clover with different resistance by influencing carbohydrate metabolism and dehydrins synthesis.

    PubMed

    Li, Zhou; Jing, Wen; Peng, Yan; Zhang, Xin Quan; Ma, Xiao; Huang, Lin Kai; Yan, Yan-Hong

    2015-01-01

    The objective of this research was to analyse whether ameliorating drought stress through exogenously applied spermine (Spm) was related to carbohydrate metabolism, dehydrins accumulation and the transcription of genes encoding dehydrins in two white clovers (drought-susceptible cv. 'Ladino' and drought-resistant cv. 'Haifa') under controlled drying conditions for 10 days. The results show that the application of Spm effectively alleviates negative effects caused by drought stress in both cultivars. Exogenous Spm led to accumulation of more water-soluble carbohydrates (WSC), sucrose, fructose and sorbitol in both cultivars under drought stress, and also significantly elevated glucose content in leaves of drought-resistant cv. 'Haifa', but had no effect on drought-susceptible cv. 'Ladino'. Accordingly, the key enzyme activities of sucrose and sorbitol metabolism changed along with the application of Spm under drought stress. Spm induced a significant increase in sucrose phosphate synthase (SPS) or sorbitol dehydrogenase (SDH) activity, but decrease in sucrose synthetase (SS) activity when two cultivars were subjected to drought. In addition, the improved accumulation of dehydrins induced by exogenous Spm coincided with three genes expression which was responsible for dehydrins synthesis. But Spm-induced transcript level of dehydrin genes increased earlier in cv. 'Ladino' than that in cv. 'Haifa'. Thus, these results suggest that ameliorating drought stress through exogenously applied Spm may be associated with increased carbohydrate accumulation and dehydrins synthesis. There are differences between drought-susceptible and -resistant white clover cultivars related to Spm regulation of WSC metabolism and dehydrins expression.

  1. Thermal-Stress-Free Fasteners for Orthotropic Materials

    NASA Technical Reports Server (NTRS)

    Blosser, M. L.; Mcwithey, R. R.; Kearns, T. F.

    1986-01-01

    Theoretical basis for design of thermal-stress-free fasteners developed. Two-dimensional analysis defines shapes of interfaces between materials. Design technique determines fastener shapes that maintain tight thermal-stress-free joint while joint undergoes uniform temperature change.

  2. Thermal stress fracturing of magma simulant materials

    SciTech Connect

    Wemple, R.P.; Longcope, D.B.

    1986-10-01

    Direct contact heat exchanger concepts for the extraction of energy from magma chambers are being studied as part of the DOE-funded Magma Energy Research Program at Sandia National Laboratories. These concepts require the solidification of molten material by a coolant circulated through a borehole drilled into the magma and subsequent fracture of the solid either as a natural consequence of thermal stress or by deliberate design (intentional flaws, high pressure, etc.). This report summarizes the results of several thermal stress fracturing experiments performed in the laboratory and compares the results with an analysis developed for use as a predictive tool. Information gained from this test series has been the basis for additional work now under way to simulate magma melt solidification processes.

  3. Blindness, Diabetes, and Amputation: Alleviation of Depression and Pain through Thermal Biofeedback Therapy.

    ERIC Educational Resources Information Center

    Needham, W. E.; And Others

    1993-01-01

    A 39-year-old man who was blind, diabetic, and had a double amputation with chronic renal failure and peripheral vascular disease was treated with thermal biofeedback to reduce his depression through increased self-control, to minimize pain, and to facilitate healing of a pregangrenous hand. On treatment discharge, his mental and physical states…

  4. Nitric Oxide Alleviates Salt Stress Inhibited Photosynthetic Performance by Interacting with Sulfur Assimilation in Mustard.

    PubMed

    Fatma, Mehar; Masood, Asim; Per, Tasir S; Khan, Nafees A

    2016-01-01

    The role of nitric oxide (NO) and sulfur (S) on stomatal responses and photosynthetic performance was studied in mustard (Brassica juncea L.) in presence or absence of salt stress. The combined application of 100 μM NO (as sodium nitroprusside) and 200 mg S kg(-1) soil (S) more prominently influenced stomatal behavior, photosynthetic and growth performance both in the absence and presence of salt stress. The chloroplasts from salt-stressed plants had disorganized chloroplast thylakoids, but combined application of NO and S resulted in well-developed chloroplast thylakoids and properly stacked grana. The leaves from plants receiving NO plus S exhibited lower superoxide ion accumulation under salt stress than the plants receiving NO or S. These plants also exhibited increased activity of ATP-sulfurylase (ATPS), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) and optimized NO generation that helped in minimizing oxidative stress. The enhanced S-assimilation of these plants receiving NO plus S resulted in increased production of cysteine (Cys) and reduced glutathione (GSH). These findings indicated that NO influenced photosynthesis under salt stress by regulating oxidative stress and its effects on S-assimilation, an antioxidant system and NO generation. The results suggest that NO improves photosynthetic performance of plants grown under salt stress more effectively when plants received S. PMID:27200007

  5. Nitric Oxide Alleviates Salt Stress Inhibited Photosynthetic Performance by Interacting with Sulfur Assimilation in Mustard

    PubMed Central

    Fatma, Mehar; Masood, Asim; Per, Tasir S.; Khan, Nafees A.

    2016-01-01

    The role of nitric oxide (NO) and sulfur (S) on stomatal responses and photosynthetic performance was studied in mustard (Brassica juncea L.) in presence or absence of salt stress. The combined application of 100 μM NO (as sodium nitroprusside) and 200 mg S kg−1 soil (S) more prominently influenced stomatal behavior, photosynthetic and growth performance both in the absence and presence of salt stress. The chloroplasts from salt-stressed plants had disorganized chloroplast thylakoids, but combined application of NO and S resulted in well-developed chloroplast thylakoids and properly stacked grana. The leaves from plants receiving NO plus S exhibited lower superoxide ion accumulation under salt stress than the plants receiving NO or S. These plants also exhibited increased activity of ATP-sulfurylase (ATPS), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) and optimized NO generation that helped in minimizing oxidative stress. The enhanced S-assimilation of these plants receiving NO plus S resulted in increased production of cysteine (Cys) and reduced glutathione (GSH). These findings indicated that NO influenced photosynthesis under salt stress by regulating oxidative stress and its effects on S-assimilation, an antioxidant system and NO generation. The results suggest that NO improves photosynthetic performance of plants grown under salt stress more effectively when plants received S. PMID:27200007

  6. Thermal stress analysis for a wood composite blade. [wind turbines

    NASA Technical Reports Server (NTRS)

    Fu, K. C.; Harb, A.

    1984-01-01

    Heat conduction throughout the blade and the distribution of thermal stresses caused by the temperature distribution were determined for a laminated wood wind turbine blade in both the horizontal and vertical positions. Results show that blade cracking is not due to thermal stresses induced by insulation. A method and practical example of thermal stress analysis for an engineering body of orthotropic materials is presented.

  7. 40 CFR 91.427 - Catalyst thermal stress resistance evaluation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Catalyst thermal stress resistance... Procedures § 91.427 Catalyst thermal stress resistance evaluation. (a)(1) The purpose of the evaluation procedure specified in this section is to determine the effect of thermal stress on catalyst...

  8. 40 CFR 90.427 - Catalyst thermal stress resistance evaluation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Catalyst thermal stress resistance... Gaseous Exhaust Test Procedures § 90.427 Catalyst thermal stress resistance evaluation. (a) The purpose of the evaluation procedure specified in this section is to determine the effect of thermal stress...

  9. 40 CFR 91.427 - Catalyst thermal stress resistance evaluation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Catalyst thermal stress resistance... Procedures § 91.427 Catalyst thermal stress resistance evaluation. (a)(1) The purpose of the evaluation procedure specified in this section is to determine the effect of thermal stress on catalyst...

  10. 40 CFR 90.427 - Catalyst thermal stress resistance evaluation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Catalyst thermal stress resistance... Gaseous Exhaust Test Procedures § 90.427 Catalyst thermal stress resistance evaluation. (a) The purpose of the evaluation procedure specified in this section is to determine the effect of thermal stress...

  11. 40 CFR 91.427 - Catalyst thermal stress resistance evaluation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Catalyst thermal stress resistance... Procedures § 91.427 Catalyst thermal stress resistance evaluation. (a)(1) The purpose of the evaluation procedure specified in this section is to determine the effect of thermal stress on catalyst...

  12. 40 CFR 90.427 - Catalyst thermal stress resistance evaluation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Catalyst thermal stress resistance... Gaseous Exhaust Test Procedures § 90.427 Catalyst thermal stress resistance evaluation. (a) The purpose of the evaluation procedure specified in this section is to determine the effect of thermal stress...

  13. 40 CFR 90.329 - Catalyst thermal stress test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Catalyst thermal stress test. 90.329... Equipment Provisions § 90.329 Catalyst thermal stress test. (a) Oven characteristics. The oven used for... effect of thermal stress on catalyst conversion efficiency. (2) The synthetic exhaust gas mixture...

  14. 40 CFR 90.329 - Catalyst thermal stress test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Catalyst thermal stress test. 90.329... Equipment Provisions § 90.329 Catalyst thermal stress test. (a) Oven characteristics. The oven used for... effect of thermal stress on catalyst conversion efficiency. (2) The synthetic exhaust gas mixture...

  15. 40 CFR 90.329 - Catalyst thermal stress test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Catalyst thermal stress test. 90.329... Equipment Provisions § 90.329 Catalyst thermal stress test. (a) Oven characteristics. The oven used for... effect of thermal stress on catalyst conversion efficiency. (2) The synthetic exhaust gas mixture...

  16. 40 CFR 90.329 - Catalyst thermal stress test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Catalyst thermal stress test. 90.329... Equipment Provisions § 90.329 Catalyst thermal stress test. (a) Oven characteristics. The oven used for... effect of thermal stress on catalyst conversion efficiency. (2) The synthetic exhaust gas mixture...

  17. 40 CFR 90.329 - Catalyst thermal stress test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Catalyst thermal stress test. 90.329... Equipment Provisions § 90.329 Catalyst thermal stress test. (a) Oven characteristics. The oven used for... effect of thermal stress on catalyst conversion efficiency. (2) The synthetic exhaust gas mixture...

  18. 40 CFR 91.427 - Catalyst thermal stress resistance evaluation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Catalyst thermal stress resistance... Procedures § 91.427 Catalyst thermal stress resistance evaluation. (a)(1) The purpose of the evaluation procedure specified in this section is to determine the effect of thermal stress on catalyst...

  19. 40 CFR 90.427 - Catalyst thermal stress resistance evaluation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Catalyst thermal stress resistance... Gaseous Exhaust Test Procedures § 90.427 Catalyst thermal stress resistance evaluation. (a) The purpose of the evaluation procedure specified in this section is to determine the effect of thermal stress...

  20. 40 CFR 90.427 - Catalyst thermal stress resistance evaluation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Catalyst thermal stress resistance... Gaseous Exhaust Test Procedures § 90.427 Catalyst thermal stress resistance evaluation. (a) The purpose of the evaluation procedure specified in this section is to determine the effect of thermal stress...

  1. 40 CFR 91.427 - Catalyst thermal stress resistance evaluation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Catalyst thermal stress resistance... Procedures § 91.427 Catalyst thermal stress resistance evaluation. (a)(1) The purpose of the evaluation procedure specified in this section is to determine the effect of thermal stress on catalyst...

  2. Thermal treatment and leaching of biochar alleviates plant growth inhibition from mobile organic compounds

    PubMed Central

    Sackett, Tara E.; Thomas, Sean C.

    2016-01-01

    Recent meta-analyses of plant responses to biochar boast positive average effects of between 10 and 40%. Plant responses, however, vary greatly across systems, and null or negative biochar effects are increasingly reported. The mechanisms responsible for such responses remain unclear. In a glasshouse experiment we tested the effects of three forestry residue wood biochars, applied at five dosages (0, 5, 10, 20, and 50 t/ha) to a temperate forest drystic cambisol as direct surface applications and as complete soil mixes on the herbaceous pioneers Lolium multiflorum and Trifolium repens. Null and negative effects of biochar on growth were found in most cases. One potential cause for null and negative plant responses to biochar is plant exposure to mobile compounds produced during pyrolysis that leach or evolve following additions of biochars to soil. In a second glasshouse experiment we examined the effects of simple leaching and heating techniques to ameliorate potentially phytotoxic effects of volatile and leachable compounds released from biochar. We used Solid Phase Microextraction (SPME)–gas chromatography–mass spectrometry (GC-MS) to qualitatively describe organic compounds in both biochar (through headspace extraction), and in the water leachates (through direct injection). Convection heating and water leaching of biochar prior to application alleviated growth inhibition. Additionally, growth was inhibited when filtrate from water-leached biochar was applied following germination. SPME-GC-MS detected primarily short-chained carboxylic acids and phenolics in both the leachates and solid chars, with relatively high concentrations of several known phytotoxic compounds including acetic acid, butyric acid, 2,4-di-tert-butylphenol and benzoic acid. We speculate that variable plant responses to phytotoxic organic compounds leached from biochars may largely explain negative plant growth responses and also account for strongly species-specific patterns of plant

  3. Thermal treatment and leaching of biochar alleviates plant growth inhibition from mobile organic compounds.

    PubMed

    Gale, Nigel V; Sackett, Tara E; Thomas, Sean C

    2016-01-01

    Recent meta-analyses of plant responses to biochar boast positive average effects of between 10 and 40%. Plant responses, however, vary greatly across systems, and null or negative biochar effects are increasingly reported. The mechanisms responsible for such responses remain unclear. In a glasshouse experiment we tested the effects of three forestry residue wood biochars, applied at five dosages (0, 5, 10, 20, and 50 t/ha) to a temperate forest drystic cambisol as direct surface applications and as complete soil mixes on the herbaceous pioneers Lolium multiflorum and Trifolium repens. Null and negative effects of biochar on growth were found in most cases. One potential cause for null and negative plant responses to biochar is plant exposure to mobile compounds produced during pyrolysis that leach or evolve following additions of biochars to soil. In a second glasshouse experiment we examined the effects of simple leaching and heating techniques to ameliorate potentially phytotoxic effects of volatile and leachable compounds released from biochar. We used Solid Phase Microextraction (SPME)-gas chromatography-mass spectrometry (GC-MS) to qualitatively describe organic compounds in both biochar (through headspace extraction), and in the water leachates (through direct injection). Convection heating and water leaching of biochar prior to application alleviated growth inhibition. Additionally, growth was inhibited when filtrate from water-leached biochar was applied following germination. SPME-GC-MS detected primarily short-chained carboxylic acids and phenolics in both the leachates and solid chars, with relatively high concentrations of several known phytotoxic compounds including acetic acid, butyric acid, 2,4-di-tert-butylphenol and benzoic acid. We speculate that variable plant responses to phytotoxic organic compounds leached from biochars may largely explain negative plant growth responses and also account for strongly species-specific patterns of plant

  4. Thermal treatment and leaching of biochar alleviates plant growth inhibition from mobile organic compounds

    PubMed Central

    Sackett, Tara E.; Thomas, Sean C.

    2016-01-01

    Recent meta-analyses of plant responses to biochar boast positive average effects of between 10 and 40%. Plant responses, however, vary greatly across systems, and null or negative biochar effects are increasingly reported. The mechanisms responsible for such responses remain unclear. In a glasshouse experiment we tested the effects of three forestry residue wood biochars, applied at five dosages (0, 5, 10, 20, and 50 t/ha) to a temperate forest drystic cambisol as direct surface applications and as complete soil mixes on the herbaceous pioneers Lolium multiflorum and Trifolium repens. Null and negative effects of biochar on growth were found in most cases. One potential cause for null and negative plant responses to biochar is plant exposure to mobile compounds produced during pyrolysis that leach or evolve following additions of biochars to soil. In a second glasshouse experiment we examined the effects of simple leaching and heating techniques to ameliorate potentially phytotoxic effects of volatile and leachable compounds released from biochar. We used Solid Phase Microextraction (SPME)–gas chromatography–mass spectrometry (GC-MS) to qualitatively describe organic compounds in both biochar (through headspace extraction), and in the water leachates (through direct injection). Convection heating and water leaching of biochar prior to application alleviated growth inhibition. Additionally, growth was inhibited when filtrate from water-leached biochar was applied following germination. SPME-GC-MS detected primarily short-chained carboxylic acids and phenolics in both the leachates and solid chars, with relatively high concentrations of several known phytotoxic compounds including acetic acid, butyric acid, 2,4-di-tert-butylphenol and benzoic acid. We speculate that variable plant responses to phytotoxic organic compounds leached from biochars may largely explain negative plant growth responses and also account for strongly species-specific patterns of plant

  5. Thermal treatment and leaching of biochar alleviates plant growth inhibition from mobile organic compounds.

    PubMed

    Gale, Nigel V; Sackett, Tara E; Thomas, Sean C

    2016-01-01

    Recent meta-analyses of plant responses to biochar boast positive average effects of between 10 and 40%. Plant responses, however, vary greatly across systems, and null or negative biochar effects are increasingly reported. The mechanisms responsible for such responses remain unclear. In a glasshouse experiment we tested the effects of three forestry residue wood biochars, applied at five dosages (0, 5, 10, 20, and 50 t/ha) to a temperate forest drystic cambisol as direct surface applications and as complete soil mixes on the herbaceous pioneers Lolium multiflorum and Trifolium repens. Null and negative effects of biochar on growth were found in most cases. One potential cause for null and negative plant responses to biochar is plant exposure to mobile compounds produced during pyrolysis that leach or evolve following additions of biochars to soil. In a second glasshouse experiment we examined the effects of simple leaching and heating techniques to ameliorate potentially phytotoxic effects of volatile and leachable compounds released from biochar. We used Solid Phase Microextraction (SPME)-gas chromatography-mass spectrometry (GC-MS) to qualitatively describe organic compounds in both biochar (through headspace extraction), and in the water leachates (through direct injection). Convection heating and water leaching of biochar prior to application alleviated growth inhibition. Additionally, growth was inhibited when filtrate from water-leached biochar was applied following germination. SPME-GC-MS detected primarily short-chained carboxylic acids and phenolics in both the leachates and solid chars, with relatively high concentrations of several known phytotoxic compounds including acetic acid, butyric acid, 2,4-di-tert-butylphenol and benzoic acid. We speculate that variable plant responses to phytotoxic organic compounds leached from biochars may largely explain negative plant growth responses and also account for strongly species-specific patterns of plant

  6. Silicon (Si) alleviates cotton (Gossypium hirsutum L.) from zinc (Zn) toxicity stress by limiting Zn uptake and oxidative damage.

    PubMed

    Anwaar, Shad Ali; Ali, Shafaqat; Ali, Skhawat; Ishaque, Wajid; Farid, Mujahid; Farooq, Muhammad Ahsan; Najeeb, Ullah; Abbas, Farhat; Sharif, Muhammad

    2015-03-01

    Silicon (Si) is as an important fertilizer element, which has been found effective in enhancing plant tolerance to variety of biotic and a-biotic stresses. This study investigates the Si potential to alleviate zinc (Zn) toxicity stress in cotton (Gossypium hirsutum L.). Cotton plants were grown in hydroponics and exposed to different Zn concentration, 0, 25, and 50 μM, alone and/or in combination with 1 mM Si. Incremental Zn concentration in growth media instigated the cellular oxidative damage that was evident from elevated levels of hydrogen peroxide (H2O2), electrolyte leakage, and malondialdehyde (MDA) and consequently inhibited cotton growth, biomass, chlorophyll pigments, and photosynthetic process. Application of Si significantly suppressed Zn accumulation in various plant parts, i.e., roots, stems, and leaves and thus promoted biomass, photosynthetic, growth parameters, and antioxidant enzymes activity of Zn-stressed as well unstressed plants. In addition, Si reduced the MDA and H2O2 production and electrolyte leakage suggesting its role in protecting cotton plants from Zn toxicity-induced oxidative damage. Thus, the study indicated that exogenous Si application could improve growth and development of cotton crop experiencing Zn toxicity stress by limiting Zn bioavailability and oxidative damage.

  7. Current developments in arbuscular mycorrhizal fungi research and its role in salinity stress alleviation: a biotechnological perspective.

    PubMed

    Kumar, Ashwani; Dames, Joanna F; Gupta, Aditi; Sharma, Satyawati; Gilbert, Jack A; Ahmad, Parvaiz

    2015-01-01

    Arbuscular mycorrhizal fungi (AMF) form widespread symbiotic associations with 80% of known land plants. They play a major role in plant nutrition, growth, water absorption, nutrient cycling and protection from pathogens, and as a result, contribute to ecosystem processes. Salinity stress conditions undoubtedly limit plant productivity and, therefore, the role of AMF as a biological tool for improving plant salt stress tolerance, is gaining economic importance worldwide. However, this approach requires a better understanding of how plants and AMF intimately interact with each other in saline environments and how this interaction leads to physiological changes in plants. This knowledge is important to develop sustainable strategies for successful utilization of AMF to improve plant health under a variety of stress conditions. Recent advances in the field of molecular biology, "omics" technology and advanced microscopy can provide new insight about these mechanisms of interaction between AMF and plants, as well as other microbes. This review mainly discusses the effect of salinity on AMF and plants, and role of AMF in alleviation of salinity stress including insight on methods for AMF identification. The focus remains on latest advancements in mycorrhizal research that can potentially offer an integrative understanding of the role of AMF in salinity tolerance and sustainable crop production. PMID:24708070

  8. Evaluation of arbuscular mycorrhizal fungi capacity to alleviate abiotic stress of olive (Olea europaea L.) plants at different transplant conditions.

    PubMed

    Bompadre, María Josefina; Pérgola, Mariana; Fernández Bidondo, Laura; Colombo, Roxana Paula; Silvani, Vanesa Analía; Pardo, Alejandro Guillermo; Ocampo, Juan Antonio; Godeas, Alicia Margarita

    2014-01-01

    The capacity of roots to sense soil physicochemical parameters plays an essential role in maintaining plant nutritional and developmental functions under abiotic stress. These conditions generate reactive oxygen species (ROS) in plant tissues causing oxidation of proteins and lipids among others. Some plants have developed adaptive mechanisms to counteract such adverse conditions such as symbiotic association with arbuscular mycorrhizal fungi (AMF). AMF enhance plant growth and improve transplant survival by protecting host plants against environmental stresses. The aim of this study was to evaluate the alleviation of transplanting stress by two strains of Rhizophagus irregularis (GC2 and GA5) in olive. Our results show that olive plants have an additional energetic expense in growth due to an adaptative response to the growing stage and to the mycorrhizal colonization at the first transplant. However, at the second transplant the coinoculation improves olive plant growth and protects against oxidative stress followed by the GA5-inoculation. In conclusion, a combination of two AMF strains at the beginning of olive propagation produces vigorous plants successfully protected in field cultivation even with an additional cost at the beginning of growth.

  9. Evaluation of Arbuscular Mycorrhizal Fungi Capacity to Alleviate Abiotic Stress of Olive (Olea europaea L.) Plants at Different Transplant Conditions

    PubMed Central

    Bompadre, María Josefina; Pérgola, Mariana; Fernández Bidondo, Laura; Colombo, Roxana Paula; Silvani, Vanesa Analía; Pardo, Alejandro Guillermo; Ocampo, Juan Antonio; Godeas, Alicia Margarita

    2014-01-01

    The capacity of roots to sense soil physicochemical parameters plays an essential role in maintaining plant nutritional and developmental functions under abiotic stress. These conditions generate reactive oxygen species (ROS) in plant tissues causing oxidation of proteins and lipids among others. Some plants have developed adaptive mechanisms to counteract such adverse conditions such as symbiotic association with arbuscular mycorrhizal fungi (AMF). AMF enhance plant growth and improve transplant survival by protecting host plants against environmental stresses. The aim of this study was to evaluate the alleviation of transplanting stress by two strains of Rhizophagus irregularis (GC2 and GA5) in olive. Our results show that olive plants have an additional energetic expense in growth due to an adaptative response to the growing stage and to the mycorrhizal colonization at the first transplant. However, at the second transplant the coinoculation improves olive plant growth and protects against oxidative stress followed by the GA5-inoculation. In conclusion, a combination of two AMF strains at the beginning of olive propagation produces vigorous plants successfully protected in field cultivation even with an additional cost at the beginning of growth. PMID:24688382

  10. Evaluation of arbuscular mycorrhizal fungi capacity to alleviate abiotic stress of olive (Olea europaea L.) plants at different transplant conditions.

    PubMed

    Bompadre, María Josefina; Pérgola, Mariana; Fernández Bidondo, Laura; Colombo, Roxana Paula; Silvani, Vanesa Analía; Pardo, Alejandro Guillermo; Ocampo, Juan Antonio; Godeas, Alicia Margarita

    2014-01-01

    The capacity of roots to sense soil physicochemical parameters plays an essential role in maintaining plant nutritional and developmental functions under abiotic stress. These conditions generate reactive oxygen species (ROS) in plant tissues causing oxidation of proteins and lipids among others. Some plants have developed adaptive mechanisms to counteract such adverse conditions such as symbiotic association with arbuscular mycorrhizal fungi (AMF). AMF enhance plant growth and improve transplant survival by protecting host plants against environmental stresses. The aim of this study was to evaluate the alleviation of transplanting stress by two strains of Rhizophagus irregularis (GC2 and GA5) in olive. Our results show that olive plants have an additional energetic expense in growth due to an adaptative response to the growing stage and to the mycorrhizal colonization at the first transplant. However, at the second transplant the coinoculation improves olive plant growth and protects against oxidative stress followed by the GA5-inoculation. In conclusion, a combination of two AMF strains at the beginning of olive propagation produces vigorous plants successfully protected in field cultivation even with an additional cost at the beginning of growth. PMID:24688382

  11. Coral thermal tolerance: tuning gene expression to resist thermal stress.

    PubMed

    Bellantuono, Anthony J; Granados-Cifuentes, Camila; Miller, David J; Hoegh-Guldberg, Ove; Rodriguez-Lanetty, Mauricio

    2012-01-01

    The acclimatization capacity of corals is a critical consideration in the persistence of coral reefs under stresses imposed by global climate change. The stress history of corals plays a role in subsequent response to heat stress, but the transcriptomic changes associated with these plastic changes have not been previously explored. In order to identify host transcriptomic changes associated with acquired thermal tolerance in the scleractinian coral Acropora millepora, corals preconditioned to a sub-lethal temperature of 3°C below bleaching threshold temperature were compared to both non-preconditioned corals and untreated controls using a cDNA microarray platform. After eight days of hyperthermal challenge, conditions under which non-preconditioned corals bleached and preconditioned corals (thermal-tolerant) maintained Symbiodinium density, a clear differentiation in the transcriptional profiles was revealed among the condition examined. Among these changes, nine differentially expressed genes separated preconditioned corals from non-preconditioned corals, with 42 genes differentially expressed between control and preconditioned treatments, and 70 genes between non-preconditioned corals and controls. Differentially expressed genes included components of an apoptotic signaling cascade, which suggest the inhibition of apoptosis in preconditioned corals. Additionally, lectins and genes involved in response to oxidative stress were also detected. One dominant pattern was the apparent tuning of gene expression observed between preconditioned and non-preconditioned treatments; that is, differences in expression magnitude were more apparent than differences in the identity of genes differentially expressed. Our work revealed a transcriptomic signature underlying the tolerance associated with coral thermal history, and suggests that understanding the molecular mechanisms behind physiological acclimatization would be critical for the modeling of reefs in impending climate

  12. A nonmolecular derivation of Maxwell's thermal-creep boundary condition in gases and liquids via application of the LeChatelier-Braun principle to Maxwell's thermal stress

    NASA Astrophysics Data System (ADS)

    Brenner, Howard

    2009-05-01

    According to the LeChatelier-Braun principle, when a closed quiescent system initially in an equilibrium or unstressed steady state is subjected to an externally imposed "stress" it responds in a manner tending to alleviate that stress. Use of this entropically based qualitative rule, in combination with the notion of Maxwell thermal stresses existing in nonisothermal gases and liquids, enables one to (i) derive Maxwell's thermal-creep boundary condition prevailing at the boundary between a solid and a fluid (either gas or liquid) and (ii) rationalize the phenomenon of thermophoresis in liquids, for which, in contrast with the case of gases, an elementary explanation is currently lacking. These two objectives are achieved by quantitatively interpreting the heretofore qualitative LeChatelier-Braun notion of stress in the present context as being the fluid's stress tensor, the latter including Maxwell's thermal stress. In effect, thermophoretic particle motion is interpreted as the manifestation of the fluid's attempt to expel the particle from its interior so as to alleviate the thermal stress that would otherwise ensue were the particle to remain at rest (thus obeying the traditional no slip rather than thermal-creep boundary condition) following its introduction into the previously stress-free quiescent fluid. With Kn the Knudsen number in the case of rarefied gases, Maxwell's thermal stress constitutes a noncontinuum phenomenon of O(Kn2), whereas his thermal-creep phenomenon constitutes a continuum phenomenon of O(Kn). That these two phenomena can, nevertheless, be proved to be synonymous (in the sense, so to speak, of being two sides of the same coin), as is done in the present paper, supports the "ghost effect" findings of Sone [Y. Sone, "Flows induced by temperature fields in a rarefied gas and their ghost effect on the behavior of a gas in the continuum limit," Annu. Rev. Fluid Mech 32, 779 (2000)], which, philosophically, imply the artificiality of the

  13. Activation of NRF2/ARE by isosilybin alleviates Aβ25-35-induced oxidative stress injury in HT-22 cells.

    PubMed

    Zhou, Jing; Chao, Gao; Li, YuLei; Wu, Min; Zhong, ShuZhi; Feng, ZunYong

    2016-10-01

    Aβ-mediated oxidative stress damage is considered a direct cause of Alzheimer's disease (AD). Therefore, drugs that have been developed to block oxidative stress are considered effective for AD treatment. Isosilybin is a flavonoid compound extracted from Silybum marianum, and it has been confirmed to have many pharmacological activities. This study aimed to verify that isosilybin could alleviate the Aβ25-35-induced oxidative stress damage in HT-22 hippocampal cells and to investigate the specific targets of isosilybin. A non-toxic dose of isosilybin significantly inhibited the production of reactive oxygen species (ROS), the release of malondialdehyde (MDA) and lactate dehydrogenase (LDH), and the Aβ25-35-stimulated reduction in total antioxidant capacity (T-AOC). Subsequent studies showed that isosilybin significantly increased the protein and mRNA expression of antioxidases, including heme oxygenase-1 (HO-1), glutathione S-transferase (GST), and aldo-keto reductases 1C1 and 1C2 (AKR1C2). Moreover, isosilybin stimulated the activity of an antioxidant-response element (ARE)-driven luciferase reporter gene. Further studies showed that isosilybin induced the expression of NFR-2 in a time- and dose-dependent manner and promoted its translocation to the nucleus. This result indicated that the antioxidant function of isosilybin might be achieved through the activation of NRF2/ARE signalling. Subsequent studies showed that the NRF2-specific agonist t-BHQ effectively inhibited ROS, MDA and LDH release and T-AOC reduction under Aβ25-35 stimulation. In addition, t-BHQ induced the expression of HO-1, GST, and AKR1C2, as well as the activity of ARE luciferase reporter plasmids. NRF2 siRNA blocked the antioxidative stress damage function of isosilybin. Therefore, NRF2 is likely to be a key mediator of isosilybin's anti-Aβ25-35-mediated oxidative stress damage function. Overall, our results confirmed that isosilybin regulates the expression of HO-1, GST, and AKR1C2 through

  14. Nutritional Interventions to Alleviate the Negative Consequences of Heat Stress12

    PubMed Central

    Rhoads, Robert P.; Baumgard, Lance H.; Suagee, Jessica K.; Sanders, Sara R.

    2013-01-01

    Energy metabolism is a highly coordinated process, and preferred fuel(s) differ among tissues. The hierarchy of substrate use can be affected by physiological status and environmental factors including high ambient temperature. Unabated heat eventually overwhelms homeothermic mechanisms resulting in heat stress, which compromises animal health, farm animal production, and human performance. Various aspects of heat stress physiology have been extensively studied, yet a clear understanding of the metabolic changes occurring at the cellular, tissue, and whole-body levels in response to an environmental heat load remains ill-defined. For reasons not yet clarified, circulating nonesterified fatty acid levels are reduced during heat stress, even in the presence of elevated stress hormones (epinephrine, glucagon, and cortisol), and heat-stressed animals often have a blunted lipolytic response to catabolic signals. Either directly because of or in coordination with this, animals experiencing environmental hyperthermia exhibit a shift toward carbohydrate use. These metabolic alterations occur coincident with increased circulating basal and stimulated plasma insulin concentrations. Limited data indicate that proper insulin action is necessary to effectively mount a response to heat stress and minimize heat-induced damage. Consistent with this idea, nutritional interventions targeting increased insulin action may improve tolerance and productivity during heat stress. Further research is warranted to uncover the effects of heat on parameters associated with energy metabolism so that more appropriate and effective treatment methodologies can be designed. PMID:23674792

  15. The wheat MAP kinase phosphatase 1 alleviates salt stress and increases antioxidant activities in Arabidopsis.

    PubMed

    Zaidi, Ikram; Ebel, Chantal; Belgaroui, Nibras; Ghorbel, Mouna; Amara, Imène; Hanin, Moez

    2016-04-01

    Mitogen-activated protein kinase phosphatases (MKPs) are important negative regulators in the MAPK signaling pathways, which play crucial roles in plant growth, development and stress responses. We have previously shown that the heterologous expression of a durum wheat MKP, TMKP1, results in increased tolerance to salt stress in yeast but its particular contribution in salt stress tolerance in plants was not investigated. Here, TMKP1 was overexpressed in Arabidopsis thaliana and physiological changes were assessed in transgenic plants exposed to stress conditions. Under salt stress and especially LiCl, the TMKP1 overexpressors displayed higher germination rates in comparison to wild type plants. The enhancement of salt stress tolerance was accompanied by increased antioxidant enzyme activities, namely superoxide dismutase, catalase and peroxydases. Such increases in antioxidant activities were concomitant with lower malondialdehyde, superoxide anion O2(-) and hydrogen peroxide levels in the TMKP1 transgenic seedlings. Moreover, we provide evidence that, in contrast to the Arabidopsis ortholog AtMKP1, TMKP1 acts as a positive regulator of salt stress tolerance via its ectopic expression in the Arabidopsis mkp1 mutant. PMID:26927025

  16. Haem oxygenase-1 is involved in salicylic acid-induced alleviation of oxidative stress due to cadmium stress in Medicago sativa

    PubMed Central

    Shen, Wenbiao

    2012-01-01

    This work examines the involvement of haem oxygenase-1 (HO-1) in salicylic acid (SA)-induced alleviation of oxidative stress as a result of cadmium (Cd) stress in alfalfa (Medicago sativa L.) seedling roots. CdCl2 exposure caused severe growth inhibition and Cd accumulation, which were potentiated by pre-treatment with zinc protoporphyrin (ZnPPIX), a potent HO-1 inhibitor. Pre-treatment of plants with the HO-1 inducer haemin or SA, both of which could induce MsHO1 gene expression, significantly reduced the inhibition of growth and Cd accumulation. The alleviation effects were also evidenced by a decreased content of thiobarbituric acid-reactive substances (TBARS). The antioxidant behaviour was confirmed by histochemical staining for the detection of lipid peroxidation and the loss of plasma membrane integrity. Furthermore, haemin and SA pre-treatment modulated the activities of ascorbate peroxidase (APX), superoxide dismutase (SOD), and guaiacol peroxidase (POD), or their corresponding transcripts. Significant enhancement of the ratios of reduced/oxidized homoglutathione (hGSH), ascorbic acid (ASA)/dehydroascorbate (DHA), and NAD(P)H/NAD(P)+, and expression of their metabolism genes was observed, consistent with a decreased reactive oxygen species (ROS) distribution in the root tips. These effects are specific for HO-1, since ZnPPIX blocked the above actions, and the aggravated effects triggered by SA plus ZnPPIX were differentially reversed when carbon monoxide (CO) or bilirubin (BR), two catalytic by-products of HO-1, was added. Together, the results suggest that HO-1 is involved in the SA-induced alleviation of Cd-triggered oxidative stress by re-establishing redox homeostasis. PMID:22915740

  17. Overexpression of Arabidopsis AnnAt8 Alleviates Abiotic Stress in Transgenic Arabidopsis and Tobacco

    PubMed Central

    Yadav, Deepanker; Ahmed, Israr; Shukla, Pawan; Boyidi, Prasanna; Kirti, Pulugurtha Bharadwaja

    2016-01-01

    Abiotic stress results in massive loss of crop productivity throughout the world. Because of our limited knowledge of the plant defense mechanisms, it is very difficult to exploit the plant genetic resources for manipulation of traits that could benefit multiple stress tolerance in plants. To achieve this, we need a deeper understanding of the plant gene regulatory mechanisms involved in stress responses. Understanding the roles of different members of plant gene families involved in different stress responses, would be a step in this direction. Arabidopsis, which served as a model system for the plant research, is also the most suitable system for the functional characterization of plant gene families. Annexin family in Arabidopsis also is one gene family which has not been fully explored. Eight annexin genes have been reported in the genome of Arabidopsis thaliana. Expression studies of different Arabidopsis annexins revealed their differential regulation under various abiotic stress conditions. AnnAt8 (At5g12380), a member of this family has been shown to exhibit ~433 and ~175 fold increase in transcript levels under NaCl and dehydration stress respectively. To characterize Annexin8 (AnnAt8) further, we have generated transgenic Arabidopsis and tobacco plants constitutively expressing AnnAt8, which were evaluated under different abiotic stress conditions. AnnAt8 overexpressing transgenic plants exhibited higher seed germination rates, better plant growth, and higher chlorophyll retention when compared to wild type plants under abiotic stress treatments. Under stress conditions transgenic plants showed comparatively higher levels of proline and lower levels of malondialdehyde compared to the wild-type plants. Real-Time PCR analyses revealed that the expression of several stress-regulated genes was altered in AnnAt8 over-expressing transgenic tobacco plants, and the enhanced tolerance exhibited by the transgenic plants can be correlated with altered expressions of

  18. 40 CFR 91.329 - Catalyst thermal stress test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Catalyst thermal stress test. 91.329....329 Catalyst thermal stress test. (a) Oven characteristics. The oven used for termally stressing the... stress on catalyst conversion efficiency. (2) The synthetic exhaust gas mixture must have the...

  19. 40 CFR 91.329 - Catalyst thermal stress test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Catalyst thermal stress test. 91.329....329 Catalyst thermal stress test. (a) Oven characteristics. The oven used for termally stressing the... stress on catalyst conversion efficiency. (2) The synthetic exhaust gas mixture must have the...

  20. 40 CFR 91.329 - Catalyst thermal stress test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Catalyst thermal stress test. 91.329....329 Catalyst thermal stress test. (a) Oven characteristics. The oven used for termally stressing the... stress on catalyst conversion efficiency. (2) The synthetic exhaust gas mixture must have the...

  1. 40 CFR 91.329 - Catalyst thermal stress test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Catalyst thermal stress test. 91.329....329 Catalyst thermal stress test. (a) Oven characteristics. The oven used for termally stressing the... stress on catalyst conversion efficiency. (2) The synthetic exhaust gas mixture must have the...

  2. 40 CFR 91.329 - Catalyst thermal stress test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Catalyst thermal stress test. 91.329....329 Catalyst thermal stress test. (a) Oven characteristics. The oven used for termally stressing the... stress on catalyst conversion efficiency. (2) The synthetic exhaust gas mixture must have the...

  3. Chewing gum alleviates negative mood and reduces cortisol during acute laboratory psychological stress.

    PubMed

    Scholey, Andrew; Haskell, Crystal; Robertson, Bernadette; Kennedy, David; Milne, Anthea; Wetherell, Mark

    2009-06-22

    The notion that chewing gum may relieve stress was investigated in a controlled setting. A multi-tasking framework which reliably evokes stress and also includes performance measures was used to induce acute stress in the laboratory. Using a randomised crossover design forty participants (mean age 21.98 years) performed on the multi-tasking framework at two intensities (on separate days) both while chewing and not chewing. Order of workload intensity and chewing conditions were counterbalanced. Before and after undergoing the platform participants completed the state portion of the State-Trait Anxiety Inventory, Bond-Lader visual analogue mood scales, a single Stress Visual Analogue Scale and provided saliva samples for cortisol measurement. Baseline measures showed that both levels of the multi-tasking framework were effective in significantly reducing self-rated alertness, calmness and contentment while increasing self-rated stress and state anxiety. Cortisol levels fell during both levels of the stressor during the morning, reflecting the predominance of a.m. diurnal changes, but this effect was reversed in the afternoon which may reflect a measurable stress response. Pre-post stressor changes (Delta) for each measure at baseline were subtracted from Delta scores under chewing and no chewing conditions. During both levels of stress the chewing gum condition was associated with significantly better alertness and reduced state anxiety, stress and salivary cortisol. Overall performance on the framework was also significantly better in the chewing condition. The mechanisms underlying these effects are unknown but may involve improved cerebral blood flow and/or effects secondary to performance improvement during gum chewing. PMID:19268676

  4. Weak microwave can alleviate water deficit induced by osmotic stress in wheat seedlings.

    PubMed

    Chen, Yi-Ping; Jia, Jing-Fen; Han, Xiao-Ling

    2009-01-01

    The aim of the investigation is to determine the effect of microwave pretreatment of wheat seeds on the resistance of seedlings to osmotic stress. Changes in biophysical, physiological and biochemical characters were measured. The results showed: (1) The magnetic field intensity and seeds temperature increased progressively with microwave pretreatments of 5, 10, 15, 20 s and 25 s compared with controls. Although each microwave pretreatment resulted in an increase in alpha-amylase activity and photon emission intensity, the increase of alpha-amylase activity and photon emission intensity was maximal at a microwave pretreatment of 10 s. (2) Osmotic stress induced by PEG treatment enhanced the concentration of malondialdehyde, while decreasing the activities of nitricoxide synthase, catalase, peroxidase, superoxide dismutase and the concentration of nitric oxide, ascorbic acid, glutathione in the seedlings compared with controls. However, compared to osmotic stress alone, in the seedlings treated with microwave irradiation plus osmotic stress the concentration of malondialdehyde decreased, while the activities of nitricoxide synthase, catalase, peroxidase, superoxide dismutase and the concentration of nitric oxide, ascorbic acid and glutathione increased. These results suggest that a suitable dose of microwave radiation can enhance the capability to eliminate free radicals induced by osmotic stress in wheat seedlings resulting in an increase in resistance to osmotic stress.

  5. Betaine prevented fructose-induced NAFLD by regulating LXRα/PPARα pathway and alleviating ER stress in rats.

    PubMed

    Ge, Chen-Xu; Yu, Rong; Xu, Min-Xuan; Li, Pei-Qin; Fan, Chen-Yu; Li, Jian-Mei; Kong, Ling-Dong

    2016-01-01

    Betaine has been proven effective in treating nonalcoholic fatty liver disease (NAFLD) in animal models, however, its molecular mechanisms remain elusive. The aims of this study were to explore the mechanisms mediating the anti-inflammatory and anti-lipogenic actions of betaine in fructose-fed rats. In this study, betaine improved insulin resistance, reduced body weight gain and serum lipid levels, and prevented hepatic lipid accumulation in fructose-fed rats. It up-regulated hepatic expression of liver X receptor-alpha (LXRα) and peroxisome proliferator-activated receptor-alpha (PPARα), with the attenuation of the changes of their target genes, including hepatic carnitine palmitoyl transferase (CPT) 1α, glycosylphosphatidylinositol anchored high density lipoprotein binding protein 1, apolipoprotein B, sterol regulatory element-binding protein 1c and adipocyte differentiation-related protein, involved in fatty acid oxidation and lipid storage in these model rats. Furthermore, betaine alleviated ER stress and inhibited acetyl-CoA carboxylase α, CPT II, stearoyl-CoA desaturase 1 and fatty acid synthase expression involved in fatty acid synthesis in the liver of fructose-fed rats. Betaine suppressed hepatic gluconeogenesis in fructose-fed rats by moderating protein kinase B -forkhead box protein O1 pathway, as well as p38 mitogen-activated protein kinase and mammalian target of rapamycin activity. Moreover, betaine inhibited hepatic nuclear factor kappa B /nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 inflammasome activation-mediated inflammation in this animal model. These results demonstrated that betaine ameliorated hepatic lipid accumulation, gluconeogenesis, and inflammation through restoring LXRα and PPARα expression and alleviating ER stress in fructose-fed rats. This study provides the potential mechanisms of betaine involved in the treatment of NAFLD.

  6. Effect of discontinuities as a means to alleviate thermal expansion mismatch damage in laminar composites

    NASA Technical Reports Server (NTRS)

    Hoffman, C. A.

    1977-01-01

    An investigation of Nichrome/tungsten laminar composites showed that intentionally introduced discontinuities, such as perforations through or grooves on the surface of the matrix laminae, improved thermal expansion mismatch damage resistance. It was found that specimens having smooth matrix laminate surfaces were virtually destroyed by delamination in 21 or fewer fast cool cycles in which they were water quenched from 981 C. Specimens having interior matrix laminae with discontinuities and relatively thin, nondiscontinuous, surface matrix laminae resisted 50 similar cycles without evident delamination damage.

  7. Biochar alleviates combined stress of ammonium and acids by firstly enriching Methanosaeta and then Methanosarcina.

    PubMed

    Lü, Fan; Luo, Chenghao; Shao, Liming; He, Pinjing

    2016-03-01

    This investigation evaluated the effectiveness of biochar of different particle sizes in alleviating ammonium (NH4(+)) inhibition (up to 7 g-N/L) during anaerobic digestion of 6 g/L glucose. Compared to the control treatment without biochar addition, treatments that included biochar particles 2-5 mm, 0.5-1 mm and 75-150 μm in size reduced the methanization lag phase by 23.9%, 23.8% and 5.9%, respectively, and increased the maximum methane production rate by 47.1%, 23.5% and 44.1%, respectively. These results confirmed that biochar accelerated the initiation of methanization during anaerobic digestion under double inhibition risk from both ammonium and acids. Furthermore, fine biochar significantly promoted the production of volatile fatty acids (VFAs). Comparative analysis on the archaeal and bacterial diversity at the early and later stages of digestion, and in the suspended, biochar loosely bound, and biochar tightly bound fractions suggested that, in suspended fractions, hydrogenotrophic Methanobacterium was actively resistant to ammonium. However, acetoclastic Methanosaeta can survive at VFAs concentrations up to 60-80 mmol-C/L by improved affinity to conductive biochar, resulting in the accelerated initiation of acetate degradation. Improved methanogenesis was followed by the colonization of the biochar tightly bound fractions by Methanosarcina. The selection of appropriate biochar particles sizes was important in facilitating the initial colonization of microbial cells.

  8. Bilobalide alleviates depression-like behavior and cognitive deficit induced by chronic unpredictable mild stress in mice.

    PubMed

    Wu, Ruiyong; Shui, Li; Wang, Siyang; Song, Zhenzhen; Tai, Fadao

    2016-10-01

    Bilobalide (BB), a unique constituent of Ginkgo biloba, has powerful neuroprotection and stress-alleviating properties. However, whether BB exerts a positive effect on depression and cognitive deficit induced by chronic stress is not known. The present study was designed to investigate the influence of BB on depression and cognitive impairments induced by chronic unpredictable mild stress (CUMS) in mice. During daily exposure to stressors for 5 consecutive weeks, mice were administered BB at the doses of 0, 3, or 6 mg/kg/day intraperitoneally. We replicated the finding that CUMS induced depression-like behavior and cognitive deficits as the CUMS+vehicle (VEH) group showed a significant increase in immobility in the tail suspension test, a decrease in the discrimination index of the novel object recognition task, and increased latency to platform and decreased number of platform crossings in the Morris water maze compared with the control+VEH group. Chronic administration of BB effectively reversed these alterations. In addition, the CUMS+VEH group showed significantly higher levels of baseline serum corticosterone than those of the control+VEH group and BB dose-dependently inhibited this effect. Our results suggest that BB may be useful for inhibition of depression-like behavior and cognitive deficits, and this protective effect was possibly exerted partly through an action on the hypothalamic-pituitary-adrenal axis. PMID:27509313

  9. Brassinolide Increases Potato Root Growth In Vitro in a Dose-Dependent Way and Alleviates Salinity Stress

    PubMed Central

    Xia, Shitou; Su, Yi; Wang, Huiqun; Luo, Weigui; Su, Shengying

    2016-01-01

    Brassinosteroids (BRs) are steroidal phytohormones that regulate various physiological processes, such as root development and stress tolerance. In the present study, we showed that brassinolide (BL) affects potato root in vitro growth in a dose-dependent manner. Low BL concentrations (0.1 and 0.01 μg/L) promoted root elongation and lateral root development, whereas high BL concentrations (1–100 μg/L) inhibited root elongation. There was a significant (P < 0.05) positive correlation between root activity and BL concentrations within a range from 0.01 to 100 μg/L, with the peak activity of 8.238 mg TTC·g−1 FW·h−1 at a BL concentration of 100 μg/L. Furthermore, plants treated with 50 μg/L BL showed enhanced salt stress tolerance through in vitro growth. Under this scenario, BL treatment enhanced the proline content and antioxidant enzymes' (superoxide dismutase, peroxidase, and catalase) activity and reduced malondialdehyde content in potato shoots. Application of BL maintain K+ and Na+ homeostasis by improving tissue K+/Na+ ratio. Therefore, we suggested that the effects of BL on root development from stem fragments explants as well as on primary root development are dose-dependent and that BL application alleviates salt stress on potato by improving root activity, root/shoot ratio, and antioxidative capacity in shoots and maintaining K+/Na+ homeostasis in potato shoots and roots. PMID:27803931

  10. Bilobalide alleviates depression-like behavior and cognitive deficit induced by chronic unpredictable mild stress in mice.

    PubMed

    Wu, Ruiyong; Shui, Li; Wang, Siyang; Song, Zhenzhen; Tai, Fadao

    2016-10-01

    Bilobalide (BB), a unique constituent of Ginkgo biloba, has powerful neuroprotection and stress-alleviating properties. However, whether BB exerts a positive effect on depression and cognitive deficit induced by chronic stress is not known. The present study was designed to investigate the influence of BB on depression and cognitive impairments induced by chronic unpredictable mild stress (CUMS) in mice. During daily exposure to stressors for 5 consecutive weeks, mice were administered BB at the doses of 0, 3, or 6 mg/kg/day intraperitoneally. We replicated the finding that CUMS induced depression-like behavior and cognitive deficits as the CUMS+vehicle (VEH) group showed a significant increase in immobility in the tail suspension test, a decrease in the discrimination index of the novel object recognition task, and increased latency to platform and decreased number of platform crossings in the Morris water maze compared with the control+VEH group. Chronic administration of BB effectively reversed these alterations. In addition, the CUMS+VEH group showed significantly higher levels of baseline serum corticosterone than those of the control+VEH group and BB dose-dependently inhibited this effect. Our results suggest that BB may be useful for inhibition of depression-like behavior and cognitive deficits, and this protective effect was possibly exerted partly through an action on the hypothalamic-pituitary-adrenal axis.

  11. Physical and virtual water transfers for regional water stress alleviation in China

    PubMed Central

    Zhao, Xu; Liu, Junguo; Liu, Qingying; Tillotson, Martin R.; Guan, Dabo; Hubacek, Klaus

    2015-01-01

    Water can be redistributed through, in physical terms, water transfer projects and virtually, embodied water for the production of traded products. Here, we explore whether such water redistributions can help mitigate water stress in China. This study, for the first time to our knowledge, both compiles a full inventory for physical water transfers at a provincial level and maps virtual water flows between Chinese provinces in 2007 and 2030. Our results show that, at the national level, physical water flows because of the major water transfer projects amounted to 4.5% of national water supply, whereas virtual water flows accounted for 35% (varies between 11% and 65% at the provincial level) in 2007. Furthermore, our analysis shows that both physical and virtual water flows do not play a major role in mitigating water stress in the water-receiving regions but exacerbate water stress for the water-exporting regions of China. Future water stress in the main water-exporting provinces is likely to increase further based on our analysis of the historical trajectory of the major governing socioeconomic and technical factors and the full implementation of policy initiatives relating to water use and economic development. Improving water use efficiency is key to mitigating water stress, but the efficiency gains will be largely offset by the water demand increase caused by continued economic development. We conclude that much greater attention needs to be paid to water demand management rather than the current focus on supply-oriented management. PMID:25583516

  12. Spermine Alleviates Drought Stress in White Clover with Different Resistance by Influencing Carbohydrate Metabolism and Dehydrins Synthesis

    PubMed Central

    Li, Zhou; Jing, Wen; Peng, Yan; Zhang, Xin Quan; Ma, Xiao; Huang, Lin Kai; Yan, Yan-hong

    2015-01-01

    The objective of this research was to analyse whether ameliorating drought stress through exogenously applied spermine (Spm) was related to carbohydrate metabolism, dehydrins accumulation and the transcription of genes encoding dehydrins in two white clovers (drought-susceptible cv. ‘Ladino’ and drought-resistant cv. ‘Haifa’) under controlled drying conditions for 10 days. The results show that the application of Spm effectively alleviates negative effects caused by drought stress in both cultivars. Exogenous Spm led to accumulation of more water-soluble carbohydrates (WSC), sucrose, fructose and sorbitol in both cultivars under drought stress, and also significantly elevated glucose content in leaves of drought-resistant cv. ‘Haifa’, but had no effect on drought-susceptible cv. ‘Ladino’. Accordingly, the key enzyme activities of sucrose and sorbitol metabolism changed along with the application of Spm under drought stress. Spm induced a significant increase in sucrose phosphate synthase (SPS) or sorbitol dehydrogenase (SDH) activity, but decrease in sucrose synthetase (SS) activity when two cultivars were subjected to drought. In addition, the improved accumulation of dehydrins induced by exogenous Spm coincided with three genes expression which was responsible for dehydrins synthesis. But Spm-induced transcript level of dehydrin genes increased earlier in cv. ‘Ladino’ than that in cv. ‘Haifa’. Thus, these results suggest that ameliorating drought stress through exogenously applied Spm may be associated with increased carbohydrate accumulation and dehydrins synthesis. There are differences between drought-susceptible and -resistant white clover cultivars related to Spm regulation of WSC metabolism and dehydrins expression. PMID:25835290

  13. Ethylene production is associated with alleviation of cadmium-induced oxidative stress by sulfur in mustard types differing in ethylene sensitivity.

    PubMed

    Asgher, Mohd; Khan, Nafees A; Khan, M Iqbal R; Fatma, Mehar; Masood, Asim

    2014-08-01

    We studied the response of ethylene-sensitive (Pusa Jai Kisan) and ethylene-insensitive (SS2) mustard (Brassica juncea) cultivars to 0, 0.5, 1.0 and 2.0 mM SO₄(2-), and the effect of 1.0 mM SO₄(2-) was studied in the amelioration of 50 µM cadmium (Cd). The Cd-induced oxidative stress and Cd accumulation were greater in SS2 than Pusa Jai Kisan, but sulfur (S) application alleviated Cd-induced oxidative stress more prominently in Pusa Jai Kisan by increasing S-metabolism and synthesis of reduced glutathione (GSH) and ethylene production; and promoted photosynthesis and plant dry mass under Cd stress. The ethylene-sensitive cultivar responded more to S treatment under Cd stress and showed increased activity of antioxidant system resulting in increased photosynthesis and growth. Cadmium treatment resulted in rapid increase in ethylene formation which adversely influenced photosynthesis and plant dry mass. However, S and ethephon application to Cd-treated plants lowered ethylene formation to optimal range responsible for maximal GSH synthesis and protection against Cd-induced oxidative stress. The similarity of the effectiveness of 1.0 mM SO₄(2-) with 200 µL L(-1) ethylene source as ethephon in alleviation of 50 µM Cd further verifies that differential alleviation of Cd toxicity in the two cultivars by S was dependent on ethylene production. The results suggest that ethylene production determines Cd stress alleviation by S via regulatory interaction with antioxidant metabolism. Thus, ethylene production and sensitivity bear a prominent role in alleviation of Cd stress by S and can be used as a criterion for developing Cd tolerant genotypes.

