Sample records for alleviating urban energy

  1. Rural-to-urban migration and its implications for poverty alleviation.

    PubMed

    Skeldon, R

    1997-03-01

    This article examines rural-urban migration, its role in poverty alleviation in Thailand, and policy implications. The empirical research literature suggests that the poorest tend be left behind by wealthier migrants moving to urban areas. The youngest tend to migrate. The impact of remittances tends to appear more positive in international migration, but the impact of remittances among rural internal migrant families can also be substantial and be responsible for wealth differences within rural communities. Return migrants contribute to communities by bringing back new ideas and new attitudes toward family size. Migration can also produce negative impacts for sending communities, but the total analysis appears to favor positive impacts. The urban sector becomes another resource base for rural populations that can sustain rural populations during rapid change processes. The migrant population tends to be wealthier and better educated than rural populations, but poorer and less educated than urban populations. Informal sectors in urban areas may offer migrants flexible working hours, no taxes or deductions, less bureaucratic structures, and only 9% less income than the formal sector. Social networks reinforce migrant work in the informal sector and segmentation of the labor force. Social networks may be formalized into associations and help in securing migrant's housing and living. Migrants are integrated in a variety of ways into city life. Migrant communities are a source of energy, organizational skills, and talent. The incidence of poverty appears to be the greatest among women. Women migrants and women left behind by migrants must adjust to new conditions. Migration policies tend to focus on regulating the volume of migration. The author concludes that migration alleviates poverty and that policies should address city management, migrant adjustment processes, and training programs for nonmigrants.

  2. Model of urban poverty alleviation through the development of entrepreneurial spirit and business competence

    NASA Astrophysics Data System (ADS)

    Aryaningsih, NN; Irianto, Kt; Marsa Arsana, Md; Juli Suarbawa, Kt

    2018-01-01

    The rapid increased of urban population can not be controlled by the city government. This will have an impact on the emergence of new poverty in urban areas, due to inadequate of the job opportunities and skills. Government programs for poverty alleviation can reduce some rural poverty, but have not been able to overcome poverty in urban areas. The diversity of urban issues and needs is greater than in rural areas. Therefore, it is necessary to conduct the research with the aim to build urban poverty reduction model through the development of entrepreneurship spirit and business competence. This research was conducted by investigation method, and questionnaire. Questionnaires are arranged with rating scale measurements. The validity and reliability of the questionnaire were tested by factor analysis. Model construction is constructed from various informant analyzes and descriptive statistical analysis. The results show that poverty alleviation model is very effective done by developing spirit of entrepreneurship and business competence.

  3. Global typology of urban energy use and potentials for an urbanization mitigation wedge

    PubMed Central

    Creutzig, Felix; Baiocchi, Giovanni; Bierkandt, Robert; Pichler, Peter-Paul; Seto, Karen C.

    2015-01-01

    The aggregate potential for urban mitigation of global climate change is insufficiently understood. Our analysis, using a dataset of 274 cities representing all city sizes and regions worldwide, demonstrates that economic activity, transport costs, geographic factors, and urban form explain 37% of urban direct energy use and 88% of urban transport energy use. If current trends in urban expansion continue, urban energy use will increase more than threefold, from 240 EJ in 2005 to 730 EJ in 2050. Our model shows that urban planning and transport policies can limit the future increase in urban energy use to 540 EJ in 2050 and contribute to mitigating climate change. However, effective policies for reducing urban greenhouse gas emissions differ with city type. The results show that, for affluent and mature cities, higher gasoline prices combined with compact urban form can result in savings in both residential and transport energy use. In contrast, for developing-country cities with emerging or nascent infrastructures, compact urban form, and transport planning can encourage higher population densities and subsequently avoid lock-in of high carbon emission patterns for travel. The results underscore a significant potential urbanization wedge for reducing energy use in rapidly urbanizing Asia, Africa, and the Middle East. PMID:25583508

  4. Modeling Urban Energy Savings Scenarios Using Earth System Microclimate and Urban Morphology

    NASA Astrophysics Data System (ADS)

    Allen, M. R.; Rose, A.; New, J. R.; Yuan, J.; Omitaomu, O.; Sylvester, L.; Branstetter, M. L.; Carvalhaes, T. M.; Seals, M.; Berres, A.

    2017-12-01

    We analyze and quantify the relationships among climatic conditions, urban morphology, population, land cover, and energy use so that these relationships can be used to inform energy-efficient urban development and planning. We integrate different approaches across three research areas: earth system modeling; impacts, adaptation and vulnerability; and urban planning in order to address three major gaps in the existing capability in these areas: i) neighborhood resolution modeling and simulation of urban micrometeorological processes and their effect on and from regional climate; ii) projections for future energy use under urbanization and climate change scenarios identifying best strategies for urban morphological development and energy savings; iii) analysis and visualization tools to help planners optimally use these projections.

  5. Experimental Characterization and Validation of Simultaneous Gust Alleviation and Energy Harvesting for Multifunctional Wing Spars

    DTIC Science & Technology

    2012-08-01

    U0=15m/s,  Lv  =350m   Cloud Wind and Clear Sky Gust Simulation Using Dryden PSD* Harvested Energy from Normal Vibration (Red) to...energy control law based on limited energy constraints 4) Experimentally validated simultaneous energy harvesting and vibration control Summary...Experimental Characterization and Validation of Simultaneous Gust Alleviation and Energy Harvesting for Multifunctional Wing Spars AFOSR

  6. Relation Decomposing between Urbanization and Consumption of Water-Energy Sources

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Xiao, W.; Wang, Y.; Zhao, Y.; Wang, J., , Dr; Jiang, D.; Wang, H.

    2017-12-01

    Abstract: Water resources and energy, important subsystems of city, are the basic guarantee for the normal operation of city, which play an important role to brace the urbanization. The interdependence between them are increasing along with the rapid development of China's economy. The relationship between urbanization and consumption of energy and water have become the focal point of the scholars, but the research have more attention to the impact of urbanization on two subsystems separately, and do not reveal the effects of urbanization on the water-energy nexus. Thus, there is little consideration upon the different characteristics of China's several regions in water and energy consumption in urbanization. In this paper, the STIRPAT model is built to reveal the relationship between urbanization and the consumption of water and energy. Also, the influence of urbanization on different main body of water and energy consumption are discussed. The different regional main factors of water and energy in the process of urbanization are identified through water and energy panel data of China's thirty provinces. Finally, through the regression analysis of total water consumption data of agriculture, industry, service industry with total energy consumption data, the relationship of water and energy in the process of urban development are analyzed.

  7. Toward Quantitative Analysis of Water-Energy-Urban-Climate Nexus for Urban Adaptation Planning

    EPA Science Inventory

    Water and energy are two interwoven factors affecting environmental management and urban development planning. Meanwhile, rapid urban development and a changing climate exacerbate the magnitude and effects of water-energy interactions in what nexus defines. These factors and th...

  8. City-integrated renewable energy for urban sustainability.

    PubMed

    Kammen, Daniel M; Sunter, Deborah A

    2016-05-20

    To prepare for an urban influx of 2.5 billion people by 2050, it is critical to create cities that are low-carbon, resilient, and livable. Cities not only contribute to global climate change by emitting the majority of anthropogenic greenhouse gases but also are particularly vulnerable to the effects of climate change and extreme weather. We explore options for establishing sustainable energy systems by reducing energy consumption, particularly in the buildings and transportation sectors, and providing robust, decentralized, and renewable energy sources. Through technical advancements in power density, city-integrated renewable energy will be better suited to satisfy the high-energy demands of growing urban areas. Several economic, technical, behavioral, and political challenges need to be overcome for innovation to improve urban sustainability. Copyright © 2016, American Association for the Advancement of Science.

  9. An urban energy performance evaluation system and its computer implementation.

    PubMed

    Wang, Lei; Yuan, Guan; Long, Ruyin; Chen, Hong

    2017-12-15

    To improve the urban environment and effectively reflect and promote urban energy performance, an urban energy performance evaluation system was constructed, thereby strengthening urban environmental management capabilities. From the perspectives of internalization and externalization, a framework of evaluation indicators and key factors that determine urban energy performance and explore the reasons for differences in performance was proposed according to established theory and previous studies. Using the improved stochastic frontier analysis method, an urban energy performance evaluation and factor analysis model was built that brings performance evaluation and factor analysis into the same stage for study. According to data obtained for the Chinese provincial capitals from 2004 to 2013, the coefficients of the evaluation indicators and key factors were calculated by the urban energy performance evaluation and factor analysis model. These coefficients were then used to compile the program file. The urban energy performance evaluation system developed in this study was designed in three parts: a database, a distributed component server, and a human-machine interface. Its functions were designed as login, addition, edit, input, calculation, analysis, comparison, inquiry, and export. On the basis of these contents, an urban energy performance evaluation system was developed using Microsoft Visual Studio .NET 2015. The system can effectively reflect the status of and any changes in urban energy performance. Beijing was considered as an example to conduct an empirical study, which further verified the applicability and convenience of this evaluation system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Measure for Measure: Urban Water and Energy

    NASA Astrophysics Data System (ADS)

    Chini, C.; Stillwell, A. S.

    2017-12-01

    Urban environments in the United States account for a majority of the population and, as such, require large volumes of treated drinking water supply and wastewater removal, both of which need energy. Despite the large share of water that urban environments demand, there is limited accounting of these water resources outside of the city itself. In this study, we provide and analyze a database of drinking water and wastewater utility flows and energy that comprise anthropogenic fluxes of water through the urban environment. We present statistical analyses of the database at an annual, spatial, and intra-annual scale. The average daily per person water flux is estimated as 563 liters of drinking water and 496 liters of wastewater, requiring 340 kWh/1000 m3 and 430 kWh/1000 m3 of energy, respectively, to treat these resources. This energy demand accounts for 1% of the total annual electricity production of the United States. Additionally, the water and embedded energy loss associated with non-revenue water (estimated at 15.8% annually) accounts for 9.1 km3of water and 3600 GWh, enough electricity to power 300,000 U.S. households annually. Through the analysis and benchmarking of the current state of urban water fluxes, we propose the term `blue city,' which promotes urban sustainability and conservation policy focusing on water resources. As the nation's water resources become scarcer and more unpredictable, it is essential to include water resources in urban sustainability planning and continue data collection of these vital resources.

  11. Investigating Urban Eighth-Grade Students' Knowledge of Energy Resources

    ERIC Educational Resources Information Center

    Bodzin, Alec

    2012-01-01

    This study investigated urban eighth-grade students' knowledge of energy resources and associated issues including energy acquisition, energy generation, storage and transport, and energy consumption and conservation. A 39 multiple-choice-item energy resources knowledge assessment was completed by 1043 eighth-grade students in urban schools in two…

  12. Managing the urban water-energy nexus

    NASA Astrophysics Data System (ADS)

    Escriva-Bou, Alvar; Pulido-Velazquez, Manuel; Lund, Jay R.

    2016-04-01

    Water use directly causes a significant amount of energy use in cities. In this paper we assess energy and greenhouse emissions related with each part of the urban water cycle and the consequences of several changes in residential water use for customers, water and energy utilities, and the environment. First, we develop an hourly model of urban water uses by customer category including water-related energy consumption. Next, using real data from East Bay Municipal Utility District in California, we calibrate a model of the energy used in water supply, treatment, pumping and wastewater treatment by the utility. Then, using data from the California Independent System Operator, we obtain hourly costs of energy for the energy utility. Finally, and using emission factors reported by the energy utilities we estimate greenhouse gas emissions for the entire urban water cycle. Results of the business-as-usual scenario show that water end uses account for almost 95% of all water-related energy use, but the 5% managed by the utility is still worth over 12 million annually. Several simulations analyze the potential benefits for water demand management actions showing that moving some water end-uses from peak to off-peak hours such as outdoor use, dishwasher or clothes washer use have large benefits for water and energy utilities, especially for locations with a high proportion of electric water heaters. Other interesting result is that under the current energy rate structures with low or no fixed charges, energy utilities burden most of the cost of the conservation actions.

  13. Energy, energy efficiency, and the built environment.

    PubMed

    Wilkinson, Paul; Smith, Kirk R; Beevers, Sean; Tonne, Cathryn; Oreszczyn, Tadj

    2007-09-29

    Since the last decades of the 19th century, technological advances have brought substantial improvements in the efficiency with which energy can be exploited to service human needs. That trend has been accompanied by an equally notable increase in energy consumption, which strongly correlates with socioeconomic development. Nonetheless, feasible gains in the efficiency and technology of energy use in towns and cities and in homes have the potential to contribute to the mitigation of greenhouse-gas emissions, and to improve health, for example, through protection against temperature-related morbidity and mortality, and the alleviation of fuel poverty. A shift towards renewable energy production would also put increasing focus on cleaner energy carriers, especially electricity, but possibly also hydrogen, which would have benefits to urban air quality. In low-income countries, a vital priority remains the dissemination of affordable technology to alleviate the burdens of indoor air pollution and other health effects in individuals obliged to rely on biomass fuels for cooking and heating, as well as the improvement in access to electricity, which would have many benefits to health and wellbeing.

  14. Urban Surface Radiative Energy Budgets Determined Using Aircraft Scanner Data

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey C.; Quattrochi, Dale A.; Rickman, Doug L.; Estes, Maury G.; Arnold, James E. (Technical Monitor)

    2002-01-01

    It is estimated that by the year 2025, 80% of the world's population will live in cities. The extent of these urban areas across the world can be seen in an image of city lights from the Defense Meteorological Satellite Program. In many areas of North America and Europe, it is difficult to separate individual cities because of the dramatic growth and sprawl of urbanized areas. This conversion of the natural landscape vegetation into man-made urban structures such as roads and buildings drastically alter the regional surface energy budgets, hydrology, precipitation patterns, and meteorology. One of the earliest recognized and measured phenomena of urbanization is the urban heat island (UHI) which was reported as early as 1833 for London and 1862 for Paris. The urban heat island results from the energy that is absorbed by man-made materials during the day and is released at night resulting in the heating of the air within the urban area. The magnitude of the air temperature difference between the urban and surrounding countryside is highly dependent on the structure of the urban area, amount of solar immolation received during the day, and atmospheric conditions during the night. These night time air temperature differences can be in the range of 2 to 5 C. or greater. Although day time air temperature differences between urban areas and the countryside exists during the day, atmospheric mixing and stability reduce the magnitude. This phenomena is not limited to large urban areas, but also occurs in smaller metropolitan areas. The UHI has significant impacts on the urban air quality, meteorology, energy use, and human health. The UPI can be mitigated through increasing the amount of vegetation and modification of urban surfaces using high albedo materials for roofs and paved surfaces. To understand why the urban heat island phenomenon exists it is useful to define the surface in terms of the surface energy budget. Surface temperature and albedo is a major component of

  15. Urban climate and energy demand interaction in Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Kasilova, E. V.; Ginzburg, A. S.; Demchenko, P. F.

    2017-11-01

    The regional and urban climate change in Northern Eurasia is one of the main challenges for sustainable development of human habitats situated in boreal and temperate areas. The half of primary energy is spent for space heating even under quite a mild European climate. Implementation of the district heating in urban areas is currently seen as one of the key conditions of sustainable development. The clear understanding of main problems of the urban climateenergy demand interaction is crucial for both small towns and megacities. The specific features of the urban energy systems in Finland, Russia and China under the changing climate conditions were studied. Regional manifestations of the climate change were examined. The climate projections were established for urban regions of the Northern Eurasia. It was shown that the climate warming is likely to continue intensively there. History and actual development trends were discussed for the urban district heating systems in Russia, China and Finland. Common challenges linked with the climate change have been identified for the considered areas. Adaptation possibilities were discussed taking into account climate-energy interactions.

  16. Reducing urban heat island effects to improve urban comfort and balance energy consumption in Bucharest (Romania)

    NASA Astrophysics Data System (ADS)

    Constantinescu, Dan; Ochinciuc, Cristina Victoria; Cheval, Sorin; Comşa, Ionuţ; Sîrodoev, Igor; Andone, Radu; Caracaş, Gabriela; Crăciun, Cerasella; Dumitrescu, Alexandru; Georgescu, Mihaela; Ianoş, Ioan; Merciu, Cristina; Moraru, Dan; Opriş, Ana; Paraschiv, Mirela; Raeţchi, Sonia; Saghin, Irina; Schvab, Andrei; Tătui-Văidianu, Nataşa

    2017-04-01

    In the recent decades, extreme temperature events and derived hazards are frequent and trigger noteworthy impacts in Romania, especially over the large urban areas. The cities produce significant disturbances of many elements of the regional climate, and generates adverse effects such as Urban Heat Islands (UHI). This presentation condenses the outputs of an ongoing research project (REDBHI) developed through (2013-2017) focused on developing a methodology for monitoring and forecasting indoor climate and energy challenges related to the intensity of UHI of Bucharest (Romania), based on relevant urban climate zones (UCZs). Multi-criteria correlations between the UHI and architectural, urban and landscape variables were determined, and the vulnerability of buildings expressed in the form of transfer function between indoor micro-climate and outdoor urban environment. The vulnerability of civil buildings was determined in relation with the potential for amplifying the thermal hazards intensity through the anthropogenic influence. The project REDBHI aims at developing innovative and original products, with direct applicability, which can be used in any urban settlement and have market potential with regards to energy design and consulting. The concrete innovative outcomes consist of a) localization of the Bucharest UCZs according to the UHI intensity, identifying reference buildings and sub-zones according to urban anthropic factors and landscape pattern; b) typology of representative buildings with regards to energy consumption and CO2 emitted as a result of building exploitation; c) 3D modelling of the reference buildings and of the thermal/energy reaction to severe climatic conditions d) empirical validation of the dynamic thermal/energy analysis; d) development of an pilot virtual studio capable to simulate climate alerts, analyse scenarios and suggest measures to mitigate the UHI effects, and disseminate the outcomes for educational purposes; e) compendium of

  17. Urban food-energy-water nexus: a case study of Beijing

    NASA Astrophysics Data System (ADS)

    Wu, Z.; Shao, L.

    2017-12-01

    The interactions between the food, energy and water sectors are of great importance to urban sustainable development. This work presents a framework to analyze food-energy-water (FEW) nexus of a city. The method of multi-scale input-output analysis is applied to calculate consumption-based energy and water use that is driven by urban final demand. It is also capable of accounting virtual energy and water flows that is embodied in trade. Some performance indicators are accordingly devised for a comprehensive understanding of the urban FEW nexus. A case study is carried out for the Beijing city. The embodied energy and water use of foods, embodied water of energy industry and embodied energy of water industry are analyzed. As a key node of economic network, Beijing exchanges a lot of materials and products with external economic systems, especially other Chinese provinces, which involves massive embodied energy and water flows. As a result, Beijing relies heavily on outsourcing energy and water to meet local people's consumption. It is revealed that besides the apparent supply-demand linkages, the underlying interconnections among food, water and energy sectors are critical to create sustainable urban areas.

  18. Energy efficiency in urban management: Russian and world experience

    NASA Astrophysics Data System (ADS)

    Pryadko, Igor

    2017-10-01

    The article discusses the role of energetics in creating a comfortable and safe environment of modern megacities, and the problem is considered in the socio-economic aspect. The object is the energy security of the city, and the subject is the influence of urban society on the formation of energy security. In particular, the problems are raised: ecological problems of urban energy supply, the condition of surface layer of the atmosphere near electric power lines. The author assesses the actions, implemented by the urban authorities in Mytischi, in the southwestern areas of New Moscow. The author assesses these sample areas on the basis of Ch. Landry’s concept of self-training, designated for municipal authorities and urban communities, and offers several successfully implemented self-study cases and in the light of modern methods of ensuring energy security. The forecasts of creation of energy-safe space, made by modern sociologist-urbanist Leo Hollis, are taken into account. The author also considers some of the economic aspects of biosphere safety. In particular, he insists that biosphere safety, convenience, and comfort have developed into competitive advantages in the housing market.

  19. Fine-resolution Modeling of Urban-Energy Systems' Water Footprint in River Networks

    NASA Astrophysics Data System (ADS)

    McManamay, R.; Surendran Nair, S.; Morton, A.; DeRolph, C.; Stewart, R.

    2015-12-01

    Characterizing the interplay between urbanization, energy production, and water resources is essential for ensuring sustainable population growth. In order to balance limited water supplies, competing users must account for their realized and virtual water footprint, i.e. the total direct and indirect amount of water used, respectively. Unfortunately, publicly reported US water use estimates are spatially coarse, temporally static, and completely ignore returns of water to rivers after use. These estimates are insufficient to account for the high spatial and temporal heterogeneity of water budgets in urbanizing systems. Likewise, urbanizing areas are supported by competing sources of energy production, which also have heterogeneous water footprints. Hence, a fundamental challenge of planning for sustainable urban growth and decision-making across disparate policy sectors lies in characterizing inter-dependencies among urban systems, energy producers, and water resources. A modeling framework is presented that provides a novel approach to integrate urban-energy infrastructure into a spatial accounting network that accurately measures water footprints as changes in the quantity and quality of river flows. River networks (RNs), i.e. networks of branching tributaries nested within larger rivers, provide a spatial structure to measure water budgets by modeling hydrology and accounting for use and returns from urbanizing areas and energy producers. We quantify urban-energy water footprints for Atlanta, GA and Knoxville, TN (USA) based on changes in hydrology in RNs. Although water intakes providing supply to metropolitan areas were proximate to metropolitan areas, power plants contributing to energy demand in Knoxville and Atlanta, occurred 30 and 90km outside the metropolitan boundary, respectively. Direct water footprints from urban landcover primarily comprised smaller streams whereas indirect footprints from water supply reservoirs and energy producers included

  20. CADDIS Volume 2. Sources, Stressors and Responses: Urbanization - Energy Sources

    EPA Pesticide Factsheets

    Introduction to changes in basal energy sources with urbanization, overview of terrestrial leaf litter dynamics in urban streams, overview of how urbanization can affect primary production, respiration, and dissolved organic carbon quantity and quality.

  1. Poverty alleviation programmes in India: a social audit.

    PubMed

    K Yesudian, C A

    2007-10-01

    The review highlights the poverty alleviation programmes of the government in the post-economic reform era to evaluate the contribution of these programmes towards reducing poverty in the country. The poverty alleviation programmes are classified into (i) self-employment programmes; (ii) wage employment programmes; (iii) food security programmes; (iv) social security programmes; and (v) urban poverty alleviation programmes. The parameter used for evaluation included utilization of allocated funds, change in poverty level, employment generation and number or proportion of beneficiaries. The paper attempts to go beyond the economic benefit of the programmes and analyzes the social impact of these programmes on the communities where the poor live, and concludes that too much of government involvement is actually an impediment. On the other hand, involvement of the community, especially the poor has led to better achievement of the goals of the programmes. Such endeavours not only reduced poverty but also empowered the poor to find their own solutions to their economic problems. There is a need for decentralization of the programmes by strengthening the panchayat raj institutions as poverty is not merely economic deprivation but also social marginalization that affects the poor most.

  2. Energy Costs of Urban Water Supply Systems: Evidence from India (Invited)

    NASA Astrophysics Data System (ADS)

    Malghan, D.; Mehta, V. K.; Goswami, R.

    2013-12-01

    For the first time in human history more people around the globe now live in urban centres rather than in rural settings. Although India's urban population proportion at 31% is still below the global average, it has been urbanizing rapidly. The population growth rate in urban India is more than two-and-half times that of rural India. The current Indian urban population, of over 370 million people, exceeds that of the total population of every other country on the planet with the exception of China. Supplying water to India's burgeoning urban agglomerations poses a challenge in terms of social equity, biophysical sustainability, and economic efficiency. A typical Indian city relies on both surface and ground water sources. Several Indian cities import surface water from distances that now exceed a hundred kilometres and across gradients of up to three thousand metres. While the depleting groundwater levels as a result of rapidly growing demand from urban India is at least anecdotally understood even when reliable estimates are not available, the energy costs of supplying water to urban India has thus far not received academic or policy attention it deserves. We develop a simple framework to integrate distributed groundwater models with water consumption data to estimate the energy and emissions associated with supplying water to urban centres. We assemble a unique data set from seventy five of the largest urban agglomerations in India and derive estimated values of energy consumption and carbon emissions associated with water provision in urban India. Our analysis shows that in every major city, the energy cost associated with long distance import of surface water significantly exceeds groundwater extraction. However, with rapidly depleting groundwater levels, we estimate inflection points for select cities when energy costs of groundwater extraction will exceed energy required to import surface water into the city. In addition to the national snapshot, we also

  3. Recent advances in aerodynamic energy concept for flutter suppression and gust alleviation using active controls

    NASA Technical Reports Server (NTRS)

    Nissim, E.

    1977-01-01

    Control laws are derived, by using realizable transfer functions, which permit relaxation of the stability requirements of the aerodynamic energy concept. The resulting aerodynamic eigenvalues indicate that both the trailing edge and the leading edge-trailing edge control systems can be made more effective. These control laws permit the introduction of aerodynamic damping and stiffness terms in accordance with the requirements of any specific system. Flutter suppression and gust alleviation problems can now be treated by either a trailing edge control system or by a leading edge-trailing edge control system by using the aerodynamic energy concept. Results are applicable to a wide class of aircraft operating at subsonic Mach numbers.

  4. The Power of Micro Urban Structures, Theory of EEPGC - the Micro Urban Energy Distribution Model as a Planning Tool for Sustainable City Development

    NASA Astrophysics Data System (ADS)

    Tkáč, Štefan

    2015-11-01

    To achieve the smart growth and equitable development in the region, urban planners should consider also lateral energies represented by the energy urban models like further proposed EEPGC focused on energy distribution via connections among micro-urban structures, their onsite renewable resources and the perception of micro-urban structures as decentralized energy carriers based on pre industrialized era. These structures are still variously bound when part of greater patterns. After the industrial revolution the main traded goods became energy in its various forms. The EEPGC is focused on sustainable energy transportation distances between the villages and the city, described by the virtual "energy circles". This more human scale urbanization, boost the economy in micro-urban areas, rising along with clean energy available in situ that surely gives a different perspective to human quality of life in contrast to overcrowded multicultural mega-urban structures facing generations of problems and struggling to survive as a whole.

  5. Complex assessment of urban housing energy sustainability

    NASA Astrophysics Data System (ADS)

    Popova, Olga; Glebova, Julia; Karakozova, Irina

    2018-03-01

    The article presents the results of a complex experimental-analytical research of residential development energy parameters - survey of construction sites and determination of calculated energy parameters (resistance to heat transfer) considering their technical condition. The authors suggest a methodology for assessing residential development energy parameters on the basis of construction project's structural analysis with the use of advanced intelligent collection systems, processing (self-organizing maps - SOM) and data visualization (geo-informational systems - GIS). SOM clustering permitted to divide the housing stock (on the example of Arkhangelsk city) into groups with similar technical-operational and energy parameters. It is also possible to measure energy parameters of construction project of each cluster by comparing them with reference (normative) measures and also with each other. The authors propose mechanisms for increasing the area's energy stability level by implementing a set of reproduction activities for residential development of various groups. The analysis showed that modern multilevel and high-rise construction buildings have the least heat losses. At present, however, ow-rise wood buildings is the dominant styles of buildings of Arkhangelsk city. Data visualisation on the created heat map showed that such housing stock covers the largest urban area. The development strategies for depressed areas is in a high-rise building, which show the economic, social and environmental benefits of upward growth of the city. An urban regeneration programme for severely rundown urban housing estates is in a high-rise construction building, which show the economic, social and environmental benefits of upward growth of the city.

  6. Evaluation of Cities in the Context of Energy Efficient Urban Planning Approach

    NASA Astrophysics Data System (ADS)

    Handan Yücel Yıldırım, H.; Burcu Gültekin, Arzuhan; Tanrıvermiş, Harun

    2017-10-01

    Due to the increase in energy need with urbanization as a result of industrialization and rapid population growth, preservation of natural resources has become impossible. As the energy generated particularly from non-renewable natural resources that are in danger of depletion such as coal, natural gas, petroleum is limited, and as environmental issues caused by energy resources increase, means of safe and continuous access to energy are searched in the world. Owing to the limited energy resources and energy dependence on foreign sources in the world, particularly in European Union countries, efforts of increasing the share of renewable energy sources in energy consumption increased in all industries, including urban planning as well. Concordantly, it is necessary to develop policies and approaches that enable utilization of domestic resources complying with the country’s conditions, and monitor developments in energy. Such policies and approaches, which must be implemented in urban planning as well, have great importance in terms of not deteriorating habitable environments of future generations while utilizing present-day energy resources, prevalence of utilization of renewable energy sources, and utilization of energy effectively. For that purpose, this paper puts forward a conceptual framework covering the principles, strategies, and methods on energy efficient urban planning approach, and discusses the energy efficient urban area examples within the scope of the suggested framework.

  7. Impact of urban sprawl on United States residential energy use

    NASA Astrophysics Data System (ADS)

    Rong, Fang

    Improving energy efficiency through technological advances has been the focus of U.S. energy policy for decades. However, there is evidence that technology alone will be neither sufficient nor timely enough to solve looming crises associated with fossil fuel dependence and resulting greenhouse gas accumulation. Hence attention is shifting to demand-side measures. While the impact of urban sprawl on transportation energy use has been studied to a degree, the impact of sprawl on non-transport residential energy use represents a new area of inquiry. This dissertation is the first study linking sprawl to residential energy use and provides empirical support for compact land-use developments, which, as a demand-side measure, might play an important role in achieving sustainable residential energy consumption. This dissertation develops an original conceptual framework linking urban sprawl to residential energy use through electricity transmission and distribution losses and two mediators, housing stock and formation of urban heat islands. These two mediators are the focuses of this dissertation. By tapping multiple databases and performing statistical and geographical spatial analyses, this dissertation finds that (1) big houses consume more energy than small ones and single-family detached housing consumes more energy than multifamily or single-family attached housing; (2) residents of sprawling metro areas are more likely to live in single-family detached rather than attached or multifamily housing and are also expected to live in big houses; (3) a compact metro area is expected to have stronger urban heat island effects; (4) nationwide, urban heat island phenomena bring about a small energy reward, due to less energy demand on space heating, while they impose an energy penalty in States with a hot climate like Texas, due to higher energy demand for cooling; and taken all these together, (5) residents of sprawling metro areas are expected to consume more energy at

  8. Water-energy links in cities: the urban metabolism of London

    NASA Astrophysics Data System (ADS)

    Mijic, A.; Ruiz Cazorla, J.; Keirstead, J.

    2014-12-01

    Rapid urbanisation results in increased water consumption in cities, requiring improved tools for understanding adaptive measures for water resources management under climate change. The energy sector is facing the same challenges and requires equally comprehensive solutions. More frequent water shortages due to climate and land use changes and potential limits on CO2 emissions from fossil fuels that science demands indicate clearly that the next step in the sustainable city development will be to look for the most efficient use of these highly interdependent resources. One of the concepts that could be used for quantifying fundamental flows in an urban environment such as water and energy is the urban metabolism framework. This paper will examine the concept of urban metabolism by quantifying amounts and trends of water and energy consumed in London by four main sectors: residential, industrial, commercial and public. Key data requirements at the sector level will be identified and initial mapping of critical factors for urban sustainability will be provided. Finally, the work will examine the potential of urban metabolism framework to provide data and information for implementing water, energy and greenhouse emissions trade-off 'fit-for-purpose' strategy for water supply security. The paper is a part of the Panta Rhei Research Initiative of the International Association of Hydrological Sciences (IAHS) under the working group of Energy and Food Impacts on Water.

  9. Dynamics of the Urban Water-Energy Nexuses of Mumbai and London

    NASA Astrophysics Data System (ADS)

    De Stercke, S.; Mijic, A.; Buytaert, W.; Chaturvedi, V.

    2016-12-01

    Both in developing as well as industrialized countries, cities are seeing their populations increase as more people concentrate in urban settlements. This burdens existing water and energy systems, which are also increasingly stressed on the supply side due to availability, and policy goals. In addition to the water and energy embedded in the electricity, fuels and water delivered to the city, the linkages in the urban environment itself are important and in magnitude they significantly exceed those upstream in the case of industrialized countries. However, little research has been published on urban water-energy linkages in developing countries. For cities in general, there is also a dearth of studies on the dynamics of these linkages with urban growth and socioeconomic development, and hence of the mutual influence of the urban water and energy systems. System dynamics modeling was used to understand and simulate these dynamics, building on modeling techniques from the water, energy, and urban systems literature. For each of the two characteristically different cities of Mumbai and London a model was constructed and calibrated with data from various public sources and personal interviews. The differences between the two cases are discussed by means of the models. Transition pathways to sustainable cities with respect to water use, energy use and greenhouse gas emissions are illustrated for each city. Furthermore, uncertainties and model sensitivity, and their implications, are presented. Finally, applicability of either or a hybrid of these models to other cities is investigated.

  10. Demonstration of reduced-order urban scale building energy models

    DOE PAGES

    Heidarinejad, Mohammad; Mattise, Nicholas; Dahlhausen, Matthew; ...

    2017-09-08

    The aim of this study is to demonstrate a developed framework to rapidly create urban scale reduced-order building energy models using a systematic summary of the simplifications required for the representation of building exterior and thermal zones. These urban scale reduced-order models rely on the contribution of influential variables to the internal, external, and system thermal loads. OpenStudio Application Programming Interface (API) serves as a tool to automate the process of model creation and demonstrate the developed framework. The results of this study show that the accuracy of the developed reduced-order building energy models varies only up to 10% withmore » the selection of different thermal zones. In addition, to assess complexity of the developed reduced-order building energy models, this study develops a novel framework to quantify complexity of the building energy models. Consequently, this study empowers the building energy modelers to quantify their building energy model systematically in order to report the model complexity alongside the building energy model accuracy. An exhaustive analysis on four university campuses suggests that the urban neighborhood buildings lend themselves to simplified typical shapes. Specifically, building energy modelers can utilize the developed typical shapes to represent more than 80% of the U.S. buildings documented in the CBECS database. One main benefits of this developed framework is the opportunity for different models including airflow and solar radiation models to share the same exterior representation, allowing a unifying exchange data. Altogether, the results of this study have implications for a large-scale modeling of buildings in support of urban energy consumption analyses or assessment of a large number of alternative solutions in support of retrofit decision-making in the building industry.« less

  11. Demonstration of reduced-order urban scale building energy models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heidarinejad, Mohammad; Mattise, Nicholas; Dahlhausen, Matthew

    The aim of this study is to demonstrate a developed framework to rapidly create urban scale reduced-order building energy models using a systematic summary of the simplifications required for the representation of building exterior and thermal zones. These urban scale reduced-order models rely on the contribution of influential variables to the internal, external, and system thermal loads. OpenStudio Application Programming Interface (API) serves as a tool to automate the process of model creation and demonstrate the developed framework. The results of this study show that the accuracy of the developed reduced-order building energy models varies only up to 10% withmore » the selection of different thermal zones. In addition, to assess complexity of the developed reduced-order building energy models, this study develops a novel framework to quantify complexity of the building energy models. Consequently, this study empowers the building energy modelers to quantify their building energy model systematically in order to report the model complexity alongside the building energy model accuracy. An exhaustive analysis on four university campuses suggests that the urban neighborhood buildings lend themselves to simplified typical shapes. Specifically, building energy modelers can utilize the developed typical shapes to represent more than 80% of the U.S. buildings documented in the CBECS database. One main benefits of this developed framework is the opportunity for different models including airflow and solar radiation models to share the same exterior representation, allowing a unifying exchange data. Altogether, the results of this study have implications for a large-scale modeling of buildings in support of urban energy consumption analyses or assessment of a large number of alternative solutions in support of retrofit decision-making in the building industry.« less

  12. Global scenarios of urban density and its impacts on building energy use through 2050

    DOE PAGES

    Guneralp, Burak; Zhou, Yuyu; Urge-Vorsatz, Diana; ...

    2017-01-09

    Here, urban areas play a significant role in planetary sustainability. While the scale of impending urbanization is well acknowledged, we have a limited understanding on how urban forms will change and what their impact will be on building energy use. Using both top-down and bottom-up approaches and scenarios, we examine building energy use, specifically, for heating and cooling. We also assess associated cobenefits and trade-offs with human well-being. Globally, the energy use for heating and cooling by midcentury will reach anywhere from about 45 EJ/yr to 59 EJ/yr (respectively, increases of 5% to 40% over the 2010 estimate). Most ofmore » this variability is due to the uncertainty in future urban forms of rapidly growing cities in Asia and, particularly, in China. Compact urban development overall leads to less energy use in urban environments. Delaying the retrofit of the existing built environment leads to more savings in building energy use. Potential for savings in the energy use is greatest in China when coupled with efficiency gains. Advanced efficiency makes the least difference compared to the business-as-usual scenario in energy use for heating and cooling in South Asia and Sub-Saharan Africa but significantly contribute to energy savings in North America and Europe. A systemic effort that focuses on both urban form and energy-efficient technologies, but also accounts for potential co-benefits and trade-offs, can contribute to both local and global sustainability. Particularly in mega-urban regions, such efforts can improve local environments for billions of urban residents and contribute to mitigating climate change by reducing energy use in urban areas and associated greenhouse gas emissions.« less

  13. Global scenarios of urban density and its impacts on building energy use through 2050

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Güneralp, Burak; Zhou, Yuyu; Ürge-Vorsatz, Diana

    2017-01-09

    Urban areas play a significant role in planetary sustainability. While the scale of impending urbanization is well acknowledged, we have a limited understanding on how urban forms will change and what their impact will be on building energy use. Using both top-down and bottom-up approaches and scenarios, we examine building energy use, specifically, for heating and cooling. We also assess associated cobenefits and trade-offs with human well-being. Globally, the energy use for heating and cooling by midcentury will reach anywhere from about 45 EJ/yr to 59 EJ/yr (respectively, increases of 5% to 40% over the 2010 estimate). Most of thismore » variability is due to the uncertainty in future urban forms of rapidly growing cities in Asia and, particularly, in China. Compact urban development overall leads to less energy use in urban environments. Delaying the retrofit of the existing built environment leads to more savings in building energy use. Potential for savings in the energy use is greatest in China when coupled with efficiency gains. Advanced efficiency makes the least difference compared to the business-as-usual scenario in energy use for heating and cooling in South Asia and Sub-Saharan Africa but significantly contribute to energy savings in North America and Europe. A systemic effort that focuses on both urban form and energy-efficient technologies, but also accounts for potential co-benefits and trade-offs, can contribute to both local and global sustainability. Particularly in mega-urban regions, such efforts can improve local environments for billions of urban residents and contribute to mitigating climate change by reducing energy use in urban areas and associated greenhouse gas emissions.« less

  14. Synergies and trade-offs between energy-efficient urbanization and health

    NASA Astrophysics Data System (ADS)

    Ahmad, Sohail; Pachauri, Shonali; Creutzig, Felix

    2017-11-01

    Energy-efficient urbanization and public health pose major development challenges for India. While both issues are intensively studied, their interaction is not well understood. Here we explore the relationship between urban infrastructures, public health, and household-related emissions, identifying potential synergies and trade-offs of specific interventions by analyzing nationally representative household surveys from 2005 and 2012. Our analysis confirms previous characterizations of the environmental-health transition, but also points to an important role of energy use and urbanization as modifiers of this transition. We find that non-motorized transport may prove a sweet spot for development, as its use is associated with lower emissions and better public health in cities. Urbanization and improved access to basic services correlate with lower short-term morbidity (STM), such as fever, cough and diarrhea. Our analysis suggests that a 10% increase in urbanization from current levels and concurrent improvement in access to modern cooking and clean water could lower STM for 2.4 million people. This would be associated with a modest increase in electricity related emissions of 84 ktCO2e annually. Promoting energy-efficient mobility systems, for instance by a 10% increase in bicycling, could lower chronic conditions like diabetes and cardio-vascular diseases for 0.3 million people while also abating emissions. These findings provide empirical evidence to validate that energy-efficient and sustainable urbanization can address both public health and climate change challenges simultaneously.

  15. Young Children's Ideas about the Nature, Causes, Justification, and Alleviation of Poverty

    ERIC Educational Resources Information Center

    Chafel, Judith A.; Neitzel, Carin

    2005-01-01

    Sixty-four 8-year-old boys and girls from urban and rural settings and representing different races and socioeconomic status backgrounds responded to questions about the nature, causes, justification, and alleviation of poverty. Much of what the children said indicated that they had not yet internalized prevailing adult norms and values about the…

  16. Energy performance of areas for urban development (Arkhangelsk is given as example)

    NASA Astrophysics Data System (ADS)

    Popova, Olga; Glebova, Yulia

    2017-01-01

    The present research provides an overview and analysis of the legal framework and the technology to increase energy save and energy efficiency. The challenges of the mentioned activities implementation in urban areas are revealed in the paper. A comparison was made of the principal methods of increasing energy efficiency that is based on payback period. The basic shortcomings of the methods used are found. The way of capital reproducing assets acquisition is proposed with consideration of the rate of wear and tear and upgrading of urban residential development. The present research aims at characterizing energy sustainability of urban areas for forming the information basis that identifies capital construction projects together within the urban area. A new concept - area energy sustainability is introduced in the study to use system-structural approach to energy saving and energy efficiency. Energy sustainability of the area as an integral indicator of the static characteristics of the territory is considered as a complex involving the following terms: energy security, energy intensity and energy efficiency dynamic indicators of all the components of the power system of the area. Dimensions and parameters of energy sustainability of the area are determined. Arkhangelsk is given as example.

  17. Collaboration essential for an energy neutral urban water cycle.

    PubMed

    Frijns, Jos; Mulder, Mirabella; Roorda, Jelle; Schepman, Hans; Voskamp, Tom

    2013-01-01

    Two Dutch water boards prepared a Master Plan with measures to substantially reduce their energy use by 2027. In total, more than 100 measures were identified such as bubble aeration and heat recovery from effluent. Together these measures result in a 90-95% reduction in energy use at the water boards. However, for the whole urban water cycle, thus including the energy required for warm water use in households, the total energy reduction from these measures at the water boards is only 5-6%. To attain the objective to have an energy neutral urban water cycle, collaboration with other sectors such as housing, energy, agriculture and industry will be essential. Active collaboration of the water boards through the incorporation of energy efficient water measures as part of the carbon neutral effort of cities is recognized to be a promising strategy.

  18. Channelling urban modernity to sustainable pro-poor tourism development in Indonesia

    NASA Astrophysics Data System (ADS)

    Prasetyanti, R.

    2017-06-01

    Sustainable urban planning and development requires not only a fast-growing economic growth and modernity, but also social equity and environmental sustainability. Meanwhile, the global goals of sustainable development have fascinatingly set a promising urban development future by enhancing ecology based pro-poor policy program. Apparently, pro-poor development agenda has led to the notion of pro-poor tourism as part of urban development strategies on poverty alleviation. This research presents Jakarta Hidden Tour and Kampung Warna-warni as certain cases of pro-poor tourism in Indonesia. By the emergence of criticism on “pro-growth” paradigm, the critical analysis of this research focuses on the scenario of sustainable pro-poor tourism through eco-cultural based Kampung-Tour development. In accordance, debates and dilemma have been continuously arising as pros and cons regarding the ethical issues of poverty alleviation based Kampung-Tour development. Nevertheless, this paper tries to redefine Slum Kampung as potential; the writer wildly offers a concept of poverty alleviation by reinventing pro-poor tourism strategy; revitalizing slum site to eco-cultural based pro-poor tourism development as an embodiment of a sustainable urban development. By holding system thinking analysis as research method, sustainable pro-poor tourism highlights the urgency community based tourism and eco-tourism so that poverty alleviation based tourism can be tangibly perceived by the poor. In this sense, good local governance and public private partnership must be enhanced, it is due to, like any other development projects; sustainable pro-poor tourism needs a strong political commitment to alleviate urban poverty, as well as to pursue a better future of sustainable nation.

  19. Bending and Torsion Load Alleviator With Automatic Reset

    NASA Technical Reports Server (NTRS)

    delaFuente, Horacio M. (Inventor); Eubanks, Michael C. (Inventor); Dao, Anthony X. (Inventor)

    1996-01-01

    A force transmitting load alleviator apparatus and method are provided for rotatably and pivotally driving a member to be protected against overload torsional and bending (moment) forces. The load alleviator includes at least one bias spring to resiliently bias cam followers and cam surfaces together and to maintain them in locked engagement unless a predetermined load is exceeded whereupon a center housing is pivotal or rotational with respect to a crown assembly. This pivotal and rotational movement results in frictional dissipation of the overload force by an energy dissipator. The energy dissipator can be provided to dissipate substantially more energy from the overload force than from the bias force that automatically resets the center housing and crown assembly to the normally fixed centered alignment. The torsional and bending (moment) overload levels can designed independently of each other.

  20. The Effects of Domestic Energy Consumption on Urban Development Using System Dynamics

    NASA Astrophysics Data System (ADS)

    Saryazdi, M. D.; Homaei, N.; Arjmand, A.

    2018-05-01

    In developed countries, people have learned to follow efficient consumption patterns, while in developing countries, such as Iran, these patterns are not well executed. A large amount of energy is almost consumed in buildings and houses and though the consumption patterns varies in different societies, various energy policies are required to meet the consumption challenges. So far, several papers and more than ten case studies have worked on the relationship between domestic energy consumption and urban development, however these researches did not analyzed the impact of energy consumption on urban development. Therefore, this paper attempts to examine the interactions between the energy consumption and urban development by using system dynamics as the most widely used methods for complex problems. The proposed approach demonstrates the interactions using causal loop and flow diagrams and finally, suitable strategies will be proposed for urban development through simulations of different scenarios.

  1. Global scenarios of urban density and its impacts on building energy use through 2050.

    PubMed

    Güneralp, Burak; Zhou, Yuyu; Ürge-Vorsatz, Diana; Gupta, Mukesh; Yu, Sha; Patel, Pralit L; Fragkias, Michail; Li, Xiaoma; Seto, Karen C

    2017-08-22

    Although the scale of impending urbanization is well-acknowledged, we have a limited understanding of how urban forms will change and what their impact will be on building energy use. Using both top-down and bottom-up approaches and scenarios, we examine building energy use for heating and cooling. Globally, the energy use for heating and cooling by the middle of the century will be between 45 and 59 exajoules per year (corresponding to an increase of 7-40% since 2010). Most of this variability is due to the uncertainty in future urban densities of rapidly growing cities in Asia and particularly China. Dense urban development leads to less urban energy use overall. Waiting to retrofit the existing built environment until markets are ready in about 5 years to widely deploy the most advanced renovation technologies leads to more savings in building energy use. Potential for savings in energy use is greatest in China when coupled with efficiency gains. Advanced efficiency makes the least difference compared with the business-as-usual scenario in South Asia and Sub-Saharan Africa but significantly contributes to energy savings in North America and Europe. Systemic efforts that focus on both urban form, of which urban density is an indicator, and energy-efficient technologies, but that also account for potential co-benefits and trade-offs with human well-being can contribute to both local and global sustainability. Particularly in growing cities in the developing world, such efforts can improve the well-being of billions of urban residents and contribute to mitigating climate change by reducing energy use in urban areas.

  2. Global scenarios of urban density and its impacts on building energy use through 2050

    PubMed Central

    Güneralp, Burak; Zhou, Yuyu; Ürge-Vorsatz, Diana; Gupta, Mukesh; Yu, Sha; Patel, Pralit L.; Fragkias, Michail; Li, Xiaoma; Seto, Karen C.

    2017-01-01

    Although the scale of impending urbanization is well-acknowledged, we have a limited understanding of how urban forms will change and what their impact will be on building energy use. Using both top-down and bottom-up approaches and scenarios, we examine building energy use for heating and cooling. Globally, the energy use for heating and cooling by the middle of the century will be between 45 and 59 exajoules per year (corresponding to an increase of 7–40% since 2010). Most of this variability is due to the uncertainty in future urban densities of rapidly growing cities in Asia and particularly China. Dense urban development leads to less urban energy use overall. Waiting to retrofit the existing built environment until markets are ready in about 5 years to widely deploy the most advanced renovation technologies leads to more savings in building energy use. Potential for savings in energy use is greatest in China when coupled with efficiency gains. Advanced efficiency makes the least difference compared with the business-as-usual scenario in South Asia and Sub-Saharan Africa but significantly contributes to energy savings in North America and Europe. Systemic efforts that focus on both urban form, of which urban density is an indicator, and energy-efficient technologies, but that also account for potential co-benefits and trade-offs with human well-being can contribute to both local and global sustainability. Particularly in growing cities in the developing world, such efforts can improve the well-being of billions of urban residents and contribute to mitigating climate change by reducing energy use in urban areas. PMID:28069957

  3. Female labour force integration and the alleviation of urban poverty: a case study of Kingston, Jamaica.

    PubMed

    Holland, J

    1995-01-01

    The author posits that female labor force integration in Jamaica accomplishes little in alleviating poverty and making maximum use of human resources. Women are forced into employment in a labor market that limits their productivity. Women have greater needs to increase their economic activity due to price inflation and cuts in government spending. During the 1980s and early 1990s the country experienced stabilization and structural adjustment resulting in raised interest rates, reduced public sector employment, and deflated public expenditures. Urban population is particularly sensitive to monetary shifts due to dependency on social welfare benefits and lack of assets. Current strategies favor low wage creation in a supply-side export-oriented economy. These strategies were a by-product of import-substitution industrialization policies during the post-war period and greater control by multilateral financial institutions in Washington, D.C. The World Bank and US President Reagan's Caribbean Basin Initiative stressed export-oriented development. During the 1980s, Jamaican government failed to control fiscal policy, built up a huge external debt, and limited the ability of private businessmen to obtain money for investment in export-based production. Over the decade, uncompetitive production declined and light manufacturing increased. Although under 10% of new investment was in textile and apparel manufacturing, almost 50% of job creation occurred in this sector and 80% of all apparel workers were low-paid women. Devaluation occurred both in the exchange rate and in workers' job security, fringe benefits, union representation, and returns on skills. During 1977-89 women increased employment in the informal sector, which could not remain competitive under devaluation. Women's stratification in the labor market, high dependency burdens, and declining urban infrastructure create conditions of vulnerability for women in Jamaica.

  4. Gust Alleviation Using Direct Gust Measurement

    NASA Technical Reports Server (NTRS)

    Hoppe, Sven Marco

    2000-01-01

    The increasing competition in the market of civil aircraft leads to operating efficiency and passenger comfort being very important sales arguments. Continuous developments in jet propulsion technology helped to reduce energy consumption, as well as noise and vibrations due to the engines. The main problem with respect to ride comfort is, however, the transmittance of accelerations and jerkiness imposed by atmospheric turbulence from the wings to the fuselage. This 'gust' is also a design constraint: Light airplane structures help to save, energy, but are more critical to resist the loads imposed by turbulence. For both reasons, efficient gust alleviation is necessary to improve the performance of modern aircraft. Gust can be seen as a change in the angle of attack or as an additional varying vertical component of the headwind. The effect of gust can be very strong, since the same aerodynamic forces that keep the airplane flying are involved. Event though the frequency range of those changes is quite low, it is impossible for the pilot to alleviate gust manually. Besides, most of the time during the flight, the, autopilot maintains course and the attitude of flight. Certainly, most autopilots should be capable of damping the roughest parts of turbulence, but they are unable to provide satisfactory results in that field. A promising extension should be the application of subsidiary, control, where the inner (faster) control loop alleviates turbulence and the outer (slower) loop controls the attitude of flight. Besides the mentioned ride comfort, another reason for gust alleviation with respect to the fuselage is the sensibility of electrical devices to vibration and high values of acceleration. Many modern airplane designs--especially inherently instable military aircraft--are highly dependent on avionics. The lifetime and the reliability of these systems is thus essential.

  5. The State of U.S. Urban Water: Data and the Energy-Water Nexus

    NASA Astrophysics Data System (ADS)

    Chini, Christopher M.; Stillwell, Ashlynn S.

    2018-03-01

    Data on urban water resources are scarce, despite a majority of the U.S. population residing in urban environments. Further, information on the energy required to facilitate the treatment, distribution, and collection of urban water are even more limited. In this study, we evaluate the energy-for-water component of the energy-water nexus by providing and analyzing a unique primary database consisting of drinking water and wastewater utility flows and energy. These anthropogenic fluxes of water through the urban environment are used to assess the state of the U.S. urban energy-water nexus at over 160 utilities. The average daily per person water flux is estimated at 560 L of drinking water and 500 L of wastewater. Drinking water and wastewater utilities require 340 kWh/1,000 m3 and 430 kWh/1,000 m3 of energy, respectively, to treat these resources. The total national energy demand for water utilities accounts for 1.0% of the total annual electricity consumption of the United States. Additionally, the water and embedded energy loss associated with non-revenue water accounts for 9.1 × 109 m3 of water and 3,100 GWh, enough electricity to power 300,000 U.S. households annually. Finally, the water flux and embedded energy fluctuated monthly in many cities. As the nation's water resources become increasingly scarce and unpredictable, it is essential to have a set of empirical data for continuous evaluation and updates on the state of the U.S. urban energy-water nexus.

  6. Urbanization, Extreme Climate Hazards and Food, Energy Water Security

    NASA Astrophysics Data System (ADS)

    Romero-Lankao, P.; Davidson, D.; McPhearson, T.

    2016-12-01

    Research is urgently needed that incorporates the interconnected nature of three critical resources supporting our cities: food, energy and water. Cities are increasing demands for food, water and energy resources that in turn stress resource supplies, creating risks of negative impacts to human and ecological wellbeing. Simultaneously, shifts in climatic conditions, including extremes such as floods, heat, and droughts, threaten the sustainable availability of adequate quantities and qualities of food, energy and water (FEW) resources needed for resilient cities and ecosystems. These resource flows cannot be treated in isolation simply because they are interconnected: shifts in food, energy or water dynamics in turn affect the others, affecting the security of the whole - i.e., FEW nexus security. We present a framework to examine the dynamic interactions of urbanization, FEW nexus security and extreme hazard risks, with two overarching research questions: Do existing and emerging actions intended to enhance a population's food, water and energy security have the capacity to ensure FEW nexus security in the face of changing climate and urban development conditions? Can we identify a common set of social, ecological and technological conditions across a diversity of urban-regions that support the emergence of innovations that can lead to structural transformations for FEW nexus security?

  7. Modeling urban building energy use: A review of modeling approaches and procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wenliang; Zhou, Yuyu; Cetin, Kristen

    With rapid urbanization and economic development, the world has been experiencing an unprecedented increase in energy consumption and greenhouse gas (GHG) emissions. While reducing energy consumption and GHG emissions is a common interest shared by major developed and developing countries, actions to enable these global reductions are generally implemented at the city scale. This is because baseline information from individual cities plays an important role in identifying economical options for improving building energy efficiency and reducing GHG emissions. Numerous approaches have been proposed for modeling urban building energy use in the past decades. This paper aims to provide an up-to-datemore » review of the broad categories of energy models for urban buildings and describes the basic workflow of physics-based, bottom-up models and their applications in simulating urban-scale building energy use. Because there are significant differences across models with varied potential for application, strengths and weaknesses of the reviewed models are also presented. This is followed by a discussion of challenging issues associated with model preparation and calibration.« less

  8. Modeling urban building energy use: A review of modeling approaches and procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wenliang; Zhou, Yuyu; Cetin, Kristen

    With rapid urbanization and economic development, the world has been experiencing an unprecedented increase in energy consumption and greenhouse gas (GHG) emissions. While reducing energy consumption and GHG emissions is a common interest shared by major developed and developing countries, actions to enable these global reductions are generally implemented at the city scale. This is because baseline information from individual cities plays an important role in identifying economical options for improving building energy efficiency and reducing GHG emissions. Numerous approaches have been proposed for modeling urban building energy use in the past decades. Our paper aims to provide an up-to-datemore » review of the broad categories of energy models for urban buildings and describes the basic workflow of physics-based, bottom-up models and their applications in simulating urban-scale building energy use. Because there are significant differences across models with varied potential for application, strengths and weaknesses of the reviewed models are also presented. We then follow this with a discussion of challenging issues associated with model preparation and calibration.« less

  9. Modeling urban building energy use: A review of modeling approaches and procedures

    DOE PAGES

    Li, Wenliang; Zhou, Yuyu; Cetin, Kristen; ...

    2017-11-13

    With rapid urbanization and economic development, the world has been experiencing an unprecedented increase in energy consumption and greenhouse gas (GHG) emissions. While reducing energy consumption and GHG emissions is a common interest shared by major developed and developing countries, actions to enable these global reductions are generally implemented at the city scale. This is because baseline information from individual cities plays an important role in identifying economical options for improving building energy efficiency and reducing GHG emissions. Numerous approaches have been proposed for modeling urban building energy use in the past decades. Our paper aims to provide an up-to-datemore » review of the broad categories of energy models for urban buildings and describes the basic workflow of physics-based, bottom-up models and their applications in simulating urban-scale building energy use. Because there are significant differences across models with varied potential for application, strengths and weaknesses of the reviewed models are also presented. We then follow this with a discussion of challenging issues associated with model preparation and calibration.« less

  10. Decoupling emissions of greenhouse gas, urbanization, energy and income: analysis from the economy of China.

    PubMed

    Wang, Tianqiong; Riti, Joshua Sunday; Shu, Yang

    2018-05-08

    The adoption and ratification of relevant policies, particularly the household enrolment system metamorphosis in China, led to rising urbanization growth. As the leading developing economy, China has experienced a drastic and rapid increase in the rate of urbanization, energy use, economic growth and greenhouse gas (GHG) pollution for the past 30 years. The knowledge of the dynamic interrelationships among these trends has a plethora of implications ranging from demographic, energy, and environmental and sustainable development policies. This study analyzes the role of urbanization in decoupling GHG emissions, energy, and income in China while considering the critical contribution of energy use. As a contribution to the extant body of literature, the present research introduces a new phenomenon called "the environmental urbanization Kuznets curve" (EUKC), which shows that at the early stage of urbanization, the environment degrades however, after a threshold point the technique effects surface and environmental degradation reduces with rise in urbanization. Applying the autoregressive distributed lag model and the vector error correction model, the paper finds the presence of inverted U-shaped curve between urbanization and GHG emission of CO 2 , while the same hypothesis cannot be found between income and GHG emission of CO 2 . Energy use in all the models contributes to GHG emission of CO 2 . In decoupling greenhouse gas emissions, urbanization, energy, and income, articulated and well-implemented energy and urbanization policies should be considered.

  11. Control concepts for the alleviation of windshears and gusts

    NASA Technical Reports Server (NTRS)

    Rynaski, E. G.; Govindaraj, K. S.

    1982-01-01

    Automatic control system design methods for gust and shear alleviation were studied. It is shown that automatic gust/shear alleviation systems can be quite effective if both throttle and elevator are used in harmony to produce the forces and moments required to counter the effects of the windshear. Regulation with respect to ground speed or airspeed results in very similar system designs. The application of the NASA total energy probe in the detection of windshear and criteria for alleviation is considered. The theory and application of robust output observers is extended. Design examples show how implementation of the control laws can be accomplished using observers, and thereby resulting in less complex control system configurations.

  12. Direct Energy Consumption Associated Emissions by Rural-to-Urban Migrants in Beijing.

    PubMed

    Ru, Muye; Tao, Shu; Smith, Kirk; Shen, Guofeng; Shen, Huizhong; Huang, Ye; Chen, Han; Chen, Yilin; Chen, Xi; Liu, Junfeng; Li, Bengang; Wang, Xilong; He, Canfei

    2015-11-17

    Hundreds of millions of rural residents have migrated to cities in China in recent years. Different lifestyles and living conditions lead to substantial changes in their household energy. Here, we present the result of a survey on direct household energy use of low-skilled rural-to-urban migrants in Beijing. The migrants moved up the energy ladder immediately after arriving in the city by replacing biomass fuels with coal, electricity, and liquefied petroleum gas. After the original shift, pattern of household energy use by the migrants has not changed much over decades, likely due to the long-existing household registration system (Hukou). As a result, the mix of energy types used by the rural-to-urban migrants were different from those by long-term urban residents, although total quantities were similar. Shifting from biomass fuels to coal, the migrants emitted 2.4 times more non-neutral CO2 than rural residents and 14% more than urban residents. The migration also resulted in significant increase in emissions of SO2 and mercury but dramatic decreases in some incomplete combustion products including particulate matter. All these changes have significant implication on air quality, health, and climate considering the scale of urbanization in China.

  13. Energy in the urban environment. Proceedings of the 22. annual Illinois energy conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-12-31

    The conference addressed the energy and environmental challenges facing large metropolitan areas. The topics included a comparison of the environmental status of cities twenty years ago with the challenges facing today`s large cities, sustainable economic development, improving the energy and environmental infrastructure, and the changing urban transportation sector. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  14. Evapotranspiration and surface energy balance across an agricultural-urban landscape gradient in Southern California, USA.

    NASA Astrophysics Data System (ADS)

    Shiflett, S. A.; Anderson, R. G.; Jenerette, D.

    2014-12-01

    Urbanization substantially affects energy, surface and air temperature, and hydrology due to extensive modifications in land surface properties such as vegetation, albedo, thermal capacity and soil moisture. The magnitude and direction of these alterations depends heavily on the type of urbanization that occurs. We investigated energy balance variation in a local network of agricultural and urban ecosystems using the eddy covariance method to better understand how vegetation fraction and degree of urbanization affects energy exchanges between the land surface and the atmosphere. We deployed eddy flux systems within a well-irrigated, agricultural citrus orchard, a moderately developed urban zone with a substantial amount of local vegetative cover, and an intensely developed urban zone with minimal vegetative cover and increased impervious surfaces relative to the other two sites. Latent energy (LE) fluxes in the agricultural area ranged from 7.9 ± 1.4 W m-2 (nighttime) to 168.7 ± 6.2 W m-2 (daytime) compared to 10.2 ± 3.5 W m-2 and 40.6 ± 4.1 W m-2, respectively, for the moderately developed urban area. Sensible energy (H) fluxes ranged from -9.1 ± 1.0 W m-2 (nighttime) to 119 ± 7.0 W m-2 (daytime) in the agricultural area compared to 9.6 ± 2.6 W m-2 and 134 ± 6.0 W m-2, respectively, for the moderately developed urban zone. Daytime LE is reduced with increasing urbanization; however, daily cycles of LE are less recognizable in urban areas compared to distinct daily cycles obtained above a mature citrus crop. In contrast, both daytime and nighttime H increases with increasing degree of urbanization. Reduction in vegetation and increases in impervious surfaces along an urbanization gradient leads to alterations in energy balance, which are associated with microclimate and water use changes.

  15. Impact of the urban heat island on residents’ energy consumption: a case study of Qingdao

    NASA Astrophysics Data System (ADS)

    Ding, Feng; Pang, Huaji; Guo, Wenhui

    2018-02-01

    This paper examines impact of urban heat island on residents’ energy consumption through comparative analyses of monthly air temperature data observed in Qingdao, Laoshan and Huangdao weather stations. The results show effect of urban heat island is close related with urbanization speed. Recently, effects of urban heat island of Laoshan and Huangdao exceed that of Qingdao, consistent with rapid urbanization in Laoshan and Huangdao. Enhanced effect of urban heat island induces surface air temperature to rise up, further increase electricity energy consumption for air conditioning use in summer and reduce coal consumption for residents heating in winter. Comparing change of residents’ energy consumption in summer and winter, increments in summer are less than reduction in winter. This implicates effect of urban heat island is more obvious in winter than in summer.

  16. Urban sound energy reduction by means of sound barriers

    NASA Astrophysics Data System (ADS)

    Iordache, Vlad; Ionita, Mihai Vlad

    2018-02-01

    In urban environment, various heating ventilation and air conditioning appliances designed to maintain indoor comfort become urban acoustic pollution vectors due to the sound energy produced by these equipment. The acoustic barriers are the recommended method for the sound energy reduction in urban environment. The current sizing method of these acoustic barriers is too difficult and it is not practical for any 3D location of the noisy equipment and reception point. In this study we will develop based on the same method a new simplified tool for acoustic barriers sizing, maintaining the same precision characteristic to the classical method. Abacuses for acoustic barriers sizing are built that can be used for different 3D locations of the source and the reception points, for several frequencies and several acoustic barrier heights. The study case presented in the article represents a confirmation for the rapidity and ease of use of these abacuses in the design of the acoustic barriers.

  17. A research agenda for a people-centred approach to energy access in the urbanizing global south

    NASA Astrophysics Data System (ADS)

    Broto, Vanesa Castán; Stevens, Lucy; Ackom, Emmanuel; Tomei, Julia; Parikh, Priti; Bisaga, Iwona; To, Long Seng; Kirshner, Joshua; Mulugetta, Yacob

    2017-10-01

    Energy access is typically viewed as a problem for rural areas, but people living in urban settings also face energy challenges that have not received sufficient attention. A revised agenda in research and practice that puts the user and local planning complexities centre stage is needed to change the way we look at energy access in urban areas, to understand the implications of the concentration of vulnerable people in slums and to identify opportunities for planned management and innovation that can deliver urban energy transitions while leaving no one behind. Here, we propose a research agenda focused on three key issues: understanding the needs of urban energy users; enabling the use of context-specific, disaggregated data; and engaging with effective modes of energy and urban governance. This agenda requires interdisciplinary scholarship across the social and physical sciences to support local action and deliver large-scale, inclusive transformations.

  18. Energy and other resource conservation within urbanizing areas

    NASA Astrophysics Data System (ADS)

    Rowe, Peter G.

    1982-05-01

    The reported research seeks to answer several questions regarding energy conservation within urbanizing areas. As a practical matter, to what extent can dependence upon exhaustible resources be reduced? Can these reductions be achieved without severely impairing social well-being and environmental quality? And, what seem to be the prevailing institutional constraints limiting energy conservation within urbanizing areas? The study area was the proposed “downtown” of The Woodlands, a new town north of Houston, Texas. Two plans were developed for this area. In one, no particular attempt was made to conserve energy (conventional plan), while in the other, energy conservation was a primary consideration (conservation plan). For both plans, estimates were made of energy consumption within buildings, in the transportation sector, and in the actual production of building materials themselves (embodied energy). In addition, economic and environmental analyses were performed, including investigation of other resource issues such as water supply, solid waste disposal, stormwater management, and atmospheric emissions. Alternative on-site power systems were also investigated. Within the bounds of economic feasibility and development practicality, it was found that application of energy-conserving methods could yield annual energy savings of as much as 23%, and reduce dependence on prime fuels by 30%. Adverse economic effects on consumers were found to be minimal and environmental quality could be sustained. The major institutional constraints appeared to be those associated with traditional property ownership and with the use of common property resources. The resistance to change of everyday practices in land development and building industries also seemed to constrain potential applications.

  19. Impacts of urban forests on offsetting carbon emissions from industrial energy use in Hangzhou, China.

    PubMed

    Zhao, Min; Kong, Zheng-hong; Escobedo, Francisco J; Gao, Jun

    2010-01-01

    This study quantified carbon storage and sequestration by urban forests and carbon emissions from energy consumption by several industrial sources in Hangzhou, China. Carbon (C) storage and sequestration were quantified using urban forest inventory data and by applying volume-derived biomass equations and other models relating net primary productivity (NPP) and mean annual biomass increments. Industrial energy use C emissions were estimated by accounting for fossil fuel use and assigning C emission factors. Total C storage by Hangzhou's urban forests was estimated at 11.74 Tg C, and C storage per hectare was 30.25 t C. Carbon sequestration by urban forests was 1,328, 166.55 t C/year, and C sequestration per ha was 1.66 t C/ha/year. Carbon emissions from industrial energy use in Hangzhou were 7 Tg C/year. Urban forests, through sequestration, annually offset 18.57% of the amount of carbon emitted by industrial enterprises, and store an amount of C equivalent to 1.75 times the amount of annual C emitted by industrial energy uses within the city. Management practices for improving Hangzhou's urban forests function of offsetting C emissions from energy consumption are explored. These results can be used to evaluate the urban forests' role in reducing atmospheric carbon dioxide. Copyright 2009 Elsevier Ltd. All rights reserved.

  20. Optimal urban water conservation strategies considering embedded energy: coupling end-use and utility water-energy models.

    NASA Astrophysics Data System (ADS)

    Escriva-Bou, A.; Lund, J. R.; Pulido-Velazquez, M.; Spang, E. S.; Loge, F. J.

    2014-12-01

    Although most freshwater resources are used in agriculture, a greater amount of energy is consumed per unit of water supply for urban areas. Therefore, efforts to reduce the carbon footprint of water in cities, including the energy embedded within household uses, can be an order of magnitude larger than for other water uses. This characteristic of urban water systems creates a promising opportunity to reduce global greenhouse gas emissions, particularly given rapidly growing urbanization worldwide. Based on a previous Water-Energy-CO2 emissions model for household water end uses, this research introduces a probabilistic two-stage optimization model considering technical and behavioral decision variables to obtain the most economical strategies to minimize household water and water-related energy bills given both water and energy price shocks. Results show that adoption rates to reduce energy intensive appliances increase significantly, resulting in an overall 20% growth in indoor water conservation if household dwellers include the energy cost of their water use. To analyze the consequences on a utility-scale, we develop an hourly water-energy model based on data from East Bay Municipal Utility District in California, including the residential consumption, obtaining that water end uses accounts for roughly 90% of total water-related energy, but the 10% that is managed by the utility is worth over 12 million annually. Once the entire end-use + utility model is completed, several demand-side management conservation strategies were simulated for the city of San Ramon. In this smaller water district, roughly 5% of total EBMUD water use, we found that the optimal household strategies can reduce total GHG emissions by 4% and utility's energy cost over 70,000/yr. Especially interesting from the utility perspective could be the "smoothing" of water use peaks by avoiding daytime irrigation that among other benefits might reduce utility energy costs by 0.5% according to our

  1. Urban household energy use in Thailand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyler, S.R.

    Changes in household fuel and electricity use that accompany urbanization in Third World countries bear large economic and environmental costs. The processes driving the fuel transition, and the policy mechanisms by which it can be influenced, need to be better understood for the sake of forecasting and planning, especially in the case of electricity demand. This study examines patterns of household fuel use and electrical appliance utilization in Bangkok, Chieng Mai and Ayutthaya, Thailand, based on the results of a household energy survey. Survey data are statistically analyzed using a variety of multiple regression techniques to evaluate the relative influencemore » of various household and fuel characteristics on fuel and appliance choice. Results suggest that changes to the value of women's time in urban households, as women become increasingly active in the labor force, have a major influence on patterns of household energy use. The use of the home for small-scale commercial activities, particularly food preparation, also has a significant influence on fuel choice. In general, household income does not prove to be an important factor in fuel and appliance selection in these cities, although income is closely related to total electricity use. The electricity use of individual household appliances is also analyzed using statistical techniques as well as limited direct metering. The technology of appliance production in Thailand is evaluated through interviews with manufacturers and comparisons of product performance. These data are used to develop policy recommendations for improving the efficiency of electrical appliances in Thailand by relying principally on the dynamism of the consumer goods market, rather than direct regulation. The annual electricity savings from the recommended program for fostering rapid adoption of efficient technologies are estimated to reach 1800 GWh by the year 2005 for urban households alone.« less

  2. Energy saving and recovery measures in integrated urban water systems

    NASA Astrophysics Data System (ADS)

    Freni, Gabriele; Sambito, Mariacrocetta

    2017-11-01

    The present paper describes different energy production, recovery and saving measures which can be applied in an integrated urban water system. Production measures are often based on the installation of photovoltaic systems; the recovery measures are commonly based on hydraulic turbines, exploiting the available pressure potential to produce energy; saving measures are based on substitution of old pumps with higher efficiency ones. The possibility of substituting some of the pipes of the water supply system can be also considered in a recovery scenario in order to reduce leakages and recovery part of the energy needed for water transport and treatment. The reduction of water losses can be obtained through the Active Leakage Control (ALC) strategies resulting in a reduction in energy consumption and in environmental impact. Measures were applied to a real case study to tested it the efficiency, i.e., the integrated urban water system of the Palermo metropolitan area in Sicily (Italy).

  3. Water treatment residual (WTR)-coated wood mulch for alleviation of toxic metals and phosphorus from polluted urban stormwater runoff.

