Science.gov

Sample records for alleviate traffic congestion

  1. Agent Reward Shaping for Alleviating Traffic Congestion

    NASA Technical Reports Server (NTRS)

    Tumer, Kagan; Agogino, Adrian

    2006-01-01

    Traffic congestion problems provide a unique environment to study how multi-agent systems promote desired system level behavior. What is particularly interesting in this class of problems is that no individual action is intrinsically "bad" for the system but that combinations of actions among agents lead to undesirable outcomes, As a consequence, agents need to learn how to coordinate their actions with those of other agents, rather than learn a particular set of "good" actions. This problem is ubiquitous in various traffic problems, including selecting departure times for commuters, routes for airlines, and paths for data routers. In this paper we present a multi-agent approach to two traffic problems, where far each driver, an agent selects the most suitable action using reinforcement learning. The agent rewards are based on concepts from collectives and aim to provide the agents with rewards that are both easy to learn and that if learned, lead to good system level behavior. In the first problem, we study how agents learn the best departure times of drivers in a daily commuting environment and how following those departure times alleviates congestion. In the second problem, we study how agents learn to select desirable routes to improve traffic flow and minimize delays for. all drivers.. In both sets of experiments,. agents using collective-based rewards produced near optimal performance (93-96% of optimal) whereas agents using system rewards (63-68%) barely outperformed random action selection (62-64%) and agents using local rewards (48-72%) performed worse than random in some instances.

  2. Proceedings of the ITE's 1987 national conference on strategies to alleviate traffic congestion

    SciTech Connect

    Not Available

    1988-01-01

    These proceedings discuss the papers presented at the conference on the subject of traffic congestion. The topics discussed were: Surveillance control and driver information system; fiber optics for traffic surveillance; solutions to traffic problems; traffic management in Texas; truck operations; traffic engineering; parking standards and requirements; and planning of improving traffic flow on local streets.

  3. Traffic congestion in interconnected complex networks

    NASA Astrophysics Data System (ADS)

    Tan, Fei; Wu, Jiajing; Xia, Yongxiang; Tse, Chi K.

    2014-06-01

    Traffic congestion in isolated complex networks has been investigated extensively over the last decade. Coupled network models have recently been developed to facilitate further understanding of real complex systems. Analysis of traffic congestion in coupled complex networks, however, is still relatively unexplored. In this paper, we try to explore the effect of interconnections on traffic congestion in interconnected Barabási-Albert scale-free networks. We find that assortative coupling can alleviate traffic congestion more readily than disassortative and random coupling when the node processing capacity is allocated based on node usage probability. Furthermore, the optimal coupling probability can be found for assortative coupling. However, three types of coupling preferences achieve similar traffic performance if all nodes share the same processing capacity. We analyze interconnected Internet autonomous-system-level graphs of South Korea and Japan and obtain similar results. Some practical suggestions are presented to optimize such real-world interconnected networks accordingly.

  4. Research on Urban Road Traffic Congestion Charging Based on Sustainable Development

    NASA Astrophysics Data System (ADS)

    Ye, Sun

    Traffic congestion is a major problem which bothers our urban traffic sustainable development at present. Congestion charging is an effective measure to alleviate urban traffic congestion. The paper first probes into several key issues such as the goal, the pricing, the scope, the method and the redistribution of congestion charging from theoretical angle. Then it introduces congestion charging practice in Singapore and London and draws conclusion and suggestion that traffic congestion charging should take scientific plan, support of public, public transportation development as the premise.

  5. Winning Strategies in Congested Traffic

    NASA Astrophysics Data System (ADS)

    Járai-Szabó, Ferenc; Néda, Zoltán

    2012-09-01

    One-directional traffic on two-lanes is modeled in the framework of a spring-block type model. A fraction q of the cars are allowed to change lanes, following simple dynamical rules, while the other cars keep their initial lane. The advance of cars, starting from equivalent positions and following the two driving strategies is studied and compared. As a function of the parameter q the winning probability and the average gain in the advancement for the lane-changing strategy is computed. An interesting phase-transition like behavior is revealed and conclusions are drawn regarding the conditions when the lane changing strategy is the better option for the drivers.

  6. Computational realizations of the entropy condition in modeling congested traffic flow. Final report

    SciTech Connect

    Bui, D.D.; Nelson, P.; Narasimhan, S.L.

    1992-04-01

    Existing continuum models of traffic flow tend to provide somewhat unrealistic predictions for conditions of congested flow. Previous approaches to modeling congested flow conditions are based on various types of special treatments at the congested freeway sections. Ansorge (Transpn. Res. B, 24B(1990), 133-143) has suggested that such difficulties might be substantially alleviated, even for the simple conservation model of Lighthill and Whitman, if the entropy condition were incorporated into the numerical schemes. In this report the numerical aspects and effects of incorporating the entropy condition in congested traffic flow problems are discussed. Results for simple scenarios involving dissipation of traffic jams suggest that Godnunov's method, which in a numerical technique that incorporates the entropy condition, is more accurate than two alternative methods. Similarly, numerical results for this method, applied to simple model problems involving formation of traffic jams, appear at least as realistic as those obtained from the well-known code of FREFLO.

  7. Congestion transition in air traffic networks.

    PubMed

    Monechi, Bernardo; Servedio, Vito D P; Loreto, Vittorio

    2015-01-01

    Air Transportation represents a very interesting example of a complex techno-social system whose importance has considerably grown in time and whose management requires a careful understanding of the subtle interplay between technological infrastructure and human behavior. Despite the competition with other transportation systems, a growth of air traffic is still foreseen in Europe for the next years. The increase of traffic load could bring the current Air Traffic Network above its capacity limits so that safety standards and performances might not be guaranteed anymore. Lacking the possibility of a direct investigation of this scenario, we resort to computer simulations in order to quantify the disruptive potential of an increase in traffic load. To this end we model the Air Transportation system as a complex dynamical network of flights controlled by humans who have to solve potentially dangerous conflicts by redirecting aircraft trajectories. The model is driven and validated through historical data of flight schedules in a European national airspace. While correctly reproducing actual statistics of the Air Transportation system, e.g., the distribution of delays, the model allows for theoretical predictions. Upon an increase of the traffic load injected in the system, the model predicts a transition from a phase in which all conflicts can be successfully resolved, to a phase in which many conflicts cannot be resolved anymore. We highlight how the current flight density of the Air Transportation system is well below the transition, provided that controllers make use of a special re-routing procedure. While the congestion transition displays a universal scaling behavior, its threshold depends on the conflict solving strategy adopted. Finally, the generality of the modeling scheme introduced makes it a flexible general tool to simulate and control Air Transportation systems in realistic and synthetic scenarios.

  8. Congestion Transition in Air Traffic Networks

    PubMed Central

    Monechi, Bernardo; Servedio, Vito D. P.; Loreto, Vittorio

    2015-01-01

    Air Transportation represents a very interesting example of a complex techno-social system whose importance has considerably grown in time and whose management requires a careful understanding of the subtle interplay between technological infrastructure and human behavior. Despite the competition with other transportation systems, a growth of air traffic is still foreseen in Europe for the next years. The increase of traffic load could bring the current Air Traffic Network above its capacity limits so that safety standards and performances might not be guaranteed anymore. Lacking the possibility of a direct investigation of this scenario, we resort to computer simulations in order to quantify the disruptive potential of an increase in traffic load. To this end we model the Air Transportation system as a complex dynamical network of flights controlled by humans who have to solve potentially dangerous conflicts by redirecting aircraft trajectories. The model is driven and validated through historical data of flight schedules in a European national airspace. While correctly reproducing actual statistics of the Air Transportation system, e.g., the distribution of delays, the model allows for theoretical predictions. Upon an increase of the traffic load injected in the system, the model predicts a transition from a phase in which all conflicts can be successfully resolved, to a phase in which many conflicts cannot be resolved anymore. We highlight how the current flight density of the Air Transportation system is well below the transition, provided that controllers make use of a special re-routing procedure. While the congestion transition displays a universal scaling behavior, its threshold depends on the conflict solving strategy adopted. Finally, the generality of the modeling scheme introduced makes it a flexible general tool to simulate and control Air Transportation systems in realistic and synthetic scenarios. PMID:25993476

  9. Congestion transition in air traffic networks.

    PubMed

    Monechi, Bernardo; Servedio, Vito D P; Loreto, Vittorio

    2015-01-01

    Air Transportation represents a very interesting example of a complex techno-social system whose importance has considerably grown in time and whose management requires a careful understanding of the subtle interplay between technological infrastructure and human behavior. Despite the competition with other transportation systems, a growth of air traffic is still foreseen in Europe for the next years. The increase of traffic load could bring the current Air Traffic Network above its capacity limits so that safety standards and performances might not be guaranteed anymore. Lacking the possibility of a direct investigation of this scenario, we resort to computer simulations in order to quantify the disruptive potential of an increase in traffic load. To this end we model the Air Transportation system as a complex dynamical network of flights controlled by humans who have to solve potentially dangerous conflicts by redirecting aircraft trajectories. The model is driven and validated through historical data of flight schedules in a European national airspace. While correctly reproducing actual statistics of the Air Transportation system, e.g., the distribution of delays, the model allows for theoretical predictions. Upon an increase of the traffic load injected in the system, the model predicts a transition from a phase in which all conflicts can be successfully resolved, to a phase in which many conflicts cannot be resolved anymore. We highlight how the current flight density of the Air Transportation system is well below the transition, provided that controllers make use of a special re-routing procedure. While the congestion transition displays a universal scaling behavior, its threshold depends on the conflict solving strategy adopted. Finally, the generality of the modeling scheme introduced makes it a flexible general tool to simulate and control Air Transportation systems in realistic and synthetic scenarios. PMID:25993476

  10. A theory of traffic congestion at moving bottlenecks

    NASA Astrophysics Data System (ADS)

    Kerner, Boris S.; Klenov, Sergey L.

    2010-10-01

    The physics of traffic congestion occurring at a moving bottleneck on a multi-lane road is revealed based on the numerical analyses of vehicular traffic with a discrete stochastic traffic flow model in the framework of three-phase traffic theory. We find that there is a critical speed of a moving bottleneck at which traffic breakdown, i.e. a first-order phase transition from free flow to synchronized flow, occurs spontaneously at the moving bottleneck, if the flow rate upstream of the bottleneck is great enough. The greater the flow rate, the higher the critical speed of the moving bottleneck. A diagram of congested traffic patterns at the moving bottleneck is found, which shows regions in the flow-rate-moving-bottleneck-speed plane in which congested patterns emerge spontaneously or can be induced through large enough disturbances in an initial free flow. A comparison of features of traffic breakdown and resulting congested patterns at the moving bottleneck with known ones at an on-ramp (and other motionless) bottleneck is made. Nonlinear features of complex interactions and transformations of congested traffic patterns occurring at on- and off-ramp bottlenecks due to the existence of the moving bottleneck are found. The physics of the phenomenon of traffic congestion due to 'elephant racing' on a multi-lane road is revealed.

  11. Traffic Congestion Detection System through Connected Vehicles and Big Data.

    PubMed

    Cárdenas-Benítez, Néstor; Aquino-Santos, Raúl; Magaña-Espinoza, Pedro; Aguilar-Velazco, José; Edwards-Block, Arthur; Medina Cass, Aldo

    2016-04-28

    This article discusses the simulation and evaluation of a traffic congestion detection system which combines inter-vehicular communications, fixed roadside infrastructure and infrastructure-to-infrastructure connectivity and big data. The system discussed in this article permits drivers to identify traffic congestion and change their routes accordingly, thus reducing the total emissions of CO₂ and decreasing travel time. This system monitors, processes and stores large amounts of data, which can detect traffic congestion in a precise way by means of a series of algorithms that reduces localized vehicular emission by rerouting vehicles. To simulate and evaluate the proposed system, a big data cluster was developed based on Cassandra, which was used in tandem with the OMNeT++ discreet event network simulator, coupled with the SUMO (Simulation of Urban MObility) traffic simulator and the Veins vehicular network framework. The results validate the efficiency of the traffic detection system and its positive impact in detecting, reporting and rerouting traffic when traffic events occur.

  12. Making the Traffic Operations Case for Congestion Pricing: Operational Impacts of Congestion Pricing

    SciTech Connect

    Chin, Shih-Miao; Hu, Patricia S; Davidson, Diane

    2011-02-01

    Congestion begins when an excess of vehicles on a segment of roadway at a given time, resulting in speeds that are significantly slower than normal or 'free flow' speeds. Congestion often means stop-and-go traffic. The transition occurs when vehicle density (the number of vehicles per mile in a lane) exceeds a critical level. Once traffic enters a state of congestion, recovery or time to return to a free-flow state is lengthy; and during the recovery process, delay continues to accumulate. The breakdown in speed and flow greatly impedes the efficient operation of the freeway system, resulting in economic, mobility, environmental and safety problems. Freeways are designed to function as access-controlled highways characterized by uninterrupted traffic flow so references to freeway performance relate primarily to the quality of traffic flow or traffic conditions as experienced by users of the freeway. The maximum flow or capacity of a freeway segment is reached while traffic is moving freely. As a result, freeways are most productive when they carry capacity flows at 60 mph, whereas lower speeds impose freeway delay, resulting in bottlenecks. Bottlenecks may be caused by physical disruptions, such as a reduced number of lanes, a change in grade, or an on-ramp with a short merge lane. This type of bottleneck occurs on a predictable or 'recurrent' basis at the same time of day and same day of week. Recurrent congestion totals 45% of congestion and is primarily from bottlenecks (40%) as well as inadequate signal timing (5%). Nonrecurring bottlenecks result from crashes, work zone disruptions, adverse weather conditions, and special events that create surges in demand and that account for over 55% of experienced congestion. Figure 1.1 shows that nonrecurring congestion is composed of traffic incidents (25%), severe weather (15%), work zones, (10%), and special events (5%). Between 1995 and 2005, the average percentage change in increased peak traveler delay, based on

  13. Influence of periodic traffic congestion on epidemic spreading

    NASA Astrophysics Data System (ADS)

    Zheng, Muhua; Ruan, Zhongyuan; Tang, Ming; Do, Younghae; Liu, Zonghua

    2016-11-01

    In the metropolis, traffic congestion has become a very serious problem, especially in rush hours. This congestion causes people to have more chance to contact each other and thus will accelerate epidemic spreading. To explain this observation, we present a reaction-diffusion (RD) model with a periodic varying diffusion rate to represent the daily traveling behaviors of human beings and its influence to epidemic spreading. By extensive numerical simulations, we find that the epidemic spreading can be significantly influenced by traffic congestion where the amplitude, period and duration of diffusion rate are the three key parameters. Furthermore, a brief theory is presented to explain the effects of the three key parameters. These findings suggest that except the normal ways of controlling contagion in working places and long-distance traveling, controlling the contagion in daily traffic congestion may be another effective way to reduce epidemic spreading.

  14. Optimal structure of complex networks for minimizing traffic congestion.

    PubMed

    Zhao, Liang; Cupertino, Thiago Henrique; Park, Kwangho; Lai, Ying-Cheng; Jin, Xiaogang

    2007-12-01

    To design complex networks to minimize traffic congestion, it is necessary to understand how traffic flow depends on network structure. We study data packet flow on complex networks, where the packet delivery capacity of each node is not fixed. The optimal configuration of capacities to minimize traffic congestion is derived and the critical packet generating rate is determined, below which the network is at a free flow state but above which congestion occurs. Our analysis reveals a direct relation between network topology and traffic flow. Optimal network structure, free of traffic congestion, should have two features: uniform distribution of load over all nodes and small network diameter. This finding is confirmed by numerical simulations. Our analysis also makes it possible to theoretically compare the congestion conditions for different types of complex networks. In particular, we find that network with low critical generating rate is more susceptible to congestion. The comparison has been made on the following complex-network topologies: random, scale-free, and regular.

  15. Predictability of Road Traffic and Congestion in Urban Areas

    PubMed Central

    Wang, Jingyuan; Mao, Yu; Li, Jing; Xiong, Zhang; Wang, Wen-Xu

    2015-01-01

    Mitigating traffic congestion on urban roads, with paramount importance in urban development and reduction of energy consumption and air pollution, depends on our ability to foresee road usage and traffic conditions pertaining to the collective behavior of drivers, raising a significant question: to what degree is road traffic predictable in urban areas? Here we rely on the precise records of daily vehicle mobility based on GPS positioning device installed in taxis to uncover the potential daily predictability of urban traffic patterns. Using the mapping from the degree of congestion on roads into a time series of symbols and measuring its entropy, we find a relatively high daily predictability of traffic conditions despite the absence of any priori knowledge of drivers' origins and destinations and quite different travel patterns between weekdays and weekends. Moreover, we find a counterintuitive dependence of the predictability on travel speed: the road segment associated with intermediate average travel speed is most difficult to be predicted. We also explore the possibility of recovering the traffic condition of an inaccessible segment from its adjacent segments with respect to limited observability. The highly predictable traffic patterns in spite of the heterogeneity of drivers' behaviors and the variability of their origins and destinations enables development of accurate predictive models for eventually devising practical strategies to mitigate urban road congestion. PMID:25849534

  16. Traffic Congestion Detection System through Connected Vehicles and Big Data

    PubMed Central

    Cárdenas-Benítez, Néstor; Aquino-Santos, Raúl; Magaña-Espinoza, Pedro; Aguilar-Velazco, José; Edwards-Block, Arthur; Medina Cass, Aldo

    2016-01-01

    This article discusses the simulation and evaluation of a traffic congestion detection system which combines inter-vehicular communications, fixed roadside infrastructure and infrastructure-to-infrastructure connectivity and big data. The system discussed in this article permits drivers to identify traffic congestion and change their routes accordingly, thus reducing the total emissions of CO2 and decreasing travel time. This system monitors, processes and stores large amounts of data, which can detect traffic congestion in a precise way by means of a series of algorithms that reduces localized vehicular emission by rerouting vehicles. To simulate and evaluate the proposed system, a big data cluster was developed based on Cassandra, which was used in tandem with the OMNeT++ discreet event network simulator, coupled with the SUMO (Simulation of Urban MObility) traffic simulator and the Veins vehicular network framework. The results validate the efficiency of the traffic detection system and its positive impact in detecting, reporting and rerouting traffic when traffic events occur. PMID:27136548

  17. Predictability of road traffic and congestion in urban areas.

    PubMed

    Wang, Jingyuan; Mao, Yu; Li, Jing; Xiong, Zhang; Wang, Wen-Xu

    2015-01-01

    Mitigating traffic congestion on urban roads, with paramount importance in urban development and reduction of energy consumption and air pollution, depends on our ability to foresee road usage and traffic conditions pertaining to the collective behavior of drivers, raising a significant question: to what degree is road traffic predictable in urban areas? Here we rely on the precise records of daily vehicle mobility based on GPS positioning device installed in taxis to uncover the potential daily predictability of urban traffic patterns. Using the mapping from the degree of congestion on roads into a time series of symbols and measuring its entropy, we find a relatively high daily predictability of traffic conditions despite the absence of any priori knowledge of drivers' origins and destinations and quite different travel patterns between weekdays and weekends. Moreover, we find a counterintuitive dependence of the predictability on travel speed: the road segment associated with intermediate average travel speed is most difficult to be predicted. We also explore the possibility of recovering the traffic condition of an inaccessible segment from its adjacent segments with respect to limited observability. The highly predictable traffic patterns in spite of the heterogeneity of drivers' behaviors and the variability of their origins and destinations enables development of accurate predictive models for eventually devising practical strategies to mitigate urban road congestion.

  18. Traffic Congestion Detection System through Connected Vehicles and Big Data.

    PubMed

    Cárdenas-Benítez, Néstor; Aquino-Santos, Raúl; Magaña-Espinoza, Pedro; Aguilar-Velazco, José; Edwards-Block, Arthur; Medina Cass, Aldo

    2016-01-01

    This article discusses the simulation and evaluation of a traffic congestion detection system which combines inter-vehicular communications, fixed roadside infrastructure and infrastructure-to-infrastructure connectivity and big data. The system discussed in this article permits drivers to identify traffic congestion and change their routes accordingly, thus reducing the total emissions of CO₂ and decreasing travel time. This system monitors, processes and stores large amounts of data, which can detect traffic congestion in a precise way by means of a series of algorithms that reduces localized vehicular emission by rerouting vehicles. To simulate and evaluate the proposed system, a big data cluster was developed based on Cassandra, which was used in tandem with the OMNeT++ discreet event network simulator, coupled with the SUMO (Simulation of Urban MObility) traffic simulator and the Veins vehicular network framework. The results validate the efficiency of the traffic detection system and its positive impact in detecting, reporting and rerouting traffic when traffic events occur. PMID:27136548

  19. Predictability of road traffic and congestion in urban areas.

    PubMed

    Wang, Jingyuan; Mao, Yu; Li, Jing; Xiong, Zhang; Wang, Wen-Xu

    2015-01-01

    Mitigating traffic congestion on urban roads, with paramount importance in urban development and reduction of energy consumption and air pollution, depends on our ability to foresee road usage and traffic conditions pertaining to the collective behavior of drivers, raising a significant question: to what degree is road traffic predictable in urban areas? Here we rely on the precise records of daily vehicle mobility based on GPS positioning device installed in taxis to uncover the potential daily predictability of urban traffic patterns. Using the mapping from the degree of congestion on roads into a time series of symbols and measuring its entropy, we find a relatively high daily predictability of traffic conditions despite the absence of any priori knowledge of drivers' origins and destinations and quite different travel patterns between weekdays and weekends. Moreover, we find a counterintuitive dependence of the predictability on travel speed: the road segment associated with intermediate average travel speed is most difficult to be predicted. We also explore the possibility of recovering the traffic condition of an inaccessible segment from its adjacent segments with respect to limited observability. The highly predictable traffic patterns in spite of the heterogeneity of drivers' behaviors and the variability of their origins and destinations enables development of accurate predictive models for eventually devising practical strategies to mitigate urban road congestion. PMID:25849534

  20. Congestion and communication in confined ant traffic

    NASA Astrophysics Data System (ADS)

    Gravish, Nick; Gold, Gregory; Zangwill, Andrew; Goodisman, Michael A. D.; Goldman, Daniel I.

    2014-03-01

    Many social animals move and communicate within confined spaces. In subterranean fire ants Solenopsis invicta, mobility within crowded nest tunnels is important for resource and information transport. Within confined tunnels, communication and traffic flow are at odds: trafficking ants communicate through tactile interactions while stopped, yet ants that stop to communicate impose physical obstacles on the traffic. We monitor the bi-directional flow of fire ant workers in laboratory tunnels of varied diameter D. The persistence time of communicating ant aggregations, τ, increases approximately linearly with the number of participating ants, n. The sensitivity of traffic flow increases as D decreases and diverges at a minimum diameter, Dc. A cellular automata model incorporating minimal traffic features--excluded volume and communication duration--reproduces features of the experiment. From the model we identify a competition between information transfer and the need to maintain jam-free traffic flow. We show that by balancing information transfer and traffic flow demands, an optimum group strategy exists which maximizes information throughput. We acknowledge funding from NSF PoLS #0957659 and #PHY-1205878.

  1. Automobile Fuel Economy and Traffic Congestion

    NASA Astrophysics Data System (ADS)

    An, Feng

    An analytical model for automobile fuel consumption based on vehicle parameters and traffic characteristics is developed in this thesis. This model is based on two approximations: (1) an engine map approximation, and (2) a tractive energy approximation. This model is the first comprehensive attempt to predict fuel economy without having to go through a second-by-second measurements, simulation or a regression procedure. A computer spreadsheet program based on this model has been created. It can be used to calculate the fuel economy of any motor vehicle in any driving pattern, based on public-available vehicle parameters, with absolute error typically less than +/-5%. Several applications of this model are presented: (1) calculating the fuel economy of motor vehicles in 7 different driving cycles, (2) determining the relationship between fuel economy and vehicle average velocity, (3) determining the vehicle optimal fuel efficiency speed, (4) discussing the effect of traffic smoothness on fuel economy, (5) discussing how driving behaviors affect fuel economy, (6) discussing the effect of highway speed limit on fuel economy, (7) discussing the maximum possible fuel economy for ordinary cars, and finally, (8) discussing the impact of vehicle parameters on fuel economy.

  2. Traffic Congestion on a University Campus: A Consideration of Unconventional Remedies to Nontraditional Transportation Patterns

    ERIC Educational Resources Information Center

    Kaplan, Dave; Clapper, Thomas

    2007-01-01

    U.S. transportation data suggest that the number of vehicle miles traveled has far surpassed new capacity, resulting in increased traffic congestion in many communities throughout the country. This article reports on traffic congestion around a university campus located within a small town. The mix of trip purposes varies considerably in this…

  3. Road Traffic Control Based on Genetic Algorithm for Reducing Traffic Congestion

    NASA Astrophysics Data System (ADS)

    Shigehiro, Yuji; Miyakawa, Takuya; Masuda, Tatsuya

    In this paper, we propose a road traffic control method for reducing traffic congestion with genetic algorithm. In the not too distant future, the system which controls the routes of all vehicles in a certain area must be realized. The system should optimize the routes of all vehicles, however the solution space of this problem is enormous. Therefore we apply the genetic algorithm to this problem, by encoding the route of all vehicles to a fixed length chromosome. To improve the search performance, a new genetic operator called “path shortening” is also designed. The effectiveness of the proposed method is shown by the experiment.

  4. Road Usage Heterogeneity and Mitigation of Traffic Congestion

    NASA Astrophysics Data System (ADS)

    Gomzalez, Marta C.; Wang, Pu

    2012-02-01

    Road networks form the backbone of the social and economic life of a city. Until recently, however, data have not been available to study the impact of trip selection on traffic congestion at an urban scale. To that end, we combined the most complete record of daily trips with the detailed road GIS data to analyze the road usage patterns in two US metropolitan areas. We classify the importance of road segments based on their ability to attract drivers from diverse sources and find that most of them are mainly used by drivers from very few sources. Thanks to this heterogeneity, we find that it is possible to design an efficient strategy to largely reduce the travel time in the road system.

  5. Algorithm and data support of traffic congestion forecasting in the controlled transport

    NASA Astrophysics Data System (ADS)

    Dmitriev, S. V.

    2015-06-01

    The topicality of problem of the traffic congestion forecasting in the logistic systems of product movement highways is considered. The concepts: the controlled territory, the highway occupancy by vehicles, the parking and the controlled territory are introduced. Technical realizabilityof organizing the necessary flow of information on the state of the transport system for its regulation has been marked. Sequence of practical implementation of the solution is given. An algorithm for predicting traffic congestion in the controlled transport system is suggested.

  6. How Travel Demand Affects Detection of Non-Recurrent Traffic Congestion on Urban Road Networks

    NASA Astrophysics Data System (ADS)

    Anbaroglu, B.; Heydecker, B.; Cheng, T.

    2016-06-01

    Occurrence of non-recurrent traffic congestion hinders the economic activity of a city, as travellers could miss appointments or be late for work or important meetings. Similarly, for shippers, unexpected delays may disrupt just-in-time delivery and manufacturing processes, which could lose them payment. Consequently, research on non-recurrent congestion detection on urban road networks has recently gained attention. By analysing large amounts of traffic data collected on a daily basis, traffic operation centres can improve their methods to detect non-recurrent congestion rapidly and then revise their existing plans to mitigate its effects. Space-time clusters of high link journey time estimates correspond to non-recurrent congestion events. Existing research, however, has not considered the effect of travel demand on the effectiveness of non-recurrent congestion detection methods. Therefore, this paper investigates how travel demand affects detection of non-recurrent traffic congestion detection on urban road networks. Travel demand has been classified into three categories as low, normal and high. The experiments are carried out on London's urban road network, and the results demonstrate the necessity to adjust the relative importance of the component evaluation criteria depending on the travel demand level.

  7. Containing air pollution and traffic congestion: Transport policy and the environment in Singapore

    NASA Astrophysics Data System (ADS)

    Chin, Anthony T. H.

    Land transportation remains one of the main contributors of noise and air pollution in urban areas. This is in addition to traffic congestion and accidents which result in the loss of productive activity. While there is a close relationship between traffic volumes and levels of noise and air pollution, transport authorities often assume that solving traffic congestion would reduce noise and air pollutant levels. Tight control over automobile ownership and use in Singapore has contributed in improving traffic flows, travel speeds and air quality. The adoption of internationally accepted standards on automobile emissions and gasoline have been effective in reducing air pollution from motor vehicles. Demand management measures have largely focused on controlling the source of traffic congestion, i.e. private automobile ownership and its use especially within the Central Business District during the day. This paper reviews and analyzes the effectiveness of two measures which are instrumental in controlling congestion and automobile ownership, i.e. road pricing and the vehicle quota scheme (VQS). While these measures have been successful in achieving desired objectives, it has also led to the spreading of traffic externalities to other roads in the network, loss in consumer welfare and rent seeking by automobile traders.

  8. Traffic congestion forecasting model for the INFORM System. Final report

    SciTech Connect

    Azarm, A.; Mughabghab, S.; Stock, D.

    1995-05-01

    This report describes a computerized traffic forecasting model, developed by Brookhaven National Laboratory (BNL) for a portion of the Long Island INFORM Traffic Corridor. The model has gone through a testing phase, and currently is able to make accurate traffic predictions up to one hour forward in time. The model will eventually take on-line traffic data from the INFORM system roadway sensors and make projections as to future traffic patterns, thus allowing operators at the New York State Department of Transportation (D.O.T.) INFORM Traffic Management Center to more optimally manage traffic. It can also form the basis of a travel information system. The BNL computer model developed for this project is called ATOP for Advanced Traffic Occupancy Prediction. The various modules of the ATOP computer code are currently written in Fortran and run on PC computers (pentium machine) faster than real time for the section of the INFORM corridor under study. The following summarizes the various routines currently contained in the ATOP code: Statistical forecasting of traffic flow and occupancy using historical data for similar days and time (long term knowledge), and the recent information from the past hour (short term knowledge). Estimation of the empirical relationships between traffic flow and occupancy using long and short term information. Mechanistic interpolation using macroscopic traffic models and based on the traffic flow and occupancy forecasted (item-1), and the empirical relationships (item-2) for the specific highway configuration at the time of simulation (construction, lane closure, etc.). Statistical routine for detection and classification of anomalies and their impact on the highway capacity which are fed back to previous items.

  9. How many probe vehicles are enough for identifying traffic congestion?—a study from a streaming data perspective

    NASA Astrophysics Data System (ADS)

    Wang, Handong; Yue, Yang; Li, Qingquan

    2013-03-01

    Many studies have been carried out using vehicle trajectory to analyze traffic conditions, for instance, identifying traffic congestion. However, there is a lack of a systematic study on the appropriate number of probe vehicles and their sampling interval in order to identify traffic congestion accurately. Moreover, most of related studies ignore the streaming feature of trajectory data. This paper first represents a novel method of identifying traffic congestion considering the stream feature of vehicle trajectories. Instead of processing the whole data stream, a series of snapshots are extracted. Congested road segments can be identified by analyzing the clusters' evolution among a series of adjacent snapshots. We then calculated a series of parameters and their corresponding congestion identification accuracy. The results have implications for related probe vehicle deployment and traffic analysis; for example, when 5% of probe vehicles are available, 85% identification accuracy can be reached if the sampling time interval is 10 s.

  10. Packet Traffic Dynamics Near Onset of Congestion in Data Communication Network Model

    NASA Astrophysics Data System (ADS)

    Lawniczak, A. T.; Tang, X.

    2006-05-01

    The dominant technology of data communication networks is the Packet Switching Network (PSN). It is a complex technology organized as various hierarchical layers according to the International Standard Organization (ISO) Open Systems Interconnect (OSI) Reference Model. The Network Layer of the ISO OSI Reference Model is responsible for delivering packets from their sources to their destinations and for dealing with congestion if it arises in a network. Thus, we focus on this layer and present an abstraction of the Network Layer of the ISO OSI Reference Model. Using this abstraction we investigate how onset of traffic congestion is affected for various routing algorithms by changes in network connection topology. We study how aggregate measures of network performance depend on network connection topology and routing. We explore packets traffic spatio-temporal dynamics near the phase transition point from free flow to congestion for various network connection topologies and routing algorithms. We consider static and adaptive routings. We present selected simulation results.

  11. Analysis of traffic congestion induced by the work zone

    NASA Astrophysics Data System (ADS)

    Fei, L.; Zhu, H. B.; Han, X. L.

    2016-05-01

    Based on the cellular automata model, a meticulous two-lane cellular automata model is proposed, in which the driving behavior difference and the difference of vehicles' accelerations between the moving state and the starting state are taken into account. Furthermore the vehicles' motion is refined by using the small cell of one meter long. Then accompanied by coming up with a traffic management measure, a two-lane highway traffic model containing a work zone is presented, in which the road is divided into normal area, merging area and work zone. The vehicles in different areas move forward according to different lane changing rules and position updating rules. After simulation it is found that when the density is small the cluster length in front of the work zone increases with the decrease of the merging probability. Then the suitable merging length and the appropriate speed limit value are recommended. The simulation result in the form of the speed-flow diagram is in good agreement with the empirical data. It indicates that the presented model is efficient and can partially reflect the real traffic. The results may be meaningful for traffic optimization and road construction management.

  12. Analysis of Traffic Congestion by Considering Merging on Entry Lines in Transportation System

    NASA Astrophysics Data System (ADS)

    Hoshino, Takahiro; Tsuboi, Kazuhiro; Hamamatsu, Yoshio

    In a transportation system, a merging control strategy is necessary to avoid collisions between vehicles at a merging section with entry lines. In this study, under the assumption that each entry line is assigned time-independent priority, we analyze traffic congestion with a stochastic model. A quantitative estimation of the congestion is successfully obtained in terms of the average queue length and the average queuing delay. On the basis of analytical results, we propose a control strategy that changes the priority periodically. Using simulation, it is clarified that the proposed control strategy gives an arbitrary values of the queue length and the queuing delay on each line.

  13. Impact of traffic congestion on road accidents: a spatial analysis of the M25 motorway in England.

    PubMed

    Wang, Chao; Quddus, Mohammed A; Ison, Stephen G

    2009-07-01

    Traffic congestion and road accidents are two external costs of transport and the reduction of their impacts is often one of the primary objectives for transport policy makers. The relationship between traffic congestion and road accidents however is not apparent and less studied. It is speculated that there may be an inverse relationship between traffic congestion and road accidents, and as such this poses a potential dilemma for transport policy makers. This study aims to explore the impact of traffic congestion on the frequency of road accidents using a spatial analysis approach, while controlling for other relevant factors that may affect road accidents. The M25 London orbital motorway, divided into 70 segments, was chosen to conduct this study and relevant data on road accidents, traffic and road characteristics were collected. A robust technique has been developed to map M25 accidents onto its segments. Since existing studies have often used a proxy to measure the level of congestion, this study has employed a precise congestion measurement. A series of Poisson based non-spatial (such as Poisson-lognormal and Poisson-gamma) and spatial (Poisson-lognormal with conditional autoregressive priors) models have been used to account for the effects of both heterogeneity and spatial correlation. The results suggest that traffic congestion has little or no impact on the frequency of road accidents on the M25 motorway. All other relevant factors have provided results consistent with existing studies.

  14. Reducing Traffic Congestions by Introducing CACC-Vehicles on a Multi-Lane Highway Using Agent-Based Approach

    NASA Technical Reports Server (NTRS)

    Arnaout, Georges M.; Bowling, Shannon R.

    2011-01-01

    Traffic congestion is an ongoing problem of great interest to researchers from different areas in academia. With the emerging technology for inter-vehicle communication, vehicles have the ability to exchange information with predecessors by wireless communication. In this paper, we present an agent-based model of traffic congestion and examine the impact of having CACC (Cooperative Adaptive Cruise Control) embedded vehicle(s) on a highway system consisting of 4 traffic lanes without overtaking. In our model, CACC vehicles adapt their acceleration/deceleration according to vehicle-to-vehicle inter-communication. We analyze the average speed of the cars, the shockwaves, and the evolution of traffic congestion throughout the lifecycle of the model. The study identifies how CACC vehicles affect the dynamics of traffic flow on a complex network and reduce the oscillatory behavior (stop and go) resulting from the acceleration/deceleration of the vehicles.

  15. Nature of the Congested Traffic and Quasi-steady States of the General Motor Models

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Xu, Xihua; Pang, John Z. F.; Monterola, Christopher

    2015-03-01

    We look at the general motor (GM) class microscopic traffic models and analyze some of the universal features of the (multi-)cluster solutions, including the emergence of an intrinsic scale and the quasisoliton dynamics. We show that the GM models can capture the essential physics of the real traffic dynamics, especially the phase transition from the free flow to the congested phase, from which the wide moving jams emerges (the F-S-J transition pioneered by B.S. Kerner). In particular, the congested phase can be associated with either the multi-cluster quasi-steady states, or their more homogeneous precursor states. In both cases the states can last for a long time, and the narrow clusters will eventually grow and merge, leading to the formation of the wide moving jams. We present a general method to fit the empirical parameters so that both quantitative and qualitative macroscopic empirical features can be reproduced with a minimal GM model. We present numerical results for the traffic dynamics both with and without the bottleneck, including various types of spontaneous and induced ``synchronized flow,'' as well as the evolution of wide moving jams. We also discuss its implications to the nature of different phases in traffic dynamics.

  16. Highly Dynamic and Adaptive Traffic Congestion Avoidance in Real-Time Inspired by Honey Bee Behavior

    NASA Astrophysics Data System (ADS)

    Wedde, Horst F.; Lehnhoff, Sebastian; van Bonn, Bernhard; Bay, Z.; Becker, S.; Böttcher, S.; Brunner, C.; Büscher, A.; Fürst, T.; Lazarescu, A. M.; Rotaru, E.; Senge, S.; Steinbach, B.; Yilmaz, F.; Zimmermann, T.

    Traffic congestions have become a major problem in metropolitan areas world-wide, within and between cities, to an extent where they make driving and transportation times largely unpredictable. Due to the highly dynamic character of congestion building and dissolving this phenomenon appears even to resist a formal treatment. Static approaches, and even more their global management, have proven counterproductive in practice. Given the latest progress in VANET technology and the remarkable commercially driven efforts like in the European C2C consortium, or the VSC Project in the US, allow meanwhile to tackle various aspects of traffic regulation through VANET communication. In this paper we introduce a novel, completely decentralized multi-agent routing algorithm (termed BeeJamA) which we have derived from the foraging behavior of honey bees. It is highly dynamic, adaptive, robust, and scalable, and it allows for both avoiding congestions, and minimizing traveling times to individual destinations. Vehicle guidance is provided well ahead of every intersection, depending on the individual speeds. Thus strict deadlines are imposed on, and respected by, the BeeJamA algorithm. We report on extensive simulation experiments which show the superior performance of BeeJamA over conventional approaches.

  17. Design and Implementation of Real-Time Vehicular Camera for Driver Assistance and Traffic Congestion Estimation.

    PubMed

    Son, Sanghyun; Baek, Yunju

    2015-01-01

    As society has developed, the number of vehicles has increased and road conditions have become complicated, increasing the risk of crashes. Therefore, a service that provides safe vehicle control and various types of information to the driver is urgently needed. In this study, we designed and implemented a real-time traffic information system and a smart camera device for smart driver assistance systems. We selected a commercial device for the smart driver assistance systems, and applied a computer vision algorithm to perform image recognition. For application to the dynamic region of interest, dynamic frame skip methods were implemented to perform parallel processing in order to enable real-time operation. In addition, we designed and implemented a model to estimate congestion by analyzing traffic information. The performance of the proposed method was evaluated using images of a real road environment. We found that the processing time improved by 15.4 times when all the proposed methods were applied in the application. Further, we found experimentally that there was little or no change in the recognition accuracy when the proposed method was applied. Using the traffic congestion estimation model, we also found that the average error rate of the proposed model was 5.3%.

  18. Design and Implementation of Real-Time Vehicular Camera for Driver Assistance and Traffic Congestion Estimation.

    PubMed

    Son, Sanghyun; Baek, Yunju

    2015-01-01

    As society has developed, the number of vehicles has increased and road conditions have become complicated, increasing the risk of crashes. Therefore, a service that provides safe vehicle control and various types of information to the driver is urgently needed. In this study, we designed and implemented a real-time traffic information system and a smart camera device for smart driver assistance systems. We selected a commercial device for the smart driver assistance systems, and applied a computer vision algorithm to perform image recognition. For application to the dynamic region of interest, dynamic frame skip methods were implemented to perform parallel processing in order to enable real-time operation. In addition, we designed and implemented a model to estimate congestion by analyzing traffic information. The performance of the proposed method was evaluated using images of a real road environment. We found that the processing time improved by 15.4 times when all the proposed methods were applied in the application. Further, we found experimentally that there was little or no change in the recognition accuracy when the proposed method was applied. Using the traffic congestion estimation model, we also found that the average error rate of the proposed model was 5.3%. PMID:26295230

  19. Design and Implementation of Real-Time Vehicular Camera for Driver Assistance and Traffic Congestion Estimation

    PubMed Central

    Son, Sanghyun; Baek, Yunju

    2015-01-01

    As society has developed, the number of vehicles has increased and road conditions have become complicated, increasing the risk of crashes. Therefore, a service that provides safe vehicle control and various types of information to the driver is urgently needed. In this study, we designed and implemented a real-time traffic information system and a smart camera device for smart driver assistance systems. We selected a commercial device for the smart driver assistance systems, and applied a computer vision algorithm to perform image recognition. For application to the dynamic region of interest, dynamic frame skip methods were implemented to perform parallel processing in order to enable real-time operation. In addition, we designed and implemented a model to estimate congestion by analyzing traffic information. The performance of the proposed method was evaluated using images of a real road environment. We found that the processing time improved by 15.4 times when all the proposed methods were applied in the application. Further, we found experimentally that there was little or no change in the recognition accuracy when the proposed method was applied. Using the traffic congestion estimation model, we also found that the average error rate of the proposed model was 5.3%. PMID:26295230

  20. Evaluation of ABR traffic control schemes for ATM LAN and WAN: effects of congestion indication schemes and ER switch algorithms

    NASA Astrophysics Data System (ADS)

    Moh, W. Melody; Shenoy, Sandeep

    1997-10-01

    The ATM Forum has adopted rate-based congestion control for ABR (available bit rate) traffic. Much of the existing work evaluating ABR congestion control schemes has used some threshold value on buffer queue length to indicate congestion. On the other hand, many ER (explicit rate) algorithms calculate their 'fair-share' values based on utilization level, with the assumption that ER switches are able to measure the current utilization level of ABR traffic. If one would use the same mechanism -- measuring utilization level -- to indicate congestion, then the same switch could easily implement both binary and ER ABR control algorithms. Based on the above observations, in this paper we study the effect of using two different congestion indication methods: (1) buffer queue length (the most commonly used method); and (2) utilization level (the new method). We evaluate two binary ABR control schemes: EFCI (explicit forward congestion indication) and CI (congestion indication) using backward notification, using the two different congestion methods. We also evaluate and compare two ER algorithms: the ERICA (explicit rate indication for congestion avoidance) algorithm proposed by Jain and the CAPC-2 (congestion avoidance with proportional control - 2) algorithm proposed by Barnhart. Performance evaluation are carried out by computer simulation. We simulate two ABR switches connected by an OC-3 link, with each switch connecting five end-systems. The distance between the two switches are 20 km for LAN and 1,000 km for WAN, based on ATM forum specification. For each simulation run, we measure average queuing delay, maximum queue length, and network utilization. Traces of ACR (allowed cell rate) and buffer queue length are also examined. We found that using the new congestion method indication dramatically reduces the maximum queue length and average queuing delay, with a slight decrease in utilization. Both ER schemes show smooth buffer occupancy and attain high utilization.

  1. TCP with source traffic shaping (TCP-STS): an approach for network congestion reduction

    NASA Astrophysics Data System (ADS)

    Elaywe, Ali H.; Kamal, Ahmed E.

    2002-07-01

    The Transmission Control Protocol (TCP), provides flow control functions which are based on the window mechanism. Packet losses are detected by various mechanisms, such as timeouts and duplicate acknowledgements, and are then recovered from using different techniques. A problem that arises with the use of window based mechanisms is that the availability of a large number of credits at the source may cause a source to flood the network with back-to-back packets, which may drive the network into congestion, especially if multiple sources become active at the same time. In this paper we propose a new approach for congestion reduction. The approach works by shaping the traffic at the TCP source, such that the basic TCP flow control mechanism is still preserved, but the packet transmissions are spaced in time in order to prevent a sudden surge of traffic from overflowing the routers' buffers. Simulation results show that this technique can result in an improved network performance, in terms of reduced mean delay, delay variance, and packet dropping ratio.

  2. Transport growth in Bangkok: Energy, environment, and traffic congestion. Workshop proceedings

    SciTech Connect

    Philpott, J.

    1995-07-01

    Bangkok, the capital of Thailand, is a physically and economically complexcity with a complicated transport system. With daily traffic congestion averaging 16 hours, the air quality is such that to breathe street level pollution for 8 eight hours is roughly equivalent to smoking nine cigarettes per day. Estimates suggest idling traffic costs up to $1.6 billion annually. Energy use within the transport sector is on a steady rise with an estimated increase in 11 years of two and one half times. Severe health impacts have begun to effect many residents - young children and the elderly being particularly vulnerable. Bangkok`s air quality and congestion problems are far from hopeless. Great potential exists for Bangkok to remedy its transport-related problems. The city has many necessary characteristics that allow an efficient, economical system of transport. For example, its high density level makes the city a prime candidate for an efficient system of mass transit and the multitude and close proximity of shops, street vendors, restaurants, and residential areas is highly conducive to walking and cycling. Technical knowledge and capacity to devise and implement innovative policies and projects to address air quality and congestion problems is plentiful. There is also consensus among Bangkokians that something needs to be done immediately to clear the air and the roads. However, little has been done. This report proposes a new approach to transport planning for Bangkok that integrates consideration of ecological, social, and financial viability in the process of making decisions regarding managing existing infrastructure and investments in new infrastructure. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  3. Communication efficiency and congestion of signal traffic in large-scale brain networks.

    PubMed

    Mišić, Bratislav; Sporns, Olaf; McIntosh, Anthony R

    2014-01-01

    The complex connectivity of the cerebral cortex suggests that inter-regional communication is a primary function. Using computational modeling, we show that anatomical connectivity may be a major determinant for global information flow in brain networks. A macaque brain network was implemented as a communication network in which signal units flowed between grey matter nodes along white matter paths. Compared to degree-matched surrogate networks, information flow on the macaque brain network was characterized by higher loss rates, faster transit times and lower throughput, suggesting that neural connectivity may be optimized for speed rather than fidelity. Much of global communication was mediated by a "rich club" of hub regions: a sub-graph comprised of high-degree nodes that are more densely interconnected with each other than predicted by chance. First, macaque communication patterns most closely resembled those observed for a synthetic rich club network, but were less similar to those seen in a synthetic small world network, suggesting that the former is a more fundamental feature of brain network topology. Second, rich club regions attracted the most signal traffic and likewise, connections between rich club regions carried more traffic than connections between non-rich club regions. Third, a number of rich club regions were significantly under-congested, suggesting that macaque connectivity actively shapes information flow, funneling traffic towards some nodes and away from others. Together, our results indicate a critical role of the rich club of hub nodes in dynamic aspects of global brain communication.

  4. Communication efficiency and congestion of signal traffic in large-scale brain networks.

    PubMed

    Mišić, Bratislav; Sporns, Olaf; McIntosh, Anthony R

    2014-01-01

    The complex connectivity of the cerebral cortex suggests that inter-regional communication is a primary function. Using computational modeling, we show that anatomical connectivity may be a major determinant for global information flow in brain networks. A macaque brain network was implemented as a communication network in which signal units flowed between grey matter nodes along white matter paths. Compared to degree-matched surrogate networks, information flow on the macaque brain network was characterized by higher loss rates, faster transit times and lower throughput, suggesting that neural connectivity may be optimized for speed rather than fidelity. Much of global communication was mediated by a "rich club" of hub regions: a sub-graph comprised of high-degree nodes that are more densely interconnected with each other than predicted by chance. First, macaque communication patterns most closely resembled those observed for a synthetic rich club network, but were less similar to those seen in a synthetic small world network, suggesting that the former is a more fundamental feature of brain network topology. Second, rich club regions attracted the most signal traffic and likewise, connections between rich club regions carried more traffic than connections between non-rich club regions. Third, a number of rich club regions were significantly under-congested, suggesting that macaque connectivity actively shapes information flow, funneling traffic towards some nodes and away from others. Together, our results indicate a critical role of the rich club of hub nodes in dynamic aspects of global brain communication. PMID:24415931

  5. Increasing Intelligence in Inter-Vehicle Communications to Reduce Traffic Congestions: Experiments in Urban and Highway Environments

    PubMed Central

    Filho, Geraldo P. R.; Guidoni, Daniel L.; Pessin, Gustavo; Villas, Leandro A.; Ueyama, Jó

    2016-01-01

    Intelligent Transportation Systems (ITS) rely on Inter-Vehicle Communication (IVC) to streamline the operation of vehicles by managing vehicle traffic, assisting drivers with safety and sharing information, as well as providing appropriate services for passengers. Traffic congestion is an urban mobility problem, which causes stress to drivers and economic losses. In this context, this work proposes a solution for the detection, dissemination and control of congested roads based on inter-vehicle communication, called INCIDEnT. The main goal of the proposed solution is to reduce the average trip time, CO emissions and fuel consumption by allowing motorists to avoid congested roads. The simulation results show that our proposed solution leads to short delays and a low overhead. Moreover, it is efficient with regard to the coverage of the event and the distance to which the information can be propagated. The findings of the investigation show that the proposed solution leads to (i) high hit rate in the classification of the level of congestion, (ii) a reduction in average trip time, (iii) a reduction in fuel consumption, and (iv) reduced CO emissions PMID:27526048

  6. Increasing Intelligence in Inter-Vehicle Communications to Reduce Traffic Congestions: Experiments in Urban and Highway Environments.

    PubMed

    Meneguette, Rodolfo I; Filho, Geraldo P R; Guidoni, Daniel L; Pessin, Gustavo; Villas, Leandro A; Ueyama, Jó

    2016-01-01

    Intelligent Transportation Systems (ITS) rely on Inter-Vehicle Communication (IVC) to streamline the operation of vehicles by managing vehicle traffic, assisting drivers with safety and sharing information, as well as providing appropriate services for passengers. Traffic congestion is an urban mobility problem, which causes stress to drivers and economic losses. In this context, this work proposes a solution for the detection, dissemination and control of congested roads based on inter-vehicle communication, called INCIDEnT. The main goal of the proposed solution is to reduce the average trip time, CO emissions and fuel consumption by allowing motorists to avoid congested roads. The simulation results show that our proposed solution leads to short delays and a low overhead. Moreover, it is efficient with regard to the coverage of the event and the distance to which the information can be propagated. The findings of the investigation show that the proposed solution leads to (i) high hit rate in the classification of the level of congestion, (ii) a reduction in average trip time, (iii) a reduction in fuel consumption, and (iv) reduced CO emissions. PMID:27526048

  7. Long-Term Correlations and Multifractality of Traffic Flow Measured by GIS for Congested and Free-Flow Roads

    NASA Astrophysics Data System (ADS)

    di, Baofeng; Shi, Kai; Zhang, Kaishan; Svirchev, Laurence; Hu, Xiaoxi

    2016-02-01

    In this paper, a GIS-based method was developed to extract the real-time traffic information (RTTI) from the Google Maps system for city roads. The method can be used to quantify both congested and free-flow traffic conditions. The roadway length was defined as congested length (CL) and free-flow length (FFL). Chengdu, the capital of Sichuan Province in the southwest of China, was chosen as a case study site. The RTTI data were extracted from the Google real-time maps in May 12-17, 2013 and were used to derive the CL and FFL for the study areas. The Multifractal Detrended Fluctuation Analysis (MFDFA) was used to characterize the long-term correlations of CL and FFL time series and their corresponding multifractal properties. Analysis showed that CL and FFL had demonstrated time nonlinearity and long-term correlations and both characteristics differed significantly. A shuffling procedure and a phase randomization procedure were further integrated with multifractal detrending moving average (MFDMA) to identify the major sources of multifractality of these two time series. The results showed that a multifractal process analysis could be used to characterize complex traffic data. Traffic data collected and methods developed in this paper will help better understand the complex traffic systems.

  8. Reasoning the causality of city sprawl, traffic congestion, and green land disappearance in Taiwan using the CLD model.

    PubMed

    Chen, Mei-Chih; Chang, Kaowen

    2014-11-01

    Many city governments choose to supply more developable land and transportation infrastructure with the hope of attracting people and businesses to their cities. However, like those in Taiwan, major cities worldwide suffer from traffic congestion. This study applies the system thinking logic of the causal loops diagram (CLD) model in the System Dynamics (SD) approach to analyze the issue of traffic congestion and other issues related to roads and land development in Taiwan's cities. Comparing the characteristics of development trends with yearbook data for 2002 to 2013 for all of Taiwan's cities, this study explores the developing phenomenon of unlimited city sprawl and identifies the cause and effect relationships in the characteristics of development trends in traffic congestion, high-density population aggregation in cities, land development, and green land disappearance resulting from city sprawl. This study provides conclusions for Taiwan's cities' sustainability and development (S&D). When developing S&D policies, during decision making processes concerning city planning and land use management, governments should think with a holistic view of carrying capacity with the assistance of system thinking to clarify the prejudices in favor of the unlimited developing phenomena resulting from city sprawl. PMID:25383609

  9. Reasoning the Causality of City Sprawl, Traffic Congestion, and Green Land Disappearance in Taiwan Using the CLD Model

    PubMed Central

    Chen, Mei-Chih; Chang, Kaowen

    2014-01-01

    Many city governments choose to supply more developable land and transportation infrastructure with the hope of attracting people and businesses to their cities. However, like those in Taiwan, major cities worldwide suffer from traffic congestion. This study applies the system thinking logic of the causal loops diagram (CLD) model in the System Dynamics (SD) approach to analyze the issue of traffic congestion and other issues related to roads and land development in Taiwan’s cities. Comparing the characteristics of development trends with yearbook data for 2002 to 2013 for all of Taiwan’s cities, this study explores the developing phenomenon of unlimited city sprawl and identifies the cause and effect relationships in the characteristics of development trends in traffic congestion, high-density population aggregation in cities, land development, and green land disappearance resulting from city sprawl. This study provides conclusions for Taiwan’s cities’ sustainability and development (S&D). When developing S&D policies, during decision making processes concerning city planning and land use management, governments should think with a holistic view of carrying capacity with the assistance of system thinking to clarify the prejudices in favor of the unlimited developing phenomena resulting from city sprawl. PMID:25383609

  10. Reasoning the causality of city sprawl, traffic congestion, and green land disappearance in Taiwan using the CLD model.

    PubMed

    Chen, Mei-Chih; Chang, Kaowen

    2014-11-06

    Many city governments choose to supply more developable land and transportation infrastructure with the hope of attracting people and businesses to their cities. However, like those in Taiwan, major cities worldwide suffer from traffic congestion. This study applies the system thinking logic of the causal loops diagram (CLD) model in the System Dynamics (SD) approach to analyze the issue of traffic congestion and other issues related to roads and land development in Taiwan's cities. Comparing the characteristics of development trends with yearbook data for 2002 to 2013 for all of Taiwan's cities, this study explores the developing phenomenon of unlimited city sprawl and identifies the cause and effect relationships in the characteristics of development trends in traffic congestion, high-density population aggregation in cities, land development, and green land disappearance resulting from city sprawl. This study provides conclusions for Taiwan's cities' sustainability and development (S&D). When developing S&D policies, during decision making processes concerning city planning and land use management, governments should think with a holistic view of carrying capacity with the assistance of system thinking to clarify the prejudices in favor of the unlimited developing phenomena resulting from city sprawl.

  11. Variations in exposure to traffic pollution while travelling by different modes in a low density, less congested city.

    PubMed

    Kingham, Simon; Longley, Ian; Salmond, Jenny; Pattinson, Woodrow; Shrestha, Kreepa

    2013-10-01

    This research assessed the comparative risk associated with exposure to traffic pollution when travelling via different transport modes in Christchurch, New Zealand. Concentrations of PM1, UFPs and CO were monitored on pre-defined routes during the morning and evening commute on people travelling concurrently by car, bus and bicycle. It was found that car drivers were consistently exposed to the highest levels of CO; on-road cyclists were exposed to higher levels of all pollutants than off-road cyclists; car and bus occupants were exposed to higher average levels of UFP than cyclists, and travellers were occasionally exposed to very high levels of pollution for short periods of time. PM10 and PM2.5 were found to be poor indicators of exposure to traffic pollution. Studying Christchurch adds to our understanding as it was a lower density city with limited traffic congestion compared most other cities previously studied.

  12. Hopf bifurcation and uncontrolled stochastic traffic-induced chaos in an RED-AQM congestion control system

    NASA Astrophysics Data System (ADS)

    Wang, Jun-Song; Yuan, Rui-Xi; Gao, Zhi-Wei; Wang, De-Jin

    2011-09-01

    We study the Hopf bifurcation and the chaos phenomena in a random early detection-based active queue management (RED-AQM) congestion control system with a communication delay. We prove that there is a critical value of the communication delay for the stability of the RED-AQM control system. Furthermore, we show that the system will lose its stability and Hopf bifurcations will occur when the delay exceeds the critical value. When the delay is close to its critical value, we demonstrate that typical chaos patterns may be induced by the uncontrolled stochastic traffic in the RED-AQM control system even if the system is still stable, which reveals a new route to the chaos besides the bifurcation in the network congestion control system. Numerical simulations are given to illustrate the theoretical results.

  13. Input-Output Modeling and Control of the Departure Process of Congested Airports

    NASA Technical Reports Server (NTRS)

    Pujet, Nicolas; Delcaire, Bertrand; Feron, Eric

    2003-01-01

    A simple queueing model of busy airport departure operations is proposed. This model is calibrated and validated using available runway configuration and traffic data. The model is then used to evaluate preliminary control schemes aimed at alleviating departure traffic congestion on the airport surface. The potential impact of these control strategies on direct operating costs, environmental costs and overall delay is quantified and discussed.

  14. The Physics of Traffic Congestion and Road Pricing in Transportation Planning

    NASA Astrophysics Data System (ADS)

    Levinson, David

    2010-03-01

    This presentation develops congestion theory and congestion pricing theory from its micro- foundations, the interaction of two or more vehicles. Using game theory, with a two- player game it is shown that the emergence of congestion depends on the players' relative valuations of early arrival, late arrival, and journey delay. Congestion pricing can be used as a cooperation mechanism to minimize total costs (if returned to the players). The analysis is then extended to the case of the three- player game, which illustrates congestion as a negative externality imposed on players who do not themselves contribute to it. A multi-agent model of travelers competing to utilize a roadway in time and space is presented. To realize the spillover effect among travelers, N-player games are constructed in which the strategy set includes N+1 strategies. We solve the N-player game (for N = 7) and find Nash equilibria if they exist. This model is compared to the bottleneck model. The results of numerical simulation show that the two models yield identical results in terms of lowest total costs and marginal costs when a social optimum exists. Moving from temporal dynamics to spatial complexity, using consistent agent- based techniques, we model the decision-making processes of users and infrastructure owner/operators to explore the welfare consequence of price competition, capacity choice, and product differentiation on congested transportation networks. Component models include: (1) An agent-based travel demand model wherein each traveler has learning capabilities and unique characteristics (e.g. value of time); (2) Econometric facility provision cost models; and (3) Representations of road authorities making pricing and capacity decisions. Different from small-network equilibrium models in prior literature, this agent- based model is applicable to pricing and investment analyses on large complex networks. The subsequent economic analysis focuses on the source, evolution

  15. Optimum principle for a vehicular traffic network: minimum probability of congestion

    NASA Astrophysics Data System (ADS)

    Kerner, Boris S.

    2011-03-01

    We introduce an optimum principle for a vehicular traffic network with road bottlenecks. This network breakdown minimization (BM) principle states that the network optimum is reached when link flow rates are assigned in the network in such a way that the probability for spontaneous occurrence of traffic breakdown in at least one of the network bottlenecks during a given observation time reaches the minimum possible value. Based on numerical simulations with a stochastic three-phase traffic flow model, we show that in comparison to the well-known Wardrop's principles, the application of the BM principle permits considerably greater network inflow rates at which no traffic breakdown occurs and, therefore, free flow remains in the whole network.

  16. Understanding congested travel in urban areas

    NASA Astrophysics Data System (ADS)

    Çolak, Serdar; Lima, Antonio; González, Marta C.

    2016-03-01

    Rapid urbanization and increasing demand for transportation burdens urban road infrastructures. The interplay of number of vehicles and available road capacity on their routes determines the level of congestion. Although approaches to modify demand and capacity exist, the possible limits of congestion alleviation by only modifying route choices have not been systematically studied. Here we couple the road networks of five diverse cities with the travel demand profiles in the morning peak hour obtained from billions of mobile phone traces to comprehensively analyse urban traffic. We present that a dimensionless ratio of the road supply to the travel demand explains the percentage of time lost in congestion. Finally, we examine congestion relief under a centralized routing scheme with varying levels of awareness of social good and quantify the benefits to show that moderate levels are enough to achieve significant collective travel time savings.

  17. Understanding congested travel in urban areas.

    PubMed

    Çolak, Serdar; Lima, Antonio; González, Marta C

    2016-01-01

    Rapid urbanization and increasing demand for transportation burdens urban road infrastructures. The interplay of number of vehicles and available road capacity on their routes determines the level of congestion. Although approaches to modify demand and capacity exist, the possible limits of congestion alleviation by only modifying route choices have not been systematically studied. Here we couple the road networks of five diverse cities with the travel demand profiles in the morning peak hour obtained from billions of mobile phone traces to comprehensively analyse urban traffic. We present that a dimensionless ratio of the road supply to the travel demand explains the percentage of time lost in congestion. Finally, we examine congestion relief under a centralized routing scheme with varying levels of awareness of social good and quantify the benefits to show that moderate levels are enough to achieve significant collective travel time savings.

  18. Understanding congested travel in urban areas

    PubMed Central

    Çolak, Serdar; Lima, Antonio; González, Marta C.

    2016-01-01

    Rapid urbanization and increasing demand for transportation burdens urban road infrastructures. The interplay of number of vehicles and available road capacity on their routes determines the level of congestion. Although approaches to modify demand and capacity exist, the possible limits of congestion alleviation by only modifying route choices have not been systematically studied. Here we couple the road networks of five diverse cities with the travel demand profiles in the morning peak hour obtained from billions of mobile phone traces to comprehensively analyse urban traffic. We present that a dimensionless ratio of the road supply to the travel demand explains the percentage of time lost in congestion. Finally, we examine congestion relief under a centralized routing scheme with varying levels of awareness of social good and quantify the benefits to show that moderate levels are enough to achieve significant collective travel time savings. PMID:26978719

  19. Understanding congested travel in urban areas.

    PubMed

    Çolak, Serdar; Lima, Antonio; González, Marta C

    2016-01-01

    Rapid urbanization and increasing demand for transportation burdens urban road infrastructures. The interplay of number of vehicles and available road capacity on their routes determines the level of congestion. Although approaches to modify demand and capacity exist, the possible limits of congestion alleviation by only modifying route choices have not been systematically studied. Here we couple the road networks of five diverse cities with the travel demand profiles in the morning peak hour obtained from billions of mobile phone traces to comprehensively analyse urban traffic. We present that a dimensionless ratio of the road supply to the travel demand explains the percentage of time lost in congestion. Finally, we examine congestion relief under a centralized routing scheme with varying levels of awareness of social good and quantify the benefits to show that moderate levels are enough to achieve significant collective travel time savings. PMID:26978719

  20. Reducing Congestion in Obstructed Highways with Traffic Data Dissemination Using Ad hoc Vehicular Networks

    NASA Astrophysics Data System (ADS)

    Hewer, Thomas D.; Nekovee, Maziar; Coveney, Peter V.