  14. Brassinolide alleviates salt stress and increases antioxidant activity of cowpea plants (Vigna sinensis).

    PubMed

    El-Mashad, Ali Abdel Aziz; Mohamed, Heba Ibrahim

    2012-07-01

    Soil salinity is one of the most severe factors limiting growth and physiological response in Vigna sinensis plants. Plant salt stress tolerance requires the activation of complex metabolic activities including antioxidative pathways, especially reactive oxygen species and scavenging systems within the cells which can contribute to continued growth under water stress. The present investigation was carried out to study the role of brassinolide in enhancing tolerance of cowpea plants to salt stress (NaCl). Treatment with 0.05 ppm brassinolide as foliar spray mitigated salt stress by inducing enzyme activities responsible for antioxidation, e.g., superoxide dismutase, peroxidase, polyphenol oxidase, and detoxification as well as by elevating contents of ascorbic acid, tocopherol, and glutathione. On the other hand, total soluble proteins decreased with increasing NaCl concentrations in comparison with control plants. However, lipid peroxidation increased with increasing concentrations of NaCl. In addition to, the high concentrations of NaCl (100 and 150 mM) decreased total phenol of cowpea plants as being compared with control plants. SDS-PAGE of protein revealed that NaCl treatments alone or in combination with 0.05 ppm brassinolide were associated with the disappearance of some bands or appearance of unique ones in cowpea plants. Electrophoretic studies of α-esterase, β-esterase, polyphenol oxidase, peroxidase, acid phosphatase, and superoxide dismutase isoenzymes showed wide variations in their intensities and densities among all treatments.

  15. Thermal stress on chickens in transit.

    PubMed

    Webster, A J; Tuddenham, A; Saville, C A; Scott, G B

    1993-05-01

    1. An artificial chicken, 'Gloria', was constructed to simulate heat exchanges of poultry during transport. Tests of the instrument in a wind tunnel showed it to have insulation properties similar to that of a live bird. 2. Gloria accompanied chickens in two types of transport modules, A (enclosed) and B (open). The average temperature difference between inside and outside the loaded vehicles when stationary and in motion were 14.0 and 7.6 for Type A and 8.8 and 6.0 for Type B. Average air movement while vehicles were in motion was 0.5 m/s for Type A and 3.3 m/s for Type B. 3. Measurements of sensible heat loss from Gloria at different temperatures and wind speeds were compared with published estimates of thermoneutral heat production and thermal insulation for well and poorly feathered chickens to estimate the range of thermal stresses likely to be experienced by chickens in transit. 4. The results showed that the combination of circumstances necessary to ensure thermal comfort for birds both at rest and in motion is very rare (e.g. only between 7 and 8 degrees C for well feathered birds in enclosed vehicles). It is, however, possible to ensure thermal comfort over a wide range of ambient air temperatures by appropriate control of air movement within the vehicle whether at rest or in motion. PMID:8513408

  16. Comparative proteomic analysis of β-aminobutyric acid-mediated alleviation of salt stress in barley.

    PubMed

    Mostek, Agnieszka; Börner, Andreas; Weidner, Stanisław

    2016-02-01

    The non-protein amino acid β-aminobutyric acid (BABA) is known to induce plant resistance to a broad spectrum of biotic and abiotic stresses. This is the first study describing the effect of BABA seed priming on physiological and proteomic changes under salt stress conditions in barley (Hordeum vulgare). The aim of our study was to investigate the changes of fresh weight, dry weight and relative water content (RWC) as well as root proteome changes of two barley lines contrasting in salt tolerance (DH14, DH 187) in response to salt stress after seed priming in water or in 800 μM BABA. Seed priming with BABA significantly increased (p ≤ 0.05) RWC in both barley lines, which indicates considerably lower water loss in BABA-primed plants than in the non-primed control plants. Dry and fresh matter increased significantly in line DH 187, whereas no changes were detected in line DH14. BABA-primed plants of both lines showed different proteomic patterns than the non-primed control plants. The root proteins exhibiting significant abundance changes (1.75-fold change, p ≤ 0.05) were separated by two-dimensional polyacrylamide gel electrophoresis (2D- PAGE). Thirty-one spots, representing 24 proteins, were successfully identified by MALDI TOF/TOF mass spectrometry. The most prominent differences include the up-regulation of antioxidant enzymes (catalase, peroxidase and superoxide dismutase), PR proteins (chitinase, endo-1,3-β-glucosidase), and chaperones (cyclophilin, HSC 70). Our results indicate that BABA induces defence and detoxification processes which may enable faster and more effective responses to salt stress, increasing the chances of survival under adverse environmental conditions.

  17. Thermal residual stresses in amorphous thermoplastic polymers

    NASA Astrophysics Data System (ADS)

    Grassia, Luigi; D'Amore, Alberto

    2010-06-01

    An attempt to calculate the internal stresses in a cylindrically shaped polycarbonate (LEXAN-GE) component, subjected to an arbitrary cooling rate, will be described. The differential volume relaxation arising as a result of the different thermal history suffered by each body point was considered as the primary source of stresses build up [1-3]. A numerical routine was developed accounting for the simultaneous stress and structural relaxation processes and implemented within an Ansys® environment. The volume relaxation kinetics was modeled by coupling the KAHR (Kovacs, Aklonis, Hutchinson, Ramos) phenomenological theory [4] with the linear viscoelastic theory [5-7]. The numerical algorithm translates the specific volume theoretical predictions at each body point as applied non-mechanical loads acting on the component. The viscoelastic functions were obtained from two simple experimental data, namely the linear viscoelastic response in shear and the PVT (pressure volume temperature) behavior. The dimensionless bulk compliance was extracted from PVT data since it coincides with the memory function appearing in the KAHR phenomenological theory [7]. It is showed that the residual stress scales linearly with the logarithm of the Biot's number.

  18. Physiological Responses to Thermal Stress and Exercise

    NASA Astrophysics Data System (ADS)

    Iyota, Hiroyuki; Ohya, Akira; Yamagata, Junko; Suzuki, Takashi; Miyagawa, Toshiaki; Kawabata, Takashi

    The simple and noninvasive measuring methods of bioinstrumentation in humans is required for optimization of air conditioning and management of thermal environments, taking into consideration the individual specificity of the human body as well as the stress conditions affecting each. Changes in human blood circulation were induced with environmental factors such as heat, cold, exercise, mental stress, and so on. In this study, the physiological responses of human body to heat stress and exercise were investigated in the initial phase of the developmental research. We measured the body core and skin temperatures, skin blood flow, and pulse wave as the indices of the adaptation of the cardiovascular system. A laser Doppler skin blood flowmetry using an optical-sensor with a small portable data logger was employed for the measurement. These results reveal the heat-stress and exercise-induced circulatory responses, which are under the control of the sympathetic nerve system. Furthermore, it was suggested that the activity of the sympathetic nervous system could be evaluated from the signals of the pulse wave included in the signals derived from skin blood flow by means of heart rate variability assessments and detecting peak heights of velocity-plethysmogram.

  19. Ageing-Associated Oxidative Stress and Inflammation Are Alleviated by Products from Grapes

    PubMed Central

    Petersen, K. S.

    2016-01-01

    Advanced age is associated with increased incidence of a variety of chronic disease states which share oxidative stress and inflammation as causative role players. Furthermore, data point to a role for both cumulative oxidative stress and low grade inflammation in the normal ageing process, independently of disease. Therefore, arguably the best route with which to address premature ageing, as well as age-associated diseases such as diabetes, cardiovascular disease, and dementia, is preventative medicine aimed at modulation of these two responses, which are intricately interlinked. In this review, we provide a detailed account of the literature on the communication of these systems in the context of ageing, but with inclusion of relevant data obtained in other models. In doing so, we attempted to more clearly elucidate or identify the most probable cellular or molecular targets for preventative intervention. In addition, given the absence of a clear pharmaceutical solution in this context, together with the ever-increasing consumer bias for natural medicine, we provide an overview of the literature on grape (Vitis vinifera) derived products, for which beneficial effects are consistently reported in the context of both oxidative stress and inflammation. PMID:27034739

  20. Overexpression of a tomato carotenoid ε-hydroxylase gene alleviates sensitivity to chilling stress in transgenic tobacco.

    PubMed

    Zhou, Bin; Deng, Yong-Sheng; Kong, Fan-Ying; Li, Bin; Meng, Qing-Wei

    2013-09-01

    Chilling is one of the most serious environmental stresses that disrupt the metabolic balance of cells and enhance the production of reactive oxygen species (ROS). Lutein plays important roles in dissipating excess excitation energy and eliminating ROS to maintain the normal physiological function of cells. A tomato carotenoid epsilon-ring hydroxylase gene (LeLUT1) was isolated, and the LeLUT1-GFP fusion protein was localized in the chloroplast of Arabidopsis mesophyll protoplast. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis indicated that the expression of LeLUT1 was the highest in the leaves and was down-regulated by various abiotic stresses in tomato. The transgenic tobacco plants overexpressing LeLUT1 had higher lutein content, which was decreased in cold condition. Under chilling stress, the non-photochemical quenching (NPQ) values were higher in the transgenic plants than in the wild type (WT) plants. Compared with the WT plants, the transgenic plants showed lower levels of hydrogen peroxide (H2O2), superoxide radical (O2(·-)), relative electrical conductivity, and malondialdehyde content (MDA), and relatively higher values of maximal photochemical efficiency of photosystem II (Fv/Fm), oxidizable P700 of PSI, and net photosynthetic rate (Pn). Therefore, the transgenic seedlings were less suppressed in growth and lost less cotyledon chlorophyll than the WT seedlings. These results suggested that the overexpression of LeLUT1 had a key function in alleviating photoinhibition and photooxidation, and decreased the sensitivity of photosynthesis to chilling stress. PMID:23796723

  1. Alleviation of Drought Stress by Hydrogen Sulfide Is Partially Related to the Abscisic Acid Signaling Pathway in Wheat

    PubMed Central

    Wang, Chenyang; Qin, Haixia; Han, Qiaoxia; Hou, Junfeng; Lu, Hongfang; Xie, Yingxin; Guo, Tiancai

    2016-01-01

    Little information is available describing the effects of exogenous H2S on the ABA pathway in the acquisition of drought tolerance in wheat. In this study, we investigated the physiological parameters, the transcription levels of several genes involved in the abscisic acid (ABA) metabolism pathway, and the ABA and H2S contents in wheat leaves and roots under drought stress in response to exogenous NaHS treatment. The results showed that pretreatment with NaHS significantly increased plant height and the leaf relative water content of seedlings under drought stress. Compared with drought stress treatment alone, H2S application increased antioxidant enzyme activities and reduced MDA and H2O2 contents in both leaves and roots. NaHS pretreatment increased the expression levels of ABA biosynthesis and ABA reactivation genes in leaves; whereas the expression levels of ABA biosynthesis and ABA catabolism genes were up-regulated in roots. These results indicated that ABA participates in drought tolerance induced by exogenous H2S, and that the responses in leaves and roots are different. The transcription levels of genes encoding ABA receptors were up-regulated in response to NaHS pretreatment under drought conditions in both leaves and roots. Correspondingly, the H2S contents in leaves and roots were increased by NaHS pretreatment, while the ABA contents of leaves and roots decreased. This implied that there is complex crosstalk between these two signal molecules, and that the alleviation of drought stress by H2S, at least in part, involves the ABA signaling pathway. PMID:27649534

  2. Berberis vulgaris root extract alleviates the adverse effects of heat stress via modulating hepatic nuclear transcription factors in quails.

    PubMed

    Sahin, Kazim; Orhan, Cemal; Tuzcu, Mehmet; Borawska, Maria H; Jabłonski, Jakub; Guler, Osman; Sahin, Nurhan; Hayirli, Armagan

    2013-08-01

    To evaluate the action mode of Berberis vulgaris root extract in the alleviation of oxidative stress, female Japanese quails (n 180, aged 5 weeks) were reared, either at 22°C for 24 h/d (thermoneutral, TN) or 34°C for 8 h/d (heat stress, HS), and fed one of three diets: diets containing 0, 100 or 200 mg of B. vulgaris root extract per kg for 12 weeks. Exposure to HS depressed feed intake by 8·5% and egg production by 12·1%, increased hepatic malondialdehyde (MDA) level by 98·0% and decreased hepatic superoxide dismutase, catalase and glutathione peroxidase activities by 23·5, 35·4 and 55·7%, respectively (P<0·001 for all). There were also aggravations in expressions of hepatic NF-κB and heat-shock protein 70 (HSP70) by 42 and 43%, respectively and suppressions in expressions of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and haeme-oxygenase 1 (HO-1) by 57 and 61%, respectively, in heat-stressed quails (P<0·001 for all). As supplemental B. vulgaris extract increased, there were linear increases in performance parameters, activities of antioxidant enzymes and hepatic Nrf2 and HO-1 expressions (P<0·001 for all) and linear decreases in hepatic MDA level and NF-κB and HSP70 expressions at a greater extent in quails reared under TN condition and those reared under HS condition. In conclusion, dietary supplementation of B. vulgaris root extract to quails reduces the detrimental effects of oxidative stress and lipid peroxidation resulting from HS via activating the host defence system at the cellular level.

  3. Alleviation of Drought Stress by Hydrogen Sulfide Is Partially Related to the Abscisic Acid Signaling Pathway in Wheat.

    PubMed

    Ma, Dongyun; Ding, Huina; Wang, Chenyang; Qin, Haixia; Han, Qiaoxia; Hou, Junfeng; Lu, Hongfang; Xie, Yingxin; Guo, Tiancai

    2016-01-01

    Little information is available describing the effects of exogenous H2S on the ABA pathway in the acquisition of drought tolerance in wheat. In this study, we investigated the physiological parameters, the transcription levels of several genes involved in the abscisic acid (ABA) metabolism pathway, and the ABA and H2S contents in wheat leaves and roots under drought stress in response to exogenous NaHS treatment. The results showed that pretreatment with NaHS significantly increased plant height and the leaf relative water content of seedlings under drought stress. Compared with drought stress treatment alone, H2S application increased antioxidant enzyme activities and reduced MDA and H2O2 contents in both leaves and roots. NaHS pretreatment increased the expression levels of ABA biosynthesis and ABA reactivation genes in leaves; whereas the expression levels of ABA biosynthesis and ABA catabolism genes were up-regulated in roots. These results indicated that ABA participates in drought tolerance induced by exogenous H2S, and that the responses in leaves and roots are different. The transcription levels of genes encoding ABA receptors were up-regulated in response to NaHS pretreatment under drought conditions in both leaves and roots. Correspondingly, the H2S contents in leaves and roots were increased by NaHS pretreatment, while the ABA contents of leaves and roots decreased. This implied that there is complex crosstalk between these two signal molecules, and that the alleviation of drought stress by H2S, at least in part, involves the ABA signaling pathway. PMID:27649534

  4. Theoretical basis for design of thermal-stress-free fasteners

    NASA Technical Reports Server (NTRS)

    Blosser, M. L.; Mcwithey, R. R.

    1983-01-01

    A theoretical basis was developed for the design of fasteners which are free of thermal stress. A fastener can be shaped to eliminate the thermal stress which would otherwise result from differential thermal expansion between dissimilar fastener and sheet materials for many combinations of isotropic and orthotropic materials. The resulting joint remains snug, yet free of thermal stress at any temperature, if the joint is uniform in temperature, if it is frictionless, and if the coefficients of thermal expansion of the materials do not change with temperature. In general, such a fastener has curved sides; however, if both materials have isotropic coefficients of thermal expansion, a conical fastener is free of thermal stress. Equations are presented for thermal stress free shapes at both initial and final temperature, and typical fastener shapes are shown.

  5. Lactobacillus rhamnosus GG improves glucose tolerance through alleviating ER stress and suppressing macrophage activation in db/db mice

    PubMed Central

    Park, Kun-Young; Kim, Bobae; Hyun, Chang-Kee

    2015-01-01

    Although recent studies have reported that Lactobacillus rhamnosus GG (LGG), the most extensively studied probiotic strain, exerts an anti-hyperglycemic effect on several rodent models, the underlying mechanism remains unclear. In this study, twenty male C57BL/KsJ-db/db (db/db) mice were divided into 2 groups, LGG-treated and control group, which received a daily dose of LGG (1 × 108 CFU per mouse) and PBS orally for 4 weeks, respectively. We observed that glucose tolerance was significantly improved in LGG-treated db/db mice. Insulin-stimulated Akt phosphorylation and GLUT4 translocation were higher in skeletal muscle of LGG-treated mice relative to their controls. It was also observed that LGG treatment caused significant reductions in endoplasmic reticulum (ER) stress in skeletal muscle and M1-like macrophage activation in white adipose tissues. Our results indicate that the anti-diabetic effect of LGG in db/db mice is associated with alleviated ER stress and suppressed macrophage activation, resulting in enhanced insulin sensitivity. These findings suggest a therapeutic potential of probiotics for prevention and treatment of type 2 diabetes. PMID:26060355

  6. Alleviation effect of arbutin on oxidative stress generated through tyrosinase reaction with l-tyrosine and l-DOPA

    PubMed Central

    2014-01-01

    Background Hydroxyl radical that has the highest reactivity among reactive oxygen species (ROS) is generated through l-tyrosine-tyrosinase reaction. Thus, the melanogenesis might induce oxidative stress in the skin. Arbutin (p-hydroxyphenyl-β-d-glucopyranoside), a well-known tyrosinase inhibitor has been widely used for the purpose of skin whitening. The aim of the present study was to examine if arbutin could suppress the hydroxyl radical generation via tyrosinase reaction with its substrates, l-tyrosine and l-DOPA. Results The hydroxyl radical, which was determined by an electron spin resonance-spin trapping technique, was generated by the addition of not only l-tyrosine but l-DOPA to tyrosinase in a concentration dependent manner. Arbutin could inhibit the hydroxyl radical generation in the both reactions. Conclusion It is presumed that arbutin could alleviate oxidative stress derived from the melanogenic pathway in the skin in addition to its function as a whitening agent in cosmetics. PMID:25297374

  7. Carvedilol alleviates adjuvant-induced arthritis and subcutaneous air pouch edema: modulation of oxidative stress and inflammatory mediators.

    PubMed

    Arab, Hany H; El-Sawalhi, Maha M

    2013-04-15

    Rheumatoid arthritis (RA) is a systemic inflammatory disease with cardiovascular complications as the leading cause of morbidity. Carvedilol is an adrenergic antagonist which has been safely used in treatment of several cardiovascular disorders. Given that carvedilol has powerful antioxidant/anti-inflammatory properties, we aimed to investigate its protective potential against arthritis that may add further benefits for its clinical usefulness especially in RA patients with concomitant cardiovascular disorders. Two models were studied in the same rat; adjuvant arthritis and subcutaneous air pouch edema. Carvedilol (10mg/kg/day p.o. for 21days) effectively suppressed inflammation in both models with comparable efficacy to the standard anti-inflammatory diclofenac (5mg/kg/day p.o.). Notably, carvedilol inhibited paw edema and abrogated the leukocyte invasion to air pouch exudates. The latter observation was confirmed by the histopathological assessment of the pouch lining that revealed mitigation of immuno-inflammatory cell influx. Carvedilol reduced/normalized oxidative stress markers (lipid peroxides, nitric oxide and protein thiols) and lowered the release of inflammatory cytokines (TNF-α & IL-6), and eicosanoids (PGE2 & LTB4) in sera and exudates of arthritic rats. Interestingly, carvedilol, per se, didn't present any effect on assessed biochemical parameters in normal rats. Together, the current study highlights evidences for the promising anti-arthritic effects of carvedilol that could be mediated through attenuation of leukocyte migration, alleviation of oxidative stress and suppression of proinflammatory cytokines and eicosanoids.

  8. Analysis of thermal stresses and metal movement during welding

    NASA Technical Reports Server (NTRS)

    Muraki, T.; Masubuchi, K.

    1973-01-01

    The research is reported concerning the development of a system of mathematical solutions and computer programs for one- and two-dimensional analyses for thermal stresses. Reports presented include: the investigation of thermal stress and buckling of tantalum and columbium sheet; and analysis of two dimensional thermal strains and metal movement during welding.

  9. Resveratrol alleviates endotoxemia-associated adrenal insufficiency by suppressing oxidative/nitrative stress.

    PubMed

    Duan, Guo-Li; Wang, Chang-Nan; Liu, Yu-Jian; Yu, Qing; Tang, Xiao-Lu; Ni, Xin; Zhu, Xiao-Yan

    2016-06-30

    We have recently demonstrated that endotoxin causes oxidative stress and overproduction of nitric oxide in adrenal glands, thereby leading to adrenocortical insufficiency. The aim of this study is to investigate the effects of resveratrol, a natural plant polyphenol with anti-oxidant and anti-nitrative properties, on endotoxemia-associated adrenocortical insufficiency. Resveratrol was administered immediately before injection of lipopolysaccharide (LPS). Twenty four hours later, the adrenocorticotropic hormone (ACTH) stimulation tests was been performed to measure the plasma corticosterone level and the adrenal gland tissues were collected for histopathologic examination, and determination of malondialdehyde (MDA), total antioxidant capacity (T-AOC), superoxide dismutase (SOD) activity, catalase (CAT) activity, inducible nitric oxide synthase (iNOS) expression, nitric oxide (NO) and peroxynitrite production. Treatment with resveratrol significantly inhibited endotoxemia-induced iNOS expression, NO production, and peroxynitrite formation and also attenuated LPS-induced oxidative stress in the adrenal gland, as evidenced by the decrease of pro-oxidant biomarker (MDA), and the increases of anti-oxidant biomarkers (T-AOC, CAT and SOD activity). H&E staining demonstrated that administration of LPS resulted in increased into the adrenal gland. H&E-stained sections of adrenal glands demonstrated signs of leukocyte infiltration and hemorrhage during endotoxemia, which were significantly improved by resveratrol treatment. In addition, resveratrol reversed the LPS-induced downregulation of ACTH receptor and silent information regulator 1 (SIRT1) in adrenal gland, as well as adrenocortical hyporesponsiveness to ACTH. Resveratrol exerts protective effects against endotoxemia-associated adrenocortical insufficiency by suppressing oxidative/nitrative stress. These findings support the potential for resveratrol as a possible pharmacological agent to improve adrenocortical

  10. Mamao Pomace Extract Alleviates Hypertension and Oxidative Stress in Nitric Oxide Deficient Rats

    PubMed Central

    Kukongviriyapan, Upa; Kukongviriyapan, Veerapol; Pannangpetch, Patchareewan; Donpunha, Wanida; Sripui, Jintana; Sae-Eaw, Amporn; Boonla, Orachorn

    2015-01-01

    Reactive oxygen species (ROS)-induced oxidative stress plays a major role in pathogenesis of hypertension. Antidesma thwaitesianum (local name: Mamao) is a tropical plant distributed in the tropical/subtropical areas of the world, including Thailand. Mamao pomace (MP), a by-product generated from Mamao fruits, contains large amounts of antioxidant polyphenolic compounds. The aim of this study was to investigate the antihypertensive and antioxidative effects of MP using hypertensive rats. For this purpose, male Sprague-Dawley rats were given Nω-nitro-l-arginine methyl ester (l-NAME), an inhibitor of endothelial nitric oxide synthase (eNOS), in drinking water (50 mg/kg) for three weeks. MP extract was orally administered daily at doses of 100 and 300 mg/kg. l-NAME administration induced marked increase in blood pressure, peripheral vascular resistance, and oxidative stress. MP treatment significantly prevented the increase in blood pressure, hindlimb blood flow and hindlimb vascular resistance of l-NAME treated hypertensive rats (p < 0.05). The antihypertensive effect of MP treatment was associated with suppression of superoxide production from carotid strips and also with an increase in eNOS protein expression and nitric oxide bioavailability. The present results provide evidence for the antihypertensive effect of MP and suggest that MP might be useful as a dietary supplement against hypertension. PMID:26225998

  11. Dietary sodium butyrate alleviates the oxidative stress induced by corticosterone exposure and improves meat quality in broiler chickens.

    PubMed

    Zhang, W H; Gao, F; Zhu, Q F; Li, C; Jiang, Y; Dai, S F; Zhou, G H

    2011-11-01

    The present study was to investigate the effects of dietary microencapsulated sodium butyrate (SB) and acute pre-slaughter stress, mimicked by subcutaneous corticosterone (CORT) administration, on BW, carcass characteristics, muscle antioxidant status, and meat quality of broiler chickens. A total of 120 1-d-old broiler chickens were fed a control diet (without SB) or a 0.4-g microencapsulated SB/kg diet. On 42 d, half of the birds from each treatment were given 1 single subcutaneous injection of CORT (4 mg/kg of BW in corn oil) to mimic acute stress, whereas the other half were injected with the same amount of corn oil (sham control). Three hours later, BW loss was determined and breast meat samples were collected. The results showed that the BW of the CORT-challenged groups lost much more than the sham control group (P < 0.001), whereas it was alleviated by the dietary microencapsulated SB (P < 0.05). Meanwhile, the catalase activity was decreased and malondialdehyde level was increased by the stress (P < 0.05), and the microencapsulated-SB diet significantly inhibited this effect (P < 0.05). Lower pH values and higher yellowness values were also observed in CORT-challenged chickens (P < 0.05), and the microencapsulated-SB diet treatment partially exerted a preventive effect. Microencapsulated SB significantly decreased the contents of saturated fatty acids and C18:0 (P < 0.01 and P < 0.001), and increased C20:0 and C20:4 contents. However, the effect of the stress treatment on fatty acid composition was insignificant (P > 0.05). In addition, diet and stress did not significantly influence carcass characteristics and the chemical composition of breast meat (P > 0.05). These results suggest that microencapsulated SB was favorable for chickens in the presence of stress, which may be partially ascribed to the ability of SB to decrease catabolism and oxidative injury of tissues.

  12. Carvedilol alleviates adjuvant-induced arthritis and subcutaneous air pouch edema: Modulation of oxidative stress and inflammatory mediators

    SciTech Connect

    Arab, Hany H.; El-Sawalhi, Maha M.

    2013-04-15

    Rheumatoid arthritis (RA) is a systemic inflammatory disease with cardiovascular complications as the leading cause of morbidity. Carvedilol is an adrenergic antagonist which has been safely used in treatment of several cardiovascular disorders. Given that carvedilol has powerful antioxidant/anti-inflammatory properties, we aimed to investigate its protective potential against arthritis that may add further benefits for its clinical usefulness especially in RA patients with concomitant cardiovascular disorders. Two models were studied in the same rat; adjuvant arthritis and subcutaneous air pouch edema. Carvedilol (10 mg/kg/day p.o. for 21 days) effectively suppressed inflammation in both models with comparable efficacy to the standard anti-inflammatory diclofenac (5 mg/kg/day p.o.). Notably, carvedilol inhibited paw edema and abrogated the leukocyte invasion to air pouch exudates. The latter observation was confirmed by the histopathological assessment of the pouch lining that revealed mitigation of immuno-inflammatory cell influx. Carvedilol reduced/normalized oxidative stress markers (lipid peroxides, nitric oxide and protein thiols) and lowered the release of inflammatory cytokines (TNF-α and IL-6), and eicosanoids (PGE{sub 2} and LTB{sub 4}) in sera and exudates of arthritic rats. Interestingly, carvedilol, per se, didn't present any effect on assessed biochemical parameters in normal rats. Together, the current study highlights evidences for the promising anti-arthritic effects of carvedilol that could be mediated through attenuation of leukocyte migration, alleviation of oxidative stress and suppression of proinflammatory cytokines and eicosanoids. - Highlights: ► Carvedilol possesses promising anti-arthritic properties. ► It markedly suppressed inflammation in adjuvant arthritis and air pouch edema. ► It abrogated the leukocyte invasion to air pouch exudates and linings. ► It reduced/normalized oxidative stress markers in sera and exudates of

  13. Arbuscular mycorrhizal symbiosis elicits shoot proteome changes that are modified during cadmium stress alleviation in Medicago truncatula

    PubMed Central

    2011-01-01

    Background Arbuscular mycorrhizal (AM) fungi, which engage a mutualistic symbiosis with the roots of most plant species, have received much attention for their ability to alleviate heavy metal stress in plants, including cadmium (Cd). While the molecular bases of Cd tolerance displayed by mycorrhizal plants have been extensively analysed in roots, very little is known regarding the mechanisms by which legume aboveground organs can escape metal toxicity upon AM symbiosis. As a model system to address this question, we used Glomus irregulare-colonised Medicago truncatula plants, which were previously shown to accumulate and tolerate heavy metal in their shoots when grown in a substrate spiked with 2 mg Cd kg-1. Results The measurement of three indicators for metal phytoextraction showed that shoots of mycorrhizal M. truncatula plants have a capacity for extracting Cd that is not related to an increase in root-to-shoot translocation rate, but to a high level of allocation plasticity. When analysing the photosynthetic performance in metal-treated mycorrhizal plants relative to those only Cd-supplied, it turned out that the presence of G. irregulare partially alleviated the negative effects of Cd on photosynthesis. To test the mechanisms by which shoots of Cd-treated mycorrhizal plants avoid metal toxicity, we performed a 2-DE/MALDI/TOF-based comparative proteomic analysis of the M. truncatula shoot responses upon mycorrhization and Cd exposure. Whereas the metal-responsive shoot proteins currently identified in non-mycorrhizal M. truncatula indicated that Cd impaired CO2 assimilation, the mycorrhiza-responsive shoot proteome was characterised by an increase in photosynthesis-related proteins coupled to a reduction in glugoneogenesis/glycolysis and antioxidant processes. By contrast, Cd was found to trigger the opposite response coupled the up-accumulation of molecular chaperones in shoot of mycorrhizal plants relative to those metal-free. Conclusion Besides drawing a

  14. Modeling conductive cooling for thermally stressed dairy cows.

    PubMed

    Gebremedhin, Kifle G; Wu, Binxin; Perano, K

    2016-02-01

    Conductive cooling, which is based on direct contact between a cow lying down and a cooled surface (water mattress, or any other heat exchanger embedded under the bedding), allows heat transfer from the cow to the cooled surface, and thus alleviate heat stress of the cow. Conductive cooling is a novel technology that has the potential to reduce the consumption of energy and water in cooling dairy cows compared to some current practices. A three-dimensional conduction model that simulates cooling thermally-stressed dairy cows was developed. The model used a computational fluid dynamics (CFD) method to characterize the air-flow field surrounding the animal model. The flow field was obtained by solving the continuity and the momentum equations. The heat exchange between the animal and the cooled water mattress as well as between the animal and ambient air was determined by solving the energy equation. The relative humidity was characterized using the species transport equation. The conduction 3-D model was validated against experimental temperature data and the agreement was very good (average error is 4.4% and the range is 1.9-8.3%) for a mesh size of 1117202. Sensitivity analyses were conducted between heat losses (sensible and latent) with respect to air temperature, relative humidity, air velocity, and level of wetness of skin surface to determine which of the parameters affect heat flux more than others. Heat flux was more sensitive to air temperature and level of wetness of the skin surface and less sensitive to relative humidity.

  15. Modeling conductive cooling for thermally stressed dairy cows.

    PubMed

    Gebremedhin, Kifle G; Wu, Binxin; Perano, K

    2016-02-01

    Conductive cooling, which is based on direct contact between a cow lying down and a cooled surface (water mattress, or any other heat exchanger embedded under the bedding), allows heat transfer from the cow to the cooled surface, and thus alleviate heat stress of the cow. Conductive cooling is a novel technology that has the potential to reduce the consumption of energy and water in cooling dairy cows compared to some current practices. A three-dimensional conduction model that simulates cooling thermally-stressed dairy cows was developed. The model used a computational fluid dynamics (CFD) method to characterize the air-flow field surrounding the animal model. The flow field was obtained by solving the continuity and the momentum equations. The heat exchange between the animal and the cooled water mattress as well as between the animal and ambient air was determined by solving the energy equation. The relative humidity was characterized using the species transport equation. The conduction 3-D model was validated against experimental temperature data and the agreement was very good (average error is 4.4% and the range is 1.9-8.3%) for a mesh size of 1117202. Sensitivity analyses were conducted between heat losses (sensible and latent) with respect to air temperature, relative humidity, air velocity, and level of wetness of skin surface to determine which of the parameters affect heat flux more than others. Heat flux was more sensitive to air temperature and level of wetness of the skin surface and less sensitive to relative humidity. PMID:26857982

  16. Thermal-Stress Reducer For Metal/Composite Joint

    NASA Technical Reports Server (NTRS)

    Glinski, Robert L.

    1993-01-01

    Simple insert called "thermal link" reduces stresses caused by mismatches between thermal expansions of metal part and nonmetallic part made of fiber/matrix composite material. Link conceived for use in casing of advanced jet engine.

  17. Epalrestat protects against diabetic peripheral neuropathy by alleviating oxidative stress and inhibiting polyol pathway

    PubMed Central

    Li, Qing-rong; Wang, Zhuo; Zhou, Wei; Fan, Shou-rui; Ma, Run; Xue, Li; Yang, Lu; Li, Ya-shan; Tan, Hong-li; Shao, Qing-hua; Yang, Hong-ying

    2016-01-01

    Epalrestat is a noncompetitive and reversible aldose reductase inhibitor used for the treatment of diabetic neuropathy. This study assumed that epalrestat had a protective effect on diabetic peripheral nerve injury by suppressing the expression of aldose reductase in peripheral nerves of diabetes mellitus rats. The high-fat and high-carbohydrate model rats were established by intraperitoneal injection of streptozotocin. Peripheral neuropathy occurred in these rats after sustaining high blood glucose for 8 weeks. At 12 weeks after streptozotocin injection, rats were intragastrically administered epalrestat 100 mg/kg daily for 6 weeks. Transmission electron microscope revealed that the injuries to myelinated nerve fibers, non-myelinated nerve fibers and Schwann cells of rat sciatic nerves had reduced compared to rats without epalrestat administuation. Western blot assay and immunohistochemical results demonstrated that after intervention with epalrestat, the activities of antioxidant enzymes such as superoxide dismutase, catalase and glutathione peroxidase gradually increased, but aldose reductase protein expression gradually diminished. Results confirmed that epalrestat could protect against diabetic peripheral neuropathy by relieving oxidative stress and suppressing the polyol pathway. PMID:27073391

  18. Autophagy protects intestinal epithelial cells against deoxynivalenol toxicity by alleviating oxidative stress via IKK signaling pathway.

    PubMed

    Tang, Yulong; Li, Jianjun; Li, Fengna; Hu, Chien-An A; Liao, Peng; Tan, Kunrong; Tan, Bie; Xiong, Xia; Liu, Gang; Li, Tiejun; Yin, Yulong

    2015-12-01

    Autophagy is an intracellular process of homeostatic degradation that promotes cell survival under various stressors. Deoxynivalenol (DON), a fungal toxin, often causes diarrhea and disturbs the homeostasis of the intestinal system. To investigate the function of intestinal autophagy in response to DON and associated mechanisms, we firstly knocked out ATG5 (autophagy-related gene 5) in porcine intestinal epithelial cells (IPEC-J2) using CRISPR-Cas9 technology. When treated with DON, autophagy was induced in IPEC-J2 cells but not in IPEC-J2.Atg5ko cells. The deficiency in autophagy increased DON-induced apoptosis in IPEC-J2.atg5ko cells, in part, through the generation of reactive oxygen species (ROS). The cellular stress response can be restored in IPEC-J2.atg5ko cells by overexpressing proteins involved in protein folding. Interestingly, we found that autophagy deficiency downregulated the expression of endoplasmic reticulum folding proteins BiP and PDI when IPEC-J2.atg5ko cells were treated with DON. In addition, we investigated the molecular mechanism of autophagy involved in the IKK, AMPK, and mTOR signaling pathway and found that Bay-117082 and Compound C, specific inhibitors for IKK and AMPK, respectively, inhibited the induction of autophagy. Taken together, our results suggest that autophagy is pivotal for protection against DON in pig intestinal cells.

  19. Micro-thermal stress analysis of cement based pavement composite

    SciTech Connect

    Li, G.; Zhao, Y.; Pang, S.S.; Huang, W.

    1998-12-31

    A four-layer sphere model for microscopic thermal analysis was proposed based upon the structural form of cement based pavement composites. Using temperature induced stresses of pavement structure as the external field, the micro-thermal stresses of two types of cement based pavement composite were calculated. The results showed that, by introducing the low stiffness rubberized asphalt in the interphase of coarse aggregate phase and cement mortar phase of Portland cement concrete, the interfacial thermal stresses could be reduced significantly, thus improving crack resistance of the pavement material under low temperature environment. Factors affecting micro-thermal stress of cement based pavement composite were discussed.

  20. Oxidative Stress Alleviation by Sage Essential Oil in Co-amoxiclav induced Hepatotoxicity in Rats.

    PubMed

    El-Hosseiny, L S; Alqurashy, N N; Sheweita, S A

    2016-06-01

    Clinical studies have shown that several classes of antibiotics are evidenced in drug induced liver injury. The combination of amoxicillin with clavulanic acid is commonly cited in such cases. Accordingly, the present study investigated the potential hepatoprotective and in vivo antioxidant efficacy of sage essential oil in Co-amoxiclav induced hepatotoxicity in rats. Sage essential oil was hydrodistilled from the aerial parts of Salvia officinalis L. and its compositional analysis was characterized by Gas chromatography-Mass spectroscopy. Rats were treated singly or concomitantly with Co-amoxiclav and sage essential oil for a period of seven days. The major components of sage oil as identified by GC-MS were 1,8-cineole, β-pinene, camphor, β-caryophyllene, α-pinene and α-caryophyllene comprising 26.3%, 14.4%, 10.9%, 7.8%, 6% and 2.5% respectively. The in vivo exposure of rats to Co-amoxiclav resulted in hepatotoxicity biochemically evidenced by the significant elevation of serum AST, ALT, ALP, γ-GT, total bilirubin and histologically conveyed by hydropic, inflammatory and cholestatic changes in rats' liver. Oxidative stress mediated the hepatic injury as indicated by the significant escalation in lipid peroxidation, as well as, the significant depletion of both glutathione level and glutathione dependent enzymes' activities. The concomitant administration of sage essential oil with Co-amoxiclav exerted a hepatoprotective effect via inducing an in vivo antioxidant defense response eventually regressing, to some extent, the hepatoarchitectural changes induced by Co-amoxiclav. Results suggest that sage essential oil is a potential candidate for counteracting hepatic injury associating Co-amoxiclav and this effect is in part related to the complexity of its chemical composition. PMID:27493593

  1. Oxidative Stress Alleviation by Sage Essential Oil in Co-amoxiclav induced Hepatotoxicity in Rats

    PubMed Central

    El-Hosseiny, L. S.; Alqurashy, N. N.; Sheweita, S. A.

    2016-01-01

    Clinical studies have shown that several classes of antibiotics are evidenced in drug induced liver injury. The combination of amoxicillin with clavulanic acid is commonly cited in such cases. Accordingly, the present study investigated the potential hepatoprotective and in vivo antioxidant efficacy of sage essential oil in Co-amoxiclav induced hepatotoxicity in rats. Sage essential oil was hydrodistilled from the aerial parts of Salvia officinalis L. and its compositional analysis was characterized by Gas chromatography-Mass spectroscopy. Rats were treated singly or concomitantly with Co-amoxiclav and sage essential oil for a period of seven days. The major components of sage oil as identified by GC-MS were 1,8-cineole, β-pinene, camphor, β-caryophyllene, α-pinene and α-caryophyllene comprising 26.3%, 14.4%, 10.9%, 7.8%, 6% and 2.5% respectively. The in vivo exposure of rats to Co-amoxiclav resulted in hepatotoxicity biochemically evidenced by the significant elevation of serum AST, ALT, ALP, γ-GT, total bilirubin and histologically conveyed by hydropic, inflammatory and cholestatic changes in rats’ liver. Oxidative stress mediated the hepatic injury as indicated by the significant escalation in lipid peroxidation, as well as, the significant depletion of both glutathione level and glutathione dependent enzymes’ activities. The concomitant administration of sage essential oil with Co-amoxiclav exerted a hepatoprotective effect via inducing an in vivo antioxidant defense response eventually regressing, to some extent, the hepatoarchitectural changes induced by Co-amoxiclav. Results suggest that sage essential oil is a potential candidate for counteracting hepatic injury associating Co-amoxiclav and this effect is in part related to the complexity of its chemical composition. PMID:27493593

  2. Oxidative Stress Alleviation by Sage Essential Oil in Co-amoxiclav induced Hepatotoxicity in Rats.

    PubMed

    El-Hosseiny, L S; Alqurashy, N N; Sheweita, S A

    2016-06-01

    Clinical studies have shown that several classes of antibiotics are evidenced in drug induced liver injury. The combination of amoxicillin with clavulanic acid is commonly cited in such cases. Accordingly, the present study investigated the potential hepatoprotective and in vivo antioxidant efficacy of sage essential oil in Co-amoxiclav induced hepatotoxicity in rats. Sage essential oil was hydrodistilled from the aerial parts of Salvia officinalis L. and its compositional analysis was characterized by Gas chromatography-Mass spectroscopy. Rats were treated singly or concomitantly with Co-amoxiclav and sage essential oil for a period of seven days. The major components of sage oil as identified by GC-MS were 1,8-cineole, β-pinene, camphor, β-caryophyllene, α-pinene and α-caryophyllene comprising 26.3%, 14.4%, 10.9%, 7.8%, 6% and 2.5% respectively. The in vivo exposure of rats to Co-amoxiclav resulted in hepatotoxicity biochemically evidenced by the significant elevation of serum AST, ALT, ALP, γ-GT, total bilirubin and histologically conveyed by hydropic, inflammatory and cholestatic changes in rats' liver. Oxidative stress mediated the hepatic injury as indicated by the significant escalation in lipid peroxidation, as well as, the significant depletion of both glutathione level and glutathione dependent enzymes' activities. The concomitant administration of sage essential oil with Co-amoxiclav exerted a hepatoprotective effect via inducing an in vivo antioxidant defense response eventually regressing, to some extent, the hepatoarchitectural changes induced by Co-amoxiclav. Results suggest that sage essential oil is a potential candidate for counteracting hepatic injury associating Co-amoxiclav and this effect is in part related to the complexity of its chemical composition.

  3. Trichosanthes dioica fruit ameliorates experimentally induced arsenic toxicity in male albino rats through the alleviation of oxidative stress.

    PubMed

    Bhattacharya, Sanjib; Haldar, Pallab Kanti

    2012-08-01

    The present work was focused to evaluate the ameliorative property of aqueous extract of Trichosanthes dioica fruit (AQ T. dioica fruit) against arsenic-induced toxicity in male Wistar albino rats. AQ T. dioica fruit was administered orally to rats at 50 and 100 mg/kg body weight for 20 consecutive days prior to oral administration of sodium arsenite (10 mg/kg) for 10 days. Then the rats were sacrificed for the evaluation of body weights, organ weights, hematological profile, serum biochemical profile, and hepatic and renal antioxidative parameters viz. lipid peroxidation, reduced and oxidized glutathione, glutathione-S-transferase, glutathione peroxidase, glutathione reductase, superoxide dismutase, catalase, and DNA fragmentation. Pretreatment with AQ T. dioica fruit at both doses markedly and significantly normalized body weights, organ weights, hematological profiles, and serum biochemical profile in arsenic-treated animals. Further, AQ T. dioica fruit pretreatment significantly modulated all the aforesaid hepatic and renal biochemical perturbations and reduced DNA fragmentation in arsenic-intoxicated rats. Therefore, from the present findings, it can be concluded that T. dioica fruit possessed remarkable value in amelioration of arsenic-induced hepatic and renal toxicity, mediated by alleviation of arsenic-induced oxidative stress by multiple mechanisms in male albino rats.

  4. Coupled thermal stress simulations of ductile tearing

    DOE PAGES

    Neilsen, Michael K.; Dion, Kristin

    2016-03-01

    Predictions for ductile tearing of a geometrically complex Ti-6Al-4V plate were generated using a Unified Creep Plasticity Damage model in fully coupled thermal stress simulations. Uniaxial tension and butterfly shear tests performed at displacement rates of 0.0254 and 25.4 mm/s were also simulated. Results from these simulations revealed that the material temperature increase due to plastic work can have a dramatic effect on material ductility predictions in materials that exhibit little strain hardening. Furthermore, this occurs because the temperature increase causes the apparent hardening of the material to decrease which leads to the initiation of deformation localization and subsequent ductilemore » tearing earlier in the loading process.« less

  5. Treadmill exercise alleviates post-traumatic stress disorder-induced impairment of spatial learning memory in rats.

    PubMed

    Kim, Bo-Kyun; Seo, Jin-Hee

    2013-01-01

    Post-traumatic stress disorder (PTSD) is a condition which occurs after a person has experienced unusual stress. The neurons in the hippocampus are especially vulnerable to the PTSD. In the present study, the effect of treadmill exercise on spatial learning memory and cell proliferation in the hippocampus of rats with PTSD. Radial 8-arm maze test and immunohistochemistr for 5-bromo-2'-deoxyridine (BrdU) and double-cortin (DCX) were conducted for this experiment. For the inducing PTSD, the rats were exposure to 0.2 mA electric foot shock for 7 consecutive days. Electric foot shock continued 6 seconds, repeated 10 times with a 30 sec interval per one trial, and repeated 3 trials per day. The rats in the exercise groups were forced to run on a motorized treadmill for 30 min once a day for 4 weeks, stating one day after finishing last electric food shock. Presently, the PTSD rats showed longer time of successful performance, higher error number, and lower correct number in the radial-8-arm maze test. Cell proliferation and DCX expression in the hippocampal dentate gyrus were suppressed in the PTSD rats. In contrast, treadmill exercise alleviated PTSD-induced impairment of spatial learning memory. The rats performed treadmill exercise showed longer time of successful performance, higher error number, and lower correct number in the radial-8-arm maze test. Treadmill exercise also enhanced cell proliferation and DCX expression in the hippocampal dentate gyrus of PTSD rats. The present study demonstrated that treadmill exercise ameliorated PTSD-induced memory impairment through enhancing cell proliferation in the hippocampus.

  6. Thermal-stress-free fasteners for joining orthotropic materials

    NASA Technical Reports Server (NTRS)

    Blosser, Max L.

    1987-01-01

    Hot structures fabricated from orthotropic materials are an attractive design option for future high speed vehicles. Joining subassemblies of these materials with standard cylindrical fasteners can lead to loose joints or highly stressed joints due to thermal stress. A method has been developed to eliminate thermal stress and maintain a tight joint by shaping the fastener and mating hole. This method allows both materials (fastener and structure), with different coefficients of thermal expansion (CTE's) in each of the three principal material directions, to expand freely with temperature yet remain in contact. For the assumptions made in the analysis, the joint will remain snug, yet free of thermal stress at any temperature. Finite element analysis was used to verify several thermal-stress-free fasteners and to show that conical fasteners, which are thermal-stress-free for isotropic materials, can reduce thermal stresses for transversely isotropic materials compared to a cylindrical fastener. Equations for thermal-stress-free shapes are presented and typical fastener shapes are shown.

  7. Thermal-stress-free fasteners for joining orthotropic materials

    NASA Technical Reports Server (NTRS)

    Blosser, M. L.

    1987-01-01

    Hot structures fabricated from orthotropic materials are an attractive design option for future high speed vehicles. Joining subassemblies of these materials with standard cylindrical fasteners can lead to loose joints or highly stressed joints due to thermal stress. A method has been developed to eliminate thermal stresses and maintain a tight joint by shaping the fastener and mating hole. This method allows both materials (fastener and structure), with different coefficients of thermal expansion (CTEs) in each of the three material directions, to expand freely with temperature yet remain in contact. For the assumptions made in the analysis, the joint will remain snug, yet free of thermal stress at any temperature. Finite element analysis was used to verify several thermal-stress-free fasteners and to show that conical fasteners, which are thermal-stress-free for isotropic materials, can reduce thermal stresses for transversely isotropic materials compared to a cylindrical fastener. Equations for thermal-stress-free shapes are presented and typical fastener shapes are shown.

  8. Thermal Residual Stress in Environmental Barrier Coated Silicon Nitride - Modeled

    NASA Technical Reports Server (NTRS)

    Ali, Abdul-Aziz; Bhatt, Ramakrishna T.

    2009-01-01

    When exposed to combustion environments containing moisture both un-reinforced and fiber reinforced silicon based ceramic materials tend to undergo surface recession. To avoid surface recession environmental barrier coating systems are required. However, due to differences in the elastic and thermal properties of the substrate and the environmental barrier coating, thermal residual stresses can be generated in the coated substrate. Depending on their magnitude and nature thermal residual stresses can have significant influence on the strength and fracture behavior of coated substrates. To determine the maximum residual stresses developed during deposition of the coatings, a finite element model (FEM) was developed. Using this model, the thermal residual stresses were predicted in silicon nitride substrates coated with three environmental coating systems namely barium strontium aluminum silicate (BSAS), rare earth mono silicate (REMS) and earth mono di-silicate (REDS). A parametric study was also conducted to determine the influence of coating layer thickness and material parameters on thermal residual stress. Results indicate that z-direction stresses in all three systems are small and negligible, but maximum in-plane stresses can be significant depending on the composition of the constituent layer and the distance from the substrate. The BSAS and REDS systems show much lower thermal residual stresses than REMS system. Parametric analysis indicates that in each system, the thermal residual stresses can be decreased with decreasing the modulus and thickness of the coating.

  9. Lattice thermal conductivity of a silicon nanowire under surface stress

    NASA Astrophysics Data System (ADS)

    Liangruksa, Monrudee; Puri, Ishwar K.

    2011-06-01

    The effects of surface stress on the lattice thermal conductivity are investigated for a silicon nanowire. A phonon dispersion relation is derived based on a continuum approach for a nanowire under surface stress. The phonon Boltzmann equation and the relaxation time are employed to calculate the lattice thermal conductivity. Surface stress, which has a significant influence on the phonon dispersion and thus the Debye temperature, decreases the lattice thermal conductivity. The conductivity varies with changing surface stress, e.g., due to adsorption layers and material coatings. This suggests a phonon engineering approach to tune the conductivity of nanomaterials.

  10. Alleviation of salt stress in citrus seedlings inoculated with arbuscular mycorrhizal fungi depends on the rootstock salt tolerance.

    PubMed

    Navarro, Josefa M; Pérez-Tornero, Olaya; Morte, Asunción

    2014-01-01

    Seedlings of Cleopatra mandarin (Citrus reshni Hort. ex Tan.) and Alemow (Citrus macrophylla Wester) were inoculated with a mixture of AM fungi (Rhizophagus irregularis and Funneliformis mosseae) (+AM), or left non-inoculated (-AM). From forty-five days after fungal inoculation onwards, half of +AM or -AM plants were irrigated with nutrient solution containing 50 mM NaCl. Three months later, AM significantly increased plant growth in both Cleopatra mandarin and Alemow rootstocks. Plant growth was higher in salinized +AM plants than in non-salinized -AM plants, demonstrating that AM compensates the growth limitations imposed by salinity. Whereas AM-inoculated Cleopatra mandarin seedlings had a very good response under saline treatment, inoculation in Alemow did not alleviate the negative effect of salinity. The beneficial effect of mycorrhization is unrelated with protection against the uptake of Na or Cl and the effect of AM on these ions did not explain the different response of rootstocks. This response was related with the nutritional status since our findings confirm that AM fungi can alter host responses to salinity stress, improving more the P, K, Fe and Cu plant nutrition in Cleopatra mandarin than in Alemow plants. AM inoculation under saline treatments also increased root Mg concentration but it was higher in Cleopatra mandarin than in Alemow. This could explain why AM fungus did not completely recovered chlorophyll concentrations in Alemow and consequently it had lower photosynthesis rate than control plants. AM fungi play an essential role in citrus rootstock growth and biomass production although the intensity of this response depends on the rootstock salinity tolerance.

  11. Thermal stress analysis of composites in the space environment

    NASA Technical Reports Server (NTRS)

    Bowles, David E.

    1993-01-01

    A finite element micromechanics approach was utilized to investigate the thermally induced stress fields in continuous fiber reinforced polymer matrix composites at temperatures typical of spacecraft operating environments. The influence of laminate orientation was investigated with a simple global/local formulation. Thermal stress calculations were used to predict probable damage initiation locations, and the results were compared to experimentally observed damage in several epoxy matrix composites. The influence of an interphase region on the interfacial stress states was investigated.

  12. Higher Ammonium Transamination Capacity Can Alleviate Glutamate Inhibition on Winter Wheat (Triticum aestivum L.) Root Growth under High Ammonium Stress.

    PubMed

    Wang, Feng; Gao, Jingwen; Liu, Yang; Tian, Zhongwei; Muhammad, Abid; Zhang, Yixuan; Jiang, Dong; Cao, Weixing; Dai, Tingbo

    2016-01-01

    Most of the studies about NH4+ stress mechanism simply address the effects of free NH4+, failing to recognize the changed nitrogen assimilation products. The objective of this study was to elucidate the effects of glutamate on root growth under high ammonium (NH4+) conditions in winter wheat (Triticum aestivum L.). Hydroponic experiments were conducted using two wheat cultivars, AK58 (NH4+-sensitive) and Xumai25 (NH4+-tolerant) with either 5 mM NH4+ nitrogen (AN) as stress treatment or 5 mM nitrate (NO3-) nitrogen as control. To evaluate the effects of NH4+-assimilation products on plant growth, 1 μM L-methionine sulfoximine (MSO) (an inhibitor of glutamine synthetase (GS)) and 1 mM glutamates (a primary N assimilation product) were added to the solutions, respectively. The AN significantly reduced plant biomass, total root length, surface area and root volume in both cultivars, but less effect was observed in Xumai25. The inhibition effects were alleviated by the application of MSO but strengthened by the application of glutamate. The AN increased the activities of GS, glutamate dehydrogenase (GDH) in both cultivars, resulting in higher glutamate contents. However, its contents were decreased by the application of MSO. Compared to AK58, Xumai25 showed lower glutamate contents due to its higher activities of glutamic-oxaloacetic transaminase (GOT) and glutamic-pyruvic transaminase (GPT). With the indole-3-acetic acid (IAA) contents decreasing in roots, the ratio of shoot to root in IAA was increased, and further increased by the application of glutamate, and reduced by the application of MSO, but the ratio was lower in Xumai25. Meanwhile, the total soluble sugar contents and its root to shoot ratio also showed similar trends. These results indicate that the NH4+-tolerant cultivar has a greater transamination ability to prevent glutamate over-accumulation to maintain higher IAA transport ability, and consequently promoted soluble sugar transport to roots, further

  13. Higher Ammonium Transamination Capacity Can Alleviate Glutamate Inhibition on Winter Wheat (Triticum aestivum L.) Root Growth under High Ammonium Stress

    PubMed Central

    Liu, Yang; Tian, Zhongwei; Muhammad, Abid; Zhang, Yixuan; Jiang, Dong; Cao, Weixing; Dai, Tingbo

    2016-01-01

    Most of the studies about NH4+ stress mechanism simply address the effects of free NH4+, failing to recognize the changed nitrogen assimilation products. The objective of this study was to elucidate the effects of glutamate on root growth under high ammonium (NH4+) conditions in winter wheat (Triticum aestivum L.). Hydroponic experiments were conducted using two wheat cultivars, AK58 (NH4+-sensitive) and Xumai25 (NH4+-tolerant) with either 5 mM NH4+ nitrogen (AN) as stress treatment or 5 mM nitrate (NO3-) nitrogen as control. To evaluate the effects of NH4+-assimilation products on plant growth, 1 μM L-methionine sulfoximine (MSO) (an inhibitor of glutamine synthetase (GS)) and 1 mM glutamates (a primary N assimilation product) were added to the solutions, respectively. The AN significantly reduced plant biomass, total root length, surface area and root volume in both cultivars, but less effect was observed in Xumai25. The inhibition effects were alleviated by the application of MSO but strengthened by the application of glutamate. The AN increased the activities of GS, glutamate dehydrogenase (GDH) in both cultivars, resulting in higher glutamate contents. However, its contents were decreased by the application of MSO. Compared to AK58, Xumai25 showed lower glutamate contents due to its higher activities of glutamic-oxaloacetic transaminase (GOT) and glutamic-pyruvic transaminase (GPT). With the indole-3-acetic acid (IAA) contents decreasing in roots, the ratio of shoot to root in IAA was increased, and further increased by the application of glutamate, and reduced by the application of MSO, but the ratio was lower in Xumai25. Meanwhile, the total soluble sugar contents and its root to shoot ratio also showed similar trends. These results indicate that the NH4+-tolerant cultivar has a greater transamination ability to prevent glutamate over-accumulation to maintain higher IAA transport ability, and consequently promoted soluble sugar transport to roots, further

  14. Temperature, Thermal Stress, And Creep In A Structure

    NASA Technical Reports Server (NTRS)

    Jenkins, Jerald M.

