Science.gov

Sample records for allium hirtifolium boiss

  1. Chemical composition and antibacterial and cytotoxic activities of Allium hirtifolium Boiss.

    PubMed

    Ismail, Salmiah; Jalilian, Farid Azizi; Talebpour, Amir Hossein; Zargar, Mohsen; Shameli, Kamyar; Sekawi, Zamberi; Jahanshiri, Fatemeh

    2013-01-01

    Allium hirtifolium Boiss. known as Persian shallot, is a spice used as a traditional medicine in Iran and, Mediterranean region. In this study, the chemical composition of the hydromethanolic extract of this plant was analyzed using GC/MS. The result showed that 9-hexadecenoic acid, 11,14-eicosadienoic acid, and n-hexadecanoic acid are the main constituents. The antibacterial activity of the shallot extract was also examined by disk diffusion and microdilution broth assays. It was demonstrated that Persian shallot hydromethanolic extract was effective against 10 different species of pathogenic bacteria including methicillin resistant Staphylococcus aureus (MRSA), methicillin sensitive Staphylococcus aureus (MSSA), Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Escherichia coli, Escherichia coli O157:H7, Salmonella typhimurium, Proteus mirabilis, and Klebsiella pneumoniae. Specifically, the minimum concentration of the extract which inhibited bacterial growth (MIC values) was 1.88 mg/mL for most of the gram-positive bacteria. This concentration was not much different from the concentration that was safe for mammalian cells (1.50 mg/mL) suggesting that the hydromethanolic extract of Persian shallot may be a safe and strong antibacterial agent.

  2. Chemical Composition and Antibacterial and Cytotoxic Activities of Allium hirtifolium Boiss

    PubMed Central

    Ismail, Salmiah; Jalilian, Farid Azizi; Talebpour, Amir Hossein; Zargar, Mohsen; Shameli, Kamyar; Sekawi, Zamberi; Jahanshiri, Fatemeh

    2013-01-01

    Allium hirtifolium Boiss. known as Persian shallot, is a spice used as a traditional medicine in Iran and, Mediterranean region. In this study, the chemical composition of the hydromethanolic extract of this plant was analyzed using GC/MS. The result showed that 9-hexadecenoic acid, 11,14-eicosadienoic acid, and n-hexadecanoic acid are the main constituents. The antibacterial activity of the shallot extract was also examined by disk diffusion and microdilution broth assays. It was demonstrated that Persian shallot hydromethanolic extract was effective against 10 different species of pathogenic bacteria including methicillin resistant Staphylococcus aureus (MRSA), methicillin sensitive Staphylococcus aureus (MSSA), Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Escherichia coli, Escherichia coli O157:H7, Salmonella typhimurium, Proteus mirabilis, and Klebsiella pneumoniae. Specifically, the minimum concentration of the extract which inhibited bacterial growth (MIC values) was 1.88 mg/mL for most of the gram-positive bacteria. This concentration was not much different from the concentration that was safe for mammalian cells (1.50 mg/mL) suggesting that the hydromethanolic extract of Persian shallot may be a safe and strong antibacterial agent. PMID:23484141

  3. Chemical composition and antibacterial and cytotoxic activities of Allium hirtifolium Boiss.

    PubMed

    Ismail, Salmiah; Jalilian, Farid Azizi; Talebpour, Amir Hossein; Zargar, Mohsen; Shameli, Kamyar; Sekawi, Zamberi; Jahanshiri, Fatemeh

    2013-01-01

    Allium hirtifolium Boiss. known as Persian shallot, is a spice used as a traditional medicine in Iran and, Mediterranean region. In this study, the chemical composition of the hydromethanolic extract of this plant was analyzed using GC/MS. The result showed that 9-hexadecenoic acid, 11,14-eicosadienoic acid, and n-hexadecanoic acid are the main constituents. The antibacterial activity of the shallot extract was also examined by disk diffusion and microdilution broth assays. It was demonstrated that Persian shallot hydromethanolic extract was effective against 10 different species of pathogenic bacteria including methicillin resistant Staphylococcus aureus (MRSA), methicillin sensitive Staphylococcus aureus (MSSA), Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Escherichia coli, Escherichia coli O157:H7, Salmonella typhimurium, Proteus mirabilis, and Klebsiella pneumoniae. Specifically, the minimum concentration of the extract which inhibited bacterial growth (MIC values) was 1.88 mg/mL for most of the gram-positive bacteria. This concentration was not much different from the concentration that was safe for mammalian cells (1.50 mg/mL) suggesting that the hydromethanolic extract of Persian shallot may be a safe and strong antibacterial agent. PMID:23484141

  4. The effect of Persian shallot (Allium hirtifolium Boiss.) extract on blood sugar and serum levels of some hormones in diabetic rats.

    PubMed

    Mehdi, Mahmoodi; Javad, Hosseini; Seyed-Mostafa, Hosseini-Zijoud; Mohammadreza, Mirzaee; Ebrahim, Mirzajani

    2013-03-01

    Diabetes mellitus (DM) is caused by hyperglycemia, resulting from defective insulin secretion or function. It is widely believed that the antioxidant micronutrients obtained from plants afford significant protection against diseases like diabetes mellitus. Present study was aimed to examine the effects of Persian shallot (Allium hirtifolium Boiss) on FBS, HbA1c, insulin, triiodothyronine (T3) and thyroxine (T4) levels in type 1 diabetic rats. Thirty two male Wistar rats were divided into 4 groups of 8. The diabetic groups received 100 and 200 mg/kg Persian shallot extract, diabetic control and normal control received %0.9 saline for 30 days. At the end of treatments, fasting blood specimens were collected. The levels of FBS, HbA1c, insulin, T3 and T4 were measured. Our findings indicated that hydroalcoholic extract of Persian shallot significantly decreased serum levels of FBS and HbA1c in treated groups (in a dose dependent manner) (p<0.05). The serum levels of insulin and T3 slightly increased by Persian shallot but the T4 serum level was declined. These beneficial effects of Persian shallot extracts in diabetic rats could probably be due to the antioxidant capacity of its phenolic and diallyl disulfide content.

  5. The effect of Persian shallot (Allium hirtifolium Boiss.) extract on blood sugar and serum levels of some hormones in diabetic rats.

    PubMed

    Mehdi, Mahmoodi; Javad, Hosseini; Seyed-Mostafa, Hosseini-Zijoud; Mohammadreza, Mirzaee; Ebrahim, Mirzajani

    2013-03-01

    Diabetes mellitus (DM) is caused by hyperglycemia, resulting from defective insulin secretion or function. It is widely believed that the antioxidant micronutrients obtained from plants afford significant protection against diseases like diabetes mellitus. Present study was aimed to examine the effects of Persian shallot (Allium hirtifolium Boiss) on FBS, HbA1c, insulin, triiodothyronine (T3) and thyroxine (T4) levels in type 1 diabetic rats. Thirty two male Wistar rats were divided into 4 groups of 8. The diabetic groups received 100 and 200 mg/kg Persian shallot extract, diabetic control and normal control received %0.9 saline for 30 days. At the end of treatments, fasting blood specimens were collected. The levels of FBS, HbA1c, insulin, T3 and T4 were measured. Our findings indicated that hydroalcoholic extract of Persian shallot significantly decreased serum levels of FBS and HbA1c in treated groups (in a dose dependent manner) (p<0.05). The serum levels of insulin and T3 slightly increased by Persian shallot but the T4 serum level was declined. These beneficial effects of Persian shallot extracts in diabetic rats could probably be due to the antioxidant capacity of its phenolic and diallyl disulfide content. PMID:23455213

  6. In vitro antimicrobial activity of Persian shallot (Allium hirtifolium).

    PubMed

    Soroush, Setareh; Taherikalani, Morovat; Asadollahi, Parisa; Asadollahi, Khairollah; Taran, Mojtaba; Emaneini, Mohammad; Alizadeh, Sajjad

    2012-01-01

    Allium hirtifolium is a Persian native plant grown in cool mountain slopes of Iran. It has been used as a spice in Iran for many years. According to the literature review, there are no considerable reports on the antimicrobial properties of this plant. In this study, the antimicrobial activity of Persian shallot hydroalcoholic extract and F1 fraction of the plant (containing amino acid derivatives and/or other cationic compounds) was investigated on some Gram positive cocci and bacilli, Gram negative bacilli, two protozoa, a yeast and a fungus. Excellent activity against Candida albicans (MIC = 64 microg/ml, MBC = 128 microg/ml), Leishmania infantum (MIC = 0.2 mg/ml on the first day of study) and Trichomonas vaginalis (MIC = 5 microg/ml in PSDE form) and a moderate activity against Bacillus spp and Pseudomonas aeroginosa (MIC = 128 microg/ml) was observed. The results showed that this plant contains some anti-trichomonas and anti-leishmania components.

  7. In vitro antimicrobial activity of Persian shallot (Allium hirtifolium).

    PubMed

    Soroush, Setareh; Taherikalani, Morovat; Asadollahi, Parisa; Asadollahi, Khairollah; Taran, Mojtaba; Emaneini, Mohammad; Alizadeh, Sajjad

    2012-01-01

    Allium hirtifolium is a Persian native plant grown in cool mountain slopes of Iran. It has been used as a spice in Iran for many years. According to the literature review, there are no considerable reports on the antimicrobial properties of this plant. In this study, the antimicrobial activity of Persian shallot hydroalcoholic extract and F1 fraction of the plant (containing amino acid derivatives and/or other cationic compounds) was investigated on some Gram positive cocci and bacilli, Gram negative bacilli, two protozoa, a yeast and a fungus. Excellent activity against Candida albicans (MIC = 64 microg/ml, MBC = 128 microg/ml), Leishmania infantum (MIC = 0.2 mg/ml on the first day of study) and Trichomonas vaginalis (MIC = 5 microg/ml in PSDE form) and a moderate activity against Bacillus spp and Pseudomonas aeroginosa (MIC = 128 microg/ml) was observed. The results showed that this plant contains some anti-trichomonas and anti-leishmania components. PMID:23210319

  8. Antiproliferative activity of chloroformic extract of Persian Shallot, Allium hirtifolium, on tumor cell lines.

    PubMed

    Ghodrati Azadi, Hamideh; Ghaffari, Seyed Mahmood; Riazi, Gholam Hossein; Ahmadian, Shahin; Vahedi, Fatemeh

    2008-03-01

    Allium hirtifolim (Persian Shallot) belongs to Allium genus (Alliaceae family). We investigated the in vitro effects of chloroformic extract of A. hirtifolium and its Allicin on the proliferation of HeLa (cervical cancer), MCF7 (human, caucasion, breast, adenocarcinoma) and L929 (mouse, C3H/An, connective) cell lines. Our results showed that components of A. hirtifolium might inhibit proliferation of tumor cell lines. This inhibition in HeLa and MCF-7 cells was dose-dependent. The presence of Allicin was evaluated by TLC method in bulbs and the extract of A. hirtifolium was analyzed by HPLC. MTT test was performed 24, 48 and 72 h after cell culture. A significant decrease in cell lines was observed in HeLa and MCF-7 as compared to L929 cell lines. DNA fragmentation analysis revealed a large number of apoptotic cells in treated HeLa and MCF-7 cell groups, but no effects in L929 cells. Therefore A. hirtifolium might be a candidate for tumor suppression.

  9. Antiproliferative activity of chloroformic extract of Persian Shallot, Allium hirtifolium, on tumor cell lines.

    PubMed

    Ghodrati Azadi, Hamideh; Ghaffari, Seyed Mahmood; Riazi, Gholam Hossein; Ahmadian, Shahin; Vahedi, Fatemeh

    2008-03-01

    Allium hirtifolim (Persian Shallot) belongs to Allium genus (Alliaceae family). We investigated the in vitro effects of chloroformic extract of A. hirtifolium and its Allicin on the proliferation of HeLa (cervical cancer), MCF7 (human, caucasion, breast, adenocarcinoma) and L929 (mouse, C3H/An, connective) cell lines. Our results showed that components of A. hirtifolium might inhibit proliferation of tumor cell lines. This inhibition in HeLa and MCF-7 cells was dose-dependent. The presence of Allicin was evaluated by TLC method in bulbs and the extract of A. hirtifolium was analyzed by HPLC. MTT test was performed 24, 48 and 72 h after cell culture. A significant decrease in cell lines was observed in HeLa and MCF-7 as compared to L929 cell lines. DNA fragmentation analysis revealed a large number of apoptotic cells in treated HeLa and MCF-7 cell groups, but no effects in L929 cells. Therefore A. hirtifolium might be a candidate for tumor suppression. PMID:19002856

  10. 3-Keto umbilicagenin A and B, new sapogenins from Allium umbilicatum Boiss.

    PubMed

    Sadeghi, Masoud; Zolfaghari, Behzad; Troiano, Raffaele; Lanzotti, Virginia

    2015-04-01

    Two sapogenins, named 3-keto umbilicagenin A and B (1 and 2), possessing a novel chemical structure with a 3-keto group on the spirostane skeleton, have been isolated from Allium umbilicatum Boiss. Their chemical structure has been established through a combination of extensive spectroscopic analysis, mainly nuclear magnetic resonance and mass spectrometry, and chemical methods as (25R)-3-keto-spirostan-2α,5α,6β-triol (1) and (25R)-3-keto-spirostan-2α,5α-diol (2). The isolated compounds were tested for cytotoxic activity on J-774, murine monocyte/macrophage, and WEHI-164, murine fibrosarcoma cell lines.

  11. A Comparative Study of Allium Hirtifolium in Traditional and Modern Medicine

    PubMed Central

    Abdehvand, Laleh Zaheri; Soleymani, Samaneh

    2016-01-01

    Background: Shallots (wild garlic/Osghordion) with the scientific name of Allium hertifolium, is one of the most famous plants from the Alliaceae family. For a long time, shallots have been used as a source of food and medicine in Iran. The active ingredients of the plant could be referred to agapentagenin, allicin, omega-3, omega-6, and minerals such as potassium, sodium, magnesium, iron, copper, zinc, and manganese. This study was conducted to compare shallots in the traditional and modern medicine in order to make a better use of this precious plant. Methods: To collect appropriate data, resources and articles in trustworthy databases (e.g. Cochrane library, PubMed, Google Scholar) and traditional literature (e.g. Makhzan-ul-Adwiah, Canon, Zakhireh-ye Khwarazmshahi) were studied. Subsequently, the findings were reviewed, classified, and reported in a tabular format. Results: Shallots are rich in fatty acids and minerals with many pharmacological effects such as its effect on the respiratory and nervous system and blood dilution, as reflected in the modern medicine. However, certain effects as mentioned in traditional medicine (e.g. anti-warts, anti-lipoma, anti-kidney stone, and its diuretic effects) are not covered in research studies of the modern medicine. Conclusion: Depending on its natural habitats, shallots have different pharmacological effects for which many usages are mentioned in traditional medicine. Some of these effects have been investigated in modern medicine; however, further evaluation of its safety and dosages for clinical use is necessary. Furthermore, some cases have not been studied in modern medicine, which could be the basis for future research. PMID:27516650

  12. Exploring Allium species as a source of potential medicinal agents.

    PubMed

    Stajner, D; Milić, N; Canadanović-Brunet, J; Kapor, A; Stajner, M; Popović, B M

    2006-07-01

    It has been shown that Allium species may help to prevent tumor promotion, cardiovascular diseases and aging; all processes that are associated with free radicals. Therefore the Allium species of both cultivated species (Allium nutans L., Allium fistulosum L., Allium vineale L., Allium psekemense B. Fedtsch, Allium cepa L., Allium sativum L.) and wild species (Allium flavum L., Allium sphaerocephalum L., Allium atroviolaceum Boiss, Allium schenoprasum L., Allium vineale L., Allium ursinum L., Allium scorodoprasum L.) from various locations were investigated for their antioxidative properties. The leaves were examined for activities of antioxidative enzymes (catalase, peroxidase, superoxide-dismutase, glutathione-peroxidase), non-enzymic antioxidants (reduced glutathione and total flavonoids), content of soluble proteins, vitamin C, carotenoids, chlorophylls a and b, as well as the quantities of malonyldialdehyde and *OH and O2*- radicals. Using a contemporary spectroscopic fluorescent method, lipofuscin, 'plant age pigments' were determined. ESR spectroscopy was used to follow the decrease of oxygen radicals in the presence of extracts of Allium species in phosphate buffer (pH 7). The results showed that all Allium species had strong antioxidative properties due to their high concentration of total flavonoids, high content of carotenoids and chlorophylls, and very low concentrations of toxic oxygen radicals. ESR signals of DMPO-OH radical adducts, in the presence of Allium extracts in phosphate buffer (pH 7), were reduced by up to 94.3%. PMID:16676298

  13. Evaluation of Anti-Platelet Aggregation Effect of Some Allium Species

    PubMed Central

    Lorigooini, Zahra; Ayatollahi, Seyed Abdolmajid; Amidi, Salimeh; Kobarfard, Farzad

    2015-01-01

    Epidemiologic studies show that the cardiovascular diseases are associated with multiple factors such as raised serum total cholesterol, increased LDL, increased platelet aggregation, hypertension and smoking. In-vitro studies have confirmed the ability of some plants of Allium species to reduce these parameters. Therefore, we evaluated anti-platelet aggregation effect of some Allium species (Allium ampeloprasum, A. hirtifolium, A. haemanthoides, A. vavillovi, A. atroviolaceum, A. jesdianum, A. shelkovnikovii) using arachidonic acid (AA) and adenosine diphosphate (ADP) as platelet aggregation inducers. The screening results for methanolic extract of Allium species showed that the maximum effect of anti-platelet aggregation was related to A. atroviolaceum. This extract inhibited the in-vitro platelet aggregation induced by AA and ADP with IC50 values of 0.4881 (0.4826-0.4937) mg/ml and 0.4945 (0.4137-0.5911) mg/ml respectively. These results support the hypothesis that the dietary intake of Allium could be beneficial for prevention of cardiovascular diseases. PMID:26664390

  14. In Vitro Anti-Candida Activity of Zataria multiflora Boiss

    PubMed Central

    Dabbagh, Muhammad Ali; Fouladi, Zahra

    2007-01-01

    Zataria multiflora Boiss known as Avishan Shirazi (in Iran) is one of the valuable Iranian medicinal plants. The aim of study was to evaluate anti-Candida activity of Z. multiflora against different species of Candida in vitro. Anti-Candida activity of the aqueous, ethanolic and methanolic maceration extract of the aerial parts of Z. multiflora Boiss was studied in vitro. Anti-Candida activity against Candida species was done using serial dilutions of extracts in Sabouraud's dextrose agar. Minimal inhibitory concentration (MIC) of the methanolic and ethanolic extracts was 70.7 and 127 mg l−1, respectively. Aqueous extract showed no remarkable activity against Candida species. We conclude that methanolic extract of the aerial parts of Z. multiflora Boiss has more anti-Candida effect at 70.7 mg l−1 compared to ethanolic extract 127 mg l−1. In addition, the isolates of Candida parapsilosis were more susceptible to methanolic extract than other tested species. PMID:17965766

  15. Comparative study of antioxidant properties of wild growing and cultivated Allium species.

    PubMed

    Stajner, D; Igić, R; Popović, B M; Malencić, Dj

    2008-01-01

    Allium species are cultivated for the edible bulb, which is used mainly as flavoring in foods. Besides that, they could prevent tumor promotion and some processes that are associated with free radicals, such as cardiovascular diseases and aging. Therefore, different Allium species, both cultivated (Allium nutans L., A. fistulosum L., A. vineale L., A. pskemense B. Fedtsch, A. schoenoprasum L., A. cepa L. and A. sativum L.) and wild (A. flavum L., A. sphaerocephalum L., A. atroviolaceum Boiss, A. vineale L., A. ursinum L., A. scorodoprasum L., A. roseum L. and A. subhirsutum L.), were investigated in order to evaluate the antioxidant properties of their bulbs. This study reports on the results obtained for the bulb antioxidant enzyme activities (superoxide dismutase, catalase, guaiacol peroxidase, glutathione peroxidase), the quantities of non-enzymatic plant antioxidants (reduced glutathione and total flavonoids), the contents of soluble proteins, vitamin C, carotenoids, chlorophylls a and b, as well as for the quantities of malonyldialdehyde and .OH and O2.- radicals. PMID:17726730

  16. Chemical composition and anti-biofilm activity of Thymus sipyleus BOISS. subsp. sipyleus BOISS. var. davisianus RONNIGER essential oil.

    PubMed

    Ceylan, Ozgur; Ugur, Aysel

    2015-06-01

    In this study, antimicrobial and antibiofilm activities and the chemical composition of Thymus sipyleus BOISS. subsp. sipyleus BOISS. var. davisianus RONNIGER essential oil was evaluated. The essential oil was obtained by hydro-distillation and analyzed by gas chromatography-mass spectrometry. Fourteen compounds were characterized, having as major components thymol (38.31%) and carvacrol (37.95%). Minimum inhibitory concentrations (MICs) of oil and the major components were calculated by serial dilution method, and anti-biofilm effects by microplate biofilm assay against five Gram positive (Staphylococcus aureus MU 38, MU 40, MU 46, MU 47, Stahylococcus epidermidis MU 30) and five Gram negative (Pseudomonas aeruginosa MU 187, MU 188, MU 189, Pseudomonas fluorescens MU 180, MU 181) bacteria. It was found that MICs for essential oil, thymol and carvacrol were between 5 and 50 µl/ml, 0.125-0.5 µg/ml and 0.125-05 µl/ml, respectively. The results showed that doses of MIC produced a greater anti-biofilm influence than 0.5, 0.25 and 0.125 MIC. In the presence of essential oil (MIC), the mean biofilm formation value was equal to 67 ± 5.5% for P. aeruginosa MU 188, and essential oil (MIC) inhibition exceeds 60% for P. aeruginosa biofilms. The results also showed that carvacrol (MIC) was able to induce an inhibition 72.9 ± 4.1% for S.aureus (MU 40) biofilm. In addition, thymol (MIC) showed 68.6 ± 5.3% reduction in biofilm formation of P. fluorescens MU 181. This study demonstrated the antimicrobial and antibiofilm activity of T. sipyleus BOISS. subsp. sipyleus BOISS. var. davisianus RONNIGER essential oil and points out the exceptional efficiency of thymol and carvacrol, which could represent candidates in the treatment of Pseudomonas and Staphylococcus biofilms. PMID:25385321

  17. The constituents of essential oil: antimicrobial and antioxidant activity of Micromeria congesta Boiss. & Hausskn. ex Boiss. from East Anatolia.

    PubMed

    Herken, Emine Nur; Celik, Ali; Aslan, Mustafa; Aydınlık, Nilüfer

    2012-09-01

    The chemical composition, antimicrobial activity, total phenol content, total antioxidant activity, and total oxidant status of the essential oil from Micromeria congesta Boiss. & Hausskn. ex Boiss. were investigated. Steam distillation was used to obtain the essential oil, and the chemical analyses were performed by gas chromatography-mass spectrometry. The antimicrobial activity was tested by an agar disc diffusion method against the tested microorganisms: Bacillus subtilis NRRL B-744, Bacillus cereus NRRL B-3711, Staphylococcus aureus ATCC 12598, S. aureus ATCC 25923, S. aureus ATCC 25933, Escherichia coli 0157H7, E. coli ATCC25922, Micrococcus luteus NRLL B-4375, Enterococcus faecalis ATCC 19433, Proteus vulgaris RSKK 96026, and Yersinia enterecolitica RSKK 1501. The major compounds found in volatiles of M. congesta were piperitone oxide, linalool oxide, veratrole, pulegone, dihydro carvone, naphthalene, iso-menthone, para-menthone, and cyclohexanone. Compared to that of reference antibiotics, the antibacterial activity of the essential oil is considered as significant. Results showed that M. congesta has the potential for being used in food and medicine depending on its antioxidant and antibacterial activity.

  18. Allium ekimianum: a new species (Amaryllidaceae) from Turkey

    PubMed Central

    Ekşi, Gülnur; Koyuncu, Mehmet; Özkan, Ayşe Mine Gençler

    2016-01-01

    Abstract Allium ekimianum is described here as a new species. This taxon belongs to the genus Allium section Allium and grows in Elazığ Province (East Anatolia, Turkey). It is a narrowly distributed species and morphologically most similar to Allium asperiflorum and Allium sintenisii, and Allium erzincanicum but it is clearly differentiated due to the curved stem, smooth pedicel surfaces, bracteole arrangements at pedicel bases, tepal lengths and surfaces. In this study, a comprehensive description, distribution map of Allium ekimianum, identification key, and detailed illustrations are provided for Allium ekimianum and related taxa. PMID:27212884

  19. Flavones and Flavone Glycosides from Salvia macrosiphon Boiss

    PubMed Central

    Gohari, Ahmad Reza; Ebrahimi, Hakimeh; Saeidnia, Soodabeh; Foruzani, Mahdi; Ebrahimi, Puneh; Ajani, Yousef

    2011-01-01

    Salvia genus, which is generally called Maryam-Goli in the Persian language, belongs to Lamiaceae family and comprises 58 species in Iran. Four flavonoids plus a steroid compound were isolated from the ethyl acetate and methanol extracts of the aerial parts of Salvia macrosiphon Boiss, using different chromatographic methods on the silica gel and sephadex LH20. The structures of the isolated compounds were determined to be apigenin-7, 4’-dimethyl ether (1), β-sitosterol (2), salvigenin (3) apigenin-7-O-glucoside (4) and luteolin-7-O-glucoside (5) using the 1H, 13C-NMR and MS spectra in comparison with those reported in the literature. PMID:24250350

  20. Synthesis of silver nanoparticles using methanol and dichloromethane extracts of Pulicaria gnaphalodes (Vent.) Boiss. aerial parts.

    PubMed

    Chitsazi, Mohammad Reza; Korbekandi, Hassan; Asghari, Gholamreza; Bahri Najafi, Rahim; Badii, Akbar; Iravani, Siavash

    2016-01-01

    The objectives were to study the potential of Pulicaria gnaphalodes (Vent.) Boiss. aerial parts in production of nanoparticles and the effect of the extraction solvent on the produced nanoparticles. Methanol and dichloromethane extracts were prepared by percolation of the plant powder. Both the extracts of P. gnaphalodes (Vent.) Boiss. successfully produced small and polydispersed nanoparticles with low aggregates in early hours of the biotransformation. Methanol extract produced spherical and many single nanoparticles, whereas dichloromethane produced porous polyhedral and more aggregated nanoparticles. Methanol extract of this plant seems to be quiet useful for industrial scale production of nanoparticles.

  1. [Chromosomal organization of centromeric Ty3/gypsy retrotransposons in Allium cepa L. and Allium fistulosum L].

    PubMed

    Kiseleva, A V; Kirov, I V; Khrustaleva, L I

    2014-06-01

    This is the first report on the presence of Ty3/gypsy-like retrotransposons in the centromeric region of Allium cepa and Allium fistulosum. The paper identifies the putative Ty3/gypsy centromeric retrotransposons (CR) among the DNA sequences of A. cepa present in the NCBI database and evaluates their copy number in the genomes of Allium cepa and Allium fistulosum. The putative copy number of Ty3/gypsy CR constituted about 26000 for A. cepa and about 7000 for A. fistulosum. The chromosomal organization of Ty3/gypsy CR was analyzed with the help of fluorescent in situ hybridization (FISH). The 300-bp PCR products synthesized with genomic DNA of Allium cepa and Allium fistulosum and primers designed for the sequence ET645811 of A. cepa (Genome Survey Sequence database), displaying similarity to the reverse transcriptase of the CR Ty3/gypsy family, served as FISH hybridization probes. On the chromosomes of A. cepa, hybridization signals were mainly localized in the centromeric region. On the chromosomes of A. fistulosum the signals were less expressed in the centromeric regions, though they were abundant in other chromosomal regions. The pathways of evolution in these closely related species are discussed. PMID:25715457

  2. Collection and seed production of Allium acuminatum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a component of Greater Sage-Grouse and Southern Idaho Ground Squirrel habitat, Allium acuminatum Hook. (Taper-tip onion) has been targeted for use in restoration projects and conservation. Before a native plant can be used in large or small projects in the landscape quantities of propagules nee...

  3. Allium acuminatum Seed Production: First Look at Cultural Parameters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This is a report on the first year data for a two year project assessing seed production parameters for the native forb Allium acuminatum. As a component of greater sage-grouse and Southern Idaho ground squirrel habitat, Allium acuminatum Hook. (Taper-tip onion) has been targeted for use in restor...

  4. In vitro regeneration and Agrobacterium mediated genetic transformation of Artemisia aucheri Boiss.

    PubMed

    Sharafi, Ali; Sohi, Haleh Hashemi; Mirzaee, Hooman; Azadi, Pejman

    2014-10-01

    In the present study, we developed an efficient protocol for in vitro plant regeneration and genetically transformed root induction in medicinal plant Artemisia aucheri Boiss. Leaf explants were cultivated in MS medium supplemented by combination of plant growth regulators including α-naphthalene-acetic acid, 6-benzyl-aminopurine, indole-3-acetic acid and 2, 4-dichlorophenoxyaceticacid. The highest frequency of shoot organogenesis occurred on MS medium supplemented with 0.05 mg/l NAA plus 2 mg/l BA (96.3 %) and MS medium supplemented with 0.5 mg/l IAA plus 2 mg/l BA (88.3 %). Root induction was obtained on MS medium supplemented with 0.5 mg/l IBA. This is a simple, reliable, rapid and high efficient regeneration system for A. aucheri Boiss in short period via adventitious shoot induction approach. Also, an efficient genetically transformed root induction for A. aucheri was developed through Agrobacterium rhizogenes-mediated transformation by four bacterial strains, A4, ATCC15834, MSU440, and A13 (MAFF-02-10266). The maximum frequency of hairy root induction was obtained using MSU440 (93 %) and ATCC15834 (89 %) bacterial strains. Hairy root lines were confirmed by PCR using the rolB gene specific primers and Southern blot analysis.

  5. Chemical and genetic relationships among sage ( Salvia officinalis L.) cultivars and Judean sage ( Salvia judaica Boiss.).

    PubMed

    Böszörményi, Andrea; Héthelyi, Eva; Farkas, Agnes; Horváth, Györgyi; Papp, Nóra; Lemberkovics, Eva; Szoke, Eva

    2009-06-10

    The essential oil composition and genetic variability of common sage ( Salvia officinalis L.) and its three ornamental cultivars ('Purpurascens', 'Tricolor', and 'Kew Gold') as well as Judean sage ( Salvia judaica Boiss.) were analyzed by GC-FID, GC-MS, and random amplified polymorphic DNA (RAPD). Common sage and its cultivars contained the same volatile compounds; only the ratio of compounds differed. The main compounds were the sesquiterpene alpha-humulene and the monoterpenes beta-pinene, eucalyptol, and camphor. Judean sage contained mainly the sesquiterpenes beta-cubebene and ledol. All of the samples exhibited characteristic RAPD patterns that allowed their identification. Cluster analyses based on oil composition and RAPD markers corresponded very well to each other, suggesting that there is a strong relationship between the chemical profile and the genetic variability.

  6. Antioxidant, anti-inflammatory potential and chemical constituents of Origanum dubium Boiss., growing wild in Cyprus.

    PubMed

    Karioti, Anastasia; Milošević-Ifantis, Tanja; Pachopos, Nikitas; Niryiannaki, Niki; Hadjipavlou-Litina, Dimitra; Skaltsa, Helen

    2015-02-01

    Origanum dubium Boiss. is a flavouring herb widely used in Cyprus. In this study, both lipophilic and polar extracts of the aerial parts of O. dubium were investigated for their chemical contents and their antioxidant potential. Overall, 20 constituents were isolated and identified, belonging mainly to three significant classes of compounds: terpenes, phenolic derivatives, such as hydroquinone glycosides and flavonoids and alicyclic derivatives. None of them was previously reported as constituent of O. dubium The inhibitory potencies of all total extracts and the isolated compounds on lipid peroxidation and their interaction with 1,1-diphenyl-picrylhydrazyl (DPPH) activity is discussed. The polar extract showed strong interaction with DPPH stable radical and significant inhibition of lipoxygenase and lipid peroxidation.

  7. Chemical composition, antioxidant and antimicrobial effects of Tunisian Limoniastrum guyonianum Durieu ex Boiss extracts.

    PubMed

    Bouzidi, Amel; Benzarti, Anissa; Arem, Amira El; Mahfoudhi, Adel; Hammami, Saoussen; Gorcii, Mohamed; Mastouri, Maha; Hellal, Ahmed Noureddine; Mighri, Zine

    2016-07-01

    In the present investigation, extracts obtained from L. guyonianum Durieu ex Boiss. aerial parts were used to evaluate total phenolic, flavonoid and tannin contents. A study of antioxidant activities of the prepared samples was carried out on the basis of 1,1-Diphenyl-2-picrylhydrazyl (DPPH), 2-2'-azino-bis-(3-ethylbenz-thiazoline-6-sulfonic acid) (ABTS+.) and ferric reducing antioxidant power (FRAP) assays. Moreover, the efficiency of methanolic, chloroformic and petroleum ether extracts and the deriving fractions from the methanolic extract was tested against human bacterial and fungal pathogenic strains using micro dilution method in 96 multiwell microtiter plate. Furthermore, leaves and stems extracts were subjected to RP-HPLC for phenolic compounds identification. Results showed that polyphenolic contents and antioxidant activities varied considerably as function of solvent polarity. Moreover, antiradical capacities against DPPH, ABTS(+.) and reducing power were maxima in methanol aerial parts extract which showed the highest polyphenol contents (134mg CE/g DW). The antimicrobial activities showed that methanolic, chloroformic and petroleum ether extracts were found to be most potent against Pseudomonas aeruginosa and Staphylococcus aureus with MIC values of 23 and 46μ.mL(-1), respectively. The fractions F(13) and F(16) have a great antifungal potential against Candida glabrata, Candida krusei and Candida parapsilesis (MIC=39μ.mL(-1)). The RP-HPLC analysis lead the identification of gallic, procatechuic and trans-cinnamic acids, methyl-4-hydroxybenzoate, n-propyl-3,4,5-trihydroxybenzoate, epicatechin, naringin and myricetin in L. guyonianum Durieu ex Boiss. leaves and stems extracts. PMID:27393443

  8. The Allium Test--A Simple, Eukaryote Genotoxicity Assay.

    ERIC Educational Resources Information Center

    Babich, H.; Segall, M. A.; Fox, K. D.

    1997-01-01

    Explains the allium test in which roots are excised from onion bulblets grown in aqueous solutions of a test agent. Root tips are then isolated and stained with aceto-orcein, and chromosomal aberrations are microscopically observed. (Author/AIM)

  9. Effect of Allium cepa and Allium sativum on some immunological cells in rats.

    PubMed

    Mirabeau, Tatfeng Y; Samson, Enitan S

    2012-01-01

    Extracts of some spices have been reported to play a contributory role in enhancing immune function. We evaluated and compared the effect(s) of single and combined oral administration of fresh aqueous onion (Allium cepa) and garlic (Allium sativum) extracts at different concentrations on some immunological determinants in rats. CD₄ cells of the rats were estimated using Partec flow cytometric technique, while total and differential white blood cell (WBC) counts were estimated using the Sysmsex® automated haematology analyzing technique. Our findings revealed that, CD4 and total WBC counts were significantly increased (P≤0.05) in a dose-dependent manner in both onion (250mg/Kg/d: 349±11cell/ul and 2.75±0.15X10³cell/l; 500mg/Kg/d: 389±10cells/µl and 3.05±0.05 X10³cell/l; 750mg/Kg/d: 600±11cell/µl and 3.25±0.05X10³cells/l) and garlic (250mg/Kg/d: 410±10cell/ul and 2.85±0.15X10³cell/l; 500mg/Kg/d: 494±32cells/µl and 3.30±0.10 X10³cell/l; 750mg/Kg/d: 684±11cell/µl and 3.55±0.05X10³cells/l) treated rats when compared to the zero control (200±11cells/µl and 1.55±0.05X10³cells/l, respectively). Extract of garlic at 750mg/Kg/d had significantly increased the CD4 cells and total white cell count when compared to other concentrations (P≤0.05). However, no significant effect was observed on these parameters when extracts were combined (250mg/Kg/d: 252±21cell/µl and 1.80±0.10X10³cells/l; 500mg/Kg/d: 315±21cells/ul and 2.10±0.10X10³cells/l; 750mg/Kg/d: 368±10cells/µl and 2.35±0.05X10³cells/l, respectively), the differential WBC count showed a significant increase in the proportion of cell types (lymphocytes, neutophils and monocytes) (P≤0.05). The results from this study revealed the immune boosting capabilities of Allium cepa and Allium sativum, but underscored their synergistic activities. PMID:23983369

  10. Chemical composition and antimicrobial activities of Perovskia artemisioides Boiss. essential oil.

    PubMed

    Hafez Ghoran, Salar; Azadi, Boshra; Hussain, Hidayat

    2016-09-01

    The Perovskia artemisioides Boiss. essential oil obtained by hydrodistillation method of flowers growing wild in the north of Iran. The study led to the identification of 29 compositions by a combination of HP-5 GC-FID and GC-MS analytical techniques. The constituents were identified in P. artemisioides essential oil with 1,8-cineole (29.9%), camphor (29.5%) and α-pinene (7.8%) as main constituents as well as δ-3-carene (5.1%), camphene (3.3%) and β-pinene (2.7%). The oil was identified by a much larger amount of monoterpenes (87.7%) and sesquiterpenes (6.3%). The results of antimicrobial activity exhibit that the extracted essential oil has presented a high inhibiting activity against five microbial strains up to 18 mm. Also, the MIC and MBC results displayed that Staphylococcus aureus, Escherichia coli and Salmonella typhi were inhibited by P. artemisioides essential oil. Therefore, determination of essential oils in this research showed a relatively similar pattern to those published for the other species of Perovskia. PMID:26506460

  11. Chemical composition and antimicrobial activities of Perovskia artemisioides Boiss. essential oil.

    PubMed

    Hafez Ghoran, Salar; Azadi, Boshra; Hussain, Hidayat

    2016-09-01

    The Perovskia artemisioides Boiss. essential oil obtained by hydrodistillation method of flowers growing wild in the north of Iran. The study led to the identification of 29 compositions by a combination of HP-5 GC-FID and GC-MS analytical techniques. The constituents were identified in P. artemisioides essential oil with 1,8-cineole (29.9%), camphor (29.5%) and α-pinene (7.8%) as main constituents as well as δ-3-carene (5.1%), camphene (3.3%) and β-pinene (2.7%). The oil was identified by a much larger amount of monoterpenes (87.7%) and sesquiterpenes (6.3%). The results of antimicrobial activity exhibit that the extracted essential oil has presented a high inhibiting activity against five microbial strains up to 18 mm. Also, the MIC and MBC results displayed that Staphylococcus aureus, Escherichia coli and Salmonella typhi were inhibited by P. artemisioides essential oil. Therefore, determination of essential oils in this research showed a relatively similar pattern to those published for the other species of Perovskia.

  12. A validated method for analysis of Swerchirin in Swertia longifolia Boiss. by high performance liquid chromatography

    PubMed Central

    Shekarchi, M.; Hajimehdipoor, H.; Khanavi, M.; Adib, N.; Bozorgi, M.; Akbari-Adergani, B.

    2010-01-01

    Swertia spp. (Gentianaceae) grow widely in the eastern and southern Asian countries and are used as traditional medicine for gastrointestinal disorders. Swerchirin, one of the xanthones in Swertia spp., has many pharmacological properties, such as, antimalarial, antihepatotoxic, and hypoglycemic effects. Because of the pharmacological importance of Swerchirin in this investigation, it was purified from Swertia longifolia Boiss. as one of the main components and quantified by means of a validated high performance liquid chromatography (HPLC) technique. Aerial parts of the plant were extracted with acetone 80%. Phenolic and non-phenolic constituents of the extract were separated from each other during several processes. The phenolic fraction was injected into the semi-preparative HPLC system, which consisted of a C18 column and a gradient methanol: 0.1% formic acid mode. Using this method, we were able to purify six xanthones from the plant, in order to use them as standard materials. The analytical method was validated for Swerchirin as one of the most important components of the plant, with more pharmacological activities according to the validation parameters, such as, selectivity, linearity (r2 > 0.9998), precision (≤3.3), and accuracy, which were measured by the determination of recovery (98-107%). The limits of detection and quantization were found to be 2.1 and 6.3 μg/mL, respectively. On account of the speed and accuracy, the UV-HPLC method may be used for quantitative analysis of Swerchirin. PMID:20548931

  13. Population Variability of Main Secondary Metabolites in Hypericum lydium Boiss. (Hypericaceae)

    PubMed Central

    Çirak, Cüneyt; Radusiene, Jolita; Ivanauskas, Liudas; Jakstas, Valdas; Çamaş, Necdet

    2015-01-01

    In the present study, we investigated the variation in the content of naphthodianthrones hypericin and pseudohypericin, phloroglucinol derivatives hyperforin and adhyperforin, the phenolic acids as chlorogenic acid, neochlorogenic acid, 2,4-dihydroxybenzoic acid, and the flavonols, namely, hyperoside, isoquercitrin, quercitrin, quercetin, avicularin, rutin, (+)-catechin and (-)-epicatechin, and biflavonoid amentoflavone among wild H. lydium Boiss. populations from five different growing sites of Turkey for the first time. The aerial parts representing a total of 30 individuals were collected at full flowering and dissected into floral, leaf and stem tissues. After dried at room temperature, the plant materials were assayed for chemical contents by HPLC. The populations varied significantly in the content of chemical compounds. Among different plant parts, flowers were found to be main repository site of hyperforin, adhyperforin, hypericin, pseudohypericin, amentoflavone, quercetin, avicularin, rutin and (+)-catechin accumulations whereas rest of the compounds tested were accumulated primarily in leaves in all growing localities. The stems were the least accumulative organ that did not yield hyperforin, adhyperforin and rutin. The chemical diversity among the populations and plant parts is discussed as being possibly the result of different environmental, morphological and genetic factors. PMID:26330888

  14. Application of Zataria multiflora Boiss. and Cinnamon zeylanicum essential oils as two natural preservatives in cake

    PubMed Central

    Kordsardouei, Habibe; Barzegar, Mohsen; Sahari, Mohamad Ali

    2013-01-01

    Objective: Oxidation of oils has an important effect on nutritional and organoleptic properties of foodstuffs. Nowadays, new tendency has created a necessity to use natural compounds such as essential oils for producing functional foods. In this study, antioxidant, antifungal, and organoleptic properties of Zataria multiflora Boiss. (ZMEO) and Cinnamon zeylanicum essential oils (CZEO) have been checked as two natural preservatives in the cakes. Materials and Methods: The antioxidant activity of essential oils were determined by measuring thiobarbituric, peroxide, and free fatty acid values of prepared cakes during 60 days storage at 25 ˚C. Antifungal properties of essential oils were determined and given as the ratio of colony number in samples containing ZMEO and CZEO to the control. Results: Different concentrations of essential oils prevented oxidation rate and reducd preliminary and secondary oxidation products compared with butylate hydroxyanisole (BHA (100 and 200 ppm)) and control cakes. Moreover, ZMEO and CZEO at three concentrations (500, 1000, and 1500 ppm) reduced the fungal growth more than samples containing BHA (100 and 200 ppm) and the control. Conclusion: Our results showed that optimum concenteration of ZMEO and CZEO for using in the cakes was 500 ppm therefore it can be replaced instead of synthetic preservatives in foodstuffs. PMID:25050280

  15. Population Variability of Main Secondary Metabolites in Hypericum lydium Boiss. (Hypericaceae).

    PubMed

    Çirak, Cüneyt; Radusiene, Jolita; Ivanauskas, Liudas; Jakstas, Valdas; Çamaş, Necdet

    2015-01-01

    In the present study, we investigated the variation in the content of naphthodianthrones hypericin and pseudohypericin, phloroglucinol derivatives hyperforin and adhyperforin, the phenolic acids as chlorogenic acid, neochlorogenic acid, 2,4-dihydroxybenzoic acid, and the flavonols, namely, hyperoside, isoquercitrin, quercitrin, quercetin, avicularin, rutin, (+)-catechin and (-)-epicatechin, and biflavonoid amentoflavone among wild H. lydium Boiss. populations from five different growing sites of Turkey for the first time. The aerial parts representing a total of 30 individuals were collected at full flowering and dissected into floral, leaf and stem tissues. After dried at room temperature, the plant materials were assayed for chemical contents by HPLC. The populations varied significantly in the content of chemical compounds. Among different plant parts, flowers were found to be main repository site of hyperforin, adhyperforin, hypericin, pseudohypericin, amentoflavone, quercetin, avicularin, rutin and (+)-catechin accumulations whereas rest of the compounds tested were accumulated primarily in leaves in all growing localities. The stems were the least accumulative organ that did not yield hyperforin, adhyperforin and rutin. The chemical diversity among the populations and plant parts is discussed as being possibly the result of different environmental, morphological and genetic factors. PMID:26330888

  16. IDENTIFICATION OF DIFFERENT FUSARIUM SPP. IN ALLIUM SPP. IN GERMANY.

    PubMed

    Boehnke, B; Karlovsky, P; Pfohl, K; Gamliel, A; Isack, Y; Dehne, H W

    2015-01-01

    In 2013 Allium cepa bulbs from different fields in Northern and Southern Germany, seeds and sets from onion breeders were analysed for infestation with Fusarium species. The same investigation was done in 2014 with different edible Allium spp. from local markets. Different Fusarium spp. were isolated and identified by morphological characterisation. 24 different Fusarium spp. were identified. The diversity of Fusarium spp. and the intensity of infestation was higher on edible bulbs compared to the younger sets and seeds. The analysed onions and other edible Allium spp. from local markets showed also high contents of different Fusarium species. The most prevalent identified Fusarium sp. in the analysed Allium spp. in Germany was Fusarium oxysporum which can cause the Fusarium Basal Rot, followed by Fusarium solani. Fusarium proliferatum, which can cause the Fusarium Salmon Blotch in onions, could be detected in about half of the sampled onion fields and in approximately 10% of all analysed onions from fields. Also in the onion sets, on the surface of the seeds and in other edible Allium spp. F. proliferatum could be identified. Besides F. proliferatum, further mycotoxin producing Fusarium spp. like Fusarium equiseti or Fusarium tricinctum were identified. Other Fusarium spp. like Fusarium sporotrichioides and Fusarium poae were first described in Allium sp. in this study. The two most prevalent Fusarium spp. F. oxysporum and F. solani are able to produce mycotoxins like enniatins, fumonisins, moniliformin and T-2 toxins. Fusarium sp. like F. proliferatum, F. equiseti and F. tricinctum are able to produce additional toxins like beauvericins, zearalenone and diacetoscirpenol. This high number of Fusarium spp., which are able to produce a broad spectrum of different mycotoxins, could be a potential health risk for human beings and livestock.

  17. Chemical composition of shallot (Allium ascalonicum Hort.).

    PubMed

    Fattorusso, Ernesto; Iorizzi, Maria; Lanzotti, Virginia; Taglialatela-Scafati, Orazio

    2002-09-25

    An extensive phytochemical analysis of the polar extracts from bulbs of shallot, Allium ascalonicum Hort., led to the isolation of two new furostanol saponins, named ascalonicoside A1/A2 (1a/1b) and ascalonicoside B (4), respectively, along with compounds 2a and 2b, most likely extraction artifacts. On the basis of 2D NMR and mass spectrometry data, the structures of the novel compounds were elucidated as furost-5(6)-en-3beta,22alpha-diol 1beta-O-beta-D-galactopyranosyl 26-O-[alpha-L-rhamnopyranosyl-(1-->2)-O-beta-D-glucopyranoside] (1a), its epimer at position 22 (1b), and furost-5(6),20(22)-dien-3beta-ol 1beta-O-beta-D-galactopyranosyl 26-O-[alpha-L-rhamnopyranosyl-(1-->2)-O-beta-D-glucopyranoside] (4). This is the first report of furostanol saponins in A. ascalonicum. High concentrations of quercetin, isorhamnetin, and their glycosides were also isolated and described.

  18. Effects of cypermethrin on Allium cepa.

    PubMed

    Çavuşoğlu, Kültiğin; Kaya, Arzu; Yilmaz, Fadime; Yalçin, Emine

    2012-10-01

    In this study, toxic effects of the cypermethrin in Allium cepa L. cells were investigated. For this aim, we investigated the changes in pigment contents, antioxidant enzymes, mitotic index and chromosomal abnormalities as indicators of toxicity. The seeds were treated with different doses (1.5, 3.0, 6.0 ppm) of cypermethrin for 72 h. The result showed that there was a significant alteration in the tested parameters depending on treatment dose in the seeds exposed to cypermethrin when compared to the control group. Cypermethrin exposure significantly reduced the carotenoid, chlorophyll a and b pigments in all treatment groups. The activity of superoxide dismutase showed a concentration-time dependent increase and the maximum increase was observed on day 15 of treatment at 6.0 ppm cypermethrin exposure. The activity of catalase increased gradually with increasing cypermethrin concentration, but a soft decrease in CAT activity was decreased after 15 days of 1.5 ppm and 3.0 ppm cypermethrin treatment. In the roots treated with 1.5, 3.0, and 6.0 ppm cypermethrin, the level of malondialdehyde was about 1.8, 2.4, and 3.4 times higher than the control group, respectively. It was also found that cypermethrin has a mitodepressive action on mitosis, and the MI was decreased depending on the dose of cyprmethrin. All of the concentrations of cypermethrin induced chromosomal abnormalities and the most common abnormality observed in the present study was chromosome bridges. PMID:21370380

  19. Electrophoretic analysis of Allium alien addition lines.

    PubMed

    Peffley, E B; Corgan, J N; Horak, K E; Tanksley, S D

    1985-12-01

    Meiotic pairing in an interspecific triploid of Allium cepa and A. fistulosum, 'Delta Giant', exhibits preferential pairing between the two A. cepa genomes, leaving the A. fistulosum genome as univalents. Multivalent pairing involving A. fistulosum chromosomes occurs at a low level, allowing for recombination between the genomes. Ten trisomies were recovered from the backcross of 'Delta Giant' x A. cepa cv., 'Temprana', representing a minimum of four of the eight possible alien addition lines. The alien addition lines possessed different A. fistulosum enzyme markers. Those markers, Adh-1, Idh-1 and Pgm-1 reside on different A. fistulosum chromosomes, whereas Pgi-1 and Idh-1 may be linked. Diploid, trisomic and hyperploid progeny were recovered that exhibited putative pink root resistance. The use of interspecific plants as a means to introgress A. fistulosum genes into A. cepa appears to be successful at both the trisomic and the diploid levels. If introgression can be accomplished using an interspecific triploid such as 'Delta Giant' to generate fertile alien addition lines and subsequent fertile diploids, or if introgression can be accomplished directly at the diploid level, this will have accomplished gene flow that has not been possible at the interspecific diploid level.

  20. GC and GC-MS analysis of the essential oil of Nepeta cilicica Boiss. ex Benth. from Lebanon.

    PubMed

    Formisano, Carmen; Rigano, Daniela; Arnold, Nelly Apostolides; Piozzi, Franco; Senatore, Felice

    2013-01-01

    The hydrodistillation of the aerial parts of Nepeta cilicica Boiss. ex Benth., collected in Lebanon in the Horsh Ehden reserve, yielded 0.13% (w/w) of essential oil. Gas chromatography (GC) and GC-mass spectroscopy analysis enabled the identification of 75 compounds representing 96.8% of the total oil. The most abundant compounds were spathulenol (15.1%), hexadecanoic acid (14%), δ-cadinene (5.5%) and α-copaene (4.5%). On the whole, the oil was constituted mainly by sesquiterpenes (45.9%), among which sesquiterpene hydrocarbons (27.6%) slightly prevailed over oxygenated sesquiterpenes (18.3%).

  1. GC and GC-MS analysis of the essential oil of Nepeta cilicica Boiss. ex Benth. from Lebanon.

    PubMed

    Formisano, Carmen; Rigano, Daniela; Arnold, Nelly Apostolides; Piozzi, Franco; Senatore, Felice

    2013-01-01

    The hydrodistillation of the aerial parts of Nepeta cilicica Boiss. ex Benth., collected in Lebanon in the Horsh Ehden reserve, yielded 0.13% (w/w) of essential oil. Gas chromatography (GC) and GC-mass spectroscopy analysis enabled the identification of 75 compounds representing 96.8% of the total oil. The most abundant compounds were spathulenol (15.1%), hexadecanoic acid (14%), δ-cadinene (5.5%) and α-copaene (4.5%). On the whole, the oil was constituted mainly by sesquiterpenes (45.9%), among which sesquiterpene hydrocarbons (27.6%) slightly prevailed over oxygenated sesquiterpenes (18.3%). PMID:23772712

  2. [The use of RAPD and ITE molecular markers to study genetical structure of the Crimean population of Triticum boeoticum Boiss].

    PubMed

    Mallabaeva, D Sh; Ignatov, A N; Sheĭko, I A; Isikov, V P; Geliuta, V P; Boĭko, N G; Seriapin, A A; Dorokhov, D B

    2007-01-01

    Wild wheat Triticum boeoticum Boiss. is the rare species are included in the Red Book of Ukraine. This species are reducing the magnitude of population and the area of distribution under anthropogenic activity. We studied genetic structure of two populations of T. boeoticum, located on Sapun Mountain and in Baidar Valley in Crimea. According RAPD and ITE molecular analysis we have estimated that the population of T. boeoticum on Sapun Mountain is genetically more impoverished than a population from the Baidar Valley. For preservation of maximal natural genetic polymorphism of the rare species it is recommended to direct efforts to preservations of a population of T. boeoticum from the Baidar Valley.

  3. Screening and incorporation of rust resistance from Allium cepa into bunching onion (Allium fistulosum) via alien chromosome addition.

    PubMed

    Wako, Tadayuki; Yamashita, Ken-ichiro; Tsukazaki, Hikaru; Ohara, Takayoshi; Kojima, Akio; Yaguchi, Shigenori; Shimazaki, Satoshi; Midorikawa, Naoko; Sakai, Takako; Yamauchi, Naoki; Shigyo, Masayoshi

    2015-04-01

    Bunching onion (Allium fistulosum L.; 2n = 16), bulb onion (Allium cepa L. Common onion group), and shallot (Allium cepa L. Aggregatum group) cultivars were inoculated with rust fungus, Puccinia allii, isolated from bunching onion. Bulb onions and shallots are highly resistant to rust, suggesting they would serve as useful resources for breeding rust resistant bunching onions. To identify the A. cepa chromosome(s) related to rust resistance, a complete set of eight A. fistulosum - shallot monosomic alien addition lines (MAALs) were inoculated with P. allii. At the seedling stage, FF+1A showed a high level of resistance in controlled-environment experiments, suggesting that the genes related to rust resistance could be located on shallot chromosome 1A. While MAAL, multi-chromosome addition line, and hypoallotriploid adult plants did not exhibit strong resistance to rust. In contrast to the high resistance of shallot, the addition line FF+1A+5A showed reproducibly high levels of rust resistance.

  4. Efficacy of the Bunium persicum (Boiss) Essential Oil against Acute Toxoplasmosis in Mice Model

    PubMed Central

    TAVAKOLI KARESHK, Amir; KEYHANI, Amir; MAHMOUDVAND, Hossein; TAVAKOLI OLIAEI, Razieh; ASADI, Arash; ANDISHMAND, Moazameh; AZZIZIAN, Hossein; BABAEI, Zahra; ZIA-ALI, Naser

    2015-01-01

    Background: We evaluated the in vivo activity of Bunium persicum (Boiss) essential oil on infected mice with acute toxoplasmosis. Methods: To evaluate prophylactic effects, male NMRI mice received B. persicum essential oil at the concentrations of 0.05 and 0.1 mL/kg for 14 days. After 24 h mice were infected intraperitonealy with 1×104 tachyzoites of T. gondii, RH strain. In order to investigate therapeutic effects, mice were infected and then received B. persicum oil at the concentrations of 0.05 and 0.1 ml/kg two times a day for 5 days. The time/mean time of death in all infected mice and the number of tachyzoites from infected mice were recorded. Results: The time/mean time of death of infected mice was 8 and 9 days after oral administration of B. persicum oil at the concentration of 0.05 and 0.1 mL/kg, respectively (P<0.05). In contrast, the time/mean time of death control group was 5 days. In addition, B. persicum significantly reduced the mean number of tachyzoites compared with control group. The time/mean time of death of infected mice was 6 and 7 days after oral administration of B. persicum essential oil at the concentration of 0.05 and 0.1 mL/kg, respectively. In contrast, the time/mean time of death control group was 5 days. B. persicum especially at the concentration of 0.1 ml/kg significantly reduced the mean number of tachyzoites compared with control group. Conclusion: The results showed the potential of B. persicum essential oil as a natural source for the production of new prophylactic agent for use in toxoplasmosis. PMID:26811730

  5. Chemical and genetic diversity of Zataria multiflora Boiss. accessions growing wild in Iran.

    PubMed

    Hadian, Javad; Ebrahimi, Samad Nejad; Mirjalili, Mohammad Hossein; Azizi, Ali; Ranjbar, Hamid; Friedt, Wolfgang

    2011-01-01

    Zataria multiflora Boiss. is an aromatic shrub belonging to the Lamiaceae family. Its aerial parts are used in the traditional medicine and in the pharmaceutical and food industries. The terpenoid and genetic profiles of 18 accessions of Z. multiflora, collected in different locations in Iran, have been analyzed by GC/FID and GC/MS or by AFLP (amplified fragment length polymorphism) analyses, respectively. Altogether, 56 compounds were identified in the essential oils, with the major constituents being thymol (6.0-54.9%), carvacrol (0.7-50.6%), linalool (1.2-46.8%), and p-cymene (1.6-14.8%). On the basis of the essential-oil composition, the 18 accessions were divided into four groups. The first group was characterized by a high content of carvacrol, thymol, and linalool, the second group was dominated by carvacrol, thymol, and p-cymene, the third group was characterized by a high concentration of thymol and a low content of carvacrol and p-cymene, and the forth group contained linalool and carvacrol as the main components. The AFLP results revealed that the average genetic similarity (GS) between the accessions was 0.61, ranging from 0.40 to 0.77. The UPGMA (unweighted pair-group method with arithmetic mean) cluster analysis divided all accessions into five groups at a similarity level of 0.60. The two clusters generated, the first based on the essential-oil compositions and the second on the AFLP data, showed a different pattern of relationships among the accessions. The knowledge of the Z. multiflora chemotype diversity, illustrated in this study, will allow an improvement of the homogeneity of the plant material for the production of different types of essential oils, depending on the demands of the pharmaceutical and food industries for specific uses. PMID:21259428

  6. Tordylium persicum Boiss. & Hausskn extract: A possible alternative for treatment of pediatric infectious diseases.

    PubMed

    Sharifi-Rad, J; Fallah, F; Setzer, W N; Entezari Heravi, R; Sharifi-Rad, M

    2016-01-01

    Antimicrobial herbal compounds are one of the important medical resources, and in order to help alleviate the spread of the pediatric infectious diseases, identification of additional bioactive phytochemicals and herbal extracts will be practical in treating illnesses. In the present work, antimicrobial activities various extracts of Tordylium persicum Boiss. & Hausskn aerial parts were determined against five Gram-positive bacteria, five Gram-negative bacteria, two fungi, and Echinococcus granulosus. Antimicrobial activities were assayed using both disk diffusion and microbroth dilution methods. Scolicidal activity was assayed by the Smyth and Barrett method. Also total phenol and total flavonoid contents for plant extracts were assayed. Results showed that the methanolic extract was more effective on all microbes. The results showed that Streptococcus pyogenes was the most susceptible to the methanolic extract (MIC = 25.9 ± 0.0 µg/mL), while Proteus vulgaris was the most resistant strain (MIC = 295.3 ± 0.0 µg/mL) among all bacteria evaluated. The extracts showed significant activity versus E. granulosus (P < 0.5) with dose-dependent inhibitions of the protoscolices. The high concentration of total polyphenolics (294.5 ± 0.1 GAE/g DW) and flavonoids (105.7 ± 0.3 mg CE/g DW) may be responsible for these activities. Our study is first evaluation on antimicrobial and scolicidal activities of T. persicum. Due to the appearance of antibiotic-resistance, ourstudy suggested that methanol extracts of this plant are appropriate candidate for traditional curative uses and it can be utilized in the pediatric infectious disease therapy, especially pediatric infectious disease. PMID:27585257

  7. Chemical constituents of Swertia longifolia Boiss. with α-amylase inhibitory activity

    PubMed Central

    Saeidnia, Soodabeh; Ara, Leila; Hajimehdipoor, Homa; Read, Roger W.; Arshadi, Sattar; Nikan, Marjan

    2016-01-01

    α-Amylase inhibitors play a critical role in the control of diabetes and many of medicinal plants have been found to act as α-amylase inhibitors. Swertia genus, belonging to the family Gentianaceae, comprises different species most of which have been used in traditional medicine of several cultures as antidiabetic, anti-pyretic, analgesic, liver and gastrointestinal tonic. Swertia longifolia Boiss. is the only species of Swertia growing in Iran. In the present investigation, phytochemical study of S. longifolia was performed and α-amylase inhibitory effects of the plant fractions and purified compounds were determined. Aerial parts of the plant were extracted with hexane, chloroform, methanol and water, respectively. The components of the hexane and chloroform fractions were isolated by different chromatographic methods and their structures were determined by 1H NMR and 13C NMR data. α-Amylase inhibitory activity was determined by a colorimetric assay using 3,5-dinitro salysilic acid. During phytochemical examination, α-amyrin, β-amyrin and β-sitosterol were purified from the hexane fraction, while ursolic acid, daucosterol and swertiamarin were isolated from chloroform fraction. The results of the biochemical assay revealed α-amylase inhibitory activity of hexane, chloroform, methanol and water fractions, of which the chloroform and methanol fractions were more potent (IC50 16.8 and 18.1 mg/ml, respectively). Among examined compounds, daucosterol was found to be the most potent α-amylase inhibitor (57.5% in concentration 10 mg/ml). With regard to α-amylase inhibitory effects of the plant extracts, purified constituents, and antidiabetic application of the species of Swertia genus in traditional medicine of different countries, S. longifolia seems more appropriate species for further mechanistic antidiabetic evaluations. PMID:27051429

  8. Comparison of antispasmodic effect of hydroalcoholic extract of Dracocephalum kotschyi Boiss. in rat uterus and ileum

    PubMed Central

    Sadraei, Hassan; Asghari, Gholamreza; Alinejad, Mahla

    2016-01-01

    Dracocephalum kotschyi Boiss. is a traditional medicine with antispasmodic activities. The objective of this research was to study antispasmodic activities of hydroalcoholic extract of D. kotschyi on rat isolated uterus contractions for comparison with isolated ileum. Hydroalcoholic extract was obtained from aerial part of D. kotschyi using percolation method. A portion of rat ileum or uterus was suspended in Tyrode's solution at 37°C and gassed with O2. Effect of D. kotschyi extract was assessed on ileum or uterus contractions induced by KCl (80 mM), acetylcholine (ACh, 500 nM), electrical field stimulation (EFS) or oxytocin (0.0005 IU/mL). The extract of D. kotschyi concentration-dependently inhibited ileum responses to KCl (IC50 = 65 ± 18 μg/mL), ACh (IC50 = 102 ± 18 μg/mL) and EFS (IC50 = 117 ± 29 μg/mL). The extract of D. kotschyi also concentration-dependently inhibited uterus responses to KCl (IC50 = 453 ± 64μg/mL), ACh (IC50 = 58 ± 9 μg/mL), EFS (IC50 = 22 ± 3 μg/mL) as well as oxytocin (IC50 = 70 ± 11 μg/mL). From this experiment it was concluded that D. kotschyi extract possesses antispasmodic activities on both smooth muscle of ileum and uterus. In comparison, the extract was more effective inhibitor of ACh and EFS responses in rat uterus than on the ileum. On the other hand, the extract was a more potent inhibitor of KCl response on rat ileum. However, the extract was found to be a potent inhibitor of oxytocin-induced contraction of rat uterus. These results indicate that D. kotschyi extract may contain components that might be useful lead compounds for prevention of uterus spasm.