    PubMed

    Soleimanifar, Hanieh; Deng, Yang; Wu, Laying; Sarkar, Dibyendu

    2016-07-01

    Aluminum-based water treatment residual (WTR)-coated wood mulches were synthesized and tested for removal of heavy metals and phosphorus (P) in synthetic urban stormwater. WTRs are an industrial waste produced from coagulation in water treatment facilities, primarily composed of amorphous aluminum or iron hydroxides. Batch tests showed that the composite filter media could effectively adsorb 97% lead (Pb), 76% zinc (Zn), 81% copper (Cu) and 97% P from the synthetic stormwater (Pb = 100 μg/L, Zn = 800 μg/L, Cu = 100 μg/L, P = 2.30 mg/L, and pH = 7.0) within 120 min, due to the presence of aluminum hydroxides as an active adsorbent. The adsorption was a 2(nd)-order reaction with respect toward each pollutant. Column tests demonstrated that the WTR-coated mulches considerably alleviated the select pollutants under a continuous-flow condition over the entire filtration period. The effluent Pb, Zn, Cu, and P varied at 0.5-8.9%, 33.4-46.7%, 45.8-55.8%, and 6.4-51.9% of their respective initial concentrations with the increasing bed volume from 0 to 50. Synthetic precipitation leaching procedure (SPLP) and toxicity characteristic leaching procedure (TCLP) tests indicated that leached contaminants were all below the U.S. criteria, suggesting that the release of undesired chemicals under rainfall or landfilling conditions is not a concern during application. This study demonstrates that the WTR-coated mulches are a new, low-cost, and effective filter media for urban stormwater treatment. Equally important, this study provides a sustainable approach to beneficially reuse an industrial waste for environmental pollution control. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Urban energy consumption and related carbon emission estimation: a study at the sector scale

    NASA Astrophysics Data System (ADS)

    Lu, Weiwei; Chen, Chen; Su, Meirong; Chen, Bin; Cai, Yanpeng; Xing, Tao

    2013-12-01

    With rapid economic development and energy consumption growth, China has become the largest energy consumer in the world. Impelled by extensive international concern, there is an urgent need to analyze the characteristics of energy consumption and related carbon emission, with the objective of saving energy, reducing carbon emission, and lessening environmental impact. Focusing on urban ecosystems, the biggest energy consumer, a method for estimating energy consumption and related carbon emission was established at the urban sector scale in this paper. Based on data for 1996-2010, the proposed method was applied to Beijing in a case study to analyze the consumption of different energy resources (i.e., coal, oil, gas, and electricity) and related carbon emission in different sectors (i.e., agriculture, industry, construction, transportation, household, and service sectors). The results showed that coal and oil contributed most to energy consumption and carbon emission among different energy resources during the study period, while the industrial sector consumed the most energy and emitted the most carbon among different sectors. Suggestions were put forward for energy conservation and emission reduction in Beijing. The analysis of energy consumption and related carbon emission at the sector scale is helpful for practical energy saving and emission reduction in urban ecosystems.

  5. An Annual Report of the Urban Internship Program-Urban Extension Service Conducted by Florida State University's Urban Research Center During the 1966-67 Fiscal Year.

    ERIC Educational Resources Information Center

    Florida State Univ., Tallahassee. Inst. for Social Research.

    Florida State University's Urban Research Center serves a rapidly growing seven county area in east central Florida; under Title I of the Higher Education Act, the Center increased its service through a uniquely designed research-education program for public administrators, the purpose being to identify and alleviate community problems. The 2,000…

  6. The Urban Fabric of the City as Its Affects Thermal Energy Responses Derived from Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Luvall, Jeffrey C.; Estes, Maurice G., Jr.

    2000-01-01

    The physical geography of the city affects numerous aspects of its interlinked biophysical, social, and land-atmosphere characteristics - those attributes that come together to form the total urban environment. One approach to studying the multitude of interactions that occur as a result of urbanization is to view the city from a systems ecology perspective, where energy and material cycle into and out of the urban milieu. Thus, the urban ecosystem is synergistic in linking land, air, water, and living organisms in a vast network of interrelated physical, human, and biological process. Given the number and the shear complexity of the exchanges and, ultimately, their effects, that occur within the urban environment, we are focusing our research on looking at how the morphology or urban fabric of the city, drives thermal energy exchanges across the urban landscape. The study of thermal energy attributes for different cities provides insight into how thermal fluxes and characteristics are partitioned across the city landscape in response to each city's morphology. We are using thermal infrared remote sensing data obtained at a high spatial resolution from aircraft, along with satellite data, to identify and quantify thermal energy characteristics for 4 U.S. cities: Atlanta, GA, Baton Rouge, LA, Salt Lake City, UT, and Sacramento, CA. Analysis of how thermal energy is spatially distributed across the urban landscapes for these cities provides a unique perspective for understanding how the differing morphology of cities forces land-atmosphere exchanges, such as the urban heat island effect, as well as related meteorological and air quality interactions. Keyword: urban ecosystems, remote sensing, urban heat island

  7. An energy and mortality impact assessment of the urban heat island in the US

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowe, Scott A., E-mail: Scott.lowe@manhattan.edu

    Increased summer energy use and increased summer heat related mortality are the two most cited detrimental impacts of the urban heat island (UHI). An assessment of these impacts was made that considered the annual impact of the UHI, not just the summer impact. It was found that in north of the US there was a net decrease in energy use from the UHI, as heating energy reductions were larger than the increase in cooling energy. In the south there was a net energy increase from the UHI. The impact of the UHI on heat related deaths was an estimated increasemore » of 1.1 deaths per million people. The impact of the UHI on cold related deaths was an estimated decrease of 4.0 deaths per million people. These estimates are caveated by the acknowledgement that compounding factors influence mortality. Hypothermia related death rates were three times higher in rural areas than urban areas. This is surprising as the homeless population is usually considered the most at risk, yet they mostly live in urban areas. - Highlights: • The urban heat island (UHI) may actually be beneficial in colder cities in the US in terms of energy use • The UHI may cause an increase in heat related mortality of ~ 1 deaths per million • In winter the UHI may decrease cold related mortality by ~ 4 deaths per million • Cold related death rates were 3 times higher in rural areas although the homeless population live mainly in urban areas.« less

  8. Residential building energy conservation and avoided power plant emissions by urban and community trees in the United States

    Treesearch

    David J. Nowak; Nathaniel Appleton; Alexis Ellis; Eric Greenfield

    2017-01-01

    Urban trees and forests alter building energy use and associated emissions from power plants by shading buildings, cooling air temperatures and altering wind speeds around buildings. Field data on urban trees were combined with local urban/community tree and land cover maps, modeling of tree effects on building energy use and pollutant emissions, and state energy and...

  9. A Global Geospatial Ecosystem Services Estimate of Urban Agriculture

    NASA Astrophysics Data System (ADS)

    Clinton, Nicholas; Stuhlmacher, Michelle; Miles, Albie; Uludere Aragon, Nazli; Wagner, Melissa; Georgescu, Matei; Herwig, Chris; Gong, Peng

    2018-01-01

    Though urban agriculture (UA), defined here as growing of crops in cities, is increasing in popularity and importance globally, little is known about the aggregate benefits of such natural capital in built-up areas. Here, we introduce a quantitative framework to assess global aggregate ecosystem services from existing vegetation in cities and an intensive UA adoption scenario based on data-driven estimates of urban morphology and vacant land. We analyzed global population, urban, meteorological, terrain, and Food and Agriculture Organization (FAO) datasets in Google Earth Engine to derive global scale estimates, aggregated by country, of services provided by UA. We estimate the value of four ecosystem services provided by existing vegetation in urban areas to be on the order of 33 billion annually. We project potential annual food production of 100-180 million tonnes, energy savings ranging from 14 to 15 billion kilowatt hours, nitrogen sequestration between 100,000 and 170,000 tonnes, and avoided storm water runoff between 45 and 57 billion cubic meters annually. In addition, we estimate that food production, nitrogen fixation, energy savings, pollination, climate regulation, soil formation and biological control of pests could be worth as much as 80-160 billion annually in a scenario of intense UA implementation. Our results demonstrate significant country-to-country variability in UA-derived ecosystem services and reduction of food insecurity. These estimates represent the first effort to consistently quantify these incentives globally, and highlight the relative spatial importance of built environments to act as change agents that alleviate mounting concerns associated with global environmental change and unsustainable development.

  10. Urban Heat Island Effect on the Energy Consumption of Institutional Buildings in Rome

    NASA Astrophysics Data System (ADS)

    Calice, Claudia; Clemente, Carola; Salvati, Agnese; Palme, Massimo; Inostroza, Luis

    2017-10-01

    The urban heat island (UHI) effect is constantly increasing the energy consumption of buildings, especially in summer periods. The energy gap between the estimated energy performance - often simulated without considering UHI - and the real operational consumption is especially relevant for institutional buildings, where the cooling needs are in general higher than in other kind of buildings, due to more internal gains (people, appliances) and different architectural design (more transparent façades and light walls). This paper presents a calculation of the energy penalty due to UHI in two institutional buildings in Rome. Urban Weather Generator (UWG) is used to generate a modified weather file, taking into account the UHI phenomenon. Then, two building performance simulations are done for each case: the first simulation uses a standard weather file and the second uses the modified one. Results shows how is it necessary to re-develop mitigation strategies and a new energy retrofit approach, in order to include urbanization ad UHI effect, especially in this kind of buildings, characterized by very poor conditions of comfort during summer, taking into account users and occupant-driven demand.

  11. Using mobile probes to inform and measure the effectiveness of traffic control strategies on urban networks.

    DOT National Transportation Integrated Search

    2015-07-01

    Urban traffic congestion is a problem that plagues many cities in the United States. Testing strategies to alleviate this : congestion is especially challenging due to the difficulty of modeling complex urban traffic networks. However, recent work ha...

  12. Quantifying Water and Energy Fluxes Over Different Urban Land Covers in Phoenix, Arizona

    NASA Astrophysics Data System (ADS)

    Templeton, Nicole P.; Vivoni, Enrique R.; Wang, Zhi-Hua; Schreiner-McGraw, Adam P.

    2018-02-01

    The impact of urbanization on water and energy fluxes varies according to the characteristics of the urban patch type. Nevertheless, urban flux observations are limited, particularly in arid climates, given the wide variety of land cover present in cities. To help address this need, a mobile eddy covariance tower was deployed at three locations in Phoenix, Arizona, to sample the surface energy balance at a parking lot, a xeric landscaping (irrigated trees with gravel) and a mesic landscaping (irrigated turf grass). These deployments were compared to a stationary eddy covariance tower in a suburban neighborhood. A comparison of the observations revealed key differences between the mobile and reference sites tied to the urban land cover within the measurement footprints. For instance, the net radiation varied substantially among the sites in manners consistent with albedo and shallow soil temperature differences. The partitioning of available energy between sensible and latent heat fluxes was modulated strongly by the presence of outdoor water use, with the irrigated turf grass exhibiting the highest evaporative fraction. At this site, we identified a lack of sensitivity of turbulent flux partitioning to precipitation events, which suggests that frequent outdoor water use removes water limitations in an arid climate, thus leading to mesic conditions. Other urban land covers with less irrigation, however, exhibited sensitivity to the occurrence of precipitation, as expected for an arid climate. As a result, quantifying the frequency and magnitude of outdoor water use is critical for understanding evapotranspiration losses in arid urban areas.

  13. Developing 3D morphologies for simulating building energy demand in urban microclimates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    New, Joshua Ryan; Omitaomu, Olufemi A.; Allen, Melissa R.

    In order to simulate the effect of interactions between urban morphology and microclimate on demand for heating and cooling in buildings, we utilize source elevation data to create 3D building geometries at the neighborhood and city scale. Additionally, we use urban morphology concepts to design virtual morphologies for simulation scenarios in an undeveloped land parcel. Using these morphologies, we compute building-energy parameters such as the density for each surface and the frontal area index for each of the buildings to be able to effectively model the microclimate for the urban area.

  14. Using mobile probes to inform and measure the effectiveness of macroscopic traffic control strategies on urban networks.

    DOT National Transportation Integrated Search

    2015-06-01

    Urban traffic congestion is a problem that plagues many cities in the United States. Testing strategies to alleviate this : congestion is especially challenging due to the difficulty of modeling complex urban traffic networks. However, recent work ha...

  15. Flux measurements of energy and trace gases in urban Houston, Texas

    NASA Astrophysics Data System (ADS)

    Boedeker, I.; Schade, G. W.; Adams, S.; Park, C.

    2008-12-01

    We describe the setup and some first year results of a new flux measurements tower in an urban area. An existing radio communications tower 4 km north of downtown Houston was equipped with micrometeorological instrumentation and trace gas sampling lines in spring 2007. Wind speed, temperature and relative humidity are recorded at five levels between 12 and 60 m above ground; 3-D wind speed measurements, solar and net radiances, and trace gas sampling are established from the 60 m level. A closed path IRGA is used for CO2 and water vapor fluxes, and independent instrumentation for criteria pollutant and VOC fluxes. Two CSI data loggers and software control the measurements, and EdiRe software is used to analyze turbulence data and compute fluxes. A project description is provided at http://atmo.tamu.edu/yellowcabtower. Surface properties as calculated from the gradient measurements show the site to be surprisingly uniform, with displacement heights between 5 and 9 m and roughness lengths between 0.4 and 0.7 m, despite urban heterogeneity. The latter is investigated through visible/near IR orthoimagery and LIDAR data, which are incorporated into a local GIS. Net radiation was also only marginally affected by surface heterogeneity. At this urban location it is balanced by roughly equal amounts of sensible heat, latent heat, and storage fluxes. Latent heat flux, however, is smaller outside the growing season, with an equivalent increase in winter storage fluxes, as expected. Significant differences are also observed with direction during summer, showing decreased Bowen ratios and lower CO2 emissions from sectors with a larger urban tree canopy cover in the footprint. The largely mature, dominantly oak urban canopy cover alleviates approximately 100 W m- 2 during typical summer days. On the other hand, anthropogenic CO2 emissions dominate over photosynthetic uptake all year round. Measured carbon fluxes peak during morning rush-hour traffic, especially when increasing

  16. New Energy Efficient Housing Has Reduced Carbon Footprints in Outer but Not in Inner Urban Areas.

    PubMed

    Ottelin, Juudit; Heinonen, Jukka; Junnila, Seppo

    2015-08-18

    Avoiding urban sprawl and increasing density are often considered as effective means to mitigate climate change through urban planning. However, there have been rapid technological changes in the fields of housing energy and private driving, and the development is continuing. In this study, we analyze the carbon footprints of the residents living in new housing in different urban forms in Finland. We compare the new housing to existing housing stock. In all areas, the emissions from housing energy were significantly lower in new buildings. However, in the inner urban areas the high level of consumption, mostly due to higher affluence, reverse the gains of energy efficient new housing. The smallest carbon footprints were found in newly built outer and peri-urban areas, also when income level differences were taken into account. Rather than strengthening the juxtaposition of urban and suburban areas, we suggest that it would be smarter to recognize the strengths and weaknesses of both modes of living and develop a more systemic strategy that would result in greater sustainability in both areas. Since such strategy does not exist yet, it should be researched and practically developed. It would be beneficial to focus on area specific mitigation measures.

  17. Lifetime Maximization via Hole Alleviation in IoT Enabling Heterogeneous Wireless Sensor Networks.

    PubMed

    Wadud, Zahid; Javaid, Nadeem; Khan, Muhammad Awais; Alrajeh, Nabil; Alabed, Mohamad Souheil; Guizani, Nadra

    2017-07-21

    In Internet of Things (IoT) enabled Wireless Sensor Networks (WSNs), there are two major factors which degrade the performance of the network. One is the void hole which occurs in a particular region due to unavailability of forwarder nodes. The other is the presence of energy hole which occurs due to imbalanced data traffic load on intermediate nodes. Therefore, an optimum transmission strategy is required to maximize the network lifespan via hole alleviation. In this regard, we propose a heterogeneous network solution that is capable to balance energy dissipation among network nodes. In addition, the divide and conquer approach is exploited to evenly distribute number of transmissions over various network areas. An efficient forwarder node selection is performed to alleviate coverage and energy holes. Linear optimization is performed to validate the effectiveness of our proposed work in term of energy minimization. Furthermore, simulations are conducted to show that our claims are well grounded. Results show the superiority of our work as compared to the baseline scheme in terms of energy consumption and network lifetime.

  18. Lifetime Maximization via Hole Alleviation in IoT Enabling Heterogeneous Wireless Sensor Networks

    PubMed Central

    Wadud, Zahid; Khan, Muhammad Awais; Alrajeh, Nabil; Alabed, Mohamad Souheil; Guizani, Nadra

    2017-01-01

    In Internet of Things (IoT) enabled Wireless Sensor Networks (WSNs), there are two major factors which degrade the performance of the network. One is the void hole which occurs in a particular region due to unavailability of forwarder nodes. The other is the presence of energy hole which occurs due to imbalanced data traffic load on intermediate nodes. Therefore, an optimum transmission strategy is required to maximize the network lifespan via hole alleviation. In this regard, we propose a heterogeneous network solution that is capable to balance energy dissipation among network nodes. In addition, the divide and conquer approach is exploited to evenly distribute number of transmissions over various network areas. An efficient forwarder node selection is performed to alleviate coverage and energy holes. Linear optimization is performed to validate the effectiveness of our proposed work in term of energy minimization. Furthermore, simulations are conducted to show that our claims are well grounded. Results show the superiority of our work as compared to the baseline scheme in terms of energy consumption and network lifetime. PMID:28753990

  19. Household energy use in urban Venezuela: Implications from surveys in Maracaibo, Valencia, Merida, and Barcelona-Puerto La Cruz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Figueroa, M.J.; Sathaye, J.

    1993-08-01

    This report identifies the most important results of a comparative analysis of household commercial energy use in Venezuelan urban cities. The use of modern fuels is widespread among all cities. Cooking consumes the largest share of urban household energy use. The survey documents no use of biomass and a negligible use of kerosene for cooking. LPG, natural gas, and kerosene are the main fuels available. LPG is the fuel choice of low-income households in all cities except Maracaibo, where 40% of all households use natural gas. Electricity consumption in Venezuela`s urban households is remarkably high compared with the levels usedmore » in households in comparable Latin American countries and in households of industrialized nations which confront harsher climatic conditions and, therefore, use electricity for water and space heating. The penetration of appliances in Venezuela`s urban households is very high. The appliances available on the market are inefficient, and there are inefficient patterns of energy use among the population. Climate conditions and the urban built form all play important roles in determining the high level of energy consumption in Venezuelan urban households. It is important to acknowledge the opportunities for introducing energy efficiency and conservation in Venezuela`s residential sector, particularly given current economic and financial constraints, which may hamper the future provision of energy services.« less

  20. Alleviating Praxis Shock: Induction Policy and Programming for Urban Music Educators

    ERIC Educational Resources Information Center

    Shaw, Julia T.

    2018-01-01

    An integral part of a teacher learning continuum ranging from preservice education to professional development for experienced educators, new teacher induction holds particular potential to effect change in urban education. Accordingly, this article offers recommendations for induction-related policy and programming capable of supporting beginning…

  1. The energy balance of an urban area: Examining temporal and spatial variability through measurements, remote sensing and modeling

    NASA Astrophysics Data System (ADS)

    Offerle, Brian

    Urban environmental problems related to air quality, thermal stress, issues of water demand and quality, all of which are linked directly or indirectly to urban climate, are emerging as major environmental concerns at the start of the 21st century. Thus there are compelling social, political and economic, and scientific reasons that make the study and understanding of the fundamental causes of urban climates critically important. This research addresses these topics through an intensive study of the surface energy balance of Lodz, Poland. The research examines the temporal variability in long-term measurements of urban surface-atmosphere exchange at a downtown location and the spatial variability of this exchange over distinctly different neighborhoods using shorter-term observations. These observations provide the basis for an evaluation of surface energy balance models. Monthly patterns in energy exchange are consistent from year-to-year with variability determined by net radiation and the timing and amount of precipitation. Spatial variability can be determined from plan area fractions of vegetation and impervious surface, though heat storage exerts a strong control on shorter term variability of energy exchange, within and between locations in an urban area. Anthropogenic heat fluxes provide most of the energy driving surface-atmosphere exchange in winter, From a modeling perspective, sensible heat fluxes can be reliably determined from radiometrically sensed surface temperatures and spatially representative surface-atmosphere exchange in an urban area can be determined from satellite remote sensing products. Models of the urban surface energy balance showed good agreement with mean values of energy exchange and under most conditions represented the temporal variability due to synoptic and shorter time scale forcing well.

  2. A climate responsive urban design tool: a platform to improve energy efficiency in a dry hot climate

    NASA Astrophysics Data System (ADS)

    El Dallal, Norhan; Visser, Florentine

    2017-09-01

    In the Middle East and North Africa (MENA) region, new urban developments should address the climatic conditions to improve outdoor comfort and to reduce the energy consumption of buildings. This article describes a design tool that supports climate responsive design for a dry hot climate. The approach takes the climate as an initiator for the conceptual urban form with a more energy-efficient urban morphology. The methodology relates the different passive strategies suitable for major climate conditions in MENA region (dry-hot) to design parameters that create the urban form. This parametric design approach is the basis for a tool that generates conceptual climate responsive urban forms so as to assist the urban designer early in the design process. Various conceptual scenarios, generated by a computational model, are the results of the proposed platform. A practical application of the approach is conducted on a New Urban Community in Aswan (Egypt), showing the economic feasibility of the resulting urban form and morphology, and the proposed tool.

  3. Application of the aerodynamic energy concept to flutter suppression and gust alleviation by use of active controls

    NASA Technical Reports Server (NTRS)

    Nissim, E.; Caspi, A.; Lottati, I.

    1976-01-01

    The effects of active controls on flutter suppression and gust alleviation of the Arava twin turboprop STOL transport and the Westwind twinjet business transport are investigated. The active control surfaces are introduced in pairs which include, in any chosen wing strip, a 20-percent chord leading-edge control and a 20-percent chord trailing-edge control. Each control surface is driven by a combined linear-rotational sensor system located on the activated strip. The control law is based on the concept of aerodynamic energy and utilizes previously optimized control law parameters based on two-dimensional aerodynamic theory. The best locations of the activated system along the span of the wing are determined for bending-moment alleviation, reduction in fuselage accelerations, and flutter suppression. The effectiveness of the activated system over a wide range of maximum control deflections is also determined. Two control laws are investigated. The first control law utilizes both rigid-body and elastic contributions of the motion. The second control law employs primarily the elastic contribution of the wing and leads to large increases in the activated control effectiveness as compared with the basic control law. The results indicate that flutter speed can be significantly increased (over 70 percent increase) and that the bending moment due to gust loading can be almost totally eliminated by a control system of about 10 to 20 percent span with reasonable control-surface rotations.

  4. First results from the International Urban Energy Balance Model Comparison: Model Complexity

    NASA Astrophysics Data System (ADS)

    Blackett, M.; Grimmond, S.; Best, M.

    2009-04-01

    A great variety of urban energy balance models has been developed. These vary in complexity from simple schemes that represent the city as a slab, through those which model various facets (i.e. road, walls and roof) to more complex urban forms (including street canyons with intersections) and features (such as vegetation cover and anthropogenic heat fluxes). Some schemes also incorporate detailed representations of momentum and energy fluxes distributed throughout various layers of the urban canopy layer. The models each differ in the parameters they require to describe the site and the in demands they make on computational processing power. Many of these models have been evaluated using observational datasets but to date, no controlled comparisons have been conducted. Urban surface energy balance models provide a means to predict the energy exchange processes which influence factors such as urban temperature, humidity, atmospheric stability and winds. These all need to be modelled accurately to capture features such as the urban heat island effect and to provide key information for dispersion and air quality modelling. A comparison of the various models available will assist in improving current and future models and will assist in formulating research priorities for future observational campaigns within urban areas. In this presentation we will summarise the initial results of this international urban energy balance model comparison. In particular, the relative performance of the models involved will be compared based on their degree of complexity. These results will inform us on ways in which we can improve the modelling of air quality within, and climate impacts of, global megacities. The methodology employed in conducting this comparison followed that used in PILPS (the Project for Intercomparison of Land-Surface Parameterization Schemes) which is also endorsed by the GEWEX Global Land Atmosphere System Study (GLASS) panel. In all cases, models were run

  5. Urban sustainable energy development: A case study of the city of Philadelphia

    NASA Astrophysics Data System (ADS)

    Argyriou, Iraklis

    This study explores the role of cities in sustainable energy development through a governance-informed analysis. Despite the leading position of municipalities in energy sustainability, cities have been mostly conceptualized as sites where energy development is shaped by external policy scales, i.e. the national level. A growing body of research, however, critiques this analytical perspective, and seeks to better understand the type of factors and dynamics that influence energy sustainability within a multi-level policy context for urban energy. Given that particular circumstances are applicable across cities, a context-specific analysis can provide insight regarding how sustainable energy development takes place in urban areas. In applying such an analytical perspective on urban energy sustainability, this study undertakes a qualitative case study analysis for the city of Philadelphia, Pennsylvania, by looking at four key local policy initiatives relevant to building energy efficiency and solar electricity development at the municipal government and city-wide level. The evaluation of the initiatives suggests that renewable electricity use has increased substantially in the city over the last years but the installed capacity of local renewable electricity systems, including solar photovoltaics, is low. On the other hand, although the city has made little progress in meeting its building energy efficiency targets, more comprehensive action is taken in this area. The study finds that the above outcomes have been shaped mainly by four factors. The first is the city government's incremental policy approach aiming to develop a facilitative context for local action. The second is the role that a diverse set of stakeholders have in local sustainable energy development. The third is the constraints that systemic policy barriers create for solar power development. The fourth is the ways through which the relevant multi-level policy environment structures the city

  6. Urban Form Energy Use and Emissions in China: Preliminary Findings and Model Proof of Concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aden, Nathaniel; Qin, Yining; Fridley, David

    Urbanization is reshaping China's economy, society, and energy system. Between 1990 and 2008 China added more than 300 million new urban residents, bringing the total urbanization rate to 46%. The ongoing population shift is spurring energy demand for new construction, as well as additional residential use with the replacement of rural biomass by urban commercial energy services. This project developed a modeling tool to quantify the full energy consequences of a particular form of urban residential development in order to identify energy- and carbon-efficient modes of neighborhood-level development and help mitigate resource and environmental implications of swelling cities. LBNL developedmore » an integrated modeling tool that combines process-based lifecycle assessment with agent-based building operational energy use, personal transport, and consumption modeling. The lifecycle assessment approach was used to quantify energy and carbon emissions embodied in building materials production, construction, maintenance, and demolition. To provide more comprehensive analysis, LBNL developed an agent-based model as described below. The model was applied to LuJing, a residential development in Jinan, Shandong Province, to provide a case study and model proof of concept. This study produced results data that are unique by virtue of their scale, scope and type. Whereas most existing literature focuses on building-, city-, or national-level analysis, this study covers multi-building neighborhood-scale development. Likewise, while most existing studies focus exclusively on building operational energy use, this study also includes embodied energy related to personal consumption and buildings. Within the boundaries of this analysis, food is the single largest category of the building energy footprint, accounting for 23% of the total. On a policy level, the LCA approach can be useful for quantifying the energy and environmental benefits of longer average building lifespans. In

  7. A microscale three-dimensional urban energy balance model for studying surface temperatures

    NASA Astrophysics Data System (ADS)

    Krayenhoff, E. Scott; Voogt, James A.

    2007-06-01

    A microscale three-dimensional (3-D) urban energy balance model, Temperatures of Urban Facets in 3-D (TUF-3D), is developed to predict urban surface temperatures for a variety of surface geometries and properties, weather conditions, and solar angles. The surface is composed of plane-parallel facets: roofs, walls, and streets, which are further sub-divided into identical square patches, resulting in a 3-D raster-type model geometry. The model code is structured into radiation, conduction and convection sub-models. The radiation sub-model uses the radiosity approach and accounts for multiple reflections and shading of direct solar radiation. Conduction is solved by finite differencing of the heat conduction equation, and convection is modelled by empirically relating patch heat transfer coefficients to the momentum forcing and the building morphology. The radiation and conduction sub-models are tested individually against measurements, and the complete model is tested against full-scale urban surface temperature and energy balance observations. Modelled surface temperatures perform well at both the facet-average and the sub-facet scales given the precision of the observations and the uncertainties in the model inputs. The model has several potential applications, such as the calculation of radiative loads, and the investigation of effective thermal anisotropy (when combined with a sensor-view model).

  8. Urban-rural difference in the determinants of dietary and energy intake patterns: A case study in West Java, Indonesia.

    PubMed

    Kosaka, Satoko; Suda, Kazuhiro; Gunawan, Budhi; Raksanagara, Ardini; Watanabe, Chiho; Umezaki, Masahiro

    2018-01-01

    Few studies have explored differences in the determinants of individual dietary/energy intake patterns between urban and rural areas. To examine whether the associations between individual characteristics and dietary/energy intake patterns differ between urban and rural areas in West Java, Indonesia. A 3-day weighed food record, interviews, and anthropometric measurements were conducted in Bandung (urban area; n = 85) and Sumedang (rural area; n = 201). Total energy intake and intake from protein, fat, and carbohydrates were calculated. Food items were grouped into dietary categories based on the main ingredients to calculate their share of total energy intake. The associations between individual characteristics and dietary/energy intake were examined by fitting regression models. Models that also included education and body mass index (BMI) were fitted to adult samples only. In Sumedang, the total energy intake and energy intake from carbohydrates, fat, and grain/tubers were significantly associated with age and occupation. In Bandung, energy intake from grain/tubers and vegetables/legumes was related to sex and occupation, while other indicators showed no associations. Among adults, BMI was associated with the total energy intake and educational level was associated with energy intake from vegetables/legumes (both only in Sumedang). The relationship between demographic and socioeconomic factors and dietary/energy intake patterns differs in rural versus urban areas in West Java. These results suggest that different strategies are needed in rural and urban areas to identify and aid populations at risk of diet-related diseases.

  9. Developing HEAT Scores with H-Res Thermal Imagery to Support Urban Energy Efficiency

    NASA Astrophysics Data System (ADS)

    Hemachandran, Bharanidharan

    As part of The Calgary Community GHG Reduction Plan (2009) The City is seeking an implementation strategy to reduce GHGs and promote low-carbon living, with a focus on improving urban energy efficiency. The most cited obstacle to energy efficiency improvements is the lack of interest from consumers (CUI, 2008). However, Darby (2006) has shown that effective feedback significantly reduces energy consumption. To exploit these findings, the HEAT (Heat Energy Assessment Technologies) Geoweb project integrates high-resolution (H-Res) airborne thermal imagery (TABI 1800) to provide unique energy efficiency feedback to Calgary homeowners in the form of interactive HEAT Maps and Hot Spots (Hay et al., 2011). As a part of the HEAT Phase II program, the goal of this research is to provide enhanced feedback support for urban energy efficiency by meeting two key objectives: (i) develop an appropriate method to define HEAT Scores using TABI 1800 imagery that allows for the comparison of waste heat of one or more houses with all other mapped houses in the community and city, and (ii) develop a multi-scale interactive Geoweb interface that displays the HEAT Scores at City, Community and Residential scales. To achieve these goals, we describe the evolution of three novel HEAT Score techniques based on: (i) a Standardized Score, (ii) the WUFIRTM model and Logistic Regression and (iii ) a novel criteria weighted method that considers: (a) heat transfer through different roofing materials, (b) local climatic conditions and (c) house age and living area attributes. Furthermore, (d) removing or adding houses to analysis based on this 3rd technique, does not affect the HEAT Score of other houses and (e) HEAT Scores can be compared within and across different cities. We also describe how HEAT Scores are incorporated within the HEAT Geoweb architecture. It is envisioned that HEAT Scores will promote energy efficiency among homeowners and urban city planners, as they will quantify and

  10. Global Urban Mapping and Modeling for Sustainable Urban Development

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Li, X.; Asrar, G.; Yu, S.; Smith, S.; Eom, J.; Imhoff, M. L.

    2016-12-01

    In the past several decades, the world has experienced fast urbanization, and this trend is expected to continue for decades to come. Urbanization, one of the major land cover and land use changes (LCLUC), is becoming increasingly important in global environmental changes, such as urban heat island (UHI) growth and vegetation phenology change. Better scientific insights and effective decision-making unarguably require reliable science-based information on spatiotemporal changes in urban extent and their environmental impacts. In this study, we developed a globally consistent 20-year urban map series to evaluate the time-reactive nature of global urbanization from the nighttime lights remote sensing data, and projected future urban expansion in the 21st century by employing an integrated modeling framework (Zhou et al. 2014, Zhou et al. 2015). We then evaluated the impacts of urbanization on building energy use and vegetation phenology that affect both ecosystem services and human health. We extended the modeling capability of building energy use in the Global Change Assessment Model (GCAM) with consideration of UHI effects by coupling the remote sensing based urbanization modeling and explored the impact of UHI on building energy use. We also investigated the impact of urbanization on vegetation phenology by using an improved phenology detection algorithm. The derived spatiotemporal information on historical and potential future urbanization and its implications in building energy use and vegetation phenology will be of great value in sustainable urban design and development for building energy use and human health (e.g., pollen allergy), especially when considered together with other factors such as climate variability and change. Zhou, Y., S. J. Smith, C. D. Elvidge, K. Zhao, A. Thomson & M. Imhoff (2014) A cluster-based method to map urban area from DMSP/OLS nightlights. Remote Sensing of Environment, 147, 173-185. Zhou, Y., S. J. Smith, K. Zhao, M. Imhoff, A

  11. Energy-Water Modeling and Impacts at Urban and Infrastructure Scales

    NASA Astrophysics Data System (ADS)

    Saleh, F.; Pullen, J. D.; Schoonen, M. A.; Gonzalez, J.; Bhatt, V.; Fellows, J. D.

    2017-12-01

    We converge multi-disciplinary, multi-sectoral modeling and data analysis tools on an urban watershed to examine the feedbacks of concentrated and connected infrastructure on the environment. Our focus area is the Lower Hudson River Basin (LHRB). The LHRB captures long-term and short- term energy/water stressors as it represents: 1) a coastal environment subject to sea level rise that is among the fastest in the East impacted by a wide array of various storms; 2) one of the steepest gradients in population density in the US, with Manhattan the most densely populated coastal county in the nation; 3) energy/water infrastructure serving the largest metropolitan area in the US; 4) a history of environmental impacts, ranging from heatwaves to hurricanes, that can be used to hindcast; and 5) a wealth of historic and real-time data, extensive monitoring facilities and existing specific sector models that can be leveraged. We detail two case studies on "water infrastructure and stressors", and "heatwaves and energy-water demands." The impact of a hypothetical failure of Oradell Dam (on the Hackensack River, a tributary of the Hudson River) coincident with a hurricane, and urban power demands under current and future heat waves are examined with high-resolution (meter to km scale) earth system models to illustrate energy water nexus issues where detailed predictions can shape response and mitigation strategies.

  12. Developing a landscape of urban building energy use with improved spatiotemporal representations in a cool-humid climate

    DOE PAGES

    Li, Wenliang; Zhou, Yuyu; Cetin, Kristen S.; ...

    2018-03-24

    Urban buildings account for up to 75% of total energy use in the United States (U.S.). Understanding urban building energy use is important for developing feasible options to mitigate energy use and greenhouse gas emissions. In this study, an improved bottom-up building energy use model, named City Building Energy Use Model (CityBEUM), was developed to estimate building energy use for all buildings in Polk County, Iowa. First, 28 commercial and 6 residential building prototypes were designed by combing Assessor's parcel data and building footprint data. Then, the EnergyPlus in the CityBEUM was calibrated for all building prototypes using the U.S.more » Energy Information Administration's survey data, monthly utility meter data, and actual weather data. Finally, spatial and temporal variations of building energy use in the study area were estimated using the CityBEUM. Results indicate that the spatial variation of building energy use in the study area can be captured using the CityBEUM. With the monthly-calibrated model, the temporal pattern of urban building energy use can be well represented. The comparison of building energy use using the Typical Meteorological Year and actual weather data demonstrates the importance of using actual weather data in building energy modeling for an improved temporal representation.« less

  13. Developing a landscape of urban building energy use with improved spatiotemporal representations in a cool-humid climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wenliang; Zhou, Yuyu; Cetin, Kristen S.

    Urban buildings account for up to 75% of total energy use in the United States (U.S.). Understanding urban building energy use is important for developing feasible options to mitigate energy use and greenhouse gas emissions. In this study, an improved bottom-up building energy use model, named City Building Energy Use Model (CityBEUM), was developed to estimate building energy use for all buildings in Polk County, Iowa. First, 28 commercial and 6 residential building prototypes were designed by combing Assessor's parcel data and building footprint data. Then, the EnergyPlus in the CityBEUM was calibrated for all building prototypes using the U.S.more » Energy Information Administration's survey data, monthly utility meter data, and actual weather data. Finally, spatial and temporal variations of building energy use in the study area were estimated using the CityBEUM. Results indicate that the spatial variation of building energy use in the study area can be captured using the CityBEUM. With the monthly-calibrated model, the temporal pattern of urban building energy use can be well represented. The comparison of building energy use using the Typical Meteorological Year and actual weather data demonstrates the importance of using actual weather data in building energy modeling for an improved temporal representation.« less

  14. Urban biomass - not an urban legend

    USDA-ARS?s Scientific Manuscript database

    Utilizing biomass from urban landscapes could significantly contribute to the nation’s renewable energy needs. There is an estimated 16.4 million hectares of land in urban areas cultivated with turfgrass and associated vegetation. Vegetation in urban areas is intensely managed which lead to regula...

  15. Modeling Transport of Turbulent Fluxes in a Heterogeneous Urban Canopy Using a Spatially Explicit Energy Balance

    NASA Astrophysics Data System (ADS)

    Moody, M.; Bailey, B.; Stoll, R., II

    2017-12-01

    Understanding how changes in the microclimate near individual plants affects the surface energy budget is integral to modeling land-atmosphere interactions and a wide range of near surface atmospheric boundary layer phenomena. In urban areas, the complex geometry of the urban canopy layer results in large spatial deviations of turbulent fluxes further complicating the development of models. Accurately accounting for this heterogeneity in order to model urban energy and water use requires a sub-plant level understanding of microclimate variables. We present analysis of new experimental field data taken in and around two Blue Spruce (Picea pungens) trees at the University of Utah in 2015. The test sites were chosen in order study the effects of heterogeneity in an urban environment. An array of sensors were placed in and around the conifers to quantify transport in the soil-plant-atmosphere continuum: radiative fluxes, temperature, sap fluxes, etc. A spatial array of LEMS (Local Energy Measurement Systems) were deployed to obtain pressure, surrounding air temperature and relative humidity. These quantities are used to calculate the radiative and turbulent fluxes. Relying on measurements alone is insufficient to capture the complexity of microclimate distribution as one reaches sub-plant scales. A spatially-explicit radiation and energy balance model previously developed for deciduous trees was extended to include conifers. The model discretizes the tree into isothermal sub-volumes on which energy balances are performed and utilizes incoming radiation as the primary forcing input. The radiative transfer component of the model yields good agreement between measured and modeled upward longwave and shortwave radiative fluxes. Ultimately, the model was validated through an examination of the full energy budget including radiative and turbulent fluxes through isolated Picea pungens in an urban environment.

  16. Converting Paddy Rice Field to Urban Use Dramatically Altered the Water and Energy Balances in Southern China

    NASA Astrophysics Data System (ADS)

    Hao, L.; Sun, G.; Liu, Y.; Qin, M.; Huang, X.; Fang, D.

    2017-12-01

    Paddy rice wetlands are the main land use type across southern China, which impact the regional environments by affecting evapotranspiration (ET) and other water and energy related processes. Our study focuses on the effects of land-cover change on water and energy processes in the Qinhuai River Basin, a typical subtropical humid region that is under rapid ecological and economical transformations. This study integrates multiple methods and techniques including remote sensing, water and energy balance model (i.e., Surface Energy Balance Algorithm for Land, SEBAL), ecohydrological model (i.e., Soil and Water Assessment Tool, SWAT), and ground observation (Eddy Covariance measurement, etc.). We found that conversion of paddy rice field to urban use led to rise in vapor pressure deficit (VPD) and reduction in ET, and thus resulted in changes in local and regional water and heat balance. The effects of the land-use change on ET and VPD overwhelmed the effects of regional climate warming and climate variability. We conclude that the ongoing large-scale urbanization of the rice paddy-dominated regions in humid southern China and East Asia will likely exacerbate environmental consequences (e.g., elevated storm-flow volume, aggravated flood risks, and intensified urban heat island and urban dry island effects). The potential role of vegetated land cover in moderating water and energy balances and maintaining a stable climate should be considered in massive urban planning and global change impact assessment in southern China.

  17. Understanding congested travel in urban areas

    NASA Astrophysics Data System (ADS)

    Çolak, Serdar; Lima, Antonio; González, Marta C.

    2016-03-01

    Rapid urbanization and increasing demand for transportation burdens urban road infrastructures. The interplay of number of vehicles and available road capacity on their routes determines the level of congestion. Although approaches to modify demand and capacity exist, the possible limits of congestion alleviation by only modifying route choices have not been systematically studied. Here we couple the road networks of five diverse cities with the travel demand profiles in the morning peak hour obtained from billions of mobile phone traces to comprehensively analyse urban traffic. We present that a dimensionless ratio of the road supply to the travel demand explains the percentage of time lost in congestion. Finally, we examine congestion relief under a centralized routing scheme with varying levels of awareness of social good and quantify the benefits to show that moderate levels are enough to achieve significant collective travel time savings.

  18. Boston Community Energy Study - Zonal Analysis for Urban Microgrids

    DTIC Science & Technology

    2016-03-01

    ordinarily rural systems that have generation assets such as wind turbines (WTs) [14] or photovoltaic (PV) panels [15] that power loads such as lights and...movers powered by internal combustion engines, diesel engines, microturbines, geothermal systems, hydro systems, or wind turbines ; they also could include...can have on urban areas such as New York City. While flooding and wind damaged or destroyed some of the energy infrastructure, all installed

  19. A zero torsional stiffness twist morphing blade as a wind turbine load alleviation device

    NASA Astrophysics Data System (ADS)

    Lachenal, X.; Daynes, S.; Weaver, P. M.

    2013-06-01

    This paper presents the design, analysis and realization of a zero stiffness twist morphing wind turbine blade. The morphing blade is designed to actively twist as a means of alleviating the gust loads which reduce the fatigue life of wind turbine blades. The morphing structure exploits an elastic strain energy balance within the blade to enable large twisting deformations with modest actuation requirements. While twist is introduced using the warping of the blade skin, internal pre-stressed members ensure that a constant strain energy balance is achieved throughout the deformation, resulting in a zero torsional stiffness structure. The torsional stability of the morphing blade is characterized by analysing the elastic strain energy in the device. Analytical models of the skin, the pre-stressed components and the complete blade are compared to their respective finite element models as well as experimental results. The load alleviation potential of the adaptive structure is quantified using a two-dimensional steady flow aerodynamic model which is experimentally validated with wind tunnel measurements.

  20. Urban surface energy fluxes based on remotely-sensed data and micrometeorological measurements over the Kansai area, Japan

    NASA Astrophysics Data System (ADS)

    Sukeyasu, T.; Ueyama, M.; Ando, T.; Kosugi, Y.; Kominami, Y.

    2017-12-01

    The urban heat island is associated with land cover changes and increases in anthropogenic heat fluxes. Clear understanding of the surface energy budget at urban area is the most important for evaluating the urban heat island. In this study, we develop a model based on remotely-sensed data for the Kansai area in Japan and clarify temporal transitions and spatial distributions of the surface energy flux from 2000 to 2016. The model calculated the surface energy fluxes based on various satellite and GIS products. The model used land surface temperature, surface emissivity, air temperature, albedo, downward shortwave radiation and land cover/use type from the moderate resolution imaging spectroradiometer (MODIS) under cloud free skies from 2000 to 2016 over the Kansai area in Japan (34 to 35 ° N, 135 to 136 ° E). Net radiation was estimated by a radiation budget of upward/downward shortwave and longwave radiation. Sensible heat flux was estimated by a bulk aerodynamic method. Anthropogenic heat flux was estimated by the inventory data. Latent heat flux was examined with residues of the energy budget and parameterization of bulk transfer coefficients. We validated the model using observed fluxes from five eddy-covariance measurement sites: three urban sites and two forested sites. The estimated net radiation roughly agreed with the observations, but the sensible heat flux were underestimated. Based on the modeled spatial distributions of the fluxes, the daytime net radiation in the forested area was larger than those in the urban area, owing to higher albedo and land surface temperatures in the urban area than the forested area. The estimated anthropogenic heat flux was high in the summer and winter periods due to increases in energy-requirements.

  1. An integrated methodology to assess the benefits of urban green space.

    PubMed

    De Ridder, K; Adamec, V; Bañuelos, A; Bruse, M; Bürger, M; Damsgaard, O; Dufek, J; Hirsch, J; Lefebre, F; Pérez-Lacorzana, J M; Thierry, A; Weber, C

    2004-12-01

    The interrelated issues of urban sprawl, traffic congestion, noise, and air pollution are major socioeconomic problems faced by most European cities. A methodology is currently being developed for evaluating the role of green space and urban form in alleviating the adverse effects of urbanisation, mainly focusing on the environment but also accounting for socioeconomic aspects. The objectives and structure of the methodology are briefly outlined and illustrated with preliminary results obtained from case studies performed on several European cities.

  2. Network Capacity Assessment of CHP-based Distributed Generation on Urban Energy Distribution Networks

    NASA Astrophysics Data System (ADS)

    Zhang, Xianjun

    The combined heat and power (CHP)-based distributed generation (DG) or dis-tributed energy resources (DERs) are mature options available in the present energy market, considered to be an effective solution to promote energy efficiency. In the urban environment, the electricity, water and natural gas distribution networks are becoming increasingly interconnected with the growing penetration of the CHP-based DG. Subsequently, this emerging interdependence leads to new topics meriting serious consideration: how much of the CHP-based DG can be accommodated and where to locate these DERs, and given preexisting constraints, how to quantify the mutual impacts on operation performances between these urban energy distribution networks and the CHP-based DG. The early research work was conducted to investigate the feasibility and design methods for one residential microgrid system based on existing electricity, water and gas infrastructures of a residential community, mainly focusing on the economic planning. However, this proposed design method cannot determine the optimal DG sizing and siting for a larger test bed with the given information of energy infrastructures. In this context, a more systematic as well as generalized approach should be developed to solve these problems. In the later study, the model architecture that integrates urban electricity, water and gas distribution networks, and the CHP-based DG system was developed. The proposed approach addressed the challenge of identifying the optimal sizing and siting of the CHP-based DG on these urban energy networks and the mutual impacts on operation performances were also quantified. For this study, the overall objective is to maximize the electrical output and recovered thermal output of the CHP-based DG units. The electricity, gas, and water system models were developed individually and coupled by the developed CHP-based DG system model. The resultant integrated system model is used to constrain the DG's electrical

  3. GLP-1 nanomedicine alleviates gut inflammation

    PubMed Central

    Anbazhagan, Arivarasu N.; Thaqi, Mentor; Priyamvada, Shubha; Jayawardena, Dulari; Kumar, Anoop; Gujral, Tarunmeet; Chatterjee, Ishita; Mugarza, Edurne; Saksena, Seema; Onyuksel, Hayat; Dudeja, Pradeep K.

    2017-01-01

    The gut hormone, glucagon like peptide-1 (GLP-1) exerts anti-inflammatory effects. However, its clinical use is limited by its short half-life. Previously, we have shown that GLP-1 as a nanomedicine (GLP-1 in sterically stabilized phospholipid micelles, GLP-1-SSM) has increased in vivo stability. The current study was aimed at testing the efficacy of this GLP-1 nanomedicine in alleviating colonic inflammation and associated diarrhea in dextran sodium sulfate (DSS) induced mouse colitis model. Our results show that GLP-1-SSM treatment markedly alleviated the colitis phenotype by reducing the expression of pro-inflammatory cytokine IL-1β, increasing goblet cells and preserving intestinal epithelial architecture in colitis model. Further, GLP-1-SSM alleviated diarrhea (as assessed by luminal fluid) by increasing protein expression of intestinal chloride transporter DRA (down regulated in adenoma). Our results indicate thatGLP-1 nanomedicine may act as a novel therapeutic tool in alleviating gut inflammation and associated diarrhea in inflammatory bowel disease (IBD). PMID:27553076

  4. DEVELOPING AN INTEGRATED MANAGEMENT SYSTEM FOR URBAN AND ENERGY PLANNING TOWARDS A LOW-CARBON CITY

    NASA Astrophysics Data System (ADS)

    Maeda, Hideto; Nakakubo, Toyohiko; Tokai, Akihiro

    In this study, we developed an integrated management model that supports local government to make a promising energy saving measure on a block-scale combined with urban planning. We applied the model to Osaka city and estimated CO2 emissions from the residential and commercial buildings to 2050. The urban renewal cases selected in this study included advanced multipole accumulation case, normal multipole accumulation case, and actual trend continuation case. The energy saving options introduced in each case included all-electric HP system, micro grid system, and we also set the option where the greater CO2 reduction one is selected in each block. The results showed that CO2 emission in 2050 would be reduced by 54.8-57.6% relative to the actual condition by introducing the new energy system in all cases. In addition, the amount of CO2 reduction in actual trend continuation case was highest. The major factor was that the effect of CO2 emission reductions by installing the solar power generation panel was higher than the effect by utilizing heated water mutually on the high-density blocks in terms of total urban buildings' energy consumption.

  5. CO2 Emissions from Direct Energy Use of Urban Households in India.

    PubMed

    Ahmad, Sohail; Baiocchi, Giovanni; Creutzig, Felix

    2015-10-06

    India hosts the world's second largest population and offers the world's largest potential for urbanization. India's urbanization trajectory will have crucial implications on its future GHG emission levels. Using household microdata from India's 60 largest cities, this study maps GHG emissions patterns and its determinants. It also ranks the cities with respect to their household actual and "counter-factual" GHG emissions from direct energy use. We find that household GHG emissions from direct energy use correlate strongly with income and household size; population density, basic urban services (municipal water, electricity, and modern cooking-fuels access) and cultural, religious, and social factors explain more detailed emission patterns. We find that the "greenest" cities (on the basis of household GHG emissions) are Bareilly and Allahabad, while the "dirtiest" cities are Chennai and Delhi; however, when we control for socioeconomic variables, the ranking changes drastically. In the control case, we find that smaller lower-income cities emit more than expected, and larger high-income cities emit less than expected in terms of counter-factual emissions. Emissions from India's cities are similar in magnitude to China's cities but typically much lower than those of comparable U.S. cities. Our results indicate that reducing urban heat-island effects and the associated cooling degree days by greening, switching to modern nonsolid cooking fuels, and anticipatory transport infrastructure investments are key policies for the low-carbon and inclusive development of Indian cities.

  6. Physical activity, energy intake, and obesity prevalence among urban and rural schoolchildren aged 11-12 years in Japan.

    PubMed

    Itoi, Aya; Yamada, Yosuke; Watanabe, Yoshiyuki; Kimura, Misaka

    2012-12-01

    The prevalence of childhood overweight and obesity has been shown to differ among regions, including rural-urban regional differences within nations. This study obtained simultaneous accelerometry-derived physical activity, 24 h activity, and food records to clarify the potential contributing factors to rural-urban differences in childhood overweight and obesity in Japan. Sixth-grade children (n = 227, 11-12 years old) from two urban elementary schools in Kyoto and four rural elementary schools in Tohoku participated in the study. The children were instructed to wear a pedometer that included a uniaxial accelerometer and, assisted by their parents, keep minute-by-minute 24 h activity and food records. For 12 children, the total energy expenditure was measured by the doubly labeled water method that was used to correct the Lifecorder-predicted activity energy expenditure and physical activity level. The overweight and obesity prevalence was significantly higher in rural than in urban children. The number of steps per day, activity energy expenditure, physical activity level, and duration of walking to school were significantly lower in rural than in urban children. In contrast, the reported energy intake did not differ significantly between the regions. The physical activity and duration of the walk to school were significantly correlated with body mass index. Rural children had a higher prevalence of overweight and obesity, and this may be at least partly caused by lower physical activity, especially less time spent walking to school, than urban children.

  7. Heat Waves, Urban Vegetation, and Air Pollution

    NASA Astrophysics Data System (ADS)

    Churkina, G.; Grote, R.; Butler, T. M.

    2014-12-01

    Fast-track programs to plant millions of trees in cities around the world aim at the reduction of summer temperatures, increase carbon storage, storm water control, provision of space for recreation, as well as poverty alleviation. Although these multiple benefits speak positively for urban greening programs, the programs do not take into account how close human and natural systems are coupled in urban areas. Elevated temperatures together with anthropogenic emissions of air and water pollutants distinguish the urban system. Urban and sub-urban vegetation responds to ambient changes and reacts with pollutants. Neglecting the existence of this coupling may lead to unforeseen drawbacks of urban greening programs. The potential for emissions from urban vegetation combined with anthropogenic emissions to produce ozone has long been recognized. This potential increases under rising temperatures. Here we investigate how global change induced heat waves affect emissions of volatile organic compounds (VOC) from urban vegetation and corresponding ground-level ozone levels. We also quantify other ecosystem services provided by urban vegetation (e.g., cooling and carbon storage) and their sensitivity to climate change. In this study we use Weather Research and Forecasting Model with coupled atmospheric chemistry (WRF-CHEM) to quantify these feedbacks in Berlin, Germany during the heat waves in 2003 and 2006. We highlight the importance of the vegetation for urban areas under changing climate and discuss associated tradeoffs.

  8. The Budget of Turbulent Kinetic Energy in the Urban Roughness Sublayer

    NASA Astrophysics Data System (ADS)

    Christen, Andreas; Rotach, Mathias W.; Vogt, Roland

    2009-05-01

    Full-scale observations from two urban sites in Basel, Switzerland were analysed to identify the magnitude of different processes that create, relocate, and dissipate turbulent kinetic energy (TKE) in the urban atmosphere. Two towers equipped with a profile of six ultrasonic anemometers each sampled the flow in the urban roughness sublayer, i.e. from street canyon base up to roughly 2.5 times the mean building height. This observational study suggests a conceptual division of the urban roughness sublayer into three layers: (1) the layer above the highest roofs, where local buoyancy production and local shear production of TKE are counterbalanced by local viscous dissipation rate and scaled turbulence statistics are close to to surface-layer values; (2) the layer around mean building height with a distinct inflexional mean wind profile, a strong shear and wake production of TKE, a more efficient turbulent exchange of momentum, and a notable export of TKE by transport processes; (3) the lower street canyon with imported TKE by transport processes and negligible local production. Averaged integral velocity variances vary significantly with height in the urban roughness sublayer and reflect the driving processes that create or relocate TKE at a particular height. The observed profiles of the terms of the TKE budget and the velocity variances show many similarities to observations within and above vegetation canopies.

  9. Understanding congested travel in urban areas

    PubMed Central

    Çolak, Serdar; Lima, Antonio; González, Marta C.

    2016-01-01

    Rapid urbanization and increasing demand for transportation burdens urban road infrastructures. The interplay of number of vehicles and available road capacity on their routes determines the level of congestion. Although approaches to modify demand and capacity exist, the possible limits of congestion alleviation by only modifying route choices have not been systematically studied. Here we couple the road networks of five diverse cities with the travel demand profiles in the morning peak hour obtained from billions of mobile phone traces to comprehensively analyse urban traffic. We present that a dimensionless ratio of the road supply to the travel demand explains the percentage of time lost in congestion. Finally, we examine congestion relief under a centralized routing scheme with varying levels of awareness of social good and quantify the benefits to show that moderate levels are enough to achieve significant collective travel time savings. PMID:26978719

  10. Gust alleviation - Criteria and control laws

    NASA Technical Reports Server (NTRS)

    Rynaski, E. G.

    1979-01-01

    The relationships between criteria specified for aircraft gust alleviation and the form of the control laws that result from the criteria are considered. Open-loop gust alleviation based on the linearized, small perturbation equations of aircraft motion is discussed, and an approximate solution of the open-loop control law is presented for the case in which the number of degrees of freedom of the aircraft exceeds the rank of the control effectiveness matrix. Excessive actuator lag is compensated for by taking into account actuator dynamics in the equations of motion, resulting in the specification of a general load network. Criteria for gust alleviation when output motions are gust alleviated and the closed-loop control law derived from them are examined and linear optimal control law is derived. Comparisons of the control laws reveal that the effectiveness of an open-loop control law is greatest at low aircraft frequencies but deteriorates as the natural frequency of the actuators is approached, while closed-loop methods are found to be more effective at higher frequencies.

  11. Dynamic impact of urbanization, economic growth, energy consumption, and trade openness on CO 2 emissions in Nigeria.

    PubMed

    Ali, Hamisu Sadi; Law, Siong Hook; Zannah, Talha Ibrahim

    2016-06-01

    The objective of this paper is to examine the dynamic impact of urbanization, economic growth, energy consumption, and trade openness on CO 2 emissions in Nigeria based on autoregressive distributed lags (ARDL) approach for the period of 1971-2011. The result shows that variables were cointegrated as null hypothesis was rejected at 1 % level of significance. The coefficients of long-run result reveal that urbanization does not have any significant impact on CO 2 emissions in Nigeria, economic growth, and energy consumption has a positive and significant impact on CO 2 emissions. However, trade openness has negative and significant impact on CO 2 emissions. Consumption of energy is among the main determinant of CO 2 emissions which is directly linked to the level of income. Despite the high level of urbanization in the country, consumption of energy still remains low due to lower income of the majority populace and this might be among the reasons why urbanization does not influence emissions of CO 2 in the country. Initiating more open economy policies will be welcoming in the Nigerian economy as the openness leads to the reduction of pollutants from the environment particularly CO 2 emissions which is the major gases that deteriorate physical environment.

  12. CO2 emissions, real output, energy consumption, trade, urbanization and financial development: testing the EKC hypothesis for the USA.

    PubMed

    Dogan, Eyup; Turkekul, Berna

    2016-01-01

    This study aims to investigate the relationship between carbon dioxide (CO2) emissions, energy consumption, real output (GDP), the square of real output (GDP(2)), trade openness, urbanization, and financial development in the USA for the period 1960-2010. The bounds testing for cointegration indicates that the analyzed variables are cointegrated. In the long run, energy consumption and urbanization increase environmental degradation while financial development has no effect on it, and trade leads to environmental improvements. In addition, this study does not support the validity of the environmental Kuznets curve (EKC) hypothesis for the USA because real output leads to environmental improvements while GDP(2) increases the levels of gas emissions. The results from the Granger causality test show that there is bidirectional causality between CO2 and GDP, CO2 and energy consumption, CO2 and urbanization, GDP and urbanization, and GDP and trade openness while no causality is determined between CO2 and trade openness, and gas emissions and financial development. In addition, we have enough evidence to support one-way causality running from GDP to energy consumption, from financial development to output, and from urbanization to financial development. In light of the long-run estimates and the Granger causality analysis, the US government should take into account the importance of trade openness, urbanization, and financial development in controlling for the levels of GDP and pollution. Moreover, it should be noted that the development of efficient energy policies likely contributes to lower CO2 emissions without harming real output.

  13. Daily energy expenditure across the course of lactation among urban Bangladeshi women.

    PubMed

    Rashid, M; Ulijaszek, S J

    1999-12-01

    Measures of energy intake of lactating women in developing countries show that intakes are often lower than those recommended by international bodies, while fat-mass losses are often substantially less than the 3-4 kg used in the calculations of recommendations, suggesting that physiological adaptation must be commonplace among such women. The cost of lactation may be met by reduction in energy expenditure, including reduced physical activity, as well as by mobilization of bodily soft tissue. However, daily energy expenditure of lactating women has been shown to increase across the course of lactation among women in a rural population in the Philippines and an urban population in India, with a decline in body weight across the course of lactation in both studies. In the present study, total daily energy expenditure and anthropometric body composition were measured longitudinally in 68 mothers from a poor urban area of Dhaka, Bangladesh, at 0, 1, 2, 4, and 8 months of lactation, to determine whether the increasing energy expenditure across lactation observed elsewhere also occurs in Bangladeshi women. In addition, the extent to which an extended period of lactation was accompanied by weight and body fat change in these women was determined. Energy expenditure by heart-rate monitoring and activity report, and body composition from anthropometry was carried out four times across the 8-month period of lactation. A small decline in body fat mass and a significant increase in total energy expenditure across this period were observed, confirming similar observations elsewhere in the developing world. Copyright 1999 Wiley-Liss, Inc.

  14. Research on Urban Road Traffic Congestion Charging Based on Sustainable Development

    NASA Astrophysics Data System (ADS)

    Ye, Sun

    Traffic congestion is a major problem which bothers our urban traffic sustainable development at present. Congestion charging is an effective measure to alleviate urban traffic congestion. The paper first probes into several key issues such as the goal, the pricing, the scope, the method and the redistribution of congestion charging from theoretical angle. Then it introduces congestion charging practice in Singapore and London and draws conclusion and suggestion that traffic congestion charging should take scientific plan, support of public, public transportation development as the premise.

  15. A community survey of the pattern and determinants of household sources of energy for cooking in rural and urban south western, Nigeria.

    PubMed

    Desalu, Olufemi Olumuyiwa; Ojo, Ololade Olusola; Ariyibi, Ebenezer Kayode; Kolawole, Tolutope Fasanmi; Ogunleye, Ayodele Idowu

    2012-01-01

    The use of solid fuels for cooking is associated with indoor pollution and lung diseases. The objective of the study was to determine the pattern and determinants of household sources of energy for cooking in rural and urban South Western, Nigeria. We conducted a cross sectional study of households in urban (Ado-Ekiti) and rural (Ido-Ekiti) local council areas from April to July 2010. Female respondents in the households were interviewed by trained interviewers using a semi-structured questionnaire. A total of 670 households participated in the study. Majority of rural dwellers used single source of energy for cooking (55.6%) and urban dwellers used multiple source of energy (57.8%). Solid fuel use (SFU) was higher in rural (29.6%) than in urban areas (21.7%). Kerosene was the most common primary source of energy for cooking in both urban and rural areas (59.0% vs.66.6%) followed by gas (17.8%) and charcoal (6.6%) in the urban areas, and firewood (21.6%) and charcoal (7.1%) in the rural areas. The use of solid fuel was strongly associated with lack of ownership of dwellings and larger household size in urban areas, and lower level of education and lower level of wealth in the rural areas. Kerosene was associated with higher level of husband education and modern housing in urban areas and younger age and indoor cooking in rural areas. Gas was associated with high income and modern housing in the urban areas and high level of wealth in rural areas. Electricity was associated with high level of education, availability of electricity and old age in urban and rural areas respectively. The use of solid fuel is high in rural areas, there is a need to reduce poverty and improve the use of cleaner source of cooking energy particularly in rural areas and improve lung health.

  16. Improving urban district heating systems and assessing the efficiency of the energy usage therein

    NASA Astrophysics Data System (ADS)

    Orlov, M. E.; Sharapov, V. I.

    2017-11-01

    The report describes issues in connection with improving urban district heating systems from combined heat power plants (CHPs), to propose the ways for improving the reliability and the efficiency of the energy usage (often referred to as “energy efficiency”) in such systems. The main direction of such urban district heating systems improvement suggests transition to combined heating systems that include structural elements of both centralized and decentralized systems. Such systems provide the basic part of thermal power via highly efficient methods for extracting thermal power plants turbines steam, while peak loads are covered by decentralized peak thermal power sources to be mounted at consumers’ locations, with the peak sources being also reserve thermal power sources. The methodology was developed for assessing energy efficiency of the combined district heating systems, implemented as a computer software product capable of comparatively calculating saving on reference fuel for the system.

  17. Renewable Energy Production and Urban Remediation: Modeling the biogeochemical cycle at contaminated urban brownfields and the potential for renewable energy production and mitigation of greenhouse gases

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, G.

    2014-12-01

    Brownfields or urban sites that have been contaminated as a result of historic practices are present throughout the world. In the United States alone, the National Research Council has estimated that there are approximately 300,000 to 400,000 sites which have been contaminated by improper use and disposal of chemicals (NRC 1993). The land available at these sites is estimated at several million acres; however, the presence of high levels of contamination in the soil and groundwater makes it difficult to utilize these sites for traditional purposes such as agriculture. Further, the time required to remediate these contaminants to regulated levels is in the order of decades, which often results in long-term economic consequences for the areas near these sites. There has been significant interest in developing these sites as potential sources of renewable energy production in order to increase the economic viability of these sites and to provide alternative land resources for renewable energy production (EPA 2012). Solar energy, wind energy, and bioenergy from lignocellulosic biomass production have been identified as the main sources of renewable energy that can be produced at these locations. However, the environmental impacts of such a policy and the implications for greenhouse gas emissions, particularly resulting from changes in land-use impacting the biogeochemical cycle at these sites, have not been studied extensively to date. This study uses the biogeochemical process-based model DNDC to simulate carbon sequestration, nitrous oxide emissions and methane emissions from typical urban brownfield systems in the United States, when renewable energy systems are deployed. Photovoltaic solar energy and lignocellulosic biomass energy systems are evaluated here. Plants modeled include those most widely used for both bioenergy and remediation such as woody trees. Model sensitivity to soil conditions, contaminant levels and local weather data and the resulting impacts on

  18. Impacts of Urban Water Conservation Strategies on Energy, Greenhouse Gas Emissions, and Health: Southern California as a Case Study.

    PubMed

    Sokolow, Sharona; Godwin, Hilary; Cole, Brian L

    2016-05-01

    To determine how urban water conservation strategies in California cities can affect water and energy conservation efforts, reduce greenhouse gas emissions, and benefit public health. We expanded upon our 2014 health impact assessment of California's urban water conservation strategies by comparing the status quo to 2 options with the greatest potential impact on the interrelated issues of water and energy in California: (1) banning landscape irrigation and (2) expanding alternative water sources (e.g., desalination, recycled water). Among the water conservation strategies evaluated, expanded use of recycled water stood out as the water conservation strategy with potential to reduce water use, energy use, and greenhouse gas emissions, with relatively small negative impacts for the public's health. Although the suitability of recycled water for urban uses depends on local climate, geography, current infrastructure, and finances, analyses similar to that presented here can help guide water policy decisions in cities across the globe facing challenges of supplying clean, sustainable water to urban populations.

  19. The UNESCO biosphere reserve concept as a tool for urban sustainability: the CUBES Cape Town case study.

    PubMed

    Stanvliet, R; Jackson, J; Davis, G; De Swardt, C; Mokhoele, J; Thom, Q; Lane, B D

    2004-06-01

    The Cape Town Case Study (CTCS) was a multi-institutional collaborative project initiated by CUBES, a knowledge networking initiative of UNESCO's Ecological Sciences Division and the Earth Institute at Columbia University. Cape Town was selected as a CUBES site on the basis of its high biological and cultural significance, together with its demonstrated leadership in promoting urban sustainability. The CTCS was conducted by the Cape Town Urban Biosphere Group, a cross-disciplinary group of specialists drawn from national, provincial, municipal, and civil society institutions, mandated to examine the potential value of the UNESCO Biosphere Reserve concept as a tool for environmental management, social inclusion, and poverty alleviation in Cape Town. This article provides a contextualization of the CTCS and its collaborative process. It also reviews the biosphere reserve concept relative to urban sustainability objectives and proposes a more functional application of that concept in an urban context. A detailed analysis of key initiatives at the interface of conservation and poverty alleviation is provided in table format. Drawing on an examination of successful sustainability initiatives in Cape Town, specific recommendations are made for future application of the biosphere reserve concept in an urban context, as well as a model by which urban areas might affiliate with the UNESCO World Network of Biosphere Reserves, and criteria for such affiliation.

  20. [Energy and macronutrients intake from pre-packaged foods among urban residents].

    PubMed

    Zhang, Jiguo; Huang, Feifei; Wang, Huijun; Zhai, Feigying; Zhang, Bing

    2015-03-01

    To analyze the energy and macronutrients intake from pre-packaged foods among urban residents in China. The adult subjects were selected from 9 cities of Beijing, Shanghai, Chongqing, Shenyang, Harbin, Jinan, Zhengzhou, Changsha, Nanning. The recording method for 7 consecutive days was used to collect pre-packaged foods consumption information. Among subjects, the median intake of energy, protein, fat and carbohydrate from pre-packaged foods were 628. 8kJ/d, 5.0 g/d, 6.7 g/d and 17.0 g/d, respectively. Among consumers, the median intake of energy, protein, fat and carbohydrate from pre-packaged foods were 745. 3 kJ/d, 6. 0 g/d, 7. 7 g/d and 20. 7 g/d, respectively. The energy and macronutrients intake from pre-packaged foods were at low level.

  1. Urban air pollution and solar energy

    NASA Technical Reports Server (NTRS)

    Gammon, R. B.; Huning, J. R.; Reid, M. S.; Smith, J. H.

    1981-01-01

    The design and performance of solar energy systems for many potential applications (industrial/residential heat, electricity generation by solar concentration and photovoltaics) will be critically affected by local insolation conditions. The effects of urban air pollution are considered and reviewed. A study of insolation data for Alhambra, California (9 km south of Pasadena) shows that, during a recent second-stage photochemical smog alert (greater than or equal to 0.35 ppm ozone), the direct-beam insolation at solar noon was reduced by 40%, and the total global by 15%, from clean air values. Similar effects have been observed in Pasadena, and are attributable primarily to air pollution. Effects due to advecting smog have been detected 200 km away, in the Mojave Desert. Preliminary performance and economic simulations of solar thermal and photovoltaic power systems indicate increasing nonlinear sensitivity of life cycle plant cost to reductions in insolation levels due to pollution.

  2. Urban-Rural and Provincial Disparities in Child Malnutrition in China.

    PubMed

    Wu, Yichao; Qi, Di

    2016-10-01

    This article investigates how the nutritional deprivation and inequality among children in China by provinces and urban/rural areas has changed over time from 1991 to 2009 using the China Health and Nutrition Survey data. The children who were undernourished in stunting and underweight have declined over years, but provincial disparities were significant and urban children performed better than the rural peers. The nutritional deprivation of children has been alleviated in China over time, but more efforts should be made by the government to improve the nutritional condition in less developed provinces and for those children who are severely undernourished.

  3. Impact of urban canopy models and external parameters on the modelled urban energy balance in a tropical city

    NASA Astrophysics Data System (ADS)

    Demuzere, Matthias; Harshan, Suraj; Järvi, Leena; Roth, Matthias; Betham Grimmond, Christine Susan; Masson, Valéry; Oleson, Keith; Velasco Saldana, Hector Erik; Wouters, Hendrik

    2017-04-01

    This paper provides the first comparative evaluation of four urban land surface models for a tropical residential neighbourhood in Singapore. The simulations are performed offline, for an 11-month period, using the bulk scheme TERRA_URB and three models of intermediate complexity (CLM, SURFEX and SUEWS). In addition, information from three different parameter lists are added to quantify the impact (interaction) of (between) external parameter settings and model formulations on the modelled urban energy balance components. Overall, the models' performance using the reference parameters aligns well with previous findings for mid- and high-latitude sites against (for) which the models are generally optimised (evaluated). The various combinations of models and different parameter values suggest that error statistics tend to be more dominated by the choice of the latter than the choice of model. Stratifying the observation period into dry / wet periods and hours since selected precipitation events reveals that the models' skill generally deteriorates during dry periods while e.g. CLM/SURFEX has a positive bias in the latent heat flux directly after a precipitation event. It is shown that the latter is due to simple representation of water intercepted on the impervious surfaces. In addition, the positive bias in modelled outgoing longwave radiation is attributed to neglecting the interactions between water vapor and radiation between the surface and the tower sensor. These findings suggest that future developments in urban climate research should continue the integration of more physically-based processes in urban canopy models, ensure the consistency between the observed and modelled atmospheric properties and focus on the correct representation of urban morphology and thermal and radiative characteristics.

  4. 3D modeling of satellite spectral images, radiation budget and energy budget of urban landscapes

    NASA Astrophysics Data System (ADS)

    Gastellu-Etchegorry, J. P.

    2008-12-01

    DART EB is a model that is being developed for simulating the 3D (3 dimensional) energy budget of urban and natural scenes, possibly with topography and atmosphere. It simulates all non radiative energy mechanisms (heat conduction, turbulent momentum and heat fluxes, water reservoir evolution, etc.). It uses DART model (Discrete Anisotropic Radiative Transfer) for simulating radiative mechanisms: 3D radiative budget of 3D scenes and their remote sensing images expressed in terms of reflectance or brightness temperature values, for any atmosphere, wavelength, sun/view direction, altitude and spatial resolution. It uses an innovative multispectral approach (ray tracing, exact kernel, discrete ordinate techniques) over the whole optical domain. This paper presents two major and recent improvements of DART for adapting it to urban canopies. (1) Simulation of the geometry and optical characteristics of urban elements (houses, etc.). (2) Modeling of thermal infrared emission by vegetation and urban elements. The new DART version was used in the context of the CAPITOUL project. For that, districts of the Toulouse urban data base (Autocad format) were translated into DART scenes. This allowed us to simulate visible, near infrared and thermal infrared satellite images of Toulouse districts. Moreover, the 3D radiation budget was used by DARTEB for simulating the time evolution of a number of geophysical quantities of various surface elements (roads, walls, roofs). Results were successfully compared with ground measurements of the CAPITOUL project.

  5. Social Media Meets Big Urban Data: A Case Study of Urban Waterlogging Analysis.

    PubMed

    Zhang, Ningyu; Chen, Huajun; Chen, Jiaoyan; Chen, Xi

    2016-01-01

    With the design and development of smart cities, opportunities as well as challenges arise at the moment. For this purpose, lots of data need to be obtained. Nevertheless, circumstances vary in different cities due to the variant infrastructures and populations, which leads to the data sparsity. In this paper, we propose a transfer learning method for urban waterlogging disaster analysis, which provides the basis for traffic management agencies to generate proactive traffic operation strategies in order to alleviate congestion. Existing work on urban waterlogging mostly relies on past and current conditions, as well as sensors and cameras, while there may not be a sufficient number of sensors to cover the relevant areas of a city. To this end, it would be helpful if we could transfer waterlogging. We examine whether it is possible to use the copious amounts of information from social media and satellite data to improve urban waterlogging analysis. Moreover, we analyze the correlation between severity, road networks, terrain, and precipitation. Moreover, we use a multiview discriminant transfer learning method to transfer knowledge to small cities. Experimental results involving cities in China and India show that our proposed framework is effective.