    1991-01-01

    Report presents comparison of predicted and measured temperatures, thermal stresses, and residual creep stresses in heated and loaded titanium structure. Study part of continuing effort to develop design capability to predict and reduce deleterious effects of creep, which include excessive deformations, residual stresses, and failure.

  15. Thermal stress fracture in elastic-brittle materials

    NASA Technical Reports Server (NTRS)

    Emery, A. F.

    1980-01-01

    The reported investigation shows that the assessment of the possibility of the thermal fracture of brittle materials depends upon an accurate evaluation of the thermal stresses and the determination of the resulting stress intensity factors. The stress intensity factors can be calculated in a variety of ways ranging from the very precise to approximate, but only for a limited number of geometries. The main difficulty is related to the determination of the thermal stress field because of its unusual character and its dependence upon boundary conditions at points far from the region of thermal activity. Examination of a number of examples suggests that the best visualization of the thermal stresses and any associated fracture can be made by considering the problem to be the combination of thermal and isothermal problems or by considering that the prime effect of the temperature is in the generation of thermal strains and that the thermal stresses are simply the result of the region trying to accommodate these strains.

  16. Overexpression of gamma-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: physiological and chlorophyll a fluorescence measurements.

    PubMed

    Yusuf, Mohd Aslam; Kumar, Deepak; Rajwanshi, Ravi; Strasser, Reto Jörg; Tsimilli-Michael, Merope; Govindjee; Sarin, Neera Bhalla

    2010-08-01

    Tocopherols (vitamin E) are lipid soluble antioxidants synthesized by plants and some cyanobacteria. We have earlier reported that overexpression of the gamma-tocopherol methyl transferase (gamma-TMT) gene from Arabidopsis thaliana in transgenic Brassica juncea plants resulted in an over six-fold increase in the level of alpha-tocopherol, the most active form of all the tocopherols. Tocopherol levels have been shown to increase in response to a variety of abiotic stresses. In the present study on Brassica juncea, we found that salt, heavy metal and osmotic stress induced an increase in the total tocopherol levels. Measurements of seed germination, shoot growth and leaf disc senescence showed that transgenic Brassica juncea plants overexpressing the gamma-TMT gene had enhanced tolerance to the induced stresses. Analysis of the chlorophyll a fluorescence rise kinetics, from the initial "O" level to the "P" (the peak) level, showed that there were differential effects of the applied stresses on different sites of the photosynthetic machinery; further, these effects were alleviated in the transgenic (line 16.1) Brassica juncea plants. We show that alpha-tocopherol plays an important role in the alleviation of stress induced by salt, heavy metal and osmoticum in Brassica juncea. PMID:20144585

  17. Alleviating salt stress in tomato seedlings using Arthrobacter and Bacillus megaterium isolated from the rhizosphere of wild plants grown on saline-alkaline lands.

    PubMed

    Fan, Pengfei; Chen, Daitao; He, Yanan; Zhou, Qingxia; Tian, Yongqiang; Gao, Lihong

    2016-11-01

    Salt-induced soil degradation is common in farmlands and limits the growth and development of numerous crop plants in the world. In this study, we isolated salt-tolerant bacteria from the rhizosphere of Tamarix chinensis, Suaeda salsa and Zoysia sinica, which are common wild plants grown on a saline-alkaline land, to test these bacteria's efficiency in alleviating salt stress in tomato plants. We screened out seven strains (TF1-7) that are efficient in reducing salt stress in tomato seedlings. The sequence data of 16S rRNA genes showed that these strains belong to Arthrobacter and Bacillus megaterium. All strains could hydrolyze casein and solubilize phosphate, and showed at least one plant growth promotion (PGP)-related gene, indicating their potential in promoting plant growth. The Arthrobacter strains TF1 and TF7 and the Bacillus megaterium strain TF2 and TF3 could produce indole acetic acid under salt stress, further demonstrating their PGP potential. Tomato seed germination, seedling length, vigor index, and plant fresh and dry weight were enhanced by inoculation of Arthrobacter and B. megaterium strains under salt stress. Our results demonstrated that salt-tolerant bacteria isolated from the rhizosphere of wild plants grown on saline-alkaline lands could be used for alleviating salt stress in crop plants. PMID:27196364

  18. Thermal stresses due to cooling of a viscoelastic oceanic lithosphere

    USGS Publications Warehouse

    Denlinger, R.P.; Savage, W.Z.

    1989-01-01

    Instant-freezing methods inaccurately predict transient thermal stresses in rapidly cooling silicate glass plates because of the temperature dependent rheology of the material. The temperature dependent rheology of the lithosphere may affect the transient thermal stress distribution in a similar way, and for this reason we use a thermoviscoelastic model to estimate thermal stresses in young oceanic lithosphere. This theory is formulated here for linear creep processes that have an Arrhenius rate dependence on temperature. Our results show that the stress differences between instant freezing and linear thermoviscoelastic theory are most pronounced at early times (0-20 m.y. when the instant freezing stresses may be twice as large. The solutions for the two methods asymptotically approach the same solution with time. A comparison with intraplate seismicity shows that both methods underestimate the depth of compressional stresses inferred from the seismicity in a systematic way. -from Authors

  19. The evolution of impact basins - Cooling, subsidence, and thermal stress

    NASA Technical Reports Server (NTRS)

    Bratt, S. R.; Solomon, S. C.; Head, J. W.

    1985-01-01

    The present study is concerned with an assessment of the contribution of thermal contraction and thermal stress to the topography and tectonics of large lunar impact basins. Exploratory models are developed, giving attention to the temperature structure following basin formation, the subsequent cooling of the basin region, and the resulting thermal displacements and stresses as functions of time. The subsidence and stress at the surface are compared with topography and tectonic features in the comparatively well-preserved Orientale basin. The results of the comparison are used as a basis to derive approximate constraints on the quantity and distribution of heat implanted during the basin-formation process.

  20. Evaluation of Transient Pin-Stress Requirements for Spacecraft Launching in Lightning Environments. Pain Free Analysis to Alleviate Those Pin Stress Headaches

    NASA Technical Reports Server (NTRS)

    Edwards, Paul; Terseck, Alex; Trout, Dawn

    2016-01-01

    Spacecraft are generally protected from direct lightning attachment by encapsulation within the payload fairing of a launch vehicle and the ground structures that exist at the launch site. Regardless of where lightning strikes, potentially damaging indirect effects prevail from the coupling of electromagnetic fields into a loop created by outer shield of the payload umbilical. The energy coupled into individual spacecraft circuits is dependent on the umbilical current drive, the cable transfer impedance and the source/ load circuitry, and the reference potential used. Lightning induced transient susceptibility of the spacecraft avionics needs to be fully understood in order to define realistic re-test criteria in the event of a lightning occurrence during the launch campaign. Use of standards such as RTCA/DO-160 & SAE 5412 has some applicability but do not represent the indirect environment adequately. This paper evaluates the launch pad environments, the measurement data available, and computer simulations to provide pain-free analysis to alleviate the transient pin-stress headaches for spacecraft launching in Lightning environments.

  1. Thermal stresses in composite tubes using complementary virtual work

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Cooper, D. E.

    1988-01-01

    This paper addresses the computation of thermally induced stresses in layered, fiber-reinforced composite tubes subjected to a circumferential gradient. The paper focuses on using the principle of complementary virtual work, in conjunction with a Ritz approximation to the stress field, to study the influence on the predicted stresses of including temperature-dependent material properties. Results indicate that the computed values of stress are sensitive to the temperature dependence of the matrix-direction compliance and matrix-direction thermal expansion in the plane of the lamina. There is less sensitivity to the temperature dependence of the other material properties.

  2. Thermotolerance induced at a mild temperature of 40°C alleviates heat shock-induced ER stress and apoptosis in HeLa cells.

    PubMed

    Bettaieb, Ahmed; Averill-Bates, Diana A

    2015-01-01

    Hyperthermia (39-45°C) has emerged as an alternate prospect for cancer therapy in combination with radiation and chemotherapy. Despite promising progress in the clinic, molecular mechanisms involved in hyperthermia-induced cell death are not clear. Hyperthermia causes protein denaturation/aggregation, which results in cell death by apoptosis and/or necrosis. Hyperthermia also induces thermotolerance, which renders cells resistant to subsequent exposure to lethal heat shock. This study investigates the role of both lethal (42-43°C) and mild (40°C) hyperthermia in regulating ER stress and ER stress-induced apoptosis in HeLa cells. The ability of mild thermotolerance induced at 40°C to alleviate either or both of these processes is also determined. Hyperthermia (42-43°C) induced ER stress, revealed by phosphorylation of PERK, eIF2α and IRE1α, cleavage of ATF6 and increased expression of BiP and sXBP1. Real-time PCR revealed that mRNA levels of ATF6, ATF4, BiP, sXBP1 and CHOP increased in cells exposed to hyperthermia. Moreover, hyperthermia caused disruption of calcium homeostasis and activated the calpain-calpastatin proteolytic system and ER resident caspase 4. Pre-exposure to mild hyperthermia (40°C) alleviated the induction of cytotoxicity and ER stress by hyperthermia (42-43°C) and protected cells against ER stress-induced apoptosis. ShRNA-mediated depletion of Hsp72 abrogated protective effects of mild thermotolerance (40°C) against heat-shock induced ER stress and sensitized cells to ER stress-mediated apoptosis. Our findings show that Hsp72 contributes to the protective effects of mild hyperthermia (40°C) against hyperthermia-induced ER stress and apoptosis.

  3. Lipid biomarkers in Symbiodinium dinoflagellates: new indicators of thermal stress

    NASA Astrophysics Data System (ADS)

    Kneeland, J.; Hughen, K.; Cervino, J.; Hauff, B.; Eglinton, T.

    2013-12-01

    Lipid content and fatty acid profiles of corals and their dinoflagellate endosymbionts are known to vary in response to high-temperature stress. To better understand the heat-stress response in these symbionts, we investigated cultures of Symbiodinium goreauii type C1 and Symbiodinium sp. clade subtype D1 grown under a range of temperatures and durations. The predominant lipids produced by Symbiodinium are palmitic (C16) and stearic (C18) saturated fatty acids and their unsaturated analogs, the polyunsaturated fatty acid docosahexaenoic acid (C22:6, n-3; DHA), and a variety of sterols. Prolonged exposure to high temperature causes the relative amount of unsaturated acids within the C18 fatty acids in Symbiodinium tissue to decrease. Thermal stress also causes a decrease in abundance of fatty acids relative to sterols, as well as the more specific ratio of DHA to an algal 4-methyl sterol. These shifts in fatty acid unsaturation and fatty acid-to-sterol ratios are common to both types C1 and D1, but the apparent thermal threshold of lipid changes is lower for type C1. This work indicates that ratios among free fatty acids and sterols in Symbiodinium can be used as sensitive indicators of thermal stress. If the Symbiodinium lipid stress response is unchanged in hospite, the algal heat-stress biomarkers we have identified could be measured to detect thermal stress within the coral holobiont. These results provide new insights into the potential role of lipids in the overall Symbiodinium thermal stress response.

  4. Deep-brain magnetic stimulation promotes adult hippocampal neurogenesis and alleviates stress-related behaviors in mouse models for neuropsychiatric disorders

    PubMed Central

    2014-01-01

    Background Repetitive Transcranial Magnetic Stimulation (rTMS)/ Deep-brain Magnetic Stimulation (DMS) is an effective therapy for various neuropsychiatric disorders including major depression disorder. The molecular and cellular mechanisms underlying the impacts of rTMS/DMS on the brain are not yet fully understood. Results Here we studied the effects of deep-brain magnetic stimulation to brain on the molecular and cellular level. We examined the adult hippocampal neurogenesis and hippocampal synaptic plasticity of rodent under stress conditions with deep-brain magnetic stimulation treatment. We found that DMS promotes adult hippocampal neurogenesis significantly and facilitates the development of adult new-born neurons. Remarkably, DMS exerts anti-depression effects in the learned helplessness mouse model and rescues hippocampal long-term plasticity impaired by restraint stress in rats. Moreover, DMS alleviates the stress response in a mouse model for Rett syndrome and prolongs the life span of these animals dramatically. Conclusions Deep-brain magnetic stimulation greatly facilitates adult hippocampal neurogenesis and maturation, also alleviates depression and stress-related responses in animal models. PMID:24512669

  5. Effects of pre-stress and surface stress on phonon thermal conductivity of rectangular Si nanowires

    NASA Astrophysics Data System (ADS)

    Zhu, Linli; Ruan, Haihui

    2015-04-01

    This work investigates theoretically the phonon property and thermal conductivity of rectangular silicon nanowires under pre-stress and surface stress. In the framework of elasticity theory, the effects of spatial confinement are considered in the phonon dispersion relation of a stressed nanowire. The surface energy, which brings about the variation of the elastic modulus of nanowire and the influence on the phonon property, is then involved. Under a pre-stress field, the acoustoelastic effect gives rise to the change of phonon properties and thermal conductivity. Our numerical results demonstrate that the applied surface stress and pre-stress field can alter the phonon dispersion relation of a silicon nanowire significantly. The phonon energy increases if the surface stress is negative and the pre-stress is positive, and vice versa. The changes of phonon dispersion relation as well as the various phonon scattering rates lead to the variation of phonon thermal conductivity, which is the consequence of the surface stress and pre-stress fields. We further elaborate the size and temperature dependence of phonon thermal conductivity under different applied surface stresses and pre-stress fields and suggest using the strain engineering to tune the thermal performance of semiconductor nanostructures.

  6. Transient thermal stress problem for a circumferentially cracked hollow cylinder

    NASA Technical Reports Server (NTRS)

    Nied, H. F.; Erdogan, F.

    1983-01-01

    The paper is concerned with the transient thermal stress problem for a long hollow circular cylinder containing an internal axisymmetric circumferential edge crack that is suddenly cooled from inside. It is assumed that the transient thermal stress problem is quasi-static, i.e., the inertial effects are negligible. Also, all thermoelastic coupling effects and the possible temperature dependence of the thermoelastic constants are neglected. The problem is considered in two parts. The first part is the evaluation of transient thermal stresses in an uncracked cylinder; the second part is the isothermal perturbation problem for the cracked cylinder in which the crack surface tractions, equal and opposite to the thermal stresses obtained from the first problem, are the only external loads. The superposition of the two solutions gives results for the cracked cylinder.

  7. Thermal stress tectonics on the satellites of Saturn and Uranus

    NASA Technical Reports Server (NTRS)

    Hillier, John; Squyres, Steven W.

    1991-01-01

    Thermal stress histories of the Saturnian and Uranian satellites are investigated. To this end, the thermal evolution of an icy satellite subjected to accretional and radiogenic heating, thermal conduction, and solid-state convection is modeled, and changes in the internal stress that occur during satellite evolution are examined. Results show that internal temperature changes that occur during normal evolution of many of the satellites of Saturn and Uranus can be expected to generate large extensional stresses in the satellites' outer regions. These stresses arise from three sources: (1) radiogenic warming, causing thermal expansion of materials in the satellite's deep interior; (2) radiogenic warming in larger satellites that can induce a phase transition from ice II to ice I and to produce a volume increase in the deep interior; and (3) accretional heating depositing heat in the satellite'e outer regions.

  8. Low thermal stress ceramic turbine nozzle

    DOEpatents

    Glezer, Boris; Bagheri, Hamid; Fierstein, Aaron R.

    1996-01-01

    A turbine nozzle vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes an outer shroud and an inner shroud having a plurality of vanes therebetween. Each of the plurality of vanes have a device for heating and cooling a portion of each of the plurality of vanes. Furthermore, the inner shroud has a plurality of bosses attached thereto. A cylindrical member has a plurality of grooves formed therein and each of the plurality of bosses are positioned in corresponding ones of the plurality of grooves. The turbine nozzle vane assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the other component.

  9. Behavior of Materials Under Conditions of Thermal Stress

    NASA Technical Reports Server (NTRS)

    Manson, S S

    1954-01-01

    A review is presented of available information on the behavior of brittle and ductile materials under conditions of thermal stress and thermal shock. For brittle materials, a simple formula relating physical properties to thermal-shock resistance is derived and used to determine the relative significance of two indices currently in use for rating materials. For ductile materials, thermal-shock resistance depends upon the complex interrelation among several metallurgical variables which seriously affect strength and ductility. These variables are briefly discussed and illustrated from literature sources. The importance of simulating operating conditions in tests for rating materials is especially to be emphasized because of the importance of testing conditions in metallurgy. A number of practical methods that have been used to minimize the deleterious effects of thermal stress and thermal shock are outlined.

  10. Analysis of thermal stresses and metal movement during welding

    NASA Technical Reports Server (NTRS)

    Muraki, T.; Pattee, F. M.; Masubuchi, K.

    1974-01-01

    Finite element computer programs were developed to determine thermal stresses and metal movement during butt welding of flat plates and bead-on-plate welding along the girth of a cylindrical shell. Circular cylindrical shells of 6061 aluminum alloy were used for the tests. Measurements were made of changes in temperature and thermal strains during the welding process.

  11. Thermally induced micromechanical stresses in ceramic/ceramic composites

    SciTech Connect

    Li, Zhuang; Bradt, R.C.

    1992-11-01

    The internal micromechanical stresses which develop in ceramic-ceramic composites as a consequence of temperature changes and thermoelastic property differences between the reinforcing and matrix phases are addressed by the Eshelby method. Results for two whisker reinforced ceramic matrix composites and for quartz particles in porcelain are discussed. It is concluded that the stresses which develop in the second phase reinforcing inclusions are quite substantial (GPa-levels) and may be highly anisotropic in character. These stresses are additive to the macroscopic thermal stresses from temperature gradients which are encountered during heating and cooling, and also to externally apphed mechanical stresses (loads). These micromechanical stresses are expected to be highly significant for thermal cycling fatigue and other failure processes.

  12. Alleviation of salt stress by enterobacter sp. EJ01 in tomato and Arabidopsis is accompanied by up-regulation of conserved salinity responsive factors in plants.

    PubMed

    Kim, Kangmin; Jang, Ye-Jin; Lee, Sang-Myeong; Oh, Byung-Taek; Chae, Jong-Chan; Lee, Kui-Jae

    2014-02-01

    Microbiota in the niches of the rhizosphere zones can affect plant growth and responses to environmental stress conditions via mutualistic interactions with host plants. Specifically, some beneficial bacteria, collectively referred to as Plant Growth Promoting Rhizobacteria (PGPRs), increase plant biomass and innate immunity potential. Here, we report that Enterobacter sp. EJ01, a bacterium isolated from sea china pink (Dianthus japonicus thunb) in reclaimed land of Gyehwa-do in Korea, improved the vegetative growth and alleviated salt stress in tomato and Arabidopsis. EJ01 was capable of producing 1-aminocy-clopropane-1-carboxylate (ACC) deaminase and also exhibited indole-3-acetic acid (IAA) production. The isolate EJ01 conferred increases in fresh weight, dry weight, and plant height of tomato and Arabidopsis under both normal and high salinity conditions. At the molecular level, short-term treatment with EJ01 increased the expression of salt stress responsive genes such as DREB2b, RD29A, RD29B, and RAB18 in Arabidopsis. The expression of proline biosynthetic genes (i.e. P5CS1 and P5CS2) and of genes related to priming processes (i.e. MPK3 and MPK6) were also up-regulated. In addition, reactive oxygen species scavenging activities were enhanced in tomatoes treated with EJ01 in stressed conditions. GFP-tagged EJ01 displayed colonization in the rhizosphere and endosphere in the roots of Arabidopsis. In conclusion, the newly isolated Enterobacter sp. EJ01 is a likely PGPR and alleviates salt stress in host plants through multiple mechanisms, including the rapid up-regulation of conserved plant salt stress responsive signaling pathways.

  13. Alleviation of Salt Stress by Enterobacter sp. EJ01 in Tomato and Arabidopsis Is Accompanied by Up-Regulation of Conserved Salinity Responsive Factors in Plants

    PubMed Central

    Kim, Kangmin; Jang, Ye-Jin; Lee, Sang-Myeong; Oh, Byung-Taek; Chae, Jong-Chan; Lee, Kui-Jae

    2014-01-01

    Microbiota in the niches of the rhizosphere zones can affect plant growth and responses to environmental stress conditions via mutualistic interactions with host plants. Specifically, some beneficial bacteria, collectively referred to as Plant Growth Promoting Rhizobacteria (PGPRs), increase plant biomass and innate immunity potential. Here, we report that Enterobacter sp. EJ01, a bacterium isolated from sea china pink (Dianthus japonicus thunb) in reclaimed land of Gyehwa-do in Korea, improved the vegetative growth and alleviated salt stress in tomato and Arabidopsis. EJ01 was capable of producing 1-aminocy-clopropane-1-carboxylate (ACC) deaminase and also exhibited indole-3-acetic acid (IAA) production. The isolate EJ01 conferred increases in fresh weight, dry weight, and plant height of tomato and Arabidopsis under both normal and high salinity conditions. At the molecular level, short-term treatment with EJ01 increased the expression of salt stress responsive genes such as DREB2b, RD29A, RD29B, and RAB18 in Arabidopsis. The expression of proline biosynthetic genes (i.e. P5CS1 and P5CS2) and of genes related to priming processes (i.e. MPK3 and MPK6) were also up-regulated. In addition, reactive oxygen species scavenging activities were enhanced in tomatoes treated with EJ01 in stressed conditions. GFP-tagged EJ01 displayed colonization in the rhizosphere and endosphere in the roots of Arabidopsis. In conclusion, the newly isolated Enterobacter sp. EJ01 is a likely PGPR and alleviates salt stress in host plants through multiple mechanisms, including the rapid up-regulation of conserved plant salt stress responsive signaling pathways. PMID:24598995

  14. Thermal stress analysis of a silicon carbide/aluminum composite

    NASA Technical Reports Server (NTRS)

    Gdoutos, E. E.; Karalekas, D.; Daniel, I. M.

    1991-01-01

    Thermal deformations and stresses were studied in a silicon-carbide/aluminum filamentary composite at temperatures up to 370 C (700 F). Longitudinal and transverse thermal strains were measured with strain gages and a dilatometer. An elastoplastic micromechanical analysis based on a one-dimensional rule-of-mixtures model and an axisymmetric two-material composite cylinder model was performed. It was established that beyond a critical temperature thermal strains become nonlinear with decreasing longitudinal and increasing transverse thermal-expansion coefficients. This behavior was attributed to the plastic stresses in the aluminum matrix above the critical temperature. An elastoplastic analysis of both micromechanical models was performed to determine the stress distributions and thermal deformation in the fiber and matrix of the composite. While only axial stresses can be determined by the rule-of-mixtures model, the complete triaxial state of stress is established by the composite cylinder model. Theoretical predictions for the two thermal-expansion coefficients were in satisfactory agreement with experimental results.

  15. Self-supplementation and effects of dietary antioxidants during acute thermal stress.

    PubMed

    Beaulieu, Michaël; Haas, Anabel; Schaefer, H Martin

    2014-02-01

    Thermal stress leads to increased production of reactive oxygen species. If an organism is not able to simultaneously mount an efficient antioxidant defense system, this may lead to increased oxidative damage, which is potentially deleterious in terms of health and fitness. Exposure to cold or heat is therefore expected to be associated with a high demand for antioxidants. In agreement, several studies have shown that supplementing the diet of thermally stressed organisms with antioxidants leads to a reduction of oxidative damage. However, whether organisms can actively supplement their diet with antioxidants to alleviate temperature-induced oxidative damage is unknown. Here, we show that captive Gouldian finches (Erythrura gouldiae) supplement their diet more with seeds rich in antioxidants below than within their thermoneutral zone. Moreover, having access to seeds rich in antioxidants at temperatures below thermoneutrality decreases their oxidative damage. These results indicate that, when facing a thermal challenge, animals are able to take advantage of the antioxidant properties of their food to improve their oxidative balance. Having access to food resources rich in antioxidants may therefore be of primary importance for organisms in their natural habitat, as it may help them to cope with oxidative constraints due to challenging temperature regimes.

  16. Low thermal stress ceramic turbine nozzle

    DOEpatents

    Glezer, B.; Bagheri, H.; Fierstein, A.R.

    1996-02-27

    A turbine nozzle vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and is attached to conventional metallic components, the metallic components having a preestablished rate of thermal expansion greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes an outer shroud and an inner shroud having a plurality of vanes there between. Each of the plurality of vanes have a device for heating and cooling a portion of each of the plurality of vanes. Furthermore, the inner shroud has a plurality of bosses attached thereto. A cylindrical member has a plurality of grooves formed therein and each of the plurality of bosses are positioned in corresponding ones of the plurality of grooves. The turbine nozzle vane assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the other component. 4 figs.

  17. Micromechanics thermal stress analysis of composites for space structure applications

    NASA Technical Reports Server (NTRS)

    Bowles, David E.

    1991-01-01

    This paper presents results from a finite element micromechanics analysis of thermally induced stresses in composites at cryogenic temperatures typical of spacecraft operating environments. The influence of microstructural geometry, constituent and interphase properties, and laminate orientation were investigated. Stress field results indicated that significant matrix stresses occur in composites exposed to typical spacecraft thermal excursions; these stresses varied with laminate orientation and circumferential position around the fiber. The major difference in the predicted response of unidirectional and multidirectional laminates was the presence of tensile radial stresses, at the fiber/matrix interface, in multidirectional laminates with off-axis ply angles greater than 15 deg. The predicted damage initiation temperatures and modes were in good agreement with experimental data for both low (207 GPa) and high (517 GPa) modulus carbon fiber/epoxy composites.

  18. Nonlinear/linear unified thermal stress formulations - Transfinite element approach

    NASA Technical Reports Server (NTRS)

    Tamma, Kumar K.; Railkar, Sudhir B.

    1987-01-01

    A new unified computational approach for applicability to nonlinear/linear thermal-structural problems is presented. Basic concepts of the approach including applicability to nonlinear and linear thermal structural mechanics are first described via general formulations. Therein, the approach is demonstrated for thermal stress and thermal-structural dynamic applications. The proposed transfinite element approach focuses on providing a viable hybrid computational methodology by combining the modeling versatility of contemporary finite element schemes in conjunction with transform techniques and the classical Bubnov-Galerkin schemes. Comparative samples of numerical test cases highlight the capabilities of the proposed concepts.

  19. ZPPR FUEL ELEMENT THERMAL STRESS-STRAIN ANALYSIS

    SciTech Connect

    Charles W. Solbrig; Jason Andrus; Chad Pope

    2014-04-01

    The design temperature of high plutonium concentration ZPPR fuel assemblies is 600 degrees C. Cladding integrity of the 304L stainless steel cladding is a significant concern with this fuel since even small holes can lead to substantial fuel degradation. Since the fuel has a higher coefficient of thermal expansion than the cladding, an investigation of the stress induced in the cladding due to the differential thermal expansion of fuel and cladding up to the design temperature was conducted. Small holes in the cladding envelope would be expected to lead to the fuel hydriding and oxidizing into a powder over a long period of time. This is the same type of chemical reaction chain that exists in the degradion of the high uranium concentration ZPPR fuel. Unfortunately, the uranium fuel was designed with vents which allowed this degradation to occur. The Pu cladding is sealed so only fuel with damaged cladding would be subject to this damage. The thermal stresses that can be developed in the fuel cladding have been calculated in in this paper and compared to the ultimate tensile stress of the cladding. The conclusion is drawn that thermal stresses cannot induce holes in the cladding even for the highest storage temperatures predicted in calculations (292°C). In fact, thermal stress can not cause cladding failure as long as the fuel temperatures are below the design limit of 600 degrees C (1,112 degrees F).

  20. Non-thermal Plasma and Oxidative Stress

    NASA Astrophysics Data System (ADS)

    Toyokuni, Shinya

    2015-09-01

    Thermal plasmas and lasers have been used in medicine to cut and ablate tissues and for coagulation. Non-equilibrium atmospheric pressure plasma (NEAPP; non-thermal plasma) is a recently developed, non-thermal technique with possible biomedical applications. Although NEAPP reportedly generates reactive oxygen/nitrogen species, electrons, positive ions, and ultraviolet radiation, few research projects have been conducted to merge this technique with conventional free radical biology. Recently, Prof. Masaru Hori's group (Plasma Nanotechnology Research Center, Nagoya University) developed a NEAPP device with high electron density. Here electron spin resonance revealed hydroxyl radicals as a major product. To merge non-thermal plasma biology with the preexisting free radical biology, we evaluated lipid peroxidation and DNA modifications in various in vitro and ex vivo experiments. Conjugated dienes increased after exposure to linoleic and alfa-linolenic acids. An increase in 2-thiobarbituric acid-reactive substances was also increased after exposure to phosphatidylcholine, liposomes or liver homogenate. Direct exposure to rat liver in medium produced immunohistochemical evidence of 4-hydroxy-2-nonenal- and acrolein-modified proteins. Exposure to plasmid DNA induced dose-dependent single/double strand breaks and increased the amounts of 8-hydroxy-2'-deoxyguanosine and cyclobutane pyrimidine dimers. These results indicate that oxidative biomolecular damage by NEAPP is dose-dependent and thus can be controlled in a site-specific manner. Simultaneous oxidative and UV-specific DNA damage may be useful in cancer treatment. Other recent advancements in the related studies of non-thermal plasma in Nagoya University Graduate School of Medicine will also be discussed.

  1. Observation of silicon-mediated alleviation of cadmium stress in maize (Zea mays L.) seedlings via LED-induced chlorophyll fluorescence

    NASA Astrophysics Data System (ADS)

    Gouveia-Neto, Artur S.; Silva, Elias A.; da Silva, Airon José; do Nascimento, Clístenes W. A.

    2013-02-01

    LED-induced chlorophyll fluorescence analysis is exploited to observe, and monitor the time evolution of silicon-induced alleviation of toxicity in maize (Zea mays L.) seedlings in cadmium contaminated soil. Red, and far-red emissions were examined as a function of cadmium-silicon concentrations, during the 20 days period of the seedlings growing process under stress. The chlorophyll fluorescence spectral analysis provided detection, and evaluation of the damage imposed by the metal stress in the early stages of the plant growing process. The technique also provided the time evolution evaluation of the silicon-induced tolerance enhancement of maize plants to cadmium, which is not viable using conventional in vitro spectral analysis techniques

  2. Nitrogen Nutrition Improves the Potential of Wheat (Triticum aestivum L.) to Alleviate the Effects of Drought Stress during Vegetative Growth Periods

    PubMed Central

    Abid, Muhammad; Tian, Zhongwei; Ata-Ul-Karim, Syed Tahir; Cui, Yakun; Liu, Yang; Zahoor, Rizwan; Jiang, Dong; Dai, Tingbo

    2016-01-01

    Efficient nitrogen (N) nutrition has the potential to alleviate drought stress in crops by maintaining metabolic activities even at low tissue water potential. This study was aimed to understand the potential of N to minimize the effects of drought stress applied/occur during tillering (Feekes stage 2) and jointing (Feekes stage 6) growth stages of wheat by observing the regulations and limitations of physiological activities, crop growth rate during drought periods as well as final grain yields at maturity. In present study, pot cultured plants of a wheat cultivar Yangmai-16 were exposed to three water levels [severe stress at 35–40% field capacity (FC), moderate stress at 55–60% FC and well-watered at 75–80% FC] under two N rates (0.24 g and 0.16 g/kg soil). The results showed that the plants under severe drought stress accompanied by low N exhibited highly downregulated photosynthesis, and chlorophyll (Chl) fluorescence during the drought stress periods, and showed an accelerated grain filling rate with shortened grain filling duration (GFD) at post-anthesis, and reduced grain yields. Severe drought-stressed plants especially at jointing, exhibited lower Chl and Rubisco contents, lower efficiency of photosystem II and greater grain yield reductions. In contrast, drought-stressed plants under higher N showed tolerance to drought stress by maintaining higher leaf water potential, Chl and Rubisco content; lower lipid peroxidation associated with higher superoxide dismutase and ascorbate peroxidase activities during drought periods. The plants under higher N showed delayed senescence, increased GFD and lower grain yield reductions. The results of the study suggested that higher N nutrition contributed to drought tolerance in wheat by maintaining higher photosynthetic activities and antioxidative defense system during vegetative growth periods. PMID:27446197

  3. Modeling of thermal stresses in elastic multilayer coating systems

    NASA Astrophysics Data System (ADS)

    Gao, Chunxue; Zhao, Zhiwei; Li, Xuehua

    2015-02-01

    The performance and reliability of multilayer coating systems are strongly influenced by thermal stresses. The present study develops an alternative analytical model to predict the thermal stresses in elastic multilayer coating systems. An exact closed-form solution is obtained which is independent of the number of coating layers. In addition, with the definition of the coordinate system, the closed-form solution is concisely formulated. Specific results are calculated for thermal stresses in HfO2/SiO2 multilayer optical coatings, and a finite element analysis is performed to confirm the analytical results. The two results agree fairly well with each other. Also, when the thicknesses of the coating layers are much less than the substrate thickness, the approximate solution is obtained based on the exact closed-form solution, and its accuracy is examined.

  4. Overexpression of violaxanthin de-epoxidase gene alleviates photoinhibition of PSII and PSI in tomato during high light and chilling stress.

    PubMed

    Han, Han; Gao, Shan; Li, Bin; Dong, Xin-Chun; Feng, Hai-Long; Meng, Qing-Wei

    2010-02-15

    A tomato (Lycopersicon esculentum) violaxanthin de-epoxidase gene (LeVDE) was isolated. The deduced amino acid sequence of LeVDE showed high identities with violaxanthin de-epoxidase in other plant species. RNA gel blot analysis showed that the mRNA accumulation of LeVDE in the wild-type (WT) was regulated by diurnal rhythm and temperature. RNA and protein gel blot analyses confirmed that the sense LeVDE was transferred into the tomato genome and overexpressed under the control of 35S-CaMV. The ratio of (A+Z)/(V+A+Z) and the values of non-photochemical quenching (NPQ) were higher in transgenic plants than those in WT under high light and chilling stress (4 degrees C). The net photosynthetic rate (Pn) decreased markedly in WT compared to transgenic lines under high light stress. The maximum quantum yield of primary photochemistry of PSII (Fv/Fm) in transgenic plants decreased more slowly during stresses and recovered faster than that in WT under optimal conditions. The oxidizable P700 in transgenic plants was higher than that in WT under chilling stress. These results suggest that overexpression of LeVDE increased the function of the xanthophyll cycle and alleviated photoinhibition of PSII and PSI in tomato during high light and chilling stress with low irradiance.

  5. Postnatal Treadmill Exercise Alleviates Prenatal Stress-Induced Anxiety in Offspring Rats by Enhancing Cell Proliferation Through 5-Hydroxytryptamine 1A Receptor Activation

    PubMed Central

    2016-01-01

    Purpose: Stress during pregnancy is a risk factor for the development of anxiety-related disorders in offspring later in life. The effects of treadmill exercise on anxiety-like behaviors and hippocampal cell proliferation were investigated using rats exposed to prenatal stress. Methods: Exposure of pregnant rats to a hunting dog in an enclosed room was used to induce stress. Anxiety-like behaviors of offspring were evaluated using the elevated plus maze test. Immunohistochemistry for the detection of 5-bromo-2ʹ- deoxyuridine and doublecortin (DCX) in the hippocampal dentate gyrus and 5-hydroxytryptamine 1A receptors (5-HT1A) in the dorsal raphe was conducted. Brain-derived neurotrophic factor (BDNF) and tyrosine kinase B (TrkB) levels in the hippocampus were evaluated by western blot analysis. Results: Offspring of maternal rats exposed to stress during pregnancy showed anxiety-like behaviors. Offspring also showed reduced expression of BDNF, TrkB, and DCX in the dentate gyrus, decreased cell proliferation in the hippocampus, and reduced 5-HT1A expression in the dorsal raphe. Postnatal treadmill exercise by offspring, but not maternal exercise during pregnancy, enhanced cell proliferation and expression of these proteins. Conclusions: Postnatal treadmill exercise ameliorated anxiety-like behaviors in offspring of stressed pregnant rats, and the alleviating effect of exercise on these behaviors is hypothesized to result from enhancement of cell proliferation through 5-HT1A activation in offspring rats. PMID:27230461

  6. Kinetin Enhanced 1-Aminocyclopropane-1-Carboxylic Acid Utilization during Alleviation of High Temperatures Stress in Lettuce Seeds.

    PubMed

    Khan, A A; Prusinski, J

    1989-10-01

    The thermoinhibition at 35 and 32 degrees C of pregermination ethylene production and germination in lettuce (Lactuca sativa L. cv Mesa 659) seeds was synergistically or additively alleviated by 0.05 millimolar kinetin (KIN) and 10 millimolar 1-aminocyclopropane-1-carboxylic acid (ACC). The synergistic effect of KIN + ACC on ethylene production and germination at 35 degrees C was inhibited by Co(2+) (44-46%) but not by aminoethoxyvinyl glycine (AVG). The uptake of ACC by the seed was not influenced by KIN. Upon slitting of the seed coats (composed of pericarp, testa and endosperm), following the uptake of chemicals, ACC was readily converted into ethylene at all temperatures, and the synergistic effects of KIN + ACC at 35 degrees C were lost. At 35 degrees C, KIN acted synergistically with ACC or ethephon (ETH) in alleviating the osmotic restraint. At 25 degrees C, ETH was more active than KIN or KIN + ACC in overcoming the osmotic restraint. Thus, the integrity of the seed coats, the KIN-enhanced ACC utilization, and an interaction of KIN with the ethylene produced may be the basis for the synergistic or additive effects of KIN + ACC at high temperature.

  7. Thermal mechanical stress modeling of GCtM seals

    SciTech Connect

    Dai, Steve Xunhu; Chambers, Robert

    2015-09-01

    Finite-element thermal stress modeling at the glass-ceramic to metal (GCtM) interface was conducted assuming heterogeneous glass-ceramic microstructure. The glass-ceramics were treated as composites consisting of high expansion silica crystalline phases dispersed in a uniform residual glass. Interfacial stresses were examined for two types of glass-ceramics. One was designated as SL16 glass -ceramic, owing to its step-like thermal strain curve with an overall coefficient of thermal expansion (CTE) at 16 ppm/ºC. Clustered Cristobalite is the dominant silica phase in SL16 glass-ceramic. The other, designated as NL16 glass-ceramic, exhibited clusters of mixed Cristobalite and Quartz and showed a near-linear thermal strain curve with a same CTE value.

  8. Residual stress within nanoscale metallic multilayer systems during thermal cycling

    SciTech Connect

    Economy, David Ross; Cordill, Megan Jo; Payzant, E. Andrew; Kennedy, Marian S.

    2015-09-21

    Projected applications for nanoscale metallic multilayers will include wide temperature ranges. Since film residual stress has been known to alter system reliability, stress development within new film structures with high interfacial densities should be characterized to identify potential long-term performance barriers. To understand factors contributing to thermal stress evolution within nanoscale metallic multilayers, stress in Cu/Nb systems adhered to Si substrates was calculated from curvature measurements collected during cycling between 25 °C and 400 °C. Additionally, stress within each type of component layers was calculated from shifts in the primary peak position from in-situ heated X-ray diffraction. The effects of both film architecture (layer thickness) and layer order in metallic multilayers were tracked and compared with monolithic Cu and Nb films. Analysis indicated that the thermoelastic slope of nanoscale metallic multilayer films depends on thermal expansion mismatch, elastic modulus of the components, and also interfacial density. The layer thickness (i.e. interfacial density) affected thermoelastic slope magnitude while layer order had minimal impact on stress responses after the initial thermal cycle. When comparing stress responses of monolithic Cu and Nb films to those of the Cu/Nb systems, the nanoscale metallic multilayers show a similar increase in stress above 200 °C to the Nb monolithic films, indicating that Nb components play a larger role in stress development than Cu. Local stress calculations from X-ray diffraction peak shifts collected during heating reveal that the component layers within a multilayer film respond similarly to their monolithic counterparts.

  9. Residual stress within nanoscale metallic multilayer systems during thermal cycling

    DOE PAGES

    Economy, David Ross; Cordill, Megan Jo; Payzant, E. Andrew; Kennedy, Marian S.

    2015-09-21

    Projected applications for nanoscale metallic multilayers will include wide temperature ranges. Since film residual stress has been known to alter system reliability, stress development within new film structures with high interfacial densities should be characterized to identify potential long-term performance barriers. To understand factors contributing to thermal stress evolution within nanoscale metallic multilayers, stress in Cu/Nb systems adhered to Si substrates was calculated from curvature measurements collected during cycling between 25 °C and 400 °C. Additionally, stress within each type of component layers was calculated from shifts in the primary peak position from in-situ heated X-ray diffraction. The effects ofmore » both film architecture (layer thickness) and layer order in metallic multilayers were tracked and compared with monolithic Cu and Nb films. Analysis indicated that the thermoelastic slope of nanoscale metallic multilayer films depends on thermal expansion mismatch, elastic modulus of the components, and also interfacial density. The layer thickness (i.e. interfacial density) affected thermoelastic slope magnitude while layer order had minimal impact on stress responses after the initial thermal cycle. When comparing stress responses of monolithic Cu and Nb films to those of the Cu/Nb systems, the nanoscale metallic multilayers show a similar increase in stress above 200 °C to the Nb monolithic films, indicating that Nb components play a larger role in stress development than Cu. Local stress calculations from X-ray diffraction peak shifts collected during heating reveal that the component layers within a multilayer film respond similarly to their monolithic counterparts.« less

  10. Transient thermal stress problem for a circumferentially cracked hollow cylinder

    NASA Technical Reports Server (NTRS)

    Nied, H. F.; Erdogan, F.

    1982-01-01

    The transient thermal stress problem for a hollow elasticity cylinder containing an internal circumferential edge crack is considered. It is assumed that the problem is axisymmetric with regard to the crack geometry and the loading, and that the inertia effects are negligible. The problem is solved for a cylinder which is suddenly cooled from inside. First the transient temperature and stress distributions in an uncracked cylinder are calculated. By using the equal and opposite of this thermal stress as the crack surface traction in the isothermal cylinder the crack problem is then solved and the stress intensity factor is calculated. The numerical results are obtained as a function of the Fourier number tD/b(2) representing the time for various inner-to-outer radius ratios and relative crack depths, where D and b are respectively the coefficient of diffusivity and the outer radius of the cylinder.

  11. Thermal-stress analysis for a wood composite blade

    NASA Technical Reports Server (NTRS)

    Fu, K. C.; Harb, A.

    1984-01-01

    A thermal-stress analysis of a wind turbine blade made of wood composite material is reported. First, the governing partial differential equation on heat conduction is derived, then, a finite element procedure using variational approach is developed for the solution of the governing equation. Thus, the temperature distribution throughout the blade is determined. Next, based on the temperature distribution, a finite element procedure using potential energy approach is applied to determine the thermal-stress distribution. A set of results is obtained through the use of a computer, which is considered to be satisfactory. All computer programs are contained in the report.

  12. Thermal-stress fatigue behavior of twenty-six superalloys

    NASA Technical Reports Server (NTRS)

    Bizon, P. T.; Spera, D. A.

    1976-01-01

    The comparative thermal-stress fatigue resistances of 26 nickeland cobalt-base alloys were determined by fluidized bed tests. Cycles to cracking differed by almost three orders of magnitude for these materials, with directional solidification and surface protection showing definite benefit. The alloy-coating combination with the highest thermal-stress fatigue resistance was directionally solidified NASA TAZ-8A with an RT-SP coating. Its oxidation resistance was also excellent, showing approximately a 1/2 percent weight loss after 14,000 fluidized bed cycles.

  13. Thermal stress analysis of a new turbine shroud seal concept

    NASA Technical Reports Server (NTRS)

    Handschuh, R. F.

    1985-01-01

    The thermal stress field of a two piece turbine shroud seal concept was analyzed and results compared to one piece designs by finite element analysis. The two piece seal has independently formed structure (substrate) and ceramic components that are assembled at ambient conditions. The boundary conditions used for analysis were hot gas surface temperatures of 1370 and 1650 C (2500 and 3000 F) and cooled surface temperature of 700 C (1285 F). The resulting thermal stress field, of the two piece seal when compared to the one piece seals in the region of all ceramic material, was reduced substantially.

  14. Boundary layer thermal stresses in angle-ply composite laminates

    NASA Technical Reports Server (NTRS)

    Wang, S. S.; Choi, I.

    1979-01-01

    Boundary-layer thermal stress singularities and distributions of angle-ply composite laminates under uniform thermal loading are investigated through a system of sixth-order governing partial differential equations developed with the aid of the anisotropic elasticity field equations and Lekhnitskii's complex stress functions. Results are presented for cases of various angle-ply graphite/epoxy laminates, and it is shown that the boundary-layer thickness depends on the degree of anisotropy of each individual lamina, thermomechanical properties of each ply, and the relative thickness of adjacent layers.

  15. Thermal stress analysis of reusable surface insulation for shuttle

    NASA Technical Reports Server (NTRS)

    Ojalvo, I. U.; Levy, A.; Austin, F.

    1974-01-01

    An iterative procedure for accurately determining tile stresses associated with static mechanical and thermally induced internal loads is presented. The necessary conditions for convergence of the method are derived. An user-oriented computer program based upon the present method of analysis was developed. The program is capable of analyzing multi-tiled panels and determining the associated stresses. Typical numerical results from this computer program are presented.

  16. On the effect of soil wetness on thermal stress

    NASA Astrophysics Data System (ADS)

    Ookouchi, Y.; Segal, M.; Pielke, R. A.; Mahrer, Y.

    1987-03-01

    A coupled atmosphere-soil model was applied in order to evaluate the impact of soil wetness on human stress in the absence of horizontal gradients in moisture. The results are illustrated and discussed with consideration to various combinations of wind speed and lower level atmospheric moisture during daylight hours with summer weather conditions. A thermal index composed of the air temperature and wet-bulb temperature does not show major changes as a function of variation of soil mosture. When wind speed and solar radiation are also considered, in a more detailed thermal index, relatively wet soil is associated with the optimal thermal comfort.

  17. 3,4-Dihydroxyphenylethanol alleviates early brain injury by modulating oxidative stress and Akt and nuclear factor-κB pathways in a rat model of subarachnoid hemorrhage

    PubMed Central

    FU, PENG; HU, QUAN

    2016-01-01

    3,4-Dihydroxyphenylethanol (DOPET) is a naturally occurring polyphenolic compound, present in olive oil and in the wastewater generated during olive oil processing. DOPET has various biological and pharmacological activities, including anticancer, antibacterial and anti-inflammatory effects. This study was designed to determine whether DOPET alleviates early brain injury (EBI) associated with subarachnoid hemorrhage (SAH) through suppression of oxidative stress and Akt and nuclear factor (NF)-κB pathways. Rats were randomly divided into the following groups: Sham group, SAH group, SAH + vehicle group and SAH + DOPET group. Mortality, blood-brain barrier (BBB) permeability and brain water content were assessed. Oxidative stress, Akt, NF-κB p65 and caspase-3 assays were also performed. DOPET induced a reduction in brain water content, and decreased the BBB permeability of SAH model rats. Furthermore, DOPET effectively controlled oxidative stress, NF-κB p65 and caspase-3 levels, in addition to significantly increasing Akt levels in the cortex following SAH. These results provide evidence that DOPET attenuates apoptosis in a rat SAH model through modulating oxidative stress and Akt and NF-κB signaling pathways. PMID:27168841

  18. Pomegranate extract decreases oxidative stress and alleviates mitochondrial impairment by activating AMPK-Nrf2 in hypothalamic paraventricular nucleus of spontaneously hypertensive rats

    PubMed Central

    Sun, Wenyan; Yan, Chunhong; Frost, Bess; Wang, Xin; Hou, Chen; Zeng, Mengqi; Gao, Hongli; Kang, Yuming; Liu, Jiankang

    2016-01-01

    High blood pressure, or “hypertension,” is associated with high levels of oxidative stress in the paraventricular nucleus of the hypothalamus. While pomegranate extract is a known antioxidant that is thought to have antihypertensive effects, the mechanism whereby pomegranate extract lowers blood pressure and the tissue that mediates its antihypertensive effects are currently unknown. We have used a spontaneously hypertensive rat model to investigate the antihypertensive properties of pomegranate extract. We found that chronic treatment of hypertensive rats with pomegranate extract significantly reduced blood pressure and cardiac hypertrophy. Furthermore, pomegranate extract reduced oxidative stress, increased the antioxidant defense system, and decreased inflammation in the paraventricular nucleus of hypertensive rats. We determined that pomegranate extract reduced mitochondrial superoxide anion levels and increased mitochondrial function in the paraventricular nucleus of hypertensive rats by promoting mitochondrial biogenesis and improving mitochondrial dynamics and clearance. We went on to identify the AMPK-nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) pathway as a mechanism whereby pomegranate extract reduces oxidative stress in the paraventricular nucleus to relieve hypertension. Our findings demonstrate that pomegranate extract alleviates hypertension by reducing oxidative stress and improving mitochondrial function in the paraventricular nucleus, and reveal multiple novel targets for therapeutic treatment of hypertension. PMID:27713551

  19. Thermal diffusion by Brownian-motion-induced fluid stress

    NASA Astrophysics Data System (ADS)

    Kreft, Jennifer; Chen, Yeng-Long

    2007-08-01

    The Ludwig-Soret effect, the migration of a species due to a temperature gradient, has been extensively studied without a complete picture of its cause emerging. Here we investigate the dynamics of DNA and spherical particles subjected to a thermal gradient using a combination of Brownian dynamics and the lattice Boltzmann method. We observe that the DNA molecules will migrate to colder regions of the channel, an observation also made in experiments. In fact, the thermal diffusion coefficient found agrees quantitatively with the experimentally measured value. We also observe that the thermal diffusion coefficient decreases as the radius of the studied spherical particles increases. Furthermore, we observe that the thermal-fluctuation-fluid-momentum-flux coupling induces a gradient in the stress which leads to thermal migration in both systems.

  20. Thermal diffusion by Brownian-motion-induced fluid stress.

    PubMed

    Kreft, Jennifer; Chen, Yeng-Long

    2007-08-01

    The Ludwig-Soret effect, the migration of a species due to a temperature gradient, has been extensively studied without a complete picture of its cause emerging. Here we investigate the dynamics of DNA and spherical particles subjected to a thermal gradient using a combination of Brownian dynamics and the lattice Boltzmann method. We observe that the DNA molecules will migrate to colder regions of the channel, an observation also made in experiments. In fact, the thermal diffusion coefficient found agrees quantitatively with the experimentally measured value. We also observe that the thermal diffusion coefficient decreases as the radius of the studied spherical particles increases. Furthermore, we observe that the thermal-fluctuation-fluid-momentum-flux coupling induces a gradient in the stress which leads to thermal migration in both systems.

  1. Finger millet bran supplementation alleviates obesity-induced oxidative stress, inflammation and gut microbial derangements in high-fat diet-fed mice.

    PubMed

    Murtaza, Nida; Baboota, Ritesh K; Jagtap, Sneha; Singh, Dhirendra P; Khare, Pragyanshu; Sarma, Siddhartha M; Podili, Koteswaraiah; Alagesan, Subramanian; Chandra, T S; Bhutani, K K; Boparai, Ravneet K; Bishnoi, Mahendra; Kondepudi, Kanthi Kiran

    2014-11-14

    Several epidemiological studies have shown that the consumption of finger millet (FM) alleviates diabetes-related complications. In the present study, the effect of finger millet whole grain (FM-WG) and bran (FM-BR) supplementation was evaluated in high-fat diet-fed LACA mice for 12 weeks. Mice were divided into four groups: control group fed a normal diet (10 % fat as energy); a group fed a high-fat diet; a group fed the same high-fat diet supplemented with FM-BR; a group fed the same high-fat diet supplemented with FM-WG. The inclusion of FM-BR at 10 % (w/w) in a high-fat diet had more beneficial effects than that of FM-WG. FM-BR supplementation prevented body weight gain, improved lipid profile and anti-inflammatory status, alleviated oxidative stress, regulated the expression levels of several obesity-related genes, increased the abundance of beneficial gut bacteria (Lactobacillus, Bifidobacteria and Roseburia) and suppressed the abundance of Enterobacter in caecal contents (P≤ 0·05). In conclusion, FM-BR supplementation could be an effective strategy for preventing high-fat diet-induced changes and developing FM-BR-enriched functional foods.

  2. Alleviation of cadmium stress in Solanum lycopersicum L. by arbuscular mycorrhizal fungi via induction of acquired systemic tolerance.

    PubMed

    Hashem, Abeer; Abd Allah, E F; Alqarawi, A A; Al Huqail, Asma A; Egamberdieva, D; Wirth, S

    2016-03-01

    Experiments were conducted to evaluate cadmium (Cd) stress-induced changes in growth, antioxidants and lipid composition of Solanum lycopersicum with and without arbuscular mycorrhizal fungi (AMF). Cadmium stress (50 μM) caused significant changes in the growth and physio-biochemical attributes studied. AMF mitigated the deleterious impact of Cd on the parameters studied. Cadmium stress increased malonaldehyde and hydrogen peroxide production but AMF reduced these parameters by mitigating oxidative stress. The activity of antioxidant enzymes enhanced under Cd treatment and AMF inoculation further enhanced their activity, thus strengthening the plant's defense system. Proline and phenol content increased in Cd-treated as well as AMF-inoculated plants providing efficient protection against Cd stress. Cadmium treatment resulted in great alterations in the main lipid classes leading to a marked change in their composition. Cadmium stress caused a significant reduction in polyunsaturated fatty acids resulting in enhanced membrane leakage. The present study supports the use of AMF as a biological means to ameliorate Cd stress-induced changes in tomato. PMID:26981010

  3. Alleviation of cadmium stress in Solanum lycopersicum L. by arbuscular mycorrhizal fungi via induction of acquired systemic tolerance

    PubMed Central

    Hashem, Abeer; Abd_Allah, E.F.; Alqarawi, A.A.; Al Huqail, Asma A.; Egamberdieva, D.; Wirth, S.