    2010-12-01

    Vehicle-to-vehicle communications can be used effectively for intelligent transport systems (ITSs) and location-aware services. The ability to disseminate information in an ad hoc fashion allows pertinent information to propagate faster through a network. In the realm of ITS, the ability to spread warning information faster and further is of great advantage to receivers. In this paper we propose and present a message-dissemination procedure that uses vehicular wireless protocols to influence vehicular flow, reducing congestion in road networks. The computational experiments we present show how a car-following model and lane-change algorithm can be adapted to "react" to the reception of information. This model also illustrates the advantages of coupling together with vehicular flow modelling tools and network simulation tools.

  1. Urban traffic simulated from the dual representation: Flow, crisis and congestion

    NASA Astrophysics Data System (ADS)

    Hu, Mao-Bin; Jiang, Rui; Wang, Ruili; Wu, Qing-Song

    2009-05-01

    We propose a traffic simulation model for urban system based on the dual graph representation of a urban road network and with a random entering vehicle rate. To avoid the shortcoming of “Space Syntax” of ignoring the road's metric distance, we consider both the motion of the vehicles along roads and the navigation of the vehicles in the network. Simulations have shown some basic properties of urban traffic system, such as flux fluctuation, crisis and dissipation, phase transition from a free flow to jams, overall capacity, the distribution of traveling time, and the fundamental diagram. The system's behavior greatly depends on the topology of the transportation network. A well-planned lattice grid can keep more vehicles travelling. The critical entering vehicle rate is much greater in lattice grid than in a self-organized network. The vehicles have to travel longer time in a self-organized urban system due to the navigation cost.

  2. An Experimental Study of the Noise Due to Traffic in a Congested Urban Area

    NASA Astrophysics Data System (ADS)

    Sangeetha, M.; Sankar, P.

    2016-03-01

    Noise pollution in an urban environment is an issue of serious concern in the major cities of India. There are various factors that contribute to the increase of noise levels in urban areas. The intensity of traffic is one of the factors which contributes to a drastic increase in environmental noise. The management of noise pollution has to be considered in the decision making process. In this paper, an attempt is made to study the existing noise level due to the traffic in Velachery which is declared as a sensitive area by the Ministry of Environment and Forestry (MoEF). The noise level data is collected using the MS6710 digital sound meter. The Custic simulation software version 3.2 is used for finding the propagation of noise. The spatial patterns of measurement were also calculated, in the sub-urban area of Velachery, Chennai, Tamilnadu, India. A means of transmitting this data to vehicles moving in the area, through a wireless medium is simulated using NCTUns 6.0 (network simulator), to enable drivers to understand the environmental conditions. A hardware was also designed which can be used to transmit and receive the noise data using the Zigbee module. A noise transmitting station is placed at a junction, so that it can transmit this noise data to the receivers which are fitted inside the vehicles.

  3. The effects of congestion charging on road traffic casualties: a causal analysis using difference-in-difference estimation.

    PubMed

    Li, Haojie; Graham, Daniel J; Majumdar, Arnab

    2012-11-01

    This paper aims to identify the impacts of the London congestion charge on road casualties within the central London charging zone. It develops a full difference-in-difference (DID) model that is integrated with generalized linear models, such as Poisson and Negative Binomial regression models. Covariates are included in the model to adjust for factors that violate the parallel trend assumption, which is critical in the DID model. The lower Bayesian Information Criterion value suggests that the full difference-in-difference model performs well in evaluating the relationship between road accidents and the London congestion charge as well as other socio-economic factors. After adjusting for a time trend and regional effects, the results show that the introduction of the London congestion charge has a significant influence on the incidence of road casualties. The congestion charge reduces the total number of car accidents, but is associated with an increase in two wheeled vehicle accidents.

  4. Dynamic urban traffic flow behavior on scale-free networks

    NASA Astrophysics Data System (ADS)

    Wu, J. J.; Sun, H. J.; Gao, Z. Y.

    2008-01-01

    In this paper, we propose a new dynamic traffic model (DTM) for routing choice behaviors (RCB) in which both topology structures and dynamical properties are considered to address the RCB problem by using numerical experiments. The phase transition from free flow to congestion is found by simulations. Further, different topologies are studied in which large degree distribution exponents may alleviate or avoid the occurrence of traffic congestion efficiently. Compared with random networks, it is also found that scale-free networks can bear larger volume of traffic by our model. Finally, based on the concept of routing guide system (RGS), we give a dynamic traffic control model (DTCM) by extending DTM. And we find that choosing an appropriate η-value can enhance the system’s capacity maximally. We also address several open theoretical problems related to the urban traffic network dynamics and traffic flow.

  5. Congestion phenomenon analysis and delayed-feedback control in a modified coupled map traffic flow model containing the velocity difference

    NASA Astrophysics Data System (ADS)

    Fang, Ya-Ling; Shi, Zhong-Ke; Cao, Jin-Liang

    2015-06-01

    Based on the coupled map car-following model which was presented by Konishi et al. (1999), a modified coupled map car-following model is proposed. Specifically, the velocity difference between two successive vehicles is included in the model. The stability condition is given for the change of the speed of the preceding vehicle on the base of the control theory. We derive a condition under which the traffic jam never occurs in our model. Furthermore, in order to suppress traffic jams, we use static and dynamic version of decentralized delayed-feedback control for each vehicle, respectively, and provide a systematic procedure for designing the controller. In addition, the controller of each vehicle does not include any other vehicle information in real traffic flows.

  6. Traffic signal synchronization in the saturated high-density grid road network.

    PubMed

    Hu, Xiaojian; Lu, Jian; Wang, Wei; Zhirui, Ye

    2015-01-01

    Most existing traffic signal synchronization strategies do not perform well in the saturated high-density grid road network (HGRN). Traffic congestion often occurs in the saturated HGRN, and the mobility of the network is difficult to restore. In order to alleviate traffic congestion and to improve traffic efficiency in the network, the study proposes a regional traffic signal synchronization strategy, named the long green and long red (LGLR) traffic signal synchronization strategy. The essence of the strategy is to control the formation and dissipation of queues and to maximize the efficiency of traffic flows at signalized intersections in the saturated HGRN. With this strategy, the same signal control timing plan is used at all signalized intersections in the HGRN, and the straight phase of the control timing plan has a long green time and a long red time. Therefore, continuous traffic flows can be maintained when vehicles travel, and traffic congestion can be alleviated when vehicles stop. Using the strategy, the LGLR traffic signal synchronization model is developed, with the objective of minimizing the number of stops. Finally, the simulation is executed to analyze the performance of the model by comparing it to other models, and the superiority of the LGLR model is evident in terms of delay, number of stops, queue length, and overall performance in the saturated HGRN.

  7. Traffic signal synchronization in the saturated high-density grid road network.

    PubMed

    Hu, Xiaojian; Lu, Jian; Wang, Wei; Zhirui, Ye

    2015-01-01

    Most existing traffic signal synchronization strategies do not perform well in the saturated high-density grid road network (HGRN). Traffic congestion often occurs in the saturated HGRN, and the mobility of the network is difficult to restore. In order to alleviate traffic congestion and to improve traffic efficiency in the network, the study proposes a regional traffic signal synchronization strategy, named the long green and long red (LGLR) traffic signal synchronization strategy. The essence of the strategy is to control the formation and dissipation of queues and to maximize the efficiency of traffic flows at signalized intersections in the saturated HGRN. With this strategy, the same signal control timing plan is used at all signalized intersections in the HGRN, and the straight phase of the control timing plan has a long green time and a long red time. Therefore, continuous traffic flows can be maintained when vehicles travel, and traffic congestion can be alleviated when vehicles stop. Using the strategy, the LGLR traffic signal synchronization model is developed, with the objective of minimizing the number of stops. Finally, the simulation is executed to analyze the performance of the model by comparing it to other models, and the superiority of the LGLR model is evident in terms of delay, number of stops, queue length, and overall performance in the saturated HGRN. PMID:25663835

  8. Traffic Signal Synchronization in the Saturated High-Density Grid Road Network

    PubMed Central

    Hu, Xiaojian; Lu, Jian; Wang, Wei; Zhirui, Ye

    2015-01-01

    Most existing traffic signal synchronization strategies do not perform well in the saturated high-density grid road network (HGRN). Traffic congestion often occurs in the saturated HGRN, and the mobility of the network is difficult to restore. In order to alleviate traffic congestion and to improve traffic efficiency in the network, the study proposes a regional traffic signal synchronization strategy, named the long green and long red (LGLR) traffic signal synchronization strategy. The essence of the strategy is to control the formation and dissipation of queues and to maximize the efficiency of traffic flows at signalized intersections in the saturated HGRN. With this strategy, the same signal control timing plan is used at all signalized intersections in the HGRN, and the straight phase of the control timing plan has a long green time and a long red time. Therefore, continuous traffic flows can be maintained when vehicles travel, and traffic congestion can be alleviated when vehicles stop. Using the strategy, the LGLR traffic signal synchronization model is developed, with the objective of minimizing the number of stops. Finally, the simulation is executed to analyze the performance of the model by comparing it to other models, and the superiority of the LGLR model is evident in terms of delay, number of stops, queue length, and overall performance in the saturated HGRN. PMID:25663835

  9. Fuzzy peak hour for urban road traffic network

    NASA Astrophysics Data System (ADS)

    Tian, Zhao; Jia, Li-Min; Dong, Hong-Hui; Zhang, Zun-Dong; Ye, Yang-Dong

    2015-06-01

    Traffic congestion is now nearly ubiquitous in many urban areas and frequently occurs during rush hour periods. Rush hour avoidance is an effective way to ease traffic congestion. It is significant to calculate the rush hour for alleviating traffic congestion. This paper provides a method to calculate the fuzzy peak hour of the urban traffic network considering the flow, speed and occupancy. The process of calculation is based on betweenness centrality of network theory, optimal separation method, time period weighting, probability-possibility transformations and trapezoidal approximations of fuzzy numbers. The fuzzy peak hour of the urban road traffic network (URTN) is a trapezoidal fuzzy number [m1, m2, m3, m4]. It helps us (i) to confirm a more detailed traffic condition at each moment, (ii) to distinguish the five traffic states of the traffic network in one day, (iii) to analyze the characteristic of appearance and disappearance processes of the each traffic state and (iv) to find out the time pattern of residents travel in one city.

  10. Interacting RNA polymerase motors on a DNA track: effects of traffic congestion and intrinsic noise on RNA synthesis.

    PubMed

    Tripathi, Tripti; Chowdhury, Debashish

    2008-01-01

    RNA polymerase (RNAP) is an enzyme that synthesizes a messenger RNA (mRNA) strand which is complementary to a single-stranded DNA template. From the perspective of physicists, an RNAP is a molecular motor that utilizes chemical energy input to move along the track formed by DNA. In many circumstances, which are described in this paper, a large number of RNAPs move simultaneously along the same track; we refer to such collective movements of the RNAPs as RNAP traffic. Here we develop a theoretical model for RNAP traffic by incorporating the steric interactions between RNAPs as well as the mechanochemical cycle of individual RNAPs during the elongation of the mRNA. By a combination of analytical and numerical techniques, we calculate the rates of mRNA synthesis and the average density profile of the RNAPs on the DNA track. We also introduce, and compute, two different measures of fluctuations in the synthesis of RNA. Analyzing these fluctuations, we show how the level of intrinsic noise in mRNA synthesis depends on the concentrations of the RNAPs as well as on those of some of the reactants and the products of the enzymatic reactions catalyzed by RNAP. We suggest appropriate experimental systems and techniques for testing our theoretical predictions. PMID:18351890

  11. Effects of speed bottleneck on traffic flow with feedback control signal

    NASA Astrophysics Data System (ADS)

    Zhu, Kangli; Bi, Jiantao; Wu, Jianjun; Li, Shubin

    2016-09-01

    Various car-following models (CMs) have been developed to capture the complex characteristics of microscopic traffic flow, among which the coupled map CM can better reveal and reflect various phenomena of practical traffic flow. Capacity change at bottleneck contributes to high-density traffic flow upstream the bottleneck and contains very complex dynamic behavior. In this paper, we analyze the effect of speed bottleneck on the spatial-temporal evolution characteristics of traffic flow, and propose a method to reduce traffic congestion with the feedback control signal based on CM. Simulation results highlight the potential of using the feedback signal to control the stop-and-go wave and furthermore to alleviate the traffic congestion effectively.

  12. The Stability of Multi-modal Traffic Network

    NASA Astrophysics Data System (ADS)

    Han, Ling-Hui; Sun, Hui-Jun; Zhu, Cheng-Juan; Wu, Jian-Jun; Jia, Bin

    2013-07-01

    There is an explicit and implicit assumption in multimodal traffic equilibrium models, that is, if the equilibrium exists, then it will also occur. The assumption is very idealized; in fact, it may be shown that the quite contrary could happen, because in multimodal traffic network, especially in mixed traffic conditions the interaction among traffic modes is asymmetric and the asymmetric interaction may result in the instability of traffic system. In this paper, to study the stability of multimodal traffic system, we respectively present the travel cost function in mixed traffic conditions and in traffic network with dedicated bus lanes. Based on a day-to-day dynamical model, we study the evolution of daily route choice of travelers in multimodal traffic network using 10000 random initial values for different cases. From the results of simulation, it can be concluded that the asymmetric interaction between the cars and buses in mixed traffic conditions can lead the traffic system to instability when traffic demand is larger. We also study the effect of travelers' perception error on the stability of multimodal traffic network. Although the larger perception error can alleviate the effect of interaction between cars and buses and improve the stability of traffic system in mixed traffic conditions, the traffic system also become instable when the traffic demand is larger than a number. For all cases simulated in this study, with the same parameters, traffic system with dedicated bus lane has better stability for traffic demand than that in mixed traffic conditions. We also find that the network with dedicated bus lane has higher portion of travelers by bus than it of mixed traffic network. So it can be concluded that building dedicated bus lane can improve the stability of traffic system and attract more travelers to choose bus reducing the traffic congestion.

  13. Dynamic route guidance strategy in a two-route pedestrian-vehicle mixed traffic flow system

    NASA Astrophysics Data System (ADS)

    Liu, Mianfang; Xiong, Shengwu; Li, Bixiang

    2016-05-01

    With the rapid development of transportation, traffic questions have become the major issue for social, economic and environmental aspects. Especially, during serious emergencies, it is very important to alleviate road traffic congestion and improve the efficiency of evacuation to reduce casualties, and addressing these problems has been a major task for the agencies responsible in recent decades. Advanced road guidance strategies have been developed for homogeneous traffic flows, or to reduce traffic congestion and enhance the road capacity in a symmetric two-route scenario. However, feedback strategies have rarely been considered for pedestrian-vehicle mixed traffic flows with variable velocities and sizes in an asymmetric multi-route traffic system, which is a common phenomenon in many developing countries. In this study, we propose a weighted road occupancy feedback strategy (WROFS) for pedestrian-vehicle mixed traffic flows, which considers the system equilibrium to ease traffic congestion. In order to more realistic simulating the behavior of mixed traffic objects, the paper adopted a refined and dynamic cellular automaton model (RDPV_CA model) as the update mechanism for pedestrian-vehicle mixed traffic flow. Moreover, a bounded rational threshold control was introduced into the feedback strategy to avoid some negative effect of delayed information and reduce. Based on comparisons with the two previously proposed strategies, the simulation results obtained in a pedestrian-vehicle traffic flow scenario demonstrated that the proposed strategy with a bounded rational threshold was more effective and system equilibrium, system stability were reached.

  14. Integrated Traffic Flow Management Decision Making

    NASA Technical Reports Server (NTRS)

    Grabbe, Shon R.; Sridhar, Banavar; Mukherjee, Avijit

    2009-01-01

    A generalized approach is proposed to support integrated traffic flow management decision making studies at both the U.S. national and regional levels. It can consider tradeoffs between alternative optimization and heuristic based models, strategic versus tactical flight controls, and system versus fleet preferences. Preliminary testing was accomplished by implementing thirteen unique traffic flow management models, which included all of the key components of the system and conducting 85, six-hour fast-time simulation experiments. These experiments considered variations in the strategic planning look-ahead times, the replanning intervals, and the types of traffic flow management control strategies. Initial testing indicates that longer strategic planning look-ahead times and re-planning intervals result in steadily decreasing levels of sector congestion for a fixed delay level. This applies when accurate estimates of the air traffic demand, airport capacities and airspace capacities are available. In general, the distribution of the delays amongst the users was found to be most equitable when scheduling flights using a heuristic scheduling algorithm, such as ration-by-distance. On the other hand, equity was the worst when using scheduling algorithms that took into account the number of seats aboard each flight. Though the scheduling algorithms were effective at alleviating sector congestion, the tactical rerouting algorithm was the primary control for avoiding en route weather hazards. Finally, the modeled levels of sector congestion, the number of weather incursions, and the total system delays, were found to be in fair agreement with the values that were operationally observed on both good and bad weather days.

  15. Performance analysis of reactive congestion control for ATM networks

    NASA Astrophysics Data System (ADS)

    Kawahara, Kenji; Oie, Yuji; Murata, Masayuki; Miyahara, Hideo

    1995-05-01

    In ATM networks, preventive congestion control is widely recognized for efficiently avoiding congestion, and it is implemented by a conjunction of connection admission control and usage parameter control. However, congestion may still occur because of unpredictable statistical fluctuation of traffic sources even when preventive control is performed in the network. In this paper, we study another kind of congestion control, i.e., reactive congestion control, in which each source changes its cell emitting rate adaptively to the traffic load at the switching node (or at the multiplexer). Our intention is that, by incorporating such a congestion control method in ATM networks, more efficient congestion control is established. We develop an analytical model, and carry out an approximate analysis of reactive congestion control algorithm. Numerical results show that the reactive congestion control algorithms are very effective in avoiding congestion and in achieving the statistical gain. Furthermore, the binary congestion control algorithm with pushout mechanism is shown to provide the best performance among the reactive congestion control algorithms treated here.

  16. Traffic accidents on a single-lane road with multi-slowdown sections

    NASA Astrophysics Data System (ADS)

    Li, Xingli; Kuang, Hua; Fan, Yanhong; Zhang, Guoxin

    2014-02-01

    In this paper, an extended cellular automaton model is proposed to simulate the complex characteristics of traffic flow and the probability of the occurrence of traffic accidents by considering the modified conditions for determining whether traffic accidents happen and the effect of multi-slowdown sections on a highway. The simulation results show that the multi-slowdown sections can lead to multiphase coexistences (i.e. free flow phase, congestion phase and saturation phase) in traffic system. The fundamental diagram shows that the number of slowdown section does not influence the mean velocity and the mean flow under the periodic boundary condition, but the existence of slowdown sections can effectively reduce the occurrence of traffic accident. In particular, it is found that the probability of car accidents to occur is the largest at the joint of the normal-speed section and slowdown section, and the underlying mechanism is analyzed. In addition, to design the appropriate limited speed and reduce the differences between the normal speed and limited speed will alleviate traffic congestion and reduce the occurrence of traffic accidents obviously.

  17. Traffic flow theory and characteristics

    SciTech Connect

    Hauer, E.; Pagitsas, E.; Shin, B.T.; Maze, T.H.; Hurley, J.W. Jr.

    1981-01-01

    Estimation of turning flows from automatic counts; a probabilistic model of gap acceptance behavior; sensitivity of fuel-consumption and delay values from traffic simulation; traffic data acquisition from small-format photography; decentralized control of congested street networks; improved estimation of traffic flow for real-time control; Maxband, a program for setting signals on arteries and triangular networks are discussed.

  18. Adaptive mechanism-based congestion control for networked systems

    NASA Astrophysics Data System (ADS)

    Liu, Zhi; Zhang, Yun; Chen, C. L. Philip

    2013-03-01

    In order to assure the communication quality in network systems with heavy traffic and limited bandwidth, a new ATRED (adaptive thresholds random early detection) congestion control algorithm is proposed for the congestion avoidance and resource management of network systems. Different to the traditional AQM (active queue management) algorithms, the control parameters of ATRED are not configured statically, but dynamically adjusted by the adaptive mechanism. By integrating with the adaptive strategy, ATRED alleviates the tuning difficulty of RED (random early detection) and shows a better control on the queue management, and achieve a more robust performance than RED under varying network conditions. Furthermore, a dynamic transmission control protocol-AQM control system using ATRED controller is introduced for the systematic analysis. It is proved that the stability of the network system can be guaranteed when the adaptive mechanism is finely designed. Simulation studies show the proposed ATRED algorithm achieves a good performance in varying network environments, which is superior to the RED and Gentle-RED algorithm, and providing more reliable service under varying network conditions.

  19. Microscale traffic simulation and emission estimation in a heavily trafficked roundabout in Madrid (Spain).

    PubMed

    Quaassdorff, Christina; Borge, Rafael; Pérez, Javier; Lumbreras, Julio; de la Paz, David; de Andrés, Juan Manuel

    2016-10-01

    This paper presents the evaluation of emissions from vehicle operations in a domain of 300m×300m covering a complex urban roundabout with high traffic density in Madrid. Micro-level simulation was successfully applied to estimate the emissions on a scale of meters. Two programs were used: i) VISSIM to simulate the traffic on the square and to compute velocity-time profiles; and ii) VERSIT+micro through ENVIVER that uses VISSIM outputs to compute the related emissions at vehicle level. Data collection was achieved by a measurement campaign obtaining empirical data of vehicle flows and traffic intensities. Twelve simulations of different traffic situations (scenarios) were conducted, representing different hours from several days in a week and the corresponding NOX and PM10 emissions were estimated. The results show a general reduction on average speeds for higher intensities due to braking-acceleration patterns that contribute to increase the average emission factor and, therefore, the total emissions in the domain, especially on weekdays. The emissions are clearly related to traffic volume, although maximum emission scenario does not correspond to the highest traffic intensity due to congestion and variations in fleet composition throughout the day. These results evidence the potential that local measures aimed at alleviating congestion may have in urban areas to reduce emissions. In general, scenario-averaged emission factors estimated with the VISSIM-VERSIT+micro modelling system fitted well those from the average-speed model COPERT, used as a preliminary validation of the results. The largest deviations between these two models occur in those scenarios with more congestion. The design and resolution of the microscale modelling system allow to reflect the impact of actual traffic conditions on driving patterns and related emissions, making it useful for the design of mitigation measures for specific traffic hot-spots.

  20. Microscale traffic simulation and emission estimation in a heavily trafficked roundabout in Madrid (Spain).

    PubMed

    Quaassdorff, Christina; Borge, Rafael; Pérez, Javier; Lumbreras, Julio; de la Paz, David; de Andrés, Juan Manuel

    2016-10-01

    This paper presents the evaluation of emissions from vehicle operations in a domain of 300m×300m covering a complex urban roundabout with high traffic density in Madrid. Micro-level simulation was successfully applied to estimate the emissions on a scale of meters. Two programs were used: i) VISSIM to simulate the traffic on the square and to compute velocity-time profiles; and ii) VERSIT+micro through ENVIVER that uses VISSIM outputs to compute the related emissions at vehicle level. Data collection was achieved by a measurement campaign obtaining empirical data of vehicle flows and traffic intensities. Twelve simulations of different traffic situations (scenarios) were conducted, representing different hours from several days in a week and the corresponding NOX and PM10 emissions were estimated. The results show a general reduction on average speeds for higher intensities due to braking-acceleration patterns that contribute to increase the average emission factor and, therefore, the total emissions in the domain, especially on weekdays. The emissions are clearly related to traffic volume, although maximum emission scenario does not correspond to the highest traffic intensity due to congestion and variations in fleet composition throughout the day. These results evidence the potential that local measures aimed at alleviating congestion may have in urban areas to reduce emissions. In general, scenario-averaged emission factors estimated with the VISSIM-VERSIT+micro modelling system fitted well those from the average-speed model COPERT, used as a preliminary validation of the results. The largest deviations between these two models occur in those scenarios with more congestion. The design and resolution of the microscale modelling system allow to reflect the impact of actual traffic conditions on driving patterns and related emissions, making it useful for the design of mitigation measures for specific traffic hot-spots. PMID:27232968

  1. A hybrid routing model for mitigating congestion in networks

    NASA Astrophysics Data System (ADS)

    He, Kun; Xu, Zhongzhi; Wang, Pu

    2015-08-01

    Imbalance between fast-growing transport demand and limited network supply has resulted in severe congestion in many transport networks. Increasing network supply or reducing transport demand could mitigate congestion, but these remedies are usually associated with high implementation cost. Combining shortest path (SP) routing and minimum cost (MC) routing, we developed a hybrid routing model to alleviate congestion in networks. This model requires only a small fraction of the total number of agents to use MC routes, and effectively mitigates congestion in networks under homogeneous or heterogeneous transport demand, offering new insights for improving the efficiency of practical transport networks.

  2. Congestion control and avoidance for ATM networks

    NASA Astrophysics Data System (ADS)

    Wu, Chih-Ming

    1997-10-01

    The flow of papers proposing new schemes to cope with congestion in networks continues unabated. In particular as the deployment of ATM networks advances effective congestion control is required to ensure that these networks can effectively provide the wide range of services that they promise. This paper attempts to evaluate whether recently proposed algorithms are likely to be useful in practice using performance simulation and modeling methods. However the performance is very sensitive to the flow control parameters and identifying an appropriate set of parameters is difficult since it depends heavily on the traffic conditions. The aim of this paper described is to broaden the context within which ATM performance is considered, and outline ongoing work in performance evaluation of ATM networks. This paper presents the complete picture for evaluating the properties of congestion control mechanisms including fairness, overhead, data loss and network utilization are described. It is particularly aimed at estimating the effects of recent congestion control schemes for ATM networks.

  3. Basic model for traffic interweave

    NASA Astrophysics Data System (ADS)

    Huang, Ding-wei

    2015-09-01

    We propose a three-parameter traffic model. The system consists of a loop with two junctions. The three parameters control the inflow, the outflow (from the junctions,) and the interweave (in the loop.) The dynamics is deterministic. The boundary conditions are stochastic. We present preliminary results for a complete phase diagram and all possible phase transitions. We observe four distinct traffic phases: free flow, congestion, bottleneck, and gridlock. The proposed model is able to present economically a clear perspective to these four different phases. Free flow and congestion are caused by the traffic conditions in the junctions. Both bottleneck and gridlock are caused by the traffic interweave in the loop. Instead of directly related to conventional congestion, gridlock can be taken as an extreme limit of bottleneck. This model can be useful to clarify the characteristics of traffic phases. This model can also be extended for practical applications.

  4. Integrated traffic system

    SciTech Connect

    Creighton, H. ); Allen, R.; Stewart, S.; Hayto, S. )

    1990-11-01

    The traffic congestion on our roads today is becoming a critical problem. There is increased fuel consumption as cars wait along poorly timed arterials. Safety is threatened as poor traffic flow leads to collisions. This paper reports that Transport Canada and the Ministry of Transportation Ontario has developed an integrated traffic system (ITS). The system is designed to enable the optimization of traffic flow on existing roadways. The ITS system contains a data-base management system for traffic data (including accidents, roadway volumes, and signal timing details) and links this data base to the traffic analysis programs. This will ease the data management situation within the municipalities and standardize the traffic operations and reduce duplication of computerization development efforts.

  5. Percolation properties in a traffic model

    NASA Astrophysics Data System (ADS)

    Wang, Feilong; Li, Daqing; Xu, Xiaoyun; Wu, Ruoqian; Havlin, Shlomo

    2015-11-01

    As a dynamical complex system, traffic is characterized by a transition from free flow to congestions, which is mostly studied in highways. However, despite its importance in developing congestion mitigation strategies, the understanding of this common traffic phenomenon in a city scale is still missing. An open question is how the traffic in the network collapses from a global efficient traffic to isolated local flows in small clusters, i.e. the question of traffic percolation. Here we study the traffic percolation properties on a lattice by simulation of an agent-based model for traffic. A critical traffic volume in this model distinguishes the free state from the congested state of traffic. Our results show that the threshold of traffic percolation decreases with increasing traffic volume and reaches a minimum value at the critical traffic volume. We show that this minimal threshold is the result of longest spatial correlation between traffic flows at the critical traffic volume. These findings may help to develop congestion mitigation strategies in a network view.

  6. Analysis of safety factors for urban expressways considering the effect of congestion in Shanghai, China.

    PubMed

    Sun, Jian; Li, Tienan; Li, Feng; Chen, Feng

    2016-10-01

    Urban expressways are the key components of the urban traffic network. The traffic safety situation on expressways directly influences the efficiency of the whole network. A total of 48,325 crashes were recorded by Shanghai Expressway Surveillance System in a three-year period. Considering the different crash mechanisms under different congestion levels, models for the total crashes, non-congested-flow crashes and congested-flow crashes were respectively formulated based on the real-time traffic condition corresponding to each crash. Moreover, considering the potential spatial correlation among segments, the adjacent-correlated spatial and distance-correlated spatial models were formulated and compared to the traditional non-spatial-correlated model. A Bayesian approach was employed to estimate the parameters. The results showed that the congestion index, merging ratio, ramp density, and average daily traffic significantly affect the crash frequency. The safety factors in non-congested flow and congested flow are different; diverging behavior is more risky in non-congested flow, more lanes tend to increase the risk of crashes in congested flow, and horizontal curves tend to decrease the crash risk in congested flow but cause high risk in non-congested flow. In addition, the distance-correlated spatial model is found to be the best-fitting model. The results of this study suggested that dedicated safety countermeasures can be designed for different traffic situations on urban expressways.

  7. Analysis of safety factors for urban expressways considering the effect of congestion in Shanghai, China.

    PubMed

    Sun, Jian; Li, Tienan; Li, Feng; Chen, Feng

    2016-10-01

    Urban expressways are the key components of the urban traffic network. The traffic safety situation on expressways directly influences the efficiency of the whole network. A total of 48,325 crashes were recorded by Shanghai Expressway Surveillance System in a three-year period. Considering the different crash mechanisms under different congestion levels, models for the total crashes, non-congested-flow crashes and congested-flow crashes were respectively formulated based on the real-time traffic condition corresponding to each crash. Moreover, considering the potential spatial correlation among segments, the adjacent-correlated spatial and distance-correlated spatial models were formulated and compared to the traditional non-spatial-correlated model. A Bayesian approach was employed to estimate the parameters. The results showed that the congestion index, merging ratio, ramp density, and average daily traffic significantly affect the crash frequency. The safety factors in non-congested flow and congested flow are different; diverging behavior is more risky in non-congested flow, more lanes tend to increase the risk of crashes in congested flow, and horizontal curves tend to decrease the crash risk in congested flow but cause high risk in non-congested flow. In addition, the distance-correlated spatial model is found to be the best-fitting model. The results of this study suggested that dedicated safety countermeasures can be designed for different traffic situations on urban expressways. PMID:26721569

  8. Route guidance strategies revisited: Comparison and evaluation in an asymmetric two-route traffic network

    NASA Astrophysics Data System (ADS)

    He, Zhengbing; Chen, Bokui; Jia, Ning; Guan, Wei; Lin, Benchuan; Wang, Binghong

    2014-12-01

    To alleviate traffic congestion, a variety of route guidance strategies have been proposed for intelligent transportation systems. A number of strategies are introduced and investigated on a symmetric two-route traffic network over the past decade. To evaluate the strategies in a more general scenario, this paper conducts eight prevalent strategies on an asymmetric two-route traffic network with different slowdown behaviors on alternative routes. The results show that only mean velocity feedback strategy (MVFS) is able to equalize travel time, i.e. approximate user optimality (UO); while the others fail due to incapability of establishing relations between the feedback parameters and travel time. The paper helps better understand these strategies, and suggests MVFS if the authority intends to achieve user optimality.

  9. A Novel Biobjective Risk-Based Model for Stochastic Air Traffic Network Flow Optimization Problem

    PubMed Central

    Cai, Kaiquan; Jia, Yaoguang; Zhu, Yanbo; Xiao, Mingming

    2015-01-01

    Network-wide air traffic flow management (ATFM) is an effective way to alleviate demand-capacity imbalances globally and thereafter reduce airspace congestion and flight delays. The conventional ATFM models assume the capacities of airports or airspace sectors are all predetermined. However, the capacity uncertainties due to the dynamics of convective weather may make the deterministic ATFM measures impractical. This paper investigates the stochastic air traffic network flow optimization (SATNFO) problem, which is formulated as a weighted biobjective 0-1 integer programming model. In order to evaluate the effect of capacity uncertainties on ATFM, the operational risk is modeled via probabilistic risk assessment and introduced as an extra objective in SATNFO problem. Computation experiments using real-world air traffic network data associated with simulated weather data show that presented model has far less constraints compared to stochastic model with nonanticipative constraints, which means our proposed model reduces the computation complexity. PMID:26180842

  10. A Novel Biobjective Risk-Based Model for Stochastic Air Traffic Network Flow Optimization Problem.

    PubMed

    Cai, Kaiquan; Jia, Yaoguang; Zhu, Yanbo; Xiao, Mingming

    2015-01-01

    Network-wide air traffic flow management (ATFM) is an effective way to alleviate demand-capacity imbalances globally and thereafter reduce airspace congestion and flight delays. The conventional ATFM models assume the capacities of airports or airspace sectors are all predetermined. However, the capacity uncertainties due to the dynamics of convective weather may make the deterministic ATFM measures impractical. This paper investigates the stochastic air traffic network flow optimization (SATNFO) problem, which is formulated as a weighted biobjective 0-1 integer programming model. In order to evaluate the effect of capacity uncertainties on ATFM, the operational risk is modeled via probabilistic risk assessment and introduced as an extra objective in SATNFO problem. Computation experiments using real-world air traffic network data associated with simulated weather data show that presented model has far less constraints compared to stochastic model with nonanticipative constraints, which means our proposed model reduces the computation complexity. PMID:26180842

  11. A hierarchical framework for air traffic control

    NASA Astrophysics Data System (ADS)

    Roy, Kaushik

    Air travel in recent years has been plagued by record delays, with over $8 billion in direct operating costs being attributed to 100 million flight delay minutes in 2007. Major contributing factors to delay include weather, congestion, and aging infrastructure; the Next Generation Air Transportation System (NextGen) aims to alleviate these delays through an upgrade of the air traffic control system. Changes to large-scale networked systems such as air traffic control are complicated by the need for coordinated solutions over disparate temporal and spatial scales. Individual air traffic controllers must ensure aircraft maintain safe separation locally with a time horizon of seconds to minutes, whereas regional plans are formulated to efficiently route flows of aircraft around weather and congestion on the order of every hour. More efficient control algorithms that provide a coordinated solution are required to safely handle a larger number of aircraft in a fixed amount of airspace. Improved estimation algorithms are also needed to provide accurate aircraft state information and situational awareness for human controllers. A hierarchical framework is developed to simultaneously solve the sometimes conflicting goals of regional efficiency and local safety. Careful attention is given in defining the interactions between the layers of this hierarchy. In this way, solutions to individual air traffic problems can be targeted and implemented as needed. First, the regional traffic flow management problem is posed as an optimization problem and shown to be NP-Hard. Approximation methods based on aggregate flow models are developed to enable real-time implementation of algorithms that reduce the impact of congestion and adverse weather. Second, the local trajectory design problem is solved using a novel slot-based sector model. This model is used to analyze sector capacity under varying traffic patterns, providing a more comprehensive understanding of how increased automation

  12. Dynamic congestion control mechanisms for MPLS networks

    NASA Astrophysics Data System (ADS)

    Holness, Felicia; Phillips, Chris I.

    2001-02-01

    Considerable interest has arisen in congestion control through traffic engineering from the knowledge that although sensible provisioning of the network infrastructure is needed, together with sufficient underlying capacity, these are not sufficient to deliver the Quality of Service required for new applications. This is due to dynamic variations in load. In operational Internet Protocol (IP) networks, it has been difficult to incorporate effective traffic engineering due to the limited capabilities of the IP technology. In principle, Multiprotocol Label Switching (MPLS), which is a connection-oriented label swapping technology, offers new possibilities in addressing the limitations by allowing the operator to use sophisticated traffic control mechanisms. This paper presents a novel scheme to dynamically manage traffic flows through the network by re-balancing streams during periods of congestion. It proposes management-based algorithms that will allow label switched routers within the network to utilize mechanisms within MPLS to indicate when flows are starting to experience frame/packet loss and then to react accordingly. Based upon knowledge of the customer's Service Level Agreement, together with instantaneous flow information, the label edge routers can then instigate changes to the LSP route and circumvent congestion that would hitherto violate the customer contacts.

  13. Congestion, air pollution, and road fatalities in urban areas.

    PubMed

    Shefer, D

    1994-08-01

    The continuous rapid growth in vehicle miles travelled coupled with the rapid increase in traffic congestion on highways of virtually every large urban area, explain a major portion of the observed deterioration of urban air quality. To halt this deterioration and to secure safe and healthy environments and improve the quality of life in our cities, it is useful to initiate and implement programs that treat jointly traffic congestion, air quality, and road safety. Market-based strategies, driven by price mechanisms, have been proposed as the best and most efficient way to decrease traffic congestion and to reduce vehicle emission. Congestion pricing, emission fees, reducing emissions of high-polluting vehicles, and introducing more efficient vehicle and/or fuel technologies are not mutually exclusive strategies and therefore they can be employed jointly within an overall strategy. In view of the conflicting objectives that may exist between improving urban air quality and reducing road fatalities and traffic congestion, it is of great importance to investigate thoroughly these functional relationships. The results of such studies will help decision makers identify the "socially optimal level of congestion" that will yield the highest net social benefit.

  14. Congestion, air pollution, and road fatalities in urban areas.

    PubMed

    Shefer, D

    1994-08-01

    The continuous rapid growth in vehicle miles travelled coupled with the rapid increase in traffic congestion on highways of virtually every large urban area, explain a major portion of the observed deterioration of urban air quality. To halt this deterioration and to secure safe and healthy environments and improve the quality of life in our cities, it is useful to initiate and implement programs that treat jointly traffic congestion, air quality, and road safety. Market-based strategies, driven by price mechanisms, have been proposed as the best and most efficient way to decrease traffic congestion and to reduce vehicle emission. Congestion pricing, emission fees, reducing emissions of high-polluting vehicles, and introducing more efficient vehicle and/or fuel technologies are not mutually exclusive strategies and therefore they can be employed jointly within an overall strategy. In view of the conflicting objectives that may exist between improving urban air quality and reducing road fatalities and traffic congestion, it is of great importance to investigate thoroughly these functional relationships. The results of such studies will help decision makers identify the "socially optimal level of congestion" that will yield the highest net social benefit. PMID:7522455

  15. Avoiding congestion through dynamic load control

    NASA Astrophysics Data System (ADS)

    Hnatyshin, Vasil; Sethi, Adarshpal S.

    2001-07-01

    The current best effort approach to quality of service in the Internet can no longer satisfy a diverse variety of customer service requirements, and that is why there is a need for alternative strategies. In order to solve this problem a number of service differentiation models have been proposed. Unfortunately, these schemes often fail to provide proper service differentiation during periods of congestion. To deal with the issue of congestion, we introduce a new load control mechanism that eliminates congestion based on the feedback from the network core by dynamically adjusting traffic load at the network boundary. We introduce four methods for calculating load distribution among the ingress routers and among different flows in each ingress router, and we evaluate these proposed methods through simulation.

  16. On-board congestion control for satellite packet switching networks

    NASA Technical Reports Server (NTRS)

    Chu, Pong P.

    1991-01-01

    It is desirable to incorporate packet switching capability on-board for future communication satellites. Because of the statistical nature of packet communication, incoming traffic fluctuates and may cause congestion. Thus, it is necessary to incorporate a congestion control mechanism as part of the on-board processing to smooth and regulate the bursty traffic. Although there are extensive studies on congestion control for both baseband and broadband terrestrial networks, these schemes are not feasible for space based switching networks because of the unique characteristics of satellite link. Here, we propose a new congestion control method for on-board satellite packet switching. This scheme takes into consideration the long propagation delay in satellite link and takes advantage of the the satellite's broadcasting capability. It divides the control between the ground terminals and satellite, but distributes the primary responsibility to ground terminals and only requires minimal hardware resource on-board satellite.

  17. Evaluation of TCP congestion control algorithms.

    SciTech Connect

    Long, Robert Michael

    2003-12-01

    Sandia, Los Alamos, and Lawrence Livermore National Laboratories currently deploy high speed, Wide Area Network links to permit remote access to their Supercomputer systems. The current TCP congestion algorithm does not take full advantage of high delay, large bandwidth environments. This report involves evaluating alternative TCP congestion algorithms and comparing them with the currently used congestion algorithm. The goal was to find if an alternative algorithm could provide higher throughput with minimal impact on existing network traffic. The alternative congestion algorithms used were Scalable TCP and High-Speed TCP. Network lab experiments were run to record the performance of each algorithm under different network configurations. The network configurations used were back-to-back with no delay, back-to-back with a 30ms delay, and two-to-one with a 30ms delay. The performance of each algorithm was then compared to the existing TCP congestion algorithm to determine if an acceptable alternative had been found. Comparisons were made based on throughput, stability, and fairness.

  18. Physics of Traffic Flow

    NASA Astrophysics Data System (ADS)

    Davis, L. C.

    2015-03-01

    The Texas A&M Transportation Institute estimated that traffic congestion cost the United States 121 billion in 2011 (the latest data available). The cost is due to wasted time and fuel. In addition to accidents and road construction, factors contributing to congestion include large demand, instability of high-density free flow and selfish behavior of drivers, which produces self-organized traffic bottlenecks. Extensive data collected on instrumented highways in various countries have led to a better understanding of traffic dynamics. From these measurements, Boris Kerner and colleagues developed a new theory called three-phase theory. They identified three major phases of flow observed in the data: free flow, synchronous flow and wide moving jams. The intermediate phase is called synchronous because vehicles in different lanes tend to have similar velocities. This congested phase, characterized by lower velocities yet modestly high throughput, frequently occurs near on-ramps and lane reductions. At present there are only two widely used methods of congestion mitigation: ramp metering and the display of current travel-time information to drivers. To find more effective methods to reduce congestion, researchers perform large-scale simulations using models based on the new theories. An algorithm has been proposed to realize Wardrop equilibria with real-time route information. Such equilibria have equal travel time on alternative routes between a given origin and destination. An active area of current research is the dynamics of connected vehicles, which communicate wirelessly with other vehicles and the surrounding infrastructure. These systems show great promise for improving traffic flow and safety.

  19. Local debris congestion in the geosynchronous environment with population augmentation

    NASA Astrophysics Data System (ADS)

    Anderson, Paul V.; Schaub, Hanspeter

    2014-02-01

    Forecasting of localized debris congestion in the geostationary (GEO) regime is performed to investigate how frequently near-miss events occur for each of the longitude slots in the GEO ring. The present-day resident space object (RSO) population at GEO is propagated forward in time to determine current debris congestion conditions, and new probability density functions that describe where GEO satellites are inserted into operational orbits are harnessed to assess longitude-dependent congestion in "business-as-usual" launch traffic, with and without re-orbiting at end-of-life. Congestion forecasting for a 50-year period is presented to illustrate the need for appropriately executed mitigation measures in the GEO ring. Results indicate that localized debris congestion will double within 50 years under current 80% re-orbiting success rates.

  20. Local Debris Congestion in the Geosynchronous Environment with Population Augmentation

    NASA Astrophysics Data System (ADS)

    Anderson, P.; Schaub, H.

    2013-08-01

    Forecasting of localized debris congestion in the geostationary (GEO) ring is performed to investigate how frequently near-miss events occur for every longitude slot at GEO. A parallelized propagation routine is used to propagate the current resident space object (RSO) population at GEO forward in time, and representative augmentation of this population is implemented to simulate congestion in "business-as-usual" launch traffic, with and without mitigation at end-of-life. Congestion forecasting for a 50- year time frame is presented to illustrate the need for both appropriately-executed mitigation and active remediation measures at GEO.

  1. Visual Analysis of Air Traffic Data

    NASA Technical Reports Server (NTRS)

    Albrecht, George Hans; Pang, Alex

    2012-01-01

    In this paper, we present visual analysis tools to help study the impact of policy changes on air traffic congestion. The tools support visualization of time-varying air traffic density over an area of interest using different time granularity. We use this visual analysis platform to investigate how changing the aircraft separation volume can reduce congestion while maintaining key safety requirements. The same platform can also be used as a decision aid for processing requests for unmanned aerial vehicle operations.

  2. Formation of density waves in traffic flow through intersecting roads.

    PubMed

    Ray, B; Bhattacharyya, S N

    2006-03-01

    The formation of density waves in two intersecting roads, with a traffic circle at the intersection, is studied. It is found that, depending on the traffic densities in the two roads, density waves can form in the traffic circle and in one or both of the roads. Depending on the expression chosen for the optimal velocity, either the congestion moves entirely to the traffic circle or the congestion becomes confined to the traffic circle and a part of the road approaching the traffic circle.

  3. Spatial-Temporal Congestion Identification Based on Time Series Similarity Considering Missing Data.

    PubMed

    Qi, Hongsheng; Liu, Meiqi; Wang, Dianhai; Chen, Mengwei

    2016-01-01

    Traffic congestion varies spatially and temporally. The observation of the formation, propagation and dispersion of network traffic congestion can lead to insights about the network performance, the bottleneck dynamics etc. While many researchers use the traffic flow data to reconstruct the congestion profile, the data missing problem is bypassed. Current methods either omit the missing data or supplement the missing part by average etc. Great error may be introduced during these processes. Rather than simply discarding the missing data, this research regards the data missing event as a result of either the severe congestion which prevent the floating vehicle from entering the congested area, or a type of feature of the resulting traffic flow time series. Hence a new traffic flow operational index time series similarity measurement is expected to be established as a basis of identifying the dynamic network bottleneck. The method first measures the traffic flow operational similarity between pairs of neighboring links, and then the similarity results are used to cluster the spatial-temporal congestion. In order to get the similarity under missing data condition, the measurement is implemented in a two-stage manner: firstly the so called first order similarity is calculated given that the traffic flow variables are bounded both upside and downside; then the first order similarity is aggregated to generate the second order similarity as the output. We implement the method on part of the real-world road network; the results generated are not only consistent with empirical observation, but also provide useful insights.

  4. Spatial-Temporal Congestion Identification Based on Time Series Similarity Considering Missing Data.

    PubMed

    Qi, Hongsheng; Liu, Meiqi; Wang, Dianhai; Chen, Mengwei

    2016-01-01

    Traffic congestion varies spatially and temporally. The observation of the formation, propagation and dispersion of network traffic congestion can lead to insights about the network performance, the bottleneck dynamics etc. While many researchers use the traffic flow data to reconstruct the congestion profile, the data missing problem is bypassed. Current methods either omit the missing data or supplement the missing part by average etc. Great error may be introduced during these processes. Rather than simply discarding the missing data, this research regards the data missing event as a result of either the severe congestion which prevent the floating vehicle from entering the congested area, or a type of feature of the resulting traffic flow time series. Hence a new traffic flow operational index time series similarity measurement is expected to be established as a basis of identifying the dynamic network bottleneck. The method first measures the traffic flow operational similarity between pairs of neighboring links, and then the similarity results are used to cluster the spatial-temporal congestion. In order to get the similarity under missing data condition, the measurement is implemented in a two-stage manner: firstly the so called first order similarity is calculated given that the traffic flow variables are bounded both upside and downside; then the first order similarity is aggregated to generate the second order similarity as the output. We implement the method on part of the real-world road network; the results generated are not only consistent with empirical observation, but also provide useful insights. PMID:27649412

  5. Spatial-Temporal Congestion Identification Based on Time Series Similarity Considering Missing Data

    PubMed Central

    Qi, Hongsheng; Liu, Meiqi; Wang, Dianhai; Chen, Mengwei

    2016-01-01

    Traffic congestion varies spatially and temporally. The observation of the formation, propagation and dispersion of network traffic congestion can lead to insights about the network performance, the bottleneck dynamics etc. While many researchers use the traffic flow data to reconstruct the congestion profile, the data missing problem is bypassed. Current methods either omit the missing data or supplement the missing part by average etc. Great error may be introduced during these processes. Rather than simply discarding the missing data, this research regards the data missing event as a result of either the severe congestion which prevent the floating vehicle from entering the congested area, or a type of feature of the resulting traffic flow time series. Hence a new traffic flow operational index time series similarity measurement is expected to be established as a basis of identifying the dynamic network bottleneck. The method first measures the traffic flow operational similarity between pairs of neighboring links, and then the similarity results are used to cluster the spatial-temporal congestion. In order to get the similarity under missing data condition, the measurement is implemented in a two-stage manner: firstly the so called first order similarity is calculated given that the traffic flow variables are bounded both upside and downside; then the first order similarity is aggregated to generate the second order similarity as the output. We implement the method on part of the real-world road network; the results generated are not only consistent with empirical observation, but also provide useful insights. PMID:27649412

  6. Global forward-predicting dynamic routing for traffic concurrency space stereo multi-layer scale-free network

    NASA Astrophysics Data System (ADS)

    Xie, Wei-Hao; Zhou, Bin; Liu, En-Xiao; Lu, Wei-Dang; Zhou, Ting

    2015-09-01

    Many real communication networks, such as oceanic monitoring network and land environment observation network, can be described as space stereo multi-layer structure, and the traffic in these networks is concurrent. Understanding how traffic dynamics depend on these real communication networks and finding an effective routing strategy that can fit the circumstance of traffic concurrency and enhance the network performance are necessary. In this light, we propose a traffic model for space stereo multi-layer complex network and introduce two kinds of global forward-predicting dynamic routing strategies, global forward-predicting hybrid minimum queue (HMQ) routing strategy and global forward-predicting hybrid minimum degree and queue (HMDQ) routing strategy, for traffic concurrency space stereo multi-layer scale-free networks. By applying forward-predicting strategy, the proposed routing strategies achieve better performances in traffic concurrency space stereo multi-layer scale-free networks. Compared with the efficient routing strategy and global dynamic routing strategy, HMDQ and HMQ routing strategies can optimize the traffic distribution, alleviate the number of congested packets effectively and reach much higher network capacity. Project supported by the Youth Science Funds of Shandong Academy of Sciences, China (Grant No. 2014QN032).

  7. On the reproducibility of spatiotemporal traffic dynamics with microscopic traffic models

    NASA Astrophysics Data System (ADS)

    Knorr, Florian; Schreckenberg, Michael

    2012-10-01

    Traffic flow is a very prominent example of a driven non-equilibrium system. A characteristic phenomenon of traffic dynamics is the spontaneous and abrupt drop of the average velocity on a stretch of road leading to congestion. Such a traffic breakdown corresponds to a boundary-induced phase transition from free flow to congested traffic. In this paper, we study the ability of selected microscopic traffic models to reproduce a traffic breakdown, and we investigate its spatiotemporal dynamics. For our analysis, we use empirical traffic data from stationary loop detectors on a German Autobahn showing a spontaneous breakdown. We then present several methods to assess the results and compare the models with each other. In addition, we will also discuss some important modeling aspects and their impact on the resulting spatiotemporal pattern. The investigation of different downstream boundary conditions, for example, shows that the physical origin of the traffic breakdown may be artificially induced by the setup of the boundaries.

  8. The Physics of Traffic

    NASA Astrophysics Data System (ADS)

    Davis, L. Craig

    2006-03-01

    Congestion in freeway traffic is an example of self-organization in the language of complexity theory. Nonequilibrium, first-order phase transitions from free flow cause complex spatiotemporal patterns. Two distinct phases of congestion are observed in empirical traffic data--wide moving jams and synchronous flow. Wide moving jams are characterized by stopped or slowly moving vehicles within the jammed region, which widens and moves upstream at 15-20 km/h. Above a critical density of vehicles, a sudden decrease in the velocity of a lead vehicle can initiate a transition from metastable states to this phase. Human behaviors, especially delayed reactions, are implicated in the formation of jams. The synchronous flow phase results from a bottleneck such as an on-ramp. Thus, in contrast to a jam, the downstream front is pinned at a fixed location. The name of the phase comes from the equilibration (or synchronization) of speed and flow rate across all lanes caused by frequent vehicle lane changes. Synchronous flow occurs when the mainline flow and the rate of merging from an on-ramp are sufficiently large. Large-scale simulations using car-following models reproduce the physical phenomena occurring in traffic and suggest methods to improve flow and mediate congestion.

  9. Local empathy provides global minimization of congestion in communication networks

    NASA Astrophysics Data System (ADS)

    Meloni, Sandro; Gómez-Gardeñes, Jesús

    2010-11-01

    We present a mechanism to avoid congestion in complex networks based on a local knowledge of traffic conditions and the ability of routers to self-coordinate their dynamical behavior. In particular, routers make use of local information about traffic conditions to either reject or accept information packets from their neighbors. We show that when nodes are only aware of their own congestion state they self-organize into a hierarchical configuration that delays remarkably the onset of congestion although leading to a sharp first-order-like congestion transition. We also consider the case when nodes are aware of the congestion state of their neighbors. In this case, we show that empathy between nodes is strongly beneficial to the overall performance of the system and it is possible to achieve larger values for the critical load together with a smooth, second-order-like, transition. Finally, we show how local empathy minimize the impact of congestion as much as global minimization. Therefore, here we present an outstanding example of how local dynamical rules can optimize the system’s functioning up to the levels reached using global knowledge.

  10. Probabilistic description of traffic flow

    NASA Astrophysics Data System (ADS)

    Mahnke, R.; Kaupužs, J.; Lubashevsky, I.

    2005-03-01

    A stochastic description of traffic flow, called probabilistic traffic flow theory, is developed. The general master equation is applied to relatively simple models to describe the formation and dissolution of traffic congestions. Our approach is mainly based on spatially homogeneous systems like periodically closed circular rings without on- and off-ramps. We consider a stochastic one-step process of growth or shrinkage of a car cluster (jam). As generalization we discuss the coexistence of several car clusters of different sizes. The basic problem is to find a physically motivated ansatz for the transition rates of the attachment and detachment of individual cars to a car cluster consistent with the empirical observations in real traffic. The emphasis is put on the analogy with first-order phase transitions and nucleation phenomena in physical systems like supersaturated vapour. The results are summarized in the flux-density relation, the so-called fundamental diagram of traffic flow, and compared with empirical data. Different regimes of traffic flow are discussed: free flow, congested mode as stop-and-go regime, and heavy viscous traffic. The traffic breakdown is studied based on the master equation as well as the Fokker-Planck approximation to calculate mean first passage times or escape rates. Generalizations are developed to allow for on-ramp effects. The calculated flux-density relation and characteristic breakdown times coincide with empirical data measured on highways. Finally, a brief summary of the stochastic cellular automata approach is given.

  11. A Bayesian ridge regression analysis of congestion's impact on urban expressway safety.

    PubMed

    Shi, Qi; Abdel-Aty, Mohamed; Lee, Jaeyoung

    2016-03-01

    With the rapid growth of traffic in urban areas, concerns about congestion and traffic safety have been heightened. This study leveraged both Automatic Vehicle Identification (AVI) system and Microwave Vehicle Detection System (MVDS) installed on an expressway in Central Florida to explore how congestion impacts the crash occurrence in urban areas. Multiple congestion measures from the two systems were developed. To ensure more precise estimates of the congestion's effects, the traffic data were aggregated into peak and non-peak hours. Multicollinearity among traffic parameters was examined. The results showed the presence of multicollinearity especially during peak hours. As a response, ridge regression was introduced to cope with this issue. Poisson models with uncorrelated random effects, correlated random effects, and both correlated random effects and random parameters were constructed within the Bayesian framework. It was proven that correlated random effects could significantly enhance model performance. The random parameters model has similar goodness-of-fit compared with the model with only correlated random effects. However, by accounting for the unobserved heterogeneity, more variables were found to be significantly related to crash frequency. The models indicated that congestion increased crash frequency during peak hours while during non-peak hours it was not a major crash contributing factor. Using the random parameter model, the three congestion measures were compared. It was found that all congestion indicators had similar effects while Congestion Index (CI) derived from MVDS data was a better congestion indicator for safety analysis. Also, analyses showed that the segments with higher congestion intensity could not only increase property damage only (PDO) crashes, but also more severe crashes. In addition, the issues regarding the necessity to incorporate specific congestion indicator for congestion's effects on safety and to take care of the

  12. A Bayesian ridge regression analysis of congestion's impact on urban expressway safety.

    PubMed

    Shi, Qi; Abdel-Aty, Mohamed; Lee, Jaeyoung

    2016-03-01

    With the rapid growth of traffic in urban areas, concerns about congestion and traffic safety have been heightened. This study leveraged both Automatic Vehicle Identification (AVI) system and Microwave Vehicle Detection System (MVDS) installed on an expressway in Central Florida to explore how congestion impacts the crash occurrence in urban areas. Multiple congestion measures from the two systems were developed. To ensure more precise estimates of the congestion's effects, the traffic data were aggregated into peak and non-peak hours. Multicollinearity among traffic parameters was examined. The results showed the presence of multicollinearity especially during peak hours. As a response, ridge regression was introduced to cope with this issue. Poisson models with uncorrelated random effects, correlated random effects, and both correlated random effects and random parameters were constructed within the Bayesian framework. It was proven that correlated random effects could significantly enhance model performance. The random parameters model has similar goodness-of-fit compared with the model with only correlated random effects. However, by accounting for the unobserved heterogeneity, more variables were found to be significantly related to crash frequency. The models indicated that congestion increased crash frequency during peak hours while during non-peak hours it was not a major crash contributing factor. Using the random parameter model, the three congestion measures were compared. It was found that all congestion indicators had similar effects while Congestion Index (CI) derived from MVDS data was a better congestion indicator for safety analysis. Also, analyses showed that the segments with higher congestion intensity could not only increase property damage only (PDO) crashes, but also more severe crashes. In addition, the issues regarding the necessity to incorporate specific congestion indicator for congestion's effects on safety and to take care of the

  13. Cloud-based large-scale air traffic flow optimization

    NASA Astrophysics Data System (ADS)

    Cao, Yi

    The ever-increasing traffic demand makes the efficient use of airspace an imperative mission, and this paper presents an effort in response to this call. Firstly, a new aggregate model, called Link Transmission Model (LTM), is proposed, which models the nationwide traffic as a network of flight routes identified by origin-destination pairs. The traversal time of a flight route is assumed to be the mode of distribution of historical flight records, and the mode is estimated by using Kernel Density Estimation. As this simplification abstracts away physical trajectory details, the complexity of modeling is drastically decreased, resulting in efficient traffic forecasting. The predicative capability of LTM is validated against recorded traffic data. Secondly, a nationwide traffic flow optimization problem with airport and en route capacity constraints is formulated based on LTM. The optimization problem aims at alleviating traffic congestions with minimal global delays. This problem is intractable due to millions of variables. A dual decomposition method is applied to decompose the large-scale problem such that the subproblems are solvable. However, the whole problem is still computational expensive to solve since each subproblem is an smaller integer programming problem that pursues integer solutions. Solving an integer programing problem is known to be far more time-consuming than solving its linear relaxation. In addition, sequential execution on a standalone computer leads to linear runtime increase when the problem size increases. To address the computational efficiency problem, a parallel computing framework is designed which accommodates concurrent executions via multithreading programming. The multithreaded version is compared with its monolithic version to show decreased runtime. Finally, an open-source cloud computing framework, Hadoop MapReduce, is employed for better scalability and reliability. This framework is an "off-the-shelf" parallel computing model

  14. Traffic circulation study and long-range plan for Del Rio. Interim research report

    SciTech Connect

    Weissmann, A.J.; Islam, R.

    1996-03-01

    A 1992 report to Congress, pursuant to Intermodal Surface Transportation Efficiency Act (ISTEA) sections 1089 and 6015, acknowledges that Texas serves a disproportionate share of the U.S.-Mexico international trade, and, accordingly, recommends the development of federal-aid program options to improve transportation infrastructure related to international trade. In order to take advantage of this recommendation, border states must monitor their transborder traffic demand and develop traffic circulation plans for their border cities. This report presents a 25-year traffic circulation plan for the City of Del Rio, Texas. The plan includes recommendations for increasing roadway capacity, adding left-turn lanes, building new routes to relieve congestion, and adding international thoroughfares. It also includes a comprehensive analysis of a transborder traffic in Del Rio, as well as of international thoroughfares between Cuidad Acuna and Del Rio. The recommendations take into account input from TxDOT personnel, City officials, border inspectors, international bridge managers, and several Mexican officials. The recommendations and schedules discussed in this report can assist TxDOT not only in planning land transport infrastructure, but also in alleviating problems associated with additional highway capacity, pavement rehabilitation, signalization, and right-of-way.

  15. Auctionable fixed transmission rights for congestion management

    NASA Astrophysics Data System (ADS)

    Alomoush, Muwaffaq Irsheid

    Electric power deregulation has proposed a major change to the regulated utility monopoly. The change manifests the main part of engineers' efforts to reshape three components of today's regulated monopoly: generation, distribution and transmission. In this open access deregulated power market, transmission network plays a major role, and transmission congestion is a major problem that requires further consideration especially when inter-zonal/intra-zonal scheme is implemented. Declaring that engineering studies and experience are the criteria to define zonal boundaries or defining a zone based on the fact that a zone is a densely interconnected area (lake) and paths connecting these densely interconnected areas are inter-zonal lines will render insufficient and fuzzy definitions. Moreover, a congestion problem formulation should take into consideration interactions between intra-zonal and inter-zonal flows and their effects on power systems. In this thesis, we introduce a procedure for minimizing the number of adjustments of preferred schedules to alleviate congestion and apply control schemes to minimize interactions between zones. In addition, we give the zone definition a certain criterion based on the Locational Marginal Price (LMP). This concept will be used to define congestion zonal boundaries and to decide whether any zone should be merged with another zone or split into new zones. The thesis presents a unified scheme that combines zonal and FTR schemes to manage congestion. This combined scheme is utilized with LMPs to define zonal boundaries more appropriately. The presented scheme gains the best features of the FTR scheme, which are providing financial certainty, maximizing the efficient use of the system and making users pay for the actual use of congested paths. LMPs may give an indication of the impact of wheeling transactions, and calculations of and comparisons of LMPs with and without wheeling transactions should be adequate criteria to approve

  16. Dynamics of TCP traffic over ATM networks

    SciTech Connect

    Floyd, S.; Romanow, A.

    1994-08-01

    The authors investigate the performance of TCP (Transport Control Protocol) connections over ATM (Asynchronous Transfer Mode) networks without ATM-level congestion control, and compare it to the performance of TCP over packet-based networks. For simulations of congested networks, the effective throughput of TCP over ATM can be quite low when cells are dropped at the congested ATM switch. The low throughput is due to wasted bandwidth as the congested link transmits cells from ``corrupted`` packets, i.e., packets in which at least one cell is dropped by the switch. This fragmentation effect can be corrected and high throughput can be achieved if the switch drops whole packets prior to buffer overflow; they call this strategy Early Packet Discard. They also discuss general issues of congestion avoidance for best-effort traffic in ATM networks.

  17. Network traffic behaviour near phase transition point

    NASA Astrophysics Data System (ADS)

    Lawniczak, A. T.; Tang, X.

    2006-03-01

    We explore packet traffic dynamics in a data network model near phase transition point from free flow to congestion. The model of data network is an abstraction of the Network Layer of the OSI (Open Systems Interconnect) Reference Model of packet switching networks. The Network Layer is responsible for routing packets across the network from their sources to their destinations and for control of congestion in data networks. Using the model we investigate spatio-temporal packets traffic dynamics near the phase transition point for various network connection topologies, and static and adaptive routing algorithms. We present selected simulation results and analyze them.