  9. Antinociceptive and Anti-Inflammatory Activities of Teucrium persicum Boiss. Extract in Mice

    PubMed Central

    Miri, Abdolhossein; Sharifi-Rad, Javad; Tabrizian, Kaveh; Nasiri, Ali Akbar

    2015-01-01

    Background. Therapeutic properties of Teucrium species as antioxidant, antibacterial, analgesic, anticancer, diuretic, and tonic compounds have been proved earlier. Materials and Methods. In this study, the antinociceptive and anti-inflammatory effects of the aqueous extract of Teucrium persicum on chronic pain, sciatic nerve ligation as a model of neuropathic pain, and inflammatory models were investigated by formalin, hot-plate, and cotton pellet-induced granuloma models in mice, respectively. T. persicum aqueous extracts (100, 200, and 400 mg/kg) were orally gavaged for one week. On 8th day, the time spent and the number of lickings were recorded in formalin test. Morphine and Diclofenac were used intraperitoneally as positive controls. In sciatic nerve ligated animals, as a model of neuropathic pain, doses (100, 200, and 400 mg/kg) of T. persicum extract (TPE) were orally gavaged for 14 consecutive days. The analgesic effect of this extract was examined 14 days after sciatic nerve ligation using the hot-plate test. Controls received saline and Imipramine (40 mg/kg, i.p.) was used a positive control for neuropathic pain model. Results. In the formalin test, a week oral gavage of all TPE doses (100, 200, and 400 mg/kg) caused a significant decrease on the licking response compared to the control negative animals. In the hot-plate test, doses of 200 and 400 mg/kg showed significant analgesic effects in sciatic nerve ligated animals. Oral gavaged of TPE revealed significant analgesic effect on chronic pain in both formalin test and sciatic nerve ligated animals. The TPEs did not have any significant anti-inflammatory effects in cotton pellet-induced granuloma formation in mice. Conclusions. These results suggest that the aqueous extract from T. persicum Boiss. produced antinociceptive effects. Its exact mechanism of action still remains indistinct. PMID:26649227

  10. Comparison of antispasmodic effect of hydroalcoholic extract of Dracocephalum kotschyi Boiss. in rat uterus and ileum

    PubMed Central

    Sadraei, Hassan; Asghari, Gholamreza; Alinejad, Mahla

    2016-01-01

    Dracocephalum kotschyi Boiss. is a traditional medicine with antispasmodic activities. The objective of this research was to study antispasmodic activities of hydroalcoholic extract of D. kotschyi on rat isolated uterus contractions for comparison with isolated ileum. Hydroalcoholic extract was obtained from aerial part of D. kotschyi using percolation method. A portion of rat ileum or uterus was suspended in Tyrode's solution at 37°C and gassed with O2. Effect of D. kotschyi extract was assessed on ileum or uterus contractions induced by KCl (80 mM), acetylcholine (ACh, 500 nM), electrical field stimulation (EFS) or oxytocin (0.0005 IU/mL). The extract of D. kotschyi concentration-dependently inhibited ileum responses to KCl (IC50 = 65 ± 18 μg/mL), ACh (IC50 = 102 ± 18 μg/mL) and EFS (IC50 = 117 ± 29 μg/mL). The extract of D. kotschyi also concentration-dependently inhibited uterus responses to KCl (IC50 = 453 ± 64μg/mL), ACh (IC50 = 58 ± 9 μg/mL), EFS (IC50 = 22 ± 3 μg/mL) as well as oxytocin (IC50 = 70 ± 11 μg/mL). From this experiment it was concluded that D. kotschyi extract possesses antispasmodic activities on both smooth muscle of ileum and uterus. In comparison, the extract was more effective inhibitor of ACh and EFS responses in rat uterus than on the ileum. On the other hand, the extract was a more potent inhibitor of KCl response on rat ileum. However, the extract was found to be a potent inhibitor of oxytocin-induced contraction of rat uterus. These results indicate that D. kotschyi extract may contain components that might be useful lead compounds for prevention of uterus spasm. PMID:27651808

  11. Comparison of antispasmodic effect of hydroalcoholic extract of Dracocephalum kotschyi Boiss. in rat uterus and ileum.

    PubMed

    Sadraei, Hassan; Asghari, Gholamreza; Alinejad, Mahla

    2016-07-01

    Dracocephalum kotschyi Boiss. is a traditional medicine with antispasmodic activities. The objective of this research was to study antispasmodic activities of hydroalcoholic extract of D. kotschyi on rat isolated uterus contractions for comparison with isolated ileum. Hydroalcoholic extract was obtained from aerial part of D. kotschyi using percolation method. A portion of rat ileum or uterus was suspended in Tyrode's solution at 37°C and gassed with O2. Effect of D. kotschyi extract was assessed on ileum or uterus contractions induced by KCl (80 mM), acetylcholine (ACh, 500 nM), electrical field stimulation (EFS) or oxytocin (0.0005 IU/mL). The extract of D. kotschyi concentration-dependently inhibited ileum responses to KCl (IC50 = 65 ± 18 μg/mL), ACh (IC50 = 102 ± 18 μg/mL) and EFS (IC50 = 117 ± 29 μg/mL). The extract of D. kotschyi also concentration-dependently inhibited uterus responses to KCl (IC50 = 453 ± 64μg/mL), ACh (IC50 = 58 ± 9 μg/mL), EFS (IC50 = 22 ± 3 μg/mL) as well as oxytocin (IC50 = 70 ± 11 μg/mL). From this experiment it was concluded that D. kotschyi extract possesses antispasmodic activities on both smooth muscle of ileum and uterus. In comparison, the extract was more effective inhibitor of ACh and EFS responses in rat uterus than on the ileum. On the other hand, the extract was a more potent inhibitor of KCl response on rat ileum. However, the extract was found to be a potent inhibitor of oxytocin-induced contraction of rat uterus. These results indicate that D. kotschyi extract may contain components that might be useful lead compounds for prevention of uterus spasm. PMID:27651808

  12. Antibacterial, anti-fungal and phytotoxic activities of Ferula narthex Boiss.

    PubMed

    Bashir, Shumaila; Alam, Mahboob; Ahmad, Bashir; Aman, Akhtar

    2014-11-01

    Crude methanolic extract of roots, aerial parts and its subsequent fractions of Ferula narthex Boiss were tested for antibacterial, anti-fungal and phytotoxic activities. Crude methanolic extract of roots and its fractions showed significant antibacterial effect against P.aeruginosa (86.95%, 73.91, 69.59, 78.26 & 73.91%) represented by percent inhibition except ethyl acetate (EtoAc) fraction. The EtoAc fraction of roots and aerial parts showed significant activity against E. coli (80%), S. typhi (81.2 & 81.25%) and S. pneumoniae (80%). The n-hexane, chloroform and aqueous fractions of aerial parts showed significant activity against P. aeruginosa (78.26, 69.56 & 73.91%). Following fungal strains (T. longifusus, C. albicans, A. flavus, M. canis, F. solani, C. glabrata) were also used for anti-fungal activity. Among tested samples only crude methanol extract of roots, n-hexane and chloroform fraction showed moderate anti-fungal activity against M. canis (40, 35 & 30%) represented by percent inhibition. The remaining fractions showed no effect on tested fungi. Different oils fractions were also tested against above fungal strains. Fraction I, II & V showed mild to moderate activity against M. canis (40, 40 & 25%). Phytotoxic effect of tested samples of roots, aerial part and its fractions showed concentration dependent growth inhibition. Maximum phytotoxic effect was noted for n-hexane and aqueous fraction (50% growth inhibition). The remaining tested samples showed mild effect on growth of Lemna minor plant. PMID:25362591

  13. Histone modifications associated with drought tolerance in the desert plant Zygophyllum dumosum Boiss.

    PubMed

    Granot, Gila; Sikron-Persi, Noga; Gaspan, Ofer; Florentin, Assa; Talwara, Susheela; Paul, Laju K; Morgenstern, Yaakov; Granot, Yigal; Grafi, Gideon

    2009-12-01

    Zygophyllum dumosum Boiss. is a perennial Saharo-Arabian phytogeographical element and a dominant shrub on the rocky limestone southeast-facing slopes of the Negev desert. The plant is highly active during the winter, and semideciduous during the dry summer, i.e., it sheds its leaflets, while leaving the thick, fleshy petiole green and rather active during the dry season. Being resistant to extreme perennial drought, Z. dumosum appears to provide an intriguing model plant for studying epigenetic mechanisms associated with drought tolerance in natural habitats. The transition from the wet to the dry season was accompanied by a significant decrease in nuclear size and with posttranslational modifications of histone H3 N-terminal tail. Dimethylation of H3 at lysine 4 (H3K4)--a modification associated with active gene expression--was found to be high during the wet season but gradually diminished on progression to the dry season. Unexpectedly, H3K9 di- and trimethylation as well as H3K27 di- and trimethylation could not be detected in Z. dumosum; H3K9 monomethylation appears to be prominent in Z. dumosum during the wet but not during the dry season. Contrary to Z. dumosum, H3K9 dimethylation was detected in other desert plants, including Artemisia sieberi, Anabasis articulata and Haloxylon scoparium. Taken together, our results demonstrate dynamic genome organization and unique pattern of histone H3 methylation displayed by Z. dumosum, which could have an adaptive value in variable environments of the Negev desert.

  14. Antidiarrhoeal assessment of hydroalcoholic and hexane extracts of Dracocephalum kotschyi Boiss. and apigenin in mice

    PubMed Central

    Sadraei, Hassan; Asghari, Gholamreza; Shahverdi, Farzaneh

    2016-01-01

    Dracocephalum kotschyi Boiss, a member of Labiatae family, is a native plant to Iran, which has been reported to have immunomodulatory, antihyperlipidemic and antispasmodic activities. The objective of this research was to study the antispasmodic and antidiarrhoeal activities of hydroalcoholic and hexane extracts of D. kotschyi in mice. Furthermore, the antidiarrhoeal and antispasmodic effect of apigenin, a flavonoid constituent of D. kotschyi, was also studied. Hydroalcoholic and hexane extracts were obtained from aerial part of D. kotschyi using percolation method. Antispasmodic effect of the test compounds was assessed by measurement of small intestine transit following oral administration of a charcoal meal. Diarrhoea was induced by administration of either castor oil (0.5 ml) or magnesium sulphate (MgSO4) (10% w/v solution). Both the hydroalcoholic and hexane extracts of D. kotschyi (10 and 20 mg/kg) reduced the intestinal charcoal meal transit. Loperamide (2 mg/kg) and apigenin (2 and 10 mg/kg) inhibited intestinal movement of the charcoal meal and also inhibited castor oil and MgSO4-induced diarrhoea. The hydroalcoholic and hexane extracts of D. kotschyi (10 and 20 mg/kg) also significantly inhibited the castor oil and MgSO4-induced diarrhoea in mice in comparison with the vehicle-treated control groups. This study confirms that both the hydroalcoholic and hexane extracts of D. kotschyi has antispasmodic and antidiarrhoeal properties in vivo and could be a suitable remedy for treatment of gastrointestinal disorders in which smooth muscle spasm and/or diarrhoea plays a significant roles. PMID:27499789

  15. Histone modifications associated with drought tolerance in the desert plant Zygophyllum dumosum Boiss.

    PubMed

    Granot, Gila; Sikron-Persi, Noga; Gaspan, Ofer; Florentin, Assa; Talwara, Susheela; Paul, Laju K; Morgenstern, Yaakov; Granot, Yigal; Grafi, Gideon

    2009-12-01

    Zygophyllum dumosum Boiss. is a perennial Saharo-Arabian phytogeographical element and a dominant shrub on the rocky limestone southeast-facing slopes of the Negev desert. The plant is highly active during the winter, and semideciduous during the dry summer, i.e., it sheds its leaflets, while leaving the thick, fleshy petiole green and rather active during the dry season. Being resistant to extreme perennial drought, Z. dumosum appears to provide an intriguing model plant for studying epigenetic mechanisms associated with drought tolerance in natural habitats. The transition from the wet to the dry season was accompanied by a significant decrease in nuclear size and with posttranslational modifications of histone H3 N-terminal tail. Dimethylation of H3 at lysine 4 (H3K4)--a modification associated with active gene expression--was found to be high during the wet season but gradually diminished on progression to the dry season. Unexpectedly, H3K9 di- and trimethylation as well as H3K27 di- and trimethylation could not be detected in Z. dumosum; H3K9 monomethylation appears to be prominent in Z. dumosum during the wet but not during the dry season. Contrary to Z. dumosum, H3K9 dimethylation was detected in other desert plants, including Artemisia sieberi, Anabasis articulata and Haloxylon scoparium. Taken together, our results demonstrate dynamic genome organization and unique pattern of histone H3 methylation displayed by Z. dumosum, which could have an adaptive value in variable environments of the Negev desert. PMID:19809832

  16. Antidiarrhoeal assessment of hydroalcoholic and hexane extracts of Dracocephalum kotschyi Boiss. and apigenin in mice.

    PubMed

    Sadraei, Hassan; Asghari, Gholamreza; Shahverdi, Farzaneh

    2016-01-01

    Dracocephalum kotschyi Boiss, a member of Labiatae family, is a native plant to Iran, which has been reported to have immunomodulatory, antihyperlipidemic and antispasmodic activities. The objective of this research was to study the antispasmodic and antidiarrhoeal activities of hydroalcoholic and hexane extracts of D. kotschyi in mice. Furthermore, the antidiarrhoeal and antispasmodic effect of apigenin, a flavonoid constituent of D. kotschyi, was also studied. Hydroalcoholic and hexane extracts were obtained from aerial part of D. kotschyi using percolation method. Antispasmodic effect of the test compounds was assessed by measurement of small intestine transit following oral administration of a charcoal meal. Diarrhoea was induced by administration of either castor oil (0.5 ml) or magnesium sulphate (MgSO4) (10% w/v solution). Both the hydroalcoholic and hexane extracts of D. kotschyi (10 and 20 mg/kg) reduced the intestinal charcoal meal transit. Loperamide (2 mg/kg) and apigenin (2 and 10 mg/kg) inhibited intestinal movement of the charcoal meal and also inhibited castor oil and MgSO4-induced diarrhoea. The hydroalcoholic and hexane extracts of D. kotschyi (10 and 20 mg/kg) also significantly inhibited the castor oil and MgSO4-induced diarrhoea in mice in comparison with the vehicle-treated control groups. This study confirms that both the hydroalcoholic and hexane extracts of D. kotschyi has antispasmodic and antidiarrhoeal properties in vivo and could be a suitable remedy for treatment of gastrointestinal disorders in which smooth muscle spasm and/or diarrhoea plays a significant roles. PMID:27499789

  17. Chemical constituents of Swertia longifolia Boiss. with α-amylase inhibitory activity.

    PubMed

    Saeidnia, Soodabeh; Ara, Leila; Hajimehdipoor, Homa; Read, Roger W; Arshadi, Sattar; Nikan, Marjan

    2016-01-01

    α-Amylase inhibitors play a critical role in the control of diabetes and many of medicinal plants have been found to act as α-amylase inhibitors. Swertia genus, belonging to the family Gentianaceae, comprises different species most of which have been used in traditional medicine of several cultures as antidiabetic, anti-pyretic, analgesic, liver and gastrointestinal tonic. Swertia longifolia Boiss. is the only species of Swertia growing in Iran. In the present investigation, phytochemical study of S. longifolia was performed and α-amylase inhibitory effects of the plant fractions and purified compounds were determined. Aerial parts of the plant were extracted with hexane, chloroform, methanol and water, respectively. The components of the hexane and chloroform fractions were isolated by different chromatographic methods and their structures were determined by (1)H NMR and (13)C NMR data. α-Amylase inhibitory activity was determined by a colorimetric assay using 3,5-dinitro salysilic acid. During phytochemical examination, α-amyrin, β-amyrin and β-sitosterol were purified from the hexane fraction, while ursolic acid, daucosterol and swertiamarin were isolated from chloroform fraction. The results of the biochemical assay revealed α-amylase inhibitory activity of hexane, chloroform, methanol and water fractions, of which the chloroform and methanol fractions were more potent (IC50 16.8 and 18.1 mg/ml, respectively). Among examined compounds, daucosterol was found to be the most potent α-amylase inhibitor (57.5% in concentration 10 mg/ml). With regard to α-amylase inhibitory effects of the plant extracts, purified constituents, and antidiabetic application of the species of Swertia genus in traditional medicine of different countries, S. longifolia seems more appropriate species for further mechanistic antidiabetic evaluations. PMID:27051429

  18. Comparison of antispasmodic effect of hydroalcoholic extract of Dracocephalum kotschyi Boiss. in rat uterus and ileum.

    PubMed

    Sadraei, Hassan; Asghari, Gholamreza; Alinejad, Mahla

    2016-07-01

    Dracocephalum kotschyi Boiss. is a traditional medicine with antispasmodic activities. The objective of this research was to study antispasmodic activities of hydroalcoholic extract of D. kotschyi on rat isolated uterus contractions for comparison with isolated ileum. Hydroalcoholic extract was obtained from aerial part of D. kotschyi using percolation method. A portion of rat ileum or uterus was suspended in Tyrode's solution at 37°C and gassed with O2. Effect of D. kotschyi extract was assessed on ileum or uterus contractions induced by KCl (80 mM), acetylcholine (ACh, 500 nM), electrical field stimulation (EFS) or oxytocin (0.0005 IU/mL). The extract of D. kotschyi concentration-dependently inhibited ileum responses to KCl (IC50 = 65 ± 18 μg/mL), ACh (IC50 = 102 ± 18 μg/mL) and EFS (IC50 = 117 ± 29 μg/mL). The extract of D. kotschyi also concentration-dependently inhibited uterus responses to KCl (IC50 = 453 ± 64μg/mL), ACh (IC50 = 58 ± 9 μg/mL), EFS (IC50 = 22 ± 3 μg/mL) as well as oxytocin (IC50 = 70 ± 11 μg/mL). From this experiment it was concluded that D. kotschyi extract possesses antispasmodic activities on both smooth muscle of ileum and uterus. In comparison, the extract was more effective inhibitor of ACh and EFS responses in rat uterus than on the ileum. On the other hand, the extract was a more potent inhibitor of KCl response on rat ileum. However, the extract was found to be a potent inhibitor of oxytocin-induced contraction of rat uterus. These results indicate that D. kotschyi extract may contain components that might be useful lead compounds for prevention of uterus spasm.

  19. Acetic acid and weed control in onions (Allium cepa L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weed control is a major challenge in conventional and organic production systems, especially for organically produced sweet onion (Allium cepa L.). Although corn gluten meal shows great promise as an organic preemergent herbicide for onions, research has shown the need for supplemental, postemergen...

  20. Acetic acid: Crop injury and onion (Allium cepa L.) yields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weed control is a major challenge in conventional and organic production systems, especially for organically produced sweet onion (Allium cepa L.). Organic herbicides for sweet onions are limited to non-selective materials, such as corn gluten meal and vinegar. Research at Lane, Oklahoma has shown...

  1. Inhibitory effect of seven Allium plants upon three Aspergillus species.

    PubMed

    Yin, M C; Tsao, S M

    1999-08-01

    Antifungal activity and minimal fungicidal concentration (MFC) of extracts of garlic, bakeri garlic, Chinese leek, Chinese chive, scallion, onion bulb and shallot bulb against Aspergillus niger, A. flavus and A. fumigatus were examined. These Allium plants possessed antifungal activity, with garlic showing the lowest MFC. With the exception of scallion, the inhibitory effect of Allium plants against three Aspergillus species decreased with increasing incubation and heating temperature (P < 0.05). Acetic acid treatments of the extracts increased the inhibitory effect for all plants against three fungi (P < 0.05), and there was no significant difference in this effect among the three pH (2, 4, 6) treatments (P > 0.05) investigated. Acetic acid, at pH = 4, plus heat treatments of the extracts resulted in a greater inhibitory effect for all Allium plants against the three fungi than heat treatment alone (P < 0.05). Treatments of the extracts with NaCl, at concentrations of 0.2 and 0.4 M, did not affect the inhibitory effect of the plant extracts. The combination of acetic acid plus Allium plants was indicated to be an effective way to inhibit fungal growth. PMID:10477070

  2. Simultaneous compartmentalization of lead and arsenic in co-hyperaccumulator Viola principis H. de Boiss.: an application of SRXRF microprobe.

    PubMed

    Lei, Mei; Chen, Tong-Bin; Huang, Ze-Chun; Wang, Yao-Dong; Huang, Yu-Ying

    2008-08-01

    The cellular distributions of Pb and As in the leaves of co-hyperaccumulator Viola principis H. de Boiss. were inspected by synchrotron X-ray fluorescence spectroscopy (SRXRF). The results revealed that Pb and As had similar compartmentalization patterns in the leaves. Both elements were enriched in the bundle sheath and the palisade mesophyll. In comparison with the sheath and the mesophyll, the vascular bundle and the epidermis contained lower levels of Pb and As. The palisade enrichment of Pb and As indicated that V. principis H. de Boiss. may have a special mechanism on detoxification of toxic metals within the mesophyll cells. Relative concentrations of both Pb and As in trichome bases were higher than those in trichome rays. The results of hierarchical cluster analysis and correlation analysis confirmed that the distribution of Pb was similar to that of As in the leaves, and their distribution patterns were different from the nutrient elements, such as K, Ca, Mn, Fe, Ni, Cu and Zn. In vivo cellular localization of Pb and As in the leaves provides insight into the physiological mechanisms of metal tolerance and hyperaccumulation in the hyperaccumulators.

  3. Anti-tumor Activity of Ferulago angulata Boiss. Extract in Gastric Cancer Cell Line via Induction of Apoptosis

    PubMed Central

    Heidari, Shafagh; Akrami, Hassan; Gharaei, Roghaye; Jalili, Ali; Mahdiuni, Hamid; Golezar, Elham

    2014-01-01

    Ferulago angulata Boiss. known in Iran as Chavir, has some bioactive compounds having antioxidant activity. Because of its antioxidant activities, it sounded Chavir extract can be a good candidate for finding chemopreventive agents having inductive apoptosis properties on cancer cells. In this study, the cytotoxic effects and proapoptotic activities of Chavir’s leaf and flower extracts were investigated on human adenocarcinoma gastric cell line (AGS). The ferric reducing antioxidant power (FRAP) assay was used to determine antioxidant activity of the extract. Cytotoxic effects of the extract were performed by trypan blue and neutral red assays. For apoptosis detection, we used Annexin V staining, flow cytometry and DNA fragmentation assays. The FRAP assay results showed that antioxidant activity of leaf extract was higher than flower extract. Cytotoxicity and apoptosis–inducing activity of flower and leaf extracts changed coordinately, indicating the cytotoxicity of chavir extracts is due probably to induce apoptosis. Our results revealed that the cytotoxic effects of F. angulate Boiss. extracts on AGS cell line is close to some other plant extracts such as Rhus verniciflua Stokes (RVS) and Scutellaria litwinowii. This is the first study on cytotoxic and apoptosis–inducing effects of chavir leaf and flower extracts against AGS cell line. The Further investigation can be identification of the agent(s) by which these effects is observed. PMID:25587323

  4. Interspecific chromosomal rearrangements in monosomic addition lines of Allium.

    PubMed

    Barthes, L; Ricroch, A

    2001-10-01

    Monosomic alien addition lines (MAALs) are useful for assigning linkage groups to chromosomes. We examined whether the chromosomal rearrangements following the introduction of a single onion (Allium cepa) chromosome into the Allium fistulosum genome were produced by homeologous crossing over or by a nonreciprocal conversion event. Among the monosomic lines available, 17 were studied by fluorescent genomic in situ hybridisation, using total A. cepa genomic DNA as the probe and total A. fistulosum genomic DNA as the competitor. In this way, rearrangements such as chromosomal translocations between A. cepa and A. fistulosum were identified as terminal regions consisting of tandem DNA repeats. Homeologous crossing over between the two closely related genomes occurred in 4 of the 17 lines, suggesting that such events are not rare. On the basis of a detailed molecular cytogenetic characterisation, we identified true monosomic alien addition lines for A. cepa chromosomes 3, 4, 5, 7, and 8 that can reliably be used in genetic studies. PMID:11681618

  5. Antioxidant action and therapeutic efficacy of Allium sativum L.

    PubMed

    Capasso, Anna

    2013-01-01

    Allium sativum (L.) is rich in antioxidants which help destroy free radicals particles that can damage cell membranes and DNA, and may contribute to the aging process as well as the development of a number of conditions, including heart disease and cancer. Antioxidants neutralize free radicals and may reduce or even help prevent some of the damage they cause over time. The antioxidant activity of fresh Allium sativum L. (garlic) is well known and is mainly due to unstable and irritating organosulphur compounds. Fresh garlic extracted over a prolonged period (up to 20 months) produces odourless aged garlic extract (AGE) containing stable and water soluble organosulphur compounds that prevent oxidative damage by scavenging free radicals. The aim of this review was to understand the mechanism of antioxidant action and therapeutic efficacy of garlic. PMID:23292331

  6. β-Hydroxydihydrochalcone and flavonoid glycosides along with triterpene saponin and sesquiterpene from the herbs of Pimpinella rhodantha Boiss.

    PubMed

    Özbek, Hilal; Güvenalp, Zühal; Kuruüzüm-Uz, Ay E; Kazaz, Cavit; Demirezer, L Ömür

    2016-01-01

    A new β-hydroxydihydrochalcone glycoside named ziganin (1) and a new acylated flavonol glycoside named isorhamnetin-3-O-α-L-(2″,3″-di-O-trans-coumaroyl)-rhamnopyranoside) (2), along with two known flavonoid glycosides, a β-hydroxydihydrochalcone glycoside, a hydroxybenzoic acid derivative, a trinorguaiane type sesquiterpenoid, a triterpenic saponin and a polyol were isolated from the herbs of Pimpinella rhodantha Boiss. Their structures were elucidated on the basis of spectroscopic analyses including 1D-and 2D-NMR, UV, IR, CD, ESI-MS, APCI-MS, HR-ESI-MS techniques. The isolated compounds were evaluated for their antioxidant capacity through the DPPH free-radical scavenging assay and ferrous ion-chelating power test. PMID:26207840

  7. Inhibitory effect of Zataria multiflora Boiss. essential oil, alone and in combination with monolaurin, on Listeria monocytogenes.

    PubMed

    Raeisi, Mojtaba; Tajik, Hossein; Razavi Rohani, Seyed Mehdi; Tepe, Bektas; Kiani, Hossein; Khoshbakht, Rahem; Shirzad Aski, Hesamaddin; Tadrisi, Hamed

    2016-01-01

    Listeria monocytogenes is one of the major causes of infections in developing countries. In this study, chemical composition and anti-listerial effect of the essential oil of Zataria multiflora Boiss. alone and in combination with monolaurin were evaluated at different pH values (5, 6, and 7) and temperatures (5 ˚C and 30 ˚C). Chemical composition of Zataria multiflora Boiss. essential oil was evaluated by gas chromatography-mass spectrometry (GC-MS) analysis. Minimum inhibitory concentration (MIC) of the essential oil and monolaurin were determined using microbroth dilution method and the interactions of essential oil and monolaurin were determined by the evaluation of fractional inhibitory concentrations (FIC) index. Carvacrol (63.20%) and thymol (15.10%) were found as the main components of the essential oil. The MIC values of the oil and monolaurin at pH 7 and 30 ˚C were measured as 312.50 µg mL(-1) and 125.00 µg mL(-1), respectively. Combination of monolaurin and Z. multiflora essential oil were found to act synergistically (FIC index < 0.5) against L. monocytogenes under different pH and temperature conditions. Decrease in the pH and temperature values have increased the anti-listerial activity of monolaurin and the essential oil. The lowest MIC value of monolaurin and essential oil was observed at pH 5 and 5 ˚C. According to our results, the oil alone or in combination with monolaurin at low pH and temperature conditions showed a promising inhibitory effect on L. monocytogenes.

  8. Inhibitory effect of Zataria multiflora Boiss. essential oil, alone and in combination with monolaurin, on Listeria monocytogenes.

    PubMed

    Raeisi, Mojtaba; Tajik, Hossein; Razavi Rohani, Seyed Mehdi; Tepe, Bektas; Kiani, Hossein; Khoshbakht, Rahem; Shirzad Aski, Hesamaddin; Tadrisi, Hamed

    2016-01-01

    Listeria monocytogenes is one of the major causes of infections in developing countries. In this study, chemical composition and anti-listerial effect of the essential oil of Zataria multiflora Boiss. alone and in combination with monolaurin were evaluated at different pH values (5, 6, and 7) and temperatures (5 ˚C and 30 ˚C). Chemical composition of Zataria multiflora Boiss. essential oil was evaluated by gas chromatography-mass spectrometry (GC-MS) analysis. Minimum inhibitory concentration (MIC) of the essential oil and monolaurin were determined using microbroth dilution method and the interactions of essential oil and monolaurin were determined by the evaluation of fractional inhibitory concentrations (FIC) index. Carvacrol (63.20%) and thymol (15.10%) were found as the main components of the essential oil. The MIC values of the oil and monolaurin at pH 7 and 30 ˚C were measured as 312.50 µg mL(-1) and 125.00 µg mL(-1), respectively. Combination of monolaurin and Z. multiflora essential oil were found to act synergistically (FIC index < 0.5) against L. monocytogenes under different pH and temperature conditions. Decrease in the pH and temperature values have increased the anti-listerial activity of monolaurin and the essential oil. The lowest MIC value of monolaurin and essential oil was observed at pH 5 and 5 ˚C. According to our results, the oil alone or in combination with monolaurin at low pH and temperature conditions showed a promising inhibitory effect on L. monocytogenes. PMID:27226881

  9. Inhibitory effect of Zataria multiflora Boiss. essential oil, alone and in combination with monolaurin, on Listeria monocytogenes

    PubMed Central

    Raeisi, Mojtaba; Tajik, Hossein; Razavi Rohani, Seyed Mehdi; Tepe, Bektas; Kiani, Hossein; Khoshbakht, Rahem; Shirzad Aski, Hesamaddin; Tadrisi, Hamed

    2016-01-01

    Listeria monocytogenes is one of the major causes of infections in developing countries. In this study, chemical composition and anti-listerial effect of the essential oil of Zataria multiflora Boiss. alone and in combination with monolaurin were evaluated at different pH values (5, 6, and 7) and temperatures (5 ˚C and 30 ˚C). Chemical composition of Zataria multiflora Boiss. essential oil was evaluated by gas chromatography-mass spectrometry (GC-MS) analysis. Minimum inhibitory concentration (MIC) of the essential oil and monolaurin were determined using microbroth dilution method and the interactions of essential oil and monolaurin were determined by the evaluation of fractional inhibitory concentrations (FIC) index. Carvacrol (63.20%) and thymol (15.10%) were found as the main components of the essential oil. The MIC values of the oil and monolaurin at pH 7 and 30 ˚C were measured as 312.50 µg mL-1 and 125.00 µg mL-1, respectively. Combination of monolaurin and Z. multiflora essential oil were found to act synergistically (FIC index < 0.5) against L. monocytogenes under different pH and temperature conditions. Decrease in the pH and temperature values have increased the anti-listerial activity of monolaurin and the essential oil. The lowest MIC value of monolaurin and essential oil was observed at pH 5 and 5 ˚C. According to our results, the oil alone or in combination with monolaurin at low pH and temperature conditions showed a promising inhibitory effect on L. monocytogenes. PMID:27226881

  10. [Isolation of sperm cells of Allium tub rosum Roxb].

    PubMed

    Ye, Lv; Lv, Dan; Jian, Ming Xia; Tian, Hui Qiao

    2008-08-01

    Pollen grains of Allium tuberosum Roxb broke and released their content including generative cells using osmotic shock method. In a medium containing 0.05% CaCl2, 0.01% Boric acid, 0.01%KH2PO4, 15%PEG 10% sucrose (710 mOsmol/kg H2O) 86% pollen grains germinated and grew out pollen tubes, which broke after transferred into 6% mannitol solution, and released tube content including generative cell. When pollen grains were cultured in the same medium but adding 0.1% casein, a few generative cells divided into two sperm cells. Stigmas of Allium tuberosum Roxb were pollinated at second day after anthesis and the styles grow 3 h in vivo. Then the styles were cut and cultured in a medium for about 6-8 h, some pollen tubes grew out of the cut end of the style. The cut end of the style was transferred into a solution containing 6% mannitol to burst pollen tubes. Pairs of sperm cells of Allium tuberosum Roxb were released and collected using a micromanipulator.

  11. Resistance to Penicillium allii in accessions from a National Plant Germplasm System Allium collection.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accessions of Allium sativum (garlic), A. ampeloprasum (elephant garlic) and A. acuminatum, A. aflatunense, A. atroviolaceum, A. canadense, A. longicuspis, A. moly, A. ponticum, A. roseum, A. scorodoprasum, A. senescens, A. stipitatum, and Allium sp. (wild or ornamental species) were screened for re...

  12. [Structure characteristics of the chloroplast rpS16 intron in Allium sativum and related Allium species].

    PubMed

    Ryzhova, N N; Kholda, O A; Kochieva, E Z

    2009-01-01

    For the first time the chloroplast rpS16 intron sequences in A. sativum accessions with different ecologo-geographical origins and related Allium species have been characterized. The main stem-loop consensus sequences and boundaries ofsix domains have been identified and the most probable secondary structure model of the intron pre-RNA has been predicted. Allium rpS16 introns have been characterized by mutation rate heterogeneity between structure regions of all six domains. Domains II and IV of the intron are shown to be more variable with transition predominance in I, III, V and VI domain sequences. In addition to structure elements typical for group IIB introns the Allium specific micro- and macrostructural alterations have been revealed. The 290 nucleotide deletion of domains III-IV sequences and of the part of the domain V has been revealed in A. altaicum, A. fistulosum, A. schoenoprasum rpS16 intron sequences. Several nucleotide substitutions and extensive length mutations result in secondary structure deviation from the consensus model of group II introns. PMID:19899630

  13. Screening and incorporation of rust resistance from Allium cepa into bunching onion (Allium fistulosum) via alien chromosome addition.

    PubMed

    Wako, Tadayuki; Yamashita, Ken-ichiro; Tsukazaki, Hikaru; Ohara, Takayoshi; Kojima, Akio; Yaguchi, Shigenori; Shimazaki, Satoshi; Midorikawa, Naoko; Sakai, Takako; Yamauchi, Naoki; Shigyo, Masayoshi

    2015-04-01

    Bunching onion (Allium fistulosum L.; 2n = 16), bulb onion (Allium cepa L. Common onion group), and shallot (Allium cepa L. Aggregatum group) cultivars were inoculated with rust fungus, Puccinia allii, isolated from bunching onion. Bulb onions and shallots are highly resistant to rust, suggesting they would serve as useful resources for breeding rust resistant bunching onions. To identify the A. cepa chromosome(s) related to rust resistance, a complete set of eight A. fistulosum - shallot monosomic alien addition lines (MAALs) were inoculated with P. allii. At the seedling stage, FF+1A showed a high level of resistance in controlled-environment experiments, suggesting that the genes related to rust resistance could be located on shallot chromosome 1A. While MAAL, multi-chromosome addition line, and hypoallotriploid adult plants did not exhibit strong resistance to rust. In contrast to the high resistance of shallot, the addition line FF+1A+5A showed reproducibly high levels of rust resistance. PMID:26218854

  14. Plants of the genus Allium as antibacterial agents: From tradition to pharmacy.

    PubMed

    Sharifi-Rad, J; Mnayer, D; Tabanelli, G; Stojanović-Radić, Z Z; Sharifi-Rad, M; Yousaf, Z; Vallone, L; Setzer, W N; Iriti, M

    2016-08-29

    Plants belonging to the genus Allium are widely cultivated and used all over the world as food and medicinal plants. Since ancient times, these plants, particularly garlic (Allium sativum L.) and onion (Allium cepa L.), have represented important components of typical recipes and traditional healing systems. Not the least of which, their use as food biopreservatives is well documented, due to the relevant antibacterial activity of their extracts and essential oils. In addition to garlic and onion, this review article deals with the main members of the genus Allium, including A. ampeloprasum (Leek), A. schoenoprasum (Chive) and A. ascalonicum (Shallot), focusing both on their ethnonutritional uses and potential as promising food biopreservative agents. Noteworthy, recent research has demonstrated Allium derivatives to be novel components in active edible coatings as well as nanoformulates.

  15. Plants of the genus Allium as antibacterial agents: From tradition to pharmacy.

    PubMed

    Sharifi-Rad, J; Mnayer, D; Tabanelli, G; Stojanović-Radić, Z Z; Sharifi-Rad, M; Yousaf, Z; Vallone, L; Setzer, W N; Iriti, M

    2016-01-01

    Plants belonging to the genus Allium are widely cultivated and used all over the world as food and medicinal plants. Since ancient times, these plants, particularly garlic (Allium sativum L.) and onion (Allium cepa L.), have represented important components of typical recipes and traditional healing systems. Not the least of which, their use as food biopreservatives is well documented, due to the relevant antibacterial activity of their extracts and essential oils. In addition to garlic and onion, this review article deals with the main members of the genus Allium, including A. ampeloprasum (Leek), A. schoenoprasum (Chive) and A. ascalonicum (Shallot), focusing both on their ethnonutritional uses and potential as promising food biopreservative agents. Noteworthy, recent research has demonstrated Allium derivatives to be novel components in active edible coatings as well as nanoformulates. PMID:27585263

  16. Evaluation of allium and its seasoning on toxigenic, nutritional, and sensorial profiles of groundnut oil.

    PubMed

    Murugan, Kasi; Anandaraj, K; Al-Sohaibani, Saleh A

    2014-04-01

    Mitigation of xerophilic storage fungi-associated aflatoxin threat in culinary oil will be a new technology advantage to food industries. Groundnut oil isolate Aspergillus flavus MTCC 10680 susceptibility to Allium species (A. sativum L., A. cepa L., and A. cepa var. aggregatum) extracts, composition, and in silico confirmation of extract's phytoconstituent aflatoxin synthesis inhibition were determined. The behavior of seasoning carrier medium groundnut oil in the presence of Allium was also determined. All the Allium species extracts exhibited concentration dependent in vitro inhibition on mycelial biomass, radial growth, and toxin elaboration. The gas chromatography-mass spectrometry revealed the presence of 28, 16, and 9 compounds in the extracts of A. sativum, A. cepa, A. cepa var. aggregatum, respectively. The Allium phytocostituents-like hexadecanoic acid, 5-Octanoyl-2,4,6(1H,3H,5H)-pyrimidinetrione, Guanosine, and so on, showed higher binding energy with aflatoxin synthesis key enzyme ver1. Allium seasoning increased the typical nutty odor of the groundnut oil with sweet aroma note as well as intensification of pale yellow color. Allium seasoning exhibited the highest aflatoxin detoxification and aroma development without any nutritional loss. Culinary oil Allium seasoning has anti-aflatoxin and food additive potential for use in food industries.

  17. Phylogenetic relationships among cultivated Allium species from restriction enzyme analysis of the chloroplast genome.

    PubMed

    Havey, M J

    1991-06-01

    The genus Allium contains many economically important species, including the bulb onion, chive, garlic, Japanese bunching onion, and leek. Phylogenetic relationships among the cultivated alliums are not well understood, and taxonomic classifications are based on relatively few morphological characters. Chloroplast DNA is highly conserved and useful in determining phylogenetic relationships. The size of the chloroplast genome of Allium cepa was estimated at 140 kb and restriction enzyme sites were mapped for KpnI, PstI, PvuII, SalI, XbaI, and XhoI. Variability at restriction enzyme sites in the chloroplast DNA was studied for at least three accessions of each of six cultivated, old-world Allium species. Of 189 restriction enzyme sites detected with 12 enzymes, 15 mutations were identified and used to estimate phylogenetic relationships. Cladistic analysis based on Wagner and Dollo parsimony resulted in a single, most-parsimonious tree of 16 steps and supported division of the species into sections. Allium species in section Porrum were distinguished from species in sections Cepa and Phyllodolon. Two species in section Rhiziridium, A. schoenoprasum and A. tuberosum, differed by five mutations and were placed in separate lineages. Allium cepa and A. fistulosum shared the loss of a restriction enzyme site and were phylogenetically closer to each other than to A. schoenoprasum. This study demonstrates the usefulness of restriction enzyme site analysis of the chloroplast genome in the elucidation of phylogenetic relationships in Allium. PMID:24221436

  18. Antifungal constituents from the seeds of Allium fistulosum L.

    PubMed

    Sang, Shengmin; Lao, Aina; Wang, Yanseng; Chin, Chee-Kok; Rosen, Robert T; Ho, Chi-Tang

    2002-10-23

    A new unsaturated fatty acid monoglyceride (1), glycerol mono-(E)-8,11,12-trihydroxy-9-octadecenoate, was isolated from the seeds of Allium fistulosum L. along with five known compounds: tianshic acid (2), 4-(2-formyl-5-hydroxymethylpyrrol-1-yl) butyric acid (3), p-hydroxybenzoic acid (4), vanillic acid (5), and daucosterol (6). The structures of 1-3 were established by interpretation and full assignments of NMR spectroscopic data. Both 1 and 2 were found to inhibit the growth of Phytophtohora capsici on V8 media. PMID:12381110

  19. Flavonol Glycosides from the Leaves of Allium macrostemon.

    PubMed

    Nakane, Risa; Iwashina, Tsukasa

    2015-08-01

    Twelve flavonoids were isolated from Allium macrostemon leaves. Five compounds were identified as kaempferol 3,7-di-O-glucoside (1), kaempferol 3,4'-di-O-glucoside (2), quercetin 3-O-glucoside (3), kaempferol 3-0-glucoside (4) and isorhamnetin 3-O-glucoside (5) by UV spectra, LC-MS, acid hydrolysis and HPLC comparisons with authentic standards. Other flavonoids were characterized as kaempferol glycosides (6-8, 10 and 11) and quercetin glycosides (9 and 12). Other compounds, such as steroidal saponins, have been already found from the bulbs of A. macrostemon. However, flavonoids were reported for the first time from the leaves. PMID:26434122

  20. [Research concerning the characterization of Allium cepa based ointments].

    PubMed

    Gafiţanu, Eliza; Tătărîngă, Gabriela; Ghiciuc, Cristina; Lupuşoru, Cătălina Elena; Hăncianu, Monica

    2006-01-01

    Three topical formulae with Allium cepa L. extract 30% (w/w) were studied for the evaluation of their release profiles of flavonoids and for their potency on experimental wounds on mice. The rates of release were performed under occluded conditions using cellulose acetate membrane. Data obtained from the in vitro release show that the gel formula F1 is the most efficient in the membrane diffusion process. The rate of wound healing was assessed by the contracting ability and the period of epithelization. The most important effect in the contracting ability was noticed in the case of F2 formula. PMID:19292109

  1. Bioactivities of Ethanolic Extract and its Fractions of Cistus laurifolius L. (Cistaceae) and Salvia wiedemannii Boiss. (Lamiaceae) Species

    PubMed Central

    Ustun, Osman; Berrin-Ozcelik; Baykal, Turhan

    2016-01-01

    Background: Cistus laurifolius L. (Cistaceae) and Salvia wiedemannii Boiss. (Lamiaceae) have been used for treatment of some illnesses in Turkish folk medicine. In the present study, the ethanolic extract and its fractions obtained using re-extraction by hexane (Hx), chloroform (CHCl3), butanol, and remaining-water (r-H2O) of C. laurifolius were screened for their in vitro bioactivities. Materials and Methods: Activities were determined against both standard and the isolated strains of Escherichia coli, Pseudomonas aeruginosa, Proteus mirabilis, Klebsiella pneumoniae, Acinetobacter baumannii, Staphylococcus aureus, Enterococcus faecalis, as well as yeasts such as Candida albicans and Candida parapsilosis by microdilution method. Also, antiviral activity of C. laurifolius and S. wiedemannii extracts were tested on herpes simplex virus-1 (HSV-1) and parainfluenza-3 (PI-3) using Madin-Darby bovine kidney and vero cell lines. Results: Tested extracts of C. laurifolius (minimum inhibitory concentration 32 μg/mL) exerted a strong antimicrobial activity against Gram-negative bacteria of E. coli, P. mirabilis, K. pneumoniae, and A. baumannii. Conclusion: The Hx extract of C. laurifolius (cytopathogenic effect of 32–8 μg/mL) had antiviral activity on PI-3. Also, the r-H2O, CHCl3, and ethanol extracts (16–<0.25 μg/mL) of S. wiedemannii had significant antiviral activity on HSV-1, same as control. SUMMARY The objective of this study was to evaluate the bioactivity of plant extracts used in folk medicineEthanolic extract and its fractions obtained using re-extraction by hexane (Hx), chloroform (CHCl3), butanol, and remaining-water (r-H2O) of Cistus laurifolius L. (Cistaceae) and Salvia wiedemannii Boiss. (Lamiaceae) were screened against both standard and the isolated strains of E. coli, P. aeruginosa, P. mirabilis, K. pneumoniae, A. baumannii, S. aureus, E. faecalis, C. albicans and C. parapsilosis by microdilution methodAntiviral activity were tested on HSV-1 and PI-3

  2. DNA base composition of Allium genomes with different chromosome numbers.

    PubMed

    Ricroch, A; Brown, S C

    1997-12-31

    The present report examines whether the presence of an additional chromosome can be detected as modifying the nuclear DNA amount and base composition of the cell, determined here by flow cytometry of interphasic nuclei, using four monosomic additions (chromosomes 3C, 4C, 7C and 8C transmitted from Allium cepa to Allium fistulosum L.). A. cepa differs significantly from A. fistulosum in genome size (2C DNA = 33.2 pg in A. cepa and 23.3 pg in A. fistulosum) as well as in GC content (38.7% and 39.8%, respectively). The presence of an extra chromosome of A. cepa obviously increases the nuclear DNA amount above the A. fistulosum value but also alters the apparent mean GC content. By comparing the monosomic additions and the parental background, the DNA amount and base composition of each of the four single chromosomes were calculated to quantify the GC content per chromosome and therefore to deduce their initial contribution to the A. cepa genome. Taken individually, some chromosomes are atypical in terms of GC content: the single chromosome 3C is AT-rich, having only about only 25% GC. However, the three other chromosomes examined are typical of the A. cepa genome in base composition. Indeed, this biological panel gives access to chromosomal features via a cytometric assay of nuclei. It should facilitate quantification of GC-rich repetitive sequences forming heterochromatic domains located mainly at the telomeres in the monocotyledonous A. cepa genome. PMID:9461399

  3. Clastogenicity of atrazine assessed with the Allium cepa test.

    PubMed

    Bolle, Paola; Mastrangelo, Sabina; Tucci, Paolo; Evandri, Maria G

    2004-01-01

    Atrazine is classified as a restricted use pesticide and it is currently included in an international revision program for re-evaluating the human and ecological (non-human populations) health risks associated with its release into the environment. The present study was undertaken to add new data on the genotoxic potential of atrazine using the Allium cepa chromosome aberration test. The test concentrations were based on the Maximum Contaminant Levels in water intended for human consumption set by European and US regulations. Atrazine produced a concentration-related increase in the number of total somatic chromosome aberrations, although this increase was statistically significant (p<0.05) only at the highest test concentration (5 microg/L). Analysis of the categories of structural chromosome damage indicated that breaks were the predominant lesion induced; the percent of cells per bulb with breaks also increased in a concentration-related manner, and the increase was statistically significant at the two highest test concentrations (1 and 5 microg/L) (p<0.05). The Allium cepa plant assay detected the clastogenicity of atrazine at concentrations that are likely to be encountered in water, a common site of atrazine contamination.

  4. Allium vegetables and organosulfur compounds: do they help prevent cancer?

    PubMed Central

    Bianchini, F; Vainio, H

    2001-01-01

    Allium vegetables have been shown to have beneficial effects against several diseases, including cancer. Garlic, onions, leeks, and chives have been reported to protect against stomach and colorectal cancers, although evidence for a protective effect against cancer at other sites, including the breast, is still insufficient. The protective effect appears to be related to the presence of organosulfur compounds and mainly allyl derivatives, which inhibit carcinogenesis in the forestomach, esophagus, colon, mammary gland, and lung of experimental animals. The exact mechanisms of the cancer-preventive effects are not clear, although several hypotheses have been proposed. Organosulfur compounds modulate the activity of several metabolizing enzymes that activate (cytochrome P450s) or detoxify (glutathione S-transferases) carcinogens and inhibit the formation of DNA adducts in several target tissues. Antiproliferative activity has been described in several tumor cell lines, which is possibly mediated by induction of apoptosis and alterations of the cell cycle. Allium vegetables and organosulfur compounds are thus possible cancer-preventive agents. Clinical trials will be required to define the effective dose that has no toxicity in humans. PMID:11673117

  5. Chemical constituents of three Allium species from Romania.

    PubMed

    Vlase, Laurian; Parvu, Marcel; Parvu, Elena Alina; Toiu, Anca

    2012-12-21

    The aim of this work was to study the chemical composition of Allium obliquum L., A. senescens L. subsp. montanum (Fries) Holub, and A. schoenoprasum L. subsp. schoenoprasum. Sulphur-containing compounds analysis was performed by an LC-MS method, the identification and quantification of polyphenolic compounds through a HPLC-UV-MS method, and the presence of five sterols was simultaneously assessed by HPLC-MS-MS. Alliin was identified only in A. obliquum and A. senescens subsp. montanum extracts, whilst allicin was present in all extracts, with higher amounts in A. schoenoprasum and A. obliquum. The pattern of phenol carboxylic acids shows the presence of p-coumaric and ferulic acids in all species. Isoquercitrin was identified in A. obliquum and A. schoenoprasum, and rutin in A. senescens subsp. montanum and A. schoenoprasum. Luteolin and apigenin were identified only in A. obliquum. All three species contain glycosides of kaempferol and quercetol. β-Sitosterol and campesterol were identified in all species. The results obtained showed significant differences in the composition of the three Allium species.

  6. Allium vegetables and organosulfur compounds: do they help prevent cancer?

    PubMed

    Bianchini, F; Vainio, H

    2001-09-01

    Allium vegetables have been shown to have beneficial effects against several diseases, including cancer. Garlic, onions, leeks, and chives have been reported to protect against stomach and colorectal cancers, although evidence for a protective effect against cancer at other sites, including the breast, is still insufficient. The protective effect appears to be related to the presence of organosulfur compounds and mainly allyl derivatives, which inhibit carcinogenesis in the forestomach, esophagus, colon, mammary gland, and lung of experimental animals. The exact mechanisms of the cancer-preventive effects are not clear, although several hypotheses have been proposed. Organosulfur compounds modulate the activity of several metabolizing enzymes that activate (cytochrome P450s) or detoxify (glutathione S-transferases) carcinogens and inhibit the formation of DNA adducts in several target tissues. Antiproliferative activity has been described in several tumor cell lines, which is possibly mediated by induction of apoptosis and alterations of the cell cycle. Allium vegetables and organosulfur compounds are thus possible cancer-preventive agents. Clinical trials will be required to define the effective dose that has no toxicity in humans. PMID:11673117

  7. Optimization of supercritical carbon dioxide extraction of essential oil from Dracocephalum kotschyi Boiss: An endangered medicinal plant in Iran.

    PubMed

    Nejad-Sadeghi, Masoud; Taji, Saeed; Goodarznia, Iraj

    2015-11-27

    Extraction of the essential oil from a medicinal plant called Dracocephalum kotschyi Boiss was performed by green technology of supercritical carbon dioxide (SC-CO2) extraction. A Taguchi orthogonal array design with an OA16 (4(5)) matrix was used to evaluate the effects of five extraction variables: pressure of 150-310bar, temperature of 40-60°C, average particle size of 250-1000μm, CO2 flow rate of 2-10ml/s and dynamic extraction time of 30-100min. The optimal conditions to obtain the maximum extraction yield were at 240bar, 60°C, 500μm, 10ml/s and 100min. The extraction yield under the above conditions was 2.72% (w/w) which is more than two times the maximum extraction yield that has been reported for this plant in the literature using traditional extraction techniques. Results from analysis of variance (ANOVA) indicated that the CO2 flow rate and the extraction time were the most significant factors on the extraction yield by percentage contribution of 44.27 and 28.86, respectively. Finally, the chemical composition of the essential oil was evaluated by using gas chromatography-mass spectroscopy (GC-MS). Citral, p-mentha-1,3,8-triene, D-3-carene and methyl geranate were the major components identified.

  8. Optimization of supercritical carbon dioxide extraction of essential oil from Dracocephalum kotschyi Boiss: An endangered medicinal plant in Iran.

    PubMed

    Nejad-Sadeghi, Masoud; Taji, Saeed; Goodarznia, Iraj

    2015-11-27

    Extraction of the essential oil from a medicinal plant called Dracocephalum kotschyi Boiss was performed by green technology of supercritical carbon dioxide (SC-CO2) extraction. A Taguchi orthogonal array design with an OA16 (4(5)) matrix was used to evaluate the effects of five extraction variables: pressure of 150-310bar, temperature of 40-60°C, average particle size of 250-1000μm, CO2 flow rate of 2-10ml/s and dynamic extraction time of 30-100min. The optimal conditions to obtain the maximum extraction yield were at 240bar, 60°C, 500μm, 10ml/s and 100min. The extraction yield under the above conditions was 2.72% (w/w) which is more than two times the maximum extraction yield that has been reported for this plant in the literature using traditional extraction techniques. Results from analysis of variance (ANOVA) indicated that the CO2 flow rate and the extraction time were the most significant factors on the extraction yield by percentage contribution of 44.27 and 28.86, respectively. Finally, the chemical composition of the essential oil was evaluated by using gas chromatography-mass spectroscopy (GC-MS). Citral, p-mentha-1,3,8-triene, D-3-carene and methyl geranate were the major components identified. PMID:26522747

  9. Antibacterial Activity of Thymus Syriacus Boiss Essential Oil and Its Components against Some Syrian Gram-Negative Bacteria Isolates

    PubMed Central

    Al-Mariri, Ayman; Swied, Ghayath; Oda, Adnan; Al Hallab, Laila

    2013-01-01

    Background: Despite the medical discoveries of different medicines and advanced ways of treatment, statistics have shown that the number of patients is increasing. This may be due to chemical drugs used in healthcare, agriculture, and diets. This soaring demand in medicines urges us to look for natural sources such as aromatic plants and essential oils, which are rich in efficient compounds. Methods: Extraction of essential oils was performed using a Clevenger-type apparatus. Identification was achieved using the GC-FID technique. Confirmation was made using the GC-MS technique, and isolation was done using a preparative HPLC, equipped with an aliquots collector. The microdilution broth susceptibility assay was utilized to determine minimum inhibitory concentrations (MICs). Results: Our in vitro study demonstrated the antibacterial activity of the Thymus syriacus Boiss essential oil and its components against the tested isolates at levels between 0.375 and 50 µl/ml. The main components of the T. syriacus essential oil were carvacrol, γ-terpinene, and ß–caryophyllene. MIC90 values for the T. syriacus essential oil against the gram-negative organisms varied between 3.125 and 12.5 µl/ml. The most effective components against the gram-negative bacteria were thymol, carvacrol, dihydro-carvon, and linalool respectively. Conclusions: The T. syriacus essential oil and some of its components exhibited very good inhibitory effects against Syrian gram-negative isolates. PMID:24031109

  10. Antispasmodic activity of isovanillin and isoacetovanillon in comparison with Pycnocycla spinosa Decne.exBoiss extract on rat ileum

    PubMed Central

    Sadraei, H.; Ghanadian, M.; Asghari, G.; Madadi, E.

    2014-01-01

    Isovanillin and isoacetovanillon are two components found in P. spinosa Decne.exBoiss extract with no previously reported effect on ileum contractions. Spasmolytic effect of isovanillin and isoacetovanillon were examined on response to electrical field stimulation (EFS), acetylcholine (ACh) and 5-HT in strips of rat ileum. Longitudinal ileum strips were set up in an organ bath containing oxygenated Tyrode's solution. All strips that was contracted in response to EFS, acetylcholine or 5-HT showed relaxation in the presence of isovanillin (5-320 μg/ml), or isoacetovanillon (5-320 μg/ml). Isovanillin and isoacetovanillon inhibited the response to 5-HT with IC50 values of 356±50μM and 622±110μM respectively. They reduced the response to EFS without significantly affecting the acetylcholine response. P. spinosa extract (5-160 μg/ml) in a concentration dependent manner reduced the response to 5-HT, acetylcholine and EFS. This study demonstrated that isovanillin and isoacetovanillon are relaxant of ileum contractions induced by 5-HT and EFS and they have contribution to the relaxant effect of P. spinosa extract but other components are responsible for the inhibition of acetylcholine by the extract. PMID:25657788

  11. Determination of phytochemicals and antioxidant activity of methanol extracts obtained from the fruit and leaves of Tunisian Lycium intricatum Boiss.

    PubMed

    Abdennacer, Boulila; Karim, Mattoussi; Yassine, M'rabet; Nesrine, Rokbeni; Mouna, Dhouioui; Mohamed, Boussaid

    2015-05-01

    A comparative analysis of methanol extracts from fruit and leaves of Lycium intricatum Boiss., a Solanaceous shrubbery with the potential to become a high-value crop, was performed by means of liquid chromatography with photodiode array and electrospray ionisation mass spectrometric detection (LC/PDA/ESI-MS). The total phenolic (TPC), anthocyanin (TAC) and flavonoid (TFC) contents as well as the antioxidant capacity measured by four complementary methods were performed for each sample. The results showed the tested extracts to be rich sources of phenolics; in leaves polyphenols and flavonoids dominate, while in fruit anthocyanins dominate. Nineteen phenolic compounds were detected and fifteen were identified or tentatively characterised based on Photodiode-array ultraviolet visible (PDA) UV-Vis spectra, ESI-MS spectrometric data and spiking experiments with authentic standards. Rutin and chlorogenic acid are the major constituents of the leaves and fruit, respectively. Results obtained in this study have revealed that leaves exhibit better performance in all antioxidant assays. From these results it has been shown that extracts of L. intricatum have great potential as a source of phenolics for natural health products.

  12. Bioavailability of selenium from selenium-enriched green onions (Allium fistulosum) and chives (Allium schoenoprasum) after 'in vitro' gastrointestinal digestion.

    PubMed

    Kápolna, Emese; Fodor, Péter

    2007-06-01

    Three sample preparation methods--proteolysis to determine the initial species distribution, and an in vitro gastric and gastrointestinal digestion to assess the bioavailability of selenium--were applied to extract the selenium from selenized green onion and chive samples. Ion exchange chromatography was coupled to a high-performance liquid chromatography-ICP-MS system to analyze the selenium species of Allium samples. The difference in the selenium accumulation capability of green onions and chives was significant. Chive accumulated a one order of magnitude higher amount of selenium than did green onion. After proteolysis of both types of Allium plants, high amounts of organic selenium species such as MeSeCys, SeCys2 and SeMet became accessible. In the case of Se(VI)-enrichment, selenate was the main species in the proteolytic extract. After simulating the human digestion, the organic species were just slightly bioavailable compared with the results from proteolysis. The inorganic selenium content of the selenized samples increased significantly and SeOMet could be detected from the extracts. As an effect of the significant pH change between the gastric and the intestinal tracts, two oxidation processes took place: selenite oxidized to selenate, while SeMet oxidized to SeOMet. PMID:17566890

  13. Micropropagation and cryopreservation of garlic (Allium sativum L.).

    PubMed

    Keller, E R Joachim; Senula, Angelika

    2013-01-01

    Garlic (Allium sativum L.) is a very important medicinal and spice plant. It is conventionally propagated by daughter bulbs ("cloves") and bulbils from the flower head. Micropropagation is used for speeding up the vegetative propagation mainly using the advantage to produce higher numbers of healthy plants free of viruses, which have higher yield than infected material. Using primary explants from bulbs and/or bulbils (shoot tips) or unripe inflorescence bases, in vitro cultures are initiated on MS-based media containing auxins, e.g., naphthalene acetic acid, and cytokinins, e.g., 6-γ-γ-(dimethylallylaminopurine) (2iP). Rooting is accompanying leaf formation. It does not need special culture phases. The main micropropagation methods rely on growth of already formed meristems. Long-term storage of micropropagated material, cryopreservation, is well-developed to maintain germplasm. The main method is vitrification using the cryoprotectant mixture PVS3.