  6. Social Media Meets Big Urban Data: A Case Study of Urban Waterlogging Analysis

    PubMed Central

    Chen, Huajun; Chen, Jiaoyan

    2016-01-01

    With the design and development of smart cities, opportunities as well as challenges arise at the moment. For this purpose, lots of data need to be obtained. Nevertheless, circumstances vary in different cities due to the variant infrastructures and populations, which leads to the data sparsity. In this paper, we propose a transfer learning method for urban waterlogging disaster analysis, which provides the basis for traffic management agencies to generate proactive traffic operation strategies in order to alleviate congestion. Existing work on urban waterlogging mostly relies on past and current conditions, as well as sensors and cameras, while there may not be a sufficient number of sensors to cover the relevant areas of a city. To this end, it would be helpful if we could transfer waterlogging. We examine whether it is possible to use the copious amounts of information from social media and satellite data to improve urban waterlogging analysis. Moreover, we analyze the correlation between severity, road networks, terrain, and precipitation. Moreover, we use a multiview discriminant transfer learning method to transfer knowledge to small cities. Experimental results involving cities in China and India show that our proposed framework is effective. PMID:27774098

  7. Classroom Practices and Academic Outcomes in Urban Afterschool Programs: Alleviating Social-Behavioral Risk

    ERIC Educational Resources Information Center

    Cappella, Elise; Hwang, Sophia H. J.; Kieffer, Michael J.; Yates, Miranda

    2018-01-01

    Given the potential of afterschool programs to support youth in urban, low-income communities, we examined the role of afterschool classroom ecology in the academic outcomes of Latino and African American youth with and without social-behavioral risk. Using multireporter methods and multilevel analysis, we find that positive classroom ecology…

  8. Developing Intelligent System Dynamic Management Instruments on Water-Food-Energy Nexus in Response to Urbanization

    NASA Astrophysics Data System (ADS)

    Tsai, W. P.; Chang, F. J.; Lur, H. S.; Fan, C. H.; Hu, M. C.; Huang, T. L.

    2016-12-01

    Water, food and energy are the most essential natural resources needed to sustain life. Water-Food-Energy Nexus (WFE Nexus) has nowadays caught global attention upon natural resources scarcity and their interdependency. In the past decades, Taiwan's integrative development has undergone drastic changes due to population growth, urbanization and excessive utilization of natural resources. The research intends to carry out interdisciplinary studies on WFE Nexus based on data collection and analysis as well as technology innovation, with a mission to develop a comprehensive solution to configure the synergistic utilization of WFE resources in an equal and secure manner for building intelligent dynamic green cities. This study aims to establish the WFE Nexus through interdisciplinary research. This study will probe the appropriate and secure resources distribution and coopetition relationship by applying and developing techniques of artificial intelligence, system dynamics, life cycle assessment, and synergy management under data mining, system analysis and scenario analysis. The issues of synergy effects, economic benefits and sustainable social development will be evaluated as well. First, we will apply the system dynamics to identify the interdependency indicators of WFE Nexus in response to urbanization and build the dynamic relationship among food production, irrigation water resource and energy consumption. Then, we conduct comparative studies of WFE Nexus between the urbanization and the un-urbanization area (basin) to provide a referential guide for optimal resource-policy nexus management. We expect to the proposed solutions can help achieve the main goals of the research, which is the promotion of human well-being and moving toward sustainable green economy and prosperous society.

  9. A community survey of the pattern and determinants of household sources of energy for cooking in rural and urban south western, Nigeria

    PubMed Central

    Desalu, Olufemi Olumuyiwa; Ojo, Ololade Olusola; Ariyibi, Ebenezer Kayode; Kolawole, Tolutope Fasanmi; Ogunleye, Ayodele Idowu

    2012-01-01

    Introduction The use of solid fuels for cooking is associated with indoor pollution and lung diseases. The objective of the study was to determine the pattern and determinants of household sources of energy for cooking in rural and urban South Western, Nigeria. Methods We conducted a cross sectional study of households in urban (Ado-Ekiti) and rural (Ido-Ekiti) local council areas from April to July 2010. Female respondents in the households were interviewed by trained interviewers using a semi-structured questionnaire. Results A total of 670 households participated in the study. Majority of rural dwellers used single source of energy for cooking (55.6%) and urban dwellers used multiple source of energy (57.8%). Solid fuel use (SFU) was higher in rural (29.6%) than in urban areas (21.7%). Kerosene was the most common primary source of energy for cooking in both urban and rural areas (59.0% vs.66.6%) followed by gas (17.8%) and charcoal (6.6%) in the urban areas, and firewood (21.6%) and charcoal (7.1%) in the rural areas. The use of solid fuel was strongly associated with lack of ownership of dwellings and larger household size in urban areas, and lower level of education and lower level of wealth in the rural areas. Kerosene was associated with higher level of husband education and modern housing in urban areas and younger age and indoor cooking in rural areas. Gas was associated with high income and modern housing in the urban areas and high level of wealth in rural areas. Electricity was associated with high level of education, availability of electricity and old age in urban and rural areas respectively. Conclusion The use of solid fuel is high in rural areas, there is a need to reduce poverty and improve the use of cleaner source of cooking energy particularly in rural areas and improve lung health. PMID:22826727

  10. Computing Pathways for Urban Decarbonization.

    NASA Astrophysics Data System (ADS)

    Cremades, R.; Sommer, P.

    2016-12-01

    Urban areas emit roughly three quarters of global carbon emissions. Cities are crucial elements for a decarbonized society. Urban expansion and related transportation needs lead to increased energy use, and to carbon-intensive lock-ins that create barriers for climate change mitigation globally. The authors present the Integrated Urban Complexity (IUC) model, based on self-organizing Cellular Automata (CA), and use it to produce a new kind of spatially explicit Transformation Pathways for Urban Decarbonization (TPUD). IUC is based on statistical evidence relating the energy needed for transportation with the spatial distribution of population, specifically IUC incorporates variables from complexity science related to urban form, like the slope of the rank-size rule or spatial entropy, which brings IUC a step beyond existing models. The CA starts its evolution with real-world urban land use and population distribution data from the Global Human Settlement Layer. Thus, the IUC model runs over existing urban settlements, transforming the spatial distribution of population so the energy consumption for transportation is minimized. The statistical evidence that governs the evolution of the CA departs from the database of the International Association of Public Transport. A selected case is presented using Stuttgart (Germany) as an example. The results show how IUC varies urban density in those places where it improves the performance of crucial parameters related to urban form, producing a TPUD that shows where the spatial distribution of population should be modified with a degree of detail of 250 meters of cell size. The TPUD shows how the urban complex system evolves over time to minimize energy consumption for transportation. The resulting dynamics or urban decarbonization show decreased energy per capita, although total energy increases for increasing population. The results provide innovative insights: by checking current urban planning against a TPUD, urban

  11. Urban Nexus Science for Future Cities: Focus on the Energy-Water-Food-X Nexus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sperling, Joshua B.; Berke, Philip R.

    Rapid urban expansion of the world's cities is placing unprecedented demands on the energy, water, food, and other (X) systems (e.g., mobility) that each offer multiple life-supporting services. Coordination that considers inter-sectoral connections among these urban systems and services remains nascent in practice, yet are critical to the future well-being, resource/operational efficiency, and resilience of urban areas. This paper therefore proposes an applied 'urban nexus science' framework to identify integrated and synergistic pathways toward achieving urban sustainability. The design, planning, and operation of urban W-E-F systems can benefit from integrated analyses to accelerate infrastructure, land use, and hazard mitigation planningmore » and decision-making. New knowledge quantifying the key effects of W-E-F systems designed in isolation versus an increasingly integrated systems, especially when exposed to hazards, health risks, or extreme events, are a critical need. Interactive system modeling and participatory technologies are needed to support stakeholder engagement and two-way (and multi-directional) information flow, for exploring outcomes of alternative solutions for integrating W-E-F sectors. To support such important efforts, research is needed to fill critical gaps in data, identify tradeoffs, and develop synergistic solutions that measure sustainability co-benefits based on different levels of urban integration among W-E-F systems and services.« less

  12. Urban Nexus Science for Future Cities: Focus on the Energy-Water-Food-X Nexus

    DOE PAGES

    Sperling, Joshua B.; Berke, Philip R.

    2017-08-25

    Rapid urban expansion of the world's cities is placing unprecedented demands on the energy, water, food, and other (X) systems (e.g., mobility) that each offer multiple life-supporting services. Coordination that considers inter-sectoral connections among these urban systems and services remains nascent in practice, yet are critical to the future well-being, resource/operational efficiency, and resilience of urban areas. This paper therefore proposes an applied 'urban nexus science' framework to identify integrated and synergistic pathways toward achieving urban sustainability. The design, planning, and operation of urban W-E-F systems can benefit from integrated analyses to accelerate infrastructure, land use, and hazard mitigation planningmore » and decision-making. New knowledge quantifying the key effects of W-E-F systems designed in isolation versus an increasingly integrated systems, especially when exposed to hazards, health risks, or extreme events, are a critical need. Interactive system modeling and participatory technologies are needed to support stakeholder engagement and two-way (and multi-directional) information flow, for exploring outcomes of alternative solutions for integrating W-E-F sectors. To support such important efforts, research is needed to fill critical gaps in data, identify tradeoffs, and develop synergistic solutions that measure sustainability co-benefits based on different levels of urban integration among W-E-F systems and services.« less

  13. Which are the factors that may explain the differences in water and energy consumptions in urban and rural environments?

    PubMed

    Matos, C; Bentes, I; Pereira, S; Gonçalves, A M; Faria, D; Briga-Sá, A

    2018-06-12

    Rural and urban environments present significant differences between water and energy consumptions. It is important to know, in detail, which factors related to the consumption of these two resources are different in both environments, once that will be those important to manage and discuss in order to improve its use efficiency and sustainability. This research work involves a survey whose aim is to find the factors that in rural and urban environments may justify the differences found in water and energy consumptions. Besides the collection of water and energy consumption data, this survey analyzed 80 variables (socio-demographic, economic, household characterization, among others), that were chosen among the bibliography as possible factors that should influence water and energy consumptions. After the survey application in rural and urban areas and the data statistical treatment, 42 variables remained as truly differentiating factors of rural and urban environments and so as possible determinants of water and energy consumptions. In order to achieve these objectives, a descriptive data analysis and statistical inference (Mann-Whitney-Wilcoxon test and the Chi-square test of homogeneity) were performed. All the 42 differentiating variables that result from this study may be able to justify these differences, however this will not be presented in the paper and it is reserved for future work. Copyright © 2018. Published by Elsevier B.V.

  14. Impacts of Urban Water Conservation Strategies on Energy, Greenhouse Gas Emissions, and Health: Southern California as a Case Study

    PubMed Central

    Sokolow, Sharona; Godwin, Hilary

    2016-01-01

    Objectives. To determine how urban water conservation strategies in California cities can affect water and energy conservation efforts, reduce greenhouse gas emissions, and benefit public health. Methods. We expanded upon our 2014 health impact assessment of California's urban water conservation strategies by comparing the status quo to 2 options with the greatest potential impact on the interrelated issues of water and energy in California: (1) banning landscape irrigation and (2) expanding alternative water sources (e.g., desalination, recycled water). Results. Among the water conservation strategies evaluated, expanded use of recycled water stood out as the water conservation strategy with potential to reduce water use, energy use, and greenhouse gas emissions, with relatively small negative impacts for the public’s health. Conclusions. Although the suitability of recycled water for urban uses depends on local climate, geography, current infrastructure, and finances, analyses similar to that presented here can help guide water policy decisions in cities across the globe facing challenges of supplying clean, sustainable water to urban populations. PMID:26985606

  15. CAPE-OPEN simulation of waste-to-energy technologies for urban cities

    NASA Astrophysics Data System (ADS)

    Andreadou, Christina; Martinopoulos, Georgios

    2018-01-01

    Uncontrolled waste disposal and unsustainable waste management not only damage the environment, but also affect human health. In most urban areas, municipal solid waste production is constantly increasing following the everlasting increase in energy consumption. Technologies aim to exploit wastes in order to recover energy, decrease the depletion rate of fossil fuels, and reduce waste disposal. In this paper, the annual amount of municipal solid waste disposed in the greater metropolitan area of Thessaloniki is taken into consideration, in order to size and model a combined heat and power facility for energy recovery. From the various waste-to-energy technologies available, a fluidised bed combustion boiler combined heat and power plant was selected and modelled through the use of COCO, a CAPE-OPEN simulation software, to estimate the amount of electrical and thermal energy that could be generated for different boiler pressures. Although average efficiency was similar in all cases, providing almost 15% of Thessaloniki's energy needs, a great variation in the electricity to thermal energy ratio was observed.

  16. Considerations for reducing food system energy demand while scaling up urban agriculture

    NASA Astrophysics Data System (ADS)

    Mohareb, Eugene; Heller, Martin; Novak, Paige; Goldstein, Benjamin; Fonoll, Xavier; Raskin, Lutgarde

    2017-12-01

    There is an increasing global interest in scaling up urban agriculture (UA) in its various forms, from private gardens to sophisticated commercial operations. Much of this interest is in the spirit of environmental protection, with reduced waste and transportation energy highlighted as some of the proposed benefits of UA; however, explicit consideration of energy and resource requirements needs to be made in order to realize these anticipated environmental benefits. A literature review is undertaken here to provide new insight into the energy implications of scaling up UA in cities in high-income countries, considering UA classification, direct/indirect energy pressures, and interactions with other components of the food-energy-water nexus. This is followed by an exploration of ways in which these cities can plan for the exploitation of waste flows for resource-efficient UA. Given that it is estimated that the food system contributes nearly 15% of total US energy demand, optimization of resource use in food production, distribution, consumption, and waste systems may have a significant energy impact. There are limited data available that quantify resource demand implications directly associated with UA systems, highlighting that the literature is not yet sufficiently robust to make universal claims on benefits. This letter explores energy demand from conventional resource inputs, various production systems, water/energy trade-offs, alternative irrigation, packaging materials, and transportation/supply chains to shed light on UA-focused research needs. By analyzing data and cases from the existing literature, we propose that gains in energy efficiency could be realized through the co-location of UA operations with waste streams (e.g. heat, CO2, greywater, wastewater, compost), potentially increasing yields and offsetting life cycle energy demands relative to conventional approaches. This begs a number of energy-focused UA research questions that explore the

  17. Wastewater treatment and reuse in urban agriculture: exploring the food, energy, water, and health nexus in Hyderabad, India

    NASA Astrophysics Data System (ADS)

    Miller-Robbie, Leslie; Ramaswami, Anu; Amerasinghe, Priyanie

    2017-07-01

    Nutrients and water found in domestic treated wastewater are valuable and can be reutilized in urban agriculture as a potential strategy to provide communities with access to fresh produce. In this paper, this proposition is examined by conducting a field study in the rapidly developing city of Hyderabad, India. Urban agriculture trade-offs in water use, energy use and GHG emissions, nutrient uptake, and crop pathogen quality are evaluated, and irrigation waters of varying qualities (treated wastewater, versus untreated water and groundwater) are compared. The results are counter-intuitive, and illustrate potential synergies and key constraints relating to the food-energy-water-health (FEW-health) nexus in developing cities. First, when the impact of GHG emissions from untreated wastewater diluted in surface streams is compared with the life cycle assessment of wastewater treatment with reuse in agriculture, the treatment-plus-reuse case yields a 33% reduction in life cycle system-wide GHG emissions. Second, despite water cycling benefits in urban agriculture, only <1% of the nutrients are able to be captured in urban agriculture, limited by the small proportion of effluent divertible to urban agriculture due to land constraints. Thus, water treatment plus reuse in urban farms can enhance GHG mitigation and also directly save groundwater; however, very large amounts of land are needed to extract nutrients from dilute effluents. Third, although energy use for wastewater treatment results in pathogen indicator organism concentrations in irrigation water to be reduced by 99.9% (three orders of magnitude) compared to the untreated case, crop pathogen content was reduced by much less, largely due to environmental contamination and farmer behavior and harvesting practices. The study uncovers key physical, environmental, and behavioral factors that constrain benefits achievable at the FEW-health nexus in urban areas.

  18. Urban outdoor water use and response to drought assessed through mobile energy balance and vegetation greenness measurements

    NASA Astrophysics Data System (ADS)

    Liang, L. L.; Anderson, R. G.; Shiflett, S. A.; Jenerette, G. D.

    2017-08-01

    Urban vegetation provides many highly valued ecosystem services but also requires extensive urban water resources. Increasingly, cities are experiencing water limitations and managing outdoor urban water use is an important concern. Quantifying the water lost via evapotranspiration (ET) is critical for urban water management and conservation, especially in arid or semi-arid regions. In this study, we deployed a mobile energy balance platform to measure evaporative fraction throughout Riverside, California, a warm, semi-arid, city. We observed the relationship between evaporative fraction and satellite derived vegetation index across 29 sites, which was then used to map whole-city ET for a representative mid-summer period. Resulting ET distributions were strongly associated with both neighborhood population density and income. By comparing 2014 and 2015 summer-period water uses, our results show 7.8% reductions in evapotranspiration, which were also correlated with neighborhood demographic characteristics. Our findings suggest a mobile energy balance measurement platform coupled with satellite imagery could serve as an effective tool in assessing the outdoor water use at neighborhood to whole city scales.

  19. Evaluating Water and Energy Fluxes across Three Land Cover Types in a Desert Urban Environment through a Mobile Eddy Covariance Platform

    NASA Astrophysics Data System (ADS)

    Pierini, N.; Vivoni, E. R.; Schreiner-McGraw, A.; Lopez-Castrillo, I.

    2015-12-01

    The urbanization process transforms a natural landscape into a built environment with many engineered surfaces, leading to significant impacts on surface energy and water fluxes across multiple spatial and temporal scales. Nevertheless, the effects of different urban land covers on energy and water fluxes has been rarely quantified across the large varieties of construction materials, landscaping and vegetation types, and industrial, commercial and residential areas in cities. In this study, we deployed a mobile eddy covariance tower at three different locations in the Phoenix, Arizona, metropolitan area to capture a variety of urban land covers. The three locations each represent a common urban class in Phoenix: 1) a dense, xeric landscape (gravel cover and native plants with drip-irrigation systems near tall buildings); 2) a high-density urban site (asphalt-paved parking lot near a high-traffic intersection); and 3) a suburban mesic landscape (sprinkler-irrigated turf grass in a suburban neighborhood). At each site, we measured meteorological variables, including air temperature and relative humidity at three heights, precipitation and pressure, surface temperature, and soil moisture and temperature (where applicable), to complement the eddy covariance measurements of radiation, energy, carbon dioxide and water vapor fluxes. We evaluated the tower footprint at each site to characterize the contributing surface area to the flux measurements, including engineered and landscaping elements, as a function of time for each deployment. The different sites allowed us to compare how turbulent fluxes of water vapor and carbon dioxide vary for these representative urban land covers, in particular with respect to the role of precipitation events and irrigation. While the deployments covered different seasons, from winter to summer in 2015, the variety of daily conditions allowed quantification of the differential response to precipitation events during the winter, pre

  20. Measurement and Analysis of Thermal Energy Responses from Discrete Urban Surfaces Using Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Quattrochi, D. A.; Ridd, M. K.

    1993-01-01

    This study employs data from the airborne Thermal Infrared Multispectral Scanner (TIMS) to measure thermal (i.e., longwave) energy responses, emitted or upwelling, from discrete surfaces that are typical of the city landscape within Salt Lake City, Utah, over a single diurnal time period (i.e., a single day, night-time sequence). These data are used to quantify the disposition of thermal energy for selected urban surfaces during the daytime and night-time, and the amount of change in thermal response or flux recorded between day and night. An analysis is presented on the thermal interrelationships observed for common urban materials for day, night, and flux, as identified from the TIMS data through the delineation of discrete surface type polygons. The results from the study illustrate that such factors as heat capacity, thermal conductivity, and the amount of soil moisture available have a profound impact on the magnitude of thermal energy emanating from a specific surface and on the dynamics of longwave energy response between day and night.

  1. Flutter suppression and gust alleviation using active controls

    NASA Technical Reports Server (NTRS)

    Nissim, E.

    1975-01-01

    Application of the aerodynamic energy approach to some problems of flutter suppression and gust alleviation were considered. A simple modification of the control-law is suggested for achieving the required pitch control in the use of a leading edge - trailing edge activated strip. The possible replacement of the leading edge - trailing edge activated strip by a trailing edge - tab strip is also considered as an alternate solution. Parameters affecting the performance of the activated leading edge - trailing edge strip were tested on the Arava STOL Transport and the Westwind Executive Jet Transport and include strip location, control-law gains and a variation in the control-law itself.

  2. Leaf cDNA-AFLP analysis reveals novel mechanisms for boron-induced alleviation of aluminum-toxicity in Citrus grandis seedlings.

    PubMed

    Wang, Liu-Qing; Yang, Lin-Tong; Guo, Peng; Zhou, Xin-Xing; Ye, Xin; Chen, En-Jun; Chen, Li-Song

    2015-10-01

    Little information is available on the molecular mechanisms of boron (B)-induced alleviation of aluminum (Al)-toxicity. 'Sour pummelo' (Citrus grandis) seedlings were irrigated for 18 weeks with nutrient solution containing different concentrations of B (2.5 or 20μM H3BO3) and Al (0 or 1.2mM AlCl3·6H2O). B alleviated Al-induced inhibition in plant growth accompanied by lower leaf Al. We used cDNA-AFLP to isolate 127 differentially expressed genes from leaves subjected to B and Al interactions. These genes were related to signal transduction, transport, cell wall modification, carbohydrate and energy metabolism, nucleic acid metabolism, amino acid and protein metabolism, lipid metabolism and stress responses. The ameliorative mechanisms of B on Al-toxicity might be related to: (a) triggering multiple signal transduction pathways; (b) improving the expression levels of genes related to transport; (c) activating genes involved in energy production; and (d) increasing amino acid accumulation and protein degradation. Also, genes involved in nucleic acid metabolism, cell wall modification and stress responses might play a role in B-induced alleviation of Al-toxicity. To conclude, our findings reveal some novel mechanisms on B-induced alleviation of Al-toxicity at the transcriptional level in C. grandis leaves. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Pattern of dietary carbohydrate intake among urbanized adult Nigerians

    PubMed Central

    AKAROLO-ANTHONY, SALLY N.; ODUBORE, FOLAKE O.; YILME, SUSAN; ARAGBADA, OMOLOLA; ODONYE, GEORGE; HU, FRANK; WILLETT, WALTER; SPIEGELMAN, DONNA; ADEBAMOWO, CLEMENT A.

    2013-01-01

    As the nutrition transition continues in Africa, it is crucial to identify population-specific dietary patterns. Healthy diets may then be promoted for prevention and alleviation of the chronic disease burden associated with nutrition. Using a semi-quantitate food frequency questionnaire, we conducted a cross-sectional study and computed the proportions of foods commonly consumed, and collected data on anthropometric characteristics. The median total energy intake per day from these carbohydrate sources was 1034 kcal (interquartile range (IOR) 621.5–1738.6 kcal). The main carbohydrate food eaten was rice (48.6%) followed by fufu (30.5%) and bread (13.1%). The prevalence of overweight and obesity was 63%, and 73% of the women in the study were either overweight or obese compared to 56% of men. Our study showed that parboiled long grain white rice is now the most commonly consumed carbohydrate by urbanized Nigerians. Other traditional carbohydrate foods are still consumed frequently and remain quite popular. PMID:23198770

  4. Project Ci-Nergy Towards AN Integrated Energy Urban Planning System from a Data Modelling and System Architecture Perspective

    NASA Astrophysics Data System (ADS)

    Agugiaro, G.; Robineau, J.-L.; Rodrigues, P.

    2017-09-01

    Growing urbanisation, its related environmental impacts, and social inequalities in cities are challenges requiring a holistic urban planning perspective that takes into account the different aspects of sustainable development. One crucial point is to reconcile urban planning with environmental targets, which include decreasing energy demand and CO2 emissions, and increasing the share of renewable energy. Within this context, the project CI-NERGY aims to develop urban energy modelling, simulation and optimisation methods and tools to support decision making in urban planning. However, there are several barriers to the implementation of such tools, such as: fragmentation of involved disciplines, different stakeholders, multiplicity of scales in a city and extreme heterogeneity of data regarding all the processes to be addressed. Project CI-NERGY aims, among other goals, at overcoming these barriers, and focuses on two case study cities, Geneva in Switzerland and Vienna in Austria. In particular, project CI-NERGY faces several challenges starting with different cities, heterogeneous data sources and simulation tools, diverse user groups and their individual needs. This paper describes the experiences gathered during the project. After giving a brief overview of the project, the two case study cities, Geneva and Vienna, are briefly presented, and the focus shifts then on overall system architecture of the project, ranging from urban data modelling topics to the implementation of a Service-Oriented Architecture. Some of the challenges faced, the solutions found, as well some plans for future improvements are described and commented.

  5. Developing Sustainable Urban Water-Energy Infrastructures: Applying a Multi-Sectoral Social-Ecological-Infrastructural Systems (SEIS) Framework

    NASA Astrophysics Data System (ADS)

    Ramaswami, A.

    2016-12-01

    Urban infrastructure - broadly defined to include the systems that provide water, energy, food, shelter, transportation-communication, sanitation and green/public spaces in cities - have tremendous impact on the environment and on human well-being (Ramaswami et al., 2016; Ramaswami et al., 2012). Aggregated globally, these sectors contribute 90% of global greenhouse gas (GHG) emissions and 96% of global water withdrawals. Urban infrastructure contributions to such impacts are beginning to dominate. Cities are therefore becoming the action arena for infrastructure transformations that can achieve high levels of service delivery while reducing environmental impacts and enhancing human well-being. Achieving sustainable urban infrastructure transitions requires: information about the engineered infrastructure, and its interaction with the natural (ecological-environmental) and the social sub-systems In this paper, we apply a multi-sector, multi-scalar Social-Ecological-Infrastructural Systems framework that describes the interactions among biophysical engineered infrastructures, the natural environment and the social system in a systems-approach to inform urban infrastructure transformations. We apply the SEIS framework to inform water and energy sector transformations in cities to achieve environmental and human health benefits realized at multiple scales - local, regional and global. Local scales address pollution, health, wellbeing and inequity within the city; regional scales address regional pollution, scarcity, as well as supply risks in the water-energy sectors; global impacts include greenhouse gas emissions and climate impacts. Different actors shape infrastructure transitions including households, businesses, and policy actors. We describe the development of novel cross-sectoral strategies at the water-energy nexus in cities, focusing on water, waste and energy sectors, in a case study of Delhi, India. Ramaswami, A.; Russell, A.G.; Culligan, P.J.; Sharma, K

  6. Community Action, Urban Reform, and the Fight against Poverty: The Ford Foundation's Gray Areas Program.

    ERIC Educational Resources Information Center

    O'Connor, Alice

    1996-01-01

    Describes the process by which experimental Ford Foundation programs designed to stem the urban crisis evolved into more narrowly constructed interventions to reform service delivery systems and alleviate poverty in inner-city neighborhoods. Related themes are highlighted and limitations caused by problems of institutional constraints, political…

  7. An urban systems framework to assess the trans-boundary food-energy-water nexus: implementation in Delhi, India

    NASA Astrophysics Data System (ADS)

    Ramaswami, Anu; Boyer, Dana; Singh Nagpure, Ajay; Fang, Andrew; Bogra, Shelly; Bakshi, Bhavik; Cohen, Elliot; Rao-Ghorpade, Ashish

    2017-02-01

    This paper develops a generalizable systems framework to analyze the food-energy-water (FEW) nexus from an urban systems perspective, connecting in- and trans-boundary interactions, quantifying multiple environmental impacts of community-wide FEW provisioning to cities, and visualizing FEW supply-chain risks posed to cities by the environment. Delhi’s community-wide food demand includes household consumption by socio-economic-strata, visitors- and industrial food-use. This demand depends 90%, 76%, and 86% on trans-boundary supply of FEW, respectively. Supply chain data reveal unique features of trans-boundary FEW production regions (e.g. irrigation-electricity needs and GHG intensities of power-plants), yielding supply chain-informed coupled energy-water-GHG footprints of FEW provisioning to Delhi. Agri-food supply contributes to both GHG (19%) and water-footprints (72%-82%) of Delhi’s FEW provisioning, with milk, rice and wheat dominating these footprints. Analysis of FEW interactions within Delhi found >75% in-boundary water-use for food is for urban agriculture and >76% in-boundary energy-use for food is from cooking fuels. Food waste-to-energy and energy-intensity of commercial and industrial food preparation are key data gaps. Visualizing supply chains shows >75% of water embodied in Delhi’s FEW supply is extracted from locations over-drafting ground water. These baseline data enable evaluation of future urban FEW scenarios, comparing impacts of demand shifts, production shifts, and emerging technologies and policies, within and outside of cities.

  8. Towards a 3d Spatial Urban Energy Modelling Approach

    NASA Astrophysics Data System (ADS)

    Bahu, J.-M.; Koch, A.; Kremers, E.; Murshed, S. M.

    2013-09-01

    conceptually and practically integrate urban spatial and energy planning approaches. The combined modelling approach that will be developed based on the described sectorial models holds the potential to represent hybrid energy systems coupling distributed generation of electricity with thermal conversion systems.

  9. On the Climate Variability and Energy Demands for Indoor Human Comfort Levels in Tropical Urban Environment

    NASA Astrophysics Data System (ADS)

    Pokhrel, R.; Ortiz, L. E.; González, J. E.; Ramírez-Beltran, N. D.

    2017-12-01

    The main objective of this study is to identify how climate variability influences human comfort levels in tropical urban environments. San Juan Metropolitan Area (SJMA) of the island of Puerto Rico was chosen as a reference point. A new human discomfort index (HDI) based on environmental enthalpy is defined. This index is expanded to determine the energy required to maintain indoor human comfort levels and was compared to Total Electricity consumption for the Island of Puerto Rico. Regression analysis shows that both Temperature and HDI are good indictor to predict total electrical energy consumption. Results showed that over the past 35 years the average enthalpy have increased and have mostly been above thresholds for human comfort for SJMA. The weather stations data further shows a clear indication of urbanization biases ramping up the index considered. From the trend analysis local scale (weather station) data shows a decreasing rate of maximum cooling at -11.41 kW-h/years, and minimum is increasing at 10.64 kW-h/years. To compare human comfort levels under extreme heat wave events conditions, an event of 2014 in the San Juan area was identified. The analysis for this extreme heat event is complemented by data from the National Center for environmental Prediction (NCEP) at 250km spatial resolution, North American Re-Analysis (NARR) at 32 km spatial resolution, by simulations of the Weather Forecasting System (WRF) at a resolution of 2 km, and by weather station data for San Juan. WRF simulation's results showed an improvement for both temperature and relative humidity from the input NCEP data. It also shows that difference in Energy per Capita (EPC) in urban area during a heat wave event can increase to 16% over a non-urban area. Sensitivity analysis was done by modifying the urban land cover to the most common rural references of evergreen broadleaf forest and cropland to investigate the Urban Heat Island (UHI) effect on HDI. UHI is seen to be maximum during

  10. Using Cool Roofs to Reduce Energy Use, Greenhouse Gas Emissions, and Urban Heat-island Effects: Findings from an India Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbari, Hashem; Xu, Tengfang; Taha, Haider

    Cool roofs, cool pavements, and urban vegetation reduce energy use in buildings, lower local air pollutant concentrations, and decrease greenhouse gas emissions from urban areas. This report summarizes the results of a detailed monitoring project in India and related simulations of meteorology and air quality in three developing countries. The field results quantified direct energy savings from installation of cool roofs on individual commercial buildings. The measured annual energy savings potential from roof-whitening of previously black roofs ranged from 20-22 kWh/m2 of roof area, corresponding to an air-conditioning energy use reduction of 14-26% in commercial buildings. The study estimated thatmore » typical annual savings of 13-14 kWh/m2 of roof area could be achieved by applying white coating to uncoated concrete roofs on commercial buildings in the Metropolitan Hyderabad region, corresponding to cooling energy savings of 10-19%. With the assumption of an annual increase of 100,000 square meters of new roof construction for the next 10 years in the Metropolitan Hyderabad region, the annual cooling energy savings due to whitening concrete roof would be 13-14 GWh of electricity in year ten alone, with cumulative 10-year cooling energy savings of 73-79 GWh for the region. The estimated savings for the entire country would be at least 10 times the savings in Hyderabad, i.e., more than 730-790 GWh. We estimated that annual direct CO2 reduction associated with reduced energy use would be 11-12 kg CO2/m2 of flat concrete roof area whitened, and the cumulative 10-year CO2 reduction would be approximately 0.60-0.65 million tons in India. With the price of electricity estimated at seven Rupees per kWh, the annual electricity savings on air-conditioning would be approximately 93-101 Rupees per m2 of roof. This would translate into annual national savings of approximately one billion Rupees in year ten, and cumulative 10-year savings of over five billion Rupees for

  11. Making a technological choice for disaster management and poverty alleviation in India.

    PubMed

    Srivastava, Sanjay K

    2009-03-01

    The right mix of policy, institutional arrangements and use of technology provides the framework for a country's approach to disaster mitigation. Worldwide, there has been a shift away from a strictly 'top-down' approach relying on government alone, to a combination of 'top-down' and 'bottom-up' approaches. The aim is to enhance the indigenous coping mechanisms of vulnerable communities; draw on their cooperative spirit and energy; and empower them through appropriate information and contextual knowledge to mitigate natural disasters. In light of this, the paper examines India's use of space technology in its disaster management efforts. Poverty alleviation and disaster management are almost inseparable in many parts of the country, as vulnerability to natural disasters is closely aligned with poverty. Addressing these issues together requires integrated knowledge systems. The paper examines how knowledge inputs from space technology have strengthened the national resolve to combat natural disasters in conjunction with alleviating rural poverty.

  12. Energy management strategy for fuel cell-supercapacitor hybrid vehicles based on prediction of energy demand

    NASA Astrophysics Data System (ADS)

    Carignano, Mauro G.; Costa-Castelló, Ramon; Roda, Vicente; Nigro, Norberto M.; Junco, Sergio; Feroldi, Diego

    2017-08-01

    Offering high efficiency and producing zero emissions Fuel Cells (FCs) represent an excellent alternative to internal combustion engines for powering vehicles to alleviate the growing pollution in urban environments. Due to inherent limitations of FCs which lead to slow transient response, FC-based vehicles incorporate an energy storage system to cover the fast power variations. This paper considers a FC/supercapacitor platform that configures a hard constrained powertrain providing an adverse scenario for the energy management strategy (EMS) in terms of fuel economy and drivability. Focusing on palliating this problem, this paper presents a novel EMS based on the estimation of short-term future energy demand and aiming at maintaining the state of energy of the supercapacitor between two limits, which are computed online. Such limits are designed to prevent active constraint situations of both FC and supercapacitor, avoiding the use of friction brakes and situations of non-power compliance in a short future horizon. Simulation and experimentation in a case study corresponding to a hybrid electric bus show improvements on hydrogen consumption and power compliance compared to the widely reported Equivalent Consumption Minimization Strategy. Also, the comparison with the optimal strategy via Dynamic Programming shows a room for improvement to the real-time strategies.

  13. Spatio-Temporal Variability of Urban Heat Island and Urban Mobility

    NASA Astrophysics Data System (ADS)

    Kar, B.; Omitaomu, O.

    2017-12-01

    A 2016 report by the U.S. Census stated that while the rural areas cover 97% of the U.S. landmass, these areas house only 19.7% of the nation's population. Given that the U.S. coastal counties are home to more than 50% of the U.S. population, these urban areas are clustered along the coast that is susceptible to sea level rise induced impacts. In light of increasing climate variability and extreme events, it is pertinent to understand the Urban Heat Island (UHI) effect that results from increasing population density and mobility in the urban areas, and that contributes to increased energy consumption and temperature as well as unmitigated flooding events. For example, in Illinois, warmer summers contribute to heavy precipitation that overwhelms the region's drainage capacity. This study focuses on understanding the spatio-temporal variability of the relationship between population density and mobility distribution, and creation of UHI due to temperature change in selected cities across the U.S. This knowledge will help us understand the role of UHI in energy-water nexus in urban areas, specifically, energy consumption.

  14. Negotiating the labyrinth of modernity's promise a paradigm analysis of energy poverty in peri-urban Kumasi, Ghana

    NASA Astrophysics Data System (ADS)

    Odarno, Lily Ameley

    Energy poverty in developing countries has been conventionally attributed to a lack of access to sufficient, sustainable and modern forms of energy (ESMAP 2001; Modi et al. 2006). Per this definition, Sub--Saharan Africa is the most energy poor region in the world today. In line with this, efforts at addressing energy poverty in the region have concentrated on the expansion of access to modern energy sources, particularly electricity. In spite of the implementation of diverse energy development interventions, access to modern energy services remains limited. That energy poverty remains one of the most pressing challenges in Sub--Saharan Africa today in spite of the many decades of energy development necessitates a candid and thorough re--evaluation of the questions that have been traditionally asked about this issue and the solutions that have been offered in response to it. Based on theoretical analyses and empirical studies in peri--urban Kumasi, Ghana, this study attempts to offer some of the much needed re--evaluations. Using Kuhn's paradigm approach as a conceptual tool, this dissertation identifies peri--urban energy poverty as a paradigm--scale conflict in the modern arrangement of energy--development relations. By emphasizing the importance of context and political economy in understanding energy poverty, the study proposes strategies for an alternative paradigm in which energy--development relations are fundamentally redefined; one which enlists appropriate knowledge, technologies, and institutions in addressing the needs of the energy poor in ways which promote environmental values, social equity and sustainable livelihoods.

  15. Rapid urbanization and the need for sustainable transportation policies in Jakarta

    NASA Astrophysics Data System (ADS)

    Rukmana, D.

    2018-03-01

    Not only is Jakarta the largest metropolitan area in Southeast Asia, it is the also one of the most dynamic, though beset with most of the urban problems experienced in twenty-first century Southeast Asia. Batavia, colonial capital of the Netherland Indies in the first half of the 20th century was a small urban area of approximately 150,000 residents. In the second half, Batavia became Jakarta, the 28 million megacity capital of independent Indonesia. Among many urban problems, one major problem plagued Jakarta in the last two decades is traffic congestions. This paper discusses the extent to which rapid urbanization in Jakarta has contributed to the need for sustainable transportation policies in Jakarta. The development of MRT could be viable solutions to alleviate the acute traffic jams in Jakarta. Jakarta will need to implement other innovative sustainable transportation policies including promoting active live through more walking and bicycling, carpool matching services, shuttle services, telecommuting and downzoning in downtown areas.

  16. Impacts of Urbanization on Water Use and Energy-related CO2 Emissions of Residential Consumption in China: A Spatio-temporal Analysis during 2003-2012

    NASA Astrophysics Data System (ADS)

    Cai, J.; Yin, H.; Varis, O.

    2017-12-01

    China has been undergoing unprecedented urbanization since the 1978 economic reform, especially with the present growth rate for the last decade at approximately 20 million people per year. This rapid and perennial progress has been raising soaring concerns on environmental sustainability, due to a severe nationwide deterioration of China's environment and ecosystems in the context of ceaselessly increasing demand for water and energy. It is therefore of prime necessity and importance to comprehend China's water and energy security under the effect of its dramatic demographic changes. Analyses of this issue still remain few and far between, and a comprehensive picture has not been available that would help understand China's recent development in urbanization, its spatial features and links to water and energy security, particularly regarding residential consumption, as well as national policy-making in the context of its water-energy nexus. Consequently, we addressed these knowledge gaps by performing an integrated and quantitative spatio-temporal analysis of the impacts of China's urbanization on water use of residential consumption (WURC) and energy-related CO2 emissions of residential consumption (ERCERC). We proposed per capita WURC and per capita ERCERC as potential national indicators for policy-making targets of its water and energy security. Our study, conducted over the period 2003-2012, for the first time demonstrated strong evidence of the significant impacts of China's urbanization on WURC and ERCERC. Its highlights can be portrayed as follows: (1) rural areas dominated per capita WURC at both national and provincial scales, with a significant increasing trend, while WURC share and per capita WURC in urban areas decreased, despite the fact that the urban population was soaring; (2) per capita ERCERC was significantly augmented in both urban and rural areas nationwide; and (3) per capita WURC and per capita ERCERC had a significant positive correlation

  17. Water-Energy Correlations: Analysis of Water Technologies, Processes and Systems in Rural and Urban India

    NASA Astrophysics Data System (ADS)

    Murumkar, A. R.; Gupta, S.; Kaurwar, A.; Satankar, R. K.; Mounish, N. K.; Pitta, D. S.; Virat, J.; Kumar, G.; Hatte, S.; Tripathi, R. S.; Shedekar, V.; George, K. J.; Plappally, A. K.

    2015-12-01

    In India, the present value of water, both potable and not potable, bears no relation to the energy of water production. However, electrical energy spent on ground water extraction alone is equivalent to the nation's hydroelectric capacity of 40.1 GWh. Likewise, desalinating 1m3 water of the Bay of Bengal would save three times the energy for potable ground water extraction along the coast of the Bay. It is estimated that every second woman in rural India expends 0.98 kWhe/m3/d for bringing water for household needs. Yet, the water-energy nexus remains to be a topic which is gravely ignored. This is largely caused by factors such as lack of awareness, defective public policies, and intrusive cultural practices. Furthermore, there are instances of unceasing dereliction towards water management and maintenance of the sparsely distributed water and waste water treatment plants across the country. This pollutes the local water across India apart from other geogenic impurities. Additionally, product aesthetics and deceptive advertisements take advantage of the abulia generated by users' ignorance of technical specifications of water technologies and processes in mismanagement of water use. Accordingly, urban residents are tempted to expend on energy intensive water technologies at end use. This worsens the water-energy equation at urban households. Cooking procedures play a significant role in determining the energy expended on water at households. The paper also evaluates total energy expense involved in cultivating some major Kharif and Rabi crops. Manual and traditional agricultural practices are more prominent than mechanized and novel agricultural techniques. The specific energy consumption estimate for different water technologies will help optimize energy expended on water in its life cycles. The implication of the present study of water-energy correlation will help plan and extend water management infrastructure at different locations across India.

  18. Methylglyoxal alleviates cadmium toxicity in wheat (Triticum aestivum L).

    PubMed

    Li, Zhong-Guang; Duan, Xiang-Qiu; Xia, Yan-Mei; Wang, Yue; Zhou, Zhi-Hao; Min, Xiong

    2017-02-01

    Methylglyoxal alleviates cadmium toxicity in wheat (Triticum aestivum L) by improving plant growth. For a long time, the reactive α, β-carbonyl ketoaldehyde methylglyoxal (CH3COCHO; MG) has been regarded as merely a toxic metabolite in plants, but, now, emerging as a signal molecule in plants. In this study, cadmium (Cd) stress decreased plant height, root length, fresh weight (FW), and dry weight (DW) in a concentration-dependent manner, indicating that Cd had toxic effects on the growth of wheat seedlings. The toxic effects of Cd were alleviated by exogenously applied MG in a dosage dependent fashion, and 700 mM MG reached significant differences, but this alleviating effect was eliminated by the treatment with N-acetyl-L-cysteine (NAC, MG scavenger), suggesting that MG could mitigate Cd toxicity in wheat. This study reported for the first time that MG could alleviate Cd toxicity in wheat, uncovering a new possible physiological function for MG, and opening a novel line of research in plant stress biology.

  19. Quantification of the urban water-energy nexus in México City, México, with an assessment of water-system related carbon emissions.

    PubMed

    Valek, Adrián Moredia; Sušnik, Janez; Grafakos, Stelios

    2017-07-15

    Global urbanisation will put considerable stress on both water and energy resources. While there is much research at the national and regional levels on the energy implications of water supply (the urban water-energy 'nexus'), there is relatively little at the city scale. This literature is further diminished when attempting to account for the climate impact of urban water systems. A study of the urban water-energy-climate nexus is presented for México City. It is shown that 50% of México City water comes from a local aquifer with a further 30% deriving from energy-intensive surface sources which are pumped over considerable topography. The water supply system consumes 90% of the water system energy demand, and is responsible for the majority (90%) of the CO 2 e emissions. In the wastewater sector, 80-90% is discharged with no or little treatment, with correspondingly low energy demand. The small fraction that is treated accounts for the majority of energy use in the wastewater sector. This study shows the uncertainty in energy demand and CO 2 e emissions when reliant on secondary data which considerably over/under-estimate energy use compared with primary data. This has implications when assessing energy and carbon budgets. Three water savings options are assessed for their impact on energy and CO 2 e emissions reductions. Considerable reductions in water supply volumes and concomitant energy consumption and CO 2 e emissions are possible. However the extent of implementation, and the effectiveness of any implemented solutions depend on financing, institutional backing and public support. An additional measure to reduce the climate impact is to switch from traditional to renewable fuels. This work adds city-level quantification of the urban water-energy-climate nexus, allowing policy makers to discern which water-system elements are responsible for the greatest energy use and climate impact, and are better equipped to make targeted operational decisions

  20. Connecting the resource nexus to basic urban service provision – with a focus on water-energy interactions in New York City

    DOE PAGES

    Engström, Rebecka Ericsdotter; Howells, Mark; Destouni, Georgia; ...

    2017-05-01

    Urban water and energy systems are crucial for sustainably meeting basic service demands in cities. Therefore, this paper proposes and applies a technology-independent “reference resource-to-service system” framework for concurrent evaluation of urban water and energy system interventions and their ‘nexus’ or ‘interlinkages’. In a concrete application, data that approximate New York City conditions are used to evaluate a limited set of interventions in the residential sector, spanning from low-flow toilet shifts to extensive green roof installations. Results indicate that interventions motivated primarily by water management goals can considerably reduce energy use and contribute to mitigation of greenhouse gas emissions. Similarly,more » energy efficiency interventions can considerably reduce water use in addition to lowering emissions. However, interventions yielding the greatest reductions in energy use and emissions are not necessarily the most water conserving ones, and vice versa. Useful further research, expanding the present analysis should consider a broader set of resource interactions, towards a full climate, land, energy and water (CLEW) nexus approach. Overall, assessing the impacts, trade-offs and co-benefits from interventions in one urban resource system on others also holds promise as support for increased resource efficiency through integrated decision making.« less

  1. Connecting the resource nexus to basic urban service provision – with a focus on water-energy interactions in New York City

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engström, Rebecka Ericsdotter; Howells, Mark; Destouni, Georgia

    Urban water and energy systems are crucial for sustainably meeting basic service demands in cities. Therefore, this paper proposes and applies a technology-independent “reference resource-to-service system” framework for concurrent evaluation of urban water and energy system interventions and their ‘nexus’ or ‘interlinkages’. In a concrete application, data that approximate New York City conditions are used to evaluate a limited set of interventions in the residential sector, spanning from low-flow toilet shifts to extensive green roof installations. Results indicate that interventions motivated primarily by water management goals can considerably reduce energy use and contribute to mitigation of greenhouse gas emissions. Similarly,more » energy efficiency interventions can considerably reduce water use in addition to lowering emissions. However, interventions yielding the greatest reductions in energy use and emissions are not necessarily the most water conserving ones, and vice versa. Useful further research, expanding the present analysis should consider a broader set of resource interactions, towards a full climate, land, energy and water (CLEW) nexus approach. Overall, assessing the impacts, trade-offs and co-benefits from interventions in one urban resource system on others also holds promise as support for increased resource efficiency through integrated decision making.« less

  2. Urban Impact at the Urban-Agricultural Interface in Madison, WI: an Ecosystem Modeling Approach

    NASA Astrophysics Data System (ADS)

    Logan, K. E.; Kucharik, C. J.; Schneider, A.

    2009-12-01

    Global population and the proportion of people living in urban areas both continue to grow while average urban density is decreasing worldwide. Because urban areas are often located in the most agriculturally productive lands, expansion of the built environment can cause sharp reductions in land available for cultivation. Conversion of land to urban use also significantly alters climate variables. Urban materials differ from natural land covers in terms of albedo, thermal properties, and permeability, altering energy and water cycles. Anthropogenic heat emissions also alter the energy balance in and around a city. Preliminary analysis of urban impacts around Madison, WI, a small city located in a thriving agricultural region, was performed using the National Land Cover Database (NLCD), MODIS albedo products, ground-based observations, and a simulation of urban expansion, within a geographic information system (GIS). Population of the county is expected to increase by 58% while urban density is projected to decrease by 49% between 1992 and 2030, reflecting projected worldwide patterns. Carbon stored in the top 25cm of soil was found to be over 2.5 times greater in remnant prairies than in croplands and was calculated to be even less in urban areas; projected urban development may thus lead to large losses in carbon storage. Albedo measurements also show a significant decrease with urban development. Projected urban expansion between 2001 and 2030 is expected to convert enough agricultural lands to urban areas to result in a loss of 247,000 tons of crop yield in Dane County alone, based on current yields. For a more complete analysis of these impacts, urban parameters are incorporated into a terrestrial ecosystem model known as Agro-IBIS. This approach allows for detailed comparison of energy balance and biogeochemical cycles between local crop systems, lawns, and impervious city surfaces. Changes in these important cycles, in soil carbon storage, and in crop

  3. Coupling Analysis of Heat Island Effects, Vegetation Coverage and Urban Flood in Wuhan

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Liu, Q.; Fan, W.; Wang, G.

    2018-04-01

    In this paper, satellite image, remote sensing technique and geographic information system technique are main technical bases. Spectral and other factors comprehensive analysis and visual interpretation are main methods. We use GF-1 and Landsat8 remote sensing satellite image of Wuhan as data source, and from which we extract vegetation distribution, urban heat island relative intensity distribution map and urban flood submergence range. Based on the extracted information, through spatial analysis and regression analysis, we find correlations among heat island effect, vegetation coverage and urban flood. The results show that there is a high degree of overlap between of urban heat island and urban flood. The area of urban heat island has buildings with little vegetation cover, which may be one of the reasons for the local heavy rainstorms. Furthermore, the urban heat island has a negative correlation with vegetation coverage, and the heat island effect can be alleviated by the vegetation to a certain extent. So it is easy to understand that the new industrial zones and commercial areas which under constructions distribute in the city, these land surfaces becoming bare or have low vegetation coverage, can form new heat islands easily.

  4. The urban energy balance of a lightweight low-rise neighborhood in Andacollo, Chile

    NASA Astrophysics Data System (ADS)

    Crawford, Ben; Krayenhoff, E. Scott; Cordy, Paul

    2018-01-01

    Worldwide, the majority of rapidly growing neighborhoods are found in the Global South. They often exhibit different building construction and development patterns than the Global North, and urban climate research in many such neighborhoods has to date been sparse. This study presents local-scale observations of net radiation ( Q * ) and sensible heat flux ( Q H ) from a lightweight low-rise neighborhood in the desert climate of Andacollo, Chile, and compares observations with results from a process-based urban energy-balance model (TUF3D) and a local-scale empirical model (LUMPS) for a 14-day period in autumn 2009. This is a unique neighborhood-climate combination in the urban energy-balance literature, and results show good agreement between observations and models for Q * and Q H . The unmeasured latent heat flux ( Q E ) is modeled with an updated version of TUF3D and two versions of LUMPS (a forward and inverse application). Both LUMPS implementations predict slightly higher Q E than TUF3D, which may indicate a bias in LUMPS parameters towards mid-latitude, non-desert climates. Overall, the energy balance is dominated by sensible and storage heat fluxes with mean daytime Bowen ratios of 2.57 (observed Q H /LUMPS Q E )-3.46 (TUF3D). Storage heat flux ( ΔQ S ) is modeled with TUF3D, the empirical objective hysteresis model (OHM), and the inverse LUMPS implementation. Agreement between models is generally good; the OHM-predicted diurnal cycle deviates somewhat relative to the other two models, likely because OHM coefficients are not specified for the roof and wall construction materials found in this neighborhood. New facet-scale and local-scale OHM coefficients are developed based on modeled ΔQ S and observed Q * . Coefficients in the empirical models OHM and LUMPS are derived from observations in primarily non-desert climates in European/North American neighborhoods and must be updated as measurements in lightweight low-rise (and other) neighborhoods in

  5. A passive gust alleviation system for a light aircraft

    NASA Technical Reports Server (NTRS)

    Roesch, P.; Harlan, R. B.

    1975-01-01

    A passive aeromechanical gust alleviation system was examined for application to a Cessna 172. The system employs small auxiliary wings to sense changes in angle of attack and to drive the wing flaps to compensate the resulting incremental lift. The flaps also can be spring loaded to neutralize the effects of variations in dynamic pressure. Conditions for gust alleviation are developed and shown to introduce marginal stability if both vertical and horizontal gusts are compensated. Satisfactory behavior is realized if only vertical gusts are absorbed; however, elevator control is effectively negated by the system. Techniques to couple the elevator and flaps are demonstrated to restore full controllability without sacrifice of gust alleviation.

  6. Input-output modeling for urban energy consumption in Beijing: dynamics and comparison.

    PubMed

    Zhang, Lixiao; Hu, Qiuhong; Zhang, Fan

    2014-01-01

    Input-output analysis has been proven to be a powerful instrument for estimating embodied (direct plus indirect) energy usage through economic sectors. Using 9 economic input-output tables of years 1987, 1990, 1992, 1995, 1997, 2000, 2002, 2005, and 2007, this paper analyzes energy flows for the entire city of Beijing and its 30 economic sectors, respectively. Results show that the embodied energy consumption of Beijing increased from 38.85 million tonnes of coal equivalent (Mtce) to 206.2 Mtce over the past twenty years of rapid urbanization; the share of indirect energy consumption in total energy consumption increased from 48% to 76%, suggesting the transition of Beijing from a production-based and manufacturing-dominated economy to a consumption-based and service-dominated economy. Real estate development has shown to be a major driving factor of the growth in indirect energy consumption. The boom and bust of construction activities have been strongly correlated with the increase and decrease of system-side indirect energy consumption. Traditional heavy industries remain the most energy-intensive sectors in the economy. However, the transportation and service sectors have contributed most to the rapid increase in overall energy consumption. The analyses in this paper demonstrate that a system-wide approach such as that based on input-output model can be a useful tool for robust energy policy making.

  7. Input-Output Modeling for Urban Energy Consumption in Beijing: Dynamics and Comparison

    PubMed Central

    Zhang, Lixiao; Hu, Qiuhong; Zhang, Fan

    2014-01-01

    Input-output analysis has been proven to be a powerful instrument for estimating embodied (direct plus indirect) energy usage through economic sectors. Using 9 economic input-output tables of years 1987, 1990, 1992, 1995, 1997, 2000, 2002, 2005, and 2007, this paper analyzes energy flows for the entire city of Beijing and its 30 economic sectors, respectively. Results show that the embodied energy consumption of Beijing increased from 38.85 million tonnes of coal equivalent (Mtce) to 206.2 Mtce over the past twenty years of rapid urbanization; the share of indirect energy consumption in total energy consumption increased from 48% to 76%, suggesting the transition of Beijing from a production-based and manufacturing-dominated economy to a consumption-based and service-dominated economy. Real estate development has shown to be a major driving factor of the growth in indirect energy consumption. The boom and bust of construction activities have been strongly correlated with the increase and decrease of system-side indirect energy consumption. Traditional heavy industries remain the most energy-intensive sectors in the economy. However, the transportation and service sectors have contributed most to the rapid increase in overall energy consumption. The analyses in this paper demonstrate that a system-wide approach such as that based on input-output model can be a useful tool for robust energy policy making. PMID:24595199

  8. B-747 Vortex Alleviation Flight Tests : Ground-Based Sensor Measurements

    DOT National Transportation Integrated Search

    1982-01-01

    In 1979, a series of B-747 flight tests were carried out to study the wake-vortex alleviation produced by deploying spoilers in the landing configuration. The alleviation achieved was examined by encounters of probe aircraft and by velocity profile m...

  9. Integration of family planning with poverty alleviation.

    PubMed

    Peng, P

    1996-12-01

    The Chinese Communist Central Committee and the State Council aim to solve food and clothing problems among impoverished rural people by the year 2000. This goal was a priority on the agenda of the recent October 1996 National Conference on Poverty Alleviation and Development and the 1996 National Conference of the State Family Planning Commission. Poverty is attributed to rapid population growth and underdevelopment. Poverty is concentrated in parts of 18 large provinces. These provinces are characterized by Family Planning Minister Peng as having high birth rates, early marriage and childbearing, unplanned births, and multiple births. Overpopulation is tied to overconsumption, depletion of resources, deforestation, soil erosion, pollution, shortages of water, decreases in shares of cultivated land, degraded grasslands, and general destruction of the environment. Illiteracy in poor areas is over 20%, compared to the national average of 15%. Mortality and morbidity are higher. Family planning is harder to enforce in poor areas. Pilot programs in Sichuan and Guizhou provinces are promoting integration of family planning with poverty alleviation. Several conferences have addressed the integrated program strategies. Experience has shown that poverty alleviation occurs by controlled population growth and improved quality of life. Departments should "consolidate" their development efforts under Communist Party leadership at all levels. Approaches should emphasize self-reliance and public mobilization. The emphasis should be on women's participation in development. Women's income should be increased. Family planning networks at the grassroots level need to be strengthened simultaneously with increased poverty alleviation and development. The government strategy is to strengthen leadership, mobilize the public, and implement integrated programs.

  10. Urbanization and Income Inequality in Post-Reform China: A Causal Analysis Based on Time Series Data

    PubMed Central

    Chen, Guo; Glasmeier, Amy K.; Zhang, Min; Shao, Yang

    2016-01-01

    This paper investigates the potential causal relationship(s) between China’s urbanization and income inequality since the start of the economic reform. Based on the economic theory of urbanization and income distribution, we analyze the annual time series of China’s urbanization rate and Gini index from 1978 to 2014. The results show that urbanization has an immediate alleviating effect on income inequality, as indicated by the negative relationship between the two time series at the same year (lag = 0). However, urbanization also seems to have a lagged aggravating effect on income inequality, as indicated by positive relationship between urbanization and the Gini index series at lag 1. Although the link between urbanization and income inequality is not surprising, the lagged aggravating effect of urbanization on the Gini index challenges the popular belief that urbanization in post-reform China generally helps reduce income inequality. At deeper levels, our results suggest an urgent need to focus on the social dimension of urbanization as China transitions to the next stage of modernization. Comprehensive social reforms must be prioritized to avoid a long-term economic dichotomy and permanent social segregation. PMID:27433966

  11. Urbanization and Income Inequality in Post-Reform China: A Causal Analysis Based on Time Series Data.

    PubMed

    Chen, Guo; Glasmeier, Amy K; Zhang, Min; Shao, Yang

    2016-01-01

    This paper investigates the potential causal relationship(s) between China's urbanization and income inequality since the start of the economic reform. Based on the economic theory of urbanization and income distribution, we analyze the annual time series of China's urbanization rate and Gini index from 1978 to 2014. The results show that urbanization has an immediate alleviating effect on income inequality, as indicated by the negative relationship between the two time series at the same year (lag = 0). However, urbanization also seems to have a lagged aggravating effect on income inequality, as indicated by positive relationship between urbanization and the Gini index series at lag 1. Although the link between urbanization and income inequality is not surprising, the lagged aggravating effect of urbanization on the Gini index challenges the popular belief that urbanization in post-reform China generally helps reduce income inequality. At deeper levels, our results suggest an urgent need to focus on the social dimension of urbanization as China transitions to the next stage of modernization. Comprehensive social reforms must be prioritized to avoid a long-term economic dichotomy and permanent social segregation.

  12. A review on potential use of low-temperature water in the urban environment as a thermal-energy source

    NASA Astrophysics Data System (ADS)

    Laanearu, J.; Borodinecs, A.; Rimeika, M.; Palm, B.

    2017-10-01

    The thermal-energy potential of urban water sources is largely unused to accomplish the up-to-date requirements of the buildings energy demands in the cities of Baltic Sea Region. A reason is that the natural and excess-heat water sources have a low temperature and heat that should be upgraded before usage. The demand for space cooling should increase in near future with thermal insulation of buildings. There are a number of options to recover heat also from wastewater. It is proposed that a network of heat extraction and insertion including the thermal-energy recovery schemes has potential to be broadly implemented in the region with seasonally alternating temperature. The mapping of local conditions is essential in finding the suitable regions (hot spots) for future application of a heat recovery schemes by combining information about demands with information about available sources. The low-temperature water in the urban environment is viewed as a potential thermal-energy source. To recover thermal energy efficiently, it is also essential to ensure that it is used locally, and adverse effects on environment and industrial processes are avoided. Some characteristics reflecting the energy usage are discussed in respect of possible improvements of energy efficiency.

  13. Molecular Mechanisms of Chromium in Alleviating Insulin Resistance

    PubMed Central

    Hua, Yinan; Clark, Suzanne; Ren, Jun; Sreejayan, Nair

    2011-01-01

    Type 2 diabetes is often associated with obesity, dyslipidemia, and cardiovascular anomalies and is a major health problem approaching global epidemic proportions. Insulin resistance, a prediabetic condition, precedes the onset of frank type 2 diabetes and offers potential avenues for early intervention to treat the disease. Although lifestyle modifications and exercise can reduce the incidence of diabetes, compliance has proved to be difficult, warranting pharmacological interventions. However, most of the currently available drugs that improve insulin sensitivity have adverse effects. Therefore, attractive strategies to alleviate insulin resistance include dietary supplements. One such supplement is chromium, which has been shown reduce insulin resistance in some, but not all, studies. Furthermore, the molecular mechanisms of chromium in alleviating insulin resistance remain elusive. This review examines emerging reports on the effect of chromium, as well as molecular and cellular mechanisms by which chromium may provide beneficial effects in alleviating insulin resistance. PMID:22423897

  14. Alleviating Stress for Women Administrators.

    ERIC Educational Resources Information Center

    Ten Elshof, Annette; Tomlinson, Elaine

    1981-01-01

    Describes a workshop designed to help women administrators assess individual stress levels. Stress can be alleviated through exercise, support groups or networking, sleep and diet, relaxation, guided fantasy, and planned activity. The long-term implications include preventing illness and making women more effective within the administrative…

  15. Carbon dioxide emissions, economic growth, energy use, and urbanization in Saudi Arabia: evidence from the ARDL approach and impulse saturation break tests.

    PubMed

    Raggad, Bechir

    2018-05-01

    This study investigates the existence of long-run relationship between CO 2 emissions, economic growth, energy use, and urbanization in Saudi Arabia over the period 1971-2014. The autoregressive distributed lag (ARDL) approach with structural breaks, where structural breaks are identified with the recently impulse saturation break tests, is applied to conduct the analysis. The bounds test result supports the existence of long-run relationship among the variables. The existence of environmental Kuznets curve (EKC) hypothesis has also been tested. The results reveal the non-validity of the EKC hypothesis for Saudi Arabia as the relationship between GDP and pollution is positive in both the short and the long run. Moreover, energy use increases pollution both in short and long run in the country. On the contrary, the results show a negative and significant impact of urbanization on carbon emissions in Saudi Arabia, which means that urban development is not an obstacle to the improvement of environmental quality. Consequently, policy-makers in Saudi Arabia should consider the efficiency enhancement, frugality in energy consumption, and especially increase the share of renewable energies in the total energy mix.

  16. Nested High Resolution Modeling of the Impact of Urbanization on Regional Climate in Three Vast Urban Agglomerations in China

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Feng, Jinming; Yan, Zhongwei; Hu, Yonghong; Jia, Gensuo

    2013-04-01

    In this paper, the Weather Research and Forecasting (WRF) model coupled to the Urban Canopy Model (UCM) is employed to simulate the impact of urbanization on the regional climate over three vast city agglomerations in China. Based on high resolution land use and land cover data, two scenarios are designed to represent the non-urban and current urban land use distributions. By comparing the results of two nested, high resolution numerical experiments, the spatial and temporal changes on surface air temperature, heat stress index, surface energy budget and precipitation due to urbanization are analyzed and quantified. Urban expansion increases the surface air temperature in urban areas by about 1? and this climatic forcing of urbanization on temperature is more pronounced in summer and nighttime than other seasons and daytime. The heat stress intensity, which reflects the combined effects of temperature and humidity, is enhanced by about 0.5 units in urban areas. The regional incoming solar radiation increases after urban expansion, which may be caused by the reduction of cloud fraction. The increased temperature and roughness of the urban surface lead to enhanced convergence. Meanwhile, the planetary boundary layer is deepened and water vapor is mixed more evenly in the lower atmosphere. The deficit of water vapor leads to less convective available potential energy and more convective inhibition energy. Finally, these combined effects may reduce the rainfall amount over urban area mainly in summer and change the regional precipitation pattern to a certain extent.

  17. Energy Saving Performance Analysis of An Inverter-based Regenerative Power Re-utilization Device for Urban Rail Transit

    NASA Astrophysics Data System (ADS)

    Li, Jin; Qiu, Zhiling; Hu, Leilei

    2018-04-01

    The inverter-based regenerative braking power utilization devices can re-utilize the regenerative energy, thus reduce the energy consumption of urban rail transit. In this paper the power absorption principle of the inverter-based device is introduced, then the key influencing factors of energy saving performance are analyzed based on the absorption model. The field operation data verified that the control DC voltage plays an important role and lower control DC voltage yields more energy saving. Also, the one year energy saving performance data of an inverter-based re-utilization device located in NanJing S8 line is provided, and more than 1.2 million kWh energy is recovered in the one year operation.

  18. Energy Justice in Sub-Saharan Africa

    NASA Astrophysics Data System (ADS)

    Buchholz, Kathleen B.

    Sub-Saharan Africa has the lowest rates of electrification and some of the worst education statistics worldwide. In the absence of strong infrastructure for a reliable grid system and quality universal primary schooling, the poor suffer significantly. Though substantial research has been done on both issues separately, the relationship between the two has yet to be explored. This thesis uses social justice theories to introduce the connections between energy poverty and an individual's education capabilities through a case study in Zambia. Case study research was carried out in the urban low-resource settlements of Lusaka, Zambia over a period of two months with Lifeline Energy, using methods of participant observation. Drawing on trends discovered in survey responses, interviews and feedback from a distribution of renewable technologies, this study demonstrates that a lack of modern forms of energy detracts from education. By synthesizing the data with Martha Nussbaum's capabilities approach and Sendhil Mullainathan and Eldar Shafir's scarcity theory, the research reveals that energy poverty hinders an individual's ability to study and gain a quality education and diminishes their available cognitive capacity to learn by tunneling attention to the resource deficit. Furthermore, it supports the claim that energy poverty is not gender neutral. The research concludes that the scarcity caused by energy poverty can be lessened by the investment in and use of small-scale renewable technologies which alleviates some of the daily stress and grind of poverty. This thesis lays the groundwork to recognize energy poverty as an injustice. Keywords: Energy Poverty, Education, Gender, Sub-Saharan Africa, Scarcity, Capabilities Approach..

  19. Nested high-resolution modeling of the impact of urbanization on regional climate in three vast urban agglomerations in China

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Feng, Jinming; Yan, Zhongwei; Hu, Yonghong; Jia, Gensuo

    2012-11-01

    In this paper, the Weather Research and Forecasting Model, coupled to the Urban Canopy Model, is employed to simulate the impact of urbanization on the regional climate over three vast city agglomerations in China. Based on high-resolution land use and land cover data, two scenarios are designed to represent the nonurban and current urban land use distributions. By comparing the results of two nested, high-resolution numerical experiments, the spatial and temporal changes on surface air temperature, heat stress index, surface energy budget, and precipitation due to urbanization are analyzed and quantified. Urban expansion increases the surface air temperature in urban areas by about 1°C, and this climatic forcing of urbanization on temperature is more pronounced in summer and nighttime than other seasons and daytime. The heat stress intensity, which reflects the combined effects of temperature and humidity, is enhanced by about 0.5 units in urban areas. The regional incoming solar radiation increases after urban expansion, which may be caused by the reduction of cloud fraction. The increased temperature and roughness of the urban surface lead to enhanced convergence. Meanwhile, the planetary boundary layer is deepened, and water vapor is mixed more evenly in the lower atmosphere. The deficit of water vapor leads to less convective available potential energy and more convective inhibition energy. Finally, these combined effects may reduce the rainfall amount over urban areas, mainly in summer, and change the regional precipitation pattern to a certain extent.

  20. Parameter Estimation and Sensitivity Analysis of an Urban Surface Energy Balance Parameterization at a Tropical Suburban Site

    NASA Astrophysics Data System (ADS)

    Harshan, S.; Roth, M.; Velasco, E.

    2014-12-01

    Forecasting of the urban weather and climate is of great importance as our cities become more populated and considering the combined effects of global warming and local land use changes which make urban inhabitants more vulnerable to e.g. heat waves and flash floods. In meso/global scale models, urban parameterization schemes are used to represent the urban effects. However, these schemes require a large set of input parameters related to urban morphological and thermal properties. Obtaining all these parameters through direct measurements are usually not feasible. A number of studies have reported on parameter estimation and sensitivity analysis to adjust and determine the most influential parameters for land surface schemes in non-urban areas. Similar work for urban areas is scarce, in particular studies on urban parameterization schemes in tropical cities have so far not been reported. In order to address above issues, the town energy balance (TEB) urban parameterization scheme (part of the SURFEX land surface modeling system) was subjected to a sensitivity and optimization/parameter estimation experiment at a suburban site in, tropical Singapore. The sensitivity analysis was carried out as a screening test to identify the most sensitive or influential parameters. Thereafter, an optimization/parameter estimation experiment was performed to calibrate the input parameter. The sensitivity experiment was based on the "improved Sobol's global variance decomposition method" . The analysis showed that parameters related to road, roof and soil moisture have significant influence on the performance of the model. The optimization/parameter estimation experiment was performed using the AMALGM (a multi-algorithm genetically adaptive multi-objective method) evolutionary algorithm. The experiment showed a remarkable improvement compared to the simulations using the default parameter set. The calibrated parameters from this optimization experiment can be used for further model

  1. Effect of heat waves on VOC emissions from vegetation and urban air quality

    NASA Astrophysics Data System (ADS)

    Churkina, G.; Kuik, F.; Lauer, A.; Bonn, B.; Butler, T. M.

    2015-12-01

    Programs to plant millions of trees in cities around the world aim at the reduction of summer temperatures, increase carbon storage, storm water control, provision of space for recreation, as well as poverty alleviation. Although these multiple benefits speak positively for urban greening programs, the programs do not take into account how close human and natural systems are coupled in urban areas. Elevated temperatures together with anthropogenic emissions of air and water pollutants distinguish the urban system. Urban and sub-urban vegetation responds to ambient changes and reacts with pollutants. Neglecting this coupling may lead to unforeseen drawbacks of urban greening programs. The potential for emissions of volatile organic compounds (VOC) from vegetation combined with anthropogenic emissions to produce ozone has long been recognized. This potential increases under rising temperatures. Here we investigate how heat waves affect emissions of VOC from urban vegetation and corresponding ground-level ozone. In this study we use Weather Research and Forecasting Model with coupled atmospheric chemistry (WRF-CHEM) to quantify these feedbacks in Berlin, Germany during the 2006 heat wave. VOC emissions from vegetation are simulated with MEGAN 2.0 coupled with WRF-CHEM. Our preliminary results indicate that contribution of VOCs from vegetation to ozone formation may increase by more than twofold during the heat wave period. We highlight the importance of the vegetation for urban areas under changing climate and discuss associated tradeoffs.

  2. Conceptual framework for describing selected urban and community impacts of federal energy policies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, F.A,; Marcus, A.A.; Keller, D.

    1980-06-01

    A conceptual framework is presented for describing selected urban and community impacts of Federal energy policies. The framework depends on a simple causal model. The outputs of the model are impacts, changes in the state of the world of particular interest to policymakers. At any given time, a set of determinants account for the state of the world with respect to an impact category. Application of the model to a particular impact category requires: establishing a definition and measure for the impact category and identifying the determinants of these impacts. Analysis of the impact of a particular policy requires themore » following: identifying the policy and its effects (as estimated by others), isolating any effects that themselves constitute an urban and community impact, identifying any effects that change the value of determinants, and describing the impact with reference to the new values of determinants. This report provides a framework for these steps. Three impacts addressed are: neighborhood stability, housing availability, and quality and availability of public services. In each chapter, a definition and measure for the impact are specified; its principal determinants are identified; how the causal model can be used to estimate impacts by applying it to three illustrative Federal policies (domestic oil price decontrol, building energy performance standards, and increased Federal aid for mass transit) is demonstrated. (MCW)« less

  3. Direct and indirect urban water footprints of the United States

    NASA Astrophysics Data System (ADS)

    Chini, Christopher M.; Konar, Megan; Stillwell, Ashlynn S.