  18. How congestion shapes cities: from mobility patterns to scaling

    NASA Astrophysics Data System (ADS)

    Louf, Rémi; Barthelemy, Marc

    2014-07-01

    The recent availability of data for cities has allowed scientists to exhibit scalings which present themselves in the form of a power-law dependence on population of various socio-economical and structural indicators. We propose here a stochastic theory of urban growth which accounts for some of the observed scalings and we confirm these predictions on US and OECD empirical data. In particular, we show that the dependence on population size of the total number of miles driven daily, the total length of the road network, the total traffic delay, the total consumption of gasoline, the quantity of CO2 emitted and the relation between area and population of cities, are all governed by a single parameter which characterizes the sensitivity to congestion. Our results suggest that diseconomies associated with congestion scale superlinearly with population size, implying that -despite polycentrism- cities whose transportation infrastructure rely heavily on traffic sensitive modes are unsustainable.

  19. How congestion shapes cities: from mobility patterns to scaling.

    PubMed

    Louf, Rémi; Barthelemy, Marc

    2014-01-01

    The recent availability of data for cities has allowed scientists to exhibit scalings which present themselves in the form of a power-law dependence on population of various socio-economical and structural indicators. We propose here a stochastic theory of urban growth which accounts for some of the observed scalings and we confirm these predictions on US and OECD empirical data. In particular, we show that the dependence on population size of the total number of miles driven daily, the total length of the road network, the total traffic delay, the total consumption of gasoline, the quantity of CO2 emitted and the relation between area and population of cities, are all governed by a single parameter which characterizes the sensitivity to congestion. Our results suggest that diseconomies associated with congestion scale superlinearly with population size, implying that -despite polycentrism- cities whose transportation infrastructure rely heavily on traffic sensitive modes are unsustainable.

  20. Weighted congestion coefficient feedback in intelligent transportation systems

    NASA Astrophysics Data System (ADS)

    Dong, Chuan-Fei; Ma, Xu; Wang, Bing-Hong

    2010-03-01

    In traffic systems, a reasonable information feedback can improve road capacity. In this Letter, we study dynamics of traffic flow with real-time information. And the influence of a feedback strategy named Weighted Congestion Coefficient Feedback Strategy (WCCFS) is introduced, based on a two-route scenario in which dynamic information can be generated and displayed on the board to guide road users to make a choice. Our model incorporates the effects of adaptability into the cellular automaton models of traffic flow and simulation results adopting this optimal information feedback strategy have demonstrated high efficiency in controlling spatial distribution of traffic patterns compared with the other three information feedback strategies, i.e., vehicle number and flux.

  1. Complete Traffic Patterns around a T-Shaped Intersection

    NASA Astrophysics Data System (ADS)

    Huang, Ding-Wei

    We propose Asymmetric Simple Exclusion Processes to analyze the traffic states around a T-shaped intersection. The system consists of six roadways connected by the intersection. There are nine control-parameters separated into three categories: injection αi, removal βi, and turning Pi, (where i = 1, 2, 3). As these nine parameters change, traffic states on each roadway reveal a two-phase transition: free flow (F) and jam (J). Together, there can be 64 (=26) possible combinations for the traffic phases. We observe 63 distinct phases. We analyze three major causes of congestion: (1) increase of traffic demand simulated by injection αi (2) decrease of roadway capacity simulated by removal βi (3) redistribution of traffic pattern simulated by turning Pi. In case (1), congestion can be confined to the roadways heading toward the intersection. In case (2), spillovers can be observed and congestion will pervade the whole system. In case (3), congestion can be triggered by both increasing Pi and decreasing Pi. The phase diagram can be a convenient tool to summarize the results of numerical simulations. We also compare the unsignalized intersection to an intersection regulated by traffic signals. We find that the operation of traffic signals is very inefficient in resolving the congestion around a T-shaped intersection.

  2. Route Optimization for Offloading Congested Meter Fixes

    NASA Technical Reports Server (NTRS)

    Xue, Min; Zelinski, Shannon

    2016-01-01

    The Optimized Route Capability (ORC) concept proposed by the FAA facilitates traffic managers to identify and resolve arrival flight delays caused by bottlenecks formed at arrival meter fixes when there exists imbalance between arrival fixes and runways. ORC makes use of the prediction capability of existing automation tools, monitors the traffic delays based on these predictions, and searches the best reroutes upstream of the meter fixes based on the predictions and estimated arrival schedules when delays are over a predefined threshold. Initial implementation and evaluation of the ORC concept considered only reroutes available at the time arrival congestion was first predicted. This work extends previous work by introducing an additional dimension in reroute options such that ORC can find the best time to reroute and overcome the 'firstcome- first-reroute' phenomenon. To deal with the enlarged reroute solution space, a genetic algorithm was developed to solve this problem. Experiments were conducted using the same traffic scenario used in previous work, when an arrival rush was created for one of the four arrival meter fixes at George Bush Intercontinental Houston Airport. Results showed the new approach further improved delay savings. The suggested route changes from the new approach were on average 30 minutes later than those using other approaches, and fewer numbers of reroutes were required. Fewer numbers of reroutes reduce operational complexity and later reroutes help decision makers deal with uncertain situations.

  3. Congestion control and routing over satellite networks

    NASA Astrophysics Data System (ADS)

    Cao, Jinhua

    Satellite networks and transmissions find their application in fields of computer communications, telephone communications, television broadcasting, transportation, space situational awareness systems and so on. This thesis mainly focuses on two networking issues affecting satellite networking: network congestion control and network routing optimization. Congestion, which leads to long queueing delays, packet losses or both, is a networking problem that has drawn the attention of many researchers. The goal of congestion control mechanisms is to ensure high bandwidth utilization while avoiding network congestion by regulating the rate at which traffic sources inject packets into a network. In this thesis, we propose a stable congestion controller using data-driven, safe switching control theory to improve the dynamic performance of satellite Transmission Control Protocol/Active Queue Management (TCP/AQM) networks. First, the stable region of the Proportional-Integral (PI) parameters for a nominal model is explored. Then, a PI controller, whose parameters are adaptively tuned by switching among members of a given candidate set, using observed plant data, is presented and compared with some classical AQM policy examples, such as Random Early Detection (RED) and fixed PI control. A new cost detectable switching law with an interval cost function switching algorithm, which improves the performance and also saves the computational cost, is developed and compared with a law commonly used in the switching control literature. Finite-gain stability of the system is proved. A fuzzy logic PI controller is incorporated as a special candidate to achieve good performance at all nominal points with the available set of candidate controllers. Simulations are presented to validate the theory. An effocient routing algorithm plays a key role in optimizing network resources. In this thesis, we briefly analyze Low Earth Orbit (LEO) satellite networks, review the Cross Entropy (CE

  4. Machine-Type-Communication (MTC) Device Grouping Algorithm for Congestion Avoidance of MTC Oriented LTE Network

    NASA Astrophysics Data System (ADS)

    Jung, Kwang-Ryul; Park, Aesoon; Lee, Sungwon

    Machine-Type-Communication (MTC) is a new paradigm in mobile wireless network domains such as Mobile WiMAX (IEEE 802.16e) and 3GPP LTE (3rd Generation Partnership Project Long Term Evolution). We explain the background for MTC environments, and its key issues. Then we focus on the uplink traffic aggressiveness characteristics in major applications such as Smart Grid. Then, we propose a new congestion avoidance algorithm to reduce the congestion of the uplink intensive applications.

  5. Large-Scale Transportation Network Congestion Evolution Prediction Using Deep Learning Theory

    PubMed Central

    Ma, Xiaolei; Yu, Haiyang; Wang, Yunpeng; Wang, Yinhai

    2015-01-01

    Understanding how congestion at one location can cause ripples throughout large-scale transportation network is vital for transportation researchers and practitioners to pinpoint traffic bottlenecks for congestion mitigation. Traditional studies rely on either mathematical equations or simulation techniques to model traffic congestion dynamics. However, most of the approaches have limitations, largely due to unrealistic assumptions and cumbersome parameter calibration process. With the development of Intelligent Transportation Systems (ITS) and Internet of Things (IoT), transportation data become more and more ubiquitous. This triggers a series of data-driven research to investigate transportation phenomena. Among them, deep learning theory is considered one of the most promising techniques to tackle tremendous high-dimensional data. This study attempts to extend deep learning theory into large-scale transportation network analysis. A deep Restricted Boltzmann Machine and Recurrent Neural Network architecture is utilized to model and predict traffic congestion evolution based on Global Positioning System (GPS) data from taxi. A numerical study in Ningbo, China is conducted to validate the effectiveness and efficiency of the proposed method. Results show that the prediction accuracy can achieve as high as 88% within less than 6 minutes when the model is implemented in a Graphic Processing Unit (GPU)-based parallel computing environment. The predicted congestion evolution patterns can be visualized temporally and spatially through a map-based platform to identify the vulnerable links for proactive congestion mitigation. PMID:25780910

  6. Large-scale transportation network congestion evolution prediction using deep learning theory.

    PubMed

    Ma, Xiaolei; Yu, Haiyang; Wang, Yunpeng; Wang, Yinhai

    2015-01-01

    Understanding how congestion at one location can cause ripples throughout large-scale transportation network is vital for transportation researchers and practitioners to pinpoint traffic bottlenecks for congestion mitigation. Traditional studies rely on either mathematical equations or simulation techniques to model traffic congestion dynamics. However, most of the approaches have limitations, largely due to unrealistic assumptions and cumbersome parameter calibration process. With the development of Intelligent Transportation Systems (ITS) and Internet of Things (IoT), transportation data become more and more ubiquitous. This triggers a series of data-driven research to investigate transportation phenomena. Among them, deep learning theory is considered one of the most promising techniques to tackle tremendous high-dimensional data. This study attempts to extend deep learning theory into large-scale transportation network analysis. A deep Restricted Boltzmann Machine and Recurrent Neural Network architecture is utilized to model and predict traffic congestion evolution based on Global Positioning System (GPS) data from taxi. A numerical study in Ningbo, China is conducted to validate the effectiveness and efficiency of the proposed method. Results show that the prediction accuracy can achieve as high as 88% within less than 6 minutes when the model is implemented in a Graphic Processing Unit (GPU)-based parallel computing environment. The predicted congestion evolution patterns can be visualized temporally and spatially through a map-based platform to identify the vulnerable links for proactive congestion mitigation. PMID:25780910

  7. Large-scale transportation network congestion evolution prediction using deep learning theory.

    PubMed

    Ma, Xiaolei; Yu, Haiyang; Wang, Yunpeng; Wang, Yinhai

    2015-01-01

    Understanding how congestion at one location can cause ripples throughout large-scale transportation network is vital for transportation researchers and practitioners to pinpoint traffic bottlenecks for congestion mitigation. Traditional studies rely on either mathematical equations or simulation techniques to model traffic congestion dynamics. However, most of the approaches have limitations, largely due to unrealistic assumptions and cumbersome parameter calibration process. With the development of Intelligent Transportation Systems (ITS) and Internet of Things (IoT), transportation data become more and more ubiquitous. This triggers a series of data-driven research to investigate transportation phenomena. Among them, deep learning theory is considered one of the most promising techniques to tackle tremendous high-dimensional data. This study attempts to extend deep learning theory into large-scale transportation network analysis. A deep Restricted Boltzmann Machine and Recurrent Neural Network architecture is utilized to model and predict traffic congestion evolution based on Global Positioning System (GPS) data from taxi. A numerical study in Ningbo, China is conducted to validate the effectiveness and efficiency of the proposed method. Results show that the prediction accuracy can achieve as high as 88% within less than 6 minutes when the model is implemented in a Graphic Processing Unit (GPU)-based parallel computing environment. The predicted congestion evolution patterns can be visualized temporally and spatially through a map-based platform to identify the vulnerable links for proactive congestion mitigation.

  8. Air pollution and health risks due to vehicle traffic.

    PubMed

    Zhang, Kai; Batterman, Stuart

    2013-04-15

    Traffic congestion increases vehicle emissions and degrades ambient air quality, and recent studies have shown excess morbidity and mortality for drivers, commuters and individuals living near major roadways. Presently, our understanding of the air pollution impacts from congestion on roads is very limited. This study demonstrates an approach to characterize risks of traffic for on- and near-road populations. Simulation modeling was used to estimate on- and near-road NO2 concentrations and health risks for freeway and arterial scenarios attributable to traffic for different traffic volumes during rush hour periods. The modeling used emission factors from two different models (Comprehensive Modal Emissions Model and Motor Vehicle Emissions Factor Model version 6.2), an empirical traffic speed-volume relationship, the California Line Source Dispersion Model, an empirical NO2-NOx relationship, estimated travel time changes during congestion, and concentration-response relationships from the literature, which give emergency doctor visits, hospital admissions and mortality attributed to NO2 exposure. An incremental analysis, which expresses the change in health risks for small increases in traffic volume, showed non-linear effects. For a freeway, "U" shaped trends of incremental risks were predicted for on-road populations, and incremental risks are flat at low traffic volumes for near-road populations. For an arterial road, incremental risks increased sharply for both on- and near-road populations as traffic increased. These patterns result from changes in emission factors, the NO2-NOx relationship, the travel delay for the on-road population, and the extended duration of rush hour for the near-road population. This study suggests that health risks from congestion are potentially significant, and that additional traffic can significantly increase risks, depending on the type of road and other factors. Further, evaluations of risk associated with congestion must

  9. Demand and Congestion in Multiplex Transportation Networks

    PubMed Central

    al-Awwad, Zeyad; Jiang, Shan; González, Marta C.

    2016-01-01

    Urban transportation systems are multimodal, sociotechnical systems; however, while their multimodal aspect has received extensive attention in recent literature on multiplex networks, their sociotechnical aspect has been largely neglected. We present the first study of an urban transportation system using multiplex network analysis and validated Origin-Destination travel demand, with Riyadh’s planned metro as a case study. We develop methods for analyzing the impact of additional transportation layers on existing dynamics, and show that demand structure plays key quantitative and qualitative roles. There exist fundamental geometrical limits to the metro’s impact on traffic dynamics, and the bulk of environmental accrue at metro speeds only slightly faster than those planned. We develop a simple model for informing the use of additional, “feeder” layers to maximize reductions in global congestion. Our techniques are computationally practical, easily extensible to arbitrary transportation layers with complex transfer logic, and implementable in open-source software. PMID:27657738

  10. Adapting End Host Congestion Control for Mobility

    NASA Technical Reports Server (NTRS)

    Eddy, Wesley M.; Swami, Yogesh P.

    2005-01-01

    Network layer mobility allows transport protocols to maintain connection state, despite changes in a node's physical location and point of network connectivity. However, some congestion-controlled transport protocols are not designed to deal with these rapid and potentially significant path changes. In this paper we demonstrate several distinct problems that mobility-induced path changes can create for TCP performance. Our premise is that mobility events indicate path changes that require re-initialization of congestion control state at both connection end points. We present the application of this idea to TCP in the form of a simple solution (the Lightweight Mobility Detection and Response algorithm, that has been proposed in the IETF), and examine its effectiveness. In general, we find that the deficiencies presented are both relatively easily and painlessly fixed using this solution. We also find that this solution has the counter-intuitive property of being both more friendly to competing traffic, and simultaneously more aggressive in utilizing newly available capacity than unmodified TCP.

  11. Development of decision support systems for real-time freeway traffic routing: Volume 2. Final report

    SciTech Connect

    Sadek, A.W.; Smith, B.L.; McGhee, C.C.; Demetsky, M.J.

    1998-10-01

    Real-time traffic flow routing is a promising approach to alleviating congestion. Existing approaches to developing real-time routing strategies, however, have limitations. The study explored the potential for using case-based reasoning (CBR), an emerging artificial intelligence paradigm, to overcome such limitations. CBR solves new problems by reusing solutions of similar past problems. To illustrate the feasibility of the approach, the research team developed and evaluated a prototype CBR routing system for the interstate network in Hampton Roads, Virginia. They generated cases for building the system`s case-base using a heuristic dynamic traffic assignment (DTA) model designed for the region. Using a second set of cases, the research team evaluated the performance of the prototype system by comparing its solutions with those of the DTA model. The research team found that CBR has the potential to overcome many of the limitations to existing approaches to real-time routing and a CBR routing system is capable of producing high-quality solutions with reasonable a case-base size. In addition, the research team found that real-time traffic flow routing will likely lead to significant user cost savings.

  12. Hysteresis phenomena of the intelligent driver model for traffic flow

    NASA Astrophysics Data System (ADS)

    Dahui, Wang; Ziqiang, Wei; Ying, Fan

    2007-07-01

    We present hysteresis phenomena of the intelligent driver model for traffic flow in a circular one-lane roadway. We show that the microscopic structure of traffic flow is dependent on its initial state by plotting the fraction of congested vehicles over the density, which shows a typical hysteresis loop, and by investigating the trajectories of vehicles on the velocity-over-headway plane. We find that the trajectories of vehicles on the velocity-over-headway plane, which usually show a hysteresis loop, include multiple loops. We also point out the relations between these hysteresis loops and the congested jams or high-density clusters in traffic flow.

  13. Analytical Solution of Traffic Cellular Automata Model

    NASA Astrophysics Data System (ADS)

    Lo, Shih-Ching; Hsu, Chia-Hung

    2009-08-01

    Complex traffic system seems to be simulated successfully by cellular automaton (CA) models. Various models are developed to understand single-lane traffic, multilane traffic, lane-changing behavior and network traffic situations. However, the result of CA simulation can only be obtained after massive microscopic computation. Although, the mean field theory (MFT) has been studied to be the approximation of CA model, the MFT can only applied to the simple CA rules or small value of parameters. In this study, we simulate traffic flow by the NaSch model under different combination of parameters, which are maximal speed, dawdling probability and density. After that, the position of critical density, the slope of free-flow and congested regime are observed and modeled due to the simulated data. Finally, the coefficients of the model will be calibrated by the simulated data and the analytical solution of traffic CA is obtained.

  14. Congestion on Multilane Highways

    SciTech Connect

    Greenberg, J.M.; Klar, A.; Rascle, M.

    2002-07-01

    We present a new model for traffic on a multilane freeway (with n lanes). Our basic descriptors are the car density {rho} (in cars/mile) taken across all lanes in the freeway and the average car velocity u (in miles/hour). In this paper we present a model which incorporates both equilibrium curves and a simple switching mechanism which allows cars to transit from one equilibrium curve to the other. This switching mechanism, when combined with the continuity equation, produces relaxation or self-excited oscillations in the system and these oscillations are what interests us here.

  15. Macroscopic traffic modeling with the finite difference method

    SciTech Connect

    Mughabghab, S.; Azarm, A.; Stock, D.

    1996-03-15

    A traffic congestion forecasting model (ATOP), developed in the present investigation, is described briefly. Several macroscopic models, based on the solution of the partial differential equation of conservation of vehicles by the finite difference method, were tested using actual traffic data. The functional form, as well as the parameters, of the equation of state which describes the relation between traffic speed and traffic density, were determined for a section of the Long Island Expressway. The Lax method and the forward difference technique were applied. The results of extensive tests showed that the Lax method, in addition to giving very good agreement with the traffic data, produces stable solutions.

  16. Privacy-Sensitive Congestion Charging

    NASA Astrophysics Data System (ADS)

    Beresford, Alastair R.; Davies, Jonathan J.; Harle, Robert K.

    National-scale congestion charging schemes are increasingly viewed as the most viable long-term strategy for controlling congestion and maintaining the viability of the road network. In this paper we challenge the widely held belief that enforceable and economically viable congestion charging schemes require drivers to give up their location privacy to the government. Instead we explore an alternative scheme where privately-owned cars enforce congestion charge payments by using an on-board vehicle unit containing a camera and wireless communications. Our solution prevents centralised tracking of vehicle movements but raises an important issue: should we trust our neighbours with a little personal information in preference to entrusting it all to the government?

  17. Hidden geometry of traffic jamming

    NASA Astrophysics Data System (ADS)

    Andjelković, Miroslav; Gupte, Neelima; Tadić, Bosiljka

    2015-05-01

    We introduce an approach based on algebraic topological methods that allow an accurate characterization of jamming in dynamical systems with queues. As a prototype system, we analyze the traffic of information packets with navigation and queuing at nodes on a network substrate in distinct dynamical regimes. A temporal sequence of traffic density fluctuations is mapped onto a mathematical graph in which each vertex denotes one dynamical state of the system. The coupling complexity between these states is revealed by classifying agglomerates of high-dimensional cliques that are intermingled at different topological levels and quantified by a set of geometrical and entropy measures. The free-flow, jamming, and congested traffic regimes result in graphs of different structure, while the largest geometrical complexity and minimum entropy mark the edge of the jamming region.

  18. Reinforcement learning for congestion-avoidance in packet flow

    NASA Astrophysics Data System (ADS)

    Horiguchi, Tsuyoshi; Hayashi, Keisuke; Tretiakov, Alexei

    2005-04-01

    Occurrence of congestion of packet flow in computer networks is one of the unfavorable problems in packet communication and hence its avoidance should be investigated. We use a neural network model for packet routing control in a computer network proposed in a previous paper by Horiguchi and Ishioka (Physica A 297 (2001) 521). If we assume that the packets are not sent to nodes whose buffers are already full of packets, then we find that traffic congestion occurs when the number of packets in the computer network is larger than some critical value. In order to avoid the congestion, we introduce reinforcement learning for a control parameter in the neural network model. We find that the congestion is avoided by the reinforcement learning and at the same time we have good performance for the throughput. We investigate the packet flow on computer networks of various types of topology such as a regular network, a network with fractal structure, a small-world network, a scale-free network and so on.

  19. Analysis of Aircraft Clusters to Measure Sector-Independent Airspace Congestion

    NASA Technical Reports Server (NTRS)

    Bilimoria, Karl D.; Lee, Hilda Q.

    2005-01-01

    The Distributed Air/Ground Traffic Management (DAG-TM) concept of operations* permits appropriately equipped aircraft to conduct Free Maneuvering operations. These independent aircraft have the freedom to optimize their trajectories in real time according to user preferences; however, they also take on the responsibility to separate themselves from other aircraft while conforming to any local Traffic Flow Management (TFM) constraints imposed by the air traffic service provider (ATSP). Examples of local-TFM constraints include temporal constraints such as a required time of arrival (RTA), as well as spatial constraints such as regions of convective weather, special use airspace, and congested airspace. Under current operations, congested airspace typically refers to a sector(s) that cannot accept additional aircraft due to controller workload limitations; hence Dynamic Density (a metric that is indicative of controller workload) can be used to quantify airspace congestion. However, for Free Maneuvering operations under DAG-TM, an additional metric is needed to quantify the airspace congestion problem from the perspective of independent aircraft. Such a metric would enable the ATSP to prevent independent aircraft from entering any local areas of congestion in which the flight deck based systems and procedures may not be able to ensure separation. This new metric, called Gaggle Density, offers the ATSP a mode of control to regulate normal operations and to ensure safety and stability during rare-normal or off-normal situations (e.g., system failures). It may be difficult to certify Free Maneuvering systems for unrestricted operations, but it may be easier to certify systems and procedures for specified levels of Gaggle Density that could be monitored by the ATSP, and maintained through relatively minor flow-rate (RTA type) restrictions. Since flight deck based separation assurance is airspace independent, the challenge is to measure congestion independent of sector

  20. Querying and Extracting Timeline Information from Road Traffic Sensor Data.

    PubMed

    Imawan, Ardi; Indikawati, Fitri Indra; Kwon, Joonho; Rao, Praveen

    2016-08-23

    The escalation of traffic congestion in urban cities has urged many countries to use intelligent transportation system (ITS) centers to collect historical traffic sensor data from multiple heterogeneous sources. By analyzing historical traffic data, we can obtain valuable insights into traffic behavior. Many existing applications have been proposed with limited analysis results because of the inability to cope with several types of analytical queries. In this paper, we propose the QET (querying and extracting timeline information) system-a novel analytical query processing method based on a timeline model for road traffic sensor data. To address query performance, we build a TQ-index (timeline query-index) that exploits spatio-temporal features of timeline modeling. We also propose an intuitive timeline visualization method to display congestion events obtained from specified query parameters. In addition, we demonstrate the benefit of our system through a performance evaluation using a Busan ITS dataset and a Seattle freeway dataset.

  1. Querying and Extracting Timeline Information from Road Traffic Sensor Data

    PubMed Central

    Imawan, Ardi; Indikawati, Fitri Indra; Kwon, Joonho; Rao, Praveen

    2016-01-01

    The escalation of traffic congestion in urban cities has urged many countries to use intelligent transportation system (ITS) centers to collect historical traffic sensor data from multiple heterogeneous sources. By analyzing historical traffic data, we can obtain valuable insights into traffic behavior. Many existing applications have been proposed with limited analysis results because of the inability to cope with several types of analytical queries. In this paper, we propose the QET (querying and extracting timeline information) system—a novel analytical query processing method based on a timeline model for road traffic sensor data. To address query performance, we build a TQ-index (timeline query-index) that exploits spatio-temporal features of timeline modeling. We also propose an intuitive timeline visualization method to display congestion events obtained from specified query parameters. In addition, we demonstrate the benefit of our system through a performance evaluation using a Busan ITS dataset and a Seattle freeway dataset. PMID:27563900

  2. Querying and Extracting Timeline Information from Road Traffic Sensor Data.

    PubMed

    Imawan, Ardi; Indikawati, Fitri Indra; Kwon, Joonho; Rao, Praveen

    2016-01-01

    The escalation of traffic congestion in urban cities has urged many countries to use intelligent transportation system (ITS) centers to collect historical traffic sensor data from multiple heterogeneous sources. By analyzing historical traffic data, we can obtain valuable insights into traffic behavior. Many existing applications have been proposed with limited analysis results because of the inability to cope with several types of analytical queries. In this paper, we propose the QET (querying and extracting timeline information) system-a novel analytical query processing method based on a timeline model for road traffic sensor data. To address query performance, we build a TQ-index (timeline query-index) that exploits spatio-temporal features of timeline modeling. We also propose an intuitive timeline visualization method to display congestion events obtained from specified query parameters. In addition, we demonstrate the benefit of our system through a performance evaluation using a Busan ITS dataset and a Seattle freeway dataset. PMID:27563900

  3. A Survey on Urban Traffic Management System Using Wireless Sensor Networks

    PubMed Central

    Nellore, Kapileswar; Hancke, Gerhard P.

    2016-01-01

    Nowadays, the number of vehicles has increased exponentially, but the bedrock capacities of roads and transportation systems have not developed in an equivalent way to efficiently cope with the number of vehicles traveling on them. Due to this, road jamming and traffic correlated pollution have increased with the associated adverse societal and financial effect on different markets worldwide. A static control system may block emergency vehicles due to traffic jams. Wireless Sensor networks (WSNs) have gained increasing attention in traffic detection and avoiding road congestion. WSNs are very trendy due to their faster transfer of information, easy installation, less maintenance, compactness and for being less expensive compared to other network options. There has been significant research on Traffic Management Systems using WSNs to avoid congestion, ensure priority for emergency vehicles and cut the Average Waiting Time (AWT) of vehicles at intersections. In recent decades, researchers have started to monitor real-time traffic using WSNs, RFIDs, ZigBee, VANETs, Bluetooth devices, cameras and infrared signals. This paper presents a survey of current urban traffic management schemes for priority-based signalling, and reducing congestion and the AWT of vehicles. The main objective of this survey is to provide a taxonomy of different traffic management schemes used for avoiding congestion. Existing urban traffic management schemes for the avoidance of congestion and providing priority to emergency vehicles are considered and set the foundation for further research. PMID:26828489

  4. A Survey on Urban Traffic Management System Using Wireless Sensor Networks.

    PubMed

    Nellore, Kapileswar; Hancke, Gerhard P

    2016-01-27

    Nowadays, the number of vehicles has increased exponentially, but the bedrock capacities of roads and transportation systems have not developed in an equivalent way to efficiently cope with the number of vehicles traveling on them. Due to this, road jamming and traffic correlated pollution have increased with the associated adverse societal and financial effect on different markets worldwide. A static control system may block emergency vehicles due to traffic jams. Wireless Sensor networks (WSNs) have gained increasing attention in traffic detection and avoiding road congestion. WSNs are very trendy due to their faster transfer of information, easy installation, less maintenance, compactness and for being less expensive compared to other network options. There has been significant research on Traffic Management Systems using WSNs to avoid congestion, ensure priority for emergency vehicles and cut the Average Waiting Time (AWT) of vehicles at intersections. In recent decades, researchers have started to monitor real-time traffic using WSNs, RFIDs, ZigBee, VANETs, Bluetooth devices, cameras and infrared signals. This paper presents a survey of current urban traffic management schemes for priority-based signalling, and reducing congestion and the AWT of vehicles. The main objective of this survey is to provide a taxonomy of different traffic management schemes used for avoiding congestion. Existing urban traffic management schemes for the avoidance of congestion and providing priority to emergency vehicles are considered and set the foundation for further research.

  5. A Survey on Urban Traffic Management System Using Wireless Sensor Networks.

    PubMed

    Nellore, Kapileswar; Hancke, Gerhard P

    2016-01-01

    Nowadays, the number of vehicles has increased exponentially, but the bedrock capacities of roads and transportation systems have not developed in an equivalent way to efficiently cope with the number of vehicles traveling on them. Due to this, road jamming and traffic correlated pollution have increased with the associated adverse societal and financial effect on different markets worldwide. A static control system may block emergency vehicles due to traffic jams. Wireless Sensor networks (WSNs) have gained increasing attention in traffic detection and avoiding road congestion. WSNs are very trendy due to their faster transfer of information, easy installation, less maintenance, compactness and for being less expensive compared to other network options. There has been significant research on Traffic Management Systems using WSNs to avoid congestion, ensure priority for emergency vehicles and cut the Average Waiting Time (AWT) of vehicles at intersections. In recent decades, researchers have started to monitor real-time traffic using WSNs, RFIDs, ZigBee, VANETs, Bluetooth devices, cameras and infrared signals. This paper presents a survey of current urban traffic management schemes for priority-based signalling, and reducing congestion and the AWT of vehicles. The main objective of this survey is to provide a taxonomy of different traffic management schemes used for avoiding congestion. Existing urban traffic management schemes for the avoidance of congestion and providing priority to emergency vehicles are considered and set the foundation for further research. PMID:26828489

  6. Ergodicity of Traffic Flow with Constant Penetration Rate for Traffic Monitoring via Floating Vehicle Technique

    NASA Astrophysics Data System (ADS)

    Gunawan, Fergyanto E.; Abbas, Bahtiar S.; Atmadja, Wiedjaja; Yoseph Chandra, Fajar; Agung, Alexander AS; Kusnandar, Erwin

    2014-03-01

    Traffic congestion in Asian megacities has become extremely worse, and any means to lessen the congestion level is urgently needed. Building an efficient mass transportation system is clearly necessary. However, implementing Intelligent Transportation Systems (ITS) have also been demonstrated effective in various advanced countries. Recently, the floating vehicle technique (FVT), an ITS implementation, has become cost effective to provide real-time traffic information with proliferation of the smartphones. Although many publications have discussed various issues related to the technique, none of them elaborates the discrepancy of a single floating car data (FCD) and the associated fleet data. This work addresses the issue based on an analysis of Sugiyama et al's experimental data. The results indicate that there is an optimum averaging time interval such that the estimated velocity by the FVT reasonably representing the traffic velocity.

  7. The traffic crisis and a tale of two cities: Traffic and air quality in Bangkok and Mexico City

    SciTech Connect

    Pendakur, V.S.; Badami, M.G.

    1995-12-31

    This paper focuses on congestion management techniques, traffic congestion levels and air quality. By using data from Bangkok and Mexico City, it illustrates the need for drastic changes in transportation policy tools and techniques for congestion management and for improving environmental quality. New approaches to investment and regulatory policy analysis and implementation are suggested. This requires the inclusion of all costs and benefits (economic and ecological) in the policy matrix so that investment and regulatory policies act in unison. Megacities are dominant in social, political and economic terms. 30 to 60% of national GDP is typically produced in these cities. Their human and motor vehicle populations have been doubling every 15-20 and 6-10 years respectively. They also have the most severe traffic congestion and air quality problems. They have the nation`s highest incidence of poverty and absolute poverty. Large portions of their populations endure severely unhealthy housing and sanitation conditions. Following are important characteristics of urban transportation systems in the megacities: the city centres are heavily congested with motorized traffic; traffic crawl rates vary from 2 to 10 km/hr; car and motorcycle ownership are increasing at annual rates of 10-12% and 15-20% respectively; significant air pollution with no relief in sight; TDM strategies are primarily creating new supply of road capacity; fairly high transit trips with substantial transit investments; weak air pollution monitoring and enforcement; and fairly cheap fuel and high costs of vehicles.

  8. Traffic optimization in transport networks based on local routing

    NASA Astrophysics Data System (ADS)

    Scellato, S.; Fortuna, L.; Frasca, M.; Gómez-Gardeñes, J.; Latora, V.

    2010-01-01

    Congestion in transport networks is a topic of theoretical interest and practical importance. In this paper we study the flow of vehicles in urban street networks. In particular, we use a cellular automata model on a complex network to simulate the motion of vehicles along streets, coupled with a congestion-aware routing at street crossings. Such routing makes use of the knowledge of agents about traffic in nearby roads and allows the vehicles to dynamically update the routes towards their destinations. By implementing the model in real urban street patterns of various cities, we show that it is possible to achieve a global traffic optimization based on local agent decisions.

  9. Cycle-by-cycle analysis of congested flow at signalized intersections

    SciTech Connect

    Rouphail, N.M. )

    1991-03-01

    The increasing number of traffic signals and traffic signal systems in urban areas in the United States is influencing traffic-flow patterns on roadways. Because of the closer proximity of traffic signals (whether coordinated or not), there are fewer observed variations in traffic flow demand during peak hour, and fewer signals in urban areas now operate in truly isolated mode. This is especially true in the case of heavy demand volumes where upstream signals tend to filter traffic at the signal capacity (that is, at virtually a fixed rate). From the traffic engineer's standpoint, the issues associated with congested flow are quite different from those occurring under normal operation (some would even argue that congestion of gridlock is now considered normal operation). The following questions may be asked: How long will it take to clear the congestion developed during peak period; What maximum overflow queue can be expected; How much improvement can be achieved through better signal coordination The principal tool available to traffic engineers for the analysis of signalized intersections in the United States is the {ital Highway Capacity Manual} (HCM). Yet, none of the issues mentioned above is adequately addressed in the HCM. For example, the HCM method uses a fixed peak period of analysis of 15 minutes for calculating level of service. The HCM method has no mechanism for estimating queues, or for estimating when peak-period queues can be cleared on an approach. Furthermore, signal coordination effects are expressed by a set of progression factors that have a very loose correspondence to signal offsets. More important, all analyses in the 1985 HCM are performed assuming average conditions in 15-minute peak period without considering the cycle-by-cycle variation in flows, queues, and delays. Finally, the level-of-service analysis is limited to situations with no initial queue at the start of the peak period and to volume-to-capacity ratios under 1.20.

  10. Priority Based Congestion Control Dynamic Clustering Protocol in Mobile Wireless Sensor Networks

    PubMed Central

    Beulah Jayakumari, R.; Jawahar Senthilkumar, V.

    2015-01-01

    Wireless sensor network is widely used to monitor natural phenomena because natural disaster has globally increased which causes significant loss of life, economic setback, and social development. Saving energy in a wireless sensor network (WSN) is a critical factor to be considered. The sensor nodes are deployed to sense, compute, and communicate alerts in a WSN which are used to prevent natural hazards. Generally communication consumes more energy than sensing and computing; hence cluster based protocol is preferred. Even with clustering, multiclass traffic creates congested hotspots in the cluster, thereby causing packet loss and delay. In order to conserve energy and to avoid congestion during multiclass traffic a novel Priority Based Congestion Control Dynamic Clustering (PCCDC) protocol is developed. PCCDC is designed with mobile nodes which are organized dynamically into clusters to provide complete coverage and connectivity. PCCDC computes congestion at intra- and intercluster level using linear and binary feedback method. Each mobile node within the cluster has an appropriate queue model for scheduling prioritized packet during congestion without drop or delay. Simulation results have proven that packet drop, control overhead, and end-to-end delay are much lower in PCCDC which in turn significantly increases packet delivery ratio, network lifetime, and residual energy when compared with PASCC protocol. PMID:26504898

  11. Hysteresis-based congestion control at the B-ISDN access

    NASA Astrophysics Data System (ADS)

    Wissing, Johannes

    1993-11-01

    Multiplexing of bursty sources and refined congestion control strategies are still the subject of numerous research activities. Broadband applications with very high peak-to-mean bitrate ratio and long silence periods like still picture video gave rise to different ideas of rate control at the B-ISDN network access. Contributions on Input Rate Control for source coded traffic as well as on Server Rate Control within a LAN/ATM Interworking Unit have recently been presented. This paper addresses a congestion avoidance strategy at the network access regarding the aggregated traffic of bursty sources. Depending on the number of active sources as well as on certain defined congestion levels the cell rate at the network access is controlled. The proposed analytical approach is based on the model of uniform and continuous arrival and service. The selected underlying Markov chain contains `split' states in order to handle the congestion correlation. The proposed model is extended to an adaptive Non-Markov system where the buffer filling level is evaluated using a switching hysteresis. This type of congestion measurement turns out to be very useful for an adaptive rate control mechanism that guarantees a certain quality of service while still achieving a good statistical gain. The analytical approach is confirmed by results of a computer simulation that is extended to the more complex case of adaptive rate control.

  12. Priority Based Congestion Control Dynamic Clustering Protocol in Mobile Wireless Sensor Networks.

    PubMed

    Jayakumari, R Beulah; Senthilkumar, V Jawahar

    2015-01-01

    Wireless sensor network is widely used to monitor natural phenomena because natural disaster has globally increased which causes significant loss of life, economic setback, and social development. Saving energy in a wireless sensor network (WSN) is a critical factor to be considered. The sensor nodes are deployed to sense, compute, and communicate alerts in a WSN which are used to prevent natural hazards. Generally communication consumes more energy than sensing and computing; hence cluster based protocol is preferred. Even with clustering, multiclass traffic creates congested hotspots in the cluster, thereby causing packet loss and delay. In order to conserve energy and to avoid congestion during multiclass traffic a novel Priority Based Congestion Control Dynamic Clustering (PCCDC) protocol is developed. PCCDC is designed with mobile nodes which are organized dynamically into clusters to provide complete coverage and connectivity. PCCDC computes congestion at intra- and intercluster level using linear and binary feedback method. Each mobile node within the cluster has an appropriate queue model for scheduling prioritized packet during congestion without drop or delay. Simulation results have proven that packet drop, control overhead, and end-to-end delay are much lower in PCCDC which in turn significantly increases packet delivery ratio, network lifetime, and residual energy when compared with PASCC protocol. PMID:26504898

  13. Visual traffic jam analysis based on trajectory data.

    PubMed

    Wang, Zuchao; Lu, Min; Yuan, Xiaoru; Zhang, Junping; van de Wetering, Huub

    2013-12-01

    In this work, we present an interactive system for visual analysis of urban traffic congestion based on GPS trajectories. For these trajectories we develop strategies to extract and derive traffic jam information. After cleaning the trajectories, they are matched to a road network. Subsequently, traffic speed on each road segment is computed and traffic jam events are automatically detected. Spatially and temporally related events are concatenated in, so-called, traffic jam propagation graphs. These graphs form a high-level description of a traffic jam and its propagation in time and space. Our system provides multiple views for visually exploring and analyzing the traffic condition of a large city as a whole, on the level of propagation graphs, and on road segment level. Case studies with 24 days of taxi GPS trajectories collected in Beijing demonstrate the effectiveness of our system.

  14. A knowledge-based system for controlling automobile traffic

    NASA Technical Reports Server (NTRS)

    Maravas, Alexander; Stengel, Robert F.

    1994-01-01

    Transportation network capacity variations arising from accidents, roadway maintenance activity, and special events as well as fluctuations in commuters' travel demands complicate traffic management. Artificial intelligence concepts and expert systems can be useful in framing policies for incident detection, congestion anticipation, and optimal traffic management. This paper examines the applicability of intelligent route guidance and control as decision aids for traffic management. Basic requirements for managing traffic are reviewed, concepts for studying traffic flow are introduced, and mathematical models for modeling traffic flow are examined. Measures for quantifying transportation network performance levels are chosen, and surveillance and control strategies are evaluated. It can be concluded that automated decision support holds great promise for aiding the efficient flow of automobile traffic over limited-access roadways, bridges, and tunnels.

  15. A neural-fuzzy system for congestion control in ATM networks.

    PubMed

    Lee, S J; Hou, C L

    2000-01-01

    We propose the use of a neural-fuzzy scheme for rate-based feedback congestion control in asynchronous transfer mode (ATM) networks. Available bit rate (ABR) traffic is not guaranteed quality of service (QoS) in the setup connection, and it can dynamically share the available bandwidth. Therefore, congestion can be controlled by regulating the source rate, to a certain degree, according to the current traffic flow. Traditional methods perform congestion control by monitoring the queue length. The source rate is decreased by a fixed rate when the queue length is greater than a prespecified threshold. However, it is difficult to get a suitable rate according to the degree of traffic congestion. We employ a neural-fuzzy mechanism to control the source rate. Through learning, membership values can be generated and cell loss can be predicted from the status of the queue length. Then, an explicit rate is calculated and the source rate is controlled appropriately. Simulation results have shown that our method is effective compared with traditional methods.

  16. Development and Application of a Traffic Stream Model Under Heterogeneous Traffic Conditions

    NASA Astrophysics Data System (ADS)

    Thankappan, Ajitha; Vanajakshi, Lelitha

    2015-12-01

    Traffic stream models provide relationships among the three basic traffic variables namely speed, flow and density under steady-state conditions. Since reported stream models are mainly developed for homogeneous traffic conditions, they may not be directly suitable for Indian traffic condition which is heterogeneous and lacks lane discipline. Only very limited studies have been reported from India in this respect and the present study develops an optimal speed-density relation and from that derive theoretically the speed-flow and flow density relations that are suitable for the study stretch under consideration. The results indicate that the developed model is able to represent the steady-state macroscopic behavior of the traffic stream with reasonable accuracy. An application of such a stream model for a real time application is also demonstrated. The results obtained are promising showing the potential for the use of such stream models for real time application such as a congestion information system.

  17. From Traffic Flow to Economic System

    NASA Astrophysics Data System (ADS)

    Bando, M.

    The optimal velocity model which is applied to traffic flow phenomena explains a spontaneous formation of traffic congestion. We discuss why the model works well in describing both free-flow and congested flow states in a unified way. The essential ingredient is that our model takes account of a sort of time delay in reacting to a given stimulus. This causes instability of many-body system, and yields a kind of phase transition above a certain critical density. Especially there appears a limit cycle on the phase space along which individual vehicle moves, and they show cyclic behavior. Once that we recognize the mechanism the same idea can be applied to a variety of phenomena which show cyclic behavior observed in many-body systems. As an example of such applications, we investigate business cycles commonly observed in economic system. We further discuss a possible origin of a kind of cyclic behavior observed in climate change.

  18. Advanced information feedback in intelligent traffic systems.

    PubMed

    Wang, Wen-Xu; Wang, Bing-Hong; Zheng, Wen-Chen; Yin, Chuan-Yang; Zhou, Tao

    2005-12-01

    The optimal information feedback is very important to many socioeconomic systems like stock market and traffic systems aiming to make full use of resources. As to traffic flow, a reasonable real-time information feedback can improve the urban traffic condition by providing route guidance. In this paper, the influence of a feedback strategy named congestion coefficient feedback strategy is introduced, based on a two-route scenario in which dynamic information can be generated and displayed on the board to guide road users to make a choice. Simulation results adopting this optimal information feedback strategy have demonstrated high efficiency in controlling spatial distribution of traffic patterns compared with the other two information feedback strategies, i.e., travel time and mean velocity.

  19. Advanced information feedback in intelligent traffic systems.

    PubMed

    Wang, Wen-Xu; Wang, Bing-Hong; Zheng, Wen-Chen; Yin, Chuan-Yang; Zhou, Tao

    2005-12-01

    The optimal information feedback is very important to many socioeconomic systems like stock market and traffic systems aiming to make full use of resources. As to traffic flow, a reasonable real-time information feedback can improve the urban traffic condition by providing route guidance. In this paper, the influence of a feedback strategy named congestion coefficient feedback strategy is introduced, based on a two-route scenario in which dynamic information can be generated and displayed on the board to guide road users to make a choice. Simulation results adopting this optimal information feedback strategy have demonstrated high efficiency in controlling spatial distribution of traffic patterns compared with the other two information feedback strategies, i.e., travel time and mean velocity. PMID:16486093

  20. Advanced information feedback in intelligent traffic systems

    NASA Astrophysics Data System (ADS)

    Wang, Wen-Xu; Wang, Bing-Hong; Zheng, Wen-Chen; Yin, Chuan-Yang; Zhou, Tao

    2005-12-01

    The optimal information feedback is very important to many socioeconomic systems like stock market and traffic systems aiming to make full use of resources. As to traffic flow, a reasonable real-time information feedback can improve the urban traffic condition by providing route guidance. In this paper, the influence of a feedback strategy named congestion coefficient feedback strategy is introduced, based on a two-route scenario in which dynamic information can be generated and displayed on the board to guide road users to make a choice. Simulation results adopting this optimal information feedback strategy have demonstrated high efficiency in controlling spatial distribution of traffic patterns compared with the other two information feedback strategies, i.e., travel time and mean velocity.

  1. Traffic Monitor

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Mestech's X-15 "Eye in the Sky," a traffic monitoring system, incorporates NASA imaging and robotic vision technology. A camera or "sensor box" is mounted in a housing. The sensor detects vehicles approaching an intersection and sends the information to a computer, which controls the traffic light according to the traffic rate. Jet Propulsion Laboratory technical support packages aided in the company's development of the system. The X-15's "smart highway" can also be used to count vehicles on a highway and compute the number in each lane and their speeds, important information for freeway control engineers. Additional applications are in airport and railroad operations. The system is intended to replace loop-type traffic detectors.

  2. Signalling and obfuscation for congestion control

    NASA Astrophysics Data System (ADS)

    Mareček, Jakub; Shorten, Robert; Yu, Jia Yuan

    2015-10-01

    We aim to reduce the social cost of congestion in many smart city applications. In our model of congestion, agents interact over limited resources after receiving signals from a central agent that observes the state of congestion in real time. Under natural models of agent populations, we develop new signalling schemes and show that by introducing a non-trivial amount of uncertainty in the signals, we reduce the social cost of congestion, i.e., improve social welfare. The signalling schemes are efficient in terms of both communication and computation, and are consistent with past observations of the congestion. Moreover, the resulting population dynamics converge under reasonable assumptions.

  3. Simulation and analysis of congestion risk during escalator transfers using a modified social force model

    NASA Astrophysics Data System (ADS)

    Li, Wenhang; Gong, Jianhua; Yu, Ping; Shen, Shen; Li, Rong; Duan, Qishen

    2015-02-01

    The congestion risk during escalator transfers was simulated based on a modified social force model. A four-stage transfer model was proposed. A projection strategy was employed to calculate the social forces for inclined surfaces, and a schedule-line model was proposed to calculate the targets adaptively. Realistic simulations of escalator transfer activities were achieved. The results demonstrate that the spatial distribution of the congestion risks is inhomogeneous. A few areas contain clearly higher risks, and the congestion risk is higher in the transfer aisles than on the escalators. The congestion risk in the transfer aisle is influenced more by the average pedestrian speed than that of the escalators. Slower walkers in the transfer aisle may cause congestion, which is more serious when the escalator speed is faster than that of the pedestrians. Therefore, to reduce the congestion risk, the speed of the escalator should be set slower than the average speed of the pedestrians, and conductors can be employed to divert the traffic at the entrance, turns, and exit of the escalator.

  4. Avoiding congestion in recommender systems

    NASA Astrophysics Data System (ADS)

    Ren, Xiaolong; Lü, Linyuan; Liu, Runran; Zhang, Jianlin

    2014-06-01

    Recommender systems use the historical activities and personal profiles of users to uncover their preferences and recommend objects. Most of the previous methods are based on objects’ (and/or users’) similarity rather than on their difference. Such approaches are subject to a high risk of increasingly exposing users to a narrowing band of popular objects. As a result, a few objects may be recommended to an enormous number of users, resulting in the problem of recommendation congestion, which is to be avoided, especially when the recommended objects are limited resources. In order to quantitatively measure a recommendation algorithm's ability to avoid congestion, we proposed a new metric inspired by the Gini index, which is used to measure the inequality of the individual wealth distribution in an economy. Besides this, a new recommendation method called directed weighted conduction (DWC) was developed by considering the heat conduction process on a user-object bipartite network with different thermal conductivities. Experimental results obtained for three benchmark data sets showed that the DWC algorithm can effectively avoid system congestion, and greatly improve the novelty and diversity, while retaining relatively high accuracy, in comparison with the state-of-the-art methods.

  5. State Traffic Data: Traffic Safety Facts, 2001.

    ERIC Educational Resources Information Center

    National Center for Statistics and Analysis (NHTSA), Washington, DC.

    This brief provides statistical information on U.S. traffic accidents delineated by state. A map details the 2001 traffic fatalities by state and the percent change from 2000. Data tables include: (1) traffic fatalities and fatality rates, 2001; (2) traffic fatalities and percent change, 1975-2001; (3) alcohol involvement in fatal traffic crashes,…

  6. Transient Situations in Traffic Flow: Modelling the Mexico City Cuernavaca Highway

    NASA Astrophysics Data System (ADS)

    del Río, J. A.; Lárraga, M. E.

    2005-04-01

    In this paper a recent variable anticipation cellular automata model for single-lane traffic flow is extended to analyze the situation of free and congested flow in the Highway from Mexico City to Cuernavaca. This highway presents free flow in standard days; but in the returning day of long weekends or holidays it exhibits congested flow and in rush hours jamming appears. We illustrate how our CA model for traffic flow can deal appropriately with transient situations and can be used to search new alternatives that allow to improve the traffic flow in Mexican highways.

  7. Social dilemma structure hidden behind traffic flow with route selection

    NASA Astrophysics Data System (ADS)

    Tanimoto, Jun; Nakamura, Kousuke

    2016-10-01

    Several traffic flows contain social dilemma structures. Herein, we explored a route-selection problem using a cellular automaton simulation dovetailed with evolutionary game theory. In our model, two classes of driver-agents coexist: D agents (defective strategy), which refer to traffic information for route selection to move fast, and C agents (cooperative strategy), which are insensitive to information and less inclined to move fast. Although no evidence suggests that the social dilemma structure in low density causes vehicles to move freely and that in high density causes traffic jams, we found a structure that corresponds to an n-person (multiplayer) Chicken (n-Chicken) game if the provided traffic information is inappropriate. If appropriate traffic information is given to the agents, the n-Chicken game can be solved. The information delivered to vehicles is crucial for easing the social dilemma due to urban traffic congestion when developing technologies to support the intelligent transportation system (ITS).

  8. Remotely Accessed Vehicle Traffic Management System

    NASA Astrophysics Data System (ADS)

    Al-Alawi, Raida

    2010-06-01

    The ever increasing number of vehicles in most metropolitan cities around the world and the limitation in altering the transportation infrastructure, led to serious traffic congestion and an increase in the travelling time. In this work we exploit the emergence of novel technologies such as the internet, to design an intelligent Traffic Management System (TMS) that can remotely monitor and control a network of traffic light controllers located at different sites. The system is based on utilizing Embedded Web Servers (EWS) technology to design a web-based TMS. The EWS located at each intersection uses IP technology for communicating remotely with a Central Traffic Management Unit (CTMU) located at the traffic department authority. Friendly GUI software installed at the CTMU will be able to monitor the sequence of operation of the traffic lights and the presence of traffic at each intersection as well as remotely controlling the operation of the signals. The system has been validated by constructing a prototype that resembles the real application.

  9. Analysis of CO2 emission in traffic flow and numerical tests

    NASA Astrophysics Data System (ADS)

    Zhu, Wen-Xing

    2013-10-01

    We investigated the carbon dioxide emission rate in traffic flow analytically and numerically. The emission model was derived based on Bando’s optimal velocity model with a consideration of slope. Simulations were conducted to examine the relationship between the CO2 emission rate of vehicles and slope of road, traffic density, and road length. Analysis of the results shows that some original laws of CO2 emission in traffic flow with congestion were exhibited.

  10. Implementing and Simulating Dynamic Traffic Assignment with Intelligent Transportation Systems in Cube Avenue

    NASA Technical Reports Server (NTRS)

    Foytik, Peter; Robinson, Mike

    2010-01-01

    As urban populations and traffic congestion levels increase, effective use of information and communication tools and intelligent transportation systems as becoming increasingly important in order to maximize the efficiency of transportation networks. The appropriate placement and employment of these tools within a network is critical to their effectiveness. This presentation proposes and demonstrates the use of a commercial transportation simulation tool to simulate dynamic traffic assignment and rerouting to model route modifications as a result of traffic information.

  11. Revised lattice Boltzmann model for traffic flow with equilibrium traffic pressure

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Lu, Wei-Zhen; Xue, Yu; He, Hong-Di

    2016-02-01

    A revised lattice Boltzmann model concerning the equilibrium traffic pressure is proposed in this study to tackle the phase transition phenomena of traffic flow system. The traditional lattice Boltzmann model has limitation to investigate the complex traffic phase transitions due to its difficulty for modeling the equilibrium velocity distribution. Concerning this drawback, the equilibrium traffic pressure is taken into account to derive the equilibrium velocity distribution in the revised lattice Boltzmann model. In the proposed model, a three-dimensional velocity-space is assumed to determine the equilibrium velocity distribution functions and an alternative, new derivative approach is introduced to deduct the macroscopic equations with the first-order accuracy level from the lattice Boltzmann model. Based on the linear stability theory, the stability conditions of the corresponding macroscopic equations can be obtained. The outputs indicate that the stability curve is divided into three regions, i.e., the stable region, the neutral stability region, and the unstable region. In the stable region, small disturbance appears in the initial uniform flow and will vanish after long term evolution, while in the unstable region, the disturbance will be enlarged and finally leads to the traffic system entering the congested state. In the neutral stability region, small disturbance does not vanish with time and maintains its amplitude in the traffic system. Conclusively, the stability of traffic system is found to be enhanced as the equilibrium traffic pressure increases. Finally, the numerical outputs of the proposed model are found to be consistent with the recognized, theoretical results.

  12. Impact of traffic states on freeway crash involvement rates.

    PubMed

    Yeo, Hwasoo; Jang, Kitae; Skabardonis, Alexander; Kang, Seungmo

    2013-01-01

    Freeway traffic accidents are complicated events that are influenced by multiple factors including roadway geometry, drivers' behavior, traffic conditions and environmental factors. Among the various factors, crash occurrence on freeways is supposed to be strongly influenced by the traffic states representing driving situations that are changed by road geometry and cause the change of drivers' behavior. This paper proposes a methodology to investigate the relationship between traffic states and crash involvements on the freeway. First, we defined section-based traffic states: free flow (FF), back of queue (BQ), bottleneck front (BN) and congestion (CT) according to their distinctive patterns; and traffic states of each freeway section are determined based on actual measurements of traffic data from upstream and downstream ends of the section. Next, freeway crash data are integrated with the traffic states of a freeway section using upstream and downstream traffic measurements. As an illustrative study to show the applicability, we applied the proposed method on a 32-mile section of I-880 freeway. By integrating freeway crash occurrence and traffic data over a three-year period, we obtained the crash involvement rate for each traffic state. The results show that crash involvement rate in BN, BQ, and CT states are approximately 5 times higher than the one in FF. The proposed method shows promise to be used for various safety performance measurement including hot spot identification and prediction of the number of crash involvements on freeway sections.

  13. Congestion Based Mechanism for Route Discovery in a V2I-V2V System Applying Smart Devices and IoT

    PubMed Central

    Parrado, Natalia; Donoso, Yezid

    2015-01-01

    The Internet of Things is a new paradigm in which objects in a specific context can be integrated into traditional communication networks to actively participate in solving a determined problem. The Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) technologies are specific cases of IoT and key enablers for Intelligent Transportation Systems (ITS). V2V and V2I have been widely used to solve different problems associated with transportation in cities, in which the most important is traffic congestion. A high percentage of congestion is usually presented by the inappropriate use of resources in vehicular infrastructure. In addition, the integration of traffic congestion in decision making for vehicular traffic is a challenge due to its high dynamic behavior. In this paper, an optimization model over the load balancing in the congestion percentage of the streets is formulated. Later, we explore a fully congestion-oriented route discovery mechanism and we make a proposal on the communication infrastructure that should support it based on V2I and V2V communication. The mechanism is also compared with a modified Dijkstra’s approach that reacts at congestion states. Finally, we compare the results of the efficiency of the vehicle’s trip with the efficiency in the use of the capacity of the vehicular network. PMID:25835185

  14. Congestion based mechanism for route discovery in a V2I-V2V system applying smart devices and IoT.

    PubMed

    Parrado, Natalia; Donoso, Yezid

    2015-03-31

    The Internet of Things is a new paradigm in which objects in a specific context can be integrated into traditional communication networks to actively participate in solving a determined problem. The Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) technologies are specific cases of IoT and key enablers for Intelligent Transportation Systems (ITS). V2V and V2I have been widely used to solve different problems associated with transportation in cities, in which the most important is traffic congestion. A high percentage of congestion is usually presented by the inappropriate use of resources in vehicular infrastructure. In addition, the integration of traffic congestion in decision making for vehicular traffic is a challenge due to its high dynamic behavior. In this paper, an optimization model over the load balancing in the congestion percentage of the streets is formulated. Later, we explore a fully congestion-oriented route discovery mechanism and we make a proposal on the communication infrastructure that should support it based on V2I and V2V communication. The mechanism is also compared with a modified Dijkstra's approach that reacts at congestion states. Finally, we compare the results of the efficiency of the vehicle's trip with the efficiency in the use of the capacity of the vehicular network.

  15. Congestion based mechanism for route discovery in a V2I-V2V system applying smart devices and IoT.

    PubMed

    Parrado, Natalia; Donoso, Yezid

    2015-01-01

    The Internet of Things is a new paradigm in which objects in a specific context can be integrated into traditional communication networks to actively participate in solving a determined problem. The Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) technologies are specific cases of IoT and key enablers for Intelligent Transportation Systems (ITS). V2V and V2I have been widely used to solve different problems associated with transportation in cities, in which the most important is traffic congestion. A high percentage of congestion is usually presented by the inappropriate use of resources in vehicular infrastructure. In addition, the integration of traffic congestion in decision making for vehicular traffic is a challenge due to its high dynamic behavior. In this paper, an optimization model over the load balancing in the congestion percentage of the streets is formulated. Later, we explore a fully congestion-oriented route discovery mechanism and we make a proposal on the communication infrastructure that should support it based on V2I and V2V communication. The mechanism is also compared with a modified Dijkstra's approach that reacts at congestion states. Finally, we compare the results of the efficiency of the vehicle's trip with the efficiency in the use of the capacity of the vehicular network. PMID:25835185

  16. Buffet Load Alleviation

    NASA Technical Reports Server (NTRS)

    Ryall, T. G.; Moses, R. W.; Hopkins, M. A.; Henderson, D.; Zimcik, D. G.; Nitzsche, F.

    2004-01-01

    High performance aircraft are, by their very nature, often required to undergo maneuvers involving high angles of attack. Under these conditions unsteady vortices emanating from the wing and the fuselage will impinge on the twin fins (required for directional stability) causing excessive buffet loads, in some circumstances, to be applied to the aircraft. These loads result in oscillatory stresses, which may cause significant amounts of fatigue damage. Active control is a possible solution to this important problem. A full-scale test was carried out on an F/A-18 fuselage and fins using piezoceramic actuators to control the vibrations. Buffet loads were simulated using very powerful electromagnetic shakers. The first phase of this test was concerned with the open loop system identification whereas the second stage involved implementing linear time invariant control laws. This paper looks at some of the problems encountered as well as the corresponding solutions and some results. It is expected that flight trials of a similar control system to alleviate buffet will occur as early as 2001.

  17. Bifurcation analysis method of nonlinear traffic phenomena

    NASA Astrophysics Data System (ADS)

    Ai, Wenhuan; Shi, Zhongke; Liu, Dawei

    2015-03-01

    A new bifurcation analysis method for analyzing and predicting the complex nonlinear traffic phenomena based on the macroscopic traffic flow model is presented in this paper. This method makes use of variable substitution to transform a traditional traffic flow model into a new model which is suitable for the stability analysis. Although the substitution seems to be simple, it can extend the range of the variable to infinity and build a relationship between the traffic congestion and the unstable system in the phase plane. So the problem of traffic flow could be converted into that of system stability. The analysis identifies the types and stabilities of the equilibrium solutions of the new model and gives the overall distribution structure of the nearby equilibrium solutions in the phase plane. Then we deduce the existence conditions of the models Hopf bifurcation and saddle-node bifurcation and find some bifurcations such as Hopf bifurcation, saddle-node bifurcation, Limit Point bifurcation of cycles and Bogdanov-Takens bifurcation. Furthermore, the Hopf bifurcation and saddle-node bifurcation are selected as the starting point of density temporal evolution and it will be helpful for improving our understanding of stop-and-go wave and local cluster effects observed in the free-way traffic.

  18. Market Mechanism for Line Congestion Clearance

    NASA Astrophysics Data System (ADS)

    Ruiz Monroy, José Joaquín; Kita, Hiroyuki; Tanaka, Eiichi; Hasegawa, Jun

    This paper proposes a mechanism for clearance of line congestion and power flow control in a deregulated market environment. The mechanism applies penalties to the bilateral transactions that cause line congestion by increasing the prices of such transactions. The market regulates itself by redefining the transactions and checking again for violations, applying penalties if necessary and repeating the process until all the demand is satisfied without causing line congestion to the system. A bilateral transaction matrix (BTM) creation algorithm developed by the authors and a DC power flow program are integrated as parts of the market mechanism proposed in this paper. The congestion is cleared by the market participants when they reschedule their transactions. This mechanism is useful to study the effects of bilateral transactions on a power system and helps the Independent System Operator (ISO) to create rules and market mechanisms for line congestion clearance and power flow control.

  19. Predicting travel time to limit congestion at a highway bottleneck

    NASA Astrophysics Data System (ADS)

    Davis, L. C.

    2010-09-01

    A new method is proposed to predict the travel time on a highway route with a bottleneck caused by an on-ramp. The method takes advantage of the slow variation of the bottleneck throughput when congestion exists. The predicted travel time for a vehicle leaving the origin is given by the current number of vehicles on the route divided by the estimated throughput. The latter is an average of N/T recorded as each vehicle reaches the destination where N is the number of vehicles at the start of the trip and T is the time to complete the trip. Drivers divert to an off-ramp when the predicted travel time exceeds a target value. The target could be historical average travel times of alternative routes or chosen to limit the amount of congestion. Simulations employing three-phase traffic theory show that the travel time converges to the target value and remains close to or below it with the proposed prediction strategy. Strong oscillations in travel time obtained when other strategies are used for diversion do not develop with the new method because the inherent delay is effectively removed.