  14. Fatal onion (Allium cepa) toxicosis in water buffalo (Bubalus bubalis).

    PubMed

    Borelli, Vanessa; Lucioli, Joelma; Furlan, Fernando Henrique; Hoepers, Patrícia Giovana; Roveda, Juliano Fleck; Traverso, Sandra Davi; Gava, Aldo

    2009-05-01

    Toxicosis caused by the ingestion of onion (Allium cepa) by 5 water buffalo (Bubalus bubalis) occurred in the district of Caçador, Santa Catarina, Brazil. The water buffalo died after ingestion of a large quantity of onion that had been left in the pasture. Clinical signs started 8 days postingestion and were characterized by pale mucous membranes, lethargy, and dark urine. At necropsy, pieces of onions were found in the rumen of 1 animal. The carcass smelled strongly of onion, and the kidneys and urine were dark brown. Microscopic renal lesions included tubular degeneration and necrosis with deposits of eosinophilic material in the cytoplasm of renal tubular epithelial cells and tubular lumina. These changes were consistent with hemoglobinuric nephrosis. Centrilobular coagulation necrosis was observed in the liver accompanied by hemorrhage and macrophages containing brown cytoplasmic pigment. A diagnosis of hemolytic anemia caused by onion toxicosis was based on the epidemiological data, clinical signs, macroscopic changes, and histological lesions.

  15. Fatal onion (Allium cepa) toxicosis in water buffalo (Bubalus bubalis).

    PubMed

    Borelli, Vanessa; Lucioli, Joelma; Furlan, Fernando Henrique; Hoepers, Patrícia Giovana; Roveda, Juliano Fleck; Traverso, Sandra Davi; Gava, Aldo

    2009-05-01

    Toxicosis caused by the ingestion of onion (Allium cepa) by 5 water buffalo (Bubalus bubalis) occurred in the district of Caçador, Santa Catarina, Brazil. The water buffalo died after ingestion of a large quantity of onion that had been left in the pasture. Clinical signs started 8 days postingestion and were characterized by pale mucous membranes, lethargy, and dark urine. At necropsy, pieces of onions were found in the rumen of 1 animal. The carcass smelled strongly of onion, and the kidneys and urine were dark brown. Microscopic renal lesions included tubular degeneration and necrosis with deposits of eosinophilic material in the cytoplasm of renal tubular epithelial cells and tubular lumina. These changes were consistent with hemoglobinuric nephrosis. Centrilobular coagulation necrosis was observed in the liver accompanied by hemorrhage and macrophages containing brown cytoplasmic pigment. A diagnosis of hemolytic anemia caused by onion toxicosis was based on the epidemiological data, clinical signs, macroscopic changes, and histological lesions. PMID:19407101

  16. Allium sativum-induced death of African trypanosomes.

    PubMed

    Nok, A J; Williams, S; Onyenekwe, P C

    1996-01-01

    The effect of Allium sativum (Liliacea) on trypanosome-infected mice was examined. At a dose of 5.0 mg/ml, the oily extract from the pulp completely suppressed the ability of the parasites to be infective in the host. Column chromatography of the extract gave four fractions: ethylacetate/methanol, ethylacetate/ethanol, benzene/methanol, and acetic acid/methanol. Among these fractions, the acetic acid/methanol fraction retained the trypanocidal features of the crude extract. It cured experimentally infected mice of trypanosomiasis in 4 days when given at a dose of 120 mg/kg per day. The extract also manifested inhibition of procyclic forms of Trypanosoma brucei brucei and phospholipases from T. congolense, T. b. brucei, T. vivax. The extract appears to be diallyl-disulfide (DAD) and may interfere with the parasites' synthesis of membrane lipids. PMID:8875572

  17. Micropropagation and cryopreservation of garlic (Allium sativum L.).

    PubMed

    Keller, E R Joachim; Senula, Angelika

    2013-01-01

    Garlic (Allium sativum L.) is a very important medicinal and spice plant. It is conventionally propagated by daughter bulbs ("cloves") and bulbils from the flower head. Micropropagation is used for speeding up the vegetative propagation mainly using the advantage to produce higher numbers of healthy plants free of viruses, which have higher yield than infected material. Using primary explants from bulbs and/or bulbils (shoot tips) or unripe inflorescence bases, in vitro cultures are initiated on MS-based media containing auxins, e.g., naphthalene acetic acid, and cytokinins, e.g., 6-γ-γ-(dimethylallylaminopurine) (2iP). Rooting is accompanying leaf formation. It does not need special culture phases. The main micropropagation methods rely on growth of already formed meristems. Long-term storage of micropropagated material, cryopreservation, is well-developed to maintain germplasm. The main method is vitrification using the cryoprotectant mixture PVS3. PMID:23179713

  18. Chemopreventive and Anticancer Activities of Allium victorialis var. platyphyllum Extracts

    PubMed Central

    Kim, Hyun-Jeong; Park, Min Jeong; Park, Hee-Juhn; Chung, Won-Yoon; Kim, Ki-Rim; Park, Kwang-Kyun

    2014-01-01

    Background: Allium victorialis var. platyphyllum is an edible perennial herb and has been used as a vegetable or as a Korean traditional medicine. Allium species have received much attention owing to their diverse pharmacological properties, including antioxidative, anti-inflammatory, and anticancer activities. However, A. victorialis var. platyphyllum needs more study. Methods: The chemopreventive potential of A. victorialis var. platyphyllum methanol extracts was examined by measuring 12-O-tetra-decanoylphorbol 13-acetate (TPA)-induced superoxide anion production in the differentiated HL-60 cells, TPA-induced mouse ear edema, and Ames/Salmonella mutagenicity. The apoptosis-inducing capabilities of the extracts were evaluated by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay, 4’,6-diamidino-2-phenylindole staining, and the DNA fragmentation assay in human colon cancer HT-29 cells. Antimetastatic activities of the extracts were also investigated in an experimental mouse lung metastasis model. Results: The methanol extracts of A. victorialis var. platyphyllum rhizome (AVP-R) and A. victorialis var. platyphyllum stem (AVP-S) dose-dependently inhibited the TPA-induced generation of superoxide anion in HL-60 cells and TPA-induced ear edema in mice, as well as 7,12-dimethylbenz[a]anthracene (DMBA) and tert-butyl hydroperoxide (t-BOOH) -induced bacterial mutagenesis. AVP-R and AVP-S reduced cell viability in a dose-related manner and induced apoptotic morphological changes and internucleosomal DNA fragmentation in HT-29 cells. In the experimental mouse lung metastasis model, the formation of tumor nodules in lung tissue was significantly inhibited by the treatment of the extracts. Conclusions: AVP-R and AVP-S possess antioxidative, anti-inflammatory, antimutagenic, proapoptotic, and antimetastatic activities. Therefore, these extracts can serve as a beneficial supplement for the prevention and treatment of cancer. PMID:25337587

  19. Antihypertensive and antioxidant effects of a hydroalcoholic extract obtained from aerial parts of Otostegia persica (Burm.) Boiss.

    PubMed

    Safaeian, L; Ghasemi-Dehkordi, N; Javanmard, Sh Haghjoo; Namvar, H

    2015-01-01

    Otostegia persica (Burm.) Boiss. is used for the treatment of various diseases in traditional medicine. The aim of this study was to assess the effects of hydroalcoholic extract of the aerial parts of O. persica in dexamethasone (Dex) induced hypertension in male Wistar rats. For induction of hypertension, Dex at 30 μg/kg/day was administered subcutaneously for 14 days. In a prevention study, animals received O. persica extract orally at various doses of 100, 200 and 400 mg/kg 4 days before Dex administration and during the test period lasted for 18 days. In a reversal study, rats received O. persica extract from day 8 to 14. Systolic blood pressure (SBP) was measured using tail-cuff method. The weight of thymus gland was measured as a marker of glucocorticoid activity. The hydrogen peroxide (H2O2) concentration and ferric reducing antioxidant power (FRAP) were determined in plasma samples. Dex injection significantly increased SBP and plasma H2O2 levels while decreased the body and thymus weights and FRAP values. Oral administration of O. persica extract prevented and dose-dependently reversed a rise in SBP. Pre-treatment with O. persica extract also reduced the plasma H2O2 concentration, increased the plasma FRAP levels and prevented the body weight loss upon Dex administration. These results suggest antihypertensive and antioxidant effects of O. persica extract in Dex-induced hypertension. However, further investigations are needed to elucidate the detailed mechanism(s) of antihypertensive effect of this traditional herbal medicine. PMID:26600845

  20. Inhibitory effect of Zataria multiflora Boiss and carvacrol on histamine (H(1) ) receptors of guinea-pig tracheal chains.

    PubMed

    Boskabady, Mohammad Hossein; Tabanfar, Hengameh; Gholamnezhad, Zahra; Sadeghnia, Hamid Reza

    2012-10-01

    The inhibitory effect of aqueous-ethanolic extract of Zataria multiflora Boiss (Labiatae) and carvacrol on histamine (H(1) ) receptors was examined on tracheal chains of guinea-pigs. The effects of three concentrations of aqueous-ethanolic extract, carvacrol, 10 nm chlorpheniramine, and saline on histamine (H(1) ) receptors were tested on three groups of guinea-pig tracheal chains as follows: incubated trachea with (i) indomethacin (n = 9), (ii) indomethacin, propranolol, and atropine (n = 7), and (iii) indomethacin and propranolol (n = 6). The EC(50) (effective concentration of histamine causing 50% of maximum response) obtained in the presence of chlorpheniramine for all concentrations of the extract and carvacrol in all three groups was significantly higher than that of saline (P < 0.001 for all cases). The EC(50) obtained in the presence of all concentrations of extract in groups 2 and 3 was lower than group 1 and in group 3 lower than group 2 (P < 0.01 to P < 0.001). However, EC(50) obtained in the presence of all concentrations of carvacrol in group 3 and two higher concentrations in group 2 was higher than that of group 1 (P < 0.01 to P < 0.001). There was no significant difference in the maximum response obtained in the presence of different concentrations of extract and carvacrol between three groups. There was a parallel rightward shift in concentration-response curves obtained in the presence of all concentrations of the extract and carvacrol in all three groups. These results indicated an inhibitory effect of Z. multiflora and its constituent carvacrol on histamine H(1) receptors.

  1. Evaluation of antibacterial effects of Zataria multiflora Boiss extracts against ESBL-producing Klebsiella pneumoniae strains

    PubMed Central

    Dadashi, Masoud; Hashemi, Ali; Eslami, Gita; Fallah, Fatemeh; Goudarzi, Hossein; Erfanimanesh, Soroor; Taherpour, Arezou

    2016-01-01

    Objective: There are few therapeutic options for treatment of multidrug resistant Klebsiella pneumoniae isolates as a hospital infectious agent (nosocomial infection). The aim of this study was to evaluate the antibacterial activity of Zataria multiflora Boiss extracts against ESBL-producing Klebsiella pneumoniae strains. Materials and Methods: This study was conducted on 100 K. pneumoniae isolates from two hospitals in Tehran, Iran. Antibiotic susceptibility tests were performed by Kirby-Bauer disc diffusion and microdilution broth methods and detection of ESBL was carried out according to CLSI guidelines. The blaCTX-M-15 plasmid gene was detected by PCR and sequencing methods. Extracts susceptibility test was performed by broth microdilution method. Results: Among 100 K. pneumoniae strains, 48 (48%) were ESBL positive. In this study, fosfomycin, colistin and tigecycline were more active than other antibiotics. The existence of blaCTX-M-15 was detected in 30 (62.5%) of 48 ESBL-producing isolates. The chloroformic extract showed potent activity against ESBL-producing K. pneumoniae strains (MIC50 = 1.56 mg/ml and MIC90=3.12mg/ml). The MIC50 and MIC90 (The MIC50 represents the MIC value at which ≥50% of the isolates in a test population are inhibited and the MIC90 represents the MIC value at which ≥90% of the strains within a test population are inhibited) were 3.12 and 6.25 mg/ml and 6.25 and 12.5 mg/ml for methanolic and acetonic extracts, respectively. Conclusion: The incidence of ESBL-producing K. pneumoniae is very high. Therefore, detection of ESBL-producing K. pneumoniae isolates is of great importance in identifying drug resistance patterns in K. pneumoniae isolates and in control of infections. Zataria multiflora may have the potential to be used against multidrug resistant organisms such as clinical isolates of ESBL-producing K. pneumoniae. PMID:27462557

  2. Multitargeted prevention and therapy of cancer by diallyl trisulfide and related Allium vegetable-derived organosulfur compounds

    PubMed Central

    Powolny, Anna A.; Singh, Shivendra V.

    2008-01-01

    Allium vegetables, such as garlic, have been used for medicinal purposes throughout the recorded history. The known health benefits of Allium vegetables constituents include cardiovascular effects, improvement of the immune function, lowering of blood glucose level, radioprotection, protection against microbial infections, and anticancer effects. Initial evidence for the anticancer effect of Allium vegetables was provided by population-based case-control studies. Subsequent laboratory studies showed that the Allium vegetable constituents, such as diallyl disulfide, S-allylcysteine, and ajoene can not only offer protection against chemically-induced cancer in animal models by altering carcinogen metabolism, but also suppress growth of cancer cells in culture and in vivo by causing cell cycle arrest and apoptosis induction. Suppression of angiogenesis and experimental metastasis by Allium constituents has also been reported. Defining the mechanism by which sulfur compounds derived from Allium vegetables inhibit cancer cell growth has been the topic of intense research in the last two decades. Some Allium vegetable constituents have also entered clinical trials to assess their safety and anticancer efficacy. This article summarizes preclinical and limited clinical data to warrant further clinical evaluation of Allium vegetable constituents for prevention and therapy of human cancers. PMID:18579286

  3. Allium telomeres unmasked: the unusual telomeric sequence (CTCGGTTATGGG)n is synthesized by telomerase.

    PubMed

    Fajkus, Petr; Peška, Vratislav; Sitová, Zdeňka; Fulnečková, Jana; Dvořáčková, Martina; Gogela, Roman; Sýkorová, Eva; Hapala, Jan; Fajkus, Jiří

    2016-02-01

    Phylogenetic divergence in Asparagales plants is associated with switches in telomere sequences. The last switch occurred with divergence of the genus Allium (Amaryllidaceae) from the other Allioideae (formerly Alliaceae) genera, resulting in uncharacterized telomeres maintained by an unknown mechanism. To characterize the unknown Allium telomeres, we applied a combination of bioinformatic processing of transcriptomic and genomic data with standard approaches in telomere biology such as BAL31 sensitivity tests, terminal restriction fragment analysis, the telomere repeat amplification protocol (TRAP), and fluorescence in situ hybridization (FISH). Using these methods, we characterize the unusual telomeric sequence (CTCGGTTATGGG)n present in Allium species, demonstrate its synthesis by telomerase, and characterize the telomerase reverse transcriptase (TERT) subunit of Allium cepa. Our findings open up the possibility of studying the molecular details of the evolutionary genetic change in Allium telomeres and its possible role in speciation. Experimental studies addressing the implications of this change in terms of the interplay of telomere components may now be designed to shed more light on telomere functions and evolution in general. PMID:26716914

  4. Protective Effects of Quercetin against Dimethoate-Induced Cytotoxicity and Genotoxicity in Allium sativum Test

    PubMed Central

    Ahmad, Waseem; Shaikh, Sibhghatulla; Nazam, Nazia; Lone, Mohammad Iqbal

    2014-01-01

    The present investigation was directed to study the possible protective activity of quercetin—a natural antioxidant against dimethoate-induced cyto- and genotoxicity in meristematic cells of Allium sativum. So far there is no report on the biological properties of quercetin in plant test systems. Chromosome breaks, multipolar anaphase, stick chromosome, and mitotic activity were undertaken in the current study as markers of cyto- and genotoxicity. Untreated control, quercetin controls (@ 5, 10 and 20 μg/mL for 3 h), and dimethoate exposed groups (@ 100 and 200 μg/mL for 3 h) were maintained. For protection against cytogenotoxicity, the root tip cells treated with dimethoate at 100 and 200 μg/mL for 3 h and quercetin treatment at 5, 10, and 20 μg/mL for 16 h, prior to dimethoate treatment, were undertaken. Quercetin was found to be neither cytotoxic nor genotoxic in Allium sativum control at these doses. A significant increase (P < 0.05) in chromosomal aberrations was noted in dimethoate treated Allium. Pretreatment of Allium sativum with quercetin significantly (P < 0.05) reduced dimethoate-induced genotoxicity and cytotoxicity in meristematic cells, and these effects were dose dependent. In conclusion, quercetin has a protective role in the abatement of dimethoate-induced cyto- and genotoxicity in the meristematic cells of Allium sativum that resides, at least in part, on its antioxidant effects. PMID:27379342

  5. Chemical composition and antibacterial properties of essential oil and fatty acids of different parts of Ligularia persica Boiss

    PubMed Central

    Mohadjerani, Maryam; Hosseinzadeh, Rahman; Hosseini, Maryam

    2016-01-01

    Objective: The objective of this research was to investigate the chemical composition and antibacterial activities of the fatty acids and essential oil from various parts of Ligularia persica Boiss (L. persica) growing wild in north of Iran. Materials and Methods: Essential oils were extracted by using Clevenger-type apparatus. Antibacterial activity was tested on two Gram-positive and two Gram-negative bacteria by using micro dilution method. Results: GC and GC∕MS analysis of the oils resulted in detection of 94%, 96%, 93%, 99% of the total essential oil of flowers, stems, roots and leaves, respectively. The main components of flowers oil were cis-ocimene (15.4%), β-myrcene (4.4%), β-ocimene (3.9%), and γ-terpinene (5.0%). The major constituents of stems oil were β-phellandrene (5.4%), β-cymene (7.0%), valencene (3.9%). The main compounds of root oil were fukinanolid (17.0%), α-phellandrene (11.5%) and Β-selinene (5.0%) and in the case of leaves oil were cis-ocimene (4.8%), β-ocimene (4.9%), and linolenic acid methyl ester (4.7%). An analysis by GC-FID and GC-MS on the fatty-acid composition of the different parts of L. persica showed that major components were linoleic acid (11.3-31.6%), linolenic acid (4.7-21.8%) and palmitic acid (7.2-23.2%). Saturated fatty acids were found in lower amounts than unsaturated ones. The least minimum inhibition concentration (MIC) of the L. persica was 7.16 μg/ml against Pseudomonas aeruginosa. Conclusion: Our study indicated that the essential oil from L. persica stems and flowers showed high inhibitory effect on the Gram negative bacteria. The results also showed that fatty acids from the stems and leaves contained a high amount of poly-unsaturated fatty acids (PUFAs). PMID:27462560

  6. Determination of some polyphenolic compounds from Allium species by HPLC-UV-MS.

    PubMed

    Parvu, Marcel; Toiu, Anca; Vlase, Laurian; Alina Parvu, Elena

    2010-09-01

    Five Allium species (Allium obliquum L., A. senescens L. subsp. montanum (Fries) Holub, A. schoenoprasum L. subsp. schoenoprasum, A. fistulosum L. and A. ursinum L.) were analysed in order to determine the presence of 19 polyphenolic compounds through an HPLC method coupled with UV and mass spectrometry detection. The pattern of phenol carboxylic acids indicates the presence of p-coumaric and ferulic acids in all species. Isoquercitrin was found in A. obliquum, A. schoenoprasum and A. fistulosum, rutin in A. senescens subsp. montanum and A. schoenoprasum, whereas quercitrin was found only in A. fistulosum, so they represent potential taxonomic markers that differentiate the four plants. Luteolin and apigenin were identified before and after hydrolysis only in A. obliquum. The amounts of all polyphenols were higher in hydrolysed samples, suggesting that these substances are present both as unbonded and bonded glycosides and/or esters. Our study showed large differences between the five Allium species, both qualitative and quantitative. PMID:20419559

  7. Construction of SSR-based chromosome map in bunching onion (Allium fistulosum).

    PubMed

    Tsukazaki, Hikaru; Yamashita, Ken-Ichiro; Yaguchi, Shigenori; Masuzaki, Shinichi; Fukuoka, Hiroyuki; Yonemaru, Junichi; Kanamori, Hiroyuki; Kono, Izumi; Hang, Tran Thi Minh; Shigyo, Masayoshi; Kojima, Akio; Wako, Tadayuki

    2008-11-01

    We have constructed a linkage map of bunching onion (Allium fistulosum L., 2n = 16) using an F(2) population of 225 plants. The map consists of 17 linkage groups with 212 bunching onion SSR markers and 42 bulb onion (A. cepa L.) SSR, InDel, CAPS or dCAPS markers, covering 2,069 cM. This is the first report of a linkage map mainly based on SSR markers in the genus Allium. With the 103 anchor markers [81 bunching onion SSRs, 11 bulb onion SSRs and 11 bulb onion non-SSRs (1 InDel, 9 CAPSs and 1 dCAPS)] whose chromosome assignments were identified in A. cepa and/or A. fistulosum, via the use of several kinds of Allium alien addition lines, 16 of the 17 linkage groups were connected to the 8 basic chromosomes of A. cepa. PMID:18818898

  8. Antimycobacterial and Antibacterial Activity of Allium sativum Bulbs.

    PubMed

    Viswanathan, V; Phadatare, A G; Mukne, Alka

    2014-05-01

    Tuberculosis is one of the major public health problems faced globally. Resistance of Mycobacterium tuberculosis to antitubercular agents has called for an urgent need to investigate newer drugs to combat tuberculosis. Garlic (Allium sativum) is an edible plant which has generated a lot of curiosity throughout human history as a medicinal plant. Garlic contains sulfur compounds like allicin, ajoene, allylmethyltrisulfide, diallyltrisulfide, diallyldisulphide and others which exhibit various biological properties like antimicrobial, anticancer, antioxidant, immunomodulatory, antiinflammatory, hypoglycemic, and cardiovascular effects. According to various traditional systems of medicine, garlic is one of the established remedies for tuberculosis. The objective of the current study was to investigate in vitro antimycobacterial activity as well as anti-bacterial activity of various extracts rich in specific phytoconstituents from garlic. Preparation of garlic extracts was done based on the chemistry of the constituents and their stability. The estimation of in vitro antimycobacterial activity of different garlic extracts was done using Resazurin microtire plate assay technique whereas activity of garlic oil was evaluated by colony count method. The antibacterial activity of extracts and oil was estimated by zone of inhibition method. Extracts of garlic rich in allicin and ajoene showed appreciable antimycobacterial activity as compared to standard drugs. Garlic oil demonstrated significant antibacterial activity, particularly against methicillin-resistant Staphylococcus aureus.

  9. Micropropagation of onion (Allium cepa L.) from immature inflorescences.

    PubMed

    Marinangeli, Pablo

    2013-01-01

    In vitro plant production by direct organogenesis from immature flower heads is an ideal approach for clonal propagation of onions (Allium cepa L.). This technique ensures genetic stability, high propagation rate, and maintains donor plant of explants with an advantage over other means of in vitro regeneration. Onion micropropagation is usually applied in breeding programs, maintenance, and multiplication of cytoplasmic-male sterile lines for hybrid production, germplasm conservation, and as a tool for the application of other biotechnologies. For in vitro culture, mature onion bulbs are induced to reproductive phase by vernalization and forced to inflorescence initiation. Immature umbels are dissected from bulbs or cut directly when they appear from the pseudostem among the leaves. Disinfected inflorescences are cultivated in BDS basal medium supplemented with 30 g/L sucrose, 0.1 mg/L naphthalene acetic acid, 1 mg/L N (6)-benzyladenine, and 8 g/L agar, pH 5.5, under 16 h photoperiod white fluorescent light (PPD: 50-70 μmol/m(2)s) for 35 days. The regenerated shoot clumps are divided and subculture under the same conditions. For bulbification phase, the individual shoots are cultured in BDS basal medium containing 90 g/L sucrose, without plant growth regulators, pH 5.5, under 16 h photoperiod. Microbulbs can be directly cultivated ex vitro without acclimation. PMID:23179710

  10. Micropropagation of onion (Allium cepa L.) from immature inflorescences.

    PubMed

    Marinangeli, Pablo

    2013-01-01

    In vitro plant production by direct organogenesis from immature flower heads is an ideal approach for clonal propagation of onions (Allium cepa L.). This technique ensures genetic stability, high propagation rate, and maintains donor plant of explants with an advantage over other means of in vitro regeneration. Onion micropropagation is usually applied in breeding programs, maintenance, and multiplication of cytoplasmic-male sterile lines for hybrid production, germplasm conservation, and as a tool for the application of other biotechnologies. For in vitro culture, mature onion bulbs are induced to reproductive phase by vernalization and forced to inflorescence initiation. Immature umbels are dissected from bulbs or cut directly when they appear from the pseudostem among the leaves. Disinfected inflorescences are cultivated in BDS basal medium supplemented with 30 g/L sucrose, 0.1 mg/L naphthalene acetic acid, 1 mg/L N (6)-benzyladenine, and 8 g/L agar, pH 5.5, under 16 h photoperiod white fluorescent light (PPD: 50-70 μmol/m(2)s) for 35 days. The regenerated shoot clumps are divided and subculture under the same conditions. For bulbification phase, the individual shoots are cultured in BDS basal medium containing 90 g/L sucrose, without plant growth regulators, pH 5.5, under 16 h photoperiod. Microbulbs can be directly cultivated ex vitro without acclimation.

  11. Structure and cytotoxicity of steroidal glycosides from Allium schoenoprasum.

    PubMed

    Timité, Gaoussou; Mitaine-Offer, Anne-Claire; Miyamoto, Tomofumi; Tanaka, Chiaki; Mirjolet, Jean-François; Duchamp, Olivier; Lacaille-Dubois, Marie-Aleth

    2013-04-01

    A phytochemical analysis of the whole plant of Allium schoenoprasum, has led to the isolation of four spirostane-type glycosides (1-4), and four known steroidal saponins. Their structures were elucidated mainly by 2D NMR spectroscopic analysis and mass spectrometry as (20S,25S)-spirost-5-en-3β,12β,21-triol 3-O-α-L-rhamnopyranosyl-(1→2)-β-D-glucopyranoside (1), (20S,25S)-spirost-5-en-3β,11α,21-triol 3-O-α-L-rhamnopyranosyl-(1→2)-β-D-glucopyranoside (2), laxogenin 3-O-α-L-rhamnopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→4)]-β-D-glucopyranoside (3), and (25R)-5α-spirostan-3β,11α-diol 3-O-β-D-glucopyranosyl-(1→3)-[β-D-glucopyranosyl-(1→4)]-β-D-galactopyranoside (4). Four of the isolated compounds were tested for cytotoxic activity against the HCT 116 and HT-29 human colon cancer cell lines. PMID:23357597

  12. Antimycobacterial and Antibacterial Activity of Allium sativum Bulbs

    PubMed Central

    Viswanathan, V.; Phadatare, A. G.; Mukne, Alka

    2014-01-01

    Tuberculosis is one of the major public health problems faced globally. Resistance of Mycobacterium tuberculosis to antitubercular agents has called for an urgent need to investigate newer drugs to combat tuberculosis. Garlic (Allium sativum) is an edible plant which has generated a lot of curiosity throughout human history as a medicinal plant. Garlic contains sulfur compounds like allicin, ajoene, allylmethyltrisulfide, diallyltrisulfide, diallyldisulphide and others which exhibit various biological properties like antimicrobial, anticancer, antioxidant, immunomodulatory, antiinflammatory, hypoglycemic, and cardiovascular effects. According to various traditional systems of medicine, garlic is one of the established remedies for tuberculosis. The objective of the current study was to investigate in vitro antimycobacterial activity as well as anti-bacterial activity of various extracts rich in specific phytoconstituents from garlic. Preparation of garlic extracts was done based on the chemistry of the constituents and their stability. The estimation of in vitro antimycobacterial activity of different garlic extracts was done using Resazurin microtire plate assay technique whereas activity of garlic oil was evaluated by colony count method. The antibacterial activity of extracts and oil was estimated by zone of inhibition method. Extracts of garlic rich in allicin and ajoene showed appreciable antimycobacterial activity as compared to standard drugs. Garlic oil demonstrated significant antibacterial activity, particularly against methicillin-resistant Staphylococcus aureus. PMID:25035540

  13. Synthesis and characterization of Allium cepa L. as photosensitizer of dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Sutikno, Afrian, Noverdi; Supriadi, Putra, Ngurah Made Dharma

    2016-04-01

    The synthesis and characterization of Allium cepa L. used as natural pigment for natural dye sensitizer of solar cell has successfully done and anthocyanin is extracted. Anthocynin is color pigment of plant which has characteristic absorption spectrum of photon and excites electrons up to pigment molecules. As the anthocyanin absorbed light increases the excited electrons increase as well. The generated current also increases and it leads to the efficiency increase. The energy conversion efficiency of the cells sensitized with dye of Allium cepa L. was 3,045 x 10-4%. A simple technique was taken to fabricate dye sensitizer solar cell is spincoating.

  14. Isolation and characterization of new onionins A2 and A3 from Allium cepa, and of onionins A1, A2, and A3 from Allium fistulosum.

    PubMed

    Nohara, Toshihiro; Fujiwara, Yukio; Kudo, Rino; Yamaguchi, Koki; Ikeda, Tsuyoshi; Murakami, Kotaro; Ono, Masateru; Kajimoto, Tetsuya; Takeya, Motohiro

    2014-01-01

    In this study, the new stable sulfur-containing compounds onionins A2 (1) and A3 (2) were isolated from the acetone extracts of the bulbs of Allium cepa L. and identified as the stereoisomers of onionin A1 discovered in our previous study. Their chemical structures, 3,4-dimethyl-5-(1E-propenyl)-tetrahydrothiophene-2-sulfenic acid-S-oxides, were characterized using various spectroscopic techniques. In addition, 1 and 2 together with onionin A1 were successfully isolated from the leaves of the Welsh onion, Allium fistulosum L. The onion-extracted fractions showed good potential to inhibit the polarization of M2 activated macrophages, indicating their possible ability to inhibit tumor cell proliferation. PMID:25366317

  15. The role of diallyl sulfides and dipropyl sulfides in the in vitro antimicrobial activity of the essential oil of garlic, Allium sativum L., and leek, Allium porrum L.

    PubMed

    Casella, Sergio; Leonardi, Michele; Melai, Bernardo; Fratini, Filippo; Pistelli, Luisa

    2013-03-01

    The in vitro antibacterial activity of essential oils (EOs) obtained from fresh bulbs of garlic, Allium sativum L., and leek, Allium porrum L. ( Alliaceae), was studied. A. sativum (garlic) EO showed a good antimicrobial activity against Staphylococcus aureus (inhibition zone 14.8 mm), Pseudomonas aeruginosa (inhibition zone 21.1 mm), and Escherichia coli (inhibition zone 11.0 mm), whereas the EO of A. porrum (leek) had no antimicrobial activity. The main constituents of the garlic EO were diallyl monosulfide, diallyl disulfide (DADS), diallyl trisulfide, and diallyl tetrasulfide. The EO of A. porrum was characterized by the presence of dipropyl disulfide (DPDS), dipropyl trisulfide, and dipropyl tetrasulfide. The antimicrobial activities of the DADS and DPDS were also studied. The results obtained suggest that the presence of the allyl group is fundamental for the antimicrobial activity of these sulfide derivatives when they are present in Allium or in other species (DADS inhibition zone on S. aureus 15.9 mm, P. aeruginosa 21.9 mm, E. coli 11.4 mm).

  16. Allium sativum: facts and myths regarding human health.

    PubMed

    Majewski, Michał

    2014-01-01

    Garlic (Allium sativum L. fam. Alliaceae) is one of the most researched and best-selling herbal products on the market. For centuries it was used as a traditional remedy for most health-related disorders. Also, it is widely used as a food ingredient--spice and aphrodisiac. Garlic's properties result from a combination of variety biologically active substances which all together are responsible for its curative effect. The compounds contained in garlic synergistically influence each other so that they can have different effects. The active ingredients of garlic include enzymes (e.g. alliinase), sulfur-containing compounds such as alliin and compounds produced enzymatically from alliin (e.g. allicin). There is a lot of variation among garlic products sold for medicinal purposes. The concentration of Allicin (main active ingredient) and the source of garlic's distinctive odor depend on processing method. Allicin is unstable, and changes into a different chemicals rather quickly. It's documented that products obtained even without allicin such as aged garlic extract (AGE), have a clear and significant biological effect in immune system improvement, treatment of cardiovascular diseases, cancer, liver and other areas. Some products have a coating (enteric coating) to protect them against attack by stomach acids. Clinically, garlic has been evaluated for a number of purposes, including treatment of hypertension, hypercholesterolemia, diabetes, rheumatoid arthritis, cold or the prevention of atherosclerosis and the development of tumors. Many available publications indicates possible antibacterial, anti-hypertensive and anti-thrombotic properties of garlic. Due to the chemical complexity of garlic and the use of different processing methods we obtain formulations with varying degrees of efficacy and safety. PMID:24964572

  17. Testing the utility of matK and ITS DNA regions for discrimination of Allium species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Molecular phylogenetic analysis of the genus Allium L. has been mainly based on the nucleotide sequences of ITS region. In 2009 matK and rbcL were accepted as a two-locus DNA barcode to classify plant species by the Consortium for the Barcode of Life (CBOL) Plant Working Group. MatK region has been ...

  18. UV-mediated toxic bioactivity of harmine in the meristematic cells of Allium cepa.

    PubMed

    Hazen, M J; Gutiérrez-Gonzálvez, M G

    1988-07-01

    The photodynamic effect of harmine and UV light was studied by measuring the number of sister-chromatid exchanges and micronuclei induced by this treatment in Allium cepa meristematic cells. A significant increase in the frequencies of both cytogenetic events was observed when proliferating cells were treated for 4 h with harmine followed by irradiation with UV light for 3 min.

  19. Cryobanking of Korean allium germplasm collections: results from a 10 year experience.

    PubMed

    Kim, H H; Popova, E; Shin, D J; Yi, J Y; Kim, C H; Lee, J S; Yoon, M K; Engelmann, F

    2012-01-01

    This paper reviews a 10-year experience in establishing a cryopreserved Allium germplasm collection at the genebank of the National Agrobiodiversity Center, Republic of Korea. A systematic approach to Allium cryopreservation included: 1. revealing the most critical factors that affected regeneration after cryostorage; 2. understanding the mechanisms of cryoprotection by analyzing the thermal behavior of explants and cryoprotectant solutions using DSC and influx/efflux of cryoprotectants using HPLC; 3. assessing genetic stability of regenerants; and 4. revealing the efficiency of cryotherapy. Bulbil primordia, i.e. asexual bulbs formed on unripe inflorescences, proved to be the most suitable material for conservation of bolting varieties due to high post-cryopreservation regrowth and lower microbial infection level, followed by apical shoot apices from single bulbs and cloves. A total of 1,158 accessions of garlic as well as some Allium species have been cryopreserved during 2005-2010 using the droplet-vitrification technique with a mean regeneration percentage of 65.9 percent after cryostorage. These results open the door for large-scale implementation of cryostorage and for simplifying international exchange for clonal Allium germplasm.

  20. First Report of Garlic Rust Caused by Puccinia allii on Allium sativum in Minnesota

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In July 2010, Allium sativum, cultivar German Extra Hardy Porcelain plants showing foliar symptoms typical of rust infection were brought to the Plant Disease Clinic at the University of Minnesota by a commercial grower from Fillmore county Minnesota. Infected leaves showed circular to oblong lesio...

  1. Cytogenetic effects of styrene and styrene oxide on human lymphocytes and Allium cepa.

    PubMed

    Linnainmaa, K; Meretoja, T; Sorsa, M; Vainio, H

    1978-01-01

    Styrene and styrene oxide induce cytogenetic effects already at very low concentrations (0.01% v/v or even less); the effects are similar in both in vitro human lymphocytes and in vivo onion root tip cells (Allium cepa L.). It is characteristic that styrene treatment is more potent in causing chromosome breakage in both systems. In Allium styrene induced inhibition of mitotic spindle action as revealed by a strong c-mitotic effect. Also the number of micronuclei and nuclear bridges increased in both test systems, especially after styrene oxide treatment. Furthermore, the metaphase chromosome morphology in the cells treated with styrene oxide was strongly affected. In both systems, chromosome destruction was observed, or else the chromosome material was decondensed and resulted in a characteristic fuzzy appearance of Allium chromosomes or a banded appearance of human lymphocyte chromosomes. A specific effect of styrene oxide on the chromosomal proteins is thus suggested. The data obtained from the autoradiographic studies with Allium support the idea that [7--3H] styrene oxide binds irreversibly to the cytoplasmic and nuclear macromolecules. PMID:734401

  2. Simultaneous speciation of selenium and sulfur species in selenized odorless garlic (Allium sativum L. Shiro) and shallot (Allium ascalonicum) by HPLC-inductively coupled plasma-(octopole reaction system)-mass spectrometry and electrospray ionization-tandem mass spectrometry.

    PubMed

    Ogra, Yasumitsu; Ishiwata, Kazuya; Iwashita, Yuji; Suzuki, Kazuo T

    2005-11-01

    The simultaneous speciation of selenium and sulfur in selenized odorless garlic (Allium sativum L. Shiro) and a weakly odorous Allium plant, shallot (Allium ascalonicum), was performed by means of a hyphenated technique, a HPLC coupled with an inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) equipped with an octopole reaction system (ORS). The aqueous extracts of them contained the common seleno compound that was identified as gamma-glutamylmethylselenocysteine by an electrospray ionization-tandem mass spectrometry (ESI-MS/MS). Normal garlic contains alliin as the major sulfur-containing compound, which is the biological precursor of the garlic odorant, allicin. Alliin, however, was not detected in the extracts of the selenized odorless garlic. At least, four unidentified sulfur-containing compounds were detected in odorless garlic and shallot. Moreover, these Allium plants showed chemopreventive effects against human leukemia cells.

  3. Chromosome Dynamics Visualized with an Anti-Centromeric Histone H3 Antibody in Allium

    PubMed Central

    Nagaki, Kiyotaka; Yamamoto, Maki; Yamaji, Naoki; Mukai, Yasuhiko; Murata, Minoru

    2012-01-01

    Due to the ease with which chromosomes can be observed, the Allium species, and onion in particular, have been familiar materials employed in cytogenetic experiments in biology. In this study, centromeric histone H3 (CENH3)-coding cDNAs were identified in four Allium species (onion, welsh onion, garlic and garlic chives) and cloned. Anti-CENH3 antibody was then raised against a deduced amino acid sequence of CENH3 of welsh onion. The antibody recognized all CENH3 orthologs of the Allium species tested. Immunostaining with the antibody enabled clear visualization of chromosome behavior during mitosis in the species. Furthermore, three-dimensional (3D) observation of mitotic cell division was achieved by subjecting root sections to immunohistochemical techniques. The 3D dynamics of the cells and position of cell-cycle marker proteins (CENH3 and α-tubulin) were clearly revealed by immunohistochemical staining with the antibodies. The immunohistochemical analysis made it possible to establish an overview of the location of dividing cells in the root tissues. This breakthrough in technique, in addition to the two centromeric DNA sequences isolated from welsh onion by chromatin immuno-precipitation using the antibody, should lead to a better understanding of plant cell division. A phylogenetic analysis of Allium CENH3s together with the previously reported plant CENH3s showed two separate clades for monocot species tested. One clade was made from CENH3s of the Allium species with those of Poaceae species, and the other from CENH3s of a holocentric species (Luzula nivea). These data may imply functional differences of CENH3s between holocentric and monocentric species. Centromeric localization of DNA sequences isolated from welsh onion by chromatin immuno-precipitation (ChIP) using the antibody was confirmed by fluorescence in situ hybridization and ChIP-quantitative PCR. PMID:23236469

  4. Effect of garlic and allium-derived products on the growth and metabolism of Spironucleus vortens.

    PubMed

    Millet, Coralie O M; Lloyd, David; Williams, Catrin; Williams, David; Evans, Gareth; Saunders, Robert A; Cable, Joanne

    2011-02-01

    Spironucleus is a genus of small, flagellated parasites, many of which can infect a wide range of vertebrates and are a significant problem in aquaculture. Following the ban on the use of metronidazole in food fish due to toxicity problems, no satisfactory chemotherapies for the treatment of spironucleosis are currently available. Using membrane inlet mass spectrometry and automated optical density monitoring of growth, we investigated in vitro the effect of Allium sativum (garlic), a herbal remedy known for its antimicrobial properties, on the growth and metabolism of Spironucleus vortens, a parasite of tropical fish and putative agent of hole-in-the-head disease. The allium-derived thiosulfinate compounds allicin and ajoene, as well as an ajoene-free mixture of thiosulfinates and vinyl-dithiins were also tested. Whole, freeze-dried garlic and allium-derived compounds had an inhibitory effect on gas metabolism, exponential growth rate and final growth yield of S. vortens in Keister's modified, TY-I-S33 culture medium. Of all the allium-derived compounds tested, the ajoene-free mixture of dithiins and thiosulfinates was the most effective with a minimum inhibitory concentration (MIC) of 107 μg ml(-1) and an inhibitory concentration at 50% (IC(50%)) of 58 μg ml(-1). It was followed by ajoene (MIC = 83 μg ml(-1), IC(50%) = 56 μg ml(-1)) and raw garlic (MIC >20 mg ml(-1), IC(50%) = 7.9 mg ml(-1)); allicin being significantly less potent with an MIC and IC(50%) above 160 μg ml(-1). All these concentrations are much higher than those reported to be required for the inhibition of most bacteria, protozoa and fungi previously investigated, indicating an unusual level of tolerance for allium-derived products in S. vortens. However, chemically synthesized derivatives of garlic constituents might prove a useful avenue for future research.

  5. Applications of direct analysis in real time-mass spectrometry (DART-MS) in Allium chemistry. (Z)-butanethial S-oxide and 1-butenyl thiosulfinates and their S-(E)-1-butenylcysteine S-oxide precursor from Allium siculum.

    PubMed

    Kubec, Roman; Cody, Robert B; Dane, A John; Musah, Rabi A; Schraml, Jan; Vattekkatte, Abith; Block, Eric

    2010-01-27

    Lachrymatory (Z)-butanethial S-oxide along with several 1-butenyl thiosulfinates was detected by DART mass spectrometry upon cutting Allium siculum , a popular ornamental Allium species used in some cultures as a spice. (Z)-Butanethial S-oxide isolated from the plant was shown to be identical to a synthetic sample. Its likely precursor, (R(S),R(C),E)-S-(1-butenyl)cysteine S-oxide (homoisoalliin), was isolated from homogenates of A. siculum, and a closely related species Allium tripedale , and fully characterized. Through use of LC-MS, a series of related gamma-glutamyl derivatives were tentatively identified in A. siculum and A. tripedale homogenates, including gamma-glutamyl-(E)-S-(1-butenyl)cysteine and its S-oxide, gamma-glutamyl-S-butylcysteine and its S-oxide, and gamma-glutamyl-S-methylcysteine and its S-oxide. Because compounds containing the 1-butenyl group have not been previously identified in genus Allium species, this work extends the range of known Allium sulfur compounds. The general applicability of DART mass spectrometry in identifying naturally occurring, thermally fragile thial S-oxides and thiosulfinates is illustrated with onion, Allium cepa , as well as a plant from a different genus, Petiveria alliacea .

  6. Phylogeny and biogeography of Allium (Amaryllidaceae: Allieae) based on nuclear ribosomal internal transcribed spacer and chloroplast rps16 sequences, focusing on the inclusion of species endemic to China

    PubMed Central

    Li, Qin-Qin; Zhou, Song-Dong; He, Xing-Jin; Yu, Yan; Zhang, Yu-Cheng; Wei, Xian-Qin

    2010-01-01

    Background and Aims The genus Allium comprises more than 800 species, placing it among the largest monocotyledonous genera. It is a variable group that is spread widely across the Holarctic region. Previous studies of Allium have been useful in identifying and assessing its evolutionary lineages. However, there are still many gaps in our knowledge of infrageneric taxonomy and evolution of Allium. Further understanding of its phylogeny and biogeography will be achieved only through continued phylogenetic studies, especially of those species endemic to China that have often been excluded from previous analyses. Earlier molecular studies have shown that Chinese Allium is not monophyletic, so the goal of the present study was to infer the phylogeny and biogeography of Allium and to provide a classification of Chinese Allium by placement of Chinese species in the context of the entire phylogeny. Methods Phylogenetic studies were based on sequence data of the nuclear ribosomal internal transcribed spacer (ITS) and chloroplast rps16 intron, analysed using parsimony and Bayesian approaches. Biogeographical patterns were conducted using statistical dispersal–vicariance analysis (S-DIVA). Key Results Phylogenetic analyses indicate that Allium is monophyletic and consists of three major clades. Optimal reconstructions have favoured the ancestors of Amerallium, Anguinum, Vvedenskya, Porphyroprason and Melanocrommyum as originating in eastern Asia. Conclusions Phylogenetic analyses reveal that Allium is monophyletic but that some subgenera are not. The large genetic distances imply that Allium is of ancient origin. Molecular data suggest that its evolution proceeded along three separate evolutionary lines. S-DIVA indicates that the ancestor of Amerallium, Anguinum, Vvedenskya, Porphyroprason and Melanocrommyum originated from eastern Asia and underwent different biogeographical pathways. A taxonomic synopsis of Chinese Allium at sectional level is given, which divides Chinese

  7. Jack bean urease inhibition by crude juices of Allium and Brassica plants. Determination of thiosulfinates.

    PubMed

    Olech, Zofia; Zaborska, Wiesława; Kot, Mirosława

    2014-02-15

    The aim of this study was the elucidation of the inhibitory influence of Allium (garlic, onion, leek) and Brassica (cabbage, Brussels sprouts) plants juices, on jack bean urease activity. Concentrations of thiosulfinates, the compounds responsible for the inhibition, were determined in studied materials. The kinetics and mechanism of the inhibitions were investigated. Biphasic, time-dependent courses of the inhibition reactions were observed for all tested Allium and Brussels sprouts from Brassica. The cabbage material caused the monophasic course of the inhibition. In the presence of dithiothreitol, a total reactivation of the inhibited urease proceeded for the tested plants except for the onion. The onion juice modified urease, regained only half of the initial activity. The irreversible contribution was related to the presence of 1-propanethial-S-oxide, cepaenes and zwiebelanes formed in the onion juice. It was found that the thermal processing of the plant juices, results in the decrease of thiosulfinates concentration, as well as the efficiency of urease inhibition.

  8. Efficient Agrobacterium tumefaciens-mediated transformation and regeneration of garlic (Allium sativum) immature leaf tissue.

    PubMed

    Kenel, Fernand; Eady, Colin; Brinch, Sheree

    2010-03-01

    Transgenic garlic (Allium sativum) plants have been recovered directly from immature leaf material by selective culture following Agrobacterium-mediated transformation. This method involved the use of a binary vector containing the mgfp-ER reporter gene and hpt selectable marker, and followed a similar protocol developed previously for the transformation of immature onion embryos. The choice of tissue and post-transformation selection procedure resulted in a large increase in recovery of transgenic plants compared with previously confirmed allium transformation protocols. The presence of transgenes in the genome of the plants was confirmed using Southern analysis. This improvement in frequency and the use of clonal commercial "Printanor" germplasm now makes possible the integration of useful agronomic and quality traits into this crop. PMID:20099065

  9. Chromosomal aberrations in onion (Allium cepa) induced by water chlorination by-products

    SciTech Connect

    Al-Sabti, K.; Kurelec, B.

    1985-01-01

    It has recently come to light that water chlorination generates mutagens and carcinogens. The mutagenicity of nonvolatile mutagenic by-products of water chlorination has been demonstrated in short-term biological testings. The predictive value of short-term tests is considerably enhanced by the use of more than one test system. A scientifically stringent approach in formulating a testing program for the assessment of genotoxins is to rely on tests that directly measure gene mutations and chromosome alterations. Chromosome aberrations (CA) become such a relevant bioassay. The CA measurement in the allium test is suitable for measuring the cytogenotoxic potential of chemicals present in water; it is simple, cheap, sensitive, and it does not require a generally undefined step of concentrating chemicals present in polluted waters. In the present investigation CA in Allium were chosen for the detection of mutagenic potential of a polluted river waters before and after the under-breakpoint chlorination.

  10. Study on the stability and antioxidant effect of the Allium ursinum watery extract

    PubMed Central

    2013-01-01

    Background Organosulfur compounds usually present a reduced stability especially in the presence of oxygen. This research aimed to study the stability and antioxidant potential of the Allium ursinum watery extract. Results The decrease of the antioxidant capacity verifies an exponential relation which may be formally associated to a kinetically pseudomonomolecular process. The exponential regression equation allows the half-life of the degradation process to be determined, this being 14 hours and 49 minutes in a watery environment at room temperature. Conclusions The watery extract of Allium ursinum changes its proprieties in time. This might be explained by the network of hydrogen bonds in a watery environment which has a protective effect on the dissolved allicin molecule. PMID:23369571

  11. Anti-ischemia steroidal saponins from the seeds of Allium fistulosum.

    PubMed

    Lai, Wei; Wu, Zhijun; Lin, Houwen; Li, Tiejun; Sun, Lianna; Chai, Yifeng; Chen, Wansheng

    2010-06-25

    Six new furostanol saponins (1-6), named fistulosaponins A-F, three known furostanol saponins (7-9), and seven known aromatic compounds were isolated from seeds of Welsh onion (Allium fistulosum). The structures of these compounds were characterized by spectroscopic analyses including 2D NMR spectroscopy, mass spectrometry, and acid hydrolysis. The protective effect of the saponins on hypoxia-induced human umbilical vein endothelial cell injury was evaluated. PMID:20515043

  12. Chromosomal and Nuclear Alterations in Root Tip Cells of Allium Cepa L. Induced by Alprazolam

    PubMed Central

    Nefic, Hilada; Musanovic, Jasmin; Metovic, Azra; Kurteshi, Kemajl

    2013-01-01

    ABSTRACT Introduction: Alprazolam is a triazolobenzodiazepine used in panic disorders and other anxiety states. Target organ of Alprazolam is CNS, causing depression of respiration and consciousness. Aim: This study aimed to estimate the genotoxic potential of Alprazolam using Allium cepa test. Methods: Allium cepa is one of the most suitable plants for detecting different types of xenobiotics. The test enables the assessment of different genetic endpoints making possible damage to the DNA of humans to be predicted. Results: Alprazolam induced chromosomal (anaphase bridges, breaks, lagging and stickiness, abnormal spiralisation, multipolarity and polyploidy) and cytological aberrations, especially nuclear alterations (nuclear buds, fragmented nucleus and apoptotic bodies, cells without nucleus, binucleated and micronucleated cells), morphological alterations in shape and size of cells, spindle disturbance and polar deviation in root tip meristem cells of Allium cepa at all tested concentrations. Alprazolam also caused significant inhibition of mitotic index in these cells. Conclusion: These changes in cells are indicators of genotoxic potential of Alprazolam suggesting a need for further in vitro studies on animal and human lymphocytes as well as in vivo studies. PMID:25568504

  13. GC/MS Evaluation and In Vitro Antioxidant Activity of Essential Oil and Solvent Extracts of an Endemic Plant Used as Folk Remedy in Turkey: Phlomis bourgaei Boiss.

    PubMed Central

    Sarikurkcu, Cengiz; Sabih Ozer, M.; Cakir, Ahmet; Eskici, Mustafa; Mete, Ebru

    2013-01-01

    This study was outlined to examine the chemical composition of hydrodistilled essential oil and in vitro antioxidant potentials of the essential oil and different solvent extracts of endemic Phlomis bourgaei Boiss. used as folk remedy in Turkey. The chemical composition of the oil was analyzed by GC and GC-MS, and the predominant components in the oil were found to be β-caryophyllene (37.37%), (Z)-β-farnesene (15.88%), and germacrene D (10.97%). Antioxidant potentials of the solvent extracts and the oil were determined by four testing systems including β-carotene/linoleic acid, DPPH, reducing power, and chelating effect. In β-carotene/linoleic acid assay, all extracts showed the inhibition of more than 50% at all concentrations. In DPPH, chelating effect, and reducing power test systems, the water extract with 88.68%, 77.45%, and 1.857 (absorbance at 700 nm), respectively, exhibited more excellent activity potential than other extracts (hexane, ethyl acetate and methanol) and the essential oil at 1.0 mg/mL concentration. The amount of the total phenolics and flavonoids was the highest in this extract (139.50 ± 3.98 μg gallic acid equivalents (GAEs)/mg extract and 22.71 ± 0.05 μg quercetin equivalents (QEs)/mg extract). PMID:23762120

  14. Alkaloids extract of Retama monosperma (L.) Boiss. seeds used as novel eco-friendly inhibitor for carbon steel corrosion in 1 M HCl solution: Electrochemical and surface studies

    NASA Astrophysics Data System (ADS)

    El Hamdani, Naoual; Fdil, Rabiaa; Tourabi, Mustapha; Jama, Charafeddine; Bentiss, Fouad

    2015-12-01

    Current research efforts now focus on the development of non-toxic, inexpensive and environmentally friendly corrosion inhibitors as alternatives to different organic and non-organic compounds. In this field, alkaloids extract of Retama monosperma (L.) Boiss. seeds (AERS) was tested for the first time as corrosion inhibitor for carbon steel in 1 M HCl medium using electrochemical and surface characterization techniques. The obtained results showed that this plant extract's acts as an efficient corrosion inhibitor for carbon steel in 1 M HCl and an inhibition efficiency of 94.4% was reached with 400 mg/L of AERS at 30 °C. Ac impedance experimental data revealed a frequency distribution of the capacitance, simulated as constant phase element. Impedance results demonstrated that the addition of the AERS in the corrosive solution decreases the charge capacitance and simultaneously increases the function of the charge/discharge of the interface, facilitating the formation of an adsorbed layer over the steel surface. Polarization curves indicated that AERS is a mixed inhibitor. Adsorption of such alkaloid extract on the steel surface obeyed to the Langmuir adsorption isotherm. X-ray photoelectron spectroscopy (XPS) showed that the inhibition of steel corrosion in normal hydrochloric solution by AERS is mainly controlled by a physisorption process and the inhibitive layer is composed of an iron oxide/hydroxide mixture where AERS molecules are incorporated.

  15. Light acclimation of photosynthesis in two closely related firs (Abies pinsapo Boiss. and Abies alba Mill.): the role of leaf anatomy and mesophyll conductance to CO2.

    PubMed

    Peguero-Pina, José Javier; Sancho-Knapik, Domingo; Flexas, Jaume; Galmés, Jeroni; Niinemets, Ülo; Gil-Pelegrín, Eustaquio

    2016-03-01

    Leaves growing in the forest understory usually present a decreased mesophyll conductance (gm) and photosynthetic capacity. The role of leaf anatomy in determining the variability in gm among species is known, but there is a lack of information on how the acclimation of gm to shade conditions is driven by changes in leaf anatomy. Within this context, we demonstrated that Abies pinsapo Boiss. experienced profound modifications in needle anatomy to drastic changes in light availability that ultimately led to differential photosynthetic performance between trees grown in the open field and in the forest understory. In contrast to A. pinsapo, its congeneric Abies alba Mill. did not show differences either in needle anatomy or in photosynthetic parameters between trees grown in the open field and in the forest understory. The increased gm values found in trees of A. pinsapo grown in the open field can be explained by occurrence of stomata at both needle sides (amphistomatous needles), increased chloroplast surface area exposed to intercellular airspace, decreased cell wall thickness and, especially, decreased chloroplast thickness. To the best of our knowledge, the role of such drastic changes in ultrastructural needle anatomy in explaining the response of gm to the light environment has not been demonstrated in field conditions. PMID:26543153

  16. GC/MS Evaluation and In Vitro Antioxidant Activity of Essential Oil and Solvent Extracts of an Endemic Plant Used as Folk Remedy in Turkey: Phlomis bourgaei Boiss.

    PubMed

    Sarikurkcu, Cengiz; Sabih Ozer, M; Cakir, Ahmet; Eskici, Mustafa; Mete, Ebru

    2013-01-01

    This study was outlined to examine the chemical composition of hydrodistilled essential oil and in vitro antioxidant potentials of the essential oil and different solvent extracts of endemic Phlomis bourgaei Boiss. used as folk remedy in Turkey. The chemical composition of the oil was analyzed by GC and GC-MS, and the predominant components in the oil were found to be β -caryophyllene (37.37%), (Z)- β -farnesene (15.88%), and germacrene D (10.97%). Antioxidant potentials of the solvent extracts and the oil were determined by four testing systems including β -carotene/linoleic acid, DPPH, reducing power, and chelating effect. In β -carotene/linoleic acid assay, all extracts showed the inhibition of more than 50% at all concentrations. In DPPH, chelating effect, and reducing power test systems, the water extract with 88.68%, 77.45%, and 1.857 (absorbance at 700 nm), respectively, exhibited more excellent activity potential than other extracts (hexane, ethyl acetate and methanol) and the essential oil at 1.0 mg/mL concentration. The amount of the total phenolics and flavonoids was the highest in this extract (139.50 ± 3.98  μ g gallic acid equivalents (GAEs)/mg extract and 22.71 ± 0.05 μ g quercetin equivalents (QEs)/mg extract). PMID:23762120

  17. Induction of aromatic amino acids and phenylpropanoid compounds in Scrophularia striata Boiss. cell culture in response to chitosan-induced oxidative stress.

    PubMed

    Kamalipourazad, Maryam; Sharifi, Mohsen; Maivan, Hassan Zare; Behmanesh, Mehrdad; Chashmi, Najmeh Ahmadian

    2016-10-01

    Manipulation of cell culture media by elicitors is one of most important strategies to inducing secondary metabolism for the production of valuable metabolites. In this investigation, inducing effect of chitosan on physiological, biochemical, and molecular parameters were investigated in cell suspension cultures of Scrophularia striata Boiss. The results showed that chitosan concentration and time of elicitation are determinants of the effectiveness of the elicitor. Accumulation of aromatic amino acids (phenylalanine [Phe] and tyrosine [Tyr]), phenylpropanoid compounds (phenolic acids [PAs] and echinacoside [ECH]), hydrogen peroxide (H2O2) production, phenylalanine ammonia-lyase (PAL) activity and gene expression, and antioxidant enzymes (superoxide dismutase [SOD], peroxidase [POX], catalase [CAT]) activities were altered by changing the exposure time of elicitation. Results showed that, upon elicitation with chitosan, oxidative events were induced, antioxidant responses of S. striata cells were boosted through enhanced activity of an effective series of scavenging enzymes (SOD, CAT, and POX), and biosynthesis of non-enzymatic antioxidants (ECH and PAs [cinnamic, p-coumaric and, caffeic acids]). The increase in amino acid content and PAL activity at early days of exposure to chitosan was related with rises in phenolic compounds. These results provide evidence that chitosan by up-regulation of PAL gene differentially improves the production of phenylpropanoid compounds, which are of medical commercial value with good biotechnological prospects. PMID:27392152

  18. Induction of aromatic amino acids and phenylpropanoid compounds in Scrophularia striata Boiss. cell culture in response to chitosan-induced oxidative stress.

    PubMed

    Kamalipourazad, Maryam; Sharifi, Mohsen; Maivan, Hassan Zare; Behmanesh, Mehrdad; Chashmi, Najmeh Ahmadian

    2016-10-01

    Manipulation of cell culture media by elicitors is one of most important strategies to inducing secondary metabolism for the production of valuable metabolites. In this investigation, inducing effect of chitosan on physiological, biochemical, and molecular parameters were investigated in cell suspension cultures of Scrophularia striata Boiss. The results showed that chitosan concentration and time of elicitation are determinants of the effectiveness of the elicitor. Accumulation of aromatic amino acids (phenylalanine [Phe] and tyrosine [Tyr]), phenylpropanoid compounds (phenolic acids [PAs] and echinacoside [ECH]), hydrogen peroxide (H2O2) production, phenylalanine ammonia-lyase (PAL) activity and gene expression, and antioxidant enzymes (superoxide dismutase [SOD], peroxidase [POX], catalase [CAT]) activities were altered by changing the exposure time of elicitation. Results showed that, upon elicitation with chitosan, oxidative events were induced, antioxidant responses of S. striata cells were boosted through enhanced activity of an effective series of scavenging enzymes (SOD, CAT, and POX), and biosynthesis of non-enzymatic antioxidants (ECH and PAs [cinnamic, p-coumaric and, caffeic acids]). The increase in amino acid content and PAL activity at early days of exposure to chitosan was related with rises in phenolic compounds. These results provide evidence that chitosan by up-regulation of PAL gene differentially improves the production of phenylpropanoid compounds, which are of medical commercial value with good biotechnological prospects.

  19. Considering the antibacterial activity of Zataria multiflora Boiss essential oil treated with gamma-irradiation in vitro and in vivo systems

    NASA Astrophysics Data System (ADS)

    Faezeh, Fatema; Salome, Dini; Abolfazl, Dadkhah; Reza, Zolfaghari Mohammad

    2015-01-01

    The aim of the present study was to evaluate the antibacterial activities of essential oils (EOs) obtained from the aerial parts of Zataria multiflora Boiss against Bacillus cereus, Pseudomonas aeroginosa, Escherichia coli and Staphylococcus aureus by in vivo and in vitro methods. Also, the effects of gamma-irradiation (0, 10 and 25 kGy) as a new microbial decontamination on the antibacterial activities of Z. multiflora were examined. For this purpose, the collected herbs were exposed to radiation at doses of 0, 10 and 25 kGy following essential oil (EOs) extraction by steam distillation. Then, the in vitro antibacterial potency of the irradiated and non-irradiated oils was determined by using disc diffusion, agar well diffusion and MIC and MBC determination assays. The in vivo antibacterial activity was also studied in sepsis model induced by CLP surgery by Colony forming units (CFUs) determination. The results showed that the extracted oils were discovered to be effective against all the gram positive and gram negative pathogens in vitro system. In addition, the oil significantly diminished the increased CFU count observed in CLP group. Moreover, the irradiated samples were found to possess the antibacterial activities as the non-irradiated ones both in vitro and in vivo systems. These data indicated the potential use of gamma-irradiation as a safe technique for preservation of Z. multiflora as a medicinal plant with effective antibacterial activities.

  20. Neuroprotective Effect of Total and Sequential Extract of Scrophularia striata Boiss. in Rat Cerebellar Granule Neurons Following Glutamate- Induced Neurotoxicity: An In-vitro Study

    PubMed Central

    Salavati, Parvin; Ramezani, Mina; Monsef-Esfahani, Hamid R; Hajiagha, Reza; Parsa, Maliheh; Tavajohi, Shoreh; Ostad, Seyed Nasser

    2013-01-01

    Neuroprotective effect of the extract from aerial parts of Scrophularia striata Boiss (Scrophulariaceae) was investigated against glutamate-induced neurotoxicity on cultured rat pups Cerebellar Granule Neurons (CGNs). CGNs from 8 days old Sprague-Dawley rat were prepared and cultured. The experiments were performed after 8 days in culture. The plant was collected from the northeastern part (Ruin region) of Iran and air-dried at room temperature. The total extract was prepared with maceration of prepared powder in ethanol 80% for three times. Sequential extracts were obtained using dried and powdered aerial parts with increasingly polar solvents: petroleum ether, chloroform, ethyl acetate and methanol 80% solution. Cultured cells were exposed to 125 μM of glutamate for 12 h following a 24 h of incubation with test fractions at concentration of 10 mcg/mL. Morphological assay was performed using invert light microscope after fixation and staining with haematoxylin. Neuronal viability was measured using MTT assay. Statistical analysis was done using SPSS software. One way analysis of variance (ANOVA) was performed by Tukey post-hoc test. Values were considered statistically significant when p-value ≤ 0.05. Results of this study showed a significant neuroprotective activity of high polarity methanolic fraction of aerial parts of Scrophularia striata against glutamate-induced neurotoxicity in a dosedependent manner. Treatment with 10 mcg/mL of the fractions showed the best result. PMID:24250613

  1. Effect of Allium flavum L. and Allium melanantherum Panč. Extracts on Oxidative DNA Damage and Antioxidative Enzymes Superoxide Dismutase and Catalase.