    2017-01-01

    The water footprint of the urban environment is not limited to direct water consumption (i.e., municipal supplies); embedded water in imported resources, or virtual water transfers, provides an additional component of the urban water footprint. Using empirical data, our analysis extends traditional urban water footprinting analysis to quantify both direct and indirect urban resources for the United States. We determine direct water volumes and their embedded energy through open records requests of water utilities. The indirect component of the urban water footprint includes water indirectly consumed through energy and food, relating to the food-energy-water nexus. We comprehensively quantify the indirect water footprint for 74 metropolitan statistical areas through the combination of various databases, including the Commodity Flow Survey of the U.S. Census Bureau, the U.S. Department of Agriculture, the Water Footprint Network, and the Energy Information Administration. We then analyze spatial heterogeneity in both direct and indirect water footprints, determining the average urban water footprint in the United States to be 1.64 million gallons of water per person per year [6200 m3/person/yr or 17,000 L/person/d], dominated by indirect water. Additionally, our study of the urban water cycle extends beyond considering only water resources to include embedded energy and equivalent carbon dioxide emissions. The inclusion of multiple sectors of the urban water cycle and their underlying processes provides important insights to the overall urban environment, the interdependencies of the food-energy-water nexus, and water resource sustainability. Our results provide opportunities for benchmarking the urban energy-water nexus, water footprints, and climate change potential.

  4. Analysis on LID for highly urbanized areas' waterlogging control: demonstrated on the example of Caohejing in Shanghai.

    PubMed

    Liao, Z L; He, Y; Huang, F; Wang, S; Li, H Z

    2013-01-01

    Although a commonly applied measure across the United States and Europe for alleviating the negative impacts of urbanization on the hydrological cycle, low impact development (LID) has not been widely used in highly urbanized areas, especially in rapidly urbanizing cities in developing countries like China. In this paper, given five LID practices including Bio-Retention, Infiltration Trench, Porous Pavement, Rain Barrels, and Green Swale, an analysis on LID for highly urbanized areas' waterlogging control is demonstrated using the example of Caohejing in Shanghai, China. Design storm events and storm water management models are employed to simulate the total waterlogging volume reduction, peak flow rate reduction and runoff coefficient reduction of different scenarios. Cost-effectiveness is calculated for the five practices. The aftermath shows that LID practices can have significant effects on storm water management in a highly urbanized area, and the comparative results reveal that Rain Barrels and Infiltration Trench are the two most suitable cost-effective measures for the study area.

  5. Energy demand and environmental implications in urban transport — Case of Delhi

    NASA Astrophysics Data System (ADS)

    Bose, Ranjan Kumar

    A simple model of passenger transport in the city of Delhi has been developed using a computer-based software called—Long Range Energy Alternatives Planning (LEAP) and the associated Environmental Database (EDB) model. The hierarchical structure of LEAP represents the traffic patterns in terms of passenger travel demand, mode (rail/road), type of vehicle and occupancy (persons per vehicle). Transport database in Delhi together with fuel consumption values for the vehicle types, formed the basis of the transport demand and energy consumption calculations. Emission factors corresponding to the actual vehicle types and driving conditions in Delhi is introduced into the EDB and linked to the energy consumption values for estimating total emission of CO, HC, NO x, SO 2 Pb and TSP. The LEAP model is used to estimate total energy demand and the vehicular emissions for the base year-1990/91 and extrapolate for the future—1994/95, 2000/01, 2004/05 and 2009/10, respectively. The model is run under five alternative scenarios to study the impact of different urban transport policy initiatives that would reduce total energy requirement in the transport sector of Delhi and also reduce emission. The prime objective is to arrive at an optimal transport policy which limits the future growth of fuel consumption as well as air pollution.

  6. Resilience offers escape from trapped thinking on poverty alleviation

    PubMed Central

    Lade, Steven J.; Haider, L. Jamila; Engström, Gustav; Schlüter, Maja

    2017-01-01

    The poverty trap concept strongly influences current research and policy on poverty alleviation. Financial or technological inputs intended to “push” the rural poor out of a poverty trap have had many successes but have also failed unexpectedly with serious ecological and social consequences that can reinforce poverty. Resilience thinking can help to (i) understand how these failures emerge from the complex relationships between humans and the ecosystems on which they depend and (ii) navigate diverse poverty alleviation strategies, such as transformative change, that may instead be required. First, we review commonly observed or assumed social-ecological relationships in rural development contexts, focusing on economic, biophysical, and cultural aspects of poverty. Second, we develop a classification of poverty alleviation strategies using insights from resilience research on social-ecological change. Last, we use these advances to develop stylized, multidimensional poverty trap models. The models show that (i) interventions that ignore nature and culture can reinforce poverty (particularly in agrobiodiverse landscapes), (ii) transformative change can instead open new pathways for poverty alleviation, and (iii) asset inputs may be effective in other contexts (for example, where resource degradation and poverty are tightly interlinked). Our model-based approach and insights offer a systematic way to review the consequences of the causal mechanisms that characterize poverty traps in different agricultural contexts and identify appropriate strategies for rural development challenges. PMID:28508077

  7. Resilience offers escape from trapped thinking on poverty alleviation.

    PubMed

    Lade, Steven J; Haider, L Jamila; Engström, Gustav; Schlüter, Maja

    2017-05-01

    The poverty trap concept strongly influences current research and policy on poverty alleviation. Financial or technological inputs intended to "push" the rural poor out of a poverty trap have had many successes but have also failed unexpectedly with serious ecological and social consequences that can reinforce poverty. Resilience thinking can help to (i) understand how these failures emerge from the complex relationships between humans and the ecosystems on which they depend and (ii) navigate diverse poverty alleviation strategies, such as transformative change, that may instead be required. First, we review commonly observed or assumed social-ecological relationships in rural development contexts, focusing on economic, biophysical, and cultural aspects of poverty. Second, we develop a classification of poverty alleviation strategies using insights from resilience research on social-ecological change. Last, we use these advances to develop stylized, multidimensional poverty trap models. The models show that (i) interventions that ignore nature and culture can reinforce poverty (particularly in agrobiodiverse landscapes), (ii) transformative change can instead open new pathways for poverty alleviation, and (iii) asset inputs may be effective in other contexts (for example, where resource degradation and poverty are tightly interlinked). Our model-based approach and insights offer a systematic way to review the consequences of the causal mechanisms that characterize poverty traps in different agricultural contexts and identify appropriate strategies for rural development challenges.

  8. Urban net-zero water treatment and mineralization: experiments, modeling and design.

    PubMed

    Englehardt, James D; Wu, Tingting; Tchobanoglous, George

    2013-09-01

    Water and wastewater treatment and conveyance account for approximately 4% of US electric consumption, with 80% used for conveyance. Net zero water (NZW) buildings would alleviate demands for a portion of this energy, for water, and for the treatment of drinking water for pesticides and toxic chemical releases in source water. However, domestic wastewater contains nitrogen loads much greater than urban/suburban ecosystems can typically absorb. The purpose of this work was to identify a first design of a denitrifying urban NZW treatment process, operating at ambient temperature and pressure and circum-neutral pH, and providing mineralization of pharmaceuticals (not easily regulated in terms of environmental half-life), based on laboratory tests and mass balance and kinetic modeling. The proposed treatment process is comprised of membrane bioreactor, iron-mediated aeration (IMA, reported previously), vacuum ultrafiltration, and peroxone advanced oxidation, with minor rainwater make-up and H2O2 disinfection residual. Similar to biological systems, minerals accumulate subject to precipitative removal by IMA, salt-free treatment, and minor dilution. Based on laboratory and modeling results, the system can produce potable water with moderate mineral content from commingled domestic wastewater and 10-20% rainwater make-up, under ambient conditions at individual buildings, while denitrifying and reducing chemical oxygen demand to below detection (<3 mg/L). While economics appear competitive, further development and study of steady-state concentrations and sludge management options are needed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Effect of limited amplitude and rate of flap motion on vane-controlled gust alleviation system

    NASA Technical Reports Server (NTRS)

    Barker, L. K.; Crawford, D. J.; Sparrow, G. W.

    1972-01-01

    An airplane (light transport type) is assumed to be in level flight (no pitching) through atmospheric turbulence which has a mean-square vertical gust intensity of 9.3 (m/sec)sq. The power spectral density of the vertical acceleration due to gusts is examined with and without a gust-alleviation system in operation. The gust-alleviation system consisted of wing flaps that were used in conjunction with a vane mounted ahead of the airplane to sense the vertical gust velocity. The primary purpose of this study was to examine the change in the effectiveness of the gust-alleviation system when the flap motion is limited in amplitude and rate. The alleviation system was very effective if no restrictions were placed on flap motion (rate and amplitude). Restricting the flap amplitude to 0.5 radian did not appreciably change the effectiveness. However, restricting the flap rate did reduce the gust alleviation, and restricting the flap rate to 0.25 rad/sec actually caused the alleviation system to increase the vertical acceleration above that for the no-alleviation situation. Based upon this analysis, rate limiting appears to be rather significant in gust-alleviation systems designed for passenger comfort.

  10. Urban-Rural Disparities in Energy Intake and Contribution of Fat and Animal Source Foods in Chinese Children Aged 4-17 Years.

    PubMed

    Zhang, Ji; Wang, Dantong; Eldridge, Alison L; Huang, Feifei; Ouyang, Yifei; Wang, Huijun; Zhang, Bing

    2017-05-21

    Excessive energy intake and poor food choices are major health concerns associated with overweight and obesity risk. This study aims to explore disparities in energy intake and the contributions from fat and animal source foods among Chinese school-aged children and adolescents in different communities based on urbanization levels. Three consecutive 24 h recalls were used to assess dietary intake. Subjects' height and weight were measured using standard equipment. Standardized questionnaires were used to collect household demographic and socioeconomic characteristics by trained interviewers. The 2011 China Health and Nutrition Survey is part of an ongoing longitudinal household survey across 228 communities in nine provinces and three mega-cities in China. Subjects consisted of children aged 4-17 years ( n = 1866; 968 boys and 898 girls). The estimated average energy intake was 1604 kcal/day (1706 kcal/day for boys and 1493 kcal/day for girls). Proportions of energy from fat and animal source foods were 36.8% and 19.8% respectively and did not differ by gender. Total energy intake showed no significant disparity, but the proportion of energy from fat and animal source foods increased with increasing urbanization levels and increasing household income level. The largest difference in consumption percentages between children in rural areas and those in highly urban areas was for milk and dairy products (14.8% versus 74.4%) and the smallest difference was seen in percent consuming meat and meat products (83.1% versus 97.1%). Results of this study highlight the need for developing and implementing community-specific strategies to improve Chinese children's diet quality.

  11. Impact of economic growth, nonrenewable and renewable energy consumption, and urbanization on carbon emissions in Sub-Saharan Africa.

    PubMed

    Hanif, Imran

    2018-05-01

    The present study explores the impact of economic growth; urban expansion; and consumption of fossil fuels, solid fuels, and renewable energy on environmental degradation in developing economies of Sub-Saharan Africa. To demonstrate its findings in detail, the study adopts a system generalized method of moment (GMM) on a panel of 34 emerging economies for the period from 1995 to 2015. The results describe that the consumption of fossil and solid fuels for cooking and expansion of urban areas are significantly contributing to carbon dioxide emissions, on one end, and stimulating air pollution, on the other. The results also exhibit an inverted U-shape relationship between per capita economic growth and carbon emissions. This relation confirms the existence of an environmental Kuznets curve (EKC) in middle- and low-income economies of Sub-Saharan Africa. Furthermore, the findings reveal that the use of renewable energy alternatives improves air quality by controlling carbon emissions and lowering the direct interaction of households with toxic gases. Thus, the use of renewable energy alternatives helps the economies to achieve sustainable development targets.

  12. The study of urban metabolism and its applications to urban planning and design.

    PubMed

    Kennedy, C; Pincetl, S; Bunje, P

    2011-01-01

    Following formative work in the 1970s, disappearance in the 1980s, and reemergence in the 1990s, a chronological review shows that the past decade has witnessed increasing interest in the study of urban metabolism. The review finds that there are two related, non-conflicting, schools of urban metabolism: one following Odum describes metabolism in terms of energy equivalents; while the second more broadly expresses a city's flows of water, materials and nutrients in terms of mass fluxes. Four example applications of urban metabolism studies are discussed: urban sustainability indicators; inputs to urban greenhouse gas emissions calculation; mathematical models of urban metabolism for policy analysis; and as a basis for sustainable urban design. Future directions include fuller integration of social, health and economic indicators into the urban metabolism framework, while tackling the great sustainability challenge of reconstructing cities. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Life cycle implications of urban green infrastructure.

    PubMed

    Spatari, Sabrina; Yu, Ziwen; Montalto, Franco A

    2011-01-01

    Low Impact Development (LID) is part of a new paradigm in urban water management that aims to decentralize water storage and movement functions within urban watersheds. LID strategies can restore ecosystem functions and reduce runoff loadings to municipal water pollution control facilities (WPCF). This research examines the avoided energy and greenhouse gas (GHG) emissions of select LID strategies using life cycle assessment (LCA) and a stochastic urban watershed model. We estimate annual energy savings and avoided GHG emissions of 7.3 GJ and 0.4 metric tons, respectively, for a LID strategy implemented in a neighborhood in New York City. Annual savings are small compared to the energy and GHG intensity of the LID materials, resulting in slow environmental payback times. This preliminary analysis suggests that if implemented throughout an urban watershed, LID strategies may have important energy cost savings to WPCF, and can make progress towards reducing their carbon footprint. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Urban water transactions: the search of a comprehensive framework for interactions between water and urban systems

    NASA Astrophysics Data System (ADS)

    Angarita, Hector; Domínguez, Efraín

    2013-04-01

    United Nations global demographic prospects show that from 1950 to 2050, the number of people living in cities will increase from 0.7 to 6.3 billion, which represents a 9 times fold in 100 years. In contrast, human population as a whole doesn't show the same trends of the urban subset. For instance, rural population is in some regions almost stalled or reducing at small rates, with an average growth rate 50% less than the urban population. This progressive change in global population structure, with more people living mostly in urban areas, already places urban settlements as the main node driving the interaction of human population and other earth systems, at local, regional and global scales. This population dynamics is a major source of concern, mainly because the need to comprehensively understand the two apparent contradictory faces of the urbanization phenomena: Despite cities tend to perform more efficiently in terms of mass and energy requirements as function of population size, the agglomeration process in cities typically implies an increase of overall throughput of mass and energy over time. Thus, a central question is to understand how the apparent per capita energy and material flows minimization occurring in cities can propagate its effects towards other geosystems in future population scenarios. The magnitude of scaled (temporal and spatial) effects is crucial to determine if limits of supporting systems capacity is or will be exceeded for a system of cities, or if otherwise is within steady limits. The Urban Water Transaction (UWT) framework aims for the study of the above question from the perspective of water. Typically between 50 and 70% of mass throughput in urban areas is water, however, that figure doesn't account for other teleconnected flows, such as energy production (hydropower facilities) and food production (virtual water), etc. Therefore, a comprehensive view of actual dependence of urban areas and water faces - in the view of the

  15. To understand and alleviate suffering in a caring culture.

    PubMed

    Lindholm, L; Eriksson, K

    1993-09-01

    The purpose of this study is to help understand what suffering is, i.e. how patients and nurses describe suffering, and how suffering can be alleviated. The study has a descriptive-explorative design and its approach is phenomenological-hermeneutical. The informant (research group) are 11 nurses (nurses, doctors, hospital theologians) and five patients in a social-psychiatric nursing unit, based on Christian ideology. The results of the study show that the 'what' of suffering is unclear. The nurses tend to describe more the 'why' of suffering, i.e. the reason for suffering. The what of suffering is pain, fear, despair, lack of strength. It is a form of lack of freedom and non-motion. It is a struggle between wanting and knowing, between guilt and responsibility. The form of suffering tends to mould the caring relation. To be touched in some way by another in a meeting can alleviate the deepest suffering. Compassion will always alleviate suffering.

  16. Breakfast food patterns among urban and rural Croatian schoolchildren.

    PubMed

    Colic Baric, Irena; Satalic, Zvonimir

    2003-01-01

    The aim of this study was to report breakfast food patterns among the rural and urban Croatian schoolchildren in the post-war socioeconomic changes. A quantitative Food Frequency Questionnaire was used. Subjects were 7-18 year old schoolchildren (815 from urban and 375 from rural areas). The average energy intake was 27.5 and 23.0% of the Recommended Dietary Allowance (RDA) in the urban and rural area respectively. Urban subjects tend to choose healthier options when older, while the rural subjects displayed the opposite (significantly correlated age with energy intake (% RDA) and dietary fibre intake (% of 'age + 5' rule). The same applied to age versus iron intake (urban positive, rural negative correlation). Breakfasts providing 20-30% RDA for energy and more than 300 mg of calcium were consumed by 20.7 and 32.4% of the urban and rural subjects respectively. Cereal products and milk and dairy products were the major breakfast constituents everywhere. Meat and its products, and eggs seem to be uncommon breakfast foods. The urban subjects had a more adequate energy intake at breakfast, but better food choices were observed among rural subjects.

  17. Lightweight, Economical Device Alleviates Drop Foot

    NASA Technical Reports Server (NTRS)

    Deis, B. C.

    1983-01-01

    Corrective apparatus alleviates difficulties in walking for victims of drop foot. Elastic line attached to legband provides flexible support to toe of shoe. Device used with flat (heelless) shoes, sneakers, crepe-soled shoes, canvas shoes, and many other types of shoes not usable with short leg brace.

  18. New Rulers in the Ghetto: The Community Development Corporation and Urban Poverty. Contributions in Afro-American and African Studies, Number 28.

    ERIC Educational Resources Information Center

    Berndt, Harry Edward

    The activities of the Community Development Corporation (CDC), founded in 1967 to alleviate urban poverty in the United States, are analyzed in this book. The overall strategies used by the CDC, including the acquisition of existing businesses, development of new businesses, investments in physical assets of the community, assistance through loans…

  19. Energy flux parametrization as an opportunity to get Urban Heat Island insights: The case of Athens, Greece (Thermopolis 2009 Campaign).

    PubMed

    Loupa, G; Rapsomanikis, S; Trepekli, A; Kourtidis, K

    2016-01-15

    Energy flux parameterization was effected for the city of Athens, Greece, by utilizing two approaches, the Local-Scale Urban Meteorological Parameterization Scheme (LUMPS) and the Bulk Approach (BA). In situ acquired data are used to validate the algorithms of these schemes and derive coefficients applicable to the study area. Model results from these corrected algorithms are compared with literature results for coefficients applicable to other cities and their varying construction materials. Asphalt and concrete surfaces, canyons and anthropogenic heat releases were found to be the key characteristics of the city center that sustain the elevated surface and air temperatures, under hot, sunny and dry weather, during the Mediterranean summer. A relationship between storage heat flux plus anthropogenic energy flux and temperatures (surface and lower atmosphere) is presented, that results in understanding of the interplay between temperatures, anthropogenic energy releases and the city characteristics under the Urban Heat Island conditions.

  20. Coherent Lidar Turbulence Measurement for Gust Load Alleviation

    NASA Technical Reports Server (NTRS)

    Bogue, Rodney K.; Ehernberger, L. J.; Soreide, David; Bagley, Hal

    1996-01-01

    Atmospheric turbulence adversely affects operation of commercial and military aircraft and is a design constraint. The airplane structure must be designed to survive the loads imposed by turbulence. Reducing these loads allows the airplane structure to be lighter, a substantial advantage for a commercial airplane. Gust alleviation systems based on accelerometers mounted in the airplane can reduce the maximum gust loads by a small fraction. These systems still represent an economic advantage. The ability to reduce the gust load increases tremendously if the turbulent gust can be measured before the airplane encounters it. A lidar system can make measurements of turbulent gusts ahead of the airplane, and the NASA Airborne Coherent Lidar for Advanced In-Flight Measurements (ACLAIM) program is developing such a lidar. The ACLAIM program is intended to develop a prototype lidar system for use in feasibility testing of gust load alleviation systems and other airborne lidar applications, to define applications of lidar with the potential for improving airplane performance, and to determine the feasibility and benefits of these applications. This paper gives an overview of the ACLAIM program, describes the lidar architecture for a gust alleviation system, and describes the prototype ACLAIM lidar system.

  1. Lifestyle of the elderly in rural and urban Malaysia.

    PubMed

    Selvaratnam, Doris Padmini; Tin, Poo Bee

    2007-10-01

    Malaysia is steadily progressing toward an aging population demographic pattern. While aging is a natural process, its impact can be painful individually as well as for the nation. Individually there is a loss of a paying job after retirement, loss of physical and mental fitness, and also occasionally the loss of social integration due to lack of mobility. For a nation, an aging population means a growing dependency ratio, a greater need of care, and more medical facilities for this age group. This article looks at the various economic and social implications of the aging population in Malaysia in general, and in the rural and urban setting specifically. The paper focuses on a research sample of 132 (66 rural, 66 urban) elderly persons. The findings suggest that the demographic patterns of the elderly vary from the rural to the urban setting, with differing issues that need to be addressed to alleviate problems encountered related to loneliness, lack of financial stability, and emotional strain. Policy suggestion will be geared toward providing a solution to problems at hand as well as aiding the working group members to prepare and sustain a comfortable livelihood for the aged in their later years.

  2. Downscaling Satellite Land Surface Temperatures in Urban Regions for Surface Energy Balance Study and Heat Index Development

    NASA Astrophysics Data System (ADS)

    Norouzi, H.; Bah, A.; Prakash, S.; Nouri, N.; Blake, R.

    2017-12-01

    A great percentage of the world's population reside in urban areas that are exposed to the threats of global and regional climate changes and associated extreme weather events. Among them, urban heat islands have significant health and economic impacts due to higher thermal gradients of impermeable surfaces in urban regions compared to their surrounding rural areas. Therefore, accurate characterization of the surface energy balance in urban regions are required to predict these extreme events. High spatial resolution Land surface temperature (LST) in the scale of street level in the cities can provide wealth of information to study surface energy balance and eventually providing a reliable heat index. In this study, we estimate high-resolution LST maps using combination of LandSat 8 and infrared based satellite products such as Moderate Resolution Imaging Spectroradiometer (MODIS) and newly launched Geostationary Operational Environmental Satellite-R Series (GOES-R). Landsat 8 provides higher spatial resolution (30 m) estimates of skin temperature every 16 days. However, MODIS and GOES-R have lower spatial resolution (1km and 4km respectively) with much higher temporal resolution. Several statistical downscaling methods were investigated to provide high spatiotemporal LST maps in urban regions. The results reveal that statistical methods such as Principal Component Analysis (PCA) can provide reliable estimations of LST downscaling with 2K accuracy. Other methods also were tried including aggregating (up-scaling) the high-resolution data to a coarse one to examine the limitations and to build the model. Additionally, we deployed flux towers over distinct materials such as concrete, asphalt, and rooftops in New York City to monitor the sensible and latent heat fluxes through eddy covariance method. To account for the incoming and outgoing radiation, a 4-component radiometer is used that can observe both incoming and outgoing longwave and shortwave radiation. This

  3. The Influence of Roof Material on Diurnal Urban Canyon Breathing

    NASA Astrophysics Data System (ADS)

    Abuhegazy, Mohamed; Yaghoobian, Neda

    2017-11-01

    Improvements in building energy use, air quality in urban canyons and in general urban microclimates require understanding the complex interaction between urban morphology, materials, climate, and inflow conditions. Review of the literature indicates that despite a long history of valuable urban microclimate studies, more comprehensive approaches are needed to address energy, and heat and flow transport in urban areas. In this study, a more comprehensive simulation of the diurnally varying street canyon flow and associated heat transport is numerically investigated, using Large-eddy Simulation (LES). We use computational modeling to examine the impact of diurnal variation of the heat fluxes from urban surfaces on the air flow and temperature distribution in street canyons with a focus on the role of roof materials and their temperature footprints. A detailed building energy model with a three-dimensional raster-type geometry provides urban surface heat fluxes as thermal boundary conditions for the LES to determine the key aero-thermodynamic factors that affect urban street ventilation.

  4. A bottom-up approach to urban metabolism: the perspective of BRIDGE

    NASA Astrophysics Data System (ADS)

    Chrysoulakis, N.; Borrego, C.; San Josè, R.; Grimmond, S. B.; Jones, M. B.; Magliulo, V.; Klostermann, J.; Santamouris, M.

    2011-12-01

    Urban metabolism considers a city as a system and usually distinguishes between energy and material flows as its components. "Metabolic" studies are usually top-down approaches that assess the inputs and outputs of food, water, energy, and pollutants from a city, or that compare the changing metabolic process of several cities. In contrast, bottom-up approaches are based on quantitative estimates of urban metabolism components at local to regional scales. Such approaches consider the urban metabolism as the 3D exchange and transformation of energy and matter between a city and its environment. The city is considered as a system and the physical flows between this system and its environment are quantitatively estimated. The transformation of landscapes from primarily agricultural and forest uses to urbanized landscapes can greatly modify energy and material exchanges and it is, therefore, an important aspect of an urban area. Here we focus on the exchanges and transformation of energy, water, carbon and pollutants. Recent advances in bio-physical sciences have led to new methods and models to estimate local scale energy, water, carbon and pollutant fluxes. However, there is often poor communication of new knowledge and its implications to end-users, such as planners, architects and engineers. The FP7 Project BRIDGE (SustainaBle uRban plannIng Decision support accountinG for urban mEtabolism) aims at bridging this gap and at illustrating the advantages of considering environmental issues in urban planning. BRIDGE does not perform a complete life cycle analysis or calculate whole system urban metabolism, but rather focuses on specific metabolism components (energy, water, carbon and pollutants). Its main goal is the development of a Decision Suport System (DSS) with the potential to select planning actions which better fit the goal of changing the metabolism of urban systems towards sustainability. BRIDGE evaluates how planning alternatives can modify the physical

  5. Electric urban delivery trucks: energy use, greenhouse gas emissions, and cost-effectiveness.

    PubMed

    Lee, Dong-Yeon; Thomas, Valerie M; Brown, Marilyn A

    2013-07-16

    We compare electric and diesel urban delivery trucks in terms of life-cycle energy consumption, greenhouse gas (GHG) emissions, and total cost of ownership (TCO). The relative benefits of electric trucks depend heavily on vehicle efficiency associated with drive cycle, diesel fuel price, travel demand, electric drive battery replacement and price, electricity generation and transmission efficiency, electric truck recharging infrastructure, and purchase price. For a drive cycle with frequent stops and low average speed such as the New York City Cycle (NYCC), electric trucks emit 42-61% less GHGs and consume 32-54% less energy than diesel trucks, depending upon vehicle efficiency cases. Over an array of possible conditions, the median TCO of electric trucks is 22% less than that of diesel trucks on the NYCC. For a drive cycle with less frequent stops and high average speed such as the City-Suburban Heavy Vehicle Cycle (CSHVC), electric trucks emit 19-43% less GHGs and consume 5-34% less energy, but cost 1% more than diesel counterparts. Considering current and projected U.S. regional electricity generation mixes, for the baseline case, the energy use and GHG emissions ratios of electric to diesel trucks range from 48 to 82% and 25 to 89%, respectively.

  6. Physical Activity Energy Expenditure and Sarcopenia in Black South African Urban Women.

    PubMed

    Kruger, Herculina S; Havemann-Nel, Lize; Ravyse, Chrisna; Moss, Sarah J; Tieland, Michael

    2016-03-01

    Black women are believed to be genetically less predisposed to age-related sarcopenia. The objective of this study was to investigate lifestyle factors associated with sarcopenia in black South African (SA) urban women. In a cross-sectional study, 247 women (mean age 57 y) were randomly selected. Anthropometric and sociodemographic variables, dietary intakes, and physical activity were measured. Activity was also measured by combined accelerometery/heart rate monitoring (ActiHeart), and HIV status was tested. Dual energy x-ray absorptiometry was used to measure appendicular skeletal mass (ASM). Sarcopenia was defined according to a recently derived SA cutpoint of ASM index (ASM/height squared) < 4.94 kg/m(2). In total, 8.9% of the women were sarcopenic, decreasing to 8.1% after exclusion of participants who were HIV positive. In multiple regressions with ASM index, grip strength, and gait speed, respectively, as dependent variables, only activity energy expenditure (β = .27) was significantly associated with ASM index. Age (β = -.50) and activity energy expenditure (β = .17) were significantly associated with gait speed. Age (β = -.11) and lean mass (β = .21) were significantly associated with handgrip strength. Sarcopenia was prevalent among these SA women and was associated with low physical activity energy expenditure.

  7. Methods of Evaluation of the State and Efficiency of the Urban Environment

    NASA Astrophysics Data System (ADS)

    Patrakeyev, I.; Ziborov, V.; Lazorenko-Hevel, N.

    2017-12-01

    Today, humanity is experiencing an "urban age", and therefore issues of good management of energy consumption and energy spent on utilization of waste in cities are becoming particularly acute. In this regard, the working group of the World Energy Council proposed a concept of the "energy balance" of the urban environment. This concept was that the energy produced should cover the energy consumed. Metabolism of the urban environment is so hot and so rarely studied by urban planners. This condition is linked first with the fact that metabolism is nothing more than a network of exchange of physical, energy resources and information. This is the real point of meeting the natural, technological, social, economic processes and their transformation into one another. Metabolism is the most important tool for knowing the real mechanics of the movement of resources in such a complex system as the urban environment. The content of the article is an analysis of significant energy and material flows characterizing the metabolism of the urban environment. We considered in the article a new energy paradigm. This paradigm will help in carrying out research in such areas as reducing the burden on the state of the environment, reducing environmental problems and reducing dependence on fossil fuels. Methods and models of metabolic processes in the urban environment will allow to implement in practice the concept of sustainable development of the urban environment, which is the development of the teaching V. Vernadsky about the noosphere.

  8. Energy intake and expenditure of free-living, lactating Colombian women in an urban setting.

    PubMed

    Dufour, D L; Reina, J C; Spurr, G B

    2002-03-01

    To examine the components of energy balance during lactation in a population of economically disadvantaged women in an urban developing country setting in order to better understand the metabolic response to lactation. Cross-sectional comparison of lactating (LACT) and non-pregnant non-lactating (NPNL) women. Body size and composition were assessed via anthropometry, energy intake was measured using estimated diet records and energy expenditure using indirect calorimetry and the Flex-Heart Rate method. Low-income neighborhoods of Cali, Colombia. Lactating women (n=15) studied at 2.4+/-0.8, 5.5+/-0.8 and 8.9+/-1.2 months postpartum, and NPNL women (n=48) studied in three measurement rounds at 0, 3.5+/-0.6 and 7.1+/-1.0 months. There were no significant differences between LACT and NPNL women in anthropometric dimensions, but LACT women showed decreases in waist-hip ratio, lean body mass and increases in mid-arm circumference and percentage body fat with time. Energy intake was higher in LACT women (P=0.04), but there were no significant between-group differences in energy expenditure variables. This group of women met the cost of lactation principally via increased energy intake.

  9. Dynamic Geospatial Modeling of the Building Stock to Project Urban Energy Demand.

    PubMed

    Breunig, Hanna Marie; Huntington, Tyler; Jin, Ling; Robinson, Alastair; Scown, Corinne Donahue

    2018-06-26

    In the United States, buildings account for more than 40 percent of total energy consumption, and the evolution of the urban form will impact the effectiveness of strategies to reduce energy use and mitigate emissions. This paper presents a broadly applicable approach for modeling future commercial, residential, and industrial floorspace, thermal consumption (heating and cooling), and associated GHG emissions at the tax assessor land parcel level. The approach accounts for changing building standards and retrofitting, climate change, and trends in housing and industry. We demonstrate the automated workflow for California, and project building stock, thermal energy consumption, and associated GHG emissions out to 2050. Our results suggest that if buildings in California have long lifespans, and minimal energy efficiency improvements compared to building codes reflective of 2008, then the state will face a 20% or higher increase in thermal energy consumption by 2050. Baseline annual GHG emissions associated with thermal energy consumption in the modeled building stock in 2016 is 34% below 1990 levels (110 Mt CO2eq/y).While the 2020 targets for the reduction of GHG emissions set by the California Senate Bill 350 have already been met, none of our scenarios achieve >80% reduction from 1990 levels by 2050, despite assuming an 86% reduction in electricity carbon intensity in our "Low Carbon" scenario. The results highlight the challenge California faces in meeting its new energy efficiency targets unless the State's building stock undergoes timely and strategic turnover, paired with deep retrofitting of existing buildings and natural gas equipment.

  10. Study of driving fatigue alleviation by transcutaneous acupoints electrical stimulations.

    PubMed

    Wang, Fuwang; Wang, Hong

    2014-01-01

    Driving fatigue is more likely to bring serious safety trouble to traffic. Therefore, accurately and rapidly detecting driving fatigue state and alleviating fatigue are particularly important. In the present work, the electrical stimulation method stimulating the Láogóng point (PC8) of human body is proposed, which is used to alleviate the mental fatigue of drivers. The wavelet packet decomposition (WPD) is used to extract θ, α, and β subbands of drivers' electroencephalogram (EEG) signals. Performances of the two algorithms (θ + α)/(α + β) and θ/β are also assessed as possible indicators for fatigue detection. Finally, the differences between the drivers with electrical stimulation and normal driving are discussed. It is shown that stimulating the Láogóng point (PC8) using electrical stimulation method can alleviate driver fatigue effectively during longtime driving.

  11. Study of Driving Fatigue Alleviation by Transcutaneous Acupoints Electrical Stimulations

    PubMed Central

    Wang, Fuwang; Wang, Hong

    2014-01-01

    Driving fatigue is more likely to bring serious safety trouble to traffic. Therefore, accurately and rapidly detecting driving fatigue state and alleviating fatigue are particularly important. In the present work, the electrical stimulation method stimulating the Láogóng point (劳宫PC8) of human body is proposed, which is used to alleviate the mental fatigue of drivers. The wavelet packet decomposition (WPD) is used to extract θ, α, and β subbands of drivers' electroencephalogram (EEG) signals. Performances of the two algorithms (θ + α)/(α + β) and θ/β are also assessed as possible indicators for fatigue detection. Finally, the differences between the drivers with electrical stimulation and normal driving are discussed. It is shown that stimulating the Láogóng point (劳宫PC8) using electrical stimulation method can alleviate driver fatigue effectively during longtime driving. PMID:25254242

  12. Lakeside: Merging Urban Design with Scientific Analysis

    ScienceCinema

    Guzowski, Leah; Catlett, Charlie; Woodbury, Ed

    2018-01-16

    Researchers at the U.S. Department of Energy's Argonne National Laboratory and the University of Chicago are developing tools that merge urban design with scientific analysis to improve the decision-making process associated with large-scale urban developments. One such tool, called LakeSim, has been prototyped with an initial focus on consumer-driven energy and transportation demand, through a partnership with the Chicago-based architectural and engineering design firm Skidmore, Owings & Merrill, Clean Energy Trust and developer McCaffery Interests. LakeSim began with the need to answer practical questions about urban design and planning, requiring a better understanding about the long-term impact of design decisions on energy and transportation demand for a 600-acre development project on Chicago's South Side - the Chicago Lakeside Development project.

  13. Thermal Characteristics of Urban Landscapes

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey C.; Quattrochi, Dale A.

    1998-01-01

    Although satellite data are very useful for analysis of the urban heat island effect at a coarse scale, they do not lend themselves to developing a better understanding of which surfaces across the city contribute or drive the development of the urban heat island effect. Analysis of thermal energy responses for specific or discrete surfaces typical of the urban landscape (e.g., asphalt, building rooftops, vegetation) requires measurements at a very fine spatial scale (i.e., less than 15 m) to adequately resolve these surfaces and their attendant thermal energy regimes. Additionally, very fine scale spatial resolution thermal infrared data, such as that obtained from aircraft, are very useful for demonstrating to planning officials, policy makers, and the general populace the benefits of the urban forest. These benefits include mitigating the urban heat island effect, making cities more aesthetically pleasing and more habitable environments, and aid in overall cooling of the community. High spatial resolution thermal data are required to quantify how artificial surfaces within the city contribute to an increase in urban heating and the benefit of cool surfaces (e.g., surface coatings that reflect much of the incoming solar radiation as opposed to absorbing it thereby lowering urban temperatures). The TRN (thermal response number) is a technique using aircraft remotely sensed surface temperatures to quantify the thermal response of urban surfaces. The TRN was used to quantify the thermal response of various urban surface types ranging from completely vegetated surfaces to asphalt and concrete parking lots for Huntsville, AL.

  14. Modeling service time reliability in urban ferry system

    NASA Astrophysics Data System (ADS)

    Chen, Yifan; Luo, Sida; Zhang, Mengke; Shen, Hanxia; Xin, Feifei; Luo, Yujie

    2017-09-01

    The urban ferry system can carry a large number of travelers, which may alleviate the pressure on road traffic. As an indicator of its service quality, service time reliability (STR) plays an essential part in attracting travelers to the ferry system. A wide array of studies have been conducted to analyze the STR of land transportation. However, the STR of ferry systems has received little attention in the transportation literature. In this study, a model was established to obtain the STR in urban ferry systems. First, the probability density function (PDF) of the service time provided by ferry systems was constructed. Considering the deficiency of the queuing theory, this PDF was determined by Bayes’ theorem. Then, to validate the function, the results of the proposed model were compared with those of the Monte Carlo simulation. With the PDF, the reliability could be determined mathematically by integration. Results showed how the factors including the frequency, capacity, time schedule and ferry waiting time affected the STR under different degrees of congestion in ferry systems. Based on these results, some strategies for improving the STR were proposed. These findings are of great significance to increasing the share of ferries among various urban transport modes.

  15. Conservation in the energy industry

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The basic energy supply and utilization problems faced by the United States were described. Actions which might alleviate the domestic shortfall of petroleum and natural gas are described, analyzed and overall impacts are assessed. Specific actions included are coal gasification, in situ shale oil production, improved oil and gas recovery, importation of liquid natural gas and deregulation of natural gas prices. These actions are weighed against each other as alternate techniques of alleviating or overcoming existing shortfalls.

  16. Hydrologic response to stormwater control measures in urban watersheds

    NASA Astrophysics Data System (ADS)

    Bell, Colin D.; McMillan, Sara K.; Clinton, Sandra M.; Jefferson, Anne J.

    2016-10-01

    Stormwater control measures (SCMs) are designed to mitigate deleterious effects of urbanization on river networks, but our ability to predict the cumulative effect of multiple SCMs at watershed scales is limited. The most widely used metric to quantify impacts of urban development, total imperviousness (TI), does not contain information about the extent of stormwater control. We analyzed the discharge records of 16 urban watersheds in Charlotte, NC spanning a range of TI (4.1-54%) and area mitigated with SCMs (1.3-89%). We then tested multiple watershed metrics that quantify the degree of urban impact and SCM mitigation to determine which best predicted hydrologic response across sites. At the event time scale, linear models showed TI to be the best predictor of both peak unit discharge and rainfall-runoff ratios across a range of storm sizes. TI was also a strong driver of both a watershed's capacity to buffer small (e.g., 1-10 mm) rain events, and the relationship between peak discharge and precipitation once that buffering capacity is exceeded. Metrics containing information about SCMs did not appear as primary predictors of event hydrologic response, suggesting that the level of SCM mitigation in many urban watersheds is insufficient to influence hydrologic response. Over annual timescales, impervious surfaces unmitigated by SCMs and tree coverage were best correlated with streamflow flashiness and water yield, respectively. The shift in controls from the event scale to the annual scale has important implications for water resource management, suggesting that overall limitation of watershed imperviousness rather than partial mitigation by SCMs may be necessary to alleviate the hydrologic impacts of urbanization.

  17. A Wind-Tunnel Investigation of Tilt-Rotor Gust Alleviation Systems

    NASA Technical Reports Server (NTRS)

    Ham, N. D.; Whitaker, H. P.

    1978-01-01

    The alleviation of the effects of gusts on tilt rotor aircraft by means of active control systems was investigated. The gust generator, the derivation of the equations of motion of the rotor wing combination, the correlation of these equations with the results of wind tunnel model tests, the use of the equations to design various gust alleviating active control systems, and the testing and evaluation of these control systems by means of wind tunnel model tests were developed.

  18. Whooping Cough Alleviated by Homeopathic Medicines: A Case Report.

    PubMed

    Chung, Youngran

    2017-10-02

    Context • Pertussis cough (whooping cough) is distressing due to the intensity and chronicity of its cough. No specific drugs are available that can alleviate the cough's intensity or significantly shorten its duration. Homeopathic medicines are used for a wide variety of medical conditions, including cough. Objective • The study investigated the benefits of homeopathic medicines for whooping cough, to alleviate the cough's intensity and to shorten its duration. Design • The current study was a case series of patients with whooping cough. Setting • The study took place at one of the suburban hospital clinics of the Ann & Robert H. Lurie Children's Hospital of Chicago (Chicago, IL, USA). Participants • Participants were 20 patients aged 21 mo to 20 y, of whom 11 were female and 18 were male, who visited the hospital clinic for treatment of the chronic cough that is characteristic of whooping cough. The details of the cases of 3 representative participants are highlighted in the text. Intervention • The 3 representative patients all received 1 dose weekly of a 30c dilution of homeopathic pertussinum and a 6c dilution of homeopathic Drosera 3 times daily. The homeopathic medicines most often used for the other participants were the same doses of pertussinum and Drosera. Outcome Measures • Verbal feedback from patient or family were obtained at the follow-up visits. Results • The intensity and duration of participant's coughs were alleviated within days to 1 wk in most cases. Conclusions • Homeopathic medicines can alleviate the intensity or reduce the duration of whooping cough, with no adverse effects.

  19. 49 CFR 195.577 - What must I do to alleviate interference currents?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... each impressed current or galvanic anode system to minimize any adverse effects on existing adjacent... 49 Transportation 3 2010-10-01 2010-10-01 false What must I do to alleviate interference currents... alleviate interference currents? (a) For pipelines exposed to stray currents, you must have a program to...

  20. 49 CFR 195.577 - What must I do to alleviate interference currents?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... each impressed current or galvanic anode system to minimize any adverse effects on existing adjacent... 49 Transportation 3 2011-10-01 2011-10-01 false What must I do to alleviate interference currents... alleviate interference currents? (a) For pipelines exposed to stray currents, you must have a program to...

  1. An approach to evaluate the intra-urban thermal variability in summer using an urban indicator.

    PubMed

    Massetti, Luciano; Petralli, Martina; Brandani, Giada; Orlandini, Simone

    2014-09-01

    Urban planners and managers need tools to evaluate the performance of the present state and future development of cities in terms of comfort and quality of life. In this paper, an approach to analyse the intra-urban summer thermal variability, using an urban planning indicator, is presented. The proportion of buildings and concrete surfaces in a specific buffer area are calculated. Besides, the relationship between urban and temperature indicators is investigated and used to produce thermal maps of the city. This approach is applied to the analysis of intra-urban variability in Florence (Italy), of two thermal indices (heat index and cooling degree days) used to evaluate impacts on thermal comfort and energy consumption for indoor cooling. Our results suggest that urban planning indicators can describe intra-urban thermal variability in a way that can easily be used by urban planners for evaluating the effects of future urbanization scenarios on human health. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Diurnal changes in urban boundary layer environment induced by urban greening

    NASA Astrophysics Data System (ADS)

    Song, Jiyun; Wang, Zhi-Hua

    2016-11-01

    Urban green infrastructure has been widely used for mitigating adverse environmental problems as well as enhancing urban sustainability of cities worldwide. Here we develop an integrated urban-land-atmosphere modeling framework with the land surface processes parameterized by an advanced urban canopy model and the atmospheric processes parameterized by a single column model. The model is then applied to simulate a variety of forms of green infrastructure, including urban lawns, shade trees, green and cool roofs, and their impact on environmental changes in the total urban boundary layer (UBL) for a stereotypical desert city, viz. Phoenix, Arizona. It was found that green roofs have a relatively uniform cooling effect proportional to their areal coverage. In particular, a reduction of UBL temperature of 0.3 °C and 0.2 °C per 10% increase of green roof coverage was observed at daytime and nighttime, respectively. In contrast, the effect of greening of street canyons is constrained by the overall abundance of green infrastructure and the energy available for evapotranspiration. In addition, the increase in urban greening causes boundary-layer height to decrease during daytime but increase at nighttime, leading to different trends of changes in urban air quality throughout a diurnal cycle.

  3. Addressing Energy Poverty through Smarter Technology

    ERIC Educational Resources Information Center

    Oldfield, Eddie

    2011-01-01

    Energy poverty is a key detriment to labor productivity, economic growth, and social well-being. This article presents a qualitative review of literature on the potential role of intelligent communication technology, web-based standards, and smart grid technology to alleviate energy costs and improve access to clean distributed energy in developed…

  4. Contribution of foods consumed away from home to energy intake in Brazilian urban areas: the 2008-9 Nationwide Dietary Survey.

    PubMed

    Bezerra, Ilana Nogueira; de Moura Souza, Amanda; Pereira, Rosangela Alves; Sichieri, Rosely

    2013-04-14

    The objectives of the present study were to estimate the dietary contribution of away-from-home food consumption, to describe the contribution of away-from-home foods to energy intake, and to investigate the association between eating away from home and total energy intake in Brazilian urban areas. In the first Brazilian Nationwide Dietary Survey, conducted in 2008-9, food records were collected from 25 753 individuals aged 10 years or older, living in urban areas of Brazil. Foods were grouped into thirty-three food groups, and the mean energy intake provided by away-from-home food consumption was estimated. Linear regression models were used to evaluate the association between away-from-home food consumption and total energy intake. All analyses considered the sample design effect. Of the total population, 43 % consumed at least one food item away from home. The mean energy intake from foods consumed away from home was 1408 kJ (337 kcal), averaging 18 % of total energy intake. Eating away from home was associated with increased total energy intake, except for men in the highest income level. The highest percentage of away-from-home energy sources was for food with a high content of energy, such as alcoholic beverages (59 %), baked and deep-fried snacks (54 %), pizza (42 %), soft drinks (40 %), sandwiches (40 %), and sweets and desserts (30 %). The consumption of foods away from home was related to a greater energy intake. The characterisation of away-from-home food habits is necessary in order to properly design strategies to promote healthy food consumption in the away-from-home environment.

  5. Aerodynamic side-force alleviator means

    NASA Technical Reports Server (NTRS)

    Rao, D. M. (Inventor)

    1980-01-01

    An apparatus for alleviating high angle of attack side force on slender pointed cylindrical forebodies such as fighter aircraft, missiles and the like is described. A symmetrical pair of helical separation trips was employed to disrupt the leeside vortices normally attained. The symmetrical pair of trips starts at either a common point or at space points on the upper surface of the forebody and extends along separate helical paths along the circumference of the forebody.

  6. Comparison of Carbon Sequestration Rates and Energy Balance of Turf in the Denver Urban Ecosystem and an Adjacent Native Grassland

    NASA Astrophysics Data System (ADS)

    Thienelt, T. S.; Anderson, D. E.; Powell, K. M.

    2011-12-01

    Urban ecosystems are currently characterized by rapid growth, are expected to continually expand and, thus, represent an important driver of land use change. A significant component of urban ecosystems is lawns, potentially the single largest irrigated "crop" in the U.S. Beginning in March of 2011 (ahead of the growing season), eddy covariance measurements of net carbon exchange and evapotranspiration along with energy balance fluxes were conducted for a well-watered, fertilized lawn (rye-bluegrass-mix) in metropolitan Denver and for a nearby tallgrass prairie (big bluestem, switchgrass, cheatgrass, blue grama). Due to the semi-arid climate conditions of the Denver region, differences in management (i.e., irrigation and fertilization) are expected to have a discernible impact on ecosystem productivity and thus on carbon sequestration rates, evapotranspiration, and the sensible and latent heat partitioning of the energy balance. By mid-July, preliminary data indicated that cumulative evapotranspiration was approximately 270 mm and 170 mm for urban and native grasslands, respectively, although cumulative carbon sequestration at that time was similar for both (approximately 40 mg/m2). However, the pattern of carbon exchange differed between the grasslands. Both sites showed daily net uptake of carbon starting in late May, but the urban lawn displayed greater diurnal variability as well as greater uptake rates in general, especially following fertilization in mid-June. In contrast, the trend of carbon uptake at the prairie site was occasionally reversed following strong convective precipitation events, resulting in a temporary net release of carbon. The continuing acquisition of data and investigation of these relations will help us assess the potential impact of urban growth on regional carbon sequestration.

  7. Analysis of the relationships between environmental noise and urban morphology.

    PubMed

    Han, Xiaopeng; Huang, Xin; Liang, Hong; Ma, Song; Gong, Jianya

    2018-02-01

    Understanding the effects of urban morphology on urban environmental noise (UEN) at a regional scale is crucial for creating a pleasant urban acoustic environment. This study seeks to investigate how the urban morphology influences the UEN in the Shenzhen metropolitan region of China, by employing remote sensing and geographic information data. The UEN in this study consists of not only regional environmental noise (RN), but also traffic noise (TN). The experimental results reveal the following findings: 1) RN is positively correlated with the nighttime light intensity (NTL) and land surface temperature (LST) (p < 0.05). More interestingly, landscape composition and configuration can also significantly affect RN. For instance, urban vegetation can mitigate the RN (r = -0.411, p < 0.01). There is a reduced RN effect when fewer buildings exist in an urban landscape, in terms of the positive relationship between building density and RN (r = 0.188, p < 0.01). Given the same percentage of building area, buildings are more effective at reducing noise when they are distributed across the urban scenes, rather than being spatially concentrated (r = -0.205, p < 0.01). 2) TN positively relates to large (r = 0.520, p < 0.01) and small-medium (r = 0.508, p < 0.01) vehicle flow. In addition, vegetation along or near roads can alleviate the TN effect (r = -0.342, p < 0.01). TN can also become more severe in urban landscapes where there is higher road density (r = 0.307, p < 0.01). 3) Concerning the urban functional zones, traffic land is the greatest contributor to urban RN, followed by mixed residential and commercial land. The findings revealed by this research will indicate how to mitigate UEN. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Measuring Thermal Characteristics of Urban Landscapes

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey C.; Quattrochi, Dale A.; Rickman, Doug L.

    1999-01-01

    The additional heating of the air over the city is the result of the replacement of naturally vegetated surfaces with those composed of asphalt, concrete, rooftops and other man-made materials. The temperatures of these artificial surfaces can be 20 to 40 C higher than vegetated surfaces. Materials such as asphalt store much of the sun's energy and remains hot long after sunset. This produces a dome of elevated air temperatures 5 to 8 C greater over the city, compared to the air temperatures over adjacent rural areas. This effect is called the "urban heat island". Urban landscapes are a complex mixture of vegetated and nonvegetated surfaces. It is difficult to take enough temperature measurements over a large city area to characterize the complexity of urban radiant surface temperature variability. However, the use of remotely sensed thermal data from airborne scanners are ideal for the task. In a study funded by NASA, a series of flights over Huntsville, Alabama were performed in September 1994 and over Atlanta, Georgia in May 1997. Analysis of thermal energy responses for specific or discrete surfaces typical of the urban landscape (e.g., asphalt, building rooftops, vegetation) requires measurements at a very fine spatial scale (i.e., <15 m) to adequately resolve these surfaces and their attendant thermal energy regimes. Additionally, very fine scale spatial resolution thermal infrared data, such as that obtained from aircraft, are very useful for demonstrating to planning officials, policy makers, and the general populace, what the benefits are of the urban forest in both mitigating the urban heat island effect, in making cities more aesthetically pleasing and more habitable environments, and in overall cooling of the community. In this presentation we will examine the techniques of analyzing remotely sensed data for measuring the effect of various urban surfaces on their contribution to the urban heat island effect.

  9. Automatic generation and simulation of urban building energy models based on city datasets for city-scale building retrofit analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yixing; Hong, Tianzhen; Piette, Mary Ann

    Buildings in cities consume 30–70% of total primary energy, and improving building energy efficiency is one of the key strategies towards sustainable urbanization. Urban building energy models (UBEM) can support city managers to evaluate and prioritize energy conservation measures (ECMs) for investment and the design of incentive and rebate programs. This paper presents the retrofit analysis feature of City Building Energy Saver (CityBES) to automatically generate and simulate UBEM using EnergyPlus based on cities’ building datasets and user-selected ECMs. CityBES is a new open web-based tool to support city-scale building energy efficiency strategic plans and programs. The technical details ofmore » using CityBES for UBEM generation and simulation are introduced, including the workflow, key assumptions, and major databases. Also presented is a case study that analyzes the potential retrofit energy use and energy cost savings of five individual ECMs and two measure packages for 940 office and retail buildings in six city districts in northeast San Francisco, United States. The results show that: (1) all five measures together can save 23–38% of site energy per building; (2) replacing lighting with light-emitting diode lamps and adding air economizers to existing heating, ventilation and air-conditioning (HVAC) systems are most cost-effective with an average payback of 2.0 and 4.3 years, respectively; and (3) it is not economical to upgrade HVAC systems or replace windows in San Francisco due to the city's mild climate and minimal cooling and heating loads. Furthermore, the CityBES retrofit analysis feature does not require users to have deep knowledge of building systems or technologies for the generation and simulation of building energy models, which helps overcome major technical barriers for city managers and their consultants to adopt UBEM.« less

  10. Automatic generation and simulation of urban building energy models based on city datasets for city-scale building retrofit analysis

    DOE PAGES

    Chen, Yixing; Hong, Tianzhen; Piette, Mary Ann

    2017-08-07

    Buildings in cities consume 30–70% of total primary energy, and improving building energy efficiency is one of the key strategies towards sustainable urbanization. Urban building energy models (UBEM) can support city managers to evaluate and prioritize energy conservation measures (ECMs) for investment and the design of incentive and rebate programs. This paper presents the retrofit analysis feature of City Building Energy Saver (CityBES) to automatically generate and simulate UBEM using EnergyPlus based on cities’ building datasets and user-selected ECMs. CityBES is a new open web-based tool to support city-scale building energy efficiency strategic plans and programs. The technical details ofmore » using CityBES for UBEM generation and simulation are introduced, including the workflow, key assumptions, and major databases. Also presented is a case study that analyzes the potential retrofit energy use and energy cost savings of five individual ECMs and two measure packages for 940 office and retail buildings in six city districts in northeast San Francisco, United States. The results show that: (1) all five measures together can save 23–38% of site energy per building; (2) replacing lighting with light-emitting diode lamps and adding air economizers to existing heating, ventilation and air-conditioning (HVAC) systems are most cost-effective with an average payback of 2.0 and 4.3 years, respectively; and (3) it is not economical to upgrade HVAC systems or replace windows in San Francisco due to the city's mild climate and minimal cooling and heating loads. Furthermore, the CityBES retrofit analysis feature does not require users to have deep knowledge of building systems or technologies for the generation and simulation of building energy models, which helps overcome major technical barriers for city managers and their consultants to adopt UBEM.« less

  11. Strategic plant choices can alleviate climate change impacts: A review.

    PubMed

    Espeland, Erin K; Kettenring, Karin M

    2018-09-15

    Ecosystem-based adaptation (EbA) uses biodiversity and ecosystem services to reduce climate change impacts to local communities. Because plants can alleviate the abiotic and biotic stresses of climate change, purposeful plant choices could improve adaptation. However, there has been no systematic review of how plants can be applied to alleviate effects of climate change. Here we describe how plants can modify climate change effects by altering biological and physical processes. Plant effects range from increasing soil stabilization to reducing the impact of flooding and storm surges. Given the global scale of plant-related activities such as farming, landscaping, forestry, conservation, and restoration, plants can be selected strategically-i.e., planting and maintaining particular species with desired impacts-to simultaneously restore degraded ecosystems, conserve ecosystem function, and help alleviate effects of climate change. Plants are a tool for EbA that should be more broadly and strategically utilized. Copyright © 2018. Published by Elsevier Ltd.

  12. Food insecurity in households in informal settlements in urban South Africa.

    PubMed

    Naicker, N; Mathee, A; Teare, J

    2015-04-01

    Food insecurity in the urban poor is a major public health challenge. The Health, Environment and Development study assessed trends in food insecurity and food consumption over a period of 7 years in an informal settlement in Johannesburg, South Africa (SA). Annual cross-sectional surveys were conducted in the informal settlement (Hospital Hill). The degree of household food insecurity decreased significantly from 2006 (85%) to 2012 (70%). There was a spike in 2009 (91%), possibly owing to global food price increases. Childhood food insecurity followed the same trend as household food insecurity. During the first 3 study years, consumption of protein, vegetables and fruit decreased by 10-20%, but had returned to previous levels by 2012. In this study, although declining, food insecurity remains unacceptably high. Hunger relief and poverty alleviation need to be more aggressively implemented in order to improve the quality of life in poor urban communities in SA.

  13. Habitat odor can alleviate innate stress responses in mice.

    PubMed

    Matsukawa, Mutsumi; Imada, Masato; Aizawa, Shin; Sato, Takaaki

    2016-01-15

    Predatory odors, which can induce innate fear and stress responses in prey species, are frequently used in the development of animal models for several psychiatric diseases including post-traumatic stress disorder (PTSD) following a life-threatening event. We have previously shown that odors can be divided into at least three types; odors that act as (1) innate stressors, (2) as innate relaxants, or (3) have no innate effects on stress responses. Here, we attempted to verify whether an artificial odor, which had no innate effect on predatory odor-induced stress, could alleviate stress if experienced in early life as a habitat odor. In the current study, we demonstrated that the innate responses were changed to counteract stress following a postnatal experience. Moreover, we suggest that inhibitory circuits involved in stress-related neuronal networks and the concentrations of norepinephrine in the hippocampus may be crucial in alleviating stress induced by the predatory odor. Overall, these findings may be important for understanding the mechanisms involved in differential odor responses and also for the development of pharmacotherapeutic interventions that can alleviate stress in illnesses like PTSD. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Effect of VOC emissions from vegetation on urban air quality during hot periods

    NASA Astrophysics Data System (ADS)

    Churkina, Galina; Kuik, Friderike; Bonn, Boris; Lauer, Axel; Grote, Ruediger; Butler, Tim

    2016-04-01

    Programs to plant millions of trees in cities around the world aim at the reduction of summer temperatures, increase of carbon storage, storm water control, and recreational space, as well as at poverty alleviation. These urban greening programs, however, do not take into account how closely human and natural systems are coupled in urban areas. Compared with the surroundings of cities, elevated temperatures together with high anthropogenic emissions of air and water pollutants are quite typical in urban systems. Urban and sub-urban vegetation respond to changes in meteorology and air quality and can react to pollutants. Neglecting this coupling may lead to unforeseen negative effects on air quality resulting from urban greening programs. The potential of emissions of volatile organic compounds (VOC) from vegetation combined with anthropogenic emissions of air pollutants to produce ozone has long been recognized. This ozone formation potential increases under rising temperatures. Here we investigate how emissions of VOC from urban vegetation affect corresponding ground-level ozone and PM10 concentrations in summer and especially during heat wave periods. We use the Weather Research and Forecasting Model with coupled atmospheric chemistry (WRF-CHEM) to quantify these feedbacks in the Berlin-Brandenburg region, Germany during the two summers of 2006 (heat wave) and 2014 (reference period). VOC emissions from vegetation are calculated by MEGAN 2.0 coupled online with WRF-CHEM. Our preliminary results indicate that the contribution of VOCs from vegetation to ozone formation may increase by more than twofold during heat wave periods. We highlight the importance of the vegetation for urban areas in the context of a changing climate and discuss potential tradeoffs of urban greening programs.

  15. Influence of urban resilience measures in the magnitude and behaviour of energy fluxes in the city of Porto (Portugal) under a climate change scenario.

    PubMed

    Rafael, S; Martins, H; Sá, E; Carvalho, D; Borrego, C; Lopes, M

    2016-10-01

    Different urban resilience measures, such as the increase of urban green areas and the application of white roofs, were evaluated with the WRF-SUEWS modelling system. The case study consists of five heat waves occurring in Porto (Portugal) urban area in a future climate scenario. Meteorological forcing and boundary data were downscaled for Porto urban area from the CMIP5 earth system model MPI-ESM, for the Representative Concentration Pathway RCP8.5 scenario. The influence of different resilience measures on the energy balance components was quantified and compared between each other. Results show that the inclusion of green urban areas increases the evaporation and the availability of surface moisture, redirecting the energy to the form of latent heat flux (maximum increase of +200Wm(-2)) rather than to sensible heat. The application of white roofs increases the solar radiation reflection, due to the higher albedo of such surfaces, reducing both sensible and storage heat flux (maximum reductions of -62.8 and -35Wm(-2), respectively). The conjugations of the individual benefits related to each resilience measure shows that this measure is the most effective one in terms of improving the thermal comfort of the urban population, particularly due to the reduction of both sensible and storage heat flux. The obtained results contribute to the knowledge of the surface-atmosphere exchanges and can be of great importance for stakeholders and decision-makers. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. The Urban Food-Water Nexus: Modeling Water Footprints of Urban Agriculture using CityCrop

    NASA Astrophysics Data System (ADS)

    Tooke, T. R.; Lathuilliere, M. J.; Coops, N. C.; Johnson, M. S.

    2014-12-01

    Urban agriculture provides a potential contribution towards more sustainable food production and mitigating some of the human impacts that accompany volatility in regional and global food supply. When considering the capacity of urban landscapes to produce food products, the impact of urban water demand required for food production in cities is often neglected. Urban agricultural studies also tend to be undertaken at broad spatial scales, overlooking the heterogeneity of urban form that exerts an extreme influence on the urban energy balance. As a result, urban planning and management practitioners require, but often do not have, spatially explicit and detailed information to support informed urban agricultural policy, especially as it relates to potential conflicts with sustainability goals targeting water-use. In this research we introduce a new model, CityCrop, a hybrid evapotranspiration-plant growth model that incorporates detailed digital representations of the urban surface and biophysical impacts of the built environment and urban trees to account for the daily variations in net surface radiation. The model enables very fine-scale (sub-meter) estimates of water footprints of potential urban agricultural production. Results of the model are demonstrated for an area in the City of Vancouver, Canada and compared to aspatial model estimates, demonstrating the unique considerations and sensitivities for current and future water footprints of urban agriculture and the implications for urban water planning and policy.

  17. Can Aerosol Offset Urban Heat Island Effect?

    NASA Astrophysics Data System (ADS)

    Jin, M. S.; Shepherd, J. M.

    2009-12-01

    The Urban Heat Island effect (UHI) refers to urban skin or air temperature exceeding the temperatures in surrounding non-urban regions. In a warming climate, the UHI may intensify extreme heat waves and consequently cause significant health and energy problems. Aerosols reduce surface insolation via the direct effect, namely, scattering and absorbing sunlight in the atmosphere. Combining the National Aeronautics and Space Administration (NASA) AERONET (AErosol RObotic NETwork) observations over large cities together with Weather Research and Forecasting Model (WRF) simulations, we find that the aerosol direct reduction of surface insolation range from 40-100 Wm-2, depending on seasonality and aerosol loads. As a result, surface skin temperature can be reduced by 1-2C while 2-m surface air temperature by 0.5-1C. This study suggests that the aerosol direct effect is a competing mechanism for the urban heat island effect (UHI). More importantly, both aerosol and urban land cover effects must be adequately represented in meteorological and climate modeling systems in order to properly characterize urban surface energy budgets and UHI.

  18. Alleviating Luminescence Concentration Quenching in Upconversion Nanoparticles through Organic Dye Sensitization.

    PubMed

    Wei, Wei; Chen, Guanying; Baev, Alexander; He, Guang S; Shao, Wei; Damasco, Jossana; Prasad, Paras N

    2016-11-23

    The phenomenon of luminescence concentration quenching exists widely in lanthanide-based luminescent materials, setting a limit on the content of lanthanide emitter that can be used to hold the brightness. Here, we introduce a concept involving energy harvesting by a strong absorber and subsequent energy transfer to a lanthanide that largely alleviates concentration quenching. We apply this concept to Nd 3+ emitters, and we show both experimentally and theoretically that the optimal doping concentration of Nd 3+ in colloidal NaYF 4 :Nd upconverting nanoparticles is increased from 2 to 20 mol% when an energy harvestor organic dye (indocyanine green, ICG) is anchored onto the nanoparticle surface, resulting in ∼10 times upconversion brightness. Theoretical analysis indicated that a combination of efficient photon harvesting due to the large absorption cross section of ICG (∼30 000 times higher than that of Nd 3+ ), non-radiative energy transfer (efficiency ∼57%) from ICG to the surface bound Nd 3+ ions, and energy migration among the Nd 3+ ions was able to activate Nd 3+ ions inside the nanoparticle at a rate comparable with that of the pronounced short-range quenching interaction at elevated Nd 3+ concentrations. This resulted in the optimal concentration increase to produce significantly enhanced brightness. Theoretical modeling shows a good agreement with the experimental observation. This strategy can be utilized for a wide range of other lanthanide-doped nanomaterials being utilized for bioimaging and solar cell applications.

  19. Topical Rapamycin Therapy to Alleviate Cutaneous Manifestations of Tuberous Sclerosis Complex

    DTIC Science & Technology

    2015-05-01

    AD Award Number: W81XWH-11-1-0240 Title: Topical Rapamycin Therapy to Alleviate Cutaneous Manifestations of Tuberous Sclerosis Complex Principal...1Sep2011 - 28Feb2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Topical Rapamycin Therapy to Alleviate Cutaneous Manifestations of Tuberous Sclerosis...organ systems. The TSC1 and TSC2 gene products are involved in cell signaling; in particular they are involved in the mammalian target of rapamycin

  20. Regional scale prioritisation for key ecosystem services, renewable energy production and urban development.

    PubMed

    Casalegno, Stefano; Bennie, Jonathan J; Inger, Richard; Gaston, Kevin J

    2014-01-01

    Although the importance of addressing ecosystem service benefits in regional land use planning and decision-making is evident, substantial practical challenges remain. In particular, methods to identify priority areas for the provision of key ecosystem services and other environmental services (benefits from the environment not directly linked to the function of ecosystems) need to be developed. Priority areas are locations which provide disproportionally high benefits from one or more service. Here we map a set of ecosystem and environmental services and delineate priority areas according to different scenarios. Each scenario is produced by a set of weightings allocated to different services and corresponds to different landscape management strategies which decision makers could undertake. Using the county of Cornwall, U.K., as a case study, we processed gridded maps of key ecosystem services and environmental services, including renewable energy production and urban development. We explored their spatial distribution patterns and their spatial covariance and spatial stationarity within the region. Finally we applied a complementarity-based priority ranking algorithm (zonation) using different weighting schemes. Our conclusions are that (i) there are two main patterns of service distribution in this region, clustered services (including agriculture, carbon stocks, urban development and plant production) and dispersed services (including cultural services, energy production and floods mitigation); (ii) more than half of the services are spatially correlated and there is high non-stationarity in the spatial covariance between services; and (iii) it is important to consider both ecosystem services and other environmental services in identifying priority areas. Different weighting schemes provoke drastic changes in the delineation of priority areas and therefore decision making processes need to carefully consider the relative values attributed to different services.

  1. Challenges for tree officers to enhance the provision of regulating ecosystem services from urban forests.

    PubMed

    Davies, Helen J; Doick, Kieron J; Hudson, Malcolm D; Schreckenberg, Kate

    2017-07-01

    Urbanisation and a changing climate are leading to more frequent and severe flood, heat and air pollution episodes in Britain's cities. Interest in nature-based solutions to these urban problems is growing, with urban forests potentially able to provide a range of regulating ecosystem services such as stormwater attenuation, heat amelioration and air purification. The extent to which these benefits are realized is largely dependent on urban forest management objectives, the availability of funding, and the understanding of ecosystem service concepts within local governments, the primary delivery agents of urban forests. This study aims to establish the extent to which British local authorities actively manage their urban forests for regulating ecosystem services, and identify which resources local authorities most need in order to enhance provision of ecosystem services by Britain's urban forests. Interviews were carried out with staff responsible for tree management decisions in fifteen major local authorities from across Britain, selected on the basis of their urban nature and high population density. Local authorities have a reactive approach to urban forest management, driven by human health and safety concerns and complaints about tree disservices. There is relatively little focus on ensuring provision of regulating ecosystem services, despite awareness by tree officers of the key role that urban forests can play in alleviating chronic air pollution, flood risk and urban heat anomalies. However, this is expected to become a greater focus in future provided that existing constraints - lack of understanding of ecosystem services amongst key stakeholders, limited political support, funding constraints - can be overcome. Our findings suggest that the adoption of a proactive urban forest strategy, underpinned by quantified and valued urban forest-based ecosystem services provision data, and innovative private sector funding mechanisms, can facilitate a change to a

  2. A study of helicopter gust response alleviation by automatic control

    NASA Technical Reports Server (NTRS)

    Saito, S.

    1983-01-01

    Two control schemes designed to alleviate gust-induced vibration are analytically investigated for a helicopter with four articulated blades. One is an individual blade pitch control scheme. The other is an adaptive blade pitch control algorithm based on linear optimal control theory. In both controllers, control inputs to alleviate gust response are superimposed on the conventional control inputs required to maintain the trim condition. A sinusoidal vertical gust model and a step gust model are used. The individual blade pitch control, in this research, is composed of sensors and a pitch control actuator for each blade. Each sensor can detect flapwise (or lead-lag or torsionwise) deflection of the respective blade. The acturator controls the blade pitch angle for gust alleviation. Theoretical calculations to predict the performance of this feedback system have been conducted by means of the harmonic method. The adaptive blade pitch control system is composed of a set of measurements (oscillatory hub forces and moments), an identification system using a Kalman filter, and a control system based on the minimization of the quadratic performance function.

  3. CAMP LEJEUNE ENERGY FROM WOOD (CLEW) PROJECT

    EPA Science Inventory

    The paper discusses EPA's Camp Lejeune Energy from Wood (CLEW) project, a demonstration project that converts wood energy to electric power, and provides waste utilization and pollution alleviation. The 1-MWe plant operates a reciprocating engine-generator set on synthetic gas f...

  4. Smart Mobility Stakeholders - Curating Urban Data & Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sperling, Joshua

    This presentation provides an overview of the curation of urban data and models through engaging SMART mobility stakeholders. SMART Mobility Urban Science Efforts are helping to expose key data sets, models, and roles for the U.S. Department of Energy in engaging across stakeholders to ensure useful insights. This will help to support other Urban Science and broader SMART initiatives.

  5. Vortex wake alleviation studies with a variable twist wing

    NASA Technical Reports Server (NTRS)

    Holbrook, G. T.; Dunham, D. M.; Greene, G. C.

    1985-01-01

    Vortex wake alleviation studies were conducted in a wind tunnel and a water towing tank using a multisegmented wing model which provided controlled and measured variations in span load. Fourteen model configurations are tested at a Reynolds number of one million and a lift coefficient of 0.6 in the Langley 4- by 7-Meter Tunnel and the Hydronautics Ship Model Basin water tank at Hydronautics, Inc., Laurel, Md. Detailed measurements of span load and wake velocities at one semispan downstream correlate well with each other, with inviscid predictions of span load and wake roll up, and with peak trailing-wing rolling moments measured in the far wake. Average trailing-wing rolling moments are found to be an unreliable indicator of vortex wake intensity because vortex meander does not scale between test facilities and free-air conditions. A tapered-span-load configuration, which exhibits little or no drag penalty, is shown to offer significant downstream wake alleviation to a small trailing wing. The greater downstream wake alleviation achieved with the addition of spoilers to a flapped-wing configuration is shown to result directly from the high incremental drag and turbulence associated with the spoilers and not from the span load alteration they cause.

  6. Diet of dingoes and other wild dogs in peri-urban areas of north-eastern Australia

    NASA Astrophysics Data System (ADS)

    Allen, Benjamin L.; Carmelito, Erin; Amos, Matt; Goullet, Mark S.; Allen, Lee R.; Speed, James; Gentle, Matt; Leung, Luke K.-P.

    2016-03-01

    Knowledge of the resource requirements of urban predators can improve our understanding of their ecology and assist town planners and wildlife management agencies in developing management approaches that alleviate human-wildlife conflicts. Here we examine food and dietary items identified in scats of dingoes in peri-urban areas of north-eastern Australia to better understand their resource requirements and the potential for dingoes to threaten locally fragmented populations of native fauna. Our primary aim was to determine what peri-urban dingoes eat, and whether or not this differs between regions. We identified over 40 different food items in dingo scats, almost all of which were mammals. Individual species commonly observed in dingo scats included agile wallabies, northern brown bandicoots and swamp wallabies. Birds were relatively common in some areas but not others, as were invertebrates. Dingoes were identified as a significant potential threat to fragmented populations of koalas. Dietary overlap was typically very high or near-identical between regions, indicating that peri-urban dingoes ate the same types or sizes of prey in different areas. Future studies should seek to quantify actual and perceived impacts of, and human attitudes towards, peri-urban dingoes, and to develop management strategies with a greater chance of reducing human-wildlife conflicts.

  7. Technology choice and development in Brazil: An assessment of Brazil's alternative fuel program and the agriculture, manufacturing, energy, and service sectors

    NASA Astrophysics Data System (ADS)

    Nolan, Lucy A.