    2015-01-01

    Experiments were conducted to evaluate cadmium (Cd) stress-induced changes in growth, antioxidants and lipid composition of Solanum lycopersicum with and without arbuscular mycorrhizal fungi (AMF). Cadmium stress (50 μM) caused significant changes in the growth and physio-biochemical attributes studied. AMF mitigated the deleterious impact of Cd on the parameters studied. Cadmium stress increased malonaldehyde and hydrogen peroxide production but AMF reduced these parameters by mitigating oxidative stress. The activity of antioxidant enzymes enhanced under Cd treatment and AMF inoculation further enhanced their activity, thus strengthening the plant’s defense system. Proline and phenol content increased in Cd-treated as well as AMF-inoculated plants providing efficient protection against Cd stress. Cadmium treatment resulted in great alterations in the main lipid classes leading to a marked change in their composition. Cadmium stress caused a significant reduction in polyunsaturated fatty acids resulting in enhanced membrane leakage. The present study supports the use of AMF as a biological means to ameliorate Cd stress-induced changes in tomato. PMID:26981010

  4. Minimizing Thermal Stress for Data Center Servers through Thermal-Aware Relocation

    PubMed Central

    Ling, T. C.; Hussain, S. A.

    2014-01-01

    A rise in inlet air temperature may lower the rate of heat dissipation from air cooled computing servers. This introduces a thermal stress to these servers. As a result, the poorly cooled active servers will start conducting heat to the neighboring servers and giving rise to hotspot regions of thermal stress, inside the data center. As a result, the physical hardware of these servers may fail, thus causing performance loss, monetary loss, and higher energy consumption for cooling mechanism. In order to minimize these situations, this paper performs the profiling of inlet temperature sensitivity (ITS) and defines the optimum location for each server to minimize the chances of creating a thermal hotspot and thermal stress. Based upon novel ITS analysis, a thermal state monitoring and server relocation algorithm for data centers is being proposed. The contribution of this paper is bringing the peak outlet temperatures of the relocated servers closer to average outlet temperature by over 5 times, lowering the average peak outlet temperature by 3.5% and minimizing the thermal stress. PMID:24987743

  5. Thermal stresses, differential subsidence, and flexure at oceanic fracture zones

    NASA Technical Reports Server (NTRS)

    Wessel, Pal; Haxby, William F.

    1990-01-01

    Geosat geoid undulations over four Pacific fracture zones have been analyzed. After correcting for the isostatic thermal edge effect, the amplitudes of the residuals are shown to be proportional to the age offset. The shape of the residuals seems to broaden with increasing age. Both geoid anomalies and available ship bathymetry data suggest that slip must sometimes occur on the main fracture zone or secondary faults. Existing models for flexure at fracture zones cannot explain the observed anomalies. A combination model accounting for slip and including flexure from thermal stresses and differential subsidence is presented. This model accounts for lateral variations in flexural rigidity from brittle and ductile yielding due to both thermal and flexural stresses and explains both the amplitudes and the shape of the anomalies along each fracture zone. The best fitting models have mechanical plate thicknesses that are described by the depth to the 600-700 C isotherms.

  6. Combined thermal and herbicide stress in functionally diverse coral symbionts.

    PubMed

    van Dam, J W; Uthicke, S; Beltran, V H; Mueller, J F; Negri, A P

    2015-09-01

    Most reef building corals rely on symbiotic microalgae (genus Symbiodinium) to supply a substantial proportion of their energy requirements. Functional diversity of different Symbiodinium genotypes, endorsing the host with physiological advantages, has been widely reported. Yet, the influence of genotypic specificity on the symbiont's susceptibility to contaminants or cumulative stressors is unknown. Cultured Symbiodinium of presumed thermal-tolerant clade D tested especially vulnerable to the widespread herbicide diuron, suggesting important free-living populations may be at risk in areas subjected to terrestrial runoff. Co-exposure experiments where cultured Symbiodinium were exposed to diuron over a thermal stress gradient demonstrated how fast-growing clade C1 better maintained photosynthetic capability than clade D. The mixture toxicity model of Independent Action, considering combined thermal stress and herbicide contamination, revealed response additivity for inhibition of photosynthetic yield in both tested cultures, emphasizing the need to account for cumulative stressor impacts in ecological risk assessment and resource management. PMID:25989453

  7. Growth performance and reproductive traits at first parity of New Zealand white female rabbits as affected by heat stress and its alleviation under Egyptian conditions.

    PubMed

    Marai, I F; Ayyat, M S; Abd el-Monem, U M

    2001-12-01

    Exposing growing and adult New Zealand White (NZW) female rabbits to severe heat stress (temperature-humidity index = 28.9) during summer adversely affected their growth and reproductive traits. The traits that declined significantly (p < 0.01) were the live body weight, daily weight gain and feed intake of growing rabbits, and the litter size and litter weight at weaning (p < 0.05) and the pre-weaning weight gain of pups (p < 0.01) for adult females. The conception rate declined considerably with heat stress. The declines in the values of the digestibility coefficients due to heat stress were 7.9% (p < 0.05) for dry matter (DM), 8.1% (p < 0.05) for crude protein (CP) and 1.0% for crude fibre (CF). The traits that increased significantly (p < 0.01) due to heat stress were water intake, water/feed ratio and rectal temperature in growing rabbits and pre-weaning mortality for adult females. Alleviation of heat stress in the growing and adult female NZW rabbits was more efficient with drinking cool water (10-15 degrees C; between 10:00 and 17:00) than with supplementation with palm oil (as a source of energy) or natural clay (as a natural enhancer to growth and milk production). Supplying the animals with cool drinking water gave the highest body weight and weight gain, conception rate, litter size and weight and digestibility coefficients for DM and CP and the lowest rectal temperature, respiration rate and pre-weaning mortality. The loss in rabbit production pertaining to heat stress estimated from the percentages of decline in conception rate x pre-weaning mortality x litter weight at weaning was 73.0%. The provision of cool water restored 11/12 of heat loss. PMID:11770200

  8. Stress alleviates reduced expression of cell adhesion molecules (NCAM, L1), and deficits in learning and corticosterone regulation of apolipoprotein E knockout mice.

    PubMed

    Grootendorst, J; Oitzl, M S; Dalm, S; Enthoven, L; Schachner, M; de Kloet, E R; Sandi, C

    2001-11-01

    Cell adhesion molecules (CAMs) involved in synaptic changes underlying learning and memory processes, are implicated in the effect of stress on behavioural performance. The present study was designed to test the hypothesis that (i) expression of CAMs is apolipoprotein E- (apoE) genotype dependent and (ii) repeated exposure to stress modulates the synthesis of CAMs in an apoE-genotype dependent manner. Using ELISA we tested this hypothesis and measured expression of NCAM and L1 in different brain regions of naïve and stressed apolipoprotein E-knockout (apoE0/0) and C57Bl6 (wild-type) mice. Naïve apoE0/0 mice had elevated basal morning corticosterone and ACTH concentrations and decreased expression of NCAM and L1 compared to wild-type mice. Repeated exposure of mice to rats, as the common stressor, alleviated the reduction in expression of CAMs in apoE0/0 mice; seven days after the last rat exposure, expression of NCAM was increased in frontal brain and hippocampus whereas expression of L1 was increased in hippocampus and cerebellum. Rat stress attenuated the elevation of basal morning corticosterone concentration in apoE0/0 mice towards concentrations detected in wild-type mice. Moreover, rat stress improved learning and memory of apoE0/0 mice in the water maze. In conclusion, repeated exposure to stress eliminated apoE-genotype-related differences in expression of CAMs. Under these same conditions the differences in cognitive performance and corticosterone concentrations were abolished between wild type and apoE0/0 mice.

  9. Salicylic Acid Alleviates the Adverse Effects of Salt Stress in Torreya grandis cv. Merrillii Seedlings by Activating Photosynthesis and Enhancing Antioxidant Systems

    PubMed Central

    Du, Xuhua; Tang, Hui; Shen, Chaohua; Wu, Jiasheng

    2014-01-01

    Background Salt stress is a major factor limiting plant growth and productivity. Salicylic acid (SA) has been shown to ameliorate the adverse effects of environmental stress on plants. To investigate the protective role of SA in ameliorating salt stress on Torreya grandis (T. grandis) trees, a pot experiment was conducted to analyze the biomass, relative water content (RWC), chlorophyll content, net photosynthesis (Pn), gas exchange parameters, relative leakage conductivity (REC), malondialdehyde (MDA) content, and activities of superoxide dismutase (SOD) and peroxidase (POD) of T. grandis under 0.2% and 0.4% NaCl conditions with and without SA. Methodology/Principal Findings The exposure of T. grandis seedlings to salt conditions resulted in reduced growth rates, which were associated with decreases in RWC and Pn and increases in REC and MDA content. The foliar application of SA effectively increased the chlorophyll (chl (a+b)) content, RWC, net CO2 assimilation rates (Pn), and proline content, enhanced the activities of SOD, CAT and POD, and minimized the increases in the REC and MDA content. These changes increased the capacity of T. grandis in acclimating to salt stress and thus increased the shoot and root dry matter. However, when the plants were under 0% and 0.2% NaCl stress, the dry mass of the shoots and roots did not differ significantly between SA-treated plants and control plants. Conclusions SA induced the salt tolerance and increased the biomass of T. grandis cv. by enhancing the chlorophyll content and activity of antioxidative enzymes, activating the photosynthetic process, and alleviating membrane injury. A better understanding about the effect of salt stress in T. grandis is vital, in order gain knowledge over expanding the plantations to various regions and also for the recovery of T. grandis species in the future. PMID:25302987

  10. The relationship between bioclimatic thermal stress and subjective thermal sensation in pedestrian spaces.

    PubMed

    Pearlmutter, David; Jiao, Dixin; Garb, Yaakov

    2014-12-01

    Outdoor thermal comfort has important implications for urban planning and energy consumption in the built environment. To better understand the relation of subjective thermal experience to bioclimatic thermal stress in such contexts, this study compares micrometeorological and perceptual data from urban spaces in the hot-arid Negev region of Israel. Pedestrians reported on their thermal sensation in these spaces, whereas radiation and convection-related data were used to compute the Index of Thermal Stress (ITS) and physiologically equivalent temperature (PET). The former is a straightforward characterization of energy exchanges between the human body and its surroundings, without any conversion to an "equivalent temperature." Although the relation of ITS to subjective thermal sensation has been analyzed in the past under controlled indoor conditions, this paper offers the first analysis of this relation in an outdoor setting. ITS alone can account for nearly 60 % of the variance in pedestrians' thermal sensation under outdoor conditions, somewhat more than PET. A series of regressions with individual contextual variables and ITS identified those factors which accounted for additional variance in thermal sensation, whereas multivariate analyses indicated the considerable predictive power (R-square = 0.74) of models including multiple contextual variables in addition to ITS. Our findings indicate that pedestrians experiencing variable outdoor conditions have a greater tolerance for incremental changes in thermal stress than has been shown previously under controlled indoor conditions, with a tapering of responses at high values of ITS. However, the thresholds of ITS corresponding to thermal "neutrality" and thermal "acceptability" are quite consistent regardless of context.

  11. The relationship between bioclimatic thermal stress and subjective thermal sensation in pedestrian spaces

    NASA Astrophysics Data System (ADS)

    Pearlmutter, David; Jiao, Dixin; Garb, Yaakov

    2014-12-01

    Outdoor thermal comfort has important implications for urban planning and energy consumption in the built environment. To better understand the relation of subjective thermal experience to bioclimatic thermal stress in such contexts, this study compares micrometeorological and perceptual data from urban spaces in the hot-arid Negev region of Israel. Pedestrians reported on their thermal sensation in these spaces, whereas radiation and convection-related data were used to compute the Index of Thermal Stress (ITS) and physiologically equivalent temperature (PET). The former is a straightforward characterization of energy exchanges between the human body and its surroundings, without any conversion to an "equivalent temperature." Although the relation of ITS to subjective thermal sensation has been analyzed in the past under controlled indoor conditions, this paper offers the first analysis of this relation in an outdoor setting. ITS alone can account for nearly 60 % of the variance in pedestrians' thermal sensation under outdoor conditions, somewhat more than PET. A series of regressions with individual contextual variables and ITS identified those factors which accounted for additional variance in thermal sensation, whereas multivariate analyses indicated the considerable predictive power ( R-square = 0.74) of models including multiple contextual variables in addition to ITS. Our findings indicate that pedestrians experiencing variable outdoor conditions have a greater tolerance for incremental changes in thermal stress than has been shown previously under controlled indoor conditions, with a tapering of responses at high values of ITS. However, the thresholds of ITS corresponding to thermal "neutrality" and thermal "acceptability" are quite consistent regardless of context.

  12. Alleviation of Drought Stress and Metabolic Changes in Timothy (Phleum pratense L.) Colonized with Bacillus subtilis B26

    PubMed Central

    Gagné-Bourque, François; Bertrand, Annick; Claessens, Annie; Aliferis, Konstantinos A.; Jabaji, Suha

    2016-01-01

    Drought is a major limiting factor of crop productivity worldwide and its incidence is predicted to increase under climate change. Drought adaptation of cool-season grasses is thus a major challenge to secure the agricultural productivity under current and future climate conditions. Endophytes are non-pathogenic plant-associated bacteria that can play an important role in conferring resistance and improving plant tolerance to drought. In this study, the effect of inoculation of the bacterial endophyte Bacillus subtilis strain B26 on growth, water status, photosynthetic activity and metabolism of timothy (Phleum pratense L.) subjected to drought stress was investigated under controlled conditions. Under both drought-stress and non-stressed conditions, strain B26 successfully colonized the internal tissues of timothy and had a positive impact on plant growth. Exposure of inoculated plant to a 8-week drought-stress led to significant increase in shoot and root biomass by 26.6 and 63.8%, and in photosynthesis and stomatal conductance by 55.2 and 214.9% respectively, compared to non-inoculated plants grown under similar conditions. There was a significant effect of the endophyte on plant metabolism; higher levels of several sugars, notably sucrose and fructans and an increase of key amino acids such as, asparagine, glutamic acid and glutamine were recorded in shoots and roots of colonized plants compared to non-colonized ones. The accumulation of the non-protein amino acid GABA in shoots of stressed plants and in roots of stressed and unstressed plants was increased in the presence of the endophyte. Taken together, our results indicate that B. subtilis B26 improves timothy growth under drought stress through the modification of osmolyte accumulation in roots and shoots. These results will contribute to the development of a microbial agent to improve the yield of grass species including forage crops and cereals exposed to environmental stresses. PMID:27200057

  13. Residual thermal strains and stresses in nickel aluminide matrix composites

    NASA Technical Reports Server (NTRS)

    Saigal, A.; Kupperman, D. S.

    1991-01-01

    Thermally induced residual strains and stresses developed during postfabrication cooling in Saphikon/NiAl and tungsten/NiAl high-temperature composites are investigated through three-dimensional elastoplastic finite-element analyses. Average axial and transverse strains in the matrix are found to be tensile and compressive, respectively, and similar for both Saphikon and W-fiber-reinforced NiAl composites. It is suggested that the residual matrix stresses and strains are controlled more by the low-matrix yield stress than by the fiber/matrix expansion mismatch. Residual thermal strains in the matrix of these composites are measured by using a neutron-diffraction technique; the measured axial and transverse strains in the matrix are found to be in agreement with the computed values.

  14. Histone hyperacetylation modulates spinal type II metabotropic glutamate receptor alleviating stress-induced visceral hypersensitivity in female rats

    PubMed Central

    Cao, Dong-Yuan; Bai, Guang; Ji, Yaping; Karpowicz, Jane

    2016-01-01

    Stress is often a trigger to exacerbate chronic pain including visceral hypersensitivity associated with irritable bowel syndrome, a female predominant functional bowel disorder. Epigenetic mechanisms that mediate stress responses are a potential target to interfere with visceral pain. The purpose of this study was to examine the effect of a histone deacetylase inhibitor, suberoylanilide hydroxamic acid, on visceral hypersensitivity induced by a subchronic stressor in female rats and to investigate the involvement of spinal glutamate receptors. Three daily sessions of forced swim induced visceral hypersensitivity. Intrathecal suberoylanilide hydroxamic acid prevented or reversed the stress-induced visceral hypersensitivity, increased spinal histone 3 acetylation and increased mGluR2 and mGluR3 expression. Chromatin immunoprecipitation (ChIP) analysis revealed enrichment of H3K9Ac and H3K18Ac at several promoter Grm2 and Grm3 regions. The mGluR2/3 antagonist LY341495 reversed the inhibitory effect of suberoylanilide hydroxamic acid on the stress-induced visceral hypersensitivity. In surprising contrast, stress and/or suberoylanilide hydroxamic acid had no effect on spinal NMDA receptor expression or function. These data reveal histone modification modulates mGluR2/3 expression in the spinal cord to attenuate stress-induced visceral hypersensitivity. HDAC inhibitors may provide a potential approach to relieve visceral hypersensitivity associated with irritable bowel syndrome. PMID:27385724

  15. OBIC analysis of stressed, thermally-isolated polysilicon resistors

    SciTech Connect

    Cole, E.I. Jr.; Peterson, K.A.; Campbell, A.N.; Snyder, E.S.; Pierce, D.G.; Suehle, J.S.; Chaparala, P.

    1994-12-31

    High gain Optical Beam Induced Current (OBIC) imaging has been used for the first time to examine the internal structural effects of electrical stress on thermally-isolated polysilicon resistors. The resistors are examined over a wide range of current densities, producing Joule heating up to {approximately}1200{degrees}C. Throughout this current density range, the OBIC images indicate a clustering of dopant under dc stress and a more uniform distribution under ac conditions. The OBIC images also reveal areas that are precursors to catastrophic resistor failure. In addition to OBIC imaging, conventional electrical measurements were performed, examining the polysilicon resistance degradation and time-to-failure as a function of electrical stress. The electrical measurements show a monotonic increase in polysilicon resistor lifetime with frequency (up to 2 kHz) when subjected to a bipolar ac stress. The enhanced lifetime was observed even under high temperature (from Joule heating) stress conditions previously reported to be electromigration-free. The dopant redistribution indicated by the OBIC images is consistent with an electromigration stress experienced by the polysilicon resistors. The implications for thermally-isolated polysilicon resistor reliability are examined briefly.

  16. Antioxidant potential of Cymbopogon citratus extract: alleviation of carbon tetrachloride-induced hepatic oxidative stress and toxicity.

    PubMed

    Koh, Pei Hoon; Mokhtar, Ruzaidi Azli Mohd; Iqbal, Mohammad

    2012-01-01

    This study was aimed to evaluate the effect of Cymbopogon citratus against carbon tetrachloride (CCl(4))-mediated hepatic oxidative damage in rats. Rats were administrated with C. citratus extract (100, 200 and 300 mg/kg b.w.) for 14 days before the challenge of CCl(4) (1.2 ml/kg b.w. p.o) on 13th and 14th days. Hepatic damage was evaluated by employing serum biochemical parameters (alanine aminotransferase-ALT, aspartate aminotransferase-AST and lactate dehydrogenase-LDH), malondialdehye (MDA) level, reduced GSH and antioxidant enzymes (catalase: CAT, glutathione peroxidase: GPX, quinone reductase: QR, glutathione S-transferase: GST, glutathione reductase: GR, glucose-6-phosphate dehyrogenase: G6PD). In addition, CCl(4)-mediated hepatic damage was further evaluated by histopathological examination. However, most of these changes were alleviated by prophylactic treatment of animals with C. citratus dose dependently (p < 0.05). The protection was further evident through decreased histopathological alterations in liver. The results of the present study indicated that the hepatoprotective effect of C. citratus might be ascribable to its antioxidant and free radical scavenging property.

  17. EXPRESS: Histone hyperacetylation modulates spinal type II metabotropic glutamate receptor alleviating stress-induced visceral hypersensitivity in female rats.

    PubMed

    Cao, Dong-Yuan; Bai, Guang; Ji, Yaping; Karpowicz, Jane M; Traub, Richard J

    2016-01-01

    Stress is often a trigger to exacerbate chronic pain including visceral hypersensitivity associated with irritable bowel syndrome, a female predominant functional bowel disorder. Epigenetic mechanisms that mediate stress responses are a potential target to interfere with visceral pain. The purpose of this study was to examine the effect of a histone deacetylase inhibitor, suberoylanilide hydroxamic acid, on visceral hypersensitivity induced by a subchronic stressor in female rats and to investigate the involvement of spinal glutamate receptors. Three daily sessions of forced swim induced visceral hypersensitivity. Intrathecal suberoylanilide hydroxamic acid prevented or reversed the stress-induced visceral hypersensitivity, increased spinal histone 3 acetylation and increased mGluR2 and mGluR3 expression. Chromatin immunoprecipitation (ChIP) analysis revealed enrichment of H3K9Ac and H3K18Ac at several promoter Grm2 and Grm3 regions. The mGluR2/3 antagonist LY341495 reversed the inhibitory effect of suberoylanilide hydroxamic acid on the stress-induced visceral hypersensitivity. In surprising contrast, stress and/or suberoylanilide hydroxamic acid had no effect on spinal NMDA receptor expression or function. These data reveal histone modification modulates mGluR2/3 expression in the spinal cord to attenuate stressinduced visceral hypersensitivity. HDAC inhibitors may provide a potential approach to relieve visceral hypersensitivity associated with irritable bowel syndrome. PMID:27385724

  18. Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption.

    PubMed

    Chen, Wei; Yao, Xiaoqin; Cai, Kunzheng; Chen, Jining

    2011-07-01

    Drought is a major constraint for rice production in the rainfed lowlands in China. Silicon (Si) has been verified to play an important role in enhancing plant resistance to environmental stress. Two near-isogenic lines of rice (Oryza sativa L.), w-14 (drought susceptible) and w-20 (drought resistant), were selected to study the effects of exogenous Si application on the physiological traits and nutritional status of rice under drought stress. In wet conditions, Si supply had no effects on growth and physiological parameters of rice plants. Drought stress was found to reduce dry weight, root traits, water potential, photosynthetic parameters, basal quantum yield (F(v)/F(0)), and maximum quantum efficiency of PSII photochemistry (F(v)/F(m)) in rice plants, while Si application significantly increased photosynthetic rate (Pr), transpiration rate (Tr), F(v)/F(0), and F(v)/F(m) of rice plants under drought stress. In addition, water stress increased K, Na, Ca, Mg, Fe content of rice plants, but Si treatment significantly reduced these nutrient level. These results suggested that silicon application was useful to increase drought resistance of rice through the enhancement of photochemical efficiency and adjustment of the mineral nutrient absorption in rice plants.

  19. Treadmill exercise alleviates prenatal noise stress-induced impairment of spatial learning ability through enhancing hippocampal neurogenesis in rat pups.

    PubMed

    Kim, Tae-Woon; Shin, Mal-Soon; Park, Joon-Ki; Shin, Mi-Ai; Lee, Hee-Hyuk; Lee, Sam-Jun

    2013-01-01

    Stress alters brain cell properties and then disturbs cognitive processes, such as learning and memory. In this study, we investigated the effect of postnatal treadmill exercise on hippocampal neurogenesis and spatial learning ability of rat pups following prenatal noise stress. The impact of exercise intensity (mild-intensity exercise vs heavy-intensity exercise) was also compared. The pregnant rats in the stress-applied group were exposed to a 95 dB supersonic machine sound for 1 h once a day from the 15th day after mating until delivery. After birth, the rat pups in the exercise groups were made to run on a treadmill for 30 min once a day for 7 consecutive days, starting 4 weeks after birth. The spatial learning ability was tested using radial-arm maze task and hippocampal neurogenesis was determined by 5-bromo-2'-deoxyuridine (BrdU) immunohistochemistry. The rat pups born from the stress-applied maternal rats spent more time for the seeking of water and showed higher number of error in the radial-arm maze task compared to the control group. These rat pups showed suppressed neurogenesis in the hippocampus. In contrast, the rat pups performed postnatal treadmill exercise saved time for seeking of water and showed lower number of error compared to the stress-applied group. Postnatal treadmill exercise also enhanced neurogenesis in the hippocampus. The mild-intensity exercise showed more potent impact compared to the heavy-intensity exercise. The present results reveal that postnatal treadmill exercise lessens prenatal stress-induced deterioration of brain function in offspring.

  20. Pre-anthesis high-temperature acclimation alleviates damage to the flag leaf caused by post-anthesis heat stress in wheat.

    PubMed

    Wang, Xiao; Cai, Jian; Jiang, Dong; Liu, Fulai; Dai, Tingbo; Cao, Weixing

    2011-04-15

    The objective of this study was to investigate the effect of pre-anthesis high-temperature acclimation on leaf physiology of winter wheat in response to post-anthesis heat stress. The results showed that both pre- and post-anthesis heat stresses significantly depressed flag leaf photosynthesis and enhanced cell membrane peroxidation, as exemplified by increased O₂⁻(·) production rate and reduction in activities of antioxiditave enzymes. However, under post-anthesis heat stress, plants with pre-anthesis high-temperature acclimation (HH) showed much higher photosynthetic rates than those without pre-anthesis high-temperature acclimation (CH). Leaves of HH plants exhibited a higher Chl a/b ratio and lower chlorophyll/carotenoid ratio and superoxide anion radical release rate compared with those of the CH plants. In addition, antioxidant enzyme activities in HH plants were significantly higher than in CH. Coincidently, expressions of photosythesis-responsive gene encoding Rubisco activase B (RcaB) and antioxidant enzyme-related genes encoding mitochondrial manganese superoxide dismutase (Mn-SOD), chloroplastic Cu/Zn superoxide dismutase (Cu/Zn-SOD), catalase (CAT) and cytosolic glutathione reductase (GR) were all up-regulated under HH, whereas a gene encoding a major chlorophyll a/b-binding protein (Cab) was up-regulated by post-anthesis heat stress at 10 DAA, but was down-regulated at 13 DAA. The changes in the expression levels of the HH plants were more pronounced than those for the CH. Collectively, the results indicated that pre-anthesis high-temperature acclimation could effectively alleviate the photosynthetic and oxidative damage caused by post-anthesis heat stress in wheat flag leaves, which was partially attributable to modifications in the expression of the photosythesis-responsive and antioxidant enzymes-related genes.

  1. Gene Expression Dynamics Accompanying the Sponge Thermal Stress Response

    PubMed Central

    Guzman, Christine; Conaco, Cecilia

    2016-01-01

    Marine sponges are important members of coral reef ecosystems. Thus, their responses to changes in ocean chemistry and environmental conditions, particularly to higher seawater temperatures, will have potential impacts on the future of these reefs. To better understand the sponge thermal stress response, we investigated gene expression dynamics in the shallow water sponge, Haliclona tubifera (order Haplosclerida, class Demospongiae), subjected to elevated temperature. Using high-throughput transcriptome sequencing, we show that these conditions result in the activation of various processes that interact to maintain cellular homeostasis. Short-term thermal stress resulted in the induction of heat shock proteins, antioxidants, and genes involved in signal transduction and innate immunity pathways. Prolonged exposure to thermal stress affected the expression of genes involved in cellular damage repair, apoptosis, signaling and transcription. Interestingly, exposure to sublethal temperatures may improve the ability of the sponge to mitigate cellular damage under more extreme stress conditions. These insights into the potential mechanisms of adaptation and resilience of sponges contribute to a better understanding of sponge conservation status and the prediction of ecosystem trajectories under future climate conditions. PMID:27788197

  2. Thermal stresses from large volumetric expansion during freezing of biomaterials.

    PubMed

    Shi, X; Datta, A K; Mukherjee, Y

    1998-12-01

    Thermal stresses were studied in freezing of biomaterials containing significant amounts of water. An apparent specific heat formulation of the energy equation and a viscoelastic model for the mechanics problem were used to analyze the transient axi-symmetric freezing of a long cylinder. Viscoelastic properties were measured in an Instron machine. Results show that, before phase change occurs at any location, both radial and circumferential stresses are tensile and keep increasing until phase change begins. The maximum principal tensile stress during phase change increases with a decrease in boundary temperature (faster cooling). This is consistent with experimentally observed fractures at a lower boundary temperature. Large volumetric expansion during water to ice transformation was shown to be the primary contributor to large stress development. For very rapid freezing, relaxation may not be significant, and an elastic model may be sufficient. PMID:10412455

  3. Tolerance response to in situ ammonia stress in a pilot-scale anaerobic digestion reactor for alleviating ammonia inhibition.

    PubMed

    Gao, Shumei; Zhao, Mingxing; Chen, Yang; Yu, Meijuan; Ruan, Wenquan

    2015-12-01

    The anaerobic digestion (AD) of protein-rich substrates is generally inhibited by ammonia. In this study, ammonia-tolerant acclimation was exposed to a stepwise in situ ammonia stress during the continuous AD of solid residual kitchen waste by using a continuous stirred tank reactor with a 50 L active volume. The reactor worked well during the acclimation process, with an average daily biogas production of 58 L/d, an effluent soluble chemical oxygen demand of 7238 mg/L, a volatile fatty acid (VFA) content of 578 mg/L, and a VFA/alkalinity ratio of less than 0.4. Moreover, ammonia stress enhanced the activity of Coenzyme F420. The results of high-throughput 16S rDNA sequencing showed that ammonia stress increased the relative abundance of Firmicutes bacteria and hydrogenotrophic methanogens but decreased the abundance of acetotrophic methanogens. This microbial community shift was proposed to be an in situ response strategy for ammonia stress adaptation.

  4. Cinnamon intake alleviates the combined effects of dietary-induced insulin resistance and acute stress on brain mitochondria.

    PubMed

    Couturier, Karine; Hininger, Isabelle; Poulet, Laurent; Anderson, Richard A; Roussel, Anne-Marie; Canini, Frédéric; Batandier, Cécile

    2016-02-01

    Insulin resistance (IR), which is a leading cause of the metabolic syndrome, results in early brain function alterations which may alter brain mitochondrial functioning. Previously, we demonstrated that rats fed a control diet and submitted to an acute restraint stress exhibited a delayed mitochondrial permeability transition pore (mPTP) opening. In this study, we evaluated the combined effects of dietary and emotional stressors as found in western way of life. We studied, in rats submitted or not to an acute stress, the effects of diet-induced IR on brain mitochondria, using a high fat/high fructose diet (HF(2)), as an IR inducer, with addition or not of cinnamon as an insulin sensitizer. We measured Ca(2+) retention capacity, respiration, ROS production, enzymatic activities and cell signaling activation. Under stress, HF(2) diet dramatically decreased the amount of Ca(2+) required to open the mPTP (13%) suggesting an adverse effect on mitochondrial survival. Cinnamon added to the diet corrected this negative effect and resulted in a partial recovery (30%). The effects related to cinnamon addition to the diet could be due to its antioxidant properties or to the observed modulation of PI3K-AKT-GSK3β and MAPK-P38 pathways or to a combination of both. These data suggest a protective effect of cinnamon on brain mitochondria against the negative impact of an HF(2) diet. Cinnamon could be beneficial to counteract deleterious dietary effects in stressed conditions. PMID:26878796

  5. Thermal stress analysis of space shuttle orbiter wing skin panel and thermal protection system

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Jenkins, Jerald M.

    1987-01-01

    Preflight thermal stress analysis of the space shuttle orbiter wing skin panel and the thermal protection system (TPS) was performed. The heated skin panel analyzed was rectangular in shape and contained a small square cool region at its center. The wing skin immediately outside the cool region was found to be close to the state of elastic instability in the chordwise direction based on the conservative temperature distribution. The wing skin was found to be quite stable in the spanwise direction. The potential wing skin thermal instability was not severe enough to tear apart the strain isolation pad (SIP) layer. Also, the preflight thermal stress analysis was performed on the TPS tile under the most severe temperature gradient during the simulated reentry heating. The tensile thermal stress induced in the TPS tile was found to be much lower than the tensile strength of the TPS material. The thermal bending of the TPS tile was not severe enough to cause tearing of the SIP layer.

  6. Correlation of predicted and measured thermal stresses on an advanced aircraft structure with similar materials

    NASA Technical Reports Server (NTRS)

    Jenkins, J. M.

    1979-01-01

    A laboratory heating test simulating hypersonic heating was conducted on a heat-sink type structure to provide basic thermal stress measurements. Six NASTRAN models utilizing various combinations of bar, shear panel, membrane, and plate elements were used to develop calculated thermal stresses. Thermal stresses were also calculated using a beam model. For a given temperature distribution there was very little variation in NASTRAN calculated thermal stresses when element types were interchanged for a given grid system. Thermal stresses calculated for the beam model compared similarly to the values obtained for the NASTRAN models. Calculated thermal stresses compared generally well to laboratory measured thermal stresses. A discrepancy of signifiance occurred between the measured and predicted thermal stresses in the skin areas. A minor anomaly in the laboratory skin heating uniformity resulted in inadequate temperature input data for the structural models.

  7. Thermal stress cycling of GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Francis, Robert W.

    1987-01-01

    Thermal stress cycling was performed on gallium arsenide solar cells to investigate their electrical, mechanical, and structural integrity. Cells were cycled under low Earth orbit (LEO) simulated temperature conditions in vacuum. Cell evaluations consisted of power output values, spectral response, optical microscopy and ion microprobe mass analysis, and depth profiles on both front surface inter-grid areas and metallization contact grid lines. Cells were examined for degradation after 500, 5,000, 10,000 and 15,245 thermal cycles. No indication of performance degradation was found for any vendor's cell lot.

  8. Climate change and latitudinal patterns of intertidal thermal stress.

    PubMed

    Helmuth, Brian; Harley, Christopher D G; Halpin, Patricia M; O'Donnell, Michael; Hofmann, Gretchen E; Blanchette, Carol A

    2002-11-01

    The interaction of climate and the timing of low tides along the West Coast of the United States creates a complex mosaic of thermal environments, in which northern sites can be more thermally stressful than southern sites. Thus, climate change may not lead to a poleward shift in the distribution of intertidal organisms, as has been proposed, but instead will likely cause localized extinctions at a series of "hot spots." Patterns of exposure to extreme climatic conditions are temporally variable, and tidal predictions suggest that in the next 3 to 5 years "hot spots" are likely to appear at several northern sites. PMID:12411702

  9. Materials for high-energy laser windows: how thermal lensing and thermal stresses control the performance

    NASA Astrophysics Data System (ADS)

    Klein, Claude A.

    2007-09-01

    The engineering of high-energy lasers (HELs) for applications such as the airborne laser (ABL) system requires optical windows capable of handling megajoule beam energies. The selection of a suitable window material involves considerations relating to thermal lensing, i.e., the beam distortion caused by thermally induced phase-aberrations, in addition to issues arising from the thermal stresses generated by beam-induced temperature gradients. In this paper we document analytical methods for evaluating the impact of both beam-induced optical distortions and beam-induced mechanical stresses, which may allow the designer to properly assess the performance of window-material candidates. Specifically, thermal lensing in conjunction with planar stresses control the allowable beam fluence, whereas the two axial-stress related failure modes (thermal-shock induced fracture and yielding in compression) control the allowable beam intensity. We illustrate these considerations in the light of an evaluation of the performance of three window-material candidates for operation at the 1.315-μm wavelength. Currently, fused Si02 is the window material of choice for contemplated HELs operating in the near infrared; it is, however, vulnerable to optical distortion, which renders this material unsuitable for applications that require transmitting large beam fluences. On assuming that stress-birefringence is of no concern, oxyfluoride glass outperforms Si02, but evidence of a poor thermal conductivity degrades this material's ability to transmit high-intensity beams. Fusion-cast CaF2 emerges as the most promising "compromise" solution in the sense that this material combines superior optical features with acceptable thermomechanical properties; in effect, CaF2 windows easily meet requirements as formulated for the first-generation ABL system.

  10. The effect of thermal history on the susceptibility of reef-building corals to thermal stress.

    PubMed

    Middlebrook, Rachael; Hoegh-Guldberg, Ove; Leggat, William

    2008-04-01

    The mutualistic relationship between corals and their unicellular dinoflagellate symbionts (Symbiodinium sp.) is a fundamental component within the ecology of coral reefs. Thermal stress causes the breakdown of the relationship between corals and their symbionts (bleaching). As with other organisms, this symbiosis may acclimate to changes in the environment, thereby potentially modifying the environmental threshold at which they bleach. While a few studies have examined the acclimation capacity of reef-building corals, our understanding of the underlying mechanism is still in its infancy. The present study focused on the role of recent thermal history in influencing the response of both corals and symbionts to thermal stress, using the reef-building coral Acropora aspera. The symbionts of corals that were exposed to 31 degrees C for 48 h (pre-stress treatment) 1 or 2 weeks prior to a 6-day simulated bleaching event (when corals were exposed to 34 degrees C) were found to have more effective photoprotective mechanisms. These mechanisms included changes in non-photochemical quenching and xanthophyll cycling. These differences in photoprotection were correlated with decreased loss of symbionts, with those corals that were not prestressed performing significantly worse, losing over 40% of their symbionts and having a greater reduction in photosynthetic efficiency. These results are important in that they show that thermal history, in addition to light history, can influence the response of reef-building corals to thermal stress and therefore have implications for the modeling of bleaching events. However, whether acclimation is capable of modifying the thermal threshold of corals sufficiently to cope as sea temperatures increase in response to global warming has not been fully explored. Clearly increases in sea temperatures that extend beyond 1-2 degrees C will exhaust the extent to which acclimation can modify the thermal threshold of corals.

  11. The Edible Marine Alga Gracilariopsis chorda Alleviates Hypoxia/Reoxygenation-Induced Oxidative Stress in Cultured Hippocampal Neurons

    PubMed Central

    Mohibbullah, Md.; Hannan, Md. Abdul; Choi, Ji-Young; Bhuiyan, Mohammad Maqueshudul Haque; Hong, Yong-Ki; Choi, Jae-Suk; Choi, In Soon; Moon, Il Soo

    2015-01-01

    Abstract Age-related neurological disorders are of growing concern among the elderly, and natural products with neuroprotective properties have been attracting increasing attention as candidates for the prevention or treatment of neurological disorders induced by oxidative stress. In an effort to explore natural resources, we collected some common marine seaweed from the Korean peninsula and Indonesia and screened them for neuroprotective activity against hypoxia/reoxygenation (H/R)-induced oxidative stress. Of the 23 seaweeds examined, the ethanol extract of Gracilariopsis chorda (GCE) provided maximum neuroprotection at an optimum concentration of 15 μg/mL, followed by Undaria pinnatifida. GCE increased cell viability after H/R, decreased the formation of reactive oxygen species (measured by 2′,7′-dichlorodihydrofluorescein diacetate [DCF-DA] staining), and inhibited the double-stranded DNA breaks (measured by H2AX immunocytochemistry), apoptosis (measured by Annexin V/propidium iodide staining), internucleosomal DNA fragmentation (measured by DNA laddering), and dissipation of mitochondrial membrane potential (measured by JC-1 staining). Using reverse-phase high-pressure liquid chromatography, we quantitated the arachidonic acid (AA) in GCE, which provides neuroprotection against H/R-induced oxidative stress. This neuroprotective effect of AA was comparable to that of GCE. These findings suggest that the neuroprotective effect of GCE against H/R-induced neuronal death is due, at least in part, to the AA content that suppresses neuronal apoptosis. PMID:26106876

  12. The Edible Marine Alga Gracilariopsis chorda Alleviates Hypoxia/Reoxygenation-Induced Oxidative Stress in Cultured Hippocampal Neurons.

    PubMed

    Mohibbullah, Md; Hannan, Md Abdul; Choi, Ji-Young; Bhuiyan, Mohammad Maqueshudul Haque; Hong, Yong-Ki; Choi, Jae-Suk; Choi, In Soon; Moon, Il Soo

    2015-09-01

    Age-related neurological disorders are of growing concern among the elderly, and natural products with neuroprotective properties have been attracting increasing attention as candidates for the prevention or treatment of neurological disorders induced by oxidative stress. In an effort to explore natural resources, we collected some common marine seaweed from the Korean peninsula and Indonesia and screened them for neuroprotective activity against hypoxia/reoxygenation (H/R)-induced oxidative stress. Of the 23 seaweeds examined, the ethanol extract of Gracilariopsis chorda (GCE) provided maximum neuroprotection at an optimum concentration of 15 μg/mL, followed by Undaria pinnatifida. GCE increased cell viability after H/R, decreased the formation of reactive oxygen species (measured by 2',7'-dichlorodihydrofluorescein diacetate [DCF-DA] staining), and inhibited the double-stranded DNA breaks (measured by H2AX immunocytochemistry), apoptosis (measured by Annexin V/propidium iodide staining), internucleosomal DNA fragmentation (measured by DNA laddering), and dissipation of mitochondrial membrane potential (measured by JC-1 staining). Using reverse-phase high-pressure liquid chromatography, we quantitated the arachidonic acid (AA) in GCE, which provides neuroprotection against H/R-induced oxidative stress. This neuroprotective effect of AA was comparable to that of GCE. These findings suggest that the neuroprotective effect of GCE against H/R-induced neuronal death is due, at least in part, to the AA content that suppresses neuronal apoptosis.

  13. Hepatitis C Virus Infection Induces Autophagy as a Prosurvival Mechanism to Alleviate Hepatic ER-Stress Response

    PubMed Central

    Dash, Srikanta; Chava, Srinivas; Aydin, Yucel; Chandra, Partha K.; Ferraris, Pauline; Chen, Weina; Balart, Luis A.; Wu, Tong; Garry, Robert F.

    2016-01-01

    Hepatitis C virus (HCV) infection frequently leads to chronic liver disease, liver cirrhosis and hepatocellular carcinoma (HCC). The molecular mechanisms by which HCV infection leads to chronic liver disease and HCC are not well understood. The infection cycle of HCV is initiated by the attachment and entry of virus particles into a hepatocyte. Replication of the HCV genome inside hepatocytes leads to accumulation of large amounts of viral proteins and RNA replication intermediates in the endoplasmic reticulum (ER), resulting in production of thousands of new virus particles. HCV-infected hepatocytes mount a substantial stress response. How the infected hepatocyte integrates the viral-induced stress response with chronic infection is unknown. The unfolded protein response (UPR), an ER-associated cellular transcriptional response, is activated in HCV infected hepatocytes. Over the past several years, research performed by a number of laboratories, including ours, has shown that HCV induced UPR robustly activates autophagy to sustain viral replication in the infected hepatocyte. Induction of the cellular autophagy response is required to improve survival of infected cells by inhibition of cellular apoptosis. The autophagy response also inhibits the cellular innate antiviral program that usually inhibits HCV replication. In this review, we discuss the physiological implications of the HCV-induced chronic ER-stress response in the liver disease progression. PMID:27223299

  14. Coefficient of thermal expansion dependent thermal stress analysis of thermal barrier coatings (TBCs) using finite element model

    NASA Astrophysics Data System (ADS)

    Coker, Omotola

    Thermal barrier coatings (TBCs) are highly sophisticated micro scale ceramic insulation applied on high temperature components such as gas turbine blades. TBCs create a large temperature drop between the gas turbine environment and the underlying metal blades. TBC lifetime is finite and influenced by several factors such as: Bond Coat (BC) oxidation, BC roughness, Coefficient of thermal expansion (CTE) mismatch between the layers, and creep properties of the TBC system. However, there is a lack of reliable methods of TBC life prediction which result in under utilization of these coatings. This research study focuses on modeling the steady state thermal stresses in TBC systems of various oxide thicknesses, and BC roughness, using Finite Element Analysis (FEA). The model factors into it the temperature dependent thermo mechanical properties of each layer, as well as the creep properties. The steady state model results show similar results to the existing transient models: an increase in tensile stresses as the oxide thickness increases, an increase in tensile stresses with BC roughness and stress relaxation in the ceramic BC interface due to creep. It also shows in each model, initially compressive stresses in the BC - Top Coat (TC) interface, and its evolution into higher tensile stresses which lead to crack formation and ultimately failure of the TBC by spallation.

  15. Dietary rosemary oil alleviates heat stress-induced structural and functional damage through lipid peroxidation in the testes of growing Japanese quail.

    PubMed

    Türk, Gaffari; Çeribaşı, Ali O; Şimşek, Ülkü G; Çeribaşı, Songül; Güvenç, Mehmet; Özer Kaya, Şeyma; Çiftçi, Mehmet; Sönmez, Mustafa; Yüce, Abdurrauf; Bayrakdar, Ali; Yaman, Mine; Tonbak, Fadime

    2016-01-01

    Supplementation of natural antioxidants to diets of male poultry has been reported to be effective in reducing or completely eliminating heat stress (HS)-induced reproductive failures. In this study, the aim is to investigate whether rosemary oil (RO) has a protective effect on HS-induced damage in spermatozoa production, testicular histologic structures, apoptosis, and androgenic receptor (AR) through lipid peroxidation mechanisms in growing Japanese quail. Male chicks (n=90) at 15-days of age were assigned to two groups. The first group (n=45) was kept in a thermo-neutral (TN) room at 22°C for 24h/d. The second group (n=45) was kept in a room with a greater ambient temperature of 34°C for 8h/d (from 9:00 AM to 5:00 PM) and 22°C for 16h/d. Animals in each of these two groups were randomly assigned to three subgroups (RO groups: 0, 125, 250ppm), consisting of 15 chicks (six treatment groups in 2×3 factorial design). Each of subgroups was replicated three times with each replicate including five chicks. The HS treatment significantly reduced the testicular spermatogenic cell counts, amount of testicular Bcl-2 (anti-apoptotic marker) and amount of AR. In addition, it significantly increased testicular lipid peroxidation, Bax (apoptotic marker) immunopositive staining, and the Bax/Bcl-2 ratio in conjunction with some histopathologic damage. Dietary supplementation of RO to diets of quail where the HS treatment was imposed alleviated HS-induced almost all negative changes such as increased testicular lipid peroxidation, decreased numbers of spermatogenic cells, and decreased amounts of Bcl-2 and AR, increased ratio of Bax/Bcl-2 and some testicular histopathologic lesion. In conclusion, dietary supplementation of RO for growing male Japanese quail reared in HS environmental conditions alleviates the HS-induced structural and functional damage by providing a decrease in lipid peroxidation.

  16. Exogenous proline mediates alleviation of cadmium stress by promoting photosynthetic activity, water status and antioxidative enzymes activities of young date palm (Phoenix dactylifera L.).

    PubMed

    Zouari, M; Ben Ahmed, Ch; Zorrig, W; Elloumi, N; Rabhi, M; Delmail, D; Ben Rouina, B; Labrousse, P; Ben Abdallah, F

    2016-06-01

    The ability of exogenous compatible solutes, such as proline, to counteract cadmium (Cd) inhibitory effects in young date palm plants (Phoenix dactylifera L. cv Deglet Nour) was investigated. Two-year-old date palm plants were subjected for five months at different Cd stress levels (0, 10 and 30 mg CdCl2 kg(-1) soil) whether supplied or not with exogenous proline (20mM) added through the irrigation water. Different levels of Cd stress altered plant growth, gas exchanges and chlorophyll content as well as water status, but at different extent among them. In contrast, an increase of antioxidant enzymes activities of Cd-treated plants in association with high amounts of proline content, hydrogen peroxide (H2O2), thiobarbituric acid reactive substances (TBARS) and electrolyte leakage (EL) were observed. Interestingly, exogenous proline mitigated the adverse effects of Cd on young date palm. Indeed, it alleviated the oxidative damage induced by Cd accumulation and established better levels of plant growth, water status and photosynthetic activity. Moreover, proline-treated plants showed high antioxidant enzymes activities (superoxide dismutase, catalase and glutathione peroxydase) in roots and leaves as compared to Cd-treated plants. PMID:26901506

  17. Effect of element density on the NASTRAN calculated mechanical and thermal stresses of a spar

    NASA Technical Reports Server (NTRS)

    Jenkins, J. M.

    1979-01-01

    A NASTRAN model of a spar was examined to determine the sensitivity of calculated axial thermal stresses and bending stresses to changes in element density of the model. The thermal stresses calculated with three different element densities resulted in drastically differing values. The position of the constraint also significantly affected the value of the calculated thermal stresses. Mechanical stresses calculated from an applied loading were insensitive to element density.

  18. Hydroalcoholic seed extract of Coriandrum sativum (Coriander) alleviates lead-induced oxidative stress in different regions of rat brain.

    PubMed

    Velaga, Manoj Kumar; Yallapragada, Prabhakara Rao; Williams, Dale; Rajanna, Sharada; Bettaiya, Rajanna

    2014-06-01

    Lead exposure is known to cause apoptotic neurodegeneration and neurobehavioral abnormalities in developing and adult brain by impairing cognition and memory. Coriandrum sativum is an herb belonging to Umbelliferae and is reported to have a protective effect against lead toxicity. In the present investigation, an attempt has been made to evaluate the protective activity of the hydroalcoholic extract of C. sativum seed against lead-induced oxidative stress. Male Wistar strain rats (100-120 g) were divided into four groups: control group: 1,000 mg/L of sodium acetate; exposed group: 1,000 mg/L lead acetate for 4 weeks; C. sativum treated 1 (CST1) group: 250 mg/kg body weight/day for seven consecutive days after 4 weeks of lead exposure; C. sativum treated 2 (CST2) group: 500 mg/kg body weight/day for seven consecutive days after 4 weeks of lead exposure. After the exposure and treatment periods, rats were sacrificed by cervical dislocation, and the whole brain was immediately isolated and separated into four regions: cerebellum, hippocampus, frontal cortex, and brain stem along with the control group. After sacrifice, blood was immediately collected into heparinized vials and stored at 4 °C. In all the tissues, reactive oxygen species (ROS), lipid peroxidation products (LPP), and total protein carbonyl content (TPCC) were estimated following standard protocols. An indicator enzyme for lead toxicity namely delta-amino levulinic acid dehydratase (δ-ALAD) activity was determined in the blood. A significant (p<0.05) increase in ROS, LPP, and TPCC levels was observed in exposed rat brain regions, while δ-ALAD showed a decrease indicating lead-induced oxidative stress. Treatment with the hydroalcoholic seed extract of C. sativum resulted in a tissue-specific amelioration of oxidative stress produced by lead.

  19. Modeling Oxidation Induced Stresses in Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Ferguson, B. L.; Freborg, A. M.; Petrus, G. J.; Brindley, William J.

    1998-01-01

    The use of thermal barrier coatings (TBC's) in gas turbines has increased dramatically in recent years, due mainly to the need for component protection from ever increasing service temperatures. Oxidation of the bond coat has been identified as an important contributing factor to spallation of the ceramic top coat during service. Additional variables found to influence TBC thermal cycle life include bond coat coefficient of thermal expansion, creep behavior of both the ceramic and bond coat layers, and modulus of elasticity. The purpose of this work was to characterize the effects of oxidation on the stress states within the TBC system, as well as to examine the interaction of oxidation with other factors affecting TBC life.

  20. Analytical Model for Thermal Elastoplastic Stresses of Functionally Graded Materials

    SciTech Connect

    Zhai, P. C.; Chen, G.; Liu, L. S.; Fang, C.; Zhang, Q. J.

    2008-02-15

    A modification analytical model is presented for the thermal elastoplastic stresses of functionally graded materials subjected to thermal loading. The presented model follows the analytical scheme presented by Y. L. Shen and S. Suresh [6]. In the present model, the functionally graded materials are considered as multilayered materials. Each layer consists of metal and ceramic with different volume fraction. The ceramic layer and the FGM interlayers are considered as elastic brittle materials. The metal layer is considered as elastic-perfectly plastic ductile materials. Closed-form solutions for different characteristic temperature for thermal loading are presented as a function of the structure geometries and the thermomechanical properties of the materials. A main advance of the present model is that the possibility of the initial and spread of plasticity from the two sides of the ductile layers taken into account. Comparing the analytical results with the results from the finite element analysis, the thermal stresses and deformation from the present model are in good agreement with the numerical ones.

  1. [Effect of cadmium stress on physiological characteristics of garlic seedlings and the alleviation effects of exogenous calcium].

    PubMed

    Li, He; Lian, Hai-feng; Liu, Shi-qi; Yu, Xin-hui; Sun, Ya-li; Guo, Hui-ping

    2015-04-01

    In the experiment, the effects of exogenous cadmium (Cd2+) and calcium (Ca2+) in nutrient solution on growth, photosynthetic characteristics, enzymes activities, main mineral elements absorption of garlic seedlings were studied. The results showed that cadmium could obviously inhibit the growth of garlic seedlings, decrease the pigment contents and photosynthetic parameters (P(n), E, g(s)) of leaves, reduced the enzymes (SOD, POD, CAT) activities and increase the MDA content of leaves, and also could reduce the N, P, K, Ca, Mg contents and increase the Cd content of roots. The growth was promoted after adding exogenous calcium to garlic seedlings under cadmium stress, which reflected that the morphological indexes were increased at first and then decreased with the increase of exogenous calcium concentrations, and were maximized when the exogenous calcium was 2 or 3 mmol x L(-1). At the same time, the pigment contents and photosynthetic parameters (P(n), E, g(s)) of leaves showed a similar tendency with the morphological indexes, and they were the highest when the exogenous calcium was 2 or 3 mmol x L(-1). In addition, adding exogenous calcium to garlic seedlings under cadmium stress enhanced the enzymes (SOD, POD, CAT) activities and decreased the MDA content of leaves, also added the N, P, K, Ca, Mg contents and reduced the Cd content of roots, and the effect was best when the exogenous calcium concentration was 2 or 3 mmol x L(-1).

  2. Transition from stress-driven to thermally activated stress relaxation in metallic glasses

    NASA Astrophysics Data System (ADS)

    Qiao, J. C.; Wang, Yun-Jiang; Zhao, L. Z.; Dai, L. H.; Crespo, D.; Pelletier, J. M.; Keer, L. M.; Yao, Y.

    2016-09-01

    The short-range ordered but long-range disordered structure of metallic glasses yields strong structural and dynamic heterogeneities. Stress relaxation is a technique to trace the evolution of stress in response to a fixed strain, which reflects the dynamic features phenomenologically described by the Kohlrausch-Williams-Watts (KWW) equation. The KWW equation describes a broad distribution of relaxation times with a small number of empirical parameters, but it does not arise from a particular physically motivated mechanistic picture. Here we report an anomalous two-stage stress relaxation behavior in a Cu46Zr46Al8 metallic glass over a wide temperature range and generalize the findings in other compositions. Thermodynamic analysis identifies two categories of processes: a fast stress-driven event with large activation volume and a slow thermally activated event with small activation volume, which synthetically dominates the stress relaxation dynamics. Discrete analyses rationalize the transition mechanism induced by stress and explain the anomalous variation of the KWW characteristic time with temperature. Atomistic simulations reveal that the stress-driven event involves virtually instantaneous short-range atomic rearrangement, while the thermally activated event is the percolation of the fast event accommodated by the long-range atomic diffusion. The insights may clarify the underlying physical mechanisms behind the phenomenological description and shed light on correlating the hierarchical dynamics and structural heterogeneity of amorphous solids.

  3. Melatonin alleviates hyperthyroidism induced oxidative stress and neuronal cell death in hippocampus of aged female golden hamster, Mesocricetus auratus.