    PubMed

    Mitić-Ćulafić, Dragana; Nikolić, Biljana; Simin, Nataša; Jasnić, Nebojša; Četojević-Simin, Dragana; Krstić, Maja; Knežević-Vukčević, Jelena

    2016-03-01

    Allium flavum L. and Allium melanantherum Panč. are wild growing plants used in traditional diet in Balkan region. While chemical composition and some biological activities of A. flavum have been reported, A. melanantherum, as an endemic in the Balkan Peninsula, has never been comprehensively examined. After chemical characterization of A. melanantherum, we examined the protective effect of methanol extracts of both species against t-butyl hydro-peroxide (t-BOOH)-induced DNA damage and mutagenesis. The bacterial reverse mutation assay was performed on Escherichia coli WP2 oxyR strain. DNA damage was monitored in human fetal lung fibroblasts (MRC-5) with alkaline comet assay. Obtained results indicated that extracts reduced t-BOOH-induced DNA damage up to 70 and 72% for A. flavum and A. melanantherum extract, respectively, and showed no effect on t-BOOH-induced mutagenesis. Since the results indicated modulatory effect on cell-mediated antioxidative defense, the effect of extracts on total protein content, and superoxide dismutase (SOD) and catalase (CAT) amounts and activities were monitored. Both extracts increased total protein content, while the increase of enzyme amount and activity was obtained only with A. melanantherum extract and restricted to CAT. The activity of CuZnSOD family was not affected, while SOD1 and SOD2 amounts were significantly decreased, indicating potential involvement of extracellular CuZnSOD. Obtained results strongly support the traditional use of A. flavum and A. melanantherum in nutrition and recommend them for further study. PMID:26590605

  2. Discovery of a new source of resistance to Fusarium oxysporum, cause of Fusarium wilt in Allium fistulosum, located on chromosome 2 of Allium cepa Aggregatum group.

    PubMed

    Vu, Hoa Q; El-Sayed, Magdi A; Ito, Shin-Ichi; Yamauchi, Naoki; Shigyo, Masayoshi

    2012-11-01

    This study was carried out to evaluate the antifungal effect of Allium cepa Aggregatum group (shallot) metabolites on Fusarium oxysporum and to determine the shallot chromosome(s) related to Fusarium wilt resistance using a complete set of eight Allium fistulosum - shallot monosomic addition lines. The antifungal effects of hexane, butanol, and water extraction fractions from bulbs of shallot on 35 isolates of F. oxysporum were examined using the disc diffusion method. Only hexane and butanol fractions showed high antifungal activity. Shallot showed no symptom of disease after inoculation with F. oxysporum f. sp. cepae. The phenolic content of the roots and the saponin content of root exudates of inoculated shallot increased to much higher levels than those of the control at 3 days after inoculation. Application of freeze-dried shallot root exudates to seeds of A. fistulosum soaked in a spore suspension of F. oxysporum resulted in protection of seedlings against infection. Among eight monosomic addition lines and A. fistulosum, FF+2A showed the highest resistance to Fusarium wilt. This monosomic addition line also showed a specific saponin band derived from shallot on the thin layer chromatography profile of saponins in the eight monosomic addition lines. The chromosome 2A of shallot might possess some of the genes related to Fusarium wilt resistance.

  3. Effects of onion (Allium cepa L.) and garlic (Allium sativum L.) essential oils on the Aspergillus versicolor growth and sterigmatocystin production.

    PubMed

    Kocić-Tanackov, Sunčica; Dimić, Gordana; Lević, Jelena; Tanackov, Ilija; Tepić, Aleksandra; Vujičić, Biserka; Gvozdanović-Varga, Jelica

    2012-05-01

    In the present study the effects of individual and combined essential oils (EOs) extracted from onion (Allium cepa L.) bulb and garlic (Allium sativum L.) clove on the growth of Aspergillus versicolor and sterigmatocystin (STC) production were investigated. The EOs obtained by hydrodistillation were analyzed by GC/MS. Twenty one compounds were identified in onion EO. The major components were: dimethyl-trisulfide (16.64%), methyl-propyl-trisulfide (14.21%), dietil-1,2,4-tritiolan (3R,5S-, 3S,5S- and 3R,5R- isomers) (13.71%), methyl-(1-propenyl)-disulfide (13.14%), and methyl-(1-propenyl)-trisulfide (13.02%). The major components of garlic EO were diallyl-trisulfide (33.55%), and diallyl-disulfide (28.05%). The mycelial growth and the STC production were recorded after 7, 14, and 21 d of the A. versicolor growth in Yeast extract sucrose (YES) broth containing different EOs concentrations. Compared to the garlic EO, the onion EO showed a stronger inhibitory effect on the A. versicolor mycelial growth and STC production. After a 21-d incubation of fungi 0.05 and 0.11 μg/mL of onion EO and 0.11 μg/mL of garlic EO completely inhibited the A. versicolor mycelial growth and mycotoxins biosynthesis. The combination of EOs of onion (75%) and garlic (25%) had a synergistic effect on growth inhibition of A. versicolor and STC production. PMID:22497489

  4. Effects of onion (Allium cepa L.) and garlic (Allium sativum L.) essential oils on the Aspergillus versicolor growth and sterigmatocystin production.

    PubMed

    Kocić-Tanackov, Sunčica; Dimić, Gordana; Lević, Jelena; Tanackov, Ilija; Tepić, Aleksandra; Vujičić, Biserka; Gvozdanović-Varga, Jelica

    2012-05-01

    In the present study the effects of individual and combined essential oils (EOs) extracted from onion (Allium cepa L.) bulb and garlic (Allium sativum L.) clove on the growth of Aspergillus versicolor and sterigmatocystin (STC) production were investigated. The EOs obtained by hydrodistillation were analyzed by GC/MS. Twenty one compounds were identified in onion EO. The major components were: dimethyl-trisulfide (16.64%), methyl-propyl-trisulfide (14.21%), dietil-1,2,4-tritiolan (3R,5S-, 3S,5S- and 3R,5R- isomers) (13.71%), methyl-(1-propenyl)-disulfide (13.14%), and methyl-(1-propenyl)-trisulfide (13.02%). The major components of garlic EO were diallyl-trisulfide (33.55%), and diallyl-disulfide (28.05%). The mycelial growth and the STC production were recorded after 7, 14, and 21 d of the A. versicolor growth in Yeast extract sucrose (YES) broth containing different EOs concentrations. Compared to the garlic EO, the onion EO showed a stronger inhibitory effect on the A. versicolor mycelial growth and STC production. After a 21-d incubation of fungi 0.05 and 0.11 μg/mL of onion EO and 0.11 μg/mL of garlic EO completely inhibited the A. versicolor mycelial growth and mycotoxins biosynthesis. The combination of EOs of onion (75%) and garlic (25%) had a synergistic effect on growth inhibition of A. versicolor and STC production.

  5. Discovery of a new source of resistance to Fusarium oxysporum, cause of Fusarium wilt in Allium fistulosum, located on chromosome 2 of Allium cepa Aggregatum group.

    PubMed

    Vu, Hoa Q; El-Sayed, Magdi A; Ito, Shin-Ichi; Yamauchi, Naoki; Shigyo, Masayoshi

    2012-11-01

    This study was carried out to evaluate the antifungal effect of Allium cepa Aggregatum group (shallot) metabolites on Fusarium oxysporum and to determine the shallot chromosome(s) related to Fusarium wilt resistance using a complete set of eight Allium fistulosum - shallot monosomic addition lines. The antifungal effects of hexane, butanol, and water extraction fractions from bulbs of shallot on 35 isolates of F. oxysporum were examined using the disc diffusion method. Only hexane and butanol fractions showed high antifungal activity. Shallot showed no symptom of disease after inoculation with F. oxysporum f. sp. cepae. The phenolic content of the roots and the saponin content of root exudates of inoculated shallot increased to much higher levels than those of the control at 3 days after inoculation. Application of freeze-dried shallot root exudates to seeds of A. fistulosum soaked in a spore suspension of F. oxysporum resulted in protection of seedlings against infection. Among eight monosomic addition lines and A. fistulosum, FF+2A showed the highest resistance to Fusarium wilt. This monosomic addition line also showed a specific saponin band derived from shallot on the thin layer chromatography profile of saponins in the eight monosomic addition lines. The chromosome 2A of shallot might possess some of the genes related to Fusarium wilt resistance. PMID:23199574

  6. Thin layer convective air drying of wild edible plant (Allium roseum) leaves: experimental kinetics, modeling and quality.

    PubMed

    Ben Haj Said, Leila; Najjaa, Hanen; Farhat, Abdelhamid; Neffati, Mohamed; Bellagha, Sihem

    2015-06-01

    The present study deals with the valorization of an edible spontaneous plant of the Tunisian arid areas: Allium roseum. This plant is traditionally used for therapeutic and culinary uses. Thin-layer drying behavior of Allium roseum leaves was investigated at 40, 50 and 60 °C drying air temperatures and 1 and l.5 m/s air velocity, in a convective dryer. The increase in air temperature significantly affected the moisture loss and reduced the drying time while air velocity was an insignificant factor during drying of Allium roseum leaves. Five models selected from the literature were found to satisfactorily describe drying kinetics of Allium roseum leaves for all tested drying conditions. Drying data were analyzed to obtain moisture diffusivity values. During the falling rate-drying period, moisture transfer from Allium roseum leaves was described by applying the Fick's diffusion model. Moisture diffusivity varied from 2.55 × 10(-12) to 8.83 × 10(-12) m(2)/s and increased with air temperature. Activation energy during convective drying was calculated using an exponential expression based on Arrhenius equation and ranged between 46.80 and 52.68 kJ/mol. All sulfur compounds detected in the fresh leaves were detected in the dried leaves. Convective air drying preserved the sulfur compounds potential formation.

  7. Preparation of Pd/Fe3O4 nanoparticles by use of Euphorbia stracheyi Boiss root extract: A magnetically recoverable catalyst for one-pot reductive amination of aldehydes at room temperature.

    PubMed

    Nasrollahzadeh, Mahmoud; Sajadi, S Mohammad

    2016-02-15

    We describe a method for supporting palladium nanoparticles on magnetic nanoparticles using Euphorbia stracheyi Boiss root extract as the natural source of reducing and stabilizing agent. The progress of the reaction was monitored using UV-visible spectroscopy. The nanocatalyst was characterized by FE-SEM, TEM, XRD, EDS, FT-IR spectroscopy and ICP. The nanocatalyst was applied as an efficient, magnetically recoverable, highly reusable and heterogeneous catalyst for one-pot reductive amination of aldehydes at room temperature. The nanocatalyst was easily recovered by applying an external magnet and reused several times without considerable loss of activity.

  8. Bioactive S-alk(en)yl cysteine sulfoxide metabolites in the genus Allium: the chemistry of potential therapeutic agents.

    PubMed

    Rose, Peter; Whiteman, Matt; Moore, Philip K; Zhu, Yi Zhun

    2005-06-01

    S-Alk(en)yl cysteine sulfoxides are odourless, non-protein sulfur amino acids typically found in members of the family Alliaceae and are the precursors to the lachrymatory and flavour compounds found in the agronomically important genus Allium. Traditionally, Allium species, particularly the onion (Allium cepa) and garlic (A. sativum), have been used for centuries in European, Asian and American folk medicines for the treatment of numerous human pathologies, however it is only recently that any significant progress has been made in determining their mechanisms of action. Indeed, our understanding of the role of Allium species in human health undoubtedly comes from the combination of several academic disciplines including botany, biochemistry and nutrition. During tissue damage, S-alk(en)yl cysteine sulfoxides are converted to their respective thiosulfinates or propanethial-S-oxide by the action of the enzyme alliinase (EC 4.4.1.4). Depending on the Allium species, and under differing conditions, thiosulfinates can decompose to form additional sulfur constituents including diallyl, methyl allyl, and diethyl mono-, di-, tri-, tetra-, penta-, and hexasulfides, the vinyldithiins and (E)- and (Z)-ajoene. Recent reports have shown onion and garlic extracts, along with several principal sulfur constituents, can induce phase II detoxification enzymes like glutathione-S-transferases (EC 2.5.1.18) and quinone reductase (QR) NAD(P)H: (quinine acceptor) oxidoreductase (EC 1.6.99.2) in mammalian tissues, as well as also influencing cell cycle arrest and apoptosis in numerous in vitro cancer cell models. Moreover, studies are also beginning to highlight a role of Allium-derived sulfur compounds in cardiovascular protection. In this review, we discuss the chemical diversity of S-alk(en)yl cysteine sulfoxide metabolites in the context of their biochemical and pharmacological mechanisms.

  9. Evaluation of Zataria MultiFlora Boiss and Carum copticum antibacterial activity on IMP-type metallo-beta-lactamase-producing Pseudomonas aeruginosa.

    PubMed

    Fallah, F; Taherpour, A; Borhan, R S; Hashemi, A; Habibi, M; Sajadi Nia, R

    2013-12-31

    Carbapenem resistance due to acquired metallo-beta-lactamases (MBLs) is considered to be more serious than other resistance mechanisms. The aim of this study was to evaluate the antibacterial activity of Zataria multiflora Boiss and Carum copticum plants on IMP-producing P.aeruginosa strains. This experimental study was carried out on hospitalized burn patients during 2011 and 2012. Antibiotics and extracts susceptibility tests were performed by disc diffusion and broth microdilution methods. MBL detection was performed by Combination Disk Diffusion Test (CDDT). The bla(VIM) and bla(IMP) genes were detected by PCR and sequencing methods. Using Combination Disk Diffusion test method, it was found that among 83 imipenem resistant P.aeruginosa strains, 48 (57.9%) were MBL producers. PCR and sequencing methods proved that these isolates were positive for blaIMP-1 genes, whereas none were positive for bla(VIM) genes. The mortality rate of hospitalized patients with MBL-producing Pseudomonas infection was 4/48 (8.3%). It was shown that Zataria multiflora and Carum copticum extracts had a high antibacterial effect on regular and IMP-producing P. aeruginosa strains in 6.25 mg/ml concentration. The incidence of MBL-producing P. aeruginosa in burn patients is very high. In our study, all MBL-producing isolates carry the blaIMP-1 gene. Therefore, detection of MBL-producing isolates is of great importance in identifying drug resistance patterns in P. aeruginosa, and in prevention and control of infections. In this study, it was shown that extracts of Z. multiflora and C. copticum have high antibacterial effects on ß-lactamase producing P. aeruginosa strains.

  10. Evaluation of Zataria MultiFlora Boiss and Carum copticum antibacterial activity on IMP-type metallo-beta-lactamase-producing Pseudomonas aeruginosa.

    PubMed

    Fallah, F; Taherpour, A; Borhan, R S; Hashemi, A; Habibi, M; Sajadi Nia, R

    2013-12-31

    Carbapenem resistance due to acquired metallo-beta-lactamases (MBLs) is considered to be more serious than other resistance mechanisms. The aim of this study was to evaluate the antibacterial activity of Zataria multiflora Boiss and Carum copticum plants on IMP-producing P.aeruginosa strains. This experimental study was carried out on hospitalized burn patients during 2011 and 2012. Antibiotics and extracts susceptibility tests were performed by disc diffusion and broth microdilution methods. MBL detection was performed by Combination Disk Diffusion Test (CDDT). The bla(VIM) and bla(IMP) genes were detected by PCR and sequencing methods. Using Combination Disk Diffusion test method, it was found that among 83 imipenem resistant P.aeruginosa strains, 48 (57.9%) were MBL producers. PCR and sequencing methods proved that these isolates were positive for blaIMP-1 genes, whereas none were positive for bla(VIM) genes. The mortality rate of hospitalized patients with MBL-producing Pseudomonas infection was 4/48 (8.3%). It was shown that Zataria multiflora and Carum copticum extracts had a high antibacterial effect on regular and IMP-producing P. aeruginosa strains in 6.25 mg/ml concentration. The incidence of MBL-producing P. aeruginosa in burn patients is very high. In our study, all MBL-producing isolates carry the blaIMP-1 gene. Therefore, detection of MBL-producing isolates is of great importance in identifying drug resistance patterns in P. aeruginosa, and in prevention and control of infections. In this study, it was shown that extracts of Z. multiflora and C. copticum have high antibacterial effects on ß-lactamase producing P. aeruginosa strains. PMID:24799849

  11. Physicochemical and antioxidative characteristics of Iranian pomegranate (Punica granatum L. cv. Rabbab-e-Neyriz) juice and comparison of its antioxidative activity with Zataria multiflora Boiss essential oil

    PubMed Central

    Bazargani-Gilani, Behnaz; Tajik, Hossein; Aliakbarlu, Javad

    2014-01-01

    Pomegranate juice (PJ) and its products are directly used in foods due to their pleasant taste and palatability as well as preservative effects. In spite of useful effects of essential oils such as zataria multiflora Boiss essential oil (ZEO) on prolonging shelf-life of foods, their application is restricted due to their vigorous taste and aroma. In the present study, physicochemical characteristics, chemical compositions and antioxidative activities of two Iranian native plants, PJ (Rabbab-e-Neyriz cultivar) and ZEO were investigated. 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and reducing power tests were used for measuring antioxidant activity. The level of total phenolic of them were also determined. Total soluble solids content, pH value, titratable acidity content and total anthocyanins content of PJ were also measured. Chemical compositions of ZEO were determined using gas-chromatography, mass-spectrometry (GC-MS). The results of antioxidative tests indicated that the ZEO was significantly more potent (p < 0.05) than PJ. Also the phenolic content in ZEO (262.52 mg per g) was significantly higher (p < 0.05) than PJ (154.90 mg per 100g). Chemical compositions analysis of ZEO indicated that its major components were carvacrol (59.17%), linalool (23.67%), trans-caryophyllene (3.07%) and carvacrol methyl ether (2.44%). In the present study, physicochemical and antioxidative characteristics of Rabbab-e-Neyriz PJ were determined for first time. It was aslo found that ZEO in comparison with PJ had higher antioxidative activity and total phenolic content. PMID:25610584

  12. The effect of aqueous preparation of Allium cepa (onion) and Allium sativa (garlic) on erythrocyte osmotic fragility in Wistar rats: in vivo and in vitro studies.

    PubMed

    Salami, H A; John, A I; Ekanem, A U

    2012-06-07

    Allium cepa (onion) and Allium sativa (garlic) are bulbous herbs used as food item, spice and medicine in different parts of the world. The effects of onion and garlic on the osmotic fragility of red blood cells in albino rats were assessed in vivo and in vitro. In the in vivo studies, five albino rats weighing between 150 - 200g composed each of three study groups. Group A were administered 150mg/Kg body weight aqueous onion preparation; Group B 75mg/Kg body weight aqueous onion and 75mg/Kg body weight garlic preparations; and Group C served as the control and were administered distilled water. The treatment regimens were orally administered thrice a week, for a period of four weeks by gavages. The in vitro erythrocyte osmotic fragility was also evaluated in 12 Wistar rats that were not pre-treated with either onion alone or onion and garlic. The animals were divided into three groups. Blood samples from group A rats were treated with 150mg onion while blood from group B rats was treated with 75mg onion and 75mg garlic extracts. Group C served as the control and were treated with normal saline and osmotic fragility assays were carried out. The degree of haemolysis was greater in the treatment group compared to control and the percentage haemolysis was greater in blood samples with onion and garlic compared to the onion group. The same observation was made in the in vitro study, but the degree of haemolysis was significantly higher in in vitro than the in vivo experiments. It is concluded that onion and garlic increase the osmotic fragility of red blood cells in albino rats.

  13. The Biosynthesis of Infrared-Emitting Quantum Dots in Allium Fistulosum

    PubMed Central

    Green, M.; Haigh, S. J.; Lewis, E. A.; Sandiford, L.; Burkitt-Gray, M.; Fleck, R.; Vizcay-Barrena, G.; Jensen, L.; Mirzai, H.; Curry, R. J.; Dailey, L.-A.

    2016-01-01

    The development of simple routes to emissive solid-state materials is of paramount interest, and in this report we describe the biosynthesis of infrared emitting quantum dots in a living plant via a mutual antagonistic reaction. Exposure of common Allium fistulosum to mercury and tellurium salts under ambient conditions resulted in the expulsion of crystalline, non-passivated HgTe quantum dots that exhibited emissive characteristics in the near-infrared spectral region, a wavelength range that is important in telecommunications and solar energy conversion. PMID:26857581

  14. Haematological evaluation of ethanolic extract of Allium ascalonicum in male albino rats.

    PubMed

    Owoyele, B V; Alabi, O T; Adebayo, J O; Soladoye, A O; Abioye, A I R; Jimoh, S A

    2004-06-01

    The haematological effect of ethanolic extract of Allium ascalonicum was evaluated in male albino rats during a 21 day administration at the doses of 50, 100 and 200 mg/kg b.w, orally. Parameters evaluated include the serum lipids, red and white cell indices. The results showed that the extract administered decreased most of the parameters relating to red cell and increased most of those parameters relating to white cells. It also decreased the total cholesterol (TCH), high density lipoprotein cholesterol (HDL) and low density lipoprotein cholesterol (LDL) with no significant effect on the triglyceride levels.

  15. Characterization and Pathogenicity of Alternaria vanuatuensis, a New Record from Allium Plants in Korea and China

    PubMed Central

    Li, Mei Jia; Deng, Jian Xin; Paul, Narayan Chandra

    2014-01-01

    Alternaria from different Allium plants was characterized by multilocus sequence analysis. Based on sequences of the β-tubulin (BT2b), the Alternaria allergen a1 (Alt a1), and the RNA polymerase II second largest subunit (RPB2) genes and phylogenetic data analysis, isolates were divided into two groups. The two groups were identical to representative isolates of A. porri (EGS48-147) and A. vanuatuensis (EGS45-018). The conidial characteristics and pathogenicity of A. vanuatuensis also well supported the molecular characteristics. This is the first record of A. vanuatuensis E. G. Simmons & C. F. Hill from Korea and China. PMID:25606017

  16. [Cytotoxic influence of chlorophenols on the root meristem cells of onion batuna seeds (Allium fistulosum L.)].

    PubMed

    Verholias, M R; Lutsenko, T V; Honcharuk, V V

    2013-01-01

    Chlorophenols are precursors to more dangerous toxicants dioxanes and are characterized wiht mutagenic and carcinogenic properties. Mutagenicity and cytotoxicity of chemical substances can be studied using methods of plant biological testing under the influence of different pollutants. Genotoxic and cytotoxic effects of pentachlorophenol and 3-chlorophenol solutions in root meristem cells of Allium fistulosum (L.) were investigated. Dose-dependent inhibition of onion seed germination under the influence of 5-chlorophenol and 3-chlorophenol solutions in different concentrations was revealed. Pentachlorophenol showed significantly greater dose-dependent toxic effect on seed germination than 3-chlorophenol. PMID:23427611

  17. The Biosynthesis of Infrared-Emitting Quantum Dots in Allium Fistulosum

    NASA Astrophysics Data System (ADS)

    Green, M.; Haigh, S. J.; Lewis, E. A.; Sandiford, L.; Burkitt-Gray, M.; Fleck, R.; Vizcay-Barrena, G.; Jensen, L.; Mirzai, H.; Curry, R. J.; Dailey, L.-A.

    2016-02-01

    The development of simple routes to emissive solid-state materials is of paramount interest, and in this report we describe the biosynthesis of infrared emitting quantum dots in a living plant via a mutual antagonistic reaction. Exposure of common Allium fistulosum to mercury and tellurium salts under ambient conditions resulted in the expulsion of crystalline, non-passivated HgTe quantum dots that exhibited emissive characteristics in the near-infrared spectral region, a wavelength range that is important in telecommunications and solar energy conversion.

  18. Isolation and Identification of Homologues of Ajoene and Alliin from Bulb-Extracts of Allium ursinum.

    PubMed

    Sendl, A; Wagner, H

    1991-08-01

    From the chloroform extract of ALLIUM URSINUM L. (Liliaceae) bulbs, in addition to other sulfur-containing constituents ( E/Z)-4,5,9-trithiadeca-1,6,11-dien-9-oxide [= methylajoene) and ( E/Z)-4,5,9-trithiaocta-1,6-dien-9-oxide (= dimethylajoene) were isolated and identified by NMR and mass spectroscopy. These two compounds were also found in A. SATIVUM but in lower amounts. The higher contents of the corresponding precursors (+)- S-methyl- L-cysteine sulfoxide (MCSO) and methylallyl/allylmethy] thiosulfmate in A. URSINUM water/methanol extracts correspond with the higher amounts of ajoene homologues.

  19. The Biosynthesis of Infrared-Emitting Quantum Dots in Allium Fistulosum.

    PubMed

    Green, M; Haigh, S J; Lewis, E A; Sandiford, L; Burkitt-Gray, M; Fleck, R; Vizcay-Barrena, G; Jensen, L; Mirzai, H; Curry, R J; Dailey, L-A

    2016-01-01

    The development of simple routes to emissive solid-state materials is of paramount interest, and in this report we describe the biosynthesis of infrared emitting quantum dots in a living plant via a mutual antagonistic reaction. Exposure of common Allium fistulosum to mercury and tellurium salts under ambient conditions resulted in the expulsion of crystalline, non-passivated HgTe quantum dots that exhibited emissive characteristics in the near-infrared spectral region, a wavelength range that is important in telecommunications and solar energy conversion. PMID:26857581

  20. Interspecific hybridization of Allium giganteum Regel: production and early verification of putative hybrids.

    PubMed

    Dubouzet, J G; Shinoda, K; Murata, N

    1998-03-01

    Cut flowers of Allium giganteum Regel were emasculated and maintained in half-strength Murashige and Skoog liquid medium supplemented with 3% sucrose and 1000 ppm each of Agrimycin(R) and Benlate(R). Wide hybridization was attempted and, through embryo rescue, putative hybrids were obtained from crosses involving A. cernuum Roth, A. oreophilum C.A. Mey. and A. schubertii Zucc. PCR amplification of the internal transcribed spacer of ribosomal DNA followed by digestion with NdeII generated restriction profiles that confirmed the hybrid nature of the A. giganteum×A. schubertii progenies. The other putative hybrids were found to be products of self pollination.

  1. Differentiation of Allium carlaviruses isolated from different parts of the world based on the viral coat protein sequence.

    PubMed

    Tsuneyoshi, T; Matsumi, T; Deng, T C; Sako, I; Sumi, S

    1998-01-01

    Common primers which amplify the 3' terminal genomic RNAs of Allium carlaviruses were designed based on the nucleotide sequence of shallot latent virus (SLV), garlic latent virus (GLV) and garlic common latent virus (GCLV). A total of fifteen cDNAs encoding the coat protein (CP) of the carlaviruses, including the biologically identified isolates SLV, GLV and GCLV as well as viruses from infected Allium plants cultivated in different parts of the world, were amplified by RT-PCR with the common primers. The cDNAs were then cloned and sequenced. The predicted viral CP amino acid sequence as well as the nucleotide sequence revealed that SLV and GLV, previously considered as separate viruses on the basis of their biological and physical properties, belong to the same species of the genus Carlavirus. Both viruses are clearly differentiated from GCLV. In addition, every SLV and GLV isolate from the Allium plants in Taiwan showed characteristic and common variations in their CP sequences, suggesting the possible presence of geographical variants. However, no apparent sequence variations of SLV and GLV related to their host plant species, including A. sativum, A. wakegi, A. chinense, A. fistulosum, A. cepa and A. ampeloprasum, were observed. These findings suggested that the sequence variations observed in the respective virus isolates do not correlate with the specificity of their infectivities for Allium species. PMID:9687867

  2. Isolation and characterization of N-feruloyltyramine as the P-selectin expression suppressor from garlic (Allium sativum)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because garlic (Allium sativum) is believed to have positive health effects on cardiovascular disease, the screening of isolated fractions from a garlic extract against cardiovascular disease related-processes should help identify active compounds. Both P-selectin expression suppressing activity ag...

  3. The in vitro susceptibility of Scedosporium prolificans to ajoene, allitridium and a raw extract of garlic (Allium sativum).

    PubMed

    Davis, Stephen R; Perrie, Rosemary; Apitz-Castro, Rafael

    2003-03-01

    The in vitro susceptibility of 20 medical isolates of Scedosporium prolificans to ajoene, allitridium and raw garlic extract derived from cloves of garlic (Allium sativum) was tested using the NCCLS reference method (with minor modifications) for broth microdilution. The results demonstrate that both garlic derivatives and raw garlic extract appear to have in vitro activity against S. prolificans.

  4. Genotypic variation in sulfur assimilation and metabolism of onion (Allium cepa L.) III. Characterization of sulfite reductase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic and cDNA sequences corresponding to a ferredoxin-sulfite reductase (SiR) have been cloned from bulb onion (Allium cepa L.) and the expression of the gene and activity of the enzyme characterised with respect to sulfur (S) supply. Cloning, mapping and expression studies revealed that onion ha...

  5. UV-B Radiation Impacts Shoot Tissue Pigment Composition in Allium fistulosum L. Cultigens

    PubMed Central

    Abney, Kristin R.; Kopsell, Dean A.; Sams, Carl E.; Zivanovic, Svetlana; Kopsell, David E.

    2013-01-01

    Plants from the Allium genus are valued worldwide for culinary flavor and medicinal attributes. In this study, 16 cultigens of bunching onion (Allium fistulosum L.) were grown in a glasshouse under filtered UV radiation (control) or supplemental UV-B radiation [7.0 μmol·m−2·s−2 (2.68 W·m−2)] to determine impacts on growth, physiological parameters, and nutritional quality. Supplemental UV-B radiation influenced shoot tissue carotenoid concentrations in some, but not all, of the bunching onions. Xanthophyll carotenoid pigments lutein and β-carotene and chlorophylls a and b in shoot tissues differed between UV-B radiation treatments and among cultigens. Cultigen “Pesoenyj” responded to supplemental UV-B radiation with increases in the ratio of zeaxanthin + antheraxanthin to zeaxanthin + antheraxanthin + violaxanthin, which may indicate a flux in the xanthophyll carotenoids towards deepoxydation, commonly found under high irradiance stress. Increases in carotenoid concentrations would be expected to increase crop nutritional values. PMID:23606817

  6. Tissue culture study of the medicinal plant leek (allium ampeloprasum L).

    PubMed

    Monemi, Mohammad Bagher; Kazemitabar, S Kamal; Bakhshee Khaniki, Gholamreza; Yasari, Esmaeil; Sohrevardi, Firouzeh; Pourbagher, Roghayeh

    2014-01-01

    Persian shallot, also called leek (Allium ampeloprasum), is a monocotyledon plant of the lily family (Liliaceae). It belongs to the genus Allium, has a characteristic taste and morphological features, making it to be considered as one of the popular herbal medicine. This research was conducted with the purpose of obtaining optimal conditions for tissue culture of Persian shallot and comparing its active ingredient production in vitro versus in vivo. In this study, the auxin 2, 4-D and benzyl aminopurine- 6 (BAP) hormones, each at two concentrations (0.5 and 0.1 mg/ L) and Kin at 0.5 mg/ L were used in the format of a randomized complete block design in three replications. Results showed that the best culture media for callus formation for leaf and seed explants were the MS cultures with the hormonal compositions (0.5 mg/ L of 2, 4- D, 0.1 mg/ L of BAP) and (0.5 mg/ L of Kin and 0.1 mg/ L of 2, 4- D). Identification of the chemical composition of the essential oils, extracted either from leek callus or leaf was carried out using GC mass analysis. Twenty one compounds were detected in the GC mass spectra, seven of which constitutv about 51.5% of the total amount of compounds present in the essential oils were identified. Our data demonstrate that the leek essential oil constituents as well as callus formation can be affected by culture medium condition.

  7. Evaluation of cytotoxic and genotoxic effects of Benodanil by using Allium and Micronucleus assays.

    PubMed

    Akyıl, Dilek; Özkara, Arzu; Erdoğmuş, S Feyza; Eren, Yasin; Konuk, Muhsin; Sağlam, Esra

    2016-01-01

    The aim of this study was to evaluate the potential cytotoxic effects of Benodanil fungicide by employing both mitotic index (MI) and mitotic phases on the root meristem cells of Allium cepa and genotoxic effects by using in vitro micronucleus assay (MN) in human peripheral blood lymphocyte. In the Allium root growth inhibition test, the EC50 value was first determined as 25 ppm. Then, 2 × EC50 value (50 ppm), EC50 value (25 ppm), and 1/2 × EC50 value (12.5 ppm) were tested with different treatment periods (24, 48, and 72 h). Both negative and positive controls were also used in parallel experiments. We obtained that mitotic index and prophase index decreased when compared with the control in all concentrations. In the micronucleus assay, lymphocytes were treated with various concentrations (250, 500, 750, and 1000 µg/ml) of Benodanil for 24 and 48 h. The results showed that Benodanil did not induce MN frequency in all concentrations of both treatment periods. Additionally, it was determined that this pesticide decreased nuclear division index (NDI) significantly. It was concluded that Benodanil has a cytotoxic effects depending on decreasing of MI and NDI. PMID:26333298

  8. Leaf-shape remodeling: programmed cell death in fistular leaves of Allium fistulosum.

    PubMed

    Ni, Xi-Lu; Su, Hui; Zhou, Ya-fu; Wang, Feng-Hua; Liu, Wen-Zhe

    2015-03-01

    Some species of Allium in Liliaceae have fistular leaves. The fistular lamina of Allium fistulosum undergoes a process from solid to hollow during development. The aims were to reveal the process of fistular leaf formation involved in programmed cell death (PCD) and to compare the cytological events in the execution of cell death to those in the unusual leaf perforations or plant aerenchyma formation. In this study, light and transmission electron microscopy were used to characterize the development of fistular leaves and cytological events. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assays and gel electrophoresis were used to determine nuclear DNA cleavage during the PCD. The cavity arises in the leaf blade by degradation of specialized cells, the designated pre-cavity cells, in the center of the leaves. Nuclei of cells within the pre-cavity site become TUNEL-positive, indicating that DNA cleavage is an early event. Gel electrophoresis revealed that DNA internucleosomal cleavage occurred resulting in a characteristic DNA ladder. Ultrastructural analysis of cells at the different stages showed disrupted vacuoles, misshapen nuclei with condensed chromatin, degraded cytoplasm and organelles and emergence of secondary vacuoles. The cell walls degraded last, and residue of degraded cell walls aggregated together. These results revealed that PCD plays a critical role in the development of A. fistulosum fistular leaves. The continuous cavity in A. fistulosum leaves resemble the aerenchyma in the pith of some gramineous plants to improve gas exchange. PMID:25132341

  9. [Organization of the 378 bp satellite repeat in terminal heterochromatin of Allium fistulosum].

    PubMed

    Fesenko, I A; Khrustaleva, L I; Karlov, G I

    2002-07-01

    Telomeres, DNA-protein structures, are important elements of the eukaryotic chromosome. Telomeric regions of the majority of higher plants contain heptanucleotides TTTAGGG arranged into a tandem repeat. However, some taxa have no such repeats. These are some species of lilies (Lilium) and onions (Allium). For example, terminal regions of chromosomes of Spanish onion (Allium fistulosum) contain satellite DNA whose unit repeats are 380 bp in length, and the short arm of its chromosome 8 contains rDNA repeats. This study deals with the terminal heterochromatin and organization of the satellite repeat in A. fistulosum. Fluorescent in situ hybridization (FISH) was used to locate the satellite DNA on chromosomes and on extended DNA of A. fistulosum. Nonsatellite DNA was found in the structure of telomeric repeat. Polymerase chain reaction (PCR) and Southern hybridization were used for analysis of terminal heterochromatin. Various rearrangements were found in the satellite repeat. The roles of retrotransposones and microsatellites in the formation of terminal heterochromatin are discussed. PMID:12174581

  10. UV-B radiation impacts shoot tissue pigment composition in Allium fistulosum L. cultigens.

    PubMed

    Abney, Kristin R; Kopsell, Dean A; Sams, Carl E; Zivanovic, Svetlana; Kopsell, David E

    2013-01-01

    Plants from the Allium genus are valued worldwide for culinary flavor and medicinal attributes. In this study, 16 cultigens of bunching onion (Allium fistulosum L.) were grown in a glasshouse under filtered UV radiation (control) or supplemental UV-B radiation [7.0  μ mol·m(-2) · s(-2) (2.68 W · m(-2))] to determine impacts on growth, physiological parameters, and nutritional quality. Supplemental UV-B radiation influenced shoot tissue carotenoid concentrations in some, but not all, of the bunching onions. Xanthophyll carotenoid pigments lutein and β -carotene and chlorophylls a and b in shoot tissues differed between UV-B radiation treatments and among cultigens. Cultigen "Pesoenyj" responded to supplemental UV-B radiation with increases in the ratio of zeaxanthin + antheraxanthin to zeaxanthin + antheraxanthin + violaxanthin, which may indicate a flux in the xanthophyll carotenoids towards deepoxydation, commonly found under high irradiance stress. Increases in carotenoid concentrations would be expected to increase crop nutritional values. PMID:23606817

  11. Effects of typheramide and alfrutamide found in Allium species on cyclooxygenases and lipoxygenases.

    PubMed

    Park, Jae B

    2011-03-01

    Typheramide (N-caffeoyltyramine) and alfrutamide (N-feruloyltyramine) are phenylpropenoic acid amides found in plants. In this article, typheramide and alfrutamide were isolated from Allium sativum (garlic) and Allium fistulosum (green onion), their chemical structures were confirmed using nuclear magnetic resonance spectroscopic methods, and the potential effects on cyclooxygenases (COXs) (COX 1 and 2) and lipoxygenases (LOXs) (5- and 15-LOX) were investigated. Typheramide and alfrutamide inhibited COX 1 by 74% (P < .01) and 60% (P < .01), respectively, at the concentration of 0.1 μM; at the same concentration, they also inhibited COX 2 by 68% (P < .02) and 54% (P < .02), respectively. Typheramide was slightly stronger than alfrutamide in inhibiting COX enzymes, and the inhibition patterns of COX 1 and 2 were uncompetitive with K(i) = 0.032 and 0.047 μM, respectively. However, typheramide and alfrutamide were not able to inhibit 5-LOX, and they only moderately inhibited 15-LOX by 27% (P < .02) and 17% (P < .02), respectively, at the relatively high concentration of 25 μM. Altogether, the data suggest that typheramide and alfrutamide from garlic and green onions are likely to be significant inhibitors for COX 1 and 2 rather than 5- and 12-LOX. PMID:21332401

  12. Chemical composition and antibacterial activity of essential oils from the Tunisian Allium nigrum L.

    PubMed Central

    Rouis-Soussi, Lamia Sakka; Ayeb-Zakhama, Asma El; Mahjoub, Aouni; Flamini, Guido; Jannet, Hichem Ben; Harzallah-Skhiri, Fethia

    2014-01-01

    The chemical composition of the essential oils of different Allium nigrum L. organs and the antibacterial activity were evaluated. The study is particularly interesting because hitherto there are no reports on the antibacterial screening of this species with specific chemical composition. Therefore, essential oils from different organs (flowers, stems, leaves and bulbs) obtained separately by hydrodistillation were analyzed using gas chromatography–mass spectrometry (GC–MS). The antibacterial activity was evaluated using the disc and microdilution assays. In total, 39 compounds, representing 90.8-96.9 % of the total oil composition, were identified. The major component was hexadecanoic acid (synonym: palmitic acid) in all the A. nigrum organs oils (39.1-77.2 %). We also noted the presence of some sesquiterpenes, mainly germacrene D (12.8 %) in leaves oil) and some aliphatic compounds such as n-octadecane (30.5 %) in bulbs oil. Isopentyl isovalerate, 14-oxy-α-muurolene and germacrene D were identified for the first time in the genus Allium L. All the essential oils exhibited antimicrobial activity, especially against Enterococcus faecalis and Staphylococcus aureus. The oil obtained from the leaves exhibited an interesting antibacterial activity, with a Minimum Inhibitory Concentration (MIC) of 62.50 µg/mL against these two latter strains. The findings showed that the studied oils have antibacterial activity, and thus great potential for their application in food preservation and natural health products. PMID:26417280

  13. Assessment of cytotoxic and genotoxic potential of pyracarbolid by Allium test and micronucleus assay.

    PubMed

    Özkara, Arzu; Akyıl, Dilek; Eren, Yasin; Erdoğmuş, S Feyza; Konuk, Muhsin; Sağlam, Esra

    2015-01-01

    The present study evaluates the cytotoxic and genotoxic potential of pyracarbolid using both micronuleus (MN) assay, in human lymphocytes, and Allium cepa assay, in the root meristem cells. In Allium test, EC50 value was determined in order to selecting the test concentrations for the assay and the root tips were treated with 25 ppm (EC50/2), 50 ppm (EC50) and 100 ppm (EC50 × 2) concentrations of pyracarbolid. One percent of dimethyl sulphoxide (DMSO) and methyl methane sulfonate (MMS) were used as negative and positive controls, respectively. In the micronucleus assay, the cultures were treated with four concentrations (250, 500, 750 and 1000 µg/ml) of pyracarbolid for 24 and 48 h, negative and positive controls were also used in the experiment parallely. The results showed that mitotic index (MI) significantly reduced with increasing the pyracarbolid concentration at each exposure time. It was also obtained that prophase and metaphase index decreased significantly in all concentration at each exposure time. Anaphase index decreased as well and results were found to be statistically significant, except 24 h. A significant increase was observed in MN frequency in all concentrations and both treatment periods when compared with the controls. Pyracarbolid also caused a significant reduction in the cytokinesis block proliferation index (CBPI) in all concentration and both exposure time. PMID:25275653

  14. Allium sativum Compared to Cilostazol as an Inhibitor of Myointimal Hyperplasia

    PubMed Central

    Lima, Paulo Roberto da Silva; Bandeira, Francisco Chavier Vieira; Rolim, Janio Cipriano; Nogueira, Manuel Ricardo Sena; Pordeus, Mizael Armando Abrantes; de Oliveira, Andressa Feitosa Bezerra; Pitta, Guilherme Benjamin Brandão

    2016-01-01

    Objective Intimal hyperplasia is associated with graft failure and vascular sutures in the first year after surgery and in postangioplasty restenosis. Allium sativum (common garlic) lowers cholesterol and has antioxidant effects; it also has antiplatelet and antitumor properties and, therefore, has great potential to reduce or inhibit intimal hyperplasia of the arteries. Our objective is to determine if the garlic has an efficacy to inhibit myointimal hyperplasia compared to cilostazol. Methods Female New Zealand rabbits were divided into the following groups (n=10 each) according to treatment: group A, garlic, 800 µg×kg-1×day-1, orally; group C, cilostazol, 50 mg.day-1, orally; group PS, 10 ml of 0.9% physiological saline solution, orally. Our primary is the difference of the mean of myointimal hyperplasia. Statistical analysis was performed by using ANOVA and Tukey tests, as well as the Chi-square test. We calculated the 95% confidence interval for each point estimate, and the P value was set as < 0.05. Results Group PS had a mean hyperplasia rate of 35.74% (95% CI, 31.76–39.71%); group C, 16.21% (95% CI, 13.36–19.05%); and group A, 21.12% (95% CI, 17.26–25.01%); P<0.0001. Conclusion We conclude that Allium sativum had the same efficacy in inhibiting myointimal hyperplasia when compared to the positive control, cilostazol.

  15. Leaf-shape remodeling: programmed cell death in fistular leaves of Allium fistulosum.

    PubMed

    Ni, Xi-Lu; Su, Hui; Zhou, Ya-fu; Wang, Feng-Hua; Liu, Wen-Zhe

    2015-03-01

    Some species of Allium in Liliaceae have fistular leaves. The fistular lamina of Allium fistulosum undergoes a process from solid to hollow during development. The aims were to reveal the process of fistular leaf formation involved in programmed cell death (PCD) and to compare the cytological events in the execution of cell death to those in the unusual leaf perforations or plant aerenchyma formation. In this study, light and transmission electron microscopy were used to characterize the development of fistular leaves and cytological events. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assays and gel electrophoresis were used to determine nuclear DNA cleavage during the PCD. The cavity arises in the leaf blade by degradation of specialized cells, the designated pre-cavity cells, in the center of the leaves. Nuclei of cells within the pre-cavity site become TUNEL-positive, indicating that DNA cleavage is an early event. Gel electrophoresis revealed that DNA internucleosomal cleavage occurred resulting in a characteristic DNA ladder. Ultrastructural analysis of cells at the different stages showed disrupted vacuoles, misshapen nuclei with condensed chromatin, degraded cytoplasm and organelles and emergence of secondary vacuoles. The cell walls degraded last, and residue of degraded cell walls aggregated together. These results revealed that PCD plays a critical role in the development of A. fistulosum fistular leaves. The continuous cavity in A. fistulosum leaves resemble the aerenchyma in the pith of some gramineous plants to improve gas exchange.

  16. A mutagenicity and cytotoxicity study of limonium effusum aqueous extracts by Allium, Ames and MTT tests.

    PubMed

    Eren, Y; Ozata, A; Konuk, M; Akyil, D; Liman, R

    2015-01-01

    Nowadays plants or plant extracts have become very important for alternative medicine. Plants and their extracts have many therapeutical advantages but some of them are potentially toxic, mutagenic, carcinogenic and teratogenic. Root, stem and leafparts of Limonium effusum were used in this study and this species is an endemic species for Turkey. Mutagenic and cytotoxic effects of root, stem and leaf aqueous extracts were observed with Allium, Ames and MTT tests. Allium root growth inhibition test and mitotic index studies showed that aqueous extracts have dose-dependent toxic effects. Chromosome aberration studies indicated that especially sticky chromosome, anaphase-telophase disorder and laggard chromosome anomalies were highly observed. Ames test performed with Limonium effusum root aqueous extracts, showed weak mutagenic effects in Salmonella typhimurium TA98 strain with S9. MTT test based on mitochondrial activity indicated that most of the aqueous extracts have cytotoxic effects. This study aimed to determine the possible mutagenic and cytotoxic effects of L. effusum aqueous extracts by using bacterial, plant and mammalian cells. This research showed that some low concentrations of the L. effusum extracts have inhibited cytotoxic effects but high concentrations have induced cytotoxicity. On the other hand only a weak mutagenic activity was identified by Ames test with TA98 S9(+). PMID:26030975

  17. Tissue culture study of the medicinal plant leek (allium ampeloprasum L).

    PubMed

    Monemi, Mohammad Bagher; Kazemitabar, S Kamal; Bakhshee Khaniki, Gholamreza; Yasari, Esmaeil; Sohrevardi, Firouzeh; Pourbagher, Roghayeh

    2014-01-01

    Persian shallot, also called leek (Allium ampeloprasum), is a monocotyledon plant of the lily family (Liliaceae). It belongs to the genus Allium, has a characteristic taste and morphological features, making it to be considered as one of the popular herbal medicine. This research was conducted with the purpose of obtaining optimal conditions for tissue culture of Persian shallot and comparing its active ingredient production in vitro versus in vivo. In this study, the auxin 2, 4-D and benzyl aminopurine- 6 (BAP) hormones, each at two concentrations (0.5 and 0.1 mg/ L) and Kin at 0.5 mg/ L were used in the format of a randomized complete block design in three replications. Results showed that the best culture media for callus formation for leaf and seed explants were the MS cultures with the hormonal compositions (0.5 mg/ L of 2, 4- D, 0.1 mg/ L of BAP) and (0.5 mg/ L of Kin and 0.1 mg/ L of 2, 4- D). Identification of the chemical composition of the essential oils, extracted either from leek callus or leaf was carried out using GC mass analysis. Twenty one compounds were detected in the GC mass spectra, seven of which constitutv about 51.5% of the total amount of compounds present in the essential oils were identified. Our data demonstrate that the leek essential oil constituents as well as callus formation can be affected by culture medium condition. PMID:25035862

  18. Protective effects of five allium derived organosulfur compounds against mutation and oxidation.

    PubMed

    Chiu, Chih-Kwang; Chen, Tai-Yuan; Lin, Jou-Hsing; Wang, Chen-Ya; Wang, Bor-Sen

    2016-04-15

    In this study, we examined the ability of five allium-derived organosulfur compounds to protect cells against mutation and oxidation. The compounds tested were 1-propylmercaptan (PM), dimethyl disulfide (DMDS), diallyl disulfide (DADS), propyl disulfide (PDS), and 2,5-dimethylthiophene (DMT). Our results showed that when used at concentrations of 100-400 μmol/l, the five compounds inhibited the mutagenicity of 4-nitroquinoline-N-oxide, a direct mutagen, and benzo[a]pyrene, an indirect mutagen, toward Salmonella typhimurium TA 98 and TA 100. Furthermore, at these concentrations, all five of the compounds protected HepG2 cells against tert-butyl hydroperoxide-induced oxidative cytotoxicity. The compounds likely enhanced cell viability by suppressing the formation of reactive oxygen species and the depletion of glutathione depletion in cells. DMT and PM inhibited mutation and oxidation to a greater extent than DMDS, DADS, and PDS. These results demonstrate for the first time that DMT and PM can contribute to the antimutagenic and the antioxidative property of Allium vegetables. PMID:26617023

  19. Efficacy assessment of acid mine drainage treatment with coal mining waste using Allium cepa L. as a bioindicator.

    PubMed

    Geremias, Reginaldo; Bortolotto, Tiago; Wilhelm-Filho, Danilo; Pedrosa, Rozangela Curi; de Fávere, Valfredo Tadeu

    2012-05-01

    The aim of this study was to evaluate the efficacy of the treatment of acid mine drainage (AMD) with calcinated coal mining waste using Allium cepa L. as a bioindicator. The pH values and the concentrations of aluminum, iron, manganese, zinc, copper, lead and sulfate were determined before and after the treatment of the AMD with calcinated coal mining waste. Allium cepa L. was exposed to untreated and treated AMD, as well as to mineral water as a negative control (NC). At the end of the exposure period, the inhibition of root growth was measured and the mean effective concentration (EC(50)) was determined. Oxidative stress biomarkers such as lipid peroxidation (TBARS), protein carbonyls (PC), catalase activity (CAT) and reduced glutathione levels (GSH) in the fleshy leaves of the bulb, as well as the DNA damage index (ID) in meristematic cells, were evaluated. The results indicated that the AMD treatment with calcinated coal mining waste resulted in an increase in the pH and an expressive removal of aluminum, iron, manganese and zinc. A high sub-chronic toxicity was observed when Allium cepa L. was exposed to the untreated AMD. However, after the treatment no toxicity was detected. Levels of TBARS and PC, CAT activity and the DNA damage index were significantly increased (P<0.05) in Allium cepa L. exposed to untreated AMD when compared to treated AMD and also to negative controls. No significant alteration in the GSH content was observed. In conclusion, the use of calcinated coal mining waste associated with toxicological tests on Allium cepa L. represents an alternative system for the treatment and biomonitoring of these types of environmental contaminants.

  20. Development of new active packaging film made from a soluble soybean polysaccharide incorporated Zataria multiflora Boiss and Mentha pulegium essential oils.

    PubMed

    Salarbashi, Davoud; Tajik, Sima; Shojaee-Aliabadi, Saeedeh; Ghasemlou, Mehran; Moayyed, Hamid; Khaksar, Ramin; Noghabi, Mostafa Shahidi

    2014-03-01

    An active edible film from soluble soybean polysaccharide (SSPS) incorporated with different concentrations of Zataria multiflora Boiss (ZEO) and Mentha pulegium (MEO) essential oils was developed, and the film's optical, wettability, thermal, total phenol and antioxidant characteristics were investigated, along with their antimicrobial effectiveness against Staphylococcus aureus, Bacillus cereus, Escherichia coli O157:H7, Pseudomonas aeruginosa and Salmonella typhimurium. The film's colour became darker and more yellowish and had a lower gloss as the levels of ZEO or MEO were increased. Antioxidant activity of the films was determined using 2,2-diphenyl-1-picrylhydrazyl (DPPH), and ferric-reducing antioxidant power assays. DPPH was reduced in the range of 19.84-74.12% depending on the essential oil type and concentration. Film incorporated with 3% (v/v) ZEO showed the highest DPPH radical scavenging activity and ferric reducing antioxidant power (IC50=4188.60±21.73mg/l and EC50=8.86±0.09mg/ml, respectively), compared with the control and MEO added film. Films containing ZEO were more effective against the tested bacteria than those containing MEO. S. aureus was found to be the most sensitive bacterium to both ZEO or MEO, followed by B. cereus and E. coli. A highest inhibition zone of 387.05mm(2) was observed for S. aureus around the films incorporated with 3% (v/v) ZEO. The total inhibitory zone of 3% (v/v) MEO formulated films was 21.98 for S. typhimurium and 10.15mm(2) for P. aeruginosa. Differential scanning calorimetry (DSC) analysis revealed a single glass transition temperature (Tg) between 16 and 31°C. The contact angle increased up to 175% and 38% as 3% (v/v) of ZEO or MEO used: it clearly shows that films with ZEO were more hydrophobic than those with MEO. The results showed that these two essential oils could be incorporated into SSPS films for food packaging. PMID:24176389

  1. Development of new active packaging film made from a soluble soybean polysaccharide incorporated Zataria multiflora Boiss and Mentha pulegium essential oils.

    PubMed

    Salarbashi, Davoud; Tajik, Sima; Shojaee-Aliabadi, Saeedeh; Ghasemlou, Mehran; Moayyed, Hamid; Khaksar, Ramin; Noghabi, Mostafa Shahidi

    2014-03-01

    An active edible film from soluble soybean polysaccharide (SSPS) incorporated with different concentrations of Zataria multiflora Boiss (ZEO) and Mentha pulegium (MEO) essential oils was developed, and the film's optical, wettability, thermal, total phenol and antioxidant characteristics were investigated, along with their antimicrobial effectiveness against Staphylococcus aureus, Bacillus cereus, Escherichia coli O157:H7, Pseudomonas aeruginosa and Salmonella typhimurium. The film's colour became darker and more yellowish and had a lower gloss as the levels of ZEO or MEO were increased. Antioxidant activity of the films was determined using 2,2-diphenyl-1-picrylhydrazyl (DPPH), and ferric-reducing antioxidant power assays. DPPH was reduced in the range of 19.84-74.12% depending on the essential oil type and concentration. Film incorporated with 3% (v/v) ZEO showed the highest DPPH radical scavenging activity and ferric reducing antioxidant power (IC50=4188.60±21.73mg/l and EC50=8.86±0.09mg/ml, respectively), compared with the control and MEO added film. Films containing ZEO were more effective against the tested bacteria than those containing MEO. S. aureus was found to be the most sensitive bacterium to both ZEO or MEO, followed by B. cereus and E. coli. A highest inhibition zone of 387.05mm(2) was observed for S. aureus around the films incorporated with 3% (v/v) ZEO. The total inhibitory zone of 3% (v/v) MEO formulated films was 21.98 for S. typhimurium and 10.15mm(2) for P. aeruginosa. Differential scanning calorimetry (DSC) analysis revealed a single glass transition temperature (Tg) between 16 and 31°C. The contact angle increased up to 175% and 38% as 3% (v/v) of ZEO or MEO used: it clearly shows that films with ZEO were more hydrophobic than those with MEO. The results showed that these two essential oils could be incorporated into SSPS films for food packaging.

  2. A review on the effects of Allium sativum (Garlic) in metabolic syndrome.

    PubMed

    Hosseini, A; Hosseinzadeh, H

    2015-11-01

    The metabolic syndrome is a common problem world-wide and includes abdominal obesity, hypertension, dyslipidemia, and hyperglycemia disorders. It leads to insulin resistance and the development of diabetes mellitus or cardiovascular disease. Allium sativum (garlic) has been documented to exhibit anti-diabetic, hypotensive, and hypolipidemic properties. This suggests a potential role of A. sativum in the management of metabolic syndrome; however, more studies should be conducted to evaluate its effectiveness. In this review, we discussed the most relevant articles to find out the role of A. sativum in different components of metabolic syndrome and cardiovascular disease risk factors. Because human reports are rare, further studies are required to establish the clinical value of A. sativum in metabolic syndrome.

  3. Arbuscular mycorrhiza improves yield and nutritional properties of onion (Allium cepa).

    PubMed

    Rozpądek, Piotr; Rąpała-Kozik, Maria; Wężowicz, Katarzyna; Grandin, Anna; Karlsson, Stefan; Ważny, Rafał; Anielska, Teresa; Turnau, Katarzyna

    2016-10-01

    Improving the nutritional value of commonly cultivated crops is one of the most pending problems for modern agriculture. In natural environments plants associate with a multitude of fungal microorganisms that improve plant fitness. The best described group are arbuscular mycorrhizal fungi (AMF). These fungi have been previously shown to improve the quality and yield of several common crops. In this study we tested the potential utilization of Rhizophagus irregularis in accelerating growth and increasing the content of important dietary phytochemicals in onion (Allium cepa). Our results clearly indicate that biomass production, the abundance of vitamin B1 and its analogues and organic acid concentration can be improved by inoculating the plant with AM fungi. We have shown that improved growth is accompanied with up-regulated electron transport in PSII and antioxidant enzyme activity.

  4. Controlled green synthesis of silver nanoparticles by Allium cepa and Musa acuminata with strong antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Sahni, Geetika; Panwar, Amit; Kaur, Balpreet

    2015-02-01

    A controlled "green synthesis" approach to synthesize silver nanoparticles by Allium cepa and Musa acuminata plant extract has been reported. The effect of different process parameters, such as pH, temperature and time, on synthesis of Ag nanoparticles from plant extracts has been highlighted. The work reports an easy approach to control the kinetics of interaction of metal ions with reducing agents, stabilized by ammonia to achieve sub-10 nm particles with narrow size distribution. The nanoparticles have been characterized by UV-Visible spectra and TEM analysis. Excellent antimicrobial activity at extremely low concentration of the nanoparticles was observed against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis and Fusarium oxysporum which may allow their exploitation as a new generation nanoproduct in biomedical and agricultural applications.

  5. Cytotoxic, genotoxic and mutagenic effects of sewage sludge on Allium cepa.

    PubMed

    Corrêa Martins, Maria Nilza; de Souza, Victor Ventura; da Silva Souza, Tatiana

    2016-04-01

    The objective of this study was to ascertain the cytotoxic, genotoxic and mutagenic potential of sewage sludge using Allium cepa bioassay. Solubilized and crude sludge from two sewage treatment stations (STSs), herein named JM and M, were tested. In addition, sanitized, crude and solubilized sludge were also analyzed from STS M. The treatments showed positive response to phytotoxicity, cytotoxicity, genotoxicity and/or mutagenicity. Despite negative results for MN F1 (micronuclei counted in F1 root cells, derived from meristematic cells), the monitoring of genotoxic and mutagenic activities of sewage sludge are recommended because in agricultural areas this residue is applied in large scale and continuously. Based on our results we advise caution in the use of sewage sludge in agricultural soils. PMID:26841290

  6. Allium cepa and Tradescantia pallida bioassays to evaluate effects of the insecticide imidacloprid.

    PubMed

    Rodríguez, Yadira Ansoar; Christofoletti, Cintya Ap; Pedro, Janaína; Bueno, Odair Correa; Malaspina, Osmar; Ferreira, Rafael Alexandre Costa; Fontanetti, Carmem S

    2015-02-01

    The indiscriminate use of pesticides has become a serious environmental concern. Of them, imidacloprid (IMI) is one of the most widely used worldwide. In 2010 in Brazil, 1.934 tonnes of IMI were sold and mainly used for sugarcane crops. Several studies have examined the toxicity of IMI as well as its possible ecological effects. However, few studies have examined its toxicity at the genetic level. This is one of the biggest challenges for the scientific community, which is concerned about the impacts of these contaminants on the environment and human health. In this study, we evaluated the effects of IMI above the genetic material in Allium cepa and Tradescantia pallida following exposure to different concentrations of this insecticide. The results demonstrated that the concentrations tested induced chromosomal alterations and increased the frequency of micronuclei. Therefore, IMI in these concentrations was genotoxic to the tested organisms. These factors should be taken into account when applying this pesticide. PMID:25225953

  7. Sequence of DNA replication in Allium fistulosum chromosomes during S-phase.

    PubMed

    Fujishige, I; Taniguchi, K

    1998-12-01

    Bromodeoxyuridine pulse labelling and immunodetection were applied to synchronized Allium fistulosum cells to study sequential changes in the chromosome replication pattern during S-phase. The replication patterns were classified into five main types depending on the location of the replication signals: (1) over the whole chromosomes; (2) at proximal and interstitial regions; (3) at proximal, interstitial and distal regions; (4) at interstitial and distal regions; and (5) at distal regions. The frequencies of each pattern changed sequentially according to the timing of BrdU incorporation, demonstrating the temporal order of chromosome replication during S-phase. The distal regions that correspond to the major C-bands replicated throughout S-phase except for the earliest stage, but most intensely in late S-phase. The replication time of different chromosome sites overlapped, which is quite different from the biphasic mode of replication that occurs in mammalian chromosomes. PMID:10099874

  8. Activation of immune responses in mice by an oral administration of bunching onion (Allium fistulosum) mucus.

    PubMed

    Ueda, Hiroshi; Takeuchi, Atsuko; Wako, Tadayuki

    2013-01-01

    Bunching onion [Allium fistulosum L. (Liliaceae)] secretes mucus in the cavities of its green leaves. The effects of the mucus, which is consumed as food, were examined. The mucus augmented the production of tumor necrosis factor (TNF)-α and monocyte chemotactic protein (MCP)-1 from RAW 264 cells and of interleukin (IL)-12 from J774.1 cells; however, extracts from green leaves and white sheaths did not. An oral administration of this mucus to mice augmented the immune functions of peritoneal cells by increasing TNF-α and IL-12 production and phagocytosis. It also augmented interferon (IFN)-γ production from spleen cells and natural killer (NK) activity. These results suggest that an oral administration of the A. fistulosum mucus can enhance natural immunity. PMID:24018671

  9. Evidence for nuclear-cytoplasmic incompatibility between Allium fistulosum and A. cepa.

    PubMed

    Ulloa-G, M; Corgan, J N; Dunford, M

    1995-04-01

    An F2 population (Allium fistulosum x A. cepa) of 20plants, 10 BC1,[(A. fistulosum x A. cepa) x A. cepa], and 50 BC2 plants, [(A. fistulosum x A. cepa) x A. cepa] x A. cepa were studied cytogenetically and characterized for four isozyme alleles plus various morphological characteristics. All of the progenies were in A. fistulosum (the bunching onion) cytoplasm. In the F2 population we observed non-random chromosomal and allelic segregation, suppression of bulb onion allelic expression, and abnormalities in mitosis and meiosis. Most BC2 plants resembled A. cepa (the bulbing onion) morphologically, but anthers, filaments, pistils, and petals were abnormal. Only 3 plants, and these were most nearly like the F1 hybrid morphologically, produced any seeds.The data and observations support the hypothesis of nuclear-cytoplasmic incompatibility interactions between the bunching and bulb onion species. PMID:24174037

  10. Hypertension after ingestion of baked garlic (Allium sativum) in a dog.

    PubMed

    Kang, Min-Hee; Park, Hee-Myung

    2010-04-01

    A 6-year-old, intact male Schnauzer was referred 2-days after accidental ingestion of baked garlic. Regenerative anemia (Hematocrit 22%) and the elevated methemoglobin (8.7%) concentration were detected upon hematological examination. Eccentrocytes, Heinz bodies and ruptured red blood cells were also noted on blood smear films, which were the results from the oxidative injury of the Allium species. The dog was hypertension (systolic mean 182 mmHg) concurrent with other clinical signs, such as vomiting and dark brown urination. Treatment with continuous oxygen, antioxidant drugs and antihypertensive therapy resulted in good progress. The dog was discharged 4 days after hospitalization. There were no remarkable findings in the follow up hematologic examination 24 days after discharge, but the dog still had a high blood pressure and continued on antihypertensive therapy. No recurrence was noted and the blood pressure returned to normal levels 4 months later.