    Technology choice profoundly affects a country's development process because capital-intensive and labor-intensive technologies have different socioeconomic linkages within the economy. This research examines the impacts of technology choice through the use of a social accounting matrix (SAM) framework. SAM-based modeling determines the direct and indirect effects of technology choice on development, particularly poverty alleviation in Brazil. Brazil's alternative fuel program was analyzed as a special example of technology choice. Two ethanol production technologies and the gasoline sector were compared; to make the study more robust, labor and capital intensive technologies were evaluated in the production of agriculture, manufacturing, energy, and services. Growth in these economic sectors was examined to assess the effects on employment, factor and household income, energy intensity, and carbon dioxide costs. Poverty alleviation was a focus, so income to unskilled agriculture labor, unskilled non-agriculture labor, and income to rural and urban households in poverty was also analyzed. The major research finding is that overall, labor-intensive technologies generate more employment, factor and household income, environmental and energy benefits to Brazil's economy than capital-intensive technologies. In addition, labor-intensive technologies make a particular contribution to poverty alleviation. The results suggest that policies to encourage the adoption of these technologies, especially in the agriculture and renewable energy sectors, are important because of their intersectoral linkages within the economy. Many studies have shown that Brazil's fuel ethanol program has helped to realize multiple macroeconomic objectives. However, this is the first empirical study to quantify its household income effects. The ethanol industry generated the most household income of the energy sectors. The research confirms a key finding of the appropriate technology literature

  8. The urban stormwater farm.

    PubMed

    Liebman, M B; Jonasson, O J; Wiese, R N

    2011-01-01

    Currently more than 3 billion people live in urban areas. The urban population is predicted to increase by a further 3 billion by 2050. Rising oil prices, unreliable rainfall and natural disasters have all contributed to a rise in global food prices. Food security is becoming an increasingly important issue for many nations. There is also a growing awareness of both 'food miles' and 'virtual water'. Food miles and virtual water are concepts that describe the amount of embodied energy and water that is inherent in the food and other goods we consume. Growing urban agglomerations have been widely shown to consume vast quantities of energy and water whilst emitting harmful quantities of wastewater and stormwater runoff through the creation of massive impervious areas. In this paper it is proposed that there is an efficient way of simultaneously addressing the problems of food security, carbon emissions and stormwater pollution. Through a case study we demonstrate how it is possible to harvest and store stormwater from densely populated urban areas and use it to produce food at relatively low costs. This reduces food miles (carbon emissions) and virtual water consumption and serves to highlight the need for more sustainable land-use planning.

  9. Methods for Analysis of Urban Energy Systems: A New York City Case Study

    NASA Astrophysics Data System (ADS)

    Howard, Bianca

    This dissertation describes methods developed for analysis of the New York City energy system. The analysis specifically aims to consider the built environment and its' impacts on greenhouse gas (GHG) emissions. Several contributions to the urban energy systems literature were made. First, estimates of annual energy intensities of the New York building stock were derived using a statistical analysis that leveraged energy consumption and tax assessor data collected by the Office of the Mayor. These estimates provided the basis for an assessment of the spatial distribution of building energy consumption. The energy consumption estimates were then leveraged to estimate the potential for combined heat and power (CHP) systems in New York City at both the building and microgrid scales. In aggregate, given the 2009 non-baseload GHG emissions factors for electricity production, these systems could reduce citywide GHG emissions by 10%. The operational characteristics of CHP systems were explored further considering different prime movers, climates, and GHG emissions factors. A combination of mixed integer linear programing and controlled random search algorithms were the methods used to determine the optimal capacity and operating strategies for the CHP systems under the various scenarios. Lastly a multi-regional unit commitment model of electricity and GHG emissions production for New York State was developed using data collected from several publicly available sources. The model was used to estimate average and marginal GHG emissions factors for New York State and New York City. The analysis found that marginal GHG emissions factors could reduce by 30% to 370 g CO2e/kWh in the next 10 years.

  10. Rural development and urban migration: can we keep them down on the farm?

    PubMed

    Rhoda, R

    1983-01-01

    This study tests the hypothesis that rural development projects and programs reduce rural-urban migration. The author presents various factors in the social theories of migration, including those relating to origin and destination, intervening obstacles such as distance, and personal factors. 3 economic models of migration are the human capital or cost-benefit approach, the expected income model, and the intersectoral linkage model. Empirical studies of migration indicate that: 1) rural areas with high rates of out-migration tend to have high population densities or high ratios of labor to arable land, 2) distance inhibits migration, 3) rural-urban migration is positively correlated with family income level, and 4) selectivity differences in socioeconomic status between migrants and nonmigrants often are grouped into development packages which might include irrigation, new varieties of seed, subsidized credit, increased extension, and improved marketing arrangements. The migration impacts of some of these efforts are described: 1) land reform usually is expected to slow rural out-migration because it normally increases labor utilization in rural areas, but this is a limited effect, 2) migration effects of the Green Revolution technology are mainly in rural-rural migration, and 3) agricultural mechanization may stimulate rural-urban migration in the long run. Development of rural social services migh have various effects on rural-urban migration. Better rural education, which improves the chances of urban employment, will stimulate rural-urban migration, while successful rural family planning programs will have a negative effect in the long run as there will be reduced population pressure on arable land. Better rural health services might reduce the incentive for rural-urban migration as well. It is suggested that governments reconsider policies which rely on rural development to curb rural-urban migration and alleviate problems of urban poverty and underemployment.

  11. Sustainability and Resilience in the Urban Environment

    EPA Science Inventory

    Urban systems are formed by a diversity of actors and activities, and consist of complex interactions involving financial, information, energy, ecological, and material stocks and flows that operate on different spatial and temporal scales. The urban systems that emerge from thes...

  12. Development of SMA Actuated Morphing Airfoil for Wind Turbine Load Alleviation

    NASA Astrophysics Data System (ADS)

    Karakalas, A.; Machairas, T.; Solomou, A.; Riziotis, V.; Saravanos, D.

    Wind turbine rotor upscaling has entered a range of rotor diameters where the blade structure cannot sustain the increased aerodynamic loads without novel load alleviation concepts. Research on load alleviation using morphing blade sections is presented. Antagonistic shape memory alloy (SMA) actuators are implemented to deflect the section trailing edge (TE) to target shapes and target time-series relating TE movement with changes in lift coefficient. Challenges encountered by the complex thermomechanical response of morphing section and the enhancement of SMA transient response to achieve frequencies meaningful for aerodynamic load alleviation are addressed. Using a recently developed finite element for SMA actuators [1], actuator configurations are considered for fast cooling and heating cycles. Numerical results quantify the attained ranges of TE angle movement, the moving time period and the developed stresses. Estimations of the attained variations of lift coefficient vs. time are also presented to assess the performance of the morphing section.

  13. Balancing macronutrient stoichiometry to alleviate eutrophication.

    PubMed

    Stutter, M I; Graeber, D; Evans, C D; Wade, A J; Withers, P J A

    2018-09-01

    Reactive nitrogen (N) and phosphorus (P) inputs to surface waters modify aquatic environments, affect public health and recreation. Source controls dominate eutrophication management, whilst biological regulation of nutrients is largely neglected, although aquatic microbial organisms have huge potential to process nutrients. The stoichiometric ratio of organic carbon (OC) to N to P atoms should modulate heterotrophic pathways of aquatic nutrient processing, as high OC availability favours aquatic microbial processing. Heterotrophic microbial processing removes N by denitrification and captures N and P as organically-complexed, less eutrophying forms. With a global data synthesis, we show that the atomic ratios of bioavailable dissolved OC to either N or P in rivers with urban and agricultural land use are often distant from a "microbial optimum". This OC-deficiency relative to high availabilities of N and P likely overwhelms within-river heterotrophic processing. We propose that the capability of streams and rivers to retain N and P may be improved by active stoichiometric rebalancing. Although autotrophic OC production contributes to heterotrophic rates substantial control on nutrient processing from allochthonous OC is documented for N and an emerging field for P. Hence, rebalancing should be done by reconnecting appropriate OC sources such as wetlands and riparian forests that have become disconnected from rivers concurrent with agriculture and urbanisation. However, key knowledge gaps require research prior to the safe implementation of this approach in management: (i) to evaluate system responses to catchment inputs of dissolved OC forms and amounts relative to internal production of autotrophic dissolved OC and aquatic and terrestrial particulate OC and (ii) evaluate risk factors in anoxia-mediated P desorption with elevated OC scenarios. Still, we find stoichiometric rebalancing through reconnecting landscape beneficial OC sources has considerable potential

  14. Governance of urban transitions: towards sustainable resource efficient urban infrastructures

    NASA Astrophysics Data System (ADS)

    Swilling, Mark; Hajer, Maarten

    2017-12-01

    The transition to sustainable resource efficient cities calls for new governance arrangements. The awareness that the doubling of the global urban population will result in unsustainable levels of demand for natural resources requires changes in the existing socio-technical systems. Domestic material consumption could go up from 40 billion tons in 2010, to 89 billion tons by 2050. While there are a number of socio-technical alternatives that could result in significant improvements in the resource efficiency of urban systems in developed and developing countries (specifically bus-rapid transit, district energy systems and green buildings), we need to rethink the urban governance arrangements to get to this alternative pathway. We note modes of urban governance have changed over the past century as economic and urban development paradigms have shifted at the national and global levels. This time round we identify cities as leading actors in the transition to more sustainable modes of production and consumption as articulated in the Sustainable Development Goals. This has resulted in a surge of urban experimentation across all world regions, both North and South. Building on this empirically observable trend we suggest this can also be seen as a building block of a new urban governance paradigm. An ‘entrepreneurial urban governance’ is proposed that envisages an active and goal-setting role for the state, but in ways that allows broader coalitions of urban ‘agents of change’ to emerge. This entrepreneurial urban governance fosters and promotes experimentation rather than suppressing the myriad of such initiatives across the globe, and connects to global city networks for systemic learning between cities. Experimentation needs to result in a contextually appropriate balance between economic, social, technological and sustainable development. A full and detailed elaboration of the arguments and sources for this article can be found in chapter 6 of Swilling M et

  15. The aircraft energy efficiency active controls technology program

    NASA Technical Reports Server (NTRS)

    Hood, R. V., Jr.

    1977-01-01

    Broad outlines of the NASA Aircraft Energy Efficiency Program for expediting the application of active controls technology to civil transport aircraft are presented. Advances in propulsion and airframe technology to cut down on fuel consumption and fuel costs, a program for an energy-efficient transport, and integrated analysis and design technology in aerodynamics, structures, and active controls are envisaged. Fault-tolerant computer systems and fault-tolerant flight control system architectures are under study. Contracts with leading manufacturers for research and development work on wing-tip extensions and winglets for the B-747, a wing load alleviation system, elastic mode suppression, maneuver-load control, and gust alleviation are mentioned.

  16. Proceedings of the second national urban forestry conference

    Treesearch

    Deborah J. Gangloff; George H. Moeller

    1982-01-01

    The National Urban and Community Forestry Leaders Council and the American Forestry Association believed it was time to reconvene the nation's urban foresters. It had been four years since the first National Urban Forestry Conference was held in Washington, DC. The ideas, excitement, and energy of those that attended this second conference were a convincing...

  17. Payments for carbon sequestration to alleviate development pressure in a rapidly urbanizing region

    USGS Publications Warehouse

    Smith, Jordan W.; Dorning, Monica; Shoemaker, Douglas A.; Méley, Andréanne; Dupey, Lauren; Meentemeyer, Ross K.

    2017-01-01

    The purpose of this study was to determine individuals' willingness to enroll in voluntary payments for carbon sequestration programs through the use of a discrete choice experiment delivered to forest owners living in the rapidly urbanizing region surrounding Charlotte, North Carolina. We examined forest owners' willingness to enroll in payments for carbon sequestration policies under different levels of financial incentives (annual revenue), different contract lengths, and different program administrators (e.g., private companies versus a state or federal agency). We also examined the influence forest owners' sense of place had on their willingness to enroll in hypothetical programs. Our results showed a high level of ambivalence toward participating in payments for carbon sequestration programs. However, both financial incentives and contract lengths significantly influenced forest owners' intent to enroll. Neither program administration nor forest owners' sense of place influenced intent to enroll. Although our analyses indicated that payments from carbon sequestration programs are not currently competitive with the monetary returns expected from timber harvest or property sales, certain forest owners might see payments for carbon sequestration programs as a viable option for offsetting increasing tax costs as development encroaches and property values rise.

  18. Regional Scale Prioritisation for Key Ecosystem Services, Renewable Energy Production and Urban Development

    PubMed Central

    Casalegno, Stefano; Bennie, Jonathan J.; Inger, Richard; Gaston, Kevin J.

    2014-01-01

    Although the importance of addressing ecosystem service benefits in regional land use planning and decision-making is evident, substantial practical challenges remain. In particular, methods to identify priority areas for the provision of key ecosystem services and other environmental services (benefits from the environment not directly linked to the function of ecosystems) need to be developed. Priority areas are locations which provide disproportionally high benefits from one or more service. Here we map a set of ecosystem and environmental services and delineate priority areas according to different scenarios. Each scenario is produced by a set of weightings allocated to different services and corresponds to different landscape management strategies which decision makers could undertake. Using the county of Cornwall, U.K., as a case study, we processed gridded maps of key ecosystem services and environmental services, including renewable energy production and urban development. We explored their spatial distribution patterns and their spatial covariance and spatial stationarity within the region. Finally we applied a complementarity-based priority ranking algorithm (zonation) using different weighting schemes. Our conclusions are that (i) there are two main patterns of service distribution in this region, clustered services (including agriculture, carbon stocks, urban development and plant production) and dispersed services (including cultural services, energy production and floods mitigation); (ii) more than half of the services are spatially correlated and there is high non-stationarity in the spatial covariance between services; and (iii) it is important to consider both ecosystem services and other environmental services in identifying priority areas. Different weighting schemes provoke drastic changes in the delineation of priority areas and therefore decision making processes need to carefully consider the relative values attributed to different services

  19. Urban climate, weather and sustainability

    NASA Astrophysics Data System (ADS)

    Mills, Gerald

    As concentrated areas of human activities, urban areas and urbanization are key drivers of global environmental change and pose a challenge to the achievement of sustainability. One of the key goals of sustainable development is to separate increases in non-renewable resource use (particularly fossil fuels) from economic growth. This is to be accomplished by modifying individual practices, encouraging technological innovation and redesigning systems of production and consumption. Settlements represent a scale at which significant advances on each of these can be made and where there is an existing management structure. However, urban areas currently consume a disproportionate share of the Earth's resources and urbanization has modified local climate and weather significantly, usually to the detriment of urban dwellers. There is now a lengthy history of urban climate study that links existing settlement form to climatic consequences yet, there is little evidence that climate information is incorporated into urban designs or that the climatic impact of different plans is considered. Consequently, opportunities for planning sustainable urban forms that are suitable to local climates and promote energy conservation and healthy atmospheres are not taken and much effort is later expended in `fixing' problems that emerge. This paper will outline the links between urban climate and sustainability, identify gaps in our urban climate knowledge and discuss the opportunities and barriers to the application of this knowledge to urban design and planning.

  20. High resolution urban morphology data for urban wind flow modeling

    NASA Astrophysics Data System (ADS)

    Cionco, Ronald M.; Ellefsen, Richard

    The application of urban forestry methods and technologies to a number of practical problems can be further enhanced by the use and incorporation of localized, high resolution wind and temperature fields into their analysis methods. The numerical simulation of these micrometeorological fields will represent the interactions and influences of urban structures, vegetation elements, and variable terrain as an integral part of the dynamics of an urban domain. Detailed information of the natural and man-made components that make up the urban area is needed to more realistically model meteorological fields in urban domains. Simulating high resolution wind and temperatures over and through an urban domain utilizing detailed morphology data can also define and quantify local areas where urban forestry applications can contribute to better solutions. Applications such as the benefits of planting trees for shade purposes can be considered, planned, and evaluated for their impact on conserving energy and cooling costs as well as the possible reconfiguration or removal of trees and other barriers for improved airflow ventilation and similar processes. To generate these fields, a wind model must be provided, as a minimum, the location, type, height, structural silhouette, and surface roughness of these components, in order to account for the presence and effects of these land morphology features upon the ambient airflow. The morphology of Sacramento, CA has been characterized and quantified in considerable detail primarily for wind flow modeling, simulation, and analyses, but can also be used for improved meteorological analyses, urban forestry, urban planning, and other urban related activities. Morphology methods previously developed by Ellefsen are applied to the Sacramento scenario with a high resolution grid of 100 m × 100 m. The Urban Morphology Scheme defines Urban Terrain Zones (UTZ) according to how buildings and other urban elements are structured and placed with

  1. Subpixel urban impervious surface mapping: the impact of input Landsat images

    NASA Astrophysics Data System (ADS)

    Deng, Chengbin; Li, Chaojun; Zhu, Zhe; Lin, Weiying; Xi, Li

    2017-11-01

    Due to the heterogeneity of urban environments, subpixel urban impervious surface mapping is a challenging task in urban environmental studies. Factors, such as atmospheric correction, climate conditions, seasonal effect, urban settings, substantially affect fractional impervious surface estimation. Their impacts, however, have not been well studied and documented. In this research, we performed direct and comprehensive examinations to explore the impacts of these factors on subpixel estimation when using an effective machine learning technique (Random Forest) and provided solutions to alleviate these influences. Four conclusions can be drawn based on the repeatable experiments in three study areas under different climate conditions (humid continental, tropical monsoon, and Mediterranean climates). First, the performance of subpixel urban impervious surface mapping using top-of-atmosphere (TOA) reflectance imagery is comparable to, and even slightly better than, the surface reflectance imagery provided by U.S. Geological Services in all seasons and in all testing regions. Second, the effect of images with leaf-on/off season varies, and is contingent upon different climate regions. Specifically, humid continental areas may prefer the leaf-on imagery (e.g., summer), while the tropical monsoon and Mediterranean regions seem to favor the fall and winter imagery. Third, the overall estimation performance in the humid continental area is somewhat better than the other regions. Finally, improvements can be achieved by using multi-season imagery, but the increments become less obvious when including more than two seasons. The strategy and results of this research could improve and accommodate regional/national subpixel land cover mapping using Landsat images for large-scale environmental studies.

  2. The Energetic Value of Land-Based Foods in Western Hudson Bay and Their Potential to Alleviate Energy Deficits of Starving Adult Male Polar Bears

    PubMed Central

    Gormezano, Linda J.; Rockwell, Robert F.

    2015-01-01

    Climate change is predicted to expand the ice-free season in western Hudson Bay and when it grows to 180 days, 28–48% of adult male polar bears are projected to starve unless nutritional deficits can be offset by foods consumed on land. We updated a dynamic energy budget model developed by Molnar et al. to allow influx of additional energy from novel terrestrial foods (lesser snow geese, eggs, caribou) that polar bears currently consume as part of a mixed diet while on land. We calculated the units of each prey, alone and in combination, needed to alleviate these lethal energy deficits under conditions of resting or limited movement (2 km d-1) prior to starvation. We further considered the total energy available from each sex and age class of each animal prey over the period they would overlap land-bound polar bears and calculated the maximum number of starving adult males that could be sustained on each food during the ice-free season. Our results suggest that the net energy from land-based food, after subtracting costs of limited movement to obtain it, could eliminate all projected nutritional deficits of starving adult male polar bears and likely other demographic groups as well. The hunting tactics employed, success rates as well as behavior and abundance of each prey will determine the realized energetic values for individual polar bears. Although climate change may cause a phenological mismatch between polar bears and their historical ice-based prey, it may simultaneously yield a new match with certain land-based foods. If polar bears can transition their foraging behavior to effectively exploit these resources, predictions for starvation-related mortality may be overestimated for western Hudson Bay. We also discuss potential complications with stable-carbon isotope studies to evaluate utilization of land-based foods by polar bears including metabolic effects of capture-related stress and consuming a mixed diet. PMID:26061693

  3. The Energetic Value of Land-Based Foods in Western Hudson Bay and Their Potential to Alleviate Energy Deficits of Starving Adult Male Polar Bears.

    PubMed

    Gormezano, Linda J; Rockwell, Robert F

    2015-01-01

    Climate change is predicted to expand the ice-free season in western Hudson Bay and when it grows to 180 days, 28-48% of adult male polar bears are projected to starve unless nutritional deficits can be offset by foods consumed on land. We updated a dynamic energy budget model developed by Molnar et al. to allow influx of additional energy from novel terrestrial foods (lesser snow geese, eggs, caribou) that polar bears currently consume as part of a mixed diet while on land. We calculated the units of each prey, alone and in combination, needed to alleviate these lethal energy deficits under conditions of resting or limited movement (2 km d-1) prior to starvation. We further considered the total energy available from each sex and age class of each animal prey over the period they would overlap land-bound polar bears and calculated the maximum number of starving adult males that could be sustained on each food during the ice-free season. Our results suggest that the net energy from land-based food, after subtracting costs of limited movement to obtain it, could eliminate all projected nutritional deficits of starving adult male polar bears and likely other demographic groups as well. The hunting tactics employed, success rates as well as behavior and abundance of each prey will determine the realized energetic values for individual polar bears. Although climate change may cause a phenological mismatch between polar bears and their historical ice-based prey, it may simultaneously yield a new match with certain land-based foods. If polar bears can transition their foraging behavior to effectively exploit these resources, predictions for starvation-related mortality may be overestimated for western Hudson Bay. We also discuss potential complications with stable-carbon isotope studies to evaluate utilization of land-based foods by polar bears including metabolic effects of capture-related stress and consuming a mixed diet.

  4. Comparing large eddy simulations and measurements of the turbulent kinetic energy budget in an urban canopy layer

    NASA Astrophysics Data System (ADS)

    Parlange, M. B.; Giometto, M. G.; Meneveau, C. V.; Fang, J.; Christen, A.

    2013-12-01

    Local turbulent kinetic energy (TKE) in the Urban Canopy Layer (UCL) is highly dependent on the actual configuration of obstacles relative to mean wind and stability. For many applications, building-resolving information is neither required nor feasible, and simply beyond the numerical capabilities of operational systems. Common urban canopy parameterizations (UCP) used in dispersion and mesoscale forecasting models hence rely on a horizontally averaged approach, where the UCL is represented as a 1D column, often for simplified geometries such as infinite street canyons. We use Large Eddy Simulations (LES) of the airflow over and within a realistic urban geometry in the city of Basel, Switzerland to determine all terms of the TKE budget in order to guide and validate current approaches used in UCPs. A series of high-resolution LES runs of the fully developed flow are performed in order to characterize the TKE budget terms in a horizontally averaged frame of view for various directions of the approaching flow under neutral conditions. Equations are solved on a regular domain with a horizontal resolution of 2 m. A Lagrangian scale-dependent LES model is adopted to parametrize the subgrid-scale stresses and buildings are taken into account adopting an immersed boundary approach with the geometry taken from a highly accurate digital building model. The modeled (periodic) domain is centered on the location of a 32 m tall tower, where measurements of turbulence were performed, during the BUBBLE program in 2001/02 (Rotach et al., Theor. Appl. Clim., 82, 231-261, 2005). Selected terms of the TKE budget were inferred from six levels of ultrasonic anemometer measurements operated over nearly a full year between ground level and two times the mean building height. This contribution answers the questions: (1) How well do TKE budget terms calculated by the LES at the exact tower location match the single point measurements on the tower under comparable conditions? (2) How

  5. Public engagement with information on renewable energy developments: The case of single, semi-urban wind turbines.

    PubMed

    Parks, J M; Theobald, K S

    2013-01-01

    This paper explores perceptions of public engagement with information on renewable energy developments. It draws on a case study of proposals by a major supermarket chain to construct single wind turbines in two semi-urban locations in the UK, analysing data from interviews with key actors in the planning process and focus groups with local residents. The paper concludes that key actors often had high expectations of how local people should engage with information, and sometimes implied that members of the public who were incapable of filtering or processing information in an organised or targeted fashion had no productive role to play in the planning process. It shows how the specific nature of the proposals (single wind turbines in semi-urban locations proposed by a commercial private sector developer) shaped local residents' information needs and concerns in a way that challenged key actors' expectations of how the public should engage with information.

  6. Review of Strategies for Thermal Efficiency in Landscape Planning of Cities for Conservation of Energy and Enhanced Climatic Resilience to Urban Warming

    NASA Astrophysics Data System (ADS)

    Imam, Aabshar U. K.; Banerjee, Uttam Kumar

    2017-09-01

    Thermal discomfort, increased energy consumption, and heat related stress are some of the most prominent consequences of urban warming. Instances of heat related deaths have been reported; the elderly and the poor remain especially vulnerable. Urban greening has often been cited as an economically efficient method for inducing ambient cooling. Consequently, increased impetus is given to provision of public green spaces. However, a general increase in urban green cover especially in the form of parks and green spaces may be inadequate to achieve desired results. This article serves to highlight the thermal heterogeneity of landcape elements and stresses on the need for strategic shade provision. The originality of this study lies in the fact that it provides a comparative review of energy conservation potential of public and private green spaces. It is found that large parks may not have substantial cooling effect on the indoor built environment. Moreover, people tend to spend more time indoors than outdoors. Thus the need for greening of private areas has become an undeniable climatic necessity. The potential of shade trees, green walls, and roof gardens for cooling of built environment are discussed with quantitative evidences of their thermal and economic benefits. Parameters incurring cost expenditure and weaknesses of the greening strategies are enumerated for enabling prudent selection/implementation of strategies. Proposals are generated to improve climatic resilience to urban warming and for diligent planning of cities.

  7. Modelling regional climate change and urban planning scenarios and their impacts on the urban environment in two cities with WRF-ACASA

    NASA Astrophysics Data System (ADS)

    Falk, M.; Pyles, R. D.; Marras, S.; Spano, D.; Paw U, K. T.

    2011-12-01

    The number of urban metabolism studies has increased in recent years, due to the important impact that energy, water and carbon exchange over urban areas have on climate change. Urban modeling is therefore crucial in the future design and management of cities. This study presents the ACASA model coupled to the Weather Research and Forecasting (WRF-ARW) mesoscale model to simulate urban fluxes at a horizontal resolution of 200 meters for urban areas of roughly 100 km^2. As part of the European Project "BRIDGE", these regional simulations were used in combination with remotely sensed data to provide constraints on the land surface types and the exchange of carbon and energy fluxes from urban centers. Surface-atmosphere exchanges of mass and energy were simulated using the Advanced Canopy Atmosphere Soil Algorithm (ACASA). ACASA is a multi-layer high-order closure model, recently modified to work over natural, agricultural as well as urban environments. In particular, improvements were made to account for the anthropogenic contribution to heat and carbon production. For two cities four climate change and four urban planning scenarios were simulated: The climate change scenarios include a base scenario (Sc0: 2008 Commit in IPCC), a medium emission scenario (Sc1: IPCC A2), a worst case emission scenario (Sce2: IPCC A1F1) and finally a best case emission scenario (Sce3: IPCC B1). The urban planning scenarios include different development scenarios such as smart growth. The two cities are a high latitude city, Helsinki (Finland) and an historic city, Florence (Italy). Helsinki is characterized by recent, rapid urbanization that requires a substantial amount of energy for heating, while Florence is representative of cities in lower latitudes, with substantial cultural heritage and a comparatively constant architectural footprint over time. In general, simulated fluxes matched the point observations well and showed consistent improvement in the energy partitioning over

  8. Alleviating cancer patients' suffering: whose responsibility is it?

    PubMed

    Grau, Jorge

    2009-07-01

    In medicine, we have historically been better at learning about the body and disease than we have at understanding the human beings who come to us with the ailments. We have acted to relieve pain, consoling patients and families as a complement, but done little to understand and alleviate suffering as a fundamental part of our practice. In fact, only in more recent decades has "suffering" been conceptualized as something apart from pain, associated with distress and its causes. It was Eric T. Cassell, in his ground-breaking work in the 1980s, who posed the need to consider alleviation of suffering and treatment of illness as twin-and equally important-obligations of the medical profession. Suffering is defined as a negative, complex emotional and cognitive state, characterized by feeling under constant threat and powerless to confront it, having drained the physical and psycho-social resources that might have made resistance possible. This unique depletion of personal resources is key to understanding suffering.

  9. Alleviating effects of calcium on cobalt toxicity in two barley genotypes differing in cobalt tolerance.

    PubMed

    Lwalaba, Jonas Lwalaba Wa; Zvobgo, Gerald; Fu, Liangbo; Zhang, Xuelei; Mwamba, Theodore Mulembo; Muhammad, Noor; Mundende, Robert Prince Mukobo; Zhang, Guoping

    2017-05-01

    Cobalt (Co) contamination in soils is becoming a severe issue in environment safety and crop production. Calcium (Ca) , as a macro-nutrient element, shows the antagonism with many divalent heavy metals and the capacity of alleviating oxidative stress in plants. In this study, the protective role of Ca in alleviating Co stress was hydroponically investigated using two barley genotypes differing in Co toxicity tolerance. Barley seedlings exposed to 100µM Co showed the significant reduction in growth and photosynthetic rate, and the dramatic increase in the contents of reactive oxygen species (ROS), malondialdehyde (MDA), reduced glutathione (GSH) and oxidized glutathione (GSSG), and the activities of anti-oxidative enzymes, with Ea52 (Co-sensitive) being much more affected than Yan66 (Co-tolerant). Addition of Ca in growth medium alleviated Co toxicity by reducing Co uptake and enhancing the antioxidant capacity. The effect of Ca in alleviating Co toxicity was much greater in Yan66 than in Ea52. The results indicate that the alleviation of Co toxicity in barley plants by Ca is attributed to the reduced Co uptake and enhanced antioxidant capacity. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Flutter suppression and gust alleviation using active controls

    NASA Technical Reports Server (NTRS)

    Nissim, E.

    1974-01-01

    The effects of active controls on the suppression of flutter and gust alleviation of two different types of subsonic aircraft (the Arava, twin turboprop STOL transport, and the Westwind twin-jet business transport) are investigated. The active controls are introduced in pairs which include, in any chosen wing strip, a leading-edge (LE) control and a trailing-edge (TE) control. Each control surface is allowed to be driven by a combined linear-rotational sensor system, located on the activated strip. The control law, which translates the sensor signals into control surface rotations, is based on the concept of aerodynamic energy. The results indicate the extreme effectiveness of the active systems in controlling flutter. A single system spanning 10% of the wing semispan made the Arava flutter-free, and a similar active system, for the Westwind aircraft, yielded a reduction of 75% in the maximum bending moment of the wing and a reduction of 90% in the acceleration of the cg of the aircraft. Results for simultaneous activation of several LE - TE systems are presented. Further work needed to bring the investigation to completion is also discussed.

  11. 24 CFR 965.308 - Energy performance contracts.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 4 2011-04-01 2011-04-01 false Energy performance contracts. 965... URBAN DEVELOPMENT PHA-OWNED OR LEASED PROJECTS-GENERAL PROVISIONS Energy Audits and Energy Conservation Measures § 965.308 Energy performance contracts. (a) Method of procurement. Energy performance contracting...

  12. 24 CFR 965.308 - Energy performance contracts.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Energy performance contracts. 965... URBAN DEVELOPMENT PHA-OWNED OR LEASED PROJECTS-GENERAL PROVISIONS Energy Audits and Energy Conservation Measures § 965.308 Energy performance contracts. (a) Method of procurement. Energy performance contracting...

  13. 24 CFR 965.308 - Energy performance contracts.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 4 2012-04-01 2012-04-01 false Energy performance contracts. 965... URBAN DEVELOPMENT PHA-OWNED OR LEASED PROJECTS-GENERAL PROVISIONS Energy Audits and Energy Conservation Measures § 965.308 Energy performance contracts. (a) Method of procurement. Energy performance contracting...

  14. 24 CFR 965.308 - Energy performance contracts.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 4 2013-04-01 2013-04-01 false Energy performance contracts. 965... URBAN DEVELOPMENT PHA-OWNED OR LEASED PROJECTS-GENERAL PROVISIONS Energy Audits and Energy Conservation Measures § 965.308 Energy performance contracts. (a) Method of procurement. Energy performance contracting...

  15. 24 CFR 965.308 - Energy performance contracts.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 4 2014-04-01 2014-04-01 false Energy performance contracts. 965... URBAN DEVELOPMENT PHA-OWNED OR LEASED PROJECTS-GENERAL PROVISIONS Energy Audits and Energy Conservation Measures § 965.308 Energy performance contracts. (a) Method of procurement. Energy performance contracting...

  16. Role of dietary modification in alleviating chronic fatigue syndrome symptoms: a systematic review.

    PubMed

    Jones, Kathryn; Probst, Yasmine

    2017-08-01

    To review the evidence for the role of dietary modifications in alleviating chronic fatigue syndrome symptoms. A systematic literature review was guided by PRISMA and conducted using Scopus, CINAHL Plus, Web of Science and PsycINFO scientific databases (1994-2016) to identify relevant studies. Twenty-two studies met the inclusion criteria, the quality of each paper was assessed and data extracted into a standardised tabular format. Positive outcomes were highlighted in some included studies for polyphenol intakes in animal studies, D-ribose supplementation in humans and aspects of symptom alleviation for one of three polynutrient supplement studies. Omega three fatty acid blood levels and supplementation with an omega three fatty acid supplement also displayed positive outcomes in relation to chronic fatigue syndrome symptom alleviation. Limited dietary modifications were found useful in alleviating chronic fatigue syndrome symptoms, with overall evidence narrow and inconsistent across studies. Implications for public health: Due to the individual and community impairment chronic fatigue syndrome causes the population, it is vital that awareness and further focused research on this topic is undertaken to clarify and consolidate recommendations and ensure accurate, useful distribution of information at a population level. © 2017 The Authors.

  17. Energy in America: Progress and Potential.

    ERIC Educational Resources Information Center

    American Petroleum Inst., Washington, DC.

    An overview of America's energy situation is presented with emphasis on recent progress, the risk of depending upon foreign oil, and policy choices. Section one reviews the energy problems of the 1970s, issues of the 1980s, concerns for the future, and choices that if made today could alleviate future problems. Section two examines past problems,…

  18. Sustainable Management of Urban Heat Islands

    NASA Astrophysics Data System (ADS)

    Zhu, K.; Rumohr, S.; Balke, K.-D.; Bayer, P.; Blum, P.

    2009-04-01

    In recent years, geothermal energy has become increasingly popular, because it offers a number of advantages over traditional energy sources based on fossil fuels. It is a renewable energy source, it is clean and safe for the surrounding environment, and it also contributes to reduction of CO2 emissions. Geothermal energy systems are recognized as one of the most efficient heating and cooling systems on the market. Therefore, there is great chance for future growth of geothermal energy use, particularly in densely populated urban regions. But there are also drawbacks: In many large cities, groundwater is heated up by several degrees (~ 5˚ C) compared to the surrounding areas. Causes might be microclimatic changes in the urban environment and the heating effect of sewage effluents. In fact, a major role plays overutilization of the ground as a cooling medium during the hot seasons for the air conditioning of large office buildings. The focus of this project is set on sustainable geothermal use in such large and densely populated areas, which are also called "urban heat islands". Previous studies focus on spatial temperature trends in the subsurface, and only a few have been able to reveal temporal trends, for which long-term measurement records are needed. This study is dedicated to two German locations: the city of Frankfurt/Main and the city of Cologne. The purpose of the study in Frankfurt is a comprehensive field investigation of the spatial temperature variations in the underlying aquifers, while in Cologne the attention is also on the temporal trends of urban groundwater temperatures. Of particular interest is not only to develop a sustainable management concept, but also a quantitative geophysical and hydrogeological assessment. For the city of Frankfurt/Main, the Hessian Agency for the Environment and Geology (HLUG) provides access to ongoing, highly spatially resolved field measurement locations. For Cologne, about 40 years old intensive temperature

  19. Urban Heat Islands

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey C.; Quattrochi, Dale A.; Rickman, Doug L.; Estes, Maury G.

    2011-01-01

    It is estimated that by the year 2025, 80% of the world's population will live in cities. This conversion of the natural landscape vegetation into man-made urban structures such as roads and buildings drastically alter the regional surface energy budgets, hydrology, precipitation patterns, and meteorology. Research studies from many cities have documented these effects range from decreases in air quality, increased energy consumption and alteration of regional climate to direct effects on human health.

  20. Advances on interdisciplinary approaches to urban carbon

    NASA Astrophysics Data System (ADS)

    Romero-Lankao, P.

    2015-12-01

    North American urban areas are emerging as climate policy and technology innovators, urbanization process laboratories, fonts of carbon relevant experiments, hubs for grass-roots mobilization, and centers for civil-society experiments to curb carbon emissions and avoid widespread and irreversible climate impacts. Since SOCCR diverse lines of inquiry on urbanization, urban areas and the carbon cycle have advanced our understanding of some of the societal processes through which energy and land uses affect carbon. This presentation provides an overview of these diverse perspectives. It suggests the need for approaches that complement and combine the plethora of existing insights into interdisciplinary explorations of how different urbanization processes, and socio-ecological and technological components of urban areas affect the spatial and temporal patterns of carbon emissions, differentially over time and within and across cities. It also calls for a more holistic approach to examining the carbon implications of urbanization and urban areas as places, based not only on demographics or income, but also on such other interconnected features of urban development pathways as urban form, economic function, economic growth policies and climate policies.

  1. Assessing summertime urban air conditioning consumption in a semiarid environment

    NASA Astrophysics Data System (ADS)

    Salamanca, F.; Georgescu, M.; Mahalov, A.; Moustaoui, M.; Wang, M.; Svoma, B. M.

    2013-09-01

    Evaluation of built environment energy demand is necessary in light of global projections of urban expansion. Of particular concern are rapidly expanding urban areas in environments where consumption requirements for cooling are excessive. Here, we simulate urban air conditioning (AC) electric consumption for several extreme heat events during summertime over a semiarid metropolitan area with the Weather Research and Forecasting (WRF) model coupled to a multilayer building energy scheme. Observed total load values obtained from an electric utility company were split into two parts, one linked to meteorology (i.e., AC consumption) which was compared to WRF simulations, and another to human behavior. WRF-simulated non-dimensional AC consumption profiles compared favorably to diurnal observations in terms of both amplitude and timing. The hourly ratio of AC to total electricity consumption accounted for ˜53% of diurnally averaged total electric demand, ranging from ˜35% during early morning to ˜65% during evening hours. Our work highlights the importance of modeling AC electricity consumption and its role for the sustainable planning of future urban energy needs. Finally, the methodology presented in this article establishes a new energy consumption-modeling framework that can be applied to any urban environment where the use of AC systems is prevalent.

  2. California legislator cites many ways states can alleviate energy crunch. [Functions of state energy commissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    In this interview, Charles Warren, chairman of a committee on resources, land use, and energy in the California State Assembly, answers several questions relating to the functions and effectiveness of state governments in energy-related problems. For California, in particular, he points to the fairly recently established Energy Resources, Conservation, and Development Commission and its past activities in electric power forecasting and energy conservation, the latter particularly for the building sector. In the future, possibly the biggest problem facing the Commission will be establishing a mechanism for California's handling of Alaskan crude and, probably, liquefied natural gas; e.g., if deep-water portsmore » are necessary, it would probably be desirable to have one port available to all companies bringing crude to California, instead of each company building its own port. Answers are provided to other questions regarding: (1) cooperation among states; (2) organization of the Commission and the acceptance of its actions, both by Gov. Brown and the people; (3) Commission's existence enhancing California's chances of federal R and D funds; (4) relationship with California's university system; and (5) California's nuclear initiative. (LMT)« less

  3. Changing Urban Work Ethic

    ERIC Educational Resources Information Center

    Pagano, Helen P.

    1974-01-01

    In an urbanized society, work and leisure include an orientation toward control, achievement, and the mobilization of energy to specific ends. Workers' attitudes, both white and blue collar, are becoming increasingly permissive and exploratory. (Author)

  4. Energy and sustainable development in North American Sunbelt cities

    NASA Astrophysics Data System (ADS)

    Roosa, Stephen A.

    The goals of sustainable development are often misunderstood and variously applied. Sustainability as an urban goal is hindered by the lack of a consensus definition of sustainable development. The failure to focus on energy in cities as a means of achieving urban sustainability is one reason that successful empirical examples of implementing sustainable development are rare. The paradox is that as society attempts to achieve the goals of sustainable development, cities are using more fossil fuel based energy, which results in more pollution and ultimately makes sustainability more difficult to achieve. This dissertation explores the linkages between energy and sustainability and their connection to urban polices. This research provides a detailed review of the history of the concept of sustainability, a review of literature to date, and comparative issues concerning sustainability. The literature review will describe the underlying causes and effects of changes which have led to concerns about urban sustainability. The types of urban policies that are used by Sunbelt cities will be discussed. The purpose of this research is multifold: (1) to study the energy related policies of Sunbelt cities; (2) to propose a workable typology of policies; (3) to develop an index by which cities can be ranked in terms of sustainability; and (4) to assess and evaluate the relationships between the adoption of urban policies that promote energy efficiency, energy conservation and alternative energy to determine if they are associated with reduced energy use and greater urban sustainability. This research involves use of empirical data, U.S. census information, database explorations and other data. Both qualitative and quantitative analysis methodologies were employed as a means of defining and exploring the dimensions of energy and sustainable development in urban areas. The research will find that certain urban policies are related to changes in indicators and measures of urban

  5. Potential sensitivity of warm season precipitation to urbanization extents: Modeling study in Beijing-Tianjin-Hebei urban agglomeration in China

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Feng, Jinming; Yan, Zhongwei

    2015-09-01

    In this study, we investigated how different degrees of urbanization affect local and regional rainfall using high-resolution simulations based on the Weather Research and Forecasting Model. The extreme rainfall event of 21 July 2012 in Beijing was simulated for three representative urban land use distributions (no urbanization, early urbanization level of 1980, and recent urbanization level of 2009). Results suggest that urban modification of rainfall is potentially sensitive to urban land use condition. Rainfall was increased significantly over the downwind Beijing metropolis because of the effects of early urbanization; however, recent conditions of high urban development caused no significant increase. Further comparative analysis revealed that positive urban thermodynamical effects (i.e., urban warming, increased sensible heat transportation, and enhanced convergence and vertical motions) play major roles in urban modification of rainfall during the early urbanization stage. However, after cities expand to a certain extent (i.e., urban agglomeration), the regional moisture depression induced by the prevalence of impervious urban land has an effect on atmospheric instability energy, which might negate the city's positive impact on regional rainfall. Additional results from regional climate simulations for 10 Julys confirm this supposition. Given the explosive urban population growth and increasing demand for freshwater in cities, the potential negative effects of the urban environment on precipitation are worth investigation, particularly in rapidly developing countries and regions.

  6. Atmospheric carbon reduction by urban trees

    Treesearch

    David J. Nowak

    1993-01-01

    Trees, because they sequester atmospheric carbon through their growth process and conserve energy in urban areas, have been suggested as one means to combat increasing levels of atmospheric carbon. Analysis of the urban forest in Oakland, California (21% tree cover), reveals a tree carbon storage level of 11.0 metric tons/hectare. Trees in the area of the 1991 fire in...

  7. Studying urban land-atmospheric interactions by coupling an urban canopy model with a single column atmospheric models

    NASA Astrophysics Data System (ADS)

    Song, J.; Wang, Z.

    2013-12-01

    Studying urban land-atmospheric interactions by coupling an urban canopy model with a single column atmospheric models Jiyun Song and Zhi-Hua Wang School of Sustainable Engineering and the Built Environment, Arizona State University, PO Box 875306, Tempe, AZ 85287-5306 Landuse landcover changes in urban area will modify surface energy budgets, turbulent fluxes as well as dynamic and thermodynamic structures of the overlying atmospheric boundary layer (ABL). In order to study urban land-atmospheric interactions, we coupled a single column atmospheric model (SCM) to a cutting-edge single layer urban canopy model (SLUCM). Modification of surface parameters such as the fraction of vegetation and engineered pavements, thermal properties of building and pavement materials, and geometrical features of street canyon, etc. in SLUCM dictates the evolution of surface balance of energy, water and momentum. The land surface states then provide lower boundary conditions to the overlying atmosphere, which in turn modulates the modification of ABL structure as well as vertical profiles of temperature, humidity, wind speed and tracer gases. The coupled SLUCM-SCM model is tested against field measurements of surface layer fluxes as well as profiles of temperature and humidity in the mixed layer under convective conditions. After model test, SLUCM-SCM is used to simulate the effect of changing urban land surface conditions on the evolution of ABL structure and dynamics. Simulation results show that despite the prescribed atmospheric forcing, land surface states impose significant impact on the physics of the overlying vertical atmospheric layer. Overall, this numerical framework provides a useful standalone modeling tool to assess the impacts of urban land surface conditions on the local hydrometeorology through land-atmospheric interactions. It also has potentially far-reaching implications to urban ecohydrological services for cities under future expansion and climate challenges.

  8. Evapotranspiration-dominated biogeophysical warming effect of urbanization in the Beijing-Tianjin-Hebei region, China

    NASA Astrophysics Data System (ADS)

    Zhao, Guosong; Dong, Jinwei; Cui, Yaoping; Liu, Jiyuan; Zhai, Jun; He, Tian; Zhou, Yuyu; Xiao, Xiangming

    2018-03-01

    Given the considerable influences of urbanization on near-surface air temperature (T a ) and surface skin temperature (T s ) at local and regional scales, we investigated the biogeophysical effects of urbanization on T a and T s in the Beijing-Tianjin-Hebei (BTH) region of China, a typical rapidly urbanizing area, using the weather research and forecasting model (WRF). Two experiments were conducted using satellite-derived realistic areal fraction land cover data in 2010 and 1990 as well as localized parameters (e.g. albedo and leaf area index). Without considering anthropogenic heat, experimental differences indicated a regional biogeophysical warming of 0.15 °C (0.16 °C) in summer T a (T s ), but a negligible warming in winter T a (T s ). Sensitivity analyses also showed a stronger magnitude of local warming in summer than in winter. Along with an increase of 10% in the urban fraction, local T a (T s ) increases of 0.185 °C (0.335 °C), 0.212 °C (0.464 °C), and 0.140 °C (0.220 °C) were found at annual, summer, and winter scales, respectively, according to a space-for-time substitution method. The sensitivity analyses will be beneficial to get a rough biogeophysical warming estimation of future urbanization projections. Furthermore, a decomposed temperature metric (DTM) method was applied for the attribution analyses of the change in T s induced by urbanization. Our results showed that the decrease in evapotranspiration-induced latent heat played a dominate role in biogeophysical warming due to urbanization in BTH, indicating that increasing green space could alleviate warming effects, especially in summer.

  9. Social support and depressive symptom disparity between urban and rural older adults in China.

    PubMed

    Hu, Hongwei; Cao, Qi; Shi, Zhenzhen; Lin, Weixia; Jiang, Haixia; Hou, Yucheng

    2018-09-01

    Depressive symptom disparity between urban and rural older adults is an important public health issue in China. Social support is considered as an effective way to alleviate depression of older adults. This study aimed to investigate the extent to which social support could explain the depressive symptom disparity between urban and rural older adults in China. This study used data drawn from the 2011 China Health and Retirement Longitudinal Study with 6,772 observations. Multiple data analysis strategies were adopted, including descriptive analyses, bivariate analyses, regression analyses and decomposition analyses. There were significant depressive symptom disparities between urban and rural older adults in China. Social support had significant association with depressive symptom of older adults while adjusting for covariates. About 25%-28% of the depressive symptom disparities could be attributed to urban-rural gaps in social support, in which community support contributed 21%-25%. Educational level and physical health status also contributed to the disparities. This study only established correlations between social support and depressive symptom disparity rather than casual relationships; and the self-reported measurement of depressive symptom and the unobservable cultural factors might cause limitations. The urban-rural gap in social support, especially community support was a prime explanation for depressive symptom disparities between urban and rural older adults in China. To reduce the depressive symptom disparities, effective community construction in rural China should be put into place, including improving the infrastructure construction, strengthening the role of social organizations, and encouraging community interpersonal interactions for older adults. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Ecosystem services and urban heat riskscape moderation: water, green spaces, and social inequality in Phoenix, USA.

    PubMed

    Jenerette, G Darrel; Harlan, Sharon L; Stefanov, William L; Martin, Chris A

    2011-10-01

    Urban ecosystems are subjected to high temperatures--extreme heat events, chronically hot weather, or both-through interactions between local and global climate processes. Urban vegetation may provide a cooling ecosystem service, although many knowledge gaps exist in the biophysical and social dynamics of using this service to reduce climate extremes. To better understand patterns of urban vegetated cooling, the potential water requirements to supply these services, and differential access to these services between residential neighborhoods, we evaluated three decades (1970-2000) of land surface characteristics and residential segregation by income in the Phoenix, Arizona, USA metropolitan region. We developed an ecosystem service trade-offs approach to assess the urban heat riskscape, defined as the spatial variation in risk exposure and potential human vulnerability to extreme heat. In this region, vegetation provided nearly a 25 degrees C surface cooling compared to bare soil on low-humidity summer days; the magnitude of this service was strongly coupled to air temperature and vapor pressure deficits. To estimate the water loss associated with land-surface cooling, we applied a surface energy balance model. Our initial estimates suggest 2.7 mm/d of water may be used in supplying cooling ecosystem services in the Phoenix region on a summer day. The availability and corresponding resource use requirements of these ecosystem services had a strongly positive relationship with neighborhood income in the year 2000. However, economic stratification in access to services is a recent development: no vegetation-income relationship was observed in 1970, and a clear trend of increasing correlation was evident through 2000. To alleviate neighborhood inequality in risks from extreme heat through increased vegetation and evaporative cooling, large increases in regional water use would be required. Together, these results suggest the need for a systems evaluation of the

  11. Toward a Spatial Perspective on Business Sustainability: The Role of Central Urban and Environmentally Sensitive Areas in Energy Corporates’ Green Behaviours

    NASA Astrophysics Data System (ADS)

    Wang, Teng; Liu, Zongrui; Zhou, Li

    2018-02-01

    As one of the most concerned topics in strategic management research, the motivations of energy corporates’ green behaviours are extensively explored by scholars, however, only a few noticed the role of geographic antecedents. To bridge this gap, we argue that energy firms’ green behaviours will be greatly predicted by its location, more specifically, proximity to environmentally sensitive areas and central urban areas. Draw on neo-institutional theory and stakeholder theory, we argue that institutional forces mediate the links between energy corporates’ green behaviours and proximities, while different proximity affects via different institutional logics. The results are discussed along with managerial implications.

  12. Generalized anxiety disorder in urban China: Prevalence, awareness, and disease burden.

    PubMed

    Yu, Wei; Singh, Shikha Satendra; Calhoun, Shawna; Zhang, Hui; Zhao, Xiahong; Yang, Fengchi

    2018-07-01

    Limited published research has quantified the Generalized Anxiety Disorder (GAD) prevalence and its burden in China. This study aimed to fill in the knowledge gap and to evaluate the burden of GAD among adults in urban China. This study utilized existing data from the China National Health and Wellness Survey (NHWS) 2012-2013. Prevalence of self-reported diagnosed and undiagnosed GAD was estimated. Diagnosed and undiagnosed GAD respondents were compared with non-anxious respondents in terms of health-related quality of life (HRQoL), resource utilization, and work productivity and activity impairment using multivariate generalized linear models. A multivariate logistic model assessed the risk factors for GAD. The prevalence of undiagnosed/diagnosed GAD was 5.3% in urban China with only 0.5% of GAD respondents reporting a diagnosis. Compared with non-anxious respondents, both diagnosed and undiagnosed GAD respondents had significantly lower HRQoL, more work productivity and activity impairment, and greater healthcare resource utilization in the past six months. Age, gender, marital status, income level, insurance status, smoking, drinking and exercise behaviors, and comorbidity burdens were significantly associated with GAD. This was a patient-reported study; data are therefore subject to recall bias. The survey was limited to respondents in urban China; therefore, these results focused on urban China and may be under- or over-estimating GAD prevalence in China. Causal inferences cannot be made given the cross-sectional nature of the study. GAD may be substantially under-diagnosed in urban China. More healthcare resources should be invested to alleviate the burden of GAD. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. The Megafauna: People of the Urban Ecosystem.

    ERIC Educational Resources Information Center

    Petit, Jack; Gangloff, Deborah

    1995-01-01

    Addresses the need to make urban forestry information and resources available and understandable to everyone in an effort to organize and educate communities. The seemingly hidden aspects of the urban ecosystem are examined; and a sidebar looks at the air, carbon, and energy cycles and sustaining quality of life, in particular. (LZ)

  14. Case study on rehabilitation of a polluted urban water body in Yangtze River Basin.

    PubMed

    Wu, Juan; Cheng, Shuiping; Li, Zhu; Guo, Weijie; Zhong, Fei; Yin, Daqiang

    2013-10-01

    In the past three decades, the fast development of economy and urbanization has caused increasingly severe pollutions of urban water bodies in China. Consequently, eutrophication and deterioration of aquatic ecosystem, which is especially significant for aquatic vegetation, inevitably became a pervasive problem across the Yangtze River Basin. To rehabilitate the degraded urban water bodies, vegetation replanting is an important issue to improve water quality and to rehabilitate ecosystem. As a case study, a representative polluted urban river, Nanfeihe River, in Hefei City, Anhui Province, was chosen to be a rehabilitation target. In October 2009 and May 2010, 13 species of indigenous and prevalent macrophytes, including seven species emergent, one species floating leaved, and five species submersed macrophytes, were planted along the bank slopes and in the river. Through 1.5 years' replanting practice, the water quality and biodiversity of the river had been improved. The concentrations of total nitrogen (TN), total phosphorus (TP), and ammonia nitrogen (NH4 (+)-N) declined by 46.0, 39.5, and 60.4 %, respectively. The species of macrophytes increased from 14 to 60, and the biodiversity of phytoplankton rose significantly in the river (p<0.05). The biomasses of zooplankton and benthos were also improved after the vegetation replanting. The study confirmed that vegetation replanting could alleviate the increasing water pollution and rehabilitate the degraded aquatic ecosystem. The case study would be an example for polluted urban waters restoration in the middle-downstream area of Yangtze River Base.

  15. Studies on possibility for alleviation of lifestyle diseases by low-dose irradiation or radon inhalation.

    PubMed

    Kataoka, Takahiro; Sakoda, Akihiro; Yoshimoto, Masaaki; Nakagawa, Shinya; Toyota, Teruaki; Nishiyama, Yuichi; Yamato, Keiko; Ishimori, Yuu; Kawabe, Atsushi; Hanamoto, Katsumi; Taguchi, Takehito; Yamaoka, Kiyonori

    2011-07-01

    Our previous studies showed the possibility that activation of the antioxidative function alleviates various oxidative damages, which are related to lifestyle diseases. Results showed that, low-dose X-ray irradiation activated superoxide dismutase and inhibits oedema following ischaemia-reperfusion. To alleviate ischaemia-reperfusion injury with transplantation, the changes of the antioxidative function in liver graft using low-dose X-ray irradiation immediately after exenteration were examined. Results showed that liver grafts activate the antioxidative function as a result of irradiation. In addition, radon inhalation enhances the antioxidative function in some organs, and alleviates alcohol-induced oxidative damage of mouse liver. Moreover, in order to determine the most effective condition of radon inhalation, mice inhaled radon before or after carbon tetrachloride (CCl(4)) administration. Results showed that radon inhalation alleviates CCl(4)-induced hepatopathy, especially prior inhalation. It is highly possible that adequate activation of antioxidative functions induced by low-dose irradiation can contribute to preventing or reducing oxidative damages, which are related to lifestyle diseases.

  16. Traffic pollution and countermeasures of urban traffic environment

    NASA Astrophysics Data System (ADS)

    He, Yuhong; Zheng, Chaocheng

    2018-01-01

    Background: Traffic environment has become a serious social problem in China currently, therefore, urban traffic environment governance is the requirement to solve this issue because as an important place in people's social life, urban traffic environment shows a strong city's energy. Objective: Based on analysis on social function of city traffic environment and its influence of traffic on urban environment in this paper, the goal to establish a healthy urban traffic environment must be included under the aim of sustainable development eternally and feasible measures were put forward afterwards. Method, result, conclusion and possible applications.

  17. Does farmer entrepreneurship alleviate rural poverty in China? Evidence from Guangxi Province

    PubMed Central

    Zhuang, Jincai

    2018-01-01

    In recent years, entrepreneurship has been gaining more prominence as a potential tool for solving poverty in developing countries. This paper mainly examines the relationship between farmer entrepreneurship and rural poverty alleviation in China by assessing the contribution of farm entrepreneurs towards overcoming poverty. Data were collected from 309 employees of farmer entrepreneurships in Guangxi Province through survey questionnaires. Structural equation modeling was used to conduct an analysis of the effects of three identified capabilities of farm entrepreneurs—economic, educational and knowledge, and socio-cultural capabilities—on attitude towards farmer entrepreneurship growth and the qualitative growth of farmer entrepreneurship and how these in turn affect rural poverty, using AMOS 21. The findings show that socio-cultural capability has the greatest influence on farmer entrepreneurship growth (β = 0.50, p<0.001). The qualitative growth of farmer entrepreneurship also more significantly impacts rural poverty (β = 0.69, p<0.001) than attitude towards farmer entrepreneurship growth. This study suggests that policy makers in China should involve more rural farmers in the targeted poverty alleviation strategies of the government by equipping rural farmers with entrepreneurial skills. This can serve as a sustainable, bottom-up approach to alleviating rural poverty in remote areas of the country. The study also extends the literature on the farmer entrepreneurship-rural poverty alleviation nexus in China, and this can serve as a lesson for other developing countries in the fight against rural poverty. PMID:29596517

  18. Does farmer entrepreneurship alleviate rural poverty in China? Evidence from Guangxi Province.

    PubMed

    Naminse, Eric Yaw; Zhuang, Jincai

    2018-01-01

    In recent years, entrepreneurship has been gaining more prominence as a potential tool for solving poverty in developing countries. This paper mainly examines the relationship between farmer entrepreneurship and rural poverty alleviation in China by assessing the contribution of farm entrepreneurs towards overcoming poverty. Data were collected from 309 employees of farmer entrepreneurships in Guangxi Province through survey questionnaires. Structural equation modeling was used to conduct an analysis of the effects of three identified capabilities of farm entrepreneurs-economic, educational and knowledge, and socio-cultural capabilities-on attitude towards farmer entrepreneurship growth and the qualitative growth of farmer entrepreneurship and how these in turn affect rural poverty, using AMOS 21. The findings show that socio-cultural capability has the greatest influence on farmer entrepreneurship growth (β = 0.50, p<0.001). The qualitative growth of farmer entrepreneurship also more significantly impacts rural poverty (β = 0.69, p<0.001) than attitude towards farmer entrepreneurship growth. This study suggests that policy makers in China should involve more rural farmers in the targeted poverty alleviation strategies of the government by equipping rural farmers with entrepreneurial skills. This can serve as a sustainable, bottom-up approach to alleviating rural poverty in remote areas of the country. The study also extends the literature on the farmer entrepreneurship-rural poverty alleviation nexus in China, and this can serve as a lesson for other developing countries in the fight against rural poverty.

  19. Thermodynamic analysis of the energy recovery from the aerobic bioconversion of solid urban waste organic fraction.

    PubMed

    Di Maria, Francesco; Benavoli, Manuel; Zoppitelli, Mirco

    2008-01-01

    Waste management is of the utmost importance for many countries and especially for highly developed ones due to its implications on society. In particular, proper treatment before disposal of the solid urban waste organic fraction is one of the main issues that is addressed in waste management. In fact, the organic fraction is particularly reactive and if disposed in sanitary landfills without previous adequate treatment, a large amount of dangerous and polluting gaseous, liquid and solid substances can be produced. Some waste treatment processes can also present an opportunity to produce other by-products like energy, recycled materials and other products with both economic and environmental benefits. In this paper, the aerobic treatment of the organic fraction of solid urban waste, performed in a biocell plant with the possibility of recovering heat for civil or industrial needs, was examined from the thermodynamic point of view. A theoretical model was proposed both for the biological process of the organic fraction, as well as for the heat recovery system. The most significant results are represented and discussed.

  20. The Urban Heat Island Pilot Project (UHIPP)

    NASA Technical Reports Server (NTRS)

    Luvall, Jeff; Morris, Lynn; Stewart, Fran; Thretheway, Ray; Gartland, Lisa; Russell, Camille; Reddish, Merrill; Arnold, James E. (Technical Monitor)

    2001-01-01

    Urban heat islands increase the demand for cooling energy and accelerate the formation of smog. They are created when natural vegetation is replaced by heat-absorbing surfaces such as building roofs and walls, parking lots, and streets. Through the implementation of measures designed to mitigate the urban heat island, communities can decrease their demand for energy and effectively "cool" the metropolitan landscape. Measures to reverse the urban heat island include afforestation and the widespread use of highly reflective surfaces. To demonstrate the potential benefits of implementing these measures, EPA has teamed up with NASA and LBNL to initiate a pilot project with three U.S. cities. As part of the pilot, NASA is using remotely-sensed data to quantify surface temperature, albedo, the thermal response number and NDVI vegetation of each city. To pursue these efforts, more information is needed about specific characteristics of several different cities. NASA used the Advanced Thermal and Land Applications Sensor (ATLAS) to obtain high spatial resolution (10 m pixel resolution) over each of the three pilot cities (Baton Rouge, Sacramento, and Salt Lake City). The goal of the UHIPP is to use the results from the NASA/LBNL analysis, combined with knowledge gained through working with various organizations within each pilot city to identify the most effective means of implementing strategies designed to mitigate the urban heat island, These "lessons learned" will be made available and used by cities across the U.S. to assist policy makers and others within various communities to analyze their own urban heat islands and determine which, if any, measures can be taken to help save energy and money, and to prevent pollution. The object of this session is for representatives from each of the pilot cities to present their results of the study and share the experience of working with these data in managing their urban landscape.

  1. Seeking urbanization security and sustainability: Multi-objective optimization of rainwater harvesting systems in China

    NASA Astrophysics Data System (ADS)

    Li, Yi; Ye, Quanliang; Liu, An; Meng, Fangang; Zhang, Wenlong; Xiong, Wei; Wang, Peifang; Wang, Chao

    2017-07-01

    Urban rainwater management need to achieve an optimal compromise among water resource augmentation, water loggings alleviation, economic investment and pollutants reduction. Rainwater harvesting (RWH) systems, such as green rooftops, porous pavements, and green lands, have been successfully implemented as viable approaches to alleviate water-logging disasters and water scarcity problems caused by rapid urbanization. However, there is limited guidance to determine the construction areas of RWH systems, especially for stormwater runoff control due to increasing extreme precipitation. This study firstly developed a multi-objective model to optimize the construction areas of green rooftops, porous pavements and green lands, considering the trade-offs among 24 h-interval RWH volume, stormwater runoff volume control ratio (R), economic cost, and rainfall runoff pollutant reduction. Pareto fronts of RWH system areas for 31 provinces of China were obtained through nondominated sorting genetic algorithm. On the national level, the control strategies for the construction rate (the ratio between the area of single RWH system and the total areas of RWH systems) of green rooftops (ηGR), porous pavements (ηPP) and green lands (ηGL) were 12%, 26% and 62%, and the corresponding RWH volume and total suspended solids reduction was 14.84 billion m3 and 228.19 kilotons, respectively. Optimal ηGR , ηPP and ηGL in different regions varied from 1 to 33%, 6 to 54%, and 30 to 89%, respectively. Particularly, green lands were the most important RWH system in 25 provinces with ηGL more than 50%, ηGR mainly less than 15%, and ηPP mainly between 10 and 30%. Results also indicated whether considering the objective MaxR made a non-significant difference for RWH system areas whereas exerted a great influence on the result of stormwater runoff control. Maximum daily rainfall under control increased, exceeding 200% after the construction of the optimal RWH system compared with that before

  2. Foods provoking and alleviating symptoms in gastroparesis: patient experiences.

    PubMed

    Wytiaz, Victoria; Homko, Carol; Duffy, Frank; Schey, Ron; Parkman, Henry P

    2015-04-01

    Nutritional counseling for gastroparesis focuses on reduction of meal size, fiber, and fat to control symptoms. The tolerance of gastroparesis patients for particular foods is largely anecdotal. The aim of this study was to identify and characterize foods provoking or alleviating gastroparesis symptoms. Gastroparesis patients completed: (1) Demographic Questionnaire; (2) Patient Assessment of Upper GI Symptoms; (3) Food Toleration and Aversion survey asking patients about experiences when eating certain foods utilizing a scale from -3 (greatly worsening symptoms) to +3 (greatly improving symptoms). Descriptive qualities (acidic, fatty, spicy, roughage-based, bitter, salty, bland, and sweet) were assigned to foods. Forty-five gastroparesis patients participated (39 idiopathic gastroparesis). Foods worsening symptoms included: orange juice, fried chicken, cabbage, oranges, sausage, pizza, peppers, onions, tomato juice, lettuce, coffee, salsa, broccoli, bacon, and roast beef. Saltine crackers, jello, and graham crackers moderately improved symptoms. Twelve additional foods were tolerated by patients (not provoking symptoms): ginger ale, gluten-free foods, tea, sweet potatoes, pretzels, white fish, clear soup, salmon, potatoes, white rice, popsicles, and applesauce. Foods provoking symptoms were generally fatty, acidic, spicy, and roughage-based. The foods shown to be tolerable were generally bland, sweet, salty, and starchy. This study identified specific foods that worsen as well as foods that may help alleviate symptoms of gastroparesis. Foods that provoked symptoms differed in quality from foods that alleviated symptoms or were tolerable. The results of this study illustrate specific examples of foods that aggravate or improve symptoms and provide suggestions for a gastroparesis diet.

  3. Arbuscular mycorrhizal fungi in alleviation of salt stress: a review

    PubMed Central

    Evelin, Heikham; Kapoor, Rupam; Giri, Bhoopander

    2009-01-01

    Background Salt stress has become a major threat to plant growth and productivity. Arbuscular mycorrhizal fungi colonize plant root systems and modulate plant growth in various ways. Scope This review addresses the significance of arbuscular mycorrhiza in alleviation of salt stress and their beneficial effects on plant growth and productivity. It also focuses on recent progress in unravelling biochemical, physiological and molecular mechanisms in mycorrhizal plants to alleviate salt stress. Conclusions The role of arbuscular mycorrhizal fungi in alleviating salt stress is well documented. This paper reviews the mechanisms arbuscular mycorrhizal fungi employ to enhance the salt tolerance of host plants such as enhanced nutrient acquisition (P, N, Mg and Ca), maintenance of the K+ : Na+ ratio, biochemical changes (accumulation of proline, betaines, polyamines, carbohydrates and antioxidants), physiological changes (photosynthetic efficiency, relative permeability, water status, abscissic acid accumulation, nodulation and nitrogen fixation), molecular changes (the expression of genes: PIP, Na+/H+ antiporters, Lsnced, Lslea and LsP5CS) and ultra-structural changes. Theis review identifies certain lesser explored areas such as molecular and ultra-structural changes where further research is needed for better understanding of symbiosis with reference to salt stress for optimum usage of this technology in the field on a large scale. This review paper gives useful benchmark information for the development and prioritization of future research programmes. PMID:19815570

  4. Scaling cosmology with variable dark-energy equation of state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castro, David R.; Velten, Hermano; Zimdahl, Winfried, E-mail: drodriguez-ufes@hotmail.com, E-mail: velten@physik.uni-bielefeld.de, E-mail: winfried.zimdahl@pq.cnpq.br

    2012-06-01

    Interactions between dark matter and dark energy which result in a power-law behavior (with respect to the cosmic scale factor) of the ratio between the energy densities of the dark components (thus generalizing the ΛCDM model) have been considered as an attempt to alleviate the cosmic coincidence problem phenomenologically. We generalize this approach by allowing for a variable equation of state for the dark energy within the CPL-parametrization. Based on analytic solutions for the Hubble rate and using the Constitution and Union2 SNIa sets, we present a statistical analysis and classify different interacting and non-interacting models according to the Akaikemore » (AIC) and the Bayesian (BIC) information criteria. We do not find noticeable evidence for an alleviation of the coincidence problem with the mentioned type of interaction.« less

  5. [Key points of poverty alleviation of Chinese herbal medicine industry and classification of recommended Chinese herbal medicines].

    PubMed

    Huang, Lu-Qi; Su, Gang-Qiang; Zhang, Xiao-Bo; Sun, Xiao-Ming; Wu, Xiao-Jun; Guo, Lan-Ping; Li, Meng; Wang, Hui; Jing, Zhi-Xian

    2017-11-01

    To build a well-off society in an all-round way, eliminate poverty, improve people's livelihood and improve the level of social and economic development in poverty-stricken areas is the frontier issues of the government and science and technology workers at all levels. Chinese herbal medicine is the strategic resource of the people's livelihood, Chinese herbal medicine cultivation is an important part of China's rural poor population income. As most of the production of Chinese herbal medicine by the biological characteristics of their own and the interaction of natural ecological environment factors, showing a strong regional character.the Ministry of Traditional Chinese Medicine and the State Council Poverty Alleviation Office and other five departments jointly issued the "China Herbal Industry Poverty Alleviation Action Plan (2017-2020)", according to local conditions of guidance and planning of Chinese herbal medicine production practice, promote Chinese herbal medicine industry poverty alleviation related work In this paper, based on the relevant data of poverty-stricken areas, this paper divides the areas with priority to the poverty alleviation conditions of Chinese herbal medicine industry, and analyzes and catalogs the list of Chinese herbal medicines grown in poverty-stricken areas at the macro level. The results show that there are at least 10% of the poor counties in the counties where the poverty-stricken counties and the concentrated areas are concentrated in the poverty-stricken areas. There is already a good base of Chinese herbal medicine industry, which is the key priority area for poverty alleviation of Chinese herbal medicine industry. Poverty-stricken counties, with a certain degree of development of Chinese medicine industry poverty alleviation conditions, the need to strengthen the relevant work to expand the foundation and capacity of Chinese herbal medicine industry poverty alleviation; 37% of poor counties to develop Chinese medicine

  6. Water participation for poverty alleviation--the case of Meseta Purépecha, Mexico.

    PubMed

    Escamilla, M; Kurtycz, A; van der Helm, R

    2003-01-01

    The construction of small water reservoirs has been used in an effort to alleviate poverty in Messeta Purépecha region in Mexico. The programme's rationale can be characterised as incentive-based participation, using both local employment and shared risks concepts. The programme so far has been a relative success. However, in the light of poverty alleviation questions have to be raised about the isolated nature of the programme as well as the role of the incentives used.

  7. Urban Typologies: Towards an ORNL Urban Information System (UrbIS)

    NASA Astrophysics Data System (ADS)

    KC, B.; King, A. W.; Sorokine, A.; Crow, M. C.; Devarakonda, R.; Hilbert, N. L.; Karthik, R.; Patlolla, D.; Surendran Nair, S.

    2016-12-01

    Urban environments differ in a large number of key attributes; these include infrastructure, morphology, demography, and economic and social variables, among others. These attributes determine many urban properties such as energy and water consumption, greenhouse gas emissions, air quality, public health, sustainability, and vulnerability and resilience to climate change. Characterization of urban environments by a single property such as population size does not sufficiently capture this complexity. In addressing this multivariate complexity one typically faces such problems as disparate and scattered data, challenges of big data management, spatial searching, insufficient computational capacity for data-driven analysis and modelling, and the lack of tools to quickly visualize the data and compare the analytical results across different cities and regions. We have begun the development of an Urban Information System (UrbIS) to address these issues, one that embraces the multivariate "big data" of urban areas and their environments across the United States utilizing the Big Data as a Service (BDaaS) concept. With technological roots in High-performance Computing (HPC), BDaaS is based on the idea of outsourcing computations to different computing paradigms, scalable to super-computers. UrbIS aims to incorporate federated metadata search, integrated modeling and analysis, and geovisualization into a single seamless workflow. The system includes web-based 2D/3D visualization with an iGlobe interface, fast cloud-based and server-side data processing and analysis, and a metadata search engine based on the Mercury data search system developed at Oak Ridge National Laboratory (ORNL). Results of analyses will be made available through web services. We are implementing UrbIS in ORNL's Compute and Data Environment for Science (CADES) and are leveraging ORNL experience in complex data and geospatial projects. The development of UrbIS is being guided by an investigation of

  8. Three Essays In and Tests of Theoretical Urban Economics

    NASA Astrophysics Data System (ADS)

    Zhao, Weihua

    This dissertation consists of three essays on urban economics. The three essays are related to urban spatial structure change, energy consumption, greenhouse gas emissions, and housing redevelopment. Chapter 1 answers the question: Does the classic Standard Urban Model still describe the growth of cities? Chapter 2 derives the implications of telework on urban spatial structure, energy consumption, and greenhouse gas emissions. Chapter 3 investigates the long run effects of minimum lot size zoning on neighborhood redevelopment. Chapter 1 identifies a new implication of the classic Standard Urban Model, the "unitary elasticity property (UEP)", which is the sum of the elasticity of central density and the elasticity of land area with respect to population change is approximately equal to unity. When this implication of the SUM is tested, it fits US cities fairly well. Further analysis demonstrates that topographic barriers and age of housing stock are the key factors explaining deviation from the UEP. Chapter 2 develops a numerical urban simulation model with households that are able to telework to investigate the urban form, congestion, energy consumption and greenhouse gas emission implications of telework. Simulation results suggest that by reducing transportation costs, telework causes sprawl, with associated longer commutes and consumption of larger homes, both of which increase energy consumption. Overall effects depend on who captures the gains from telework (workers versus firms), urban land use regulation such as height limits or greenbelts, and the fraction of workers participating in telework. The net effects of telework on energy use and GHG emissions are generally negligible. Chapter 3 applies dynamic programming to investigate the long run effects of minimum lot size zoning on neighborhood redevelopment. With numerical simulation, comparative dynamic results show that minimum lot size zoning can delay initial land conversion and slow down demolition and

  9. Buffet Load Alleviation

    NASA Technical Reports Server (NTRS)

    Ryall, T. G.; Moses, R. W.; Hopkins, M. A.; Henderson, D.; Zimcik, D. G.; Nitzsche, F.