    PubMed

    Rao, Geeta; Verma, Rakesh; Mukherjee, Arun; Haldar, Chandana; Agrawal, Neeraj Kumar

    2016-09-01

    Oxidative stress is a well known phenomenon under hyperthyroid condition that induces various physiological and neural problems with a higher prevalence in females. We, therefore investigated the antioxidant potential of melatonin (Mel) on hyperthyroidism-induced oxidative stress and neuronal cell death in the hippocampus region of brain (cognition and memory centre) of aged female golden hamster, Mesocricetus auratus. Aged female hamsters were randomly divided into four experimental groups (n=7); group-I: control, group-II: Melatonin (5mgkg(-1)day(-1), i.p., for one week), group-III: Hyperthyroid (100μg kg(-1)day(-1), i.p., for two weeks) and group-IV- Hyper+Mel. Hormonal profiles (thyroid and melatonin), activity of antioxidant enzymes (SOD, CAT and GPX), lipid peroxidation level (TBARS) and the specific apoptotic markers (Bax/Bcl-2 ratio and Caspase-3) expression were evaluated. A significant increase in the profile of total thyroid hormone (tT3 and tT4) in hyperthyroidic group as compared to control while tT3 significantly decreased in melatonin treated hyperthyroidic group. However, Mel level significantly decreased in hyperthyroidic group but increased in melatonin treated hyperthyroidic group. Further, the number of immune-positive cells for thyroid hormone receptor-alpha (TR-α) decreased in the hippocampus of hyperthyroidic group and increased in melatonin treated hyperthyroidic group. Profiles of antioxidant enzymes showed a significant decrease in hyperthyroidic group with a simultaneous increase in lipid peroxidation (TBARS). Melatonin treatment to hyperthyroidic group lead to decreased TBARS level with a concomitant increase in antioxidant enzyme activity. Moreover, increased expression of Bax/Bcl-2 ratio and Caspase-3, in hyperthyroidic group had elevated neuronal cell death in hippocampal area and melatonin treatment reduced its expression in hyperthyroidic group. Our findings thus indicate that melatonin reduced the hyperthyroidism

  4. Oral treatment with the herbal formula B307 alleviates cardiac toxicity in doxorubicin-treated mice via suppressing oxidative stress, inflammation, and apoptosis

    PubMed Central

    Lien, Chia-Ying; Chuang, Tai-Yuan; Hsu, Chih-Hsiang; Lin, Ching-Lung; Wang, Sheue-Er; Sheu, Shuenn-Jyi; Chien, Chiang-Ting; Wu, Chung-Hsin

    2015-01-01

    Objective This study aimed to investigate whether the herbal formula B307 could alleviate doxorubicin (DOX)-induced acute cardiotoxicity. If so, we further unraveled possible molecular mechanisms of cardiac protection under treatment with the herbal formula B307. Methods Before the animal experiment, we examined relative viabilities of Huh7 cancer cells under treatment with the herbal formula B307. To test whether oral treatment with the herbal formula B307 could alleviate cardiotoxicity, equal volumes of B307 (50 mg/kg) or saline (sham treatment) were administered to 20-week-old male mice once daily for 14 consecutive days. Then, DOX (10 mg/kg; ip) was administered to male mice under B307 and sham treatments at 22–23 weeks of age. Cardiac functions in these mice were assessed via echocardiography at 23–24 weeks of age. Then, expressions of oxidative stress, inflammation, and apoptosis-related proteins were examined in the heart tissue by immunohistochemistry and Western blotting at 24–25 weeks of age. Apart from this, mortality rate and body weight were measured during the experiment. Results In vitro, the relative viabilities of Huh7 cancer cells under treatment with the herbal formula B307 had shown no obvious change at doses of 10–160 ng/mL. Furthermore, the relative viabilities of Huh7 cancer cells were significantly reduced under DOX treatment but showed no significant change under DOX only and DOX plus B307 treatment. In vivo, the mortality rate, body weight, and cardiac function of DOX-treated mice were obviously improved under oral treatment with the herbal formula B307. Furthermore, cardiac expressions of endothelial nitric oxide synthase, superoxide dismutase 2, and B-cell lymphoma 2 were significantly enhanced, but tumor necrosis factor alpha, NFKB1 (p50 and its precursor, p105), neurotrophin-3, Bcl-2-associated X protein, calpain, caspase 12, caspase 9, and caspase 3 were significantly suppressed in DOX-treated mice under oral treatment with

  5. Investigation of Thermal Stress Convection in Nonisothermal Gases Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Mackowski, Daniel W.; Knight, Roy W.

    1996-01-01

    Microgravity conditions offer an environment in which convection in a nonisothermal gas could be driven primarily by thermal stress. A direct examination of thermal stress flows would be invaluable in assessing the accuracy of the Burnett terms in the fluid stress tensor. We present a preliminary numerical investigation of the competing effects of thermal stress, thermal creep at the side walls, and buoyancy on gas convection in nonuniformly heated containers under normal and reduced gravity levels. Conditions in which thermal stress convection becomes dominant are identified, and issues regarding the experimental measurement of the flows are discussed.

  6. Bilberries potentially alleviate stress-related retinal gene expression induced by a high-fat diet in mice

    PubMed Central

    Kalesnykas, Giedrius; Adriaens, Michiel; Evelo, Chris T.; Törrönen, Riitta; Kaarniranta, Kai

    2012-01-01

    displayed differential regulation of genes in ontology groups, mainly pathways for apoptosis, inflammation, and oxidative stress, especially systemic lupus erythematosus, mitogen-activated protein kinase, and glutathione metabolism. Mice fed a HFD had increased retinal gene expression of several crystallins, while the HFD+BB mice showed potential downregulation of these crystallins when compared to the HFD mice. Bilberries also reduced the expression of genes in the mitogen-activated protein kinase (MAPK) pathway and increased those in the glutathione metabolism pathway. Conclusions HFD feeding induces differential expression of several stress-related genes in the mouse retina. Despite minor effects in the phenotype, a diet rich in bilberries mitigates the upregulation of crystallins otherwise induced by HFD. Thus, the early stages of obesity-associated and stress-related gene expression changes in the retina may be prevented with bilberries in the diet. PMID:22993483

  7. Thermal imaging to detect physiological indicators of stress in humans

    NASA Astrophysics Data System (ADS)

    Cross, Carl B.; Skipper, Julie A.; Petkie, Douglas T.

    2013-05-01

    Real-time, stand-off sensing of human subjects to detect emotional state would be valuable in many defense, security and medical scenarios. We are developing a multimodal sensor platform that incorporates high-resolution electro-optical and mid-wave infrared (MWIR) cameras and a millimeter-wave radar system to identify individuals who are psychologically stressed. Recent experiments have aimed to: 1) assess responses to physical versus psychological stressors; 2) examine the impact of topical skin products on thermal signatures; and 3) evaluate the fidelity of vital signs extracted from thermal imagery and radar signatures. Registered image and sensor data were collected as subjects (n=32) performed mental and physical tasks. In each image, the face was segmented into 29 non-overlapping segments based on fiducial points automatically output by our facial feature tracker. Image features were defined that facilitated discrimination between psychological and physical stress states. To test the ability to intentionally mask thermal responses indicative of anxiety or fear, subjects applied one of four topical skin products to one half of their face before performing tasks. Finally, we evaluated the performance of two non-contact techniques to detect respiration and heart rate: chest displacement extracted from the radar signal and temperature fluctuations at the nose tip and regions near superficial arteries to detect respiration and heart rates, respectively, extracted from the MWIR imagery. Our results are very satisfactory: classification of physical versus psychological stressors is repeatedly greater than 90%, thermal masking was almost always ineffective, and accurate heart and respiration rates are detectable in both thermal and radar signatures.

  8. Alleviation of salt stress by halotolerant and halophilic plant growth-promoting bacteria in wheat (Triticum aestivum).

    PubMed

    Orhan, Furkan

    2016-01-01

    In the current study, 18 halotolerant and halophilic bacteria have been investigated for their plant growth promoting abilities in vitro and in a hydroponic culture. The bacterial strains have been investigated for ammonia, indole-3-acetic acid and 1-aminocyclopropane-1-carboxylate-deaminase production, phosphate solubilisation and nitrogen fixation activities. Of the tested bacteria, eight were inoculated with Triticum aestivum in a hydroponic culture. The investigated bacterial strains were found to have different plant-growth promoting activities in vitro. Under salt stress (200mM NaCl), the investigated bacterial strains significantly increased the root and shoot length and total fresh weight of the plants. The growth rates of the plants inoculated with bacterial strains ranged from 62.2% to 78.1%. Identifying of novel halophilic and halotolerant bacteria that promote plant growth can be used as alternatives for salt sensitive plants. Extensive research has been conducted on several halophilic and halotolerant bacterial strains to investigate their plant growth promoting activities. However, to the best of my knowledge, this is the first study to inoculate these bacterial strains with wheat. PMID:27133557

  9. Methodology for assessment of amount and amplitude of thermal stress cycles in masonry

    NASA Astrophysics Data System (ADS)

    Beran, Pavel

    2016-06-01

    Analysis of amount and amplitude of thermal stress cycles in historic masonry has been made by means of combination of three 2-D numerical models of heterogeneous ashlar masonry. The numerical models were used to simulate thermal stress cycles during June, July and August in reference climatic year valid for Prague Castle, Czech Republic. For evaluation of amplitude and amount of the thermal stress cycles the effective stress in selected point in masonry was used. Afterwards rainflow method was used to count the amplitude and amount of the stress cycles. The results show that during summer quite a lot of significant thermal stress cycles originate in masonry, especially during sunny hot days. The results presented in this paper confirm the significant fatigue character of the thermal stress cycles and the method presented here could be suitable to evaluate thermal stress in building materials and structures.

  10. Leukotriene D4 receptor antagonist montelukast alleviates water avoidance stress-induced degeneration of the gastrointestinal mucosa.

    PubMed

    Ersoy, Yasemin; Cikler, Esra; Cetinel, Sule; Sener, Göksel; Ercan, Feriha

    2008-03-01

    We investigated the role of montelukast (ML), a cysteinyl leukotriene-1 receptor antagonist, on the water avoidance stress (WAS)-induced degeneration of the rat gastric, ileal and colonic mucosa. One group of Wistar albino rats were exposed to chronic WAS (WAS group) 2h daily for 5 days. Another group was administered ML (10mg/kg; i.p.; WAS+ML group) following every WAS exposure for 5 days. Control rats were injected with the vehicle solution only. The stomach, ileum and colon were dissected and investigated for histopathological changes with a light microscope as well as for topographical changes with a scanning electron microscope. The levels of malondialdehyde (MDA, a biomarker of oxidative damage) and glutathione (GSH, a biomarker of protective oxidative injury) were also determined in all dissected tissues. In the WAS group, the stomach epithelium showed ulceration in some areas, dilatations of the gastric glands, degeneration of gastric glandular cells, and prominent congestion of the capillaries. In a similar fashion, degenerated epithelium and severe vascular congestions were observed in the ileum and colon. In all the tissues dense inflammatory cell infiltration and mast cell degranulation in mucosa were observed. The levels of MDA were significantly increased whereas those of GSH were significantly decreased in all test tissues in the WAS group compared to the control group. The morphology of gastric, ileal and colonic mucosa in WAS+ML group showed a significant amelioration showing a reduction in inflammatory cell infiltration and mast cell degranulation. Increased MDA and decreased GSH levels in the WAS group were also ameliorated with ML treatment. Based on the results, ML supplement seems attenuated inflammatory effects of WAS induction in gastrointestinal mucosa.

  11. YoeB toxin is activated during thermal stress

    PubMed Central

    Janssen, Brian D; Garza-Sánchez, Fernando; Hayes, Christopher S

    2015-01-01

    Type II toxin-antitoxin (TA) modules are thought to mediate stress-responses by temporarily suppressing protein synthesis while cells redirect transcription to adapt to environmental change. Here, we show that YoeB, a ribosome-dependent mRNase toxin, is activated in Escherichia coli cells grown at elevated temperatures. YoeB activation is dependent on Lon protease, suggesting that thermal stress promotes increased degradation of the YefM antitoxin. Though YefM is efficiently degraded in response to Lon overproduction, we find that Lon antigen levels do not increase during heat shock, indicating that another mechanism accounts for temperature-induced YefM proteolysis. These observations suggest that YefM/YoeB functions in adaptation to temperature stress. However, this response is distinct from previously described models of TA function. First, YoeB mRNase activity is maintained over several hours of culture at 42°C, indicating that thermal activation is not transient. Moreover, heat-activated YoeB does not induce growth arrest nor does it suppress global protein synthesis. In fact, E. coli cells proliferate more rapidly at elevated temperatures and instantaneously accelerate their growth rate in response to acute heat shock. We propose that heat-activated YoeB may serve a quality control function, facilitating the recycling of stalled translation complexes through ribosome rescue pathways. PMID:26147890

  12. Surface Residual Stresses in Ti-6Al-4V Friction Stir Welds: Pre- and Post-Thermal Stress Relief

    NASA Astrophysics Data System (ADS)

    Edwards, P.; Ramulu, M.

    2015-09-01

    The purpose of this study was to determine the residual stresses present in titanium friction stir welds and if a post-weld thermal stress relief cycle would be effective in minimizing those weld-induced residual stresses. Surface residual stresses in titanium 6Al-4V alloy friction stir welds were measured in butt joint thicknesses ranging from 3 to 12 mm. The residual stress states were also evaluated after the welds were subjected to a post-weld thermal stress relief cycle of 760 °C for 45 min. High (300-400 MPa) tensile residual stresses were observed in the longitudinal direction prior to stress relief and compressive residual stresses were measured in the transverse direction. After stress relief, the residual stresses were decreased by an order of magnitude to negligible levels.

  13. Effect of treatment of cow's urine "Gomutra" and antioxidants in alleviating the lindane-induced oxidative stress in kidney of Swiss mice (Mus musculus).

    PubMed

    Nagda, Girima; Bhatt, Devendra Kumar

    2014-01-01

    The study aimed to evaluate the effect of cow urine and combination of antioxidants against lindane induced oxidative stress in Swiss mice. Male healthy mice, 8-10 weeks old, weighing 30 ± 5 g were randomly selected and divided into eight groups, namely, control (C); lindane (L); antioxidant (A), antioxidant+lindane (A+L), cow urine (U), cow urine+lindane (U+L), cow urine+antioxidants (U+A) and cow urine+antioxidants+lindane (U+A+L). Group C animals were administered only the vehicle (olive oil); doses selected for other treatments were: lindane: 40 mg/kg b.w.; antioxidants: 125 mg/kg b.w. (vitamin C: 50 mg/kg b.w., vitamin E: 50 mg/kg b.w., α-lipoic acid: 25 mg/kg b.w.) and cow urine: 0.25 ml/kg b.w. In group A+L and U+L antioxidants and cow urine were administered 1 h prior to lindane administration and in group U+A and U+A+L cow urine was administered 10 min before antioxidants. All treatments were administered orally continuously for 60 days. Lindane treated group showed increased lipid peroxidation, whereas glutathione, glutathione peroxidase, superoxide dismutase, catalase, protein and endogenous levels of vitamin C and E were significantly decreased compared to control. Administration of cow urine and antioxidants alleviated the levels of these biochemical parameters.

  14. Resveratrol alleviates diabetes-induced testicular dysfunction by inhibiting oxidative stress and c-Jun N-terminal kinase signaling in rats.

    PubMed

    Faid, Iman; Al-Hussaini, Heba; Kilarkaje, Narayana

    2015-12-15

    Diabetes adversely affects reproductive functions in humans and animals. The present study investigated the effects of Resveratrol on diabetes-induced alterations in oxidative stress, c-Jun N-terminal kinase (JNK) signaling and apoptosis in the testis. Adult male Wistar rats (13-15 weeks; n=6/group) were segregated into 1) normal control, 2) Resveratrol-treated (5mg/kg; ip; given during last 3 weeks), 3) Streptozotocin-induced diabetic and, 4) Resveratrol-treated diabetic groups, and euthanized on day 42 after the confirmation of diabetes. Resveratrol did not normalize blood glucose levels in diabetic rats. Resveratrol supplementation recovered diabetes-induced decreases in reproductive organ weights, sperm count and motility, intra-testicular levels of superoxide dismutase, catalase, and glutathione peroxidase and an increase in 4-hydroxynonenal activities (P<0.05). Resveratrol also recovered diabetes-induced increases in JNK signaling pathway proteins, namely, ASK1 (apoptosis signal-regulating kinase 1), JNKs (46 and 54 kDa isoforms) and p-JNK to normal control levels (P<0.05). Interestingly, the expression of a down-stream target of ASK1, MKK4 (mitogen-activated protein kinase kinase 4) and its phosphorylated form (p-MKK4) did not change in experimental groups. Resveratrol inhibited diabetes-induced increases in AP-1 (activator protein-1) components, c-Jun and ATF2 (activating transcription factor 2), but not their phosphorylated forms, to normal control levels (P<0.05). Further, Resveratrol inhibited diabetes-induced increase in cleaved-caspase-3 to normal control levels. In conclusion, Resveratrol alleviates diabetes-induced apoptosis in testis by modulating oxidative stress, JNK signaling pathway and caspase-3 activities, but not by inhibiting hyperglycemia, in rats. These results suggest that Resveratrol supplementation may be a useful strategy to treat diabetes-induced testicular dysfunction.

  15. Alleviation of Photoinhibition by Co-ordination of Chlororespiration and Cyclic Electron Flow Mediated by NDH under Heat Stressed Condition in Tobacco

    PubMed Central

    Li, Qinghua; Yao, Zheng-Ju; Mi, Hualing

    2016-01-01

    much more in the mutant. The results suggest that chlororespiration and cyclic electron flow mediated by NDH may coordinate to alleviate the over-reduction of stroma, thus to keep operation of CO2 assimilation at certain extent under heat stress condition. PMID:27066014

  16. Crop water-stress assessment using an airborne thermal scanner

    NASA Technical Reports Server (NTRS)

    Millard, J. P.; Jackson, R. D.; Reginato, R. J.; Idso, S. B.; Goettelman, R. C.

    1978-01-01

    An airborne thermal scanner was used to measure the temperature of a wheat crop canopy in Phoenix, Arizona. The results indicate that canopy temperatures acquired about an hour and a half past solar noon were well correlated with presunrise plant water tension, a parameter directly related to plant growth and development. Pseudo-colored thermal images reading directly in stress degree days, a unit indicative of crop irrigation needs and yield potential, were produced. The aircraft data showed significant within-field canopy temperature variability, indicating the superiority of the synoptic view provided by aircraft over localized ground measurements. The standard deviation between airborne and ground-acquired canopy temperatures was 2 C or less.

  17. Deposition stress effects on thermal barrier coating burner rig life

    NASA Technical Reports Server (NTRS)

    Watson, J. W.; Levine, S. R.

    1984-01-01

    A study of the effect of plasma spray processing parameters on the life of a two layer thermal barrier coating was conducted. The ceramic layer was plasma sprayed at plasma arc currents of 900 and 600 amps onto uncooled tubes, cooled tubes, and solid bars of Waspalloy in a lathe with 1 or 8 passes of the plasma gun. These processing changes affected the residual stress state of the coating. When the specimens were tested in a Mach 0.3 cyclic burner rig at 1130 deg C, a wide range of coating lives resulted. Processing factors which reduced the residual stress state in the coating, such as reduced plasma temperature and increased heat dissipation, significantly increased coating life.

  18. Bond strength and stress measurements in thermal barrier coatings

    SciTech Connect

    Gell, M.; Jordan, E.

    1995-10-01

    Thermal barrier coatings have been used extensively in aircraft gas turbines for more than 15 years to insulate combustors and turbine vanes from the hot gas stream. Plasma sprayed thermal barrier coatings (TBCs) provide metal temperature reductions as much as 300{degrees}F, with improvements in durability of two times or more being achieved. The introduction of TBCs deposited by electron beam physical vapor deposition (EB-PVD) processes in the last five years has provided a major improvement in durability and also enabled TBCs to be applied to turbine blades for improved engine performance. To meet the aggressive Advanced Turbine Systems goals for efficiency, durability and the environment, it will be necessary to employ thermal barrier coatings on turbine airfoils and other hot section components. For The successful application of TBCs to ATS engines with 2600{degrees}F turbine inlet temperatures and required component lives 10 times greater than those for aircraft gas turbine engines, it is necessary to develop quantitative assessment techniques for TBC coating integrity with time and cycles in ATS engines. Thermal barrier coatings in production today consist of a metallic bond coat, such as an MCrAlY overlay coating or a platinum aluminide (Pt-Al) diffusion coating. During heat treatment, both these coatings form a thin, tightly adherent alumina (Al{sub 2}O{sub 3}) film. Failure of TBC coatings in engine service occurs by spallation of the ceramic coating at or near the bond coat to alumina or the alumina to zirconia bonds. Thus, it is the initial strength of these bonds and the stresses at the bond plane, and their changes with engine exposure, that determines coating durability. The purpose of this program is to provide, for the first time, a quantitative assessment of TBC bond strength and bond plane stresses as a function of engine time and cycles.

  19. Oral treatment with herbal formula B307 alleviates cardiac failure in aging R6/2 mice with Huntington's disease via suppressing oxidative stress, inflammation, and apoptosis.

    PubMed

    Lin, Ching-Lung; Wang, Sheue-Er; Hsu, Chih-Hsiang; Sheu, Shuenn-Jyi; Wu, Chung-Hsin

    2015-01-01

    Cardiac failure is often observed in aging patients with Huntington's disease (HD). However, conventional pharmacological treatments for cardiac failure in HD patients have rarely been studied. Chinese herbal medicines, especially combined herbal formulas, have been widely used to treat cardiac dysfunctions over the centuries. Thus, we assess whether oral treatment with herbal formula B307 can alleviate cardiac failure in transgenic mice with HD. After oral B307 or vehicle treatment for 2 weeks, cardiac function and cardiomyocytes in 12-week-old male R6/2 HD mice and their wild-type littermate controls (WT) were examined and then compared via echocardiography, immunohistochemistry, and Western blotting. We found that cardiac performance in aging R6/2 HD mice had significantly deteriorated in comparison with their WT (P<0.01). Cardiac expressions of superoxide dismutase 2 (SOD2) and B-cell lymphoma 2 (Bcl-2) in aging R6/2 HD mice were significantly lower than their WT (P<0.01), but cardiac expressions of tumor necrosis factor alpha (TNF-α), neurotrophin-3 (3-NT), 4-hydroxynonenal (4-HNE), Bcl-2-associated X protein (Bax), calpain, caspase 12, caspase 9, and caspase 3 of aging R6/2 HD mice were significantly higher than their WT (P<0.05). Furthermore, we found that cardiac performance in aging R6/2 HD mice had significantly improved under oral B307 treatment (P<0.05). Cardiac expressions of SOD2 and Bcl-2 of aging R6/2 HD mice were significantly higher under oral B307 treatment (P<0.01), but cardiac expressions of TNF-α, 3-NT, 4-HNE, Bax, calpain, caspase 12, caspase 9, and caspase 3 of aging R6/2 HD mice were significantly reduced under oral B307 treatment (P<0.05). Oral B307 treatment may briefly alleviate cardiac failure in aging HD R6/2 mice via suppressing cardiac oxidative stress, inflammation, and apoptosis. We suggested that the herbal formula B307 may be further developed as a potential health supplement for ameliorating cardiac failure associated with

  20. Interlaminar failure due to mechanical and thermal stresses at the free edges of laminated plates

    NASA Astrophysics Data System (ADS)

    Morton, S. K.; Webber, J. P. H.

    Analytical methods for the calculation of free edge stresses due to mechanical and thermal loads, together with a quadratic interlaminar stress criterion, are used to predict interlaminar failure in laminated composite plates. The predicted applied stresses are compared with experimental results from the literature and found to give reasonable agreement. The effect on stress distributions, and on predicted interlaminar failure, of including thermal stresses in the free edge analysis is illustrated for various stacking sequences.

  1. The effect of thermal stresses on the integrity of three built-up aircraft structures

    NASA Technical Reports Server (NTRS)

    Jenkins, J. M.

    1980-01-01

    A Mach 6 flight was simulated in order to examine heating effects on three frame/skin specimens. The specimens included: a titanium truss frame with a lockalloy skin; a stainless steel z-frame with a lockalloy skin; and a titanium z-frame with a lockalloy skin. Thermal stresses and temperature were measured on these specimens for the purpose of examining their efficiency, performance, and integrity. Measured thermal stresses were examined with respect to material yield strengths, buckling criteria, structural weight, and geometric locations. Principal thermal stresses were studied from the standpoint of uniaxial stress assumptions. Measured thermal stresses were compared to predicted values.

  2. Feasibility assessment of a tunnel-ventilated, water-padded barn on alleviation of heat stress for lactating Holstein cows in a humid area.

    PubMed

    Shiao, T F; Chen, J C; Yang, D W; Lee, S N; Lee, C F; Cheng, W T K

    2011-11-01

    The use of evaporative cooling for mitigating heat stress in lactating cows in humid areas is controversial. In Taiwan, Holstein cow performance is significantly restricted by hot and humid weather. This study investigated the efficacy of using a tunnel-ventilated, water-padded freestall (TP) barn for reducing heat stress in lactating cows. From August to October 2006, 36 cows allocated in a 3×3 Latin square were raised in 3 barn cooling treatments: a conventional freestall barn with fans and sprinklers in the feed line (Fan+SP, control), a TP barn, and a TP barn with sprinkler cooling (TP+SP). Daytime air speeds in the 3 barns were 1.23, 2.38, and 2.06 m/s, respectively. Both TP barns were more efficient than the control in reducing the daytime temperature and temperature-humidity index. The barn temperature was <26°C for an extra 4.2h per day, but the relative humidity was >96% in both TP barns. Cows in both TP barns had higher respiration rates and skin temperatures at 0300 h than cows in the Fan+SP barn. The TP environment increased the cows' serum cholesterol level and the activities of alkaline phosphatase and alanine aminotransferase, but blood partial pressure of CO(2) was not affected. Vaginal temperature was persistently high in cows in the TP barn; in the 2 SP barns, it decreased 0.4 to 0.6°C following sprinkling and milking. The intake activity and rumen digestion of cows raised in the 3 environments were similar. Cows in both TP barns ingested more dry matter. Cows in the TP+SP barn tended to produce more milk than those in the Fan+SP barn (25.4 vs. 24.7 kg). Although heat stress was not completely alleviated in these 3 barns, the TP+SP treatment resolved the negative effect of a previous TP barn built in 2004 on intake and milk yield by increasing air speed and using sprinkler cooling. Thus, it is expected that TP+SP barns will be beneficial in regions with high humidity. Adequate air speed and sprinkler cooling are likely to be key factors for

  3. Fluid shifts during thermal stress with and without fluid replacement

    NASA Technical Reports Server (NTRS)

    Myhre, L. G.; Robinson, S.

    1977-01-01

    Six unacclimatized men rested for 4 hr in a hot, dry environment without fluid replacement (DH). Another group of six men were exposed to the same thermal stress, replacing evaporative fluid loss with warm 0.1% NaCl solution (FRP). Total grams of circulating hemoglobin, determined by CO immediately prior to and again during the last minutes of heat exposure, increased an insignificant 1.6 and 1.3% during DH and FRP, respectively. With DH, body weight loss of 2.6% was accompanied by a 7.8% reduction in calculated plasma volume (PV). Even when body weight was maintained (FRP), PV decreased 2.9% during the heat exposure. Total circulating serum protein did not change as a result of the heat stress with either DH or FRP. In a test-retest series of experiments on four men, DH was not detrimental to sweat rate. It is shown that hemodilution is not a general response to acute heat exposure. The disproportionately large reduction in PV during thermal dehydration is confirmed.

  4. Graphite having improved thermal stress resistance and method of preparation

    DOEpatents

    Kennedy, Charles R.

    1980-01-01

    An improved method for fabricating a graphite article comprises the steps of impregnating a coke article by first heating the coke article in contact with a thermoplastic pitch at a temperature within the range of 250.degree.-300.degree. C. at a pressure within the range of 200-2000 psig for at least 4-10 hours and then heating said article at a temperature within the range of 450.degree.-485.degree. C. at a pressure of 200-2000 psig for about 16-24 hours to provide an impregnated article; heating the impregnated article for sufficient time to carbonize the impregnant to provide a second coke article, and graphitizing the second coke article. A graphite having improved thermal stress resistance results when the coke to be impregnated contains 1-3 wt.% sulfur and no added puffing inhibitors. An additional improvement in thermal stress resistance is achieved when the second coke article is heated above about 1400.degree. C. at a rate of at least 10.degree. C./minute to a temperature above the puffing temperature.

  5. Thermal expansion and thermal stress in the moon and terrestrial planets - Clues to early thermal history

    NASA Technical Reports Server (NTRS)

    Solomon, S. C.; Chaiken, J.

    1976-01-01

    The paper discusses how features of the surface geology of the moon and also Mars and Mercury impose constraints on the volumetric expansion or contraction of a planet and consequently provide a test of thermal history models. The moon has changed very little in volume over the last 3.8 b.y. Thermal models satisfying this constraint involve early heating and perhaps melting of the outer 200 km of the moon and an initially cold interior. Mercury has contracted by about 2 km in radius since emplacement of its present surface, so core formation must predate that surface. A hot initial temperature distribution is implied.

  6. Thermal stress prediction in mirror and multilayer coatings.

    PubMed

    Cheng, Xianchao; Zhang, Lin; Morawe, Christian; Sanchez Del Rio, Manuel

    2015-03-01

    Multilayer optics for X-rays typically consist of hundreds of periods of two types of alternating sub-layers which are coated on a silicon substrate. The thickness of the coating is well below 1 µm (tens or hundreds of nanometers). The high aspect ratio (∼10(7)) between the size of the optics and the thickness of the multilayer can lead to a huge number of elements (∼10(16)) for the numerical simulation (by finite-element analysis using ANSYS code). In this work, the finite-element model for thermal-structural analysis of multilayer optics has been implemented using the ANSYS layer-functioned elements. The number of meshed elements is considerably reduced and the number of sub-layers feasible for the present computers is increased significantly. Based on this technique, single-layer coated mirrors and multilayer monochromators cooled by water or liquid nitrogen are studied with typical parameters of heat-load, cooling and geometry. The effects of cooling-down of the optics and heating of the X-ray beam are described. It is shown that the influences from the coating on temperature and deformation are negligible. However, large stresses are induced in the layers due to the different thermal expansion coefficients between the layer and the substrate materials, which is the critical issue for the survival of the optics. This is particularly true for the liquid-nitrogen cooling condition. The material properties of thin multilayer films are applied in the simulation to predict the layer thermal stresses with more precision. PMID:25723932

  7. Thermal stress prediction in mirror and multilayer coatings.

    PubMed

    Cheng, Xianchao; Zhang, Lin; Morawe, Christian; Sanchez Del Rio, Manuel

    2015-03-01

    Multilayer optics for X-rays typically consist of hundreds of periods of two types of alternating sub-layers which are coated on a silicon substrate. The thickness of the coating is well below 1 µm (tens or hundreds of nanometers). The high aspect ratio (∼10(7)) between the size of the optics and the thickness of the multilayer can lead to a huge number of elements (∼10(16)) for the numerical simulation (by finite-element analysis using ANSYS code). In this work, the finite-element model for thermal-structural analysis of multilayer optics has been implemented using the ANSYS layer-functioned elements. The number of meshed elements is considerably reduced and the number of sub-layers feasible for the present computers is increased significantly. Based on this technique, single-layer coated mirrors and multilayer monochromators cooled by water or liquid nitrogen are studied with typical parameters of heat-load, cooling and geometry. The effects of cooling-down of the optics and heating of the X-ray beam are described. It is shown that the influences from the coating on temperature and deformation are negligible. However, large stresses are induced in the layers due to the different thermal expansion coefficients between the layer and the substrate materials, which is the critical issue for the survival of the optics. This is particularly true for the liquid-nitrogen cooling condition. The material properties of thin multilayer films are applied in the simulation to predict the layer thermal stresses with more precision.

  8. Prognostics Approach for Power MOSFET Under Thermal-Stress

    NASA Technical Reports Server (NTRS)

    Galvan, Jose Ramon Celaya; Saxena, Abhinav; Kulkarni, Chetan S.; Saha, Sankalita; Goebel, Kai

    2012-01-01

    The prognostic technique for a power MOSFET presented in this paper is based on accelerated aging of MOSFET IRF520Npbf in a TO-220 package. The methodology utilizes thermal and power cycling to accelerate the life of the devices. The major failure mechanism for the stress conditions is dieattachment degradation, typical for discrete devices with leadfree solder die attachment. It has been determined that dieattach degradation results in an increase in ON-state resistance due to its dependence on junction temperature. Increasing resistance, thus, can be used as a precursor of failure for the die-attach failure mechanism under thermal stress. A feature based on normalized ON-resistance is computed from in-situ measurements of the electro-thermal response. An Extended Kalman filter is used as a model-based prognostics techniques based on the Bayesian tracking framework. The proposed prognostics technique reports on preliminary work that serves as a case study on the prediction of remaining life of power MOSFETs and builds upon the work presented in [1]. The algorithm considered in this study had been used as prognostics algorithm in different applications and is regarded as suitable candidate for component level prognostics. This work attempts to further the validation of such algorithm by presenting it with real degradation data including measurements from real sensors, which include all the complications (noise, bias, etc.) that are regularly not captured on simulated degradation data. The algorithm is developed and tested on the accelerated aging test timescale. In real world operation, the timescale of the degradation process and therefore the RUL predictions will be considerable larger. It is hypothesized that even though the timescale will be larger, it remains constant through the degradation process and the algorithm and model would still apply under the slower degradation process. By using accelerated aging data with actual device measurements and real

  9. Treatment with bone marrow mesenchymal stem cells combined with plumbagin alleviates spinal cord injury by affecting oxidative stress, inflammation, apoptotis and the activation of the Nrf2 pathway.

    PubMed

    Yang, Wencheng; Yang, Yan; Yang, Jian-Yi; Liang, Ming; Song, Jiangtao

    2016-04-01

    The aim of the present study was to investigate the protective effect exerted by bone marrow mesenchymal stem cells (BMSCs) in combination with plumbagin on spinal cord injury (SCI) and explore the mechanism behind this protective effect. Firstly, BMSCs were extracted from male Sprague-Dawley rats, cultured in vitro, and identified by hematoxylin. Sprague-Dawley rats were then randomly divided into a control group, SCI model group, BMSC-treated group, a plumbagin-treated group, and a BMSC and plumbagin-treated group. After treatment with BMSCs combined with plumbagin, a Basso, Beattie and Bresnahan (BBB) test was carried out and the spinal cord water content was examined in order to analyze the effect of BMSCs combined with plumbagin on SCI. The myeloperoxidase (MPO), superoxide dismutase (SOD), malondialdehyde (MDA), nuclear factor-κB (NF-κB) p65 unit, tumor necrosis factor-α (TNF-α) levels were also detected. Moreover, nuclear factor erythroid 2‑related factor 2 (Nrf2), phosphoinositide 3-kinase (PI3K), phosphorylated (p-)Akt, p-p38 mitogen-activated protein kinase (MAPK), and p-extracellular-signal-regulated kinase (ERK) protein expression levels were measured using western blot analysis. Treatment with BMSCs combined with plumbagin significantly improved locomotor recovery and reduced the spinal cord water content after SCI. The increased MPO, MDA, NF-κB p65 and TNF-α levels were significantly suppressed and the decreased SOD was significantly increased in SCI rats. The suppression of Nrf2, p-Akt and p-ERK, as well as the promotion of p-p38 MAPK, were reversed by treatment with BMSCs combined with plumbagin. These effects suggest that treatment with BMSCs combined with plumbagin alleviates SCI through its effects on oxidative stress, inflammation, apoptotis and activation of the Nrf2 pathway. PMID:26936518

  10. Genome Analysis of Pseudomonas fluorescens PCL1751: A Rhizobacterium that Controls Root Diseases and Alleviates Salt Stress for Its Plant Host

    PubMed Central

    Cho, Shu-Ting; Chang, Hsing-Hua; Egamberdieva, Dilfuza; Kamilova, Faina; Lugtenberg, Ben; Kuo, Chih-Horng

    2015-01-01

    Pseudomonas fluorescens PCL1751 is a rod-shaped Gram-negative bacterium isolated from the rhizosphere of a greenhouse-grown tomato plant in Uzbekistan. It controls several plant root diseases caused by Fusarium fungi through the mechanism of competition for nutrients and niches (CNN). This mechanism does not rely on the production of antibiotics, so it avoids the concerns of resistance development and is environmentally safe. Additionally, this bacterium promotes plant growth by alleviating salt stress for its plant host. To investigate the genetic mechanisms that may explain these observations, we determined the complete genome sequence of this bacterium, examined its gene content, and performed comparative genomics analysis with other Pseudomonas strains. The genome of P. fluorescens PCL1751 consisted of one circular chromosome that is 6,143,950 base-pairs (bp) in size; no plasmid was found. The annotation included 19 rRNA, 70 tRNA, and 5,534 protein-coding genes. The gene content analysis identified a large number of genes involved in chemotaxis and motility, colonization of the rhizosphere, siderophore biosynthesis, and osmoprotectant production. In contrast, the pathways involved in the biosynthesis of phytohormones or antibiotics were not found. Comparison with other Pseudomonas genomes revealed extensive variations in their genome size and gene content. The presence and absence of secretion system genes were highly variable. As expected, the synteny conservation among strains decreased as a function of phylogenetic divergence. The integration of prophages appeared to be an important driver for genome rearrangements. The whole-genome gene content analysis of this plant growth-promoting rhizobacterium (PGPR) provided some genetic explanations to its phenotypic characteristics. The extensive and versatile substrate utilization pathways, together with the presence of many genes involved in competitive root colonization, provided further support for the finding

  11. Long Chain Omega-3 Polyunsaturated Fatty Acid Supplementation Alleviates Doxorubicin-Induced Depressive-Like Behaviors and Neurotoxicity in Rats: Involvement of Oxidative Stress and Neuroinflammation.

    PubMed

    Wu, Yan-Qin; Dang, Rui-Li; Tang, Mi-Mi; Cai, Hua-Lin; Li, Huan-De; Liao, De-Hua; He, Xin; Cao, Ling-Juan; Xue, Ying; Jiang, Pei

    2016-04-23

    Doxorubicin (DOX) is a chemotherapeutic agent widely used in human malignancies. Its long-term use can cause neurobiological side-effects associated with depression. Omega-3 polyunsaturated fatty acids (ω-3 PUFAs), the essential fatty acids found in fish oil, possess neuroprotecitve and antidepressant activities. Thus, the aim of this study was to explore the potential protective effects of ω-3 PUFAs against DOX-induced behavioral changes and neurotoxicity. ω-3 PUFAs were given daily by gavage (1.5 g/kg) over three weeks starting seven days before DOX administration (2.5 mg/kg). Open-field test (OFT) and forced swimming test (FST) were conducted to assess exploratory activity and despair behavior, respectively. Our data showed that ω-3 PUFAs supplementation significantly mitigated the behavioral changes induced by DOX. ω-3 PUFAs pretreatment also alleviated the DOX-induced neural apoptosis. Meanwhile, ω-3 PUFAs treatment ameliorated DOX-induced oxidative stress in the prefrontal cortex and hippocampus. Additionally, gene expression of pro-inflammatory cytokines, including IL-1β, IL-6, and TNF-α, and the protein levels of NF-κB and iNOS were significantly increased in brain tissues of DOX-treated group, whereas ω-3 PUFAs supplementation significantly attenuated DOX-induced neuroinflammation. In conclusion, ω-3 PUFAs can effectively protect against DOX-induced depressive-like behaviors, and the mechanisms underlying the neuroprotective effect are potentially associated with its anti-oxidant, anti-inflammatory, and anti-apoptotic properties.

  12. Genome Analysis of Pseudomonas fluorescens PCL1751: A Rhizobacterium that Controls Root Diseases and Alleviates Salt Stress for Its Plant Host.

    PubMed

    Cho, Shu-Ting; Chang, Hsing-Hua; Egamberdieva, Dilfuza; Kamilova, Faina; Lugtenberg, Ben; Kuo, Chih-Horng

    2015-01-01

    Pseudomonas fluorescens PCL1751 is a rod-shaped Gram-negative bacterium isolated from the rhizosphere of a greenhouse-grown tomato plant in Uzbekistan. It controls several plant root diseases caused by Fusarium fungi through the mechanism of competition for nutrients and niches (CNN). This mechanism does not rely on the production of antibiotics, so it avoids the concerns of resistance development and is environmentally safe. Additionally, this bacterium promotes plant growth by alleviating salt stress for its plant host. To investigate the genetic mechanisms that may explain these observations, we determined the complete genome sequence of this bacterium, examined its gene content, and performed comparative genomics analysis with other Pseudomonas strains. The genome of P. fluorescens PCL1751 consisted of one circular chromosome that is 6,143,950 base-pairs (bp) in size; no plasmid was found. The annotation included 19 rRNA, 70 tRNA, and 5,534 protein-coding genes. The gene content analysis identified a large number of genes involved in chemotaxis and motility, colonization of the rhizosphere, siderophore biosynthesis, and osmoprotectant production. In contrast, the pathways involved in the biosynthesis of phytohormones or antibiotics were not found. Comparison with other Pseudomonas genomes revealed extensive variations in their genome size and gene content. The presence and absence of secretion system genes were highly variable. As expected, the synteny conservation among strains decreased as a function of phylogenetic divergence. The integration of prophages appeared to be an important driver for genome rearrangements. The whole-genome gene content analysis of this plant growth-promoting rhizobacterium (PGPR) provided some genetic explanations to its phenotypic characteristics. The extensive and versatile substrate utilization pathways, together with the presence of many genes involved in competitive root colonization, provided further support for the finding

  13. Exogenous IAA differentially affects growth, oxidative stress and antioxidants system in Cd stressed Trigonella foenum-graecum L. seedlings: Toxicity alleviation by up-regulation of ascorbate-glutathione cycle.

    PubMed

    Bashri, Gausiya; Prasad, Sheo Mohan

    2016-10-01

    In the present study, effect of exogenous indole-3-acetic acid at their different levels (i.e. low; IAAL, 10µM and high; IAAH, 100µM) were studied on growth, oxidative stress biomarkers and antioxidant enzymes (SOD, POD, CAT and GST), and metabolites (AsA and GSH) as well as enzymes (APX, GR and DHAR) of ascorbate-glutathione cycle in Trigonella foenum-graecum L. seedlings grown under cadmium (Cd1, 3mgCd kg(-1) soil and Cd2, 9mgCd kg(-1) soil) stress. Cadmium (Cd) at both doses caused reduction in growth which was correlated with enhanced lipid peroxidation and damage to membrane as a result of excess accumulation of O2(•-) and H2O2. Cd also enhanced the oxidation of AsA and GSH to DHA and GSSG, respectively which give a clear sign of oxidative stress, despite of accelerated activity of enzymatic antioxidants: SOD, CAT, POD, GST as well as APX, DHAR (except in Cd2 stress) and GR. Exogenous application of IAAL resulted further rise in the activities of these enzymes, and maintained the redox status (> ratios: AsA/DHA and GSH/GSSG) of cells. The maintained redox status of cells under IAAL treatment declined the level of ROS in Cd1 and Cd2 treated seedlings thereby alleviated the Cd toxicity and this effect was more pronounced under Cd1 stress. Contrary to this, exogenous IAAH suppressed the activity of DHAR and GR and disturbed the redox status (< ratios: AsA/DHA and GSH/GSSG) of cells, hence excess accumulation of ROS further aggravated the Cd induced damage. Thus, overall results suggest that IAA at low (IAAL) and high (IAAH) doses affected the Cd toxicity differently by regulating the ascorbate-glutathione cycle as well as activity of other antioxidants in Trigonella seedlings. PMID:27344401

  14. Thermal-stress analysis for wood composite blade. [horizontal axis wind turbines

    NASA Technical Reports Server (NTRS)

    Fu, K. C.; Harb, A.

    1984-01-01

    The thermal-stress induced by solar insolation on a wood composite blade of a Mod-OA wind turbine was investigated. The temperature distribution throughout the blade (a heat conduction problem) was analyzed and the thermal-stress distribution of the blades caused by the temperature distribution (a thermal-stress analysis problem) was then determined. The computer programs used for both problems are included along with output examples.

  15. Analytical solution for unsteady thermal stresses in an infinite cylinder composed of two materials

    SciTech Connect

    Pardo, E.; Sanchez Sarmiento, G.; Laura, P.A.A.; Gutierrez, R.H.

    1987-01-01

    An exact analytical solution for unsteady thermal stresses in an infinitely long solid composite cylinder is presented. The unsteady temperature field is determined following Ozisik's (1980) treatment, but a more general solution is achieved by the present approach by considering a heat convection situation at the outer boundary. The plane stress and plane strain states are considered next, and the thermal stresses are evaluated. Results are provided as dimensionless plots for several combinations of thermal and mechanical parameters of practical interest. 6 references.

  16. FEATS - Finite element thermal stress analysis of plane or axisymmetric solids

    NASA Technical Reports Server (NTRS)

    Swanson, J. A.

    1971-01-01

    FEATS computer code uses finite element analysis to calculate steady state temperature and thermal stress fields for either axisymmetric or plane two-dimensional bodies with boundary conditions, including specified displacements, loads, and thermal boundary conditions.

  17. Effects of dietary arginine and glutamine on alleviating the impairment induced by deoxynivalenol stress and immune relevant cytokines in growing pigs.

    PubMed

    Wu, Li; Wang, Wence; Yao, Kang; Zhou, Ting; Yin, Jie; Li, Tiejun; Yang, Lin; He, Liuqin; Yang, Xiaojian; Zhang, Hongfu; Wang, Qi; Huang, Ruilin; Yin, Yulong

    2013-01-01

    glutamine on alleviating the impairment induced by DON stress and immune relevant cytokines in growing pigs.

  18. Thermal Hyperspectral Remote Sensing for Plant Species and Stress Detection

    NASA Astrophysics Data System (ADS)

    Schlerf, M.; Rock, G.; Ullah, S.; Gerhards, M.; Udelhoven, T.; Skidmore, A. K.

    2014-12-01

    Thermal infrared (TIR) spectroscopy offers a novel opportunity for measuring emissivity spectra of natural surfaces. Emissivity spectra are not directly measured, they first have to be retrieved from the raw measurements. Once retrieved, the spectra can be used, for example, to discriminate plant species or to detect plant stress. Knowledge of plant species distribution is essential for the sustainable management of ecosystems. Remote sensing of plant species has so far mostly been limited to data in the visible and near-infrared where, however, different species often reveal similar reflectance curves. Da Luz and Crowley showed in a recent paper that in the TIR plants indeed have distinct spectral features. Also with a certain species, subtle changes of emissivity in certain wavebands may occur, when biochemical compounds change due to osmotic adjustment induced by water stress. Here we show, that i) emissive imaging spectroscopy allows for reliable and accurate retrieval of plant emissivity spectra, ii) emissivity spectra are well suited to discriminate plant species, iii) a reduction in stomatal conductance (caused by stress) changes the thermal infrared signal. For 13 plant species in the laboratory and for 8 plant species in a field setup emissivity spectra were retrieved. A comparison shows, that for most species the shapes of the emissivity curves agree quite well, but that clear offsets between the two types of spectra exist. Discrimination analysis revealed that based on the lab spectra, 13 species could be distinguished with an average overall classification accuracy of 92% using the 6 best spectral bands. For the field spectra (8 species), a similar high OAA of 89% was achieved. Species discrimination is likely to be possible due to variations in the composition of the superficial epidermal layer of plant leaves and in internal chemical concentrations producing unique emissivity features. However, to date, which spectral feature is responsible for which

  19. Thermal stress-relief treatments for 2219 aluminum alloy are evaluated

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Evaluation of three thermal stress relief treatments for 2219 aluminum alloy in terms of their effect on residual stress, mechanical properties, and stress corrosion resistance. The treatments are post aging and stress relieving fullscale and subscale parts formed in the aged T81 condition, and aging subscale parts formed in the unaged T31 condition.

  20. A model for residual stress evolution in air-plasma-sprayed zirconia thermal barrier coatings

    SciTech Connect

    Nair, B. G.; Singh, J. P.; Grimsditch, M.

    2000-02-28

    Ruby fluorescence spectroscopy indicates that residual stress in air-plasma-sprayed zirconia thermal barrier coatings is a function of the local interface geometry. The stress profile of a simulated rough interface characterized by ``peaks'' and ``valleys'' was modeled with a finite-element approach that accounted for thermal mismatch, oxide scale growth, and top coat sintering. Dependence of the stress profile on interface geometry and microstructure was investigated, and the results were compared with measured stresses.

  1. Preliminary Thermal Stress Analysis of a High-Pressure Cryogenic Storage Tank

    NASA Technical Reports Server (NTRS)

    Baker, J. Mark

    2003-01-01

    The thermal stresses on a cryogenic storage tank strongly affect the condition of the tank and its ability to withstand operational stresses. These thermal stresses also affect the growth of any surface damage that might occur in the tank walls. These stresses are particularly of concern during the initial cooldown period for a new tank placed into service, and during any subsequent thermal cycles. A preliminary thermal stress analysis of a high-pressure cryogenic storage tank was performed. Stresses during normal operation were determined, as well as the transient temperature distribution. An elastic analysis was used to determine the thermal stresses in the inner wall based on the temperature data. The results of this elastic analysis indicate that the inner wall of the storage tank will experience thermal stresses of approximately 145,000 psi (1000 MPa). This stress level is well above the room-temperature yield strength of 304L stainless steel, which is about 25,000 psi (170 MPa). For this preliminary analysis, several important factors have not yet been considered. These factors include increased strength of 304L stainless steel at cryogenic temperatures, plastic material behavior, and increased strength due to strain hardening. In order to more accurately determine the thermal stresses and their affect on the tank material, further investigation is required, particularly in the area of material properties and their relationship to stress.

  2. Thermal stress analysis of symmetric shells subjected to asymmetric thermal loads

    NASA Technical Reports Server (NTRS)

    Negaard, G. R.

    1980-01-01

    The performance of the NASTRAN level 16.0 axisymmetric solid elements when subjected to both symmetric and asymmetric thermal loading was investigated. A ceramic radome was modeled using both the CTRAPRG and the CTRAPAX elements. The thermal loading applied contained severe gradients through the thickness of the shell. Both elements were found to be more sensitive to the effect of the thermal gradient than to the aspect ratio of the elements. Analysis using the CTRAPAX element predicted much higher thermal stresses than the analysis using the CTRAPRG element, prompting studies of models for which theoretical solutions could be calculated. It was found that the CTRAPRG element solutions were satisfactory, but that the CTRAPAX element was very geometry dependent. This element produced erroneous results if the geometry was allowed to vary from a rectangular cross-section. The most satisfactory solution found for this type of problem was to model a small segment of a symmetric structure with isoparametric solid elements and apply the cyclic symmetry option in NASTRAN.

  3. Cracking of coated materials under transient thermal stresses

    NASA Technical Reports Server (NTRS)

    Rizk, A. A.; Erdogan, F.

    1989-01-01

    The crack problem for a relatively thin layer bonded to a very thick substrate under thermal shock conditions is considered. The effect of surface cooling rate is studied by assuming the temperature boundary condition to be a ramp function. Among the crack geometries considered are the edge crack in the coating layer, the broken layer, the edge crack going through the interface, the undercoat crack in the substrate and the embedded crack crossing the interface. The primary calculated quantity is the stress intensity factor at various singular points and the main variables are the relative sizes and locations of cracks, the time, and the duration of the cooling ramp. The problem is solved and rather extensive results are given for two material pairs, namely a stainless steel layer welded on a ferritic medium and a ceramic coating on a steel substrate.

  4. Cracking of coated materials under transient thermal stresses

    NASA Technical Reports Server (NTRS)

    Rizk, A. A.; Erdogan, Fazil

    1988-01-01

    The crack problem for a relatively thin layer bonded to a very thick substrate under thermal shock conditions is considered. The effect of surface cooling rate is studied by assuming the temperature boundary condition to be a ramp function. Among the crack geometries considered are the edge crack in the coating layer, the broken layer, the edge crack going through the interface, the undercoat crack in the substrate and the embedded crack crossing the interface. The primary calculated quantity is the stress intensity factor at various singular points and the main variables are the relative sizes and locations of cracks, the time, and the duration of the cooling ramp. The problem is solved and rather extensive results are given for two material pairs, namely a stainless steel layer welded on a ferritic medium and a ceramic coating on a steel substrate.

  5. The effect of water on thermal stresses in polymer composites

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.

    1994-01-01

    The fundamentals of the thermodynamic theory of mixtures and continuum thermochemistry are reviewed for a mixture of condensed water and polymer. A specific mixture which is mechanically elastic with temperature and water concentration gradients present is considered. An expression for the partial pressure of water in the mixture is obtained based on certain assumptions regarding the thermodynamic state of the water in the mixture. Along with a simple diffusion equation, this partial pressure expression may be used to simulate the thermostructural behavior of polymer composite materials due to water in the free volumes of the polymer. These equations are applied to a specific polymer composite material during isothermal heating conditions. The thermal stresses obtained by the application of the theory are compared to measured results to verify the accuracy of the approach.

  6. Analysis of thermal stresses in internally sealed concrete bridge decks

    NASA Astrophysics Data System (ADS)

    Fattal, S. G.; Reinhold, T. A.; Ellingwood, B.

    1981-04-01

    A structural model was developed for use with a finite element program to predict thermal stresses which result from the application of heat to the concrete decks of highway bridges. The decks are heated to obtain an internally sealed concrete so as to better protect the reinforcement from deicer induced corrosion. Simple decks were first studied to determine the sensitivity of the solutions to various modeling assumptions. Two full scale bridge decks were also analyzed for which the temperature distributions are predefined on the basis of field data. The model will provide a helpful tool which will enable future field measurements to be planned more selectively. It will also provide insight on means for improving the heat treatment process so as to minimize cracking damage.

  7. Crack propagation and fracture in silicon wafers under thermal stress

    PubMed Central

    Danilewsky, Andreas; Wittge, Jochen; Kiefl, Konstantin; Allen, David; McNally, Patrick; Garagorri, Jorge; Elizalde, M. Reyes; Baumbach, Tilo; Tanner, Brian K.

    2013-01-01

    The behaviour of microcracks in silicon during thermal annealing has been studied using in situ X-ray diffraction imaging. Initial cracks are produced with an indenter at the edge of a conventional Si wafer, which was heated under temperature gradients to produce thermal stress. At temperatures where Si is still in the brittle regime, the strain may accumulate if a microcrack is pinned. If a critical value is exceeded either a new or a longer crack will be formed, which results with high probability in wafer breakage. The strain reduces most efficiently by forming (hhl) or (hkl) crack planes of high energy instead of the expected low-energy cleavage planes like {111}. Dangerous cracks, which become active during heat treatment and may shatter the whole wafer, can be identified from diffraction images simply by measuring the geometrical dimensions of the strain-related contrast around the crack tip. Once the plastic regime at higher temperature is reached, strain is reduced by generating dislocation loops and slip bands and no wafer breakage occurs. There is only a small temperature window within which crack propagation is possible during rapid annealing. PMID:24046487

  8. Thermal stress analysis of space shuttle orbiter subjected to reentry aerodynamic heating

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Fields, Roger A.

    1987-01-01

    A structural performance and resizing (SPAR) finite-element computer program and NASA structural analysis (NASTRAN) finite-element computer programs were used in the thermal stress analysis of the space shuttle orbiter subjected to reentry aerodynamic heating. A SPAR structural model was set up for the entire left wing of the orbiter, and NASTRAN structural models were set up for: (1) a wing segment located at midspan of the orbiter left wing, and (2) a fuselage segment located at midfuselage. The thermal stress distributions in the orbiter structure were obtained and the critical high thermal stress regions were identified. It was found that the thermal stresses induced in the orbiter structure during reentry were relatively low. The thermal stress predictions from the whole wing model were considered to be more accurate than those from the wing segment model because the former accounts for temperature and stress effects throughout the entire wing.

  9. Derivation and test of elevated temperature thermal-stress-free fastener concept

    NASA Technical Reports Server (NTRS)

    Sawyer, J. W.; Blosser, M. L.; Mcwithey, R. R.