  11. A review on the effects of Allium sativum (Garlic) in metabolic syndrome.

    PubMed

    Hosseini, A; Hosseinzadeh, H

    2015-11-01

    The metabolic syndrome is a common problem world-wide and includes abdominal obesity, hypertension, dyslipidemia, and hyperglycemia disorders. It leads to insulin resistance and the development of diabetes mellitus or cardiovascular disease. Allium sativum (garlic) has been documented to exhibit anti-diabetic, hypotensive, and hypolipidemic properties. This suggests a potential role of A. sativum in the management of metabolic syndrome; however, more studies should be conducted to evaluate its effectiveness. In this review, we discussed the most relevant articles to find out the role of A. sativum in different components of metabolic syndrome and cardiovascular disease risk factors. Because human reports are rare, further studies are required to establish the clinical value of A. sativum in metabolic syndrome. PMID:26036599

  12. [Cytogenetic effects in Allium schoenoprasum growing on the anthropogenically contaminated soil].

    PubMed

    Belykh, E S; Maystrenko, T A

    2015-01-01

    Cytogenetic effects in Allium schoenoprasum meristematic root tip cells grown for a year on the territory contaminated with 235U, 238U and 232Th decay series radionuclides, heavy metals and As were studied. The area is characterized with different concentrations of chemical compounds in soil affecting a toxic element migration in biocoenosis. Analysis of the chromosome aberration spectrum showed an ambiguous cell response to soil contamination. Within the weighted absorbed dose range up to 1.2 Gy the higher the dose the aberrant cell frequency increase was shown. But further increase in the dose resulted in a genotoxic effect decrease due to high toxic effects of heavy metals and radionuclides in soil. This was registered as a mitotic index decrease that can provoke a chromosome aberration frequency underestimation and result in erroneous conclusions about genotoxic effects in A. schoenoprasum used as a bioindicator. PMID:25962271

  13. Evaluation of cytogenotoxic effects of cold aqueous extract from Achyrocline satureioides by Allium cepa L test.

    PubMed

    Sabini, María C; Cariddi, Laura N; Escobara, Franco M; Bachetti, Romina A; Sutil, Sonia B; Contigiani, Marta S; Zanon, Silvia M; Sabini, Liliana I

    2011-07-01

    Achyrocline satureioides ("marcela del campo") is native to America. Numerous investigations have reported several bioactive properties such as anti-inflammatory, hepatoprotective, immunomodulatory, antimicrobial and antiviral. Nowadays, few medicinal plants have been scientifically evaluated to test its safety, efficacy and potential benefits, despite the great public interest in these herbs. The aim of this work was to evaluate the cytotoxic and genotoxic activities of cold aqueous extract obtained from A. satureioides using Allium cepa L test. The results demonstrated the absence of genotoxicity of the extract. Only higher concentrations induced cytotoxicity but interestingly this effect was reversible and was not associated with mutagenicity. The contribution of this research provides assurance of safety in the application of Achyrocline satureioides in treatment of microbial diseases and other pathologies helping to define selective toxicity.

  14. Phenolic compounds from Allium schoenoprasum, Tragopogon pratensis and Rumex acetosa and their antiproliferative effects.

    PubMed

    Kucekova, Zdenka; Mlcek, Jiri; Humpolicek, Petr; Rop, Otakar; Valasek, Pavel; Saha, Petr

    2011-11-03

    Experimental studies have shown that phenolic compounds have antiproliferative and tumour arresting effects. The aim of this original study was to investigate the content of phenolic compounds (PhC) in flowers of Allium schoenoprasum (chive), Tragopogon pratensis (meadow salsify) and Rumex acetosa (common sorrel) and their effect on proliferation of HaCaT cells. Antiproliferative effects were evaluated in vitro using the following concentrations of phenolic compounds in cultivation medium: 100, 75, 50 and 25 µg/mL. Phenolic composition was also determined by HPLC. The results indicate that even low concentrations of these flowers' phenolic compounds inhibited cell proliferation significantly and the possible use of the studied herb's flowers as sources of active phenolic compounds for human nutrition.

  15. Economical and environmentally-friendly approaches for usage of onion (Allium cepa L.) waste.

    PubMed

    Sharma, Kavita; Mahato, Neelima; Nile, Shivraj Hariram; Lee, Eul Tal; Lee, Yong Rok

    2016-08-10

    Onion (Allium cepa L.) is one of the most commonly cultivated crops across the globe, and its production is increasing every year due to increasing consumer demand. Simultaneously, huge amounts of waste are produced from different parts of the onion, which ultimately affect the environment in various ways. Hence, proper usage as well as disposal of this waste is important from the environmental aspect. This review summarizes various usage methods of onion waste material, and processes involved to achieve maximum benefits. Processing industries produce the largest amount of onion waste. Other sources are storage systems, domestic usage and cultivation fields. Particular emphasis has been given to the methods used for better extraction and usage of onion waste under specific topics: viz. organic synthesis, production of biogas, absorbent for pollutants and value added products. PMID:27457732

  16. Arbuscular mycorrhiza improves yield and nutritional properties of onion (Allium cepa).

    PubMed

    Rozpądek, Piotr; Rąpała-Kozik, Maria; Wężowicz, Katarzyna; Grandin, Anna; Karlsson, Stefan; Ważny, Rafał; Anielska, Teresa; Turnau, Katarzyna

    2016-10-01

    Improving the nutritional value of commonly cultivated crops is one of the most pending problems for modern agriculture. In natural environments plants associate with a multitude of fungal microorganisms that improve plant fitness. The best described group are arbuscular mycorrhizal fungi (AMF). These fungi have been previously shown to improve the quality and yield of several common crops. In this study we tested the potential utilization of Rhizophagus irregularis in accelerating growth and increasing the content of important dietary phytochemicals in onion (Allium cepa). Our results clearly indicate that biomass production, the abundance of vitamin B1 and its analogues and organic acid concentration can be improved by inoculating the plant with AM fungi. We have shown that improved growth is accompanied with up-regulated electron transport in PSII and antioxidant enzyme activity. PMID:27318800

  17. Evidence for nuclear-cytoplasmic incompatibility between Allium fistulosum and A. cepa.

    PubMed

    Ulloa-G, M; Corgan, J N; Dunford, M

    1995-04-01

    An F2 population (Allium fistulosum x A. cepa) of 20plants, 10 BC1,[(A. fistulosum x A. cepa) x A. cepa], and 50 BC2 plants, [(A. fistulosum x A. cepa) x A. cepa] x A. cepa were studied cytogenetically and characterized for four isozyme alleles plus various morphological characteristics. All of the progenies were in A. fistulosum (the bunching onion) cytoplasm. In the F2 population we observed non-random chromosomal and allelic segregation, suppression of bulb onion allelic expression, and abnormalities in mitosis and meiosis. Most BC2 plants resembled A. cepa (the bulbing onion) morphologically, but anthers, filaments, pistils, and petals were abnormal. Only 3 plants, and these were most nearly like the F1 hybrid morphologically, produced any seeds.The data and observations support the hypothesis of nuclear-cytoplasmic incompatibility interactions between the bunching and bulb onion species.

  18. Molecular and Functional Characterization of FLOWERING LOCUS T Homologs in Allium cepa.

    PubMed

    Manoharan, Ranjith Kumar; Han, Jeong Suk Hyeon; Vijayakumar, Harshavardhanan; Subramani, Boopathi; Thamilarasan, Senthil Kumar; Park, Jong-In; Nou, Ill-Sup

    2016-01-01

    Onion bulbing is an important agricultural trait affecting economic value and is regulated by flowering-related genes. FLOWERING LOCUS T (FT)-like gene function is crucial for the initiation of flowering in various plant species and also in asexual reproduction in tuber plants. By employing various computational analysis using RNA-Seq data, we identified eight FT-like genes (AcFT) encoding PEBP (phosphatidylethanolamine-binding protein) domains in Allium cepa. Sequence and phylogenetic analyses of FT-like proteins revealed six proteins that were identical to previously reported AcFT1-6 proteins, as well as one (AcFT7) with a highly conserved region shared with AcFT6 and another (comp106231) with low similarity to MFT protein, but containing a PEBP domain. Homology modelling of AcFT7 proteins showed similar structures and conservation of amino acids crucial for function in AtFT (Arabidopsis) and Hd3a (rice), with variation in the C-terminal region. Further, we analyzed AcFT expression patterns in different transitional stages, as well as under SD (short-day), LD (long-day), and drought treatment in two contrasting genotypic lines EM (early maturation, 36101) and LM (late maturation, 36122). The FT transcript levels were greatly affected by various environmental factors such as photoperiod, temperature and drought. Our results suggest that AcFT7 is a member of the FT-like genes in Allium cepa and may be involved in regulation of onion bulbing, similar to other FT genes. In addition, AcFT4 and AcFT7 could be involved in establishing the difference in timing of bulb maturity between the two contrasting onion lines. PMID:26891287

  19. Synergistic effect of isopropanol on induction of mitotic aberrations in Allium cepa

    SciTech Connect

    Jacobs, S.; Meier, J.R.; Smith, M.K.; Torsella, J.

    1995-12-31

    Soil from a site heavily contaminated with polychlorinated biphenyls and several other organic and inorganic compounds was remediated by treatment with a mobile solvent extraction system. The genotoxicity of the soil, as measured by the induction of anaphase aberrations in Allium cepa root tip cells, increased after the remediation process. This increase appeared to be due to synergism between the residual solvent and genotoxic components not removed by the solvent extraction process. The purpose of the present study was to determine whether isopropanol, at concentrations similar to residual amounts following remediation, induced a synergistic response with the known clastogen, 4-nitroquinoline n-oxide (4-NQO). Bulblets of Allium cepa (common onion) were exposed for 24 h to varying concentrations of isopropanol combined with 0.10 mg/14-NQO in aqueous solution. The root tips were examined for mitotic index (MI), and cells in late anaphase/early telophase were scored for mitotic aberrations (MA, i.e., bridges, fragments, and lagging chromosomes). MI and MA frequencies were transformed by the arcsin square root function prior to statistical analysis (ANOVA). Isopropanol by itself did not induce MA and did not affect the Ml, either alone or in combination with 4-NQO. However, isopropanol enhanced the 4-NQO induced MA response by 1.4 fold at 1.0 mg/ml (p-value = 0.13) and 2.0 fold at 1.2 mg/ml (p-value = 0.006). Lower concentrations of 0.3 and 0.1 mg/ml isopropanol had no effect. The results demonstrate that residual solvents can increase the genotoxicity of soils, presumably as a result of enhancing the bioavailability of genotoxic components.

  20. Synergistic effect of isopropanol on induction of mitotic aberrations in Allium cepa

    SciTech Connect

    Jacobs, S.; Meier, J.R.; Smith, M.K.

    1995-12-31

    Soil from a site heavily contaminated with polychlorinated biphenyls and several other organic and inorganic compounds was remediated by treatment with a mobile solvent extraction system. The genotoxicity of the soil, as measured by the induction of anaphase aberrations in Allium cepa root tip cells, increased after the remediation process. This increase appeared to be due to synergism between the residual solvent and genotoxic components not removed by the solvent extraction process. The purpose of the present study was to determine whether isopropanol, at concentrations similar to residual amounts following remediation, induced a synergistic response with the known clastogen, 4-nitroquinoline n-oxide (4-NQO). Bulblets of Allium cepa (common onion) were exposed for 24 h to varying concentrations of isopropanol combined with 0.10 g/l 4-NQO in aqueous solution. The root tips were examined for mitotic index (MI), and cells in late anaphase/early telophase were scored for mitotic aberrations. MI and MA frequencies were transformed by the arcsin square root function prior to statistical analysis (ANOVA). Isopropanol by itself did not induce MA and did not affect the MI, either alone or in combination with 4-NQO. However, isopropanol enhanced the 4-NQO-induced MA response by 1.4 fold at 1.0 mg/ml (p-value = 0.13) and 2.0 fold at 1.2 mg/ml (p-value = 0.006). Lower concentrations of 0.3 and 0.1 mg/ml isopropanol had no effect. The results demonstrate that residual solvents can increase the genotoxicity of soils, presumably as a result of enhancing the bioavailability of genotoxic components.

  1. Allium fistulosum as a novel system to investigate mechanisms of freezing resistance.

    PubMed

    Tanino, Karen K; Kobayashi, Shion; Hyett, Craig; Hamilton, Kaila; Liu, Jun; Li, Bin; Borondics, Ferenc; Pedersen, Tor; Tse, John; Ellis, Tom; Kawamura, Yukio; Uemura, Matsuo

    2013-01-01

    Allium fistulosum was investigated as a novel model system to examine the mechanism of freezing resistance in cold hardy plants. The 250 × 50 × 90 µm average cell size and single epidermal cell layer system allowed direct observation of endoplasmic reticulum (ER), functional group localization during acclimation, freezing and thawing on an individual cell basis in live intact tissues. Cells increased freezing resistance from an LT50 of -11°C (non-acclimated) to -25°C under 2 weeks of cold acclimation. Samples were processed using Fourier transform infrared technology (FTIR) on a synchrotron light source and a focal plane array detector. In addition, confocal fluorescent microscopy combined with a cryostage using ER selective dye of ER-Tracker allowed more detailed examination of membrane responses during freezing. Cold acclimation increased the ER volume per cell, and the freeze-induced cell deformation stopped ER streaming and ER vesiculation subsequently occurred through the breakdown in the ER network. Freeze-induced ER vesicles in cold-acclimated cells were larger and more abundant than those in non-acclimated cells. According to FTIR, the carbohydrate/ester fraction and α-helical/β-sheet secondary structure localized in the apoplast/plasma membrane region were most visibly increased during cold acclimation. Results suggest the mechanism of cold acclimation and freezing resistance in very hardy cells may be associated with both alterations in the apoplast/plasma membrane region and the ER cryodynamics. Allium fistulosum appears to be a useful system to obtain direct evidence at both intra and extracellular levels during cold acclimation and the freezing process. PMID:23078395

  2. Biochemical and genetic analysis of carbohydrate accumulation in Allium cepa L.

    PubMed

    Yaguchi, Shigenori; McCallum, John; Shaw, Martin; Pither-Joyce, Meeghan; Onodera, Shuichi; Shiomi, Norio; Yamauchi, Naoki; Shigyo, Masayoshi

    2008-05-01

    Onion and shallot (Allium cepa L.) exhibit wide variation in bulb fructan content, and the Frc locus on chromosome 8 conditions much of this variation. To understand the biochemical basis of Frc, we conducted biochemical and genetic analyses of Allium fistulosum (FF)-shallot (A. cepa Aggregatum group) alien monosomic addition lines (AALs; FF+1A-FF+8A) and onion mapping populations. Sucrose and fructan levels in leaves of FF+2A were significantly lower than in FF throughout the year, and the springtime activity of acid invertase was also lower. FF+8A showed significantly higher winter sucrose accumulation and sucrose phosphate synthase (SPS) activity. Inbred high fructan (Frc_) lines from the 'W202Ax Texas Grano 438' onion population exhibited significantly higher sucrose levels prior to bulbing than low fructan (frcfrc) lines. Sucrose synthase (SuSy) activity in these lines was correlated with leaf hexose content but not with Frc phenotype. Markers for additional candidate genes for sucrose metabolism were obtained by cloning a major SPS expressed in onion leaf and exhaustively mining onion expressed sequence tag resources. SPS and SuSy loci were assigned to chromosome 8 and 6, respectively, using AALs and linkage mapping. Further loci were assigned, using AALs, to chromosomes 1 (sucrose phosphate phosphatase), 2 (SuSy and three invertases) and 8 (neutral invertase). The concordance between chromosome 8 localization of SPS and elevated leaf sucrose levels conditioned by high fructan alleles at the Frc locus in bulb onion or alien monosomic additions of chromosome 8 in A. fistulosum suggest that the Frc locus may condition variation in SPS activity. PMID:18372295

  3. Biochemical and genetic analysis of carbohydrate accumulation in Allium cepa L.

    PubMed

    Yaguchi, Shigenori; McCallum, John; Shaw, Martin; Pither-Joyce, Meeghan; Onodera, Shuichi; Shiomi, Norio; Yamauchi, Naoki; Shigyo, Masayoshi

    2008-05-01

    Onion and shallot (Allium cepa L.) exhibit wide variation in bulb fructan content, and the Frc locus on chromosome 8 conditions much of this variation. To understand the biochemical basis of Frc, we conducted biochemical and genetic analyses of Allium fistulosum (FF)-shallot (A. cepa Aggregatum group) alien monosomic addition lines (AALs; FF+1A-FF+8A) and onion mapping populations. Sucrose and fructan levels in leaves of FF+2A were significantly lower than in FF throughout the year, and the springtime activity of acid invertase was also lower. FF+8A showed significantly higher winter sucrose accumulation and sucrose phosphate synthase (SPS) activity. Inbred high fructan (Frc_) lines from the 'W202Ax Texas Grano 438' onion population exhibited significantly higher sucrose levels prior to bulbing than low fructan (frcfrc) lines. Sucrose synthase (SuSy) activity in these lines was correlated with leaf hexose content but not with Frc phenotype. Markers for additional candidate genes for sucrose metabolism were obtained by cloning a major SPS expressed in onion leaf and exhaustively mining onion expressed sequence tag resources. SPS and SuSy loci were assigned to chromosome 8 and 6, respectively, using AALs and linkage mapping. Further loci were assigned, using AALs, to chromosomes 1 (sucrose phosphate phosphatase), 2 (SuSy and three invertases) and 8 (neutral invertase). The concordance between chromosome 8 localization of SPS and elevated leaf sucrose levels conditioned by high fructan alleles at the Frc locus in bulb onion or alien monosomic additions of chromosome 8 in A. fistulosum suggest that the Frc locus may condition variation in SPS activity.

  4. Observation of dipropenyldisulfide and other organic sulfur compounds in the atmosphere of a beech forest with Allium ursinum ground cover

    NASA Astrophysics Data System (ADS)

    Puxbaum, H.; König, G.

    Dipropenyldisulfide, methylpropenyldisulfide, cis-propenylpropyldisulfide, diallylsulfide, dimethyldisulfide and 3-methylthiopropene were detected in the atmosphere of a beech forest with Allium ursinum (broad-leaved garlic) ground cover plants. Furthermore, it was shown that the Allium plants were the source of the organic sulfur compounds. The atmospheric concentrations of the organic sulfur observed on one day in May 1994 in a suburban forest in Vienna ranged from 0.3 to 7.8 ppb S with an average level of 2.9 ppb S. The atmospheric emission rate of organic sulfur species from A. ursinum determined with an enclosure box was the highest ever reported for terrestrial continental plants. The total organic sulfur flux on the average was at least 1 jug g-1h-1 (plant dry weight) or 60 gmgm-2 h-1 (per unit of ground area).

  5. The potential role of garlic (Allium sativum) against the multi-drug resistant tuberculosis pandemic: a review.

    PubMed

    Dini, Catia; Fabbri, Alessia; Geraci, Andrea

    2011-01-01

    Worldly data show the increasing incidence of Mycobacterium tuberculosis (MTB) and particularly of multi-drug resistant tuberculosis (MDR-TB). In developing countries, TB control programmes are overwhelmed by the complexity of treating MDR-TB infected people, as current tools and therapies are inadequate. MDR-TB could become the main form of TB. Risk factors that make South Africa into one of the main epicentres are analysed. A review of the studies carried out about antitubercular properties of Allium sativum both in vitro and in vivo is provided. The researches about the garlic extracts effectiveness against clinical isolates of MDR-TB are of scientific importance. Allium sativum offers a hope for developing alternative drugs. The involvement of traditional healers (TH) in the TB health management could facilitate the administration of garlic extracts to the infected patients.

  6. [Assessment of cyto- and genotoxicity of natural waters in the vicinity of radioactive waste storage facility using Allium-test].

    PubMed

    Udalova, A A; Geras'kin, S A; Dikarev, V G; Dikareva, N S

    2014-01-01

    Efficacy of bioassays of "aberrant cells frequency" and "proliferative activity" in root meristem of Allium cepa L. is studied in the present work for a cyto- and genotoxicity assessment of natural waters contaminated with 90Sr and heavy metals in the vicinity of the radioactive waste storage facility in Obninsk, Kaluga region. The Allium-test is shown to be applicable for the diagnostics of environmental media at their combined pollution with chemical and radioactive substances. The analysis of aberration spectrum shows an important role of chemical toxicants in the mutagenic potential of waters collected in the vicinity of the radioactive waste storage facility. Biological effects are not always possible to explain from the knowledge on water contamination levels, which shows limitations of physical-chemical monitoring in providing the adequate risk assessment for human and biota from multicomponent environmental impacts.

  7. [Assessment of cyto- and genotoxicity of natural waters in the vicinity of radioactive waste storage facility using Allium-test].

    PubMed

    Udalova, A A; Geras'kin, S A; Dikarev, V G; Dikareva, N S

    2014-01-01

    Efficacy of bioassays of "aberrant cells frequency" and "proliferative activity" in root meristem of Allium cepa L. is studied in the present work for a cyto- and genotoxicity assessment of natural waters contaminated with 90Sr and heavy metals in the vicinity of the radioactive waste storage facility in Obninsk, Kaluga region. The Allium-test is shown to be applicable for the diagnostics of environmental media at their combined pollution with chemical and radioactive substances. The analysis of aberration spectrum shows an important role of chemical toxicants in the mutagenic potential of waters collected in the vicinity of the radioactive waste storage facility. Biological effects are not always possible to explain from the knowledge on water contamination levels, which shows limitations of physical-chemical monitoring in providing the adequate risk assessment for human and biota from multicomponent environmental impacts. PMID:25764851

  8. Biochemical analyses of the antioxidative activity and chemical ingredients in eight different Allium alien monosomic addition lines.

    PubMed

    Yaguchi, Shigenori; Matsumoto, Misato; Date, Rie; Harada, Kazuki; Maeda, Toshimichi; Yamauchi, Naoki; Shigyo, Masayoshi

    2013-01-01

    We measured the antioxidant contents and antioxidative activities in eight Allium fistulosum-shallot monosomic addition lines (MAL; FF+1A-FF+8A). The high antioxidative activity lines (FF+2A and FF+6A) showed high polyphenol accumulation. These additional chromosomes (2A and 6A) would therefore have anonymous genes related to the upregulation of polyphenol production, the antioxidative activities consequently being increased in these MALs. PMID:24317054

  9. Effect of processing and cooking conditions on onion (Allium cepa L.) induced antiplatelet activity and thiosulfinate content.

    PubMed

    Cavagnaro, Pablo F; Galmarini, Claudio R

    2012-09-01

    Allium vegetables serve as sources of antiplatelet agents that may contribute to the prevention of cardiovascular disease. However, onion and garlic, the major Allium species, are usually cooked before consumption. Here, we examined the effect of cooking on onion in vitro antiplatelet activity (IVAA). Two different cooking systems (convection oven and microwaves) and several time-temperature variables were tested on whole bulbs, quarters of bulbs, and completely crushed bulbs, monitoring the degradation of sulfur antiplatelet compounds (e.g., thiosulfinates) by analysis of pyruvate levels. Although heating was, in general, detrimental for onion IVAA, the extent of this effect varied greatly, from unaffected antiplatelet activity (AA) (i.e., similar to raw onion) to a complete lost of activity, depending upon the manner in which onions were prepared prior to heating, the cooking method, and the intensity of the heat treatment. "Whole", "quarters", and "crushed" onions lost their IVAA after 30, 20, and 10 min of oven heating, respectively. The longer retainment of AA in intact bulbs was attributed to a later alliinase inactivation. Proaggregatory effects observed in samples subjected to the most intense oven and microwave heat treatments suggest that extensively cooked onions may stimulate rather than inhibit platelet aggregation. The efficacy of Allium species as antiplatelet agents, as affected by preparation and cooking conditions, is discussed.

  10. Antifungal effects of the volatile oils from Allium plants against Trichophyton species and synergism of the oils with ketoconazole.

    PubMed

    Pyun, M-S; Shin, S

    2006-06-01

    In an attempt to develop stable and safe antifungal agents from natural products (daily foodstuffs in particular), the activities of essential oils from Allium sativum for. pekinense, A. cepa, and A. fistulosum against three Trichophyton species responsible for severe mycoses in humans were investigated and compared with activity of allicin in this study. The fungistatic activities of Allium oils were evaluated by the broth dilution method and disk diffusion assay. The combined effects of Allium oils with ketoconazole were tested by the checkerboard titer test. Among the tested oils, A. sativum for. pekinense oil exhibited the strongest inhibition of growth of T. rubrum, T. erinacei, and T. soudanense with MICs (minimum inhibiting concentrations) of 64microg/ml, while the activities of A. cepa and A. fistulosum were relatively mild. The inhibiting activities of the oils on Sabouraud agar plates were dose dependent against Trichophyton species. Additionally, these oils showed significant synergistic antifungal activity when combined with ketoconazole in the checkerboard titer test and disk diffusion test. PMID:16716908

  11. RAPDs and noncoding chloroplast DNA reveal a single origin of the cultivated Allium fistulosum from A. altaicum (Alliaceae).

    PubMed

    Friesen, N; Pollner, S; Bachmann, K; Blattner, F R

    1999-04-01

    The origin of the crop species Allium fistulosum (bunching onion) and its relation to its wild relative A. altaicum were surveyed with a restriction fragment length polymorphism (RFLP) analysis of five noncoding cpDNA regions and with a random amplified polymorhic DNA (RAPD) analysis of nuclear DNA. Sixteen accessions of A. altaicum, 14 accessions of A. fistulosum, representing the morphological variability of the species, and five additional outgroup species from Allium section Cepa were included in this study. The RFLP analysis detected 14 phylogenetically informative character transformations, whereas RAPD revealed 126 polymorphic fragments. Generalized parsimony, neighbor-joining analysis of genetic distances, and a principal co-ordinate analysis were able to distinguish the two species, but only RAPD data allowed clarification of the interrelationship of the two taxa. The main results of this investigation were: (1) A. fistulosum is of monophyletic origin, and (2) A. fistulosum originated from an A. altaicum progenitor, making A. altaicum a paraphyletic species. Compared with A. altaicum the cultivated accessions of the bunching onion show less genetic variability, a phenomenon that often occurs in crop species due to the severe genetic bottleneck of domestication. Allium altaicum and A. fistulosum easily hybridize when grown together, and most garden-grown material is of recent hybrid origin. PMID:10205076

  12. Nucleotide sequences of the 3' terminal region of onion yellow dwarf virus isolates from Allium plants in Japan.

    PubMed

    Tsuneyoshi, T; Ikeda, Y; Sumi, S

    1997-01-01

    The 2032 nucleotide sequence of the 3' terminal region of onion yellow dwarf virus (OYDV) isolated from Allium wakegi, bearing the genes for viral coat protein (CP) and a truncated RNA-dependent RNA polymerase, has been determined. Respective homologies of the nucleotide sequence in the corresponding region and the deduced amino acid sequence of CP with the equivalents of leek yellow stripe virus (LYSV) from garlic were 68.0 and 59.3%. Variation in the nucleotide sequence is concentrated in the boundary region between the putative RNA-dependent RNA polymerase gene and the CP gene as well as in the 3' noncoding region. These sequence divergencies, including the deletion of 79 nucleotides, resulted both in alterations to the amino acid sequence and the absence of 28 amino acid residues in the amino terminal region of OYDV CP in comparison with LYSV CP. In addition, the length of the 3' noncoding sequence of OYDV was one-third that of LYSV. Comparison of the 3' terminal 1197 nucleotides sequence of OYDV with sequences of the respective cDNAs cloned by RT-PCR directly from the total RNA of infected Allium plants that included two varieties of A. fistulosum, "Wakenegi" and "Shimonita-negi", and A. chinense, showed 90.7% overall identities, even though they have long been cultivated in locally restricted area in Japan. These findings appear to suggest that a single strain of OYDV invaded Japanese Allium plants long ago and spread throughout them. PMID:9354273

  13. Covalent anthocyanin-flavonol complexes from the violet-blue flowers of Allium 'Blue Perfume'.

    PubMed

    Saito, Norio; Nakamura, Maiko; Shinoda, Koichi; Murata, Naho; Kanazawa, Toshinari; Kato, Kazuhisa; Toki, Kenjiro; Kasai, Hiroko; Honda, Toshio; Tatsuzawa, Fumi

    2012-08-01

    Three covalent anthocyanin-flavonol complexes (pigments 1-3) were extracted from the violet-blue flower of Allium 'Blue Perfume' with 5% acetic acid-MeOH solution, in which pigment 1 was the dominant pigment. These three pigments are based on delphinidin 3-glucoside as their deacylanthocyanin and were acylated with malonyl kaempferol 3-sophoroside-7-glucosiduronic acid or malonyl-kaempferol 3-p-coumaroyl-tetraglycoside-7-glucosiduronic acid in addition to acylation with acetic acid. By spectroscopic and chemical methods, the structures of these three pigments 1-3 were determined to be: pigment 1, (6(I)-O-(delphinidin 3-O-(3(I)-O-(acetyl)-β-glucopyranoside(I))))(2(VI)-O-(kaempferol 3-O-(2(II)-O-(3(III)-O-(β-glucopyranosyl(V))-β-glucopyranosyl(III))-4(II)-O-(trans-p-coumaroyl)-6(II)-O-(β-glucopyranosyl(IV))-β-glucopyranoside(II))-7-O-(β-glucosiduronic acid(VI)))) malonate; pigment 2, (6(I)-O-(delphinidin 3-O-(3(I)-O-(acetyl)-β-glucopyranoside(I))))(2(VI)-O-(kaempferol 3-O-(2(II)-O-β-glucopyranosyl(III))-β-glucopyranoside(II))-7-O-(β-glucosiduronic acid(VI)))); and pigment 3, (6(I)-O-(delphinidin 3-O-(3(I)-O-(acetyl)-β-glucopyranoside(I))))(2(VI)-O-(kaempferol 3-O-(2(II)-O-(3(III)-O-(β-glucopyranosyl(V))-β-glucopyranosyl(III))-4(II)-O-(cis-p-coumaroyl)-6(II)-O-(β-glucopyranosyl(IV))-β-glucopyranoside(II))-7-O-(β-glucosiduronic acid(VI)))) malonate. The structure of pigment 2 was analogous to that of a covalent anthocyanin-flavonol complex isolated from Allium schoenoprasum where delphinidin was observed in place of cyanidin. The three covalent anthocyanin-flavonol complexes (pigment 1-3) had a stable violet-blue color with three characteristic absorption maxima at 540, 547 and 618nm in pH 5-6 buffer solution. From circular dichroism measurement of pigment 1 in the pH 6.0 buffer solution, cotton effects were observed at 533 (+), 604 (-) and 638 (-) nm. Based on these results, these covalent anthocyanin-flavonol complexes were presumed to maintain a

  14. Effects of Mg{sup 2+}, Co{sup 2+}, and Hg{sup 2+} on the nucleus and nucleolus in root tip cells of allium cepa

    SciTech Connect

    Liu, D.; Jiang, W.; Wang, W.; Zhai, L.

    1995-11-01

    Metal toxicity in plants has been known for a long time. Much importance has increasingly been attached to the problems of metal pollution with the development of modern industry and agriculture. If metals in plants are accumulated to a large extent, it might seriously affect them. The cytological effects of cobalt and mercury have been studied in Allium cepa by documentation of c-mitosis. Also, the quantification of chromosome aberration in Vicia faba root-tip cells treated by magnesium sulphate and in Allium cepa by metyl mercury chloride and mercuric chloride has been reported. Cytological research on the poisoning effects of Mg, Co and Hg on the nuclei and nucleoli in root-tip cells of plants has hardly been reported. The aim of this study was to determine the effects of different concentrations of magnesium, cobalt and mercury ions on root growth, and on the nuclei and nucleoli of root tip cells of Allium-cepa. 20 refs., 3 figs.

  15. Effect of different exposed lights on quercetin and quercetin glucoside content in onion (Allium cepa L.).

    PubMed

    Ko, Eun Young; Nile, Shivraj Hariram; Sharma, Kavita; Li, Guan Hao; Park, Se Won

    2015-07-01

    Quercetin and quercetin glucosides are the major flavonols present in onion (Allium cepa L.) and are predominantly present as quercetin, quercetin-3,4'-diglucoside and quercetin-4'-glucoside. Effect of different light wavelengths on onion after harvest and storage, with fluorescent, blue, red and ultra violet light influenced the quercetin and quercetin glucosides profile. In a peeled onion, all the light treatments elevated quercetin content in bulb. Among them, particularly fluorescent light effect was more eminent which stimulates the maximum synthesis of quercetin in onion. In case of whole onion bulb, skin and pulp showed different responses to light treatment, respectively. The pulp had the highest quercetin glucosides under blue light, whereas the lowest under fluorescent light. Onion skin showed nearly opposite pattern as compared to the pulp. In particular, light treatment proved to be a better way to increase the level of quercetin content in onions which might be utilized for industrial production of bioactive compounds from onion and onion waste products.

  16. Cloning and functional identification of the AcLFY gene in Allium cepa.

    PubMed

    Yang, Cuicui; Ye, Yangyang; Song, Ce; Chen, Dian; Jiang, Baiwen; Wang, Yong

    2016-05-13

    Onion (Allium cepa L.) is one of the important vegetable crops in the world, usually with a two-year life cycle. The bulbs form in the first year after sowing, then bolting and flowering are induced by low temperature in the following year. Previous studies have shown that LEAFY gene is an inflorescence tissue specific gene, and that it is also the ultimate collection channel of all flowering pathway. In this study, using homologous gene cloning and reverse transcription-PCR (RT-PCR), we isolated an inflorescence meristem specific LEAFY cDNA, AcLFY (JX275962), from onion. AcLFY contains a 1119 bp open reading frame, which encodes a putative protein of 372 amino acids, with ∼70% homology to the daffodils LEAFY and >50% homology to LEAFY proteins from other higher plants. Fluorescence quantitative results showed that AcLFY gene has the highest expression level in inflorescence meristem during early bolting, and is still expressed in leaves after the formation of flower organs. Overexpression of AcLFY gene in Arabidopsis thaliana induced early bolting and flowering, whereas knockdown of the endogenous LEAFY gene by RNAi caused a significant delay in bolting. In addition, transgenic plants also exhibited significant morphological changes in rosette leaves, branches, and plant height. PMID:27074580

  17. Cytogenetic effects of three commercially formulated pesticides on somatic and germ cells of Allium cepa.

    PubMed

    Kuchy, Aashiq H; Wani, Aijaz A; Kamili, Azra N

    2016-04-01

    Cytological effects of Endosri-ES (endosulfan), Nuvan-NU (dichlorvos), and Kvistin-KS (carbendazim) were evaluated on mitotic and meiotic cells of Allium cepa. Test concentrations were chosen by calculating EC50 values of formulated ES, NU, and KS, which turned to be 60, 200, and 500 ppm (parts per million), respectively. Cytological studies were undertaken on root meristem cells of A. cepa using EC50, 1/2 × EC50, and 2 × EC50 of these pesticides for 24 and 48 h. Similarly, a meiotic study was conducted by applying the pesticides at the aforesaid concentrations from seedling to bud stage. A set of onion bulbs exposed to tap water was run parallel for negative control and maleic hydrazide (112.09 ppm) as positive control. During the study period, mitotic index (MI) decreased at all the pesticide concentrations compared to the negative control. Among various chromosomal aberrations, chromatin bridges, breaks, stickiness, laggard, vagrant chromosomes, fragments, C-mitosis, multipolarity, ring chromosome as well as micronuclei were observed in mitotic preparations. In contrast, meiotic aberrations revealed comparatively less frequency of chromosomal aberrations and the most frequent were lagging chromosome, stray bivalents, secondary association, chromatin bridge, disturbed anaphase, and stickiness. Comparative analysis of the pesticides showed that NU was highly toxic to plant cells than KS, while as ES showed intermediate effects between the two. Further, our study revealed that all the three pesticides produce genotoxic effects which can cause health risks to the human populations. Graphical Abstract ᅟ.

  18. The vernal dam: Plant-microbe competition for nitrogen in northern hardwood forests. [Allium tricoccum

    SciTech Connect

    Zak, D.R. ); Groffman, P.M. ); Pregitzer, K.S.; Tiedje, J.M. ); Christensen, S. )

    1990-04-01

    Nitrogen (N) uptake by spring ephemeral communities has been proposed as a mechanism that retains N within northern hardwood forests during the season of maximum loss. To understand better the importance of these plants in retaining N, the authors followed the movement of {sup 15}NH{sub 4}{sup +} and {sup 15}NO{sub 3}{sup {minus}} into plant and microbial biomass. Two days following isotope addition, microbial biomass represented the largest labile pool of N and contained 8.5 times as much N as Allium tricoccum L. biomass. Microbial immobilization of {sup 15}N was 10-20 times greater than uptake by A. tricoccum. Nitrification of {sup 15}NH{sub 4}{sup +} was five times lower in cores containing A. tricoccum compared to those without the spring ephemeral. Spring N retention within northern hardwood forests cannot be fully explained by plant uptake because microbial immobilization represented a significantly larger sink for N. Results suggest that plant and microbial uptake of NH{sub 4}{sup +} may reduce the quantity of substrate available for nitrification and thereby lessen the potential for NO{sub 3}{sup {minus}} loss via denitrification and leaching.

  19. Cytotoxicity and mode of action of maleic hydrazide in root tips of Allium cepa L.

    PubMed

    Marcano, L; Carruyo, I; Del Campo, A; Montiel, X

    2004-02-01

    Maleic hydrazide (MH) is an herbicide and is a regulator of the growth of buds in vegetables during storage. It is used in agriculture-in despite its known effect as a mutagenic and clastogenic agent. In this research the effect of MH on the root tips of Allium cepa L. was determined; correlations between the effects of different concentrations and exposure times on the mitotic index (MI) and induction of chromosomal aberrations (ChA) were also examined. Experiments were carried out in triplicate, using aqueous solutions of MH to concentrations of 10(-6), 10(-5), 10(-4) and 10(-3)M, at intervals of 0, 4, 8, 12, 24, and 48 h, with a control for each combination (with the MH substituted by distilled water). The results revealed an inhibition of the MI linked to the concentration and time of treatment (F=845.51, P<0.01 and F=427.58, P<0.01, respectively). For all the concentrations used and exposure periods longer than 12 h, different types of ChA were present, with significantly increased frequencies with increases in the concentration and time of exposure (P<0.01). To determine the mechanism through which the herbicide exerts its toxicity, ultrastructural electron microscopy was conducted. The results reveal nucleolar alterations, suggesting an inhibitory effect of biosynthetic activity. PMID:14757385

  20. Genotoxicity of sulcotrione pesticide and photoproducts on Allium cepa root meristem.

    PubMed

    Goujon, Eric; Sta, Chaima; Trivella, Aurélien; Goupil, Pascale; Richard, Claire; Ledoigt, Gérard

    2014-07-01

    Contamination by toxic agents in the environment has become matters of concern to agricultural countries. Sulcotrione, a triketone herbicide used to control dicotyledonous weeds in maize culture is rapidly photolyzed on plant foliage and generate two main photoproducts the xanthene-1,9-dione-3,4-dihydro-6-methylsulfonyl and 2-chloro-4-mesylbenzoic acid (CMBA). The aim of this study was to analyze the potential toxicity of the herbicide and the irradiated herbicide cocktail. Cytotoxicity and genotoxicity of non irradiated and irradiated sulcotrione were investigated in Allium cepa test. The sulcotrione irradiation was monitored under sunlight simulated conditions to reach 50% of phototransformation. Concentrations of sulcotrione in the range 5 × 10(-)(9)-5 × 10(-)(5)M were tested. Cytological analysis of root tips cells showed that both non irradiated and irradiated sulcotrione caused a dose-dependent decrease of mitotic index with higher cytotoxicity for the irradiated herbicide which can lead to 24.2% reduction of mitotic index compared to water control. Concomitantly, chromosomal aberrations were observed in A.cepa root meristems. Both non irradiated sulcotrione and irradiated sulcotrione induced a dose-dependent increase of chromosomal abnormalities frequencies to a maximal value of 33.7%. A saturating effect in anomaly frequencies was observed in meristems treated with high concentrations of non irradiated sulcotrione only. These data suggest that photolyzed sulcotrione cocktail have a greater cytotoxicity and genotoxicity than parent molecule and question about the impact of photochemical process on environment. PMID:25052526

  1. Beneficial effect of shallot (Allium ascalonicum L.) extract on cyclosporine nephrotoxicity in rats.

    PubMed

    Wongmekiat, O; Leelarugrayub, N; Thamprasert, K

    2008-05-01

    The clinical use of an immunosuppressive cyclosporine A (CsA) is limited by its serious nephrotoxic effect. Evidences have suggested the role of oxidative stress in its pathogenesis. Shallot (Allium ascalonicum L.) has recently been shown to possess antioxidative and free radical scavenging abilities. The present study was undertaken to investigate the possible beneficial effect of shallot extract on renal injury caused by CsA. Male Wistar rats were treated orally with vehicle, CsA (25 mg/kg), shallot extract (1 g/kg), and CsA plus shallot extract for 21 days. Renal function, histopathology, tissue malondialdehyde (MDA) and glutathione (GSH) levels were evaluated 24 h after the last treatment. CsA-induced nephrotoxicity was evidenced by increased blood urea nitrogen and serum creatinine, but decreased urea and creatinine clearance. The kidney of CsA treated rats exhibited severe vacuolations and tubular necrosis. CsA also induced oxidative stress, as indicated by increased renal MDA and reduced GSH concentrations. Administration of shallot extract along with CsA counteracted the deleterious effects of CsA on renal dysfunction, oxidative stress markers, and morphological changes. These data indicate the protective potential of shallot extract against CsA nephrotoxicity and suggest a significant contribution of its antioxidant property to this beneficial effect.

  2. Ethnoveterinary study for antidermatophytic activity of Piper betle, Alpinia galanga and Allium ascalonicum extracts in vitro.

    PubMed

    Trakranrungsie, N; Chatchawanchonteera, A; Khunkitti, W

    2008-02-01

    Crude ethanolic extracts of Piper betle leaves (Piperaceae), Alpinia galanga rhizomes (Zingiberaceae) and Allium ascalonicum bulbs (Liliaceae) were tested against selected zoonotic dermatophytes (Microsporum canis, Microsporum gypseum and Trichophyton mentagrophyte) and the yeast-like Candida albicans. A broth dilution method was employed to determine the inhibitory effect of the extracts and compared to those of ketoconazole and griseofulvin. All extracts suppressed the growth of the fungi in a concentration-dependent manner. Among the extracts tested, P. betle exhibited more effective antifungal properties with average IC(50) values ranging from 110.44 to 119.00 microg/ml. Subsequently, 10% Piper betle (Pb) cream was formulated, subjected to physical and microbial limit test and evaluated for antifungal effect. The disc diffusion assay revealed comparable zones of inhibition between discs of Pb cream containing 80 microg P. betle extract and 80 microg ketoconazole against tested fungi at 96 h after incubation. Thereafter, the inhibitory effect of Pb cream markedly decreased and completely lost effectiveness by day 7. In summary, the results supported the traditional wisdom of herbal remedy use and suggested a potential value-addition to agricultural products. It was suggested that the Pb cream has potential therapeutic value for treatment of dermatophytosis. However, clinical testing as well as improving the Pb cream formulation with greater efficacy and duration of action would be of interest and awaits further investigation.

  3. Cytogenetic damage in shallot ( Allium cepa) root meristems induced by oil industry "high-density brines".

    PubMed

    Vidaković-Cifrek, Z; Pavlica, M; Regula, I; Papes, D

    2002-10-01

    Saturated water solutions of calcium chloride, calcium bromide (densities 1.30 kg x dm(-3) and 1.61 kg x dm(-3), respectively) and their 1:1 mixture have been commonly used as oil industry "high-density brines." In our experiment they were added to tap water in amounts appropriate to achieve concentrations of 0.025, 0.05, 0.075, and 0.1 mol x dm(-3) to study their cytotoxic effect on the root tip cells of shallot ( Allium cepa L. var. ascalonicum). All tested solutions in concentrations of 0.075 and 0.1 mol x dm(-3) caused significant inhibition of shallot root growth. CaBr (2) showed this effect in concentration 0.05 mol x dm(-3). The investigated solutions in all concentrations applied decreased mitotic activity in root tip cells. The most of mitotic abnormalities were the consequence of spindle failure and chromosome stickiness. Furthermore, the cell microtubules were investigated by indirect immunofluorescence to confirm that most abnormalities observed were the consequence of spindle failure. The present study, as well as previously done Lemna tests and Chlorella tests showed that investigated samples have certain effects on plants, so constant control of their presence in the environment is needed.

  4. TPK Sarimukti, Cipatat, West Bandung compost toxicity test using Allium test

    NASA Astrophysics Data System (ADS)

    Wardini, Trimurti Hesti; Notodarmojo, Peni Astrini

    2015-09-01

    TPK Sarimukti, Cipatat, West Bandung produced 2 kinds of compost from traditional market waste, liquid and solid compost. The aim of this research is to evaluate toxicity of compost produced in TPK Sarimukti using shallots (Allium cepa). Tests carried out by treated shallots with liquid compost (2,5%, 5%, 10% and 12,5% (w/v)) or solid compost (25%, 50%, 75% and 100% (w/v)) for 48 hours. Results showed reduced root growth rate and mitotic index (MI) in accordance with increased concentrations of compost. Sub lethal concentrations are liquid compost 5% and 10% and solid compost 75%. Lethal concentrations are liquid compost 12,5 % and solid compost 100%. Micronuclei (MN) increased with increase in liquid compost concentration. MN found at very high frequencies in highest solid compost concentration (100%), but very low at lower concentrations. Cells with binuclei and cell necrosis increased with increasing concentrations of given compost. Nuclear anomalies (NA) found in high frequency in 75% and 100% solid compost. Based on research, we can conclude that liquid compost is more toxic because it can reduce MI and root growth rate at lower concentrations than solid compost. Both types of compost have genotoxic properties because it can induce chromosome aberration (CA), MN, binuclei and NA formation.

  5. Biological Properties and Characterization of ASL50 Protein from Aged Allium sativum Bulbs.

    PubMed

    Kumar, Suresh; Jitendra, Kumar; Singh, Kusum; Kapoor, Vaishali; Sinha, Mou; Xess, Immaculata; Das, Satya N; Sharma, Sujata; Singh, Tej P; Dey, Sharmistha

    2015-08-01

    Allium sativum is well known for its medicinal properties. The A. sativum lectin 50 (ASL50, 50 kDa) was isolated from aged A. sativum bulbs and purified by gel filtration chromatography on Sephacryl S-200 column. Agar well diffusion assay were used to evaluate the antimicrobial activity of ASL50 against Candida species and bacteria then minimal inhibitory concentration (MIC) was determined. The lipid A binding to ASL50 was determined by surface plasmon resonance (SPR) technology with varying concentrations. Electron microscopic studies were done to see the mode of action of ASL50 on microbes. It exerted antimicrobial activity against clinical Candida isolates with a MIC of 10-40 μg/ml and clinical Pseudomonas aeruginosa isolates with a MIC of 10-80 μg/ml. The electron microscopic study illustrates that it disrupts the cell membrane of the bacteria and cell wall of fungi. It exhibited antiproliferative activity on oral carcinoma KB cells with an IC50 of 36 μg/ml after treatment for 48 h and induces the apoptosis of cancer cells by inducing 2.5-fold higher caspase enzyme activity than untreated cells. However, it has no cytotoxic effects towards HEK 293 cells as well as human erythrocytes even at higher concentration of ASL50. Biological properties of ASL50 may have its therapeutic significance in aiding infection and cancer treatments. PMID:26043852

  6. TPK Sarimukti, Cipatat, West Bandung compost toxicity test using Allium test

    SciTech Connect

    Wardini, Trimurti Hesti; Notodarmojo, Peni Astrini

    2015-09-30

    TPK Sarimukti, Cipatat, West Bandung produced 2 kinds of compost from traditional market waste, liquid and solid compost. The aim of this research is to evaluate toxicity of compost produced in TPK Sarimukti using shallots (Allium cepa). Tests carried out by treated shallots with liquid compost (2,5%, 5%, 10% and 12,5% (w/v)) or solid compost (25%, 50%, 75% and 100% (w/v)) for 48 hours. Results showed reduced root growth rate and mitotic index (MI) in accordance with increased concentrations of compost. Sub lethal concentrations are liquid compost 5% and 10% and solid compost 75%. Lethal concentrations are liquid compost 12,5 % and solid compost 100%. Micronuclei (MN) increased with increase in liquid compost concentration. MN found at very high frequencies in highest solid compost concentration (100%), but very low at lower concentrations. Cells with binuclei and cell necrosis increased with increasing concentrations of given compost. Nuclear anomalies (NA) found in high frequency in 75% and 100% solid compost. Based on research, we can conclude that liquid compost is more toxic because it can reduce MI and root growth rate at lower concentrations than solid compost. Both types of compost have genotoxic properties because it can induce chromosome aberration (CA), MN, binuclei and NA formation.

  7. De Novo Transcriptome Analysis of Allium cepa L. (Onion) Bulb to Identify Allergens and Epitopes.

    PubMed

    Rajkumar, Hemalatha; Ramagoni, Ramesh Kumar; Anchoju, Vijayendra Chary; Vankudavath, Raju Naik; Syed, Arshi Uz Zaman

    2015-01-01

    Allium cepa (onion) is a diploid plant with one of the largest nuclear genomes among all diploids. Onion is an example of an under-researched crop which has a complex heterozygous genome. There are no allergenic proteins and genomic data available for onions. This study was conducted to establish a transcriptome catalogue of onion bulb that will enable us to study onion related genes involved in medicinal use and allergies. Transcriptome dataset generated from onion bulb using the Illumina HiSeq 2000 technology showed a total of 99,074,309 high quality raw reads (~20 Gb). Based on sequence homology onion genes were categorized into 49 different functional groups. Most of the genes however, were classified under 'unknown' in all three gene ontology categories. Of the categorized genes, 61.2% showed metabolic functions followed by cellular components such as binding, cellular processes; catalytic activity and cell part. With BLASTx top hit analysis, a total of 2,511 homologous allergenic sequences were found, which had 37-100% similarity with 46 different types of allergens existing in the database. From the 46 contigs or allergens, 521 B-cell linear epitopes were identified using BepiPred linear epitope prediction tool. This is the first comprehensive insight into the transcriptome of onion bulb tissue using the NGS technology, which can be used to map IgE epitopes and prediction of structures and functions of various proteins. PMID:26284934

  8. Evaluation of cytotoxicity and genotoxicity of Hancornia speciosa latex in Allium cepa root model.

    PubMed

    Ribeiro, T P; Sousa, T R; Arruda, A S; Peixoto, N; Gonçalves, P J; Almeida, L M

    2016-02-01

    The latex obtained from Hancornia speciosa Gomes (Mangabeira tree) is widely used in traditional medicine to treat a variety of diseases, including diarrhea, ulcer, gastritis, tuberculosis, acne and warts. In this study, the cytotoxicity and genotoxicity effects of H. speciosa latex on the root meristem cells of Allium cepa were examined. Onion bulbs were exposed to different concentrations of latex and then submitted to microscopic analysis using Giemsa stain. Water was used as a negative control and sodium azide as a positive control. The results showed that, under the testing conditions, the mitotic index (MI) of the onion roots submitted to latex treatment did not differ significantly from the negative control, which suggests that the latex is not cytotoxic. Low incidence of chromosome aberrations in the cells treated with H. speciosa latex was also observed, indicating that the latex does not have genotoxic effect either. The MI and the chromosome aberration frequency responded to the latex concentration, requiring more studies to evaluate the dosage effect on genotoxicity. The results indicate that in tested concentrations H. speciosa latex is probably not harmful to human health and may be potentially used in medicine. PMID:26909640

  9. Evaluation of Cytotoxicity and Genotoxicity of Inula viscosa Leaf Extracts with Allium Test

    PubMed Central

    Aşkin Çelik, Tülay; Aslantürk, Özlem Sultan

    2010-01-01

    I. viscosa has been used for years in folk medicine for its anti-inflammatory, antipyretic, antiseptic, and paper antiphlogistic activities. In this study, cytotoxic and genotoxic effects of I. viscosa leaf extracts on the root meristem cells of Allium cepa have been examined. Onion bulbs were exposed to 2.5 mg/ml, 5 mg/ml, and 10 mg/ml concentrations of the extracts for macroscopic and microscopic analysis. Tap water has been used as a negative control and Ethyl methanesulfonate (EMS) (2 · 10−2 M) has been used as a positive control. The test concentrations have been determined according to doses which are recommended for use in alternative medicine. There has been statistically significant (P < .05) inhibition of root growth depending on concentration by the extracts when compared with the control groups. All the tested extracts have been observed to have cytotoxic effects on cell division in A. cepa. I. viscosa leaf extract induces the total number of chromosomal aberrations and micronuclei (MNC) formations in A. cepa root tip cells significantly when compared with control groups. Also, this paper shows for the first time the induction of cell death, ghost cells, cells with membrane damage, and binucleated cells by extract treatment. These results suggest the cytotoxic and genotoxic effects of the I. viscosa leaf extracts on A. cepa. PMID:20617136

  10. Clastogenicity of pentachlorophenol, 2,4-D and butachlor evaluated by Allium root tip test.

    PubMed

    Ateeq, Bushra; Abul Farah, M; Niamat Ali, M; Ahmad, Waseem

    2002-02-15

    The meristematic mitotic cells of Allium cepa is an efficient cytogenetic material for chromosome aberration assay on environmental pollutants. For assessing genotoxicity of pentachlorophenol (PCP), 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-chloro-2,6-diethyl-N-(butoxymethyl) acetanilide (butachlor), 50% effective concentration (EC(50)), c-mitosis, stickiness, chromosome breaks and mitotic index (MI) were used as endpoints of genotoxicity. EC(50) values for PCP and butachlor are 0.73 and 5.13 ppm, respectively. 2,4-D evidently induced morphological changes at higher concentrations. Some changes like crochet hooks, c-tumours and broken roots were unique to 2,4-D at 5-20 ppm. No such abnormalities were found in PCP and butachlor treated groups, however, root deteriorated and degenerated at higher concentrations (<3 ppm) in PCP. MI in 2,4-D showed a low average of 14.32% followed by PCP (19.53%), while in butachlor it was recorded 71.6%, which is near to the control value. All chemicals induced chromosome aberrations at statistically significant level. The highest chromosome aberration frequency (11.90%) was recorded in PCP at 3 ppm. Large number of c-mitotic anaphases indicated that butachlor acts as potent spindle inhibitor, whereas, breaks, bridges, stickiness and laggards were most frequently found in PCP showing that it is a potent clastogen. PMID:11815249

  11. The effects of onion (Allium cepa) extract on doxorubicin-induced apoptosis in aortic endothelial cells.

    PubMed

    Alpsoy, Seref; Uygur, Ramazan; Aktas, Cevat; Topcu, Birol; Kanter, Mehmet; Erboga, Mustafa; Karakaya, Osman; Gedikbasi, Asuman

    2013-05-01

    The aim of this study was to investigate the effects of onion (Allium cepa) extracts (ACE) on doxorubicin (DOX)-induced apoptosis in aortic endothelial cells. The rats in the ACE-pretreated group were given a daily dose of 1 ml ACE for 14 days. To induce aortic endothelial cell apoptosis, DOX (30 mg kg(-1) body weight) was injected intraperitoneally by a single dose and the rats were sacrificed after 48 h. To date, no such studies have been performed on antiapoptotic potential of ACE on DOX-induced apoptosis in aortic endothelial cells. Our data indicate a significant reduction in the activity of in situ identification of apoptosis using terminal dUTP nick end-labeling in aortic endothelial cells of the DOX-treated group with ACE therapy. DOX-treated with ACE groups showed a significant decrease in malondialdehyde levels and increased levels of glutathione in comparison with the DOX-treated group. Data from our study show that prevention of endothelial cell apoptosis by ACE may contribute to the restoration of aortic endothelial dysfunction that is associated with DOX treatment.

  12. Pectic polysaccharide from immature onion stick (Allium cepa): structural and immunological investigation.

    PubMed

    Patra, Pradip; Sen, Ipsita K; Bhanja, Sunil K; Nandi, Ashis K; Samanta, Surajit; Das, Debsankar; Devi, K Sanjana P; Maiti, Tapas K; Islam, Syed S

    2013-01-30

    The structure of a water-soluble pectic polysaccharide (PS) isolated from immature onion stick (Allium cepa) was investigated using acid hydrolysis, methylation analysis, periodate oxidation study, and NMR studies ((1)H, (13)C, DQF-COSY, TOCSY, NOESY, ROESY, HSQC, and HMBC). The results of the above experiments indicated that the PS contained d-galactose, 6-O-Me-D-galactose, 3-O-acetyl-D-methyl galacturonate and D-methyl galacturonate in a molar ratio of nearly 1:1:1:1 and possesses a backbone of [→4)-α-D-GalpA6Me-(1→4)-α-D-GalpA6Me-(1→] in which one methyl galacturonate was substituted at O-3 position by an acetyl group and the neighboring methyl galacturonate being substituted at O-2 with a side chain, α-D-Galp-(1→4)-6-O-Me-β-D-Galp-(1→. The probable structure of repeating unit of the pectic polysaccharide was established as: [formula in text] The pectic polysaccharide showed in vitro splenocyte, thymocyte as well as macrophage activations.

  13. Toxicity mechanisms of onion (Allium cepa) extracts and compounds in multidrug resistant erythroleukemic cell line.

    PubMed

    Votto, Ana P S; Domingues, Beatriz S; de Souza, Michele M; da Silva Júnior, Flavio M R; Caldas, Sergiane S; Filgueira, Daza M V B; Clementin, Rosilene M; Primel, Ednei G; Vallochi, Adriana L; Furlong, Eliana B; Trindade, Gilma S

    2010-01-01

    Onion (Allium cepa) is being studied as a potential anticancer agent, but little is known regarding its effect in multidrug resistance (MDR) cells. In this work, the cytotoxicity of crude onion extract (OE) and fractioned extract (aqueous, methanolic and ethyl acetate), as well as some onion compounds (quercetin and propyl disulfide) were evaluated in Lucena MDR human erythroleukemic and its K562 parental cell line. The capacity of OE to induce apoptosis and/or necrosis in these cells, the possible participation of oxidative stress and DNA damage were also assessed. Similar sensitivities were obtained for both tumoral cells, however only OE caused significant effects in the cells. In K562 cells, a significant increase of apoptosis was verified while the Lucena cells experienced a significant increase of necrosis. An antioxidant capacity was verified for OE discarding oxidative damage. However, OE provoked similar significant DNA damage in both cell lines. Thus, the OE capacity to overcome the MDR phenotype suggests anti-MDR action of OE.

  14. De Novo Transcriptome Analysis of Allium cepa L. (Onion) Bulb to Identify Allergens and Epitopes.

    PubMed

    Rajkumar, Hemalatha; Ramagoni, Ramesh Kumar; Anchoju, Vijayendra Chary; Vankudavath, Raju Naik; Syed, Arshi Uz Zaman

    2015-01-01

    Allium cepa (onion) is a diploid plant with one of the largest nuclear genomes among all diploids. Onion is an example of an under-researched crop which has a complex heterozygous genome. There are no allergenic proteins and genomic data available for onions. This study was conducted to establish a transcriptome catalogue of onion bulb that will enable us to study onion related genes involved in medicinal use and allergies. Transcriptome dataset generated from onion bulb using the Illumina HiSeq 2000 technology showed a total of 99,074,309 high quality raw reads (~20 Gb). Based on sequence homology onion genes were categorized into 49 different functional groups. Most of the genes however, were classified under 'unknown' in all three gene ontology categories. Of the categorized genes, 61.2% showed metabolic functions followed by cellular components such as binding, cellular processes; catalytic activity and cell part. With BLASTx top hit analysis, a total of 2,511 homologous allergenic sequences were found, which had 37-100% similarity with 46 different types of allergens existing in the database. From the 46 contigs or allergens, 521 B-cell linear epitopes were identified using BepiPred linear epitope prediction tool. This is the first comprehensive insight into the transcriptome of onion bulb tissue using the NGS technology, which can be used to map IgE epitopes and prediction of structures and functions of various proteins.