  20. Unattended vehicle detection for automatic traffic light control

    NASA Astrophysics Data System (ADS)

    Abdel Hady, Aya Salama; Moustafa, Mohamed

    2013-12-01

    Machine vision based traffic light control depends mainly on measuring traffic statistics at cross roads. Most of the previous studies have not taken unattended vehicles into consideration when calculating either the traffic density or the traffic flow. In this paper, we propose incorporating unattended vehicles into a new metric for measuring the traffic congestion. In addition to the vehicle motion analysis, opening the driver's side door is an important indicator that this vehicle is going to be unattended. Therefore, we focus in this paper on presenting how to detect this event for stationary vehicles from a live camera or a video feed. Through a set of experiments, we have found out that a Scale Invariant Feature Transform (SIFT) feature-descriptor with a Support Vector Machines (SVM) classifier was able to successfully classify open-door vehicles from closed-door ones in 96.7% of our test dataset.

  1. Performance analysis of ATM ABR service under self-similar traffic in the presence of background VBR traffic

    SciTech Connect

    Benke, G. |; Brandt, J.; Chen, H.; Dastangoo, S.; Miller, G.J.

    1996-05-01

    Recent empirical studies of traffic measurements of packet switched networks have demonstrated that actual network traffic is self-similar, or long range dependent, in nature. That is, the measured traffic is bursty over a wide range of time intervals. Furthermore, the emergence of high-speed network backbones demands the study of accurate models of aggregated traffic to assess network performance. This paper provides a method for generation of self-similar traffic, which can be used to drive network simulation models. The authors present the results of a simulation study of a two-node ATM network configuration that supports the ATM Forum`s Available Bit Rate (ABR) service. In this study, the authors compare the state of the queue at the source router at the edge of the ATM network under both Poisson and self-similar traffic loading. These findings indicate an order of magnitude increase in queue length for self-similar traffic loading as compared to Poisson loading. Moreover, when background VBR traffic is present, self-similar ABR traffic causes more congestion at the ATM switches than does Poisson traffic.

  2. Encapsulating Urban Traffic Rhythms into Road Networks

    NASA Astrophysics Data System (ADS)

    Wang, Junjie; Wei, Dong; He, Kun; Gong, Hang; Wang, Pu

    2014-02-01

    Using road GIS (geographical information systems) data and travel demand data for two U.S. urban areas, the dynamical driver sources of each road segment were located. A method to target road clusters closely related to urban traffic congestion was then developed to improve road network efficiency. The targeted road clusters show different spatial distributions at different times of a day, indicating that our method can encapsulate dynamical travel demand information into the road networks. As a proof of concept, when we lowered the speed limit or increased the capacity of road segments in the targeted road clusters, we found that both the number of congested roads and extra travel time were effectively reduced. In addition, the proposed modeling framework provided new insights on the optimization of transport efficiency in any infrastructure network with a specific supply and demand distribution.

  3. Encapsulating urban traffic rhythms into road networks.

    PubMed

    Wang, Junjie; Wei, Dong; He, Kun; Gong, Hang; Wang, Pu

    2014-01-01

    Using road GIS (geographical information systems) data and travel demand data for two U.S. urban areas, the dynamical driver sources of each road segment were located. A method to target road clusters closely related to urban traffic congestion was then developed to improve road network efficiency. The targeted road clusters show different spatial distributions at different times of a day, indicating that our method can encapsulate dynamical travel demand information into the road networks. As a proof of concept, when we lowered the speed limit or increased the capacity of road segments in the targeted road clusters, we found that both the number of congested roads and extra travel time were effectively reduced. In addition, the proposed modeling framework provided new insights on the optimization of transport efficiency in any infrastructure network with a specific supply and demand distribution.

  4. Encapsulating urban traffic rhythms into road networks.

    PubMed

    Wang, Junjie; Wei, Dong; He, Kun; Gong, Hang; Wang, Pu

    2014-01-01

    Using road GIS (geographical information systems) data and travel demand data for two U.S. urban areas, the dynamical driver sources of each road segment were located. A method to target road clusters closely related to urban traffic congestion was then developed to improve road network efficiency. The targeted road clusters show different spatial distributions at different times of a day, indicating that our method can encapsulate dynamical travel demand information into the road networks. As a proof of concept, when we lowered the speed limit or increased the capacity of road segments in the targeted road clusters, we found that both the number of congested roads and extra travel time were effectively reduced. In addition, the proposed modeling framework provided new insights on the optimization of transport efficiency in any infrastructure network with a specific supply and demand distribution. PMID:24553203

  5. Treatment of congestion in upper respiratory diseases

    PubMed Central

    Meltzer, Eli O; Caballero, Fernan; Fromer, Leonard M; Krouse, John H; Scadding, Glenis

    2010-01-01

    Congestion, as a symptom of upper respiratory tract diseases including seasonal and perennial allergic rhinitis, acute and chronic rhinosinusitis, and nasal polyposis, is principally caused by mucosal inflammation. Though effective pharmacotherapy options exist, no agent is universally efficacious; therapeutic decisions must account for individual patient preferences. Oral H1-antihistamines, though effective for the common symptoms of allergic rhinitis, have modest decongestant action, as do leukotriene receptor antagonists. Intranasal antihistamines appear to improve congestion better than oral forms. Topical decongestants reduce congestion associated with allergic rhinitis, but local adverse effects make them unsuitable for long-term use. Oral decongestants show some efficacy against congestion in allergic rhinitis and the common cold, and can be combined with oral antihistamines. Intranasal corticosteroids have broad anti-inflammatory activities, are the most potent long-term pharmacologic treatment of congestion associated with allergic rhinitis, and show some congestion relief in rhinosinusitis and nasal polyposis. Immunotherapy and surgery may be used in some cases refractory to pharmacotherapy. Steps in congestion management include (1) diagnosis of the cause(s), (2) patient education and monitoring, (3) avoidance of environmental triggers where possible, (4) pharmacotherapy, and (5) immunotherapy (for patients with allergic rhinitis) or surgery for patients whose condition is otherwise uncontrolled. PMID:20463825

  6. Congestion Control for a Fair Packet Delivery in WSN: From a Complex System Perspective

    PubMed Central

    2014-01-01

    In this work, we propose that packets travelling across a wireless sensor network (WSN) can be seen as the active agents that make up a complex system, just like a bird flock or a fish school, for instance. From this perspective, the tools and models that have been developed to study this kind of systems have been applied. This is in order to create a distributed congestion control based on a set of simple rules programmed at the nodes of the WSN. Our results show that it is possible to adapt the carried traffic to the network capacity, even under stressing conditions. Also, the network performance shows a smooth degradation when the traffic goes beyond a threshold which is settled by the proposed self-organized control. In contrast, without any control, the network collapses before this threshold. The use of the proposed solution provides an effective strategy to address some of the common problems found in WSN deployment by providing a fair packet delivery. In addition, the network congestion is mitigated using adaptive traffic mechanisms based on a satisfaction parameter assessed by each packet which has impact on the global satisfaction of the traffic carried by the WSN. PMID:25177722

  7. Congestion control for a fair packet delivery in WSN: from a complex system perspective.

    PubMed

    Aguirre-Guerrero, Daniela; Marcelín-Jiménez, Ricardo; Rodriguez-Colina, Enrique; Pascoe-Chalke, Michael

    2014-01-01

    In this work, we propose that packets travelling across a wireless sensor network (WSN) can be seen as the active agents that make up a complex system, just like a bird flock or a fish school, for instance. From this perspective, the tools and models that have been developed to study this kind of systems have been applied. This is in order to create a distributed congestion control based on a set of simple rules programmed at the nodes of the WSN. Our results show that it is possible to adapt the carried traffic to the network capacity, even under stressing conditions. Also, the network performance shows a smooth degradation when the traffic goes beyond a threshold which is settled by the proposed self-organized control. In contrast, without any control, the network collapses before this threshold. The use of the proposed solution provides an effective strategy to address some of the common problems found in WSN deployment by providing a fair packet delivery. In addition, the network congestion is mitigated using adaptive traffic mechanisms based on a satisfaction parameter assessed by each packet which has impact on the global satisfaction of the traffic carried by the WSN. PMID:25177722

  8. Active traffic management on road networks: a macroscopic approach.

    PubMed

    Kurzhanskiy, Alex A; Varaiya, Pravin

    2010-10-13

    Active traffic management (ATM) is the ability to dynamically manage recurrent and non-recurrent congestion based on prevailing traffic conditions in order to maximize the effectiveness and efficiency of road networks. It is a continuous process of (i) obtaining and analysing traffic measurement data, (ii) operations planning, i.e. simulating various scenarios and control strategies, (iii) implementing the most promising control strategies in the field, and (iv) maintaining a real-time decision support system that filters current traffic measurements to predict the traffic state in the near future, and to suggest the best available control strategy for the predicted situation. ATM relies on a fast and trusted traffic simulator for the rapid quantitative assessment of a large number of control strategies for the road network under various scenarios, in a matter of minutes. The open-source macrosimulation tool Aurora ROAD NETWORK MODELER is a good candidate for this purpose. The paper describes the underlying dynamical traffic model and what it takes to prepare the model for simulation; covers the traffic performance measures and evaluation of scenarios as part of operations planning; introduces the framework within which the control strategies are modelled and evaluated; and presents the algorithm for real-time traffic state estimation and short-term prediction.

  9. Traffic and related self-driven many-particle systems

    NASA Astrophysics Data System (ADS)

    Helbing, Dirk

    2001-10-01

    Since the subject of traffic dynamics has captured the interest of physicists, many surprising effects have been revealed and explained. Some of the questions now understood are the following: Why are vehicles sometimes stopped by ``phantom traffic jams'' even though drivers all like to drive fast? What are the mechanisms behind stop-and-go traffic? Why are there several different kinds of congestion, and how are they related? Why do most traffic jams occur considerably before the road capacity is reached? Can a temporary reduction in the volume of traffic cause a lasting traffic jam? Under which conditions can speed limits speed up traffic? Why do pedestrians moving in opposite directions normally organize into lanes, while similar systems ``freeze by heating''? All of these questions have been answered by applying and extending methods from statistical physics and nonlinear dynamics to self-driven many-particle systems. This article considers the empirical data and then reviews the main approaches to modeling pedestrian and vehicle traffic. These include microscopic (particle-based), mesoscopic (gas-kinetic), and macroscopic (fluid-dynamic) models. Attention is also paid to the formulation of a micro-macro link, to aspects of universality, and to other unifying concepts, such as a general modeling framework for self-driven many-particle systems, including spin systems. While the primary focus is upon vehicle and pedestrian traffic, applications to biological or socio-economic systems such as bacterial colonies, flocks of birds, panics, and stock market dynamics are touched upon as well.

  10. Microscopic features of moving traffic jams

    NASA Astrophysics Data System (ADS)

    Kerner, Boris S.; Klenov, Sergey L.; Hiller, Andreas; Rehborn, Hubert

    2006-04-01

    Empirical and numerical microscopic features of moving traffic jams are presented. Based on a single vehicle data analysis, it is found that within wide moving jams, i.e., between the upstream and downstream jam fronts there is a complex microscopic spatiotemporal structure. This jam structure consists of alternations of regions in which traffic flow is interrupted and flow states of low speeds associated with “moving blanks” within the jam. Moving blanks within a wide moving jam resemble electron holes in the valence band of semiconductors: As the moving blanks that propagate upstream appear due to downstream vehicle motion within the jam, so appearance of electron holes moving with the electric field results from electron motion against the electric field in the valence band of semiconductors. Empirical features of moving blanks are found. Based on microscopic models in the context of the Kerner’s three-phase traffic theory, physical reasons for moving blanks emergence within wide moving jams are disclosed. Microscopic nonlinear effects of moving jam emergence, propagation, and dissolution as well as a diverse variety of hysteresis effects in freeway traffic associated with phase transitions and congested traffic propagation are numerically investigated. Microscopic structure of moving jam fronts is numerically studied and compared with empirical results.

  11. Visual Exploration of Sparse Traffic Trajectory Data.

    PubMed

    Wang, Zuchao; Ye, Tangzhi; Lu, Min; Yuan, Xiaoru; Qu, Huamin; Yuan, Jacky; Wu, Qianliang

    2014-12-01

    In this paper, we present a visual analysis system to explore sparse traffic trajectory data recorded by transportation cells. Such data contains the movements of nearly all moving vehicles on the major roads of a city. Therefore it is very suitable for macro-traffic analysis. However, the vehicle movements are recorded only when they pass through the cells. The exact tracks between two consecutive cells are unknown. To deal with such uncertainties, we first design a local animation, showing the vehicle movements only in the vicinity of cells. Besides, we ignore the micro-behaviors of individual vehicles, and focus on the macro-traffic patterns. We apply existing trajectory aggregation techniques to the dataset, studying cell status pattern and inter-cell flow pattern. Beyond that, we propose to study the correlation between these two patterns with dynamic graph visualization techniques. It allows us to check how traffic congestion on one cell is correlated with traffic flows on neighbouring links, and with route selection in its neighbourhood. Case studies show the effectiveness of our system. PMID:26356895

  12. Focus on renal congestion in heart failure.

    PubMed

    Afsar, Baris; Ortiz, Alberto; Covic, Adrian; Solak, Yalcin; Goldsmith, David; Kanbay, Mehmet

    2016-02-01

    Hospitalizations due to heart failure are increasing steadily despite advances in medicine. Patients hospitalized for worsening heart failure have high mortality in hospital and within the months following discharge. Kidney dysfunction is associated with adverse outcomes in heart failure patients. Recent evidence suggests that both deterioration in kidney function and renal congestion are important prognostic factors in heart failure. Kidney congestion in heart failure results from low cardiac output (forward failure), tubuloglomerular feedback, increased intra-abdominal pressure or increased venous pressure. Regardless of the cause, renal congestion is associated with increased morbidity and mortality in heart failure. The impact on outcomes of renal decongestion strategies that do not compromise renal function should be explored in heart failure. These studies require novel diagnostic markers that identify early renal damage and renal congestion and allow monitoring of treatment responses in order to avoid severe worsening of renal function. In addition, there is an unmet need regarding evidence-based therapeutic management of renal congestion and worsening renal function. In the present review, we summarize the mechanisms, diagnosis, outcomes, prognostic markers and treatment options of renal congestion in heart failure.

  13. Simulation of three lanes one-way freeway in low visibility weather by possible traffic accidents

    NASA Astrophysics Data System (ADS)

    Pang, Ming-bao; Zheng, Sha-sha; Cai, Zhang-hui

    2015-09-01

    The aim of this work is to investigate the traffic impact of low visibility weather on a freeway including the fraction of real vehicle rear-end accidents and road traffic capacity. Based on symmetric two-lane Nagel-Schreckenberg (STNS) model, a cellular automaton model of three-lane freeway mainline with the real occurrence of rear-end accidents in low visibility weather, which considers delayed reaction time and deceleration restriction, was established with access to real-time traffic information of intelligent transportation system (ITS). The characteristics of traffic flow in different visibility weather were discussed via the simulation experiments. The results indicate that incoming flow control (decreasing upstream traffic volume) and inputting variable speed limits (VSL) signal are effective in accident reducing and road actual traffic volume's enhancing. According to different visibility and traffic demand the appropriate control strategies should be adopted in order to not only decrease the probability of vehicle accidents but also avoid congestion.

  14. Automatic Data Traffic Control on DSM Architecture

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael; Jin, Hao-Qiang; Yan, Jerry; Kwak, Dochan (Technical Monitor)

    2000-01-01

    We study data traffic on distributed shared memory machines and conclude that data placement and grouping improve performance of scientific codes. We present several methods which user can employ to improve data traffic in his code. We report on implementation of a tool which detects the code fragments causing data congestions and advises user on improvements of data routing in these fragments. The capabilities of the tool include deduction of data alignment and affinity from the source code; detection of the code constructs having abnormally high cache or TLB misses; generation of data placement constructs. We demonstrate the capabilities of the tool on experiments with NAS parallel benchmarks and with a simple computational fluid dynamics application ARC3D.

  15. Automation of Data Traffic Control on DSM Architecture

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael; Jin, Hao-Qiang; Yan, Jerry

    2001-01-01

    The design of distributed shared memory (DSM) computers liberates users from the duty to distribute data across processors and allows for the incremental development of parallel programs using, for example, OpenMP or Java threads. DSM architecture greatly simplifies the development of parallel programs having good performance on a few processors. However, to achieve a good program scalability on DSM computers requires that the user understand data flow in the application and use various techniques to avoid data traffic congestions. In this paper we discuss a number of such techniques, including data blocking, data placement, data transposition and page size control and evaluate their efficiency on the NAS (NASA Advanced Supercomputing) Parallel Benchmarks. We also present a tool which automates the detection of constructs causing data congestions in Fortran array oriented codes and advises the user on code transformations for improving data traffic in the application.

  16. Jamitons: Phantom Traffic Jams

    ERIC Educational Resources Information Center

    Kowszun, Jorj

    2013-01-01

    Traffic on motorways can slow down for no apparent reason. Sudden changes in speed by one or two drivers can create a chain reaction that causes a traffic jam for the vehicles that are following. This kind of phantom traffic jam is called a "jamiton" and the article discusses some of the ways in which traffic engineers produce…

  17. Prediction of traffic convective instability with spectral analysis of the Aw-Rascle-Zhang model

    NASA Astrophysics Data System (ADS)

    Belletti, Francois; Huo, Mandy; Litrico, Xavier; Bayen, Alexandre M.

    2015-10-01

    This article starts from the classical Aw-Rascle-Zhang (ARZ) model for freeway traffic and develops a spectral analysis of its linearized version. A counterpart to the Froude number in hydrodynamics is defined that enables a classification of the nature of vehicle traffic flow using the explicit solution resulting from the analysis. We prove that our linearization about an equilibrium is stable for congested regimes and unstable otherwise. NGSIM data for congested traffic trajectories is used so as to confront the linearized model's predictions to actual macroscopic behavior of traffic. The model is shown to achieve good accuracy for speed and flow. In particular, it accounts for the advection of oscillations on boundaries into the interior domain where the PDE under study is solved.

  18. Traffic-driven SIR epidemic spreading in networks

    NASA Astrophysics Data System (ADS)

    Pu, Cunlai; Li, Siyuan; Yang, XianXia; Xu, Zhongqi; Ji, Zexuan; Yang, Jian

    2016-03-01

    We study SIR epidemic spreading in networks driven by traffic dynamics, which are further governed by static routing protocols. We obtain the maximum instantaneous population of infected nodes and the maximum population of ever infected nodes through simulation. We find that generally more balanced load distribution leads to more intense and wide spread of an epidemic in networks. Increasing either average node degree or homogeneity of degree distribution will facilitate epidemic spreading. When packet generation rate ρ is small, increasing ρ favors epidemic spreading. However, when ρ is large enough, traffic congestion appears which inhibits epidemic spreading.

  19. Effects of mental workload on physiological and subjective responses during traffic density monitoring: A field study.

    PubMed

    Fallahi, Majid; Motamedzade, Majid; Heidarimoghadam, Rashid; Soltanian, Ali Reza; Miyake, Shinji

    2016-01-01

    This study evaluated operators' mental workload while monitoring traffic density in a city traffic control center. To determine the mental workload, physiological signals (ECG, EMG) were recorded and the NASA-Task Load Index (TLX) was administered for 16 operators. The results showed that the operators experienced a larger mental workload during high traffic density than during low traffic density. The traffic control center stressors caused changes in heart rate variability features and EMG amplitude, although the average workload score was significantly higher in HTD conditions than in LTD conditions. The findings indicated that increasing traffic congestion had a significant effect on HR, RMSSD, SDNN, LF/HF ratio, and EMG amplitude. The results suggested that when operators' workload increases, their mental fatigue and stress level increase and their mental health deteriorate. Therefore, it maybe necessary to implement an ergonomic program to manage mental health. Furthermore, by evaluating mental workload, the traffic control center director can organize the center's traffic congestion operators to sustain the appropriate mental workload and improve traffic control management. PMID:26360199

  20. Effects of mental workload on physiological and subjective responses during traffic density monitoring: A field study.

    PubMed

    Fallahi, Majid; Motamedzade, Majid; Heidarimoghadam, Rashid; Soltanian, Ali Reza; Miyake, Shinji

    2016-01-01

    This study evaluated operators' mental workload while monitoring traffic density in a city traffic control center. To determine the mental workload, physiological signals (ECG, EMG) were recorded and the NASA-Task Load Index (TLX) was administered for 16 operators. The results showed that the operators experienced a larger mental workload during high traffic density than during low traffic density. The traffic control center stressors caused changes in heart rate variability features and EMG amplitude, although the average workload score was significantly higher in HTD conditions than in LTD conditions. The findings indicated that increasing traffic congestion had a significant effect on HR, RMSSD, SDNN, LF/HF ratio, and EMG amplitude. The results suggested that when operators' workload increases, their mental fatigue and stress level increase and their mental health deteriorate. Therefore, it maybe necessary to implement an ergonomic program to manage mental health. Furthermore, by evaluating mental workload, the traffic control center director can organize the center's traffic congestion operators to sustain the appropriate mental workload and improve traffic control management.

  1. Air traffic coverage

    SciTech Connect

    George, L.L.

    1988-09-16

    The Federal Aviation Administration plans to consolidate several hundred air traffic control centers and TRACONs into area control facilities while maintaining air traffic coverage. This paper defines air traffic coverage, a performance measure of the air traffic control system. Air traffic coverage measures performance without controversy regarding delay and collision probabilities and costs. Coverage measures help evaluate alternative facility architectures and help schedule consolidation. Coverage measures also help evaluate protocols for handling one facility's air traffic to another facility in case of facility failure. Coverage measures help evaluate radar, communications and other air traffic control systems and procedures. 4 refs., 2 figs.,

  2. Distributed Trajectory Flexibility Preservation for Traffic Complexity Mitigation

    NASA Technical Reports Server (NTRS)

    Idris, Husni; Wing, David; Delahaye, Daniel

    2009-01-01

    The growing demand for air travel is increasing the need for mitigation of air traffic congestion and complexity problems, which are already at high levels. At the same time new information and automation technologies are enabling the distribution of tasks and decisions from the service providers to the users of the air traffic system, with potential capacity and cost benefits. This distribution of tasks and decisions raises the concern that independent user actions will decrease the predictability and increase the complexity of the traffic system, hence inhibiting and possibly reversing any potential benefits. In answer to this concern, the authors propose the introduction of decision-making metrics for preserving user trajectory flexibility. The hypothesis is that such metrics will make user actions naturally mitigate traffic complexity. In this paper, the impact of using these metrics on traffic complexity is investigated. The scenarios analyzed include aircraft in en route airspace with each aircraft meeting a required time of arrival in a one-hour time horizon while mitigating the risk of loss of separation with the other aircraft, thus preserving its trajectory flexibility. The experiments showed promising results in that the individual trajectory flexibility preservation induced self-separation and self-organization effects in the overall traffic situation. The effects were quantified using traffic complexity metrics based on Lyapunov exponents and traffic proximity.

  3. Current state of traffic pollution in Bangladesh and metropolitan Dhaka

    SciTech Connect

    Karim, Masud; Matsui, Hiroshi; Ohno, Takashi; Hoque, S.

    1997-12-31

    Limited resources, invested for the development of transport facilities, such as infrastructure and vehicles, coupled with the rapid rise in transport demand, existence of a huge number of non-motorized vehicles on roads, lack of application of adequate and proper traffic management schemes are producing severe transport problems in almost all the urban areas of Bangladesh. Worsening situation of traffic congestion in the streets and sufferings of the inhabitants from vehicle emissions demand extensive research in this field. However, no detailed study concerning traffic congestion and pollution problems for urban areas of Bangladesh has yet been done. Therefore, it has become increasingly important to examine the present state of the problem. This research is a preliminary evaluation of the current situation of traffic pollution problem in Bangladesh. The daily total emissions of NO{sub x}, HC, CO, PM, and SO{sub x} are estimated using the daily fuel consumption and total traffic flows in Dhaka city. Estimated daily emissions are 42, 39, 314, 14, and 42 t/d for NO{sub x}, HC, CO, PM, and SO{sub x}, respectively. The emissions estimated using two different methods revealed good correlation. Daily average concentration of NO{sub x} (NO{sub 2}, NO) were measured at 30 street locations in Dhaka city during September and November, 1996. The results showed extremely high concentrations of NO{sub 2} and NO in these locations.

  4. Traffic operations, traffic signal systems, and freeway operations 1995. Transportation research record

    SciTech Connect

    1995-12-31

    ;Contents: Analysis of Temporal and Spatial Variability of Free Speed Along a Freeway Segment; A Case for Freeway Mainline Metering; Development of a Freeway Congestion Index Using an Instrumented Vehicle; New Method for Estimating Freeway Incident Congestion; Costs and Benefits of Vision-Based, Wide-Area Detection in Freeway Applications; Caltrans Interstate 15 Reversible High-Occupancy Lanes: 1994 Status; Evaluation of Minnesota I-394 High-Occupancy-Vehicle Transportation System; Design of Incident Detection Algorithms Using Vehicle-to-Roadside Communication Sensors; Examining the Potential of Using Ramp Metering as a Component of an ATMS; Incident Management via Courtesy Patrol: Evaluation of a Pilot Program in Colorado; Artificial Neural Networks for Freeway Incident Detection; Development of Advanced Traffic Signal Control Strategies for Intelligent Transportation Systems: Multilevel Design; REALBAND: An Approach for Real-Time Coordination of Traffic Flows on Networks; Model to Evaluate the Impacts of Bus Priority on Signalized Intersections; REALTRAN: An Off-Line Emulator for Estimating the Effects of SCOOT; Pioneer Application of Passer IV in the Houston Metro-RCTSS Project; Uniform and Variable Bandwidth Arterial Progression Schemes; Bus-Preemption Under Adaptive Signal Control Environments; Testing and Light Rail Signal Control Strategies by Combining Transit and Traffic Simulation Models; Validation of Simulation Software for Modeling Light Rail Transit; and Techniques To Assess Delay and Queue Length Consequences of Bus Preemption.

  5. Rate-based congestion control in networks with smart links, revision. B.S. Thesis - May 1988

    NASA Technical Reports Server (NTRS)

    Heybey, Andrew Tyrrell

    1990-01-01

    The author uses a network simulator to explore rate-based congestion control in networks with smart links that can feed back information to tell senders to adjust their transmission rates. This method differs in a very important way from congestion control in which a congested network component just drops packets - the most commonly used method. It is clearly advantageous for the links in the network to communicate with the end users about the network capacity, rather than the users unilaterally picking a transmission rate. The components in the middle of the network, not the end users, have information about the capacity and traffic in the network. The author experiments with three different algorithms for calculating the control rate to feed back to the users. All of the algorithms exhibit problems in the form of large queues when simulated with a configuration modeling the dynamics of a packet-voice system. However, the problems are not with the algorithms themselves, but with the fact that feedback takes time. If the network steady-state utilization is low enough that it can absorb transients in the traffic through it, then the large queues disappear. If the users are modified to start sending slowly, to allow the network to adapt to a new flow without causing congestion, a greater portion of the network's bandwidth can be used.

  6. When does highway construction to mitigate congestion reduce carbon emissions? A Case Study: The Caldecott Tunnel

    NASA Astrophysics Data System (ADS)

    Thurlow, M. E.; Maness, H.; Wiersema, D. J.; Mcdonald, B. C.; Harley, R.; Fung, I. Y.

    2014-12-01

    The construction of the fourth bore of the Caldecott Tunnel, which connects Oakland and Moraga, CA on State Route 24, was the second largest roadway construction project in California last year with a total cost of $417 million. The objective of the fourth bore was to reduce traffic congestion before the tunnel entrance in the off-peak direction of travel, but the project was a source of conflict between policy makers and environmental and community groups concerned about the air quality and traffic impacts. We analyze the impact of the opening of the fourth bore on CO2 emissions associated with traffic. We made surface observations of CO2from a mobile platform along State Route 24 for several weeks in November 2013 incorporating the period prior to and after the opening of the fourth bore on November 16, 2013. We directly compare bottom-up and top-down approaches to estimate the change in traffic emissions associated with the fourth bore opening. A bottom-up emissions inventory was derived from the high-resolution Performance Measurement System (PeMs) dataset and the Multi-scale Motor Vehicle and Equipment Emissions System (MOVES). The emissions inventory was used to drive a box model as well as a high-resolution regional transport model (the Weather and Regional Forecasting Model). The box model was also used to derive emissions from observations in a basic inversion. We also present an analysis of long-term traffic patterns and consider the potential for compensating changes in behavior that offset the observed emissions reductions on longer timescales. Finally, we examine how the results from the Caldecott study demonstrate the general benefit of using mobile measurements for quantifying environmental impacts of congestion mitigation projects.

  7. Fixed-rate layered multicast congestion control

    NASA Astrophysics Data System (ADS)

    Bing, Zhang; Bing, Yuan; Zengji, Liu

    2006-10-01

    A new fixed-rate layered multicast congestion control algorithm called FLMCC is proposed. The sender of a multicast session transmits data packets at a fixed rate on each layer, while receivers each obtain different throughput by cumulatively subscribing to deferent number of layers based on their expected rates. In order to provide TCP-friendliness and estimate the expected rate accurately, a window-based mechanism implemented at receivers is presented. To achieve this, each receiver maintains a congestion window, adjusts it based on the GAIMD algorithm, and from the congestion window an expected rate is calculated. To measure RTT, a new method is presented which combines an accurate measurement with a rough estimation. A feedback suppression based on a random timer mechanism is given to avoid feedback implosion in the accurate measurement. The protocol is simple in its implementation. Simulations indicate that FLMCC shows good TCP-friendliness, responsiveness as well as intra-protocol fairness, and provides high link utilization.

  8. Using relaxational dynamics to reduce network congestion

    NASA Astrophysics Data System (ADS)

    Piontti, Ana L. Pastore y.; La Rocca, Cristian E.; Toroczkai, Zoltán; Braunstein, Lidia A.; Macri, Pablo A.; López, Eduardo

    2008-09-01

    We study the effects of relaxational dynamics on congestion pressure in scale-free (SF) networks by analyzing the properties of the corresponding gradient networks (Toroczkai and Bassler 2004 Nature 428 716). Using the Family model (Family and Bassler 1986 J. Phys. A: Math. Gen. 19 L441) from surface-growth physics as single-step load-balancing dynamics, we show that the congestion pressure considerably drops on SF networks when compared with the same dynamics on random graphs. This is due to a structural transition of the corresponding gradient network clusters, which self-organize so as to reduce the congestion pressure. This reduction is enhanced when lowering the value of the connectivity exponent λ towards 2.

  9. Understanding widely scattered traffic flows, the capacity drop, and platoons as effects of variance-driven time gaps

    NASA Astrophysics Data System (ADS)

    Treiber, Martin; Kesting, Arne; Helbing, Dirk

    2006-07-01

    We investigate the adaptation of the time headways in car-following models as a function of the local velocity variance, which is a measure of the inhomogeneity of traffic flow. We apply this mechanism to several car-following models and simulate traffic breakdowns in open systems with an on-ramp as bottleneck and in a closed ring road. Single-vehicle data and one-minute aggregated data generated by several virtual detectors show a semiquantitative agreement with microscopic and flow-density data from the Dutch freeway A9. This includes the observed distributions of the net time headways for free and congested traffic, the velocity variance as a function of density, and the fundamental diagram. The modal value of the time headway distribution is shifted by a factor of about 2 under congested conditions. Macroscopically, this corresponds to the capacity drop at the transition from free to congested traffic. The simulated fundamental diagram shows free, synchronized, and jammed traffic, and a wide scattering in the congested traffic regime. We explain this by a self-organized variance-driven process that leads to the spontaneous formation and decay of long-lived platoons even for a deterministic dynamics on a single lane.

  10. Congestion Management Requirements, Methods and Performance Indices

    SciTech Connect

    Kirby, B.J.

    2002-08-28

    Transmission congestion occurs when there is insufficient transmission capacity to simultaneously accommodate all requests for transmission service within a region. Historically, vertically integrated utilities managed this condition by constraining the economic dispatch of generators with the objective of ensuring security and reliability of their own and/or neighboring systems. Electric power industry restructuring has moved generation investment and operations decisions into the competitive market but has left transmission as a communal resource in the regulated environment. This mixing of competitive generation and regulated transmission makes congestion management difficult. The difficulty is compounded by increases in the amount of congestion resulting from increased commercial transactions and the relative decline in the amount of transmission. Transmission capacity, relative to peak load, has been declining in all regions of the U.S. for over a decade. This decline is expected to continue. Congestion management schemes used today have negative impacts on energy markets, such as disruptions and monetary penalties, under some conditions. To mitigate these concerns various congestion management methods have been proposed, including redispatch and curtailment of scheduled energy transmission. In the restructured electric energy industry environment, new congestion management approaches are being developed that strive to achieve the desired degree of reliability while supporting competition in the bulk power market. This report first presents an overview and background on key issues and emerging approaches to congestion management. It goes on to identify and describe policies affecting congestion management that are favored and/or are now being considered by FERC, NERC, and one of the regional reliability councils (WSCC). It reviews the operational procedures in use or proposed by three of the leading independent system operators (ISOs) including ERCOT

  11. Congestive Heart Failure and Central Sleep Apnea.

    PubMed

    Sands, Scott A; Owens, Robert L

    2016-03-01

    Congestive heart failure (CHF) is among the most common causes of admission to hospitals in the United States, especially in those over age 65. Few data exist regarding the prevalence CHF of Cheyne-Stokes respiration (CSR) owing to congestive heart failure in the intensive care unit (ICU). Nevertheless, CSR is expected to be highly prevalent among those with CHF. Treatment should focus on the underlying mechanisms by which CHF increases loop gain and promotes unstable breathing. Few data are available to determine prevalence of CSR in the ICU, or how CSR might affect clinical management and weaning from mechanical ventilation.

  12. Congestive heart failure and central sleep apnea.

    PubMed

    Sands, Scott A; Owens, Robert L

    2015-07-01

    Congestive heart failure (CHF) is among the most common causes of admission to hospitals in the United States, especially in those over age 65. Few data exist regarding the prevalence CHF of Cheyne-Stokes respiration (CSR) owing to congestive heart failure in the intensive care unit (ICU). Nevertheless, CSR is expected to be highly prevalent among those with CHF. Treatment should focus on the underlying mechanisms by which CHF increases loop gain and promotes unstable breathing. Few data are available to determine prevalence of CSR in the ICU, or how CSR might affect clinical management and weaning from mechanical ventilation.

  13. Criticism of generally accepted fundamentals and methodologies of traffic and transportation theory: A brief review

    NASA Astrophysics Data System (ADS)

    Kerner, Boris S.

    2013-11-01

    It is explained why the set of the fundamental empirical features of traffic breakdown (a transition from free flow to congested traffic) should be the empirical basis for any traffic and transportation theory that can be reliably used for control and optimization in traffic networks. It is shown that the generally accepted fundamentals and methodologies of the traffic and transportation theory are not consistent with the set of the fundamental empirical features of traffic breakdown at a highway bottleneck. To these fundamentals and methodologies of the traffic and transportation theory belong (i) Lighthill-Whitham-Richards (LWR) theory, (ii) the General Motors (GM) model class (for example, Herman, Gazis et al. GM model, Gipps’s model, Payne’s model, Newell’s optimal velocity (OV) model, Wiedemann’s model, Bando et al. OV model, Treiber’s IDM, Krauß’s model), (iii) the understanding of highway capacity as a particular (fixed or stochastic) value, and (iv) principles for traffic and transportation network optimization and control (for example, Wardrop’s user equilibrium (UE) and system optimum (SO) principles). Alternatively to these generally accepted fundamentals and methodologies of the traffic and transportation theory, we discuss the three-phase traffic theory as the basis for traffic flow modeling as well as briefly consider the network breakdown minimization (BM) principle for the optimization of traffic and transportation networks with road bottlenecks.

  14. Criticism of generally accepted fundamentals and methodologies of traffic and transportation theory

    SciTech Connect

    Kerner, Boris S.

    2015-03-10

    It is explained why the set of the fundamental empirical features of traffic breakdown (a transition from free flow to congested traffic) should be the empirical basis for any traffic and transportation theory that can be reliable used for control and optimization in traffic networks. It is shown that generally accepted fundamentals and methodologies of traffic and transportation theory are not consistent with the set of the fundamental empirical features of traffic breakdown at a highway bottleneck. To these fundamentals and methodologies of traffic and transportation theory belong (i) Lighthill-Whitham-Richards (LWR) theory, (ii) the General Motors (GM) model class (for example, Herman, Gazis et al. GM model, Gipps’s model, Payne’s model, Newell’s optimal velocity (OV) model, Wiedemann’s model, Bando et al. OV model, Treiber’s IDM, Krauß’s model), (iii) the understanding of highway capacity as a particular stochastic value, and (iv) principles for traffic and transportation network optimization and control (for example, Wardrop’s user equilibrium (UE) and system optimum (SO) principles). Alternatively to these generally accepted fundamentals and methodologies of traffic and transportation theory, we discuss three-phase traffic theory as the basis for traffic flow modeling as well as briefly consider the network breakdown minimization (BM) principle for the optimization of traffic and transportation networks with road bottlenecks.

  15. Balloon-borne air traffic management (ATM) as a precursor to space-based ATM

    NASA Astrophysics Data System (ADS)

    Brodsky, Yuval; Rieber, Richard; Nordheim, Tom

    2012-01-01

    The International Space University—Balloon Air traffic control Technology Experiment (I-BATE ) has flown on board two stratospheric balloons and has tracked nearby aircraft by receiving their Automatic Dependent Surveillance-Broadcast (ADS-B) transmissions. Air traffic worldwide is facing increasing congestion. It is predicted that daily European flight volumes will more than double by 2030 compared to 2009 volumes. ADS-B is an air traffic management system being used to mitigate air traffic congestion. Each aircraft is equipped with both a GPS receiver and an ADS-B transponder. The transponder transmits an equipped aircraft's unique identifier, position, heading, and velocity once per second. The ADS-B transmissions can then be received by ground stations for use in traditional air traffic management. Airspace not monitored by these ground stations or other traditional means remains uncontrolled and poorly monitored. A constellation of space-based ADS-B receivers could close these gaps and provide global air traffic monitoring. By flying an ADS-B receiver on a stratospheric balloon, I-BATE has served as a precursor to a constellation of ADS-B-equipped Earth-orbiting satellites. From the ˜30 km balloon altitude, I-BATE tracked aircraft ranging up to 850 km. The experiment has served as a proof of concept for space-based air traffic management and supports a technology readiness level 6 of space-based ADS-B reception. I-BATE: International Space University—Balloon Air traffic control Technology Experiment.

  16. Delivering Faster Congestion Feedback with the Mark-Front Strategy

    NASA Technical Reports Server (NTRS)

    Liu, Chunlei; Jain, Raj

    2001-01-01

    Computer networks use congestion feedback from the routers and destinations to control the transmission load. Delivering timely congestion feedback is essential to the performance of networks. Reaction to the congestion can be more effective if faster feedback is provided. Current TCP/IP networks use timeout, duplicate Acknowledgement Packets (ACKs) and explicit congestion notification (ECN) to deliver the congestion feedback, each provides a faster feedback than the previous method. In this paper, we propose a markfront strategy that delivers an even faster congestion feedback. With analytical and simulation results, we show that mark-front strategy reduces buffer size requirement, improves link efficiency and provides better fairness among users. Keywords: Explicit Congestion Notification, mark-front, congestion control, buffer size requirement, fairness.

  17. The Conception Approach to the Traffic Control in Czech Cities - Examples from Prague

    NASA Astrophysics Data System (ADS)

    Tichý, Tomáš; Krajčír, Dušan

    Modern and economic development of contemporary towns is without question highly dependent upon traffic infrastructure progress. Automobile transport intensity is dramatically rising in large towns and other Czech and European cities. At the same time number of traffic congestions and accidents is increasing, standing times are becoming longer and ecological stress is also escalated. To solve this situation seems to be the most effective solution to design intelligent traffic light intersection control system, variable message signs, preference of public transportation, road line traffic control and next telematics subsystems. This control system and subsystems should improve permeability of traffic road network with a respect for all demands on recent trends of traffic development in towns and regions.

  18. Analysis of Trajectory Flexibility Preservation Impact on Traffic Complexity

    NASA Technical Reports Server (NTRS)

    Idris, Husni; El-Wakil, Tarek; Wing, David J.

    2009-01-01

    The growing demand for air travel is increasing the need for mitigation of air traffic congestion and complexity problems, which are already at high levels. At the same time new information and automation technologies are enabling the distribution of tasks and decisions from the service providers to the users of the air traffic system, with potential capacity and cost benefits. This distribution of tasks and decisions raises the concern that independent user actions will decrease the predictability and increase the complexity of the traffic system, hence inhibiting and possibly reversing any potential benefits. In answer to this concern, the authors proposed the introduction of decision-making metrics for preserving user trajectory flexibility. The hypothesis is that such metrics will make user actions naturally mitigate traffic complexity. In this paper, the impact of using these metrics on traffic complexity is investigated. The scenarios analyzed include aircraft in en route airspace with each aircraft meeting a required time of arrival in a one-hour time horizon while mitigating the risk of loss of separation with the other aircraft, thus preserving its trajectory flexibility. The experiments showed promising results in that the individual trajectory flexibility preservation induced self-separation and self-organization effects in the overall traffic situation. The effects were quantified using traffic complexity metrics, namely dynamic density indicators, which indicated that using the flexibility metrics reduced aircraft density and the potential of loss of separation.

  19. Traffic chaotic dynamics modeling and analysis of deterministic network

    NASA Astrophysics Data System (ADS)

    Wu, Weiqiang; Huang, Ning; Wu, Zhitao

    2016-07-01

    Network traffic is an important and direct acting factor of network reliability and performance. To understand the behaviors of network traffic, chaotic dynamics models were proposed and helped to analyze nondeterministic network a lot. The previous research thought that the chaotic dynamics behavior was caused by random factors, and the deterministic networks would not exhibit chaotic dynamics behavior because of lacking of random factors. In this paper, we first adopted chaos theory to analyze traffic data collected from a typical deterministic network testbed — avionics full duplex switched Ethernet (AFDX, a typical deterministic network) testbed, and found that the chaotic dynamics behavior also existed in deterministic network. Then in order to explore the chaos generating mechanism, we applied the mean field theory to construct the traffic dynamics equation (TDE) for deterministic network traffic modeling without any network random factors. Through studying the derived TDE, we proposed that chaotic dynamics was one of the nature properties of network traffic, and it also could be looked as the action effect of TDE control parameters. A network simulation was performed and the results verified that the network congestion resulted in the chaotic dynamics for a deterministic network, which was identical with expectation of TDE. Our research will be helpful to analyze the traffic complicated dynamics behavior for deterministic network and contribute to network reliability designing and analysis.

  20. Efficient congestion control scheme for providing QoS to I-VPN

    NASA Astrophysics Data System (ADS)

    De Marco, Martino; Trabucchi, Sara

    1998-12-01

    In this paper we outline an overall network architecture for the Internet Service Providers who want offer an Internet- Virtual Private Network service with QoS guarantees and, at the same time, with a high-level of efficiency in the network resource usage. The proposed approach is based on the negotiation of a service level agreement, which includes the definition of profile of traffic the user is allowed to emit. The ingress nodes perform an adaptive shaping of the user traffic entering the network, driven by a fast congestion notification scheme. In this scenario, the adoption of a service architecture based on a class-of- service concept enables the Internet Service Provider to offer different level of network performance according to the customer needs.

  1. User`s response to pricing in a traffic network. Research report (Final)

    SciTech Connect

    Acha-Daza, J.A.; Mahmassani, H.S.

    1999-05-01

    Annual increases in automobile ownership, vehicular traffic and vehicle miles traveled have resulted in congestion problems, which in turn impact mobility, quality of life and air quality as well as waste fuel. The Clean Air Act Amendment of 1990 and ISTEA provisions have encouraged the exploration of alternatives to traditional capacity expansion approaches, such as demand management and congestion pricing. Congestion pricing involves charging for the use of the facility only during heavy congested periods. This encourages motorists to use the facility when costs are lower (less congested), use other modes such as transit, or to forego the trip completely. In addition to its potential as a source of new revenue, congestion pricing could contribute to reductions in fuel consumed. It would be compatible with the provisions of the 1990 Clean Air Act, because it would assist non-attainment areas to comply with stipulated standards. Technical feasibility has been established in Norway and Singapore, however, little is known regarding current levels of acceptability in the United States. Therefore, more information is needed to assess the viability of this alternative in Texas and determine its effectiveness and impact on congestion and fuel consumption.

  2. Hazard based models for freeway traffic incident duration.

    PubMed

    Tavassoli Hojati, Ahmad; Ferreira, Luis; Washington, Simon; Charles, Phil

    2013-03-01

    Assessing and prioritising cost-effective strategies to mitigate the impacts of traffic incidents and accidents on non-recurrent congestion on major roads represents a significant challenge for road network managers. This research examines the influence of numerous factors associated with incidents of various types on their duration. It presents a comprehensive traffic incident data mining and analysis by developing an incident duration model based on twelve months of incident data obtained from the Australian freeway network. Parametric accelerated failure time (AFT) survival models of incident duration were developed, including log-logistic, lognormal, and Weibul-considering both fixed and random parameters, as well as a Weibull model with gamma heterogeneity. The Weibull AFT models with random parameters were appropriate for modelling incident duration arising from crashes and hazards. A Weibull model with gamma heterogeneity was most suitable for modelling incident duration of stationary vehicles. Significant variables affecting incident duration include characteristics of the incidents (severity, type, towing requirements, etc.), and location, time of day, and traffic characteristics of the incident. Moreover, the findings reveal no significant effects of infrastructure and weather on incident duration. A significant and unique contribution of this paper is that the durations of each type of incident are uniquely different and respond to different factors. The results of this study are useful for traffic incident management agencies to implement strategies to reduce incident duration, leading to reduced congestion, secondary incidents, and the associated human and economic losses.

  3. Hazard based models for freeway traffic incident duration.

    PubMed

    Tavassoli Hojati, Ahmad; Ferreira, Luis; Washington, Simon; Charles, Phil

    2013-03-01

    Assessing and prioritising cost-effective strategies to mitigate the impacts of traffic incidents and accidents on non-recurrent congestion on major roads represents a significant challenge for road network managers. This research examines the influence of numerous factors associated with incidents of various types on their duration. It presents a comprehensive traffic incident data mining and analysis by developing an incident duration model based on twelve months of incident data obtained from the Australian freeway network. Parametric accelerated failure time (AFT) survival models of incident duration were developed, including log-logistic, lognormal, and Weibul-considering both fixed and random parameters, as well as a Weibull model with gamma heterogeneity. The Weibull AFT models with random parameters were appropriate for modelling incident duration arising from crashes and hazards. A Weibull model with gamma heterogeneity was most suitable for modelling incident duration of stationary vehicles. Significant variables affecting incident duration include characteristics of the incidents (severity, type, towing requirements, etc.), and location, time of day, and traffic characteristics of the incident. Moreover, the findings reveal no significant effects of infrastructure and weather on incident duration. A significant and unique contribution of this paper is that the durations of each type of incident are uniquely different and respond to different factors. The results of this study are useful for traffic incident management agencies to implement strategies to reduce incident duration, leading to reduced congestion, secondary incidents, and the associated human and economic losses. PMID:23333698

  4. Traffic Flow Estimates.

    ERIC Educational Resources Information Center

    Hart, Vincent G.

    1981-01-01

    Two examples are given of ways traffic engineers estimate traffic flow. The first, Floating Car Method, involves some basic ideas and the notion of relative velocity. The second, Maximum Traffic Flow, is viewed to involve simple applications of calculus. The material provides insight into specialized applications of mathematics. (MP)

  5. A Novel Congestion Avoidance Technique for Simultaneous Real-Time Medical Data Transmission.

    PubMed

    Yaakob, Naimah; Khalil, Ibrahim

    2016-03-01

    The use of wireless body sensor networks (WBSN) in medical services aims at providing continuous monitoring of patients' physiological data. However, the scarce resources in WBSN nodes limit their capabilities to cope with massive traffic during multiple, simultaneous data transmissions. This will create a high tendency for congestion, causing severe performance degradation. Congestion may lead to high number of packet loss and unbounded delay which are critical and may lead to wrong diagnosis. This paper, therefore, aims at improving this limitation using a novel congestion avoidance technique to avoid losing real-time and life-critical medical data (e.g., electrocardiogram and electroencephalography) which are vital for diagnosis. The main idea is to integrate the existing rate control scheme of relaxation theory (RT) with a method known as max-min fairness (MMF) to achieve better performance. The MMF can be accomplished using a progressive filling algorithm, which cuts-down excessive sending rates that may overwhelme the limited buffer in WBSN. This paper builds upon our prior study, which provides a preliminary analysis of RT technique in single node. Our current technique integrates the MMF phase to enhance RT performance when the transmission rates exceed certain threshold. Performance evaluation on RT-MMF technique shows remarkable performance improvements, while maintaining the desired quality of service.

  6. A Novel Congestion Avoidance Technique for Simultaneous Real-Time Medical Data Transmission.

    PubMed

    Yaakob, Naimah; Khalil, Ibrahim

    2016-03-01

    The use of wireless body sensor networks (WBSN) in medical services aims at providing continuous monitoring of patients' physiological data. However, the scarce resources in WBSN nodes limit their capabilities to cope with massive traffic during multiple, simultaneous data transmissions. This will create a high tendency for congestion, causing severe performance degradation. Congestion may lead to high number of packet loss and unbounded delay which are critical and may lead to wrong diagnosis. This paper, therefore, aims at improving this limitation using a novel congestion avoidance technique to avoid losing real-time and life-critical medical data (e.g., electrocardiogram and electroencephalography) which are vital for diagnosis. The main idea is to integrate the existing rate control scheme of relaxation theory (RT) with a method known as max-min fairness (MMF) to achieve better performance. The MMF can be accomplished using a progressive filling algorithm, which cuts-down excessive sending rates that may overwhelme the limited buffer in WBSN. This paper builds upon our prior study, which provides a preliminary analysis of RT technique in single node. Our current technique integrates the MMF phase to enhance RT performance when the transmission rates exceed certain threshold. Performance evaluation on RT-MMF technique shows remarkable performance improvements, while maintaining the desired quality of service. PMID:26960217

  7. Improving Explicit Congestion Notification with the Mark-Front Strategy

    NASA Technical Reports Server (NTRS)

    Liu, Chunlei; Jain, Raj

    2001-01-01

    Delivering congestion signals is essential to the performance of networks. Current TCP/IP networks use packet losses to signal congestion. Packet losses not only reduces TCP performance, but also adds large delay. Explicit Congestion Notification (ECN) delivers a faster indication of congestion and has better performance. However, current ECN implementations mark the packet from the tail of the queue. In this paper, we propose the mark-front strategy to send an even faster congestion signal. We show that mark-front strategy reduces buffer size requirement, improves link efficiency and provides better fairness among users. Simulation results that verify our analysis are also presented.

  8. Mobile Crowd Sensing for Traffic Prediction in Internet of Vehicles

    PubMed Central

    Wan, Jiafu; Liu, Jianqi; Shao, Zehui; Vasilakos, Athanasios V.; Imran, Muhammad; Zhou, Keliang

    2016-01-01

    The advances in wireless communication techniques, mobile cloud computing, automotive and intelligent terminal technology are driving the evolution of vehicle ad hoc networks into the Internet of Vehicles (IoV) paradigm. This leads to a change in the vehicle routing problem from a calculation based on static data towards real-time traffic prediction. In this paper, we first address the taxonomy of cloud-assisted IoV from the viewpoint of the service relationship between cloud computing and IoV. Then, we review the traditional traffic prediction approached used by both Vehicle to Infrastructure (V2I) and Vehicle to Vehicle (V2V) communications. On this basis, we propose a mobile crowd sensing technology to support the creation of dynamic route choices for drivers wishing to avoid congestion. Experiments were carried out to verify the proposed approaches. Finally, we discuss the outlook of reliable traffic prediction. PMID:26761013

  9. Mobile Crowd Sensing for Traffic Prediction in Internet of Vehicles.

    PubMed

    Wan, Jiafu; Liu, Jianqi; Shao, Zehui; Vasilakos, Athanasios V; Imran, Muhammad; Zhou, Keliang

    2016-01-01

    The advances in wireless communication techniques, mobile cloud computing, automotive and intelligent terminal technology are driving the evolution of vehicle ad hoc networks into the Internet of Vehicles (IoV) paradigm. This leads to a change in the vehicle routing problem from a calculation based on static data towards real-time traffic prediction. In this paper, we first address the taxonomy of cloud-assisted IoV from the viewpoint of the service relationship between cloud computing and IoV. Then, we review the traditional traffic prediction approached used by both Vehicle to Infrastructure (V2I) and Vehicle to Vehicle (V2V) communications. On this basis, we propose a mobile crowd sensing technology to support the creation of dynamic route choices for drivers wishing to avoid congestion. Experiments were carried out to verify the proposed approaches. Finally, we discuss the outlook of reliable traffic prediction. PMID:26761013

  10. Statistical evaluation and modeling of Internet dial-up traffic

    NASA Astrophysics Data System (ADS)

    Faerber, Johannes; Bodamer, Stefan; Charzinski, Joachim

    1999-08-01

    In times of Internet access being a popular consumer applications even for `normal' residential users, some telephone exchanges are congested by customers using modem or ISDN dial-up connections to their Internet Service Providers. In order to estimate the number of additional lines and switching capacity required in an exchange or a trunk group, Internet access traffic must be characterized in terms of holding time and call interarrival time distributions. In this paper, we analyze log files tracing the usage of the central ISDN access line pool at University of Stuttgart for a period of six months. Mathematical distributions are fitted to the measured data and the fit quality is evaluated with respect to the blocking probability caused by the synthetic traffic in a multiple server loss system. We show how the synthetic traffic model scales with the number of subscribers and how the model could be applied to compute economy of scale results for Internet access trunks or access servers.

  11. Mobile Crowd Sensing for Traffic Prediction in Internet of Vehicles.

    PubMed

    Wan, Jiafu; Liu, Jianqi; Shao, Zehui; Vasilakos, Athanasios V; Imran, Muhammad; Zhou, Keliang

    2016-01-11

    The advances in wireless communication techniques, mobile cloud computing, automotive and intelligent terminal technology are driving the evolution of vehicle ad hoc networks into the Internet of Vehicles (IoV) paradigm. This leads to a change in the vehicle routing problem from a calculation based on static data towards real-time traffic prediction. In this paper, we first address the taxonomy of cloud-assisted IoV from the viewpoint of the service relationship between cloud computing and IoV. Then, we review the traditional traffic prediction approached used by both Vehicle to Infrastructure (V2I) and Vehicle to Vehicle (V2V) communications. On this basis, we propose a mobile crowd sensing technology to support the creation of dynamic route choices for drivers wishing to avoid congestion. Experiments were carried out to verify the proposed approaches. Finally, we discuss the outlook of reliable traffic prediction.

  12. Cellular automaton simulations for mixed traffic with erratic motorcycles’ behaviours

    NASA Astrophysics Data System (ADS)

    Lan, Lawrence W.; Chiou, Yu-Chiun; Lin, Zih-Shin; Hsu, Chih-Cheng

    2010-05-01

    Modeling mixed traffic composed of motorcycles can be a challenging issue because many erratic motorcyclists may not follow the lane disciplines, particularly when traffic is congested. Based upon the refined cellular automaton (CA) model recently developed by the authors [L.W. Lan, Y.C. Chiou, Z.S. Lin, C.C. Hsu, Physica A 388 (2009) 3917-3930], this paper further proposed a sophisticated CA model to elucidate the erratic motorcycle behaviours in mixed traffic contexts. In addition to the conventional moving forward and lane-change rules, the sophisticated CA model also explicated the lateral drift behaviour for cars moving in the same lane, the lateral drift behaviour for motorcycles breaking into two moving cars, and the transverse crossing behaviour for motorcycles through the gap between two stationary cars in the same lane. Fundamental diagrams and space-time trajectories for vehicles with various car-motorcycle mixed ratios are demonstrated.

  13. A radome for air traffic control SSR radar systems

    NASA Astrophysics Data System (ADS)

    A new generation of monopulse and discrete interrogation systems has evolved for air traffic control applications that presents significant challenges to total system design and performance. Reliable operation of the antenna system is essential in today's ever increasing air traffic congestion. An important component of the total system is a radome to protect the antenna from the environment and to enable consistent, reliable electromagnetic performance. The various types of radomes that have been employed over the years to protect antennas are discussed and evaluated relative to the air traffic control radar application. The sandwich radome is selected as the best option and a detailed design analysis is presented which considers the vital characteristics of transmissivity, boresight error, and sidelobe perturbations.

  14. Abdominal contributions to cardiorenal dysfunction in congestive heart failure.

    PubMed

    Verbrugge, Frederik H; Dupont, Matthias; Steels, Paul; Grieten, Lars; Malbrain, Manu; Tang, W H Wilson; Mullens, Wilfried

    2013-08-01

    Current pathophysiological models of congestive heart failure unsatisfactorily explain the detrimental link between congestion and cardiorenal function. Abdominal congestion (i.e., splanchnic venous and interstitial congestion) manifests in a substantial number of patients with advanced congestive heart failure, yet is poorly defined. Compromised capacitance function of the splanchnic vasculature and deficient abdominal lymph flow resulting in interstitial edema might both be implied in the occurrence of increased cardiac filling pressures and renal dysfunction. Indeed, increased intra-abdominal pressure, as an extreme marker of abdominal congestion, is correlated with renal dysfunction in advanced congestive heart failure. Intriguing findings provide preliminary evidence that alterations in the liver and spleen contribute to systemic congestion in heart failure. Finally, gut-derived hormones might influence sodium homeostasis, whereas entrance of bowel toxins into the circulatory system, as a result of impaired intestinal barrier function secondary to congestion, might further depress cardiac as well as renal function. Those toxins are mainly produced by micro-organisms in the gut lumen, with presumably important alterations in advanced heart failure, especially when renal function is depressed. Therefore, in this state-of-the-art review, we explore the crosstalk between the abdomen, heart, and kidneys in congestive heart failure. This might offer new diagnostic opportunities as well as treatment strategies to achieve decongestion in heart failure, especially when abdominal congestion is present. Among those currently under investigation are paracentesis, ultrafiltration, peritoneal dialysis, oral sodium binders, vasodilator therapy, renal sympathetic denervation and agents targeting the gut microbiota. PMID:23747781

  15. Congestion control for ATM multiplexers using neural networks: multiple sources/single buffer scenario.

    PubMed

    Du, Shu-xin; Yuan, Shi-yong

    2004-09-01

    A new neural network based method for solving the problem of congestion control arising at the user network interface (UNI) of ATM networks is proposed in this paper. Unlike the previous methods where the coding rate for all traffic sources as controller output signals is tuned in a body, the proposed method adjusts the coding rate for only a part of the traffic sources while the remainder sources send the cells in the previous coding rate in case of occurrence of congestion. The controller output signals include the source coding rate and the percentage of the sources that send cells at the corresponding coding rate. The control methods not only minimize the cell loss rate but also guarantee the quality of information (such as voice sources) fed into the multiplexer buffer. Simulations with 150 ADPCM voice sources fed into the multiplexer buffer showed that the proposed methods have advantage over the previous methods in the aspect of the performance indices such as cell loss rate (CLR) and voice quality. PMID:15323008

  16. Bangkok: Anatomy of a traffic disaster

    SciTech Connect

    Poboon, C.; Kenworthy, J.; Barter, P.

    1995-12-31

    Traditional urban and transport policy which relies on road-base planning has been proven inadequate for tackling Bangkok`s traffic chaos. After employing such policy for more than three decades Bangkok traffic has become a disaster and the city has become notorious world-wide for its traffic congestion and air pollution. The simplistic application of theses largely American models took little consideration if any of the walking city and transit city structure of Bangkok. The policies recommended by the authors rely on the awareness of Bangkok`s unique characteristics and also encompass social and environmental aspects. The worldwide comparison has contributed substantially to more insight in selecting the appropriate measures for Bangkok. The introduction of a mass rapid transit system, water transport improvement, control of car use, provision of infrastructure for walking and cycling, improvement in paratransit together with transit-oriented land use development are believed to be able to work effectively in Bangkok. Nevertheless, institutional improvement including public participation is very necessary to achieve these urban planning and transport strategies. With the combination of these sustainable urban and transport policies, it is possible for Bangkok to be converted into a city for people again, though it will take probably 10 to 20 years or more for substantial improvements.

  17. [Reduction of automobile traffic: urgent health promotion policy].

    PubMed

    Tapia Granados, J A

    1998-03-01

    During the last few decades, traffic injuries have become one of the leading causes of death and disability in the world. In urban areas, traffic congestion, noise, and emissions from motor vehicles produce subjective disturbances and detectable pathological effects. More than one billion people are exposed to harmful levels of environmental pollution. Because its combustion engine generates carbon dioxide (CO2), the automobile is one of the chief sources of the gases that are causing the greenhouse effect. The latter has already caused a rise in the average ambient temperature, and over the next decades it will predictable cause significant climatic changes whose consequences, though uncertain, are likely to be harmful and possibly catastrophic. Aside from the greenhouse effect, the relentless growth of parking zones, traffic, and the roadway infrastructure in urban and rural areas is currently one of the leading causes of environmental degradation. Urban development, which is nearly always "planned" around traffic instead of people, leads to a significant deterioration in the quality of life, while it also destroys the social fabric. Unlike the private automobile, public transportation, bicycles, and walking help reduce pollution, congestion, and traffic volume, as well as the morbidity and mortality resulting from injuries and ailments related to pollution. Non-automobile transportation also encourages physical activity--with its positive effect on general health--and helps reduce the greenhouse effect. The drop in traffic volume and the increased use of alternate means of transportation are thus an integrated health promotion policy which should become an inherent part of the movement for the promotion of healthy cities and of transportation policies and economic policy in general. PMID:9567647

  18. Collection of road traffic information from satellite images and digital map

    NASA Astrophysics Data System (ADS)

    Shinmura, Fumito; Saji, Hitoshi

    2010-10-01

    There have been many reports on the analysis of the Earth's surface by remote sensing. The purpose of this study is to analyze traffic information, and we have been studying methods of collecting traffic information by remote sensing. To collect traffic information, sensors installed on the roadside are frequently used. However, methods using sensors only collect information around the positions of the sensors. In this study, we attempt to solve this problem by using satellite images, which have recently become increasingly available. We propose a method of collecting traffic information over a large area using satellite images as well as three-dimensional digital maps. We assess traffic conditions by computing the number of edges of vehicles per road section as follows. First, the edges of vehicles are detected in satellite images. During this processing, three-dimensional digital maps are used to increase the accuracy of vehicle edge detection. The number of vehicles per road section, which is computed from the number of edges of vehicles, is computed and referred to as the vehicle density. Traffic conditions can be assessed from the vehicle density and are considered useful for collecting information on traffic congestion. In this study, we experimentally confirm that congested roads can be extracted from satellite images by our method.

  19. Traffic dynamics on two-layer complex networks with limited delivering capacity

    NASA Astrophysics Data System (ADS)

    Ma, Jinlong; Han, Weizhan; Guo, Qing; Wang, Zhenyong

    2016-08-01

    The traffic dynamics of multi-layer networks has attracted a great deal of interest since many real networks are comprised of two or more layers of subnetworks. Due to its low traffic capacity, the average delivery capacity allocation strategy is susceptible to congestion with the wildly used shortest path routing protocol on two-layer complex networks. In this paper, we introduce a delivery capacity allocation strategy into the traffic dynamics on two-layer complex networks and focus on its effect on the traffic capacity measured by the critical point Rc of phase transition from free flow to congestion. When the total nodes delivering capacity is fixed, the delivering capacity of each node in physical layer is assigned to the degree distributions of both the physical and logical layers. Simulation results show that the proposed strategy can bring much better traffic capacity than that with the average delivery capacity allocation strategy. Because of the significantly improved traffic performance, this work may be useful for optimal design of networked traffic dynamics.