    1985-01-01

    Future aerospace vehicles must withstand high temperatures and be able to function over a wide temperature range. New composite materials are being developed for use in designing high-temperature lightweight structures. Due to the difference between coefficients of thermal expansion for the new composite materials and conventional high-temperature metallic fasteners, innovative joining techniques are needed to produce tight joints at all temperatures without excessive thermal stresses. A thermal-stress-free fastening technique is presented that can be used to provide structurally tight joints at all temperatures even when the fastener and joined materials have different coefficients of thermal expansion. The derivation of thermal-stress-free fasteners and joint shapes is presented for a wide variety of fastener materials and materials being joined together. Approximations to the thermal-stress-free shapes that result in joints with low-thermal-stresses and that simplify the fastener/joint shape are discussed. The low-thermal-stress fastener concept is verified by thermal and shear tests in joints using oxide-dispersion-strengthened alloy fasteners in carbon-carbon material. The test results show no evidence of thermal stress damage for temperatures up to 2000 F and the resulting joints carried shear loads at room temperature typical of those for conventional joints.

  10. Stress analysis in curved composites due to thermal loading

    NASA Astrophysics Data System (ADS)

    Polk, Jared Cornelius

    Many structures in aircraft, cars, trucks, ships, machines, tools, bridges, and buildings, consist of curved sections. These sections vary from straight line segments that have curvature at either one or both ends, segments with compound curvatures, segments with two mutually perpendicular curvatures or Gaussian curvatures, and segments with a simple curvature. With the advancements made in multi-purpose composites over the past 60 years, composites slowly but steadily have been appearing in these various vehicles, compound structures, and buildings. These composite sections provide added benefits over isotropic, polymeric, and ceramic materials by generally having a higher specific strength, higher specific stiffnesses, longer fatigue life, lower density, possibilities in reduction of life cycle and/or acquisition cost, and greater adaptability to intended function of structure via material composition and geometry. To be able to design and manufacture a safe composite laminate or structure, it is imperative that the stress distributions, their causes, and effects are thoroughly understood in order to successfully accomplish mission objectives and manufacture a safe and reliable composite. The objective of the thesis work is to expand upon the knowledge of simply curved composite structures by exploring and ascertaining all pertinent parameters, phenomenon, and trends in stress variations in curved laminates due to thermal loading. The simply curved composites consist of composites with one radius of curvature throughout the span of the specimen about only one axis. Analytical beam theory, classical lamination theory, and finite element analysis were used to ascertain stress variations in a flat, isotropic beam. An analytical method was developed to ascertain the stress variations in an isotropic, simply curved beam under thermal loading that is under both free-free and fixed-fixed constraint conditions. This is the first such solution to Author's best knowledge

  11. Anisotropic internal thermal stress in sea ice from the Canadian Arctic Archipelago

    NASA Astrophysics Data System (ADS)

    Hata, Y.; Tremblay, L. B.

    2015-08-01

    Results from an ice stress buoy deployed near the center of a multi-year floe in the Viscount Melville Sound of the Canadian Arctic Archipelago between 10 October 2010 and 17 August 2011 are presented. The position record indicates the landlocked season was approximately 5 months, from 18 January to 22 June, when the sea ice was fast to Melville Island and Victoria Island. Thermal stresses (ranging from -84 to 66 kPa) dominate the internal stress record, with only a few dynamic stress events (˜50 kPa) recorded before the landlocked season. Intriguingly, the thermal stresses are isotropic before the landlocked ice onset and anisotropic during the landlocked season. Two possible causes to explain anisotropy in thermal stresses are considered: preferred c axis alignment of the ice crystal, and land confinement associated with the nearby coastline. The orientation of the principal stresses indicates that land confinement is responsible for the anisotropy. The stress record also clearly shows the presence of residual compressive stresses at the melt onset, suggesting a viscous creep relaxation time constant of several days. Finally, results show an interesting reversal in the sign of the correlation (from negative to positive) between surface air temperature and thermal stress after the onset of surface melt. We attribute this to the onset of water infiltration within sea ice after which colder night temperature leads to refreezing and compressive stresses. To the best of the authors' knowledge, this is the first time that anisotropic thermal stresses have been reported in sea ice.

  12. On thermal stress failure of the SNAP-19A RTG heat shield

    NASA Technical Reports Server (NTRS)

    Pitts, W. C.; Anderson, L. A.

    1974-01-01

    Results of a study on thermal stress problems in an amorphous graphite heat shield that is part of the launch-abort protect system for the SNAP-19A radio-isotope thermoelectric generators (RTG) that will be used on the Viking Mars Lander are presended. The first result is from a thermal stress analysis of a full-scale RTG heat source that failed to survive a suborbital entry flight test, possibly due to thermal stress failure. It was calculated that the maximum stress in the heat shield was only 50 percent of the ultimate strength of the material. To provide information on the stress failure criterion used for this calculation, some heat shield specimens were fractured under abort entry conditions in a plasma arc facility. It was found that in regions free of stress concentrations the POCO graphite heat shield material did fracture when the local stress reached the ultimate uniaxial stress of the material.

  13. Limiting metabolic rate (thermal work limit) as an index of thermal stress.

    PubMed

    Brake, Derrick J; Bates, Graham P

    2002-03-01

    The development of a rational heat stress index called thermal work limit (TWL) is presented. TWL is defined as the limiting (or maximum) sustainable metabolic rate that euhydrated, acclimatized individuals can maintain in a specific thermal environment, within a safe deep body core temperature (< 38.20 degrees C) and sweat rate (< 1.2 kg/hr(-1)). The index has been developed using published experimental studies of human heat transfer, and established heat and moisture transfer equations through clothing. Clothing parameters can be varied and the protocol can be extended to unacclimatized workers. The index is designed specifically for self-paced workers and does not rely on estimation of actual metabolic rates, a process that is difficult and subject to considerable error. The index has been introduced into several large industrial operations located well inside the tropics, resulting in a substantial and sustained fall in the incidence of heat illness. Guidelines for TWL are proposed along with recommended interventions. TWL has application to professionals from both the human and engineering sciences, as it allows not only thermal strain to be evaluated,. but also the productivity decrement due to heat (seen as a reduced sustainable metabolic rate) and the impact of various strategies such as improved local ventilation or refrigeration to be quantitatively assessed.

  14. Thermal stress and predation risk trigger distinct transcriptomic responses in the intertidal snail Nucella lapillus.

    PubMed

    Chu, Nathaniel D; Miller, Luke P; Kaluziak, Stefan T; Trussell, Geoffrey C; Vollmer, Steven V

    2014-12-01

    Thermal stress and predation risk have profound effects on rocky shore organisms, triggering changes in their feeding behaviour, morphology and metabolism. Studies of thermal stress have shown that underpinning such changes in several intertidal species are specific shifts in gene and protein expression (e.g. upregulation of heat-shock proteins). But relatively few studies have examined genetic responses to predation risk. Here, we use next-generation RNA sequencing (RNA-seq) to examine the transcriptomic (mRNA) response of the snail Nucella lapillus to thermal stress and predation risk. We found that like other intertidal species, N. lapillus displays a pronounced genetic response to thermal stress by upregulating many heat-shock proteins and other molecular chaperones. In contrast, the presence of a crab predator (Carcinus maenas) triggered few significant changes in gene expression in our experiment, and this response showed no significant overlap with the snail's response to thermal stress. These different gene expression profiles suggest that thermal stress and predation risk could pose distinct and potentially additive challenges for N. lapillus and that genetic responses to biotic stresses such as predation risk might be more complex and less uniform across species than genetic responses to abiotic stresses such as thermal stress.

  15. Thermal stress and predation risk trigger distinct transcriptomic responses in the intertidal snail Nucella lapillus.

    PubMed

    Chu, Nathaniel D; Miller, Luke P; Kaluziak, Stefan T; Trussell, Geoffrey C; Vollmer, Steven V

    2014-12-01

    Thermal stress and predation risk have profound effects on rocky shore organisms, triggering changes in their feeding behaviour, morphology and metabolism. Studies of thermal stress have shown that underpinning such changes in several intertidal species are specific shifts in gene and protein expression (e.g. upregulation of heat-shock proteins). But relatively few studies have examined genetic responses to predation risk. Here, we use next-generation RNA sequencing (RNA-seq) to examine the transcriptomic (mRNA) response of the snail Nucella lapillus to thermal stress and predation risk. We found that like other intertidal species, N. lapillus displays a pronounced genetic response to thermal stress by upregulating many heat-shock proteins and other molecular chaperones. In contrast, the presence of a crab predator (Carcinus maenas) triggered few significant changes in gene expression in our experiment, and this response showed no significant overlap with the snail's response to thermal stress. These different gene expression profiles suggest that thermal stress and predation risk could pose distinct and potentially additive challenges for N. lapillus and that genetic responses to biotic stresses such as predation risk might be more complex and less uniform across species than genetic responses to abiotic stresses such as thermal stress. PMID:25377436

  16. Thiamine increases the resistance of baker's yeast Saccharomyces cerevisiae against oxidative, osmotic and thermal stress, through mechanisms partly independent of thiamine diphosphate-bound enzymes.

    PubMed

    Wolak, Natalia; Kowalska, Ewa; Kozik, Andrzej; Rapala-Kozik, Maria

    2014-12-01

    Numerous recent studies have established a hypothesis that thiamine (vitamin B1 ) is involved in the responses of different organisms against stress, also suggesting that underlying mechanisms are not limited to the universal role of thiamine diphosphate (TDP) in the central cellular metabolism. The current work aimed at characterising the effect of exogenously added thiamine on the response of baker's yeast Saccharomyces cerevisiae to the oxidative (1 mM H2 O2 ), osmotic (1 M sorbitol) and thermal (42 °C) stress. As compared to the yeast culture in thiamine-free medium, in the presence of 1.4 μM external thiamine, (1) the relative mRNA levels of major TDP-dependent enzymes under stress conditions vs. unstressed control (the 'stress/control ratio') were moderately lower, (2) the stress/control ratio was strongly decreased for the transcript levels of several stress markers localised to the cytoplasm, peroxisomes, the cell wall and (with the strongest effect observed) the mitochondria (e.g. Mn-superoxide dismutase), (3) the production of reactive oxygen and nitrogen species under stress conditions was markedly decreased, with the significant alleviation of concomitant protein oxidation. The results obtained suggest the involvement of thiamine in the maintenance of redox balance in yeast cells under oxidative stress conditions, partly independent of the functions of TDP-dependent enzymes.

  17. Thermal stress evolution in embedded Cu/low-k dielectric composite features

    NASA Astrophysics Data System (ADS)

    Murray, Conal E.; Goldsmith, Charles C.; Shaw, Thomas M.; Doyle, James P.; Noyan, I. C.

    2006-07-01

    To determine the effect of low-modulus materials on the thermal stress evolution within interconnect metallization, thermal and residual stresses in copper features, embedded in an organosilicate glass (SiCOH) on a silicon substrate, were measured by x-ray diffraction as a function of temperature and calculated using finite element modeling. The elastic response of the structures was dictated by the thermal expansion mismatch between copper and silicon, the copper and SiCOH elastic moduli, and the composite geometry. The presence of a low-modulus layer between the features and underlying substrate plays a major role in the elastic stress relaxation generated during thermal cycling.

  18. Study on three dimensional transient thermal stress analysis for laminated composite materials

    SciTech Connect

    Matsumoto, Kin`ya; Zako, Masaru

    1995-11-01

    Transient heat conduction and thermal stress analysis of laminated composite materials are very important because they are hated during manufacturing process. Anisotropy of thermal conductivity has to be considered for heat conduction analysis of composite materials such as FRP. Assuming that heat conducts uniformly in normal direction in thin structures, laminated plates can be modeled as single layers with the equivalent heat conductivities. With this assumption, FEM three dimensional transient heat conduction and thermal stress analysis programs for laminated composite materials are developed. As numerical examples, the heat conduction and thermal stresses of laminated CFRP structure are investigated.

  19. Investigation of Thermal Stress Convection in Nonisothermal Gases under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Mackowski, Daniel W.

    1999-01-01

    The project has sought to ascertain the veracity of the Burnett relations, as applied to slow moving, highly nonisothermal gases, by comparison of convection and stress predictions with those generated by the DSMC method. The Burnett equations were found to provide reasonable descriptions of the pressure distribution and normal stress in stationary gases with a 1-D temperature gradient. Continuum/Burnett predictions of thermal stress convection in 2-D heated enclosures, however, are not quantitatively supported by DSMC results. For such situations, it appears that thermal creep flows, generated at the boundaries of the enclosure, will be significantly larger than the flows resulting from thermal stress in the gas.

  20. Solution accuracies of finite element reentry heat transfer and thermal stress analyses of Space Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    1988-01-01

    Accuracies of solutions (structural temperatures and thermal stresses) obtained from different thermal and structural FEMs set up for the Space Shuttle Orbiter (SSO) are compared and discussed. For studying the effect of element size on the solution accuracies of heat-transfer and thermal-stress analyses of the SSO, five SPAR thermal models and five NASTRAN structural models were set up for wing midspan bay 3. The structural temperature distribution over the wing skin (lower and upper) surface of one bay was dome shaped and induced more severe thermal stresses in the chordwise direction than in the spanwise direction. The induced thermal stresses were extremely sensitive to slight variation in structural temperature distributions. Both internal convention and internal radiation were found to have equal effects on the SSO.

  1. Development of Reduction Technique of Thermal Stress Induced in Steel Plate Bonded by CFRP Plates

    NASA Astrophysics Data System (ADS)

    Ishikawa, Toshiyuki; Hattori, Atsushi; Kawano, Hirotaka; Nagao, Takashi; Kobayashi, Akira

    In CFRP bonded onto steel plate, thermal stress is induced in steel plate by temperature change, due to difference in coefficients of thermal expansion between steel and CFRP. In this study, reduction technique of the thermal stress in steel plate, which is additional bonding of aluminum alloy plates, is proposed. Namely, the coefficient of thermal expansion of composite plate consisted of CFRP and aluminum plates is designed as that of steel. In this research, to verify the effectiveness of developed method, heat tests of CFRP and aluminum plates bonded onto steel plate were carried out. As a result of the tests, infinitesimal thermal stresses in steel plate with CFRP and aluminum plates were measured while large thermal stresses were measured in conventional CFRP bonded onto steel plate. Additionally, to confirm the test results, numerical analysis was also carried out.

  2. Buffet Load Alleviation

    NASA Technical Reports Server (NTRS)

    Ryall, T. G.; Moses, R. W.; Hopkins, M. A.; Henderson, D.; Zimcik, D. G.; Nitzsche, F.

    2004-01-01

    High performance aircraft are, by their very nature, often required to undergo maneuvers involving high angles of attack. Under these conditions unsteady vortices emanating from the wing and the fuselage will impinge on the twin fins (required for directional stability) causing excessive buffet loads, in some circumstances, to be applied to the aircraft. These loads result in oscillatory stresses, which may cause significant amounts of fatigue damage. Active control is a possible solution to this important problem. A full-scale test was carried out on an F/A-18 fuselage and fins using piezoceramic actuators to control the vibrations. Buffet loads were simulated using very powerful electromagnetic shakers. The first phase of this test was concerned with the open loop system identification whereas the second stage involved implementing linear time invariant control laws. This paper looks at some of the problems encountered as well as the corresponding solutions and some results. It is expected that flight trials of a similar control system to alleviate buffet will occur as early as 2001.

  3. Residual stresses in a multi-pass weld in an austenitic stainless steel plate before and after thermal stress relief

    SciTech Connect

    Spooner, S.; Wang, X.L.; Hubbard, C.R.; David, S.A.

    1994-06-01

    Changes in residual stresses due to thermal stress relief were determined in a welded 1/2 in. thick 304 stainless steel plate from two residual stress maps determined with the neutron diffraction technique. The 304 stainless plate was made from two 6 {times} 12 {times} 1/2 in. pieces joined along the length by a gas tungsten arc welding process. Multi-pass welds were made with a semiautomatic welding machine employing cold-wire feed of type 308 stainless steel filler alloy. The thermal stress relief treatment consisted of heating to 1150 F, holding for one hour at temperature and then air cooling. Strain components were measured along the weld direction (longitudinal), perpendicular to the weld line in the plate (transverse), and normal to the plate. Measurements were confined to the plane bisecting the weld at the center of the plate. The strain components were converted to stresses assuming that the measured strains were along the principal axes of the strain tensor. Parameters used in the calculation were E=224 GPa and v=0.25. As-welded longitudinal stresses are compressive in the base metal and become strongly tensile through the heat affected zone and into the fusion zone. The transverse stresses follow the longitudinal trend but with a lower magnitude while the normal stresses are small throughout. The stress relief treatment reduced the magnitudes of all the stresses. In the weld zone the longitudinal stress was lowered by 30% and the spatial range of residual stresses was reduced as well.

  4. Study of the thermal stress in a Pb-free half-bump solder joint under current stressing

    SciTech Connect

    Wu, B. Y.; Chan, Y. C.; Zhong, H. W.; Alam, M. O.; Lai, J. K. L.

    2007-06-04

    The thermal stress in a Sn3.5Ag1Cu half-bump solder joint under a 3.82x10{sup 8} A/m{sup 2} current stressing was analyzed using a coupled-field simulation. Substantial thermal stress accumulated around the Al-to-solder interface, especially in the Ni+(Ni,Cu){sub 3}Sn{sub 4} layer, where a maximal stress of 138 MPa was identified. The stress gradient in the Ni layer was about 1.67x10{sup 13} Pa/m, resulting in a stress migration force of 1.82x10{sup -16} N, which is comparable to the electromigration force, 2.82x10{sup -16} N. Dissolution of the Ni+(Ni,Cu){sub 3}Sn{sub 4} layer, void formation with cracks at the anode side, and extrusions at the cathode side were observed.

  5. Corals escape bleaching in regions that recently and historically experienced frequent thermal stress.

    PubMed

    Thompson, D M; van Woesik, R

    2009-08-22

    The response of coral-reef ecosystems to contemporary thermal stress may be in part a consequence of recent or historical sea-surface temperature (SST) variability. To test this hypothesis, we examined whether: (i) there was a relationship between the historical frequency of SST variability and stress experienced during the most recent thermal-stress events (in 1998 and 2005-2006) and (ii) coral reefs that historically experienced frequent thermal anomalies were less likely to experience coral bleaching during these recent thermal-stress events. Examination of nine detrended coral delta(18)O and Sr/Ca anomaly records revealed a high- (5.7-year) and low-frequency (>54-year) mode of SST variability. There was a positive relationship between the historical frequency of SST anomalies and recent thermal stress; sites historically dominated by the high-frequency mode experienced greater thermal stress than other sites during both events, and showed extensive coral bleaching in 1998. Nonetheless, in 2005-2006, corals at sites dominated by high-frequency variability showed reduced bleaching, despite experiencing high thermal stress. This bleaching resistance was most likely a consequence of rapid directional selection that followed the extreme thermal event of 1998. However, the benefits of regional resistance could come at the considerable cost of shifts in coral species composition.

  6. Corals escape bleaching in regions that recently and historically experienced frequent thermal stress.

    PubMed

    Thompson, D M; van Woesik, R

    2009-08-22

    The response of coral-reef ecosystems to contemporary thermal stress may be in part a consequence of recent or historical sea-surface temperature (SST) variability. To test this hypothesis, we examined whether: (i) there was a relationship between the historical frequency of SST variability and stress experienced during the most recent thermal-stress events (in 1998 and 2005-2006) and (ii) coral reefs that historically experienced frequent thermal anomalies were less likely to experience coral bleaching during these recent thermal-stress events. Examination of nine detrended coral delta(18)O and Sr/Ca anomaly records revealed a high- (5.7-year) and low-frequency (>54-year) mode of SST variability. There was a positive relationship between the historical frequency of SST anomalies and recent thermal stress; sites historically dominated by the high-frequency mode experienced greater thermal stress than other sites during both events, and showed extensive coral bleaching in 1998. Nonetheless, in 2005-2006, corals at sites dominated by high-frequency variability showed reduced bleaching, despite experiencing high thermal stress. This bleaching resistance was most likely a consequence of rapid directional selection that followed the extreme thermal event of 1998. However, the benefits of regional resistance could come at the considerable cost of shifts in coral species composition. PMID:19474044

  7. Coupling Mechanism of Electromagnetic Field and Thermal Stress on Drosophila melanogaster

    PubMed Central

    Yang, Chuan-Jun; Lian, Hui-Yong; Yu, Hui; Huang, Xiao-Mei; Cai, Peng

    2016-01-01

    Temperature is an important factor in research on the biological effects of extremely low-frequency electromagnetic field (ELF-EMF), but interactions between ELF-EMF and temperature remain unknown. The effects of ELF-EMF (50 Hz, 3 mT) on the lifespan, locomotion, heat shock response (HSR), and oxidative stress (OS) of Canton-Special (CS) and mutant w1118 flies were investigated at 25°C and 35°C (thermal stress). Results showed that thermal stress accelerated the death rates of CS and w1118 flies, shortened their lifespan, and influenced their locomotion rhythm and activity. The upregulated expression levels of heat shock protein (HSP) 22, HSP26, and HSP70 indicated that HSR was enhanced. Thermal stress-induced OS response increased malondialdehyde content, enhanced superoxide dismutase activity, and decreased reactive oxygen species level. The effects of thermal stress on the death rates, lifespan, locomotion, and HSP gene expression of flies, especially w1118 line, were also enhanced by ELF-EMF. In conclusion, thermal stress weakened the physiological function and promoted the HSR and OS of flies. ELF-EMF aggravated damages and enhanced thermal stress-induced HSP and OS response. Therefore, thermal stress and ELF-EMF elicited a synergistic effect. PMID:27611438

  8. Coupling Mechanism of Electromagnetic Field and Thermal Stress on Drosophila melanogaster.

    PubMed

    Zhang, Zi-Yan; Zhang, Jing; Yang, Chuan-Jun; Lian, Hui-Yong; Yu, Hui; Huang, Xiao-Mei; Cai, Peng

    2016-01-01

    Temperature is an important factor in research on the biological effects of extremely low-frequency electromagnetic field (ELF-EMF), but interactions between ELF-EMF and temperature remain unknown. The effects of ELF-EMF (50 Hz, 3 mT) on the lifespan, locomotion, heat shock response (HSR), and oxidative stress (OS) of Canton-Special (CS) and mutant w1118 flies were investigated at 25°C and 35°C (thermal stress). Results showed that thermal stress accelerated the death rates of CS and w1118 flies, shortened their lifespan, and influenced their locomotion rhythm and activity. The upregulated expression levels of heat shock protein (HSP) 22, HSP26, and HSP70 indicated that HSR was enhanced. Thermal stress-induced OS response increased malondialdehyde content, enhanced superoxide dismutase activity, and decreased reactive oxygen species level. The effects of thermal stress on the death rates, lifespan, locomotion, and HSP gene expression of flies, especially w1118 line, were also enhanced by ELF-EMF. In conclusion, thermal stress weakened the physiological function and promoted the HSR and OS of flies. ELF-EMF aggravated damages and enhanced thermal stress-induced HSP and OS response. Therefore, thermal stress and ELF-EMF elicited a synergistic effect. PMID:27611438

  9. Factors Influencing Residual Stresses in Yttria Stabilized Zirconia Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    McGrann, Roy T. R.; Rybicki, Edmund F.; Shadley, John R.; Brindley, William J.

    1997-01-01

    To improve gas turbine and diesel engine performance using thermal barrier coatings (TBC's) requires an understanding of the factors that influence the in-service behavior of thermal barrier coatings. One of the many factors related to coating performance is the state of stress in the coating. The total stress state is composed of the stresses due to the in-service loading history and the residual stresses. Residual stresses have been shown to affect TBC life, the bond strength of thermal spray coatings, and the fatigue life of tungsten carbide coatings. Residual stresses are first introduced in TBC's by the spraying process due to elevated temperatures during processing and the difference in coefficients of thermal expansion of the top coat, bond coat, and substrate. Later, the residual stresses can be changed by the in-service temperature history due to a number of time and temperature dependent mechanisms, such as oxidation, creep, and sintering. Silica content has also been shown to affect sintering and the cyclic life of thermal barrier coatings. Thus, it is important to understand how the spraying process, the in-service thermal cycles, and the silica content can create and alter residual stresses in thermal barrier coatings.

  10. Elastic-Plastic Thermal Stress Analysis of a High-Pressure Cryogenic Storage Tank

    NASA Technical Reports Server (NTRS)

    Barker, J. Mark; Field, Robert E. (Technical Monitor)

    2003-01-01

    The thermal stresses on a cryogenic storage tank contribute strongly to the state of stress of the tank material and its ability to withstand operational stresses. These thermal stresses also affect the growth of any surface damage that might occur in the tank walls. These stresses are particularly of concern during the initial cooldown period for a new tank placed into service, and during any subsequent thermal cycles. A previous preliminary elastic analysis showed that the thermal stress on the inner wall would reach approximately 1,000MPa (145,000 psi). This stress far exceeds the ASTM specified room temperature values for both yield (170MPa) and ultimate (485 MPa) strength for 304L stainless steel. The present analysis determines the thermal stresses using an elastic-plastic model. The commercial software application ANSYS was used to determine the transient spatial temperature profile and the associated spatial thermal stress profiles in a segment of a thick-walled vessel during a typical cooldown process. A strictly elastic analysis using standard material properties for 304L stainless steel showed that the maximum thermal stress on the inner and outer walls was approximately 960 MPa (tensile) and - 270 MPa (compressive) respectively. These values occurred early in the cooldown process, but at different times, An elastic-plastic analysis showed significantly reducing stress, as expected due to the plastic deformation of the material. The maximum stress for the inner wall was approximately 225 MPa (tensile), while the maximum stress for the outer wall was approximately - 130 MPa (compressive).

  11. Stress generation in thermally grown oxide films. [oxide scale spalling from superalloy substrates

    NASA Technical Reports Server (NTRS)

    Kumnick, A. J.; Ebert, L. J.

    1981-01-01

    A three dimensional finite element analysis was conducted, using the ANSYS computer program, of the stress state in a thin oxide film thermally formed on a rectangular piece of NiCrAl alloy. The analytical results indicate a very high compressive stress in the lateral directions of the film (approximately 6200 MPa), and tensile stresses in the metal substrate that ranged from essentially zero to about 55 MPa. It was found further that the intensity of the analytically determined average stresses could be approximated reasonably well by the modification of an equation developed previously by Oxx for stresses induced into bodies by thermal gradients.

  12. Habitat pollution and thermal regime modify molecular stress responses to elevated temperature in freshwater mussels (Anodonta anatina: Unionidae).

    PubMed

    Falfushynska, H; Gnatyshyna, L; Yurchak, I; Ivanina, A; Stoliar, O; Sokolova, I

    2014-12-01

    Elevated temperature and pollution are common stressors in freshwater ecosystems. We study cellular stress response to acute warming in Anodonta anatina (Unionidae) from sites with different thermal regimes and pollution levels: a pristine area and an agriculturally polluted site with normal temperature regimes (F and A, respectively) and a polluted site with elevated temperature (N) from the cooling pond of an electrical power plant. Animals were exposed to different temperatures for 14 days and stress response markers were measured in gills, digestive gland and hemocytes. Mussels from site N and A had elevated background levels of lactate dehydrogenase activity indicating higher reliance on anaerobic metabolism for ATP production and/or redox maintenance. Exposure to 25°C and 30°C induced oxidative stress (indicated by elevated levels of lipid peroxidation products) in digestive gland and gills of mussels from A and F sites, while in mussels from N sites elevated oxidative stress was only apparent at 30°C. Temperature-induced changes in levels of antioxidants (superoxide dismutase, metallothioneins and glutathione) were tissue- and population-specific. Acute warming led to destabilization of lysosomal membranes and increased frequencies of nuclear lesions in mussels from F and A sites but not in their counterparts from N site. Elevated temperature led to an increase in the frequency of micronuclei in hemocytes in mussels from F and A sites at 25°C and 30°C and in mussels from N site at 30°C. The mussels from N site also demonstrated better survival at elevated temperature (30°C) than their counterparts from the F and A sites. Taken together, these data indicate that long-term acclimation and/or adaptation of A. anatina to elevated temperatures result in increased thermotolerance and alleviate stress response to moderate temperature rise. In contrast, extreme warming (30°C) is harmful to mussels from all populations indicating limit to this induced

  13. Large-amplitude internal waves benefit corals during thermal stress.

    PubMed

    Wall, M; Putchim, L; Schmidt, G M; Jantzen, C; Khokiattiwong, S; Richter, C

    2015-01-22

    Tropical scleractinian corals are particularly vulnerable to global warming as elevated sea surface temperatures (SSTs) disrupt the delicate balance between the coral host and their algal endosymbionts, leading to symbiont expulsion, mass bleaching and mortality. While satellite sensing of SST has proved a reliable predictor of coral bleaching at the regional scale, there are large deviations in bleaching severity and mortality on the local scale that are poorly understood. Here, we show that internal waves play a major role in explaining local coral bleaching and mortality patterns in the Andaman Sea. Despite a severe region-wide SST anomaly in May 2010, frequent upslope intrusions of cold sub-pycnocline waters due to breaking large-amplitude internal waves (LAIW) mitigated coral bleaching and mortality in shallow waters. In LAIW-sheltered waters, by contrast, bleaching-susceptible species suffered severe bleaching and total mortality. These findings suggest that LAIW benefit coral reefs during thermal stress and provide local refugia for bleaching-susceptible corals. LAIW are ubiquitous in tropical stratified waters and their swash zones may thus be important conservation areas for the maintenance of coral diversity in a warming climate. Taking LAIW into account can significantly improve coral bleaching predictions and provide a valuable tool for coral reef conservation and management. PMID:25473004

  14. Large-amplitude internal waves benefit corals during thermal stress

    PubMed Central

    Wall, M.; Putchim, L.; Schmidt, G. M.; Jantzen, C.; Khokiattiwong, S.; Richter, C.

    2015-01-01

    Tropical scleractinian corals are particularly vulnerable to global warming as elevated sea surface temperatures (SSTs) disrupt the delicate balance between the coral host and their algal endosymbionts, leading to symbiont expulsion, mass bleaching and mortality. While satellite sensing of SST has proved a reliable predictor of coral bleaching at the regional scale, there are large deviations in bleaching severity and mortality on the local scale that are poorly understood. Here, we show that internal waves play a major role in explaining local coral bleaching and mortality patterns in the Andaman Sea. Despite a severe region-wide SST anomaly in May 2010, frequent upslope intrusions of cold sub-pycnocline waters due to breaking large-amplitude internal waves (LAIW) mitigated coral bleaching and mortality in shallow waters. In LAIW-sheltered waters, by contrast, bleaching-susceptible species suffered severe bleaching and total mortality. These findings suggest that LAIW benefit coral reefs during thermal stress and provide local refugia for bleaching-susceptible corals. LAIW are ubiquitous in tropical stratified waters and their swash zones may thus be important conservation areas for the maintenance of coral diversity in a warming climate. Taking LAIW into account can significantly improve coral bleaching predictions and provide a valuable tool for coral reef conservation and management. PMID:25473004

  15. Large-amplitude internal waves benefit corals during thermal stress.

    PubMed

    Wall, M; Putchim, L; Schmidt, G M; Jantzen, C; Khokiattiwong, S; Richter, C

    2015-01-22

    Tropical scleractinian corals are particularly vulnerable to global warming as elevated sea surface temperatures (SSTs) disrupt the delicate balance between the coral host and their algal endosymbionts, leading to symbiont expulsion, mass bleaching and mortality. While satellite sensing of SST has proved a reliable predictor of coral bleaching at the regional scale, there are large deviations in bleaching severity and mortality on the local scale that are poorly understood. Here, we show that internal waves play a major role in explaining local coral bleaching and mortality patterns in the Andaman Sea. Despite a severe region-wide SST anomaly in May 2010, frequent upslope intrusions of cold sub-pycnocline waters due to breaking large-amplitude internal waves (LAIW) mitigated coral bleaching and mortality in shallow waters. In LAIW-sheltered waters, by contrast, bleaching-susceptible species suffered severe bleaching and total mortality. These findings suggest that LAIW benefit coral reefs during thermal stress and provide local refugia for bleaching-susceptible corals. LAIW are ubiquitous in tropical stratified waters and their swash zones may thus be important conservation areas for the maintenance of coral diversity in a warming climate. Taking LAIW into account can significantly improve coral bleaching predictions and provide a valuable tool for coral reef conservation and management.

  16. Tensile stress and creep in thermally grown oxide.

    PubMed

    Veal, Boyd W; Paulikas, Arvydas P; Hou, Peggy Y

    2006-05-01

    Structural components that operate at high temperatures (for example, turbine blades) rely on thermally grown oxide (TGO), commonly alumina, for corrosion protection. Strains that develop in TGOs during operation can reduce the protectiveness of the TGO. However, the occurrence of growth strains in TGOs, and mechanisms that cause them, are poorly understood. It is accepted that compressive strains can develop as oxygen and metal atoms meet to form new growth within constrained oxide. More controversial is the experimental finding that large tensile stresses, close to 1 GPa, develop during isothermal growth conditions in alumina TGO formed on a FeCrAlY alloy. Using a novel technique based on synchrotron radiation, we have confirmed these previous results, and show that the tensile strain develops as the early oxide, (Fe,Cr,Al)(2)O(3), converts to alpha-Al2O3 during the growth process. This allows us to model the strain behaviour by including creep and this diffusion-controlled phase change. PMID:16604078

  17. The relation of material properties, residual stresses, and thermal and mechanical loadings to coating degradation in thermal barrier coatings and tungsten carbide thermal spray coatings

    NASA Astrophysics Data System (ADS)

    McGrann, Roy Thomas Rumsey

    Thermal spray coatings (TSCs) are increasing in industrial applications. Further growth in the industry requires a better understanding of the relation between coating production procedures and in-service failure. This work investigates two types of TSCs: plasma sprayed yttria-stabilized zirconia thermal barrier coatings (TBCs) and high velocity oxy-fuel sprayed tungsten carbide (WC) coatings. Residual stresses are inherent in thermal spray coatings and can influence in-service performance and life of the coatings. Therefore, the effective design and processing of thermal spray coatings requires knowledge about residual stress generation and the effect of residual stresses on life. The effect of spraying processes and in-service conditions on Young's modulus is investigated. Residual stresses were evaluated by the Modified Layer Removal Method. The Cantilever Beam Bending Method was used to determine Young's modulus. TBCs were studied to evaluate the effects of (1) substrate temperature during processing, (2) coating powder silica content, and (3) air plasma spraying (APS) versus vacuum plasma spraying (VPS) in conjunction with post-processing thermal cycles (one hour at 1000sp°C) on coating residual stresses and Young's modulus of the top coat. Results show that a higher substrate processing temperature increases top coat compressive residual stress. The initial thermal cycles further increase the compressive residual stresses for both higher and lower substrate processing temperatures, but continued thermal cycling does not further change the residual stresses. A silica content of 1.0% increases the Young's modulus of the coating after ten thermal cycles. As-sprayed, there is no difference in residual stresses in the top coat due to 0.1% and a 1.0% silica content. After ten thermal cycles, the residual stresses increase the same amount for both silica contents. There is no difference in the residual stress in the top coat between APS and VPS methods after ten

  18. Epoetin beta pegol alleviates oxidative stress and exacerbation of renal damage from iron deposition, thereby delaying CKD progression in progressive glomerulonephritis rats.

    PubMed

    Hirata, Michinori; Tashiro, Yoshihito; Aizawa, Ken; Kawasaki, Ryohei; Shimonaka, Yasushi; Endo, Koichi

    2015-12-01

    The increased deposition of iron in the kidneys that occurs with glomerulopathy hinders the functional and structural recovery of the tubules and promotes progression of chronic kidney disease (CKD). Here, we evaluated whether epoetin beta pegol (continuous erythropoietin receptor activator: CERA), which has a long half-life in blood and strongly suppresses hepcidin-25, exerts renoprotection in a rat model of chronic progressive glomerulonephritis (cGN). cGN rats showed elevated urinary total protein excretion (uTP) and plasma urea nitrogen (UN) from day 14 after the induction of kidney disease (day 0) and finally declined into end-stage kidney disease (ESKD), showing reduced creatinine clearance with glomerulosclerosis, tubular dilation, and tubulointerstitial fibrosis. A single dose of CERA given on day 1, but not on day 16, alleviated increasing uTP and UN, thereby delaying ESKD. In the initial disease phase, CERA significantly suppressed urinary 8-OHdG and liver-type fatty acid-binding protein (L-FABP), a tubular damage marker. CERA also inhibited elevated plasma hepcidin-25 levels and alleviated subsequent iron accumulation in kidneys in association with elevated urinary iron excretion and resulted in alleviation of growth of Ki67-positive tubular and glomerular cells. In addition, at day 28 when the exacerbation of uTP occurs, a significant correlation was observed between iron deposition in the kidney and urinary L-FABP. In our study, CERA mitigated increasing kidney damage, thereby delaying CKD progression in this glomerulonephritis rat model. Alleviation by CERA of the exacerbation of kidney damage could be attributable to mitigation of tubular damage that might occur with lowered iron deposition in tubules. PMID:26634903

  19. Epoetin beta pegol alleviates oxidative stress and exacerbation of renal damage from iron deposition, thereby delaying CKD progression in progressive glomerulonephritis rats.

    PubMed

    Hirata, Michinori; Tashiro, Yoshihito; Aizawa, Ken; Kawasaki, Ryohei; Shimonaka, Yasushi; Endo, Koichi

    2015-12-01

    The increased deposition of iron in the kidneys that occurs with glomerulopathy hinders the functional and structural recovery of the tubules and promotes progression of chronic kidney disease (CKD). Here, we evaluated whether epoetin beta pegol (continuous erythropoietin receptor activator: CERA), which has a long half-life in blood and strongly suppresses hepcidin-25, exerts renoprotection in a rat model of chronic progressive glomerulonephritis (cGN). cGN rats showed elevated urinary total protein excretion (uTP) and plasma urea nitrogen (UN) from day 14 after the induction of kidney disease (day 0) and finally declined into end-stage kidney disease (ESKD), showing reduced creatinine clearance with glomerulosclerosis, tubular dilation, and tubulointerstitial fibrosis. A single dose of CERA given on day 1, but not on day 16, alleviated increasing uTP and UN, thereby delaying ESKD. In the initial disease phase, CERA significantly suppressed urinary 8-OHdG and liver-type fatty acid-binding protein (L-FABP), a tubular damage marker. CERA also inhibited elevated plasma hepcidin-25 levels and alleviated subsequent iron accumulation in kidneys in association with elevated urinary iron excretion and resulted in alleviation of growth of Ki67-positive tubular and glomerular cells. In addition, at day 28 when the exacerbation of uTP occurs, a significant correlation was observed between iron deposition in the kidney and urinary L-FABP. In our study, CERA mitigated increasing kidney damage, thereby delaying CKD progression in this glomerulonephritis rat model. Alleviation by CERA of the exacerbation of kidney damage could be attributable to mitigation of tubular damage that might occur with lowered iron deposition in tubules.

  20. Free vibrations of thermally stressed orthotropic plates with various boundary conditions

    NASA Technical Reports Server (NTRS)

    Bailey, C. D.; Greetham, J. C.

    1973-01-01

    An analytical investigation of the vibrations of thermally stressed orthotropic plates in the prebuckled region is presented. The investigation covers the broad class of trapezoidal plates with two opposite sides parallel. Each edge of the plate may be subjected to different uniform boundary conditions. variable thickness and arbitrary temperature distributions (analytical or experimental) for any desired combination of boundary conditions may be prescribed. Results obtained using this analysis are compared to experimental results obtained for isotropic plates with thermal stress, and to results contained in the literature for orthotropic plates without thermal stress. Good agreement exists for both sets of comparisons.

  1. Thermal fatigue: The impact of the length of time step on the amount of stress cycles

    NASA Astrophysics Data System (ADS)

    Beran, Pavel

    2013-10-01

    One of the degradation processes in stones and other building materials is caused by cyclic thermal stress. For the determination of the amount and amplitude of the thermal stress cycles may be used numerical simulation. The length of time step during simulation of thermal cycles significantly affected the magnitude and the amount of cycles because the intensity of global solar radiation may vary during the time. The dependence of temperature and stress response of the damaged stone block on the length of time step is described in this paper.

  2. Endoplasmic reticulum ribosome-binding protein 1 (RRBP1) overexpression is frequently found in lung cancer patients and alleviates intracellular stress-induced apoptosis through the enhancement of GRP78.

    PubMed

    Tsai, H-Y; Yang, Y-F; Wu, A T; Yang, C-J; Liu, Y-P; Jan, Y-H; Lee, C-H; Hsiao, Y-W; Yeh, C-T; Shen, C-N; Lu, P-J; Huang, M-S; Hsiao, M

    2013-10-10

    Lung cancer is the leading cause of cancer deaths and is the most occurring malignancy worldwide. Unraveling the molecular mechanisms involved in lung tumorigenesis will greatly improve therapy. During early tumorigenesis, rapid proliferating tumor cells require increased activity of endoplasmic reticulum (ER) for protein synthesis, folding and secretion, thereby are subjected to ER stress. Ribosome-binding protein 1 (RRBP1) was originally identified as a ribosome-binding protein located on the rough ER and associated with unfolding protein response (UPR). In this report, we investigated the role of RRBP1 in lung cancer. RRBP1 was highly expressed in lung cancer tissue, as compared with adjacent normal tissues as assessed by immunohistochemistry (IHC) using lung cancer tissue array (n=87). Knockdown of RRBP1 by short-hairpin RNAs caused ER stress and significantly reduced cell viability and tumorigenicity. This effect was associated with a significant reduction in the expression of glucose-regulated protein 78 (GRP78). UPR regulator GRP78, an anti-apoptotic protein that is widely upregulated in cancer, has a critical role in chemotherapy resistance in some cancers. According to our results, cells with a higher level of RRBP1 were more resistant to ER stress. Ectopic expression of RRBP1 alleviated apoptosis that was induced by the ER-stress agent tunicamycin, 2-deoxy-D-glucose (2DG) or doxorubicin via enhancing GRP78 protein expression. A strong correlation was observed between the expression of RRBP1 and GRP78 in tumor biopsies using the database GSE10072. Our results also indicated that RRBP1 may involve in the regulation of mRNA stability of UPR components including ATF6 and GRP78. Taken together, RRBP1 could alleviate ER stress and help cancer cell survive. RRBP1 is critical for tumor cell survival, which may make it a useful target in lung cancer treatment and a candidate for the development of new targeted therapeutics.

  3. On plane stress state and stress free deformation of thick plate with FGM interface under thermal loading

    NASA Astrophysics Data System (ADS)

    Szubartowski, Damian; Ganczarski, Artur

    2016-10-01

    This paper demonstrates the plane stress state and the stress free thermo-elastic deformation of FGM thick plate under thermal loading. First, the Sneddon-Lockett theorem on the plane stress state in an isotropic infinite thick plate is generalized for a case of FGM problem in which all thermo-mechanical properties are optional functions of depth co-ordinate. The proof is based on application of the Iljushin thermo-elastic potential to displacement type system of equations that reduces it to the plane stress state problem. Then an existence of the purely thermal deformation is proved in two ways: first, it is shown that the unique solution fulfils conditions of simultaneous constant temperature and linear gradation of thermal expansion coefficient, second, proof is based directly on stress type system of equations which straightforwardly reduces to compatibility equations for purely thermal deformation if only stress field is homogeneous in domain and at boundary. Finally, couple examples of application to an engineering problem are presented.

  4. Thermal stress analysis of eccentric tube receiver using concentrated solar radiation

    SciTech Connect

    Wang, Fuqiang; Shuai, Yong; Yuan, Yuan; Yang, Guo; Tan, Heping

    2010-10-15

    In the parabolic trough concentrator with tube receiver system, the heat transfer fluid flowing through the tube receiver can induce high thermal stress and deflection. In this study, the eccentric tube receiver is introduced with the aim to reduce the thermal stresses of tube receiver. The ray-thermal-structural sequential coupled numerical analyses are adopted to obtain the concentrated heat flux distributions, temperature distributions and thermal stress fields of both the eccentric and concentric tube receivers. During the sequential coupled numerical analyses, the concentrated heat flux distribution on the bottom half periphery of tube receiver is obtained by Monte-Carlo ray tracing method, and the fitting function method is introduced for the calculated heat flux distribution transformation from the Monte-Carlo ray tracing model to the CFD analysis model. The temperature distributions and thermal stress fields are obtained by the CFD and FEA analyses, respectively. The effects of eccentricity and oriented angle variation on the thermal stresses of eccentric tube receiver are also investigated. It is recommended to adopt the eccentric tube receiver with optimum eccentricity and 90 oriented angle as tube receiver for the parabolic trough concentrator system to reduce the thermal stresses. (author)

  5. Thermal stress analysis of the NASA Dryden hypersonic wing test structure

    NASA Technical Reports Server (NTRS)

    Morris, Glenn

    1990-01-01

    Present interest in hypersonic vehicles has resulted in a renewed interest in thermal stress analysis of airframe structures. While there are numerous texts and papers on thermal stress analysis, practical examples and experience on light gage aircraft structures are fairly limited. A research program has been undertaken at General Dynamics to demonstrate the present state of the art, verify methods of analysis, gain experience in their use, and develop engineering judgement in thermal stress analysis. The approach for this project has been to conduct a series of analyses of this sample problem and compare analysis results with test data. This comparison will give an idea of how to use our present methods of thermal stress analysis, and how accurate we can expect them to be.

  6. Micromechanics analysis of space simulated thermal deformations and stresses in continuous fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Bowles, David E.

    1990-01-01

    Space simulated thermally induced deformations and stresses in continuous fiber reinforced composites were investigated with a micromechanics analysis. The investigation focused on two primary areas. First, available explicit expressions for predicting the effective coefficients of thermal expansion (CTEs) for a composite were compared with each other, and with a finite element (FE) analysis, developed specifically for this study. Analytical comparisons were made for a wide range of fiber/matrix systems, and predicted values were compared with experimental data. The second area of investigation focused on the determination of thermally induced stress fields in the individual constituents. Stresses predicted from the FE analysis were compared to those predicted from a closed-form solution to the composite cylinder (CC) model, for two carbon fiber/epoxy composites. A global-local formulation, combining laminated plate theory and FE analysis, was used to determine the stresses in multidirectional laminates. Thermally induced damage initiation predictions were also made.

  7. SO2 protects the amino nitrogen metabolism of Saccharomyces cerevisiae under thermal stress

    PubMed Central

    Ancín‐Azpilicueta, Carmen; Barriuso‐Esteban, Blanca; Nieto‐Rojo, Rodrigo; Aristizábal‐López, Nerea

    2012-01-01

    Summary Thermal stress conditions during alcoholic fermentation modify yeasts' plasma membrane since they become more hyperfluid, which results in a loss of bilayer integrity. In this study, the influence of elevated temperatures on nitrogen metabolism of a Saccharomyces cerevisiae strain was studied, as well as the effect of different concentrations of SO2 on nitrogen metabolism under thermal stress conditions. The results obtained revealed that amino nitrogen consumption was lower in the fermentation sample subjected to thermal stress than in the control, and differences in amino acid consumption preferences were also detected, especially at the beginning of the fermentation. Under thermal stress conditions, among the three doses of SO2 studied (0, 35, 70 mg l−1 SO2), the highest dose was observed to favour amino acid utilization during the fermentative process, whereas sugar consumption presented higher rates at medium doses. PMID:22452834

  8. Regulation of bovine pyruvate carboxylase mRNA and promoter expression by thermal stress.

    PubMed

    White, H M; Koser, S L; Donkin, S S

    2012-09-01

    Pyruvate carboxylase (PC) catalyzes the rate-limiting step in gluconeogenesis from lactate and is a determinant of tricarboxylic acid cycle carbon flux. Bovine PC 5' untranslated region (UTR) mRNA variants are the products of a single PC gene containing 3 promoter regions (P3, P2, and P1, 5' to 3') that are responsive to physiological and nutritional stressors. The objective of this study was to determine the direct effects of thermal stress on PC mRNA and gene expression in bovine hepatocyte monolayer cultures, rat hepatoma (H4IIE) cells, and Madin-Darby bovine kidney epithelial (MDBK) cells. Hepatocytes were isolated from 3 Holstein bull calves and used to prepare monolayer cultures. Rat hepatoma cells and MDBK cells were obtained from American Type Culture Collection, Manassas, VA. Beginning 24 h after initial seeding, cells were subjected to either 37°C (control) or 42°C (thermal stress) for 24 h. Treatments were applied in triplicate in a minimum of 3 independent cell preparations. For bovine primary hepatocytes, endogenous expression of bovine PC mRNA increased (P < 0.1) with 24 h of thermal stress (1.31 vs. 2.79 ± 0.49, arbitrary units, control vs. thermal stress, respectively), but there was no change (P ≥ 0.1) in cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C) mRNA expression. Similarly, exposure of MDBK cells to thermal stress increased (P < 0.1) expression of bovine PC mRNA without altering (P ≥ 0.1) PEPCK-C mRNA expression. Conversely, there was no effect (P ≥ 0.1) of thermal stress on endogenous rat PC (0.47 vs. 0.30 ± 0.08, control vs. thermal stress) or PEPCK-C (1.61 vs. 1.20 ± 0.48, arbitrary units, control vs. thermal stress, respectively) mRNA expressions in H4IIE cells. To further investigate the regulation of PC, H4IIE cells were transiently transfected with bovine promoter-luciferase constructs containing either P1, P2, or P3, and exposed to thermal stress for 23 h. Activity of P1 was suppressed (P < 0.1) 5-fold, activity of P2

  9. Finite element modeling of the effect of interface anomalies on thermal stresses in alumina scales.

    SciTech Connect

    Wright, J. K.

    1998-06-10

    The scales that grow from oxidation often develop a convoluted morphology or interface pores. High thermal stresses can develop locally and are potentially detrimental to the scale or interface integrity. Finite element simulations are used to examine residual thermal stresses and strains that result when these deviations from a flat interface have formed, and the resulting geometry is subsequently cooled to room temperature. A variety of geometries will be considered for alumina scales on a FeCrAl substrate.

  10. Finite element modeling of the effect of interface anomalies on thermal stresses in alumina scales

    SciTech Connect

    Wright, J.K.; Williamson, R.L.; Hou, P.Y.; Cannon, R.M.; Renusch, D.; Veal, B.; Grimsditch, M.

    1998-07-01

    The scales that grow from oxidation often develop a convoluted morphology or interface pores. High thermal stresses can develop locally and are potentially detrimental to the scale or interface integrity. Finite element simulations are used to examine residual thermal stresses and strains that result when these deviations from a flat interface have formed, and the resulting geometry is subsequently cooled to room temperature. A variety of geometries will be considered for alumina scales on a FeCrAl substrate.

  11. Thermal-stress modeling of an optical microphone at high temperature.

    SciTech Connect

    Barnard, Casey Anderson

    2010-08-01

    To help determine the capability range of a MEMS optical microphone design in harsh conditions computer simulations were carried out. Thermal stress modeling was performed up to temperatures of 1000 C. Particular concern was over stress and strain profiles due to the coefficient of thermal expansion mismatch between the polysilicon device and alumina packaging. Preliminary results with simplified models indicate acceptable levels of deformation within the device.

  12. Thermal stresses and deflections of cross-ply laminated plates using refined plate theories

    NASA Technical Reports Server (NTRS)

    Khdeir, A. A.; Reddy, J. N.

    1991-01-01

    Exact analytical solutions of refined plate theories are developed to study the thermal stresses and deflections of cross-ply rectangular plates. The state-space approach in conjunction with the Levy method is used to solve exactly the governing equations of the theories under various boundary conditions. Numerical results of the higher-order theory of Reddy for thermal stresses and deflections are compared with those obtained using the classical and first-order plate theories.

  13. Moderate Thermal Stress Causes Active and Immediate Expulsion of Photosynthetically Damaged Zooxanthellae (Symbiodinium) from Corals

    PubMed Central

    Fujise, Lisa; Yamashita, Hiroshi; Suzuki, Go; Sasaki, Kengo; Liao, Lawrence M.; Koike, Kazuhiko

    2014-01-01

    The foundation of coral reef biology is the symbiosis between corals and zooxanthellae (dinoflagellate genus Symbiodinium). Recently, coral bleaching, which often results in mass mortality of corals and the collapse of coral reef ecosystems, has become an important issue around the world as coral reefs decrease in number year after year. To understand the mechanisms underlying coral bleaching, we maintained two species of scleractinian corals (Acroporidae) in aquaria under non-thermal stress (27°C) and moderate thermal stress conditions (30°C), and we compared the numbers and conditions of the expelled Symbiodinium from these corals. Under non-thermal stress conditions corals actively expel a degraded form of Symbiodinium, which are thought to be digested by their host coral. This response was also observed at 30°C. However, while the expulsion rates of Symbiodinium cells remained constant, the proportion of degraded cells significantly increased at 30°C. This result indicates that corals more actively digest and expel damaged Symbiodinium under thermal stress conditions, likely as a mechanism for coping with environmental change. However, the increase in digested Symbiodinium expulsion under thermal stress may not fully keep up with accumulation of the damaged cells. There are more photosynthetically damaged Symbiodinium upon prolonged exposure to thermal stress, and corals release them without digestion to prevent their accumulation. This response may be an adaptive strategy to moderate stress to ensure survival, but the accumulation of damaged Symbiodinium, which causes subsequent coral deterioration, may occur when the response cannot cope with the magnitude or duration of environmental stress, and this might be a possible mechanism underlying coral bleaching during prolonged moderate thermal stress. PMID:25493938

  14. Tasco(®), a product of Ascophyllum nodosum, imparts thermal stress tolerance in Caenorhabditis elegans.

    PubMed

    Kandasamy, Saveetha; Fan, Di; Sangha, Jatinder Singh; Khan, Wajahatullah; Evans, Franklin; Critchley, Alan T; Prithiviraj, Balakrishnan

    2011-01-01

    Tasco(®), a commercial product manufactured from the brown alga Ascophyllum nodosum, has been shown to impart thermal stress tolerance in animals. We investigated the physiological, biochemical and molecular bases of this induced thermal stress tolerance using the invertebrate animal model, Caenorhabiditis elegans. Tasco(®) water extract (TWE) at 300 μg/mL significantly enhanced thermal stress tolerance as well as extended the life span of C. elegans. The mean survival rate of the model animals under thermal stress (35 °C) treated with 300 μg/mL and 600 μg/mL TWE, respectively, was 68% and 71% higher than the control animals. However, the TWE treatments did not affect the nematode body length, fertility or the cellular localization of daf-16. On the contrary, TWE under thermal stress significantly increased the pharyngeal pumping rate in treated animals compared to the control. Treatment with TWE also showed differential protein expression profiles over control following 2D gel-electrophoresis analysis. Furthermore, TWE significantly altered the expression of at least 40 proteins under thermal stress; among these proteins 34 were up-regulated while six were down-regulated. Mass spectroscopy analysis of the proteins altered by TWE treatment revealed that these proteins were related to heat stress tolerance, energy metabolism and a muscle structure related protein. Among them heat shock proteins, superoxide dismutase, glutathione peroxidase, aldehyde dehydrogenase, saposin-like proteins 20, myosin regulatory light chain 1, cytochrome c oxidase RAS-like, GTP-binding protein RHO A, OS were significantly up-regulated, while eukaryotic translation initiation factor 5A-1 OS, 60S ribosomal protein L18 OS, peroxiredoxin protein 2 were down regulated by TWE treatment. These results were further validated by gene expression and reporter gene expression analyses. Overall results indicate that the water soluble components of Tasco(®) imparted thermal stress tolerance in

  15. Tasco®, a Product of Ascophyllum nodosum, Imparts Thermal Stress Tolerance in Caenorhabditis elegans

    PubMed Central

    Kandasamy, Saveetha; Fan, Di; Sangha, Jatinder Singh; Khan, Wajahatullah; Evans, Franklin; Critchley, Alan T.; Prithiviraj, Balakrishnan

    2011-01-01

    Tasco®, a commercial product manufactured from the brown alga Ascophyllum nodosum, has been shown to impart thermal stress tolerance in animals. We investigated the physiological, biochemical and molecular bases of this induced thermal stress tolerance using the invertebrate animal model, Caenorhabiditis elegans. Tasco® water extract (TWE) at 300 μg/mL significantly enhanced thermal stress tolerance as well as extended the life span of C. elegans. The mean survival rate of the model animals under thermal stress (35 °C) treated with 300 μg/mL and 600 μg/mL TWE, respectively, was 68% and 71% higher than the control animals. However, the TWE treatments did not affect the nematode body length, fertility or the cellular localization of daf-16. On the contrary, TWE under thermal stress significantly increased the pharyngeal pumping rate in treated animals compared to the control. Treatment with TWE also showed differential protein expression profiles over control following 2D gel-electrophoresis analysis. Furthermore, TWE significantly altered the expression of at least 40 proteins under thermal stress; among these proteins 34 were up-regulated while six were down-regulated. Mass spectroscopy analysis of the proteins altered by TWE treatment revealed that these proteins were related to heat stress tolerance, energy metabolism and a muscle structure related protein. Among them heat shock proteins, superoxide dismutase, glutathione peroxidase, aldehyde dehydrogenase, saposin-like proteins 20, myosin regulatory light chain 1, cytochrome c oxidase RAS-like, GTP-binding protein RHO A, OS were significantly up-regulated, while eukaryotic translation initiation factor 5A-1 OS, 60S ribosomal protein L18 OS, peroxiredoxin protein 2 were down regulated by TWE treatment. These results were further validated by gene expression and reporter gene expression analyses. Overall results indicate that the water soluble components of Tasco® imparted thermal stress tolerance in the C

  16. Determination of Creep Behavior of Thermal Barrier Coatings Under Laser Imposed High Thermal and Stress Gradient Conditions

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    1999-01-01

    A laser sintering/creep technique has been established to determine the creep behavior of thermal barrier coatings under steady-state high heat flux conditions. For a plasma sprayed zirconia-8 wt. % yttria coating, a significant primary creep strain and a low apparent creep activation energy were observed. Possible creep mechanisms involved include stress induced mechanical sliding and temperature and stress enhanced cation diffusion through the splat and grain boundaries. The elastic modulus evolution, stress response, and total accumulated creep strain variation across the ceramic coating are simulated using a finite difference approach. The modeled creep response is consistent with experimental observations.