  15. Structural analyses and immunomodulatory properties of fructo-oligosaccharides from onion (Allium cepa).

    PubMed

    Kumar, V Prasanna; Prashanth, K V Harish; Venkatesh, Y P

    2015-03-01

    Onion (Allium cepa) is an immune-boosting food rich in fructans. The major aim of this study is to characterize and investigate the immunomodulatory properties of onion fructo-oligosaccharides (FOS). FOS was isolated from onion bulbs by hot 80% ethanol extraction (yield: ∼4.5 g/100 g fw) followed by gel permeation chromatography. NMR of onion FOS revealed unusual β-D-Glc terminal residue at the non-reducing end. TLC and ESI-MS analyses showed that onion FOS ranged from trisaccharides to hexasaccharides. Onion FOS (50 μg/mL) significantly increased (∼3-fold) the proliferation of mouse splenocytes/thymocytes vs. control. Further, onion FOS enhanced (∼2.5-fold) the production of nitric oxide by peritoneal exudates cells (PECs) from Wistar rats; intracellular free radicals production and phagocytic activity of isolated murine PECs were also augmented. Our structural and in vitro results indicate that onion FOS comprising of tri- to hexasaccharide units belongs to inulin-type fructans, and possess immunostimulatory activities towards murine lymphocytes and macrophages.

  16. Welsh onion (Allium fistulosum L.) extracts alter vascular responses in rat aortae.

    PubMed

    Chen, J H; Tsai, S J; Chen, H I

    1999-04-01

    Welsh onion, a member of the genus Allium, has been consumed for prevention of cardiovascular disorders. However, its underlying mechanisms are still unclear. We investigated whether Welsh onion extracts (green or white portion, raw or boiled) can alter vascular responses in vitro in the thoracic aortae of Sprague-Dawley rats. The possible roles of endothelium-derived factors in the Welsh onion extract-induced vascular responses were examined by applying various inhibitors, such as Nomega-nitro-L-arginine (10(-4) M), tetraethylammonium (10(-3) M), and SQ29548 (10(-5) M). Our results showed that Welsh onion extracts caused vasodilation on precontracted vessel rings. These effects were most pronounced in vessel rings treated with raw green-leaf extract (RG). Low doses of RG induced vasorelaxation, which was mediated by endothelium-derived nitric oxide. High doses of RG induced endothelium-independent vasorelaxation. On the other hand, the boiled Welsh onion extract also stimulated the release of an endothelium-derived contracting factor, which might be thromboxane A2. We conclude that Welsh onion extract can modulate vascular tone in both endothelium-dependent and endothelium-independent manners. PMID:10218719

  17. Anti-influenza A virus effects of fructan from Welsh onion (Allium fistulosum L.).

    PubMed

    Lee, Jung-Bum; Miyake, Sachi; Umetsu, Ryo; Hayashi, Kyoko; Chijimatsu, Takeshi; Hayashi, Toshimitsu

    2012-10-15

    A fructan that acts as an anti-influenza A virus substance was isolated from hot water extract of the green leafy part of a Welsh onion (Allium fistulosum L.). The structure of the fructan was characterised and elucidated by chemical and spectroscopic analyses. The fructan was composed of terminal (21.0%) and 2,1-linked β-D-Fruf residues (65.3%) with 1,6-linked β-D-Glcp residues (13.7%). The molecular weight of the polysaccharide and polydispersity was estimated to be 1.5×10(3) and 1.18, respectively. Although the fructan did not show anti-influenza A virus activity in vitro, it demonstrated an inhibitory effect on virus replication in vivo when it was orally administered to mice. In addition, the polysaccharide enhanced the production of neutralising antibodies against influenza A virus. Therefore, the antiviral mechanism of the polysaccharide seemed to be dependent on the host immune system, i.e., enhancement of the host immune function was achieved by the administration of the polysaccharide. From our observations, the fructan from Welsh onions is suggested to be one of the active principles which exert an anti-influenza virus effect. PMID:23442670

  18. Tissue culture triggers chromosome alterations, amplification, and transposition of repeat sequences in Allium fistulosum.

    PubMed

    Gernand, Dorota; Golczyk, Hieronim; Rutten, Twan; Ilnicki, Tomasz; Houben, Andreas; Joachimiak, Andrzej J

    2007-05-01

    Structural alterations in nuclei and chromosomes of cells derived from callus culture of Allium fistulosum have been studied with fluorescent in situ hybridization (FISH) using 5S ribosomal DNA (rDNA), 45S rDNA, and 375-bp repeat probes. A high frequency of chromosome abnormalities was found to be caused by the loss of telomere-located 375-bp repeats, chromosome fusion, and subsequent breakage-fusion-bridge cycles. Products of chromosome fusions and monocentric and regularly shaped chromosomes showed additional 375-bp repeat and 45S rDNA clusters at unusual sites, suggesting dynamic copy-number changes and transposition of these repeats. Southern hybridization revealed no differences in the 375-bp repeat and 45S rDNA repeat array order or the degree of methylation between DNA isolated from leaves or tissue-culture cells. In addition, protruding, spike-like structures positive for 375-bp repeats were identified on the surface of different-sized nuclei. Transmission electron microscopy analysis revealed the accumulation of densely packed chromatin within spike-like structures. Because root calyptra cells showed similar structures, it is likely that heterochromatic spike-like structures are a feature of nondividing cells at the onset of programmed cell death. PMID:17612612

  19. [Mitogenic and mutagenic effects of ionized air on Allium fistulosum L].

    PubMed

    Trofimova, V A; P'ianzina, T A

    2005-09-01

    In the apical meristem of Allium fistulosum, the relationship between peroxide lipid oxidation, antioxidant activity, proliferative processes, the yield of chromosomal aberrations and duration the exposure to ionized air was studied. Under the influence of air oxygen ions, superoxide dismutase and catalase activities increased, proliferative processes were stimulated, and shifts occurred in the process of lipid peroxidation in cells of A. fistulosum. When these cells were treated with air oxygen for 40 min, hydrogen peroxide and iron sulfate (II) enhanced oxygen biostimulating effect via stimulation of antioxidant enzyme activity and inhibition of lipid peroxidation. Under these conditions, cell proliferation was intensified and the yield of chromosomal aberrations was reduced in A. fistulosum rootlets. When the time of seed treatment with ionized air was increased to 80 min, lipid peroxidation was activated, antioxidant enzyme activity was inhibited, and the yield of chromosomal aberration increased in seedlings. It was concluded that the biostimulating activity of ionized air was mediated by active oxygen species generated in the cell. The accumulation of TBA(thiobarbituric acid)-reactive products was shown to be related to a decrease in antioxidant enzyme activity and an increase in the yield of chromosomal aberrations. It is emphasized that the mutagenic effect of ionized air is associated with generating conditions that support Fenton reaction and OH-radical formation in the cell. PMID:16240634

  20. Clastogenicity of pentachlorophenol, 2,4-D and butachlor evaluated by Allium root tip test.

    PubMed

    Ateeq, Bushra; Abul Farah, M; Niamat Ali, M; Ahmad, Waseem

    2002-02-15

    The meristematic mitotic cells of Allium cepa is an efficient cytogenetic material for chromosome aberration assay on environmental pollutants. For assessing genotoxicity of pentachlorophenol (PCP), 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-chloro-2,6-diethyl-N-(butoxymethyl) acetanilide (butachlor), 50% effective concentration (EC(50)), c-mitosis, stickiness, chromosome breaks and mitotic index (MI) were used as endpoints of genotoxicity. EC(50) values for PCP and butachlor are 0.73 and 5.13 ppm, respectively. 2,4-D evidently induced morphological changes at higher concentrations. Some changes like crochet hooks, c-tumours and broken roots were unique to 2,4-D at 5-20 ppm. No such abnormalities were found in PCP and butachlor treated groups, however, root deteriorated and degenerated at higher concentrations (<3 ppm) in PCP. MI in 2,4-D showed a low average of 14.32% followed by PCP (19.53%), while in butachlor it was recorded 71.6%, which is near to the control value. All chemicals induced chromosome aberrations at statistically significant level. The highest chromosome aberration frequency (11.90%) was recorded in PCP at 3 ppm. Large number of c-mitotic anaphases indicated that butachlor acts as potent spindle inhibitor, whereas, breaks, bridges, stickiness and laggards were most frequently found in PCP showing that it is a potent clastogen.

  1. Antioxidant and antimicrobial activities of commercial rice wine extracts of Taiwanese Allium fistulosum.

    PubMed

    Chang, Tsan-Chang; Jang, Hung-Der; Lin, Wang-De; Duan, Peng-Fu

    2016-01-01

    The antioxidant and antibacterial activities of commercial rice wine extracts obtained from different plant parts of Allium fistulosum were assayed. The results showed that commercial rice wine extracts of A. fistulosum contained 28.3-95.9 μL/mL allicin and exhibited significant antioxidant and antibacterial activities. The DPPH radical scavenging capacity ranged from 90.2% to 52.1%, and the IC50 value ranged from 14.6 to 26.0 μg/mL. The total phenolic content of wine extracts was 56.4-198.9 mg GAE/g extracts. The TEAC assay of extracts ranged from 6.2 to 15.5 mmol/g extracts. Antibacterial activities were tested against 4 bacteria b y using agar disc diffusion and tube dilution tests. All extracts exhibited antibacterial activities against gram-positive bacteria, such as Bacillus subtilis and Staphylococcus aureus, and gram-negative bacteria, such as Escherichia coli and Pseudomonas aeruginosa. Thus, A. fistulosum wine extracts could be used as natural and functional additives in cooking foods. PMID:26213031

  2. Light Intensity and Carbon Dioxide Availability Impact Antioxidant Activity in Green Onions (Allium fistulosumm L)

    NASA Astrophysics Data System (ADS)

    Levine, Lanfang; Bisbee, Patricia; Pare, Paul

    The prospect of long-duration manned space missions poses many challenges, including the development of a sustainable life support system and effective methods of space-radiation protection. To mitigate the risk of increased space-radiation, functional foods rich in antioxidant properties such as green onions are of particular interest. However it has yet to be established whether antioxidant properties can be preserved or enhanced in space environment where carbon dioxide, lighting intensity, gravity and pressure differ from which plants have acclimated to on earth. In this study, green onions (Allium fistulosumm L. cultivar Kinka) rich in antioxidant flavonoids are used as a model system to investigate variations in antioxidant capacity with plants grown under varying light intensities and CO2 concentrations. The antioxidant potential is determined using both radical cation scavenging and oxygen radical absorbance assays. For all light intensities assayed, antioxidant potential in water extract of green onions per gram biomass declined with CO2 increases up to 1200 ppm, and then leveled off with further CO2 increase to 4000 ppm. This inverse carbon dioxide versus antioxidant activity correlation suggests lower accumulation rates for water soluble antioxidant compounds compared to total biomass under increasing CO2 concentrations. The effect of increasing atmospheric CO2 concentration on antioxidant activity of ethanol extracts were light intensity dependent. The implications of these findings are discussed in the context of traditional plant antioxidants including vitamin C and the major onion flavonoid quercetin.

  3. Antioxidant and antimicrobial activities of commercial rice wine extracts of Taiwanese Allium fistulosum.

    PubMed

    Chang, Tsan-Chang; Jang, Hung-Der; Lin, Wang-De; Duan, Peng-Fu

    2016-01-01

    The antioxidant and antibacterial activities of commercial rice wine extracts obtained from different plant parts of Allium fistulosum were assayed. The results showed that commercial rice wine extracts of A. fistulosum contained 28.3-95.9 μL/mL allicin and exhibited significant antioxidant and antibacterial activities. The DPPH radical scavenging capacity ranged from 90.2% to 52.1%, and the IC50 value ranged from 14.6 to 26.0 μg/mL. The total phenolic content of wine extracts was 56.4-198.9 mg GAE/g extracts. The TEAC assay of extracts ranged from 6.2 to 15.5 mmol/g extracts. Antibacterial activities were tested against 4 bacteria b y using agar disc diffusion and tube dilution tests. All extracts exhibited antibacterial activities against gram-positive bacteria, such as Bacillus subtilis and Staphylococcus aureus, and gram-negative bacteria, such as Escherichia coli and Pseudomonas aeruginosa. Thus, A. fistulosum wine extracts could be used as natural and functional additives in cooking foods.

  4. Somatic embryogenesis and plant regeneration in diploid Allium fistulosum × A. cepa F1 hybrid onions.

    PubMed

    Lu, C C; Currah, L; Peffley, E B

    1989-03-01

    Procedures were developed for disinfestation of non-dormant basal plate tissue excised from field grown basal plate tissue of diploid Allium fistulosum × A. cepa F1 hybrid onions. Contamination levels varied with the season and vegetative development of plant material. Callus initiated from basal plate tissue and immature inflorescences of the F1 hybrids was maintained on a BDS-based medium containing 0.75 mg/l picloram and 2.0 mg/l BA. When this medium was supplemented with vitamins and glycine, and with proline at 2.5 gm/1, somatic embryos began to form. Their development continued on a BDS-based shoot promotion medium containing 0.03 mg/l picloram and 0.32 mg/l 2iP supplemented with vitamins, glycine and proline. Genotypes differed significantly in the numbers of structures regenerated. Plantlets from somatic embryos were rooted into BDS or half-strength BDS medium without growth substances and were successfully transferred to sterilized potting mix in plastic commercial corsage boxes. PMID:24240465

  5. Bacteriological evaluation of Allium sativum oil as a new medicament for pulpotomy of primary teeth

    PubMed Central

    Mohammad, Shukry Gamal; Baroudi, Kusai

    2015-01-01

    Objective: To compare the effects of Allium sativum oil and formocresol on the pulp tissue of the pulpotomized teeth. Materials and Methods: Twenty children were selected for this study. All children had a pair of non-vital primary molars. A sterile paper point was dipped in the root canals prior to the mortal pulpotomy. These paper points were collected in transfer media and immediately transported to the microbiological lab to be investigated microbiologically (for Streptococcus mutans and Lactobacillus acidophilus). Then the procedure of mortal pulpotomy was performed. After 2 weeks, the cotton pellets were removed and sterile paper points were dipped in the root canals for microbiological examination. Then comparison between the count of bacteria before and after treatment was conducted. Statistical analysis was performed using independent t-test and paired t-test at the significance level of α = 0.05. Results: After application of both medicaments, there was a marked decrease in S. mutans and L. acidophilus counts. The difference between the mean of log values of the count before and after the application was highly significant for both medicaments (P < 0.05); however, better results were obtained when A. sativum oil was used. Conclusion: A. sativum oil had more powerful antimicrobial effects than formocresol on the bacteria of the infected root canals. PMID:25992338

  6. RELATION OF ALLIUM VEGETABLES INTAKE WITH HEAD AND NECK CANCERS: EVIDENCE FROM THE INHANCE CONSORTIUM

    PubMed Central

    Galeone, Carlotta; Turati, Federica; Zhang, Zuo-Feng; Guercio, Valentina; Tavani, Alessandra; Serraino, Diego; Brennan, Paul; Fabianova, Eleonora; Lissowska, Jola; Mates, Dana; Rudnai, Peter; Shangina, Oxana; Szeszenia-Dabrowska, Neonila; Vaughan, Thomas L.; Kelsey, Karl; McClean, Michael; Levi, Fabio; Hayes, Richard B.; Purdue, Mark P.; Bosetti, Cristina; Brenner, Hermann; Pelucchi, Claudio; Lee, Yuan-Chin Amy; Hashibe, Mia; Boffetta, Paolo; La Vecchia, Carlo

    2015-01-01

    Scope Only a few studies analyzed the role of allium vegetables with reference to head and neck cancers (HNC), with mixed results. We investigated the potential favorable role of garlic and onion within the International Head and Neck Cancer Epidemiology (INHANCE) Consortium. Methods and results We analyzed pooled individual-level data from eight case-control studies, including 4590 cases and 7082 controls. We estimated odds ratios (ORs) and 95% confidence intervals (CIs) for associations between garlic and onion intakes and HNC risk. Compared with no or low garlic use, the ORs of HNC were 0.95 (95% CI 0.71–1.27) for intermediate and 0.74 (95% CI 0.55–0.99) for high garlic use (p for trend= 0.02). The ORs of HNC for increasing categories of onion intake were 0.91 (95% CI 0.68–1.21) for >1 to ≤3 portions per week, and 0.83 (95% CI 0.60–1.13) for >3 portions per week (p for trend= 0.02), as compared to <1 portion per week. We found an inverse association between high onion intake and laryngeal cancer risk (OR=0.69; 95% CI 0.54–0.88), but no significant association for other subsites. Conclusions The results of this pooled-analysis support a possible moderate inverse association between garlic and onion intake and HNC risk. PMID:26018663

  7. Anticancer and anti-inflammatory activities of shallot (Allium ascalonicum) extract

    PubMed Central

    Mohammadi-Motlagh, Hamid-Reza; Mostafaie, Ali; Mansouri, Kamran

    2011-01-01

    Introduction Alliumplants are an important part of the diet of many populations and there is a long-held belief in their health-enhancing properties such as cancer prevention. In this study, the anticancer and anti-inflammatory activities of the aqueous extract of the Allium ascalonicum bulbs have been studied. Material and methods The antiproliferative and anti-growth activity of the aqueous extract of A. ascalonicum was examined in vitro on different tumor cell lines. Furthermore, the acetic acid-induced vascular permeability as an in vivo assay was used for studying anti-inflammatory activity of the extract. Results The aqueous extract of A. ascalonicum had the most anti-growth activity on the cancer cell lines; Jurkat and K562 against Wehi 164 with lower cytotoxic preference. The extract also showed much less cytotoxicity against the normal cell (HUVEC) line and significant anti-inflammatory activity in vivo. Conclusions It is of interest that the extract of this plant has shown much less cytotoxicity against the normal cell line, and, if this also occurs in vivo, the use of this plant clinically for the treatment of cancer patients would have some scientific support. The results of these assays indicated that A. ascalonicum can be a candidate for prevention and treatment of many diseases related to inflammation and malignancy. PMID:22291731

  8. Antileishmanial activity of a mixture of Tridax procumbens and Allium sativum in mice

    PubMed Central

    Gamboa-Leon, Rubi; Vera-Ku, Marina; Peraza-Sanchez, Sergio R.; Ku-Chulim, Carlos; Horta-Baas, Aurelio; Rosado-Vallado, Miguel

    2014-01-01

    We tested a mixture of Tridax procumbens, known for its direct action against Leishmania mexicana, and Allium sativum, known for its immunomodulatory effect, as an alternative to treat cutaneous leishmaniasis. Acute oral toxicity was tested with the Up-and-Down Procedure (UDP) using a group of healthy mice administered with either T. procumbens or A. sativum extracts and compared with a control group. Liver injury and other parameters of toxicity were determined in mice at day 14. The in vivo assay was performed with mice infected with L. mexicana promastigotes and treated with either a mixture of T. procumbens and A. sativum or each extract separately. The thickness of the mice’s footpads was measured weekly. After the 12-week period of infection, blood samples were obtained by cardiac puncture to determine the total IgG, IgG1 and IgG2a immunoglobulins by a noncommercial indirect ELISA. We showed that the mixture of T. procumbens and A. sativum extracts was better at controlling L. mexicana infection while not being toxic when tested in the acute oral toxicity assay in mice. An increase in the ratio of IgG2a/IgG1 indicated a tendency to raise a Th1-type immune response in mice treated with the mixture. The mixture of T. procumbens and A. sativum extracts is a promising natural treatment for cutaneous leishmaniasis and its healing effects make it a good candidate for a possible new phytomedicine. PMID:24717526

  9. Larvicidal activity of major essential oils from stems of Allium monanthum Maxim. against Aedes aegypti L.

    PubMed

    Moon, Hyung-In

    2011-12-01

    The stems of Allium monanthum were extracted, and the major essential oil composition and larvicidal effects were studied. The analyses were conducted by gas chromatography and mass spectroscopy revealed that the essential oils of A. monanthum stems. The A. monanthum essential oil yield was 4.25%, and gas chromatography and mass spectroscopy analysis revealed that its major constituents were dimethyl trisulfide (23.21%), dimethyl tetrasulfide (11.24%) and methlyl propyl trisulfide (8.21%). The essential oil had a significant toxic effect against early fourth-stage larvae of Aedes aegypti L with an LC(50) value of 23.14 ppm and an LC(90) value of 36.31 ppm. Also, dimethyl trisulfide (≥95.0%), dimethyl tetrasulfide (≥95.0%) and methlyl propyl trisulfide (≥95.0%) were tested against the F(21) laboratory strain of A. aegypti. Methlyl propyl trisulfide (≥95.0%) has good activity with an LC(50) value of 19.38 ppm. Also, the above indicates that other major compounds may play a more important role in the toxicity of essential oil. PMID:21417962

  10. Tumorigenesis, metabolism, speciation, bioavailability, and tissue deposition of selenium in selenium-enriched ramps (Allium tricoccum).

    PubMed

    Whanger, P D; Ip, C; Polan, C E; Uden, P C; Welbaum, G

    2000-11-01

    Ramps (Allium tricoccum) were grown either in a mixture of vermiculite and peat moss or hydroponically with various concentrations of selenium as sodium selenate. The concentrations used were from 30 to 300 mg of selenium/kg of vermiculite-peat moss or from 10 to 120 mg/L in the hydroponic solutions. Levels as high as 784 mg of selenium/kg were obtained in the ramp bulbs when grown with high levels of selenium in the vermiculite-peat moss, and up to 600 mg of selenium/kg was obtained hydroponically. The predominant form of selenium in the ramp bulbs at all concentrations of selenium was Se-methylselenocysteine, with lower amounts of selenate, Se-cystathionine, and glutamyl-Se-methylselenocysteine. There was a approximately 43% reduction in chemically induced mammary tumors when rats were fed a diet with Se-enriched ramps. Dietary Se-enriched ramps for rats did not result in excessive tissue selenium accumulation or undesirable side effects. Bioavailability studies with rats indicated that selenium in ramps was 15-28% more available for regeneration of glutathione peroxidase activity than inorganic selenium as selenite. Therefore, Se-enriched ramps appear to have potential for the reduction of cancer in humans. PMID:11087545

  11. Chemical and Genetic Evaluation of Somaclonal Variants of Egyptian Garlic (Allium sativum L.).

    PubMed

    Badria, F A; Ali, A A

    1999-01-01

    Garlic (Allium sativum L.) is used in the household and as an ingredient in many pharmaceutical products. Tissue culture technique provides an excellent source for induction of both chemical and genetic variation in garlic. A callus was induced on root meristem cultured on Murashige and Skoog (MS) medium in the presence of kinetin, indole acetic acid, and 2,4-dichlorophenoxyacetic acid. Shoots with a small bulb were produced on medium containing MS salts, B vitamins, and naphthalene acetic acid. Regenerated plants were transplanted into soil, and a nondivided bulb was formed in the first somaclonal generation (SCI). Plants were normal in their phenotypes in SC2. After four cycles of field cultivation, the selected somaclones (variants) in the fourth generation showed significant differences in bulb character compared with the original plants. Mitotic division and chromosomal abnormalities were investigated in meristimic root tip cells of regenerated plants for the first and fourth regeneration and for control plants. Somaclonal variant metaphase cells had the same chromosome number (2n = 16) as those of the controls. Allicin was measured quantitatively in the regenerated clones by high-performance liquid chromatography. The results showed that some clones contained as much as 14.50 mg/g allicin, compared with 3.80 mg/g in the control plant. This finding suggests that this technique may be useful to improve the allicin content of Egyptian garlic, which could be utilized as a good source for garlic-containing pharmaceutical preparations. PMID:19281347

  12. Allium sativum L.: the anti-immature leech (Limnatis nilotica) activity compared to Niclosomide.

    PubMed

    Bahmani, Mahmoud; Abbasi, Javad; Mohsenzadegan, Ava; Sadeghian, Sirous; Ahangaran, Majid Gholami

    2013-03-01

    This study was carried out to determine the effects of methanolic extracts of Allium sativum L. on Limnatis nilotica compared with Niclosomide. In this experimental study in September 2010, a number of leeches (70 in total) from the southern area of Ilam province were prepared, and the effects of methanolic extract of A. sativum L. with Niclosomide as the control drug were compared and distilled water was evaluated as the placebo group which investigated L. nilotica using anti-leech assay. The average time of paralysis and death of L. nilotica for Niclosomide (1,250 mg/kg) and the methanol extract of A. sativum L. (600 μg/ml) were 6.22 ± 2.94 and 68.44 ± 28.39 min, respectively. Distilled water and garlic tablets at a dose of 400 mg were determined as the inert group. In this research, the attraction time of the leeches' death among different treatments is significant. In this study, it was determined that Niclosomide, with an intensity of 4+, and methanolic extracts of A. sativum L., with an intensity of 3+, have a good anti-leech effect and can be shown to be effective in cases of leech biting, while distilled water was negative. PMID:23483830

  13. Allium sativum L. Improves Visual Memory and Attention in Healthy Human Volunteers.

    PubMed

    Tasnim, Sara; Haque, Parsa Sanjana; Bari, Md Sazzadul; Hossain, Md Monir; Islam, Sardar Mohd Ashraful; Shahriar, Mohammad; Bhuiyan, Mohiuddin Ahmed; Bin Sayeed, Muhammad Shahdaat

    2015-01-01

    Studies have shown that Allium sativum L. (AS) protects amyloid-beta peptide-induced apoptosis, prevents oxidative insults to neurons and synapses, and thus prevent Alzheimer's disease progression in experimental animals. However, there is no experimental evidence in human regarding its putative role in memory and cognition. We have studied the effect of AS consumption by healthy human volunteers on visual memory, verbal memory, attention, and executive function in comparison to control subjects taking placebo. The study was conducted over five weeks and twenty volunteers of both genders were recruited and divided randomly into two groups: A (AS) and B (placebo). Both groups participated in the 6 computerized neuropsychological tests of the Cambridge Neuropsychological Test Automated Battery (CANTAB) twice: at the beginning and after five weeks of the study. We found statistically significant difference (p < 0.05) in several parameters of visual memory and attention due to AS ingestion. We also found statistically nonsignificant (p > 0.05) beneficial effects on verbal memory and executive function within a short period of time among the volunteers. Study for a longer period of time with patients suffering from neurodegenerative diseases might yield more relevant results regarding the potential therapeutic role of AS.

  14. Mining, characterization and validation of EST derived microsatellites from the transcriptome database of Allium sativum L.

    PubMed

    Chand, Subodh Kumar; Nanda, Satyabrata; Rout, Ellojita; Joshi, Raj Kumar

    2015-01-01

    Expressed Sequence Tags (ESTs) with comprehensive transcript information are valuable resources for development of molecular markers as they are derived from conserved genic regions. The present study highlights the mining of EST database to deduce the class I hyper variable SSRs in A. sativum. From 21694 garlic EST sequences, 642 non-redundant SSRs were identified with an average frequency of 1 per 14.9 kb of garlic transcriptome. The most abundant SSR motifs were the mononucleotides (32.86%) followed by trinucleotides (28.50%) and dinucleotides (13.39%). Among the individual SSRs, (A/T)n accounted for the highest number (137; 21.33%) followed by (G/C)n (74; 11.52%) and (AAG)n (63;9.81%). Primers designed from a robust set of 7 AsESTSSRs resulted in the amplification of 63 polymorphic alleles in 14 accessions of garlic. The resolving power of the markers varied from 4.286 (AsSSR7) to 18.143 (AsSSR13) while the average marker index (MI) was 5.087. These EST-SSRs markers for garlic could be useful for the improvement of garlic linkage map and could be used for evaluating genetic variation and comparative genomics studies in Allium species.

  15. Neuroprotective effect of Allium cepa L. in aluminium chloride induced neurotoxicity.

    PubMed

    Singh, Tanveer; Goel, Rajesh Kumar

    2015-07-01

    The present study was envisaged to investigate the neuroprotective potential of Allium cepa (A. cepa) in aluminium chloride induced neurotoxicity. Aluminium chloride (50 mg/kg/day) was administered orally in mice supplemented with different doses of A. cepa hydroethanolic extract for a period of 60 days. Various behavioural, biochemical and histopathological parameters were estimated in aluminium exposed animals. Chronic aluminium administration resulted in significant motor incoordination and memory deficits, which were also endorsed biochemically as there was increased oxidative stress as well as elevated acetylcholinesterase (AChE) and aluminium levels in the brain. Supplementation with A. cepa in aluminium exposed animals significantly improved muscle coordination and memory deficits as well as reduced oxidative stress, AChE and decreased abnormal aluminium deposition in the brain. Histopathologically, there was marked deterioration visualized as decreased vacuolated cytoplasm as well as decreased pyramidal cells in the hippocampal area of mice brain which were found to be reversed with A. cepa supplementation. Administration of BADGE (PPARγ antagonist) in aluminium exposed animals reversed the neuroprotective potential of A. cepa as assessed with various behavioural, biochemical, neurochemical and histopathological estimations. In conclusion, finding of this study suggested significant neuroprotective potential of A. cepa in aluminium induced neurotoxicity. Further, the role of PPARγ receptor agonism has also been suggested as a putative neuroprotective mechanism of A. cepa, which needs further studies for confirmation.

  16. De Novo Transcriptome Analysis of Allium cepa L. (Onion) Bulb to Identify Allergens and Epitopes

    PubMed Central

    Rajkumar, Hemalatha; Ramagoni, Ramesh Kumar; Anchoju, Vijayendra Chary; Vankudavath, Raju Naik; Syed, Arshi Uz Zaman

    2015-01-01

    Allium cepa (onion) is a diploid plant with one of the largest nuclear genomes among all diploids. Onion is an example of an under-researched crop which has a complex heterozygous genome. There are no allergenic proteins and genomic data available for onions. This study was conducted to establish a transcriptome catalogue of onion bulb that will enable us to study onion related genes involved in medicinal use and allergies. Transcriptome dataset generated from onion bulb using the Illumina HiSeq 2000 technology showed a total of 99,074,309 high quality raw reads (~20 Gb). Based on sequence homology onion genes were categorized into 49 different functional groups. Most of the genes however, were classified under 'unknown' in all three gene ontology categories. Of the categorized genes, 61.2% showed metabolic functions followed by cellular components such as binding, cellular processes; catalytic activity and cell part. With BLASTx top hit analysis, a total of 2,511 homologous allergenic sequences were found, which had 37–100% similarity with 46 different types of allergens existing in the database. From the 46 contigs or allergens, 521 B-cell linear epitopes were identified using BepiPred linear epitope prediction tool. This is the first comprehensive insight into the transcriptome of onion bulb tissue using the NGS technology, which can be used to map IgE epitopes and prediction of structures and functions of various proteins. PMID:26284934

  17. Allium sativum L. Improves Visual Memory and Attention in Healthy Human Volunteers

    PubMed Central

    Tasnim, Sara; Haque, Parsa Sanjana; Bari, Md. Sazzadul; Hossain, Md. Monir; Islam, Sardar Mohd. Ashraful; Shahriar, Mohammad; Bhuiyan, Mohiuddin Ahmed; Bin Sayeed, Muhammad Shahdaat

    2015-01-01

    Studies have shown that Allium sativum L. (AS) protects amyloid-beta peptide-induced apoptosis, prevents oxidative insults to neurons and synapses, and thus prevent Alzheimer's disease progression in experimental animals. However, there is no experimental evidence in human regarding its putative role in memory and cognition. We have studied the effect of AS consumption by healthy human volunteers on visual memory, verbal memory, attention, and executive function in comparison to control subjects taking placebo. The study was conducted over five weeks and twenty volunteers of both genders were recruited and divided randomly into two groups: A (AS) and B (placebo). Both groups participated in the 6 computerized neuropsychological tests of the Cambridge Neuropsychological Test Automated Battery (CANTAB) twice: at the beginning and after five weeks of the study. We found statistically significant difference (p < 0.05) in several parameters of visual memory and attention due to AS ingestion. We also found statistically nonsignificant (p > 0.05) beneficial effects on verbal memory and executive function within a short period of time among the volunteers. Study for a longer period of time with patients suffering from neurodegenerative diseases might yield more relevant results regarding the potential therapeutic role of AS. PMID:26351508

  18. Allium sativum produces terpenes with fungistatic properties in response to infection with Sclerotium cepivorum.

    PubMed

    Pontin, Mariela; Bottini, Rubén; Burba, José Luis; Piccoli, Patricia

    2015-07-01

    This study investigated terpene biosynthesis in different tissues (root, protobulb, leaf sheath and blade) of in vitro-grown garlic plants either infected or not (control) with Sclerotium cepivorum, the causative agent of Allium White Rot disease. The terpenes identified by gas chromatography-electron impact mass spectrometry (GC-EIMS) in infected plants were nerolidol, phytol, squalene, α-pinene, terpinolene, limonene, 1,8-cineole and γ-terpinene, whose levels significantly increased when exposed to the fungus. Consistent with this, an increase in terpene synthase (TPS) activity was measured in infected plants. Among the terpenes identified, nerolidol, α-pinene and terpinolene were the most abundant with antifungal activity against S. cepivorum being assessed in vitro by mycelium growth inhibition. Nerolidol and terpinolene significantly reduced sclerotia production, while α-pinene stimulated it in a concentration-dependent manner. Parallel to fungal growth inhibition, electron microscopy observations established morphological alterations in the hyphae exposed to terpinolene and nerolidol. Differences in hyphal EtBr uptake suggested that one of the antifungal mechanisms of nerolidol and terpinolene might be disruption of fungal membrane integrity.

  19. Anti-influenza A virus effects of fructan from Welsh onion (Allium fistulosum L.).

    PubMed

    Lee, Jung-Bum; Miyake, Sachi; Umetsu, Ryo; Hayashi, Kyoko; Chijimatsu, Takeshi; Hayashi, Toshimitsu

    2012-10-15

    A fructan that acts as an anti-influenza A virus substance was isolated from hot water extract of the green leafy part of a Welsh onion (Allium fistulosum L.). The structure of the fructan was characterised and elucidated by chemical and spectroscopic analyses. The fructan was composed of terminal (21.0%) and 2,1-linked β-D-Fruf residues (65.3%) with 1,6-linked β-D-Glcp residues (13.7%). The molecular weight of the polysaccharide and polydispersity was estimated to be 1.5×10(3) and 1.18, respectively. Although the fructan did not show anti-influenza A virus activity in vitro, it demonstrated an inhibitory effect on virus replication in vivo when it was orally administered to mice. In addition, the polysaccharide enhanced the production of neutralising antibodies against influenza A virus. Therefore, the antiviral mechanism of the polysaccharide seemed to be dependent on the host immune system, i.e., enhancement of the host immune function was achieved by the administration of the polysaccharide. From our observations, the fructan from Welsh onions is suggested to be one of the active principles which exert an anti-influenza virus effect.

  20. Cytogenetic effects of three commercially formulated pesticides on somatic and germ cells of Allium cepa.

    PubMed

    Kuchy, Aashiq H; Wani, Aijaz A; Kamili, Azra N

    2016-04-01

    Cytological effects of Endosri-ES (endosulfan), Nuvan-NU (dichlorvos), and Kvistin-KS (carbendazim) were evaluated on mitotic and meiotic cells of Allium cepa. Test concentrations were chosen by calculating EC50 values of formulated ES, NU, and KS, which turned to be 60, 200, and 500 ppm (parts per million), respectively. Cytological studies were undertaken on root meristem cells of A. cepa using EC50, 1/2 × EC50, and 2 × EC50 of these pesticides for 24 and 48 h. Similarly, a meiotic study was conducted by applying the pesticides at the aforesaid concentrations from seedling to bud stage. A set of onion bulbs exposed to tap water was run parallel for negative control and maleic hydrazide (112.09 ppm) as positive control. During the study period, mitotic index (MI) decreased at all the pesticide concentrations compared to the negative control. Among various chromosomal aberrations, chromatin bridges, breaks, stickiness, laggard, vagrant chromosomes, fragments, C-mitosis, multipolarity, ring chromosome as well as micronuclei were observed in mitotic preparations. In contrast, meiotic aberrations revealed comparatively less frequency of chromosomal aberrations and the most frequent were lagging chromosome, stray bivalents, secondary association, chromatin bridge, disturbed anaphase, and stickiness. Comparative analysis of the pesticides showed that NU was highly toxic to plant cells than KS, while as ES showed intermediate effects between the two. Further, our study revealed that all the three pesticides produce genotoxic effects which can cause health risks to the human populations. Graphical Abstract ᅟ. PMID:26670031

  1. Chromosomal Organization and Sequence Diversity of Genes Encoding Lachrymatory Factor Synthase in Allium cepa L.

    PubMed

    Masamura, Noriya; McCallum, John; Khrustaleva, Ludmila; Kenel, Fernand; Pither-Joyce, Meegham; Shono, Jinji; Suzuki, Go; Mukai, Yasuhiko; Yamauchi, Naoki; Shigyo, Masayoshi

    2012-06-01

    Lachrymatory factor synthase (LFS) catalyzes the formation of lachrymatory factor, one of the most distinctive traits of bulb onion (Allium cepa L.). Therefore, we used LFS as a model for a functional gene in a huge genome, and we examined the chromosomal organization of LFS in A. cepa by multiple approaches. The first-level analysis completed the chromosomal assignment of LFS gene to chromosome 5 of A. cepa via the use of a complete set of A. fistulosum-shallot (A. cepa L. Aggregatum group) monosomic addition lines. Subsequent use of an F(2) mapping population from the interspecific cross A. cepa × A. roylei confirmed the assignment of an LFS locus to this chromosome. Sequence comparison of two BAC clones bearing LFS genes, LFS amplicons from diverse germplasm, and expressed sequences from a doubled haploid line revealed variation consistent with duplicated LFS genes. Furthermore, the BAC-FISH study using the two BAC clones as a probe showed that LFS genes are localized in the proximal region of the long arm of the chromosome. These results suggested that LFS in A. cepa is transcribed from at least two loci and that they are localized on chromosome 5. PMID:22690373

  2. Ethnoveterinary study for antidermatophytic activity of Piper betle, Alpinia galanga and Allium ascalonicum extracts in vitro.

    PubMed

    Trakranrungsie, N; Chatchawanchonteera, A; Khunkitti, W

    2008-02-01

    Crude ethanolic extracts of Piper betle leaves (Piperaceae), Alpinia galanga rhizomes (Zingiberaceae) and Allium ascalonicum bulbs (Liliaceae) were tested against selected zoonotic dermatophytes (Microsporum canis, Microsporum gypseum and Trichophyton mentagrophyte) and the yeast-like Candida albicans. A broth dilution method was employed to determine the inhibitory effect of the extracts and compared to those of ketoconazole and griseofulvin. All extracts suppressed the growth of the fungi in a concentration-dependent manner. Among the extracts tested, P. betle exhibited more effective antifungal properties with average IC(50) values ranging from 110.44 to 119.00 microg/ml. Subsequently, 10% Piper betle (Pb) cream was formulated, subjected to physical and microbial limit test and evaluated for antifungal effect. The disc diffusion assay revealed comparable zones of inhibition between discs of Pb cream containing 80 microg P. betle extract and 80 microg ketoconazole against tested fungi at 96 h after incubation. Thereafter, the inhibitory effect of Pb cream markedly decreased and completely lost effectiveness by day 7. In summary, the results supported the traditional wisdom of herbal remedy use and suggested a potential value-addition to agricultural products. It was suggested that the Pb cream has potential therapeutic value for treatment of dermatophytosis. However, clinical testing as well as improving the Pb cream formulation with greater efficacy and duration of action would be of interest and awaits further investigation. PMID:17482221

  3. Beneficial effect of shallot (Allium ascalonicum L.) extract on cyclosporine nephrotoxicity in rats.

    PubMed

    Wongmekiat, O; Leelarugrayub, N; Thamprasert, K

    2008-05-01

    The clinical use of an immunosuppressive cyclosporine A (CsA) is limited by its serious nephrotoxic effect. Evidences have suggested the role of oxidative stress in its pathogenesis. Shallot (Allium ascalonicum L.) has recently been shown to possess antioxidative and free radical scavenging abilities. The present study was undertaken to investigate the possible beneficial effect of shallot extract on renal injury caused by CsA. Male Wistar rats were treated orally with vehicle, CsA (25 mg/kg), shallot extract (1 g/kg), and CsA plus shallot extract for 21 days. Renal function, histopathology, tissue malondialdehyde (MDA) and glutathione (GSH) levels were evaluated 24 h after the last treatment. CsA-induced nephrotoxicity was evidenced by increased blood urea nitrogen and serum creatinine, but decreased urea and creatinine clearance. The kidney of CsA treated rats exhibited severe vacuolations and tubular necrosis. CsA also induced oxidative stress, as indicated by increased renal MDA and reduced GSH concentrations. Administration of shallot extract along with CsA counteracted the deleterious effects of CsA on renal dysfunction, oxidative stress markers, and morphological changes. These data indicate the protective potential of shallot extract against CsA nephrotoxicity and suggest a significant contribution of its antioxidant property to this beneficial effect. PMID:18308444

  4. Receptors of garlic (Allium sativum) lectins and their role in insecticidal action.

    PubMed

    Upadhyay, Santosh K; Singh, Pradhyumna K

    2012-08-01

    Garlic (Allium sativum) lectins are promising candidate molecules for the protection against chewing (lepidopteran) as well as sap sucking (homopteran) insect pests. Molecular mechanism of toxicity and interaction of lectins with midgut receptor proteins has been described in many reports. Lectins show its effect right from sensory receptors of mouth parts by disrupting the membrane integrity and food detection ability. Subsequently, enter into the gut lumen and interact with midgut glycosylated proteins like alkaline phosphatase (ALP), aminopeptidase-N (APN), cadherin-like proteins, polycalins, sucrase, symbionin and others. These proteins play critical role in life cycle of insect directly or indirectly. Lectins interfere with the activity of these proteins and causes physiological disorders leading to the death of insects. Lectins further transported across the insect gut, accumulated in various body parts (like haemolymph and ovary) and interact with intracellular proteins like symbionin and cytochrome p450. Binding with cytochrome p450 (which involve in ecdysone synthesis) might interfere in the development of insects, which results in growth retardation and pre-mature death.

  5. Heat Inactivation of Garlic (Allium sativum) Extract Abrogates Growth Inhibition of HeLa Cells.

    PubMed

    Chintapalli, Renuka; Murray, Matthew J J; Murray, James T

    2016-07-01

    The potential anticancer properties of garlic (Allium sativum) may depend on the method of preparation and its storage. Storage of garlic has not been thoroughly investigated to determine whether anticancer properties are retained. Garlic was prepared and processed to mimic normal options for storage and preparation for consumption. Cytotoxicity was determined by crystal violet assay and mechanisms of cytotoxicity were established by microscopy, SDS-PAGE, and Western immunoblotting. Significant (P < 0.0001) cytotoxicity was observed in all preparations, except with boiled (cooked) garlic. Depending on the method of storage, garlic extract induced either type I or type II programmed cell death, detectable by caspase 9 cleavage, or Poly (adenosine diphosphate-ribose) polymerase (PARP) cleavage and LC3-II accumulation, respectively. The conflicting literature on the anticancer properties of garlic may be explained by differences in processing and storage. This study has highlighted that the potency of the antiproliferative properties of cooked garlic, compared to the uncooked form, is diminished in HeLa cells. PMID:27176674

  6. Allium sativum produces terpenes with fungistatic properties in response to infection with Sclerotium cepivorum.

    PubMed

    Pontin, Mariela; Bottini, Rubén; Burba, José Luis; Piccoli, Patricia

    2015-07-01

    This study investigated terpene biosynthesis in different tissues (root, protobulb, leaf sheath and blade) of in vitro-grown garlic plants either infected or not (control) with Sclerotium cepivorum, the causative agent of Allium White Rot disease. The terpenes identified by gas chromatography-electron impact mass spectrometry (GC-EIMS) in infected plants were nerolidol, phytol, squalene, α-pinene, terpinolene, limonene, 1,8-cineole and γ-terpinene, whose levels significantly increased when exposed to the fungus. Consistent with this, an increase in terpene synthase (TPS) activity was measured in infected plants. Among the terpenes identified, nerolidol, α-pinene and terpinolene were the most abundant with antifungal activity against S. cepivorum being assessed in vitro by mycelium growth inhibition. Nerolidol and terpinolene significantly reduced sclerotia production, while α-pinene stimulated it in a concentration-dependent manner. Parallel to fungal growth inhibition, electron microscopy observations established morphological alterations in the hyphae exposed to terpinolene and nerolidol. Differences in hyphal EtBr uptake suggested that one of the antifungal mechanisms of nerolidol and terpinolene might be disruption of fungal membrane integrity. PMID:25819001

  7. Potential genotoxic effects of melted snow from an urban area revealed by the Allium cepa test.

    PubMed

    Blagojević, Jelena; Stamenković, Gorana; Vujosević, Mladen

    2009-09-01

    The presence of well-known atmospheric pollutants is regularly screened for in large towns but knowledge about the effects of mixtures of different pollutants and especially their genotoxic potential is largely missing. Since falling snow collects pollutants from the air, melted snow samples could be suitable for evaluating potential genotoxicity. For this purpose the Allium cepa anaphase-telophase test was used to analyse melted snow samples from Belgrade, the capital city of Serbia. Samples of snow were taken at two sites, characterized by differences in pollution intensity, in three successive years. At the more polluted site the analyses showed a very high degree of both toxicity and genotoxicity in the first year of the study corresponding to the effects of the known mutagen used as the positive control. At the other site the situation was much better but not without warning signals. The results showed that standard analyses for the presence of certain contaminants in the air do not give an accurate picture of the possible consequences of urban air pollution because the genotoxic potential remains hidden. The A. cepa test has been demonstrated to be very convenient for evaluation of air pollution through analyses of melted snow samples. PMID:19589556

  8. Lamin-like analogues in plants: the characterization of NMCP1 in Allium cepa.

    PubMed

    Ciska, Malgorzata; Masuda, Kiyoshi; Moreno Díaz de la Espina, Susana

    2013-04-01

    The nucleoskeleton of plants contains a peripheral lamina (also called plamina) and, even though lamins are absent in plants, their roles are still fulfilled in plant nuclei. One of the most intriguing topics in plant biology concerns the identity of lamin protein analogues in plants. Good candidates to play lamin functions in plants are the members of the NMCP (nuclear matrix constituent protein) family, which exhibit the typical tripartite structure of lamins. This paper describes a bioinformatics analysis and classification of the NMCP family based on phylogenetic relationships, sequence similarity and the distribution of conserved regions in 76 homologues. In addition, NMCP1 in the monocot Allium cepa characterized by its sequence and structure, biochemical properties, and subnuclear distribution and alterations in its expression throughout the root were identified. The results demonstrate that these proteins exhibit many similarities to lamins (structural organization, conserved regions, subnuclear distribution, and solubility) and that they may fulfil the functions of lamins in plants. These findings significantly advance understanding of the structural proteins of the plant lamina and nucleoskeleton and provide a basis for further investigation of the protein networks forming these structures. PMID:23378381

  9. Cytotoxic effects of five commonly abused skin toning (bleaching) creams on Allium cepa root tip mitosis.

    PubMed

    Udengwu, O S; Chukwujekwu, J C

    2008-09-15

    The Allium test was used to study the cytotoxic effects of five commonly abused skin toning creams--Ikb, Tura, Top gel, Dorot and Mililo. These creams are commonly used by some black skinned people (especially the females) as skin lightening (bleaching) agents. The results showed that all the five bleaching creams were mito-depressive in action. They exhibited both chromatoclassic and mitoclassic effects. Their depressive effects were found to increase with duration of treatment. The induced abnormalities included chromosome contraction, spindle breakages, c-metaphase, star anaphase, chromosome stickiness and sticky bridges, precocious chromosome movement as well as endomitosis. It is suggested that since all eukaryotic cells are basically the same, these observed abnormalities could be similar to the effects these chemicals have on human skin when they are applied. Some of these are known to cause alteration in melanin formation as well as the biosynthesis of the enzyme tyrosinase. Furthermore, since certain points on the chromosomes called fragile sites have been implicated in oncogenesis, the observed abnormalities may be part of (or include) the switching on mechanisms of such genes, which could be responsible for the transformation of normal skin cells to malignant cells in those who abuse these creams. PMID:19137826

  10. The first results of using the Allium test in estimating the chemical and radiation toxicity of bottom sediments in the Yenisei River.

    PubMed

    Bolsunovsky, A Ya; Trofimova, E A; Zueva, A V; Dementiev, D V

    2016-07-01

    The first results of the use of the Allium test for estimation of toxicity of bottom sediments in the Yenisei River and the effect of external γ-radiation under laboratory conditions are presented. The effect of stimulation of the onion root growth, i.e., the absence of toxicity was discovered in toxicological experiments using bottom sediments and under external γ-radiation. The stimulating effect of radiation on the growth of onion roots limits the use of the Allium test for testing samples from the Yenisei River ecosystem in the zone subjected to the impact of radioactive discharges from the Mining and Chemical Combine. PMID:27595829

  11. Microscopic examination on cytological changes in Allium cepa and shift in phytoplankton population at different doses of Atrazine

    NASA Astrophysics Data System (ADS)

    Ghosh, Nabarun; Finger, Kristen; Usnick, Samantha; Rogers, William J.; Das, A. B.; Smith, Don W.

    2010-06-01

    Atrazine is a wide-range herbicide. For over 50 years, atrazine has been used as a selective broadleaf herbicide in many capacities, from pre-plant to pre-emergence to post-emergence, depending on the crop and application. Currently, 96% of all atrazine used is for commercial applications in fields for the control of broadleaf and grassy weeds in crops such as sorghum, corn, sugarcane, pineapple and for the control of undesirable weeds in rangeland. Many panhandle wells have also detected atrazine in samples taken. The concern for the public is the long-term effect of atrazine with its increasing popularity, and the impact on public health. We investigated the effect of different concentrations of atrazine on Allium cepa (onion), a standard plant test system. We established a control with the Allium bulbs grown on hydroponics culture. Varying concentrations of atrazine was used on the standard plant test system, Allium cepa grown hydroponically. The mitotic indices varied and with higher doses, we observed various chromosomal abnormalities including sticky bridges, early and late separations, and lag chromosomes with higher doses of treatments. In the second part of the experiment, 0.1ppb, 1ppb, 10ppb, and 100ppb concentrations of atrazine were applied to established phytoplankton cultures from the Lake Tanglewood, Texas. Study with a Sedgwick-Rafter counter, a BX-40 Olympus microscope with DP-70 camera revealed a gradual shift in the phytoplankton community from obligatory to facultative autotroph and finally to a parasitic planktonic community. This explains the periodic fish kill in the lakes after applications of atrazine in crop fields.

  12. De Novo Assembly and Transcriptome Analysis of Bulb Onion (Allium cepa L.) during Cold Acclimation Using Contrasting Genotypes.

    PubMed

    Han, Jeongsukhyeon; Thamilarasan, Senthil Kumar; Natarajan, Sathishkumar; Park, Jong-In; Chung, Mi-Young; Nou, Ill-Sup

    2016-01-01

    Bulb onion (Allium cepa) is the second most widely cultivated and consumed vegetable crop in the world. During winter, cold injury can limit the production of bulb onion. Genomic resources available for bulb onion are still very limited. To date, no studies on heritably durable cold and freezing tolerance have been carried out in bulb onion genotypes. We applied high-throughput sequencing technology to cold (2°C), freezing (-5 and -15°C), and control (25°C)-treated samples of cold tolerant (CT) and cold susceptible (CS) genotypes of A. cepa lines. A total of 452 million paired-end reads were de novo assembled into 54,047 genes with an average length of 1,331 bp. Based on similarity searches, these genes were aligned with entries in the public non-redundant (nr) database, as well as KEGG and COG database. Differentially expressed genes (DEGs) were identified using log10 values with the FPKM method. Among 5,167DEGs, 491 genes were differentially expressed at freezing temperature compared to the control temperature in both CT and CS libraries. The DEG results were validated with qRT-PCR. We performed GO and KEGG pathway enrichment analyses of all DEGs and iPath interactive analysis found 31 pathways including those related to metabolism of carbohydrate, nucleotide, energy, cofactors and vitamins, other amino acids and xenobiotics biodegradation. Furthermore, a large number of molecular markers were identified from the assembled genes, including simple sequence repeats (SSRs) 4,437 and SNP substitutions of transition and transversion types of CT and CS. Our study is the first to provide a transcriptome sequence resource for Allium spp. with regard to cold and freezing stress. We identified a large set of genes and determined their DEG profiles under cold and freezing conditions using two different genotypes. These data represent a valuable resource for genetic and genomic studies of Allium spp. PMID:27627679

  13. Sulfur volatiles from Allium spp. affect Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), response to citrus volatiles.

    PubMed

    Mann, R S; Rouseff, R L; Smoot, J M; Castle, W S; Stelinski, L L

    2011-02-01

    The Asian citrus psyllid, Diaphorina citri Kuwayama, vectors Candidatus Liberibacter asiaticus (Las) and Candidatus Liberibacter americanus (Lam), the presumed causal agents of huanglongbing. D. citri generally rely on olfaction and vision for detection of host cues. Plant volatiles from Allium spp. (Alliaceae) are known to repel several arthropod species. We examined the effect of garlic chive (A. tuberosum Rottl.) and wild onion (A. canadense L.) volatiles on D. citri behaviour in a two-port divided T-olfactometer. Citrus leaf volatiles attracted significantly more D. citri adults than clean air. Volatiles from crushed garlic chive leaves, garlic chive essential oil, garlic chive plants, wild onion plants and crushed wild onion leaves all repelled D. citri adults when compared with clean air, with the first two being significantly more repellent than the others. However, when tested with citrus volatiles, only crushed garlic chive leaves and garlic chive essential oil were repellent, and crushed wild onions leaves were not. Analysis of the headspace components of crushed garlic chive leaves and garlic chive essential oil by gas chromatography-mass spectrometry revealed that monosulfides, disulfides and trisulfides were the primary sulfur volatiles present. In general, trisulfides (dimethyl trisulfide) inhibited the response of D. citri to citrus volatiles more than disulfides (dimethyl disulfide, allyl methyl disulfide, allyl disulfide). Monosulfides did not affect the behaviour of D. citri adults. A blend of dimethyl trisulfide and dimethyl disulfide in 1:1 ratio showed an additive effect on inhibition of D. citri response to citrus volatiles. The plant volatiles from Allium spp. did not affect the behaviour of the D. citri ecto-parasitoid Tamarixia radiata (Waterston). Thus, Allium spp. or the tri- and di-sulphides could be integrated into management programmes for D. citri without affecting natural enemies.

  14. De Novo Assembly and Transcriptome Analysis of Bulb Onion (Allium cepa L.) during Cold Acclimation Using Contrasting Genotypes

    PubMed Central

    Natarajan, Sathishkumar; Park, Jong-In; Chung, Mi-Young; Nou, Ill-Sup

    2016-01-01

    Bulb onion (Allium cepa) is the second most widely cultivated and consumed vegetable crop in the world. During winter, cold injury can limit the production of bulb onion. Genomic resources available for bulb onion are still very limited. To date, no studies on heritably durable cold and freezing tolerance have been carried out in bulb onion genotypes. We applied high-throughput sequencing technology to cold (2°C), freezing (-5 and -15°C), and control (25°C)-treated samples of cold tolerant (CT) and cold susceptible (CS) genotypes of A. cepa lines. A total of 452 million paired-end reads were de novo assembled into 54,047 genes with an average length of 1,331 bp. Based on similarity searches, these genes were aligned with entries in the public non-redundant (nr) database, as well as KEGG and COG database. Differentially expressed genes (DEGs) were identified using log10 values with the FPKM method. Among 5,167DEGs, 491 genes were differentially expressed at freezing temperature compared to the control temperature in both CT and CS libraries. The DEG results were validated with qRT-PCR. We performed GO and KEGG pathway enrichment analyses of all DEGs and iPath interactive analysis found 31 pathways including those related to metabolism of carbohydrate, nucleotide, energy, cofactors and vitamins, other amino acids and xenobiotics biodegradation. Furthermore, a large number of molecular markers were identified from the assembled genes, including simple sequence repeats (SSRs) 4,437 and SNP substitutions of transition and transversion types of CT and CS. Our study is the first to provide a transcriptome sequence resource for Allium spp. with regard to cold and freezing stress. We identified a large set of genes and determined their DEG profiles under cold and freezing conditions using two different genotypes. These data represent a valuable resource for genetic and genomic studies of Allium spp. PMID:27627679

  15. Associations between Dietary Allium Vegetables and Risk of Breast Cancer: A Hospital-Based Matched Case-Control Study

    PubMed Central

    Pourzand, Ali; Tajaddini, Aynaz; Asghari-Jafarabadi, Mohammad; Samadi, Nasser; Ostadrahimi, Ali-Reza; Sanaat, Zohre

    2016-01-01

    Purpose The protective effect of Allium vegetables against carcinogenesis has been reported in experimental studies particularly focusing on the gut. Therefore, we conducted a hospital-based matched case-control study to explore the association between dietary Allium consumption and risk of breast cancer among Iranian women in northwest Iran. Methods A validated, quantitative, food frequency questionnaire was completed in 285 women (aged 25–65 years old) newly diagnosed with histopathologically confirmed breast cancer (grade II, III or clinical stage II, III) in Tabriz, northwest Iran, and the completed questionnaires were included in an age- and regional-matched hospital based-control study. The odds ratios (ORs) and 95% confidence intervals (95% CI) were estimated using conditional logistic regression models. Results Multivariate analysis showed that there was a negative association between the consumption of raw onion and risk of breast cancer after adjustment for covariates (OR, 0.63; 95% CI, 0.40–1.00); however, this association was insignificant. On the other hand, there was a positive association between consumption of cooked onion and risk of breast cancer, after adjustment for covariates (OR, 1.54; 95% CI, 1.02–2.32). However, reduced risk of breast cancer was associated with higher consumption of garlic and leek with adjusted ORs of 0.41 (95% CI, 0.20–0.83) and 0.28 (95% CI, 0.15–0.51), respectively. Conclusion Our findings suggest that high consumption of certain Allium vegetables, in particular garlic and leek, may reduce the risk of breast cancer, while high consumption of cooked onion may be associated with an increased risk of breast cancer. PMID:27721879

  16. De Novo Assembly and Transcriptome Analysis of Bulb Onion (Allium cepa L.) during Cold Acclimation Using Contrasting Genotypes.

    PubMed

    Han, Jeongsukhyeon; Thamilarasan, Senthil Kumar; Natarajan, Sathishkumar; Park, Jong-In; Chung, Mi-Young; Nou, Ill-Sup

    2016-01-01

    Bulb onion (Allium cepa) is the second most widely cultivated and consumed vegetable crop in the world. During winter, cold injury can limit the production of bulb onion. Genomic resources available for bulb onion are still very limited. To date, no studies on heritably durable cold and freezing tolerance have been carried out in bulb onion genotypes. We applied high-throughput sequencing technology to cold (2°C), freezing (-5 and -15°C), and control (25°C)-treated samples of cold tolerant (CT) and cold susceptible (CS) genotypes of A. cepa lines. A total of 452 million paired-end reads were de novo assembled into 54,047 genes with an average length of 1,331 bp. Based on similarity searches, these genes were aligned with entries in the public non-redundant (nr) database, as well as KEGG and COG database. Differentially expressed genes (DEGs) were identified using log10 values with the FPKM method. Among 5,167DEGs, 491 genes were differentially expressed at freezing temperature compared to the control temperature in both CT and CS libraries. The DEG results were validated with qRT-PCR. We performed GO and KEGG pathway enrichment analyses of all DEGs and iPath interactive analysis found 31 pathways including those related to metabolism of carbohydrate, nucleotide, energy, cofactors and vitamins, other amino acids and xenobiotics biodegradation. Furthermore, a large number of molecular markers were identified from the assembled genes, including simple sequence repeats (SSRs) 4,437 and SNP substitutions of transition and transversion types of CT and CS. Our study is the first to provide a transcriptome sequence resource for Allium spp. with regard to cold and freezing stress. We identified a large set of genes and determined their DEG profiles under cold and freezing conditions using two different genotypes. These data represent a valuable resource for genetic and genomic studies of Allium spp.

  17. Comparative analysis of crossover exchanges and chiasmata in Allium cepa x fistulosum after genomic in situ hybridization (GISH).

    PubMed

    Stevenson, M; Armstrong, S J; Ford-Lloyd, B V; Jones, G H

    1998-11-01

    Genomic in situ hybridization (GISH) successfully differentiated homoeologous genomes in the inter-specific hybrid Allium cepa x fistulosum, thus allowing the detection of reciprocal crossover events as label exchanges in separating anaphase I chromosomes. Three of the eight chromosome pairs were positively identified by fluorescence in situ hybridization (FISH) to rDNA sequences. There was a general similarity of the GISH-based label exchange frequencies and metaphase I chiasma frequencies, but with a 20% deficit of chiasmata. Reasons for this apparent deficit are discussed. The locations of chiasmata and label exchanges are in broad agreement. PMID:9886776

  18. Inhibition effect on the Allium cepa L. root growth when using hexavalent chromium-doped river waters.

    PubMed

    Espinoza-Quiñones, F R; Szymanski, N; Palácio, S M; Módenes, A N; Rizzutto, M A; Silva, F G; Oliveira, A P; Oro, A C P; Martin, N

    2009-06-01

    The effect of Cr(6+) on Allium cepa root length was studied using both clean and polluted river waters. Seven series of Cr(6+)-doped polluted and non-polluted river waters were used to grow onions. Chromium concentration (Cr(6+)) of 4.2 mg L(-1)(EC(50) value), doped in clean river water caused a 50% reduction of root length, while in organically polluted samples similar root growth inhibition occurred at 12.0 mg Cr(6+) L(-1). The results suggested that there was a dislocation to higher values in toxic chromium concentration in polluted river water due to the eutrophization level of river water.