  20. Can complexity decrease in congestive heart failure?

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sayan; Palit, Sanjay Kumar; Banerjee, Santo; Ariffin, M. R. K.; Rondoni, Lamberto; Bhattacharya, D. K.

    2015-12-01

    The complexity of a signal can be measured by the Recurrence period density entropy (RPDE) from the reconstructed phase space. We have chosen a window based RPDE method for the classification of signals, as RPDE is an average entropic measure of the whole phase space. We have observed the changes in the complexity in cardiac signals of normal healthy person (NHP) and congestive heart failure patients (CHFP). The results show that the cardiac dynamics of a healthy subject is more complex and random compare to the same for a heart failure patient, whose dynamics is more deterministic. We have constructed a general threshold to distinguish the border line between a healthy and a congestive heart failure dynamics. The results may be useful for wide range for physiological and biomedical analysis.

  1. Traffic dynamics: Its impact on the Macroscopic Fundamental Diagram

    NASA Astrophysics Data System (ADS)

    Knoop, Victor L.; van Lint, Hans; Hoogendoorn, Serge P.

    2015-11-01

    Literature shows that-under specific conditions-the Macroscopic Fundamental Diagram (MFD) describes a crisp relationship between the average flow (production) and the average density in an entire network. The limiting condition is that traffic conditions must be homogeneous over the whole network. Recent works describe hysteresis effects: systematic deviations from the MFD as a result of loading and unloading. This article proposes a two dimensional generalization of the MFD, the so-called Generalized Macroscopic Fundamental Diagram (GMFD), which relates the average flow to both the average density and the (spatial) inhomogeneity of density. The most important contribution is that we show this is a continuous function, of which the MFD is a projection. Using the GMFD, we can describe the mentioned hysteresis patterns in the MFD. The underlying traffic phenomenon explaining the two dimensional surface described by the GMFD is that congestion concentrates (and subsequently spreads out) around the bottlenecks that oversaturate first. We call this the nucleation effect. Due to this effect, the network flow is not constant for a fixed number of vehicles as predicted by the MFD, but decreases due to local queueing and spill back processes around the congestion "nuclei". During this build up of congestion, the production hence decreases, which gives the hysteresis effects.

  2. Management of air quality in the vicinity of congested area in Kuwait.

    PubMed

    Albassam, E; Khan, A; Popov, V

    2009-10-01

    An assessment of air quality in the vicinity of a selected school has been carried out by monitoring the concentrations of primary pollutants. The results has shown that during the school hours, the measured pollutants emitted from the cars next to the selected school, such as CO and NO(2), are always under the allowable limits for Kuwaiti air quality standards. On the other hand, the concentrations of non methane hydrocarbon pollutant (nm-HC), some of which are considered to be cancergenic, are found to be above the Kuwaiti standard most of the times. A traffic counter is used to record the number of cars in the main road next to the school in 15 min intervals for 10 days during the monitoring period for air quality. Statistical analysis is performed to develop a relation for prediction of the necessary reduction in traffic, based on CO concentrations, during morning and afternoon periods on working days. A computer dispersion model (CALINE4) is also used to assess the CO concentrations based on recorded flow of traffic and emission inventory with the prevailing meteorological conditions existed at the specified time. After the validation of model, different scenarios have been evaluated to provide an acceptable solution to resolve the traffic congestion problem near the schools in the early morning hours with substantial reduction in pollution levels. The optimal solution for CO concentration reduction by managing smooth traffic flow is to reduce the traffic intensity by half in early morning and afternoon rush hours. The results of the predicted CO concentration in the vicinity of the school for the model and the statistical analysis has shown reduction of 30% and 42% respectively, for approximately 50% decrease in the car use. On the other hand the predicted CO concentration for the model and the statistics reached 24% and 33% respectively when 50% of students opted for buses instead of using private cars.

  3. Vasomotor rhinitis: neglected cause of nasal congestion.

    PubMed

    Stewart, T W

    1980-01-01

    Vasomotor rhinitis is a condition of chronic nasal congestion which is noninfectious and nonallergic. Its cause is thought to be an imbalance of autonomic control to the nasal mucosa. This disorder is a diagnosis of exclusion, and other causes of chronic nasal obstruction must be considered first. Treatment measures include avoidance of nonspecific stimuli which exacerbate symptoms and, for symptomatic relief, use of oral sympathomimetics. Antihistamine-decongestant combinations may be effective in some patients. Topical vasoconstrictors should not be used.

  4. Demonstration of alternative traffic information collection and management technologies

    NASA Astrophysics Data System (ADS)

    Knee, Helmut E.; Smith, Cy; Black, George; Petrolino, Joe

    2004-03-01

    Many of the components associated with the deployment of Intelligent Transportation Systems (ITS) to support a traffic management center (TMC) such as remote control cameras, traffic speed detectors, and variable message signs, have been available for many years. Their deployment, however, has been expensive and applied primarily to freeways and interstates, and have been deployed principally in the major metropolitan areas in the US; not smaller cities. The Knoxville (Tennessee) Transportation Planning Organization is sponsoring a project that will test the integration of several technologies to estimate near-real time traffic information data and information that could eventually be used by travelers to make better and more informed decisions related to their travel needs. The uniqueness of this demonstration is that it will seek to predict traffic conditions based on cellular phone signals already being collected by cellular communications companies. Information about the average speed on various portions of local arterials and incident identification (incident location) will be collected and compared to similar data generated by "probe vehicles". Successful validation of the speed information generated from cell phone data will allow traffic data to be generated much more economically and utilize technologies that are minimally infrastructure invasive. Furthermore, when validated, traffic information could be provided to the traveling public allowing then to make better decisions about trips. More efficient trip planning and execution can reduce congestion and associated vehicle emissions. This paper will discuss the technologies, the demonstration project, the project details, and future directions.

  5. Mobile Phones in a Traffic Flow: A Geographical Perspective to Evening Rush Hour Traffic Analysis Using Call Detail Records

    PubMed Central

    Järv, Olle; Ahas, Rein; Saluveer, Erki; Derudder, Ben; Witlox, Frank

    2012-01-01

    Excessive land use and suburbanisation around densely populated urban areas has gone hand in hand with a growth in overall transportation and discussions about causality of traffic congestions. The objective of this paper is to gain new insight regarding the composition of traffic flows, and to reveal how and to what extent suburbanites’ travelling affects rush hour traffic. We put forward an alternative methodological approach using call detail records of mobile phones to assess the composition of traffic flows during the evening rush hour in Tallinn, Estonia. We found that daily commuting and suburbanites influence transportation demand by amplifying the evening rush hour traffic, although daily commuting trips comprises only 31% of all movement at that time. The geography of the Friday evening rush hour is distinctive from other working days, presumably in connection with domestic tourism and leisure time activities. This suggests that the rise of the overall mobility of individuals due to societal changes may play a greater role in evening rush hour traffic conditions than does the impact of suburbanisation. PMID:23155461

  6. A Modified Efficient Traffic Scheduling Algorithm for Routing in Optical WDM Mesh Networks

    NASA Astrophysics Data System (ADS)

    Kavitha, T.; Rajamani, V.

    2013-09-01

    This paper is proposing an efficient traffic scheduling for routing in optical networks supported by Wavelength Division Multiplexing (WDM). Normally the traffic is routed through the primary path or back-up path towards the destination. In order to meet the transmission of higher data rates, the path of the WDM should be capable of carrying the traffic without any failure. Whenever the transmission through primary or backup path fails due to excessive overhead or network failure or congestion or excessive load, existing router mechanisms are not scheduling the traffic in an effective manner. This paper deals with an efficient traffic scheduling algorithm which effectively routes the traffic using multipath technique that satisfies the optical constraints. The whole procedure of routing algorithm is separated into two phases: the connection node establishment phase and multipath transmission from the connection node to destination phase. The connection node is selected on the basis of load and current traffic carrying capacity of that node. Then the traffic is routed to the destination using multiple paths. The proposed method tries to minimize the blocking probability of 70% compared to the existing Resource Efficiency Factor (REF) algorithm and also increase the throughput of 30% and better channel utilization of 23% based on data rate and 20% based on traffic time interval. Hence, the proposed algorithm is effectively routes the traffic within the network.

  7. An improved cellular automaton model considering the effect of traffic lights and driving behaviour

    NASA Astrophysics Data System (ADS)

    He, Hong-Di; Lu, Wei-Zhen; Dong, Li-Yun

    2011-04-01

    This paper proposes an improved cellular automaton model to describe the urban traffic flow with the consideration of traffic light and driving behaviour effects. Based on the model, the characteristics of the urban traffic flow on a single-lane road are investigated under three different control strategies, i.e., the synchronized, the green wave and the random strategies. The fundamental diagrams and time-space patterns of the traffic flows are provided for these strategies respectively. It finds that the dynamical transition to the congested flow appears when the vehicle density is higher than a critical level. The saturated flow is less dependent on the cycle time and the strategies of the traffic light control, while the critical vehicle density varies with the cycle time and the strategies. Simulated results indicate that the green wave strategy is proven to be the most effective one among the above three control strategies.

  8. Overcoming the Pigou-Downs Paradox Using Advanced Traffic Signal Control

    NASA Astrophysics Data System (ADS)

    Fowdur, S. C.; Rughooputh, S. D. D. V.

    2013-06-01

    Expansion of a road network has often been observed to cause more congestion and has led researchers to the formulation of traffic paradoxes such as the Pigou-Downs and the Braess paradoxes. In this paper, we present an application of advanced traffic signal control (ATSC) to overcome the Pigou-Downs paradox. Port Louis, the capital city of Mauritius is used to investigate the effect of using a harbor bridge to by-pass the city center. Using traffic cellular automata (TCA) simulations it has been shown how, if traffic is only gradually deviated along the by-pass, an overall longer travel time and decreased flux would result. By making use of ATSC, which involves traffic lights that sense the number of vehicles accumulated in the queue, better travel times and fluxes are achieved.

  9. Delay Banking for Managing Air Traffic

    NASA Technical Reports Server (NTRS)

    Green, Steve

    2008-01-01

    Delay banking has been invented to enhance air-traffic management in a way that would increase the degree of fairness in assigning arrival, departure, and en-route delays and trajectory deviations to aircraft impacted by congestion in the national airspace system. In delay banking, an aircraft operator (airline, military, general aviation, etc.) would be assigned a numerical credit when any of their flights are delayed because of an air-traffic flow restriction. The operator could subsequently bid against other operators competing for access to congested airspace to utilize part or all of its accumulated credit. Operators utilize credits to obtain higher priority for the same flight, or other flights operating at the same time, or later, in the same airspace, or elsewhere. Operators could also trade delay credits, according to market rules that would be determined by stakeholders in the national airspace system. Delay banking would be administered by an independent third party who would use delay banking automation to continually monitor flights, allocate delay credits, maintain accounts of delay credits for participating airlines, mediate bidding and the consumption of credits of winning bidders, analyze potential transfers of credits within and between operators, implement accepted transfers, and ensure fair treatment of all participating operators. A flow restriction can manifest itself in the form of a delay in assigned takeoff time, a reduction in assigned airspeed, a change in the position for the aircraft in a queue of all aircraft in a common stream of traffic (e.g., similar route), a change in the planned altitude profile for an aircraft, or change in the planned route for the aircraft. Flow restrictions are typically imposed to mitigate traffic congestion at an airport or in a region of airspace, particularly congestion due to inclement weather, or the unavailability of a runway or region of airspace. A delay credit would be allocated to an operator of a

  10. Beating the traffic with commuting alternatives

    SciTech Connect

    1995-05-01

    This pamphlet describes how, by encouraging commuting options, local governments can help reduce air pollution, fuel consumption, and traffic congestion. Minimizing these problems makes the community more appealing to businesses, residents, and visitors and boosts the local economy. Approaches to alternative transportation are as varied as the communities devising and using them. But the critical factor is initiative from local governments, often one of communities largest employers. They can use and promote commuting alternatives among their employees. Local governments can also promote alternative transportation among other employers and the general public. They can provide information on commuting options, improve the infrastructure, and use local authority to require and reward those changes necessary to make alternative transportation a widely accepted part of community life. Best of all, local governments can lead by example and establish a template for other employers to follow.

  11. Estimates of CO2 traffic emissions from mobile concentration measurements

    NASA Astrophysics Data System (ADS)

    Maness, H. L.; Thurlow, M. E.; McDonald, B. C.; Harley, R. A.

    2015-03-01

    We present data from a new mobile system intended to aid in the design of upcoming urban CO2-monitoring networks. Our collected data include GPS probe data, video-derived traffic density, and accurate CO2 concentration measurements. The method described here is economical, scalable, and self-contained, allowing for potential future deployment in locations without existing traffic infrastructure or vehicle fleet information. Using a test data set collected on California Highway 24 over a 2 week period, we observe that on-road CO2 concentrations are elevated by a factor of 2 in congestion compared to free-flow conditions. This result is found to be consistent with a model including vehicle-induced turbulence and standard engine physics. In contrast to surface concentrations, surface emissions are found to be relatively insensitive to congestion. We next use our model for CO2 concentration together with our data to independently derive vehicle emission rate parameters. Parameters scaling the leading four emission rate terms are found to be within 25% of those expected for a typical passenger car fleet, enabling us to derive instantaneous emission rates directly from our data that compare generally favorably to predictive models presented in the literature. The present results highlight the importance of high spatial and temporal resolution traffic data for interpreting on- and near-road concentration measurements. Future work will focus on transport and the integration of mobile platforms into existing stationary network designs.

  12. Congestion Measures for Organized Markets in the U.S.

    SciTech Connect

    Fisher, Emily; Eto, Joseph H.

    2013-12-16

    Transmission lines deliver electricity that is generated at power plants to loads. When there is not sufficient transmission capacity to schedule or transport all desired electricity transfers, the transmission system is constrained, and the particular line, flowgate or interface is congested. While it is useful to measure congestion for several reasons—to identify where and how much congestion exists and how this changes over time, to determine whether or what to do about it, and to assess the effectiveness of actions taken—it is challenging to measure congestion in a meaningful and consistent way across markets or over time in the same market. This paper examines current public reporting of congestion measures for organized markets in the U.S., and what these measures can and cannot tell us about congestion across regions or over time in the same region.

  13. Advanced Congestive Heart Failure Associated With Disseminated Intravascular Coagulopathy.

    PubMed

    Sarcon, Annahita; Liu, Xiaoli; Ton, David; Haywood, James; Hitchcock, Todd

    2015-01-01

    Background. Disseminated intravascular coagulopathy (DIC) is a complication of an underlying disease and not a primary illness. It is most commonly associated with sepsis, trauma, obstetrical complications, and malignancies. There are very few cases in the literature illustrating the association between DIC and congestive heart failure. Findings. In this report, we present a case of severe congestive heart failure, leading to biventricular thrombi and subsequently DIC. Conclusion. We suggest that the association between congestive heart failure and DIC is an underrecognized one. Congestive heart failure continues to remain a major cause of morbidity and mortality despite advances in medical therapies. Thus far, the precise role of coagulation factors in congestive heart failure is unknown. Further investigations are needed to elucidate the pathophysiology of congestive heart failure and coagulation factors.

  14. Autonomous Congestion Control in Delay-Tolerant Networks

    NASA Technical Reports Server (NTRS)

    Burleigh, Scott; Jennings, Esther; Schoolcraft, Joshua

    2006-01-01

    Congestion control is an important feature that directly affects network performance. Network congestion may cause loss of data or long delays. Although this problem has been studied extensively in the Internet, the solutions for Internet congestion control do not apply readily to challenged network environments such as Delay Tolerant Networks (DTN) where end-to-end connectivity may not exist continuously and latency can be high. In DTN, end-to-end rate control is not feasible. This calls for congestion control mechanisms where the decisions can be made autonomously with local information only. We use an economic pricing model and propose a rule-based congestion control mechanism where each router can autonomously decide on whether to accept a bundle (data) based on local information such as available storage and the value and risk of accepting the bundle (derived from historical statistics). Preliminary experimental results show that this congestion control mechanism can protect routers from resource depletion without loss of data.

  15. The Traffic Light Challenge

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2014-01-01

    Traffic lights are an important part of the transportation infrastructure, regulating traffic flow and maintaining safety when crossing busy streets. When they go awry or become nonfunctional, a great deal of havoc and danger can be present. During power outages, the street lights go out all over the affected area. It would be good to be able to…

  16. Computers in Traffic Education.

    ERIC Educational Resources Information Center

    Alexander, O. P.

    1983-01-01

    Traffic education covers basic road skills, legal/insurance aspects, highway code, accident causation/prevention, and vehicle maintenance. Microcomputer applications to traffic education are outlined, followed by a selected example of programs currently available (focusing on drill/practice, simulation, problem-solving, data manipulation, games,…

  17. Regulation of air traffic

    NASA Technical Reports Server (NTRS)

    DEVALUEZ

    1922-01-01

    The ways in which the international and internal French air traffic accords interact with each other is outlined in this report. The principal questions covered by the present legislation are as follows: 1) Conditions of safety which must be fulfilled by aircraft; 2) Licenses for members of the crew; 3) Traffic rules to be observed by French and foreign aircraft.

  18. Visualization of Traffic Accidents

    NASA Technical Reports Server (NTRS)

    Wang, Jie; Shen, Yuzhong; Khattak, Asad

    2010-01-01

    Traffic accidents have tremendous impact on society. Annually approximately 6.4 million vehicle accidents are reported by police in the US and nearly half of them result in catastrophic injuries. Visualizations of traffic accidents using geographic information systems (GIS) greatly facilitate handling and analysis of traffic accidents in many aspects. Environmental Systems Research Institute (ESRI), Inc. is the world leader in GIS research and development. ArcGIS, a software package developed by ESRI, has the capabilities to display events associated with a road network, such as accident locations, and pavement quality. But when event locations related to a road network are processed, the existing algorithm used by ArcGIS does not utilize all the information related to the routes of the road network and produces erroneous visualization results of event locations. This software bug causes serious problems for applications in which accurate location information is critical for emergency responses, such as traffic accidents. This paper aims to address this problem and proposes an improved method that utilizes all relevant information of traffic accidents, namely, route number, direction, and mile post, and extracts correct event locations for accurate traffic accident visualization and analysis. The proposed method generates a new shape file for traffic accidents and displays them on top of the existing road network in ArcGIS. Visualization of traffic accidents along Hampton Roads Bridge Tunnel is included to demonstrate the effectiveness of the proposed method.

  19. Trafficability and workability of soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Trafficability and workability are soil capabilities supporting operations of agricultural machinery. Trafficability is a soil's capability to support agricultural traffic without degrading soils and ecosystems. Workability is a soil capability supporting tillage. Agriculture is associated with mech...

  20. Expanding the Use of Time-Based Metering: Multi-Center Traffic Management Advisor

    NASA Technical Reports Server (NTRS)

    Landry, Steven J.; Farley, Todd; Hoang, Ty

    2005-01-01

    Time-based metering is an efficient air traffic management alternative to the more common practice of distance-based metering (or "miles-in-trail spacing"). Despite having demonstrated significant operational benefit to airspace users and service providers, time-based metering is used in the United States for arrivals to just nine airports and is not used at all for non-arrival traffic flows. The Multi-Center Traffic Management Advisor promises to bring time-based metering into the mainstream of air traffic management techniques. Not constrained to operate solely on arrival traffic, Multi-Center Traffic Management Advisor is flexible enough to work in highly congested or heavily partitioned airspace for any and all traffic flows in a region. This broader and more general application of time-based metering is expected to bring the operational benefits of time-based metering to a much wider pool of beneficiaries than is possible with existing technology. It also promises to facilitate more collaborative traffic management on a regional basis. This paper focuses on the operational concept of the Multi-Center Traffic Management Advisor, touching also on its system architecture, field test results, and prospects for near-term deployment to the United States National Airspace System.

  1. Management of heterogeneous traffic loading in DBS networks

    NASA Astrophysics Data System (ADS)

    Vojcic, Branimir; Alagoz, Fatih; Al-Rustamani, Amina; Pickholtz, Raymond L.; Walters, David H.

    1999-07-01

    In the paper we present the Adaptive Resource Allocation and Management (ARAM) algorithms developed to manage a Direct Broadcast Satellite (DBS) system supporting heterogeneous traffic mixes and operating under dynamic channel conditions. This traffic mix includes both: (i) data traffic that operates as an available bit rate flow and, (ii) video traffic that generates a variable bit rate flow. Both types of traffic use the Internet Protocol (IP) so they can be efficiently multiplexed on the same link. The dynamic channel conditions reflect time variation error rates due to external effects such as rain or jamming. ARAM attempts to maximize the utilization of the available capacity on the forward DBS link while maintaining Quality of Service (QoS) in the presence of congestion int he network and channel degradation effects. To achieve these ends, it utilizes adaptive control of video compression rates, data transmission rates, and channel forward error correction rates. One of the major features of ARAM is the admission control algorithm used to determine the number of variable bit rate flows admitted for service. In order to maximize the resource utilization, assignment of the variable bit rate services based on their peak rate is avoided. Instead, a flexible utilization of the bandwidth requiring the estimation of statistical multiplexing gain is used enabling more services to share the DBS link. Therefore in this paper, we focus on the ARAM admission control algorithm and assess its impact on QoS and DBS link utilization.

  2. Harnessing motivation to alleviate neglect.

    PubMed

    Russell, Charlotte; Li, Korina; Malhotra, Paresh A

    2013-01-01

    The syndrome of spatial neglect results from the combination of a number of deficits in attention, with patients demonstrating both spatially lateralized and non-lateralized impairments. Previous reports have hinted that there may be a motivational component to neglect and that modulating this might alleviate some of the debilitating symptoms. Additionally, recent work on the effects of reward on attention in healthy participants has revealed improvements across a number of paradigms. As the primary deficit in neglect has been associated with attention, this evidence for reward's effects is potentially important. However, until very recently there have been few empirical studies addressing this potential therapeutic avenue. Here we review the growing body of evidence that attentional impairments in neglect can be reduced by motivation, for example in the form of preferred music or anticipated monetary reward, and discuss the implications of this for treatments for these patients. Crucially these effects of positive motivation are not observed in all patients with neglect, suggesting that the consequences of motivation may relate to individual lesion anatomy. Given the key role of dopaminergic systems in motivational processes, we suggest that motivational stimulation might act as a surrogate for dopaminergic stimulation. In addition, we consider the relationship between clinical post stroke apathy and lack of response to motivation.

  3. Harnessing Motivation to Alleviate Neglect

    PubMed Central

    Russell, Charlotte; Li, Korina; Malhotra, Paresh A.

    2013-01-01

    The syndrome of spatial neglect results from the combination of a number of deficits in attention, with patients demonstrating both spatially lateralized and non-lateralized impairments. Previous reports have hinted that there may be a motivational component to neglect and that modulating this might alleviate some of the debilitating symptoms. Additionally, recent work on the effects of reward on attention in healthy participants has revealed improvements across a number of paradigms. As the primary deficit in neglect has been associated with attention, this evidence for reward’s effects is potentially important. However, until very recently there have been few empirical studies addressing this potential therapeutic avenue. Here we review the growing body of evidence that attentional impairments in neglect can be reduced by motivation, for example in the form of preferred music or anticipated monetary reward, and discuss the implications of this for treatments for these patients. Crucially these effects of positive motivation are not observed in all patients with neglect, suggesting that the consequences of motivation may relate to individual lesion anatomy. Given the key role of dopaminergic systems in motivational processes, we suggest that motivational stimulation might act as a surrogate for dopaminergic stimulation. In addition, we consider the relationship between clinical post stroke apathy and lack of response to motivation. PMID:23761744

  4. Nutrient dyshomeostasis in congestive heart failure.

    PubMed

    Kamalov, German; Holewinski, Joshua P; Bhattacharya, Syamal K; Ahokas, Robert A; Sun, Yao; Gerling, Ivan C; Weber, Karl T

    2009-07-01

    The clinical syndrome congestive heart failure (CHF) has its origins rooted in a salt-avid state mediated largely by effector hormones of the renin-angiotensin-aldosterone system. In recent years, this cardiorenal perspective of CHF has taken on a broader perspective. One which focuses on a progressive systemic illness, whose major features include the presence of oxidative stress in diverse tissues and elevated circulating levels of proinflammatory cytokines coupled with a wasting of soft tissues and bone. Experimental studies, which simulate chronic renin-angiotensin-aldosterone system activation, and translational studies in patients with salt avidity having decompensated biventricular failure with hepatic and splanchnic congestion have forged a broader understanding of this illness and the important contribution of a dyshomeostasis of Ca2+, Mg2+, Zn2+, Se2+, and vitamins D, B12, and B1. Herein, we review biomarkers indicative of the nutrient imbalance found in CHF and raise the question of a need for a polynutrient supplement in the overall management of CHF. PMID:19593100

  5. Coal-truck impacts on highway safety and traffic characteristics

    SciTech Connect

    Eck, R.W.; Polus, A.; Halkias, J.A.

    1982-07-01

    A computer simulation model of accident rates and delay times is used to quantify highway hazards and congestion introduced by increases in large coal trucks. The effects of trucks on long grades, where the speed differences between trucks and other vehicles becomes greater, increases the potential for accident. Long lines of slow-moving trucks, however, reduce accidents because they reduce the opportunity for passing. At best, the trucks make traffic flow less stable. The results of this study can help in the design of passing lanes and improved grade alignment. 18 references. (DCK)

  6. Infantile Hepatic Hemangioendothelioma Associated With Congestive Heart Failure: Two Case Reports With Different Outcomes.

    PubMed

    Wang, Tao; Wang, Yibin; Liang, Yun; Lu, Guoyan

    2015-12-01

    Infantile hepatic hemangioendothelioma (IHH) is rare which can regress spontaneously. Arteriovenous shunts within hemangiomas, however, may result in pulmonary artery hypertension (PAH) and congestive heart failure (CHF).The authors report 2 young infants suffering from multifocal IHH associated with CHF were both treated with glucocorticoid and transcatheter arterial embolization (TAE), but had different outcomes. The PAH decreased immediately and the symptoms of CHF were alleviated after TAE for both of them. For the Tibetan infant, the development was normal with tumor regression by follow-up. For the Han ethnic neonate, PAH increased again in the seventh day with progressive cardiovascular insufficiency. Ultrasound showed a persisting perfusion caused by collateralization around occluded main feeders. Furthermore, a pulmonary infection occurred and ventilation was performed. As a result, the infant died from multiorgan failure caused by CHF and infection.TAE is a treatment of reducing shunting for hemangiomas. Fistula recanalization in multifocal IHH, however, might be an important risk factor affecting the outcome of TAE. TAE should be further evaluated with special attention to anatomy of feeding and draining vessels, and cardiopulmonary conditions. In addition, the patients were susceptible to secondary pulmonary infection because of lung congestion. As well, the infant from the high altitude area showed better adaptability to hypoxia.

  7. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: A Realistic Cellular Automaton Model for Synchronized Traffic Flow

    NASA Astrophysics Data System (ADS)

    Zhao, Bo-Han; Hu, Mao-Bin; Jiang, Rui; Wu, Qing-Song

    2009-11-01

    A cellular automaton model is proposed to consider the anticipation effect in drivers' behavior. It is shown that the anticipation effect can be one of the origins of synchronized traffic flow. With anticipation effect, the congested traffic flow simulated by the model exhibits the features of synchronized flow. The spatiotemporal patterns induced by an on-ramp are also consistent with the three-phase traffic theory. Since the origin of synchronized flow is still controversial, our work can shed some light on the mechanism of synchronized flow.

  8. Comprehensive Software Eases Air Traffic Management

    NASA Technical Reports Server (NTRS)

    2007-01-01

    To help air traffic control centers improve the safety and the efficiency of the National Airspace System, Ames Research Center developed the Future Air Traffic Management Concepts Evaluation Tool (FACET) software, which won NASA's 2006 "Software of the Year" competition. In 2005, Ames licensed FACET to Flight Explorer Inc., for integration into its Flight Explorer (version 6.0) software. The primary FACET features incorporated in the Flight Explorer software system alert airspace users to forecasted demand and capacity imbalances. Advance access to this information helps dispatchers anticipate congested sectors (airspace) and delays at airports, and decide if they need to reroute flights. FACET is now a fully integrated feature in the Flight Explorer Professional Edition (version 7.0). Flight Explorer Professional offers end-users other benefits, including ease of operation; automatic alerts to inform users of important events such as weather conditions and potential airport delays; and international, real-time flight coverage over Canada, the United Kingdom, New Zealand, and sections of the Atlantic and Pacific Oceans. Flight Explorer Inc. recently broadened coverage by partnering with Honeywell International Inc.'s Global Data Center, Blue Sky Network, Sky Connect LLC, SITA, ARINC Incorporated, Latitude Technologies Corporation, and Wingspeed Corporation, to track their aircraft anywhere in the world.

  9. Numerical simulation of freeway traffic flow

    SciTech Connect

    Liu, G.; Lyrintzis, A.S.; Michalopoulos, P.G.

    1997-11-01

    A new high-order continuum model is presented in this paper. This high-order model exhibits smooth solutions rather than discontinuities, is able to describe the amplification of small disturbances on heavy traffic, and allows fluctuations of speed around the equilibrium values. Furthermore, unlike some earlier high-order models, it does not result in negative speeds at the tail of congested regions and disturbance propagation speeds greater than the flow speed. The model takes into account the relaxation time as a function of density and, in the equilibrium limit, it is consistent with the simple continuum model. A Riemann-problem-based numerical method is proposed for the solution of the new high-order model. Modeling of interrupted flow behavior such as merging, diverging, and weaving is also investigated. Based on the new high order model, the proposed numerical method and the modeling of interrupted flow, a versatile code is developed for the numerical simulation of freeway traffic flow that includes several freeway geometries. The authors compare the high-order model with the simple continuum model and the proposed numerical method with the Lax method based on 30-s and 5-min field data. The model is tested in interrupted flow situations (e.g., pipeline, merging, diverging, and weaving areas). A comparison of numerical results with limited field data shows that the high-order model performs better than the simple continuum model and describes better than a previously proposed method.

  10. Applicability of explicit congestion notification in very high speed networks

    NASA Astrophysics Data System (ADS)

    Laalaoua, Rachid; Dotaro, Emmanuel; Atmaca, Tulin

    1999-11-01

    Congestion control avoidance in computer networks is still a major unresolved image. The applicability of previous congestion control mechanisms has to be demonstrated taking into account today's constraints. In this work, several schemes are studied in order to support differentiated services in a wide area, very high speed network.

  11. Pulmonary congestion predicts cardiac events and mortality in ESRD.

    PubMed

    Zoccali, Carmine; Torino, Claudia; Tripepi, Rocco; Tripepi, Giovanni; D'Arrigo, Graziella; Postorino, Maurizio; Gargani, Luna; Sicari, Rosa; Picano, Eugenio; Mallamaci, Francesca

    2013-03-01

    Pulmonary congestion is highly prevalent and often asymptomatic among patients with ESRD treated with hemodialysis, but whether its presence predicts clinical outcomes is unknown. Here, we tested the prognostic value of extravascular lung water measured by a simple, well validated ultrasound B-lines score (BL-US) in a multicenter study that enrolled 392 hemodialysis patients. We detected moderate-to-severe lung congestion in 45% and very severe congestion in 14% of the patients. Among those patients with moderate-to-severe lung congestion, 71% were asymptomatic or presented slight symptoms of heart failure. Compared with those patients having mild or no congestion, patients with very severe congestion had a 4.2-fold risk of death (HR=4.20, 95% CI=2.45-7.23) and a 3.2-fold risk of cardiac events (HR=3.20, 95% CI=1.75-5.88) adjusted for NYHA class and other risk factors. Including the degree of pulmonary congestion in the model significantly improved the risk reclassification for cardiac events by 10% (P<0.015). In summary, lung ultrasound can detect asymptomatic pulmonary congestion in hemodialysis patients, and the resulting BL-US score is a strong, independent predictor of death and cardiac events in this population.

  12. Traffic air quality index.

    PubMed

    Bagieński, Zbigniew

    2015-02-01

    Vehicle emissions are responsible for a considerable share of urban air pollution concentrations. The traffic air quality index (TAQI) is proposed as a useful tool for evaluating air quality near roadways. The TAQI associates air quality with the equivalent emission from traffic sources and with street structure (roadway structure) as anthropogenic factors. The paper presents a method of determining the TAQI and defines the degrees of harmfulness of emitted pollution. It proposes a classification specifying a potential threat to human health based on the TAQI value and shows an example of calculating the TAQI value for real urban streets. It also considers the role that car traffic plays in creating a local UHI.

  13. Complexity of spatiotemporal traffic phenomena in flow of identical drivers: Explanation based on fundamental hypothesis of three-phase theory

    NASA Astrophysics Data System (ADS)

    Kerner, Boris S.

    2012-03-01

    Based on numerical simulations of a stochastic three-phase traffic flow model, we reveal the physics of the fundamental hypothesis of three-phase theory that, in contrast with a fundamental diagram of classical traffic flow theories, postulates the existence of a two-dimensional (2D) region of steady states of synchronized flow where a driver makes an arbitrary choice of a space gap (time headway) to the preceding vehicle. We find that macroscopic and microscopic spatiotemporal effects of the entire complexity of traffic congestion observed up to now in real measured traffic data can be explained by simulations of traffic flow consisting of identical drivers and vehicles, if a microscopic model used in these simulations incorporates the fundamental hypothesis of three-phase theory. It is shown that the driver's choice of space gaps within the 2D region of synchronized flow associated with the fundamental hypothesis of three-phase theory can qualitatively change types of congested patterns that can emerge at a highway bottleneck. In particular, if drivers choose long enough spaces gaps associated with the fundamental hypothesis, then general patterns, which consist of synchronized flow and wide moving jams, do not emerge independent of the flow rates and bottleneck characteristics: Even at a heavy bottleneck leading to a very low speed within congested patterns, only synchronized flow patterns occur in which no wide moving jams emerge spontaneously.

  14. Autonomous Congestion Control in Delay-Tolerant Networks

    NASA Technical Reports Server (NTRS)

    Burleigh, Scott C.; Jennings, Esther H.

    2005-01-01

    Congestion control is an important feature that directly affects network performance. Network congestion may cause loss of data or long delays. Although this problem has been studied extensively in the Internet, the solutions for Internet congestion control do not apply readily to challenged network environments such as Delay Tolerant Networks (DTN) where end-to-end connectivity may not exist continuously and latency can be high. In DTN, end-to-end rate control is not feasible. This calls for congestion control mechanisms where the decisions can be made autonomously with local information only. We use an economic pricing model and propose a rule-based congestion control mechanism where each router can autonomously decide on whether to accept a bundle (data) based on local information such as available storage and the value and risk of accepting the bundle (derived from historical statistics).

  15. Stochastic Stability in Internet Router Congestion Games

    NASA Astrophysics Data System (ADS)

    Chung, Christine; Pyrga, Evangelia

    Congestion control at bottleneck routers on the internet is a long standing problem. Many policies have been proposed for effective ways to drop packets from the queues of these routers so that network endpoints will be inclined to share router capacity fairly and minimize the overflow of packets trying to enter the queues. We study just how effective some of these queuing policies are when each network endpoint is a self-interested player with no information about the other players’ actions or preferences. By employing the adaptive learning model of evolutionary game theory, we study policies such as Droptail, RED, and the greedy-flow-punishing policy proposed by Gao et al. [10] to find the stochastically stable states: the states of the system that will be reached in the long run.

  16. Traffic stability of a car-following model considering driver’s desired velocity

    NASA Astrophysics Data System (ADS)

    Zhang, Geng; Sun, Di-Hua; Liu, Wei-Ning; Liu, Hui

    2015-07-01

    In this paper, a new car-following model is proposed by considering driver’s desired velocity according to Transportation Cyber Physical Systems. The effect of driver’s desired velocity on traffic flow has been investigated through linear stability theory and nonlinear reductive perturbation method. The linear stability condition shows that driver’s desired velocity effect can enlarge the stable region of traffic flow. From nonlinear analysis, the Burgers equation and mKdV equation are derived to describe the evolution properties of traffic density waves in the stable and unstable regions respectively. Numerical simulation is carried out to verify the analytical results, which reveals that traffic congestion can be suppressed efficiently by taking driver’s desired velocity effect into account.

  17. The Traffic Management Advisor

    NASA Technical Reports Server (NTRS)

    Nedell, William; Erzberger, Heinz; Neuman, Frank

    1990-01-01

    The traffic management advisor (TMA) is comprised of algorithms, a graphical interface, and interactive tools for controlling the flow of air traffic into the terminal area. The primary algorithm incorporated in it is a real-time scheduler which generates efficient landing sequences and landing times for arrivals within about 200 n.m. from touchdown. A unique feature of the TMA is its graphical interface that allows the traffic manager to modify the computer-generated schedules for specific aircraft while allowing the automatic scheduler to continue generating schedules for all other aircraft. The graphical interface also provides convenient methods for monitoring the traffic flow and changing scheduling parameters during real-time operation.

  18. Congestion Prediction Modeling for Quality of Service Improvement in Wireless Sensor Networks

    PubMed Central

    Lee, Ga-Won; Lee, Sung-Young; Huh, Eui-Nam

    2014-01-01

    Information technology (IT) is pushing ahead with drastic reforms of modern life for improvement of human welfare. Objects constitute “Information Networks” through smart, self-regulated information gathering that also recognizes and controls current information states in Wireless Sensor Networks (WSNs). Information observed from sensor networks in real-time is used to increase quality of life (QoL) in various industries and daily life. One of the key challenges of the WSNs is how to achieve lossless data transmission. Although nowadays sensor nodes have enhanced capacities, it is hard to assure lossless and reliable end-to-end data transmission in WSNs due to the unstable wireless links and low hard ware resources to satisfy high quality of service (QoS) requirements. We propose a node and path traffic prediction model to predict and minimize the congestion. This solution includes prediction of packet generation due to network congestion from both periodic and event data generation. Simulation using NS-2 and Matlab is used to demonstrate the effectiveness of the proposed solution. PMID:24784035

  19. Evaluation of TCP Congestion Control Algorithms on the Windows Vista Platform

    SciTech Connect

    Li, Yee-Ting; /SLAC

    2006-07-07

    CTCP, an innovative TCP congestion control algorithm developed by Microsoft, is evaluated and compared to HSTCP and StandardTCP. Tests were performed on the production Internet from Stanford Linear Accelerator Center (SLAC) to various geographically located hosts to give a broad overview of the performances. We find that certain issues were apparent during testing (not directly related to the congestion control algorithms) which may skew results. With this in mind, we find that CTCP performed similarly to HSTCP across a multitude of different network environments. However, to improve the fairness and to reduce the impact of CTCP upon existing StandardTCP traffic, two areas of further research were investigated. Algorithmic additions to CTCP for burst control to reduce the aggressiveness of its cwnd increments demonstrated beneficial improvements in both fairness and throughput over the original CTCP algorithm. Similarly, {gamma} auto-tuning algorithms were investigated to dynamically adapt CTCP flows to their network conditions for optimal performance. While the effects of these auto-tuning algorithms when used in addition to burst control showed little to no benefit to fairness nor throughput for the limited number of network paths tested, one of the auto-tuning algorithms performed such that there was negligible impact upon StandardTCP. With these improvements, CTCP was found to perform better than HSTCP in terms of fairness and similarly in terms of throughput under the production environments tested.

  20. Advanced vehicle/highway systems and urban traffic problems. Staff paper

    SciTech Connect

    Not Available

    1989-09-01

    Advanced Vehicle/Highway Systems (AVHS), an umbrella term for several interdependent vehicle and road technologies, offer potential for reducing congestion and the air pollution it engenders, and for improving highway safety. The term AVHS includes technologies for: automatic vehicle identification and billing; weighing vehicles in motion; collision warning and avoidance; driver information and route guidance; advanced traffic operations control and optimization; and automatic vehicle control -- both steering and headway. OTA concludes that AVHS technologies now available can increase roadway efficiency and throughput by 10 to 20 percent, make travel time more predictable, improve safety, and cut down harmful emissions, although by themselves they cannot solve our urban traffic problems.

  1. Simulation study of traffic car accidents in single-lane highway

    NASA Astrophysics Data System (ADS)

    Bentaleb, Khalid; Lakouari, Noureddine; Marzoug, Rachid; Ez-Zahraouy, Hamid; Benyoussef, Abdelilah

    2014-11-01

    In this paper we numerically study the probability Pac of the occurrence of car accidents in the extended Nagel-Schreckenberg (NS) model in the case of mixture of fast (Vmax1=5) and slow vehicles (Vmax2=1) by taking also to the risky overtaking of fast vehicles. In comparison with previous existing models, we find that accidents can occur in the free traffic phase and/or congested one depending on the overtaking rate of fast vehicles. The effect of evacuation of damaged vehicles from the road with probabilities Pevf and Pevs of fast and slow vehicles respectively on the traffic flow behavior is also computed.

  2. Estimation of the full marginal costs of port related truck traffic.

    PubMed

    Berechman, Joseph

    2009-11-01

    NY region is expected to grow by additional 1 million people by 2020, which translates into roughly 70 million more tons of goods to be delivered annually. Due to lack of rail capacity, mainly trucks will haul this volume of freight, challenging an already much constrained highway network. What are the total costs associated with this additional traffic, in particular, congestion, safety and emission? Since a major source of this expected flow is the Port of New York-New Jersey, this paper focuses on the estimation of the full marginal costs of truck traffic resulting from the further expansion of the port's activities. PMID:19796817

  3. Ant traffic rules.

    PubMed

    Fourcassié, Vincent; Dussutour, Audrey; Deneubourg, Jean-Louis

    2010-07-15

    Many animals take part in flow-like collective movements. In most species, however, the flow is unidirectional. Ants are one of the rare group of organisms in which flow-like movements are predominantly bidirectional. This adds to the difficulty of the task of maintaining a smooth, efficient movement. Yet, ants seem to fare well at this task. Do they really? And if so, how do such simple organisms succeed in maintaining a smooth traffic flow, when even humans experience trouble with this task? How does traffic in ants compare with that in human pedestrians or vehicles? The experimental study of ant traffic is only a few years old but it has already provided interesting insights into traffic organization and regulation in animals, showing in particular that an ant colony as a whole can be considered as a typical self-organized adaptive system. In this review we will show that the study of ant traffic can not only uncover basic principles of behavioral ecology and evolution in social insects but also provide new insights into the study of traffic systems in general. PMID:20581264

  4. Traffic Flow Condition Classification for Short Sections Using Single Microwave Sensor

    NASA Astrophysics Data System (ADS)

    Cinsdikici, Muhammed G.; Memiş, Kemal

    2010-12-01

    Daily observed traffic flow can show different characteristics varying with the times of the day. They are caused by traffic incidents such as accidents, disabled cars, construction activities and other unusual events. Three different major traffic conditions can be occurred: "Flow," "Dense" and "Congested". Objective of this research is to identify the current traffic condition by examining the traffic measurement parameters. The earlier researches have dealt only with speed and volume by ignoring occupancy. In our study, the occupancy is another important parameter of classification. The previous works have used multiple sensors to classify traffic condition whereas our work uses only single microwave sensor. We have extended Multiple Linear Regression classification with our new approach of Estimating with Error Prediction. We present novel algorithms of Multiclassification with One-Against-All Method and Multiclassification with Binary Comparison for multiple SVM architecture. Finaly, a non-linear model of backpropagation neural network is introduced for classification. This combination has not been reported on previous studies. Training data are obtained from the Corsim based microscopic traffic simulator TSIS 5.1. All performances are compared using this data set. Our methods are currently installed and running at traffic management center of 2.Ring Road in Istanbul.

  5. A Hidden Markov Model for Urban-Scale Traffic Estimation Using Floating Car Data.

    PubMed

    Wang, Xiaomeng; Peng, Ling; Chi, Tianhe; Li, Mengzhu; Yao, Xiaojing; Shao, Jing

    2015-01-01

    Urban-scale traffic monitoring plays a vital role in reducing traffic congestion. Owing to its low cost and wide coverage, floating car data (FCD) serves as a novel approach to collecting traffic data. However, sparse probe data represents the vast majority of the data available on arterial roads in most urban environments. In order to overcome the problem of data sparseness, this paper proposes a hidden Markov model (HMM)-based traffic estimation model, in which the traffic condition on a road segment is considered as a hidden state that can be estimated according to the conditions of road segments having similar traffic characteristics. An algorithm based on clustering and pattern mining rather than on adjacency relationships is proposed to find clusters with road segments having similar traffic characteristics. A multi-clustering strategy is adopted to achieve a trade-off between clustering accuracy and coverage. Finally, the proposed model is designed and implemented on the basis of a real-time algorithm. Results of experiments based on real FCD confirm the applicability, accuracy, and efficiency of the model. In addition, the results indicate that the model is practicable for traffic estimation on urban arterials and works well even when more than 70% of the probe data are missing.

  6. A Hidden Markov Model for Urban-Scale Traffic Estimation Using Floating Car Data

    PubMed Central

    Wang, Xiaomeng; Peng, Ling; Chi, Tianhe; Li, Mengzhu; Yao, Xiaojing; Shao, Jing

    2015-01-01

    Urban-scale traffic monitoring plays a vital role in reducing traffic congestion. Owing to its low cost and wide coverage, floating car data (FCD) serves as a novel approach to collecting traffic data. However, sparse probe data represents the vast majority of the data available on arterial roads in most urban environments. In order to overcome the problem of data sparseness, this paper proposes a hidden Markov model (HMM)-based traffic estimation model, in which the traffic condition on a road segment is considered as a hidden state that can be estimated according to the conditions of road segments having similar traffic characteristics. An algorithm based on clustering and pattern mining rather than on adjacency relationships is proposed to find clusters with road segments having similar traffic characteristics. A multi-clustering strategy is adopted to achieve a trade-off between clustering accuracy and coverage. Finally, the proposed model is designed and implemented on the basis of a real-time algorithm. Results of experiments based on real FCD confirm the applicability, accuracy, and efficiency of the model. In addition, the results indicate that the model is practicable for traffic estimation on urban arterials and works well even when more than 70% of the probe data are missing. PMID:26710073

  7. A Hidden Markov Model for Urban-Scale Traffic Estimation Using Floating Car Data.

    PubMed

    Wang, Xiaomeng; Peng, Ling; Chi, Tianhe; Li, Mengzhu; Yao, Xiaojing; Shao, Jing

    2015-01-01

    Urban-scale traffic monitoring plays a vital role in reducing traffic congestion. Owing to its low cost and wide coverage, floating car data (FCD) serves as a novel approach to collecting traffic data. However, sparse probe data represents the vast majority of the data available on arterial roads in most urban environments. In order to overcome the problem of data sparseness, this paper proposes a hidden Markov model (HMM)-based traffic estimation model, in which the traffic condition on a road segment is considered as a hidden state that can be estimated according to the conditions of road segments having similar traffic characteristics. An algorithm based on clustering and pattern mining rather than on adjacency relationships is proposed to find clusters with road segments having similar traffic characteristics. A multi-clustering strategy is adopted to achieve a trade-off between clustering accuracy and coverage. Finally, the proposed model is designed and implemented on the basis of a real-time algorithm. Results of experiments based on real FCD confirm the applicability, accuracy, and efficiency of the model. In addition, the results indicate that the model is practicable for traffic estimation on urban arterials and works well even when more than 70% of the probe data are missing. PMID:26710073

  8. Study on traffic characteristics for a typical expressway on-ramp bottleneck considering various merging behaviors

    NASA Astrophysics Data System (ADS)

    Sun, Jie; Li, Zhipeng; Sun, Jian

    2015-12-01

    Recurring bottlenecks at freeway/expressway are considered as the main cause of traffic congestion in urban traffic system while on-ramp bottlenecks are the most significant sites that may result in congestion. In this paper, the traffic bottleneck characteristics for a simple and typical expressway on-ramp are investigated by the means of simulation modeling under the open boundary condition. In simulations, the running behaviors of each vehicle are described by a car-following model with a calibrated optimal velocity function, and lane changing actions at the merging section are modeled by a novel set of rules. We numerically derive the traffic volume of on-ramp bottleneck under different upstream arrival rates of mainline and ramp flows. It is found that the vehicles from the ramp strongly affect the pass of mainline vehicles and the merging ratio changes with the increasing of ramp vehicle, when the arrival rate of mainline flow is greater than a critical value. In addition, we clarify the dependence of the merging ratio of on-ramp bottleneck on the probability of lane changing and the length of the merging section, and some corresponding intelligent control strategies are proposed in actual traffic application.

  9. Reducing transit bus emissions: Alternative fuels or traffic operations?

    NASA Astrophysics Data System (ADS)

    Alam, Ahsan; Hatzopoulou, Marianne

    2014-06-01

    In this study, we simulated the operations and greenhouse gas (GHG) emissions of transit buses along a busy corridor and quantified the effects of two different fuels (conventional diesel and compressed natural gas) as well as a set of driving conditions on emissions. Results indicate that compressed natural gas (CNG) reduces GHG emissions by 8-12% compared to conventional diesel, this reduction could increase to 16% with high levels of traffic congestion. However, the benefits of switching from conventional diesel to CNG are less apparent when the road network is uncongested. We also investigated the effects of bus operations on emissions by applying several strategies such as transit signal priority (TSP), queue jumper lanes, and relocation of bus stops. Results show that in congested conditions, TSP alone can reduce GHG emissions by 14% and when combined with improved technology; a reduction of 23% is achieved. The reduction benefits are even more apparent when other transit operational improvements are combined with TSP. Finally a sensitivity analysis was performed to investigate the effect of operational improvements on emissions under varying levels of network congestion. We observe that under “extreme congestion”, the benefits of TSP decrease.

  10. Auction Mechanism to Allocate Air Traffic Control Slots

    NASA Technical Reports Server (NTRS)

    Raffarin, Marianne

    2003-01-01

    This article deals with an auction mechanism for airspace slots, as a means of solving the European airspace congestion problem. A disequilibrium, between Air Traffic Control (ATC) services supply and ATC services demand are at the origin of almost one fourth of delays in the air transport industry in Europe. In order to tackle this congestion problem, we suggest modifying both pricing and allocation of ATC services, by setting up an auction mechanism. Objects of the auction will be the right for airlines to cross a part of the airspace, and then to benefit from ATC services over a period corresponding to the necessary time for the crossing. Allocation and payment rules have to be defined according to the objectives of this auction. The auctioneer is the public authority in charge of ATC services, whose aim is to obtain an efficient allocation. Therefore, the social value will be maximized. Another objective is to internalize congestion costs. To that end, we apply the principle of Clarke-Groves mechanism auction: each winner has to pay the externalities imposed on other bidders. The complex context of ATC leads to a specific design for this auction.

  11. Characterization of Visual Scanning Patterns in Air Traffic Control.

    PubMed

    McClung, Sarah N; Kang, Ziho

    2016-01-01

    Characterization of air traffic controllers' (ATCs') visual scanning strategies is a challenging issue due to the dynamic movement of multiple aircraft and increasing complexity of scanpaths (order of eye fixations and saccades) over time. Additionally, terminologies and methods are lacking to accurately characterize the eye tracking data into simplified visual scanning strategies linguistically expressed by ATCs. As an intermediate step to automate the characterization classification process, we (1) defined and developed new concepts to systematically filter complex visual scanpaths into simpler and more manageable forms and (2) developed procedures to map visual scanpaths with linguistic inputs to reduce the human judgement bias during interrater agreement. The developed concepts and procedures were applied to investigating the visual scanpaths of expert ATCs using scenarios with different aircraft congestion levels. Furthermore, oculomotor trends were analyzed to identify the influence of aircraft congestion on scan time and number of comparisons among aircraft. The findings show that (1) the scanpaths filtered at the highest intensity led to more consistent mapping with the ATCs' linguistic inputs, (2) the pattern classification occurrences differed between scenarios, and (3) increasing aircraft congestion caused increased scan times and aircraft pairwise comparisons. The results provide a foundation for better characterizing complex scanpaths in a dynamic task and automating the analysis process. PMID:27239190

  12. Temporal variation of traffic on highways and the development of accurate temporal allocation factors for air pollution analyses

    NASA Astrophysics Data System (ADS)

    Batterman, Stuart; Cook, Richard; Justin, Thomas

    2015-04-01

    Traffic activity encompasses the number, mix, speed and acceleration of vehicles on roadways. The temporal pattern and variation of traffic activity reflects vehicle use, congestion and safety issues, and it represents a major influence on emissions and concentrations of traffic-related air pollutants. Accurate characterization of vehicle flows is critical in analyzing and modeling urban and local-scale pollutants, especially in near-road environments and traffic corridors. This study describes methods to improve the characterization of temporal variation of traffic activity. Annual, monthly, daily and hourly temporal allocation factors (TAFs), which describe the expected temporal variation in traffic activity, were developed using four years of hourly traffic activity data recorded at 14 continuous counting stations across the Detroit, Michigan, U.S. region. Five sites also provided vehicle classification. TAF-based models provide a simple means to apportion annual average estimates of traffic volume to hourly estimates. The analysis shows the need to separate TAFs for total and commercial vehicles, and weekdays, Saturdays, Sundays and observed holidays. Using either site-specific or urban-wide TAFs, nearly all of the variation in historical traffic activity at the street scale could be explained; unexplained variation was attributed to adverse weather, traffic accidents and construction. The methods and results presented in this paper can improve air quality dispersion modeling of mobile sources, and can be used to evaluate and model temporal variation in ambient air quality monitoring data and exposure estimates.

  13. Temporal variation of traffic on highways and the development of accurate temporal allocation factors for air pollution analyses

    PubMed Central

    Batterman, Stuart; Cook, Richard; Justin, Thomas

    2015-01-01

    Traffic activity encompasses the number, mix, speed and acceleration of vehicles on roadways. The temporal pattern and variation of traffic activity reflects vehicle use, congestion and safety issues, and it represents a major influence on emissions and concentrations of traffic-related air pollutants. Accurate characterization of vehicle flows is critical in analyzing and modeling urban and local-scale pollutants, especially in near-road environments and traffic corridors. This study describes methods to improve the characterization of temporal variation of traffic activity. Annual, monthly, daily and hourly temporal allocation factors (TAFs), which describe the expected temporal variation in traffic activity, were developed using four years of hourly traffic activity data recorded at 14 continuous counting stations across the Detroit, Michigan, U.S. region. Five sites also provided vehicle classification. TAF-based models provide a simple means to apportion annual average estimates of traffic volume to hourly estimates. The analysis shows the need to separate TAFs for total and commercial vehicles, and weekdays, Saturdays, Sundays and observed holidays. Using either site-specific or urban-wide TAFs, nearly all of the variation in historical traffic activity at the street scale could be explained; unexplained variation was attributed to adverse weather, traffic accidents and construction. The methods and results presented in this paper can improve air quality dispersion modeling of mobile sources, and can be used to evaluate and model temporal variation in ambient air quality monitoring data and exposure estimates. PMID:25844042

  14. Exhaust Emissions Measured Under Real Traffic Conditions from Vehicles Fitted with Spark Ignition and Compression Ignition Engines

    NASA Astrophysics Data System (ADS)

    Merkisz, Jerzy; Lijewski, Piotr; Fuć, Paweł

    2011-06-01

    The tests performed under real traffic conditions provide invaluable information on the relations between the engine parameters, vehicle parameters and traffic conditions (traffic congestion) on one side and the exhaust emissions on the other. The paper presents the result of road tests obtained in an urban and extra-urban cycles for vehicles fitted with different engines, spark ignition engine and compression ignition engine. For the tests a portable emission analyzer SEMTECH DS. by SENSORS was used. This analyzer provides online measurement of the concentrations of exhaust emission components on a vehicle in motion under real traffic conditions. The tests were performed in city traffic. A comparative analysis has been presented of the obtained results for vehicles with individual powertrains.

  15. Finding the biased-shortest path with minimal congestion in networks via linear-prediction of queue length

    NASA Astrophysics Data System (ADS)

    Shen, Yi; Ren, Gang; Liu, Yang

    2016-06-01

    In this paper, we propose a biased-shortest path method with minimal congestion. In the method, we use linear-prediction to estimate the queue length of nodes, and propose a dynamic accepting probability function for nodes to decide whether accept or reject the incoming packets. The dynamic accepting probability function is based on the idea of homogeneous network flow and is developed to enable nodes to coordinate their queue length to avoid congestion. A path strategy incorporated with the linear-prediction of the queue length and the dynamic accepting probability function of nodes is designed to allow packets to be automatically delivered on un-congested paths with short traveling time. Our method has the advantage of low computation cost because the optimal paths are dynamically self-organized by nodes in the delivering process of packets with local traffic information. We compare our method with the existing methods such as the efficient path method (EPS) and the optimal path method (OPS) on the BA scale-free networks and a real example. The numerical computations show that our method performs best for low network load and has minimum run time due to its low computational cost and local routing scheme.

  16. Phase transitions in traffic flow on multilane roads

    NASA Astrophysics Data System (ADS)

    Kerner, Boris S.; Klenov, Sergey L.

    2009-11-01

    Based on empirical and numerical analyses of vehicular traffic, the physics of spatiotemporal phase transitions in traffic flow on multilane roads is revealed. The complex dynamics of moving jams observed in single vehicle data measured by video cameras on American highways is explained by the nucleation-interruption effect in synchronized flow, i.e., the spontaneous nucleation of a narrow moving jam with the subsequent jam dissolution. We find that (i) lane changing, vehicle merging from on-ramps, and vehicle leaving to off-ramps result in different traffic phases—free flow, synchronized flow, and wide moving jams—occurring and coexisting in different road lanes as well as in diverse phase transitions between the traffic phases; (ii) in synchronized flow, the phase transitions are responsible for a non-regular moving jam dynamics that explains measured single vehicle data: moving jams emerge and dissolve randomly at various road locations in different lanes; (iii) the phase transitions result also in diverse expanded general congested patterns occurring at closely located bottlenecks.

  17. Stability analysis of traffic flow with extended CACC control models

    NASA Astrophysics Data System (ADS)

    Ya-Zhou, Zheng; Rong-Jun, Cheng; Siu-Ming, Lo; Hong-Xia, Ge

    2016-06-01

    To further investigate car-following behaviors in the cooperative adaptive cruise control (CACC) strategy, a comprehensive control system which can handle three traffic conditions to guarantee driving efficiency and safety is designed by using three CACC models. In this control system, some vital comprehensive information, such as multiple preceding cars’ speed differences and headway, variable safety distance (VSD) and time-delay effect on the traffic current and the jamming transition have been investigated via analytical or numerical methods. Local and string stability criterion for the velocity control (VC) model and gap control (GC) model are derived via linear stability theory. Numerical simulations are conducted to study the performance of the simulated traffic flow. The simulation results show that the VC model and GC model can improve driving efficiency and suppress traffic congestion. Project supported by the National Natural Science Foundation of China (Grant Nos. 71571107 and 11302110). The Scientific Research Fund of Zhejiang Province, China (Grant Nos. LY15A020007, LY15E080013, and LY16G010003). The Natural Science Foundation of Ningbo City (Grant Nos. 2014A610030 and 2015A610299), the Fund from the Government of the Hong Kong Administrative Region, China (Grant No. CityU11209614), and the K C Wong Magna Fund in Ningbo University, China.

  18. Stability analysis of traffic flow with extended CACC control models

    NASA Astrophysics Data System (ADS)

    Ya-Zhou, Zheng; Rong-Jun, Cheng; Siu-Ming, Lo; Hong-Xia, Ge

    2016-06-01

    To further investigate car-following behaviors in the cooperative adaptive cruise control (CACC) strategy, a comprehensive control system which can handle three traffic conditions to guarantee driving efficiency and safety is designed by using three CACC models. In this control system, some vital comprehensive information, such as multiple preceding cars’ speed differences and headway, variable safety distance (VSD) and time-delay effect on the traffic current and the jamming transition have been investigated via analytical or numerical methods. Local and string stability criterion for the velocity control (VC) model and gap control (GC) model are derived via linear stability theory. Numerical simulations are conducted to study the performance of the simulated traffic flow. The simulation results show that the VC model and GC model can improve driving efficiency and suppress traffic congestion. Project supported by the National Natural Science Foundation of China (Grant Nos. 71571107 and 11302110). The Scientific Research Fund of Zhejiang Province, China (Grant Nos. LY15A020007, LY15E080013, and LY16G010003). The Natural Science Foundation of Ningbo City (Grant Nos. 2014A610030 and 2015A610299), the Fund from the Government of the Hong Kong Administrative Region, China (Grant No. CityU11209614), and the K C Wong Magna Fund in Ningbo University, China.

  19. Delays, inaccuracies and anticipation in microscopic traffic models

    NASA Astrophysics Data System (ADS)

    Treiber, Martin; Kesting, Arne; Helbing, Dirk

    2006-01-01

    We generalize a wide class of time-continuous microscopic traffic models to include essential aspects of driver behaviour not captured by these models. Specifically, we consider (i) finite reaction times, (ii) estimation errors, (iii) looking several vehicles ahead (spatial anticipation), and (iv) temporal anticipation. The estimation errors are modelled as stochastic Wiener processes and lead to time-correlated fluctuations of the acceleration. We show that the destabilizing effects of reaction times and estimation errors can essentially be compensated for by spatial and temporal anticipation, that is, the combination of stabilizing and destabilizing effects results in the same qualitative macroscopic dynamics as that of the, respectively, underlying simple car-following model. In many cases, this justifies the use of simplified, physics-oriented models with a few parameters only. Although the qualitative dynamics is unchanged, multi-anticipation increase both spatial and temporal scales of stop-and-go waves and other complex patterns of congested traffic in agreement with real traffic data. Remarkably, the anticipation allows accident-free smooth driving in complex traffic situations even if reaction times exceed typical time headways.

  20. Price of anarchy on heterogeneous traffic-flow networks

    NASA Astrophysics Data System (ADS)

    Rose, A.; O'Dea, R.; Hopcraft, K. I.

    2016-09-01

    The efficiency of routing traffic through a network, comprising nodes connected by links whose cost of traversal is either fixed or varies in proportion to volume of usage, can be measured by the "price of anarchy." This is the ratio of the cost incurred by agents who act to minimize their individual expenditure to the optimal cost borne by the entire system. As the total traffic load and the network variability—parameterized by the proportion of variable-cost links in the network—changes, the behaviors that the system presents can be understood with the introduction of a network of simpler structure. This is constructed from classes of nonoverlapping paths connecting source to destination nodes that are characterized by the number of variable-cost edges they contain. It is shown that localized peaks in the price of anarchy occur at critical traffic volumes at which it becomes beneficial to exploit ostensibly more expensive paths as the network becomes more congested. Simulation results verifying these findings are presented for the variation of the price of anarchy with the network's size, aspect ratio, variability, and traffic load.

  1. Dissemination of information in complex networks with congestion

    NASA Astrophysics Data System (ADS)

    Cholvi, Vicent

    2006-07-01

    We address the problem of message transfer in complex networks with congestion. We propose a new strategy aimed at improving routing efficiency. Such a strategy, contrary to the shortest available path length from a given source to its destination (perhaps the most widely analyzed routing strategy), takes into account the congestion of nodes and can be deployed, with a minimal overhead, on top of it. Our results show that, by distributing more homogeneously the congestion of nodes, it significantly reduces the average network load as well as the collapse point.