  17. A comparison of measured and calculated thermal stresses in a hybrid metal matrix composite spar cap element

    NASA Technical Reports Server (NTRS)

    Jenkins, J. M.; Taylor, A. H.; Sakata, I. F.

    1985-01-01

    A hybrid spar of titanium with an integrally brazed composite, consisting of an aluminum matrix reinforced with boron-carbide-coated fibers, was heated in an oven and the resulting thermal stresses were measured. Uniform heating of the spar in an oven resulted in thermal stresses arising from the effects of dissimilar materials and anisotropy of the metal matrix composite. Thermal stresses were calculated from a finite element structural model using anisotropic material properties deduced from constituent properties and rules of mixtures. Comparisons of calculated thermal stresses with measured thermal stresses on the spar are presented. It was shown that failure to account for anisotropy in the metal matrix composite elements would result in large errors in correlating measured and calculated thermal stresses. It was concluded that very strong material characterization efforts are required to predict accurate thermal stresses in anisotropic composite structures.

  18. Thermal surface free energy and stress of iron

    PubMed Central

    Schönecker, Stephan; Li, Xiaoqing; Johansson, Börje; Kwon, Se Kyun; Vitos, Levente

    2015-01-01

    Absolute values of surface energy and surface stress of solids are hardly accessible by experiment. Here, we investigate the temperature dependence of both parameters for the (001) and (110) surface facets of body-centered cubic Fe from first-principles modeling taking into account vibrational, electronic, and magnetic degrees of freedom. The monotonic decrease of the surface energies of both facets with increasing temperature is mostly due to lattice vibrations and magnetic disorder. The surface stresses exhibit nonmonotonic behaviors resulting in a strongly temperature dependent excess surface stress and surface stress anisotropy. PMID:26439916

  19. Thermal surface free energy and stress of iron.

    PubMed

    Schönecker, Stephan; Li, Xiaoqing; Johansson, Börje; Kwon, Se Kyun; Vitos, Levente

    2015-01-01

    Absolute values of surface energy and surface stress of solids are hardly accessible by experiment. Here, we investigate the temperature dependence of both parameters for the (001) and (110) surface facets of body-centered cubic Fe from first-principles modeling taking into account vibrational, electronic, and magnetic degrees of freedom. The monotonic decrease of the surface energies of both facets with increasing temperature is mostly due to lattice vibrations and magnetic disorder. The surface stresses exhibit nonmonotonic behaviors resulting in a strongly temperature dependent excess surface stress and surface stress anisotropy. PMID:26439916

  20. Differential gene expression during thermal stress and bleaching in the Caribbean coral Montastraea faveolata.

    PubMed

    DeSalvo, M K; Voolstra, C R; Sunagawa, S; Schwarz, J A; Stillman, J H; Coffroth, M A; Szmant, A M; Medina, M

    2008-09-01

    The declining health of coral reefs worldwide is likely to intensify in response to continued anthropogenic disturbance from coastal development, pollution, and climate change. In response to these stresses, reef-building corals may exhibit bleaching, which marks the breakdown in symbiosis between coral and zooxanthellae. Mass coral bleaching due to elevated water temperature can devastate coral reefs on a large geographical scale. In order to understand the molecular and cellular basis of bleaching in corals, we have measured gene expression changes associated with thermal stress and bleaching using a complementary DNA microarray containing 1310 genes of the Caribbean coral Montastraea faveolata. In a first experiment, we identified differentially expressed genes by comparing experimentally bleached M. faveolata fragments to control non-heat-stressed fragments. In a second experiment, we identified differentially expressed genes during a time course experiment with four time points across 9 days. Results suggest that thermal stress and bleaching in M. faveolata affect the following processes: oxidative stress, Ca(2+) homeostasis, cytoskeletal organization, cell death, calcification, metabolism, protein synthesis, heat shock protein activity, and transposon activity. These results represent the first medium-scale transcriptomic study focused on revealing the cellular foundation of thermal stress-induced coral bleaching. We postulate that oxidative stress in thermal-stressed corals causes a disruption of Ca(2+) homeostasis, which in turn leads to cytoskeletal and cell adhesion changes, decreased calcification, and the initiation of cell death via apoptosis and necrosis.

  1. High intensity acoustic tests of a thermally stressed aluminum plate in TAFA

    NASA Technical Reports Server (NTRS)

    Ng, Chung Fai; Clevenson, Sherman A.

    1989-01-01

    An investigation was conducted in the Thermal Acoustic Fatigue Apparatus at the Langley Research Center to study the acoustically excited random motion of an aluminum plate which is buckled due to thermal stresses. The thermal buckling displacements were measured and compared with theory. The general trends of the changes in resonances frequencies and random responses of the plate agree with previous theoretical prediction and experimental results for a mechanically buckled plate.

  2. Transient thermal stresses in a reinforced hollow disk or cylinder containing a radial crack

    NASA Technical Reports Server (NTRS)

    Tang, R.; Erdogan, F.

    1983-01-01

    The transient thermal stress problem in a hollow cylinder or a disk containing a radial crack is considered. It is assumed that the cylinder is reinforced on its inner boundary by a membrane which has thermoelastic constants different than those of the base material. The transient temperature, thermal stresses and the crack tip stress intensity factors are calculated in a cylinder which is subjected to a sudden change of temperature on the inside surface. The results are obtained for various dimensionless parameters and material constants. The special cases of the crack terminating at the cylinder-membrane interface and of the broken membrane are separately considered and some examples are given.

  3. Transient thermal stresses in a reinforced hollow disk or cylinder containing a radial crack

    NASA Technical Reports Server (NTRS)

    Tang, R.; Erdogan, F.

    1984-01-01

    The transient thermal stress problem in a hollow cylinder or a disk containing a radial crack is considered. It is assumed that the cylinder is reinforced on its inner boundary by a membrane which has thermoelastic constants different than those of the base material. The transient temperature, thermal stresses and the crack tip stress intensity factors are calculated in a cylinder which is subjected to a sudden change of temperature on the inside surface. The results are obtained for various dimensionless parameters and material constants. The special cases of the crack terminating at the cylinder-membrane interface and of the broken membrane are separately considered and some examples are given.

  4. Biogenic amines and acute thermal stress in the rat

    NASA Technical Reports Server (NTRS)

    Williams, B. A.; Moberg, G. P.

    1975-01-01

    A study is summarized which demonstrates that depletion of the biogenic amines 5-hydroxytryptamine (5-HT) or norepinephrine (NE) alters the normal thermoregulatory responses to acute temperature stress. Specifically, NE depletion caused a significant depression in equilibrium rectal temperature at 22 C and a greater depression in rectal temperature than controls in response to cold (6 C) stress; NE depletion also resulted in a significantly higher rectal temperature response to acute heat (38 C) stress. Depletion of 5-HT had less severe effects. It remains unclear whether the primary site of action of these agents is central or peripheral.

  5. Environmental and societal consequences of a possible CO/sub 2/-induced climate change. Volume II, Part 9. Alleviation of environmental stress on renewable resource productivity

    SciTech Connect

    Howell, G. S.

    1982-09-01

    It is pointed out that temperature and water stress are the key factors that will be influenced by a rise in ambient CO/sub 2/ concentration. Improvement of the capacity of crop plants to withstand water and temperature stress will require an undergirding effort in basic research, to support required advances in plant breeding and development of novel crop management systems. The most important considerations for future research on environmental stress in crops are: the need for interdisciplinary approaches in all aspects of stress research; the need for centralized stress testing capabilities; plant-breeding, the long-term solution with greatest potential benefit and least cost; improvement in management techniques, becoming more effective as increased attention is directed to the management of specific genotypes; the need for understanding of more stress effects closer to the optimum than to lethality; the need to optimize rather than maximize production; the need for understanding different stress effects during different, critical developmental stages; the need for development of usable, physiologically-based crop models to serve as predictive tools for agronomists and breeders; the recognition that improvement options in annual crops are greater than in perennial crops; efforts to culture perennial crops as annuals as a means of avoiding winter stress; and the need for a major effort to devise techniques to shorten the breeding cycle in perennials so that genetic solutions can be more readily employed.

  6. Analytical Predictions of Thermal Stress in the Stardust PICA Heatshield Under Reentry Flight Conditions

    NASA Technical Reports Server (NTRS)

    Squire, Thomas; Milos, Frank; Agrawal, Parul

    2009-01-01

    We performed finite element analyses on a model of the Phenolic Impregnated Carbon Ablator (PICA) heatshield from the Stardust sample return capsule (SRC) to predict the thermal stresses in the PICA material during reentry. The heatshield on the Stardust SRC was a 0.83 m sphere cone, fabricated from a single piece of 5.82 cm-thick PICA. The heatshield performed successfully during Earth reentry of the SRC in January 2006. Material response analyses of the full, axisymmetric PICA heatshield were run using the Two-Dimensional Implicit Ablation, Pyrolysis, and Thermal Response Program (TITAN). Peak surface temperatures were predicted to be 3385K, while the temperature at the PICA backface remained at the estimated initial cold-soak temperature of 278K. Surface recession and temperature distribution results from TITAN, at several points in the reentry trajectory, were mapped onto an axisymmetric finite element model of the heatshield. We used the finite element model to predict the thermal stresses in the PICA from differential thermal expansion. The predicted peak compressive stress in the PICA heatshield was 1.38 MPa. Although this level of stress exceeded the chosen design limit for compressive stresses in PICA tiles for the design of the Orion crew exploration vehicle heatshield, the Stardust heatshield exhibited no obvious mechanical failures from thermal stress. The analyses of the Stardust heatshield were used to assess and adjust the level of conservatism in the finite element analyses in support of the Orion heatshield design.

  7. Thermally induced stresses and deformations in angle-ply composite tubes

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Rousseau, Carl Q.

    1987-01-01

    Cure-induced uniform temperature change effects on the stresses, axial expansion, and thermally-induced twist of four specific angle-ply tube designs are discussed with a view to the tubes' use as major space structure components. The stresses and deformations in the tubes are studied as a function of the four designs, the off-axis angle, and the single-material and hybrid reinforcing-material construction used. It is found that tube design has a minor influence on the stresses, axial stiffness, and axial thermal expansion characteristics, which are more directly a function of off-axis angle and material selection; tube design is, however, the primary influence in the definition of thermally-induced twist and torsional stiffness characteristics. None of the designs is free of thermally induced twist.

  8. Temperature propagation in prismatic lithium-ion-cells after short term thermal stress

    NASA Astrophysics Data System (ADS)

    Bohn, Pamina; Liebig, Gerd; Komsiyska, Lidiya; Wittstock, Gunther

    2016-05-01

    In this paper a 3D model based on the thermal material characteristics of an automotive prismatic Li-NiMnCoO2 (NMC) cell was created in COMSOL Multiphysics® in order to simulate the temperature propagation in the cell during short term thermal stress. The thermal characteristics of the battery components were experimentally determined via laser flash analysis (LFA) and differential scanning calorimetry (DSC) and used as an input parameter for the models. In order to validate the modelling approach, an experimental setup was built to measure the temperature propagation during thermal stresses within a dummy cell, equipped with temperature sensors. After validating, the model is used to describe the temperature propagation after a short-term temperature stress on automotive prismatic lithium-ion cells, simulating welding of the contact leads.

  9. Modeling of thermal stress development during the vacuum arc remelting process

    SciTech Connect

    Ali, Z.; Alam, M.K.; Semiatin, S.L.

    1995-12-31

    The development of thermal stresses during the vacuum arc remelting (VAR) process was investigated through numerical solution of the two-dimensional, non-steady state heat conduction and stress equilibrium equations. Solutions were obtained for various levels of input power efficiency, values of the crucible-ingot interface heat transfer coefficients, and lengths of the melted and resolidified ingot. Model predictions revealed that the maximum tensile thermal stresses are developed at the bottom of the ingot for cases involving low input power efficiency and high interface heat transfer coefficients. The predicted development of large tensile stresses at the mid-radius position correlates well with observations of thermal cracking during VAR of near-gamma titanium aluminide alloy ingots.

  10. Effect of thermal stresses on the vibration of composite cantilevered plates

    NASA Astrophysics Data System (ADS)

    Klosner, J. M.; Cheng, T.-H.

    This study explores the effects of thermal stresses on the dynamic characteristics of composite cantilevered plates. The induced thermal stresses are determined by appealing to the principle of minimum strain energy, while the Raleigh-Ritz procedure is used to obtain the plate frequencies. Extensive numerical calculations were carried out in order to gain quantitative understanding of how different choices of aspect ratios and temperature change intensities (T0) influence the natural frequencies of composite cantilevered plates. It is shown that the first bending mode frequencies are unaffected by the induced stresses, while the first torsional mode frequencies decrease quite significantly with increasing values of T0, and therefore with increased magnitudes of the thermal stresses.

  11. Effect of Rotor Diameter on the Thermal Stresses of a Turbine Rotor Model

    NASA Astrophysics Data System (ADS)

    Dávalos, J. O.; García, J. C.; Urquiza, G.; Castro-Gómez, L. L.; Rodríguez, J. A.; De Santiago, O.

    2016-04-01

    Thermal stresses in a simplified steam turbine rotor model during a cold startup are analyzed using finite element analysis (FEA). In order to validate the numerical model, an experimental array is developed in which a hollow cylinder is heated with hot air in the external surface. At the thick wall of the cylinder, temperature distribution is measured in real time, while at the same time an algorithm computes thermal stresses. Additional computational fluid dynamics (CFD) calculations are made to obtain magnitudes of velocity and pressure in order to compute convective heat transfer coefficient. The experimental results show good agreement with the FEA computations. To evaluate the effect of rotor diameter size, FEA computations with variation in external and internal diameters are performed. Results show that thermal stresses are proportional to rotor diameter size. Also, zones of higher stress concentration are found in the external and internal surfaces of the rotor.

  12. Thermally induced stresses in cross-ply composite tubes

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Cooper, D. E.; Tompkins, S. S.

    1986-01-01

    An approximate solution for determining stresses in cross-ply composite tubes subjected to a circumferential temperature gradient is presented. The solution is based on the principle of complementary virtual work (PCVW) in conjunction with a Ritz approximation on the stress field and accounts for the temperature dependence of material properties. The PCVW method is compared with a planar elasticity solution using temperature-independent material properties and a Navier approach. The net effect of including temperature-dependent material properties is that the peak absolute values of the stresses are reduced. The dependence of the stresses on the circumferential location is also reduced in comparison with the case of temperature-independent properties.

  13. Mapping Evaporative Stress at Continental Scales Using GOES Thermal Imagery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Robust, operational methodologies for mapping daily evapotranspiration (ET), soil moisture, and moisture stress over large areas using satellite remote sensing will have widespread utility in applications such as drought detection, crop yield forecasting, irrigation scheduling, water resource manage...

  14. Thermal stress analysis of laminated LCDs for aircraft cockpits

    NASA Astrophysics Data System (ADS)

    Feng, Qibin; Hua, Yikui; Lv, Guoqiang; Lu, Xiaosong

    2012-10-01

    Different from common liquid crystal displays (LCDs), LCDs in aircraft cockpits have to satisfy some special requirements, including high luminance, high contrast ration, anti-reflection (AR), and electromagnetic compatibility (EMC). Indium-tin oxide (ITO) glasses are usually attached on the top surface of LC cells by optical adhesive for AR and EMC, forming laminated structure. The characteristics of optical adhesive and lamination processing have direct effects on display. This paper creates a finite-element-analysis model of the laminated LC cell with ITO glass. The simulation results show that the stress concentration happens in the case that there are defects (bubbles, cracks, nonuniform thickness) in the optical adhesive when the operation temperature raises to 70º C. Based on the analysis of the stress on the top surface of the LC cell in Y direction, it is found that the location of the stress concentration is just under where the defects exit. The comparison on the stress of 3 possible defects shows that the concentrated stress caused by the cracks are far more large than the stress by the bubbles and nonuniform thickness of optical adhesives, which should try best to avoid.

  15. Thermal stress effect in diode end-pumped Nd:YVO4 bar laser

    NASA Astrophysics Data System (ADS)

    Bidin, Noriah; Krishnan, Ganesan; Khamsan, Nur Ezaan; Zainal, Roslinda; Bakhtiar, Hazri

    2012-06-01

    The thermal stress effect on various doping levels of yttrium vanadate crystal Nd:YVO4 is investigated. Diode end-pumped source was used to obtain the input-output characteristics of the vanadate crystal. The laser performance of the low doping crystal is poor since the optical conversion efficiency is small and high threshold pump power. However the low Dopant crystal is not associated with thermal stress thus no thermal damage. Differently with higher concentration of Nd ions crystal, the laser performance is relatively high but it is accompanied with thermal damage which comprised of microcrack, microfracture and contamination. The high absorption on the doping ions with additional external impurities causes extra heat generation which leads to thermal fracture.

  16. Modeling of residual thermal stresses for aluminum nitride crystal growth by sublimation

    NASA Astrophysics Data System (ADS)

    Lee, R. G.; Idesman, A.; Nyakiti, L.; Chaudhuri, J.

    2007-09-01

    Residual thermal stress distribution in AlN single crystal, grown on tungsten as a crucible material, was investigated using a numerical study. It has been demonstrated that a three-dimensional, instead of a two-dimensional, formulation predicts significantly greater values of stress. Dimensionless coordinates were used to essentially simplify the stress analysis and reduce the number of calculations. In addition, thermoelasticity approach simplifies the study of stresses for a nonstationary temperature field. The stress in the AlN film along the thickness or [0001] growth direction is essentially zero but the in-plane stress is large. The stress at the corner of the film is much higher due to stress concentration and could cause formation of microcracks. The stress in the film is tensile while that in the substrate is compressive, which causes a reversal of the stress across the interface. Separation or delamination of the film from the substrate could occur due to this reversal of the stress at the interface. The stress decreases as the thickness of the film increases or the thickness of the substrate decreases. Thus, formation of microscopic cracks in the film could be avoided by using a thinner substrate. The analysis on interaction of neighboring islands in order to simulate coalescence of island growth indicates stress concentration at the boundaries of the islands, which could produce threading dislocations and hence polycrystalline growth. The analysis of the effect of misorientation of the neighboring grains on the residual thermal stress in the film has shown that a large stress can develop at the grain boundary and can lead to grain boundary cracking.

  17. Thermal stress, human performance, and physical employment standards.

    PubMed

    Cheung, Stephen S; Lee, Jason K W; Oksa, Juha

    2016-06-01

    Many physically demanding occupations in both developed and developing economies involve exposure to extreme thermal environments that can affect work capacity and ultimately health. Thermal extremes may be present in either an outdoor or an indoor work environment, and can be due to a combination of the natural or artificial ambient environment, the rate of metabolic heat generation from physical work, processes specific to the workplace (e.g., steel manufacturing), or through the requirement for protective clothing impairing heat dissipation. Together, thermal exposure can elicit acute impairment of work capacity and also chronic effects on health, greatly contributing to worker health risk and reduced productivity. Surprisingly, in most occupations even in developed economies, there are rarely any standards regarding enforced heat or cold safety for workers. Furthermore, specific physical employment standards or accommodations for thermal stressors are rare, with workers commonly tested under near-perfect conditions. This review surveys the major occupational impact of thermal extremes and existing employment standards, proposing guidelines for improvement and areas for future research. PMID:27277564

  18. Fighter index of thermal stress (FITS): guidance for hot-weather aircraft operations.

    PubMed

    Nunneley, S A; Stribley, R F

    1979-06-01

    Operation of fighter and trainer aircraft at low altitude in hot weather often involves significant heat stress on aircrews. Guidance for control of this stress and its adverse consequences has not heretofore been available. The Fighter Index of Thermal Stress (FITS) was derived from the Wet Bulb Globe Temperature (WBGT) using recent in-flight data on cockpit environments and assuming a fixed contribution from solar heating. The FITS table is entered with ground dry bulb temperature and dewpoint temperature, and yields an estimate of cockpit thermal stress. Caution and Danger Zones are designated on the table, based upon typical aircrew clothing, metabolic rate, and physiological status. Appropriate protective measures are recommended, including awareness of heat stress, limitations on ground operations, allowance of adequate recovery intervals, provision for fluid intake, and cancellation of flights under severe conditions. Possible applications of FITS are discussed together with its potential impact on flight operations at 30 USAF bases.

  19. Effect of thermal stresses on chip-free diode laser cutting of glass

    NASA Astrophysics Data System (ADS)

    Nisar, Salman; Sheikh, M. A.; Li, Lin; Safdar, Shakeel

    2009-04-01

    In laser cleaving of brittle materials using controlled fracture technique, thermal stresses are used to induce a crack and the material is separated along the cutting path by extending this crack. In this study, a glass sheet is stressed thermally using a 808-940 nm diode laser radiation. One of the problems in laser cutting of glass with controlled fracture technique is the cut deviation at the leading and the trailing edges of the glass sheet. In order to avoid this damage it is necessary to understand the stress distributions which control crack propagation. A study is conducted here to analyse the cut deviation problem of glass by examining the stress fields during diode laser cutting of soda-lime glass sheets. Optical microscope photographs of the breaking surface are obtained to examine the surface quality and cut path deviation while the latter is explained from the results of the stress fields which are obtained from a finite element simulation.

  20. Crack prediction in EB-PVD thermal barrier coatings based on the simulation of residual stresses

    NASA Astrophysics Data System (ADS)

    Chen, J. W.; Zhao, Y.; Liu, S.; Zhang, Z. Z.; Ma, J.

    2016-07-01

    Thermal barrier coatings systems (TBCs) are widely used in the field of aerospace. The durability and insulating ability of TBCs are highly dependent on the residual stresses of top coatings, thus the investigation of the residual stresses is helpful to understand the failure mechanisms of TBCs. The simulation of residual stresses evolution in electron beam physical vapor deposition (EB-PVD) TBCs is described in this work. The interface morphology of TBCs subjected to cyclic heating and cooling is observed using scanning electron microscope (SEM). An interface model of TBCs is established based on thermal elastic-plastic finite method. Residual stress distributions in TBCs are obtained to reflect the influence of interfacial roughness. Both experimental and simulation results show that it is feasible to predict the crack location by stress analysis, which is crucial to failure prediction.

  1. Numerical and experimental study of the thermal stress of silicon induced by a millisecond laser

    SciTech Connect

    Wang Xi; Qin Yuan; Wang Bin; Zhang Liang; Shen Zhonghua; Lu Jian; Ni Xiaowu

    2011-07-20

    A spatial axisymmetric finite element model of single-crystal silicon irradiated by a 1064 nm millisecond laser is used to investigate the thermal stress damage induced by a millisecond laser. The transient temperature field and the thermal stress field for 2 ms laser irradiation with a laser fluence of 254 J/cm{sup 2} are obtained. The numerical simulation results indicate that the hoop stresses along the r axis on the front surface are compressive stress within the laser spot and convert to tensile stress outside the laser spot, while the radial stresses along the r axis on the front surface and on the z axis are compressive stress. The temperature of the irradiated center is the highest temperature obtained, yet the stress is not always highest during laser irradiation. At the end of the laser irradiation, the maximal hoop stress is located at r=0.5 mm and the maximal radial stress is located at r=0.76 mm. The temperature measurement experiments are performed by IR pyrometer. The numerical result of the temperature field is consistent with the experimental result. The damage morphologies of silicon under the action of a 254 J/cm{sup 2} laser are inspected by optical microscope. The cracks are observed initiating at r=0.5 mm and extending along the radial direction.

  2. Numerical and experimental study of the thermal stress of silicon induced by a millisecond laser.

    PubMed

    Wang, Xi; Qin, Yuan; Wang, Bin; Zhang, Liang; Shen, Zhonghua; Lu, Jian; Ni, Xiaowu

    2011-07-20

    A spatial axisymmetric finite element model of single-crystal silicon irradiated by a 1064 nm millisecond laser is used to investigate the thermal stress damage induced by a millisecond laser. The transient temperature field and the thermal stress field for 2 ms laser irradiation with a laser fluence of 254 J/cm(2) are obtained. The numerical simulation results indicate that the hoop stresses along the r axis on the front surface are compressive stress within the laser spot and convert to tensile stress outside the laser spot, while the radial stresses along the r axis on the front surface and on the z axis are compressive stress. The temperature of the irradiated center is the highest temperature obtained, yet the stress is not always highest during laser irradiation. At the end of the laser irradiation, the maximal hoop stress is located at r=0.5 mm and the maximal radial stress is located at r=0.76 mm. The temperature measurement experiments are performed by IR pyrometer. The numerical result of the temperature field is consistent with the experimental result. The damage morphologies of silicon under the action of a 254 J/cm(2) laser are inspected by optical microscope. The cracks are observed initiating at r=0.5 mm and extending along the radial direction. PMID:21772353

  3. Cooling-dominated cracking in thermally stressed volcanic rocks

    NASA Astrophysics Data System (ADS)

    Browning, John; Meredith, Philip; Gudmundsson, Agust

    2016-08-01

    Most studies of thermally induced cracking in rocks have focused on the generation of cracks formed during heating and thermal expansion. Both the nature and the mechanism of crack formation during cooling are hypothesized to be different from those formed during heating. We present in situ acoustic emission data recorded as a proxy for crack damage evolution in a series of heating and cooling experiments on samples of basalt and dacite. Results show that both the rate and the energy of acoustic emission are consistently much higher during cooling than during heating. Seismic velocity comparisons and crack morphology analysis of our heated and cooled samples support the contemporaneous acoustic emission data and also indicate that thermal cracking is largely isotropic. These new data are important for assessing the contribution of cooling-induced damage within volcanic structures and layers such as dikes, sills, and lava flows.

  4. Thermal Stress Analysis of RCG-Tempered TUFI Tile TPS for Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Squire, Thomas H.

    1995-01-01

    This paper presents detailed results from linear and nonlinear finite-element thermal stress analyses of a new tile, Thermal Protection Systems (TPS) concept. A very thin coating of Reaction Cured Glass (RCG) is used to "temper" the surface of Toughened Uni-Piece Fibrous Insulation (TUFI) tiles to improve resistance to thermal shock and thermal cycling effects. The coating also serves to reduce catalytic heating and may improve waterproofing. Calculations include trajectory-based aerothermal heating environments for X-34 wing leading edge TPS designs and arc jet environments for TPS test articles. The nonlinear analyses include the high temperature plasticity of RCG to demonstrate the reuseability of the material.

  5. Thermal Stability of Residual Stresses in Ti-6Al-4V components

    NASA Astrophysics Data System (ADS)

    Stanojevic, A.; Angerer, P.; Oberwinkler, B.

    2016-03-01

    The need for light weight design while maintaining a high safety is essential for many components, especially in the aircraft industry. Therefore, it's important to consider every aspect to reduce weight, improve fatigue life and maintain safety of crucial components. Residual stresses are a major factor which can positively influence components and fulfil all three requirements. However, due to the inconstancy of the behaviour of residual stresses during the life time of a component, residual stresses are often neglected. If the behaviour of residual stresses could be described reliably over the entire life time of a component, residual stresses could be taken into account and components could be optimized even further. Mechanical and thermal loads are the main reason for relaxation of residual stresses. This work covers the thermal stability of residual stresses in Ti-6Al-4V components. Therefore, exposure tests at raised temperatures were performed on specimens with different surface conditions. Residual stresses were measured by x-ray diffraction before and after testing. Creep tests were also carried out to describe the creep behaviour and thereby the ability for residual stress relaxation. A correlation between the creep rate and amount of relaxed stress was found. The creep behaviour of the material was described by using a combination of the Norton Power law and the Arrhenius equation. The Zener-Wert-Avrami model was used to describe the residual stress relaxation. With these models a satisfying correlation between measured and calculated data was found. Hence, the relaxation of residual stresses due to thermal load was described reliably.

  6. Phase composition and residual stresses in thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Lozovan, A. A.; Betsofen, S. Ya; Ashmarin, A. A.; Ryabenko, B. V.; Ivanova, S. V.

    2016-07-01

    X-ray study of the phase composition and residual stresses distribution in two-layer APS coatings showed that the ceramic layer consists of t-ZrO2 phase with tetragonal lattice and the metal underlayer γ-solid solution based on nickel. In the transition zone thickness of ∼ 100 pm as the distance from the surface was revealed a gradual transition from t-ZrO2 to γ-solid solution. Increase in the specific volume of the metal underlayer resulting TGO growing leads to the formation of this layer high compressive stresses up to 600 MPa. In this case, the ceramic layer contains tensile stress up to 200 MPa.

  7. Identification of differentially expressed genes of the Pacific oyster Crassostrea gigas exposed to prolonged thermal stress.

    PubMed

    Meistertzheim, Anne-Leila; Tanguy, Arnaud; Moraga, Dario; Thébault, Marie-Thérèse

    2007-12-01

    Groups of oysters (Crassostrea gigas) were exposed to 25 degrees C for 24 days (controls to 13 degrees C) to explore the biochemical and molecular pathways affected by prolonged thermal stress. This temperature is 4 degrees C above the summer seawater temperature encountered in western Brittany, France where the animals were collected. Suppression subtractive hybridization was used to identify specific up- and downregulated genes in gill and mantle tissues after 7-10 and 24 days of exposure. The resulting libraries contain 858 different sequences that potentially represent highly expressed genes in thermally stressed oysters. Expression of 17 genes identified in these libraries was studied using real-time PCR in gills and mantle at different time points over the course of the thermal stress. Differential gene expression levels were much higher in gills than in the mantle, showing that gills are more sensitive to thermal stress. Expression of most transcripts (mainly heat shock proteins and genes involved in cellular homeostasis) showed a high and rapid increase at 3-7 days of exposure, followed by a decrease at 14 days, and a second, less-pronounced increase at 17-24 days. A slow-down in protein synthesis occurred after 24 days of thermal stress.

  8. Control of Thermal Stress in Dendritic Web Growth

    NASA Technical Reports Server (NTRS)

    Seidensticker, R. G.; Schruben, J. S.

    1984-01-01

    The temperature distributions which are present during the growth of ribbon crystals generate stresses which can adversely affect the growth or perfection of the material. Several different effects occur which depend on the magnitude and distribution of these stresses. In most cases, the observed phenomena are the result of complex interactions of a number of mechanisms. In many instances, however, one mechanism predominates to such an extent that a simplified distinction between the various effects can be made. Definitions based on observed behavior in dendritic web growth are outlined.

  9. Research of thermal stress between long linear MCT arrays and lead board using FEM

    NASA Astrophysics Data System (ADS)

    Wu, Wen; Wu, Yonghong; Liu, Dafu

    2010-10-01

    For the long wavelength infrared detection, HgCdTe (MCT) photoconductive devices are selected as the core of next-generation meteorological because of its mature fabrication technique and stable performance. During the assembly process, an innovative multilayer ceramic board providing mechanical support is designed as the electrical interconnection between MCT chips and external circuits for cryogenic application. Furthermore, due to its brittleness, long linear MCT device is normally glued to sapphire substrates on the multilayer ceramic board with cryogenic glue. Thus, it can be seen clearly that the assembly structure is a multilayer configuration which comprises various kinds of materials, including ceramic broad, sapphire, MCT and glues. As a result, the difference in Thermal Expansion Coefficient (TEC) between the layers could create the potential to introduce thermal stress at working environmental temperature (approximately 70K), which could result in device performance degradation, even die crack. This article analyzes the thermal stress between long linear MCT devices and a multilayer ceramic board by using Finite Element Method (FEM). According to analysis results, two factors are revealed as the most significant causes for introducing thermal stress: one is the sapphire substrate thickness; the other is the parameters of various materials, for instance Yong's modulus and TEC. Since the structure of MCT detector is determined by system requirements and is under the limitation of manufacture technology, this article reveals two effective approaches to reduce the unavoidable thermal stress: first, choosing the appropriate thickness of ceramic board which is made by Al2O3; second, adding another metal cushion Invar. With the above considerations, the distribution of thermal stress is simulated using FEM under different parameter conditions. Based on the results of simulations, an optimal design of package structure which could improve the reliability of

  10. Seasonal and latitudinal acclimatization of cardiac transcriptome responses to thermal stress in porcelain crabs, Petrolisthes cinctipes.

    PubMed

    Stillman, Jonathon H; Tagmount, Abderrahmane

    2009-10-01

    Central predictions of climate warming models include increased climate variability and increased severity of heat waves. Physiological acclimatization in populations across large-scale ecological gradients in habitat temperature fluctuation is an important factor to consider in detecting responses to climate change related increases in thermal fluctuation. We measured in vivo cardiac thermal maxima and used microarrays to profile transcriptome heat and cold stress responses in cardiac tissue of intertidal zone porcelain crabs across biogeographic and seasonal gradients in habitat temperature fluctuation. We observed acclimatization dependent induction of heat shock proteins, as well as unknown genes with heat shock protein-like expression profiles. Thermal acclimatization had the largest effect on heat stress responses of extensin-like, beta tubulin, and unknown genes. For these genes, crabs acclimatized to thermally variable sites had higher constitutive expression than specimens from low variability sites, but heat stress dramatically induced expression in specimens from low variability sites and repressed expression in specimens from highly variable sites. Our application of ecological transcriptomics has yielded new biomarkers that may represent sensitive indicators of acclimatization to habitat temperature fluctuation. Our study also has identified novel genes whose further description may yield novel understanding of cellular responses to thermal acclimatization or thermal stress.

  11. Regulation of apoptotic pathways by Stylophora pistillata (Anthozoa, Pocilloporidae) to survive thermal stress and bleaching.

    PubMed

    Kvitt, Hagit; Rosenfeld, Hanna; Zandbank, Keren; Tchernov, Dan

    2011-01-01

    Elevated seawater temperatures are associated with coral bleaching events and related mortality. Nevertheless, some coral species are able to survive bleaching and recover. The apoptotic responses associated to this ability were studied over 3 years in the coral Stylophora pistillata from the Gulf of Eilat subjected to long term thermal stress. These include caspase activity and the expression profiles of the S. pistillata caspase and Bcl-2 genes (StyCasp and StyBcl-2-like) cloned in this study. In corals exposed to thermal stress (32 or 34°C), caspase activity and the expression levels of the StyBcl-2-like gene increased over time (6-48 h) and declined to basal levels within 72 h of thermal stress. Distinct transcript levels were obtained for the StyCasp gene, with stimulated expression from 6 to 48 h of 34°C thermal stress, coinciding with the onset of bleaching. Increased cell death was detected in situ only between 6 to 48 h of stress and was limited to the gastroderm. The bleached corals survived up to one month at 32°C, and recovered back symbionts when placed at 24°C. These results point to a two-stage response in corals that withstand thermal stress: (i) the onset of apoptosis, accompanied by rapid activation of anti-oxidant/anti-apoptotic mediators that block the progression of apoptosis to other cells and (ii) acclimatization of the coral to the chronic thermal stress alongside the completion of symbiosis breakdown. Accordingly, the coral's ability to rapidly curb apoptosis appears to be the most important trait affecting the coral's thermotolerance and survival.

  12. Discrimination of plant stress caused by oil pollution and waterlogging using hyperspectral and thermal remote sensing

    NASA Astrophysics Data System (ADS)

    Emengini, Ebele Josephine; Blackburn, George Alan; Theobald, Julian Charles

    2013-01-01

    Remote sensing of plant stress holds promise for detecting environmental pollution by oil. However, in oil-rich delta regions, waterlogging is a frequent source of plant stress that has similar physiological effects to oil pollution. This study investigated the capabilities of remote sensing for discriminating between these two sources of plant stress. Bean plants were subjected to oil pollution, waterlogging, and combined oil and waterlogging treatments. Canopy physiological, hyperspectral, and thermal measurements were taken every two to three days after treatment to follow the stress responses. For plants treated with oil, spectral and thermal responses were evident six days before symptoms could be observed visually. In waterlogged plants, only spectral responses were observed, but these were present up to eight days before visual symptoms. A narrowband reflectance ratio was efficient in detecting stress caused by oil and waterlogging. Canopy temperature and a thermal index were good indicators of oil and combined oil and waterlogging stress, but insensitive to waterlogging alone. Hence, this study provides evidence that combined hyperspectral and thermal remote sensing of vegetation has potential for monitoring oil pollution in environments that are also subjected to waterlogging.

  13. Early detection of oil-induced stress in crops using spectral and thermal responses

    NASA Astrophysics Data System (ADS)

    Emengini, Ebele Josephine; Blackburn, George Alan; Theobald, Julian Charles

    2013-01-01

    Oil pollution is a major source of environmental degradation, and requires accurate monitoring and timely detection for an effective control of its occurrence. This paper examines the potential of a remote sensing approach using the spectral and thermal responses of crops for the early detection of stress caused by oil pollution. In a glasshouse, pot-grown maize was treated with oil at sublethal and lethal applications. Thereafter, leaf thermal, spectral and physiological measurements were taken every two to three days to monitor the development of stress responses. Our results indicate that absolute leaf temperature was a poor indicator of developing stress. However, a derived thermal index (IG) responded consistently in the early stages of physiological damage. Various spectral reflectance features were highly sensitive to oil-induced stress. A narrow-band index using wavelengths in the near-infrared and red-edge region, (R755-R716)/(R755+R716), was optimal for previsual detection of oil-induced stress. This index had a strong linear relationship with photosynthetic rate. This indicates that by detecting vegetation stress, thermal and hyperspectral remote sensing has considerable potential for the timely detection of oil pollution in the environment.

  14. Analytical modeling of oxide thickness effects on residual stresses in thermal barrier coatings

    SciTech Connect

    Hsueh, C.H.; Fuller, E.R. Jr.

    2000-04-14

    During high temperature operation, an oxide scale forms along the irregular top coat/bond coat interface in the plasma-sprayed thermal barrier coating (TBC) system. The residual stresses in the system are affected by the presence of the thermally grown oxide (TGO). Along the irregular interface, the asperity can be convex or concave. Semicircular convex and concave asperities have been adopted for numerical simulations to examine the effects of the TGO thickness on residual thermal stresses. It was found that in the tip region of a convex asperity, the residual stress normal to the interface, {sigma}{sub y}, in the ceramic top coat is tensile for a thin oxide but becomes compressive for a thick oxide. In the tip region of a concave asperity, {sigma}{sub y} in the ceramic topcoat is compressive for a thin oxide and becomes less compressive for a thick oxide. The purpose of the present study was to explore the physical meaning of the trend of the stress state of {sigma}{sub y} in the ceramic topcoat with the variation of the TGO thickness. To achieve this, a simple analytical model of three concentric circles was adopted. First, the residual thermal stresses in the three-concentric-circles model were derived. Then, the results for residual radial stresses at the top coat/TGO and the TGO/bond coat interfaces as functions of the TGO thickness were presented. Also, the physical meaning of the above results was discussed.

  15. Alleviation of chromium toxicity by glycinebetaine is related to elevated antioxidant enzymes and suppressed chromium uptake and oxidative stress in wheat (Triticum aestivum L.).

    PubMed

    Ali, Shafaqat; Chaudhary, Aaifa; Rizwan, Muhammad; Anwar, Hafiza Tania; Adrees, Muhammad; Farid, Mujahid; Irshad, Muhammad Kashif; Hayat, Tahir; Anjum, Shakeel Ahmad

    2015-07-01

    Little information is available on the role of glycinebetaine (GB) in chromium (Cr) tolerance while Cr toxicity is widespread problem in crops grown on Cr-contaminated soils. In this study, we investigated the influence of GB on Cr tolerance in wheat (Triticum aestivum L.) grown in sand and soil mediums. Three concentrations of chromium (0, 0.25, and 0.5 mM) were tested with and without foliar application of GB (0.1 M). Chromium alone led to a significant growth inhibition and content of chlorophyll a, b, proteins and enhanced the activity of antioxidant enzymes. Glycinebetaine foliar application successfully alleviated the toxic effects of Cr on wheat plants and enhanced growth characteristics, biomass, proteins, and chlorophyll contents. Glycinebetaine also reduced Cr accumulation in wheat plants especially in grains and enhanced the activity of antioxidant enzymes in both shoots and roots. This study provides evidence that GB application contributes to decreased Cr concentrations in wheat plants and its importance in the detoxification of heavy metals.

  16. When depth is no refuge: cumulative thermal stress increases with depth in Bocas del Toro, Panama

    NASA Astrophysics Data System (ADS)

    Neal, B. P.; Condit, C.; Liu, G.; dos Santos, S.; Kahru, M.; Mitchell, B. G.; Kline, D. I.

    2014-03-01

    Coral reefs are increasingly affected by high-temperature stress events and associated bleaching. Monitoring and predicting these events have largely utilized sea surface temperature data, due to the convenience of using large-scale remotely sensed satellite measurements. However, coral bleaching has been observed to vary in severity throughout the water column, and variations in coral thermal stress across depths have not yet been well investigated. In this study, in situ water temperature data from 1999 to 2011 from three depths were used to calculate thermal stress on a coral reef in Bahia Almirante, Bocas del Toro, Panama, which was compared to satellite surface temperature data and thermal stress calculations for the same area and time period from the National Oceanic and Atmospheric Administration Coral Reef Watch Satellite Bleaching Alert system. The results show similar total cumulative annual thermal stress for both the surface and depth-stratified data, but with a striking difference in the distribution of that stress among the depth strata during different high-temperature events, with the greatest thermal stress unusually recorded at the deepest measured depth during the most severe bleaching event in 2005. Temperature records indicate that a strong density-driven temperature inversion may have formed in this location in that year, contributing to the persistence and intensity of bleaching disturbance at depth. These results indicate that depth may not provide a stress refuge from high water temperature events in some situations, and in this case, the water properties at depth appear to have contributed to greater coral bleaching at depth compared to near-surface locations. This case study demonstrates the importance of incorporating depth-stratified temperature monitoring and small-scale oceanographic and hydrologic data for understanding and predicting local reef responses to elevated water temperature events.

  17. Thermal stress measurement in continuous welded rails using the hole-drilling method

    NASA Astrophysics Data System (ADS)

    Zhu, Xuan; Lanza di Scalea, Francesco; Fateh, Mahmood

    2016-04-01

    The absence of expansion joints in Continuous Welded Rail (CWR) has created the need for the railroad industry to determine the in-situ level of thermal stresses so as to prevent train accidents caused by rail buckling in hot weather and by rail breakage in cold weather. The development of non-destructive or semi-destructive methods for determining the level of thermal stresses in rails is today a high research priority. This study explores the known hole-drilling method as a possible solution to this problem. A new set of calibration coefficients to compute the relieved stress field with the finer hole depth increments was determined by a 3D Finite Element Analysis that modeled the entire hole geometry, including the mechanics of the hole bottom and walls. To compensate the residual stress components, a linear relationship was experimentally established between the longitudinal and the vertical residual stresses of two common sizes of rails, the 136RE and the 141RE, with statistical significance. This result was then utilized to isolate the longitudinal thermal stress component in hole-drilling tests conducted on the 136RE and 141RE thermally-loaded rails at the Large-scale CWR Test-bed of UCSD's Powell Research Laboratories. The results from the Test-bed showed that the hole-drilling procedure, with the appropriate residual stress compensation, can indeed estimate the in-situ thermal stresses to achieve a +/-5°F accuracy of Neutral Temperature determination with a 90% statistical confidence, which is the desired industry gold standard.

  18. Thermal stress and the physiological response to environmental toxicants.

    PubMed

    Gordon, Christopher J; Leon, Lisa R

    2005-01-01

    Most toxicological and pharmacological studies are performed in laboratory animals maintained under comfortable environmental conditions. Yet, the exposure to environmental toxicants as well as many drugs can occur under stressful environmental conditions during rest or while exercising. The intake and biological efficacy of many toxicants is exacerbated by exposure to heat stress, which can occur in several ways. The increase in pulmonary ventilation during exposure to hot environments results in an increase in the uptake of airborne toxicants. Furthermore, the transcutaneous absorption of pesticides on the skin as well as drugs delivered by skin patches is increased during heat stress because of the combined elevation in skin blood flow coupled with moist skin from sweat. The thermoregulatory response to toxicant exposure, such as hypothermia in relatively small rodents and fever in humans, also modulates the physiological response to most chemical agents. This paper endeavors to review the issue of environmental heat stress and exercise and how they influence thermoregulatory and related pathophysiological responses to environmental toxicants, as well as exposure to drugs. PMID:16422347

  19. 3-Keto-1,5-bisphosphonates Alleviate Serum-Oxidative Stress in the High-fat Diet Induced Obesity in Rats.

    PubMed

    Lahbib, Karima; Aouani, Iyadh; Cavalier, Jean-François; Touil, Soufiane

    2015-09-01

    Obesity has become a leading global health problem owing to its strong association with a high incidence of oxidative stress. Many epidemiologic studies showed that an antioxidant supplementation decreases the state of oxidative stress. In the present work, a HFD-induced rat obesity and oxidative stress were used to investigate the link between fat deposition and serum-oxidative stress markers. We also studied the effect of a chronic administration of 3-keto-1,5-bisphosphonates 1 (a & b) (40 μg/kg/8 weeks/i.p.). Exposure of rats to HFD during 16 weeks induced fat deposition, weight gain and metabolic disruption characterized by an increase in cholesterol, triglyceride and glycemia levels, and a decrease in ionizable calcium and free iron concentrations. HFD also induced serum-oxidative stress status vocalized by an increase in ROS (H2 O2 ), MDA and PC levels, with a decrease in antioxidant enzyme activity (CAT, GPx, SOD). Importantly, 3-keto-1,5-bisphosphonates corrected all the deleterious effects of HFD treatment in vivo, but it failed to inhibit lipases in vitro and in vivo. These studies suggest that 3-keto-1,5-bisphosphonates 1 could be considered as safe antioxidant agents that should also find other potential biological applications.

  20. Thermally induced stresses in boulders on airless body surfaces: Implications for breakdown

    NASA Astrophysics Data System (ADS)

    Molaro, Jamie; Byrne, Shane

    2016-10-01

    We investigate the role of thermally induced rock breakdown in the evolution of airless body surfaces. This process is driven by the propagation of microcracks due to stress caused by changes in temperature. Here we model the thermomechanical response of spherical lunar boulders of varying size to diurnal thermal forcing. Exploring the magnitude and distribution of induced stresses reveals a bimodal response. During sunrise, high stresses occur in the boulders' interiors that are associated with large-scale temperature gradients (developed due to overnight cooling). During sunset, high stresses occur at the boulders' exteriors due to the cooling and contraction of the surface. Both kinds of stresses are on the order of 10 MPa in 1 m boulders and decrease for smaller radii, suggesting that larger boulders break down more quickly. Boulders ≤30 cm exhibit a weak response to thermal forcing, suggesting a boulder-size threshold below which crack propagation may not occur. Boulders of any size buried by regolith are shielded from thermal breakdown.As boulders increase in size (>1 m), stresses increase to several 10s of MPa as the behavior of their surfaces approaches that of an infinite halfspace. The rate of stress-increase is rapid until the boulder reaches ~5 times the skin depth (~4 m) in size. Above this size, stresses only slowly increase as the surface loses thermal contact with the boulder center. Boulders between 3 m and 7 m have less volume of material to erode than larger boulders (> 10 m) but only moderately lower stresses, suggesting they may be preferentially broken down by this process.Stress orientations can yield insight into how breakdown may occur. Interior stresses act on a plane perpendicular to the path of the sun, driving the propagation of surface-parallel cracks and contributing to exfoliation of planar fragments. Exterior stresses act parallel to the boulder surface driving the propagation of surface-perpendicular cracks and contributing to

  1. Thermal stress induced voids in nanoscale copper interconnects by in-situ TEM heating

    NASA Astrophysics Data System (ADS)

    An, Jin Ho

    Stress induced void formation in Cu interconnects, due to thermal stresses generated during the processing of semiconductors, is an increasing reliability issue in the semiconductor industry as Cu interconnects are being downscaled to follow the demand for faster chip speed. In this work, 1.8 micron and 180 nm wide Cu interconnects, fabricated by Freescale Semiconductors, were subjected to thermal cycles, in-situ in the TEM, to investigate the stress relaxation mechanisms as a function of interconnect linewidth. The experiments show that the 1.8 micron Cu interconnect lines relax the thermal stresses through dislocation nucleation and motion while the Cu interconnect 180 nm lines exhibit void formation. Void formation in 180 nm lines occurs predominantly at triple junctions where the Ta diffusion barrier meets a Cu grain boundary. In order to understand void formation in 180 nm lines, the grain orientation and local stresses are determined. In particular, Nanobeam Diffraction (NBD) in the TEM is used to obtain the diffraction pattern of each grain, from which the crystal orientation is evaluated by the ACT (Automated Crystallography for TEM) software. In addition, 2D Finite Element Method (FEM) simulations are performed using the Object Oriented Finite Modeling (OOF2) software to correlate grain orientation with local stresses, and consequently void formation. According to the experimental and simulation results obtained, void formation in 180nm Cu interconnects does not seem to be solely dependent on local stresses, but a combination of diffusion paths available, stress gradients and possibly the presence of defects. In addition, based on the in-situ TEM observations, void growth seems to occur through grain boundary and/or interfacial diffusion. However, in-situ STEM observations of fully opened voids post-failure show pileup of material at the Cu grain surfaces. This means that surface or interface diffusion is also very active during void growth in the presence

  2. Effect of thermal stress, restricted feeding and combined stresses (thermal stress and restricted feeding) on growth and plasma reproductive hormone levels of Malpura ewes under semi-arid tropical environment.

    PubMed

    Sejian, V; Maurya, V P; Naqvi, S M K

    2011-04-01

    A study was conducted to assess the effect of thermal, nutritional and combined stresses (thermal and nutritional) on the growth, oestradiol and progesterone levels during oestrus cycles in Malpura ewes. Twenty-eight adult Malpura ewes were used in the present study. The ewes were randomly allocated into four groups, viz., GI (n=7; control), GII (n=7; thermal stress), GIII (n=7; restricted feeding) and GIV (n=7; combined stress). The animals were stall fed with a diet consisting of 60% roughage and 40% concentrate. GI and GII ewes were provided with ad libitum feeding while GIII and GIV ewes were provided with restricted feed (30% intake of GI and GII ewes) to induce nutritional insufficiency. GII and GIV ewes were kept in climatic chamber at 40°C and 55% RH for 6 h a day between 10:00 and 16:00 hours to induce thermal stress for a period of two oestrous cycles. Parameters studied were body weight, oestrus incidences, plasma oestradiol 17-β, plasma progesterone, conception rate, gestation period, lambing rate, and birth weight of lambs. The results indicate that combined stress significantly (p<0.05) reduced body weight, oestrus duration, birth weight of lambs, and oestradiol 17-β whereas significantly (p < 0.05) increased oestrus cycle length and progesterone. Furthermore, the results reveal that on comparative basis, ewes were able to better adapt in terms of growth and reproduction to restricted feeding than thermal stress. However, when restricted feeding was coupled with thermal stress it had significant (p<0.05) influence on body weight, average daily gain, oestradiol 17-β and progesterone concentrations. This showed that combined stress were more detrimental for these reproductive hormones in Malpura ewes under a hot semi-arid environment.

  3. Bond strength and stress measurements in thermal barrier coatings

    SciTech Connect

    Gell, M.; Jordan, E.

    1995-12-31

    Thermal barrier coatings have been used extensively in aircraft gas turbines for more than 15 years to insulate combustors and turbine vanes from the hot gas stream. Plasma sprayed thermal barrier coatings (TBCs) provide metal temperature reductions as much as 300{degrees}F, with improvements in durability of two times or more being achieved. The introduction of TBCs deposited by electron beam physical vapor deposition (EB-PVD) processes in the last five years has provided a major improvement in durability and also enabled TBCs to be applied to turbine blades for improved engine performance. This program evaluates the bond strength of yttria stabilized zirconia coatings with MCrAlY and Pt-Al bond coats utilizing diffraction and fluorescence methods.

  4. Low-Thermal-Stress Structural Joints For Dissimilar Materials

    NASA Technical Reports Server (NTRS)

    Matza, Edward C.

    1990-01-01

    Structural joint developed for attachment of hypersonic control surface to aircraft wing structure. Transmits large torque loads from composite control surface and torque tube to wing structure through metallic attachment lug and collar. Torque load transmitted from tube to collar by series of radially oriented cleats. Bearing surfaces of cleats plane passing through center-line of torque tube. Such joints accommodate differential thermal growth between parts of dissimilar materials. Potential for application to high-temperature structural joints associated with hypervelocity vehicles.

  5. Thermal stress cycling of GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Janousek, B. K.; Francis, R. W.; Wendt, J. P.

    1985-01-01

    A thermal cycling experiment was performed on GaAs solar cells to establish the electrical and structural integrity of these cells under the temperature conditions of a simulated low-Earth orbit of 3-year duration. Thirty single junction GaAs cells were obtained and tests were performed to establish the beginning-of-life characteristics of these cells. The tests consisted of cell I-V power output curves, from which were obtained short-circuit current, open circuit voltage, fill factor, and cell efficiency, and optical micrographs, spectral response, and ion microprobe mass analysis (IMMA) depth profiles on both the front surfaces and the front metallic contacts of the cells. Following 5,000 thermal cycles, the performance of the cells was reexamined in addition to any factors which might contribute to performance degradation. It is established that, after 5,000 thermal cycles, the cells retain their power output with no loss of structural integrity or change in physical appearance.