  19. The role of Allium cepa on aluminum-induced reproductive dysfunction in experimental male rat models

    PubMed Central

    Ige, Serah F; Akhigbe, Roland E

    2012-01-01

    AIM: Reproductive toxicity is a major challenge associated with aluminum (Al) exposure. Studies that associated Al with reproductive dysfunction did not account for the possible influence of Allium cepa extract. This study, therefore, investigates the influence of A. cepa on aluminum-induced reproductive dysfunction. MATERIALS AND METHODS: Six male rats per group were assigned to one of the following four treatment groups: The control animals were on control diet. A. cepa-treated rats received 1 ml of the extract/100 g body weight (BW), Al-treated rats received 100 mg AlCl3 /kg BW, and A.cepa+Al received 1 ml of the extract/100 g BW plus 100 mg AlCl3 /kg BW. Rats were orally administered their respective doses. A. cepa treatment was for 8 weeks, while Al treatment was for the last 3 days of the experimental period. RESULTS: Results obtained showed that Al significantly decreased (P < 0.05) plasma testosterone, follicular stimulating hormone (FSH), luteinizing hormone (LH), sperm count, motility, morphology and viability, superoxide dismutase (SOD) and catalase (CAT) activities, while lipid peroxidation index [malondialdehyde (MDA)] was significantly (P < 0.05) increased. Reproductive hormones (except testosterone), sperm qualities, and enzymatic antioxidants were significantly (P < 0.05) increased in A. cepa-treated rats and A. cepa plus Al-treated rats, while MDA was significantly (P < 0.05) improved. Weights of testes were comparable in all groups. CONCLUSION: It is thus suggested that Al exerts reproductive dysfunction by oxidative damage. A. cepa antagonizes the toxic effects of AlCl3 and improves the antioxidant status and sperm quality of male rat. However, testosterone level did not increase with A. cepa treatment. PMID:23162360

  20. Aluminium induced oxidative stress and DNA damage in root cells of Allium cepa L.

    PubMed

    Achary, V Mohan Murali; Jena, Suprava; Panda, Kamal K; Panda, Brahma B

    2008-06-01

    Aluminium (Al) was evaluated for induction of oxidative stress and DNA damage employing the growing roots of Allium cepa L. as the assay system. Intact roots of A. cepa were treated with different concentrations, 0, 1, 10, 50, 100, or 200 microM of aluminium chloride, at pH 4.5 for 4 h (or 2 h for comet assay) at room temperature, 25+/-1 degrees C. Following treatment the parameters investigated in root tissue were Al-uptake, cell death, extra cellular generation of reactive oxygen intermediates (ROI), viz. O(2)(*-), H(2)O(2) and (*)OH, lipid peroxidation, protein oxidation, activities of antioxidant enzymes namely catalase (CAT), superoxide dismutase (SOD), guaiacol peroxidase (GPX), ascorbate peroxidase (APX); and DNA damage, assessed by comet assay. The findings indicated that Al triggered generation of extra-cellular ROI following a dose-response. Through application of specific enzyme inhibitors it was demonstrated that extra-cellular generation of ROI was primarily due to the activity of cell wall bound NADH-PX. Generation of ROI in root tissue as well as cell death was better correlated to the levels of root Al-uptake rather than to the concentrations of Al in ambient experimental solutions. Induction of lipid peroxidation and protein oxidation by Al were statistically significant. Whereas Al inhibited CAT activity, enhanced SOD, GPX and APX activities significantly; that followed dose-response. Comet assay provided evidence that Al induced DNA damage in a range of concentrations 50-200 microM, which was comparable to that induced by ethylmethane sulfonate (EMS), an alkylating mutagen served as the positive control. The findings provided evidence that Al comparable to biotic stress induced oxidative burst at the cell surface through up- or down-regulation of some of the key enzymes of oxidative metabolism ultimately resulting in oxidative stress leading to DNA damage and cell death in root cells of A. cepa. PMID:18068230

  1. Exploring the structural basis for selenium/mercury antagonism in Allium fistulosum

    SciTech Connect

    McNear, Jr., David H.; Afton, Scott E.; Caruso, Joseph A.

    2012-12-10

    While continuing efforts are devoted to studying the mutually protective effect of mercury and selenium in mammals, few studies have investigated the mercury-selenium antagonism in plants. In this study, we report the metabolic fate of mercury and selenium in Allium fistulosum (green onion) after supplementation with sodium selenite and mercuric chloride. Analysis of homogenized root extracts via capillary reversed phase chromatography coupled with inductively coupled plasma mass spectrometry (capRPLC-ICP-MS) suggests the formation of a mercury-selenium containing compound. Micro-focused synchrotron X-ray fluorescence mapping of freshly excised roots show Hg sequestered on the root surface and outlining individual root cells, while Se is more evenly distributed throughout the root. There are also discrete Hg-only, Se-only regions and an overall strong correlation between Hg and Se throughout the root. Analysis of the X-ray absorption near edge structure (XANES) spectra show a 'background' of methylselenocysteine within the root with discrete spots of SeO{sub 3}{sup 2-}, Se{sup 0} and solid HgSe on the root surface. Mercury outlining individual root cells is possibly binding to sulfhydryl groups or plasma membrane or cell wall proteins, and in some places reacting with reduced selenium in the rhizosphere to form a mercury(II) selenide species. Together with the formation of the root-bound mercury(II) selenide species, we also report on the formation of cinnabar (HgS) and Hg{sup 0} in the rhizosphere. The results presented herein shed light on the intricate chemical and biological processes occurring within the rhizosphere that influence Hg and Se bioavailability and will be instrumental in predicting the fate and assisting in the remediation of these metals in the environment and informing whether or not fruit and vegetable food selection from aerial plant compartments or roots from plants grown in Hg contaminated soils, are safe for consumption.

  2. The Effects of Allium sativum Extracts on Biofilm Formation and Activities of Six Pathogenic Bacteria

    PubMed Central

    Mohsenipour, Zeinab; Hassanshahian, Mehdi

    2015-01-01

    Background: Garlic is considered a rich source of many compounds, which shows antimicrobial effects. The ability of microorganisms to adhere to both biotic and abiotic surfaces and to form biofilm is responsible for a number of diseases of chronic nature, demonstrating extremely high resistance to antibiotics. Bacterial biofilms are complex communities of sessile microorganisms, embedded in an extracellular matrix and irreversibly attached to various surfaces. Objectives: The present study evaluated the antimicrobial activity of Allium sativum extract against the biofilms of six pathogenic bacteria and their free-living forms. The clinical isolates in this study had not been studied in any other studies, especially in regard to biofilm disruption and inhibition of biofilm cell metabolic activity. Materials and Methods: Antimicrobial activities of A. sativum L. extracts (methanol and ethanol extracts) against planktonic forms of bacteria were determined using the disc diffusion method. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) values were evaluated by a macrobroth dilution technique. The anti-biofilm effects were assessed by microtiter plate method. Results: The results showed that the A. sativum L. extract discs did not have any zone of inhibition for the tested bacteria. However, The MIC values of A. sativum L. extracts (0.078 - 2.5 mg/mL) confirmed the high ability of these extracts for inhibition of planktonic bacteria. A. sativum L. extracts were efficient to inhibit biofilm structures and the concentration of each extract had a direct relation with the inhibitory effect. Conclusions: Finally, it can be suggested that the extracts of this plant be applied as antimicrobial agents against these pathogens, particularly in biofilm forms. PMID:26464762

  3. Cytogenetic studies of chromium (III) oxide nanoparticles on Allium cepa root tip cells.

    PubMed

    Kumar, Deepak; Rajeshwari, A; Jadon, Pradeep Singh; Chaudhuri, Gouri; Mukherjee, Anita; Chandrasekaran, Natarajan; Mukherjee, Amitava

    2015-12-01

    The current study evaluates the cytogenetic effects of chromium (III) oxide nanoparticles on the root cells of Allium cepa. The root tip cells of A. cepa were treated with the aqueous dispersions of Cr2O3 nanoparticles (NPs) at five different concentrations (0.01, 0.1, 1, 10, and 100μg/mL) for 4hr. The colloidal stability of the nanoparticle suspensions during the exposure period were ascertained by particle size analyses. After 4hr exposure to Cr2O3 NPs, a significant decrease in mitotic index (MI) from 35.56% (Control) to 35.26% (0.01μg/mL), 34.64% (0.1μg/mL), 32.73% (1μg/mL), 29.6% (10μg/mL) and 20.92% (100μg/mL) was noted. The optical, fluorescence and confocal laser scanning microscopic analyses demonstrated specific chromosomal aberrations such as-chromosome stickiness, chromosome breaks, laggard chromosome, clumped chromosome, multipolar phases, nuclear notch, and nuclear bud at different exposure concentrations. The concentration-dependent internalization/bio-uptake of Cr2O3 NPs may have contributed to the enhanced production of anti oxidant enzyme, superoxide dismutase to counteract the oxidative stress, which in turn resulted in observed chromosomal aberrations and cytogenetic effects. These results suggest that A. cepa root tip assay can be successfully applied for evaluating environmental risk of Cr2O3 NPs over a wide range of concentrations. PMID:26702979

  4. The role of gamma irradiation on the extraction of phenolic compounds in onion (Allium cepa L.)

    NASA Astrophysics Data System (ADS)

    Yang, Eun In; Lee, Eun Mi; Kim, Young Soo; Chung, Byung Yeoup

    2012-08-01

    The effect of gamma irradiation on the content of total phenolic compounds, especially quercetin (Q), in onion (Allium cepa L.) skin was investigated. Onion skin extracts contained two predominant flavonoid compounds, Q and quercetin-4'-glucoside (Q4'G). After 10 kGy gamma irradiation, the yield of Q in the extracts increased significantly from 36.8 to 153.9 μg/ml of the extract, and the Q4'G content decreased slightly from 165.0 to 134.1 μg/ml. In addition, the total phenolic compound content also increased after irradiation at 10 kGy, from 228.0 μg/g of fresh weight to 346.6 μg/g; negligible changes (237.1-256.7 μg/g) occurred at doses of up to 5 kGy. As we expected, radical-scavenging activity was enhanced remarkably (by 88.8%) in the 10 kGy irradiated sample. A dose-dependent increase in the peak intensity of the electron paramagnetic resonance (EPR) spectra was observed in all irradiated samples, with a maximum increase at 10 kGy. The intensity relative to that of the control was 0.15, and it increased to 1.10 in 10 kGy irradiated samples. The optimum gamma irradiation dose, which is sufficient to break the chemical or physical bonds and release soluble phenols of low molecular weight in onion skin, is about 10 kGy.

  5. Sunlight decreased genotoxicity of azadirachtin on root tip cells of Allium cepa and Eucrosia bicolor.

    PubMed

    Kwankua, W; Sengsai, S; Kuleung, C; Euawong, N

    2010-07-01

    Utilization of neem plant (Azadirachta indica A. Juss) extract for pest control in agriculture has raised concerns over contamination by the residues to the environment. Such residues, particularly azadirachtin (Aza), may cause deleterious effect to non-target organisms. This investigation was conducted to find out if Aza could be inactivated through exposures to sunlight. Activity of Aza was assessed as its ability to cause cytotoxic and genotoxic effects in the forms of nuclei abnormality and chromosome aberration as measured by mitotic index (MI) and mitotic aberration (MA). Varying concentrations of Aza were tested on Allium cepa and Eucrosia bicolor. It was found that the MI of all root tip meristematic cells of A. cepa and E. bicolor treated with 0.00005%, 0.00010%, 0.00015%, and 0.00020% (w/v) Aza-containing neem extract for 24h, were significantly lower than the controls. Complementary to the lower levels of MI, the Aza-treated groups showed higher MA levels in all cases investigated. Furthermore, the decreasing levels of MI and the increasing levels of MA related well with the increasing concentration of Aza. Microscopic examination of root tip meristematic cells revealed that the anomaly found most often were mitotic disturbances and chromosomal bridges. Exposures of 0.00020% (w/v) Aza to sunlight for 3 days and 7 days decreased Aza ability to induce cytotoxicity and genotoxicity, both in terms of MI and MA, to root tip meristematic cells in A. cepa and E. bicolor. Photodegradation of Aza upon exposure to direct sunlight was confirmed by HPLC. The study implicates that Aza would unlikely cause long term deleterious effects to the environment since it would be inactivated by sunlight. PMID:20452021

  6. Physiological, anatomical, biochemical, and cytogenetic effects of thiamethoxam treatment on Allium cepa (amaryllidaceae) L.

    PubMed

    Çavuşoğlu, Kültiğin; Yalçin, Emine; Türkmen, Zafer; Yapar, Kürşad; Sağir, Saffet

    2012-11-01

    In the present study, toxic effects of active substance thiamethoxam of the insecticide Eforia were investigated on Allium cepa L. For this aim, we used the germination percentage, root length, weight gain, malondialdehyde (MDA) level, frequency of micronucleus (MN), chromosomal aberrations (CAs), and mitotic index (MI) as indicators of toxicity. Also, the changes in the root anatomy of A. cepa seeds treated with thiamethoxam were examined. The seeds in all the treatment groups were treated with three different doses (100, 250, and 500 mg/kg) of thiamethoxam for 72 h. The results showed that there were significant alterations in the germination percentage, root length, weight gain, MDA level, MN, CAs, and MI frequency depending on application dose in the seeds exposed to thiamethoxam compared to control group. Thiamethoxam treatments significantly reduced the germination percentage, root length, and weight gain in all the treatment groups (P < 0.05). But, it caused an increase in MN and CAs formation (P < 0.05). It was also found that thiamethoxam has a mito-depressive action on mitosis, and the MI was decreased depending on the dose of applied-thiamethoxam (P < 0.05). About 100, 250, and 500 mg/kg doses of thiamethoxam significantly enhanced the lipid peroxidation and caused an increase in MDA levels at each dose treatment (P < 0.05). Some anatomical damages such as necrotic cell death, unclear vascular tissue, unclear epidermis layer, cell deformation, and unusual form of cell nucleus were observed by using light micrographs. Each dose of thiamethoxam caused severe toxic effects on A. cepa cells, and the maximum toxic effect was observed at the dose level of 500 mg/kg. PMID:21374786

  7. De novo assembly and characterization of the Welsh onion (Allium fistulosum L.) transcriptome using Illumina technology.

    PubMed

    Sun, Xiu-Dong; Yu, Xin-Hui; Zhou, Shu-Mei; Liu, Shi-Qi

    2016-04-01

    Welsh onion (Allium fistulosum L.) has long been cultivated as a vegetable and spice for its flavor and aroma. However, transcriptomic and genomic data for A. fistulosum remain scarce. The goal of this study was to generate transcript sequences for functional genomic analyses, and identify genes potentially involved in sulfur, selenium, and vitamin metabolism. In total, 53,378,674 high-quality reads were generated, and de novo assembly resulted in 103,286 contigs and 53,837 unigenes. The average unigene length was 619 bp with an N50 of 832 bp. Similarity searches revealed that 36,155 sequences were similar to those of known proteins in public databases. Of these, 35,250 unigenes sequences were significantly similar to sequences in the NCBI non-redundant protein database and 22,804 were annotated in the Swiss-Prot database. Additionally, 13,125 and 26,660 unigenes were annotated in the Cluster of Orthologous Group and Gene Ontology databases, respectively. A total of 20,680 unigenes were classified into 128 pathways via functional annotation against the Kyoto Encyclopedia of Genes and Genomes pathway database. Key enzymes involved in sulfur and selenium metabolism were also identified. Additionally, our transcriptome revealed a number of unigenes encoding important enzymes involved in vitamin metabolism. We also identified 2014 simple sequence repeats in 1892 unigenes. This transcriptome analysis provides valuable information to further our understanding of the molecular mechanisms regulating the biosynthesis of organic sulfur compounds. The detected simple sequence repeats may facilitate marker-assisted selection in Welsh onion breeding experiments.

  8. Exploring the structural basis for selenium/mercury antagonism in Allium fistulosum.

    PubMed

    McNear, David H; Afton, Scott E; Caruso, Joseph A

    2012-03-01

    While continuing efforts are devoted to studying the mutually protective effect of mercury and selenium in mammals, few studies have investigated the mercury-selenium antagonism in plants. In this study, we report the metabolic fate of mercury and selenium in Allium fistulosum (green onion) after supplementation with sodium selenite and mercuric chloride. Analysis of homogenized root extracts via capillary reversed phase chromatography coupled with inductively coupled plasma mass spectrometry (capRPLC-ICP-MS) suggests the formation of a mercury-selenium containing compound. Micro-focused synchrotron X-ray fluorescence mapping of freshly excised roots show Hg sequestered on the root surface and outlining individual root cells, while Se is more evenly distributed throughout the root. There are also discrete Hg-only, Se-only regions and an overall strong correlation between Hg and Se throughout the root. Analysis of the X-ray absorption near edge structure (XANES) spectra show a "background" of methylselenocysteine within the root with discrete spots of SeO(3)(2-), Se(0) and solid HgSe on the root surface. Mercury outlining individual root cells is possibly binding to sulfhydryl groups or plasma membrane or cell wall proteins, and in some places reacting with reduced selenium in the rhizosphere to form a mercury(ii) selenide species. Together with the formation of the root-bound mercury(ii) selenide species, we also report on the formation of cinnabar (HgS) and Hg(0) in the rhizosphere. The results presented herein shed light on the intricate chemical and biological processes occurring within the rhizosphere that influence Hg and Se bioavailability and will be instrumental in predicting the fate and assisting in the remediation of these metals in the environment and informing whether or not fruit and vegetable food selection from aerial plant compartments or roots from plants grown in Hg contaminated soils, are safe for consumption. PMID:22278221

  9. Genetic analysis of the interaction between Allium species and arbuscular mycorrhizal fungi.

    PubMed

    Galván, Guillermo A; Kuyper, Thomas W; Burger, Karin; Keizer, L C Paul; Hoekstra, Rolf F; Kik, Chris; Scholten, Olga E

    2011-03-01

    The response of Allium cepa, A. roylei, A. fistulosum, and the hybrid A. fistulosum × A. roylei to the arbuscular mycorrhizal fungus (AMF) Glomus intraradices was studied. The genetic basis for response to AMF was analyzed in a tri-hybrid A. cepa × (A. roylei × A. fistulosum) population. Plant response to mycorrhizal symbiosis was expressed as relative mycorrhizal responsiveness (R') and absolute responsiveness (R). In addition, the average performance (AP) of genotypes under mycorrhizal and non-mycorrhizal conditions was determined. Experiments were executed in 2 years, and comprised clonally propagated plants of each genotype grown in sterile soil, inoculated with G. intraradices or non-inoculated. Results were significantly correlated between both years. Biomass of non-mycorrhizal and mycorrhizal plants was significantly positively correlated. R' was negatively correlated with biomass of non-mycorrhizal plants and hence unsuitable as a breeding criterion. R and AP were positively correlated with biomass of mycorrhizal and non-mycorrhizal plants. QTLs contributing to mycorrhizal response were located on a linkage map of the A. roylei × A. fistulosum parental genotype. Two QTLs from A. roylei were detected on chromosomes 2 and 3 for R, AP, and biomass of mycorrhizal plants. A QTL from A. fistulosum was detected on linkage group 9 for AP (but not R), biomass of mycorrhizal and non-mycorrhizal plants, and the number of stem-borne roots. Co-segregating QTLs for plant biomass, R and AP indicate that selection for plant biomass also selects for enhanced R and AP. Moreover, our findings suggest that modern onion breeding did not select against the response to AMF, as was suggested before for other cultivated species. Positive correlation between high number of roots, biomass and large response to AMF in close relatives of onion opens prospects to combine these traits for the development of more robust onion cultivars. PMID:21222096

  10. Waterlogging tolerance of Welsh onion (Allium fistulosum L.) enhanced by exogenous spermidine and spermine.

    PubMed

    Yiu, Jinn-Chin; Liu, Cheng-Wei; Fang, Denise Yi-Tan; Lai, Yu-Shen

    2009-08-01

    Soil flooding is a seasonal factor that negatively affects plant performance and crop yields. In order to investigate the effects of spermidine (Spd) and spermine (Spm) on the waterlogging stress, it was checked that the content of relative water content (RWC), proline, chlorophyll and malondialdehyde (MDA), net photosynthesis, the rate of hydrogen peroxide (H(2)O(2)) and superoxide radicals (O(2)(-)) generation and the antioxidant enzyme activities of superoxide dismutase (SOD) (EC 1.15.1.1), catalase (CAT) (EC 1.11.1.6), ascorbate peroxidase (APX) (EC 1.11.1.11) and glutathione reductase (GR) (EC 1.6.4.2) in Welsh onion (Allium fistulosum L) plants. Pretreatment with 2 mM of Spd and Spm effectively maintained the balance of water content in plant leaves and roots under flooding stress. In addition, the data indicate that the protective role of proline should be considered minimal, as its accumulation was found to be inversely correlated with tolerance to stress; it also significantly retarded the loss of chlorophyll, enhanced photosynthesis, decreased the rate of O(2)(-) generation and H(2)O(2) content, and prevented flooding-induced lipid peroxidation. Spd and Spm helped to maintain antioxidant enzyme activities under flooding; however, APX activity was found to increase slightly in response to Spm. The antioxidant system, an important component of the water-stress-protective mechanism, can be changed by PAs, which are able to moderate the radical scavenging system and to lessen in this way the oxidative stress. The results suggest that pretreatment with Spd and Spm prevents oxidative damage, and the protective effect of Spd was found to be greater than that of Spm. PMID:19356940

  11. De novo assembly and characterization of the Welsh onion (Allium fistulosum L.) transcriptome using Illumina technology.

    PubMed

    Sun, Xiu-Dong; Yu, Xin-Hui; Zhou, Shu-Mei; Liu, Shi-Qi

    2016-04-01

    Welsh onion (Allium fistulosum L.) has long been cultivated as a vegetable and spice for its flavor and aroma. However, transcriptomic and genomic data for A. fistulosum remain scarce. The goal of this study was to generate transcript sequences for functional genomic analyses, and identify genes potentially involved in sulfur, selenium, and vitamin metabolism. In total, 53,378,674 high-quality reads were generated, and de novo assembly resulted in 103,286 contigs and 53,837 unigenes. The average unigene length was 619 bp with an N50 of 832 bp. Similarity searches revealed that 36,155 sequences were similar to those of known proteins in public databases. Of these, 35,250 unigenes sequences were significantly similar to sequences in the NCBI non-redundant protein database and 22,804 were annotated in the Swiss-Prot database. Additionally, 13,125 and 26,660 unigenes were annotated in the Cluster of Orthologous Group and Gene Ontology databases, respectively. A total of 20,680 unigenes were classified into 128 pathways via functional annotation against the Kyoto Encyclopedia of Genes and Genomes pathway database. Key enzymes involved in sulfur and selenium metabolism were also identified. Additionally, our transcriptome revealed a number of unigenes encoding important enzymes involved in vitamin metabolism. We also identified 2014 simple sequence repeats in 1892 unigenes. This transcriptome analysis provides valuable information to further our understanding of the molecular mechanisms regulating the biosynthesis of organic sulfur compounds. The detected simple sequence repeats may facilitate marker-assisted selection in Welsh onion breeding experiments. PMID:26515796

  12. Vesicle formation in the membrane of onion cells (Allium cepa) during rapid osmotic dehydration

    PubMed Central

    Assani, Akym; Moundanga, Sylvie; Beney, Laurent; Gervais, Patrick

    2009-01-01

    Background and Aims Optimization of osmotic dehydration in different plant cells has been investigated through the variation of parameters such as the nature of the sugar used, the concentration of osmotic solutions and the processing time. In micro-organisms such as the yeast, Saccharomyces cerevisiae, the exposure of a cell to a slow increase in osmotic pressure preserves cell viability after rehydration, while sudden dehydration involves a lower rate of cell viability, which could be due to membrane vesiculation. The aim of this work is to study cytoplasmic vesicle formation in onion epidermal cells (Allium cepa) as a function of the kinetics of osmotic pressure variation in the external medium. Methods Onion epidermal cells were submitted either to an osmotic shock or to a progressive osmotic shift from an osmotic pressure of 2 to 24 MPa to induce plasmolysis. After 30 min in the treatment solution, deplasmolysis was carried out. Cells were observed by microscopy during the whole cycle of dehydration–rehydration. Key Results The application of an osmotic shock to onion cells, from an initial osmotic pressure of 2 MPa to a final one of 24 MPa for <1 s, led to the formation of numerous exocytotic and osmocytic vesicles visualized through light and confocal microscopy. In contrast, after application of a progressive osmotic shift, from an initial osmotic pressure of 2 MPa to a final one of 24 MPa for 30 min, no vesicles were observed. Additionally, the absence of Hechtian strand connections led to the bursting of vesicles in the case of the osmotic shock. Conclusions It is concluded that the kinetics of osmotic dehydration strongly influence vesicle formation in onion cells, and that Hechtian strand connections between protoplasts and exocytotic vesicles are a prerequisite for successful deplasmolysis. These results suggest that a decrease in the area-to-volume ratio of a cell could cause cell death following an osmotic shock. PMID:19833611

  13. Response to competition of bulbous geophyte Allium oleraceum differing in ploidy level.

    PubMed

    Fialová, M; Duchoslav, M

    2014-01-01

    Experimental studies that explore the possible causes of ploidy distributions and niche differentiation are rare. Increased competitive ability may be advantageous for survival in dense vegetation and may strongly affect local and regional abundances of cytotypes and potentially contribute to invasion success. We compared survival, growth and reproduction of plants originating from bulbils of three cytotypes (2n = 4x, 5x, 6x) of Allium oleraceum growing with and without a competitor (Arrhenatherum elatius). There was a strong negative effect of competition but no effect of ploidy or ploidy × competition on survivorship, height and total dry mass of A. oleraceum, i.e. no support for different competitive abilities of the ploidy levels. However, slightly different responses of populations to competition treatments within all cytotypes suggest differentiation within cytotypes. Under competition, plant survivorship was low, surviving plants were small, had low dry mass and produced neither sexual nor asexual propagules. Without competition, plant survivorship was high, and cytotypes differed in three traits after 2 year's growth: dry mass of flowers, number of flowers and ratio of the dry mass of sexual to asexual propagules all decreased with increasing ploidy level. We additionally tested tetra- and pentaploids as to whether plants originating from different types of propagule (bulbils, seeds) differ in survivorship, growth and reproduction when growing with and without a competitor. Plants originating from bulbils had higher survivorship, were more robust, flowered earlier and produced more propagules when compared to plants originating from seeds and grown without competition. Under competition, differences in performance between plants originating from seeds and bulbils mostly disappeared, with higher survivorship only for plants originating from bulbils.

  14. Vasorelaxant and hypotensive effects of Allium cepa peel hydroalcoholic extract in rat.

    PubMed

    Naseri, Mohammad Kazem Gharib; Arabian, Maedeh; Badavi, Mohammad; Ahangarpour, Akram

    2008-06-15

    The aim of present study was to investigate the effect of onion (Allium cepa) peel hydroalcoholic extract (OPE) on rat hypertension induced by high-fructose diet and aorta contractility. The OPE was prepared by maceration method using 70% ethanol. The thoracic aorta from male adult rat (Wistar) was dissected and suspended in Krebs-Henseleit solution under 1 g resting tension. Tissue preparation was contracted by KCl (80 mM) or phenylephrine (Phe, 1 microM) and then the extract was applied cumulatively (0.0625-2 mg mL(-1)). Hypertension was induced in negative control and three groups of rats by adding fructose (10% WN/V) in drinking water for 6 weeks but control group received tap water. Hypertensive groups received saline or OPE at 200, 400 and 800 mg kg(-1) daily for last 3 weeks by gavage. Results showed that OPE reduces aorta contractions induced by KCl or Phe in a concentration-dependent manner (p < 0.001). Removing aorta endothelium did not attenuate the OPE activity. Inhibition of nitric oxide, cGMP and prostaglandin synthesis by L-NAME (100 microM), methylene blue (10 microM) and indomethacin (10 microM), respectively, did not attenuate OPE activity. Atropine abolished ACh-induced relaxation in Phe precontracted aorta but not the OPE-induced relaxation. Although the extract did not change heart rate but after 3 weeks reduced the hypertension induced by fructose (p < 0.001). Present results indicated that OPE reduces aortic contractions possibly via inhibition of calcium influx but without involving NO, cGMP, endothelium and prostaglandins. The OPE hypotensive effect could be due to extract quercetin content, antioxidant activity and inhibiting vascular smooth muscle cells Ca2+ influx. PMID:18819643

  15. Increase in the permeability of tonoplast of garlic (Allium sativum) by monocarboxylic acids.

    PubMed

    Bai, Bing; Li, Lei; Hu, Xiaosong; Wang, Zhengfu; Zhao, Guanghua

    2006-10-18

    Immersion of intact aged garlic (Allium sativum) cloves in a series of 5% weak organic monocarboxylate solutions (pH 2.0) resulted in green color formation. No color was formed upon treatment with other weak organic acids, such as citric and malic acids, and the inorganic hydrochloric acid under the same conditions. To understand the significance of monocarboxylic acids and their differing function from that of other acids, acetic acid was compared with organic acids citric and malic and the inorganic hydrochloric acid. The effects of these acids on the permeability of plasma and intracellular membrane of garlic cells were measured by conductivity, light microscopy, and transmission electron microscopy. Except for hydrochloric acid, treatment of garlic with all three organic acids greatly increased the relative conductivity of their respective pickling solutions, indicating that all tested organic acids increased the permeability of plasma membrane. Moreover, a pickling solution containing acetic acid exhibited 1.5-fold higher relative conductivity (approximately 90%) as compared to those (approximately 60%) of both citric and malic acids, implying that exposure of garlic cloves to acetic acid not only changed the permeability of the plasma membrane but also increased the permeability of intracellular membrane. Exposure of garlic to acetic acid led to the production of precipitate along the tonoplast, but no precipitate was formed by citric and malic acids. This indicates that the structure of the tonoplast was damaged by this treatment. Further support for this conclusion comes from results showing that the concentration of thiosulfinates [which are produced only by catalytic conversion of S-alk(en)yl-l-cysteine sulfoxides in cytosol by alliinase located in the vacuole] in the acetic acid pickling solution is 1.3 mg/mL, but almost no thiosulfinates were detected in the pickling solution of citric and malic acids. Thus, all present results suggest that damage of

  16. Transcriptome Analysis of Sucrose Metabolism during Bulb Swelling and Development in Onion (Allium cepa L.)

    PubMed Central

    Zhang, Chunsha; Zhang, Hongwei; Zhan, Zongxiang; Liu, Bingjiang; Chen, Zhentai; Liang, Yi

    2016-01-01

    Allium cepa L. is a widely cultivated and economically significant vegetable crop worldwide, with beneficial dietary and health-related properties, but its sucrose metabolism is still poorly understood. To analyze sucrose metabolism during bulb swelling, and the development of sweet taste in onion, a global transcriptome profile of onion bulbs was undertaken at three different developmental stages, using RNA-seq. A total of 79,376 unigenes, with a mean length of 678 bp, was obtained. In total, 7% of annotated Clusters of Orthologous Groups (COG) were involved in carbohydrate transport and metabolism. In the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, “starch and sucrose metabolism” (147, 2.40%) constituted the primary metabolism pathway in the integrated library. The expression of sucrose transporter genes was greatest during the early-swelling stage, suggesting that sucrose transporters (SUTs) participated in sucrose metabolism mainly at an early stage of bulb development. A gene-expression analysis of the key enzymes of sucrose metabolism suggested that sucrose synthase, cell wall invertase, and invertase were all likely to participate in the hydrolysis of sucrose, generating glucose, and fructose. In addition, trehalose was hydrolyzed to two molecules of glucose by trehalase. From 15 to 40 days after swelling (DAS), both the glucose and fructose contents of bulbs increased, whereas the sucrose content decreased. The growth rate between 15 and 30 DAS was slower than that between 30 and 40 DAS, suggesting that the latter was a period of rapid expansion. The dataset generated by our transcriptome profiling will provide valuable information for further research. PMID:27713754

  17. Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa.

    PubMed

    Kumari, Mamta; Khan, S Sudheer; Pakrashi, Sunandan; Mukherjee, Amitava; Chandrasekaran, Natarajan

    2011-06-15

    Increasing use of zinc oxide nanoparticles (ZnO NP) in consumer products may enhance its release into the environment. Phytotoxicity study is important to understand its possible environmental impact. Allium cepa (Onion bulb) is the best model organism to study genetic toxicology of nanoparticles. Here we have reported cytogenetic and genotoxic effects of ZnO NPs on the root cells of A. cepa. The effects of ZnO NPs on the mitotic index (MI), micronuclei index (MN index), chromosomal aberration index, and lipid peroxidation were determined through the hydroponic culturing of A. cepa. A. cepa roots were treated with the dispersions of ZnO NPs at four different concentrations (25, 50, 75, and 100 μg ml(-1)). With the increasing concentrations of ZnO NPs MI decreased with the increase of pycnotic cells, on the other hand MN and chromosomal aberration index increased. The frequency of micronucleated cells was higher in ZnO NPs treated cells as compared to control (deionized distilled water). The number of cells in each mitotic phase changed upon ZnO NPs treatment. The effect of ZnO NPs on lipid peroxidation as examined by measuring TBARS concentration was evident at all the concentrations compared to bulk ZnO. The TEM image showed internalization of ZnO NPs like particles. SEM image of treated A. cepa demonstrated that the internalized nanoparticles agglomerated depending on the physico-chemical environment inside the cell. Our results demonstrated that ZnO NPs can be a clastogenic/genotoxic and cytotoxic agent. In conclusion, the A. cepa cytogenetic test can be used for the genotoxicity monitoring of novel nanomaterials like ZnO NPs, which is used in many consumer products.

  18. Influence of mycorrhizal fungi on survival of salmonella and E.coli O157:H7 in soil and translocation into allium porrum roots and stem

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Modern agriculture disrupts the natural symbiotic relationship arbuscular mycorrhizal (AM) fungi have with most vegetable plants, which may affect translocation of human pathogens into the plant. Five-month-old Allium porrum (leek) plants (with or without AMF [Glomus intraradices]) were used as a m...

  19. Genotoxicity assessment of propyl thiosulfinate oxide, an organosulfur compound from Allium extract, intended to food active packaging.

    PubMed

    Mellado-García, P; Maisanaba, S; Puerto, M; Llana-Ruiz-Cabello, M; Prieto, A I; Marcos, R; Pichardo, S; Cameán, A M

    2015-12-01

    Essential oils from onion (Allium cepa L.), garlic (Allium sativum L.), and their main components, such as propyl thiosulfinate oxide (PTSO) are being intended for active packaging with the purpose of maintaining and extending food product quality and shelf life. The present work aims to assess for the first time the potential mutagenicity/genotoxicity of PTSO (0-50 µM) using the following battery of genotoxicity tests: (1) the bacterial reverse-mutation assay in Salmonella typhimurium (Ames test, OECD 471); (2) the micronucleus test (OECD 487) (MN) and (3) the mouse lymphoma thymidine-kinase assay (OECD 476) (MLA) on L5178YTk(+/-), cells; and (4) the comet assay (with and without Endo III and FPG enzymes) on Caco-2 cells. The results revealed that PTSO was not mutagenic in the Ames test, however it was mutagenic in the MLA assay after 24 h of treatment (2.5-20 µM). The parent compound did not induce MN on mammalian cells; however, its metabolites (in the presence S9) produced positive results (from 15 µM). Data from the comet assay indicated that PTSO did not induce DNA breaks or oxidative DNA damage. Further in vivo genotoxicity tests are needed to confirm its safety before it is used as active additive in food packaging.

  20. Genotoxicity assessment of propyl thiosulfinate oxide, an organosulfur compound from Allium extract, intended to food active packaging.

    PubMed

    Mellado-García, P; Maisanaba, S; Puerto, M; Llana-Ruiz-Cabello, M; Prieto, A I; Marcos, R; Pichardo, S; Cameán, A M

    2015-12-01

    Essential oils from onion (Allium cepa L.), garlic (Allium sativum L.), and their main components, such as propyl thiosulfinate oxide (PTSO) are being intended for active packaging with the purpose of maintaining and extending food product quality and shelf life. The present work aims to assess for the first time the potential mutagenicity/genotoxicity of PTSO (0-50 µM) using the following battery of genotoxicity tests: (1) the bacterial reverse-mutation assay in Salmonella typhimurium (Ames test, OECD 471); (2) the micronucleus test (OECD 487) (MN) and (3) the mouse lymphoma thymidine-kinase assay (OECD 476) (MLA) on L5178YTk(+/-), cells; and (4) the comet assay (with and without Endo III and FPG enzymes) on Caco-2 cells. The results revealed that PTSO was not mutagenic in the Ames test, however it was mutagenic in the MLA assay after 24 h of treatment (2.5-20 µM). The parent compound did not induce MN on mammalian cells; however, its metabolites (in the presence S9) produced positive results (from 15 µM). Data from the comet assay indicated that PTSO did not induce DNA breaks or oxidative DNA damage. Further in vivo genotoxicity tests are needed to confirm its safety before it is used as active additive in food packaging. PMID:26607106

  1. Allium cepa chromosome aberration and micronucleus tests applied to study genotoxicity of extracts from pesticide-treated vegetables and grapes.

    PubMed

    Feretti, D; Zerbini, I; Zani, C; Ceretti, E; Moretti, M; Monarca, S

    2007-06-01

    The Allium cepa assay is an efficient test for chemical screening and in situ monitoring for genotoxicity of environmental contaminants. The test has been used widely to study genotoxicity of many pesticides revealing that these compounds can induce chromosomal aberrations in root meristems of A. cepa. Pesticide residues can be present in fruit and vegetables and represent a risk for human health. The mutagenic and carcinogenic action of herbicides, insecticides and fungicides on experimental animals is well known. Several studies have shown that chronic exposure to low levels of pesticides can cause birth defects and that prenatal exposure is associated with carcinogenicity. This study evaluated the potential application of plant genotoxicity tests for monitoring mutagens in edible vegetables. The presence of pesticides and genotoxic compounds extracted from 21 treated vegetables and eight types of grapes sampled from several markets in Campania, a region in Southern Italy, was monitored concurrently. The extracts were analysed for pesticides by gas chromatography and high-performance liquid chromatography, and for genotoxicity using two plant tests: the micronucleus test and the chromosomal aberration test in A. cepa roots. Thirty-three pesticides were detected, some of which are not approved. Genotoxicity was found in some of the vegetables and grapes tested. Allium cepa tests proved to be sensitive in monitoring genotoxicity in food extracts. The micronucleus test in interphase cells gave a much higher mutagenicity than the chromosomal aberration test in anaphase-telophase cells. PMID:17487597

  2. [Genotoxic effects of pesticide-treated vegetable extracts using the Allium cepa chromosome aberration and micronucleus tests].

    PubMed

    Biscardi, D; De Fusco, R; Feretti, D; Zerbini, I; Izzo, C; Esposito, V; Nardi, G; Monarca, S

    2003-01-01

    The presence of chemical residues in vegetables and fruit is a source of human exposure to toxic and genotoxic chemicals. The mutagenic and carcinogenic action of herbicides, insecticides and fungicides on experimental animals is already known. Several studies have shown that chronic exposure to low levels of pesticides can cause adverse health effects and that many pesticides are mutagenic/carcinogenic. In the present research we monitored concurrently the presence of pesticides and genotoxic compounds extracted from 21 treated vegetables and 8 types of grapes sampled from the markets of a region in Southern Italy. The extracts were analysed for pesticides by gas-chromatography and HPLC, and for genotoxicity with two plant tests in Allium cepa roots: the micronucleus test and the chromosomal aberration test. We found 33 pesticides, some of which are outlawed. Genotoxicity was found in some of the vegetables and grapes tested. Allium cepa tests were sensitive for monitoring genotoxicity in food extracts. The micronucleus test in interphase cells gave much higher mutagenicity than the chromosomal aberration test in anaphase-telophase cells. PMID:15049565

  3. Chromosomal localization of 5S rRNA gene loci and the implications for relationships within the Allium complex.

    PubMed

    Lee, S H; Do, G S; Seo, B B

    1999-01-01

    Chromosomal localizations and distribution patterns of the 5S rRNA genes by means of fluorescence in-situ hybridization in diploid Allium species could help to classify species into chromosome types and aid in determining relationships among genomes. All eleven diploid species were classified into five types, A to E. Species of type A showed a pair of 5S rRNA signals on the short arm of chromosome 5 and two pairs of signals on both arms of chromosome 7. Species of types B and C showed one pair and two pairs of signals on the short arm of chromosome 7, respectively. Type D species showed two pairs of signals on the satellite region of the short arm and a pair of signals on the long arm of chromosome 7. Type E species showed three distinct 5S rRNA gene loci signals on the short arm of chromosome 7. Information on chromosomal localization of 5S rRNA gene loci and distribution patterns within chromosomes in diploid Allium species could help to infer the pathway of origin of the three kinds of alloploid species. Data indicate that A. wakegi is an allopolyploid with genomes of types B and C, and A. deltoide-fistulosum is an allotetraploid derived from a natural hybridization between different species within chromosome type A. Results indicate that A. senescens is an allopolyploid with type B chromosomes and an unidentified chromosomal type. PMID:10328620

  4. Allium compounds, dipropyl and dimethyl thiosulfinates as antiproliferative and differentiating agents of human acute myeloid leukemia cell lines

    PubMed Central

    Merhi, Faten; Auger, Jacques; Rendu, Francine; Bauvois, Brigitte

    2008-01-01

    Epidemiologic studies support the premise that Allium vegetables may lower the risk of cancers. The beneficial effects appear related to the organosulfur products generated upon processing of Allium. Leukemia cells from patients with acute myeloid leukemia (AML) display high proliferative capacity and have a reduced capacity of undergoing apoptosis and maturation. Whether the sulfur-containing molecules thiosulfinates (TS), diallyl TS (All2TS), dipropyl TS (Pr2TS) and dimethyl TS (Me2TS), are able to exert chemopreventative activity against AML is presently unknown. The present study was an evaluation of proliferation, cytotoxicity, differentiation and secretion of AML cell lines (U937, NB4, HL-60, MonoMac-6) in response to treatment with these TS and their related sulfides (diallylsulfide, diallyl disulfide, dipropyl disulfide, dimethyl disulfide). As assessed by flow cytometry, ELISA, gelatin zymogaphy and RT-PCR, we showed that Pr2TS and Me2TS, but not All2TS and sulfides, 1) inhibited cell proliferation in dose- and time-dependent manner and this process was neither due to cytotoxicity nor apoptosis, 2) induced macrophage maturation, and 3) inhibited the levels of secreted MMP-9 (protein and activity) and TNF-α protein, without altering mRNA levels. By establishing for the first time that Pr2TS and Me2TS affect proliferation, differentiation and secretion of leukemic cell lines, this study provides the opportunity to explore the potential efficiency of these molecules in AML. PMID:19707466

  5. Water Quality of Urban Streams: The Allium cepa Seeds/Seedlings Test as a Tool for Surface Water Monitoring

    PubMed Central

    Athanásio, Camila Gonçalves; Prá, Daniel

    2014-01-01

    The present study investigates the genotoxic, mutagenic, and cytotoxic potential of surface waters in urban streams using Allium cepa and analyzes the applicability of this assay for environmental monitoring. Water samples were collected from three streams located in the urban area of a municipality in the south of Brazil. For each stream, two samples were collected, one upstream and one downstream of the pollution discharge site. Physicochemical evaluation indicated that all samples had various degrees of environmental impact, but substantial impact was seen for the downstream samples of the Preto and Pedras streams. All samples increased the frequency of chromosome aberrations (P < 0.05). The sample from Pedras downstream site also caused a decrease in mitotic index (P < 0.08) and increase in micronuclei (P < 0.08) frequency, indicating potential cytotoxicity and mutagenicity. The Pedras stream receives mixed industrial and urban wastewater, while the Lajeado and Preto streams receive wastewater predominantly domestic in nature, which may partially explain the difference in toxicity among the samples. Moreover, the Allium cepa seeds/seedlings were shown to be extremely sensitive in detecting the genotoxicity of environmental water samples and can be applied as the first tool for environmental health hazard identification and prediction. PMID:25574484

  6. Clinical and Radiographic Evaluation of Allium sativum Oil as a New Medicament for Vital Pulp Treatment of Primary Teeth

    PubMed Central

    Mohammad, Shukry Gamal; Raheel, Syed Ahmed; Baroudi, Kusai

    2014-01-01

    Background: The objective of this study was to compare between the clinical and radiographic effects of Allium sativum oil and those of formocresol in vital pulpotomy in primary teeth. Materials and Methods: A total of 20 children age ranged from 4 to 8 years were included in the study. In every one of those children, the primary molars indicated for pulpotomy. Pulpotomy procedure was performed, and the radicular pulp tissue of one molar capped with A. sativum oil in a cotton pellet, whereas the other molar capped with formocresol, the teeth evaluated clinically and radiographically before and after 6 months, using standard clinical and radiographical criteria. Statistically, these results revealed no significant difference between the radiographic findings of vital pulpotomy in primary molars with the two medicaments was found. Results: A. sativum oil offers a good healing potential, leaving the remaining pulp tissue healthy and functioning. Vital pulpotomy with allium sativa oil was given raise 90% success rate while that with formocresol was 85%. Conclusion: A. sativum oil is a biocompatible material that is compatible with vital human pulp tissue. It offers a good healing potential, leaving the remaining pulp tissue healthy and functioning. PMID:25628480

  7. Determination of genotoxic effects of Imazethapyr herbicide in Allium cepa root cells by mitotic activity, chromosome aberration, and comet assay.

    PubMed

    Liman, Recep; Ciğerci, İbrahim Hakkı; Öztürk, Nur Serap

    2015-02-01

    Imazethapyr (IM) is an imidazolinone herbicide that is currently used for broad-spectrum weed control in soybean and other legume crops. In this study, cytotoxic and genotoxic effects of IM were investigated by using mitotic index (MI), mitotic phases, chromosomal abnormalities (CAs) and DNA damage on the root meristem cells of Allium cepa. In Allium root growth inhibition test, EC50 value was determined as 20 ppm, and 0.5xEC50, EC50 and 2xEC50 concentrations of IM herbicide were introduced to onion tuber roots. Distilled water and methyl methane sulfonate (MMS, 10 mg/L) were used as a negative and positive control, respectively. As A. cepa cell cycle is 24 hours, so, application process was carried out for 24, 48, 72 and 96 hours. All the applied doses decreased MIs compared to control group and these declines were found to be statistically meaningful. Analysis of the chromosomes showed that 10 ppm IM except for 48 h induced CAs but 40 ppm IM except for 72 h decreased CAs. DNA damage was found significantly higher in 20 and 40 ppm of IM compared to the control in comet assay. These results indicated that IM herbicide exhibits cytotoxic activity but not genotoxic activity (except 10 ppm) and induced DNA damage in a dose dependent manner in A. cepa root meristematic cells. PMID:25752428

  8. Distinct intraspecific variations of garlic (Allium sativum L.) revealed by the exon-intron sequences of the alliinase gene.

    PubMed

    Endo, Aki; Imai, Yukiko; Nakamura, Mizuho; Yanagisawa, Eri; Taguchi, Takaaki; Torii, Kosuke; Okumura, Hidenobu; Ichinose, Koji

    2014-04-01

    Garlic (Allium sativum L.) has been used worldwide as a food and for medicinal purposes since early times. Garlic cultivars exhibit considerable morphological diversity despite the fact that they are mostly sterile and are grown only by vegetative propagation of cloves. Considerable recombination occurs in garlic genomes, including the genes involved in secondary metabolites. We examined the genomic DNAs (gDNAs) from garlic, encoding alliinase, a key enzyme involved in organosulfur metabolism in Allium plants. The 1.7-kb gDNA fragments, covering three exons (2, 3, and 4) and all four introns, were amplified from total DNAs prepared from garlic samples produced in Asia and Europe, leading to 73 sequences in total: Japan (JPN), China (CHN), India (IND), Spain (ESP), and France (FRA). The exon sequences were highly conserved among all the sequences, probably reflecting the fully functional alliinase associated with the flavor quality. Distinct intraspecific variations were detected for all four intron sequences, leading to the haplotype classifications. A close relationship between JPN and CHN was observed for all four introns, whereas IND showed a more divergent distribution. ESP and FRA afforded clearly different variants compared with those from Asian sequences. The present study provides information that could be useful in the development of an additional molecular marker for garlic authentication and quality control.

  9. Water quality of urban streams: the Allium cepa seeds/seedlings test as a tool for surface water monitoring.

    PubMed

    Athanásio, Camila Gonçalves; Prá, Daniel; Rieger, Alexandre

    2014-01-01

    The present study investigates the genotoxic, mutagenic, and cytotoxic potential of surface waters in urban streams using Allium cepa and analyzes the applicability of this assay for environmental monitoring. Water samples were collected from three streams located in the urban area of a municipality in the south of Brazil. For each stream, two samples were collected, one upstream and one downstream of the pollution discharge site. Physicochemical evaluation indicated that all samples had various degrees of environmental impact, but substantial impact was seen for the downstream samples of the Preto and Pedras streams. All samples increased the frequency of chromosome aberrations (P < 0.05). The sample from Pedras downstream site also caused a decrease in mitotic index (P < 0.08) and increase in micronuclei (P < 0.08) frequency, indicating potential cytotoxicity and mutagenicity. The Pedras stream receives mixed industrial and urban wastewater, while the Lajeado and Preto streams receive wastewater predominantly domestic in nature, which may partially explain the difference in toxicity among the samples. Moreover, the Allium cepa seeds/seedlings were shown to be extremely sensitive in detecting the genotoxicity of environmental water samples and can be applied as the first tool for environmental health hazard identification and prediction.

  10. Assessment of Anti-Influenza Activity and Hemagglutination Inhibition of Plumbago indica and Allium sativum Extracts

    PubMed Central

    Chavan, Rahul Dilip; Shinde, Pramod; Girkar, Kaustubh; Madage, Rajendra; Chowdhary, Abhay

    2016-01-01

    Background: Human influenza is a seasonal disease associated with significant morbidity and mortality. Anti-flu ayurvedic/herbal medicines have played a significant role in fighting the virus pandemic. Plumbagin and allicin are commonly used ingredients in many therapeutic remedies, either alone or in conjunction with other natural substances. Evidence suggests that these extracts are associated with a variety of pharmacological activities. Objective: To evaluate anti-influenza activity from Plumbago indica and Allium sativum extract against Influenza A (H1N1)pdm09. Materials and Methods: Different extraction procedures were used to isolate the active ingredient in the solvent system, and quantitative HPLTC confirms the presence of plumbagin and allicin. The cytotoxicity was carried out on Madin-Darby Canine kidney cells, and the 50% cytotoxic concentration (CC50) values were below 20 mg/mL for both plant extracts. To assess the anti-influenza activity, two assays were employed, simultaneous and posttreatment assay. Results: A. sativum methanolic and ethanolic extracts showed only 14% reduction in hemagglutination in contrast to P. indica which exhibited 100% reduction in both simultaneous and posttreatment assay at concentrations of 10 mg/mL, 5 mg/mL, and 1 mg/mL. Conclusions: Our results suggest that P. indica extracts are good candidates for anti-influenza therapy and should be used in medical treatment after further research. SUMMARY The search for natural antiviral compounds from plants is a promising approach in the development of new therapeutic agents. In the past century, several scientific efforts have been directed toward identifying phytochemicals capable of inhibiting virus. Knowledge of ethnopharmacology can lead to new bioactive plant compounds suitable for drug discovery and development. Macromolecular docking studies provides most detailed possible view of drug-receptor interaction where the structure of drug is designed based on its fit to three

  11. Purification and characterization of a mannose-specific lectin from Shallot (Allium ascalonicum) bulbs.

    PubMed

    Mo, H; Van Damme, E J; Peumans, W J; Goldstein, I J

    1993-11-01

    A new mannose-binding lectin was isolated from shallot (Allium ascalonicum) bulbs by affinity chromatography on an immobilized D-mannose column. The lectin (A. ascalonicum agglutinin, AAA) appeared homogeneous by polyacrylamide gel electrophoresis at pH 4.3 and gave a single protein band with an apparent M(r) of 11 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and a single symmetrical peak of 11 kDa by gel filtration on a Sephacryl S-200 HR column, indicating that AAA exists as a monomeric protein at neutral pH under the gel filtration condition employed. However, chemical cross-linking studies revealed that some degree of self-association of the lectin molecules occurs and that the lectin exists in solution as a mixture of monomers and oligomers. Scatchard analysis of equilibrium dialysis data showed the presence of one carbohydrate binding site for Man (alpha 1-3) Man-alpha-O-Me per monomer, with Ka = 1.62 x 10(4) M-1. The carbohydrate-binding properties of the purified AAA were investigated by quantitative precipitation and hapten inhibition assays. Purified AAA precipitated asialofetuin, asialotransferrin, asialothyroglobulin, asialoorosomucoid, as well as their agalacto derivatives, but did not precipitate either sialylated glycoproteins or mucins. AAA also reacted strongly with the highly branched yeast mannan obtained from Saccharomyces cerevisiae. Of the monosaccharides tested only D-mannose was a hapten inhibitor of the AAA-asialofetuin precipitation system, whereas D-glucose, D-altrose, D-talose, N-acetyl-D-mannosamine, and derivatives of D-mannose, including 2-deoxy-, 2-deoxy-2-fluoro-, 3-deoxy-, and 6-deoxy-D-mannose were noninhibitors. These results suggest that the presence of equatorial hydroxyl groups at the C-3 and C-4 positions, an axial hydroxyl group at the C-2 position, and a free hydroxyl group at the C-6 position of the pyranose ring are the most important loci for the binding of D-mannose to AAA. Of the oligosaccharides

  12. DNA replication stress induces deregulation of the cell cycle events in root meristems of Allium cepa

    PubMed Central

    Żabka, Aneta; Polit, Justyna Teresa; Maszewski, Janusz

    2012-01-01

    Background and Aims Prolonged treatment of Allium cepa root meristems with changing concentrations of hydroxyurea (HU) results in either premature chromosome condensation or cell nuclei with an uncommon form of biphasic chromatin organization. The aim of the current study was to assess conditions that compromise cell cycle checkpoints and convert DNA replication stress into an abnormal course of mitosis. Methods Interphase-mitotic (IM) cells showing gradual changes of chromatin condensation were obtained following continuous 72 h treatment of seedlings with 0·75 mm HU (without renewal of the medium). HU-treated root meristems were analysed using histochemical stainings (DNA-DAPI/Feulgen; starch-iodide and DAB staining for H2O2 production), Western blotting [cyclin B-like (CBL) proteins] and immunochemistry (BrdU incorporation, detection of γ-H2AX and H3S10 phosphorylation). Key Results Continuous treatment of onion seedlings with a low concentration of HU results in shorter root meristems, enhanced production of H2O2, γ-phosphorylation of H2AX histones and accumulation of CBL proteins. HU-induced replication stress gives rise to axially elongated cells with half interphase/half mitotic structures (IM-cells) having both decondensed and condensed domains of chromatin. Long-term HU treatment results in cell nuclei resuming S phase with gradients of BrdU labelling. This suggests a polarized distribution of factors needed to re-initiate stalled replication forks. Furthermore, prolonged HU treatment extends both the relative time span and the spatial scale of H3S10 phosphorylation known in plants. Conclusions The minimum cell length and a threshold level of accumulated CBL proteins are both determining factors by which the nucleus attains commitment to induce an asynchronous course of chromosome condensation. Replication stress-induced alterations in an orderly route of the cell cycle events probably reflect a considerable reprogramming of metabolic functions of

  13. Pb-induced cellular defense system in the root meristematic cells of Allium sativum L

    PubMed Central

    2010-01-01

    Background Electron microscopy (EM) techniques enable identification of the main accumulations of lead (Pb) in cells and cellular organelles and observations of changes in cell ultrastructure. Although there is extensive literature relating to studies on the influence of heavy metals on plants, Pb tolerance strategies of plants have not yet been fully explained. Allium sativum L. is a potential plant for absorption and accumulation of heavy metals. In previous investigations the effects of different concentrations (10-5 to 10-3 M) of Pb were investigated in A. sativum, indicating a significant inhibitory effect on shoot and root growth at 10-3 to 10-4 M Pb. In the present study, we used EM and cytochemistry to investigate ultrastructural alterations, identify the synthesis and distribution of cysteine-rich proteins induced by Pb and explain the possible mechanisms of the Pb-induced cellular defense system in A. sativum. Results After 1 h of Pb treatment, dictyosomes were accompanied by numerous vesicles within cytoplasm. The endoplasm reticulum (ER) with swollen cisternae was arranged along the cell wall after 2 h. Some flattened cisternae were broken up into small closed vesicles and the nuclear envelope was generally more dilated after 4 h. During 24-36 h, phenomena appeared such as high vacuolization of cytoplasm and electron-dense granules in cell walls, vacuoles, cytoplasm and mitochondrial membranes. Other changes included mitochondrial swelling and loss of cristae, and vacuolization of ER and dictyosomes during 48-72 h. In the Pb-treatment groups, silver grains were observed in cell walls and in cytoplasm, suggesting the Gomori-Swift reaction can indirectly evaluate the Pb effects on plant cells. Conclusions Cell walls can immobilize some Pb ions. Cysteine-rich proteins in cell walls were confirmed by the Gomori-Swift reaction. The morphological alterations in plasma membrane, dictyosomes and ER reflect the features of detoxification and tolerance under Pb

  14. Direct comparison between genomic constitution and flavonoid contents in Allium multiple alien addition lines reveals chromosomal locations of genes related to biosynthesis from dihydrokaempferol to quercetin glucosides in scaly leaf of shallot (Allium cepa L.).

    PubMed

    Masuzaki, S; Shigyo, M; Yamauchi, N

    2006-02-01

    The extrachromosome 5A of shallot (Allium cepa L., genomes AA) has an important role in flavonoid biosynthesis in the scaly leaf of Allium fistulosum-shallot monosomic addition lines (FF+nA). This study deals with the production and biochemical characterisation of A. fistulosum-shallot multiple alien addition lines carrying at least 5A to determine the chromosomal locations of genes for quercetin formation. The multiple alien additions were selected from the crossing between allotriploid FFA (female symbol) and A. fistulosum (male symbol). The 113 plants obtained from this cross were analysed by a chromosome 5A-specific PGI isozyme marker of shallot. Thirty plants were preliminarily selected for an alien addition carrying 5A. The chromosome numbers of the 30 plants varied from 18 to 23. The other extrachromosomes in 19 plants were completely identified by using seven other chromosome markers of shallot. High-performance liquid chromatography analyses of the 19 multiple additions were conducted to identify the flavonoid compounds produced in the scaly leaves. Direct comparisons between the chromosomal constitution and the flavonoid contents of the multiple alien additions revealed that a flavonoid 3'-hydroxylase (F3'H) gene for the synthesis of quercetin from kaempferol was located on 7A and that an anonymous gene involved in the glucosidation of quercetin was on 3A or 4A. As a result of supplemental SCAR analyses by using genomic DNAs from two complete sets of A. fistulosum-shallot monosomic additions, we have assigned F3'H to 7A and flavonol synthase to 4A.

  15. Direct comparison between genomic constitution and flavonoid contents in Allium multiple alien addition lines reveals chromosomal locations of genes related to biosynthesis from dihydrokaempferol to quercetin glucosides in scaly leaf of shallot (Allium cepa L.).

    PubMed

    Masuzaki, S; Shigyo, M; Yamauchi, N

    2006-02-01

    The extrachromosome 5A of shallot (Allium cepa L., genomes AA) has an important role in flavonoid biosynthesis in the scaly leaf of Allium fistulosum-shallot monosomic addition lines (FF+nA). This study deals with the production and biochemical characterisation of A. fistulosum-shallot multiple alien addition lines carrying at least 5A to determine the chromosomal locations of genes for quercetin formation. The multiple alien additions were selected from the crossing between allotriploid FFA (female symbol) and A. fistulosum (male symbol). The 113 plants obtained from this cross were analysed by a chromosome 5A-specific PGI isozyme marker of shallot. Thirty plants were preliminarily selected for an alien addition carrying 5A. The chromosome numbers of the 30 plants varied from 18 to 23. The other extrachromosomes in 19 plants were completely identified by using seven other chromosome markers of shallot. High-performance liquid chromatography analyses of the 19 multiple additions were conducted to identify the flavonoid compounds produced in the scaly leaves. Direct comparisons between the chromosomal constitution and the flavonoid contents of the multiple alien additions revealed that a flavonoid 3'-hydroxylase (F3'H) gene for the synthesis of quercetin from kaempferol was located on 7A and that an anonymous gene involved in the glucosidation of quercetin was on 3A or 4A. As a result of supplemental SCAR analyses by using genomic DNAs from two complete sets of A. fistulosum-shallot monosomic additions, we have assigned F3'H to 7A and flavonol synthase to 4A. PMID:16411131

  16. Evaluation of the antimutagenic activity and mode of action of carrageenan fiber in cultured meristematic cells of Allium cepa.

    PubMed

    Nantes, C I; Pesarini, J R; Mauro, M O; Monreal, A C D; Ramires, A D; Oliveira, R J

    2014-11-12

    In this study, we evaluated the mutagenic and antimutagenic activities of carrageenan, a sulfated polysaccharide, and described its mode of action by using an Allium cepa assay. The results indicate that carrageenan is not mutagenic, rather it has significant chemopreventive potential that is mediated by both demutagenic and bio-antimutagenic activities. This compound can adsorb agents that are toxic to DNA and inactivate them. Additionally, carrageenan can modulate enzymes of the DNA repair system. The percentage of damage reduction ranged from 62.54 to 96.66%, reflecting the compound's high efficiency in preventing the type of mutagenic damage that may be associated with tumor development. Based on these findings and information available in the literature, we conclude that carrageenan is an important fiber that should be considered as a possible base for functional foods and/or diets with potential anticancer activity.

  17. Mutagenic and antimutagenic effects of aqueous extract of rosemary (Rosmarinus officinalis L.) on meristematic cells of Allium cepa.

    PubMed

    Felicidade, I; Lima, J D; Pesarini, J R; Monreal, A C D; Mantovani, M S; Ribeiro, L R; Oliveira, R J

    2014-11-28

    Polyphenolic compounds present in rosemary were found to have antioxidant properties, anticarcinogenic activity, and to increase the detoxification of pro-carcinogens. The aim of the study was to determine the effect the aqueous extract of rosemary (AER) on mutagenicity induced by methylmethane sulfonate in meristematic cells of Allium cepa, as well as to describe its mode of action. Anti-mutagenicity experiments were carried out with 3 different concentrations of AER, which alone showed no mutagenic effects. In antimutagenicity experiments, AER showed chemopreventive activity in cultured meristematic cells of A. cepa against exposure to methylmethane sulfonate. Additionally, post-treatment and simultaneous treatment using pre-incubation protocols were the most effective. Evaluation of different protocols and the percent reduction in DNA indicated bioantimutagenic as well desmutagenic modes of action for AER. AER may be chemopreventive and antimutagenic.

  18. [The dynamics of chromosomal instability of welsh onion (Allium fistulosum L.): the influence of seed storage temperature].