    2004-01-01

    High performance aircraft are, by their very nature, often required to undergo maneuvers involving high angles of attack. Under these conditions unsteady vortices emanating from the wing and the fuselage will impinge on the twin fins (required for directional stability) causing excessive buffet loads, in some circumstances, to be applied to the aircraft. These loads result in oscillatory stresses, which may cause significant amounts of fatigue damage. Active control is a possible solution to this important problem. A full-scale test was carried out on an F/A-18 fuselage and fins using piezoceramic actuators to control the vibrations. Buffet loads were simulated using very powerful electromagnetic shakers. The first phase of this test was concerned with the open loop system identification whereas the second stage involved implementing linear time invariant control laws. This paper looks at some of the problems encountered as well as the corresponding solutions and some results. It is expected that flight trials of a similar control system to alleviate buffet will occur as early as 2001.

  10. Urban weather data and building models for the inclusion of the urban heat island effect in building performance simulation.

    PubMed

    Palme, M; Inostroza, L; Villacreses, G; Lobato, A; Carrasco, C

    2017-10-01

    This data article presents files supporting calculation for urban heat island (UHI) inclusion in building performance simulation (BPS). Methodology is used in the research article "From urban climate to energy consumption. Enhancing building performance simulation by including the urban heat island effect" (Palme et al., 2017) [1]. In this research, a Geographical Information System (GIS) study is done in order to statistically represent the most important urban scenarios of four South-American cities (Guayaquil, Lima, Antofagasta and Valparaíso). Then, a Principal Component Analysis (PCA) is done to obtain reference Urban Tissues Categories (UTC) to be used in urban weather simulation. The urban weather files are generated by using the Urban Weather Generator (UWG) software (version 4.1 beta). Finally, BPS is run out with the Transient System Simulation (TRNSYS) software (version 17). In this data paper, four sets of data are presented: 1) PCA data (excel) to explain how to group different urban samples in representative UTC; 2) UWG data (text) to reproduce the Urban Weather Generation for the UTC used in the four cities (4 UTC in Lima, Guayaquil, Antofagasta and 5 UTC in Valparaíso); 3) weather data (text) with the resulting rural and urban weather; 4) BPS models (text) data containing the TRNSYS models (four building models).

  11. Ganokendra: An Innovative Model for Poverty Alleviation in Bangladesh

    ERIC Educational Resources Information Center

    Alam, Kazi Rafiqul

    2006-01-01

    Ganokendras (people's learning centers) employ a literacy-based approach to alleviating poverty in Bangladesh. They give special attention to empowering rural women, among whom poverty is widespread. The present study reviews the Ganokendra-approach to facilitating increased political and economic awareness and improving community conditions in…

  12. An integration programme of poverty alleviation and development with family planning.

    PubMed

    1997-04-01

    The State Council (the central government) recently issued a Circular for Speeding Up the Integration of Poverty Alleviation and Development with the Family Planning Programme during the Ninth Five-year Plan (1996-2000). The Circular was jointly submitted by the State Family Planning Commission and the Leading Group for Poverty Alleviation and Development. The document sets the two major tasks as solving the basic needs for food and clothing of the rural destitute and the control of over-rapid growth of China's population. Practice indicates that a close Integration Programme is the best way for impoverished farmers to alleviate poverty and become better-off. Overpopulation and low educational attainments and poor health quality of population in backward areas are the major factors retarding socioeconomic development. Therefore, it is inevitable to integrate poverty alleviation with family planning. It is a path with Chinese characteristics for a balanced population and sustainable socioeconomic development. The targets of the Integration Programme are as follows: The first is that preferential policies should be worked out to guarantee family planning acceptors, especially households with an only daughter or two daughters, are the first to be helped to eradicate poverty and become well-off. They should become good examples for other rural poor in practicing fewer but healthier births, and generating family income. The second target is that the population plans for the poor counties identified by the central government and provincial governments must be fulfilled. This should contribute to breaking the vicious circle of poverty leading to more children, in turn generating more poverty. The circular demands that more efforts should focus on the training of cadres for the Integrated Programme and on services for poor family planning acceptors. full text

  13. 24 CFR 965.302 - Requirements for energy audits.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 4 2014-04-01 2014-04-01 false Requirements for energy audits. 965... URBAN DEVELOPMENT PHA-OWNED OR LEASED PROJECTS-GENERAL PROVISIONS Energy Audits and Energy Conservation Measures § 965.302 Requirements for energy audits. All PHAs shall complete an energy audit for each PHA...

  14. 24 CFR 965.302 - Requirements for energy audits.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 4 2011-04-01 2011-04-01 false Requirements for energy audits. 965... URBAN DEVELOPMENT PHA-OWNED OR LEASED PROJECTS-GENERAL PROVISIONS Energy Audits and Energy Conservation Measures § 965.302 Requirements for energy audits. All PHAs shall complete an energy audit for each PHA...

  15. 24 CFR 965.302 - Requirements for energy audits.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 4 2012-04-01 2012-04-01 false Requirements for energy audits. 965... URBAN DEVELOPMENT PHA-OWNED OR LEASED PROJECTS-GENERAL PROVISIONS Energy Audits and Energy Conservation Measures § 965.302 Requirements for energy audits. All PHAs shall complete an energy audit for each PHA...

  16. 24 CFR 965.302 - Requirements for energy audits.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Requirements for energy audits. 965... URBAN DEVELOPMENT PHA-OWNED OR LEASED PROJECTS-GENERAL PROVISIONS Energy Audits and Energy Conservation Measures § 965.302 Requirements for energy audits. All PHAs shall complete an energy audit for each PHA...

  17. 24 CFR 965.302 - Requirements for energy audits.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 4 2013-04-01 2013-04-01 false Requirements for energy audits. 965... URBAN DEVELOPMENT PHA-OWNED OR LEASED PROJECTS-GENERAL PROVISIONS Energy Audits and Energy Conservation Measures § 965.302 Requirements for energy audits. All PHAs shall complete an energy audit for each PHA...

  18. What are hot and what are not in an urban landscape: quantifying and explaining the land surface temperature pattern in Beijing, China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuang, Wenhui; Liu, Yue; Dou, Yinyin

    Understanding how landscape components affect the urban heat islands is crucial for urban ecological planning and sustainable development. The purpose of this research was to quantify the spatial pattern of land surface temperatures (LSTs) and associated heat fluxes in relation to land-cover types in Beijing, China, using portable infrared thermometers, thermal infrared imagers, and the moderate resolution imaging spectroradiometer. The spatial differences and the relationships between LSTs and the hierarchical landscape structure were analyzed with in situ observations of surface radiation and heat fluxes. Large LST differences were found among various land-use/land-cover types, urban structures, and building materials. Within themore » urban area, the mean LST of urban impervious surfaces was about 6–12°C higher than that of the urban green space. LSTs of built-up areas were on average 3–6°C higher than LSTs of rural areas. The observations for surface radiation and heat fluxes indicated that the differences were caused by different fractions of sensible heat or latent heat flux in net radiation. LSTs decreased with increasing elevation and normalized difference vegetation index. Variations in building materials and urban structure significantly influenced the spatial pattern of LSTs in urban areas. By contrast, elevation and vegetation cover are the major determinants of the LST pattern in rural areas. In summary, to alleviate urban heat island intensity, urban planners and policy makers should pay special attention to the selection of appropriate building materials, the reasonable arrangement of urban structures, and the rational design of landscape components.« less

  19. What are hot and what are not in an urban landscape: quantifying and explaining the land surface temperature pattern in Beijing, China

    DOE PAGES

    Kuang, Wenhui; Liu, Yue; Dou, Yinyin; ...

    2014-12-06

    Understanding how landscape components affect the urban heat islands is crucial for urban ecological planning and sustainable development. The purpose of this research was to quantify the spatial pattern of land surface temperatures (LSTs) and associated heat fluxes in relation to land-cover types in Beijing, China, using portable infrared thermometers, thermal infrared imagers, and the moderate resolution imaging spectroradiometer. The spatial differences and the relationships between LSTs and the hierarchical landscape structure were analyzed with in situ observations of surface radiation and heat fluxes. Large LST differences were found among various land-use/land-cover types, urban structures, and building materials. Within themore » urban area, the mean LST of urban impervious surfaces was about 6–12°C higher than that of the urban green space. LSTs of built-up areas were on average 3–6°C higher than LSTs of rural areas. The observations for surface radiation and heat fluxes indicated that the differences were caused by different fractions of sensible heat or latent heat flux in net radiation. LSTs decreased with increasing elevation and normalized difference vegetation index. Variations in building materials and urban structure significantly influenced the spatial pattern of LSTs in urban areas. By contrast, elevation and vegetation cover are the major determinants of the LST pattern in rural areas. In summary, to alleviate urban heat island intensity, urban planners and policy makers should pay special attention to the selection of appropriate building materials, the reasonable arrangement of urban structures, and the rational design of landscape components.« less

  20. Parallel Mitogenome Sequencing Alleviates Random Rooting Effect in Phylogeography.

    PubMed

    Hirase, Shotaro; Takeshima, Hirohiko; Nishida, Mutsumi; Iwasaki, Wataru

    2016-04-28

    Reliably rooted phylogenetic trees play irreplaceable roles in clarifying diversification in the patterns of species and populations. However, such trees are often unavailable in phylogeographic studies, particularly when the focus is on rapidly expanded populations that exhibit star-like trees. A fundamental bottleneck is known as the random rooting effect, where a distant outgroup tends to root an unrooted tree "randomly." We investigated whether parallel mitochondrial genome (mitogenome) sequencing alleviates this effect in phylogeography using a case study on the Sea of Japan lineage of the intertidal goby Chaenogobius annularis Eighty-three C. annularis individuals were collected and their mitogenomes were determined by high-throughput and low-cost parallel sequencing. Phylogenetic analysis of these mitogenome sequences was conducted to root the Sea of Japan lineage, which has a star-like phylogeny and had not been reliably rooted. The topologies of the bootstrap trees were investigated to determine whether the use of mitogenomes alleviated the random rooting effect. The mitogenome data successfully rooted the Sea of Japan lineage by alleviating the effect, which hindered phylogenetic analysis that used specific gene sequences. The reliable rooting of the lineage led to the discovery of a novel, northern lineage that expanded during an interglacial period with high bootstrap support. Furthermore, the finding of this lineage suggested the existence of additional glacial refugia and provided a new recent calibration point that revised the divergence time estimation between the Sea of Japan and Pacific Ocean lineages. This study illustrates the effectiveness of parallel mitogenome sequencing for solving the random rooting problem in phylogeographic studies. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  1. Elevated Carbon Dioxide Alleviates Aluminum Toxicity by Decreasing Cell Wall Hemicellulose in Rice (Oryza sativa)

    PubMed Central

    Zhu, Xiao Fang; Zhao, Xu Sheng; Wang, Bin; Wu, Qi; Shen, Ren Fang

    2017-01-01

    Carbon dioxide (CO2) is involved in plant growth as well as plant responses to abiotic stresses; however, it remains unclear whether CO2 is involved in the response of rice (Oryza sativa) to aluminum (Al) toxicity. In the current study, we discovered that elevated CO2 (600 μL·L−1) significantly alleviated Al-induced inhibition of root elongation that occurred in ambient CO2 (400 μL·L−1). This protective effect was accompanied by a reduced Al accumulation in root apex. Al significantly induced citrate efflux and the expression of OsALS1, but elevated CO2 had no further effect. By contrast, elevated CO2 significantly decreased Al-induced accumulation of hemicellulose, as well as its Al retention. As a result, the amount of Al fixed in the cell wall was reduced, indicating an alleviation of Al-induced damage to cell wall function. Furthermore, elevated CO2 decreased the Al-induced root nitric oxide (NO) accumulation, and the addition of the NO scavenger c-PTIO (2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) abolished this alleviation effect, indicating that NO maybe involved in the CO2-alleviated Al toxicity. Taken together, these results demonstrate that the alleviation of Al toxicity in rice by elevated CO2 is mediated by decreasing hemicellulose content and the Al fixation in the cell wall, possibly via the NO pathway. PMID:28769823

  2. Increasing Geothermal Energy Demand: The Need for Urbanization of the Drilling Industry

    ERIC Educational Resources Information Center

    Teodoriu, Catalin; Falcone, Gioia

    2008-01-01

    Drilling wells in urban spaces requires special types of rigs that do not conflict with the surrounding environment. For this, a mutation of the current drilling equipment is necessary into what can be defined as an "urbanized drilling rig." Noise reduction, small footprint, and "good looking" rigs all help persuade the general public to accept…

  3. Sustainable Development Strategies of Biomass Energy in Beijing

    NASA Astrophysics Data System (ADS)

    Zhang, H. Z.; Huang, B. R.

    2017-10-01

    The development of biomass energy industry can effectively improve the rural environment and alleviate the shortage of living energy in rural areas, especially in mountain areas. In order to make clear the current situation of biomass energy industry development in Beijing, this paper analyzed the status of biomass resources and biomass energy utilization and discussed the factors hindering the development of biomass energy industry in Beijing. Based on the analysis, suggestions for promoting sustainable development of Biomass Energy Industry in Beijing are put forward.

  4. The U.S. Energy Picture Grows Worse and Worse and...

    ERIC Educational Resources Information Center

    McKetta, John J.

    1982-01-01

    Surveys the effects of federal regulation upon energy self sufficiency and fuel development in the United States. Recommends ways the public and the government can alleviate the energy problem. Five appendices discuss the greenhouse effect, sulfur dioxide, acid rain, zero population, pollution, and zero health risk. (SK)

  5. Rolling Maneuver Load Alleviation using active controls

    NASA Technical Reports Server (NTRS)

    Woods-Vedeler, Jessica A.; Pototzky, Anthony S.

    1992-01-01

    Rolling Maneuver Load Alleviation (RMLA) has been demonstrated on the Active Flexible Wing (AFW) wind tunnel model in the NASA Langley Transonic Dynamics Tunnel. The design objective was to develop a systematic approach for developing active control laws to alleviate wing incremental loads during roll maneuvers. Using linear load models for the AFW wind-tunnel model which were based on experimental measurements, two RMLA control laws were developed based on a single-degree-of-freedom roll model. The RMLA control laws utilized actuation of outboard control surface pairs to counteract incremental loads generated during rolling maneuvers and actuation of the trailing edge inboard control surface pairs to maintain roll performance. To evaluate the RMLA control laws, roll maneuvers were performed in the wind tunnel at dynamic pressures of 150, 200, and 250 psf and Mach numbers of 0.33, .38 and .44, respectively. Loads obtained during these maneuvers were compared to baseline maneuver loads. For both RMLA controllers, the incremental torsion moments were reduced by up to 60 percent at all dynamic pressures and performance times. Results for bending moment load reductions during roll maneuvers varied. In addition, in a multiple function test, RMLA and flutter suppression system control laws were operated simultaneously during roll maneuvers at dynamic pressures 11 percent above the open-loop flutter dynamic pressure.

  6. Assessing the effects of the Great Eastern China urbanization on the East Asian summer monsoon by coupling an urban canopy model with a Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Xue, Y.; Liu, S.; Oleson, K. W.

    2012-12-01

    The urbanization causes one of the most significant land cover changes. Especially over the eastern China from Beijing to Shanghai, the great urbanization occurs during the past half century.It modifies the physical characteristics of land surface, including land surface albedo, surface roughness length and aerodynamicresistanceand thermodynamic conduction over land. All of these play very important role in regional climate change. Afteremploying several WRF/Urban models to tests land use and land cover change(LUCC) caused by urbanization in East Asia, we decided to introducea urban canopy submodule,the Community Land surface Model urban scheme(CLMU)to the WRF and coupled with the WRF-SSiB3 regional climate model. The CLMU and SSIB share the similar principal to treat the surface energy and water balances and aerodynamic resistance between land and atmosphere. In the urban module, the energy balances on the five surface conditions are considered separately: building roof, sun side building wall, shade side building wall, pervious land surface and impervious road. The surface turbulence calculation is based on Monin-Obukhov similarity theory. We have made further improvements for the urban module. Over each surface condition, a method to calculate sky view factor (SVF) is developed based on the physically process while most urban models simply provide an empirical value for SVF. Our approach along with other improvement in short and long wave radiation transfer improves the accuracy of long-wave and shortwave radiation processing over urban surface. The force-restore approximation is employed to calculate the temperature of each outer surfaces of building. The inner side temperature is used as the restore term and was assigned as a tuning constant. Based on the nature of the force-restore method and our tests, we decide to employ the air mean temperature of last 72 hours as a restore term, which substantially improve the surface energy balance. We evaluate the

  7. Methylphenidate alleviates manganese-induced impulsivity but not distractibility

    PubMed Central

    Beaudin, Stephane A.; Strupp, Barbara J.; Uribe, Walter; Ysais, Lauren; Strawderman, Myla; Smith, Donald R.

    2017-01-01

    Recent studies from our lab have demonstrated that postnatal manganese (Mn) exposure in a rodent model can cause lasting impairments in fine motor control and attention, and that oral methylphenidate (MPH) treatment can effectively treat the dysfunction in fine motor control. However, it is unknown whether MPH treatment can alleviate the impairments in attention produced by Mn exposure. Here we used a rodent model of postnatal Mn exposure to determine whether (1) oral MPH alleviates attention and impulse control deficits caused by postnatal Mn exposure, using attention tasks that are variants of the 5-choice serial reaction time task, and (2) whether these treatments affected neuronal dendritic spine density in the medial prefrontal cortex (mPFC) and dorsal striatum. Male Long-Evans rats were exposed orally to 0 or 50 mg Mn/kg/d throughout life starting on PND 1, and tested as young adults (PND 107 – 115) on an attention task that specifically tapped selective attention and impulse control. Animals were treated with oral MPH (2.5 mg/kg/d) throughout testing on the attention task. Our findings show that lifelong postnatal Mn exposure impaired impulse control and selective attention in young adulthood, and that a therapeutically relevant oral MPH regimen alleviated the Mn-induced dysfunction in impulse control, but not selective attention, and actually impaired focused attention in the Mn group. In addition, the effect of MPH was qualitatively different for the Mn-exposed versus control animals across a range of behavioral measures of inhibitory control and attention, as well as dendritic spine density in the mPFC, suggesting that postnatal Mn exposure alters catecholaminergic systems modulating these behaviors. Collectively these findings suggest that MPH may hold promise for treating the behavioral dysfunction caused by developmental Mn exposure, although further research is needed with multiple MPH doses to determine whether a dose can be identified that

  8. Methylphenidate alleviates manganese-induced impulsivity but not distractibility.

    PubMed

    Beaudin, Stephane A; Strupp, Barbara J; Uribe, Walter; Ysais, Lauren; Strawderman, Myla; Smith, Donald R

    2017-05-01

    Recent studies from our lab have demonstrated that postnatal manganese (Mn) exposure in a rodent model can cause lasting impairments in fine motor control and attention, and that oral methylphenidate (MPH) treatment can effectively treat the dysfunction in fine motor control. However, it is unknown whether MPH treatment can alleviate the impairments in attention produced by Mn exposure. Here we used a rodent model of postnatal Mn exposure to determine whether (1) oral MPH alleviates attention and impulse control deficits caused by postnatal Mn exposure, using attention tasks that are variants of the 5-choice serial reaction time task, and (2) whether these treatments affected neuronal dendritic spine density in the medial prefrontal cortex (mPFC) and dorsal striatum. Male Long-Evans rats were exposed orally to 0 or 50Mn/kg/d throughout life starting on PND 1, and tested as young adults (PND 107-115) on an attention task that specifically tapped selective attention and impulse control. Animals were treated with oral MPH (2.5mg/kg/d) throughout testing on the attention task. Our findings show that lifelong postnatal Mn exposure impaired impulse control and selective attention in young adulthood, and that a therapeutically relevant oral MPH regimen alleviated the Mn-induced dysfunction in impulse control, but not selective attention, and actually impaired focused attention in the Mn group. In addition, the effect of MPH was qualitatively different for the Mn-exposed versus control animals across a range of behavioral measures of inhibitory control and attention, as well as dendritic spine density in the mPFC, suggesting that postnatal Mn exposure alters catecholaminergic systems modulating these behaviors. Collectively these findings suggest that MPH may hold promise for treating the behavioral dysfunction caused by developmental Mn exposure, although further research is needed with multiple MPH doses to determine whether a dose can be identified that ameliorates the

  9. Temperature trends in desert cities: how vegetation and urbanization affect the urban heat island dynamics in hyper-arid climates

    NASA Astrophysics Data System (ADS)

    Marpu, P. R.; Lazzarini, M.; Molini, A.; Ghedira, H.

    2013-12-01

    Urban areas represent a unique micro-climatic system, mainly characterized by scarcity of vegetation and ground moisture, an albedo strictly dependent on building materials and urban forms, high heat capacity, elevated pollutants emissions, anthropogenic heat production, and a characteristic boundary layer dynamics. For obvious historical reasons, the first to be addressed in the literature were the effects of urbanization on the local microclimate of temperate regions, where most of the urban development took place in the last centuries. Here micro-climatic characteristics all contribute to the warming of urban areas, also known as 'urban heat island' effect, and are expected to crucially impact future energy and water consumption, air quality, and human health. However, rapidly increasing urbanization rates in arid and hyper-arid developing countries could soon require more attention towards studying the effects of urban development on arid climates, which remained mainly unexplored till now. In this talk we investigate the climatology of urban heat islands in seven highly urbanized desert cities based on day and night temporal trends of land surface temperature (LST) and normalized difference vegetation index (NDVI) acquired using MODIS satellite during 2000-2012. Urban and rural areas are distinguished by analyzing the high-resolution temporal variability and averaged monthly values of LST, NDVI and Surface Urban Heat Island (SUHI) for all the seven cities and adjacent sub-urban areas. Different thermal behaviors were observed at the selected sites, also including temperature mitigation and inverse urban heat island, and are here discussed together with detailed analysis of the corresponding trends.

  10. Wild inside: Urban wild boar select natural, not anthropogenic food resources.

    PubMed

    Stillfried, Milena; Gras, Pierre; Busch, Matthias; Börner, Konstantin; Kramer-Schadt, Stephanie; Ortmann, Sylvia

    2017-01-01

    Most wildlife species are urban avoiders, but some became urban utilizers and dwellers successfully living in cities. Often, they are assumed to be attracted into urban areas by easily accessible and highly energetic anthropogenic food sources. We macroscopically analysed stomachs of 247 wild boar (Sus scrofa, hereafter WB) from urban areas of Berlin and from the surrounding rural areas. From the stomach contents we determined as predictors of food quality modulus of fineness (MOF,), percentage of acid insoluble ash (AIA) and macronutrients such as amount of energy and percentage of protein, fat, fibre and starch. We run linear mixed models to test: (1) differences in the proportion of landscape variables, (2) differences of nutrients consumed in urban vs. rural WB and (3) the impact of landscape variables on gathered nutrients. We found only few cases of anthropogenic food in the qualitative macroscopic analysis. We categorized the WB into five stomach content categories but found no significant difference in the frequency of those categories between urban and rural WB. The amount of energy was higher in stomachs of urban WB than in rural WB. The analysis of landscape variables revealed that the energy of urban WB increased with increasing percentage of sealing, while an increased human density resulted in poor food quality for urban and rural WB. Although the percentage of protein decreased in areas with a high percentage of coniferous forests, the food quality increased. High percentage of grassland decreased the percentage of consumed fat and starch and increased the percentage of fibre, while a high percentage of agricultural areas increased the percentage of consumed starch. Anthropogenic food such as garbage might serve as fallback food when access to natural resources is limited. We infer that urban WB forage abundant, natural resources in urban areas. Urban WB might use anthropogenic resources (e.g. garbage) if those are easier to exploit and more abundant

  11. Wild inside: Urban wild boar select natural, not anthropogenic food resources

    PubMed Central

    Stillfried, Milena; Gras, Pierre; Busch, Matthias; Börner, Konstantin; Kramer-Schadt, Stephanie; Ortmann, Sylvia

    2017-01-01

    Most wildlife species are urban avoiders, but some became urban utilizers and dwellers successfully living in cities. Often, they are assumed to be attracted into urban areas by easily accessible and highly energetic anthropogenic food sources. We macroscopically analysed stomachs of 247 wild boar (Sus scrofa, hereafter WB) from urban areas of Berlin and from the surrounding rural areas. From the stomach contents we determined as predictors of food quality modulus of fineness (MOF,), percentage of acid insoluble ash (AIA) and macronutrients such as amount of energy and percentage of protein, fat, fibre and starch. We run linear mixed models to test: (1) differences in the proportion of landscape variables, (2) differences of nutrients consumed in urban vs. rural WB and (3) the impact of landscape variables on gathered nutrients. We found only few cases of anthropogenic food in the qualitative macroscopic analysis. We categorized the WB into five stomach content categories but found no significant difference in the frequency of those categories between urban and rural WB. The amount of energy was higher in stomachs of urban WB than in rural WB. The analysis of landscape variables revealed that the energy of urban WB increased with increasing percentage of sealing, while an increased human density resulted in poor food quality for urban and rural WB. Although the percentage of protein decreased in areas with a high percentage of coniferous forests, the food quality increased. High percentage of grassland decreased the percentage of consumed fat and starch and increased the percentage of fibre, while a high percentage of agricultural areas increased the percentage of consumed starch. Anthropogenic food such as garbage might serve as fallback food when access to natural resources is limited. We infer that urban WB forage abundant, natural resources in urban areas. Urban WB might use anthropogenic resources (e.g. garbage) if those are easier to exploit and more abundant

  12. Resource management as a key factor for sustainable urban planning.

    PubMed

    Agudelo-Vera, Claudia M; Mels, Adriaan R; Keesman, Karel J; Rijnaarts, Huub H M

    2011-10-01

    Due to fast urbanization and increasing living standards, the environmental sustainability of our global society becomes more and more questionable. In this historical review we investigate the role of resources management (RM) and urban planning (UP) and propose ways for integration in sustainable development (SD). RM follows the principle of circular causation, and we reflect on to what extent RM has been an element for urban planning. Since the existence of the first settlements, a close relationship between RM, urbanization and technological development has been present. RM followed the demand for urban resources like water, energy, and food. In history, RM has been fostered by innovation and technology developments and has driven population growth and urbanization. Recent massive resource demand, especially in relation to energy and material flows, has altered natural ecosystems and has resulted in environmental degradation. UP has developed separately in response to different questions. UP followed the demand for improved living conditions, often associated to safety, good manufacturing and trading conditions and appropriate sanitation and waste management. In history UP has been a developing research area, especially since the industrial era and the related strong urbanization at the end of the 18th century. UP responded to new emerging problems in urban areas and became increasingly complex. Nowadays, UP has to address many objectives that are often conflicting, including, the urban sustainability. Our current urban un-sustainability is rooted in massive resource consumption and waste production beyond natural limits, and the absence of flows from waste to resources. Therefore, sustainable urban development requires integration of RM into UP. We propose new ways to this integration. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Identification Approach to Alleviate Effects of Unmeasured Heat Gains for MIMO Building Thermal Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Jie; Kim, Donghun; Braun, James E.

    It is important to have practical methods for constructing a good mathematical model for a building's thermal system for energy audits, retrofit analysis and advanced building controls, e.g. model predictive control. Identification approaches based on semi-physical model structures are popular in building science for those purposes. However conventional gray box identification approaches applied to thermal networks would fail when significant unmeasured heat gains present in estimation data. Although this situation is very common and practical, there has been little research to tackle this issue in building science. This paper presents an overall identification approach to alleviate influences of unmeasured disturbances,more » and hence to obtain improved gray-box building models. The approach was applied to an existing open space building and the performance is demonstrated.« less

  14. The energy-water-food nexus: strategic analysis of technologies for transforming the urban metabolism.

    PubMed

    Villarroel Walker, R; Beck, M B; Hall, J W; Dawson, R J; Heidrich, O

    2014-08-01

    Urban areas are considered net consumers of materials and energy, attracting these from the surrounding hinterland and other parts of the planet. The way these flows are transformed and returned to the environment by the city is important for addressing questions of sustainability and the effect of human behavior on the metabolism of the city. The present work explores these questions with the use of systems analysis, specifically in the form of a Multi-sectoral Systems Analysis (MSA), a tool for research and for supporting decision-making for policy and investment. The application of MSA is illustrated in the context of Greater London, with these three objectives: (a) estimating resource fluxes (nutrients, water and energy) entering, leaving and circulating within the city-watershed system; (b) revealing the synergies and antagonisms resulting from various combinations of water-sector innovations; and (c) estimating the economic benefits associated with implementing these technologies, from the point of view of production of fertilizer and energy, and the reduction of greenhouse gases. Results show that the selection of the best technological innovation depends on which resource is the focus for improvement. Urine separation can potentially recover 47% of the nitrogen in the food consumed in London, with revenue of $33 M per annum from fertilizer production. Collecting food waste in sewers together with growing algae in wastewater treatment plants could beneficially increase the amount of carbon release from renewable energy by 66%, with potential annual revenues of $58 M from fuel production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Simulations of the Montréal urban heat island

    NASA Astrophysics Data System (ADS)

    Roberge, François; Sushama, Laxmi; Fanta, Gemechu

    2017-04-01

    The current population of Montreal is around 3.8 million and this number is projected to go up in the coming years to decades, which will lead to vast expansion of urban areas. It is well known that urban morphology impacts weather and climate, and therefore should be taken into consideration in urban planning. This is particularly important in the context of a changing climate, as the intensity and frequency of temperature extremes such as hot spells are projected to increase in future climate, and Urban Heat Island (UHI) can potentially raise already stressful temperatures during such events, which can have significant effects on human health and energy consumption. High-resolution regional climate model simulations can be utilized to understand better urban-weather/climate interactions in current and future climates, particularly the spatio-temporal characteristics of the Urban Heat Island and its impact on other weather/climate characteristics such as urban flows, precipitation etc. This paper will focus on two high-resolution (250 m) simulations performed with (1) the Canadian Land Surface Scheme (CLASS) and (2) CLASS and TEB (Town Energy Balance) model; TEB is a single layer urban canopy model and is used to model the urban fractions. The two simulations are performed over a domain covering Montreal for the 1960-2015 period, driven by atmospheric forcing data coming from a high-resolution Canadian Regional Climate Model (CRCM5) simulation, driven by ERA-Interim. The two simulations are compared to assess the impact of urban regions on selected surface fields and the simulation with both CLASS and TEB is then used to study the spatio-temporal characteristics of the UHI over the study domain. Some preliminary results from a coupled simulation, i.e. CRCM5+CLASS+TEB, for selected years, including extreme warm years, will also be presented.

  16. Use of Machine Learning Algorithms to Propose a New Methodology to Conduct, Critique and Validate Urban Scale Building Energy Modeling

    NASA Astrophysics Data System (ADS)

    Pathak, Maharshi

    City administrators and real-estate developers have been setting up rather aggressive energy efficiency targets. This, in turn, has led the building science research groups across the globe to focus on urban scale building performance studies and level of abstraction associated with the simulations of the same. The increasing maturity of the stakeholders towards energy efficiency and creating comfortable working environment has led researchers to develop methodologies and tools for addressing the policy driven interventions whether it's urban level energy systems, buildings' operational optimization or retrofit guidelines. Typically, these large-scale simulations are carried out by grouping buildings based on their design similarities i.e. standardization of the buildings. Such an approach does not necessarily lead to potential working inputs which can make decision-making effective. To address this, a novel approach is proposed in the present study. The principle objective of this study is to propose, to define and evaluate the methodology to utilize machine learning algorithms in defining representative building archetypes for the Stock-level Building Energy Modeling (SBEM) which are based on operational parameter database. The study uses "Phoenix- climate" based CBECS-2012 survey microdata for analysis and validation. Using the database, parameter correlations are studied to understand the relation between input parameters and the energy performance. Contrary to precedence, the study establishes that the energy performance is better explained by the non-linear models. The non-linear behavior is explained by advanced learning algorithms. Based on these algorithms, the buildings at study are grouped into meaningful clusters. The cluster "mediod" (statistically the centroid, meaning building that can be represented as the centroid of the cluster) are established statistically to identify the level of abstraction that is acceptable for the whole building energy

  17. The inhabited environment, infrastructure development and advanced urbanization in China’s Yangtze River Delta Region

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaoqing; Gao, Weijun; Zhou, Nan; Kammen, Daniel M.; Wu, Yiqun; Zhang, Yao; Chen, Wei

    2016-12-01

    This paper analyzes the relationship among the inhabited environment, infrastructure development and environmental impacts in China’s heavily urbanized Yangtze River Delta region. Using primary human environment data for the period 2006-2014, we examine factors affecting the inhabited environment and infrastructure development: urban population, GDP, built-up area, energy consumption, waste emission, transportation, real estate and urban greenery. Then we empirically investigate the impact of advanced urbanization with consideration of cities’ differences. Results from this study show that the growth rate of the inhabited environment and infrastructure development is strongly influenced by regional development structure, functional orientations, traffic network and urban size and form. The effect of advanced urbanization is more significant in large and mid-size cities than huge and mega cities. Energy consumption, waste emission and real estate in large and mid-size cities developed at an unprecedented rate with the rapid increase of economy. However, urban development of huge and mega cities gradually tended to be saturated. The transition development in these cities improved the inhabited environment and ecological protection instead of the urban construction simply. To maintain a sustainable advanced urbanization process, policy implications included urban sprawl control polices, ecological development mechanisms and reforming the economic structure for huge and mega cities, and construct major cross-regional infrastructure, enhance the carrying capacity and improvement of energy efficiency and structure for large and mid-size cities.

  18. Using local climate zone classifications to assess the influence of urban morphology on the urban heat island effect

    NASA Astrophysics Data System (ADS)

    Satcher, P. S.; Brunsell, N. A.

    2017-12-01

    Alterations to land cover resulting from urbanization interact with the atmospheric boundary layer inducing elevated surface and air temperatures, changes to the surface energy balance (SEB), and modifications to regional circulations and climates. These changes pose risks to public health, ecological systems, and have the potential to affect economic interests. We used Google Earth Engine's Landsat archive to classify local climate zones (LCZ) that consist of ten urban and seven non-urban classes to examine the influence of urban morphology on the urban heat island (UHI) effect. We used geostatistical methods to determine the significance of the spatial distributions of LCZs to land surface temperatures (LST) and normalized difference vegetation index (NDVI) Moderate Resolution Imaging Spectroradiometer (MODIS) products. We used the triangle method to assess the variability of SEB partitioning in relation to high, medium, and low density LCZ classes. Fractional vegetation cover (Fr) was calculated using NDVI data. Linear regressions of observations in Fr-LST space for select LCZ classes were compared for selected eight-day periods to determine changes in energy partitioning and relative soil moisture availability. The magnitude of each flux is not needed to determine changes to the SEB. The regressions will examine near surface soil moisture, which is indicative of how much radiation is partitioned into evaporation. To compare changes occurring over one decade, we used MODIS NDVI and LST data from 2005 and 2015. Results indicated that variations in the SEB can be detected using the LCZ classification method. The results from analysis in Fr-LST space of the annual cycles over several years can be used to detect changes in the SEB as urbanization increases.

  19. 24 CFR 965.306 - Energy conservation equipment and practices.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 4 2012-04-01 2012-04-01 false Energy conservation equipment and... URBAN DEVELOPMENT PHA-OWNED OR LEASED PROJECTS-GENERAL PROVISIONS Energy Audits and Energy Conservation Measures § 965.306 Energy conservation equipment and practices. In purchasing original or, when needed...

  20. 24 CFR 965.306 - Energy conservation equipment and practices.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 4 2014-04-01 2014-04-01 false Energy conservation equipment and... URBAN DEVELOPMENT PHA-OWNED OR LEASED PROJECTS-GENERAL PROVISIONS Energy Audits and Energy Conservation Measures § 965.306 Energy conservation equipment and practices. In purchasing original or, when needed...

  1. 24 CFR 965.306 - Energy conservation equipment and practices.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Energy conservation equipment and... URBAN DEVELOPMENT PHA-OWNED OR LEASED PROJECTS-GENERAL PROVISIONS Energy Audits and Energy Conservation Measures § 965.306 Energy conservation equipment and practices. In purchasing original or, when needed...

  2. 24 CFR 965.306 - Energy conservation equipment and practices.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 4 2013-04-01 2013-04-01 false Energy conservation equipment and... URBAN DEVELOPMENT PHA-OWNED OR LEASED PROJECTS-GENERAL PROVISIONS Energy Audits and Energy Conservation Measures § 965.306 Energy conservation equipment and practices. In purchasing original or, when needed...

  3. 24 CFR 965.306 - Energy conservation equipment and practices.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 4 2011-04-01 2011-04-01 false Energy conservation equipment and... URBAN DEVELOPMENT PHA-OWNED OR LEASED PROJECTS-GENERAL PROVISIONS Energy Audits and Energy Conservation Measures § 965.306 Energy conservation equipment and practices. In purchasing original or, when needed...

  4. A Review of Urban Low-carbon Traffic Assessment

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Yao, Jingjing

    2017-12-01

    Transportation not only promote social and economic development, but also improve people’s living standards, but its high energy consumption and high pollution brought a series of energy and environmental problems. In order to reduce the impact on the environment, countries are developing low-carbon transport as part of the socio-economic development mentioned on the agenda. On the basis of understanding the background and connotation of low-carbon transportation, this paper reviews and collates the evaluation index system and evaluation method of urban low-carbon transportation, which is used to provide reference for urban low-carbon transportation research.

  5. Hydromorphological adjustments and re-adjustments of low energy rivers in a sub-urban catchment following historical engineering and recent urbanization

    NASA Astrophysics Data System (ADS)

    Jugie, Marion; Gob, Frédéric; Slawson, Deborah; Le-Coeur, Charles

    2014-05-01

    The EU Water Framework Directive (WFD, October 2000) mandated that the Member States of the European Union achieve the general objective of protection of aquatic ecology by 2015. European rivers and streams have to attain "good ecological status" through the preservation and restoration of aquatic environments. Member will have to ensure environmental continuity through "the adequate distribution of fish species and transport of sediments". In France, more than 61,000 transverse structures - mill dams, weirs, diversion gates - have been identified on rivers as being obstacles to ecological and sedimentary continuity. Because of their historical occupation by societies, rivers flowing in the Paris area have long been anthropized and artificialized. River courses, channel shape, sediment transport and hydrological regime modifications have tremendously transformed the hydrosystems surrounding the city of Paris. The Merantaise's catchment is one of this low energy river watershed, near Paris, that have been modified by historical engineering, especially during medieval-modern times and by the building of the Versailles Castle (XVIIth century). The hydraulic infrastructures are still there and impact the hydromorphogical conditions of the river (incision, lateral erosion, …). In addition to these ancient pressures a rapid and massive urbanization of the suburban areas has applied a new type of constraint to the hydrosystems in recent decades. This undermines the balance that was established following ancient engineering and disturbs the current functioning of the valley. These new types of land occupation have significantly altered the ecological circumstances and transformed the hydrological responses of rivers. In this study, we therefore seek to understand these processes of successive adjustments (ancient and recent) of a small river from the urban margins of the Orge watershed (to the south of Paris). We use a multi-scalar spatial and temporal approach to

  6. Urban/rural interface: Governing the chaos

    NASA Astrophysics Data System (ADS)

    Ferreira, António

    2016-04-01

    Cities have become recently the home for more than half of the world's population. Cities are often seen as ecological systems just a short step away from collapse [Newman 2006]. Being a human construction, cities disrupt the natural cycles and the patterns of temporal and spatial distribution of environmental and ecological processes. Urbanization produces ruptures in biota, water, energy and nutrients connectivity that can lead to an enhanced exposure to disruptive events that hamper the wellbeing and the resilience of urban communities in a global change context. An important issue in what concerns urban sprawl is the interface between the urban and the rural territories. Being an extremely dynamic landscape, and assuring some quality of life and buffering some of the pervasive negative impacts of urban areas in terms of disrupting the function of the natural ecosystems, in limit situations this interface can act as a conveyor belt of catastrophic events originated in the rural world, into the urban space. The Coimbra 2005 wildfire is a fine example of how a poorly managed urban/rural interface can put populations in danger, by allowing the fire to spread towards the urban green infrastructure, burning houses in the process. Major river flows that flood urban areas are also good examples of the lack of management and planning can result in the loss of assets and even put in danger human lives. This presentation reviews the impact of extreme events and the transmission from the urban to the rural worlds, but also from the rural to the urban territories, and establishes the need to govern risk at various levels and using the full range of governance tools.

  7. A Remote Sensing Approach for Urban Environmental Decision-Making: An Atlanta, Georgia Case Study

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Luvall, Jeffrey C.; Rickman, Douglas L.; Laymon, Charles A.; Estes, Maurice G., Jr.; Howell, Burgess F.; Arnold, James E. (Technical Monitor)

    2002-01-01

    Unquestionably, urbanization causes tremendous changes in land cover and land use, as well as impacting a host of environmental characteristics. For example, unlike natural surfaces, urban surfaces have very different thermal energy properties whereby they store solar energy throughout the day and continue to release it as heat well after sunset. This effect, known as the 'Urban Heat Island', serves as a catalyst for chemical reactions from vehicular exhaust and industrial activities leading to the deterioration in air quality, especially exacerbating the production of ground level ozone. 'Cool Community' strategies that utilize remote sensing data, are now being implemented as a way to reduce the impacts of the urban heat island and its subsequent environmental impacts. This presentation focuses on how remote sensing data have been used to provide descriptive and quantitative data for characterizing the Atlanta, Georgia metropolitan area - particularly for measuring surface energy fluxes, such as the thermal or "heat" energy that emanates from different land cover types across the Atlanta urban landscape. In turn, this information is useful for developing a better understanding of how the thermal characteristics of the city surface affect the urban heat island phenomena and, ultimately, air quality and other environmental parameters over the Atlanta metropolitan region. Additionally, this paper also provides insight on how remote sensing, with its synoptic approach, can be used to provide urban planners, local, state, and federal government officials, and other decision-makers, as well as the general public, with information to better manage urban areas as sustainable environments.

  8. The efficacy of Iranian herbal medicines in alleviating hot flashes: A systematic review

    PubMed Central

    Ghazanfarpour, Masumeh; Sadeghi, Ramin; Abdolahian, Somayeh; Latifnejad Roudsari, Robab

    2016-01-01

    Background: Hot flashes are the most common symptoms experienced by women around the time of menopause. Many women are interested in herbal medicines because of fear of side effects of hormone therapy. Objective: The aim of this systematic review was to assess the effectiveness of Iranian herbal medicines in alleviating hot flashes. Materials and Methods: MEDLINE (1966 to January 2015), Scopus (1996 to January 2015), and Cochrane Central Register of Controlled Trials (The Cochrane Library, issue 1, 2015) were searched along with, SID, Iran Medex, Magiran, Medlib and Irandoc. Nineteen randomized controlled trials met the inclusion criteria. Results: Overall, studies showed that Anise (Pimpinella anisum), licorice (Glycyrrhizaglabra), Soy, Black cohosh, Red clover, Evening primrose, Flaxseed, Salvia officinalis, Passiflora، itex Agnus Castus, Piascledine (Avacado plus soybean oil), St. John's wort (Hypericum perforatum), and valerian can alleviate the side effects of hot flashes. Conclusion: This research demonstrated the efficacy of herbal medicines in alleviating hot flashes, which are embraced both with people and health providers of Iran Therefore, herbal medicine can be seen as an alternative treatment for women experiencing hot flashes. PMID:27294213

  9. Wind potential assessment in urban area of Surakarta city

    NASA Astrophysics Data System (ADS)

    Tjahjana, Dominicus Danardono Dwi Prija; Halomoan, Arnold Thamrin; Wibowo, Andreas; Himawanto, Dwi Aries; Wicaksono, Yoga Arob

    2018-02-01

    Wind energy is one of the promising energy resource in urban area that has not been deeply explored in Indonesia. Generally the wind velocity in Indonesia is relatively low, however on the roof top of the high rise building in urban area the wind velocity is high enough to be converted for supporting the energy needs of the building. In this research a feasibility study of wind energy in urban area of Surakarta was done. The analysis of the wind energy potential on the height of 50 m was done by using Weibull distribution. The wind data based on the daily wind speed taken from 2011-2015. From the result of the wind speed analysis, a wind map in Surakarta was developed for helping to determine the places that have good potential in wind energy. The result showed that in five years the city of Surakarta had mean energy density (ED) of 139.43 W/m2, yearly energy available (EI) of 1221.4 kWh/m2/year, the most frequent wind velocity (VFmax) of 4.79 m/s, and the velocity contributing the maximum energy (VEmax) of 6.97 m/s. The direction of the wind was mostly from south, with frequency of 38%. The south and west area of the city had higher wind velocity than the other parts of the city. Also in those areas there are many high rise buildings, which are appropriate for installation of small wind turbine on the roof top (building mounted wind turbine/ BMWT).

  10. Novel Alleviation Mechanisms of Aluminum Phytotoxicity via Released Biosilicon from Rice Straw-Derived Biochars

    PubMed Central

    Qian, Linbo; Chen, Baoliang; Chen, Mengfang

    2016-01-01

    Replacing biosilicon and biocarbon in soil via biochar amendment is a novel approach for soil amelioration and pollution remediation. The unique roles of silicon (Si)-rich biochar in aluminum (Al) phytotoxicity alleviation have not been discovered. In this study, the alleviation of Al phytotoxicity to wheat plants (root tips cell death) by biochars fabricated from rice straw pyrolyzed at 400 and 700 °C (RS400 and RS700) and the feedstock (RS100) were studied using a slurry system containing typical acidic soils for a 15-day exposure experiment. The distributions of Al and Si in the slurry solution, soil and plant root tissue were monitored by staining methods, chemical extractions and SEM-EDS observations. We found that the biological sourced silicon in biochars served dual roles in Al phytotoxicity alleviation in acidic soil slurry. On one hand, the Si particles reduced the amount of soil exchangeable Al and prevented the migration of Al to the plant. More importantly, the Si released from biochars synchronously absorbed by the plants and coordinated with Al to form Al-Si compounds in the epidermis of wheat roots, which is a new mechanism for Al phytotoxicity alleviation in acidic soil slurry by biochar amendment. In addition, the steady release of Si from the rice straw-derived biochars was a sustainable Si source for aluminosilicate reconstruction in acidic soil. PMID:27385598

  11. Novel Alleviation Mechanisms of Aluminum Phytotoxicity via Released Biosilicon from Rice Straw-Derived Biochars

    NASA Astrophysics Data System (ADS)

    Qian, Linbo; Chen, Baoliang; Chen, Mengfang

    2016-07-01

    Replacing biosilicon and biocarbon in soil via biochar amendment is a novel approach for soil amelioration and pollution remediation. The unique roles of silicon (Si)-rich biochar in aluminum (Al) phytotoxicity alleviation have not been discovered. In this study, the alleviation of Al phytotoxicity to wheat plants (root tips cell death) by biochars fabricated from rice straw pyrolyzed at 400 and 700 °C (RS400 and RS700) and the feedstock (RS100) were studied using a slurry system containing typical acidic soils for a 15-day exposure experiment. The distributions of Al and Si in the slurry solution, soil and plant root tissue were monitored by staining methods, chemical extractions and SEM-EDS observations. We found that the biological sourced silicon in biochars served dual roles in Al phytotoxicity alleviation in acidic soil slurry. On one hand, the Si particles reduced the amount of soil exchangeable Al and prevented the migration of Al to the plant. More importantly, the Si released from biochars synchronously absorbed by the plants and coordinated with Al to form Al-Si compounds in the epidermis of wheat roots, which is a new mechanism for Al phytotoxicity alleviation in acidic soil slurry by biochar amendment. In addition, the steady release of Si from the rice straw-derived biochars was a sustainable Si source for aluminosilicate reconstruction in acidic soil.

  12. Impact of urban built environment on urban short-distance taxi travel: the case of Shanghai

    NASA Astrophysics Data System (ADS)

    Wu, Zhuoye; Zhuo, Jian

    2018-05-01

    The excessive individual motorized transport is the main cause of urban congestion and generates negative consequences on urban environmental quality, energy consumption, infrastructure supply and urban security. Bicycle can compete effectively with automobile for short-distance travels within 3km. If we take action to encourage the rider to shift from automobile to bike for the short-distance travels, it leaves us a great chance to reduce the modal share of individual motorized mode. This paper focus on the spatial impact of built environment on short-distance taxi riders’ travel behaviour. The data sources include taxi trajectory data for a week, demographic data of the Sixth National Census, POI data. In this paper, we figure out the volumes and spatial distribution of short-distance taxi travel in the central city of Shanghai. We build a multiple regression model to quantitative analyze the impact of urban built environment on urban short-distance taxi travel. The findings explain the spatial distribution short-distance taxi travel. In the conclusion, some advice are provided on how planners change the spatial settings to discourage short-distance individual motorized travel.

  13. Dynamic wind-tunnel tests of an aeromechanical gust-alleviation system using several different combinations of control surfaces

    NASA Technical Reports Server (NTRS)

    Stewart, E. C.; Doggett, R. V., Jr.

    1978-01-01

    Some experimental results are presented from wind tunnel studies of a dynamic model equipped with an aeromechanical gust alleviation system for reducing the normal acceleration response of light airplanes. The gust alleviation system consists of two auxiliary aerodynamic surfaces that deflect the wing flaps through mechanical linkages when a gust is encountered to maintain nearly constant airplane lift. The gust alleviation system was implemented on a 1/6-scale, rod mounted, free flying model that is geometrically and dynamically representative of small, four place, high wing, single engine, light airplanes. The effects of flaps with different spans, two size of auxiliary aerodynamic surfaces, plain and double hinged flaps, and a flap elevator interconnection were studied. The model test results are presented in terms of predicted root mean square response of the full scale airplane to atmospheric turbulence. The results show that the gust alleviation system reduces the root mean square normal acceleration response by 30 percent in comparison with the response in the flaps locked condition. Small reductions in pitch-rate response were also obtained. It is believed that substantially larger reductions in normal acceleration can be achieved by reducing the rather high levels of mechanical friction which were extant in the alleviation system of the present model.

  14. Urbanization and its implications for food and farming.

    PubMed

    Satterthwaite, David; McGranahan, Gordon; Tacoli, Cecilia

    2010-09-27

    This paper discusses the influences on food and farming of an increasingly urbanized world and a declining ratio of food producers to food consumers. Urbanization has been underpinned by the rapid growth in the world economy and in the proportion of gross world product and of workers in industrial and service enterprises. Globally, agriculture has met the demands from this rapidly growing urban population, including food that is more energy-, land-, water- and greenhouse gas emission-intensive. But hundreds of millions of urban dwellers suffer under-nutrition. So the key issues with regard to agriculture and urbanization are whether the growing and changing demands for agricultural products from growing urban populations can be sustained while at the same time underpinning agricultural prosperity and reducing rural and urban poverty. To this are added the need to reduce greenhouse gas emissions and to build resilience in agriculture and urban development to climate change impacts. The paper gives particular attention to low- and middle-income nations since these have more than three-quarters of the world's urban population and most of its largest cities and these include nations where issues of food security are most pressing.

  15. Technical geothermal potential of urban subsurface influenced by land surface effects

    NASA Astrophysics Data System (ADS)

    Rivera, Jaime A.; Blum, Philipp; Bayer, Peter

    2016-04-01

    Changes in land use are probably one of the most notorious anthropogenic perturbations in urban environments. They significantly change the coupled thermal regime at the ground surface leading in most cases to increased ground surface temperatures (GST). The associated elevated vertical heat fluxes act at different scales and can influence the thermal conditions in several tens of meters in the subsurface. Urban subsurface thus often stores a higher amount of heat than less affected rural surroundings. The stored heat is regarded as a potential source of low-enthalpy geothermal energy to supply the heating energy demands in urban areas. In this work, we explore the technical geothermal potential of urban subsurface via ground coupled heat pumps with borehole heat exchangers (BHE). This is tackled by semi-analytical line-source equations. The commonly used response factors or g-functions are modified to include transient land surface effects. By including this additional source of heat, the new formulation allows to analyse the effect of pre-existing urban warming as well as different exploitation schemes fulfilling standard renewable and sustainable criteria. In our generalized reference scenario, it is demonstrated that energy gains for a single BHE may be up to 40 % when compared to non-urbanized conditions. For a scenario including the interaction of multiple BHEs, results indicate that it would be possible to supply between 6 % and 27 % of the heating demands in Central European urban settlements in a renewable way. The methodology is also applied to a study case of the city of Zurich, Switzerland, where the detailed evolution of land use is available.

  16. The surface urban heat island response to urban expansion: A panel analysis for the conterminous United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xiaoma; Zhou, Yuyu; Asrar, Ghassem R.

    Abstract: Urban heat island (UHI), a major concern worldwide, affects human health and energy use. With current and anticipated rapid urbanization, improved understanding of the response of UHI to urbanization is important for impact analysis and developing effective adaptation measures and mitigation strategies. Current studies mainly focus on a single or a few big cities and knowledge on the response of UHI to urbanization for large areas is very limited. Modelling UHI caused by urbanization for large areas that encompass multiple metropolitans remains a major scientific challenge/opportunity. As a major indicator of urbanization, urban area size lends itself well formore » representation in prognostic models to investigate the impacts of urbanization on UHI and the related socioeconomic and environmental effects. However, we have little knowledge on how UHI responds to the increase of urban area size, namely urban expansion, and its spatial and temporal variation over large areas. In this study, we investigated the relationship between surface UHI (SUHI) and urban area size in the climate and ecological context, and its spatial and temporal variations, based on a panel analysis of about 5000 urban areas of 10 km2 or larger, in the conterminous U.S. We found statistically significant positive relationship between SUHI and urban area size, and doubling the urban area size led to a SUHI increase of higher than 0.7 °C. The response of SUHI to the increase of urban area size shows spatial and temporal variations, with stronger SUHI increase in the Northern region of U.S., and during daytime and summer. Urban area size alone can explain as much as 87% of the variance of SUHI among cities studied, but with large spatial and temporal variations. Urban area size shows higher association with SUHI in regions where the thermal characteristics of land cover surrounding the urban are more homogeneous, such as in Eastern U.S., and in the summer months. This study provides

  17. Thermal Adaptation Methods of Urban Plaza Users in Asia's Hot-Humid Regions: A Taiwan Case Study.

    PubMed

    Wu, Chen-Fa; Hsieh, Yen-Fen; Ou, Sheng-Jung

    2015-10-27

    Thermal adaptation studies provide researchers great insight to help understand how people respond to thermal discomfort. This research aims to assess outdoor urban plaza conditions in hot and humid regions of Asia by conducting an evaluation of thermal adaptation. We also propose that questionnaire items are appropriate for determining thermal adaptation strategies adopted by urban plaza users. A literature review was conducted and first hand data collected by field observations and interviews used to collect information on thermal adaptation strategies. Item analysis--Exploratory Factor Analysis (EFA) and Confirmatory Factor Analysis (CFA)--were applied to refine the questionnaire items and determine the reliability of the questionnaire evaluation procedure. The reliability and validity of items and constructing process were also analyzed. Then, researchers facilitated an evaluation procedure for assessing the thermal adaptation strategies of urban plaza users in hot and humid regions of Asia and formulated a questionnaire survey that was distributed in Taichung's Municipal Plaza in Taiwan. Results showed that most users responded with behavioral adaptation when experiencing thermal discomfort. However, if the thermal discomfort could not be alleviated, they then adopted psychological strategies. In conclusion, the evaluation procedure for assessing thermal adaptation strategies and the questionnaire developed in this study can be applied to future research on thermal adaptation strategies adopted by urban plaza users in hot and humid regions of Asia.

  18. Impacts of building geometry modeling methods on the simulation results of urban building energy models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yixing; Hong, Tianzhen

    We present that urban-scale building energy modeling (UBEM)—using building modeling to understand how a group of buildings will perform together—is attracting increasing attention in the energy modeling field. Unlike modeling a single building, which will use detailed information, UBEM generally uses existing building stock data consisting of high-level building information. This study evaluated the impacts of three zoning methods and the use of floor multipliers on the simulated energy use of 940 office and retail buildings in three climate zones using City Building Energy Saver. The first zoning method, OneZone, creates one thermal zone per floor using the target building'smore » footprint. The second zoning method, AutoZone, splits the building's footprint into perimeter and core zones. A novel, pixel-based automatic zoning algorithm is developed for the AutoZone method. The third zoning method, Prototype, uses the U.S. Department of Energy's reference building prototype shapes. Results show that simulated source energy use of buildings with the floor multiplier are marginally higher by up to 2.6% than those modeling each floor explicitly, which take two to three times longer to run. Compared with the AutoZone method, the OneZone method results in decreased thermal loads and less equipment capacities: 15.2% smaller fan capacity, 11.1% smaller cooling capacity, 11.0% smaller heating capacity, 16.9% less heating loads, and 7.5% less cooling loads. Source energy use differences range from -7.6% to 5.1%. When comparing the Prototype method with the AutoZone method, source energy use differences range from -12.1% to 19.0%, and larger ranges of differences are found for the thermal loads and equipment capacities. This study demonstrated that zoning methods have a significant impact on the simulated energy use of UBEM. Finally, one recommendation resulting from this study is to use the AutoZone method with floor multiplier to obtain accurate results while

  19. Impacts of building geometry modeling methods on the simulation results of urban building energy models

    DOE PAGES

    Chen, Yixing; Hong, Tianzhen

    2018-02-20

    We present that urban-scale building energy modeling (UBEM)—using building modeling to understand how a group of buildings will perform together—is attracting increasing attention in the energy modeling field. Unlike modeling a single building, which will use detailed information, UBEM generally uses existing building stock data consisting of high-level building information. This study evaluated the impacts of three zoning methods and the use of floor multipliers on the simulated energy use of 940 office and retail buildings in three climate zones using City Building Energy Saver. The first zoning method, OneZone, creates one thermal zone per floor using the target building'smore » footprint. The second zoning method, AutoZone, splits the building's footprint into perimeter and core zones. A novel, pixel-based automatic zoning algorithm is developed for the AutoZone method. The third zoning method, Prototype, uses the U.S. Department of Energy's reference building prototype shapes. Results show that simulated source energy use of buildings with the floor multiplier are marginally higher by up to 2.6% than those modeling each floor explicitly, which take two to three times longer to run. Compared with the AutoZone method, the OneZone method results in decreased thermal loads and less equipment capacities: 15.2% smaller fan capacity, 11.1% smaller cooling capacity, 11.0% smaller heating capacity, 16.9% less heating loads, and 7.5% less cooling loads. Source energy use differences range from -7.6% to 5.1%. When comparing the Prototype method with the AutoZone method, source energy use differences range from -12.1% to 19.0%, and larger ranges of differences are found for the thermal loads and equipment capacities. This study demonstrated that zoning methods have a significant impact on the simulated energy use of UBEM. Finally, one recommendation resulting from this study is to use the AutoZone method with floor multiplier to obtain accurate results while

  20. Renewable energy for an environmentally sustainable energy future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunderman, D.N.

    1993-12-31

    One of the major objectives of the renewable energy program is to allow the employment of environmentally benign energy technologies based upon the sun. Other objectives include national energy independence and industrial competitiveness in future energy technology markets. The National Renewable Energy Laboratory (formerly SERI) in Golden, Colorado, has for 15 years been the lead U.S. laboratory in research on photovoltaics, wind energy systems, and ethanol from biomass. During this period, substantional cost reductions were achieved and efficiencies improved. NREL also works closely with industry to facilitate the commercialization of these and related technologies. As much as 50% of NRELmore » funding goes to industry in cost-shared contracts for research and development, planned with industry representatives and the U.S. Department of Energy. Besides lessening dependence on fossil fuels and their short-term environmental impacts, these technologies will also alleviate the impact on the potential global warming issue. Other direct environmental research at NREL is the solar-detox program, in which solar radiation is employed to destroy hazardous organic materials in ground water and other waste streams.« less

  1. Urban air quality

    NASA Astrophysics Data System (ADS)

    Fenger, Jes

    Since 1950 the world population has more than doubled, and the global number of cars has increased by a factor of 10. In the same period the fraction of people living in urban areas has increased by a factor of 4. In year 2000 this will amount to nearly half of the world population. About 20 urban regions will each have populations above 10 million people. Seen over longer periods, pollution in major cities tends to increase during the built up phase, they pass through a maximum and are then again reduced, as abatement strategies are developed. In the industrialised western world urban air pollution is in some respects in the last stage with effectively reduced levels of sulphur dioxide and soot. In recent decades however, the increasing traffic has switched the attention to nitrogen oxides, organic compounds and small particles. In some cities photochemical air pollution is an important urban problem, but in the northern part of Europe it is a large-scale phenomenon, with ozone levels in urban streets being normally lower than in rural areas. Cities in Eastern Europe have been (and in many cases still are) heavily polluted. After the recent political upheaval, followed by a temporary recession and a subsequent introduction of new technologies, the situation appears to improve. However, the rising number of private cars is an emerging problem. In most developing countries the rapid urbanisation has so far resulted in uncontrolled growth and deteriorating environment. Air pollution levels are here still rising on many fronts. Apart from being sources of local air pollution, urban activities are significant contributors to transboundary pollution and to the rising global concentrations of greenhouse gasses. Attempts to solve urban problems by introducing cleaner, more energy-efficient technologies will generally have a beneficial impact on these large-scale problems. Attempts based on city planning with a spreading of the activities, on the other hand, may generate

  2. Eucalyptus as a pollution - controlling energy source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-12-31

    This article describes the possibility of using Eucalyptus as a biomass crop in Florida. It is not only a good fuel for energy production, but it can help alleviate the water pollution problem because of its substantial uptake of excess nutrients and tolerance of flooding.

  3. An Evaluation of the Biodiversity of Urban Ecology at ISF Academy

    NASA Astrophysics Data System (ADS)

    Ng, E.

    2016-12-01

    ISF Academy, a school with 1500 students in Hong Kong, is currently constructing two annex buildings, inside which are multiple green spaces. The biodiversity of plants at ISF Academy is currently limited, hence a selection of educationally meaningful native plant species are planned for the new buildings, with the goal of attracting butterflies, reducing the school's carbon footprint and creating biologically diverse spaces where students can study ecology. This project contains a biodiversity survey of existing plants in and around the ISF campus, and an evaluation of the plant selection for the annex buildings. While native species are planned for the buildings in order to ensure that the green spaces can be maintained sustainably, not all species are suitable for a school environment, and thus the safety, feasibility and ecological significance of the plant selection will be considered.As increasing amounts of people move towards cities, green spaces are necessary for alleviating climate change and for ensuring the sustainable development of urban environments. Despite being a small and densely populated city, more than 40% of Hong Kong's land mass consists of an extensive country park network. Hong Kong therefore serves as a prime example of how urban ecology can be implemented to benefit cities, and the green spaces in the ISF Academy campus can be considered a microcosm of urban ecology in Hong Kong. The implementation of green spaces in the ISF Academy campus demonstrates the ISF community's commitment to creating sustainable environments.

  4. Urban heat fluxes in the subsurface of Cologne, Germany

    NASA Astrophysics Data System (ADS)

    Zhu, K.; Bayer, P.; Blum, P.

    2012-04-01

    Urbanization during the last hundred years has led to both environmental and thermal impacts on the subsurface. The urban heat island (UHI) effect is mostly described as an atmospheric phenomenon, where the measured aboveground temperatures in cities are elevated in comparison to undisturbed rural regions. However, UHIs can be found below, as well as above ground. A large amount of anthropogenic heat migrates into the urban subsurface, which also raises the ground temperature and permanently changes the thermal conditions in shallow aquifers. The main objective of our work is to study and determine the urban heat fluxes in Cologne, Germany, and to improve our understanding of the dynamics of subsurface energy fluxes in UHIs. Ideally, our findings will contribute to strategic and more sustainable geothermal use in cities. For a quantitative analysis of the energy fluxes within the subsurface and across the atmospheric boundary, two and three-dimensional coupled numerical flow and heat transport models were developed. The simulation results indicate that during the past hundred years, an average vertical urban heat flux that ranges between 80 and 375 mW m-2 can be deduced. Thermal anomalies have migrated into the local urban aquifer system and they reach a depth of about 150 m. In this context, the influence of the regional groundwater flow on the subsurface heat transport and temperature development is comprehensively discussed.

  5. Urban Heat Islands and Their Mitigation vs. Local Impacts of Climate Change

    NASA Astrophysics Data System (ADS)

    Taha, H.

    2007-12-01

    Urban heat islands and their mitigation take on added significance, both negative and positive, when viewed from a climate-change perspective. In negative terms, urban heat islands can act as local exacerbating factors, or magnifying lenses, to the effects of regional and large-scale climate perturbations and change. They can locally impact meteorology, energy/electricity generation and use, thermal environment (comfort and heat waves), emissions of air pollutants, photochemistry, and air quality. In positive terms, on the other hand, mitigation of urban heat islands (via urban surface modifications and control of man-made heat, for example) can potentially have a beneficial effect of mitigating the local negative impacts of climate change. In addition, mitigation of urban heat islands can, in itself, contribute to preventing regional and global climate change, even if modestly, by helping reduce CO2 emissions from power plants and other sources as a result of decreased energy use for cooling (both direct and indirect) and reducing the rates of meteorology-dependent emissions of air pollutants. This presentation will highlight aspects and characteristics of heat islands, their mitigation, their modeling and quantification techniques, and recent advances in meso-urban modeling of California (funded by the California Energy Commission). In particular, the presentation will focus on results from quantitative, modeling-based analyses of the potential benefits of heat island mitigation in 1) reducing point- and area-source emissions of CO2, NOx, and VOC as a result of reduced cooling energy demand and ambient/surface temperatures, 2) reducing evaporative and fugitive hydrocarbon emissions as a result of lowered temperatures, 3) reducing biogenic hydrocarbon emissions from existing vegetative cover, 4) slowing the rates of tropospheric/ground-level ozone formation and/or accumulation in the urban boundary layer, and 5) helping improve air quality. Quantitative estimates

  6. Projected Impact of Urban Growth on Climate Change

    NASA Astrophysics Data System (ADS)

    Amato, Federico; Murgante, Beniamino; Martellozzo, Federico

    2017-04-01

    Human activities on land use such as intensive agricultural techniques and urbanization are generating a number of social and economic benefit for contemporary society. Besides, these phenomena are one of the most significant causes of Land Degradation. Firstly, intensive agriculture is on the one hand creating an advantage in the short-period in terms of food production, while on the other is producing serious long-period problems in terms of loss of ecosystem services, including some important for agriculture itself. Secondly, the rapid growth of urban areas in recent decades is generating deep environmental issues. The World Urbanization Prospect by the United Nations (UN) shows that more than half of the world's population today (54%) lives in urban areas. This figure was only 30% in 1950, and estimates are that it will rise to 66% by 2050. Urban growth is responsible for the increase of air pollution, waste production, energy consumption, and land take. Moreover, the expansion of urban areas is making the problem of urban heat islands more relevant, and studies are proving how land cover changes are among the main factors that affect local microclimates. Consequently, territorial planning will play an important role in the fight to mitigate the effects of climate change, as land cover has a significant impact on the energy exchanges between the earth and the atmosphere. This study couples urban growth simulation models based on cellular automata to multiple linear regression techniques that are used to formulate equations for predicting the effects of simulated urban development on soil surface temperature. The proposed methodology is applied to the case study of the Italian national territory, considering various alternative scenarios of land use changes and of their impact on local surface temperatures. The results show that the areas with the greatest urban pressure might be subject to significant climatic changes due to the increased impact of urban heat

  7. Evaluate the urban effect on summer convective precipitation by coupling a urban canopy model with a Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Liu, S.; Xue, Y.; Oleson, K. W.

    2013-12-01

    One of the most significant urbanization in the world occurred in Great Beijing Area of China during the past several decades. The land use and land cover changes modifies the land surface physical characteristics, including the anthropogenic heat and thermo-dynamic conduction. All of those play important roles in the urban regional climate changes. We developed a single layer urban canopy module based on the Community Land Surface Model Urban Module (CLMU). We have made further improvements in the urban module: the energy balances on the five surface conditions are considered separately: building roof, sun side and shade side wall, pervious and impervious land surface. Over each surface, a method to calculate sky view factor (SVF) is developed based on the physically process while most urban models simply provide an empirical value; A new scheme for calculating the latent heat flux is applied on both wall and impervious land; anthropogenic heat is considered in terms of industrial production, domestic wastes, vehicle and air condition. All of these developments improve the accuracy of surface energy balance processing in urban area. The urban effect on summer convective precipitation under the unstable atmospheric condition in the Great Beijing Area was investigated by simulating a heavy rainfall event in July 21st 2012. In this storm, strong meso-scale convective complexes (MCC) brought precipitation of averagely 164 mm within 6 hours, which is the record of past 60 years in the region. Numerical simulating experiment was set up by coupling MCLMU with WRF. Several condition/blank control cases were also set up. The horizontal resolution in all simulations was 2 km. While all of the control results drastically underestimate the urban precipitation, the result of WRF-MCLMU is much closer to the observation though still underestimated. More sensitive experiments gave a preliminary conclusion of how the urban canopy physics processing affects the local precipitation

  8. [Membrane fouling alleviation characteristics of sludge/water pre-separation MBR].

    PubMed

    Wang, Hong-Jie; Dong, Wen-Yi; Bai, Wei; Li, Wei-Guang; Yang, Yue

    2009-07-15

    A long-term operation was conducted to investigate the alleviation of membrane fouling by sludge/water pre-separation membrane bioreactor (S/W-MBR). The variation of trans-membrane pressure (TMP), concentration of sludge and extracellular polymeric substances (EPS) on S/W-MBR and submerged membrane bioreactor (SMBR) was also studied. The results showed that the sludge concentration in S/W-MBR was basically identical with that of SMBR's biotic area, while the sludge concentration was significantly decreased in S/W-MBR's membrane area than that of SMBR's. The concentration of EPS was increased with operation time in both two MBRs' biotic area, but it was lower and basically maintained at the level of 15 mg/g in S/W-MBR's membrane area. The S/W-MBR was more capable of alleviating membrane fouling, and it had been cleaned only 2 times while the SMBR who had been cleaned 5 times during the period of about 90 days laboratory performance.

  9. Energy therapies in oncology nursing.

    PubMed

    Coakley, Amanda Bulette; Barron, Anne-Marie

    2012-02-01

    To review the published research related to the interventions of Reiki, Therapeutic Touch, and Healing Touch representing energy therapies in relation to oncology nursing. Peer-reviewed literature. There is growing evidence that energy therapies have a positive effect on symptoms associated with cancer. While there is need for further research, it is clear that an appreciation for the value of research methods beyond the randomized control trial is important. Energy therapies offer additional strategies for oncology nurses providing integrated nursing care to alleviate suffering and symptom distress of patients with cancer. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Improved classification of small-scale urban watersheds using thematic mapper simulator data

    NASA Technical Reports Server (NTRS)

    Owe, M.; Ormsby, J. P.

    1984-01-01

    The utility of Landsat MSS classification methods in the case of small, highly urbanized hydrological basins containing complex land-use patterns is limited, and is plagued by misclassifications due to the spectral response similarity of many dissimilar surfaces. Landsat MSS data for the Conley Creek basin near Atlanta, Georgia, have been compared to thematic mapper simulator (TMS) data obtained on the same day by aircraft. The TMS data were able to alleviate many of the recurring patterns associated with MSS data, through bandwidth optimization, an increase of the number of spectral bands to seven, and an improvement of ground resolution to 30 m. The TMS is thereby able to detect small water bodies, powerline rights-of-way, and even individual buildings.

  11. Influences of land cover types, meteorological conditions, anthropogenic heat and urban area on surface urban heat island in the Yangtze River Delta Urban Agglomeration.