  2. Transportation network policy modeling for congestion and pollution control: A variational inequality approach

    NASA Astrophysics Data System (ADS)

    Ramanujam, Padma

    1999-08-01

    Public concern over the state of the environment has grown over the past decade. All indications are that this concern will continue to influence policy making into the foreseeable future. Road transport is seen as the major contributor to environmental degradation. Transportation planners around the world face the question: cleaner air and/or faster commutes? While individual vehicles can be made more environmentally friendly, the sheer scale of growth in world-wide vehicle numbers is projected to cause significant environmental degradation in the longer run, and in the absence of newer and stricter polices. It is a challenge for governments to find policies that ensure congestion-free metropolitan areas while guaranteeing both critical environmental quality levels and a sufficient infrastructure access to all groups involved. The objective of the dissertation is to provide a mathematical framework to study transportation policy models for the purpose of controlling congestion and pollution. Towards this objective. a series of transportation policy models are developed to study travel behavior and to quantity the reductions in congestion and automobile emissions. The dissertation begins with a brief historical overview of some of the pioneering works in urban transportation economics and later presents the theoretical foundation for the transportation policy models developed. The dissertation introduces single modal and multimodal transportation network policy models that accomplish road pricing with the imposition of goal targets on link loads. as well as, integrated traffic equilibrium models with marketable mobile emission permits. Furthermore, equilibrium conditions are derived for each model, and both qualitative analysis and computational procedures are studied. Finally, the dissertation concludes with a comparative study of the relationship between regulatory pricing models and marketable emission permit transportation models and a discussion on key factors

  3. Improving traffic flow at a 2-to-1 lane reduction with wirelessly connected, adaptive cruise control vehicles

    NASA Astrophysics Data System (ADS)

    Davis, L. C.

    2016-06-01

    Wirelessly connected vehicles that exchange information about traffic conditions can reduce delays caused by congestion. At a 2-to-1 lane reduction, the improvement in flow past a bottleneck due to traffic with a random mixture of 40% connected vehicles is found to be 52%. Control is based on connected-vehicle-reported velocities near the bottleneck. In response to indications of congestion the connected vehicles, which are also adaptive cruise control vehicles, reduce their speed in slowdown regions. Early lane changes of manually driven vehicles from the terminated lane to the continuous lane are induced by the slowing connected vehicles. Self-organized congestion at the bottleneck is thus delayed or eliminated, depending upon the incoming flow magnitude. For the large majority of vehicles, travel times past the bottleneck are substantially reduced. Control is responsible for delaying the onset of congestion as the incoming flow increases. Adaptive cruise control increases the flow out of the congested state at the bottleneck. The nature of the congested state, when it occurs, appears to be similar under a variety of conditions. Typically 80-100 vehicles are approximately equally distributed between the lanes in the 500 m region prior to the end of the terminated lane. Without the adaptive cruise control capability, connected vehicles can delay the onset of congestion but do not increase the asymptotic flow past the bottleneck. Calculations are done using the Kerner-Klenov three-phase theory, stochastic discrete-time model for manual vehicles. The dynamics of the connected vehicles is given by a conventional adaptive cruise control algorithm plus commanded deceleration. Because time in the model for manual vehicles is discrete (one-second intervals), it is assumed that the acceleration of any vehicle immediately in front of a connected vehicle is constant during the time interval, thereby preserving the computational simplicity and speed of a discrete-time model.

  4. Virginia's traffic management system

    SciTech Connect

    Morris, J.; Marber, S. )

    1992-07-01

    This paper reports that Northern Virginia, like most other urban areas, faces the challenge of moving more and more vehicles on roads that are already overloaded. Traffic in Northern Virginia is continually increasing, but the development surrounding Interstate 395, 495, and 66 makes little room available for roadway expansion. Even if land were unlimited, the strict requirement of the Clean Air Act make building roads difficult. This paper reports that ensuring the most efficient use of the interstate highways is the goal of the Virginia Department of Transportation's (VDOT's) traffic management system (TMS). TMS is a computerized highway surveillance and control system that monitors 30 interstate miles on I-395, I-495, and I-66. The system helps squeeze the most use from these interstates by detecting and helping clear accidents or disabled vehicles and by smoothing traffic flow. TMS spots and helps clear an average of two incidents a day and prevents accidents caused by erratic traffic flow from ramps onto the main line. For motorists, these TMS functions translate into decreased travel time, vehicle operating costs, and air pollution. VDOT's TMS is the foundation for the intelligent vehicle-highway systems of tomorrow. It employs several elements that work together to improve traffic flow.

  5. Impact of distracted driving on safety and traffic flow.

    PubMed

    Stavrinos, Despina; Jones, Jennifer L; Garner, Annie A; Griffin, Russell; Franklin, Crystal A; Ball, David; Welburn, Sharon C; Ball, Karlene K; Sisiopiku, Virginia P; Fine, Philip R

    2013-12-01

    Studies have documented a link between distracted driving and diminished safety; however, an association between distracted driving and traffic congestion has not been investigated in depth. The present study examined the behavior of teens and young adults operating a driving simulator while engaged in various distractions (i.e., cell phone, texting, and undistracted) and driving conditions (i.e., free flow, stable flow, and oversaturation). Seventy five participants 16-25 years of age (split into 2 groups: novice drivers and young adults) drove a STISIM simulator three times, each time with one of three randomly presented distractions. Each drive was designed to represent daytime scenery on a 4 lane divided roadway and included three equal roadway portions representing Levels of Service (LOS) A, C, and E as defined in the 2000 Highway Capacity Manual. Participants also completed questionnaires documenting demographics and driving history. Both safety and traffic flow related driving outcomes were considered. A Repeated Measures Multivariate Analysis of Variance was employed to analyze continuous outcome variables and a Generalized Estimate Equation (GEE) Poisson model was used to analyze count variables. Results revealed that, in general more lane deviations and crashes occurred during texting. Distraction (in most cases, text messaging) had a significantly negative impact on traffic flow, such that participants exhibited greater fluctuation in speed, changed lanes significantly fewer times, and took longer to complete the scenario. In turn, more simulated vehicles passed the participant drivers while they were texting or talking on a cell phone than while undistracted. The results indicate that distracted driving, particularly texting, may lead to reduced safety and traffic flow, thus having a negative impact on traffic operations. No significant differences were detected between age groups, suggesting that all drivers, regardless of age, may drive in a manner

  6. Traffic air quality index.

    PubMed

    Bagieński, Zbigniew

    2015-02-01

    Vehicle emissions are responsible for a considerable share of urban air pollution concentrations. The traffic air quality index (TAQI) is proposed as a useful tool for evaluating air quality near roadways. The TAQI associates air quality with the equivalent emission from traffic sources and with street structure (roadway structure) as anthropogenic factors. The paper presents a method of determining the TAQI and defines the degrees of harmfulness of emitted pollution. It proposes a classification specifying a potential threat to human health based on the TAQI value and shows an example of calculating the TAQI value for real urban streets. It also considers the role that car traffic plays in creating a local UHI. PMID:25461063

  7. Cell therapy in congestive heart failure*

    PubMed Central

    Tao, Ze-wei; Li, Long-gui

    2007-01-01

    Congestive heart failure (CHF) has emerged as a major worldwide epidemic and its main causes seem to be the aging of the population and the survival of patients with post-myocardial infarction. Cardiomyocyte dropout (necrosis and apoptosis) plays a critical role in the progress of CHF; thus treatment of CHF by exogenous cell implantation will be a promising medical approach. In the acute phase of cardiac damage cardiac stem cells (CSCs) within the heart divide symmetrically and/or asymmetrically in response to the change of heart homeostasis, and at the same time homing of bone marrow stem cells (BMCs) to injured area is thought to occur, which not only reconstitutes CSC population to normal levels but also repairs the heart by differentiation into cardiac tissue. So far, basic studies by using potential sources such as BMCs and CSCs to treat animal CHF have shown improved ventricular remodelling and heart function. Recently, however, a few of randomized, double-blind, placebo-controlled clinical trials demonstrated mixed results in heart failure with BMC therapy during acute myocardial infarction. PMID:17726746

  8. Congestion Induced by the Structure of Multiplex Networks

    NASA Astrophysics Data System (ADS)

    Solé-Ribalta, Albert; Gómez, Sergio; Arenas, Alex

    2016-03-01

    Multiplex networks are representations of multilayer interconnected complex networks where the nodes are the same at every layer. They turn out to be good abstractions of the intricate connectivity of multimodal transportation networks, among other types of complex systems. One of the most important critical phenomena arising in such networks is the emergence of congestion in transportation flows. Here, we prove analytically that the structure of multiplex networks can induce congestion for flows that otherwise would be decongested if the individual layers were not interconnected. We provide explicit equations for the onset of congestion and approximations that allow us to compute this onset from individual descriptors of the individual layers. The observed cooperative phenomenon is reminiscent of Braess' paradox in which adding extra capacity to a network when the moving entities selfishly choose their route can in some cases reduce overall performance. Similarly, in the multiplex structure, the efficiency in transportation can unbalance the transportation loads resulting in unexpected congestion.

  9. Autonomous Congestion Control in Delay-Tolerant Networks

    NASA Technical Reports Server (NTRS)

    Burleigh, Scott; Jennings, Esther; Schoolcraft, Joshua

    2006-01-01

    This presentation highlights communication congestion control in delay-tolerant networks (DTNs). Large-scale future space exploration will offer complex communication challenges that may be best addressed by establishing a network infrastructure. However, current internet techniques for congestion control are not well suited for operation of a network over interplanetary distances. An alternative, delay-tolerant technique for congestion control in a delay-tolerant network is presented. A simple DTN was constructed and an experimental congestion control mechanism was applied. The mechanism appeared to be effective and each router was able to make its bundle acceptance decisions autonomously. Future research will examine more complex topologies and alternative bundle acceptance rules that might enhance performance.

  10. 75 FR 22770 - National Electric Transmission Congestion Study

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-30

    ... is seeking comments on all aspects of the study. The full text of the 2009 Congestion Study is... in each area.\\2\\ \\1\\ See 71 FR 45047 (August 6, 2006). \\2\\ See 72 FR 56992 (October 5, 2007)....

  11. Efficiency and profit in the NYISO transmission congestion contract market

    SciTech Connect

    Hadsell, Lester; Shawky, Hany A.

    2009-11-15

    Evidence of speculator profit and TCC price less than congestion charges suggests that additional competition in the TCC auction should be encouraged as a way to increase efficiency and lower the price of this ''insurance'' for hedgers. (author)

  12. Congestion Avoidance Testbed Experiments. Volume 2

    NASA Technical Reports Server (NTRS)

    Denny, Barbara A.; Lee, Diane S.; McKenney, Paul E., Sr.; Lee, Danny

    1994-01-01

    DARTnet provides an excellent environment for executing networking experiments. Since the network is private and spans the continental United States, it gives researchers a great opportunity to test network behavior under controlled conditions. However, this opportunity is not available very often, and therefore a support environment for such testing is lacking. To help remedy this situation, part of SRI's effort in this project was devoted to advancing the state of the art in the techniques used for benchmarking network performance. The second objective of SRI's effort in this project was to advance networking technology in the area of traffic control, and to test our ideas on DARTnet, using the tools we developed to improve benchmarking networks. Networks are becoming more common and are being used by more and more people. The applications, such as multimedia conferencing and distributed simulations, are also placing greater demand on the resources the networks provide. Hence, new mechanisms for traffic control must be created to enable their networks to serve the needs of their users. SRI's objective, therefore, was to investigate a new queueing and scheduling approach that will help to meet the needs of a large, diverse user population in a "fair" way.

  13. Environmentally Reformed Travel Habits During the 2006 Congestion Charge Trial in Stockholm—A Qualitative Study

    PubMed Central

    Henriksson, Greger; Hagman, Olle; Andréasson, Håkan

    2011-01-01

    Policy measures that reduce or replace road traffic can improve environmental conditions in most large cities. In Stockholm a congestion charge was introduced during a test period in 2006. This was a full-scale trial that proved to meet its targets by reducing traffic crossing the inner city segment during rush hours by 20%. Emissions of carbon dioxide and particles were also substantially reduced. This study, based on in-depth interviews with 40 inhabitants, analyses how and why new travel habits emerged. The results show that particular, sometimes unexpected, features of everyday life (habits, resources, opportunities, values, etc.) were crucial for adjustment of travel behaviour in relation to the policy instrument. One example was that those accustomed to mixing different modes of transport on a daily basis more easily adapted their travel in the targeted way. On a more general level, the results revealed that the policy measure could actually tip the scales for the individual towards trying out a new behaviour. PMID:21909301

  14. Environmentally reformed travel habits during the 2006 congestion charge trial in Stockholm--a qualitative study.

    PubMed

    Henriksson, Greger; Hagman, Olle; Andréasson, Håkan

    2011-08-01

    Policy measures that reduce or replace road traffic can improve environmental conditions in most large cities. In Stockholm a congestion charge was introduced during a test period in 2006. This was a full-scale trial that proved to meet its targets by reducing traffic crossing the inner city segment during rush hours by 20%. Emissions of carbon dioxide and particles were also substantially reduced. This study, based on in-depth interviews with 40 inhabitants, analyses how and why new travel habits emerged. The results show that particular, sometimes unexpected, features of everyday life (habits, resources, opportunities, values, etc.) were crucial for adjustment of travel behaviour in relation to the policy instrument. One example was that those accustomed to mixing different modes of transport on a daily basis more easily adapted their travel in the targeted way. On a more general level, the results revealed that the policy measure could actually tip the scales for the individual towards trying out a new behaviour.

  15. Dynamic routing control in heterogeneous tactical networks with multiple traffic priorities

    NASA Astrophysics Data System (ADS)

    Fecko, Mariusz A.; Wong, Larry; Kang, Jaewong; Cichocki, Andrzej; Kaul, Vikram; Samtani, Sunil

    2012-05-01

    To efficiently use alternate paths during periods of congestion, we have devised prioritized Dynamic Routing Control Agent (pDRCA) that (1) selects best links to meet the bandwidth and delay requirements of traffic, (2) provides load-balancing and traffic prioritization when multiple topologies are available, and (3) handles changes in link quality and traffic demand, and link outages. pDRCA provides multiplatform load balancing to maximize SATCOM (both P2P and multi-point) and airborne links utilization. It influences link selection by configuring the cost metrics on a router's interface, which does not require any changes to the routing protocol itself. It supports service differentiation of multiple traffic priorities by providing more network resources to the highest priority flows. pDRCA does so by solving an optimization problem to find optimal links weights that increase throughput and decrease E2E delay; avoid congested, low quality, and long delay links; and exploit path diversity in the network. These optimal link weights are sent to the local agents to be configured on individual routers per traffic priority. The pDRCA optimization algorithm has been proven effective in improving application performance. We created a variety of different test scenarios by varying traffic profile and link behavior (stable links, varying capacity, and link outages). In the scenarios where high priority traffic experienced significant loss without pDRCA, the average loss was reduced from 49.5% to 13% and in some cases dropped to 0%. Currently, pDRCA is integrated with an open-source software router and priority queues on Linux as a component of Open Tactical Router (OTR), which is being developed by ONR DTCN program.

  16. Understanding crash mechanism on urban expressways using high-resolution traffic data.

    PubMed

    Hossain, Moinul; Muromachi, Yasunori

    2013-08-01

    Urban expressways play a vital role in the modern mega cities by serving peak hour traffic alongside reducing travel time for moderate to long distance intra-city trips. Thus, ensuring safety on these roads holds high priority. Little knowledge has been acquired till date regarding crash mechanism on these roads. This study uses high-resolution traffic data collected from the detectors to identify factors influencing crash. It also identifies traffic patterns associated with different types of crashes and explains crash phenomena thereby. Unlike most of the previous studies on conventional expressways, the research separately investigates the basic freeway segments (BFS) and the ramp areas. The study employs random multinomial logit, a random forest of logit models, to rank the variables; expectation maximization clustering algorithm to identify crash prone traffic patterns and classification and regression trees to explain crash phenomena. As accentuated by the study outcome, crash mechanism is not generic throughout the expressway and it varies from the BFS to the ramp vicinities. The level of congestion and speed difference between upstream and downstream traffic best explains crashes and their types for the BFS, whereas, the ramp flow has the highest influence in determining the types of crashes within the ramp vicinities. The paper also discusses about the applicability of different countermeasures, such as, variable speed limits, temporary restriction on lane changing, posting warnings, etc., to attenuate different patterns of hazardous traffic conditions. The study outcome can be utilized in designing location and traffic condition specific proactive road safety management systems for urban expressways.

  17. Order and disorder in traffic and self-driven many-particle systems

    NASA Astrophysics Data System (ADS)

    Helbing, Dirk

    2002-07-01

    During the last decade, physicists have identified various spatio-temporal patterns of motion in vehicle and pedestrian traffic. Moreover, by applying and extending methods from statistical physics and non-linear dynamics, these have been successfully explained by means of self-driven many-particle models. Some of the questions now understood are the following: Why are vehicles sometimes stopped by so-called "phantom traffic jams," although they all like to drive fast? What are the mechanisms behind stop-and-go traffic? Why are there several different kinds of congestion, and how are they related? Why do most traffic jams occur considerably before the road capacity is reached? Can a temporary reduction of the traffic volume cause a lasting traffic jam? What is the origin of fluctuations in traffic systems and which consequences do they have? Why do pedestrians moving in opposite directions normally organize in lanes, while nervous crowds are "freezing by heating?" Why do panicking pedestrians produce dangerous deadlocks?

  18. The impact of map orientation and generalisation on congestion decisions: a comparison of schematic-egocentric and topographic-allocentric maps.

    PubMed

    Crundall, David; Crundall, Elizabeth; Burnett, Gary; Shalloe, Sally; Sharples, Sarah

    2011-08-01

    Map information for drivers is usually presented in an allocentric-topographic form (as with printed maps) or in an egocentric-schematic form (as with road signs). The advent of new variable message boards on UK motorways raises the possibility of presenting road maps to reflect congestion ahead. Should these maps be allocentric-topographic or egocentric-schematic? This was assessed in an eye tracking study, with participants viewing maps of a motorway network in order to identify whether any congestion was relevant to their intended route. The schematic-egocentric maps were responded to most accurately with shorter fixation durations suggesting easier processing. In particular, the driver's entrance and intended exit from the map were attended to more in the allocentric maps. Individual differences in mental rotation ability also seem to contribute to poor performance on allocentric maps. The results favour schematic-egocentric maps for roadside congestion information, but also provide theoretical insights into map-rotation and individual differences. Statement of Relevance: This study informs designers and policy makers about optimum representations of traffic congestion on roadside variable message signs and, furthermore, demonstrates that individual differences contribute to problems with processing certain sign types. Schematic-egocentric representations of a motorway network produced the best results, as noted in behavioural and eye movement measures.

  19. Surface Traffic Management Research

    NASA Technical Reports Server (NTRS)

    Jung, Yoo Chul

    2012-01-01

    This presentation discusses an overview of the surface traffic management research conducted by NASA Ames. The concept and human-in-the-loop simulation of the Spot and Runway Departure Advisor (SARDA), an integrated decision support tool for the tower controllers and airline ramp operators, is also discussed.

  20. CONGESTIVE HEART FAILURE: WHERE HOMEOSTASIS BEGETS DYSHOMEOSTASIS

    PubMed Central

    Kamalov, German; Bhattacharya, Syamal K.; Weber, Karl T.

    2010-01-01

    Despite today’s standard of care, aimed at containing homeostatic neurohormonal activation, 1 in every 5 patients recently hospitalized with congestive heart failure (CHF) will be readmitted within 30 days of discharge because of a recurrence of their symptoms and signs. In light of recent pathophysiologic insights, it is now propitious to revisit CHF with a view toward complementary and evolving management strategies. CHF is a progressive systemic illness. Its features include: oxidative stress in diverse tissues; an immunostimulatory state with circulating proinflammatory cytokines; a wasting of soft tissues; and a resorption of bone. Its origins are rooted in homeostatic mechanisms gone awry to beget dyshomeostasis. For example, marked excretory losses of Ca2+ and Mg2+ accompany renin-angiotensin-aldosterone system (RAAS) activation, causing ionized hypocalcemia and hypomagnesemia that lead to secondary hyperparathyroidism (SHPT) with consequent bone resorption and a propensity to atraumatic fractures. Parathyroid hormone (PTH) accounts for paradoxical intracellular Ca2+ overloading in diverse tissues and consequent systemic induction of oxidative stress. In cardiac myocytes and mitochondria these events orchestrate opening of the mitochondrial membrane permeability transition pore (mPTP) with an ensuing osmotic-based destruction of these organelles and resultant cardiomyocyte necrosis with myocardial scarring. Contemporaneous with Ca2+ and Mg2+ dyshomeostasis is hypozincemia and hyposelenemia, which compromise metalloenzyme-based antioxidant defenses while hypovitaminosis D threatens Ca2+ stores needed to prevent SHPT. An intrinsically coupled dyshomeostasis of intracellular Ca2+ and Zn2+, representing prooxidant and antioxidant, respectively, is integral to regulating mitochondrial redox state; it can be uncoupled by a Zn2+ supplement in favor of antioxidant defenses. Hence, the complementary use of nutriceuticals to nullify dyshomeostatic responses

  1. Stochastic Model of Traffic Jam and Traffic Signal Control

    NASA Astrophysics Data System (ADS)

    Shin, Ji-Sun; Cui, Cheng-You; Lee, Tae-Hong; Lee, Hee-Hyol

    Traffic signal control is an effective method to solve the traffic jam. and forecasting traffic density has been known as an important part of the Intelligent Transportation System (ITS). The several methods of the traffic signal control are known such as random walk method, Neuron Network method, Bayesian Network method, and so on. In this paper, we propose a new method of a traffic signal control using a predicted distribution of traffic jam based on a Dynamic Bayesian Network model. First, a forecasting model to predict a probabilistic distribution of the traffic jam during each period of traffic lights is built. As the forecasting model, the Dynamic Bayesian Network is used to predict the probabilistic distribution of a density of the traffic jam. According to measurement of two crossing points for each cycle, the inflow and outflow of each direction and the number of standing vehicles at former cycle are obtained. The number of standing vehicle at k-th cycle will be calculated synchronously. Next, the probabilistic distribution of the density of standing vehicle in each cycle will be predicted using the Dynamic Bayesian Network constructed for the traffic jam. And then a control rule to adjust the split and the cycle to increase the probability between a lower limit and ceiling of the standing vehicles is deduced. As the results of the simulation using the actual traffic data of Kitakyushu city, the effectiveness of the method is shown.

  2. Gust alleviation - Criteria and control laws

    NASA Technical Reports Server (NTRS)

    Rynaski, E. G.

    1979-01-01

    The relationships between criteria specified for aircraft gust alleviation and the form of the control laws that result from the criteria are considered. Open-loop gust alleviation based on the linearized, small perturbation equations of aircraft motion is discussed, and an approximate solution of the open-loop control law is presented for the case in which the number of degrees of freedom of the aircraft exceeds the rank of the control effectiveness matrix. Excessive actuator lag is compensated for by taking into account actuator dynamics in the equations of motion, resulting in the specification of a general load network. Criteria for gust alleviation when output motions are gust alleviated and the closed-loop control law derived from them are examined and linear optimal control law is derived. Comparisons of the control laws reveal that the effectiveness of an open-loop control law is greatest at low aircraft frequencies but deteriorates as the natural frequency of the actuators is approached, while closed-loop methods are found to be more effective at higher frequencies.

  3. Alleviation of Communication Apprehension: An Individualized Approach.

    ERIC Educational Resources Information Center

    Watson, Arden K.

    Communication apprehension (CA) affects from 15% to 20% of the college population, indicating inherent problems of negative cognitive appraisal, conditioned anxiety, or skills deficits. Use of an individualized approach to the alleviation of CA has been shown to increase students' class interaction and to improve their verbal skills. During an…

  4. Principled negotiation and distributed optimization for advanced air traffic management

    NASA Astrophysics Data System (ADS)

    Wangermann, John Paul

    Today's aircraft/airspace system faces complex challenges. Congestion and delays are widespread as air traffic continues to grow. Airlines want to better optimize their operations, and general aviation wants easier access to the system. Additionally, the accident rate must decline just to keep the number of accidents each year constant. New technology provides an opportunity to rethink the air traffic management process. Faster computers, new sensors, and high-bandwidth communications can be used to create new operating models. The choice is no longer between "inflexible" strategic separation assurance and "flexible" tactical conflict resolution. With suitable operating procedures, it is possible to have strategic, four-dimensional separation assurance that is flexible and allows system users maximum freedom to optimize operations. This thesis describes an operating model based on principled negotiation between agents. Many multi-agent systems have agents that have different, competing interests but have a shared interest in coordinating their actions. Principled negotiation is a method of finding agreement between agents with different interests. By focusing on fundamental interests and searching for options for mutual gain, agents with different interests reach agreements that provide benefits for both sides. Using principled negotiation, distributed optimization by each agent can be coordinated leading to iterative optimization of the system. Principled negotiation is well-suited to aircraft/airspace systems. It allows aircraft and operators to propose changes to air traffic control. Air traffic managers check the proposal maintains required aircraft separation. If it does, the proposal is either accepted or passed to agents whose trajectories change as part of the proposal for approval. Aircraft and operators can use all the data at hand to develop proposals that optimize their operations, while traffic managers can focus on their primary duty of ensuring

  5. Characteristics of traffic flow at nonsignalized T-shaped intersection with U-turn movements.

    PubMed

    Fan, Hong-Qiang; Jia, Bin; Li, Xin-Gang; Tian, Jun-Fang; Yan, Xue-Dong

    2013-01-01

    Most nonsignalized T-shaped intersections permit U-turn movements, which make the traffic conditions of intersection complex. In this paper, a new cellular automaton (CA) model is proposed to characterize the traffic flow at the intersection of this type. In present CA model, new rules are designed to avoid the conflicts among different directional vehicles and eliminate the gridlock. Two kinds of performance measures (i.e., flux and average control delay) for intersection are compared. The impacts of U-turn movements are analyzed under different initial conditions. Simulation results demonstrate that (i) the average control delay is more practical than flux in measuring the performance of intersection, (ii) U-turn movements increase the range and degree of high congestion, and (iii) U-turn movements on the different direction of main road have asymmetrical influences on the traffic conditions of intersection.

  6. Anticipation Driving Behavior and Related Reduction of Energy Consumption in Traffic Flow

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Wei, Yan-Fang; Song, Tao; Dai, Shi-Qiang; Dong, Li-Yun

    In view that drivers would pay attention to the variation of headway on roads, an extended optimal velocity model is proposed by considering anticipation driving behavior. A stability criterion is given through linear stability analysis of traffic flows. The mKdV equation is derived with the reductive perturbation method for headway evolution which could be used to describe the stop-and-go traffic phenomenon. The results show a good effect of anticipation driving behavior on the stabilization of car flows and the anticipation driving behavior can improve the numerical stability of the model as well. In addition, the fluctuation of kinetic energy and the consumption of average energy in congested traffic flows are systematically analyzed. The results show that the reasonable level of anticipation driving behavior can save energy consumption in deceleration process effectively and lead to an associated relation like a "bow-tie" between the energy-saving and the value of anticipation factor.

  7. Self-organized lane formation and optimized traffic flow in army ants.

    PubMed

    Couzin, I D; Franks, N R

    2003-01-22

    We show how the movement rules of individual ants on trails can lead to a collective choice of direction and the formation of distinct traffic lanes that minimize congestion. We develop and evaluate the results of a new model with a quantitative study of the behaviour of the army ant Eciton burchelli. Colonies of this species have up to 200 000 foragers and transport more than 3000 prey items per hour over raiding columns that exceed 100 m. It is an ideal species in which to test the predictions of our model because it forms pheromone trails that are densely populated with very swift ants. The model explores the influences of turning rates and local perception on traffic flow. The behaviour of real army ants is such that they occupy the specific region of parameter space in which lanes form and traffic flow is maximized.

  8. Self-organized lane formation and optimized traffic flow in army ants.

    PubMed

    Couzin, I D; Franks, N R

    2003-01-22

    We show how the movement rules of individual ants on trails can lead to a collective choice of direction and the formation of distinct traffic lanes that minimize congestion. We develop and evaluate the results of a new model with a quantitative study of the behaviour of the army ant Eciton burchelli. Colonies of this species have up to 200 000 foragers and transport more than 3000 prey items per hour over raiding columns that exceed 100 m. It is an ideal species in which to test the predictions of our model because it forms pheromone trails that are densely populated with very swift ants. The model explores the influences of turning rates and local perception on traffic flow. The behaviour of real army ants is such that they occupy the specific region of parameter space in which lanes form and traffic flow is maximized. PMID:12590751

  9. Research on urban public traffic network with multi-weights based on single bus transfer junction

    NASA Astrophysics Data System (ADS)

    An, Xin-lei; Zhang, Li; Zhang, Jian-gang

    2015-10-01

    Regarding single bus transfer junction as a research object, this paper constructs the urban traffic network models with multi-weights taking different bus lines in bus transfer junction as the network nodes, that is, the urban traffic network with multi-weights is given different properties weights at every edge. According to the method of network split, the complex network with multi-weights is split into several different single weighted complex networks. Then, we study the global synchronization of the new network model by changing congestion degrees, transfers coefficient and passenger flow density between different bus lines. Finally, analytical and simulated results are given to show the impact of different properties weights to the public traffic network balance.

  10. Development of simulation techniques suitable for the analysis of air traffic control situations and instrumentation

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A terminal area simulation is described which permits analysis and synthesis of current and advanced air traffic management system configurations including ground and airborne instrumentation and new and modified aircraft characteristics. Ground elements in the simulation include navigation aids, surveillance radars, communication links, air-route structuring, ATC procedures, airport geometries and runway handling constraints. Airborne elements include traffic samples with individual aircraft performance and operating characteristics and aircraft navigation equipment. The simulation also contains algorithms for conflict detection, conflict resolution, sequencing and pilot-controller data links. The simulation model is used to determine the sensitivities of terminal area traffic flow, safety and congestion to aircraft performance characteristics, avionics systems, and other ATC elements.

  11. Particle-based model for skiing traffic

    NASA Astrophysics Data System (ADS)

    Holleczek, Thomas; Tröster, Gerhard

    2012-05-01

    We develop and investigate a particle-based model for ski slope traffic. Skiers are modeled as particles with a mass that are exposed to social and physical forces, which define the riding behavior of skiers during their descents on ski slopes. We also report position and speed data of 21 skiers recorded with GPS-equipped cell phones on two ski slopes. A comparison of these data with the trajectories resulting from computer simulations of our model shows a good correspondence. A study of the relationship among the density, speed, and flow of skiers reveals that congestion does not occur even with arrival rates of skiers exceeding the maximum ski lift capacity. In a sensitivity analysis, we identify the kinetic friction coefficient of skis on snow, the skier mass, the range of repelling social forces, and the arrival rate of skiers as the crucial parameters influencing the simulation results. Our model allows for the prediction of speed zones and skier densities on ski slopes, which is important in the prevention of skiing accidents.

  12. Reversal of Travel Time between Zipper and Non-Zipper Mergings on Highway Traffic under the Existence of Vehicles Going Straight

    NASA Astrophysics Data System (ADS)

    Nishi, Ryosuke; Miki, Hiroshi; Tomoeda, Akiyasu; Yanagisawa, Daichi; Nishinari, Katsuhiro

    Heavy traffic congestion often occurs at an intersection of highway traffic. For releasing this congestion, we compare “zipper” and “non-zipper” mergings by numerical simulations. The “zipper” merging is the alternating merging of vehicles on two lanes and achieved only by the local communication of vehicles before merging, while the “non-zipper” merging is the disorderly merging of vehicles. In simulations we use a stochastic cellular automaton model for traffic with a slow-to-start rule. Numerical results show that the travel time of the “zipper” merging is shorter (longer) than that of the “non-zipper” merging in the case of a strong (resp. weak) slow-to-start effect. Moreover, it is observed that this reversal is strongly affected by the ratio of vehicles going straight without changing lanes.

  13. Quality of congestive heart failure care

    PubMed Central

    Maddocks, Heather; Marshall, J. Neil; Stewart, Moira; Terry, Amanda L.; Cejic, Sonny; Hammond, Jo-Anne; Jordan, John; Chevendra, Vijaya; Denomme, Louisa Bestard; Thind, Amardeep

    2010-01-01

    ABSTRACT OBJECTIVE To study the feasibility of using electronic medical record (EMR) data from the Deliver Primary Healthcare Information (DELPHI) database to measure quality of care for patients with congestive heart failure (CHF) in primary care and to determine the percentage of patients with CHF receiving the recommended care. DESIGN Items listed on the Ontario Ministry of Health and Long-Term Care Heart Failure Patient Care Flow Sheet (CHF flow sheet) were assessed and measured using EMRs of patients diagnosed with CHF between October 1, 2005, and September 30, 2008. SETTING Ten primary health care practices in southwestern Ontario. PARTICIPANTS Four hundred eighty-eight patients who were considered to have CHF because at least 1 of the following was indicated in their EMRs: an International Classification of Diseases billing code for CHF (category 428), an International Classification of Primary Care diagnosis code for heart failure (ie, K77), or “CHF” reported on the problem list. MAIN OUTCOME MEASURES Number of CHF flow sheet items that were measurable using EMR data from the DELPHI database. Percentage of patients with CHF receiving required quality-of-care items since the date of diagnosis. RESULTS The DELPHI database contained information on 60 (65.9%) of the 91 items identified using the CHF flow sheet. The recommended tests and procedures were recorded infrequently: 55.5% of patients with CHF had chest radiographs; 32.6% had electrocardiograms; 32.2% had echocardiograms; 30.5% were prescribed angiotensin-converting enzyme inhibitors; 20.9% were prescribed β-blockers; and 15.8% were prescribed angiotensin II receptor blockers. CONCLUSION Low frequencies of recommended care items for patients with CHF were recorded in the EMR. Physicians explained that CHF care was documented in areas of the EMR that contained patient identifiers, such as the encounter notes, and was therefore not part of the DELPHI database. Extractable information from the EMR

  14. Water and Sodium in Heart Failure: A Spotlight on Congestion

    PubMed Central

    Greene, Stephen J.; Torres, Daniele; Alderman, Michael; Bonventre, Joseph Vincent; Di Pasquale, Pietro; Gargani, Luna; Nohria, Anju; Fonarow, Gregg C.; Vaduganathan, Muthiah; Butler, Javed; Paterna, Salvatore; Stevenson, Lynne Warner; Gheorghiade, Mihai

    2015-01-01

    Despite all available therapies, the rates of hospitalization and death from heart failure (HF) remain unacceptably high. The most common reasons for hospital admission are symptoms related to congestion. During hospitalization, most patients respond well to standard therapy and are discharged with significantly improved symptoms. Post-discharge, many patients receive diligent and frequent follow-up. However, rehospitalization rates remain high. One potential explanation is a persistent failure by clinicians to adequately manage congestion in the outpatient setting. The failure to successfully manage these patients post-discharge may represent an unmet need to improve the way congestion is both recognized and treated. A primary aim of future HF management may be to improve clinical surveillance to prevent and manage chronic fluid overload while simultaneously maximizing the use of evidence-based therapies with proven long-term benefit. Improvement in cardiac function is the ultimate goal and maintenance of a “dry” clinical profile is important to prevent hospital admission and improve prognosis. This paper focuses on methods for monitoring congestion, and strategies for water and sodium management in the context of the complex interplay between the cardiac and renal systems. A rationale for improving recognition and treatment of congestion is also proposed. PMID:24942806

  15. Qualitative change of fluctuation observed in real traffic flow

    NASA Astrophysics Data System (ADS)

    Yokoya, Yasushi

    2010-02-01

    We studied the nature of fluctuations around the phase transition of vehicular traffic by analyzing a time series of successive variations of velocity, obtained from single-vehicle data measured by an onboard apparatus. We found that the probability density function calculated from the time series of variation of velocity is transformed irreversibly in the critical region, where a Gaussian distribution changes into a Lévy stable symmetrical distribution. The power-law tail in the Lévy distribution indicated that the time series of velocity variation exhibits the nature of the critical fluctuations generally observed in phase transitions driven far from equilibrium. Furthermore, single-vehicle data enabled us to calculate the time evolution of the local flux-density relation, which suggested that the vehicular traffic system spontaneously approaches a delicate balance between metastable states and congested-flow states. The nature of fluctuations enables us to understand mechanisms behind the spontaneous decay of the metastable branch at the phase transition. The power-law tail in the probability density function suggests that dynamical processes of vehicular traffic in the critical region are related to a time-discrete stochastic process driven by random amplification with additive external noise.

  16. Road Traffic Noise

    NASA Astrophysics Data System (ADS)

    Beckenbauer, Thomas

    Road traffic is the most interfering noise source in developed countries. According to a publication of the European Union (EU) at the end of the twentieth century [1], about 40% of the population in 15 EU member states is exposed to road traffic noise at mean levels exceeding 55 dB(A). Nearly 80 million people, 20% of the population, are exposed to levels exceeding 65 dB(A) during daytime and more than 30% of the population is exposed to levels exceeding 55 dB(A) during night time. Such high noise levels cause health risks and social disorders (aggressiveness, protest, and helplessness), interference of communication and disturbance of sleep; the long- and short-term consequences cause adverse cardiovascular effects, detrimental hormonal responses (stress hormones), and possible disturbance of the human metabolism (nutrition) and the immune system. Even performance at work and school could be impaired.

  17. On-board closed-loop congestion control for satellite based packet switching networks

    NASA Technical Reports Server (NTRS)

    Chu, Pong P.; Ivancic, William D.; Kim, Heechul

    1993-01-01

    NASA LeRC is currently investigating a satellite architecture that incorporates on-board packet switching capability. Because of the statistical nature of packet switching, arrival traffic may fluctuate and thus it is necessary to integrate congestion control mechanism as part of the on-board processing unit. This study focuses on the closed-loop reactive control. We investigate the impact of the long propagation delay on the performance and propose a scheme to overcome the problem. The scheme uses a global feedback signal to regulate the packet arrival rate of ground stations. In this scheme, the satellite continuously broadcasts the status of its output buffer and the ground stations respond by selectively discarding packets or by tagging the excessive packets as low-priority. The two schemes are evaluated by theoretical queuing analysis and simulation. The former is used to analyze the simplified model and to determine the basic trends and bounds, and the later is used to assess the performance of a more realistic system and to evaluate the effectiveness of more sophisticated control schemes. The results show that the long propagation delay makes the closed-loop congestion control less responsive. The broadcasted information can only be used to extract statistical information. The discarding scheme needs carefully-chosen status information and reduction function, and normally requires a significant amount of ground discarding to reduce the on-board packet loss probability. The tagging scheme is more effective since it tolerates more uncertainties and allows a larger margin of error in status information. It can protect the high-priority packets from excessive loss and fully utilize the downlink bandwidth at the same time.

  18. Characterizing Longitude-Dependent Orbital Debris Congestion in the Geosynchronous Orbit Regime

    NASA Astrophysics Data System (ADS)

    Anderson, Paul V.

    The geosynchronous orbit (GEO) is a unique commodity of the satellite industry that is becoming increasingly contaminated with orbital debris, but is heavily populated with high-value assets from the civil, commercial, and defense sectors. The GEO arena is home to hundreds of communications, data transmission, and intelligence satellites collectively insured for an estimated 18.3 billion USD. As the lack of natural cleansing mechanisms at the GEO altitude renders the lifetimes of GEO debris essentially infinite, conjunction and risk assessment must be performed to safeguard operational assets from debris collisions. In this thesis, longitude-dependent debris congestion is characterized by predicting the number of near-miss events per day for every longitude slot at GEO, using custom debris propagation tools and a torus intersection metric. Near-miss events with the present-day debris population are assigned risk levels based on GEO-relative position and speed, and this risk information is used to prioritize the population for debris removal target selection. Long-term projections of debris growth under nominal launch traffic, mitigation practices, and fragmentation events are also discussed, and latitudinal synchronization of the GEO debris population is explained via node variations arising from luni-solar gravity. In addition to characterizing localized debris congestion in the GEO ring, this thesis further investigates the conjunction risk to operational satellites or debris removal systems applying low-thrust propulsion to raise orbit altitude at end-of-life to a super-synchronous disposal orbit. Conjunction risks as a function of thrust level, miss distance, longitude, and semi-major axis are evaluated, and a guidance method for evading conjuncting debris with continuous thrust by means of a thrust heading change via single-shooting is developed.

  19. The influence of nonmonotonic synchronized flow branch in a cellular automaton traffic flow model

    NASA Astrophysics Data System (ADS)

    Jin, Cheng-Jie; Wang, Wei

    2011-11-01

    In this paper we study the congested patterns upstream of an isolated on-ramp in a cellular automaton traffic flow model, which is proposed in our previous paper [Cheng-Jie Jin, Wei Wang, Rui Jiang, Kun Gao, J. Stat. Mech (2010) P03018]. The simulation results under open boundary conditions are presented by spatiotemporal diagrams. Our diagram of congested patterns is quite similar to that of the cellular automaton models within Kerner’s three-phase traffic theory, while some differences in the “moving synchronized flow pattern” (MSP) should be noted. In our model the upstream front of MSP propagates not only upstream, but also downstream. The propagation direction depends on the flow rates and densities of free flow and synchronized flow. Besides, in our model the outflow of wide moving jams or bottlenecks could be free flow or synchronized flow, as reported in many empirical data. In the dissolving of congestions, the form of free flow may be hindered and stable synchronized flow may emerge. This phenomenon can help us understand more about the outflow. All the interesting characteristics of our model are due to the nonmonotonic structure of synchronized flow branch in the fundamental diagram, which has not been found in previous models.

  20. Traffic time series analysis by using multiscale time irreversibility and entropy

    NASA Astrophysics Data System (ADS)

    Wang, Xuejiao; Shang, Pengjian; Fang, Jintang

    2014-09-01

    Traffic systems, especially urban traffic systems, are regulated by different kinds of interacting mechanisms which operate across multiple spatial and temporal scales. Traditional approaches fail to account for the multiple time scales inherent in time series, such as empirical probability distribution function and detrended fluctuation analysis, which have lead to different results. The role of multiscale analytical method in traffic time series is a frontier area of investigation. In this paper, our main purpose is to introduce a new method—multiscale time irreversibility, which is helpful to extract information from traffic time series we studied. In addition, to analyse the complexity of traffic volume time series of Beijing Ring 2, 3, 4 roads between workdays and weekends, which are from August 18, 2012 to October 26, 2012, we also compare the results by this new method and multiscale entropy method we have known well. The results show that the higher asymmetry index we get, the higher traffic congestion level will be, and accord with those which are obtained by multiscale entropy.

  1. Advanced traffic management systems and high-occupancy-vehicle systems. Transportation research record

    SciTech Connect

    1996-12-31

    ;Contents: Distributed Approach to Real-Time Control of Complex Signalized Networks; MULTIBAND-96: A Program for Variable-Bandwidth Progression Optimization of Multiarterial Traffic Networks; Determination of Timings in Signal Systems with Traffic-Actuated Controllers; Combined Model for Signal Control and Route Choice in Urbn Traffic Networks; Multivariate Optimization Strategies for Real-Time Traffic Control Signals; Implementation Vision for Distributed Control of Traffic Signal Subsystems; Current Developments in SCOOT: Version 3; Estimating Impact of Signal Hardware Improvements; Guidelines for Actuated Controllers in Coordinated Systems; Evaluation of Bus Priority Signal Strategies in Ann Arbor, Michigan; NETSIM-Based Approach to Evaluation of Bus Preemption Strategies; Simulation-Based Methodology for Evaluation of High-Occupancy-Vehicle Facilities; Predicting High-Occupancy-Vehicle Facility Demand; Evaluation of High-Occupancy-Vehicle Lanes on Long Island Expressway; Effect on Congestion and Motorcycle Safety of Motorcycle Travel on High-Occupancy-Vehicle Facilities in Virginia; Development of Arterial High-Occupancy-Vehicle Land Enforcement Techniques; Multiple-Interval Freeway Traffic Flow Forecasting; New Methodology for Smoothing Freeway Loop Detector Data: Introduction to Digital Filtering; Evaluation of Compliance Rates and Travel Time Calculation for Automatic Alternative Route Guidance Systems on Freeways; Algorithm for Controlling Spillback from Ramp Meters; Systemwide Analysis of Freeway Improvements; Transferability of Freeway Incident Detection Algorithms; Deriving Incident Management Measures Using Incident Probability Models and Simulation; and I-880 Field Experiment: Data-Base Development and Incident Delay Estimation Procedures.

  2. Traffic time series analysis by using multiscale time irreversibility and entropy.

    PubMed

    Wang, Xuejiao; Shang, Pengjian; Fang, Jintang

    2014-09-01

    Traffic systems, especially urban traffic systems, are regulated by different kinds of interacting mechanisms which operate across multiple spatial and temporal scales. Traditional approaches fail to account for the multiple time scales inherent in time series, such as empirical probability distribution function and detrended fluctuation analysis, which have lead to different results. The role of multiscale analytical method in traffic time series is a frontier area of investigation. In this paper, our main purpose is to introduce a new method-multiscale time irreversibility, which is helpful to extract information from traffic time series we studied. In addition, to analyse the complexity of traffic volume time series of Beijing Ring 2, 3, 4 roads between workdays and weekends, which are from August 18, 2012 to October 26, 2012, we also compare the results by this new method and multiscale entropy method we have known well. The results show that the higher asymmetry index we get, the higher traffic congestion level will be, and accord with those which are obtained by multiscale entropy. PMID:25273180

  3. A two-lane cellular automaton traffic flow model with the influence of driver, vehicle and road

    NASA Astrophysics Data System (ADS)

    Zhao, Han-Tao; Nie, Cen; Li, Jing-Ru; Wei, Yu-Ao

    2016-07-01

    On the basis of one-lane comfortable driving model, this paper established a two-lane traffic cellular automata model, which improves the slow randomization effected by brake light. Considering the driver psychological characteristics and mixed traffic, we studied the lateral influence between vehicles on adjacent lanes. Through computer simulation, the space-time diagram and the fundamental figure under different conditions are obtained. The study found that aggressive driver makes a slight congestion in low-density traffic and improves the capacity of high-density traffic, when the density exceeds 20pcu/km the more aggressive drivers the greater the flow, when the density below 40pcu/km driver character makes an effect, the more cautious driver, the lower the flow. The ratio of big cars has the same effect as the ratio of aggressive drivers. Brake lights have the greatest impact on traffic flow and when the density exceeds 10pcu/km the traffic flow fluctuates. Under periodic boundary conditions, the disturbance of road length on traffic is minimal. The lateral influence only play a limited role in the medium-density conditions, and only affect the average speed of traffic at low density.

  4. A Space-Time Network-Based Modeling Framework for Dynamic Unmanned Aerial Vehicle Routing in Traffic Incident Monitoring Applications

    PubMed Central

    Zhang, Jisheng; Jia, Limin; Niu, Shuyun; Zhang, Fan; Tong, Lu; Zhou, Xuesong

    2015-01-01

    It is essential for transportation management centers to equip and manage a network of fixed and mobile sensors in order to quickly detect traffic incidents and further monitor the related impact areas, especially for high-impact accidents with dramatic traffic congestion propagation. As emerging small Unmanned Aerial Vehicles (UAVs) start to have a more flexible regulation environment, it is critically important to fully explore the potential for of using UAVs for monitoring recurring and non-recurring traffic conditions and special events on transportation networks. This paper presents a space-time network- based modeling framework for integrated fixed and mobile sensor networks, in order to provide a rapid and systematic road traffic monitoring mechanism. By constructing a discretized space-time network to characterize not only the speed for UAVs but also the time-sensitive impact areas of traffic congestion, we formulate the problem as a linear integer programming model to minimize the detection delay cost and operational cost, subject to feasible flying route constraints. A Lagrangian relaxation solution framework is developed to decompose the original complex problem into a series of computationally efficient time-dependent and least cost path finding sub-problems. Several examples are used to demonstrate the results of proposed models in UAVs’ route planning for small and medium-scale networks. PMID:26076404

  5. A Space-Time Network-Based Modeling Framework for Dynamic Unmanned Aerial Vehicle Routing in Traffic Incident Monitoring Applications.

    PubMed

    Zhang, Jisheng; Jia, Limin; Niu, Shuyun; Zhang, Fan; Tong, Lu; Zhou, Xuesong

    2015-06-12

    It is essential for transportation management centers to equip and manage a network of fixed and mobile sensors in order to quickly detect traffic incidents and further monitor the related impact areas, especially for high-impact accidents with dramatic traffic congestion propagation. As emerging small Unmanned Aerial Vehicles (UAVs) start to have a more flexible regulation environment, it is critically important to fully explore the potential for of using UAVs for monitoring recurring and non-recurring traffic conditions and special events on transportation networks. This paper presents a space-time network- based modeling framework for integrated fixed and mobile sensor networks, in order to provide a rapid and systematic road traffic monitoring mechanism. By constructing a discretized space-time network to characterize not only the speed for UAVs but also the time-sensitive impact areas of traffic congestion, we formulate the problem as a linear integer programming model to minimize the detection delay cost and operational cost, subject to feasible flying route constraints. A Lagrangian relaxation solution framework is developed to decompose the original complex problem into a series of computationally efficient time-dependent and least cost path finding sub-problems. Several examples are used to demonstrate the results of proposed models in UAVs' route planning for small and medium-scale networks.

  6. A Space-Time Network-Based Modeling Framework for Dynamic Unmanned Aerial Vehicle Routing in Traffic Incident Monitoring Applications.

    PubMed

    Zhang, Jisheng; Jia, Limin; Niu, Shuyun; Zhang, Fan; Tong, Lu; Zhou, Xuesong

    2015-01-01

    It is essential for transportation management centers to equip and manage a network of fixed and mobile sensors in order to quickly detect traffic incidents and further monitor the related impact areas, especially for high-impact accidents with dramatic traffic congestion propagation. As emerging small Unmanned Aerial Vehicles (UAVs) start to have a more flexible regulation environment, it is critically important to fully explore the potential for of using UAVs for monitoring recurring and non-recurring traffic conditions and special events on transportation networks. This paper presents a space-time network- based modeling framework for integrated fixed and mobile sensor networks, in order to provide a rapid and systematic road traffic monitoring mechanism. By constructing a discretized space-time network to characterize not only the speed for UAVs but also the time-sensitive impact areas of traffic congestion, we formulate the problem as a linear integer programming model to minimize the detection delay cost and operational cost, subject to feasible flying route constraints. A Lagrangian relaxation solution framework is developed to decompose the original complex problem into a series of computationally efficient time-dependent and least cost path finding sub-problems. Several examples are used to demonstrate the results of proposed models in UAVs' route planning for small and medium-scale networks. PMID:26076404

  7. Reliability and Congestion Effects on Embedded Cost of Transmission Services

    NASA Astrophysics Data System (ADS)

    Shooshtari, Alireza Tavakoli; Joorabian, Mahmood; Milani, Armin Ebrahimi

    2011-06-01

    The aim of this paper is to make a novel method for calculating the investment cost of Transmission services. It should be noted that some considerations such as used capacity, profits of reliability and profits of decreasing congestion-the money allocated to transmission services- are also taken into account. The proposed method is tested on an 8 bus test system. All simulations are done in MATLAB environment, and MATPOWER is used for Power Flow Analysis. In order to verify the proposed method, the optimal results are compared with the pervious techniques. Therefore, the proposed technique in the paper has important effects on investment on transmission network by improving the profits of reliability and decreasing congestion. Furthermore, simulations show that increasing maximum acceptable level of current will decrease the profit of decreasing congestion.

  8. Significantly Elevated Liver Alkaline Phosphatase in Congestive Heart Failure

    PubMed Central

    Shamban, Leonid; Patel, Brijesh; Williams, Michael

    2014-01-01

    Congestive hepatopathy can have a mildly elevated liver profile, which should normalize with appropriate therapy. Liver specific alkaline phosphatase (ALP) in decompensated heart failure (HF) can be mildly elevated. The levels exceeding beyond the expected rise should be a concern and lead to further investigation. The literature reports insubstantial number of cases regarding significantly elevated levels of ALP and congestive hepatopathy. We report a case of a 45-year-old female with known history of severe cardiomyopathy that had persistently elevated levels of ALP. The extensive workup was negative for any specific pathology. The liver biopsy was consistent with congestive hepatopathy. The patient’s ALP levels decreased with aggressive diuretic therapy but still remained elevated.

  9. Aerodynamic side-force alleviator means

    NASA Technical Reports Server (NTRS)

    Rao, D. M. (Inventor)

    1980-01-01

    An apparatus for alleviating high angle of attack side force on slender pointed cylindrical forebodies such as fighter aircraft, missiles and the like is described. A symmetrical pair of helical separation trips was employed to disrupt the leeside vortices normally attained. The symmetrical pair of trips starts at either a common point or at space points on the upper surface of the forebody and extends along separate helical paths along the circumference of the forebody.

  10. Gust Alleviation Using Direct Gust Measurement

    NASA Technical Reports Server (NTRS)

    Hoppe, Sven Marco

    2000-01-01

    The increasing competition in the market of civil aircraft leads to operating efficiency and passenger comfort being very important sales arguments. Continuous developments in jet propulsion technology helped to reduce energy consumption, as well as noise and vibrations due to the engines. The main problem with respect to ride comfort is, however, the transmittance of accelerations and jerkiness imposed by atmospheric turbulence from the wings to the fuselage. This 'gust' is also a design constraint: Light airplane structures help to save, energy, but are more critical to resist the loads imposed by turbulence. For both reasons, efficient gust alleviation is necessary to improve the performance of modern aircraft. Gust can be seen as a change in the angle of attack or as an additional varying vertical component of the headwind. The effect of gust can be very strong, since the same aerodynamic forces that keep the airplane flying are involved. Event though the frequency range of those changes is quite low, it is impossible for the pilot to alleviate gust manually. Besides, most of the time during the flight, the, autopilot maintains course and the attitude of flight. Certainly, most autopilots should be capable of damping the roughest parts of turbulence, but they are unable to provide satisfactory results in that field. A promising extension should be the application of subsidiary, control, where the inner (faster) control loop alleviates turbulence and the outer (slower) loop controls the attitude of flight. Besides the mentioned ride comfort, another reason for gust alleviation with respect to the fuselage is the sensibility of electrical devices to vibration and high values of acceleration. Many modern airplane designs--especially inherently instable military aircraft--are highly dependent on avionics. The lifetime and the reliability of these systems is thus essential.

  11. Gene transfer for congestive heart failure: update 2013.

    PubMed

    Tang, Tong; Hammond, H Kirk

    2013-04-01

    Congestive heart failure is a major cause of morbidity and mortality with increasing social and economic costs. There have been no new high impact therapeutic agents for this devastating disease for more than a decade. However, many pivotal regulators of cardiac function have been identified using cardiac-directed transgene expression and gene deletion in preclinical studies. Some of these increase function of the failing heart. Altering the expression of these pivotal regulators using gene transfer is now either being tested in clinical gene transfer trials, or soon will be. In this review, we summarize recent progress in cardiac gene transfer for clinical congestive heart failure.

  12. Congestion estimation technique in the optical network unit registration process.

    PubMed

    Kim, Geunyong; Yoo, Hark; Lee, Dongsoo; Kim, Youngsun; Lim, Hyuk

    2016-07-01

    We present a congestion estimation technique (CET) to estimate the optical network unit (ONU) registration success ratio for the ONU registration process in passive optical networks. An optical line terminal (OLT) estimates the number of collided ONUs via the proposed scheme during the serial number state. The OLT can obtain congestion level among ONUs to be registered such that this information may be exploited to change the size of a quiet window to decrease the collision probability. We verified the efficiency of the proposed method through simulation and experimental results.

  13. Observations on traffic flow patterns and traffic engineering practice

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Gao, Lixin

    2002-07-01

    Border Gateway Protocol allows ASs to apply diverse routing policies for selecting routes and propagating reachability information to other ASs. This enables network operators to configure routing policies so as to control traffic flows between ASs. However, BGP is not designed for the inter-AS traffic engineering. This makes it difficult to implement effective routing policies to address network performance and utilization problems. Network operators usually tweak routing policies to influence the inter-domain traffic among the available links. This can lead to undesirable traffic flow patterns across the Internet and degrade the Internet traffic performance. In this paper, we show several observations on Internet traffic flow patterns and derive routing policies that give rise to the traffic flow patterns. Our results show that an AS can reach as much as 20% of the prefixes via a peer link even though there is a path via a customer link. In addition, an AS can reach as much as 80% of the prefixes via a provider link even though there is a path via a peer link. Second, we analyze the cause of the prevalence of these traffic patterns. Our analysis shows that an AS typically does not receive the potential route from its customers or peers. Third, we find that alternate routes have with lower propagation delay than the chosen routes for some prefixes. This shows that some traffic engineering practices might adversely affect Internet performance.

  14. Data, modelling and inference in road traffic networks.

    PubMed

    Gibbens, Richard J; Saatci, Yunus

    2008-06-13

    In this paper, we study UK road traffic data and explore a range of modelling and inference questions that arise from them. For example, loop detectors on the M25 motorway record speed and flow measurements at regularly spaced locations as well as the entry and exit lanes of junctions. An exploratory study of these data helps us to better understand and quantify the nature of congestion on the road network. From a traveller's perspective it is crucially important to understand the overall journey times and we look at methods to improve our ability to predict journey times given access jointly to both real-time and historical loop detector data. Throughout this paper we will comment on related work derived from US freeway data.

  15. Successive linear optimization approach to the dynamic traffic assignment problem

    SciTech Connect

    Ho, J.K.

    1980-11-01

    A dynamic model for the optimal control of traffic flow over a network is considered. The model, which treats congestion explicitly in the flow equations, gives rise to nonlinear, nonconvex mathematical programming problems. It has been shown for a piecewise linear version of this model that a global optimum is contained in the set of optimal solutions of a certain linear program. A sufficient condition for optimality which implies that a global optimum can be obtained by successively optimizing at most N + 1 objective functions for the linear program, where N is the number of time periods in the planning horizon is presented. Computational results are reported to indicate the efficiency of this approach.

  16. Urban traffic from the perspective of dual graph

    NASA Astrophysics Data System (ADS)

    Hu, M.-B.; Jiang, R.; Wu, Y.-H.; Wang, W.-X.; Wu, Q.-S.

    2008-05-01

    Urban traffic is modeled using a dual graph representation of the urban transport network, where roads are mapped to nodes and intersections are mapped to links. The proposed model considers both the navigation of the vehicles in the network and the motion of the vehicles along roads. The vehicle-holding ability of roads and the vehicle-turning ability at intersections are also incorporated. The overall handling ability of the system can be quantified by a phase transition from free flow to congestion. Simulations show that the system's handling ability greatly depends on the topology of the transportation network. In general, a well-planned grid can hold more vehicles, and its overall handling ability is much greater than that of a growing self-organized network.

  17. An intelligent traffic controller

    SciTech Connect

    Kagolanu, K.; Fink, R.; Smartt, H.; Powell, R.; Larsen, E.

    1995-12-01

    A controller with advanced control logic can significantly improve traffic flows at intersections. In this vein, this paper explores fuzzy rules and algorithms to improve the intersection operation by rationalizing phase changes and green times. The fuzzy logic for control is enhanced by the exploration of neural networks for families of membership functions and for ideal cost functions. The concepts of fuzzy logic control are carried forth into the controller architecture. Finally, the architecture and the modules are discussed. In essence, the control logic and architecture of an intelligent controller are explored.

  18. Butyrate protects rat liver against total hepatic ischemia reperfusion injury with bowel congestion.

    PubMed

    Liu, Bin; Qian, Jianmin; Wang, Qingbao; Wang, Fangrui; Ma, Zhenyu; Qiao, Yingli

    2014-01-01

    Hepatic ischemia/reperfusion (I/R) injury is an unavoidable consequence of major liver surgery, especially in liver transplantation with bowel congestion, during which endotoxemia is often evident. The inflammatory response aggravated by endotoxin after I/R contributes to liver dysfunction and failure. The purpose of the present study was to investigate the protective effect of butyrate, a naturally occurring four-carbon fatty acid in the body and a dietary component of foods such as cheese and butter, on hepatic injury complicated by enterogenous endotoxin, as well as to examine the underlying mechanisms involved. SD rats were subjected to a total hepatic ischemia for 30 min after pretreatment with either vehicle or butyrate, followed by 6 h and 24 h of reperfusion. Butyrate preconditioning markedly improved hepatic function and histology, as indicated by reduced transaminase levels and ameliorated tissue pathological changes. The inflammatory factors levels, macrophages activation, TLR4 expression, and neutrophil infiltration in live were attenuated by butyrate. Butyrate also maintained the intestinal barrier structures, reversed the aberrant expression of ZO-1, and decreased the endotoxin translocation. We conclude that butyrate inhibition of endotoxin translocation, macrophages activation, inflammatory factors production, and neutrophil infiltration is involved in the alleviation of total hepatic I/R liver injury in rats. This suggests that butyrate should potentially be utilized in liver transplantation.

  19. Near real-time traffic routing

    NASA Technical Reports Server (NTRS)

    Yang, Chaowei (Inventor); Cao, Ying (Inventor); Xie, Jibo (Inventor); Zhou, Bin (Inventor)

    2012-01-01

    A near real-time physical transportation network routing system comprising: a traffic simulation computing grid and a dynamic traffic routing service computing grid. The traffic simulator produces traffic network travel time predictions for a physical transportation network using a traffic simulation model and common input data. The physical transportation network is divided into a multiple sections. Each section has a primary zone and a buffer zone. The traffic simulation computing grid includes multiple of traffic simulation computing nodes. The common input data includes static network characteristics, an origin-destination data table, dynamic traffic information data and historical traffic data. The dynamic traffic routing service computing grid includes multiple dynamic traffic routing computing nodes and generates traffic route(s) using the traffic network travel time predictions.

  20. Commercial machine vision system for traffic monitoring and control

    NASA Astrophysics Data System (ADS)

    D Agostino, Salvatore A.

    1992-03-01

    Traffic imaging covers a range of current and potential applications. These include traffic control and analysis, license plate finding, reading and storage, violation detection and archiving, vehicle sensors, and toll collection/enforcement. Experience from commercial installations and knowledge of the system requirements have been gained over the past 10 years. Recent improvements in system component cost and performance now allow products to be applied that provide cost effective solutions to the requirements for truly intelligent vehicle/highway systems (IVHS). The United States is a country that loves to drive. The infrastructure built in the 1950s and 1960s along with the low price of gasoline created an environment where the automobiles became an accessible and intricate part of American life. The United States has spent $DLR103 billion to build 40,000 highway miles since 1956, the start of the interstate program which is nearly complete. Unfortunately, a situation has arisen where the options for dramatically improving the ability of our roadways to absorb the increasing amount of traffic is limited. This is true in other countries as well as in the United States. The number of vehicles in the world increases by over 10,000,000 each year. In the United States there are about 180 million cars, trucks, and buses and this is estimated to double in the next 30 years. Urban development, and development in general, pushes from the edge of our roadways out. This leaves little room to increase the physical amount of roadway. Americans now spend more than 1.6 billion hours a year waiting in traffic jams. It is estimated that this congestion wasted 3 billion gallons of oil or 4% of the nation's annual gas consumption. The way out of the dilemma is to increase road use efficiency as well as improve mass transportation alternatives.

  1. An optimization model for the US Air-Traffic System

    NASA Technical Reports Server (NTRS)

    Mulvey, J. M.