  6. Lipocalin 2 regulation by thermal stresses: Protective role of Lcn2/NGAL against cold and heat stresses

    SciTech Connect

    Roudkenar, Mehryar Habibi; Halabian, Raheleh; Roushandeh, Amaneh Mohammadi; Nourani, Mohammad Reza; Masroori, Nasser; Ebrahimi, Majid; Nikogoftar, Mahin; Rouhbakhsh, Mehdi; Bahmani, Parisa; Najafabadi, Ali Jahanian; Shokrgozar, Mohammad Ali

    2009-11-01

    Environmental temperature variations are the most common stresses experienced by a wide range of organisms. Lipocalin 2 (Lcn2/NGAL) is expressed in various normal and pathologic conditions. However, its precise functions have not been fully determined. Here we report the induction of Lcn2 by thermal stresses in vivo, and its role following exposure to cold and heat stresses in vitro. Induction of Lcn2 in liver, heart and kidney was detected by RT-PCR, Western blot and immunohistochemistry following exposure of mice to heat and cold stresses. When CHO and HEK293T cells overexpressing NGAL were exposed to cold stress, cell proliferation was higher compared to controls. Down-regulatrion of NGAL by siRNA in A549 cells resulted in less proliferation when exposed to cold stress compared to control cells. The number of apoptotic cells and expression of pro-apoptotic proteins were lower in the NGAL overexpressing CHO and HEK293T cells, but were higher in the siRNA-transfected A549 cells compared to controls, indicating that NGAL protects cells against cold stress. Following exposure of the cells to heat stress, ectopic expression of NGAL protected cells while addition of exogenous recombinant NGAL to the cell culture medium exacerbated the toxicity of heat stress specially when there was low or no endogenous expression of NGAL. It had a dual effect on apoptosis following heat stress. NGAL also increased the expression of HO-1. Lcn2/NGAL may have the potential to improve cell proliferation and preservation particularly to prevent cold ischemia injury of transplanted organs or for treatment of some cancers by hyperthermia.

  7. Stress and reliability analyses of multilayered composite cylinder under thermal and mechanical loads

    NASA Astrophysics Data System (ADS)

    Wang, Xiaohua

    The coupling resulting from the mutual influence of material thermal and mechanical parameters is examined in the thermal stress analysis of a multilayered isotropic composite cylinder subjected to sudden axisymmetric external and internal temperature. The method of complex frequency response functions together with the Fourier transform technique is utilized. Because the coupling parameters for some composite materials, such as carbon-carbon, are very small, the effect of coupling is neglected in the orthotropic thermal stress analysis. The stress distributions in multilayered orthotropic cylinders subjected to sudden axisymmetric temperature loading combined with dynamic pressure as well as asymmetric temperature loading are also obtained. The method of Fourier series together with the Laplace transform is utilized in solving the heat conduction equation and thermal stress analysis. For brittle materials, like carbon-carbon composites, the strength variability is represented by two or three parameter Weibull distributions. The 'weakest link' principle which takes into account both the carbon-carbon composite cylinders. The complex frequency response analysis is performed on a multilayered orthotropic cylinder under asymmetrical thermal load. Both deterministic and random thermal stress and reliability analyses can be based on the results of this frequency response analysis. The stress and displacement distributions and reliability of rocket motors under static or dynamic line loads are analyzed by an elasticity approach. Rocket motors are modeled as long hollow multilayered cylinders with an air core, a thick isotropic propellant inner layer and a thin orthotropic kevlar-epoxy case. The case is treated as a single orthotropic layer or a ten layered orthotropic structure. Five material properties and the load are treated as random variable with normal distributions when the reliability of the rocket motor is analyzed by the first-order, second-moment method (FOSM).

  8. Stress and reliability analyses of multilayered composite cylinder under thermal and mechanical loads

    SciTech Connect

    Wang, X.

    1992-01-01

    The coupling resulting from the mutual influence of material thermal and mechanical parameters is examined in the thermal stress analysis of a multilayered isotropic composite cylinder subjected to sudden axisymmetric external and internal temperature. The method of complex frequency response functions together with the Fourier transform technique is utilized. Because the coupling parameters for some composite materials, such as carbon-carbon, are very small, the effect of coupling is neglected in the orthotropic thermal stress analysis. The stress distributions in multilayered orthotropic cylinders subjected to sudden axisymmetric temperature loading combined with dynamic pressure as well as asymmetric temperature loading are also obtained. The method of Fourier series together with the Laplace transform is utilized in solving the heat conduction equation and thermal stress analysis. For brittle materials, like carbon-carbon composites, the strength variability is represented by two or three parameter Weibull distributions. The 'weakest link' principle which takes into account both the carbon-carbon composite cylinders. The complex frequency response analysis is performed on a multilayered orthotropic cylinder under asymmetrical thermal load. Both deterministic and random thermal stress and reliability analyses can be based on the results of this frequency response analysis. The stress and displacement distributions and reliability of rocket motors under static or dynamic line loads are analyzed by an elasticity approach. Rocket motors are modeled as long hollow multilayered cylinders with an air core, a thick isotropic propellant inner layer and a thin orthotropic kevlar-epoxy case. The case is treated as a single orthotropic layer or a ten layered orthotropic structure. Five material properties and the load are treated as random variable with normal distributions when the reliability of the rocket motor is analyzed by the first-order, second-moment method (FOSM).

  9. Mangiferin ameliorates aluminium chloride-induced cognitive dysfunction via alleviation of hippocampal oxido-nitrosative stress, proinflammatory cytokines and acetylcholinesterase level.

    PubMed

    Kasbe, Prajapati; Jangra, Ashok; Lahkar, Mangala

    2015-01-01

    Mangiferin is a phytochemical primarily present in the stem, leaves and bark of Mangifera indica. It offers neuroprotection mainly through inhibition of oxidative stress, and decreasing proinflammatory cytokines level in the brain. Aluminium has been reported to cause oxidative stress-associated damage in the brain. In the present investigation, protective effect of mangiferin against aluminium chloride (AlCl3)-induced neurotoxicity and cognitive impairment was studied in male Swiss albino mice. AlCl3 (100 mg/kg) was administered once daily through oral gavage for 42 days. Mangiferin (20 and 40 mg/kg, p.o.) was given to mice for last 21 days of the study. We found cognitive dysfunction in AlCl3-treated group, which was assessed by Morris water maze test, and novel object recognition test. AlCl3-treated group showed elevated level of oxidative stress markers, proinflammatory cytokines level and lowered hippocampal brain-derived neurotrophic factor (BDNF) content. Mangiferin (40 mg/kg) prevented the cognitive deficits, hippocampal BDNF depletion, and biochemical anomalies induced by AlCl3-treatment. In conclusion, our data demonstrated that mangiferin offers neuroprotection in AlCl3-induced neurotoxicity and it may be a potential therapeutic approach in the treatment of oxido-nitrosative stress and inflammation-associated neurotoxicity.

  10. Mangiferin ameliorates aluminium chloride-induced cognitive dysfunction via alleviation of hippocampal oxido-nitrosative stress, proinflammatory cytokines and acetylcholinesterase level.

    PubMed

    Kasbe, Prajapati; Jangra, Ashok; Lahkar, Mangala

    2015-01-01

    Mangiferin is a phytochemical primarily present in the stem, leaves and bark of Mangifera indica. It offers neuroprotection mainly through inhibition of oxidative stress, and decreasing proinflammatory cytokines level in the brain. Aluminium has been reported to cause oxidative stress-associated damage in the brain. In the present investigation, protective effect of mangiferin against aluminium chloride (AlCl3)-induced neurotoxicity and cognitive impairment was studied in male Swiss albino mice. AlCl3 (100 mg/kg) was administered once daily through oral gavage for 42 days. Mangiferin (20 and 40 mg/kg, p.o.) was given to mice for last 21 days of the study. We found cognitive dysfunction in AlCl3-treated group, which was assessed by Morris water maze test, and novel object recognition test. AlCl3-treated group showed elevated level of oxidative stress markers, proinflammatory cytokines level and lowered hippocampal brain-derived neurotrophic factor (BDNF) content. Mangiferin (40 mg/kg) prevented the cognitive deficits, hippocampal BDNF depletion, and biochemical anomalies induced by AlCl3-treatment. In conclusion, our data demonstrated that mangiferin offers neuroprotection in AlCl3-induced neurotoxicity and it may be a potential therapeutic approach in the treatment of oxido-nitrosative stress and inflammation-associated neurotoxicity. PMID:26004900

  11. Shot Peening and Thermal Stress Relaxation in 17-4 PH Stainless Steel

    NASA Astrophysics Data System (ADS)

    Qin, Enwei; Chen, Guoxing; Tan, Ziming; Wu, Shuhui

    2015-11-01

    Shot peening is an effective process to enhance the fatigue performance of turbine blades. In this study, the effect of peening pressures was discussed in terms of the residual stress distribution and the surface morphology. Shot peening processes were designed at varying pressures on a 17-4 PH martensitic stainless steel. The profiles of hardness and residual stress were characterized in the cross section. The thermal stress relaxation was further carried out to evaluate the stability of the compressive residual stress under service temperatures of turbine blades. Results show that a maximum stress depth is obtained with peening pressure of 0.40 MPa, and the residual stress can be maintained up to 400 °C, which ensures the service in low-pressure turbine blades.

  12. Waste Package Outer Barrier Stress Due to Thermal Expansion with Various Barrier Gap Sizes

    SciTech Connect

    M. M. Lewis

    2001-11-27

    The objective of this activity is to determine the tangential stresses of the outer shell, due to uneven thermal expansion of the inner and outer shells of the current waste package (WP) designs. Based on the results of the calculation ''Waste Package Barrier Stresses Due to Thermal Expansion'', CAL-EBS-ME-000008 (ref. 10), only tangential stresses are considered for this calculation. The tangential stresses are significantly larger than the radial stresses associated with thermal expansion, and at the WP outer surface the radial stresses are equal to zero. The scope of this activity is limited to determining the tangential stresses the waste package outer shell is subject to due to the interference fit, produced by having two different shell coefficients of thermal expansions. The inner shell has a greater coefficient of thermal expansion than the outer shell, producing a pressure between the two shells. This calculation is associated with Waste Package Project. The calculations are performed for the 21-PWR (pressurized water reactor), 44-BWR (boiling water reactor), 24-BWR, 12-PWR Long, 5 DHLW/DOE SNF - Short (defense high-level waste/Department of Energy spent nuclear fuel), 2-MCO/2-DHLW (multi-canister overpack), and Naval SNF Long WP designs. The information provided by the sketches attached to this calculation is that of the potential design for the types of WPs considered in this calculation. This calculation is performed in accordance with the ''Technical Work Plan for: Waste Package Design Description for SR (Ref.7). The calculation is documented, reviewed, and approved in accordance with AP-3.12Q, Calculations (Ref.1).

  13. Laser cutting of Kevlar laminates and thermal stress formed at cutting sections

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Akhtar, S. S.

    2012-02-01

    Laser cutting of Kevlar laminates is carried out and thermal stress field developed in the cutting region is predicted using the finite element code. Temperature predictions are validated through the thermocouple data. The morphological changes in the cutting section are examined by incorporating optical and scanning electron microscopes. It is found that temperature predictions agree well with the thermocouple data. High values of von Mises stress are observed at the cutting edges and at the mid-thickness of the Kevlar laminate due to thermal compression formed in this region. The laser cut edges are free from whiskers; however, striation formation and some small sideways burning is observed at the kerf edges.

  14. Thermal stress response of General Purpose Heat Source (GPHS) aeroshell material

    NASA Technical Reports Server (NTRS)

    Grinberg, I. M.; Hulbert, L. E.; Luce, R. G.

    1980-01-01

    A thermal stress test was conducted to determine the ability of the GPHS aeroshell 3 D FWPF material to maintain physical integrity when exposed to a severe heat flux such as would occur from prompt reentry of GPHS modules. The test was performed in the Giant Planetary Facility at NASA's Ames Research Center. Good agreement was obtained between the theoretical and experimental results for both temperature and strain time histories. No physical damage was observed in the test specimen. These results provide initial corroboration both of the analysis techniques and that the GPHS reentry member will survive the reentry thermal stress levels expected.

  15. Thermal stresses of a wind turbine blade made of orthotropic material

    NASA Technical Reports Server (NTRS)

    Fu, Kuan-Chen; Harb, Awad

    1987-01-01

    This study is to investigate the thermal stress of a wind turbine blade made of wood composite material. First, the governing partial differential equation on heat conduction is stated, then, a finite element procedure using a variational approach is employed for the solution of the governing equation. Thus, the temperature field throughout the blade is determined. Next, based on the temperature field, a finite element procedure using potential energy approach is applied to determine the thermal stress field. A set of results is obtained through the use of a computer, which is considered to be satisfactory.

  16. Changes in laser-induced fluorescence responses of 3T3 fibroblasts to repetitive thermal stress

    NASA Astrophysics Data System (ADS)

    Beuthan, J.; Dressler, C.; Zabarylo, U.; Minet, O.

    2009-04-01

    The combined experimental use of laser-induced autofluorescence of cellular metabolites and methodological fundamentals of systems biology will provide access to biological thermal stress analysis on a sub cellular level. A test setup incorporating a pulsed nitrogen laser was realized with which autofluorescence of the coenzyme NADH could be measured in living 3T3 cells. The cells were subjected to different temperature stress at repetitive time intervals. When subjected to a simple mathematical analysis, the NADH concentration change measured through autofluorescence in biological cells exhibited approximate concentration-equivalent balance curves. These results add up to the fundamental know-how about the dosimetry of thermally therapeutic methods.

  17. Transcriptional response of two core photosystem genes in Symbiodinium spp. exposed to thermal stress.

    PubMed

    McGinley, Michael P; Aschaffenburg, Matthew D; Pettay, Daniel T; Smith, Robin T; LaJeunesse, Todd C; Warner, Mark E

    2012-01-01

    Mutualistic symbioses between scleractinian corals and endosymbiotic dinoflagellates (Symbiodinium spp.) are the foundation of coral reef ecosystems. For many coral-algal symbioses, prolonged episodes of thermal stress damage the symbiont's photosynthetic capability, resulting in its expulsion from the host. Despite the link between photosynthetic competency and symbiont expulsion, little is known about the effect of thermal stress on the expression of photosystem genes in Symbiodinium. This study used real-time PCR to monitor the transcript abundance of two important photosynthetic reaction center genes, psbA (encoding the D1 protein of photosystem II) and psaA (encoding the P(700) protein of photosystem I), in four cultured isolates (representing ITS2-types A13, A20, B1, and F2) and two in hospite Symbiodinium spp. within the coral Pocillopora spp. (ITS2-types C1b-c and D1). Both cultured and in hospite Symbiodinium samples were exposed to elevated temperatures (32°C) over a 7-day period and examined for changes in photochemistry and transcript abundance. Symbiodinium A13 and C1b-c (both thermally sensitive) demonstrated significant declines in both psbA and psaA during the thermal stress treatment, whereas the transcript levels of the other Symbiodinium types remained stable. The downregulation of both core photosystem genes could be the result of several different physiological mechanisms, but may ultimately limit repair rates of photosynthetic proteins, rendering some Symbiodinium spp. especially susceptible to thermal stress.

  18. Thermal stress analysis of ceramic structures with NASTRAN isoparametric solid elements

    NASA Technical Reports Server (NTRS)

    Lamberson, S. E.; Paul, D. B.

    1978-01-01

    The performance of the NASTRAN level 16.0, twenty node, isoparametric bricks (CIHEX2) at thermal loading was studied. A free ceramic plate was modelled using twenty node bricks of varying thicknesses. The thermal loading for this problem was uniform over the surface with an extremely large gradient through the thickness. No mechanical loading was considered. Temperature-dependent mechanical properties were considered in this analysis. The NASTRAN results were compared to one dimensional stress distributions calculated by direct numerical integration.

  19. Estimating evapotranspiration and drought stress with ground-based thermal remote sensing in agriculture: a review.

    PubMed

    Maes, W H; Steppe, K

    2012-08-01

    As evaporation of water is an energy-demanding process, increasing evapotranspiration rates decrease the surface temperature (Ts) of leaves and plants. Based on this principle, ground-based thermal remote sensing has become one of the most important methods for estimating evapotranspiration and drought stress and for irrigation. This paper reviews its application in agriculture. The review consists of four parts. First, the basics of thermal remote sensing are briefly reviewed. Second, the theoretical relation between Ts and the sensible and latent heat flux is elaborated. A modelling approach was used to evaluate the effect of weather conditions and leaf or vegetation properties on leaf and canopy temperature. Ts increases with increasing air temperature and incoming radiation and with decreasing wind speed and relative humidity. At the leaf level, the leaf angle and leaf dimension have a large influence on Ts; at the vegetation level, Ts is strongly impacted by the roughness length; hence, by canopy height and structure. In the third part, an overview of the different ground-based thermal remote sensing techniques and approaches used to estimate drought stress or evapotranspiration in agriculture is provided. Among other methods, stress time, stress degree day, crop water stress index (CWSI), and stomatal conductance index are discussed. The theoretical models are used to evaluate the performance and sensitivity of the most important methods, corroborating the literature data. In the fourth and final part, a critical view on the future and remaining challenges of ground-based thermal remote sensing is presented. PMID:22922637

  20. A complex life cycle in a warming planet: gene expression in thermally stressed sponges.

    PubMed

    Webster, N; Pantile, R; Botté, E; Abdo, D; Andreakis, N; Whalan, S

    2013-04-01

    Sponges are abundant, diverse and functionally important components of aquatic biotopes with crucial associations for many reef fish and invertebrates. Sponges have strict temperature optima, and mass mortality events have occurred after unusually high temperatures. To assess how sponges may adapt to thermal stress associated with a changing climate, we applied gene expression profiling to both stages of their bipartite life cycles. Adult Rhopaloeides odorabile are highly sensitive to thermal stress (32 °C), yet their larvae can withstand temperatures up to 36 °C. Here, we reveal the molecular mechanisms that underpin these contrasting thermal tolerances, which may provide sponges with a means to successfully disperse into cooler waters. Heat shock protein 70 was induced by increasing temperature in adult sponges, and genes involved in important biological functions including cytoskeleton rearrangement, signal transduction, protein synthesis/degradation, oxidative stress and detoxification were all negatively correlated with temperature. Conversely, gene expression in larvae was not significantly affected until 36 °C when a stress response involving extremely rapid activation of heat shock proteins occurred. This study provides the first transcriptomic assessment of thermal stress on both life history stages of a marine invertebrate facilitating better predictions of the long-term consequences of climate change for sponge population dynamics.

  1. A complex life cycle in a warming planet: gene expression in thermally stressed sponges.

    PubMed

    Webster, N; Pantile, R; Botté, E; Abdo, D; Andreakis, N; Whalan, S

    2013-04-01

    Sponges are abundant, diverse and functionally important components of aquatic biotopes with crucial associations for many reef fish and invertebrates. Sponges have strict temperature optima, and mass mortality events have occurred after unusually high temperatures. To assess how sponges may adapt to thermal stress associated with a changing climate, we applied gene expression profiling to both stages of their bipartite life cycles. Adult Rhopaloeides odorabile are highly sensitive to thermal stress (32 °C), yet their larvae can withstand temperatures up to 36 °C. Here, we reveal the molecular mechanisms that underpin these contrasting thermal tolerances, which may provide sponges with a means to successfully disperse into cooler waters. Heat shock protein 70 was induced by increasing temperature in adult sponges, and genes involved in important biological functions including cytoskeleton rearrangement, signal transduction, protein synthesis/degradation, oxidative stress and detoxification were all negatively correlated with temperature. Conversely, gene expression in larvae was not significantly affected until 36 °C when a stress response involving extremely rapid activation of heat shock proteins occurred. This study provides the first transcriptomic assessment of thermal stress on both life history stages of a marine invertebrate facilitating better predictions of the long-term consequences of climate change for sponge population dynamics. PMID:23379529

  2. Estimating evapotranspiration and drought stress with ground-based thermal remote sensing in agriculture: a review.

    PubMed

    Maes, W H; Steppe, K

    2012-08-01

    As evaporation of water is an energy-demanding process, increasing evapotranspiration rates decrease the surface temperature (Ts) of leaves and plants. Based on this principle, ground-based thermal remote sensing has become one of the most important methods for estimating evapotranspiration and drought stress and for irrigation. This paper reviews its application in agriculture. The review consists of four parts. First, the basics of thermal remote sensing are briefly reviewed. Second, the theoretical relation between Ts and the sensible and latent heat flux is elaborated. A modelling approach was used to evaluate the effect of weather conditions and leaf or vegetation properties on leaf and canopy temperature. Ts increases with increasing air temperature and incoming radiation and with decreasing wind speed and relative humidity. At the leaf level, the leaf angle and leaf dimension have a large influence on Ts; at the vegetation level, Ts is strongly impacted by the roughness length; hence, by canopy height and structure. In the third part, an overview of the different ground-based thermal remote sensing techniques and approaches used to estimate drought stress or evapotranspiration in agriculture is provided. Among other methods, stress time, stress degree day, crop water stress index (CWSI), and stomatal conductance index are discussed. The theoretical models are used to evaluate the performance and sensitivity of the most important methods, corroborating the literature data. In the fourth and final part, a critical view on the future and remaining challenges of ground-based thermal remote sensing is presented.

  3. Influence of temperature in thermal and oxidative stress responses in estuarine fish.

    PubMed

    Madeira, D; Narciso, L; Cabral, H N; Vinagre, C; Diniz, M S

    2013-10-01

    The influence of increasing temperatures in thermal and oxidative stress responses were studied in the muscle of several estuarine fish species (Diplodus vulgaris, Diplodus sargus, Dicentrarchus labrax, Gobius niger and Liza ramada). Selected fish were collected in July at the Tagus estuary (24±0.9°C; salinity of 30±4‰; pH=8). Fish were subjected to a temperature increase of 1°C.h(-1) until they reached their Critical Thermal Maximum (CTMax), starting at 24°C (control temperature). Muscle samples were collected during the trial and results showed that oxidative stress biomarkers are highly sensitive to temperature. Results from stress oxidative enzymes show alterations with increasing temperature in all tested species. Catalase (CAT; EC 1.11.1.6) activity significantly increased in L. ramada, D. labrax and decreased in D. vulgaris. Glutathione S-transferase (GST; EC 2.5.1.18) activity increased in L. ramada, D. sargus, D. vulgaris, and D. labrax. In G. niger it showed a cycle of increase-decrease. Lipid peroxidation (LPO) increased in L. ramada, D. sargus and D. labrax. With respect to correlation analysis (Pearson; Spearman r), the results showed that oxidation products and antioxidant defenses were correlated in L. ramada (LPO-CAT and LPO-GST, D. sargus (LPO-CAT), and D. labrax (LPO-CAT). Oxidative biomarkers were correlated with thermal stress biomarker (Hsp70) in L. ramada (CAT-Hsp70), D. vulgaris (LPO-Hsp70), D. labrax (GST-Hsp70) and G. niger (LPO-Hsp70). In conclusion, oxidative stress does occur with increasing temperatures and there seems to be a relation between thermal stress response and oxidative stress response. The results suggest that oxidative stress biomarkers should be applied with caution, particularly in field multi-species/multi-environment studies. PMID:23774589

  4. Thymoquinone effectively alleviates lung fibrosis induced by paraquat herbicide through down-regulation of pro-fibrotic genes and inhibition of oxidative stress.

    PubMed

    Pourgholamhossein, Fatemeh; Sharififar, Fariba; Rasooli, Rokhsana; Pourgholi, Leyla; Nakhaeipour, Fatemeh; Samareh-Fekri, Hojjat; Iranpour, Maryam; Mandegary, Ali

    2016-07-01

    The potential preventive and therapeutic effects of thymoquinone (TQ) and its molecular mechanism were evaluated in paraquat (PQ)-induced pulmonary fibrosis in mice. TQ was administered orally at the doses of 20 and 40mg/kg during the course and after development of fibrosis. Pathological changes, expressions of genes involved in fibrogenesis, hydroxyproline (HP) and oxidative stress parameters were determined in the lung tissues. TQ dose-dependently recovered the pathological changes induced by PQ. TQ decreased hydroxyproline content, lipid peroxidation and restored the antioxidant enzymes to the normal values. In molecular level, expressions of TGF-β1, α-SMA, collagen 1a1 and collagen 4a1 genes were also returned to the control level by TQ. This study indicated that TQ has the preventive and therapeutic potentials for the treatment of lung fibrosis by inhibition of oxidative stress and down-regulation of profibrotic genes. PMID:27375216

  5. Elastoplastic analysis of process induced residual stresses in thermally sprayed coatings

    SciTech Connect

    Chen Yongxiong; Liang Xiubing; Liu Yan; Xu Binshi

    2010-07-15

    The residual stresses induced from thermal spraying process have been extensively investigated in previous studies. However, most of such works were focused on the elastic deformation range. In this paper, an elastoplastic model for predicting the residual stresses in thermally sprayed coatings was developed, in which two main contributions were considered, namely the deposition induced stress and that due to differential thermal contraction between the substrate and coating during cooling. The deposition induced stress was analyzed based on the assumption that the coating is formed layer-by-layer, and then a misfit strain is accommodated within the multilayer structure after the addition of each layer (plastic deformation is induced consequently). From a knowledge of specimen dimensions, processing temperatures, and material properties, residual stress distributions within the structure can be determined by implementing the model with a simple computer program. A case study for the plasma sprayed NiCoCrAlY on Inconel 718 system was performed finally. Besides some similar phenomena observed from the present study as compared with previous elastic model reported in literature, the elastoplastic model also provides some interesting features for prediction of the residual stresses.

  6. Social defeat stress potentiates thermal sensitivity in operant models of pain processing.

    PubMed

    Marcinkiewcz, Catherine A; Green, Megan K; Devine, Darragh P; Duarte, Peter; Vierck, Charles J; Yezierski, Robert P

    2009-01-28

    Higher-order processing of nociceptive input is distributed in corticolimbic regions of the brain, including the anterior cingulate, parieto-insular and prefrontal cortices, as well as subcortical structures such as the bed nucleus of stria terminalis and amygdala. In addition to their role in pain processing, these regions encode or modulate emotional, motivational and sensory responses to stress. Thus, pain and stress pathways in the brain intersect at cortical and subcortical forebrain structures. Accordingly, previous work has shown that acute restraint stress in female rats induces heat hyperalgesia in a forebrain-dependent operant test of thermal escape. In the present study, we investigated the effects of social defeat stress in male rats on the operant escape task, as well as in a test of nociceptive thermal preference. After establishing baseline behaviors in these tests, separate groups of rats were socially defeated by dominant "resident" male rats. They were tested for thermal preference after 5 successive social defeat sessions. Escape from cold, heat and a neutral warm temperature also was evaluated after social defeat. Defeated rats exhibited a significant increase in cold preference after social defeat compared to the baseline. In the escape task, the rats exhibited increased escape from warm and nociceptive cold and heat temperatures. Thus, chronic social stress produces hyperalgesia for both hot and cold stimuli in male rats, suggesting a mutually facilitatory cross-regulation between central pathways regulating stress and pain. PMID:19059227

  7. Dietary L-arginine supplement alleviates hepatic heat stress and improves feed conversion ratio of Pekin ducks exposed to high environmental temperature.

    PubMed

    Zhu, W; Jiang, W; Wu, L Y

    2014-12-01

    The current intensive indoor production system of commercial Pekin ducks never allows adequate water for swimming or wetting. Therefore, heat stress is a key factor affecting health and growth of ducks in the hot regions and season. Experiment 1 was conducted to study whether heat stress was deleterious to certain organs of ducks. Forty-one-day-old mixed-sex Pekin ducks were randomly allocated to four electrically heated battery brooders comprised of 10 ducks each. Ducks were suddenly exposed to 37 °C ambient temperature for 3 h and then slaughtered, in one brooder at 21 days and in another brooder at 49 days of age. The results showed that body weight and weight of immune organs, particularly liver markedly decreased in acute heat stress ducks compared with the control. Experiment 2 was carried out to investigate the influences of dietary L-arginine (Arg) supplement on weight and compositions of certain lymphoid organs, and growth performance in Pekin ducks, under daily cyclic hot temperature environment. A total of 151-day-old mixed-sex Pekin ducks were randomly divided into one negative control and two treatment groups, fed experimental diets supplemented with 0, 5, and 10 g L-Arginine (L-Arg)/kg to the basal diet respectively. Ducks were exposed to cyclic high temperature simulating natural summer season. The results showed that the addition of L-Arg improves feed conversion ratio (FCR) during a period of 7-week trial, as well as increases hepatic weight relative to body weight at 21 days, while decreases the hepatic water content at 49 days of age. This study indicated that the liver was more sensitive to acute heat stress, and the hepatic relative weight and chemical composition could be regulated by dietary L-Arg supplementation in Pekin ducks being reared at high ambient temperature. These beneficial effects of Arg on liver might be a cause of improved FCR.

  8. Role of plant growth regulators and a saprobic fungus in enhancement of metal phytoextraction potential and stress alleviation in pearl millet.

    PubMed

    Firdaus-e-Bareen; Shafiq, Muhammad; Jamil, Sidra

    2012-10-30

    "Assisted phytoextraction" involving application of chemical additives such as plant growth regulators (PGRs) has become a trend in phytoremediation technology. This study identifies a cost-effective, naturally available crude PGR (PGR1) that produces the same effects as the commercial PGR (PGR2), increasing metal uptake by plants and the reduction of metal stress. Assisted phytoextraction by pearl millet (Pennisetum glaucum) from a multi-metal (Cd, Cr, Cu, Fe, Na and Zn) contaminated soil medium with tannery solid waste (TSW) soil amendments of 5 and 10%, was evaluated in a full-factorial pot trial with PGR1, PGR2 and Trichoderma pseudokoningii as factors. The effects of these phytoextraction assistants were measured through dry biomass production, heavy metal uptake, stress tolerance enzymes catalase (CAT) and superoxide dismutase (SOD), soluble protein content of plant, and phytoextraction efficiency. Dry biomass and multi-metal accumulation were the highest in the soil treatments with a combined application of PGR1, PGR2 and T. pseudokoningii and the lowest in the control. The soluble protein contents and the SOD and CAT values were the highest in the 10% TSW treatment provided with PGR2+T. pseudokoningii, while the lowest were in the control. Thus, application of crude PGR in combination with other phytoextraction assistants can increase biomass production as well as multi-metal accumulation in plants. However, the biochemical properties of the plant depend on the level of TSW stress in the soil treatment as well as the type of phytoextraction assistants.

  9. Vitamin C modulates the metabolic and cytokine profiles, alleviates hepatic endoplasmic reticulum stress, and increases the life span of Gulo-/- mice.

    PubMed

    Aumailley, Lucie; Warren, Alessandra; Garand, Chantal; Dubois, Marie Julie; Paquet, Eric R; Le Couteur, David G; Marette, André; Cogger, Victoria C; Lebel, Michel

    2016-03-01

    Suboptimal intake of dietary vitamin C (ascorbate) increases the risk of several chronic diseases but the exact metabolic pathways affected are still unknown. In this study, we examined the metabolic profile of mice lacking the enzyme gulonolactone oxidase (Gulo) required for the biosynthesis of ascorbate. Gulo-/- mice were supplemented with 0%, 0.01%, and 0.4% ascorbate (w/v) in drinking water and serum was collected for metabolite measurements by targeted mass spectrometry. We also quantified 42 serum cytokines and examined the levels of different stress markers in liver. The metabolic profiles of Gulo-/- mice treated with ascorbate were different from untreated Gulo-/- and normal wild type mice. The cytokine profiles of Gulo-/-mice, in return, overlapped the profile of wild type animals upon 0.01% or 0.4% vitamin C supplementation. The life span of Gulo-/- mice increased with the amount of ascorbate in drinking water. It also correlated significantly with the ratios of serum arginine/lysine, tyrosine/phenylalanine, and the ratio of specific species of saturated/unsaturated phosphatidylcholines. Finally, levels of hepatic phosphorylated endoplasmic reticulum associated stress markers IRE1α and eIF2α correlated inversely with serum ascorbate and life span suggesting that vitamin C modulates endoplasmic reticulum stress response and longevity in Gulo-/- mice.

  10. L-Theanine alleviates the neuropathological changes induced by PCB (Aroclor 1254) via inhibiting upregulation of inflammatory cytokines and oxidative stress in rat brain.

    PubMed

    Sumathi, Thangarajan; Asha, Deivasigamani; Nagarajan, Ganesan; Sreenivas, Arivazhagan; Nivedha, Rajendran

    2016-03-01

    The present study is aimed at evaluating the protective role of L-theanine on aroclor 1254-induced oxidative stress in rat brain. Intraperitoneal administration of Aroclor 1254 (2 mg/kg b.wt. for 30 days) caused oxidative stress in rat brain and also caused neurobehavioral changes. Oxidative stress was assessed by determining the levels of lipid peroxide (LPO), protein carbonyl content, and changes in activities of creatine kinase (CK), acetylcholinesterase (AchE), and ATPases in the hippocampus, cerebellum and cerebral cortex of control and experimental rats. Histopathological results showed that PCB caused neuronal loss in all three regions. PCB upregulated the mRNA expressions of inflammatory cytokines. Oral administration of L-theanine (200 mg/kg b.wt.) increased the status of antioxidants, decreased the levels of LPO, nitric oxide (NO) and increased the activities of CK, AchE and ATPases. L-Theanine restored normal architecture of brain regions and downregulated the expression of inflammatory cytokines. In conclusion, L-theanine shows a protective role against PCBs-induced oxidative damage in rat brain.

  11. Mannitol alleviates chromium toxicity in wheat plants in relation to growth, yield, stimulation of anti-oxidative enzymes, oxidative stress and Cr uptake in sand and soil media.

    PubMed

    Adrees, Muhammad; Ali, Shafaqat; Iqbal, Muhammad; Aslam Bharwana, Saima; Siddiqi, Zeenat; Farid, Mujahid; Ali, Qasim; Saeed, Rashid; Rizwan, Muhammad

    2015-12-01

    Chromium (Cr) is one of the most phytotoxic metals in the agricultural soils and its concentration is continuously increasing mainly through anthropogenic activities. Little is known on the role of mannitol (M) on plant growth and physiology under metal stress. The aim of this study was to investigate the mechanism of growth amelioration and antioxidant enzyme activities in Cr-stressed wheat (Triticum aestivum L. cv. Lasani 2008) by exogenously applied mannitol. For this, wheat seedlings were sown in pots containing soil or sand and subjected to increasing Cr concentration (0, 0.25 and 0.5mM) in the form of of K2Cr2O7 with and without foliar application of 100mM mannitol. Plants were harvested after four months and data regarding growth characteristics, biomass, photosynthetic pigments, and antioxidant enzymes were recorded. Mannitol application increased plant biomass, photosynthetic pigments and antioxidant enzymes while decreased Cr uptake and accumulation in plants as compared to Cr treatments alone. In this study, we observed that M applied exogenously to Cr-stressed wheat plants, which normally cannot synthesize M, improved their Cr tolerance by increasing growth, photosynthetic pigments and enhancing activities of antioxidant enzymes and by decreasing Cr uptake and translocation in wheat plants. From this study, it can be concluded that M could be used to grow crops on marginally contaminated soils for which separate remediation techniques are time consuming and not cost effective.

  12. Vitamin C modulates the metabolic and cytokine profiles, alleviates hepatic endoplasmic reticulum stress, and increases the life span of Gulo−/− mice

    PubMed Central

    Aumailley, Lucie; Warren, Alessandra; Garand, Chantal; Dubois, Marie Julie; Paquet, Eric R.; Le Couteur, David G.; Marette, André; Cogger, Victoria C.; Lebel, Michel

    2016-01-01

    Suboptimal intake of dietary vitamin C (ascorbate) increases the risk of several chronic diseases but the exact metabolic pathways affected are still unknown. In this study, we examined the metabolic profile of mice lacking the enzyme gulonolactone oxidase (Gulo) required for the biosynthesis of ascorbate. Gulo−/− mice were supplemented with 0%, 0.01%, and 0.4% ascorbate (w/v) in drinking water and serum was collected for metabolite measurements by targeted mass spectrometry. We also quantified 42 serum cytokines and examined the levels of different stress markers in liver. The metabolic profiles of Gulo−/− mice treated with ascorbate were different from untreated Gulo−/− and normal wild type mice. The cytokine profiles of Gulo−/− mice, in return, overlapped the profile of wild type animals upon 0.01% or 0.4% vitamin C supplementation. The life span of Gulo−/− mice increased with the amount of ascorbate in drinking water. It also correlated significantly with the ratios of serum arginine/lysine, tyrosine/phenylalanine, and the ratio of specific species of saturated/unsaturated phosphatidylcholines. Finally, levels of hepatic phosphorylated endoplasmic reticulum associated stress markers IRE1α and eIF2α correlated inversely with serum ascorbate and life span suggesting that vitamin C modulates endoplasmic reticulum stress response and longevity in Gulo−/− mice. PMID:26922388

  13. Rockfall triggering by cyclic thermal stressing of exfoliation fractures

    NASA Astrophysics Data System (ADS)

    Collins, Brian D.; Stock, Greg M.

    2016-05-01

    Exfoliation of rock deteriorates cliffs through the formation and subsequent opening of fractures, which in turn can lead to potentially hazardous rockfalls. Although a number of mechanisms are known to trigger rockfalls, many rockfalls occur during periods when likely triggers such as precipitation, seismic activity and freezing conditions are absent. It has been suggested that these enigmatic rockfalls may occur due to solar heating of rock surfaces, which can cause outward expansion. Here we use data from 3.5 years of field monitoring of an exfoliating granite cliff in Yosemite National Park in California, USA, to assess the magnitude and temporal pattern of thermally induced rock deformation. From a thermodynamic analysis, we find that daily, seasonal and annual temperature variations are sufficient to drive cyclic and cumulative opening of fractures. Application of fracture theory suggests that these changes can lead to further fracture propagation and the consequent detachment of rock. Our data indicate that the warmest times of the day and year are particularly conducive to triggering rockfalls, and that cyclic thermal forcing may enhance the efficacy of other, more typical rockfall triggers.

  14. Rockfall triggering by cyclic thermal stressing of exfoliation fractures

    USGS Publications Warehouse

    Collins, Brian; Stock, Greg M.

    2016-01-01

    Exfoliation of rock deteriorates cliffs through the formation and subsequent opening of fractures, which in turn can lead to potentially hazardous rockfalls. Although a number of mechanisms are known to trigger rockfalls, many rockfalls occur during periods when likely triggers such as precipitation, seismic activity and freezing conditions are absent. It has been suggested that these enigmatic rockfalls may occur due to solar heating of rock surfaces, which can cause outward expansion. Here we use data from 3.5 years of field monitoring of an exfoliating granite cliff in Yosemite National Park in California, USA, to assess the magnitude and temporal pattern of thermally induced rock deformation. From a thermodynamic analysis, we find that daily, seasonal and annual temperature variations are sufficient to drive cyclic and cumulative opening of fractures. Application of fracture theory suggests that these changes can lead to further fracture propagation and the consequent detachment of rock. Our data indicate that the warmest times of the day and year are particularly conducive to triggering rockfalls, and that cyclic thermal forcing may enhance the efficacy of other, more typical rockfall triggers.

  15. On the axial and interfacial shear stresses due to thermal mismatch in hybrid composites

    SciTech Connect

    Rossettos, J.N.; Shen, X.

    1994-12-31

    An analytical model is formulated which attempts to account for the axial and the interfacial shear stresses which can develop in hybrid fiber composites due to the mismatch in coefficients of thermal expansion and Youngs modulus. A finite width hybrid composite monolayer with alternating high modulus and low modulus fibers is considered. To properly account for the interfacial shear between fiber and matrix, a modified shear lag model is used, which permits extensional deformation in the matrix in the fiber direction. Typical stresses due solely to temperature changes are calculated, and show steep boundary layer edge stresses at free corners.

  16. Technological thermal stresses in the shrink fitting of cylindrical bodies with consideration of plastic flows

    NASA Astrophysics Data System (ADS)

    Dats, E. P.; Tkacheva, A. V.

    2016-05-01

    This paper presents a solution of a sequence of one-dimensional boundary-value problems of thermal stresses defining the elastic-plastic deformation processes used in the shrink fitting of cylindrical bodies. The initiation and development of plastic flow in the materials of the assembly elements are studied taking into account the temperature dependence of the yield stress of these materials. During temperature equalization, the flow can slow down, followed by unloading and formation of a residual stress field providing tension. The conditions of formation and motion of the boundaries of the elastic and plastic states in plastic flow and during unloading are determined.

  17. Stress determination in thermally grown alumina scales using ruby luminescence

    SciTech Connect

    Renusch, D.; Veal, B.W.; Koshelev, I.; Natesan, K.; Grimsditch; Hou, P.Y.

    1996-06-01

    By exploiting the strain dependence of the ruby luminescence line, we have measured the strain in alumina scales thermally grown on Fe-Cr- Al alloys. Results are compared and found to be reasonably consistent with strains determined using x rays. Oxidation studies were carried out on alloys Fe - 5Cr - 28Al and Fe - 18Cr - 10Al (at.%). Significantly different levels of strain buildup were observed in scales on these alloys. Results on similar alloys containing a ``reactive element`` (Zr or Hf) in dilute quantity are also presented. Scales on alloys containing a reactive element (RE) can support significantly higher strains than scales on RE-free alloys. With the luminescence technique, strain relief associated with spallation thresholds is readily observed.

  18. Effect of severe environmental thermal stress on redox state in salmon.

    PubMed

    Nakano, Toshiki; Kameda, Masumi; Shoji, Yui; Hayashi, Satoshi; Yamaguchi, Toshiyasu; Sato, Minoru

    2014-01-01

    Fish are exposed to many kinds of environmental stressors and the chances of succumbing to infectious diseases may be increased a result. For example, an acute increase in temperature can induce numerous physiological changes in the body. In the present study, we examined the redox state in response to a severe acute stress resulting from heat shock in teleost coho salmon (Oncorhynchus kisutch). The plasma lipid peroxides levels in fish gradually increased after heat shock treatment. By 2.5 h post-heat stress, plasma glutathione (GSH) levels had decreased, but they had returned to basal levels by 17.5 h post-stress. Plasma superoxide dismutase activities in stressed fish were significantly increased compared with those in control fish at 17.5 h post-stress, but had returned to basal levels by 48 h post-stress. Expression levels of hepatic GSH and heat shock protein 70 gradually increased after heat shock treatment. These results concerning the changing patterns of multiple important redox-related biomarkers suggest that severe thermal stressors can affect the redox state and induce oxidative stress in ectothermal animals, such as fish, in vivo. Hence, manipulation of appropriate thermal treatment may possibly be useful to control fish fitness.

  19. Effect of severe environmental thermal stress on redox state in salmon

    PubMed Central

    Nakano, Toshiki; Kameda, Masumi; Shoji, Yui; Hayashi, Satoshi; Yamaguchi, Toshiyasu; Sato, Minoru

    2014-01-01

    Fish are exposed to many kinds of environmental stressors and the chances of succumbing to infectious diseases may be increased a result. For example, an acute increase in temperature can induce numerous physiological changes in the body. In the present study, we examined the redox state in response to a severe acute stress resulting from heat shock in teleost coho salmon (Oncorhynchus kisutch). The plasma lipid peroxides levels in fish gradually increased after heat shock treatment. By 2.5 h post-heat stress, plasma glutathione (GSH) levels had decreased, but they had returned to basal levels by 17.5 h post-stress. Plasma superoxide dismutase activities in stressed fish were significantly increased compared with those in control fish at 17.5 h post-stress, but had returned to basal levels by 48 h post-stress. Expression levels of hepatic GSH and heat shock protein 70 gradually increased after heat shock treatment. These results concerning the changing patterns of multiple important redox-related biomarkers suggest that severe thermal stressors can affect the redox state and induce oxidative stress in ectothermal animals, such as fish, in vivo. Hence, manipulation of appropriate thermal treatment may possibly be useful to control fish fitness. PMID:25009778

  20. Surface-Roughness Induced Residual Stresses in Thermal Barrier Coatings: Computer Simulations

    SciTech Connect

    Becher, P.F.; Carter, C.; Fuller, E.R., Jr.; Hsueh, C.H.; Langer, S.A.

    1998-10-26

    Adherence of plasma-sprayed thermal barrier coatings (TBC'S} is strongly dependent on mechanical interlocking at the interface between the ceramic coating and the underlying metallic bond coat. Typically, a rough bond-coat surface topology is required to achieve adequate mechanical bonding. However, the resultant interfacial asperities modify the residual stresses that develop in the coating system due to thermal expansion differences, and other misfit strains, and generate stresses that can induce progressive fracture and eventual spallation of the ceramic coating. For a flat interface the principal residual stress is parallel to the interface as the stress normal to the interface is zero. However, the residual stress normal to the interface becomes non-zero, when the interface has the required interlocking morphology. In the present study, an actual microstructure of a plasma-sprayed TBC system was numerically simulated and analyzed with a recently developed, object-oriented finite element analysis program, OOF, to give an estimate of the localized residual stresses in a TBC system. Additionally, model TBC rnicrostructures were examined to evaluate the manner in which the topology of interfacial asperities influences residual stresses. Results are present for several scenarios of modifying interfacial roughness.

  1. Estimating maize water stress by standard deviation of canopy temperature in thermal imagery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new crop water stress index using standard deviation of canopy temperature as an input was developed to monitor crop water status. In this study, thermal imagery was taken from maize under various levels of deficit irrigation treatments in different crop growing stages. The Expectation-Maximizatio...

  2. Pipeline design and thermal stress analysis of a 10kW@20K helium refrigerator

    NASA Astrophysics Data System (ADS)

    Xu, D.; Gong, L. H.; Xu, P.; Liu, H. M.; Li, L. F.; Xu, X. D.

    2014-01-01

    This paper is based on the devices and pipeline in the horizontal cryogenic cold-box of a 10kW@20K helium refrigerator developed by Technical Institute of Physics and Chemistry, Chinese Academy of Sciences. Four devices, six valves, supporting components and pipe lines are positioned in the cold-box. At operating state, the temperature of these devices and pipeline is far below the room temperature, and the lowest temperature is 14K. Due to different material and temperature, the shrinkage of devices and pipes is different. Finite element analysis software SOLIDWORKS SIMULATION was used to numerically simulate the thermal stress and deformation. The results show that the thermal stress of pipe A is a little large. So we should change the pipe route or use a bellows expansion joint. Bellows expansion joints should also be used in the pipes connected to three of the six valves to protect them by decreasing the deformation. At last, the effect of diameter, thickness and bend radius on the thermal stress was analyzed. The results show that the thermal stress of the pipes increases with the increase of the diameter and the decrease of the bend radius.

  3. Unconditionally stable implicit-explicit algorithms for coupled thermal stress waves

    NASA Technical Reports Server (NTRS)

    Liu, W. K.; Zhang, Y. F.

    1983-01-01

    An unconditionally stable implicit-explicit method is proposed for the analysis of transient coupled thermal stress waves, and the computer-implementation aspects of the method are discussed. In the method proposed here, the mechanical displacement and temperature are used as independent variables. The resulting coupled finite element matrix equations are symmetric.

  4. Release of bacterial spores from inner walls of a stainless steel cup subjected to thermal stress

    NASA Technical Reports Server (NTRS)

    Wolochow, H.; Chatigny, M. A.; Herbert, J.

    1974-01-01

    In an earlier report thermal stresses, simulating those expected on a Mars Lander, dislodged approximately 0.01% of an aerosol deposited surface burden, as did a landing shock of 8-10 G deceleration. This work confirms earlier results and demonstrates that release rate is not dependent on surface burden.

  5. Modeling of thermal stresses in a microtubular Solid Oxide Fuel Cell stack

    NASA Astrophysics Data System (ADS)

    Pianko-Oprych, Paulina; Zinko, Tomasz; Jaworski, Zdzisław

    2015-12-01

    A modeling study was carried out to analyze thermal stresses in a microtubular Solid Oxide Fuel Cell (mSOFC) stack and to estimate thermal expansion of the fuel cells inside the stack. A joint analysis by Computational Fluid Dynamics (CFD) and Computational Structural Mechanics Finite Element Method (FEM) was performed. Temperature profiles generated by the thermo-hydrodynamic model were applied in the thermo-mechanical model to calculate thermal stress distributions in the mSOFC stack. The results yield maximum thermal axial elongation equal to 1.34 mm for the mSOFC stack, while the maximum radial elongation was equal to 0.496 mm. Modeled maximum equivalent (von Mises) stress was equal to 538 MPA in the contact areas of the cylindrical housing and manifold on the fuel inlet side. Based on comparison of the total axial stresses and the residual ones with the material strength it was noticed that the anode and electrolyte layers should not be critically deformed, but there is a risk of damage for cathode layers at chosen fuel cell configurations. A high risk of damage was also noticed for the outer housing, near contact points with manifolds as well as at the air distributor due to large number of cut-outs in the material.

  6. Comparative proteomic analysis of Bactrocera dorsalis (Hendel) in response to thermal stress.

    PubMed

    Wei, Dong; Jia, Fu-Xian; Tian, Chuan-Bei; Tian, Yi; Smagghe, Guy; Dou, Wei; Wang, Jin-Jun

    2015-03-01

    Temperature is one of the most important environmental variables affecting growth, reproduction and distribution of insects. The rise of comparative proteomics provides a powerful tool to explore the response in proteins to thermal stress. As an important worldwide pest, the oriental fruit fly Bactrocera dorsalis causes severe economic losses to crops. To understand the response of B. dorsalis to thermal stress, we performed a comparative proteome analysis of this insect after exposure to extreme low and high temperatures using two-dimensional electrophoresis. Among the separated proteins, 51 diverse protein spots were present differently in response to extreme temperatures. Using tandem mass spectrometry sequencing analysis 39 proteins were successfully identified, which included 13 oxidoreductases, 10 binding proteins, 5 transferases, and 2 each of lyases, isomerases, ligases, and developmental proteins. Subsequently, the expression of these protein transcripts was studied by RT-qPCR to validate the proteomic results. In conclusion, this study provides a first look into the thermal stress response of B. dorsalis at the protein level, and thus it paves the way for further functional studies in the physiological mechanism related to thermal stress.

  7. Gene expression under thermal stress varies across a geographical range expansion front.

    PubMed

    Lancaster, Lesley T; Dudaniec, Rachael Y; Chauhan, Pallavi; Wellenreuther, Maren; Svensson, Erik I; Hansson, Bengt

    2016-03-01

    Many ectothermic species are currently expanding their distributions polewards due to anthropogenic global warming. Molecular genetic mechanisms facilitating range expansion under these conditions are largely unknown, but understanding these could help mitigate expanding pests and disease vectors, or help explain why some species fail to track changing climates. Here, using RNA-seq data, we examine genomewide changes in gene expression under heat and cold stress in the range-expanding damselfly Ischnura elegans in northern Europe. We find that both the number of genes involved and levels of gene expression under heat stress have become attenuated during the expansion, consistent with a previously reported release from selection on heat tolerances as species move polewards. Genes upregulated under cold stress differed between core and edge populations, corroborating previously reported rapid adaptation to cooler climates at the expansion front. Expression of sixty-nine genes exhibited a region x treatment effect; these were primarily upregulated in response to heat stress in core populations but in response to cold stress at the range edge, suggesting that some cellular responses originally adapted to heat stress may switch to cold-stress functionality upon encountering novel thermal selection regimes during range expansion. Transcriptional responses to thermal stress involving heat-shock and neural function genes were largely geographically conserved, while retrotransposon, regulatory, muscle function and defence gene expression patterns were more variable. Flexible mechanisms of cold-stress response and the ability of some genes to shift their function between heat and cold stress might be key mechanisms facilitating rapid poleward expansion in insects. PMID:26821170

  8. Gene expression under thermal stress varies across a geographical range expansion front.

    PubMed

    Lancaster, Lesley T; Dudaniec, Rachael Y; Chauhan, Pallavi; Wellenreuther, Maren; Svensson, Erik I; Hansson, Bengt

    2016-03-01

    Many ectothermic species are currently expanding their distributions polewards due to anthropogenic global warming. Molecular genetic mechanisms facilitating range expansion under these conditions are largely unknown, but understanding these could help mitigate expanding pests and disease vectors, or help explain why some species fail to track changing climates. Here, using RNA-seq data, we examine genomewide changes in gene expression under heat and cold stress in the range-expanding damselfly Ischnura elegans in northern Europe. We find that both the number of genes involved and levels of gene expression under heat stress have become attenuated during the expansion, consistent with a previously reported release from selection on heat tolerances as species move polewards. Genes upregulated under cold stress differed between core and edge populations, corroborating previously reported rapid adaptation to cooler climates at the expansion front. Expression of sixty-nine genes exhibited a region x treatment effect; these were primarily upregulated in response to heat stress in core populations but in response to cold stress at the range edge, suggesting that some cellular responses originally adapted to heat stress may switch to cold-stress functionality upon encountering novel thermal selection regimes during range expansion. Transcriptional responses to thermal stress involving heat-shock and neural function genes were largely geographically conserved, while retrotransposon, regulatory, muscle function and defence gene expression patterns were more variable. Flexible mechanisms of cold-stress response and the ability of some genes to shift their function between heat and cold stress might be key mechanisms facilitating rapid poleward expansion in insects.

  9. Coupled melt flow and thermal stress predictions for Czochralski crystal growth

    SciTech Connect

    Zou, Y.F.; Zhang, H.; Prasad, V.

    1995-12-31

    A coupled finite volume-finite element algorithm is developed to simulate the melt flows and predict the temperature distributions and thermal stresses in the Czochralski grown crystals. The computer model employs a multizone adaptive grid generation scheme together with curvilinear finite column discretization (MASTRAPP) to predict the transport phenomena associated with the crystal growth processes as well as the nonplanar melt/crystal interface shape and its dynamics (Zhang and Prasad, 1995a). The MASTRAPP has proven to be a robust and efficient scheme for the problems involving moving interfaces and free surfaces. Thermal stresses in the crystal are obtained by using a commercial finite element code, ALGOR, that uses the curvilinear mesh generated by the MASTRAPP. The numerical results show that the melt flows have a strong influence on thermal stresses in the crystal near the melt/crystal interface, and hence, melt convection must be included in the computer model for accurate stress predictions. The predicted stress phenomena agrees qualitatively with the report results.

  10. Residual thermal stresses in filamentary polymer-matrix composites containing an elastomeric interphase

    SciTech Connect

    Gardner, S.D.; Pittman, C.U. Jr.; Hackett, R.M. Mississippi Univ., University )

    1993-01-01

    A three-phase micromechanical model based on the method of cells is formulated to characterize residual thermal stresses in filamentary composites containing an interphase between the fiber and the matrix. This is the first such study to incorporate a true three-phase version of the method of cells. The model's performance is critically evaluated using data generated from other micromechanical models. Subsequently, a parametric study is performed to quantify the residual stresses in two hypothetical graphite fiber/epoxy matrix composites: one containing an elastomeric interphase whose Young's modulus is less than that of the fiber and the matrix and one incorporating an interphase whose Young's modulus is intermediate with respect to the fiber and the matrix. The data correlate the residual thermal stresses in the fiber, interphase and matrix as a function of the interphase thickness and fiber volume fraction within each model eomposite. The study makes a broad assessment of the stress-attenuating characteristics that each interphase imparts to the graphite/epoxy composites. Over the range of variables considered, properly dimensioning the elastomer interphase leads to a more favorable reduction of residual thermal stress. 38 refs.

  11. Iron GH2036 alloy residual stress thermal relaxation behavior in laser shock processing

    NASA Astrophysics Data System (ADS)

    Ren, X. D.; Zhou, W. F.; Xu, S. D.; Yuan, S. Q.; Ren, N. F.; Wang, Y.; Zhan, Q. B.

    2015