    PubMed

    Du, Hongyu; Wang, Duoduo; Wang, Yuanyuan; Zhao, Xiaolei; Qin, Fei; Jiang, Hong; Cai, Yongli

    2016-11-15

    Urban heat islands (UHIs) reflect the localized impact of human activities on thermal fields. In this study, we assessed the surface UHI and its relationship with types of land, meteorological conditions, anthropogenic heat sources and urban areas in the Yangtze River Delta Urban Agglomeration (YRDUA) with the aid of remote sensing data, statistical data and meteorological data. The results showed that the UHI intensity in YRDUA was the strongest (0.84°C) in summer, followed by 0.81°C in autumn, 0.78°C in spring and 0.53°C in winter. The daytime UHI intensity is 0.98°C, which is higher than the nighttime UHI intensity of 0.50°C. Then, the relationship between the UHI intensity and several factors such as meteorological conditions, anthropogenic heat sources and the urban area were analysed. The results indicated that there was an insignificant correlation between population density and the UHI intensity. Energy consumption, average temperature and urban area had a significant positive correlation with UHI intensity. However, the average wind speed and average precipitation were significantly negatively correlated with UHI intensity. This study provides insight into the regional climate characteristics and a scientific basis for city layout. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Implementation of an urban irrigation and a biofiltration system in the urban canopy model CLM-U

    NASA Astrophysics Data System (ADS)

    Demuzere, Matthias; Coutts, Andrew; Göhler, Maren; Diels, Jan; Gebert, Luke; Wouters, Hendrik; Van Lipzig, Nicole

    2013-04-01

    A recent review by Coutts et al. (2012) points out that to date the role of water in influencing urban climates through both irrigation and the support of urban vegetation receives less attention. Impervious urban surfaces prevent infiltration, and runoff is rapidly exported away from urban environments via the stormwater network. This produces a deficit of water in urban areas, and reduces soil moisture levels - a deficit that is often balanced by imported potable water to maintain a healthy vegetation via irrigation. Because of long-term dry spells over large areas of Australia in the last decades, State Governments introduced compulsory and voluntary strategies to encourage water saving across the community - including outdoor water restrictions. In this respect, residents have adapted gardening approaches by planting more drought-tolerant species. Each of these factors of drought, water restrictions and xeric gardens, along with the reduced health of urban vegetation, may further exacerbate urban warming and energy demands. In this respect, this study explores possible pathways towards a more Water Sensitive Urban Design (WSUD), implementing a decentralisation of water supply via residential rainwater tanks that collect run-off water from the roofs, an urban irrigation system connected to these rainwater tanks and bio-infiltration systems in which the impervious road fraction drains. All changes are implemented in the Community Land Model - Urban (CLM-U) and several sensitivity tests are performed for the residential area of Preston (Melbourne, Australia) in order to answer the question on how much water is actually needed to maintain healthy vegetation and where this water should come from. Can rainwater tanks provide a sufficient capacity to irrigate bio-infiltration systems or will it be necessary to apply high-quality potable water? In addition, this research can also be used to quantify the role of WSUD with respect to thermal comfort.

  13. Positioning infrastructure and technologies for low-carbon urbanization

    NASA Astrophysics Data System (ADS)

    Chester, Mikhail V.; Sperling, Josh; Stokes, Eleanor; Allenby, Braden; Kockelman, Kara; Kennedy, Christopher; Baker, Lawrence A.; Keirstead, James; Hendrickson, Chris T.

    2014-10-01

    The expected urbanization of the planet in the coming century coupled with aging infrastructure in developed regions, increasing complexity of man-made systems, and pressing climate change impacts have created opportunities for reassessing the role of infrastructure and technologies in cities and how they contribute to greenhouse gas (GHG) emissions. Modern urbanization is predicated on complex, increasingly coupled infrastructure systems, and energy use continues to be largely met from fossil fuels. Until energy infrastructures evolve away from carbon-based fuels, GHG emissions are critically tied to the urbanization process. Further complicating the challenge of decoupling urban growth from GHG emissions are lock-in effects and interdependencies. This paper synthesizes state-of-the-art thinking for transportation, fuels, buildings, water, electricity, and waste systems and finds that GHG emissions assessments tend to view these systems as static and isolated from social and institutional systems. Despite significant understanding of methods and technologies for reducing infrastructure-related GHG emissions, physical, institutional, and cultural constraints continue to work against us, pointing to knowledge gaps that must be addressed. This paper identifies three challenge themes to improve our understanding of the role of infrastructure and technologies in urbanization processes and position these increasingly complex systems for low-carbon growth. The challenges emphasize how we can reimagine the role of infrastructure in the future and how people, institutions, and ecological systems interface with infrastructure.

  14. Urban CO2 emissions metabolism: The Hestia Project

    NASA Astrophysics Data System (ADS)

    Gurney, K. R.; Razlivanov, I.; Zhou, Y.; Song, Y.

    2011-12-01

    A central expression of urban metabolism is the consumption of energy and the resulting environmental impact, particularly the emission of CO2 and other greenhouse gases. Quantification of energy and emissions has been performed for numerous cities but rarely has this been done in explicit space/time detail. Here, we present the Hestia Project, an effort aimed at building a high resolution (eg. building and road link-specific, hourly) fossil fuel CO2 emissions data product for the urban domain. A complete data product has been built for the city of Indianapolis and work is ongoing for the city of Los Angeles (Figure 1). The effort in Indianapolis is now part of a larger effort aimed at a convergent top-down/bottom-up assessment of greenhouse gas emissions, called INFLUX. Our urban-level quantification relies on a mixture of data and modeling structures. We start with the sector-specific Vulcan Project estimate at the mix of geocoded and county-wide levels. The Hestia aim is to distribute the Vulcan result in space and time. Two components take the majority of effort: buildings and onroad emissions. For the buildings, we utilize an energy building model which we constrain through lidar data, county assessor parcel data and GIS layers. For onroad emissions, we use a combination of traffic data and GIS road layers maintaining vehicle class information. Finally, all pointwise data in the Vulcan Project are transferred to our urban landscape and additional time distribution is performed. A key benefit of the approach taken in this study is the tracking and archiving of fuel and process-level detail (eg. combustion process, other pollutants), allowing for a more thorough understanding and analysis of energy throughputs in the urban environment. Next steps in this research from the metabolism perspective is to consider the carbon footprint of material goods and their lateral transfer in addition to the connection between electricity consumption and production.

  15. Measuring urban sprawl in China by night time light images

    NASA Astrophysics Data System (ADS)

    Liu, Lu; Tang, Lin

    2017-01-01

    In the process of urbanization, a phenomenon called “urban sprawl” usually occurs. This phenomenon may exaggerated the negative effects of urbanization on environment, public and social health, energy efficiency, and maintenance of farmland. Therefore, the understanding of this phenomenon is urgently required for us to achieve sustainable development. This study proposed a group of night time lights (NTL) indicators of urban sprawl, which intend to use the distribution of lightness to quantify urban sprawl. These measures are proved to be efficient in describing urban sprawl. In addition, they are consistent and easy calculating, making comparison analysis easy to be done. These indicators are used to study urban sprawl in China during the year 2000 to 2010, the results show that in the last ten years, metropolitan areas in the northern part of China have undergone a more sprawl-like urban growth compared with other parts of China.

  16. Urban-Climate Adaptation Tool: Optimizing Green Infrastructure

    NASA Astrophysics Data System (ADS)

    Fellows, J. D.; Bhaduri, B. L.

    2016-12-01

    Cities have an opportunity to become more resilient to future climate change and green through investments made in urban infrastructure today. However, most cities lack access to credible high-resolution climate change projection and other environmental information needed to assess and address potential vulnerabilities from future climate variability. Therefore, we present an integrated framework for developing an urban climate adaptation tool (Urban-CAT). The initial focus of Urban-CAT is to optimize the placement of green infrastructure (e.g., green roofs, porous pavements, retention basins, etc.) to be better control stormwater runoff and lower the ambient urban temperature. Urban-CAT consists of four modules. Firstly, it provides climate projections at different spatial resolutions for quantifying urban landscape. Secondly, this projected data is combined with socio-economic and other environmental data using leading and lagging indicators for assessing landscape vulnerability to climate extremes (e.g., urban flooding). Thirdly, a neighborhood scale modeling approach is presented for identifying candidate areas for adaptation strategies (e.g., green infrastructure as an adaptation strategy for urban flooding). Finally, all these capabilities are made available as a web-based tool to support decision-making and communication at the neighborhood and city levels. This presentation will highlight the methods that drive each of the modules, demo some of the capabilities using Knoxville Tennessee as a case study, and discuss the challenges of working with communities to incorporate climate change into their planning. Next steps on Urban-CAT is to additional capabilities to create a comprehensive climate adaptation tool, including energy, transportation, health, and other key urban services.

  17. Smart urban design to reduce transportation impact in city centers

    NASA Astrophysics Data System (ADS)

    Fezzai, Soufiane; Mazouz, Said; Ahriz, Atef

    2018-05-01

    Air pollution is one of the most serious problems facing human being; urban wastes are in first range of energy consumption and emission of greenhouse gasses. Transportation or car traffic is one of the most consumer sectors of fuel, and most pollutant. Reducing energy consumption in transportation and the emission of pollutant gasses becomes an important objective for urban designers; many solutions may be proposed to help solving this problem in future designs, but it depend on other factors in existing urban space especially in city centers characterized with high occupation density. In this paper we investigate traffic rate in the city center of the case study, looking for the causes of the high traffic using gate count method and estimating fuel consumption. We try to propose some design solutions to reduce distances so fuel consumption and emission of pollutant gasses. We use space syntax techniques to evaluate urban configuration and verify the proposed solutions.

  18. [Relationships between settlement morphology transition and residents commuting energy consumption].

    PubMed

    Zhou, Jian; Xiao, Rong-Bo; Sun, Xiang

    2013-07-01

    Settlement morphology transition is triggered by rapid urbanization and urban expansion, but its relationships with residents commuting energy consumption remains ambiguous. It is of significance to understand the controlling mechanisms of sustainable public management policies on the energy consumption and greenhouse gases emission during the process of urban settlement morphology transition. Taking the Xiamen City of East China as a case, and by using the integrated land use and transportation modeling system TRANUS, a scenario analysis was made to study the effects of urban settlement morphology transition on the urban spatial distribution of population, jobs, and land use, and on the residents commuting energy consumption and greenhouse gasses emission under different scenarios. The results showed that under the Business As Usual (BAU) scenario, the energy consumption of the residents at the morning peak travel time was 54.35 tce, and the CO2 emission was 119.12 t. As compared with those under BAU scenario, both the energy consumption and the CO2 emission under the Transition of Settlement Morphology (TSM) scenario increased by 12%, and, with the implementation of the appropriate policies such as land use, transportation, and economy, the energy consumption and CO2 emission under the Transition of Settlement Morphology with Policies (TSMP) scenario reduced by 7%, indicating that urban public management policies could effectively control the growth of residents commuting energy consumption and greenhouse gases emission during the period of urban settlement morphology transition.

  19. Simulation of Urban Rainfall-Runoff in Piedmont Cities: A Case Study in Jinan City, China

    NASA Astrophysics Data System (ADS)

    Chang, X.; Xu, Z.; Zhao, G.; Li, H.

    2017-12-01

    During the past decades, frequent flooding disasters in urban areas resulted in catastrophic impacts such as human life casualties and property damages especially in piedmont cities due to its specific topography. In this study, a piedmont urban flooding model was developed in the Huangtaiqiao catchment based on SWMM. The sub-catchments in this piedmont area were divided into mountainous area, plain area and main urban area according to the variations of underlying surface topography. The impact of different routing mode and channel roughness on simulation results was quantitatively analyzed under different types of scenarios, and genetic algorithm was used to optimize model parameters. Results show that the simulation is poor (with a mean Nash coefficient of 0.61) when using the traditional routing mode in SWMM model, which usually ignores terrain variance in piedmont area. However, when the difference of routing mode, percent routed and channel roughness are considered, the prediction precision of model were significantly increased (with a mean Nash coefficient of 0.86), indicating that the difference of surface topography significantly affects the simulation results in piedmont cities. The relevant results would provide the scientific basis and technical support for rainfall-runoff simulation, flood control and disaster alleviation in piedmont cities.

  20. Multi-criteria decision assessments using Subjective Logic: Methodology and the case of urban water strategies

    NASA Astrophysics Data System (ADS)

    Moglia, Magnus; Sharma, Ashok K.; Maheepala, Shiroma

    2012-07-01

    SummaryPlanning of regional and urban water resources, and in particular with Integrated Urban Water Management approaches, often considers inter-relationships between human uses of water, the health of the natural environment as well as the cost of various management strategies. Decision makers hence typically need to consider a combination of social, environmental and economic goals. The types of strategies employed can include water efficiency measures, water sensitive urban design, stormwater management, or catchment management. Therefore, decision makers need to choose between different scenarios and to evaluate them against a number of criteria. This type of problem has a discipline devoted to it, i.e. Multi-Criteria Decision Analysis, which has often been applied in water management contexts. This paper describes the application of Subjective Logic in a basic Bayesian Network to a Multi-Criteria Decision Analysis problem. By doing this, it outlines a novel methodology that explicitly incorporates uncertainty and information reliability. The application of the methodology to a known case study context allows for exploration. By making uncertainty and reliability of assessments explicit, it allows for assessing risks of various options, and this may help in alleviating cognitive biases and move towards a well formulated risk management policy.

  1. P62 plasmid can alleviate diet-induced obesity and metabolic dysfunctions.

    PubMed

    Halenova, Tatiana; Savchuk, Oleksii; Ostapchenko, Ludmila; Chursov, Andrey; Fridlyand, Nathan; Komissarov, Andrey B; Venanzi, Franco; Kolesnikov, Sergey I; Sufianov, Albert A; Sherman, Michael Y; Gabai, Vladimir L; Shneider, Alexander M

    2017-08-22

    A high-calorie diet (HCD) induces two mutually exacerbating effects contributing to diet-induced obesity (DIO): impaired glucose metabolism and increased food consumption. A link between the metabolic and behavioral manifestations is not well understood yet. We hypothesized that chronic inflammation induced by HCD plays a key role in linking together the two components of diet-induced pathology. Based on this hypothesis, we tested if a plasmid (DNA vaccine) encoding p62 (SQSTM1) would alleviate DIO including its metabolic and/or food consumption abnormalities. Previously we reported that injections of the p62 plasmid reduce chronic inflammation during ovariectomy-induced osteoporosis. Here we found that the p62 plasmid reduced levels of pro-inflammatory cytokines IL-1β, IL-12, and INFγ and increased levels of anti-inflammatory cytokines IL-4, IL-10 and TGFβ in HCD-fed animals. Due to this anti-inflammatory response, we further tested whether the plasmid can alleviate HCD-induced obesity and associated metabolic and feeding impairments. Indeed, p62 plasmid significantly reversed effects of HCD on the body mass index (BMI), levels of glucose, insulin and glycosylated hemoglobin (HbA1c). Furthermore, p62 plasmid partially restored levels of the satiety hormone, serotonin, and tryptophan, simultaneously reducing activity of monoamine oxidase (MAO) in the brain affected by the HCD. Finally, the plasmid partially reversed increased food consumption caused by HCD. Therefore, the administering of p62 plasmid alleviates both metabolic and behavioral components of HCD-induced obesity.

  2. Causes of Potential Urban Heat Island Space Using Heat flux Budget Under Urban Canopy

    NASA Astrophysics Data System (ADS)

    Kwon, Y. J.; Lee, D. K.

    2017-12-01

    Raised concerns about possible contribution from urban heat island to global warming is about 30 percent. Therefore, mitigating urban heat island became one of major issues to solve among urban planners, urban designers, landscape architects, urban affair decision makers and etc. Urban heat island effect on a micro-scale is influenced by factors such as wind, water vapor and solar radiation. Urban heat island effect on a microscale is influenced by factors like wind, water vapor and solar radiation. These microscopic climates are also altered by factors affecting the heat content in space, like SVF and aspect ratio depending on the structural characteristics of various urban canyon components. Indicators of heat mitigation in urban design stage allows us to create a spatial structure considering the heat balance budget. The spatial characteristics affect thermal change by varying heat storage, emitting or absorbing the heat. The research defines characteristics of the space composed of the factors affecting the heat flux change as the potential urban heat island space. Potential urban heat island spaces are that having higher heat flux than periphery space. The study is to know the spatial characteristics that affects the subsequent temperature rise by the heat flux. As a research method, four types of potential heat island space regions were analyzed. I categorized the spatial types by comparing parameters' value of energy balance in day and night: 1) day severe areas, 2) day comfort areas, 3) night severe areas, 4) night comfort areas. I have looked at these four types of potential urban heat island areas from a microscopic perspective and investigated how various forms of heat influences on higher heat flux areas. This research was designed to investigate the heat indicators to be reflected in the design of urban canyon for heat mitigation. As a result, severe areas in daytime have high SVF rate, sensible heat is generated. Day comfort areas have shadow effect

  3. Urban pavement surface temperature. Comparison of numerical and statistical approach

    NASA Astrophysics Data System (ADS)

    Marchetti, Mario; Khalifa, Abderrahmen; Bues, Michel; Bouilloud, Ludovic; Martin, Eric; Chancibaut, Katia

    2015-04-01

    The forecast of pavement surface temperature is very specific in the context of urban winter maintenance. to manage snow plowing and salting of roads. Such forecast mainly relies on numerical models based on a description of the energy balance between the atmosphere, the buildings and the pavement, with a canyon configuration. Nevertheless, there is a specific need in the physical description and the numerical implementation of the traffic in the energy flux balance. This traffic was originally considered as a constant. Many changes were performed in a numerical model to describe as accurately as possible the traffic effects on this urban energy balance, such as tires friction, pavement-air exchange coefficient, and infrared flux neat balance. Some experiments based on infrared thermography and radiometry were then conducted to quantify the effect fo traffic on urban pavement surface. Based on meteorological data, corresponding pavement temperature forecast were calculated and were compared with fiels measurements. Results indicated a good agreement between the forecast from the numerical model based on this energy balance approach. A complementary forecast approach based on principal component analysis (PCA) and partial least-square regression (PLS) was also developed, with data from thermal mapping usng infrared radiometry. The forecast of pavement surface temperature with air temperature was obtained in the specific case of urban configurtation, and considering traffic into measurements used for the statistical analysis. A comparison between results from the numerical model based on energy balance, and PCA/PLS was then conducted, indicating the advantages and limits of each approach.

  4. The implementation of biofiltration systems, rainwater tanks and urban irrigation in a single-layer urban canopy model

    NASA Astrophysics Data System (ADS)

    Demuzere, Matthias; Coutts, Andrew; Goehler, Maren; Broadbent, Ashley; Wouters, Hendrik; van Lipzig, Nicole; Gebert, Luke

    2015-04-01

    Urban vegetation is generally considered as a key tool to modify the urban energy balance through enhanced evapotranspiration (ET). Given that vegetation is most effective when it is healthy, stormwater harvesting and retention strategies (such as water sensitive urban design) could be used to support vegetation and promote ET. This study presents the implementation of a vegetated lined bio-filtration system (BFS) combined with a rainwater tank (RWT) and urban irrigation system in the single-layer urban canopy model Community Land Model-Urban. Runoff from roof and impervious road surface fractions is harvested and used to support an adequate soil moisture level for vegetation in the BFS. In a first stage, modelled soil moisture dynamics are evaluated and found reliable compared to observed soil moisture levels from biofiltration pits in Smith Street, Melbourne (Australia). Secondly, the impact of BFS, RWT and urban irrigation on ET is illustrated for a two-month period in 2012 using varying characteristics for all components. Results indicate that (i) a large amount of stormwater is potentially available for indoor and outdoor water demands, including irrigation of urban vegetation, (ii) ET from the BFS is an order of magnitude larger compared to the contributions from the impervious surfaces, even though the former only covers 10% of the surface fraction and (iii) attention should be paid to the cover fraction and soil texture of the BFS, size of the RWT and the surface fractions contributing to the collection of water in the RWT. Overall, this study reveals that this model development can effectuate future research with state-of-the-art urban climate models to further explore the benefits of vegetated biofiltration systems as a water sensitive urban design tool optimised with an urban irrigation system to maintain healthy vegetation.

  5. Flux Measurements of Trace Gases, Aerosols and Energy from the Urban Core of Mexico City

    NASA Astrophysics Data System (ADS)

    Velasco, E.; Molina, L.; Lamb, B.; Pressley, S.; Grivicke, R.; Westberg, H.; Jobson, T.; Allwine, E.; Coons, T.; Jimenez, J.; Nemitz, E.; Alexander, L. M.; Worsnop, D.; Ramos, R.

    2007-05-01

    As part of the MILAGRO field campaign in March 2006 we deployed a flux system in a busy district of Mexico City surrounded by congested avenues. The flux system consisted of a tall tower instrumented with fast-response sensors coupled with eddy covariance (EC) techniques to measure fluxes of volatile organic compounds (VOCs), CO2, CO, aerosols and energy. The measured fluxes represent direct measurements of emissions that include all major and minor emission sources from a typical residential and commercial district. In a previous study we demonstrated that the EC techniques are valuable tools to evaluate emissions inventories in urban areas, and understand better the atmospheric chemistry and the role that megacities play in global change. We measured fluxes of olefins using a Fast Olefin Sensor (FOS) and the EC technique, fluxes of aromatic and oxygenated VOCs by Proton Transfer Reaction-Mass Spectroscopy (PTR-MS) and the disjunct eddy covariance (DEC) technique, fluxes of CO2 and H2O with an open path Infrared Gas Analyzer (IRGA) and the EC technique, fluxes of CO using a modified gradient method and a commercial CO instrument, and fluxes of aerosols (organics, nitrates and sulfates) using an Aerodyne Aerosol Mass Spectrometer (AMS) and the EC technique. In addition we used a disjunct eddy accumulation (DEA) system to extend the number of VOCs. This system collected whole air samples as function of the direction of the vertical wind component, and the samples were analyzed on site using gas chromatography / flame ionization detection (GC-FID). We also measured fluxes of sensible and latent heat by EC and the radiation components with a net radiometer. Overall, these flux measurements confirm the results of our previous flux measurements in Mexico City in terms of the magnitude, composition, and distribution. We found that the urban surface is a net source of CO2 and VOCs. The diurnal patterns show clear anthropogenic signatures, with important contributions from

  6. Higher Dietary Energy Density is Associated with Stunting but not Overweight and Obesity in a Sample of Urban Malaysian Children.

    PubMed

    Shariff, Zalilah Mohd; Lin, Khor Geok; Sariman, Sarina; Siew, Chin Yit; Yusof, Barakatun Nisak Mohd; Mun, Chan Yoke; Lee, Huang Soo; Mohamad, Maznorila

    2016-01-01

    Although diets with high energy density are associated with increased risk of overweight and obesity, it is not known whether such diets are associated with undernutrition. This study assessed the relationship between dietary energy density (ED) and nutritional status of 745 urban 1- to 10-year-old children. Dietary intakes were obtained using food recall and record for two days. Dietary energy density was based on food and caloric beverages. Higher dietary ED was associated with lower intakes of carbohydrate, sugar, vitamins C and D, and calcium but higher fat, fiber, iron, and folate intakes. While intakes of fruits and milk/dairy products decreased, meat, fish, and legume intakes increased with higher dietary ED. Stunting, but not other growth problems, was associated with higher dietary ED. Future studies should confirm the cause-and-effect relationship between higher dietary ED and stunting.

  7. Thermal Adaptation Methods of Urban Plaza Users in Asia’s Hot-Humid Regions: A Taiwan Case Study

    PubMed Central

    Wu, Chen-Fa; Hsieh, Yen-Fen; Ou, Sheng-Jung

    2015-01-01

    Thermal adaptation studies provide researchers great insight to help understand how people respond to thermal discomfort. This research aims to assess outdoor urban plaza conditions in hot and humid regions of Asia by conducting an evaluation of thermal adaptation. We also propose that questionnaire items are appropriate for determining thermal adaptation strategies adopted by urban plaza users. A literature review was conducted and first hand data collected by field observations and interviews used to collect information on thermal adaptation strategies. Item analysis—Exploratory Factor Analysis (EFA) and Confirmatory Factor Analysis (CFA)—were applied to refine the questionnaire items and determine the reliability of the questionnaire evaluation procedure. The reliability and validity of items and constructing process were also analyzed. Then, researchers facilitated an evaluation procedure for assessing the thermal adaptation strategies of urban plaza users in hot and humid regions of Asia and formulated a questionnaire survey that was distributed in Taichung’s Municipal Plaza in Taiwan. Results showed that most users responded with behavioral adaptation when experiencing thermal discomfort. However, if the thermal discomfort could not be alleviated, they then adopted psychological strategies. In conclusion, the evaluation procedure for assessing thermal adaptation strategies and the questionnaire developed in this study can be applied to future research on thermal adaptation strategies adopted by urban plaza users in hot and humid regions of Asia. PMID:26516881

  8. Variable speed limit strategies analysis with link transmission model on urban expressway

    NASA Astrophysics Data System (ADS)

    Li, Shubin; Cao, Danni

    2018-02-01

    The variable speed limit (VSL) is a kind of active traffic management method. Most of the strategies are used in the expressway traffic flow control in order to ensure traffic safety. However, the urban expressway system is the main artery, carrying most traffic pressure. It has similar traffic characteristics with the expressways between cities. In this paper, the improved link transmission model (LTM) combined with VSL strategies is proposed, based on the urban expressway network. The model can simulate the movement of the vehicles and the shock wave, and well balance the relationship between the amount of calculation and accuracy. Furthermore, the optimal VSL strategy can be proposed based on the simulation method. It can provide management strategies for managers. Finally, a simple example is given to illustrate the model and method. The selected indexes are the average density, the average speed and the average flow on the traffic network in the simulation. The simulation results show that the proposed model and method are feasible. The VSL strategy can effectively alleviate traffic congestion in some cases, and greatly promote the efficiency of the transportation system.

  9. Satellite data based approach for the estimation of anthropogenic heat flux over urban areas

    NASA Astrophysics Data System (ADS)

    Nitis, Theodoros; Tsegas, George; Moussiopoulos, Nicolas; Gounaridis, Dimitrios; Bliziotis, Dimitrios

    2017-09-01

    Anthropogenic effects in urban areas influence the thermal conditions in the environment and cause an increase of the atmospheric temperature. The cities are sources of heat and pollution, affecting the thermal structure of the atmosphere above them which results to the urban heat island effect. In order to analyze the urban heat island mechanism, it is important to estimate the anthropogenic heat flux which has a considerable impact on the urban energy budget. The anthropogenic heat flux is the result of man-made activities (i.e. traffic, industrial processes, heating/cooling) and thermal releases from the human body. Many studies have underlined the importance of the Anthropogenic Heat Flux to the calculation of the urban energy budget and subsequently, the estimation of mesoscale meteorological fields over urban areas. Therefore, spatially disaggregated anthropogenic heat flux data, at local and city scales, are of major importance for mesoscale meteorological models. The main objectives of the present work are to improve the quality of such data used as input for mesoscale meteorological models simulations and to enhance the application potential of GIS and remote sensing in the fields of climatology and meteorology. For this reason, the Urban Energy Budget concept is proposed as the foundation for an accurate determination of the anthropogenic heat discharge as a residual term in the surface energy balance. The methodology is applied to the cities of Athens and Paris using the Landsat ETM+ remote sensing data. The results will help to improve our knowledge on Anthropogenic Heat Flux, while the potential for further improvement of the methodology is also discussed.

  10. Cooling Effect of Evapotranspiration (ET) and ET Measurement by Thermal Remote Sensing in Urban

    NASA Astrophysics Data System (ADS)

    Qiu, G. Y.; Yang, B.; Li, X.; Guo, Q.; Tan, S.

    2015-12-01

    Affected by global warming and rapid urbanization, urban thermal environment and livability are getting worse over the world. Global terrestrial evapotranspiration (ET) can annually consume 1.483 × 1023 joules of solar energy, which is about 300 times of the annual human energy use on the earth (4.935×1020 joules). This huge amount of energy use by ET indicates that there is great potential to cool the urban by regulating ET. However, accurately measurement of urban ET is quiet difficult because of the great spatial heterogeneity in urban. This study focuses on to quantify the cooling effects ET by mobile traverse method and improve a methodology to measure the urban ET by thermal remote sensing. The verifying experiment was carried out in Shenzhen, a sub-tropical mega city in China. Results showed that ET of vegetation could obviously reduce the urban temperature in hot season. Daily transpiration rate of a small-sized Ficus tree (Ficus microcarpa, 5 m in height and 20 cm of trunk diameter, measured by sap-flow method) was 36-55 kg and its cooling effect was equivalent to a 1.6-2.4 kWh air conditioner working for 24 hours. A 10% increase in the vegetated area could decrease urban temperature by 0.60°C at hot night. Moreover, it was found that a region with a vegetated area ratio over 55% had obvious effect on temperature decreasing. In addition, a methodology by using "thermal remote sensing + three-temperature model" was improved to measure the urban ET. Results showed that the urban ET could be reasonably measured by the proposed method. The daily ET of an urban lawn was 0.01-2.86 mm and monthly ET was 21-60 mm. This result agreed well with the verification study (Bowen ratio method, r=0.953). These results are very useful for urban planning, urban lower impact development, and improving of urban thermal environment.

  11. Finger millet bran supplementation alleviates obesity-induced oxidative stress, inflammation and gut microbial derangements in high-fat diet-fed mice.

    PubMed

    Murtaza, Nida; Baboota, Ritesh K; Jagtap, Sneha; Singh, Dhirendra P; Khare, Pragyanshu; Sarma, Siddhartha M; Podili, Koteswaraiah; Alagesan, Subramanian; Chandra, T S; Bhutani, K K; Boparai, Ravneet K; Bishnoi, Mahendra; Kondepudi, Kanthi Kiran

    2014-11-14

    Several epidemiological studies have shown that the consumption of finger millet (FM) alleviates diabetes-related complications. In the present study, the effect of finger millet whole grain (FM-WG) and bran (FM-BR) supplementation was evaluated in high-fat diet-fed LACA mice for 12 weeks. Mice were divided into four groups: control group fed a normal diet (10 % fat as energy); a group fed a high-fat diet; a group fed the same high-fat diet supplemented with FM-BR; a group fed the same high-fat diet supplemented with FM-WG. The inclusion of FM-BR at 10 % (w/w) in a high-fat diet had more beneficial effects than that of FM-WG. FM-BR supplementation prevented body weight gain, improved lipid profile and anti-inflammatory status, alleviated oxidative stress, regulated the expression levels of several obesity-related genes, increased the abundance of beneficial gut bacteria (Lactobacillus, Bifidobacteria and Roseburia) and suppressed the abundance of Enterobacter in caecal contents (P≤ 0·05). In conclusion, FM-BR supplementation could be an effective strategy for preventing high-fat diet-induced changes and developing FM-BR-enriched functional foods.

  12. MagneMotion urban maglev : final report

    DOT National Transportation Integrated Search

    2004-11-01

    The MagneMotion Urban Maglev System, called M3, is designed as an alternative to all conventional guided transportation systems. Advantages include major reductions in travel time, operating cost, capital cost, noise, and energy consumption. Small ve...

  13. An impact assessment of sustainable technologies for the Chinese urban residential sector at provincial level

    NASA Astrophysics Data System (ADS)

    Xing, Rui; Hanaoka, Tatsuya; Kanamori, Yuko; Dai, Hancheng; Masui, Toshihiko

    2015-06-01

    Recently, energy use in the urban residential sector of China has drastically increased due to higher incomes and urbanization. The fossil fuels dominant energy supply has since worsened the air quality, especially in urban areas. In this study we estimate the future energy service demands in Chinese urban residential areas, and then use an AIM/Enduse model to evaluate the emission reduction potential of CO2, SO2, NOx and PM. Considering the climate diversity and its impact on household energy service demands, our analysis is down-scaled to the provincial-level. The results show that in most of the regions, penetration of efficient technologies will bring CO2 emission reductions of over 20% compared to the baseline by the year 2030. Deployment of energy efficient technologies also co-benefits GHG emission reduction. However, efficient technology selection appears to differ across provinces due to climatic variation and economic disparity. For instance, geothermal heating technology is effective for the cold Northern areas while biomass technology contributes to emission reduction the most in the warm Southern areas.

  14. Distance Threshold for the Effect of Urban Agriculture on Elevated Self-reported Malaria Prevalence in Accra, Ghana

    PubMed Central

    Stoler, Justin; Weeks, John R.; Getis, Arthur; Hill, Allan G.

    2009-01-01

    Irrigated urban agriculture (UA), which has helped alleviate poverty and increase food security in rapidly urbanizing sub-Saharan Africa, may inadvertently support malaria vectors. Previous studies have not identified a variable distance effect on malaria prevalence from UA. This study examines the relationships between self-reported malaria information for 3,164 women surveyed in Accra, Ghana, in 2003, and both household characteristics and proximity to sites of UA. Malaria self-reports are associated with age, education, overall health, socioeconomic status, and solid waste disposal method. The odds of self-reported malaria are significantly higher for women living within 1 km of UA compared with all women living near an irrigation source, the association disappearing beyond this critical distance. Malaria prevalence is often elevated in communities within 1 km of UA despite more favorable socio-economic characteristics than communities beyond 1 km. Neighborhoods within 1 km of UA should be reconsidered as a priority for malaria-related care. PMID:19346373

  15. Distance threshold for the effect of urban agriculture on elevated self-reported malaria prevalence in Accra, Ghana.

    PubMed

    Stoler, Justin; Weeks, John R; Getis, Arthur; Hill, Allan G

    2009-04-01

    Irrigated urban agriculture (UA), which has helped alleviate poverty and increase food security in rapidly urbanizing sub-Saharan Africa, may inadvertently support malaria vectors. Previous studies have not identified a variable distance effect on malaria prevalence from UA. This study examines the relationships between self-reported malaria information for 3,164 women surveyed in Accra, Ghana, in 2003, and both household characteristics and proximity to sites of UA. Malaria self-reports are associated with age, education, overall health, socioeconomic status, and solid waste disposal method. The odds of self-reported malaria are significantly higher for women living within 1 km of UA compared with all women living near an irrigation source, the association disappearing beyond this critical distance. Malaria prevalence is often elevated in communities within 1 km of UA despite more favorable socio-economic characteristics than communities beyond 1 km. Neighborhoods within 1 km of UA should be reconsidered as a priority for malaria-related care.

  16. Resource Assessment | Energy Analysis | NREL

    Science.gov Websites

    water bodies, urban areas, cropland, forests, very steep terrain, and protected areas. Once resource study concluded that in Afghanistan: Biogas generation from animal manure and waste-to-energy from urban

  17. Temporal dynamics of urbanization-driven environmental changes explored by metal contamination in surface sediments in a restoring urban wetland park.

    PubMed

    Ma, Jun; Liu, Yi; Yu, Guangbin; Li, Hongbo; Yu, Shen; Jiang, Yueping; Li, Guilin; Lin, Jinchang

    2016-05-15

    Spatial patterns of metal distribution along urban-rural or multi-city gradients indicate that the urbanization process directly lead to metal enrichment and contamination in the environments. However, it has not yet looked at homogenization dynamics of an urban-rural gradient pattern over time with urbanization process in an area. This study monitored anthropogenic metals (Cr, Cu, Pb, and Zn) in surface sediments from channels of a newly-opened National Wetland Park to elucidate the urbanization-driven dissolution of urban-rural gradient pattern between 2008 and 2011. Sixty-eight surface sediment samples were taken from these channels in July of both 2008 and 2011. Results showed that a spatial distribution pattern of total metal contents along the gradient of urbanization influence, evident in 2008, was homogenized in 2011 with the area development. The lead stable isotope ratio analysis identified anthropogenic Pb origins from vehicular exhausts, cements, and coal flying ashes, which elevated metal contents in the inner channels via atmospheric deposition. Specific hazard quotients of the metal contamination in surface sediment were also assessed and enhanced over time in the study wetland park. These findings suggest that emissions from traffic, construction, and energy generation contribute metal loadings in the urbanizing environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. A decision support tool for sustainable planning of urban water systems: presenting the Dynamic Urban Water Simulation Model.

    PubMed

    Willuweit, Lars; O'Sullivan, John J

    2013-12-15

    Population growth, urbanisation and climate change represent significant pressures on urban water resources, requiring water managers to consider a wider array of management options that account for economic, social and environmental factors. The Dynamic Urban Water Simulation Model (DUWSiM) developed in this study links urban water balance concepts with the land use dynamics model MOLAND and the climate model LARS-WG, providing a platform for long term planning of urban water supply and water demand by analysing the effects of urbanisation scenarios and climatic changes on the urban water cycle. Based on potential urbanisation scenarios and their effects on a city's water cycle, DUWSiM provides the functionality for assessing the feasibility of centralised and decentralised water supply and water demand management options based on forecasted water demand, stormwater and wastewater generation, whole life cost and energy and potential for water recycling. DUWSiM has been tested using data from Dublin, the capital of Ireland, and it has been shown that the model is able to satisfactorily predict water demand and stormwater runoff. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Setting Goals for Urban Scale Climate Governance

    NASA Astrophysics Data System (ADS)

    Rosenthal, J. K.; Brunner, E.

    2007-12-01

    The impacts of climate change on temperate urban areas may include the increase in frequency and intensity of damaging extreme weather events, such as heat waves, hurricanes, heavy rainfall or drought, and coastal flooding and erosion, and potential adverse impacts on infrastructure, energy systems, and public health. Warmer average summertime temperatures are also associated with environmental and public health liabilities, such as decreased air quality and increased peak electrical demand. Simultaneously, a strong global trend towards urbanization of poverty exists, with increased challenges for local governments to protect and sustain the well-being of growing cities and populations currently stressed by poverty, health and economic inequities. In the context of these trends, research at the city scale has sought to understand the social and economic impacts of climate change and variability and to evaluate strategies in the built environment that might serve as adaptive and mitigative responses to climate change. We review the goals and outcomes of several municipal climate protection programs, generally categorized as approaches based on technological innovation (e.g., new materials); changes in behavior and public education (e.g., neighborhood watch programs and cooling centers); improvements in urban design (e.g., zoning for mixed land-use; the use of water, vegetation and plazas to reduce the urban heat island effect); and efforts to incentivize the use of non-fossil-fuel based energy sources. Urban initiatives in European and American cities are assessed within the context of the global collective efforts enacted by the Kyoto Protocol and United Nations Framework Convention on Climate Change. Our concern is to understand the active networked role of urban managers in climate policies and programs in relation to supranational objectives and non-state actors.

  20. Natural hydrocarbons, urbanization, and urban ozone

    NASA Technical Reports Server (NTRS)

    Cardelino, C. A.; Chameides, W. L.

    1990-01-01

    The combined effects of emission control and urbanization, with its concomitant intensification of the urban heat island, on urban ozone concentrations are studied. The effect of temperature on ozone is considered, and attention is given to the temperature effect on ozone photochemistry. Model calculations suggest that ozone concentration enhancements are caused by the effect of temperature on the atmospheric chemistry of peroxyacetyl nitrate, as well as the temperature dependence of natural and anthropogenic hydrocarbon emissions. It is pointed out that, because of the sensitivity of urban ozone to local climatic conditions and the ability of trees to moderate summertime temperatures, the inadvertent removal of trees from urbanization can have an adverse effect on urban ozone concentration, while a temperature increase in the urban heat island caused by urbanization can essentially cancel out the ozone-reducing benefits obtained from a 50-percent reduction in anthropogenic hydrocarbon emissions.

  1. Urban Modification of Convection and Rainfall in Complex Terrain

    NASA Astrophysics Data System (ADS)

    Freitag, B. M.; Nair, U. S.; Niyogi, D.

    2018-03-01

    Despite a globally growing proportion of cities located in regions of complex terrain, interactions between urbanization and complex terrain and their meteorological impacts are not well understood. We utilize numerical model simulations and satellite data products to investigate such impacts over San Miguel de Tucumán, Argentina. Numerical modeling experiments show urbanization results in 20-30% less precipitation downwind of the city and an eastward shift in precipitation upwind. Our experiments show that changes in surface energy, boundary layer dynamics, and thermodynamics induced by urbanization interact synergistically with the persistent forcing of atmospheric flow by complex terrain. With urbanization increasing in mountainous regions, land-atmosphere feedbacks can exaggerate meteorological forcings leading to weather impacts that require important considerations for sustainable development of urban regions within complex terrain.

  2. Static stall alleviation using a rail plasma actuator

    NASA Astrophysics Data System (ADS)

    Choi, Young-Joon; Gray, Miles; Sirohi, Jayant; Raja, Laxminarayan L.

    2018-07-01

    An experimental study was conducted to investigate the ability of a rail plasma actuator (RailPAc) to alleviate static stall on an airfoil. The RailPAc device consists of parallel rails flush mounted on the upper surface of a VR-12 airfoil, with a high-current (∼1.3 kA) arc bridging the gap between the rails. A Lorentz force (∼0.3 N lasting  ∼1 ms) generated on the arc propels it along the airfoil chord and transfers momentum to the surrounding flow. Experiments were conducted in a low speed wind tunnel at two different Reynolds numbers ( and ) and various static angles of attack (up to  ∼30°). Particle image velocimetry (PIV) was used to measure the flow over the passive and actuated airfoil, while the airfoil lift was measured using a force balance. The experiments showed that the RailPAc promotes flow reattachment and can suppress static stall over a wide range of angles of attack. Operation of a single RailPAc resulted in  ∼40 improvement in post-stall lift and  ∼4° increase in stall angle compared to a passive airfoil with an unpowered RailPAc. The results provide insight into the actuation mechanism and demonstrate, for the first time, the ability of the RailPAc to alleviate static stall on an airfoil.

  3. Causes and Alleviation of Occupational Stress in Child Care Work

    ERIC Educational Resources Information Center

    Dillenburger, Karola

    2004-01-01

    Occupational stress in not a new phenomenon in the working population. However, in the helping professions it has only recently attracted attention. The survey reported here was carried out in order to assess the extent of occupational stress, identify its causes, and suggest ways in which occupational stress can be alleviated. Field social…

  4. Pricing the urban cooling benefits of solar panel deployment in Sydney, Australia

    PubMed Central

    Ma, S.; Goldstein, M.; Pitman, A. J.; Haghdadi, N.; MacGill, I.

    2017-01-01

    Cities import energy, which in combination with their typically high solar absorption and low moisture availability generates the urban heat island effect (UHI). The UHI, combined with human-induced warming, makes our densely populated cities particularly vulnerable to climate change. We examine the utility of solar photovoltaic (PV) system deployment on urban rooftops to reduce the UHI, and we price one potential value of this impact. The installation of PV systems over Sydney, Australia reduces summer maximum temperatures by up to 1 °C because the need to import energy is offset by local generation. This offset has a direct environmental benefit, cooling local maximum temperatures, but also a direct economic value in the energy generated. The indirect benefit associated with the temperature changes is between net AUD$230,000 and $3,380,000 depending on the intensity of PV systems deployment. Therefore, even very large PV installations will not offset global warming, but could generate enough energy to negate the need to import energy, and thereby reduce air temperatures. The energy produced, and the benefits of cooling beyond local PV installation sites, would reduce the vulnerability of urban populations and infrastructure to temperature extremes. PMID:28262843

  5. Pricing the urban cooling benefits of solar panel deployment in Sydney, Australia.

    PubMed

    Ma, S; Goldstein, M; Pitman, A J; Haghdadi, N; MacGill, I

    2017-03-06

    Cities import energy, which in combination with their typically high solar absorption and low moisture availability generates the urban heat island effect (UHI). The UHI, combined with human-induced warming, makes our densely populated cities particularly vulnerable to climate change. We examine the utility of solar photovoltaic (PV) system deployment on urban rooftops to reduce the UHI, and we price one potential value of this impact. The installation of PV systems over Sydney, Australia reduces summer maximum temperatures by up to 1 °C because the need to import energy is offset by local generation. This offset has a direct environmental benefit, cooling local maximum temperatures, but also a direct economic value in the energy generated. The indirect benefit associated with the temperature changes is between net AUD$230,000 and $3,380,000 depending on the intensity of PV systems deployment. Therefore, even very large PV installations will not offset global warming, but could generate enough energy to negate the need to import energy, and thereby reduce air temperatures. The energy produced, and the benefits of cooling beyond local PV installation sites, would reduce the vulnerability of urban populations and infrastructure to temperature extremes.

  6. The changing face of urban air pollution

    NASA Astrophysics Data System (ADS)

    Lewis, Alastair C.

    2018-02-01

    The atmospheric chemistry that leads to photochemical smog and climate-active aerosols requires the presence of volatile organic compounds (VOCs) (1, 2). The VOCs in urban air typically derive from the prevailing energy and transport technologies as well as the use of petrochemical-derived products. On page 760 of this issue, McDonald et al. (3) report that a notable change in emissions may be underway in U.S. cities, with effects on secondary pollutants such as organic aerosols. Shifting from an urban atmosphere dominated by transport-related VOCs to one dominated by VOCs from coatings, adhesives, and consumer products would alter predictions of urban air quality and challenge the existing policy framework for emissions control.

  7. Green Space and Deaths Attributable to the Urban Heat Island Effect in Ho Chi Minh City.

    PubMed

    Dang, Tran Ngoc; Van, Doan Quang; Kusaka, Hiroyuki; Seposo, Xerxes T; Honda, Yasushi

    2018-04-01

    To quantify heat-related deaths in Ho Chi Minh City, Vietnam, caused by the urban heat island (UHI) and explore factors that may alleviate the impact of UHIs. We estimated district-specific meteorological conditions from 2010 to 2013 using the dynamic downscaling model and calculated the attributable fraction and number of mortalities resulting from the total, extreme, and mild heat in each district. The difference in attributable fraction of total heat between the central and outer districts was classified as the attributable fraction resulting from the UHI. The association among attributable fraction, attributable number with a green space, population density, and budget revenue of each district was then explored. The temperature-mortality relationship between the central and outer areas was almost identical. The attributable fraction resulting from the UHI was 0.42%, which was contributed by the difference in temperature distribution between the 2 areas. Every 1-square-kilometer increase in green space per 1000 people can prevent 7.4 deaths caused by heat. Green space can alleviate the impacts of UHIs, although future studies conducting a heath economic evaluation of tree planting are warranted.

  8. Green Space and Deaths Attributable to the Urban Heat Island Effect in Ho Chi Minh City

    PubMed Central

    Van, Doan Quang; Kusaka, Hiroyuki; Seposo, Xerxes T.; Honda, Yasushi

    2018-01-01

    Objectives. To quantify heat-related deaths in Ho Chi Minh City, Vietnam, caused by the urban heat island (UHI) and explore factors that may alleviate the impact of UHIs. Methods. We estimated district-specific meteorological conditions from 2010 to 2013 using the dynamic downscaling model and calculated the attributable fraction and number of mortalities resulting from the total, extreme, and mild heat in each district. The difference in attributable fraction of total heat between the central and outer districts was classified as the attributable fraction resulting from the UHI. The association among attributable fraction, attributable number with a green space, population density, and budget revenue of each district was then explored. Results. The temperature–mortality relationship between the central and outer areas was almost identical. The attributable fraction resulting from the UHI was 0.42%, which was contributed by the difference in temperature distribution between the 2 areas. Every 1-square-kilometer increase in green space per 1000 people can prevent 7.4 deaths caused by heat. Conclusions. Green space can alleviate the impacts of UHIs, although future studies conducting a heath economic evaluation of tree planting are warranted. PMID:29072938

  9. [Effect of non-pharmacological methods for alleviation of pain in newborns].

    PubMed

    Chromá, Jana; Sikorová, Lucie

    2012-01-01

    The aim of the paper is to analyze currently most used non-pharmacological methods for pain alleviation in newborns for the best evidence-based practice. Source of the required data for the period 2000-2011 were electronic licensed and freely accessible databases. Evaluation found evidence (30 studies) was carried out according to the table-level evidence (Fineout-Overholt, Johnston 2005). The selection was included in the evidence level I, II, III. Nutritive sucking is currently considered the most effective method for alleviating pain in newborns. Analysis of studies shows that non-pharmacological methods used to control pain in neonates are much more effective when used in combination with other non-pharmacological methods, such as music therapy, swaddling, facilitated tucking, multiple-stimulation, kangaroo care and non-nutritive suction. Non-pharmacological procedures are effective and lead to pain relief especially in procedural performance as heel lancet and venipuncture for blood sampling, etc.

  10. Modeling Impact of Urbanization in US Cities Using Simple Biosphere Model SiB2

    NASA Technical Reports Server (NTRS)

    Zhang, Ping; Bounoua, Lahouari; Thome, Kurtis; Wolfe, Robert

    2016-01-01

    We combine Landsat- and the Moderate Resolution Imaging Spectroradiometer (MODIS)-based products, as well as climate drivers from Phase 2 of the North American Land Data Assimilation System (NLDAS-2) in a Simple Biosphere land surface model (SiB2) to assess the impact of urbanization in continental USA (excluding Alaska and Hawaii). More than 300 cities and their surrounding suburban and rural areas are defined in this study to characterize the impact of urbanization on surface climate including surface energy, carbon budget, and water balance. These analyses reveal an uneven impact of urbanization across the continent that should inform upon policy options for improving urban growth including heat mitigation and energy use, carbon sequestration and flood prevention.

  11. Carbon-dependent alleviation of ammonia toxicity for algae cultivation and associated mechanisms exploration.

    PubMed

    Lu, Qian; Chen, Paul; Addy, Min; Zhang, Renchuan; Deng, Xiangyuan; Ma, Yiwei; Cheng, Yanling; Hussain, Fida; Chen, Chi; Liu, Yuhuan; Ruan, Roger

    2018-02-01

    Ammonia toxicity in wastewater is one of the factors that limit the application of algae technology in wastewater treatment. This work explored the correlation between carbon sources and ammonia assimilation and applied a glucose-assisted nitrogen starvation method to alleviate ammonia toxicity. In this study, ammonia toxicity to Chlorella sp. was observed when NH 3 -N concentration reached 28.03mM in artificial wastewater. Addition of alpha-ketoglutarate in wastewater promoted ammonia assimilation, but low utilization efficiency and high cost of alpha-ketoglutarate limits its application in wastewater treatment. Comparison of three common carbon sources, glucose, citric acid, and sodium bicarbonate, indicates that in terms of ammonia assimilation, glucose is the best carbon source. Experimental results suggest that organic carbon with good ability of generating energy and hydride donor may be critical to ammonia assimilation. Nitrogen starvation treatment assisted by glucose increased ammonia removal efficiencies and algal viabilities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Opportunities for Saving Energy and Improving Air Quality in Urban Heat Islands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbari, Hashem

    2007-07-01

    World energy use is the main contributor to atmospheric CO2. In 2002, about 7.0 giga metric tons of carbon (GtC) were emitted internationally by combustion of gas, liquid, and solid fuels (CDIAC, 2006), 2 to 5 times the amount contributed by deforestation (Brown et al., 1988). The share of atmospheric carbon emissions for the United States from fossil fuel combustion was 1.6 GtC. Increasing use of fossil fuel and deforestation together have raised atmospheric CO{sub 2} concentration some 25% over the last 150 years. According to global climate models and preliminary measurements, these changes in the composition of the atmospheremore » have already begun raising the Earth's average temperature. If current energy trends continue, these changes could drastically alter the Earth's temperature, with unknown but potentially catastrophic physical and political consequences. During the last three decades, increased energy awareness has led to conservation efforts and leveling of energy consumption in the industrialized countries. An important byproduct of this reduced energy use is the lowering of CO{sub 2} emissions. Of all electricity generated in the United States, about one-sixth is used to air-condition buildings. The air-conditioning use is about 400 tera-watt-hours (TWh), equivalent to about 80 million metric tons of carbon (MtC) emissions, and translating to about $40 billion (B) per year. Of this $40 B/year, about half is used in cities that have pronounced 'heat islands'. The contribution of the urban heat island to the air-conditioning demand has increased over the last 40 years and it is currently at about 10%. Metropolitan areas in the United States (e.g., Los Angeles, Phoenix, Houston, Atlanta, and New York City) have typically pronounced heat islands that warrant special attention by anyone concerned with broad-scale energy efficiency (HIG, 2006). The ambient air is primarily heated through three processes: direct absorption of solar radiation, convection

  13. Could urban greening mitigate suburban thermal inequity?: the role of residents’ dispositions and household practices

    NASA Astrophysics Data System (ADS)

    Byrne, Jason; Ambrey, Christopher; Portanger, Chloe; Lo, Alex; Matthews, Tony; Baker, Douglas; Davison, Aidan

    2016-09-01

    Over the past decade research on urban thermal inequity has grown, with a focus on denser built environments. In this letter we examine thermal inequity associated with climate change impacts and changes to urban form in a comparatively socio-economically disadvantaged Australian suburb. Local urban densification policies designed to counteract sprawl have reduced block sizes, increased height limits, and diminished urban tree canopy cover (UTC). Little attention has been given to the combined effects of lower UTC and increased heat on disadvantaged residents. Such impacts include rising energy expenditure to maintain thermal comfort (i.e. cooling dwellings). We used a survey of residents (n = 230) to determine their perceptions of climate change impacts; household energy costs; household thermal comfort practices; and dispositions towards using green infrastructure to combat heat. Results suggest that while comparatively disadvantaged residents spend more on energy as a proportion of their income, they appear to have reduced capacity to adapt to climate change at the household scale. We found most residents favoured more urban greening and supported tree planting in local parks and streets. Findings have implications for policy responses aimed at achieving urban climate justice.

  14. Effects of Depression Alleviation on ART Adherence and HIV Clinic Attendance in Uganda, and the Mediating Roles of Self-Efficacy and Motivation

    PubMed Central

    Wagner, Glenn J.; Ghosh-Dastidar, Bonnie; Robinson, Eric; Ngo, Victoria K.; Glick, Peter; Mukasa, Barbara; Musisi, Seggane; Akena, Dickens

    2016-01-01

    With depression known to impede HIV care adherence and retention, we examined whether depression alleviation improves these disease management behaviors. A sample of 1028 depressed HIV clients in Uganda enrolled in a cluster randomized controlled trial of two depression care models, and were surveyed over 12 months. Serial regression analyses examined whether depression alleviation was associated with self-reported antiretroviral therapy (ART) adherence and clinic attendance at month 12, and whether these relationships were mediated by self-efficacy and motivation. Among those with major depression, depression alleviation was associated with better ART adherence and clinic attendance at month 12; these relationships were fully mediated by self-efficacy at month 12, while adherence motivation partially mediated the relationship between depression alleviation and ART adherence. When both mediators were entered simultaneously, only self-efficacy was a significant predictor and still fully mediated the relationship between depression alleviation and adherence. These findings suggest that depression alleviation benefits both ART adherence and clinic attendance, in large part through improved confidence and motivation to engage in these disease management behaviors. PMID:27438460

  15. Effects of Depression Alleviation on ART Adherence and HIV Clinic Attendance in Uganda, and the Mediating Roles of Self-Efficacy and Motivation.

    PubMed

    Wagner, Glenn J; Ghosh-Dastidar, Bonnie; Robinson, Eric; Ngo, Victoria K; Glick, Peter; Mukasa, Barbara; Musisi, Seggane; Akena, Dickens

    2017-06-01

    With depression known to impede HIV care adherence and retention, we examined whether depression alleviation improves these disease management behaviors. A sample of 1028 depressed HIV clients in Uganda enrolled in a cluster randomized controlled trial of two depression care models, and were surveyed over 12 months. Serial regression analyses examined whether depression alleviation was associated with self-reported antiretroviral therapy (ART) adherence and clinic attendance at month 12, and whether these relationships were mediated by self-efficacy and motivation. Among those with major depression, depression alleviation was associated with better ART adherence and clinic attendance at month 12; these relationships were fully mediated by self-efficacy at month 12, while adherence motivation partially mediated the relationship between depression alleviation and ART adherence. When both mediators were entered simultaneously, only self-efficacy was a significant predictor and still fully mediated the relationship between depression alleviation and adherence. These findings suggest that depression alleviation benefits both ART adherence and clinic attendance, in large part through improved confidence and motivation to engage in these disease management behaviors.

  16. Effects of urban tree canopy loss on land surface temperature magnitude and timing

    Treesearch

    Arthur Elmes; John Rogan; Christopher Williams; Samuel Ratick; David Nowak; Deborah Martin

    2017-01-01

    Urban Tree Canopy (UTC) plays an important role in moderating the Surface Urban Heat Island (SUHI) effect, which poses threats to human health due to substantially increased temperatures relative to rural areas. UTC coverage is associated with reduced urban temperatures, and therefore benefits both human health and reducing energy use in cities. Measurement of this...

  17. L∞-Optimal feedforward gust load alleviation design for a large blended wing body airliner

    NASA Astrophysics Data System (ADS)

    Wildschek, A.; Haniš, T.; Stroscher, F.

    2013-12-01

    The potential advantages of Blended Wing Body (BWB) aircraft in terms of fuel efficiency are opposed by technical challenges such as the alleviation of gust loads. Due to the low wing, loading gusts, generally, have a more severe impact on BWB aircraft than on conventional aircraft. This paper presents the design and optimization of a Gust Load Alleviation System (GLAS) for a large BWB airliner. Numerical simulations are performed with an aeroelastic model of the aircraft including GLAS in order to compute time series of modal displacements for deriving equivalent static load cases which are used for the resizing of the aircraft structure.

  18. Integrated Modelling and Performance Analysis of Green Roof Technologies in Urban Environments

    NASA Astrophysics Data System (ADS)

    Liu, Xi; Mijic, Ana; Maksimovic, Cedo

    2014-05-01

    As a result of the changing global climate and increase in urbanisation, the behaviour of the urban environment has been significantly altered, causing an increase in both the frequency of extreme weather events, such as flooding and drought, and also the associated costs. Moreover, uncontrolled or inadequately planned urbanisation can exacerbate the damage. The Blue-Green Dream (BGD) project therefore develops a series of components for urban areas that link urban vegetated areas (green infrastructure) with existing urban water (blue) systems, which will enhance the synergy of urban blue and green systems and provide effective, multifunctional BGD solutions to support urban adaptation to future climatic changes. Coupled with new urban water management technologies and engineering, multifunctional benefits can be gained. Some of the technologies associated with BGD solutions include green roofs, swales that might deal with runoff more effectively and urban river restoration that can produce benefits similar to those produced from sustainable urban drainage systems (SUDS). For effective implementation of these technologies, however, appropriate tools and methodologies for designing and modelling BGD solutions are required to be embedded within urban drainage models. Although several software packages are available for modelling urban drainage, the way in which green roofs and other BGD solutions are integrated into these models is not yet fully developed and documented. This study develops a physically based mass and energy balance model to monitor, test and quantitatively evaluate green roof technology for integrated BGD solutions. The assessment of environmental benefits will be limited to three aspects: (1) reduction of the total runoff volume, (2) delay in the initiation of runoff, and (3) reduction of building energy consumption, rather than water quality, visual, social or economic impacts. This physically based model represents water and heat dynamics in a

  19. Assessing the Impact of Urbanization Using Remote Sensing On A Global Scale, Past Present And Future Directions

    NASA Astrophysics Data System (ADS)

    Luvall, J. C.

    2016-12-01

    It is estimated that by the year 2025, 80% of the world's population will live in cities. This conversion of the natural landscape vegetation into man-made urban structures such as roads and buildings drastically alter the regional surface energy budgets, hydrology, precipitation patterns, and meteorology. The urban heat island (UHI) results from the energy that is absorbed by man-made materials during the day and is released at night resulting in the heating of the air within the urban area. The magnitude of the air temperature differences between the urban and surrounding countryside can be 2-8 o C. The UHI was one of the earliest recognized and measured phenomena of urbanization which was reported as early as 1833 for London (Howard, 1833) and 1862 for Paris. Research studies from many cities have documented that these effects range from decreases in air quality, increased energy consumption, and alteration of regional climate to direct effects on human health. To understand why the UHI phenomena exists, it is useful to define the surface in terms of the surface energy budget. Surface temperature and albedo are major components of the surface energy budget. Knowledge of it is important in any attempt to describe the radiative and mass fluxes that occur at the surface. Use of energy terms in modeling surface energy budgets allows the direct comparison of various land surfaces encountered in an urban landscape, from vegetated (forest and herbaceous) to non-vegetated (bare soil, roads, and buildings). These terms are also easily measured using remote sensing from aircraft or satellite platforms allowing one to examine the spatial variability of the urban surface. Planned NASA space borne missions include an ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) a five channel, 37x 50m resolution thermal instrument on space station and a Hyperspectral Infrared Imager (HyspIRI), a 30m resolution hyperspectral and 60m resolution multispectral

  20. Interdisciplinary Pathways for Urban Metabolism Research

    NASA Astrophysics Data System (ADS)

    Newell, J. P.

    2011-12-01

    With its rapid rise as a metaphor to express coupled natural-human systems in cities, the concept of urban metabolism is evolving into a series of relatively distinct research frameworks amongst various disciplines, with varying definitions, theories, models, and emphases. In industrial ecology, housed primarily within the disciplinary domain of engineering, urban metabolism research has focused on quantifying material and energy flows into, within, and out of cities, using methodologies such as material flow analysis and life cycle assessment. In the field of urban ecology, which is strongly influenced by ecology and urban planning, research focus has been placed on understanding and modeling the complex patterns and processes of human-ecological systems within urban areas. Finally, in political ecology, closely aligned with human geography and anthropology, scholars theorize about the interwoven knots of social and natural processes, material flows, and spatial structures that form the urban metabolism. This paper offers three potential interdisciplinary urban metabolism research tracks that might integrate elements of these three "ecologies," thereby bridging engineering and the social and physical sciences. First, it presents the idea of infrastructure ecology, which explores the complex, emergent interdependencies between gray (water and wastewater, transportation, etc) and green (e.g. parks, greenways) infrastructure systems, as nested within a broader socio-economic context. For cities to be sustainable and resilient over time-space, the theory follows, these is a need to understand and redesign these infrastructure linkages. Second, there is the concept of an urban-scale carbon metabolism model which integrates consumption-based material flow analysis (including goods, water, and materials), with the carbon sink and source dynamics of the built environment (e.g. buildings, etc) and urban ecosystems. Finally, there is the political ecology of the material

  1. Urban forests for sustainable urban development

    NASA Astrophysics Data System (ADS)

    Sundara, Denny M.; Hartono, Djoko M.; Suganda, Emirhadi; Haeruman, S. Herman J.

    2017-11-01

    This paper explores the development of the urban forest in East Jakarta. By 2030 Jakarta area has a target of 30% green area covering 19,845 hectares, including urban forest covering an area of 4,631 hectares. In 2015, the city forest is only 646 hectares, while the city requires 3,985 hectares of new land Urban forest growth from year to year showed a marked decrease with increasing land area awoke to commercial functions, environmental conditions encourage the development of the city to become unsustainable. This research aims to support sustainable urban development and ecological balance through the revitalization of green areas and urban development. Analytical methods for urban forest area is calculated based on the amount of CO2 that comes from people, vehicles, and industrial. Urban spatial analysis based on satellite image data, using a GIS program is an analysis tool to determine the distribution and growth patterns of green areas. This paper uses a dynamic system model to simulate the conditions of the region against intervention to be performed on potential areas for development of urban forests. The result is a model urban forest area is integrated with a social and economic function to encourage the development of sustainable cities.

  2. 13 CFR 310.2 - Pressing need; alleviation of unemployment or underemployment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... unemployment or underemployment. 310.2 Section 310.2 Business Credit and Assistance ECONOMIC DEVELOPMENT ADMINISTRATION, DEPARTMENT OF COMMERCE SPECIAL IMPACT AREAS § 310.2 Pressing need; alleviation of unemployment or... Special Need. (b) For purposes of this part, excessive unemployment exists if the twenty-four (24) month...

  3. 13 CFR 310.2 - Pressing need; alleviation of unemployment or underemployment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... unemployment or underemployment. 310.2 Section 310.2 Business Credit and Assistance ECONOMIC DEVELOPMENT ADMINISTRATION, DEPARTMENT OF COMMERCE SPECIAL IMPACT AREAS § 310.2 Pressing need; alleviation of unemployment or... Special Need. (b) For purposes of this part, excessive unemployment exists if the twenty-four (24) month...

  4. 13 CFR 310.2 - Pressing need; alleviation of unemployment or underemployment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... unemployment or underemployment. 310.2 Section 310.2 Business Credit and Assistance ECONOMIC DEVELOPMENT ADMINISTRATION, DEPARTMENT OF COMMERCE SPECIAL IMPACT AREAS § 310.2 Pressing need; alleviation of unemployment or... Special Need. (b) For purposes of this part, excessive unemployment exists if the twenty-four (24) month...

  5. 13 CFR 310.2 - Pressing need; alleviation of unemployment or underemployment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... unemployment or underemployment. 310.2 Section 310.2 Business Credit and Assistance ECONOMIC DEVELOPMENT ADMINISTRATION, DEPARTMENT OF COMMERCE SPECIAL IMPACT AREAS § 310.2 Pressing need; alleviation of unemployment or... Special Need. (b) For purposes of this part, excessive unemployment exists if the twenty-four (24) month...

  6. 13 CFR 310.2 - Pressing need; alleviation of unemployment or underemployment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... unemployment or underemployment. 310.2 Section 310.2 Business Credit and Assistance ECONOMIC DEVELOPMENT ADMINISTRATION, DEPARTMENT OF COMMERCE SPECIAL IMPACT AREAS § 310.2 Pressing need; alleviation of unemployment or... Special Need. (b) For purposes of this part, excessive unemployment exists if the twenty-four (24) month...

  7. Urbanization and agriculture increase exports and differentially alter elemental stoichiometry of dissolved organic matter (DOM) from tropical catchments.

    PubMed

    Gücker, Björn; Silva, Ricky C S; Graeber, Daniel; Monteiro, José A F; Boëchat, Iola G

    2016-04-15

    Many tropical biomes are threatened by rapid land-use change, but its catchment-wide biogeochemical effects are poorly understood. The few previous studies on DOM in tropical catchments suggest that deforestation and subsequent land use increase stream water dissolved organic carbon (DOC) concentrations, but consistent effects on DOM elemental stoichiometry have not yet been reported. Here, we studied stream water DOC concentrations, catchment DOC exports, and DOM elemental stoichiometry in 20 tropical catchments at the Cerrado-Atlantic rainforest transition, dominated by natural vegetation, pasture, intensive agriculture, and urban land cover. Streams draining pasture could be distinguished from those draining natural catchments by their lower DOC concentrations, with lower DOM C:N and C:P ratios. Catchments with intensive agriculture had higher DOC exports and lower DOM C:P ratios than natural catchments. Finally, with the highest DOC concentrations and exports, as well as the highest DOM C:P and N:P ratios, but the lowest C:N ratios among all land-use types, urbanized catchments had the strongest effects on catchment DOM. Thus, urbanization may have alleviated N limitation of heterotrophic DOM decomposition, but increased P limitation. Land use-especially urbanization-also affected the seasonality of catchment biogeochemistry. While natural catchments exhibited high DOC exports and concentrations, with high DOM C:P ratios in the rainy season only, urbanized catchments had high values in these variables throughout the year. Our results suggest that urbanization and pastoral land use exerted the strongest impacts on DOM biogeochemistry in the investigated tropical catchments and should thus be important targets for management and mitigation efforts. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Mineralizing urban net-zero water treatment: Field experience for energy-positive water management.

    PubMed

    Wu, Tingting; Englehardt, James D

    2016-12-01

    An urban net-zero water treatment system, designed for energy-positive water management, 100% recycle of comingled black/grey water to drinking water standards, and mineralization of hormones and other organics, without production of concentrate, was constructed and operated for two years, serving an occupied four-bedroom, four-bath university residence hall apartment. The system comprised septic tank, denitrifying membrane bioreactor (MBR), iron-mediated aeration (IMA) reactor, vacuum ultrafilter, and peroxone or UV/H 2 O 2 advanced oxidation, with 14% rainwater make-up and concomitant discharge of 14% of treated water (ultimately for reuse in irrigation). Chemical oxygen demand was reduced to 12.9 ± 3.7 mg/L by MBR and further decreased to below the detection limit (<0.7 mg/L) by IMA and advanced oxidation treatment. The process produced a mineral water meeting 115 of 115 Florida drinking water standards that, after 10 months of recycle operation with ∼14% rainwater make-up, had a total dissolved solids of ∼500 mg/L, pH 7.8 ± 0.4, turbidity 0.12 ± 0.06 NTU, and NO 3 -N concentration 3.0 ± 1.0 mg/L. None of 97 hormones, personal care products, and pharmaceuticals analyzed were detected in the product water. For a typical single-home system with full occupancy, sludge pumping is projected on a 12-24 month cycle. Operational aspects, including disinfection requirements, pH evolution through the process, mineral control, advanced oxidation by-products, and applicability of point-of-use filters, are discussed. A distributed, peroxone-based NZW management system is projected to save more energy than is consumed in treatment, due largely to retention of wastewater thermal energy. Recommendations regarding design and operation are offered. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. The symptom experiences of Puerto Rican children undergoing cancer treatments and alleviation practices as reported by their mothers.

    PubMed

    Gonzalez-Mercado, Velda J; Williams, Phoebe D; Williams, Arthur R; Pedro, Elsa; Colon, Gloria

    2017-02-01

    Although symptoms during cancer treatments are prevalent and are important clinical outcomes of childhood cancer, the symptom experiences of Puerto Rican children along with the symptom alleviation/care practices that parents provide during cancer treatments have received limited attention. To examine the occurrence/severity of symptoms on the Therapy-Related Symptom Checklist-Children (TRSC-C), reported by mothers of Puerto Rican children undergoing cancer treatments and identifying mothers' symptom alleviation/management strategies. Descriptive study conducted between January and May 2012. Mothers of 65 Puerto Rican children/adolescents undergoing cancer treatments responded to the Spanish versions of the TRSC-C, Symptom Alleviation: Self-Care Methods, and a Demographic and Health form. The children/adolescents' mean age was 9.2 (1-17) years; 62% were boys; 56 had chemotherapy; 9 had chemoradiotherapy. Children diagnoses were 35.4% leukemia, 24.6% solid tumors, 24.6% nervous system tumors, and 15.4% other. On the TRSC-C, the symptoms experienced by 70% or more of the children were: irritability (77%), nausea (75%), and hair loss (72%). On the Symptom Alleviation: Self-Care Methods, the most commonly reported symptom alleviation category was "taking prescribed medicines." Puerto Rican mothers reported the use of alleviation practices to treat their children experiencing symptoms during pediatric cancer treatments. Patients and caregivers need to be educated about treatment-induced side effects, and the life-threatening consequences of underreporting and undermanagement. Symptoms should always be addressed at the time of initiation of primary or adjuvant cancer therapy because pretreatment symptoms may persist or get worse across the trajectory of treatment. A continuous assessment and management of symptoms during the childhood cancer trajectory can optimize clinical care and improve quality of life of patients and families. © 2016 John Wiley & Sons Australia

  10. Shining India?: Assessing and addressing the risks from an unsustainable trajectory of climate, water, food, energy and income inequity

    NASA Astrophysics Data System (ADS)

    Lall, U.

    2012-12-01

    Climate and demographics are primary drivers of regional resource sustainability. In today's global economy, increasing trade has provided a mechanism to alleviate regional stresses. However, increasing regional income promotes consumption, aggravating regional and global resource pressures. South Asia, has the highest population density at a sub-continent scale. Given its monsoonal climate, and high intensity of agriculture it faces perhaps the most severe population weighted water stress in the world. Rapidly declining groundwater tables and the associated high energy use for pumping for irrigated agriculture translate into unsustainable energy imports and expenditure that contributed to the two largest blackouts in global history in summer 2012. Access to water has been progressively declining for both rural and urban populations for the last 3 decades. The increasing energy imports and poor grid reliability translate into limits to the growth of manufacturing and exports of goods and services. The growing income inequity within the population and across national borders, and the impacts of floods and droughts on access to water, food and energy collectively suggest a very high risk for social unrest and a conflict flashpoint. I present a scenario analysis that establishes this case for the emergence of internal and external strife in the region as an outcome of the current resource and natural disaster management policies in the region. Prospects for strategic policy changes for water and energy management and the design of a food procurement and distribution system that could lead to a better future are discussed.

  11. Inhibition of nuclear factor-κB signal by pyrrolidine dithiocarbamate alleviates lipopolysaccharide-induced acute lung injury

    PubMed Central

    Yang, Hongfu; Sun, Rongqing; Ma, Ning; Liu, Qilong; Sun, Xiaoge; Zi, Panpan; Wang, Junsheng; Chao, Ke; Yu, Lei

    2017-01-01

    This study mainly studied the effect of inhibition of nuclear factor-κB (NF-κB) signal by pyrrolidine dithiocarbamate (PDTC) on lipopolysaccharide (LPS)-induced inflammatory response, oxidative stress, and mitochondrial dysfunction in a murine acute lung injury model. The results showed that LPS exposure activated NF-κB and its upstream proteins and caused lung inflammation, oxidative stress, and mitochondrial dysfunction in mice. While inhibition of NF-κB by PDTC adminstration alleviated LPS-induced generation of lymphocytes, IL-1β, and TNF-α. Malondialdehyde, a common oxidative product, was markedly reduced after PDTC treatment in LPS-challenged mice. Furthermore, PDTC alleviated LPS-induced mitochondrial dysfunction via improving ATP synthesis and uncoupling protein 2 expression. In conclusion, inhibition of NF-κB by PDTC alleviated LPS-induced acute lung injury via maintaining inflammatory status, oxidative balance, and mitochondrial function in mice. PMID:28521300

  12. Biofuel: an alternative to fossil fuel for alleviating world energy and economic crises.

    PubMed

    Bhattarai, Keshav; Stalick, Wayne M; McKay, Scott; Geme, Gija; Bhattarai, Nimisha

    2011-01-01

    The time has come when it is desirable to look for alternative energy resources to confront the global energy crisis. Consideration of the increasing environmental problems and the possible crisis of fossil fuel availability at record high prices dictate that some changes will need to occur sooner rather than later. The recent oil spill in the Gulf of Mexico is just another example of the environmental threats that fossil fuels pose. This paper is an attempt to explore various bio-resources such as corn, barley, oat, rice, wheat, sorghum, sugar, safflower, and coniferous and non-coniferous species for the production of biofuels (ethanol and biodiesel). In order to assess the potential production of biofuel, in this paper, countries are organized into three groups based on: (a) geographic areas; (b) economic development; and(c) lending types, as classified by the World Bank. First, the total fossil fuel energy consumption and supply and possible carbon emission from burning fossil fuel is projected for these three groups of countries. Second, the possibility of production of biofuel from grains and vegetative product is projected. Third, a comparison of fossil fuel and biofuel is done to examine energy sustainability issues.