    1986-01-01

    A systematic approach for monitoring U.S. air traffic was developed in the context of system-wide planning and control. Towards this end, a network optimization model with nonlinear objectives was chosen as the central element in the planning/control system. The network representation was selected because: (1) it provides a comprehensive structure for depicting essential aspects of the air traffic system, (2) it can be solved efficiently for large scale problems, and (3) the design can be easily communicated to non-technical users through computer graphics. Briefly, the network planning models consider the flow of traffic through a graph as the basic structure. Nodes depict locations and time periods for either individual planes or for aggregated groups of airplanes. Arcs define variables as actual airplanes flying through space or as delays across time periods. As such, a special case of the network can be used to model the so called flow control problem. Due to the large number of interacting variables and the difficulty in subdividing the problem into relatively independent subproblems, an integrated model was designed which will depict the entire high level (above 29000 feet) jet route system for the 48 contiguous states in the U.S. As a first step in demonstrating the concept's feasibility a nonlinear risk/cost model was developed for the Indianapolis Airspace. The nonlinear network program --NLPNETG-- was employed in solving the resulting test cases. This optimization program uses the Truncated-Newton method (quadratic approximation) for determining the search direction at each iteration in the nonlinear algorithm. It was shown that aircraft could be re-routed in an optimal fashion whenever traffic congestion increased beyond an acceptable level, as measured by the nonlinear risk function.

  2. Traveling waves in an optimal velocity model of freeway traffic.

    PubMed

    Berg, P; Woods, A

    2001-03-01

    Car-following models provide both a tool to describe traffic flow and algorithms for autonomous cruise control systems. Recently developed optimal velocity models contain a relaxation term that assigns a desirable speed to each headway and a response time over which drivers adjust to optimal velocity conditions. These models predict traffic breakdown phenomena analogous to real traffic instabilities. In order to deepen our understanding of these models, in this paper, we examine the transition from a linear stable stream of cars of one headway into a linear stable stream of a second headway. Numerical results of the governing equations identify a range of transition phenomena, including monotonic and oscillating travelling waves and a time- dependent dispersive adjustment wave. However, for certain conditions, we find that the adjustment takes the form of a nonlinear traveling wave from the upstream headway to a third, intermediate headway, followed by either another traveling wave or a dispersive wave further downstream matching the downstream headway. This intermediate value of the headway is selected such that the nonlinear traveling wave is the fastest stable traveling wave which is observed to develop in the numerical calculations. The development of these nonlinear waves, connecting linear stable flows of two different headways, is somewhat reminiscent of stop-start waves in congested flow on freeways. The different types of adjustments are classified in a phase diagram depending on the upstream and downstream headway and the response time of the model. The results have profound consequences for autonomous cruise control systems. For an autocade of both identical and different vehicles, the control system itself may trigger formations of nonlinear, steep wave transitions. Further information is available [Y. Sugiyama, Traffic and Granular Flow (World Scientific, Singapore, 1995), p. 137]. PMID:11308709

  3. Traveling waves in an optimal velocity model of freeway traffic.

    PubMed

    Berg, P; Woods, A

    2001-03-01

    Car-following models provide both a tool to describe traffic flow and algorithms for autonomous cruise control systems. Recently developed optimal velocity models contain a relaxation term that assigns a desirable speed to each headway and a response time over which drivers adjust to optimal velocity conditions. These models predict traffic breakdown phenomena analogous to real traffic instabilities. In order to deepen our understanding of these models, in this paper, we examine the transition from a linear stable stream of cars of one headway into a linear stable stream of a second headway. Numerical results of the governing equations identify a range of transition phenomena, including monotonic and oscillating travelling waves and a time- dependent dispersive adjustment wave. However, for certain conditions, we find that the adjustment takes the form of a nonlinear traveling wave from the upstream headway to a third, intermediate headway, followed by either another traveling wave or a dispersive wave further downstream matching the downstream headway. This intermediate value of the headway is selected such that the nonlinear traveling wave is the fastest stable traveling wave which is observed to develop in the numerical calculations. The development of these nonlinear waves, connecting linear stable flows of two different headways, is somewhat reminiscent of stop-start waves in congested flow on freeways. The different types of adjustments are classified in a phase diagram depending on the upstream and downstream headway and the response time of the model. The results have profound consequences for autonomous cruise control systems. For an autocade of both identical and different vehicles, the control system itself may trigger formations of nonlinear, steep wave transitions. Further information is available [Y. Sugiyama, Traffic and Granular Flow (World Scientific, Singapore, 1995), p. 137].

  4. Traveling waves in an optimal velocity model of freeway traffic

    NASA Astrophysics Data System (ADS)

    Berg, Peter; Woods, Andrew

    2001-03-01

    Car-following models provide both a tool to describe traffic flow and algorithms for autonomous cruise control systems. Recently developed optimal velocity models contain a relaxation term that assigns a desirable speed to each headway and a response time over which drivers adjust to optimal velocity conditions. These models predict traffic breakdown phenomena analogous to real traffic instabilities. In order to deepen our understanding of these models, in this paper, we examine the transition from a linear stable stream of cars of one headway into a linear stable stream of a second headway. Numerical results of the governing equations identify a range of transition phenomena, including monotonic and oscillating travelling waves and a time- dependent dispersive adjustment wave. However, for certain conditions, we find that the adjustment takes the form of a nonlinear traveling wave from the upstream headway to a third, intermediate headway, followed by either another traveling wave or a dispersive wave further downstream matching the downstream headway. This intermediate value of the headway is selected such that the nonlinear traveling wave is the fastest stable traveling wave which is observed to develop in the numerical calculations. The development of these nonlinear waves, connecting linear stable flows of two different headways, is somewhat reminiscent of stop-start waves in congested flow on freeways. The different types of adjustments are classified in a phase diagram depending on the upstream and downstream headway and the response time of the model. The results have profound consequences for autonomous cruise control systems. For an autocade of both identical and different vehicles, the control system itself may trigger formations of nonlinear, steep wave transitions. Further information is available [Y. Sugiyama, Traffic and Granular Flow (World Scientific, Singapore, 1995), p. 137].

  5. Long-Range Emergency Preemption of Traffic Lights

    NASA Technical Reports Server (NTRS)

    Bachelder, Aaron

    2005-01-01

    A forwarding system could prove beneficial as an addition to an electronic communication-and-control system that automatically modifies the switching of traffic lights to give priority to emergency vehicles. A system to which the forwarding system could be added could be any of a variety of emergency traffic-signal-preemption systems: these include systems now used in some municipalities as well as advanced developmental systems described in several NASA Tech Briefs articles in recent years. Because of a variety of physical and design limitations, emergency traffic-signal- preemption systems now in use are often limited in range to only one intersection at a time: in a typical system, only the next, closest intersection is preempted for an emergency vehicle. Simulations of gridlock have shown that such systems offer minimal advantages and can even cause additional delays. In analogy to what happens in fluid dynamics, the forwarding system insures that flow at a given location is sustained by guaranteeing downstream flow along the predicted route (typically a main artery) and intersecting routes (typically, side streets). In simplest terms, the forwarding system starts by taking note of any preemption issued by the preemption system to which it has been added. The forwarding system predicts which other intersections could be encountered by the emergency vehicle downstream of the newly preempted intersection. The system then forwards preemption triggers to those intersections. Beyond affording a right of way for the emergency vehicle at every intersection that lies ahead along any likely route from the current position of the vehicle, the forwarding system also affords the benefit of clearing congested roads far ahead of the vehicle. In a metropolitan environment with heavy road traffic, forwarding of preemption triggers could greatly enhance the performance of a pre-existing preemption system.

  6. Design of proportional-derivative-type state feedback controllers for congestion control of transmission control protocol networks

    NASA Astrophysics Data System (ADS)

    Azadegan, Masoumeh; Beheshti, Mohammad T. H.; Tavassoli, Babak

    2015-07-01

    A new proportional-derivative-type state feedback controller is proposed for congestion control of transmission control protocol (TCP) networks. An analytical TCP model is adopted. In the proposed control scheme, it is possible to efficiently control the TCP traffic using only the queue length at the router without the need to know the TCP window size which is not available locally. The results are presented in terms of delay-dependent linear matrix inequality. The proposed method is verified by simulation examples using NS software, and the effectiveness and superiority of our method over other control schemes, such as the proportional-integral, random early detection and generalised minimum variancemethods, are also shown.

  7. Understanding congestion in China's medical market: an incentive structure perspective.

    PubMed

    Sun, Zesheng; Wang, Shuhong; Barnes, Stephen R

    2016-04-01

    Congestion has become one of the most important factors leading to patient dissatisfaction and doctor-patient conflicts in the medical market of China. In this study, we explore the causes and effects of structural congestion in the Chinese medical market from an incentive structure perspective. Our analysis reveals that prior medical system reforms with price regulation in China have induced hospitals to establish incentives for capital-intensive investments, while ignoring human capital, and have driven medical staff and patients to higher-level hospitals, reinforcing an incentive structure in which congestion in higher-level hospitals and idle resources in lower-level hospitals coexist. The existing incentive structure has led to cost increases and degradation of human capital and specific factor effects. Recent reforms to reduce congestion in the Chinese medical market were not effective. Most of them had no impact on and did not involve the existing distorted incentive structure. Future reforms should consider rebalancing expectations for medical quality, free flow of human capital and price regulation reforms to rebuild a new incentive structure. PMID:26185181

  8. Teaching Congestive Heart Failure to Doctor of Pharmacy Students.

    ERIC Educational Resources Information Center

    Parker, Robert B.

    1992-01-01

    This paper summarizes a lecture given to pharmacy students that emphasizes the pathophysiologic mechanisms causing congestive heart failure and the effects of drugs on these mechanisms. The approach shows the importance of drug therapy in this disorder and how this knowledge can improve patient care. An appendix provides a case study. (GLR)

  9. Cooperative multiagent congestion control for high-speed networks.

    PubMed

    Hwang, Kao-Shing; Tan, Shun-Wen; Hsiao, Ming-Chang; Wu, Cheng-Shong

    2005-04-01

    An adaptive multiagent reinforcement learning method for solving congestion control problems on dynamic high-speed networks is presented. Traditional reactive congestion control selects a source rate in terms of the queue length restricted to a predefined threshold. However, the determination of congestion threshold and sending rate is difficult and inaccurate due to the propagation delay and the dynamic nature of the networks. A simple and robust cooperative multiagent congestion controller (CMCC), which consists of two subsystems: a long-term policy evaluator, expectation-return predictor and a short-term rate selector composed of action-value evaluator and stochastic action selector elements has been proposed to solve the problem. After receiving cooperative reinforcement signals generated by a cooperative fuzzy reward evaluator using game theory, CMCC takes the best action to regulate source flow with the features of high throughput and low packet loss rate. By means of learning procedures, CMCC can learn to take correct actions adaptively under time-varying environments. Simulation results showed that the proposed approach can promote the system utilization and decrease packet losses simultaneously.

  10. Nuclear angiography in a dog with congestive cardiomyopathy

    SciTech Connect

    Lippert, A.C.; Twardock, A.R.; Gelberg, H.B.

    1986-03-01

    Nuclear angiography was used as a diagnostic aid and in monitoring the clinical course of a case of congestive cardiomyopathy in a dog. Serial examinations revealed progressively deteriorating values for left ventricular ejection fraction before the dog's death. This noninvasive technique can be an alternative to echocardiography for the evaluation of cardiac performance.

  11. Intramembrane congestion effects on lysenin channel voltage-induced gating

    PubMed Central

    Krueger, Eric; Bryant, Sheenah; Shrestha, Nisha; Clark, Tyler; Hanna, Charles; Pink, David; Fologea, Daniel

    2016-01-01

    All cell membranes are packed with proteins. The ability to investigate the regulatory mechanisms of protein channels in experimental conditions mimicking their congested native environment is crucial for understanding the environmental physicochemical cues that may fundamentally contribute to their functionality in natural membranes. Here we report on investigations of the voltage-induced gating of lysenin channels in congested conditions experimentally achieved by increasing the number of channels inserted into planar lipid membranes. Typical electrophysiology measurements reveal congestion-induced changes to the voltage-induced gating, manifested as a significant reduction of the response to external voltage stimuli. Furthermore, we demonstrate a similar diminished voltage sensitivity for smaller populations of channels by reducing the amount of sphingomyelin in the membrane. Given lysenin’s preference for targeting lipid rafts, this result indicates the potential role of the heterogeneous organization of the membrane in modulating channel functionality. Our work indicates that local congestion within membranes may alter the energy landscape and the kinetics of conformational changes of lysenin channels in response to voltage stimuli. This level of understanding may be extended to better characterize the role of the specific membrane environment in modulating the biological functionality of protein channels in health and disease. PMID:26695013

  12. Understanding congestion in China's medical market: an incentive structure perspective.

    PubMed

    Sun, Zesheng; Wang, Shuhong; Barnes, Stephen R

    2016-04-01

    Congestion has become one of the most important factors leading to patient dissatisfaction and doctor-patient conflicts in the medical market of China. In this study, we explore the causes and effects of structural congestion in the Chinese medical market from an incentive structure perspective. Our analysis reveals that prior medical system reforms with price regulation in China have induced hospitals to establish incentives for capital-intensive investments, while ignoring human capital, and have driven medical staff and patients to higher-level hospitals, reinforcing an incentive structure in which congestion in higher-level hospitals and idle resources in lower-level hospitals coexist. The existing incentive structure has led to cost increases and degradation of human capital and specific factor effects. Recent reforms to reduce congestion in the Chinese medical market were not effective. Most of them had no impact on and did not involve the existing distorted incentive structure. Future reforms should consider rebalancing expectations for medical quality, free flow of human capital and price regulation reforms to rebuild a new incentive structure.

  13. Flow and congestion control for Internet media streaming applications

    NASA Astrophysics Data System (ADS)

    Cen, Shanwei; Walpole, Jonathan; Pu, Calton

    1997-12-01

    The emergence of streaming multimedia players provides users with low latency audio and video content over the Internet. Providing high-quality, best-effort, real-time multimedia content requires adaptive delivery schemes that fairly share the available network bandwidth with reliable data protocols such as TCP. This paper proposes a new flow and congestion control scheme, SCP (streaming control protocol), for real- time streaming of continuous multimedia data across the Internet. The design of SCP arose from several years of experience in building and using adaptive real-time streaming video players. SCP addresses two issues associated with real- time streaming. First, it uses a congestion control policy that allows it to share network bandwidth fairly with both TCP and other SCP streams. Second, it improves smoothness in streaming and ensures low, predictable latency. This distinguishes it from TCP's jittery congestion avoidance policy that is based on linear growth and one-half reduction of its congestion window. In this paper, we present a description of SCP, and an evaluation of it using Internet- based experiments.

  14. 23 CFR 972.214 - Federal lands congestion management system (CMS).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 23 Highways 1 2011-04-01 2011-04-01 false Federal lands congestion management system (CMS). 972... § 972.214 Federal lands congestion management system (CMS). (a) For purposes of this section, congestion... interference. For those FWS transportation systems that require a CMS, in both metropolitan and...

  15. 23 CFR 971.214 - Federal lands congestion management system (CMS).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 23 Highways 1 2011-04-01 2011-04-01 false Federal lands congestion management system (CMS). 971... Federal lands congestion management system (CMS). (a) For purposes of this section, congestion means the...) Develop criteria to determine when a CMS is to be implemented for a specific FH; and (2) Have CMS...

  16. Increased walking variability in elderly persons with congestive heart failure

    NASA Technical Reports Server (NTRS)

    Hausdorff, J. M.; Forman, D. E.; Ladin, Z.; Goldberger, A. L.; Rigney, D. R.; Wei, J. Y.

    1994-01-01

    OBJECTIVES: To determine the effects of congestive heart failure on a person's ability to walk at a steady pace while ambulating at a self-determined rate. SETTING: Beth Israel Hospital, Boston, a primary and tertiary teaching hospital, and a social activity center for elderly adults living in the community. PARTICIPANTS: Eleven elderly subjects (aged 70-93 years) with well compensated congestive heart failure (NY Heart Association class I or II), seven elderly subjects (aged 70-79 years) without congestive heart failure, and 10 healthy young adult subjects (aged 20-30 years). MEASUREMENTS: Subjects walked for 8 minutes on level ground at their own selected walking rate. Footswitches were used to measure the time between steps. Step rate (steps/minute) and step rate variability were calculated for the entire walking period, for 30 seconds during the first minute of the walk, for 30 seconds during the last minute of the walk, and for the 30-second period when each subject's step rate variability was minimal. Group means and 5% and 95% confidence intervals were computed. MAIN RESULTS: All measures of walking variability were significantly increased in the elderly subjects with congestive heart failure, intermediate in the elderly controls, and lowest in the young subjects. There was no overlap between the three groups using the minimal 30-second variability (elderly CHF vs elderly controls: P < 0.001, elderly controls vs young: P < 0.001), and no overlap between elderly subjects with and without congestive heart failure when using the overall variability. For all four measures, there was no overlap in any of the confidence intervals, and all group means were significantly different (P < 0.05).

  17. How cultivation alleviates soil water repellency

    NASA Astrophysics Data System (ADS)

    Orfanus, Tomas; Dlapa, Pavel; Fodor, Nandor; Rajkai, Kalman

    2010-05-01

    Prolonged droughts are still more frequent and last longer in Central Europe. Under high temperature and low water content, the wettability of organic substances, which cover soil particles, decreases and the infiltration process can be retarded or even entirely prevented. This phenomenon (usually called the soil water repellency - SWR) is very common in sandy soils, especially under natural-state vegetation (forests, grasslands). The objective of this study was to examine to what extent the SWR can be alleviated by sandy soil cultivation. Two study sites in Pannonian basin were selected; Sekule in south-western Slovakia and Őrbottyán in northern Hungary. Both have sandy soils with similar textural composition and elementary structure. They differ only by land use. The first is an untreated meadow while the other has been cultivated for decades and contains small after-fertilization residual amount of carbonates. As the reference material, pure aeolian sand with no organic matter from the Sekule study site was taken, since no SWR has been detected there. Infiltration tests under small positive pressure and comparative infiltration tests with water and ethanol under small negative pressure were performed on the three materials, after several prolonged dry seasons. The results show that, water infiltration is considerably retarded in both sandy soils, which contain organic matter (meadow and arable) when compared to the reference material. In arable soil the effect was partially alleviated by cultivation. One evident reason is the presence of residual after-fertilization carbonates in this soil. Carbonates on the one side enlarged the hydrophilic/hydrophobic surface ratio and on the other increased pH, which causes enhanced dissociation of carboxylic groups and by this way also overall hydrophilicity of soil organic matter. This assumption was proved by laboratory experiments with the meadow soil from Sekule, when after calcite addition into the soil the

  18. How to alleviate degradation of mangroves?

    PubMed

    Kathiresan, K

    2004-10-01

    This work has experimentally proved that hyper salinity, a major cause for degradation of coastal mangrove habitats, can be alleviated by flushing of hyper saline soil with tidal water and/or with rainwater. Over a period of three years after digging the creeks to flush hyper saline soil with tidal water, an appreciable reduction in soil salinity and a moderate increase in colonization of mangroves are observed. Soil analysis showed a significant reduction in salinity after 2 months of storage of rainwater with a significant and concomitant increase of heterotrophic bacterial counts and nutrients. This study raises the possibility of converting degrading mangrove habitats to luxuriant ones through man-made efforts.

  19. An economic way of reducing health, environmental, and other pressures of urban traffic: a decision analysis on trip aggregation

    PubMed Central

    Tuomisto, Jouni T; Tainio, Marko

    2005-01-01

    Background Traffic congestion is rapidly becoming the most important obstacle to urban development. In addition, traffic creates major health, environmental, and economical problems. Nonetheless, automobiles are crucial for the functions of the modern society. Most proposals for sustainable traffic solutions face major political opposition, economical consequences, or technical problems. Methods We performed a decision analysis in a poorly studied area, trip aggregation, and studied decisions from the perspective of two different stakeholders, the passenger and society. We modelled the impact and potential of composite traffic, a hypothetical large-scale demand-responsive public transport system for the Helsinki metropolitan area, where a centralised system would collect the information on all trip demands online, would merge the trips with the same origin and destination into public vehicles with eight or four seats, and then would transmit the trip instructions to the passengers' mobile phones. Results We show here that in an urban area with one million inhabitants, trip aggregation could reduce the health, environmental, and other detrimental impacts of car traffic typically by 50–70%, and if implemented could attract about half of the car passengers, and within a broad operational range would require no public subsidies. Conclusion Composite traffic provides new degrees of freedom in urban decision-making in identifying novel solutions to the problems of urban traffic. PMID:16309549

  20. Traffic Calming: A Social Issue

    ERIC Educational Resources Information Center

    Crouse, David W.

    2004-01-01

    Substantial urban growth fueled by a strong economy often results in heavy traffic thus making streets less hospitable. Traffic calming is one response to the pervasiveness of the automobile. The issues concern built environments and involve multiple actors reflecting different interests. The issues are rarely technical and involve combinations of…

  1. Traffic Safety for Special Children

    ERIC Educational Resources Information Center

    Wilson, Val; MacKenzie, R. A.

    1974-01-01

    In a 6 weeks' unit on traffic education using flannel graphs, filmstrips and models, 12 special class students (IQ 55-82) ages 7- to 11-years-old learned six basic skills including crossing a road, obeying traffic lights and walking on country roads. (CL)

  2. On the Existence of Optimal Taxes for Network Congestion Games with Heterogeneous Users

    NASA Astrophysics Data System (ADS)

    Fotakis, Dimitris; Karakostas, George; Kolliopoulos, Stavros G.

    We consider network congestion games in which a finite number of non-cooperative users select paths. The aim is to mitigate the inefficiency caused by the selfish users by introducing taxes on the network edges. A tax vector is strongly (weakly)-optimal if all (at least one of) the equilibria in the resulting game minimize(s) the total latency. The issue of designing optimal tax vectors for selfish routing games has been studied extensively in the literature. We study for the first time taxation for networks with atomic users which have unsplittable traffic demands and are heterogeneous, i.e., have different sensitivities to taxes. On the positive side, we show the existence of weakly-optimal taxes for single-source network games. On the negative side, we show that the cases of homogeneous and heterogeneous users differ sharply as far as the existence of strongly-optimal taxes is concerned: there are parallel-link games with linear latencies and heterogeneous users that do not admit strongly-optimal taxes.

  3. The impact of traffic-flow patterns on air quality in urban street canyons.

    PubMed

    Thaker, Prashant; Gokhale, Sharad

    2016-01-01

    We investigated the effect of different urban traffic-flow patterns on pollutant dispersion in different winds in a real asymmetric street canyon. Free-flow traffic causes more turbulence in the canyon facilitating more dispersion and a reduction in pedestrian level concentration. The comparison of with and without a vehicle-induced-turbulence revealed that when winds were perpendicular, the free-flow traffic reduced the concentration by 73% on the windward side with a minor increase of 17% on the leeward side, whereas for parallel winds, it reduced the concentration by 51% and 29%. The congested-flow traffic increased the concentrations on the leeward side by 47% when winds were perpendicular posing a higher risk to health, whereas reduced it by 17-42% for parallel winds. The urban air quality and public health can, therefore, be improved by improving the traffic-flow patterns in street canyons as vehicle-induced turbulence has been shown to contribute significantly to dispersion.

  4. The impact of traffic-flow patterns on air quality in urban street canyons.

    PubMed

    Thaker, Prashant; Gokhale, Sharad

    2016-01-01

    We investigated the effect of different urban traffic-flow patterns on pollutant dispersion in different winds in a real asymmetric street canyon. Free-flow traffic causes more turbulence in the canyon facilitating more dispersion and a reduction in pedestrian level concentration. The comparison of with and without a vehicle-induced-turbulence revealed that when winds were perpendicular, the free-flow traffic reduced the concentration by 73% on the windward side with a minor increase of 17% on the leeward side, whereas for parallel winds, it reduced the concentration by 51% and 29%. The congested-flow traffic increased the concentrations on the leeward side by 47% when winds were perpendicular posing a higher risk to health, whereas reduced it by 17-42% for parallel winds. The urban air quality and public health can, therefore, be improved by improving the traffic-flow patterns in street canyons as vehicle-induced turbulence has been shown to contribute significantly to dispersion. PMID:26412198

  5. A novel fair active queue management algorithm based on traffic delay jitter

    NASA Astrophysics Data System (ADS)

    Wang, Xue-Shun; Yu, Shao-Hua; Dai, Jin-You; Luo, Ting

    2009-11-01

    In order to guarantee the quantity of data traffic delivered in the network, congestion control strategy is adopted. According to the study of many active queue management (AQM) algorithms, this paper proposes a novel active queue management algorithm named JFED. JFED can stabilize queue length at a desirable level by adjusting output traffic rate and adopting a reasonable calculation of packet drop probability based on buffer queue length and traffic jitter; and it support burst packet traffic through the packet delay jitter, so that it can traffic flow medium data. JFED impose effective punishment upon non-responsible flow with a full stateless method. To verify the performance of JFED, it is implemented in NS2 and is compared with RED and CHOKe with respect to different performance metrics. Simulation results show that the proposed JFED algorithm outperforms RED and CHOKe in stabilizing instantaneous queue length and in fairness. It is also shown that JFED enables the link capacity to be fully utilized by stabilizing the queue length at a desirable level, while not incurring excessive packet loss ratio.

  6. Passive Performance Monitoring and Traffic Characteristics on the SLAC Internet Border

    SciTech Connect

    Logg, Connie A

    2002-05-01

    Understanding how the Internet is used by HEP is critical to optimizing the performance of the inter-lab computing environment. Typically use requirements have been defined by discussions between collaborators. However, later analysis of the actual traffic has shown this is often misunderstood and actual use is significantly different to that predicted. Passive monitoring of the real traffic provides insight into the true communications requirements and the performance of a large number of inter-communicating nodes. It may be useful in identifying performance problems that are due to factors other than Internet congestion, especially when compared to other methods such as active monitoring where traffic is generated specifically to measure its performance. Controlled active monitoring between dedicated servers often gives an indication of what can be achieved on a network. Passive monitoring of the real traffic gives a picture of the true performance. This paper will discuss the method and results of collecting and analyzing flows of data obtained from the SLAC Internet border. The unique nature of HEP traffic and the needs of the HEP community will be highlighted. The insights this has brought to understanding the network will be reviewed and the benefit it can bring to engineering networks will be discussed.

  7. Neural predictive control for active buffet alleviation

    NASA Astrophysics Data System (ADS)

    Pado, Lawrence E.; Lichtenwalner, Peter F.; Liguore, Salvatore L.; Drouin, Donald

    1998-06-01

    The adaptive neural control of aeroelastic response (ANCAR) and the affordable loads and dynamics independent research and development (IRAD) programs at the Boeing Company jointly examined using neural network based active control technology for alleviating undesirable vibration and aeroelastic response in a scale model aircraft vertical tail. The potential benefits of adaptive control includes reducing aeroelastic response associated with buffet and atmospheric turbulence, increasing flutter margins, and reducing response associated with nonlinear phenomenon like limit cycle oscillations. By reducing vibration levels and thus loads, aircraft structures can have lower acquisition cost, reduced maintenance, and extended lifetimes. Wind tunnel tests were undertaken on a rigid 15% scale aircraft in Boeing's mini-speed wind tunnel, which is used for testing at very low air speeds up to 80 mph. The model included a dynamically scaled flexible fail consisting of an aluminum spar with balsa wood cross sections with a hydraulically powered rudder. Neural predictive control was used to actuate the vertical tail rudder in response to strain gauge feedback to alleviate buffeting effects. First mode RMS strain reduction of 50% was achieved. The neural predictive control system was developed and implemented by the Boeing Company to provide an intelligent, adaptive control architecture for smart structures applications with automated synthesis, self-optimization, real-time adaptation, nonlinear control, and fault tolerance capabilities. It is designed to solve complex control problems though a process of automated synthesis, eliminating costly control design and surpassing it in many instances by accounting for real world non-linearities.

  8. Traffic information computing platform for big data

    SciTech Connect

    Duan, Zongtao Li, Ying Zheng, Xibin Liu, Yan Dai, Jiting Kang, Jun

    2014-10-06

    Big data environment create data conditions for improving the quality of traffic information service. The target of this article is to construct a traffic information computing platform for big data environment. Through in-depth analysis the connotation and technology characteristics of big data and traffic information service, a distributed traffic atomic information computing platform architecture is proposed. Under the big data environment, this type of traffic atomic information computing architecture helps to guarantee the traffic safety and efficient operation, more intelligent and personalized traffic information service can be used for the traffic information users.

  9. Application of Epidemiology Model on Complex Networks in Propagation Dynamics of Airspace Congestion.

    PubMed

    Dai, Xiaoxu; Hu, Minghua; Tian, Wen; Xie, Daoyi; Hu, Bin

    2016-01-01

    This paper presents a propagation dynamics model for congestion propagation in complex networks of airspace. It investigates the application of an epidemiology model to complex networks by comparing the similarities and differences between congestion propagation and epidemic transmission. The model developed satisfies the constraints of actual motion in airspace, based on the epidemiology model. Exploiting the constraint that the evolution of congestion cluster in the airspace is always dynamic and heterogeneous, the SIR epidemiology model (one of the classical models in epidemic spreading) with logistic increase is applied to congestion propagation and shown to be more accurate in predicting the evolution of congestion peak than the model based on probability, which is common to predict the congestion propagation. Results from sample data show that the model not only predicts accurately the value and time of congestion peak, but also describes accurately the characteristics of congestion propagation. Then, a numerical study is performed in which it is demonstrated that the structure of the networks have different effects on congestion propagation in airspace. It is shown that in regions with severe congestion, the adjustment of dissipation rate is more significant than propagation rate in controlling the propagation of congestion. PMID:27336405

  10. Application of Epidemiology Model on Complex Networks in Propagation Dynamics of Airspace Congestion

    PubMed Central

    Dai, Xiaoxu; Hu, Minghua; Tian, Wen; Xie, Daoyi; Hu, Bin

    2016-01-01

    This paper presents a propagation dynamics model for congestion propagation in complex networks of airspace. It investigates the application of an epidemiology model to complex networks by comparing the similarities and differences between congestion propagation and epidemic transmission. The model developed satisfies the constraints of actual motion in airspace, based on the epidemiology model. Exploiting the constraint that the evolution of congestion cluster in the airspace is always dynamic and heterogeneous, the SIR epidemiology model (one of the classical models in epidemic spreading) with logistic increase is applied to congestion propagation and shown to be more accurate in predicting the evolution of congestion peak than the model based on probability, which is common to predict the congestion propagation. Results from sample data show that the model not only predicts accurately the value and time of congestion peak, but also describes accurately the characteristics of congestion propagation. Then, a numerical study is performed in which it is demonstrated that the structure of the networks have different effects on congestion propagation in airspace. It is shown that in regions with severe congestion, the adjustment of dissipation rate is more significant than propagation rate in controlling the propagation of congestion. PMID:27336405

  11. A Cooperative Human-Adaptive Traffic Simulation (CHATS)

    NASA Technical Reports Server (NTRS)

    Phillips, Charles T.; Ballin, Mark G.

    1999-01-01

    NASA is considering the development of a Cooperative Human-Adaptive Traffic Simulation (CHATS), to examine and evaluate performance of the National Airspace System (NAS) as the aviation community moves toward free flight. CHATS will be specifically oriented toward simulating strategic decision-making by airspace users and by the service provider s traffic management personnel, within the context of different airspace and rules assumptions. It will use human teams to represent these interests and make decisions, and will rely on computer modeling and simulation to calculate the impacts of these decisions. The simulation objectives will be to examine: 1. evolution of airspace users and the service provider s strategies, through adaptation to new operational environments; 2. air carriers competitive and cooperative behavior; 3. expected benefits to airspace users and the service provider as compared to the current NAS; 4. operational limitations of free flight concepts due to congestion and safety concerns. This paper describes an operational concept for CHATS, and presents a high-level functional design which would utilize a combination of existing and new models and simulation capabilities.

  12. Fluctuations in Urban Traffic Networks

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Dong; Li, Li; Zhang, Yi; Hu, Jian-Ming; Jin, Xue-Xiang

    Urban traffic network is a typical complex system, in which movements of tremendous microscopic traffic participants (pedestrians, bicyclists and vehicles) form complicated spatial and temporal dynamics. We collected flow volumes data on the time-dependent activity of a typical urban traffic network, finding that the coupling between the average flux and the fluctuation on individual links obeys a certain scaling law, with a wide variety of scaling exponents between 1/2 and 1. These scaling phenomena can explain the interaction between the nodes' internal dynamics (i.e. queuing at intersections, car-following in driving) and changes in the external (network-wide) traffic demand (i.e. the every day increase of traffic amount during peak hours and shocking caused by traffic accidents), allowing us to further understand the mechanisms governing the transportation system's collective behavior. Multiscaling and hotspot features are observed in the traffic flow data as well. But the reason why the separated internal dynamics are comparable to the external dynamics in magnitude is still unclear and needs further investigations.

  13. D-ribose, a metabolic substrate for congestive heart failure.

    PubMed

    Wagner, Susan; Herrick, James; Shecterle, Linda M; St Cyr, John A

    2009-06-01

    The incidence of congestive heart failure continues to escalate worldwide, taxing health care systems. Current therapies focus on clinical management. Current accepted regimens have provided some success; however, most patients show progression of their disease. Because of this failure, research continues to explore therapies directed at stabilization of their disease and hopefully to improve the downward spiral. Publications have asserted that the failing heart is energy starved. D-ribose, a naturally occurring pentose carbohydrate and a key component in the adenosine triphosphate (ATP) molecule, has demonstrated an ability to replenish ATP levels and improve diastolic dysfunction following myocardial ischemia, which has been shown to improve the clinical state of patients afflicted with congestive heart failure. D-ribose may provide the necessary metabolic substrate to benefit this energy-deficient state found in heart failure. PMID:19523159

  14. Evolution of the chronic congestive heart failure paradigm.

    PubMed

    Savino, John A; Kosmas, Constantine E; Wagman, Gabriel; Vittorio, Timothy J

    2013-01-01

    Paradigms are a part of our human nature. In the world of medicine and science, they allow investigators to work within a particular, previously accepted framework that provides certain constraints. This is the crux of Newton's quote, "If I've seen so far it's because I stood upon the shoulders of giants." However, in the same way that it allows us to build, it can constrain our thought processes if we fail to accept new data that are ill suited to an accepted paradigm. The physiological mechanisms to explain the phenomenon of chronic congestive heart failure are similar to other paradigms of science, in that they have undergone several shifts throughout their history, and continue to change with new evidence. Here, we seek to explore how our understanding of congestive heart failure has changed.

  15. The case for treating refractory congestive heart failure with ultrafiltration.

    PubMed

    Canaud, Bernard; Bowry, Sudhir K; Tetta, Ciro; Gatti, Emanuele

    2014-01-01

    Extracellular fluid retention and congestion is a fundamental manifestation of heart failure (HF) and cardiorenal syndrome (CRS). Patients are normally hospitalized and treated with diuretics, but their outcomes are often poor as severe congestion and diuretics resistance is the primary cause of HF-related hospital admissions and readmissions. Isolated ultrafiltration (UF), which can be considered as a 'mechanical diuretic and natriuretic' tool, offers promise in achieving safe and effective fluid volume removal in HF patients with CRS who are resistant to stepwise guided diuretic therapy. This paper outlines the rationale for machine-driven isolated UF in CRS and the available clinical evidence regarding its use in patients with HF. In addition, this article summarizes some future clinical perspectives for expanding the use of UF therapy in HF patients in order to improve outcomes. PMID:25196568

  16. Spreading of Traffic Jam in a Traffic Flow Model

    NASA Astrophysics Data System (ADS)

    Nagatani, Takashi

    1993-04-01

    A cellular automaton (CA) model is presented to simulate the traffic jam induced by a traffic accident. The spreading of jamming cars induced by a car crash is investigated by computer simulation. An analogy is proposed between the crystal growth and the traffic-jam spreading. The scaling behavior of the traffic-jam spreading is studied. It is shown that the number N of jamming cars scales as N≈t2.34± 0.03 for p above the dynamical jamming transition pc{=}0.35 and N≈t1.07 below pc where t is the time and p is the density of cars. The time constant ts, which is the time required for all cars to stop, scales as ts≈p-1.07± 0.03 for p

  17. Asymmetric effect of route-length difference and bottleneck on route choice in two-route traffic system

    NASA Astrophysics Data System (ADS)

    Hino, Yuki; Nagatani, Takashi

    2015-06-01

    We study the traffic behavior in the asymmetric two-route traffic system with real-time information. In the asymmetric two-route system, the length on route A is different from that on route B and there exists a bottleneck on route A. We extend the symmetric two-route dynamic model to the asymmetric case. We investigate the asymmetric effects of the route-length difference and bottleneck on the route choice with real-time information. The travel time on each route depends on the road length, bottleneck, and vehicular density. We derive the dependence of the travel time and mean density on the route-length ratio. We show where, when, and how the congestion occurs by the route choice in the asymmetric two-route system. We clarify the effect of the route-length ratio on the traffic behavior in the route choice.

  18. Effect of self-similar traffic on the performance and buffer requirements of ATM ABR edge devices

    SciTech Connect

    Dastangoo, S.; Miller, G.J.; Chen, H.; Brandt, J.

    1996-02-05

    Previous studies demonstrated that Ethemet local area network traffic is statistically self-similar and that the commonly used Poisson models are not able to capture the fractal characteristics of Ethemet traffic. This contribution uses simulated self-similar traffic traces from the MITRE Corporation and Sandia`s simulation software to evaluate the ABR performance of an ATM backbone. The ATM backbone interconnects Ethemet LANs via edge devices such as routers and bridges. We evaluate the overall network performance in terms of throughput, response time, fairness, and buffer requirements. Because typical edge devices perform simple forwarding functions, their usual mechanism for signaling network congestion is packet dropping. Therefore, we believe that the proper provisioning of buffer resources in ATM edge devices is crucial to the overall network performance.

  19. [Comics for traffic education: evaluation of a traffic safety campaign].

    PubMed

    Bonfadelli, H

    1989-01-01

    Traffic safety campaigns often are ineffective to change driving behavior because they don't reach the target group or are recognized only by people who are already interested or concerned. The evaluation of a traffic safety campaign called "Leo Lässig", addressed to young new drivers, shows that recognition and acceptance by the target group were stimulated by the age-conform means of comic-strips.

  20. The effect of communications and traffic situation displays on pilots awareness of traffic in the terminal area

    NASA Technical Reports Server (NTRS)

    Melanson, D.; Curry, R. E.; Howell, J. D.; Connelly, M. E.

    1973-01-01

    The Air Traffic Control (ATC) system is evolving under a general plan specified by the Federal Aviation Administration. Among the developments being considered is the Discrete Address Beacon System (DABS). The use of this system, although relieving congestion on the communications frequencies, would eliminate information about other aircraft because the party line communications now in use would be lost. One alternative to restore this lost information is an Airborne Traffic Situation Display (TSD). Experienced airline and military pilots participated in a factorial design to evaluate two types of communication (discrete address, party line) and two types of displays (TSD, no TSD). A stop-action quiz was used to evaluate their knowledge of other aircrafts' position, altitude, speed, heading, rate of climb, identity, and landing sequence number. Significant differences between conditions were detected, primarily in the position variables. Workload, as measured by a spare capacity side-task, showed a main effect of displays and a significant interaction between displays and communications. The data are summarized by plotting each display/communication condition configuration in the plane defined by information and workload index. A limited number of blunders by other aircraft were included in the simulations with a significant, but not entirely satisfactory, improvement in blunder detection attributed to the TSD.

  1. Decreased renal clearance of digoxin in chronic congestive heart failure.

    PubMed

    Naafs, M A; van der Hoek, C; van Duin, S; Koorevaar, G; Schopman, W; Silberbusch, J

    1985-01-01

    Renal digoxin clearance was compared in patients suffering from atrial fibrillation with well preserved cardiac function (n = 9; salt intake +/- 170 mmol daily) and patients with chronic congestive heart failure (n = 10; salt intake 50 mmol daily and maintenance treatment with diuretics). There was no difference between the groups concerning digoxin dosage, creatinine clearance, diuresis or sodium excretion in the urine. Digoxin clearance in chronic heart failure proved to be significantly lower than in atrial fibrillation (48 +/- 21 vs 71 +/- 36 ml X min-1, p less than 0.05), and Cdig/Ccreat was similarly reduced at 0.73 +/- 0.15 compared to 1.09 +/- 0.27 (p less than 0.005). Steady state serum digoxin concentration was significantly higher in patients with congestive heart failure (1.44 +/- 0.47 vs 0.87 +/- 0.33 micrograms X 1(-1), p less than 0.01). Chronic congestive heart failure is a state with reduced digoxin clearance by the kidney, which could lead to digoxin intoxication not explicable by overdose, reduced renal function or the effect of interacting drugs. PMID:4007028

  2. Congestive heart failure in acromegaly: A review of 6 cases

    PubMed Central

    Dutta, P.; Das, S.; Bhansali, A.; Bhadada, S. K.; Rajesh, B. V.; Reddy, K. S.; Vaiphei, K.; Mukherjee, K. K.; Pathak, A.; Shah, V. N.

    2012-01-01

    Background: Though cardiac involvement is common in acromegaly, overt congestive heart failure is uncommon. Materials and Methods: This is retrospective analysis of hospital record between 1996 and 2007. We analyzed records of 150 consecutive patients with acromegaly. We included the patients with acromegaly those who had overt congestive heart failure either at presentation or during the course of illness for the present analysis. The diagnosis of acromegaly and congestive cardiac failure were based on standard criteria. Results: Out of 150 patients with acromegaly, 6 patients had overt CHF (4.0%), of which 4 presented with the features of CHF and 2 developed during the course of illness. Three patients had hypertension and 1 had diabetes. Baseline echocardiography showed severe biventricular dysfunction and global hypokinesia in all. Angiography showed dilated hypokinetic left ventricle with normal coronaries in 3, it was confirmed at autopsy in 1. Three underwent trans-sphenoidal surgery, 1 received somatostatin analogue as primary treatment modality. Normalization of growth hormone and IGF-1 led to improvement in cardiac function in 1, 1 patient lost to follow up, and 4 died during the course of illness. In 1 patient, autopsy was performed and cardiac specimen revealed normal coronaries, concentric ventricular hypertrophy, and dilatation with myofibrolysis and interfascicular fibrosis. Conclusion: Prevalence of overt CHF is 4% in present series. Overt CHF carries poor prognosis and hence, this complication should be recognized at earliest, and medical management to normalized cardiac function should be given utmost priority. PMID:23226648

  3. RATE-ADJUSTMENT ALGORITHM FOR AGGREGATE TCP CONGESTION CONTROL

    SciTech Connect

    P. TINNAKORNSRISUPHAP, ET AL

    2000-09-01

    The TCP congestion-control mechanism is an algorithm designed to probe the available bandwidth of the network path that TCP packets traverse. However, it is well-known that the TCP congestion-control mechanism does not perform well on networks with a large bandwidth-delay product due to the slow dynamics in adapting its congestion window, especially for short-lived flows. One promising solution to the problem is to aggregate and share the path information among TCP connections that traverse the same bottleneck path, i.e., Aggregate TCP. However, this paper shows via a queueing analysis of a generalized processor-sharing (GPS) queue with regularly-varying service time that a simple aggregation of local TCP connections together into a single aggregate TCP connection can result in a severe performance degradation. To prevent such a degradation, we introduce a rate-adjustment algorithm. Our simulation confirms that by utilizing our rate-adjustment algorithm on aggregate TCP, connections which would normally receive poor service achieve significant performance improvements without penalizing connections which already receive good service.

  4. Role of Diuretics and Ultrafiltration in Congestive Heart Failure

    PubMed Central

    Shchekochikhin, Dmitry; Al Ammary, Fawaz; Lindenfeld, JoAnn; Schrier, Robert

    2013-01-01

    Volume overload in heart failure (HF) results from neurohumoral activation causing renal sodium and water retention secondary to arterial underfilling. Volume overload not only causes signs and symptoms of congestion, but can impact myocardial remodeling and HF progression. Thus, treating congestion is a cornerstone of HF management. Loop diuretics are the most commonly used drugs in this setting. However, up to 30% of the patients with decompensated HF present with loop-diuretic resistance. A universally accepted definition of loop diuretic resistance, however, is lacking. Several approaches to treat diuretic-resistant HF are available, including addition of distal acting thiazide diuretics, natriuretic doses of mineralocorticoid receptor antagonists (MRAs), or vasoactive drugs. Slow continuous veno-venous ultrafiltration is another option. Ultrafiltration, if it is started early in the course of HF decompensation, may result in prominent decongestion and a reduction in re-hospitalization. On the other hand, ultrafiltration in HF patients with worsening renal function and volume overload after aggressive treatment with loop diuretics, failed to show benefit compared to a stepwise pharmacological approach, including diuretics and vasoactive drugs. Early detection of congested HF patients for ultrafiltration treatment might improve decongestion and reduce readmission. However, the best patient characteristics and best timing of ultrafiltration requires further evaluation in randomized controlled studies. PMID:24276318

  5. Medical management of congestive heart failure in a horse.

    PubMed

    Brumbaugh, G W; Thomas, W P; Hodge, T G

    1982-04-15

    A 4-year-old Quarter Horse gelding with atrial fibrillation, mitral regurgitation, and signs of bilateral congestive heart failure was initially treated IV with digoxin and furosemide. After parenteral digitalization, a daily maintenance dose of digoxin was administered orally at a rate of 21.7 micrograms/kg of body weight. At this dosage, a steady-state serum digoxin concentration of 2.3 ng/ml was achieved without clinical signs of toxicosis. The furosemide dosage was decreased and eventually discontinued as clinical improvement occurred. Clinical signs of congestive heart failure were controlled and sinus rhythm was intermittently established, but an unfavorable prognosis was given for future athletic work. After 35 days of therapy, cardiac catheterization was performed and the horse was euthanatized. At necropsy there was marked dilatation of all cardiac chambers, mitral valve fibrosis, and left atrial jet lesions. The response of this patient suggested that orally administered digoxin may be useful in the management of congestive heart failure in selected equine patients.

  6. Dynamically-induced structures formation in congested magma

    NASA Astrophysics Data System (ADS)

    Petford, N.

    2008-12-01

    Crystal fabrics preserved in igneous rocks offer a glimpse into the magma emplacement process. Detailed field mapping, in combination with AMS studies, seem to provide the best available data for unravelling intrusion architecture on the decimetre scale. However, a full and proper understanding of the fluid dynamics of congested fluid-particle mixtures during shear remains elusive. This is a shame as without recourse to such fundamental understanding, the interpretation of structural field data in the context of magma flow remains problematic. One way to gain insight into the process is to treat flowing magma as a dynamic material with a rheology similar to sheared, congested slurries. The fancy that dense magma equates to a high temperature slurry is an attractive one, and opens up a way to examine the emplacement process that does not rely exclusively on equilibrium thermodynamics as a final explanation of commonly observed igneous structures. Instead, using examples from mafic rocks where cooling has been rapid, the idea is put forward that in high Peclet number suspensions (where particle diffusion is negligible), shearing and non- Newtonian behaviour imparts a rich diversity of structures including layering, grading and flow segregation. Key to understanding the rheology, hence flow dynamics of congested magma, is the particle microstructure, a still poorly known essence of suspension flows. Where magma transport is continental in scale and long lived (e.g. Large Igneous Provinces), rotation of the earth may in theory endow a small but potentially measurable imprint on the preserved flow fabric.

  7. Dynamics of traffic flow with real-time traffic information

    NASA Astrophysics Data System (ADS)

    Yokoya, Yasushi

    2004-01-01

    We studied dynamics of traffic flow with real-time information provided. Provision of the real-time traffic information based on advancements in telecommunication technology is expected to facilitate the efficient utilization of available road capacity. This system has a potentiality of not only engineering for road usage but also the science of complexity series. In the system, the information plays a role of feedback connecting microscopic and macroscopic phenomena beyond the hierarchical structure of statistical physics. In this paper, we tried to clarify how the information works in a network of traffic flow from the perspective of statistical physics. The dynamical feature of the traffic flow is abstracted by a contrastive study between the nonequilibrium statistical physics and a computer simulation based on cellular automaton. We found that the information disrupts the local equilibrium of traffic flow by a characteristic dissipation process due to interaction between the information and individual vehicles. The dissipative structure was observed in the time evolution of traffic flow driven far from equilibrium as a consequence of the breakdown of the local-equilibrium hypothesis.

  8. Study on effect of toll station on the traffic flow on three-line road

    NASA Astrophysics Data System (ADS)

    Wang, Guang-yu; Li, Wen-bo; Feng, Yu-jie

    2013-03-01

    Based on the NaSch Model, a new three-line cellular automata model emphasizing toll station on the high ways is built to discuss the impact of different amount of toll stations on the traffic flow. The models are as follows: Firstly, the process of cars driving is simulated. Secondly, the process of pulling station is simulated. In this part, two Cellular Automata Models are built separately for two cases, three tollbooths in the toll station and four tollbooths. The result shows that when the density of cars is on medium level, comparing with the toll station with three tollbooths, the toll station with four tollbooths can remit the traffic congestion effectively, but when the density of cars is too high or too low, the toll station with three tollbooths can do better.

  9. Integrated risk/cost planning models for the US Air Traffic system

    NASA Technical Reports Server (NTRS)

    Mulvey, J. M.; Zenios, S. A.

    1985-01-01

    A prototype network planning model for the U.S. Air Traffic control system is described. The model encompasses the dual objectives of managing collision risks and transportation costs where traffic flows can be related to these objectives. The underlying structure is a network graph with nonseparable convex costs; the model is solved efficiently by capitalizing on its intrinsic characteristics. Two specialized algorithms for solving the resulting problems are described: (1) truncated Newton, and (2) simplicial decomposition. The feasibility of the approach is demonstrated using data collected from a control center in the Midwest. Computational results with different computer systems are presented, including a vector supercomputer (CRAY-XMP). The risk/cost model has two primary uses: (1) as a strategic planning tool using aggregate flight information, and (2) as an integrated operational system for forecasting congestion and monitoring (controlling) flow throughout the U.S. In the latter case, access to a supercomputer is required due to the model's enormous size.

  10. 36 CFR 4.13 - Obstructing traffic.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Obstructing traffic. 4.13... VEHICLES AND TRAFFIC SAFETY § 4.13 Obstructing traffic. The following are prohibited: (a) Stopping or... interfere with the normal flow of traffic....

  11. 36 CFR 4.13 - Obstructing traffic.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Obstructing traffic. 4.13... VEHICLES AND TRAFFIC SAFETY § 4.13 Obstructing traffic. The following are prohibited: (a) Stopping or... interfere with the normal flow of traffic....

  12. Turbulent Dispersion of Traffic Emissions

    NASA Astrophysics Data System (ADS)

    Staebler, R. M.; Gordon, M.; Liggio, J.; Makar, P.; Mihele, C.; Brook, J.; Wentzell, J. J.; Gong, S.; Lu, G.; Lee, P.

    2010-12-01

    Emissions from the transportation sector are a significant source of air pollution. Ongoing efforts to reduce the impacts require tools to provide guidance on policies regarding fuels, vehicle types and traffic control. The air quality models currently used to predict the effectiveness of policies typically treat traffic emissions as a source uniformly distributed across the surface of a model grid. In reality, emissions occur along lines above the surface, in an initially highly concentrated form, and are immediately mixed by traffic-enhanced turbulence. Differences between model and reality in terms of both chemistry and dispersion are to be expected. The ALMITEE (Advancing Local-scale Modeling through Inclusion of Transportation Emission Experiments) subproject FEVER (Fast Evolution of Vehicle Emissions from Roadways), conducted on multi-lane highways in the Toronto area in the summer of 2010, included measurements to quantify the evolution and dispersion of traffic emissions. Continuous micro-meteorological data (heat and momentum fluxes, temperature, humidity and incoming solar radiation) were collected 10m from the road, next to a traffic camera used to determine traffic density, composition and speed. Sonic anemometers and an aircraft turbulence probe mounted on a mobile lab provided measurements of turbulent dispersion both directly in traffic on the highway as well as on perpendicular side roads, as a function of distance from the highway. The mobile lab was equipped with instruments to characterize the aerosol size and mass distributions, aerosol composition including black carbon content, NO, NO2, CO2, CO, SO2 and VOCs at high time resolution. Preliminary results on the consequences of turbulent dispersion of traffic emissions levels under a variety of conditions will be disseminated.

  13. Fully automated urban traffic system

    NASA Technical Reports Server (NTRS)

    Dobrotin, B. M.; Hansen, G. R.; Peng, T. K. C.; Rennels, D. A.

    1977-01-01

    The replacement of the driver with an automatic system which could perform the functions of guiding and routing a vehicle with a human's capability of responding to changing traffic demands was discussed. The problem was divided into four technological areas; guidance, routing, computing, and communications. It was determined that the latter three areas being developed independent of any need for fully automated urban traffic. A guidance system that would meet system requirements was not being developed but was technically feasible.

  14. The modifying effect of socioeconomic status on the relationship between traffic, air pollution and respiratory health in elementary schoolchildren.

    PubMed

    Cakmak, Sabit; Hebbern, Christopher; Cakmak, Jasmine D; Vanos, Jennifer

    2016-07-15

    The volume and type of traffic and exposure to air pollution have been found to be associated with respiratory health, but few studies have considered the interaction with socioeconomic status at the household level. We investigated the relationships of respiratory health related to traffic type, traffic volume, and air pollution, stratifying by socioeconomic status, based on household income and education, in 3591 schoolchildren in Windsor, Canada. Interquartile range changes in traffic exposure and pollutant levels were linked to respiratory symptoms and objective measures of lung function using generalised linear models for three levels of income and education. In 95% of the relationships among all cases, the odds ratios for reported respiratory symptoms (a decrease in measured lung function), based on an interquartile range change in traffic exposure or pollutant, were greater in the lower income/education groups than the higher, although the odds ratios were in most cases not significant. However, in up to 62% of the cases, the differences between high and low socioeconomic groups were statistically significant, thus indicating socioeconomic status (SES) as a significant effect modifier. Our findings indicate that children from lower socioeconomic households have a higher risk of specific respiratory health problems (chest congestion, wheezing) due to traffic volume and air pollution exposure.

  15. The modifying effect of socioeconomic status on the relationship between traffic, air pollution and respiratory health in elementary schoolchildren.

    PubMed

    Cakmak, Sabit; Hebbern, Christopher; Cakmak, Jasmine D; Vanos, Jennifer

    2016-07-15

    The volume and type of traffic and exposure to air pollution have been found to be associated with respiratory health, but few studies have considered the interaction with socioeconomic status at the household level. We investigated the relationships of respiratory health related to traffic type, traffic volume, and air pollution, stratifying by socioeconomic status, based on household income and education, in 3591 schoolchildren in Windsor, Canada. Interquartile range changes in traffic exposure and pollutant levels were linked to respiratory symptoms and objective measures of lung function using generalised linear models for three levels of income and education. In 95% of the relationships among all cases, the odds ratios for reported respiratory symptoms (a decrease in measured lung function), based on an interquartile range change in traffic exposure or pollutant, were greater in the lower income/education groups than the higher, although the odds ratios were in most cases not significant. However, in up to 62% of the cases, the differences between high and low socioeconomic groups were statistically significant, thus indicating socioeconomic status (SES) as a significant effect modifier. Our findings indicate that children from lower socioeconomic households have a higher risk of specific respiratory health problems (chest congestion, wheezing) due to traffic volume and air pollution exposure. PMID:27064731

  16. Understanding how roadside concentrations of NOx are influenced by the background levels, traffic density, and meteorological conditions using Boosted Regression Trees

    NASA Astrophysics Data System (ADS)

    Sayegh, Arwa; Tate, James E.; Ropkins, Karl

    2016-02-01

    Oxides of Nitrogen (NOx) is a major component of photochemical smog and its constituents are considered principal traffic-related pollutants affecting human health. This study investigates the influence of background concentrations of NOx, traffic density, and prevailing meteorological conditions on roadside concentrations of NOx at UK urban, open motorway, and motorway tunnel sites using the statistical approach Boosted Regression Trees (BRT). BRT models have been fitted using hourly concentration, traffic, and meteorological data for each site. The models predict, rank, and visualise the relationship between model variables and roadside NOx concentrations. A strong relationship between roadside NOx and monitored local background concentrations is demonstrated. Relationships between roadside NOx and other model variables have been shown to be strongly influenced by the quality and resolution of background concentrations of NOx, i.e. if it were based on monitored data or modelled prediction. The paper proposes a direct method of using site-specific fundamental diagrams for splitting traffic data into four traffic states: free-flow, busy-flow, congested, and severely congested. Using BRT models, the density of traffic (vehicles per kilometre) was observed to have a proportional influence on the concentrations of roadside NOx, with different fitted regression line slopes for the different traffic states. When other influences are conditioned out, the relationship between roadside concentrations and ambient air temperature suggests NOx concentrations reach a minimum at around 22 °C with high concentrations at low ambient air temperatures which could be associated to restricted atmospheric dispersion and/or to changes in road traffic exhaust emission characteristics at low ambient air temperatures. This paper uses BRT models to study how different critical factors, and their relative importance, influence the variation of roadside NOx concentrations. The paper

  17. Semiautomated Management Of Arriving Air Traffic

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz; Nedell, William

    1992-01-01

    System of computers, graphical workstations, and computer programs developed for semiautomated management of approach and arrival of numerous aircraft at airport. System comprises three subsystems: traffic-management advisor, used for controlling traffic into terminal area; descent advisor generates information integrated into plan-view display of traffic on monitor; and final-approach-spacing tool used to merge traffic converging on final approach path while making sure aircraft are properly spaced. Not intended to restrict decisions of air-traffic controllers.

  18. Benefit of HSP90α intervention on ischemia-reperfusion injury of venous blood-congested flaps

    PubMed Central

    HU, XIAO-YING; CHEN, ZHEN-YU; ZHANG, BIN; LENG, XIANG-FENG; FAN, XIAO-JIAN; LIU, TAO

    2016-01-01

    In order to decrease the incidence of flap necrosis after reconstructive surgeries, new approaches are required. In the present study, a model of venous congested flaps in rats was established to test the heat shock protein (HSP) 90α, ‘F-5’, protein as an intervention therapy to alleviate ischemia-reperfusion injury. A recombinant plasmid pET15b-F-5 carrying the HSP90α gene was constructed and the induced protein was purified from bacterial cell cultures. The rats in the study were divided into three different intervention groups: group A rats were treated with normal saline prior to flap establishment, group B rats were treated with HSP90α, ‘F-5’, protein prior to flap establishment, and group C rats were treated with the same ‘F-5’ protein after the surgical procedure. Additionally, the reperfusion time-points, ischemia for 6 or 8 h (5 rats each), were established in each group. After set periods of time, the flaps were observed for skin appearance, blood flow, survival rate and histological changes including neovascularization and re-epithelialization. The results showed that the flaps in the rats pre-treated with ‘F-5’ protein performed better than the flaps of rats in the other two groups: the blood flow was higher, flap survival rate was increased, inflammatory cell infiltration was decreased and angiogenesis increased, and new skin structure was better completed by the end of the experiment. The parameters examind were improved for all the groups when the ischemia time was 6 h instead of 8 h. In conclusion, HSP90α intervention prior to flap establishment was shown to be beneficial in the model of ischemia-reperfusion injury in venous-congested flaps. PMID:27347036

  19. Aeronautical Communications Research and Development Needs for Future Air Traffic Management Applications

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.

    2002-01-01

    Continuing growth in regional and global air travel has resulted in increasing traffic congestion in the air and on the ground. In spite of occasional temporary downturns due to economic recessions and catastrophic events, average growth rates of air travel have remained high since the 1960s. The resulting congestion, which constrains expansion of the air transportation industry, inflicts schedule delays and decreases overall system efficiency, creating a pressing need to develop more efficient methods of air traffic management (ATM). New ATM techniques, procedures, air space automation methods, and decision support tools are being researched and developed for deployment in time frames stretching from the next few years to the year 2020 and beyond. As these methods become more advanced and increase in complexity, the requirements for information generation, sharing and transfer among the relevant entities in the ATM system increase dramatically. However, current aeronautical communications systems will be inadequate to meet the future information transfer demands created by these advanced ATM systems. Therefore, the NASA Glenn Research Center is undertaking research programs to develop communication, methods and key technologies that can meet these future requirements. As part of this process, studies, workshops, testing and experimentation, and research and analysis have established a number of research and technology development needs. The purpose of this paper is to outline the critical research and technology needs that have been identified in these activities, and explain how these needs have been determined.

  20. Prediction of traffic-related nitrogen oxides concentrations using Structural Time-Series models

    NASA Astrophysics Data System (ADS)

    Lawson, Anneka Ruth; Ghosh, Bidisha; Broderick, Brian

    2011-09-01

    Ambient air quality monitoring, modeling and compliance to the standards set by European Union (EU) directives and World Health Organization (WHO) guidelines are required to ensure the protection of human and environmental health. Congested urban areas are most susceptible to traffic-related air pollution which is the most problematic source of air pollution in Ireland. Long-term continuous real-time monitoring of ambient air quality at such urban centers is essential but often not realistic due to financial and operational constraints. Hence, the development of a resource-conservative ambient air quality monitoring technique is essential to ensure compliance with the threshold values set by the standards. As an intelligent and advanced statistical methodology, a Structural Time Series (STS) based approach has been introduced in this paper to develop a parsimonious and computationally simple air quality model. In STS methodology, the different components of a time-series dataset such as the trend, seasonal, cyclical and calendar variations can be modeled separately. To test the effectiveness of the proposed modeling strategy, average hourly concentrations of nitrogen dioxide and nitrogen oxides from a congested urban arterial in Dublin city center were modeled using STS methodology. The prediction error estimates from the developed air quality model indicate that the STS model can be a useful tool in predicting nitrogen dioxide and nitrogen oxides concentrations in urban areas and will be particularly useful in situations where the information on external variables such as meteorology or traffic volume is not available.

  1. Lactobacillus plantarum CCFM639 alleviates aluminium toxicity.

    PubMed

    Yu, Leilei; Zhai, Qixiao; Liu, Xiaoming; Wang, Gang; Zhang, Qiuxiang; Zhao, Jianxin; Narbad, Arjan; Zhang, Hao; Tian, Fengwei; Chen, Wei

    2016-02-01

    Aluminium (Al) is the most abundant metal in the earth's crust. Al exposure can cause a variety of adverse physiological effects in humans and animals. Our aim was to demonstrate that specific probiotic bacteria can play a special physiologically functional role in protection against Al toxicity in mice. Thirty strains of lactic acid bacteria (LAB) were tested for their aluminium-binding ability, aluminium tolerance, their antioxidative capacity, and their ability to survive the exposure to artificial gastrointestinal (GI) juices. Lactobacillus plantarum CCFM639 was selected for animal experiments because of its excellent performance in vitro. Forty mice were divided into four groups: control, Al only, Al plus CCFM639, and Al plus deferiprone (DFP). CCFM639 was administered at 10(9) CFU once daily for 10 days, followed by a single oral dose of aluminium chloride hexahydrate at 5.14 mg aluminium (LD50) for each mouse. The results showed that CCFM639 treatment led to a significant reduction in the mortality rates with corresponding decrease in intestinal aluminium absorption and in accumulation of aluminium in the tissues and amelioration of hepatic histopathological damage. This probiotic treatment also resulted in alleviation of hepatic, renal, and cerebral oxidative stress. The treatment of L. plantarum CCFM639 has potential as a therapeutic dietary strategy against acute aluminium toxicity.

  2. Wakeful rest alleviates interference-based forgetting.

    PubMed

    Mercer, Tom

    2015-01-01

    Retroactive interference (RI)--the disruptive influence of events occurring after the formation of a new memory--is one of the primary causes of forgetting. Placing individuals within an environment that postpones interference should, therefore, greatly reduce the likelihood of information being lost from memory. For example, a short period of wakeful rest should diminish interference-based forgetting. To test this hypothesis, participants took part in a foreign language learning activity and were shown English translations of 20 Icelandic words for immediate recall. Half of the participants were then given an 8-min rest before completing a similar or dissimilar interfering distractor task. The other half did not receive a rest until after the distractor task, at which point interference had already taken place. All participants were then asked to translate the Icelandic words for a second time. Results revealed that retention was significantly worse at the second recall test, but being allowed a brief rest before completing the distractor task helped reduce the amount of forgetting. Taking a short, passive break can shield new memories from RI and alleviate forgetting. PMID:24410154

  3. An Advanced Buffet Load Alleviation System

    NASA Technical Reports Server (NTRS)

    Burnham, Jay K.; Pitt, Dale M.; White, Edward V.; Henderson, Douglas A.; Moses, Robert W.

    2001-01-01

    This paper describes the development of an advanced buffet load alleviation (BLA) system that utilizes distributed piezoelectric actuators in conjunction with an active rudder to reduce the structural dynamic response of the F/A-18 aircraft vertical tails to buffet loads. The BLA system was defined analytically with a detailed finite-element-model of the tail structure and piezoelectric actuators. Oscillatory aerodynamics were included along with a buffet forcing function to complete the aeroservoelastic model of the tail with rudder control surface. Two single-input-single-output (SISO) controllers were designed, one for the active rudder and one for the active piezoelectric actuators. The results from the analytical open and closed loop simulations were used to predict the system performance. The objective of this BLA system is to extend the life of vertical tail structures and decrease their life-cycle costs. This system can be applied to other aircraft designs to address suppression of structural vibrations on military and commercial aircraft.

  4. Diagnostic analysis of the logistic model for pedestrian injury severity in traffic crashes.

    PubMed

    Sze, N N; Wong, S C

    2007-11-01

    This study attempts to evaluate the injury risk of pedestrian casualties in traffic crashes and to explore the factors that contribute to mortality and severe injury, using the comprehensive historical crash record that is maintained by the Hong Kong Transport Department. The injury, demographic, crash, environmental, geometric, and traffic characteristics of 73,746 pedestrian casualties that were involved in traffic crashes from 1991 to 2004 are considered. Binary logistic regression is used to determine the associations between the probability of fatality and severe injury and all contributory factors. A consideration of the influence of implicit attributes on the trend of pedestrian injury risk, temporal confounding, and interaction effects is progressively incorporated into the predictive model. To verify the goodness-of-fit of the proposed model, the Hosmer-Lemeshow test and logistic regression diagnostics are conducted. It is revealed that there is a decreasing trend in pedestrian injury risk, controlling for the influences of demographic, road environment, and other risk factors. In addition, the influences of pedestrian behavior, traffic congestion, and junction type on pedestrian injury risk are subject to temporal variation.

  5. Estimation of annual average daily traffic for off-system roads in Florida. Final report

    SciTech Connect

    Shen, L.D.; Zhao, F.; Ospina, D.I.

    1999-07-28

    Estimation of Annual Average Daily Traffic (AADT) is extremely important in traffic planning and operations for the state departments of transportation (DOTs), because AADT provides information for the planning of new road construction, determination of roadway geometry, congestion management, pavement design, safety considerations, etc. AADT is also used to estimate state wide vehicle miles traveled on all the roads and is used by local governments and the environmental protection agencies to determine compliance with the 1990 Clean Air Act Amendment. Additionally, AADT is reported annually by the Florida Department of transportation (FDOT) to the Federal Highway Administration. In the past, considerable efforts have been made in obtaining traffic counts to estimate AADT on state roads. However, traffic counts are often not available on off-system roads, and less attention has been paid to the estimation of AADT in the absence of counts. Current estimates rely on comparisons with roads that are subjectively considered to be similar. Such comparisons are inherently subject to large errors, and also may not be repeated often enough to remain current. Therefore, a better method is needed for estimating AADT for off-system roads in Florida. This study investigates the possibility of establishing one or more models for estimating AADT for off-system roads in Florida.

  6. Nitrendipine binding in congestive heart failure due to myocardial infarction

    SciTech Connect

    Dixon, I.M.; Lee, S.L.; Dhalla, N.S. )

    1990-03-01

    Depressed cardiac pump function is the hallmark of congestive heart failure, and it is suspected that decreased influx of Ca2+ into the cardiac cell is responsible for depressed contractile function. Since Ca2+ channels in the sarcolemmal membrane are considered to be an important route for the entry of Ca2+, we examined the status of Ca2+ receptors/channels in failing rat hearts after myocardial infarction of the left ventricular free wall. For this purpose, the left coronary artery was ligated and hearts were examined 4, 8, and 16 weeks later; sham-operated animals served as controls. Hemodynamic assessment revealed decreased total mechanical energy (left ventricular systolic pressure x heart rate), increased left ventricular diastolic pressure, and decreased positive and negative dP/dt in experimental animals at 4, 8, and 16 weeks. Although accumulation of ascites in the abdominal cavity was evident at 4 weeks, other clinical signs of congestive heart failure in experimental rats were evident from the presence of lung congestion and cardiac dilatation at 8 and 16 weeks after induction of myocardial infarction. The density of Ca2+ receptors/channels in crude membranes, as assessed by (3H)nitrendipine binding assay, was found to be decreased in the uninfarcted experimental left ventricle at 8 and 16 weeks; however, no change in the affinity of nitrendipine was evident. A similar depression in the specific binding of another dihydropyridine compound, (3H)PN200-110, was also evident in failing hearts. Brain and skeletal muscle crude membrane preparations, unlike those of the right ventricle and liver, revealed a decrease in Ca2+ receptors/channels density in experimental animals at 16 weeks.

  7. Transmission dispatch and congestion management in open market systems

    NASA Astrophysics Data System (ADS)

    Fang, Risheng

    This thesis is located in the domain of electricity supply industry restructuring. It deals with emerging issues, whose understanding is essential to advancing knowledge of open access transmission theory and proceeds to develop approaches for solving the transmission dispatch and congestion management problem. An overview of current trends and experiences in utility restructuring and the main models for restructuring, as well as the classifications of system operators, is first presented. A fully unbundled competitive electricity market model, called the bilateral/multilateral trades model, is then developed. A survey of current research in transmission dispatch and congestion management is included with discussion of transmission capacity and ancillary services. A methodology for the power dispatch problem in a structure dominated by bilateral and multilateral transmission contracts is presented. Group structures are mathematically formulated and explored and three basic types of curtailment strategies proposed for use by market participants. A more complex model is then developed, which takes into account the co-existence of bilateral and multilateral contracts with pool type dynamic supplies and demands based on bids and market clearing prices. An integrated dispatch strategy to reconcile all three types of transactions (bilateral, multilateral and pool) is then developed. Prioritization of electricity transactions and related curtailment strategies are explored and a mechanism for coordination between market participants to achieve additional economic advantages is described. A theory of security based rescheduling is presented in order to investigate the security-related aspects of operation in an unbundled and deregulated system. The impact of post-contingency corrective capability on optimal rescheduling results has been identified and the advantage of incorporating post-contingency corrective rescheduling into the objective function demonstrated. Finally

  8. A traffic situation analysis system

    NASA Astrophysics Data System (ADS)

    Sidla, Oliver; Rosner, Marcin

    2011-01-01

    The observation and monitoring of traffic with smart visions systems for the purpose of improving traffic safety has a big potential. For example embedded vision systems built into vehicles can be used as early warning systems, or stationary camera systems can modify the switching frequency of signals at intersections. Today the automated analysis of traffic situations is still in its infancy - the patterns of vehicle motion and pedestrian flow in an urban environment are too complex to be fully understood by a vision system. We present steps towards such a traffic monitoring system which is designed to detect potentially dangerous traffic situations, especially incidents in which the interaction of pedestrians and vehicles might develop into safety critical encounters. The proposed system is field-tested at a real pedestrian crossing in the City of Vienna for the duration of one year. It consists of a cluster of 3 smart cameras, each of which is built from a very compact PC hardware system in an outdoor capable housing. Two cameras run vehicle detection software including license plate detection and recognition, one camera runs a complex pedestrian detection and tracking module based on the HOG detection principle. As a supplement, all 3 cameras use additional optical flow computation in a low-resolution video stream in order to estimate the motion path and speed of objects. This work describes the foundation for all 3 different object detection modalities (pedestrians, vehi1cles, license plates), and explains the system setup and its design.

  9. Cerebral Venous Congestion as Indication for Thrombolytic Treatment

    SciTech Connect

    Tsai, Fong Y. Kostanian, Varoujan; Rivera, Monica; Lee, Kwo-Whie; Chen, Clayton C.; Nguyen, Thong H.

    2007-07-15

    Purpose. To carry out a retrospective analysis of patients with acute dural sinus thrombosis, and the role of cerebral venous congestion in patient management. Methods. Twenty-five patients were identified with the clinical and imaging diagnosis of acute dural sinus thrombosis. The imaging diagnosis was by magnetic resonance (MR) and/or computed tomography (CT) venography. There was a female predominance with a female to male ratio of 1.5 to 1 (16 women, 9 men). The age range was from 19 to 64 years old with an average age of 37 years. The first 10 patients, who ranged in age from 21 to 64 years old (average 37 years), received only anticoagulation therapy with heparin and warfarin for periods ranging from 5 days to 2 months. The remaining 15 patients ranged in age from 19 to 57 years old (average 38 years). They either underwent subsequent thrombectomy after a trial of anticoagulation therapy, or went straight to thrombectomy. These latter 15 patients had initial evidence of cerebral venous congestion, either clinically by severe or worsening symptoms despite anticoagulation therapy, or on initial or subsequent CT or MR imaging. In our experience, the cerebral venous congestion imaging findings included intracranial hemorrhage, a hematoma, or edema. The thrombolytic treatment technique consisted of the advancement of a 6 Fr guiding catheter to the jugular bulb or sigmoid sinus from a transfemoral approach. A microcatheter was then advanced to the proximal portion of the thrombus and then either tissue plasminogen activator (tPA) or urokinase was injected to prevent clot propagation. A balloon catheter was used to perform thrombectomy since the thrombolytic agents can be injected via the inner lumen with an inflated balloon. The inflated balloon helped to keep the venous flow from washing out the thrombolytic agent, thus facilitating the agent's effect. Results. The first 10 patients received only anticoagulation therapy with heparin and warfarin for periods

  10. Team management of congestive heart failure across the continuum.

    PubMed

    Venner, G H; Seelbinder, J S

    1996-01-01

    Despite an increased incidence of congestive heart failure and frequency of hospital admissions for the Medicare population, there is little information available on improving outcomes for these patients. As changes in health care lead toward capitation, efficient care with limited use of expensive inpatient hospital resources is a necessity. The coordination of three critical components--inpatient, outpatient, and home care--can lead to positive outcomes in terms of functional capacity changes, length of stay, readmission rates, patient self-care knowledge, and patient satisfaction.

  11. The Traffic Adaptive Data Dissemination (TrAD) Protocol for both Urban and Highway Scenarios.

    PubMed

    Tian, Bin; Hou, Kun Mean; Zhou, Haiying

    2016-01-01

    The worldwide economic cost of road crashes and injuries is estimated to be US$518 billion per year and the annual congestion cost in France is estimated to be €5.9 billion. Vehicular Ad hoc Networks (VANETs) are one solution to improve transport features such as traffic safety, traffic jam and infotainment on wheels, where a great number of event-driven messages need to be disseminated in a timely way in a region of interest. In comparison with traditional wireless networks, VANETs have to consider the highly dynamic network topology and lossy links due to node mobility. Inter-Vehicle Communication (IVC) protocols are the keystone of VANETs. According to our survey, most of the proposed IVC protocols focus on either highway or urban scenarios, but not on both. Furthermore, too few protocols, considering both scenarios, can achieve high performance. In this paper, an infrastructure-less Traffic Adaptive data Dissemination (TrAD) protocol which takes into account road traffic and network traffic status for both highway and urban scenarios will be presented. TrAD has double broadcast suppression techniques and is designed to adapt efficiently to the irregular road topology. The performance of the TrAD protocol was evaluated quantitatively by means of realistic simulations taking into account different real road maps, traffic routes and vehicular densities. The obtained simulation results show that TrAD is more efficient in terms of packet delivery ratio, number of transmissions and delay in comparison with the performance of three well-known reference protocols. Moreover, TrAD can also tolerate a reasonable degree of GPS drift and still achieve efficient data dissemination.

  12. The Traffic Adaptive Data Dissemination (TrAD) Protocol for both Urban and Highway Scenarios

    PubMed Central

    Tian, Bin; Hou, Kun Mean; Zhou, Haiying

    2016-01-01

    The worldwide economic cost of road crashes and injuries is estimated to be US$518 billion per year and the annual congestion cost in France is estimated to be €5.9 billion. Vehicular Ad hoc Networks (VANETs) are one solution to improve transport features such as traffic safety, traffic jam and infotainment on wheels, where a great number of event-driven messages need to be disseminated in a timely way in a region of interest. In comparison with traditional wireless networks, VANETs have to consider the highly dynamic network topology and lossy links due to node mobility. Inter-Vehicle Communication (IVC) protocols are the keystone of VANETs. According to our survey, most of the proposed IVC protocols focus on either highway or urban scenarios, but not on both. Furthermore, too few protocols, considering both scenarios, can achieve high performance. In this paper, an infrastructure-less Traffic Adaptive data Dissemination (TrAD) protocol which takes into account road traffic and network traffic status for both highway and urban scenarios will be presented. TrAD has double broadcast suppression techniques and is designed to adapt efficiently to the irregular road topology. The performance of the TrAD protocol was evaluated quantitatively by means of realistic simulations taking into account different real road maps, traffic routes and vehicular densities. The obtained simulation results show that TrAD is more efficient in terms of packet delivery ratio, number of transmissions and delay in comparison with the performance of three well-known reference protocols. Moreover, TrAD can also tolerate a reasonable degree of GPS drift and still achieve efficient data dissemination. PMID:27338393

  13. The Traffic Adaptive Data Dissemination (TrAD) Protocol for both Urban and Highway Scenarios.

    PubMed

    Tian, Bin; Hou, Kun Mean; Zhou, Haiying

    2016-01-01

    The worldwide economic cost of road crashes and injuries is estimated to be US$518 billion per year and the annual congestion cost in France is estimated to be €5.9 billion. Vehicular Ad hoc Networks (VANETs) are one solution to improve transport features such as traffic safety, traffic jam and infotainment on wheels, where a great number of event-driven messages need to be disseminated in a timely way in a region of interest. In comparison with traditional wireless networks, VANETs have to consider the highly dynamic network topology and lossy links due to node mobility. Inter-Vehicle Communication (IVC) protocols are the keystone of VANETs. According to our survey, most of the proposed IVC protocols focus on either highway or urban scenarios, but not on both. Furthermore, too few protocols, considering both scenarios, can achieve high performance. In this paper, an infrastructure-less Traffic Adaptive data Dissemination (TrAD) protocol which takes into account road traffic and network traffic status for both highway and urban scenarios will be presented. TrAD has double broadcast suppression techniques and is designed to adapt efficiently to the irregular road topology. The performance of the TrAD protocol was evaluated quantitatively by means of realistic simulations taking into account different real road maps, traffic routes and vehicular densities. The obtained simulation results show that TrAD is more efficient in terms of packet delivery ratio, number of transmissions and delay in comparison with the performance of three well-known reference protocols. Moreover, TrAD can also tolerate a reasonable degree of GPS drift and still achieve efficient data dissemination. PMID:27338393

  14. Traffic Flow Management and Optimization

    NASA Technical Reports Server (NTRS)

    Rios, Joseph Lucio

    2014-01-01

    This talk will present an overview of Traffic Flow Management (TFM) research at NASA Ames Research Center. Dr. Rios will focus on his work developing a large-scale, parallel approach to solving traffic flow management problems in the national airspace. In support of this talk, Dr. Rios will provide some background on operational aspects of TFM as well a discussion of some of the tools needed to perform such work including a high-fidelity airspace simulator. Current, on-going research related to TFM data services in the national airspace system and general aviation will also be presented.

  15. Essay in the theory of uncontrolled flows and congestion

    SciTech Connect

    Iri, M.

    1994-12-31

    A new type of network flow theory is proposed, where only those flows which are representable as a positive sum of elementary-path (or elementary-cycle) flows are considered and no cancellation of flows in an edge is admitted when two or more flows are superposed. It offers a general framework in which to discuss about congestion, blocking flows, etc. in a network. We will call the flows in this framework {open_quotes}uncontrollable flows{close_quotes} because they possess some basic properties of the flows which selfish and stubborn users, or users in emergency situations, generate in a network. Primarily, this is not a mathematics paper but one to introduce a new viewpoint from which to give another look at network flow problems. However, a number of interesting mathematical problems naturally arise in so doing: e.g., {open_quotes}Is a given flow uncontrollable{close_quotes}?, {open_quotes}How to determine a blocking flow or a bottleneck cut{close_quotes}?, {open_quotes}Can we design a network in which no congestion may occur{close_quotes}?, {open_quotes}Under what conditions does additional investment on a network improve its function in this framework{close_quotes}?, etc. What kind of practical problems will be the dual of the concept of uncontrollable flows will also be discussed.

  16. Congestion phenomena caused by matching pennies in evolutionary games.

    PubMed

    Szabó, György; Szolnoki, Attila

    2015-03-01

    Evolutionary social dilemma games are extended by an additional matching-pennies game that modifies the collected payoffs. In a spatial version players are distributed on a square lattice and interact with their neighbors. First, we show that the matching-pennies game can be considered as the microscopic force of the Red Queen effect that breaks the detailed balance and induces eddies in the microscopic probability currents if the strategy update is analogous to the Glauber dynamics for the kinetic Ising models. The resulting loops in probability current breaks symmetry between the chessboardlike arrangements of strategies via a bottleneck effect occurring along the four-edge loops in the microscopic states. The impact of this congestion is analogous to the application of a staggered magnetic field in the Ising model; that is, the order-disorder critical transition is wiped out by noise. It is illustrated that the congestion induced symmetry breaking can be beneficial for the whole community within a certain region of parameters. PMID:25871057

  17. Congestion phenomena caused by matching pennies in evolutionary games.

    PubMed

    Szabó, György; Szolnoki, Attila

    2015-03-01

    Evolutionary social dilemma games are extended by an additional matching-pennies game that modifies the collected payoffs. In a spatial version players are distributed on a square lattice and interact with their neighbors. First, we show that the matching-pennies game can be considered as the microscopic force of the Red Queen effect that breaks the detailed balance and induces eddies in the microscopic probability currents if the strategy update is analogous to the Glauber dynamics for the kinetic Ising models. The resulting loops in probability current breaks symmetry between the chessboardlike arrangements of strategies via a bottleneck effect occurring along the four-edge loops in the microscopic states. The impact of this congestion is analogous to the application of a staggered magnetic field in the Ising model; that is, the order-disorder critical transition is wiped out by noise. It is illustrated that the congestion induced symmetry breaking can be beneficial for the whole community within a certain region of parameters.

  18. Congestion phenomena caused by matching pennies in evolutionary games

    NASA Astrophysics Data System (ADS)

    Szabó, György; Szolnoki, Attila

    2015-03-01

    Evolutionary social dilemma games are extended by an additional matching-pennies game that modifies the collected payoffs. In a spatial version players are distributed on a square lattice and interact with their neighbors. First, we show that the matching-pennies game can be considered as the microscopic force of the Red Queen effect that breaks the detailed balance and induces eddies in the microscopic probability currents if the strategy update is analogous to the Glauber dynamics for the kinetic Ising models. The resulting loops in probability current breaks symmetry between the chessboardlike arrangements of strategies via a bottleneck effect occurring along the four-edge loops in the microscopic states. The impact of this congestion is analogous to the application of a staggered magnetic field in the Ising model; that is, the order-disorder critical transition is wiped out by noise. It is illustrated that the congestion induced symmetry breaking can be beneficial for the whole community within a certain region of parameters.

  19. Nonlinear dynamics of congestive heart failure (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Bernjak, Alan; Clarkson, Peter B. M.; McClintock, Peter V. E.; Stefanovska, Aneta

    2005-05-01

    Preliminary results are reported from a research project analysing congestive heart failure in terms a stochastic coupled-oscillator model of the cardiovascular system. Measurements of blood flow by laser Doppler flowmetry (LDF) have been processed by use of the wavelet transform to separate its oscillatory components, which number at least five. Particular attention was concentrated on the frequency content near 0.01 Hz, which is known to be associated with endothelial function. The LDF was carried out in conjunction with iontophoretically administered acetylcholine (ACh) and sodium nitroprusside (SNP) in order to evaluate endothelial reactivity. Measurements were made on 17 congestive heart failure (CHF) patients (a) on first diagnosis, and (b) again several weeks later after their treatment with a β-blocker had been stabilised. The results of these two sets of measurements are being compared with each other, and with data from an age and sex-matched group of healthy controls. It is confirmed that endothelial reactivity is reduced in CHF patients, as compared to healthy controls, and it is found that one effect of the Beta-blocker is to ameliorate the loss of endothelial function in CHF. The implications of these results are discussed.

  20. Improving UDP/IP Transmission Without Increasing Congestion

    NASA Technical Reports Server (NTRS)

    Burleigh, Scott

    2006-01-01

    Datagram Retransmission (DGR) is a computer program that, within certain limits, ensures the reception of each datagram transmitted under the User Datagram Protocol/Internet Protocol. [User Datagram Protocol (UDP) is considered unreliable because it does not involve a reliability-ensuring connection-initiation dialogue between sender and receiver. UDP is well suited to issuing of many small messages to many different receivers.] Unlike prior software for ensuring reception of UDP datagrams, DGR does not contribute to network congestion by retransmitting data more frequently as an ever-increasing number of messages and acknowledgements is lost. Instead, DGR does just the opposite: DGR includes an adaptive timeout-interval- computing component that provides maximum opportunity for reception of acknowledgements, minimizing retransmission. By monitoring changes in the rate at which message-transmission transactions are completed, DGR detects changes in the level of congestion and responds by imposing varying degrees of delay on the transmission of new messages. In addition, DGR maximizes throughput by not waiting for acknowledgement of a message before sending the next message. All DGR communication is asynchronous, to maximize efficient utilization of network connections. DGR manages multiple concurrent datagram transmission and acknowledgement conversations.

  1. Quasi-static evolution and congested crowd transport

    NASA Astrophysics Data System (ADS)

    Alexander, Damon; Kim, Inwon; Yao, Yao

    2014-04-01

    We consider the relationship between Hele-Shaw evolution with drift, the porous medium equation with drift, and a congested crowd motion model originally proposed by Maury et al (2010 Math. Models Methods Appl. Sci. 20 1787-821). We first use viscosity solutions to show that the porous medium equation solutions converge to the Hele-Shaw solution as m → ∞ provided the drift potential is strictly subharmonic. Next, using the gradient-flow structure of both the porous medium equation and the crowd motion model, we prove that the porous medium equation solutions also converge to the congested crowd motion as m → ∞. Combining these results lets us deduce that in the case where the initial data to the crowd motion model is given by a patch, or characteristic function, the solution evolves as a patch that is the unique solution to the Hele-Shaw problem. While proving our main results we also obtain a comparison principle for solutions with the minimizing movement scheme based on the Wasserstein metric, of independent interest.

  2. Analysis of random drop for gateway congestion control. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Hashem, Emam Salaheddin

    1989-01-01

    Lately, the growing demand on the Internet has prompted the need for more effective congestion control policies. Currently No Gateway Policy is used to relieve and signal congestion, which leads to unfair service to the individual users and a degradation of overall network performance. Network simulation was used to illustrate the character of Internet congestion and its causes. A newly proposed gateway congestion control policy, called Random Drop, was considered as a promising solution to the pressing problem. Random Drop relieves resource congestion upon buffer overflow by choosing a random packet from the service queue to be dropped. The random choice should result in a drop distribution proportional to the bandwidth distribution among all contending TCP connections, thus applying the necessary fairness. Nonetheless, the simulation experiments demonstrate several shortcomings with this policy. Because Random Drop is a congestion control policy, which is not applied until congestion has already occurred, it usually results in a high drop rate that hurts too many connections including well-behaved ones. Even though the number of packets dropped is different from one connection to another depending on the buffer utilization upon overflow, the TCP recovery overhead is high enough to neutralize these differences, causing unfair congestion penalties. Besides, the drop distribution itself is an inaccurate representation of the average bandwidth distribution, missing much important information about the bandwidth utilization between buffer overflow events. A modification of Random Drop to do congestion avoidance by applying the policy early was also proposed. Early Random Drop has the advantage of avoiding the high drop rate of buffer overflow. The early application of the policy removes the pressure of congestion relief and allows more accurate signaling of congestion. To be used effectively, algorithms for the dynamic adjustment of the parameters of Early Random Drop

  3. Dynamic Density: An Air Traffic Management Metric

    NASA Technical Reports Server (NTRS)

    Laudeman, I. V.; Shelden, S. G.; Branstrom, R.; Brasil, C. L.

    1998-01-01

    The definition of a metric of air traffic controller workload based on air traffic characteristics is essential to the development of both air traffic management automation and air traffic procedures. Dynamic density is a proposed concept for a metric that includes both traffic density (a count of aircraft in a volume of airspace) and traffic complexity (a measure of the complexity of the air traffic in a volume of airspace). It was hypothesized that a metric that includes terms that capture air traffic complexity will be a better measure of air traffic controller workload than current measures based only on traffic density. A weighted linear dynamic density function was developed and validated operationally. The proposed dynamic density function includes a traffic density term and eight traffic complexity terms. A unit-weighted dynamic density function was able to account for an average of 22% of the variance in observed controller activity not accounted for by traffic density alone. A comparative analysis of unit weights, subjective weights, and regression weights for the terms in the dynamic density equation was conducted. The best predictor of controller activity was the dynamic density equation with regression-weighted complexity terms.

  4. Can Earth Sciences Help Alleviate Global Poverty?

    NASA Astrophysics Data System (ADS)

    Mutter, J. C.

    2004-12-01

    essential and could hold the key to making gains toward alleviating the burden of global poverty.

  5. The effects of velocity difference changes with memory on the dynamics characteristics and fuel economy of traffic flow

    NASA Astrophysics Data System (ADS)

    Yu, Shaowei; Zhao, Xiangmo; Xu, Zhigang; Zhang, Licheng

    2016-11-01

    To evaluate the effects of velocity difference changes with memory in the intelligent transportation environment on the dynamics and fuel consumptions of traffic flow, we first investigate the linkage between velocity difference changes with memory and car-following behaviors with the measured data in cities, and then propose an improved cooperative car-following model considering multiple velocity difference changes with memory in the cooperative adaptive cruise control strategy, finally carry out several numerical simulations under the periodic boundary condition and at signalized intersections to explore how velocity difference changes with memory affect car's velocity, velocity fluctuation, acceleration and fuel consumptions in the intelligent transportation environment. The results show that velocity difference changes with memory have obvious effects on car-following behaviors, that the improved cooperative car-following model can describe the phase transition of traffic flow and estimate the evolution of traffic congestion, that the stability and fuel economy of traffic flow simulated by the improved car-following model with velocity difference changes with memory is obviously superior to those without velocity difference changes, and that taking velocity difference changes with memory into account in designing the advanced adaptive cruise control strategy can significantly improve the stability and fuel economy of traffic flow.

  6. Disability-adjusted life years in the assessment of health effects of traffic-related air pollution.

    PubMed

    Adamkiewicz, Ł; Badyda, A J; Gayer, A; Mucha, D

    2015-01-01

    Traffic-related air pollutants have an impact on human health and have been recognized as one of the main stressors that cause mortality and morbidity in urban areas. Research confirms that citizens living in the vicinity of main roads are strongly exposed to high concentrations of numerous air pollutants. In the present study the measurements of traffic-related parameters such as density, velocity, and structure were performed for cross-sections of selected street canyons in Warsaw, the capital city of Poland. In addition, the results of the general traffic measurements were used to describe the number of cars crossing the border of the city. Vehicle emissions of PM10 were calculated for the whole city area and changes of the PM10 concentration were modeled to present the exposure to this pollutant that could be attributable to traffic. The principles of the environmental burden of disease (EBD) were used. The assessment of the impact of traffic-related air pollutants on human health was made. The results, presented in disability-adjusted life years (DALY), were based on the outcomes of the study conducted in 2008-2012 in Warsaw, one the most congested agglomerations in Europe, and included the health damage effect of the exposure to high concentrations of air pollutants. DALY calculations were performed in accordance to the methodologies used in renowned international scientific research on EBD.

  7. Deterministic models for traffic jams

    NASA Astrophysics Data System (ADS)

    Nagel, Kai; Herrmann, Hans J.

    1993-10-01

    We study several deterministic one-dimensional traffic models. For integer positions and velocities we find the typical high and low density phases separated by a simple transition. If positions and velocities are continuous variables the model shows self-organized critically driven by the slowest car.

  8. Integrin traffic – the update

    PubMed Central

    De Franceschi, Nicola; Hamidi, Hellyeh; Alanko, Jonna; Sahgal, Pranshu; Ivaska, Johanna

    2015-01-01

    ABSTRACT Integrins are a family of transmembrane cell surface molecules that constitute the principal adhesion receptors for the extracellular matrix (ECM) and are indispensable for the existence of multicellular organisms. In vertebrates, 24 different integrin heterodimers exist with differing substrate specificity and tissue expression. Integrin–extracellular-ligand interaction provides a physical anchor for the cell and triggers a vast array of intracellular signalling events that determine cell fate. Dynamic remodelling of adhesions, through rapid endocytic and exocytic trafficking of integrin receptors, is an important mechanism employed by cells to regulate integrin–ECM interactions, and thus cellular signalling, during processes such as cell migration, invasion and cytokinesis. The initial concept of integrin traffic as a means to translocate adhesion receptors within the cell has now been expanded with the growing appreciation that traffic is intimately linked to the cell signalling apparatus. Furthermore, endosomal pathways are emerging as crucial regulators of integrin stability and expression in cells. Thus, integrin traffic is relevant in a number of pathological conditions, especially in cancer. Nearly a decade ago we wrote a Commentary in Journal of Cell Science entitled ‘Integrin traffic’. With the advances in the field, we felt it would be appropriate to provide the growing number of researchers interested in integrin traffic with an update. PMID:25663697

  9. Broadcast control of air traffic

    NASA Technical Reports Server (NTRS)

    Litchford, G. B.

    1972-01-01

    The development of a system of broadcast control for improved flight safety and air traffic control is discussed. The system provides a balance of equality between improved cockpit guidance and control capability and ground control in order to provide the pilot with a greater degree of participation. The manner in which the system is operated and the equipment required for safe operation are examined.

  10. Overview. Traffic Safety Facts, 2000.

    ERIC Educational Resources Information Center

    National Highway Traffic Safety Administration (DOT), Washington, DC.

    This document provides statistical information on U.S. motor vehicle and traffic safety. Data include: (1) motor vehicle occupants and non-occupants killed and injured, 1990-2000; (2) persons killed and injured, and fatality and injury rates, 1990-2000; (3) restraint use rates for passenger car occupants in fatal crashes, 1990 and 2000; (4)…

  11. Traffic Safety Facts, 2001. Overview.

    ERIC Educational Resources Information Center

    National Highway Traffic Safety Administration (DOT), Washington, DC.

    This document provides statistical information on U.S. motor vehicle and traffic safety. Data include: (1) motor vehicle occupants and non-occupants killed and injured, 1991-2001; (2) persons killed and injured, and fatality and injury rates, 1991-2001; (3) restraint use rates for passenger car occupants in fatal crashes, 1991 and 2001; (4)…

  12. 23 CFR 973.214 - Indian lands congestion management system (CMS).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Indian lands congestion management system (CMS). 973.214... HIGHWAYS MANAGEMENT SYSTEMS PERTAINING TO THE BUREAU OF INDIAN AFFAIRS AND THE INDIAN RESERVATION ROADS PROGRAM Bureau of Indian Affairs Management Systems § 973.214 Indian lands congestion management...

  13. Evaluation of performance characteristics of the medicinal leech (Hirudo medicinalis) for the treatment of venous congestion.

    PubMed

    Conforti, Michael L; Connor, Nadine P; Heisey, Dennis M; Hartig, Gregory K

    2002-01-01

    Medicinal leeches (Hirudo medicinalis) are a standard treatment for venous congestion, a complication that can occur after reconstructive surgery. If the cause of venous congestion cannot be surgically corrected, then medicinal leeches are used to temporarily increase perfusion levels and maintain physiologic requirements within the congested tissue. Leeches increase perfusion within congested tissue by actively drawing off blood as a bloodmeal. Furthermore, the leech bite continues to bleed and relieve congestion after detachment because of the anticoagulation effects of leech saliva left behind in the bite. In a porcine model, a 10 x 10 cm cutaneous flank flap was congested by clamping the venae comitantes. Four medicinal leeches were allowed to attach to the congested flap, and parameters of active feeding and passive bleeding after detachment were recorded. The average bloodmeal volume for the medicinal leeches was 2.45 ml. Average passive bleeding for the first 2 and 4 hours after leech detachment totaled 2.21 and 2.50 ml, respectively, with 90 percent of passive bleeding occurring within 5 hours after detachment. Laser Doppler imaging indicated that the spatial arrangement of surface perfusion increases were localized to a 1.6-cm-diameter circle around the leech head (bite) and corresponded well with the visual return of normal skin tones to the same area. This study provides a realistic and quantitative estimate of the spatial and volumetric characteristics of leech feeding and passive bleeding using a clinically relevant model of acute, severe congestion.

  14. Congestion at Card and Book Catalogs--A Queuing-Theory Approach

    ERIC Educational Resources Information Center

    Bookstein, Abraham

    1972-01-01

    This paper attempts to analyze the problem of congestion, using a mathematical model shown to be of value in other similar applications. Three criteria of congestion are considered, and it is found that the conclusion one can draw is sensitive to which of these criteria is paramount. (8 references) (Author/NH)

  15. 23 CFR 973.214 - Indian lands congestion management system (CMS).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 23 Highways 1 2011-04-01 2011-04-01 false Indian lands congestion management system (CMS). 973.214... (CMS). (a) For purposes of this section, congestion means the level at which transportation system... the tribes, shall develop criteria to determine when a CMS is to be implemented for a...

  16. 77 FR 49859 - Proposed Traffic Records Program Assessment Advisory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-17

    ... National Highway Traffic Safety Administration Proposed Traffic Records Program Assessment Advisory AGENCY: National Highway Traffic Safety Administration (NHTSA), Department of Transportation (DOT). ACTION: Notice. SUMMARY: This notice announces the publication of the Traffic Records Program Assessment Advisory, DOT...

  17. Traffic fatalities and economic growth.

    PubMed

    Kopits, Elizabeth; Cropper, Maureen

    2005-01-01

    This paper examines the relationship between traffic fatality risk and per capita income and uses it to forecast traffic fatalities by geographic region. Equations for the road death rate (fatalities/population) and its components--the rate of motorization (vehicles/population) and fatalities per vehicle (F/V)--are estimated using panel data from 1963 to 1999 for 88 countries. The natural logarithm of F/P, V/P, and F/V are expressed as spline (piecewise linear) functions of the logarithm of real per capita GDP (measured in 1985 international prices). Region-specific time trends during the period 1963-1999 are modeled in linear and log-linear form. These models are used to project traffic fatalities and the stock of motor vehicles to 2020. The per capita income at which traffic fatality risk (fatalities/population) begins to decline is 8600 US dollars (1985 international dollars) when separate time trends are used for each geographic region. This turning point is driven by the rate of decline in fatalities/vehicles as income rises since vehicles/population, while increasing with income at a decreasing rate, never declines with economic growth. Projections of future traffic fatalities suggest that the global road death toll will grow by approximately 66% over the next twenty years. This number, however, reflects divergent rates of change in different parts of the world: a decline in fatalities in high-income countries of approximately 28% versus an increase in fatalities of almost 92% in China and 147% in India. The road death rate is projected to rise to approximately 2 per 10,000 persons in developing countries by 2020, while it will fall to less than 1 per 10,000 in high-income countries.

  18. Predicting Information Flows in Network Traffic.

    ERIC Educational Resources Information Center

    Hinich, Melvin J.; Molyneux, Robert E.

    2003-01-01

    Discusses information flow in networks and predicting network traffic and describes a study that uses time series analysis on a day's worth of Internet log data. Examines nonlinearity and traffic invariants, and suggests that prediction of network traffic may not be possible with current techniques. (Author/LRW)

  19. 14 CFR 25 - Traffic and Capacity Elements

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) Editorial Note: For Federal Register citations affecting part 241, section 25, see the List of CFR Sections... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Traffic and Capacity Elements Section 25... Traffic Reporting Requirements Section 25 Traffic and Capacity Elements General Instructions. (a)...

  20. 30 CFR 56.9100 - Traffic control.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Traffic control. 56.9100 Section 56.9100 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Dumping Traffic Safety § 56.9100 Traffic control. To provide for the safe movement of...

  1. 30 CFR 57.9100 - Traffic control.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Traffic control. 57.9100 Section 57.9100 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Dumping Traffic Safety § 57.9100 Traffic control. To provide for the safe movement of...

  2. 30 CFR 56.9100 - Traffic control.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Traffic control. 56.9100 Section 56.9100 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Dumping Traffic Safety § 56.9100 Traffic control. To provide for the safe movement of...

  3. 30 CFR 57.9100 - Traffic control.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Traffic control. 57.9100 Section 57.9100 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Dumping Traffic Safety § 57.9100 Traffic control. To provide for the safe movement of...

  4. 30 CFR 56.9100 - Traffic control.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Traffic control. 56.9100 Section 56.9100 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Dumping Traffic Safety § 56.9100 Traffic control. To provide for the safe movement of...

  5. 49 CFR 236.769 - Locking, traffic.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Locking, traffic. 236.769 Section 236.769... Locking, traffic. Electric locking which prevents the manipulation of levers or other devices for changing the direction of traffic on a section of track while that section is occupied or while a...

  6. 36 CFR 1004.13 - Obstructing traffic.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false Obstructing traffic. 1004.13 Section 1004.13 Parks, Forests, and Public Property PRESIDIO TRUST VEHICLES AND TRAFFIC SAFETY § 1004.13 Obstructing traffic. The following are prohibited: (a) Stopping or parking a vehicle upon a Presidio...

  7. 30 CFR 56.9100 - Traffic control.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Traffic control. 56.9100 Section 56.9100 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Dumping Traffic Safety § 56.9100 Traffic control. To provide for the safe movement of...

  8. 49 CFR 236.769 - Locking, traffic.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Locking, traffic. 236.769 Section 236.769... Locking, traffic. Electric locking which prevents the manipulation of levers or other devices for changing the direction of traffic on a section of track while that section is occupied or while a...

  9. 49 CFR 236.381 - Traffic locking.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Traffic locking. 236.381 Section 236.381 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... and Tests § 236.381 Traffic locking. Traffic locking shall be tested when placed in service...

  10. 15 CFR 265.22 - Bicycle traffic.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Bicycle traffic. 265.22 Section 265.22... STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE REGULATIONS GOVERNING TRAFFIC AND CONDUCT REGULATIONS GOVERNING TRAFFIC AND CONDUCT ON THE GROUNDS OF THE NATIONAL INSTITUTE OF STANDARDS &...

  11. 15 CFR 265.22 - Bicycle traffic.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 1 2011-01-01 2011-01-01 false Bicycle traffic. 265.22 Section 265.22... STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE REGULATIONS GOVERNING TRAFFIC AND CONDUCT REGULATIONS GOVERNING TRAFFIC AND CONDUCT ON THE GROUNDS OF THE NATIONAL INSTITUTE OF STANDARDS &...

  12. 30 CFR 57.9100 - Traffic control.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Traffic control. 57.9100 Section 57.9100 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Dumping Traffic Safety § 57.9100 Traffic control. To provide for the safe movement of...

  13. 30 CFR 57.9100 - Traffic control.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Traffic control. 57.9100 Section 57.9100 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Dumping Traffic Safety § 57.9100 Traffic control. To provide for the safe movement of...

  14. 49 CFR 236.381 - Traffic locking.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Traffic locking. 236.381 Section 236.381 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... and Tests § 236.381 Traffic locking. Traffic locking shall be tested when placed in service...

  15. 36 CFR 1004.13 - Obstructing traffic.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Obstructing traffic. 1004.13 Section 1004.13 Parks, Forests, and Public Property PRESIDIO TRUST VEHICLES AND TRAFFIC SAFETY § 1004.13 Obstructing traffic. The following are prohibited: (a) Stopping or parking a vehicle upon a Presidio...

  16. Estimation of Congestion in Free Disposal Hull Models Using Data Envelopment Analysis

    PubMed Central

    Abbasi, M.; Jahanshahloo, G. R.; Rostamy-Malkhlifeh, M.; Hosseinzadeh Lotfi, F.

    2014-01-01

    This paper deals with evaluating congestion in free disposal hull (FDH) models. There are several approaches in data envelopment analysis (DEA) literatures which discuss the theory and application of congestion. However, almost all of these approaches considered convex DEA technologies. So, in the case of nonconvex technologies, including FDH technology, this field is almost nil. This paper makes an attempt to fill in this void. To do so, this study provides a pairwise comparisons-based algorithm to evaluate congestion in FDH model. This algorithm identifies the sources of congestion and estimates its amounts. It is also capable of detecting the losses amounts of output due to congestion. The validity of the proposed model is demonstrated using some numerical and empirical examples. PMID:25379531

  17. Estimation of congestion in free disposal hull models using data envelopment analysis.

    PubMed

    Abbasi, M; Jahanshahloo, G R; Rostamy-Malkhlifeh, M; Hosseinzadeh Lotfi, F

    2014-01-01

    This paper deals with evaluating congestion in free disposal hull (FDH) models. There are several approaches in data envelopment analysis (DEA) literatures which discuss the theory and application of congestion. However, almost all of these approaches considered convex DEA technologies. So, in the case of nonconvex technologies, including FDH technology, this field is almost nil. This paper makes an attempt to fill in this void. To do so, this study provides a pairwise comparisons-based algorithm to evaluate congestion in FDH model. This algorithm identifies the sources of congestion and estimates its amounts. It is also capable of detecting the losses amounts of output due to congestion. The validity of the proposed model is demonstrated using some numerical and empirical examples. PMID:25379531

  18. Enhanced TCP Congestion Control with Higher Utilization in Under-Buffered Links

    NASA Astrophysics Data System (ADS)

    Hyun, Dowon; Jang, Ju Wook

    TCP Reno is not fully utilized in under-buffered links. We propose a new TCP congestion control algorithm that can utilize the link almost up to 100% except the first congestion avoidance cycle. Our scheme estimates the minimum congestion window size for full link utilization in every congestion avoidance cycle and sends extra packets without touching TCP Reno congestion control. It has the same RTT fairness and the same saw-tooth wave as TCP Reno does. Our scheme does not affect competing TCP Reno flows since it uses only unused link capacity. We provide a simple mathematical modeling as well as ns-2 simulation results which show that the link utilization is improved by up to 19.88% for k=1/8 against TCP Reno when the buffer is k times the optimal buffer size. We claim that our scheme is useful for transmitting large amount of data in under-buffered links.

  19. Relationship Between Carbon Dioxide Levels and Reported Congestion and Headaches on the International Space Station

    NASA Technical Reports Server (NTRS)

    Cole, Robert; Wear, Mary; Young, Millennia; Cobel, Christopher; Mason, Sara

    2017-01-01

    Congestion is commonly reported during spaceflight, and most crewmembers have reported using medications for congestion during International Space Station (ISS) missions. Although congestion has been attributed to fluid shifts during spaceflight, fluid status reaches equilibrium during the first week after launch while congestion continues to be reported throughout long duration missions. Congestion complaints have anecdotally been reported in relation to ISS CO2 levels; this evaluation was undertaken to determine whether or not an association exists. METHODS: Reported headaches, congestion symptoms, and CO2 levels were obtained for ISS expeditions 2-31, and time-weighted means and single-point maxima were determined for 24-hour (24hr) and 7-day (7d) periods prior to each weekly private medical conference. Multiple imputation addressed missing data, and logistic regression modeled the relationship between probability of reported event of congestion or headache and CO2 levels, adjusted for possible confounding covariates. The first seven days of spaceflight were not included to control for fluid shifts. Data were evaluated to determine the concentration of CO2 required to maintain the risk of congestion below 1% to allow for direct comparison with a previously published evaluation of CO2 concentrations and headache. RESULTS: This study confirmed a previously identified significant association between CO2 and headache and also found a significant association between CO2 and congestion. For each 1-mm Hg increase in CO2, the odds of a crew member reporting congestion doubled. The average 7-day CO2 would need to be maintained below 1.5 mmHg to keep the risk of congestion below 1%. The predicted probability curves of ISS headache and congestion curves appear parallel when plotted against ppCO2 levels with congestion occurring at approximately 1mmHg lower than a headache would be reported. DISCUSSION: While the cause of congestion is multifactorial, this study showed

  20. Investigation of Global Performance Affected by Congestion Avoiding Behavior in Theme Park Problem

    NASA Astrophysics Data System (ADS)

    Kawamura, Hidenori; Kataoka, Takashi; Kurumatani, Koichi; Ohuchi, Azuma

    We focus on the simple theme park problem, where there are two attractions and visitor agents which select their destination attraction based on congestion disregarding behavior and congestion avoiding behavior. According to the computer simulation, the result shows that the growth of individual congestion avoiding behavior is not always effective for improving global performance, and this phenomenon is caused by the oscillation of successive selection switching of the same destination by many congestion avoiding agents. Although the model and setting of this paper is simpler than other related works, we consider each phenomenon in those works has the same characteristic based on the ineffectiveness caused by the homogeneity of congestion avoiding behavior and information sharing.

  1. Venous Congestion, Endothelial and Neurohormonal Activation in Acute Decompensated Heart Failure: Cause or Effect?

    PubMed Central

    Colombo, Paolo C.; Doran, Amanda C.; Onat, Duygu; Wong, Ka Yuk; Ahmad, Myra; Sabbah, Hani N.; Demmer, Ryan T.

    2015-01-01

    Venous congestion and endothelial and neurohormonal activation are known to occur in acute decompensated heart failure (ADHF), yet the temporal role of these processes in the pathophysiology of decompensation is not fully understood. Conventional wisdom presumes congestion to be a consequence of worsening cardiovascular function; however, the biomechanically driven effects of venous congestion are biologically plausible contributors to ADHF that remain largely unexplored in vivo. Recent experimental evidence from human models suggests that fluid accumulation and venous congestion are not simply consequences of poor cardiovascular function, but rather are fundamental pro-oxidant, pro-inflammatory, and hemodynamic stimuli that contribute to acute decompensation. The latest advances in the monitoring of volume status using implantable devices allow for the detection of venous congestion before symptoms arise. This may ultimately lead to improved treatment strategies including not only diuretics, but also specific, adjuvant interventions to counteract endothelial and neurohormonal activation during early preclinical decompensation. PMID:25740404

  2. A macro traffic flow model accounting for real-time traffic state

    NASA Astrophysics Data System (ADS)

    Tang, Tie-Qiao; Chen, Liang; Wu, Yong-Hong; Caccetta, Lou

    2015-11-01

    In this paper, we propose a traffic flow model to study the effects of the real-time traffic state on traffic flow. The numerical results show that the proposed model can describe oscillation in traffic and stop-and-go traffic, where the speed-density relationship is qualitatively accordant with the empirical data of the Weizikeng segment of the Badaling freeway in Beijing, which means that the proposed model can qualitatively reproduce some complex traffic phenomena associated with real-time traffic state.

  3. Traffic Network Aided Plan and Road Line Optimization in Intelligent Traffic System

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Qin, Guofeng

    2008-11-01

    In ITS(intelligent traffic system), traffic network plan is important. Public traffic network is a basic part in contemporary intelligent traffic and a basis of the municipal infrastructure construction. To construct the public traffic network aided plan, two problems are studied. One is how to plan traffic road line in order to cover the traffic districts; the other is how to choice the best way from the start point to the end. For the first one, a traffic road line aided plan algorithm is taken forward. The other is a road line optimization algorithm. It utilizes the topology theory to analyze the spatial character in public traffic network, and designs the best choice method to meet the user's requirements. The two algorithms are realized, and proved by a case in the graphical interface of GIS(Geographic Information System), including simulation for rationalization of the public traffic network.

  4. Congestive heart failure from suspected ductal closure in utero.

    PubMed

    Arcilla, R A; Thilenius, O G; Ranniger, K

    1969-07-01

    This is the 1st case report of a ductal closure occurring during fetal growth. The case was a spontaneous delivery in cephalic presentation from a 31-year-old gravida 3, para 3 Black woman who had been treated with isoniazid and spreptomycin up to 2 months before her delivery. Gestational age was 37 weeks when the fetus was delivered weighing 3.15 kgm. The cord had been wrapped around the fetus's neck, and breathing was delayed 2 minutes. In the nursery, the baby's general condition was poor, and congestive heart failure was diagnosed. The newborn had trieuspid insufficiency, severe heart failure, and acidosis at birth. These disappeared the next day. Hemodynamic studies when the baby was 4 hours old showed a large cone-shaped ductus arteriousus extending from the pulmonary artery but ending blindly at the aortic end.

  5. Complexity in congestive heart failure: A time-frequency approach

    NASA Astrophysics Data System (ADS)

    Banerjee, Santo; Palit, Sanjay K.; Mukherjee, Sayan; Ariffin, MRK; Rondoni, Lamberto

    2016-03-01

    Reconstruction of phase space is an effective method to quantify the dynamics of a signal or a time series. Various phase space reconstruction techniques have been investigated. However, there are some issues on the optimal reconstructions and the best possible choice of the reconstruction parameters. This research introduces the idea of gradient cross recurrence (GCR) and mean gradient cross recurrence density which shows that reconstructions in time frequency domain preserve more information about the dynamics than the optimal reconstructions in time domain. This analysis is further extended to ECG signals of normal and congestive heart failure patients. By using another newly introduced measure—gradient cross recurrence period density entropy, two classes of aforesaid ECG signals can be classified with a proper threshold. This analysis can be applied to quantifying and distinguishing biomedical and other nonlinear signals.

  6. I/O Congestion Avoidance via Routing and Object Placement

    SciTech Connect

    Dillow, David A; Shipman, Galen M; Oral, H Sarp; Zhang, Zhe

    2011-01-01

    As storage systems get larger to meet the the demands of petascale systems, careful planning must be applied to avoid congestion points and extract the maximum performance. In addition, the large size of the data sets generated by such systems makes it desirable for all compute resources in a center to have common access to this data without needing to copy it to each machine. This paper describes a method of placing I/O close to the storage nodes to minimize contention on Cray's SeaStar2+ network, and extends it to a routed Lustre configuration to gain the same benefits when running against a center-wide file system. Our experiments show performance improvements for both direct attached and routed file systems.

  7. Respiratory sleep disorders in patients with congestive heart failure.

    PubMed

    Naughton, Matthew T

    2015-08-01

    Respiratory sleep disorders (RSD) occur in about 40-50% of patients with symptomatic congestive heart failure (CHF). Obstructive sleep apnea (OSA) is considered a cause of CHF, whereas central sleep apnea (CSA) is considered a response to heart failure, perhaps even compensatory. In the setting of heart failure, continuous positive airway pressure (CPAP) has a definite role in treating OSA with improvements in cardiac parameters expected. However in CSA, CPAP is an adjunctive therapy to other standard therapies directed towards the heart failure (pharmacological, device and surgical options). Whether adaptive servo controlled ventilatory support, a variant of CPAP, is beneficial is yet to be proven. Supplemental oxygen therapy should be used with caution in heart failure, in particular, by avoiding hyperoxia as indicated by SpO2 values >95%.

  8. Respiratory sleep disorders in patients with congestive heart failure

    PubMed Central

    2015-01-01

    Respiratory sleep disorders (RSD) occur in about 40-50% of patients with symptomatic congestive heart failure (CHF). Obstructive sleep apnea (OSA) is considered a cause of CHF, whereas central sleep apnea (CSA) is considered a response to heart failure, perhaps even compensatory. In the setting of heart failure, continuous positive airway pressure (CPAP) has a definite role in treating OSA with improvements in cardiac parameters expected. However in CSA, CPAP is an adjunctive therapy to other standard therapies directed towards the heart failure (pharmacological, device and surgical options). Whether adaptive servo controlled ventilatory support, a variant of CPAP, is beneficial is yet to be proven. Supplemental oxygen therapy should be used with caution in heart failure, in particular, by avoiding hyperoxia as indicated by SpO2 values >95%. PMID:26380758

  9. Evolution of Traffic Jam in Traffic Flow Model

    NASA Astrophysics Data System (ADS)

    Fukui, Minoru; Ishibashi, Yoshihiro

    1993-11-01

    Traffic flow is simulated in a three-state cellular automaton model. In a two-dimensional cell without a crashed car, the ensemble average of the velocity of the cars is enhanced by the self-organization in the low-density phase of cars. In the high-density phase above p{=}0.5 of car density, the velocity is decreased and the system then degenerates into a global jamming phase in which all cars are stopped. A crashed car provides the seed of a jamming cluster, which grows into a global traffic jam even in the low-density phase. The growth of the jamming cluster is studied, and the time dependence of the number of jamming cars and the scaling law for the cell sizes are discussed.

  10. Simulation Study of Traffic Accidents in Bidirectional Traffic Models

    NASA Astrophysics Data System (ADS)

    Moussa, Najem

    Conditions for the occurrence of bidirectional collisions are developed based on the Simon-Gutowitz bidirectional traffic model. Three types of dangerous situations can occur in this model. We analyze those corresponding to head-on collision; rear-end collision and lane-changing collision. Using Monte Carlo simulations, we compute the probability of the occurrence of these collisions for different values of the oncoming cars' density. It is found that the risk of collisions is important when the density of cars in one lane is small and that of the other lane is high enough. The influence of different proportions of heavy vehicles is also studied. We found that heavy vehicles cause an important reduction of traffic flow on the home lane and provoke an increase of the risk of car accidents.

  11. Traffic flow theory and traffic flow simulation models. Transportation research record

    SciTech Connect

    1996-12-31

    ;Contents: Comparison of Simulation Modules of TRANSYT and INTEGRATION Models; Evaluation of SCATSIM-RTA Adaptive Traffic Network Simulation Model; Comparison NETSIM, NETFLO I, and NETFLO II Traffic Simulation Models for Fixed-Time Signal Control; Traffic Flow Simulation Through Parallel Processing; Cluster Analysis as Tool in Traffic Engineering; Traffic Platoon Dispersion Modeling on Arterial Streets; Hybrid Model for Estimating Permitted Left-Turn Saturations Flow Rate; and Passing Sight Distance and Overtaking Dilemma on Two-Lane Roads.

  12. Spatial correlation analysis of cascading failures: congestions and blackouts.

    PubMed

    Daqing, Li; Yinan, Jiang; Rui, Kang; Havlin, Shlomo

    2014-06-20

    Cascading failures have become major threats to network robustness due to their potential catastrophic consequences, where local perturbations can induce global propagation of failures. Unlike failures spreading via direct contacts due to structural interdependencies, overload failures usually propagate through collective interactions among system components. Despite the critical need in developing protection or mitigation strategies in networks such as power grids and transportation, the propagation behavior of cascading failures is essentially unknown. Here we find by analyzing our collected data that jams in city traffic and faults in power grid are spatially long-range correlated with correlations decaying slowly with distance. Moreover, we find in the daily traffic, that the correlation length increases dramatically and reaches maximum, when morning or evening rush hour is approaching. Our study can impact all efforts towards improving actively system resilience ranging from evaluation of design schemes, development of protection strategies to implementation of mitigation programs.

  13. Spatial correlation analysis of cascading failures: congestions and blackouts.

    PubMed

    Daqing, Li; Yinan, Jiang; Rui, Kang; Havlin, Shlomo

    2014-01-01

    Cascading failures have become major threats to network robustness due to their potential catastrophic consequences, where local perturbations can induce global propagation of failures. Unlike failures spreading via direct contacts due to structural interdependencies, overload failures usually propagate through collective interactions among system components. Despite the critical need in developing protection or mitigation strategies in networks such as power grids and transportation, the propagation behavior of cascading failures is essentially unknown. Here we find by analyzing our collected data that jams in city traffic and faults in power grid are spatially long-range correlated with correlations decaying slowly with distance. Moreover, we find in the daily traffic, that the correlation length increases dramatically and reaches maximum, when morning or evening rush hour is approaching. Our study can impact all efforts towards improving actively system resilience ranging from evaluation of design schemes, development of protection strategies to implementation of mitigation programs. PMID:24946927

  14. Distributed and Centralized Conflict Management Under Traffic Flow Management Constraints

    NASA Technical Reports Server (NTRS)

    Feron, Eric; Bilimoria, Karl (Technical Monitor)

    2001-01-01

    The past year's activity has concentrated on the following two activities: (1) Refining and completing our study on the stability of interacting flows of aircraft when they have to resolve conflicts in a decentralized and sequential manner. More specifically, it was felt that some of the modeling assumptions made during previous research (such offset maneuvering models) could be improved to include more realistic models such as heading changes when analyzing interacting flow stability problems. We extended our analysis to achieve this goal. The results of this study have been submitted for presentation at the 2002 American Control Conference; (2) Examining the issues associated with delay propagation across multiple enroute sectors. This study was initiated at NASA in cooperation with Dr. Karl Bilimoria. Considering a set of adjacent sectors, this ongoing study concentrates on the effect of various traffic flow management strategies on the propagation of delays and congestion across sectors. The problem description and findings so far are reported in the attached working paper "Enroute sector buffering capacity."

  15. A Concept for Robust, High Density Terminal Air Traffic Operations

    NASA Technical Reports Server (NTRS)

    Isaacson, Douglas R.; Robinson, John E.; Swenson, Harry N.; Denery, Dallas G.

    2010-01-01

    This paper describes a concept for future high-density, terminal air traffic operations that has been developed by interpreting the Joint Planning and Development Office s vision for the Next Generation (NextGen) Air Transportation System and coupling it with emergent NASA and other technologies and procedures during the NextGen timeframe. The concept described in this paper includes five core capabilities: 1) Extended Terminal Area Routing, 2) Precision Scheduling Along Routes, 3) Merging and Spacing, 4) Tactical Separation, and 5) Off-Nominal Recovery. Gradual changes are introduced to the National Airspace System (NAS) by phased enhancements to the core capabilities in the form of increased levels of automation and decision support as well as targeted task delegation. NASA will be evaluating these conceptual technological enhancements in a series of human-in-the-loop simulations and will accelerate development of the most promising capabilities in cooperation with the FAA through the Efficient Flows Into Congested Airspace Research Transition Team.

  16. Effects of Vehicle Number Feedback in Multi-Route Intelligent Traffic Systems

    NASA Astrophysics Data System (ADS)

    Dong, Chuanfei; Ma, Xu; Wang, Binghong

    We first study dynamics of traffic flow with real-time information and the influence of a new feedback strategy named Vehicle Number Feedback Strategy (VNFS) in a multi-route scenario in which dynamic information can be generated and displayed on the board (the board refers to a variable message sign where information on the routes is displayed) to guide road users to make a choice. In a multi-route scenario, our model incorporates the effects of adaptability into the cellular automaton models of traffic flow and simulation results adopting vehicle number feedback strategy have demonstrated high efficiency in controlling spatial distribution of traffic patterns compared with the other three information feedback strategies, i.e. Travel Time Feedback Strategy (TTFS), Mean Velocity Feedback Strategy (MVFS) and Congestion Coefficient Feedback Strategy (CCFS). We also discuss the influence of expected arrival rate (Vp) at the entrance on the average flux of each route, and we find that the flux adopting VNFS is always the largest at each Vp value among these four feedback strategies.

  17. Analysis of Factors for Incorporating User Preferences in Air Traffic Management: A system Perspective

    NASA Technical Reports Server (NTRS)

    Sheth, Kapil S.; Gutierrez-Nolasco, Sebastian

    2010-01-01

    This paper presents an analysis of factors that impact user flight schedules during air traffic congestion. In pre-departure flight planning, users file one route per flight, which often leads to increased delays, inefficient airspace utilization, and exclusion of user flight preferences. In this paper, first the idea of filing alternate routes and providing priorities on each of those routes is introduced. Then, the impact of varying planning interval and system imposed departure delay increment is discussed. The metrics of total delay and equity are used for analyzing the impact of these factors on increased traffic and on different users. The results are shown for four cases, with and without the optional routes and priority assignments. Results demonstrate that adding priorities to optional routes further improves system performance compared to filing one route per flight and using first-come first-served scheme. It was also observed that a two-hour planning interval with a five-minute system imposed departure delay increment results in highest delay reduction. The trend holds for a scenario with increased traffic.

  18. Interaction of Airspace Partitions and Traffic Flow Management Delay with Weather

    NASA Technical Reports Server (NTRS)

    Lee, Hak-Tae; Chatterji, Gano B.; Palopo, Kee

    2011-01-01

    The interaction of partitioning the airspace and delaying flights in the presence of convective weather is explored to study how re-partitioning the airspace can help reduce congestion and delay. Three approaches with varying complexities are employed to compute the ground delays.In the first approach, an airspace partition of 335 high-altitude sectors that is based on clear weather day traffic is used. Routes are then created to avoid regions of convective weather. With traffic flow management, this approach establishes the baseline with per-flight delay of 8.4 minutes. In the second approach, traffic flow management is used to select routes and assign departure delays such that only the airport capacity constraints are met. This results in 6.7 minutes of average departure delay. The airspace is then partitioned with a specific capacity. It is shown that airspace-capacity-induced delay can be reduced to zero ata cost of 20percent more sectors for the examined scenario.

  19. SENTINEL-1/2 Data for Ship Traffic Monitoring on the Danube River

    NASA Astrophysics Data System (ADS)

    Negula, I. Dana; Poenaru, V. D.; Olteanu, V. G.; Badea, A.

    2016-06-01

    After a long period of drought, the water level of the Danube River has significantly dropped especially on the Romanian sector, in July-August 2015. Danube reached the lowest water level recorded in the last 12 years, causing the blockage of the ships in the sector located close to Zimnicea Harbour. The rising sand banks in the navigable channel congested the commercial traffic for a few days with more than 100 ships involved. The monitoring of the decreasing water level and the traffic jam was performed based on Sentinel-1 and Sentinel-2 free data provided by the European Space Agency and the European Commission within the Copernicus Programme. Specific processing methods (calibration, speckle filtering, geocoding, change detection, image classification, principal component analysis, etc.) were applied in order to generate useful products that the responsible authorities could benefit from. The Sentinel data yielded good results for water mask extraction and ships detection. The analysis continued after the closure of the crisis situation when the water reached the nominal level again. The results indicate that Sentinel data can be successfully used for ship traffic monitoring, building the foundation of future endeavours for a durable monitoring of the Danube River.

  20. Air traffic management evaluation tool

    NASA Technical Reports Server (NTRS)

    Sridhar, Banavar (Inventor); Sheth, Kapil S. (Inventor); Chatterji, Gano Broto (Inventor); Bilimoria, Karl D. (Inventor); Grabbe, Shon (Inventor); Schipper, John F. (Inventor)

    2010-01-01

    Method and system for evaluating and implementing air traffic management tools and approaches for managing and avoiding an air traffic incident before the incident occurs. The invention provides flight plan routing and direct routing or wind optimal routing, using great circle navigation and spherical Earth geometry. The invention provides for aircraft dynamics effects, such as wind effects at each altitude, altitude changes, airspeed changes and aircraft turns to provide predictions of aircraft trajectory (and, optionally, aircraft fuel use). A second system provides several aviation applications using the first system. These applications include conflict detection and resolution, miles-in trail or minutes-in-trail aircraft separation, flight arrival management, flight re-routing, weather prediction and analysis and interpolation of weather variables based upon sparse measurements.