  13. Cannabinoid receptor 2 activation restricts fibrosis and alleviates hydrocephalus after intraventricular hemorrhage.

    PubMed

    Tan, Qiang; Chen, Qianwei; Feng, Zhou; Shi, Xia; Tang, Jun; Tao, Yihao; Jiang, Bing; Tan, Liang; Feng, Hua; Zhu, Gang; Yang, Yunfeng; Chen, Zhi

    2017-01-01

    Fibrosis in ventricular system has a role in hydrocephalus following intraventricular hemorrhage (IVH). The cannabinoid receptor 2 (CB2) has been reported to participate in alleviating the fibrosis process of many diseases. However, its role in fibrosis after IVH was unclear so far, and we hypothesized that CB2 activation has potential to attenuate hydrocephalus after IVH via restricting fibrosis. So the present study was designed to investigate this hypothesis in a modified rat IVH model. Autologous non-anticoagulative blood injection model was induced to mimic ventricular extension of hemorrhage in adult Sprague-Dawley rats. Rats were randomized to receive JWH-133(CB2 agonist), SR144528 (CB2 antagonist) or saline. The lateral ventricular volumes, fibrosis in the subarachnoid space and ventricular wall, transforming growth factor-β 1(TGF-β1) in cerebrospinal fluid and brain tissue, and animal neurological scores were measured to evaluate the effects of CB2 in hydrocephalus following IVH. CB2 agonist JWH-133 significantly decreased the lateral ventricular volumes, improved the associated neurological deficits, down-regulated TGF-β1 expression, and alleviated fibrosis in the subarachnoid space and ventricular wall after IVH. All of these effects were reversed by SR144528. In conclusion, CB2 may have anti-fibrogenic effects after IVH. CB2 agonist suppressed fibrosis of ventricular system and alleviated hydrocephalus following IVH, which is partly mediated by inhibiting TGF-β1. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Resource Assessment for Afghanistan and Alleviation of Terrorism

    NASA Astrophysics Data System (ADS)

    Shroder, J. F.

    2002-05-01

    Mineral and water resources in Afghanistan may be the best means by which redevelopment of the country can be used to alleviate future terrorism. Remote-sensing analysis of snow, ice, resources, and topography in Afghanistan, and development of digital elevation models with ASTER imagery and previously classified, large scale topographic maps from the Department of Defense enable better assessment and forecasting resources in the country. Adequate resource assessment and planning is viewed as critical to alleviation of one cause of the problems associated with the fertilization of terrorism in Afghanistan. Long-term diminution of meltwater resources in Afghanistan is exemplified by the disastrous and famine-inducing droughts of the present time and three decades prior, as well as by the early Landsat assessment of glacier resources sponsored by USGS and now brought up-to-date with current imagery. Extensive cold-war projects undertaken by both the USSR and USA generated plentiful essential mineral, hydrocarbon, hydrogeological, and hydrological data, including an extensive stream gauging and vital irrigation network now adversly affected or destroyed entirely by decades of war. Analysis, measurement, prediction, rehabilitation, and reconstruction of critical resource projects are regarded as most critical elements in the war on terrorism in this portion of the world. The GLIMS (Global Land Ice Measurements from Space) Project, initially sponsored by USGS, has established our group as the Regional Center for Afghanistan and Pakistan, in which the above concepts serve as guiding research precepts.

  15. A global analysis of the urban heat island effect based on multisensor satellite data

    NASA Astrophysics Data System (ADS)

    Xiao, J.; Frolking, S. E.; Milliman, T. E.; Schneider, A.; Friedl, M. A.

    2017-12-01

    Human population is rapidly urbanizing. In much of the world, cities are prone to hotter weather than surrounding rural areas - so-called `urban heat islands' - and this effect can have mortal consequences during heat waves. During the daytime, when the surface energy balance is driven by incoming solar radiation, the magnitude of urban warming is strongly influenced by surface albedo and the capacity to evaporate water (i.e., there is a strong relationship between vegetated land fraction and the ratio of sensible to latent heat loss or Bowen ratio). At nighttime, urban cooling is often inhibited by the thermal inertia of the built environment and anthropogenic heat exhaust from building and transportation energy use. We evaluated a suite of global remote sensing data sets representing a range of urban characteristics against MODIS-derived land-surface temperature differences between urban and surrounding rural areas. We included two new urban datasets in this analysis - MODIS-derived change in global urban extent and global urban microwave backscatter - along with several MODIS standard products and DMSP/OLS nighttime lights time series data. The global analysis spanned a range of urban characteristics that likely influence the magnitude of daytime and/or nighttime urban heat islands - urban size, population density, building density, state of development, impervious fraction, eco-climatic setting. Specifically, we developed new satellite datasets and synthesizing these with existing satellite data into a global database of urban land surface parameters, used two MODIS land surface temperature products to generate time series of daytime and nighttime urban heat island effects for 30 large cities across the globe, and empirically analyzed these data to determine specifically which remote sensing-based characterizations of global urban areas have explanatory power with regard to both daytime and nighttime urban heat islands.

  16. Biomass yield from an urban landscape

    USDA-ARS?s Scientific Manuscript database

    Utilizing biomass from urban landscapes could significantly contribute to the nation’s renewable energy needs. In 2007, an experiment was begun to evaluate the biomass production from a bermudagrass, Cynodon dactylon var. dactylon (L.) Pers., lawn in Woodward, Oklahoma and to estimate the potential...

  17. F-16 Ventral Fin Buffet Alleviation Using Piezoelectric Actuators

    DTIC Science & Technology

    2009-09-01

    collocated design to alleviate the vibrations of the first two modes of the ventral fin. A switching amplifier was de - signed and custom built to drive the...6M per year [22]. 1 Figure 1.1: LANTIRN Pod and Ventral Fin Locations [cour- tesy USAF] Buffet induced vibrations affect more than just vertical tail...appropriate sensors and actuators for the ventral fin. Several de - viations were necessary, including individual actuator size and orientation and the

  18. Energy shortage: a benign crisis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, E.L.

    The energy crisis is real and the days of cheap and plentiful energy are gone, perhaps forever. Resources and technology are available to meet the energy austerity. The good evolving from the energy crisis means conservation in many considerations of city planning such as master planning for transportation, water supply, sewers, and utilities; urban construction; and recreation facilities near subdivisions. Urban and suburban areas are evolving from low density residential communities clustering around a well-defined central city to a collection of regional subcenters around the central-city area, each consisting of malls, high- rise office buildings, industrial areas, and apartment complexesmore » linked by belt highways. (MCW)« less

  19. Rural-urban migration and child survival in urban Bangladesh: are the urban migrants and poor disadvantaged?

    PubMed

    Islam, M Mazharul; Azad, Kazi Md Abul Kalam

    2008-01-01

    This paper analyses the levels and trends of childhood mortality in urban Bangladesh, and examines whether children's survival chances are poorer among the urban migrants and urban poor. It also examines the determinants of child survival in urban Bangladesh. Data come from the 1999-2000 Bangladesh Demographic and Health Survey. The results indicate that, although the indices of infant and child mortality are consistently better in urban areas, the urban-rural differentials in childhood mortality have diminished in recent years. The study identifies two distinct child morality regimes in urban Bangladesh: one for urban natives and one for rural-urban migrants. Under-five mortality is higher among children born to urban migrants compared with children born to life-long urban natives (102 and 62 per 1000 live births, respectively). The migrant-native mortality differentials more-or-less correspond with the differences in socioeconomic status. Like childhood mortality rates, rural-urban migrants seem to be moderately disadvantaged by economic status compared with their urban native counterparts. Within the urban areas, the child survival status is even worse among the migrant poor than among the average urban poor, especially recent migrants. This poor-non-poor differential in childhood mortality is higher in urban areas than in rural areas. The study findings indicate that rapid growth of the urban population in recent years due to rural-to-urban migration, coupled with higher risk of mortality among migrant's children, may be considered as one of the major explanations for slower decline in under-five mortality in urban Bangladesh, thus diminishing urban-rural differentials in childhood mortality in Bangladesh. The study demonstrates that housing conditions and access to safe drinking water and hygienic toilet facilities are the most critical determinants of child survival in urban areas, even after controlling for migration status. The findings of the study may

  20. Modeling the Urban Boundary and Canopy Layers

    EPA Science Inventory

    Today, we are confronted with increasingly more sophisticated application requirements for urban modeling. These include those that address emergency response to acute exposures from toxic releases, health exposure assessments from adverse air quality, energy usage, and character...

  1. Land use and urban morphology parameters for Vienna required for initialisation of the urban canopy model TEB derived via the concept of "local climate zones"

    NASA Astrophysics Data System (ADS)

    Trimmel, Heidelinde; Weihs, Philipp; Oswald, Sandro M.; Masson, Valéry; Schoetter, Robert

    2017-04-01

    al. (2015) which is based on machine learning algorithms depending on satellite imagery and expert knowledge. The data on urban land use and morphology are used for initialisation of the town energy balance scheme TEB, but are also useful for other urban canopy models or studies related to urban planning or modelling of the urban system. The sensitivity of canyon air and surface temperatures, air specific humidity and horizontal wind simulated by the town energy balance scheme TEB (Masson, 2000) regarding the dominant parameters within the range determined for the present urban structure of Vienna and the expected changes (MA 18 (2011, 2014a+b), PGO (2011), Amtmann M and Altmann-Mavaddat N (2014)) was calculated for different land cover zones. While the buildings heights have a standard deviation of 3.2m which is 15% of the maximum average building height of one block the built and unsealed surface fraction vary stronger with around 30% standard deviation. The pre 1919 structure of Vienna is rather uniform and easier to describe, the later building structure is more diverse regarding morphological as well as physical building parameters. Therefore largest uncertainties are possible at the urban rims where also the highest development is expected. The analysis will be focused on these areas. Amtmann M and Altmann-Mavaddat N (2014) Eine Typology österreichischer Wohngebäude, Österreichische Energieargentur - Austrian Energy Agency, TABULA/EPISCOPE Bechtel B, Alexander P, Böhner J, et al (2015) Mapping Local Climate Zones for a Worldwide Database of the Form and Function of Cities. ISPRS Int J Geo-Inf 4:199-219. doi: 10.3390/ijgi4010199 Berger T, Formayer H, Smutny R, Neururer C, Passawa R (2012) Auswirkungen des Klimawandelsauf den thermischen Komfort in Bürogebäuden, Berichte aus Energie- und Umweltforschung Cordeau E / Les îlots morphologiques urbains (IMU) / IAU îdF / 2016 Magistratsabteilung 18 - Stadtentwicklung und Stadtplanung, Wien - MA 18 (2011

  2. Damage in the dorsal striatum alleviates addictive behavior.

    PubMed

    Muskens, J B; Schellekens, A F A; de Leeuw, F E; Tendolkar, I; Hepark, S

    2012-01-01

    The ventral striatum has been assigned a major role in addictive behavior. In addition, clinical lesion studies have described involvement of the insula and globus pallidus. To the best of our knowledge, this is the first report of alleviation of alcohol and nicotine addiction after a cerebrovascular incident in the dorsal striatum. The patient was still abstinent from alcohol and nicotine at follow-up. This observation suggests that the dorsal striatum may play a critical role in addiction to alcohol and nicotine. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Evapotranspiration versus oxygen intrusion: which is the main force in alleviating bioclogging of vertical-flow constructed wetlands during a resting operation?

    PubMed

    Hua, Guofen; Chen, Qiuwen; Kong, Jun; Li, Man

    2017-08-01

    Clogging is the most significant challenge limiting the application of constructed wetlands. Application of a forced resting period is a practical way to relieve clogging, particularly bioclogging. To reveal the alleviation mechanisms behind such a resting operation, evapotranspiration and oxygen flux were studied during a resting period in a laboratory vertical-flow constructed wetland model through physical simulation and numerical model analysis. In addition, the optimum theoretical resting duration was determined based on the time required for oxygen to completely fill the pores, i.e., formation of a sufficiently thick and completely dry layer. The results indicated that (1) evapotranspiration was not the key factor, but was a driving force in the alleviation of bioclogging; (2) the rate of oxygen diffusion into the pores was sufficient to oxidize and disperse the flocculant biofilm, which was essential to alleviate bioclogging. This study provides important insights into understanding how clogging/bioclogging can be alleviated in vertical-flow constructed wetlands. Graphical abstract Evapotranspiration versus oxygen intrusion in alleviating bioclogging in vertical flow constructed wetlands.

  4. Modeling Global Urbanization Supported by Nighttime Light Remote Sensing

    NASA Astrophysics Data System (ADS)

    Zhou, Y.

    2015-12-01

    Urbanization, a major driver of global change, profoundly impacts our physical and social world, for example, altering carbon cycling and climate. Understanding these consequences for better scientific insights and effective decision-making unarguably requires accurate information on urban extent and its spatial distributions. In this study, we developed a cluster-based method to estimate the optimal thresholds and map urban extents from the nighttime light remote sensing data, extended this method to the global domain by developing a computational method (parameterization) to estimate the key parameters in the cluster-based method, and built a consistent 20-year global urban map series to evaluate the time-reactive nature of global urbanization (e.g. 2000 in Fig. 1). Supported by urban maps derived from nightlights remote sensing data and socio-economic drivers, we developed an integrated modeling framework to project future urban expansion by integrating a top-down macro-scale statistical model with a bottom-up urban growth model. With the models calibrated and validated using historical data, we explored urban growth at the grid level (1-km) over the next two decades under a number of socio-economic scenarios. The derived spatiotemporal information of historical and potential future urbanization will be of great value with practical implications for developing adaptation and risk management measures for urban infrastructure, transportation, energy, and water systems when considered together with other factors such as climate variability and change, and high impact weather events.

  5. Urban outdoor water use and response to drought assessed through mobile energy balance and vegetation greenness measurements

    USDA-ARS?s Scientific Manuscript database

    Urban vegetation provides many highly valued ecosystem services but also requires extensive urban water resources. Increasingly, cities are experiencing water limitations and managing outdoor urban water use is an important concern. Quantifying the water lost via evapotranspiration (ET) is critical ...

  6. A global map of urban extent from nightlights

    DOE PAGES

    Zhou, Yuyu; Smith, Steven J.; Zhao, Kaiguang; ...

    2015-05-13

    Urbanization, one of the major human induced land-cover and land-use changes, has a profound impact on the Earth system including biodiversity, the cycling of water and carbon and exchange of energy and water between Earth’s surface and atmosphere, all affecting weather and climate. Accurate information on urban areas and their spatial distribution at the regional and global scales is important for scientific understanding of their contribution to the changing Earth system, and for practical management and policy decisions. We developed a method to map the urban extent from the Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) nighttime stable-light data atmore » the global level and derived a new global map of 1-km urban extent for year 2000. Based on this map, we found that globally, urban land area is about 0.5% of total land area but ranges widely at regional level from 0.1% in Oceania to 2.3% in Europe. At the country level, urban land area varies from lower than 0.01% to higher than 10%, but is lower than 1% for most (70%) countries. Urbanization follows land mass distribution, as anticipated, with the highest concentration found between 30°N to 45°N latitude and the largest longitudinal peak around 80°W. Based on a sensitivity analysis and comparison with other global urban area products, we found that our global product of urban area provides a reliable estimate of global urban areas and offer the potential of capturing more accurately their spatial and temporal dynamics.« less

  7. Boston Community Energy Study - Zonal Analysis for Urban Microgrids

    DTIC Science & Technology

    2016-04-05

    macrogrid. Fully autonomous micro- grids are ordinarily rural systems that have generation assets such as wind turbines (WTs) [14] or photovoltaic (PV...or wind turbines ; they also could include direct current devices such as fuel cells or photovoltaic arrays [6,17]. Traditional storage systems include...economic and human impact that severe weather can have on urban areas such as New York City. While flooding and wind damaged or destroyed some of the

  8. Assessment of sustainable urban transport development based on entropy and unascertained measure

    PubMed Central

    Li, Yancang; Yang, Jing; Li, Yijie

    2017-01-01

    To find a more effective method for the assessment of sustainable urban transport development, the comprehensive assessment model of sustainable urban transport development was established based on the unascertained measure. On the basis of considering the factors influencing urban transport development, the comprehensive assessment indexes were selected, including urban economical development, transport demand, environment quality and energy consumption, and the assessment system of sustainable urban transport development was proposed. In view of different influencing factors of urban transport development, the index weight was calculated through the entropy weight coefficient method. Qualitative and quantitative analyses were conducted according to the actual condition. Then, the grade was obtained by using the credible degree recognition criterion from which the urban transport development level can be determined. Finally, a comprehensive assessment method for urban transport development was introduced. The application practice showed that the method can be used reasonably and effectively for the comprehensive assessment of urban transport development. PMID:29084281

  9. Assessment of sustainable urban transport development based on entropy and unascertained measure.

    PubMed

    Li, Yancang; Yang, Jing; Shi, Huawang; Li, Yijie

    2017-01-01

    To find a more effective method for the assessment of sustainable urban transport development, the comprehensive assessment model of sustainable urban transport development was established based on the unascertained measure. On the basis of considering the factors influencing urban transport development, the comprehensive assessment indexes were selected, including urban economical development, transport demand, environment quality and energy consumption, and the assessment system of sustainable urban transport development was proposed. In view of different influencing factors of urban transport development, the index weight was calculated through the entropy weight coefficient method. Qualitative and quantitative analyses were conducted according to the actual condition. Then, the grade was obtained by using the credible degree recognition criterion from which the urban transport development level can be determined. Finally, a comprehensive assessment method for urban transport development was introduced. The application practice showed that the method can be used reasonably and effectively for the comprehensive assessment of urban transport development.

  10. Population-production-pollution nexus based air pollution management model for alleviating the atmospheric crisis in Beijing, China.

    PubMed

    Zeng, X T; Tong, Y F; Cui, L; Kong, X M; Sheng, Y N; Chen, L; Li, Y P

    2017-07-15

    In recent years, increscent emissions in the city of Beijing due to expanded population, accelerated industrialization and inter-regional pollutant transportation have led to hazardous atmospheric pollution issues. Although a number of anthropogenic control measures have been put into use, frequent/severe haze events have still challenged regional governments. In this study, a hybrid population-production-pollution nexus model (PPP) is proposed for air pollution management and air quality planning (AMP) with the aim to coordinate human activities and environmental protection. A fuzzy-stochastic mixed quadratic programming method (FSQ) is developed and introduced into a PPP for tackling atmospheric pollution issues with uncertainties. Based on the contribution of an index of population-production-pollution, a hybrid PPP-based AMP model that considers employment structure, industrial layout pattern, production mode, pollutant purification efficiency and a pollution mitigation scheme have been applied in Beijing. Results of the adjustment of employment structure, pollution mitigation scheme, and green gross domestic product under various environmental regulation scenarios are obtained and analyzed. This study can facilitate the identification of optimized policies for alleviating population-production-emission conflict in the study region, as well as ameliorating the hazardous air pollution crisis at an urban level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Workaholism and daily energy management at work: associations with self-reported health and emotional exhaustion

    PubMed Central

    SCHULZ, Anika Susanne; BLOOM, Jessica; KINNUNEN, Ulla

    2017-01-01

    Adequate energy management during the working day is essential for employees to remain healthy and vital. Research has investigated which energy management strategies are frequently used and which are most beneficial, but the results are inconclusive and research is still scarce. We aim to extend the current knowledge by considering individual differences in terms of working compulsively (as key feature of workaholism) with regard to energy management. Data were collected with an online survey in 1,253 employees from 12 different organizations. Employees’ levels of compulsiveness were expected to relate to 1) employees’ choice of which energy management strategies to use, and 2) the benefits (improved health and alleviated emotional exhaustion) of the chosen strategy. The results partly supported the hypotheses in that compulsiveness was associated with more frequent use of work-related energy management strategies. However, compulsiveness was not related to less frequent use of micro-breaks. Energy management (particularly work-related and physical micro-break strategies) improved health and alleviated emotional exhaustion regardless of compulsiveness levels, whereas private micro-break strategies were only beneficial for employees high in compulsiveness. PMID:28123137

  12. Spatial Linkage and Urban Expansion: AN Urban Agglomeration View

    NASA Astrophysics Data System (ADS)

    Jiao, L. M.; Tang, X.; Liu, X. P.

    2017-09-01

    Urban expansion displays different characteristics in each period. From the perspective of the urban agglomeration, studying the spatial and temporal characteristics of urban expansion plays an important role in understanding the complex relationship between urban expansion and network structure of urban agglomeration. We analyze urban expansion in the Yangtze River Delta Urban Agglomeration (YRD) through accessibility to and spatial interaction intensity from core cities as well as accessibility of road network. Results show that: (1) Correlation between urban expansion intensity and spatial indicators such as location and space syntax variables is remarkable and positive, while it decreases after rapid expansion. (2) Urban expansion velocity displays a positive correlation with spatial indicators mentioned above in the first (1980-1990) and second (1990-2000) period. However, it exhibits a negative relationship in the third period (2000-2010), i.e., cities located in the periphery of urban agglomeration developing more quickly. Consequently, the hypothesis of convergence of urban expansion in rapid expansion stage is put forward. (3) Results of Zipf's law and Gibrat's law show urban expansion in YRD displays a convergent trend in rapid expansion stage, small and medium-sized cities growing faster. This study shows that spatial linkage plays an important but evolving role in urban expansion within the urban agglomeration. In addition, it serves as a reference to the planning of Yangtze River Delta Urban Agglomeration and regulation of urban expansion of other urban agglomerations.

  13. Large vein injection alleviates rocuronium-induced pain in gynaecologic patients.

    PubMed

    Zhang, Xing-Mei; Wang, Qun; Wang, Wei-Si; Wang, Meng

    2017-08-01

    Rocuronium-induced pain upon injection is very common in the clinical setting. Using the antecubital rather than the hand vein can avoid pain due to propofol injection. We aimed to investigate whether the use of the antecubital vein for injection would alleviate rocuronium-induced pain in a similar fashion. Sixty patients (ASA classes I and II) scheduled for gynaecologic laparoscopy were randomised into two groups. Rocuronium (0.6mg/kg) was injected either into the vein on the dorsum of the hand (group D) or a large vein in the antecubital fossa (group A). Pain was assessed and recorded using a four-point scale. Compared with group D, the incidence of pain and severe pain was lower in group A patients. The rate of no pain was also higher in group A patients. The incidence and severity of rocuronium-induced injection pain were significantly alleviated via use of a large vein for rocuronium injection. Copyright © 2016 Société française d'anesthésie et de réanimation (Sfar). Published by Elsevier Masson SAS. All rights reserved.

  14. Progesterone Alleviates Neural Behavioral Deficits and Demyelination with Reduced Degeneration of Oligodendroglial Cells in Cuprizone-Induced Mice

    PubMed Central

    Su, Le; Liu, Yun-Lai; Cai, Qi-Yan; Zhan, Xiao-Li; Xu, Yan; Zhao, Shi-Fu; Yao, Zhong-Xiang

    2013-01-01

    Demyelination occurs widely in neurodegenerative diseases. Progesterone has neuroprotective effects, is known to reduce the clinical scores and the inflammatory response. Progesterone also promotes remyelination in experimental autoimmune encephalomyelitis and cuprizone-induced demyelinating brain. However, it still remains unclear whether progesterone can alleviate neural behavioral deficits and demyelination with degeneration of oligodendroglial cells in cuprizone-induced mice. In this study, mice were fed with 0.2% cuprizone to induce demyelination, and treated with progesterone to test its potential protective effect on neural behavioral deficits, demyelination and degeneration of oligodendroglial cells. Our results showed noticeable alleviation of neural behavioral deficits following progesterone treatment as assessed by changes in average body weight, and activity during the open field and Rota-rod tests when compared with the vehicle treated cuprizone group. Progesterone treatment alleviated demyelination as shown by Luxol fast blue staining, MBP immunohistochemical staining, and electron microscopy. There was an obvious decrease in TUNEL and Caspase-3-positive apoptotic cells, and an increase in the number of oligodendroglial cells staining positive for PDGFRα, Olig2, Sox10 and CC-1 antibody in the brains of cuprizone-induced mice after progesterone administration. These results indicate that progesterone can alleviate neural behavioral deficits and demyelination against oligodendroglial cell degeneration in cuprizone-induced mice. PMID:23359803

  15. Urban landscapes and the western drought

    NASA Astrophysics Data System (ADS)

    Pataki, D. E.

    2015-12-01

    Cities in the western U.S. are heavily irrigated and have increasingly been the focus of water conservation measures. Even cities that previously relied only on voluntary reductions in outdoor water use have been employing stricter mandates to limit irrigation. These cities are in a period of transition and the outcomes are far from certain. There are many tradeoffs in the environmental and social consequences of different urban water management strategies. Here we review recent work studying these tradeoffs in cities of southern California and Utah. We have measured the water use of different types of landscapes ranging from turfgrass to urban trees to xeriscapes. Unshaded turfgrass shows evapotranspiration (ET) rates close to potential ET; however, shaded turfgrass uses substantially less water. On the other hand, plants used in xeriscapes may have surprisingly high transpiration rates if they are heavily watered. In addition, unshaded xeriscapes may substantially alter surface energy balance and have unintended consequences for urban climate. Through whole tree sap flux measurements and scaling of ET estimates, we have found that urban trees generally use less water than turfgrass, and provide additional cooling benefits through interception of radiation. Current measures to reduce outdoor water use through irrigation restrictions and turfgrass removal programs do not include safeguards to ensure that urban trees receive adequate irrigation, and the future of urban tree canopies in western cities is highly uncertain. Although trees and other deep-rooted vegetation may require less irrigation than turfgrass and better withstand periods of drought, this vegetation must still be appropriate managed with water inputs informed by an understanding of plant water relations and urban subsurface hydrology. On the current trajectory, cities may see a substantial loss of vegetative cover and leaf area unless an understanding of ecohydrology is better integrated into

  16. The design and research of poverty alleviation monitoring and evaluation system: a case study in the Jiangxi province

    NASA Astrophysics Data System (ADS)

    Mo, Hong-yuan; Wang, Ying-jie; Yu, Zhuo-yuan

    2009-07-01

    The Poverty Alleviation Monitoring and Evaluation System (PAMES) is introduced in this paper. The authors present environment platform selection, and details of system design and realization. Different with traditional research of poverty alleviation, this paper develops a new analytical geo-visualization approach to study the distribution and causes of poverty phenomena within Geographic Information System (GIS). Based on the most detailed poverty population data, the spatial location and population statistical indicators of poverty village in Jiangxi province, the distribution characteristics of poverty population are detailed. The research results can provide much poverty alleviation decision support from a spatial-temporal view. It should be better if the administrative unit of poverty-stricken area to be changed from county to village according to spatial distribution pattern of poverty.

  17. Analytical design and evaluation of an active control system for helicopter vibration reduction and gust response alleviation

    NASA Technical Reports Server (NTRS)

    Taylor, R. B.; Zwicke, P. E.; Gold, P.; Miao, W.

    1980-01-01

    An analytical study was conducted to define the basic configuration of an active control system for helicopter vibration and gust response alleviation. The study culminated in a control system design which has two separate systems: narrow band loop for vibration reduction and wider band loop for gust response alleviation. The narrow band vibration loop utilizes the standard swashplate control configuration to input controller for the vibration loop is based on adaptive optimal control theory and is designed to adapt to any flight condition including maneuvers and transients. The prime characteristics of the vibration control system is its real time capability. The gust alleviation control system studied consists of optimal sampled data feedback gains together with an optimal one-step-ahead prediction. The prediction permits the estimation of the gust disturbance which can then be used to minimize the gust effects on the helicopter.

  18. A blueprint for strategic urban research: the urban piazza

    PubMed Central

    Kourtit, Karima; Nijkamp, Peter; Franklin, Rachel S.; Rodríguez-Pose, Andrés

    2014-01-01

    Urban research in many countries has failed to keep up with the pace of rapidly and constantly evolving urban change. The growth of cities, the increasing complexity of their functions and the complex intra- and inter-urban linkages in this ‘urban century’ demand new approaches to urban analysis, which, from a systemic perspective, supersede the existing fragmentation in urban studies. In this paper we propose the concept of the urban piazza as a framework in order to address some of the inefficiencies associated with current urban analysis. By combining wealth-creating potential with smart urban mobility, ecological resilience and social buzz in this integrated and systemic framework, the aim is to set the basis for a ‘New Urban World’ research blueprint, which lays the foundation for a broader and more integrated research programme for strategic urban issues. PMID:25339782

  19. A blueprint for strategic urban research: the urban piazza.

    PubMed

    Kourtit, Karima; Nijkamp, Peter; Franklin, Rachel S; Rodríguez-Pose, Andrés

    2014-01-01

    Urban research in many countries has failed to keep up with the pace of rapidly and constantly evolving urban change. The growth of cities, the increasing complexity of their functions and the complex intra- and inter-urban linkages in this 'urban century' demand new approaches to urban analysis, which, from a systemic perspective, supersede the existing fragmentation in urban studies. In this paper we propose the concept of the urban piazza as a framework in order to address some of the inefficiencies associated with current urban analysis. By combining wealth-creating potential with smart urban mobility, ecological resilience and social buzz in this integrated and systemic framework, the aim is to set the basis for a ' New Urban World ' research blueprint, which lays the foundation for a broader and more integrated research programme for strategic urban issues.

  20. The Urban Heat Island Behavior of a Large Northern Latitude Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Twine, T. E.; Snyder, P. K.; Hertel, W.; Mykleby, P.

    2012-12-01

    Urban heat islands (UHIs) occur when urban and suburban areas experience elevated temperatures relative to their rural surroundings because of differences in vegetation cover, buildings and other development, and infrastructure. Most cities in the United States are warming at twice the rate of the outlying rural areas and the planet as a whole. Temperatures in the urban center can be 2-5°C warmer during the daytime and as much as 10°C at night. Urban warming is responsible for excessive energy consumption, heat-related health effects, an increase in urban pollution, degradation of urban ecosystems, changes in the local meteorology, and an increase in thermal pollution into urban water bodies. One mitigation strategy involves manipulating the surface energy budget to either reduce the amount of solar radiation absorbed at the surface or offset absorbed energy through latent cooling. Options include using building materials with different properties of reflectivity and emissivity, increasing the reflectivity of parking lots, covering roofs with vegetation, and increasing the amount of vegetation overall through tree planting or increasing green space. The goal of the Islands in the Sun project is to understand the formation and behavior of urban heat islands and to mitigate their effects through sensible city engineering and design practices. As part of this project, we have been characterizing the UHI of the Twin Cities Metropolitan Area (TCMA), a 16,000 square kilometer urban and suburban region located in east central Minnesota that includes the two cities of Minneapolis and Saint Paul, and evaluating mitigation strategies for reducing urban warming. Annually, the TCMA has a modest 2-3°C UHI that is especially apparent in winter when the urban core can be up to 5-6°C warmer than the surrounding countryside. We present an analysis of regional temperature variations from a dense network of sensors located throughout the TCMA. We focus on the diurnal and seasonal

  1. Conceptual study of superconducting urban area power systems

    NASA Astrophysics Data System (ADS)

    Noe, Mathias; Bach, Robert; Prusseit, Werner; Willén, Dag; Gold-acker, Wilfried; Poelchau, Juri; Linke, Christian

    2010-06-01

    Efficient transmission, distribution and usage of electricity are fundamental requirements for providing citizens, societies and economies with essential energy resources. It will be a major future challenge to integrate more sustainable generation resources, to meet growing electricity demand and to renew electricity networks. Research and development on superconducting equipment and components have an important role to play in addressing these challenges. Up to now, most studies on superconducting applications in power systems have been concentrated on the application of specific devices like for example cables and current limiters. In contrast to this, the main focus of our study is to show the consequence of a large scale integration of superconducting power equipment in distribution level urban power systems. Specific objectives are to summarize the state-of-the-art of superconducting power equipment including cooling systems and to compare the superconducting power system with respect to energy and economic efficiency with conventional solutions. Several scenarios were considered starting from the replacement of an existing distribution level sub-grid up to a full superconducting urban area distribution level power system. One major result is that a full superconducting urban area distribution level power system could be cost competitive with existing solutions in the future. In addition to that, superconducting power systems offer higher energy efficiency as well as a number of technical advantages like lower voltage drops and improved stability.

  2. Warm Homes, Greener Living: Reducing Energy Poverty in Daniel McIntyre and St. Matthews through Energy Retrofits

    NASA Astrophysics Data System (ADS)

    Schulz, Kari

    This research examines energy poverty in the Daniel McIntyre and St. Matthews (DMSM) neighbourhoods in the city of Winnipeg. Energy poverty, defined as households spending more than 6% of their income on energy expenditures, affects as many as 50% of households in DMSM. Energy poverty can be alleviated through energy retrofits for dwellings such as weather stripping; increasing insulation in exterior walls, the attic and basement; and installing a high-efficiency furnace. The recommendations include: establishing consistent housing and energy efficiency policies; increasing the flexibility of utility on-bill financing; levying the necessary capital for energy retrofits through municipal financing mechanisms; increasing the knowledge and capacity of local residents; increasing the knowledge and capacity of local contractors for sustainable design and construction; creating a provincial strategy to increase the energy efficiency of social housing; developing low-income energy efficiency programs for rental properties; and increasing access to renewable energy sources.

  3. The Use of the Ombudsman's Services for Alleviating International Students' Difficulties

    ERIC Educational Resources Information Center

    Katsara, Ourania

    2015-01-01

    This article offers some suggestions regarding the development of a support strategy by ombudsmen in order to alleviate international students' difficulties when studying in host universities. It is also shown how the Organisational Justice Theory can be used as a framework for understanding the role of ombudsman in higher education settings and…

  4. Urban Heat Island towards Urban Climate

    NASA Astrophysics Data System (ADS)

    Ningrum, Widya

    2018-02-01

    The urban heat island (UHI) is defined as the temperature difference between the urban and suburban areas and rural areas in the same region. Researchers have discussed several different techniques for evaluating the phenomenon. This paper reviews some of the causes and effects of urban heat islands, mainly on urban climate. Both directly and indirectly, the UHI influences multiple sectors. According to this, it is needed to develop a strategic mitigation between government and scientists to reduce the temperature.

  5. Radiative transfer in a polluted urban planetary boundary layer

    NASA Technical Reports Server (NTRS)

    Viskanta, R.; Johnson, R. O.; Bergstrom, R. W.

    1977-01-01

    Radiative transfer in a polluted urban atmosphere is studied using a dynamic model. The diurnal nature of radiative transfer for summer conditions is simulated for an urban area 40 km in extent and the effects of various parameters arising in the problem are investigated. The results of numerical computations show that air pollution has the potential of playing a major role in the radiative regime of the urban area. Absorption of solar energy by aerosols in realistic models of urban atmosphere are of the same order of magnitude as that due to water vapor. The predicted effect of the air pollution aerosol in the city is to warm the earth-atmosphere system, and the net effect of gaseous pollutant is to warm the surface and cool the planetary boundary layer, particularly near the top.

  6. Impacts of Trees on Urban Environment in the Contiguous United States

    NASA Astrophysics Data System (ADS)

    Wang, C.; Upreti, R.; Wang, Z.; Yang, J.

    2017-12-01

    Mounting empirical evidence shows that urban trees are effective in mitigating the thermal stress in the built environment, whereas large scale numerical simulations remain scarce. In this study, we evaluated the effects of shade trees on the built environment in terms of radiative cooling, pedestrian thermal comfort, and surface energy balance, carried out over the contiguous United States (CONUS). A coupled Weather Research and Forecasting-urban modeling system was adopted, incorporating exclusively the radiative shading effect of urban trees. Results show that on average the mean 2-m air temperature in urban areas decreases by 3.06 ˚C, and the 2-m relative humidity increases by 13.62% over the entire CONUS with the shading effect. Analysis of pedestrian thermal comfort shows that shade trees help to improve summer thermal comfort level, but could be detrimental in the winter for Northern cities. In addition, it was found that trees alter the surface energy balance by primarily enhancing the radiative cooling, leading to significant re-distribution of the sensible heat while leaving the ground heat storage comparatively intact.

  7. Dietary intakes assessed by 24-h recalls in peri-urban African adolescents: validity of energy intake compared with estimated energy expenditure.

    PubMed

    Rankin, D; Ellis, S M; Macintyre, U E; Hanekom, S M; Wright, H H

    2011-08-01

    The objective of this study is to determine the relative validity of reported energy intake (EI) derived from multiple 24-h recalls against estimated energy expenditure (EE(est)). Basal metabolic rate (BMR) equations and physical activity factors were incorporated to calculate EE(est). This analysis was nested in the multidisciplinary PhysicaL Activity in the Young study with a prospective study design. Peri-urban black South African adolescents were investigated in a subsample of 131 learners (87 girls and 44 boys) from the parent study sample of 369 (211 girls and 158 boys) who had all measurements taken. Pearson correlation coefficients and Bland-Altman plots were calculated to identify the most accurate published equations to estimate BMR (P<0.05 statistically significant). EE(est) was estimated using BMR equations and estimated physical activity factors derived from Previous Day Physical Activity Recall questionnaires. After calculation of EE(est), the relative validity of reported energy intake (EI(rep)) derived from multiple 24-h recalls was tested for three data subsets using Pearson correlation coefficients. Goldberg's formula identified cut points (CPs) for under and over reporting of EI. Pearson correlation coefficients between calculated BMRs ranged from 0.97 to 0.99. Bland-Altman analyses showed acceptable agreement (two equations for each gender). One equation for each gender was used to calculate EE(est). Pearson correlation coefficients between EI(rep) and EE(est) for three data sets were weak, indicating poor agreement. CPs for physical activity groups showed under reporting in 87% boys and 95% girls. The 24-h recalls measured at five measurements over 2 years offered poor validity between EI(rep) and EE(est).

  8. Urban farming activity towards sustainable wellbeing of urban dwellers

    NASA Astrophysics Data System (ADS)

    Othman, N.; Mohamad, M.; Latip, R. A.; Ariffin, M. H.

    2018-02-01

    In Malaysia, urban farming is viewed as a catalyst towards achieving the well-being of urban dwellers and natural environment. Urban farming is a strategy for Malaysia’s food and economic security, and as one of the foci in the agriculture transformation whereby urban dwellers are encouraged to participate in this activity. Previous study proved that urban farming can help to address social problems of food security, urban poverty and high living cost, also provides leisure and recreation among urban dwellers. Thus, this study investigates the best urban farming practices suitable for urban setting, environment and culture of urban dwellers. Data collection was done via questionnaire survey to urban farmers of a selected community garden in Subang Jaya, Selangor. Meanwhile, on-site observations were carried out on gardening activities and the gardens’ physical attributes. The study sample encompasses of 131 urban farmers of 22 community gardens in Subang Jaya. It was found that most of the community gardens practiced crops planting on the ground or soil base planting and dwellers in the lower income group with monthly low household income constitutes the majority (83.2%) of the respondents. Social and health benefits are the highest motivating factors for urban farmers. This study provides unprecedented insights on urban farming practices and motivations in a Malaysian setting.

  9. Philippines Government Boosts Opportunity for Renewable Energy Investments

    Science.gov Websites

    development in the Philippines. These changes aim to use renewable energy to enhance economic growth and alleviate poverty, while reducing oil imports and protecting the environment. The changes were based on a International Development at Manila, and the interagency Technology Cooperation Agreement Pilot Project of USAID

  10. Poverty Alleviation: Insights and Strategies.

    ERIC Educational Resources Information Center

    Sharma, Motilal

    The development theory for progress in the countries of the Third World must be based on the aspirations of the common people; the majority poor. The poor cannot simply be provided with resources; they must also be psychologically, socially, and economically empowered. The most important conflict in poor countries is between urban and rural…

  11. Remote Sensing of Urban Thermal Landscape Characteristics and Their Affects on Local and Regional Meteorology and Air Quality: An Overview of NASA EOS-IDS Project Atlanta

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Luvall, Jeffrey C.; Estes, Maurice G., Jr.

    1999-01-01

    As an entity, the city is a manifestation of human "management" of the land. The act of city-building, however, drastically alters the biophysical environment, which ultimately, impacts local and regional land-atmosphere energy exchange processes. Because of the complexity of both the urban landscape and the attendant energy fluxes that result from urbanization, remote sensing offers the only real way to synoptically quantify these processes. One of the more important land-atmosphere fluxes that occurs over cities relates to the way that thermal energy is partitioned across the heterogeneous urban landscape. The individual land cover and surface material types that comprise the city, such as pavements and buildings, each have their own thermal energy regimes. As the collective urban landscape, the individual thermal energy responses from specific surfaces come together to form the urban heat island phenomena, which prevails as a dome of elevated air temperatures over cities. Although the urban heat island has been known to exist for well over 150 years, it is not understood how differences in thermal energy responses for land covers across the city interact to produce this phenomenon, or how the variability in thermal energy responses from different surface types drive its development. Additionally, it can be hypothesized that as cities grow in size through time, so do their urban heat islands. The interrelationships between urban sprawl and the respective growth of the urban heat island, however, have not been investigated. Moreover, little is known of the consequential effects of urban growth, land cover change, and the urban heat island as they impact local and regional meteorology and air quality.

  12. Does Size Matter? Scaling of CO2 Emissions and U.S. Urban Areas

    PubMed Central

    Fragkias, Michail; Lobo, José; Strumsky, Deborah; Seto, Karen C.

    2013-01-01

    Urban areas consume more than 66% of the world’s energy and generate more than 70% of global greenhouse gas emissions. With the world’s population expected to reach 10 billion by 2100, nearly 90% of whom will live in urban areas, a critical question for planetary sustainability is how the size of cities affects energy use and carbon dioxide (CO2) emissions. Are larger cities more energy and emissions efficient than smaller ones? Do larger cities exhibit gains from economies of scale with regard to emissions? Here we examine the relationship between city size and CO2 emissions for U.S. metropolitan areas using a production accounting allocation of emissions. We find that for the time period of 1999–2008, CO2 emissions scale proportionally with urban population size. Contrary to theoretical expectations, larger cities are not more emissions efficient than smaller ones. PMID:23750213

  13. Analysis of Global Urban Temperature Trends and Urbanization Impacts

    NASA Astrophysics Data System (ADS)

    Lee, K. I.; Ryu, J.; Jeon, S. W.

    2018-04-01

    Due to urbanization, urban areas are shrinking green spaces and increasing concrete, asphalt pavement. So urban climates are different from non-urban areas. In addition, long-term macroscopic studies of urban climate change are becoming more important as global urbanization affects global warming. To do this, it is necessary to analyze the effect of urbanization on the temporal change in urban temperature with the same temperature data and standards for urban areas around the world. In this study, time series analysis was performed with the maximum, minimum, mean and standard values of surface temperature during the from 1980 to 2010 and analyzed the effect of urbanization through linear regression analysis with variables (population, night light, NDVI, urban area). As a result, the minimum value of the surface temperature of the urban area reflects an increase by a rate of 0.28K decade-1 over the past 31 years, the maximum value reflects an increase by a rate of 0.372K decade-1, the mean value reflects an increase by a rate of 0.208 decade-1, and the standard deviation reflects a decrease by rate of 0.023K decade-1. And the change of surface temperature in urban areas is affected by urbanization related to land cover such as decrease of greenery and increase of pavement area, but socioeconomic variables are less influential than NDVI in this study. This study are expected to provide an approach to future research and policy-planning for urban temperature change and urbanization impacts.

  14. Evolving urban water and residuals management paradigms: water reclamation and reuse, decentralization, and resource recovery.

    PubMed

    Daigger, Glen T

    2009-08-01

    Population growth and improving standards of living, coupled with dramatically increased urbanization, are placing increased pressures on available water resources, necessitating new approaches to urban water management. The tradition linear "take, make, waste" approach to managing water increasingly is proving to be unsustainable, as it is leading to water stress (insufficient water supplies), unsustainable resource (energy and chemicals) consumption, the dispersion of nutrients into the aquatic environment (especially phosphorus), and financially unstable utilities. Different approaches are needed to achieve economic, environmental, and social sustainability. Fortunately, a toolkit consisting of stormwater management/rainwater harvesting, water conservation, water reclamation and reuse, energy management, nutrient recovery, and source separation is available to allow more closed-loop urban water and resource management systems to be developed and implemented. Water conservation and water reclamation and reuse (multiple uses) are becoming commonplace in numerous water-short locations. Decentralization, enabled by new, high-performance treatment technologies and distributed stormwater management/rainwater harvesting, is furthering this transition. Likewise, traditional approaches to residuals management are evolving, as higher levels of energy recovery are desired, and nutrient recovery and reuse is to be enhanced. A variety of factors affect selection of the optimum approach for a particular urban area, including local hydrology, available water supplies, water demands, local energy and nutrient-management situations, existing infrastructure, and utility governance structure. A proper approach to economic analysis is critical to determine the most sustainable solutions. Stove piping (i.e., separate management of drinking, storm, and waste water) within the urban water and resource management profession must be eliminated. Adoption of these new approaches to urban

  15. Breaking bad habits: Targeting MDSCs to alleviate immunosuppression in prostate cancer.

    PubMed

    Pal, Sumanta K; Kortylewski, Marcin

    2016-02-01

    The myeloid-derived suppressor cells (MDSCs) contribute to tumor immune evasion and still remain an elusive therapeutic target. Our study identified granulocytic MDSCs accumulating in prostate cancer patients during disease progression. We demonstrate the feasibility of using STAT3siRNA-based strategy for targeting MDSCs to alleviate arginase-dependent suppression of T cell activity.

  16. Self-Referential Information Alleviates Retrieval Inhibition of Directed Forgetting Effects-An ERP Evidence of Source Memory.

    PubMed

    Mao, Xinrui; Wang, Yujuan; Wu, Yanhong; Guo, Chunyan

    2017-01-01

    Directed forgetting (DF) assists in preventing outdated information from interfering with cognitive processing. Previous studies pointed that self-referential items alleviated DF effects due to the elaboration of encoding processes. However, the retrieval mechanism of this phenomenon remains unknown. Based on the dual-process framework of recognition, the retrieval of self-referential information was involved in familiarity and recollection. Using source memory tasks combined with event-related potential (ERP) recording, our research investigated the retrieval processes of alleviative DF effects elicited by self-referential information. The FN400 (frontal negativity at 400 ms) is a frontal potential at 300-500 ms related to familiarity and the late positive complex (LPC) is a later parietal potential at 500-800 ms related to recollection. The FN400 effects of source memory suggested that familiarity processes were promoted by self-referential effects without the modulation of to-be-forgotten (TBF) instruction. The ERP results of DF effects were involved with LPCs of source memory, which indexed retrieval processing of recollection. The other-referential source memory of TBF instruction caused the absence of LPC effects, while the self-referential source memory of TBF instruction still elicited the significant LPC effects. Therefore, our neural findings suggested that self-referential processing improved both familiarity and recollection. Furthermore, the self-referential processing advantage which was caused by the autobiographical retrieval alleviated retrieval inhibition of DF, supporting that the self-referential source memory alleviated DF effects.

  17. Self-Referential Information Alleviates Retrieval Inhibition of Directed Forgetting Effects—An ERP Evidence of Source Memory

    PubMed Central

    Mao, Xinrui; Wang, Yujuan; Wu, Yanhong; Guo, Chunyan

    2017-01-01

    Directed forgetting (DF) assists in preventing outdated information from interfering with cognitive processing. Previous studies pointed that self-referential items alleviated DF effects due to the elaboration of encoding processes. However, the retrieval mechanism of this phenomenon remains unknown. Based on the dual-process framework of recognition, the retrieval of self-referential information was involved in familiarity and recollection. Using source memory tasks combined with event-related potential (ERP) recording, our research investigated the retrieval processes of alleviative DF effects elicited by self-referential information. The FN400 (frontal negativity at 400 ms) is a frontal potential at 300–500 ms related to familiarity and the late positive complex (LPC) is a later parietal potential at 500–800 ms related to recollection. The FN400 effects of source memory suggested that familiarity processes were promoted by self-referential effects without the modulation of to-be-forgotten (TBF) instruction. The ERP results of DF effects were involved with LPCs of source memory, which indexed retrieval processing of recollection. The other-referential source memory of TBF instruction caused the absence of LPC effects, while the self-referential source memory of TBF instruction still elicited the significant LPC effects. Therefore, our neural findings suggested that self-referential processing improved both familiarity and recollection. Furthermore, the self-referential processing advantage which was caused by the autobiographical retrieval alleviated retrieval inhibition of DF, supporting that the self-referential source memory alleviated DF effects. PMID:29066962

  18. Pumpkin polysaccharide modifies the gut microbiota during alleviation of type 2 diabetes in rats.

    PubMed

    Liu, Guimei; Liang, Li; Yu, Guoyong; Li, Quanhong

    2018-04-24

    Pumpkin polysaccharide is able to alleviate diabetes, but understanding of the underlining mechanism is still limited. In this study, we hypothesized that the alleviating effects of pumpkin polysaccharide is modulated via changes in the gut microbiota and short-chain fatty acid (SCFA) production in type 2 diabetic rats. After the type 2 diabetic model successfully was established, three groups of high-fat diet induced diabetic rats were intragastrically administered pumpkin polysaccharide, metformin, or saline solution respectively. We utilized 16S rRNA gene sequencing and multivariate statistics to analyze the structural and key species of gut microbiota in the type 2 diabetic rats. The results revealed that pumpkin polysaccharide alleviated the type 2 diabetes by improving the insulin tolerance and decreasing the levels of serum glucose (GLU), total cholesterol (TC), and low-density lipoprotein (LDL-C), while increasing the levels of high-density lipoprotein (HDL-C). Simultaneously, pumpkin polysaccharide changed the structure of gut microbiota and had selective enrichment in key species of Bacteroidetes, Prevotella, Deltaproteobacteria, Oscillospira, Veillonellaceae, Phascolarctobacterium, Sutterella, and Bilophila. The correlations between the key species and SCFA production indicated the underlining mechanisms of pumpkin polysaccharide on type 2 diabetes. Copyright © 2018. Published by Elsevier B.V.

  19. Early treatment of minocycline alleviates white matter and cognitive impairments after chronic cerebral hypoperfusion

    PubMed Central

    Ma, Jing; Zhang, Jing; Hou, Wei Wei; Wu, Xiao Hua; Liao, Ru Jia; Chen, Ying; Wang, Zhe; Zhang, Xiang Nan; Zhang, Li San; Zhou, Yu Dong; Chen, Zhong; Hu, Wei Wei

    2015-01-01

    Subcortical ischemic vascular dementia (SIVD) caused by chronic cerebral hypoperfusion develops with progressive white matter and cognitive impairments, yet no effective therapy is available. We investigated the temporal effects of minocycline on an experimental SIVD exerted by right unilateral common carotid arteries occlusion (rUCCAO). Minocycline treated at the early stage (day 0–3), but not the late stage after rUCCAO (day 4–32) alleviated the white matter and cognitive impairments, and promoted remyelination. The actions of minocycline may not involve the inhibition of microglia activation, based on the effects after the application of a microglial activation inhibitor, macrophage migration inhibitory factor, and co-treatment with lipopolysaccharides. Furthermore, minocycline treatment at the early stage promoted the proliferation of oligodendrocyte progenitor cells (OPCs) in subventricular zone, increased OPC number and alleviated apoptosis of mature oligodendrocytes in white matter. In vitro, minocycline promoted OPC proliferation and increased the percentage of OPCs in S and G2/M phases. We provided direct evidence that early treatment is critical for minocycline to alleviate white matter and cognitive impairments after chronic cerebral hypoperfusion, which may be due to its robust effects on OPC proliferation and mature oligodendrocyte loss. So, early therapeutic time window may be crucial for its application in SIVD. PMID:26174710

  20. Methane uptake in urban forests and lawns.

    PubMed

    Groffman, Peter M; Pouyat, Richard V

    2009-07-15

    The largest natural biological sink for the radiatively active trace gas methane (CH4) is bacteria in soils that consume CH4 as an energy and carbon source. This sink has been shown to be sensitive to nitrogen (N) inputs and alterations of soil physical conditions. Given this sensitivity, conversion of native ecosystems to urban, suburban, and exurban managed lawns thus has potential to affect regional CH4 budgets. We measured CH4 fluxes monthly from four urban forest, four rural forest and four urban lawn plots in the Baltimore, MD, metropolitan area from 2001 to 2005. Our objectives were to evaluate the effects of urban atmospheric and land use change on CH4 uptake and the importance of these changes relative to other greenhouse forcings in the urban landscape. Rural forests had a high capacity for CH4 uptake (1.68 mg m(-2) day(-1)). This capacity was reduced in urban forests (0.23 mg m(-2) day(-1)) and almost completely eliminated in lawns. Possible mechanisms for these reductions include increases in atmospheric N deposition and CO2 levels, fertilization of lawns, and alteration of soil physical conditions that influence diffusion. Although conversion of native forests to lawns had dramatic effects on CH4 uptake, these effects do not appear to be significant to statewide greenhouse gas forcing.

  1. Beyond urban penalty and urban sprawl: back to living conditions as the focus of urban health.

    PubMed

    Freudenberg, Nicholas; Galea, Sandro; Vlahov, David

    2005-02-01

    Researchers have long studied urban health, both to describe the consequences of urban living and to design interventions to promote the health of people living in cities. Two approaches to understanding the impact of cities on health have been dominant, namely, urban health penalty and urban sprawl. The urban penalty approach posits that cities concentrate poor people and expose them to unhealthy physical and social environments. Urban sprawl focuses on the adverse health and environmental effects of urban growth into outlying areas. We propose a model that integrates these approaches and emphasizes urban living conditions as the primary determinant of health. The aim of the model is to move beyond describing the health-related characteristics of various urban populations towards identifying opportunities for intervention. Such a shift in framework enables meaningful comparisons that can inform public health activities at the appropriate level and evaluate their effectiveness in improving the health of urban populations. The model is illustrated with two examples from current urban public health practice.

  2. The University of Utah Urban Undertaking (U4)

    NASA Astrophysics Data System (ADS)

    Lin, J. C.; Mitchell, L.; Bares, R.; Mendoza, D. L.; Fasoli, B.; Bowling, D. R.; Garcia, M. A.; Buchert, M.; Pataki, D. E.; Crosman, E.; Horel, J.; Catharine, D.; Strong, C.; Ehleringer, J. R.

    2015-12-01

    The University of Utah is leading efforts to understand the spatiotemporal patterns in both emissions and concentrations of greenhouse gases (GHG) and criteria pollutants within urban systems. The urbanized corridor in northern Utah along the Wasatch Front, anchored by Salt Lake City, is undergoing rapid population growth that is projected to double in the next few decades. The Wasatch Front offers multiple advantages as an unique "urban laboratory": urban regions in multiple valleys spanning numerous orders of magnitude in population, each with unique airsheds, well-defined boundary conditions along deserts and tall mountains, strong signals during cold air pool events, seasonal contrasts in pollution, and a legacy of productive partnerships with local stakeholders and governments. We will show results from GHG measurements from the Wasatch Front, including one of the longest running continuous CO2 records in urban areas. Complementing this record are comprehensive meteorological observations and GHG/pollutant concentrations on mobile platforms: light rail, helicopter, and research vans. Variations in the GHG and pollutant observations illustrate human behavior and the resulting "urban metabolism" taking place on hourly, weekly, and seasonal cycles, resulting in a coupling between GHG and criteria pollutants. Moreover, these observations illustrate systematic spatial gradients in GHG and pollutant distributions between and within urban areas, traced to underlying gradients in population, energy use, terrain, and land use. Over decadal time scales the observations reveal growth of the "urban dome" due to expanding urban development. Using numerical models of the atmosphere, we further link concentrations of GHG and air quality-relevant pollutants to underlying emissions at the neighborhood scale as well as urban planning considerations.

  3. Nutrition Transition and Biocultural Determinants of Obesity among Cameroonian Migrants in Urban Cameroon and France

    PubMed Central

    Cohen, Emmanuel; Amougou, Norbert; Ponty, Amandine; Loinger-Beck, Juliette; Nkuintchua, Téodyl; Monteillet, Nicolas; Bernard, Jonathan Y.; Saïd-Mohamed, Rihlat; Holdsworth, Michelle; Pasquet, Patrick

    2017-01-01

    Native of rural West Cameroon, the Bamiléké population is traditionally predisposed to obesity. Bamiléké who migrated to urban areas additionally experience the nutrition transition. We investigated the biocultural determinants of obesity in Bamiléké who migrated to urban Cameroon (Yaoundé), or urban France (Paris). We conducted qualitative interviews (n = 36; 18 men) and a quantitative survey (n = 627; 266 men) of adults using two-stage sampling strategy, to determine the association of dietary intake, physical activity and body weight norms with obesity of Bamiléké populations in these three socio-ecological areas (rural Cameroon: n = 258; urban Cameroon: n = 319; urban France: n = 50). The Bamiléké valued overweight and traditional energy-dense diets in rural and urban Cameroon. Physical activity levels were lower, consumption of processed energy-dense food was frequent and obesity levels higher in new migrants living in urban Cameroon and France. Female sex, age, duration of residence in urban areas, lower physical activity and valorisation of overweight were independently associated with obesity status. This work argues in favour of local and global health policies that account for the origin and the migration trajectories to prevent obesity in migrants. PMID:28661463

  4. Nutrition Transition and Biocultural Determinants of Obesity among Cameroonian Migrants in Urban Cameroon and France.

    PubMed

    Cohen, Emmanuel; Amougou, Norbert; Ponty, Amandine; Loinger-Beck, Juliette; Nkuintchua, Téodyl; Monteillet, Nicolas; Bernard, Jonathan Y; Saïd-Mohamed, Rihlat; Holdsworth, Michelle; Pasquet, Patrick

    2017-06-29

    Native of rural West Cameroon, the Bamiléké population is traditionally predisposed to obesity. Bamiléké who migrated to urban areas additionally experience the nutrition transition. We investigated the biocultural determinants of obesity in Bamiléké who migrated to urban Cameroon (Yaoundé), or urban France (Paris). We conducted qualitative interviews ( n = 36; 18 men) and a quantitative survey ( n = 627; 266 men) of adults using two-stage sampling strategy, to determine the association of dietary intake, physical activity and body weight norms with obesity of Bamiléké populations in these three socio-ecological areas (rural Cameroon: n = 258; urban Cameroon: n = 319; urban France: n = 50). The Bamiléké valued overweight and traditional energy-dense diets in rural and urban Cameroon. Physical activity levels were lower, consumption of processed energy-dense food was frequent and obesity levels higher in new migrants living in urban Cameroon and France. Female sex, age, duration of residence in urban areas, lower physical activity and valorisation of overweight were independently associated with obesity status. This work argues in favour of local and global health policies that account for the origin and the migration trajectories to prevent obesity in migrants.

  5. An energy efficient multiple mobile sinks based routing algorithm for wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Zhong, Peijun; Ruan, Feng

    2018-03-01

    With the fast development of wireless sensor networks (WSNs), more and more energy efficient routing algorithms have been proposed. However, one of the research challenges is how to alleviate the hot spot problem since nodes close to static sink (or base station) tend to die earlier than other sensors. The introduction of mobile sink node can effectively alleviate this problem since sink node can move along certain trajectories, causing hot spot nodes more evenly distributed. In this paper, we mainly study the energy efficient routing method with multiple mobile sinks support. We divide the whole network into several clusters and study the influence of mobile sink number on network lifetime. Simulation results show that the best network performance appears when mobile sink number is about 3 under our simulation environment.

  6. From Bottleneck to Breakthrough: Urbanization and the Future of Biodiversity Conservation.

    PubMed

    Sanderson, Eric W; Walston, Joseph; Robinson, John G

    2018-06-01

    For the first time in the Anthropocene, the global demographic and economic trends that have resulted in unprecedented destruction of the environment are now creating the necessary conditions for a possible renaissance of nature. Drawing reasonable inferences from current patterns, we can predict that 100 years from now, the Earth could be inhabited by between 6 and 8 billion people, with very few remaining in extreme poverty, most living in towns and cities, and nearly all participating in a technologically driven, interconnected market economy. Building on the scholarship of others in demography, economics, sociology, and conservation biology, here, we articulate a theory of social-environmental change that describes the simultaneous and interacting effects of urban lifestyles on fertility, poverty alleviation, and ideation. By recognizing the shifting dynamics of these macrodrivers, conservation practice has the potential to transform itself from a discipline managing declines ("bottleneck") to a transformative movement of recovery ("breakthrough").

  7. 24 CFR 200.78 - Energy conservation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 2 2011-04-01 2011-04-01 false Energy conservation. 200.78 Section... Eligibility Requirements for Existing Projects Property Requirements § 200.78 Energy conservation. Construction, mechanical equipment, and energy and metering selections shall provide cost effective energy...

  8. 24 CFR 200.78 - Energy conservation.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 2 2013-04-01 2013-04-01 false Energy conservation. 200.78 Section... Eligibility Requirements for Existing Projects Property Requirements § 200.78 Energy conservation. Construction, mechanical equipment, and energy and metering selections shall provide cost effective energy...

  9. 24 CFR 200.78 - Energy conservation.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 2 2014-04-01 2014-04-01 false Energy conservation. 200.78 Section... Eligibility Requirements for Existing Projects Property Requirements § 200.78 Energy conservation. Construction, mechanical equipment, and energy and metering selections shall provide cost effective energy...

  10. 24 CFR 200.78 - Energy conservation.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 2 2012-04-01 2012-04-01 false Energy conservation. 200.78 Section... Eligibility Requirements for Existing Projects Property Requirements § 200.78 Energy conservation. Construction, mechanical equipment, and energy and metering selections shall provide cost effective energy...

  11. 24 CFR 200.78 - Energy conservation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Energy conservation. 200.78 Section... Eligibility Requirements for Existing Projects Property Requirements § 200.78 Energy conservation. Construction, mechanical equipment, and energy and metering selections shall provide cost effective energy...

  12. Wastewater Treatment Energy Recovery Potential For Adaptation To Global Change: An Integrated Assessment

    NASA Astrophysics Data System (ADS)

    Breach, Patrick A.; Simonovic, Slobodan P.

    2018-04-01

    Approximately 20% of wastewaters globally do not receive treatment, whereas wastewater discharges are projected to increase, thereby leading to excessive water quality degradation of surface waters on a global scale. Increased treatment could help alleviate water quality issues by constructing more treatment plants; however, in many areas there exist economic constraints. Energy recovery methods including the utilization of biogas and incineration of biosolids generated during the treatment process may help to alleviate treatment costs. This study explores the potential for investments in energy recovery from wastewater to increase treatment levels and thus improve surface water quality. This was done by examining the relationships between nutrient over-enrichment, wastewater treatment, and energy recovery at a global scale using system dynamics simulation as part of the ANEMI integrated assessment model. The results show that a significant amount of energy can be recovered from wastewater, which helps to alleviate some of the costs of treatment. It was found that wastewater treatment levels could be increased by 34%, helping to offset the higher nutrient loading from a growing population with access to improved sanitation. The production of renewable natural gas from biogas was found to have the potential to prolong the depletion of natural gas resources used to produce electricity and heat. It is recommended that agricultural nutrient discharges be better managed to help reduce nutrient over-enrichment on global scale. To increase the utility of the simulation, a finer spatial scale should be used to consider regional treatment, economic, and water quality characteristics.

  13. Wastewater Treatment Energy Recovery Potential For Adaptation To Global Change: An Integrated Assessment.

    PubMed

    Breach, Patrick A; Simonovic, Slobodan P

    2018-04-01

    Approximately 20% of wastewaters globally do not receive treatment, whereas wastewater discharges are projected to increase, thereby leading to excessive water quality degradation of surface waters on a global scale. Increased treatment could help alleviate water quality issues by constructing more treatment plants; however, in many areas there exist economic constraints. Energy recovery methods including the utilization of biogas and incineration of biosolids generated during the treatment process may help to alleviate treatment costs. This study explores the potential for investments in energy recovery from wastewater to increase treatment levels and thus improve surface water quality. This was done by examining the relationships between nutrient over-enrichment, wastewater treatment, and energy recovery at a global scale using system dynamics simulation as part of the ANEMI integrated assessment model. The results show that a significant amount of energy can be recovered from wastewater, which helps to alleviate some of the costs of treatment. It was found that wastewater treatment levels could be increased by 34%, helping to offset the higher nutrient loading from a growing population with access to improved sanitation. The production of renewable natural gas from biogas was found to have the potential to prolong the depletion of natural gas resources used to produce electricity and heat. It is recommended that agricultural nutrient discharges be better managed to help reduce nutrient over-enrichment on global scale. To increase the utility of the simulation, a finer spatial scale should be used to consider regional treatment, economic, and water quality characteristics.

  14. Study on aerodynamics characteristics an urban concept car for energy-efficient race

    NASA Astrophysics Data System (ADS)

    Ambarita, H.; Siregar, M. R.; Kawai, H.

    2018-03-01

    "Horas Mesin USU" is a prototype of urban concept vehicle designed by University of Sumatera Utara to participate in the energy-efficient competition. This paper deals with a numerical study on aerodynamic characteristics of the Horas Mesin USU. The numerical analyses are carried out by solving the governing equations using CFD FLUENT commercial code. The turbulent flow is closed using k-epsilon turbulence model. In the results, pathline, velocity vector and pressure distribution are plotted. By using the pressure distributions, drag and lift coefficients are calculated. In order to make a comparison, the aerodynamic characteristics of the present design are compared with commercial city car Ford-Fiesta. The averaged drag coefficients of Horas Mesin USU and Ford-Fiesta are 0.24320 and 0.29598, respectively. On the other hand, the averaged lift coefficients of the Horas Mesin USU and Ford-Fiesta are 0.03192202 and 0.09485621, respectively. This fact suggests that Ford-Fiesta has a better aerodynamic performance in comparison with Horas Mesin USU. The flow field analysis shows that there are many modifications can be proposed to improve the aerodynamic performance of the Horas Mesin USU. It is suggested to perform further analysis to improve the aerodynamic performance of Horas Mesin USU.

  15. Modulation of fatty acid metabolism is involved in the alleviation of isoproterenol-induced rat heart failure by fenofibrate

    PubMed Central

    LI, PING; LUO, SHIKE; PAN, CHUNJI; CHENG, XIAOSHU

    2015-01-01

    Heart failure is a disease predominantly caused by an energy metabolic disorder in cardiomyocytes. The present study investigated the inhibitory effects of fenofibrate (FF) on isoproterenol (ISO)-induced hear failure in rats, and examined the underlying mechanisms. The rats were divided into CON, ISO (HF model), FF and FF+ISO (HF animals pretreated with FF) groups. The cardiac structure and function of the rats were assessed, and contents of free fatty acids and glucose metabolic products were determined. In addition, myocardial cells were isolated from neonatal rats and used in vitro to investigate the mechanisms by which FF relieves heart failure. Western blot analysis was performed to quantify the expression levels of peroxisome proliferator-activated receptor (PPAR)α and uncoupling protein 2 (UCP2). FF effectively alleviated the ISO-induced cardiac structural damage, functional decline, and fatty acid and carbohydrate metabolic abnormalities. Compared with the ISO group, the serum levels of brain natriuretic peptide (BNP), free fatty acids, lactic acid and pyruvic acid were decreased in the FF animals. In the cultured myocardial cells, lactic acid and pyruvic acid contents were lower in the supernatants obtained from the FF animals, with lower levels of mitochondrial ROS production and cell necrosis, compared with the ISO group, whereas PPARα upregulation and UCP2 downregulation occurred in the FF+ISO group. The results demonstrated that FF efficiently alleviated heart failure in the ISO-induced rat model, possibly via promoting fatty acid oxidation. PMID:26497978

  16. Crowdsourcing urban air temperatures from smartphone battery temperatures

    NASA Astrophysics Data System (ADS)

    Overeem, A.; Robinson, J. C. R.; Leijnse, H.; Steeneveld, G. J.; Horn, B. K. P.; Uijlenhoet, R.

    2013-08-01

    Accurate air temperature observations in urban areas are important for meteorology and energy demand planning. They are indispensable to study the urban heat island effect and the adverse effects of high temperatures on human health. However, the availability of temperature observations in cities is often limited. Here we show that relatively accurate air temperature information for the urban canopy layer can be obtained from an alternative, nowadays omnipresent source: smartphones. In this study, battery temperatures were collected by an Android application for smartphones. A straightforward heat transfer model is employed to estimate daily mean air temperatures from smartphone battery temperatures for eight major cities around the world. The results demonstrate the enormous potential of this crowdsourcing application for real-time temperature monitoring in densely populated areas.

  17. A Purposeful MOOC to Alleviate Insufficient CS Education in Finnish Schools

    ERIC Educational Resources Information Center

    Kurhila, Jaakko; Vihavainen, Arto

    2015-01-01

    The Finnish national school curriculum, effective from 2004, does not include any topics related to Computer Science (CS). To alleviate the problem that school students are not able to study CS-related topics, the Department of Computer Science at the University of Helsinki prepared a completely online course that is open to pupils and students in…

  18. Geography and the costs of urban energy infrastructure: The case of electricity and natural gas capital investments

    NASA Astrophysics Data System (ADS)

    Senyel, Muzeyyen Anil

    Investments in the urban energy infrastructure for distributing electricity and natural gas are analyzed using (1) property data measuring distribution plant value at the local/tax district level, and (2) system outputs such as sectoral numbers of customers and energy sales, input prices, company-specific characteristics such as average wages and load factor. Socio-economic and site-specific urban and geographic variables, however, often been neglected in past studies. The purpose of this research is to incorporate these site-specific characteristics of electricity and natural gas distribution into investment cost model estimations. These local characteristics include (1) socio-economic variables, such as income and wealth; (2) urban-related variables, such as density, land-use, street pattern, housing pattern; (3) geographic and environmental variables, such as soil, topography, and weather, and (4) company-specific characteristics such as average wages, and load factor. The classical output variables include residential and commercial-industrial customers and sales. In contrast to most previous research, only capital investments at the local level are considered. In addition to aggregate cost modeling, the analysis focuses on the investment costs for the system components: overhead conductors, underground conductors, conduits, poles, transformers, services, street lighting, and station equipment for electricity distribution; and mains, services, regular and industrial measurement and regulation stations for natural gas distribution. The Box-Cox, log-log and additive models are compared to determine the best fitting cost functions. The Box-Cox form turns out to be superior to the other forms at the aggregate level and for network components. However, a linear additive form provides a better fit for end-user related components. The results show that, in addition to output variables and company-specific variables, various site-specific variables are statistically

  19. The Influence of Urban Planning Affected Static and Stable Meteorological Field on Air Pollution

    NASA Astrophysics Data System (ADS)

    Zhang, Yue; Zhang, Liyuan; Zhang, Yunwei

    2018-02-01

    Accompany with the rapid urbanized and industrialized process, the built-up area and the number of high-rise buildings increased fast. Urban air quality is facing with the challenge caused by the rapid increase in energy consumption, motor vehicles owned, and the city construction. Long term high precision analysis on Beijing-Tianjin-Hebei region has been conducted in this article, so as to explore the influence of rapid increase in urban size and tall building amount on occurrence frequency of urban static and stable meteorological conditions as well as the contribution to urban PM2.5 pollution.

  20. The urban harvest approach as framework and planning tool for improved water and resource cycles.

    PubMed

    Leusbrock, I; Nanninga, T A; Lieberg, K; Agudelo-Vera, C M; Keesman, K J; Zeeman, G; Rijnaarts, H H M

    2015-01-01

    Water and resource availability in sufficient quantity and quality for anthropogenic needs represents one of the main challenges in the coming decades. To prepare for upcoming challenges such as increased urbanization and climate change related consequences, innovative and improved resource management concepts are indispensable. In recent years we have developed and applied the urban harvest approach (UHA). The UHA aims to model and quantify the urban water cycle on different temporal and spatial scales. This approach allowed us to quantify the impact of the implementation of water saving measures and new water treatment concepts in cities. In this paper we will introduce the UHA and its application for urban water cycles. Furthermore, we will show first results for an extension to energy cycles and highlight future research items (e.g. nutrients, water-energy-nexus).