    PubMed

    Lazarenko, L M; Bezrukov, V F

    2008-01-01

    The age-related dynamics of chromosomal instability and germination capacity of welsh onion (Allium fistulosum L.) seeds have been studied under two different storage temperatures during six years after harvesting. Seeds that were kept at the room temperature (14-28 degrees C) during 6 years of storage have lost their germination capacity. The frequencies of aberrant anaphases grew from 2% on the first month of storage up to 80% on the 75th month of storage. The germination capacity of seeds kept at the lower temperature (4-9 degrees C) was 73-77% on the 6th year of storage and the frequency of aberrant anaphases remained within the limits of 2-4%. Thus, storage of welsh onion seeds during 6 years at the lower temperature allows to retain germination capacity and restrains the augmentation of chromosomal instability in root meristem cells of seedlings during this period. PMID:19140441

  19. Saponins isolated from Allium chinense G. Don and antitumor-promoting activities of isoliquiritigenin and laxogenin from the same drug.

    PubMed

    Baba, M; Ohmura, M; Kishi, N; Okada, Y; Shibata, S; Peng, J; Yao, S S; Nishino, H; Okuyama, T

    2000-05-01

    Investigation of the Chinese crude drug "Xiebai," the bulbs of Allium chinense G. Don (Liliaceae), led to the isolation of 2 saponins, xiebai-saponin I (laxogenin 3-O-beta-xylopyranosyl (1-->4)-[alpha-arabinopyranosyl (1-->6)-beta-glucopyranoside) (1) and laxogenin 3-O-alpha-arabinopyranosyl (1-->6)-beta-glucopyranoside (2), and the aglycone, laxogenin (3), together with 2 chalcones, isoliquiritigenin (4) and isoliquiritigenin-4-O-glucoside (5), and beta-sitosterol glucoside (6). Compounds 1-5 were tested in vitro for their inhibitory effect on the 12-O-tetradecanoylphorbol-13-acetate (TPA)-stimulated 32Pi-incorporation into phospholipids of HeLa cells. In addition to this, laxogenin (3) was proven to have an antitumor-promoting activity in a two-stage lung carcinogenesis experiment. PMID:10823685

  20. Factors affecting the production of SCEs by maleic hydrazide in root-tip chromosomes of Allium cepa.

    PubMed

    Cortés, F; Escalza, P; Mateos, S; Díaz-Recasens, M

    1987-10-01

    We have investigated the influence of pH on the induction of chromatid-type aberrations and sister-chromatid exchanges (SCEs) by maleic hydrazide (MH) in root-tip cells of Allium cepa. For both cytogenetic endpoints, the lower the pH of the treatment solution, the higher were the frequencies of chromosome alterations detected at metaphase. We have further studied the persistence of lesions giving rise to SCEs during successive cell cycles, as well as the influence of BrdU concentration in the post-treatment medium on the yield of MH-induced SCEs. Our results suggest that the cytogenetic action of MH in many respects resembles that of bifunctional alkylating agents.

  1. Addition of a combination of onion (Allium cepa) and coconut (Cocos nucifera) to food of sheep stops gastrointestinal helminthic infections.

    PubMed

    Mehlhorn, Heinz; Al-Quraishy, Saleh; Al-Rasheid, Khaled A S; Jatzlau, Antje; Abdel-Ghaffar, Fathy

    2011-04-01

    Sheep with gastrointestinal nematodes and cestodes were fed on three farms with a combination of specially prepared extracts of onion (Allium cepa) and coconut (Cocos nucifera) for 8 days containing each 60 g coconut and onion extract, combined with milk powder and/or polyethylene glycol (PEG) propylencarbonate (PC). In all cases, the worm stages disappeared from the feces and were also not found 9 and 20 days after the end of the feeding with this plant combination. Since all treated animals increased their body weight considerably (when compared to untreated animals), worm reduction was apparently as effective as it was shown in previous laboratory trials with rats and mice (Klimpel et al., Parasitol Res, in press, 2010; Abdel-Ghaffar et al., Parasitol Res, in press, 2010; in this volume). PMID:21120531

  2. Regeneration of whole plants from protoplasts isolated from tissue-cultured shoot primordia of garlic (Allium sativum L.).

    PubMed

    Ayabe, M; Taniguchi, K; Sumi, S

    1995-01-01

    Protoplasts derived from tissue-cultured shoot primordia of garlic (Allium sativum L.) initiated successive cell divisions within 4 days and formed small individual calli (0.2mm in diameter) after 5 weeks of culture on Gamborg's B5 medium supplemented with 0.1% casein hydrolysate, 1mg/1 1-naphthaleneacetic acid and 1mg/1 6-benzylaminopurine. Plating efficiency was roughly 5% at the density of 1x10(4) protoplasts/ml of medium. Adventitious buds developed from the calli during subsequent subculture on Gamborg's B5 medium supplemented with 40mg/l adenine and 10% coconut milk. When transferred to the same medium without supplements, these buds grew into shoots and rooted. The regenerated garlic plantlets were successfully transferred to the greenhouse and grew into whole plants. PMID:24185646

  3. Antiproliferative action of aqueous extracts of Hymenaea stigonocarpa Mart. (Fabaceae) on the cell cycle of Allium cepa L.

    PubMed

    Lacerda, Lourran P; Malaquias, Geiz; Peron, Ana Paula

    2014-09-01

    In this study we evaluated the action of crude aqueous extracts obtained from rhytidome of Hymenaea stigonocarpa (jatobá-do-cerrado) on Allium cepa meristematic root cells in three concentrations: 0.082, 0.164, 0.328g/mL, at exposure times of 24 and 48 h. The slides were prepared by the crushing technique, and cells analyzed throughout the cell cycle, totaling 5000 for each control group and concentration. It was found that all three concentrations, including the lowest which is considered ideal for use, in all exposure times, had significant antiproliferative action on the cell cycle of this test system. For cells under division, we observed a high number of cells in prophase. Therefore, under the conditions studied H. stigonocarpa indicated to be cytotoxic. PMID:25029361

  4. Topical Allium ampeloprasum subsp Iranicum (Leek) extract cream in patients with symptomatic hemorrhoids: a pilot randomized and controlled clinical trial.

    PubMed

    Mosavat, Seyed Hamdollah; Ghahramani, Leila; Sobhani, Zahra; Haghighi, Ehsan Rahmanian; Heydari, Mojtaba

    2015-04-01

    Allium ampeloprasum subsp iranicum (Leek) has been traditionally used in antihemorrhoidal topical herbal formulations. This study aimed to evaluate its safety and efficacy in a pilot randomized controlled clinical trial. Twenty patients with symptomatic hemorrhoids were randomly allocated to receive the topical leek extract cream or standard antihemorrhoid cream for 3 weeks. The patients were evaluated before and after the intervention in terms of pain, defecation discomfort, bleeding severity, anal itching severity, and reported adverse events. A significant decrease was observed in the grade of bleeding severity and defecation discomfort in both the leek and antihemorrhoid cream groups after the intervention, while no significant change was observed in pain scores. There was no significant difference between the leek and antihemorrhoid cream groups with regard to mean changes in outcome measures. This pilot study showed that the topical use of leek cream can be as effective as a standard antihemorrhoid cream.

  5. Mutagenic and antimutagenic effects of aqueous extract of rosemary (Rosmarinus officinalis L.) on meristematic cells of Allium cepa.

    PubMed

    Felicidade, I; Lima, J D; Pesarini, J R; Monreal, A C D; Mantovani, M S; Ribeiro, L R; Oliveira, R J

    2014-01-01

    Polyphenolic compounds present in rosemary were found to have antioxidant properties, anticarcinogenic activity, and to increase the detoxification of pro-carcinogens. The aim of the study was to determine the effect the aqueous extract of rosemary (AER) on mutagenicity induced by methylmethane sulfonate in meristematic cells of Allium cepa, as well as to describe its mode of action. Anti-mutagenicity experiments were carried out with 3 different concentrations of AER, which alone showed no mutagenic effects. In antimutagenicity experiments, AER showed chemopreventive activity in cultured meristematic cells of A. cepa against exposure to methylmethane sulfonate. Additionally, post-treatment and simultaneous treatment using pre-incubation protocols were the most effective. Evaluation of different protocols and the percent reduction in DNA indicated bioantimutagenic as well desmutagenic modes of action for AER. AER may be chemopreventive and antimutagenic. PMID:25501210

  6. Evaluation of the antimutagenic activity and mode of action of carrageenan fiber in cultured meristematic cells of Allium cepa.

    PubMed

    Nantes, C I; Pesarini, J R; Mauro, M O; Monreal, A C D; Ramires, A D; Oliveira, R J

    2014-01-01

    In this study, we evaluated the mutagenic and antimutagenic activities of carrageenan, a sulfated polysaccharide, and described its mode of action by using an Allium cepa assay. The results indicate that carrageenan is not mutagenic, rather it has significant chemopreventive potential that is mediated by both demutagenic and bio-antimutagenic activities. This compound can adsorb agents that are toxic to DNA and inactivate them. Additionally, carrageenan can modulate enzymes of the DNA repair system. The percentage of damage reduction ranged from 62.54 to 96.66%, reflecting the compound's high efficiency in preventing the type of mutagenic damage that may be associated with tumor development. Based on these findings and information available in the literature, we conclude that carrageenan is an important fiber that should be considered as a possible base for functional foods and/or diets with potential anticancer activity. PMID:25501162

  7. Chromosome characteristics and behavior differences in Allium fistulosum L., A. cepa L, their F1 hybrid, and selected backcross progeny.

    PubMed

    Ulloa-G, M; Corgan, J N; Dunford, M

    1994-11-01

    Mitotic and meiotic studies were performed on Allium fistulosum, A. cepa, their F1 hybrid, and ten selected backcross (BC)1 plants [(A. fistulosum x A. cepa) x (A. cepa)]. Each BC1 plant had at least one A. cepa isozyme allele (Pgi, Idh, or Adh). Chromosome morphology and behavior differed among plants. Meiocytes were observed with one, two, or three bridges and/ or fragments, indicating at least three paracentric inversions between A. fistulosum and A. cepa. Unusual crossing over and multivalent associations suggest that the 5F subtelocentric chromosome of A. fistulosum is involved in at least one translocation. The number of bridges and fragments and multivalent associations varied between the F1 hybrid and BC1 progenies. The F1 hybrid and all BC1 progenies were either sterile or had very little seed set. Fertility was not restored in any of the selected BC1 plants.

  8. Elastosis perforans serpiginosa: a case successfully treated with intralesional steroids and topical allium cepa-allantoin-pentaglycan gel.

    PubMed

    Campanati, Anna; Martina, Emanuela; Giuliodori, Katia; Ganzetti, Giulia; Marconi, Barbara; Conta, Irene; Giangiacomi, Mirella; Offidani, Annamaria

    2014-01-01

    Elastosis perforans serpiginosa is a rare skin disease in which abnormal elastic fibers, other connective tissue elements, and cellular debris are expelled from the papillary dermis through the epidermis. Three clinical variants of EPS can be detected: idiopathic, reactive, and drug-induced. Clinically it consists of small horny or umbilicated papules arranged in a linear, arciform, circular, or serpiginous pattern. It usually occurs in young adults and shows a predilection for the head and neck. The lesions are generally asymptomatic or slightly itching. Several treatments have been reported with poor long-term success; these include intralesional and topical corticosteroids, tazarotene, imiquimod, and cryotherapy. We report a case of 40-year-old black woman affected by elastosis perforans serpiginosa that was referred to our department and treated with intralesional injections of triamcinolone acetonide and topical application of allium cepa-allantoin-pentaglycan gel. PMID:24964949

  9. Characterization of onion lectin (Allium cepa agglutinin) as an immunomodulatory protein inducing Th1-type immune response in vitro.

    PubMed

    Prasanna, Vaddi K; Venkatesh, Yeldur P

    2015-06-01

    Onion (Allium cepa), a bulb crop of economic importance, is known to have many health benefits. The major objective of the present study is to address the immunomodulatory properties of onion lectin (A. cepa agglutinin; ACA). ACA was purified from onion extract by D-mannose-agarose chromatography (yield: ~1 mg/kg). ACA is non-glycosylated and showed a molecular mass of ~12 kDa under reducing/non-reducing SDS-PAGE; glutaraldehyde cross-linking indicated that ACA is a non-covalent tetramer of ~12 kDa subunits. Its N-terminal sequence (RNVLLNNEGL; UniProt KB Accn. C0HJM8) showed 70-90% homology to mannose-specific Allium agglutinins. ACA showed specific hemagglutination activity of 8200 units/mg and is stable in the pH range 6-10 and up to 45° C. The immunomodulatory activity of ACA was assessed using the macrophage cell line, RAW264.7 and rat peritoneal macrophages; at 0.1 μg/well, it showed a significant increase (6-8-fold vs. control) in the production of nitric oxide at 24h, and significantly stimulated (2-4-fold vs. control) the production of pro-inflammatory cytokines (TNF-α and IL-12) at 24h. ACA (0.1 μg/well) enhanced the proliferation of murine thymocytes by ~4 fold (vs. control) at 24h; however, ACA does not proliferate B cell-enriched rat splenocytes. Further, it significantly elevated the expression levels of cytokines (IFN-γ and IL-2) over the control in murine thymocytes. Taken together, purified ACA induces a Th1-type immune response in vitro. Though present in low amounts, ACA may contribute to the immune-boosting potential of the popular spice onion since considerable amounts are consumed on a daily basis universally.

  10. The integration of recombination and physical maps in a large-genome monocot using haploid genome analysis in a trihybrid allium population.

    PubMed

    Khrustaleva, L I; de Melo, P E; van Heusden, A W; Kik, C

    2005-03-01

    Integrated mapping in large-genome monocots has been carried out on a limited number of species. Furthermore, integrated maps are difficult to construct for these species due to, among other reasons, the specific plant populations needed. To fill these gaps, Alliums were chosen as target species and a new strategy for constructing suitable populations was developed. This strategy involves the use of trihybrid genotypes in which only one homeolog of a chromosome pair is recombinant due to interspecific recombination. We used genotypes from a trihybrid Allium cepa x (A. roylei x A. fistulosum) population. Recombinant chromosomes 5 and 8 from the interspecific parent were analyzed using genomic in situ hybridization visualization of recombination points and the physical positions of recombination were integrated into AFLP linkage maps of both chromosomes. The integrated maps showed that in Alliums recombination predominantly occurs in the proximal half of chromosome arms and that 57.9% of PstI/MseI markers are located in close proximity to the centromeric region, suggesting the presence of genes in this region. These findings are different from data obtained on cereals, where recombination rate and gene density tends to be higher in distal regions. PMID:15654085

  11. The identification and analysis of the sequences that allow the detection of Allium cepa chromosomes by GISH in the allodiploid A. wakegi.

    PubMed

    Shibata, Fukashi; Hizume, Masahiro

    2002-09-01

    In Allium wakegi, which is an allodiploid species between Allium cepa and Allium fistulosum, each genome can be clearly distinguished using genomic in situ hybridization (GISH). Genomic DNA of A. cepa and A. fistulosum is differentiated both qualitatively and quantitatively. We wanted to isolate nucleotide sequences that give genome-specific signals on A. cepa chromosomes in GISH experiments in A. wakegi. We isolated 23 clones that show GISH-like signal patterns in fluorescence in situ hybridization (FISH) and analyzed their distribution in the A. cepa- and A. fistulosum-derived genomes of A. wakegi. There was considerable variation in the abundance and distribution of these cloned sequences on the chromosomes of the two species. The degree of A. cepa specificity varied among the clones. Twenty-two of the clones showed an even distribution over most chromosome arms with some clustering in the pericentromeric regions, but one clone showed very distinct terminal signals on some chromosomes. Whereas these sequences are not specific for A. cepa, changes in bases in nucleotide sequences and in their amount result in genome-specific characteristics in GISH experiments. PMID:12355208

  12. Comparative study of lifestyles of residents in high and low risk areas for gastric cancer in Jiangsu Province, China; with special reference to allium vegetables.

    PubMed

    Takezaki, T; Gao, C M; Ding, J H; Liu, T K; Li, M S; Tajima, K

    1999-11-01

    There is a low risk area for gastric cancer in Jiangsu Province, China, where people frequently consume raw allium vegetables. As a first step epidemiological study to clarify the factors involved in the low incidence of gastric cancer, we conducted a comparative study of the ecological factors in a high risk area (HRA), Yangzhong, and a low risk area (LRA), Pizhou, using a questionnaire. Subjects were selected from the general population according to age and sex, and comprised 414 residents of the HRA and 425 residents of the LRA. Ecological factors were compared for the two areas by Cochran-Mantel-Haenszel method, age-adjusted. Smoking and drinking habits were found to be more common in the LRA. On the other hand, allium vegetables were consumed in the LRA much more frequently, with high consumption of raw vegetables fruit, tomatoes, kidney beans and soybean products. People who consumed garlic en masse 3 times or more per week were 82% of men and 75% of women in the LRA, and 1% of men and women in the HRA. The results of the survey suggest that frequent consumption of allium vegetables, in addition to other anticancer foods, may be a factor in low mortality for gastric cancer. PMID:10616262

  13. Signal transduction pathways leading to cell cycle arrest and apoptosis induction in cancer cells by Allium vegetable-derived organosulfur compounds: a review.

    PubMed

    Herman-Antosiewicz, Anna; Singh, Shivendra V

    2004-11-01

    Epidemiological studies continue to support the premise that dietary intake of Allium vegetables (e.g., garlic, onions and so forth) may lower the risk of various types of cancer. Anticarcinogenic effect of Allium vegetables is attributed to organosulfur compounds (OSCs) that are generated upon processing of these vegetables. Preclinical studies have provided convincing evidence to indicate that Allium vegetable-derived OSCs including diallyl sulfide, diallyl disulfide and diallyl trisulfide are highly effective in affording protection against cancer in laboratory animals induced by a variety of chemical carcinogens. Inhibition of carcinogen activation through modulation of cytochrome P450-dependent monooxygenases and/or acceleration of carcinogen detoxification via induction of phase II enzymes (glutathione transferases, quinone reductase, etc.) are believed to be responsible for protective effects of OSCs against chemically induced cancers. More recent studies have indicated that some naturally occurring OSC analogues can suppress proliferation of cancer cells in culture and inhibit growth of transplanted tumor xenografts in vivo by inducing apoptosis and/or by perturbing cell cycle progression. This review summarizes current knowledge on signal transduction pathways leading to perturbations in cell cycle progression and apoptosis induction by OSCs.

  14. Comparative efficacy of Zataria multiflora Boiss., Origanum compactum and Eugenia caryophyllus essential oils against E. coli O157:H7, feline calicivirus and endogenous microbiota in commercial baby-leaf salads.

    PubMed

    Azizkhani, Maryam; Elizaquível, Patricia; Sánchez, Gloria; Selma, María Victoria; Aznar, Rosa

    2013-09-01

    Ready-to-eat salads using baby-leaf and multi-leaf mixes are one of the most promising developments in the fresh-cut food industry. There is great interest in developing novel decontamination treatments, which are both safe for consumers and more efficient against foodborne pathogens. In this study, emulsions of essential oils (EOs) from Origanum compactum (oregano), Eugenia caryophyllus (clove), and Zataria multiflora Boiss (zataria) were applied by spray (0.8 ml) after the sanitizing washing step. The aim was to investigate their ability to control the growth of potentially cross-contaminating pathogens and endogenous microbiota in commercial baby leaves, processed in a fresh-cut produce company. Zataria EO emulsions of 3%, 5% and 10% reduced Escherichia coli O157:H7 by 1.7, 2.2 and 3.5 log cfu/g in baby-leaf salads after 5 days of storage at 7°C. By contrast, reductions in E. coli O157:H7 counts remained the same when clove was applied at concentrations of 5% and 10% (2.5 log cfu/g reduction). Oregano (10%) reduced inoculated E. coli O157:H7 counts in baby-leaf salads by a maximum of 0.5 log cfu/g after 5 days of storage. Zataria showed strong antimicrobial efficacy against E. coli O157:H7 and also against the endogenous microbiota of baby-leaf salads stored for 9 days. Feline calicivirus (FCV), a norovirus surrogate, survived on inoculated baby-leaf salads during refrigerated storage (9 days at 7°C) regardless of treatment. Refrigeration temperatures completely annulled the effectiveness of the EOs against FCV inoculated in baby-leaf salads as occurred in FCV cultures. This study shows that EOs, and zataria in particular, have great potential use as an additional barrier to reduce contamination-related risks in baby-leaf salads. However, further research should be done into foodborne viruses in order to improve food safety.

  15. Comparative efficacy of Zataria multiflora Boiss., Origanum compactum and Eugenia caryophyllus essential oils against E. coli O157:H7, feline calicivirus and endogenous microbiota in commercial baby-leaf salads.

    PubMed

    Azizkhani, Maryam; Elizaquível, Patricia; Sánchez, Gloria; Selma, María Victoria; Aznar, Rosa

    2013-09-01

    Ready-to-eat salads using baby-leaf and multi-leaf mixes are one of the most promising developments in the fresh-cut food industry. There is great interest in developing novel decontamination treatments, which are both safe for consumers and more efficient against foodborne pathogens. In this study, emulsions of essential oils (EOs) from Origanum compactum (oregano), Eugenia caryophyllus (clove), and Zataria multiflora Boiss (zataria) were applied by spray (0.8 ml) after the sanitizing washing step. The aim was to investigate their ability to control the growth of potentially cross-contaminating pathogens and endogenous microbiota in commercial baby leaves, processed in a fresh-cut produce company. Zataria EO emulsions of 3%, 5% and 10% reduced Escherichia coli O157:H7 by 1.7, 2.2 and 3.5 log cfu/g in baby-leaf salads after 5 days of storage at 7°C. By contrast, reductions in E. coli O157:H7 counts remained the same when clove was applied at concentrations of 5% and 10% (2.5 log cfu/g reduction). Oregano (10%) reduced inoculated E. coli O157:H7 counts in baby-leaf salads by a maximum of 0.5 log cfu/g after 5 days of storage. Zataria showed strong antimicrobial efficacy against E. coli O157:H7 and also against the endogenous microbiota of baby-leaf salads stored for 9 days. Feline calicivirus (FCV), a norovirus surrogate, survived on inoculated baby-leaf salads during refrigerated storage (9 days at 7°C) regardless of treatment. Refrigeration temperatures completely annulled the effectiveness of the EOs against FCV inoculated in baby-leaf salads as occurred in FCV cultures. This study shows that EOs, and zataria in particular, have great potential use as an additional barrier to reduce contamination-related risks in baby-leaf salads. However, further research should be done into foodborne viruses in order to improve food safety. PMID:23973836

  16. Central cell nuclear-cytoplasmic incongruity:a mechanism for segregation distortion in advanced backcross and selfed generations of (Allium cepa L. x Allium fistulosum L.) x A. cepa interspecific hybrid derivatives.

    PubMed

    Mangum, P D; Peffley, E B

    2005-01-01

    A model is presented as an explanation for an anomaly observed in germination and establishment and isozyme segregation patterns in Allium cepa x A. fistulosum F2BC3 populations generated in an introgression-breeding program. The F1BC3 parent of these populations was selected for its heterozygous PGI phenotype, Pgi-1(2/3); Pgi-1(2) was inherited from an A. cepa (Ac) seed parent and Pgi-1(3) from an A. fistulosum (Af) pollen parent. Germination and establishment was recorded for the F2BC3 progeny population. Segregation of Ac and Af Pgi-1 alleles was investigated in F2BC3 seeds and embryo and endosperm tissue was isolated and tested for isozyme expression. A pooled goodness-of-fit test of the segregation of Pgi-1 alleles in the populations to the expected Mendelian 1:2:1 ratio using the chi-square statistic gave a chi2 = 185.9, well beyond the accepted limits at 2 degrees of freedom. The 1:2:1 ratio expected for simple Mendelian inheritance was rejected, while a pooled chi-square goodness-of-fit test of the segregation of Pgi-1 alleles in the populations fit a 1:1 ratio with a chi2 = 0.203, based on the incongruity model. We present here the central cell nuclear-cytoplasmic incongruity hypothesis to explain the observed anomalies. PMID:15753603

  17. Hospital waste incinerator bottom ash leachate induced cyto-genotoxicity in Allium cepa and reproductive toxicity in mice.

    PubMed

    Akinbola, Temitayo I; Adeyemi, Adetutu; Morenikeji, Olajumoke A; Bakare, Adekunle A; Alimba, Chibuisi G

    2011-07-01

    The potentials of hospital incinerator bottom ash leachate (HIBAL) to induce cyto-genotoxicity in Allium cepa and reproductive anomalies in the mouse were investigated. The leachate obtained from simulation of the bottom ash was analyzed for some physico-chemical parameters. The A. cepa, mouse sperm morphology and histopathological tests were carried out at concentrations ranging from 1% to 50% of the leachate sample. In A. cepa, HIBAL caused significant (p < 0.05) inhibition of root growth and induction of chromosomal aberrations. In the animal assays, there was 100% mortality at the 50% concentrations. The leachate caused insignificant (p > 0.05) concentration-dependent induction of various types of sperm morphology. There was accumulation of fluid in the seminiferous tubule lumen and necrosis of stem cells in the testes. These effects were believed to be provoked by the somatic and germ cell genotoxins, particularly the heavy metals in the leachate. Our finding is of environmental and public health significance. PMID:21343229

  18. Allergenicity Assessment of Allium sativum Leaf Agglutinin, a Potential Candidate Protein for Developing Sap Sucking Insect Resistant Food Crops

    PubMed Central

    Mondal, Hossain Ali; Chakraborti, Dipankar; Majumder, Pralay; Roy, Pampa; Roy, Amit; Bhattacharya, Swati Gupta; Das, Sampa

    2011-01-01

    Background Mannose-binding Allium sativum leaf agglutinin (ASAL) is highly antinutritional and toxic to various phloem-feeding hemipteran insects. ASAL has been expressed in a number of agriculturally important crops to develop resistance against those insects. Awareness of the safety aspect of ASAL is absolutely essential for developing ASAL transgenic plants. Methodology/Principal Findings Following the guidelines framed by the Food and Agriculture Organization/World Health Organization, the source of the gene, its sequence homology with potent allergens, clinical tests on mammalian systems, and the pepsin resistance and thermostability of the protein were considered to address the issue. No significant homology to the ASAL sequence was detected when compared to known allergenic proteins. The ELISA of blood sera collected from known allergy patients also failed to show significant evidence of cross-reactivity. In vitro and in vivo assays both indicated the digestibility of ASAL in the presence of pepsin in a minimum time period. Conclusions/Significance With these experiments, we concluded that ASAL does not possess any apparent features of an allergen. This is the first report regarding the monitoring of the allergenicity of any mannose-binding monocot lectin having insecticidal efficacy against hemipteran insects. PMID:22110739

  19. Effect of Addition of Allium hookeri on the Quality of Fermented Sausage with Meat from Sulfur Fed Pigs during Ripening

    PubMed Central

    Lim, Ki-Won

    2014-01-01

    The effect of the addition of Allium hookeri on the quality of fermented sausage made with meat from sulfur fed pigs was examined, throughout a 60 d ripening period. There were two treatments in animal management: normal feed fed pigs, and sulfur fed pigs given 0.3% sulfur mixed normal feed. Fermented sausage manufactured with meat from normal feed fed pigs, and with meat from sulfur fed pigs, and 1% A. hookeri-containing fermented sausage processed with meat from sulfur fed pigs, were determined at 1 d, 15 d, 30 d, and 60 d. The meat qualities in fermented sausage were measured by DPPH radical scavenging activity (DPPH), ABTS+ radical scavenging activity (ABTS+), total phenolic acids, and total flavonoid contents. Fermented sausage made from pigs that had been fed with 0.3% sulfur was protected from oxidation by reduced free radical, as shown by the significant increase in DPPH and ABTS+ values, compared with fermented sausage made from normal feed fed pigs (p<0.05). A. hookeri-added fermented sausage with sulfur fed pork was shown to increase the values in DPPH, ABTS+, total phenolic acid, and total flavonoid contents, by comparison with both the control sausage, and sausage with sulfur fed pork, at 60 d. These results suggest that A. hookeri in meat from sulfur fed pigs could be a source of natural addition, to increase quality in the food industry. PMID:26761166

  20. Flavonol Glucoside and Antioxidant Enzyme Biosynthesis Affected by Mycorrhizal Fungi in Various Cultivars of Onion (Allium cepa L.).

    PubMed

    Mollavali, Mohanna; Bolandnazar, Saheb Ali; Schwarz, Dietmar; Rohn, Sascha; Riehle, Peer; Zaare Nahandi, Fariborz

    2016-01-13

    The objective of this study was to investigate the impact of mycorrhizal symbiosis on qualitative characteristics of onion (Allium cepa L.). For this reason, five onion cultivars with different scale color and three different strains of arbuscular mycorrhizal fungi (Diversispora versiformis, Rhizophagus intraradices, Funneliformis mosseae) were used. Red cultivars, mainly 'Red Azar-shahr', showed the highest content in vitamin C, flavonols, and antioxidant enzymes. Mycorrhizal inoculation increased total phenolic, pyruvic acid, and vitamin C of onion plants. Considerable increase was observed in quercetin-4'-O-monoglucoside and isorhamnetin-4'-O-monoglucoside content in plants inoculated with Diversispora versiformis, but quercetin-3,4'-O-diglucoside was not significantly influenced. Analyses for phenylalanine ammonia-lyase (PAL) and antioxiodant enzyme activities such as polyphenol oxidase (PPO), catalase (CAT), and peroxidase (POD) revealed that all except PPO were enhanced by mycorrhizal inoculation. Overall, these findings suggested that mycorrhizal inoculation influenced biosynthesis of flavonol glucosides and antioxidant enzymes by increasing nutrient uptake or by induction of the plant defense system. PMID:26694086

  1. Alliin, a Garlic (Allium sativum) Compound, Prevents LPS-Induced Inflammation in 3T3-L1 Adipocytes

    PubMed Central

    Quintero-Fabián, Saray; Ortuño-Sahagún, Daniel; Vázquez-Carrera, Manuel; López-Roa, Rocío Ivette

    2013-01-01

    Garlic (Allium sativum L.) has been used to alleviate a variety of health problems due to its high content of organosulfur compounds and antioxidant activity. The main active component is alliin (S-allyl cysteine sulfoxide), a potent antioxidant with cardioprotective and neuroprotective actions. In addition, it helps to decrease serum levels of glucose, insulin, triglycerides, and uric acid, as well as insulin resistance, and reduces cytokine levels. However its potential anti-inflammatory effect is unknown. We examined the effects of alliin in lipopolysaccharide- (LPS-) stimulated 3T3-L1 adipocytes by RT-PCR, Western blot, and microarrays analysis of 22,000 genes. Incubation of cells for 24 h with 100 μmol/L alliin prevented the increase in the expression of proinflammatory genes, IL-6, MCP-1, and Egr-1 in 3T3-L1 adipocytes exposed to 100 ng/mL LPS for 1 h. Interestingly, the phosphorylation of ERK1/2, which is involved in LPS-induced inflammation in adipocytes, was decreased following alliin treatment. Furthermore, the gene expression profile by microarrays evidentiate an upregulation of genes involved in immune response and downregulation of genes related with cancer. The present results have shown that alliin is able to suppress the LPS inflammatory signals by generating an anti-inflammatory gene expression profile and by modifying adipocyte metabolic profile. PMID:24453416

  2. Cellular damages in the Allium cepa test system, caused by BTEX mixture prior and after biodegradation process.

    PubMed

    Mazzeo, Dânia Elisa Christofoletti; Fernandes, Thaís Cristina Casimiro; Marin-Morales, Maria Aparecida

    2011-09-01

    Petroleum and derivatives have been considered one of the main environmental contaminants. Among petroleum derivatives, the volatile organic compounds benzene, toluene, ethylbenzene and xylene (BTEX) represent a major concern due to their toxicity and easy accumulation in groundwater. Biodegradation methods seem to be suitable tools for the clean-up of BTEX contaminants from groundwater. Genotoxic and mutagenic potential of BTEX prior and after biodegradation process was evaluated through analyses of chromosomal aberrations and MN test in meristematic and F(1) root cells using the Allium cepa test system. Seeds of A. cepa were germinated into five concentrations of BTEX, non-biodegraded and biodegraded, in ultra-pure water (negative control), in MMS 4×10(-4)M (positive control) and in culture medium used in the biodegradation (blank biodegradation control). Results showed a significant frequency of both chromosomal and nuclear aberrations. The micronucleus (MN) frequency in meristematic cells was significant for most of tested samples. However, MN was not present in significant levels in the F(1) cells, suggesting that there was no permanent damage for the meristematic cell. The BTEX effects were significantly reduced in the biodegraded samples when compared to the respective non-biodegraded concentrations. Therefore, in this study, the biodegradation process showed to be a reliable and effective alternative to treat BTEX-contaminated waters. Based on our results and available data, the BTEX toxicity could also be related to a synergistic effect of its compounds. PMID:21741065

  3. Alliin, a garlic (Allium sativum) compound, prevents LPS-induced inflammation in 3T3-L1 adipocytes.

    PubMed

    Quintero-Fabián, Saray; Ortuño-Sahagún, Daniel; Vázquez-Carrera, Manuel; López-Roa, Rocío Ivette

    2013-01-01

    Garlic (Allium sativum L.) has been used to alleviate a variety of health problems due to its high content of organosulfur compounds and antioxidant activity. The main active component is alliin (S-allyl cysteine sulfoxide), a potent antioxidant with cardioprotective and neuroprotective actions. In addition, it helps to decrease serum levels of glucose, insulin, triglycerides, and uric acid, as well as insulin resistance, and reduces cytokine levels. However its potential anti-inflammatory effect is unknown. We examined the effects of alliin in lipopolysaccharide- (LPS-) stimulated 3T3-L1 adipocytes by RT-PCR, Western blot, and microarrays analysis of 22,000 genes. Incubation of cells for 24 h with 100 μmol/L alliin prevented the increase in the expression of proinflammatory genes, IL-6, MCP-1, and Egr-1 in 3T3-L1 adipocytes exposed to 100 ng/mL LPS for 1 h. Interestingly, the phosphorylation of ERK1/2, which is involved in LPS-induced inflammation in adipocytes, was decreased following alliin treatment. Furthermore, the gene expression profile by microarrays evidentiate an upregulation of genes involved in immune response and downregulation of genes related with cancer. The present results have shown that alliin is able to suppress the LPS inflammatory signals by generating an anti-inflammatory gene expression profile and by modifying adipocyte metabolic profile.

  4. Assessment of the potential of Allium sativum oil as a new medicament for non-vital pulpotomy of primary teeth

    PubMed Central

    Mohammad, Shukry Gamal; Baroudi, Kusai

    2015-01-01

    Objective: The objective of this study was to compare the clinical and radiographic effects of Allium sativum oil and formocresol in nonvital pulpotomy in primary teeth. Materials and Methods: Twenty children ranging in age from 4 to 8 years were included in the study. In every one of those children, pulpotomy was indicated for the primary molars. Pulpotomy procedure was performed and the radicular pulp tissue of one molar was capped with A. sativum oil in a cotton pellet while the other molar was capped with formocresol. The teeth were evaluated clinically and radiographically before and after 6 months using standard clinical and radiographic criteria. Statistically, these results revealed significant difference between the radiographic findings of nonvital pulpotomy in primary molars with the two medicaments. Statistical analysis was performed using independent t-test and paired t-test at the significance level of α = 0.05. Results: A. sativum oil has potent antibacterial properties that enable it to combat intracanal microbes in the infected pulp of primary molars. Better results were obtained when A. sativum oil was used. Conclusion: A. sativum oil had more powerful effects than formocresol on the infected pulp of primary nonvital molars. PMID:26312232

  5. Anti-Atherogenic Properties of Allium ursinum Liophylisate: Impact on Lipoprotein Homeostasis and Cardiac Biomarkers in Hypercholesterolemic Rabbits.

    PubMed

    Bombicz, Mariann; Priksz, Daniel; Varga, Balazs; Gesztelyi, Rudolf; Kertesz, Attila; Lengyel, Peter; Balogh, Peter; Csupor, Dezso; Hohmann, Judit; Bhattoa, Harjit Pal; Haines, David D; Juhasz, Bela

    2016-01-01

    The present investigation evaluates the capacity of Allium ursinum (wild garlic) leaf lyophilisate (WGLL; alliin content: 0.261%) to mitigate cardiovascular damage in hypercholesterolemic rabbits. New Zealand rabbits were divided into three groups: (i) cholesterol-free rabbit chow (control); (ii) rabbit chow containing 2% cholesterol (hypercholesterolemic, HC); (iii) rabbit chow containing 2% cholesterol + 2% WGLL (hypercholesterolemic treated, HCT); for eight weeks. At the zero- and eight-week time points, echocardiographic measurements were made, along with the determination of basic serum parameters. Following the treatment period, after ischemia-reperfusion injury, hemodynamic parameters were measured using an isolated working heart model. Western blot analyses of heart tissue followed for evaluating protein expression and histochemical study for the atheroma status determination. WGLL treatment mediated increases in fractional shortening; right ventricular function; peak systolic velocity; tricuspidal annular systolic velocity in live animals; along with improved aortic and coronary flow. Western blot analysis revealed WGLL-associated increases in HO-1 protein and decreases in SOD-1 protein production. WGLL-associated decreases were observed in aortic atherosclerotic plaque coverage, plasma ApoB and the activity of LDH and CK (creatine kinase) in plasma. Plasma LDL was also significantly reduced. The results clearly demonstrate that WGLL has complex cardioprotective effects, suggesting future strategies for its use in prevention and therapy for atherosclerotic disorders. PMID:27517918

  6. Efficacy of Allium cepa test system for screening cytotoxicity and genotoxicity of industrial effluents originated from different industrial activities.

    PubMed

    Pathiratne, Asoka; Hemachandra, Chamini K; De Silva, Nimal

    2015-12-01

    Efficacy of Allium cepa test system for screening cytotoxicity and genotoxicity of treated effluents originated from four types of industrial activities (two textile industries, three rubber based industries, two common treatment plants of industrial zones, and two water treatment plants) was assessed. Physico-chemical parameters including the heavy metal/metalloid levels of the effluents varied depending on the industry profile, but most of the measured parameters in the effluents were within the specified tolerance limits of Sri Lankan environmental regulations for discharge of industrial effluents into inland surface waters. In the A. cepa test system, the undiluted effluents induced statistically significant root growth retardation, mitosis depression, and chromosomal aberrations in root meristematic cells in most cases in comparison to the dilution water and upstream water signifying effluent induced cytotoxicity and genotoxicity. Ethyl methane sulphonate (a mutagen, positive control) and all the effluents under 1:8 dilution significantly induced total chromosomal aberrations in root meristematic cells in comparison to the dilution water and upstream water indicating inadequacy of expected 1:8 dilutions in the receiving waters for curtailing genotoxic impacts. The results support the use of a practically feasible A. cepa test system for rapid screening of cytotoxicity and genotoxicity of diverse industrial effluents discharging into inland surface waters. PMID:26547320

  7. Antioxidant and anti-apoptotic effects of onion (Allium cepa) extract on doxorubicin-induced cardiotoxicity in rats.

    PubMed

    Alpsoy, Seref; Aktas, Cevat; Uygur, Ramazan; Topcu, Birol; Kanter, Mehmet; Erboga, Mustafa; Karakaya, Osman; Gedikbasi, Asuman

    2013-03-01

    The aim of this study was to investigate the antioxidant and anti-apoptotic effects of onion (Allium cepa) extracts (ACE) on doxorubicin (DOX)-induced cardiotoxicity. The rats in the ACE-pretreated group were given a daily dose of 1 ml ACE for 14 days. To induce cardiotoxicity, DOX (30 mg kg(-1) body weight) was injected intraperitoneally by a single dose and the rats were sacrificed after 48 h. To date, no such studies have been performed on the cardioprotective and anti-apoptotic potential of ACE on DOX-induced cardiotoxicity. Our data indicate a significant reduction in the activity of in situ identification of apoptosis using terminal dUTP nick end-labeling in cardiomyocytes of the DOX-treated group with ACE therapy. The DOX-treated with ACE groups showed a significant decrease in malondialdehyde levels, and increased activities of superoxide dismutase, glutathione and glutathione peroxidase in comparison with the DOX-treated group. Creatine kinase, creatine kinase MB, lactate dehydrogenase activities and cardiac troponin I levels were significantly decreased in the DOX + ACE group in comparison with the DOX group. These biochemical and histological disturbances were effectively attenuated on pretreatment with ACE. The present study showed that ACE may be a suitable cardioprotector against toxic effects of DOX.

  8. Inhibitory effects of onion (Allium cepa L.) extract on proliferation of cancer cells and adipocytes via inhibiting fatty acid synthase.

    PubMed

    Wang, Yi; Tian, Wei-Xi; Ma, Xiao-Feng

    2012-01-01

    Onions (Allium cepa L.) are widely used in the food industry for its nutritional and aromatic properties. Our studies showed that ethyl acetate extract of onion (EEO) had potent inhibitory effects on animal fatty acid synthase (FAS), and could induce apoptosis in FAS over-expressing human breast cancer MDA-MB-231 cells. Furthermore, this apoptosis was accompanied by reduction of intracellular FAS activity and could be rescued by 25 mM or 50 mM exogenous palmitic acids, the final product of FAS catalyzed synthesis. These results suggest that the apoptosis induced by EEO occurs via inhibition of FAS. We also found that EEO could suppress lipid accumulation during the differentiation of 3T3-L1 adipocytes, which was also related to its inhibition of intracellular FAS activity. Since obesity is closely related to breast cancer and obese patients are at elevated risk of developing various cancers, these findings suggested that onion might be useful for preventing obesity-related malignancy.

  9. Fermentation enhances the in vitro antioxidative effect of onion (Allium cepa) via an increase in quercetin content.

    PubMed

    Yang, Eun-Ju; Kim, Sang-In; Park, Sang-Yun; Bang, Han-Yeol; Jeong, Ji Hye; So, Jai-Hyun; Rhee, In-Koo; Song, Kyung-Sik

    2012-06-01

    Yellow onion (Allium cepa) extract showed enhanced antioxidative effects in 2,2-diphenyl-1-picrylhydrazyl (DPPH), Trolox equivalent antioxidant capacity (TEAC) and 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate and acetyl ester (CM-H(2)DCFDA) assay after being treated with a crude enzyme extract from soybean paste fungi, Aspergillus kawachii. HPLC analysis showed two increased and two decreased peaks after enzyme treatment. The decreased peaks were identified as quercetin-3,4'-di-O-β-d-glucoside (1) and quercetin-4'-O-β-d-glucoside (2), and peaks that increased were quercetin-3-O-β-d-glucoside (3) and quercetin (4), respectively. It was expected that 3 and 4 were originated from the glucosidic cleavage of their glucosides, 1 and 2. Among the increased compounds, only quercetin (4) showed strong antioxidative activity in the DPPH assay. In addition, the protective effect against glutamate-induced neurotoxicity in HT22 cells was increased when treated with 25 μg/ml of fermented onion. The enhanced neuroprotective effect was also originated from the increased quercetin content. As a consequence, fermentation raised the quercetin content in onion, and subsequently increased the antioxidative and neuroprotective activities.

  10. Flavonol Glucoside and Antioxidant Enzyme Biosynthesis Affected by Mycorrhizal Fungi in Various Cultivars of Onion (Allium cepa L.).

    PubMed

    Mollavali, Mohanna; Bolandnazar, Saheb Ali; Schwarz, Dietmar; Rohn, Sascha; Riehle, Peer; Zaare Nahandi, Fariborz

    2016-01-13

    The objective of this study was to investigate the impact of mycorrhizal symbiosis on qualitative characteristics of onion (Allium cepa L.). For this reason, five onion cultivars with different scale color and three different strains of arbuscular mycorrhizal fungi (Diversispora versiformis, Rhizophagus intraradices, Funneliformis mosseae) were used. Red cultivars, mainly 'Red Azar-shahr', showed the highest content in vitamin C, flavonols, and antioxidant enzymes. Mycorrhizal inoculation increased total phenolic, pyruvic acid, and vitamin C of onion plants. Considerable increase was observed in quercetin-4'-O-monoglucoside and isorhamnetin-4'-O-monoglucoside content in plants inoculated with Diversispora versiformis, but quercetin-3,4'-O-diglucoside was not significantly influenced. Analyses for phenylalanine ammonia-lyase (PAL) and antioxiodant enzyme activities such as polyphenol oxidase (PPO), catalase (CAT), and peroxidase (POD) revealed that all except PPO were enhanced by mycorrhizal inoculation. Overall, these findings suggested that mycorrhizal inoculation influenced biosynthesis of flavonol glucosides and antioxidant enzymes by increasing nutrient uptake or by induction of the plant defense system.

  11. Biodecolorization of azo dye Remazol orange by Pseudomonas aeruginosa BCH and toxicity (oxidative stress) reduction in Allium cepa root cells.

    PubMed

    Jadhav, Shekhar B; Surwase, Shripad N; Kalyani, Dayanand C; Gurav, Ranjit G; Jadhav, Jyoti P

    2012-11-01

    In this report a textile azo dye Remazol orange was degraded and detoxified by bacterium Pseudomonas aeruginosa BCH in plain distilled water. This bacterial decolorization performance was found to be pH and temperature dependent with maximum decolorization observed at pH 8 and temperature 30 °C. Bacterium tolerated higher dye concentrations up to 400 mg l(-1). Effect of initial cell mass showed that higher cell mass concentration can accelerate decolorization process with maximum of 92 % decolorization observed at 2.5 g l(-1) cell mass within 6.5 h. Effect of various metal ions showed Mn has inducing effect whereas Zn strongly inhibited the decolorization process at 5 mM concentration. Analysis of biodegradation products carried out with UV-vis spectroscopy, HPTLC and FTIR confirmed the decolorization and degradation of Remazol orange. Possible route for the degradation of dye was proposed based on GC-MS analysis. During toxicological scrutiny in Allium cepa root cells, induction in the activities of superoxide dismutase (SOD), guaiacol peroxidase (GPX) and inhibition of catalase (CAT) along with raised levels of lipid peroxidation and protein oxidation in dye treated samples were detected which conclusively indicated the generation of oxidative stress. Less toxic nature of the dye degraded products was observed after bacterial treatment.

  12. Density-dependence in the establishment of juvenile Allium ursinum individuals in a monodominant stand of conspecific adults

    NASA Astrophysics Data System (ADS)

    Morschhauser, Tamás; Rudolf, Kinga; Botta-Dukát, Zoltán; Oborny, Beáta

    2009-09-01

    We studied the establishment of new genets in a wild garlic population ( Allium ursinum L.) in the herb layer of an oak-hornbeam forest. We tested whether establishment could be successful in relatively small gaps (25 cm) surrounded by adult individuals. Furthermore, we asked whether more empty space in the neighborhood would increase the success. Newly germinated individuals were selected, and observed throughout the growth season. The success of establishment was characterized by the biomass of the bulb at the end of the season. The surrounding vegetation cover was recorded in a 25 cm resolution. We found that the success of establishment had a peak at intermediate neighborhood density. At higher densities, a significant, linear decline was found, indicating competition with the neighbors. At lower values, this trend did not continue, but a plateau was observed, indicating the effect of inverse density-dependence (an Allee effect). The results suggest that a rather broad radius (>25 cm) should be considered when predicting the establishment of new genets in A. ursinum, and beside competition, facilitative interactions should also be taken into consideration. This may explain the tendency of the species for maintaining high, often monodominant cover in the herb layer. Due to the observed efficiency of gap-filling and lateral spreading by sexual reproduction, we predict considerable genetic diversity even in high-cover A. ursinum patches.

  13. Purification and Characterization of Two Distinct NAD(P)H Dehydrogenases from Onion (Allium cepa L.) Root Plasma Membrane.

    PubMed Central

    Serrano, A.; Cordoba, F.; Gonzalez-Reyes, J. A.; Navas, P.; Villalba, J. M.

    1994-01-01

    Highly purified plasma membrane fractions were obtained from onion (Allium cepa L.) roots and used as a source for purification of redox proteins. Plasma membranes solubilized with Triton X-100 contained two distinct polypeptides showing NAD(P)H-dependent dehydrogenase activities. Dehydrogenase I was purified by gel filtration in Sephacryl S-300 HR, ion-exchange chromatography in DEAE-Sepharose CL-6B, and dye-ligand affinity chromatography in Blue-Sepharose CL-6B after biospecific elution with NADH. Dehydrogenase I consisted of a single polypeptide of about 27 kD and an isoelectric point of about 6. Dehydrogenase II was purified from the DEAE-unbound fraction by chromatography in Blue-Sepharose CL-6B and affinity elution with NADH. Dehydrogenase II consisted of a single polypeptide of about 31 kD and an isoelectric point of about 8. Purified dehydrogenase I oxidized both NADPH and NADH, although higher rates of electron transfer were obtained with NADPH. Maximal activity was achieved with NADPH as donor and juglone or coenzyme Q as acceptor. Dehydrogenase II was specific for NADH and exhibited maximal activity with ferricyanide. Optimal pH for both dehydrogenases was about 6. Dehydrogenase I was moderately inhibited by dicumarol, thenoyltrifluoroacetone, and the thiol reagent N-ethyl-maleimide. A strong inhibition of dehydrogenase II was obtained with dicumarol, thenoyltrifluoroacetone, and the thiol reagent p-hydroxymercuribenzoate. PMID:12232306

  14. Garlic (Allium sativum) stimulates lipopolysaccharide-induced tumor necrosis factor-alpha production from J774A.1 murine macrophages.

    PubMed

    Sung, Jessica; Harfouche, Youssef; De La Cruz, Melissa; Zamora, Martha P; Liu, Yan; Rego, James A; Buckley, Nancy E

    2015-02-01

    Garlic (Allium sativum) is known to have many beneficial attributes such as antimicrobial, antiatherosclerotic, antitumorigenetic, and immunomodulatory properties. In the present study, we investigated the effects of an aqueous garlic extract on macrophage cytokine production by challenging the macrophage J774A.1 cell line with the garlic extract in the absence or presence of lipopolysaccharide (LPS) under different conditions. The effect of allicin, the major component of crushed garlic, was also investigated. Using enzyme-linked immunosorbent assay and reverse transcriptase-quantitative polymerase chain reaction, it was found that garlic and synthetic allicin greatly stimulated tumor necrosis factor-alpha (TNF-α) production in macrophages treated with LPS. The TNF-α secretion levels peaked earlier and were sustained for a longer time in cells treated with garlic and LPS compared with cells treated with LPS alone. Garlic acted in a time-dependent manner. We suggest that garlic, at least partially via its allicin component, acts downstream from LPS to stimulate macrophage TNF-α secretion. PMID:25366263

  15. Antigenotoxic and antimutagenic effects of Schinus terebinthifolius Raddi in Allium cepa and Swiss mice: a comparative study.

    PubMed

    Fedel-Miyasato, L E S; Formagio, A S N; Auharek, S A; Kassuya, C A L; Navarro, S D; Cunha-Laura, A L; Monreal, A C D; Vieira, M C; Oliveira, R J

    2014-04-30

    It is estimated that 60% of anticancer drugs are derived directly or indirectly from medicinal plants. Schinus terebinthifolius Raddi (Anacardiaceae) is traditionally used in Brazilian medicine to treat inflammation, ulcers, and tumors. Because of the need to identify new antimutagenic agents and to determine their mechanism of action, this study evaluated the chemopreventive activity of the methanolic extract from leaves of S. terebinthifolius (MEST) in Allium cepa cells and in Swiss mice analyzing different protocols of MEST in association with DNA-damaging agents. The antigenotoxic and antimutagenic aspects in peripheral blood were evaluated using the comet and micronucleus assays, respectively. The percentage of damage reduction was used to compare the A. cepa and mice results. Our results showed for the first time that MEST can act as a chemopreventive compound that promotes cellular genome integrity by desmutagenic and bioantimutagenic activities in vegetal and animal models. This finding may therefore have therapeutic applications that can indirectly correlate to the prevention and/or treatment of the degenerative diseases such as cancer.

  16. Fermentation of Allium chinense Bulbs With Lactobacillus plantarum ZDY 2013 Shows Enhanced Biofunctionalities, and Nutritional and Chemical Properties.

    PubMed

    Pan, Mingfang; Wu, Qinglong; Tao, Xueying; Wan, Cuixiang; Shah, Nagendra P; Wei, Hua

    2015-10-01

    In this study, fermentation of Allium chinense bulbs was carried out with Lactobacillus plantarum ZDY 2013. A decrease in pH from 6.8 to 3.5 and a stable lactic acid bacteria population were observed during 7-d fermentation. The total phenolic content increased by 2.7-fold in the aqueous and ethanol extracts of A. chinense bulbs after fermentation. Antioxidant capacity including 2,2-diphenyl-1-picrylhydrazyl radical-scavenging effect and reducing power of both extracts was significantly (P < 0.05) improved after fermentation. Antagonistic test against 6 pathogens showed that fermentation significantly (P < 0.05) enhanced the antimicrobial activity in both extracts of fermented bulbs, especially in the ethanol extracts of fermented bulbs against L. monocytogenes. Analysis of the free amino acid (FAA) profile by ion-exchange chromatography revealed that fermentation significantly (P < 0.05) increased total FAA content. In addition, among 27 kinds of volatile components analyzed by headspace-solid phase microextraction-gas chromatography-tandem mass spectrometry, sulfur-containing compounds accounted for 65.23%, but decreased to 43.65% after fermentation. Our results suggested that fermentation of A. chinense bulbs with L. plantarum could improve their biofunctionalities, and nutritional and chemical properties.

  17. Modulatory effects of dietary inclusion of garlic (Allium sativum) on gentamycin-induced hepatotoxicity and oxidative stress in rats

    PubMed Central

    Ademiluyi, Adedayo O; Oboh, Ganiyu; Owoloye, Tosin R; Agbebi, Oluwaseun J

    2013-01-01

    Objective To investigate the ameliorative effect of dietary inclusion of garlic (Allium sativum) on gentamycin-induced hepatotoxicity in rats. Methods Adult male rats were randomly divided into four groups with six animals in each group. Groups 1 and 2 were fed basal diet while Groups 3 and 4 were fed diets containing 2% and 4% garlic respectively for 27 d prior to gentamycin administration. Hepatotoxicity was induced by the intraperitoneal administration of gentamycin (100 mg/kg body weight) for 3 d. The liver and plasma were studied for hepatotoxicity and antioxidant indices. Results Gentamycin induces hepatic damage as revealed by significant (P<0.05) elevation of liver damage marker enzymes (aspartate transaminase and alanine aminotransferase) and reduction in plasma albumin level. Gentamycin also caused a significant (P<0.05) alteration in plasma and liver enzymatic (catalase, glutathione and super oxygen dehydrogenises) and non-enzymatic (glutathione and vitamin C) antioxidant indices with concomitant increase in the malondialdehyde content; however, there was a significant (P<0.05) restoration of the antioxidant status coupled with significant (P<0.05) decrease in the tissues' malondialdehyde content, following consumption of diets containing garlic. Conclusions These results suggest that dietary inclusion of garlic powder could protect against gentamycin-induced hepatotoxicity, improve antioxidant status and modulate oxidative stress; a function attributed to their phenolic constituents. PMID:23730560

  18. De Novo Assembly and Annotation of the Chinese Chive (Allium tuberosum Rottler ex Spr.) Transcriptome Using the Illumina Platform.

    PubMed

    Zhou, Shu-Mei; Chen, Li-Mei; Liu, Shi-Qi; Wang, Xiu-Feng; Sun, Xiu-Dong

    2015-01-01

    Chinese chive (A. tuberosum Rottler ex Spr.) is one of the most widely cultivated Allium species in China. However, minimal transcriptomic and genomic data are available to reveal its evolution and genetic diversity. In this study, de novo transcriptome sequencing was performed to produce large transcript sequences using an Illumina HiSeq 2000 instrument. We produced 51,968,882 high-quality clean reads and assembled them into 150,154 contigs. A total of 60,031 unigenes with an average length of 631 bp were identified. Of these, 36,523 unigenes were homologous to existing database sequences, 35,648 unigenes were annotated in the NCBI non-redundant (Nr) sequence database, and 23,509 unigenes were annotated in the Swiss-Prot database. A total of 26,798 unigenes were assigned to 57 Gene Ontology (GO) terms, and 13,378 unigenes were assigned to Cluster of Orthologous Group categories. Using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database, we mapped 21,361 unigenes onto 128 pathways. Furthermore, 2,125 sequences containing simple sequence repeats (SSRs) were identified. This new dataset provides the most comprehensive resource currently available for gene expression, gene discovery, and future genomic research on Chinese chive. The sequence resources developed in this study can be used to develop molecular markers that will facilitate further genetic research on Chinese chive and related species.

  19. De Novo Assembly and Annotation of the Chinese Chive (Allium tuberosum Rottler ex Spr.) Transcriptome Using the Illumina Platform

    PubMed Central

    Zhou, Shu-Mei; Chen, Li-Mei; Liu, Shi-Qi; Wang, Xiu-Feng; Sun, Xiu-Dong

    2015-01-01

    Chinese chive (A. tuberosum Rottler ex Spr.) is one of the most widely cultivated Allium species in China. However, minimal transcriptomic and genomic data are available to reveal its evolution and genetic diversity. In this study, de novo transcriptome sequencing was performed to produce large transcript sequences using an Illumina HiSeq 2000 instrument. We produced 51,968,882 high-quality clean reads and assembled them into 150,154 contigs. A total of 60,031 unigenes with an average length of 631 bp were identified. Of these, 36,523 unigenes were homologous to existing database sequences, 35,648 unigenes were annotated in the NCBI non-redundant (Nr) sequence database, and 23,509 unigenes were annotated in the Swiss-Prot database. A total of 26,798 unigenes were assigned to 57 Gene Ontology (GO) terms, and 13,378 unigenes were assigned to Cluster of Orthologous Group categories. Using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database, we mapped 21,361 unigenes onto 128 pathways. Furthermore, 2,125 sequences containing simple sequence repeats (SSRs) were identified. This new dataset provides the most comprehensive resource currently available for gene expression, gene discovery, and future genomic research on Chinese chive. The sequence resources developed in this study can be used to develop molecular markers that will facilitate further genetic research on Chinese chive and related species. PMID:26204518

  20. Copper-induced root growth inhibition of Allium cepa var. agrogarum L. involves disturbances in cell division and DNA damage.

    PubMed

    Qin, Rong; Wang, Congyue; Chen, Da; Björn, Lars O; Li, Shaoshan

    2015-05-01

    Copper (Cu) is considered to be an indispensable microelement for plants. Excessive Cu, however, is toxic and disturbs several processes in the plant. The present study addressed the effects of ionic Cu (2.0 µM and 8.0 µM) on mitosis, the microtubule cytoskeleton, and DNA in root tip cells of Allium cepa var. agrogarum L. to better understand Cu toxicity on plant root systems. The results indicated that Cu accumulated in roots and that root growth was inhibited dramatically in Cu treatment groups. Chromosomal aberrations (for example, C-mitosis, chromosome bridges, chromosome stickiness, and micronucleus) were observed, and the mitotic index decreased during Cu treatments at different concentrations. Microtubules were one of the target sites of Cu toxicity in root tip meristematic cells, and Cu exposure substantially impaired microtubule arrangements. The content of α-tubulin decreased following 36 h of exposure to 2.0 µM or 8.0 µM of Cu in comparison with the control group. Copper increased DNA damage and suppressed cell cycle progression. The above toxic effects became more serious with increasing Cu concentration and prolonged exposure time.

  1. Fertilizing soil with selenium fertilizers: impact on concentration, speciation, and bioaccessibility of selenium in leek (Allium ampeloprasum).

    PubMed

    Lavu, Rama V Srikanth; Du Laing, Gijs; Van de Wiele, Tom; Pratti, Varalakshmi L; Willekens, Koen; Vandecasteele, Bart; Tack, Filip

    2012-11-01

    Leek was fertilized with sodium selenite (Na(2)SeO(3)) and sodium selenate (Na(2)SeO(4)) in a green house to assess the impact of selenium (Se) fertilization on Se uptake by the crop and its speciation in the crop. The bioaccessibility of Se in the Se-enriched leek was assessed using an in vitro extraction protocol mimicking the human gastrointestinal tract (stomach, small intestine, and colon). The lowest Se uptake was observed when Na(2)SeO(3) was used as a fertilizer, which results in a higher risk for Se accumulation in the soil on a longer term. When soil was amended with Na(2)SeO(4), 55 ± 5% of total Se in the leek occurred in an inorganic form, while only 21 ± 8% was inorganic when Na(2)SeO(3) was applied. Se-methylselenocysteine and selenomethione were the major organic species in both treatments. However, concentrations of Se-methylselenocysteine and γ-glutamyl-Se-methyl-selenocysteine, which were previously reported to induce positive health effects, were lower as compared to other Allium species. The majority of the Se in the leek was found to be bioaccessible in the stomach (around 60%) and small intestine (around 80%). However, a significant fraction also has good chances to reach the colon, where it seems to be taken up by the microbial community and may also induce positive health effects.

  2. Fermentation of Allium chinense Bulbs With Lactobacillus plantarum ZDY 2013 Shows Enhanced Biofunctionalities, and Nutritional and Chemical Properties.

    PubMed

    Pan, Mingfang; Wu, Qinglong; Tao, Xueying; Wan, Cuixiang; Shah, Nagendra P; Wei, Hua

    2015-10-01

    In this study, fermentation of Allium chinense bulbs was carried out with Lactobacillus plantarum ZDY 2013. A decrease in pH from 6.8 to 3.5 and a stable lactic acid bacteria population were observed during 7-d fermentation. The total phenolic content increased by 2.7-fold in the aqueous and ethanol extracts of A. chinense bulbs after fermentation. Antioxidant capacity including 2,2-diphenyl-1-picrylhydrazyl radical-scavenging effect and reducing power of both extracts was significantly (P < 0.05) improved after fermentation. Antagonistic test against 6 pathogens showed that fermentation significantly (P < 0.05) enhanced the antimicrobial activity in both extracts of fermented bulbs, especially in the ethanol extracts of fermented bulbs against L. monocytogenes. Analysis of the free amino acid (FAA) profile by ion-exchange chromatography revealed that fermentation significantly (P < 0.05) increased total FAA content. In addition, among 27 kinds of volatile components analyzed by headspace-solid phase microextraction-gas chromatography-tandem mass spectrometry, sulfur-containing compounds accounted for 65.23%, but decreased to 43.65% after fermentation. Our results suggested that fermentation of A. chinense bulbs with L. plantarum could improve their biofunctionalities, and nutritional and chemical properties. PMID:26308368

  3. Potentiation of anti-cholelithogenic influence of dietary tender cluster beans (Cyamopsis tetragonoloba) by garlic (Allium sativum) in experimental mice

    PubMed Central

    Raghavendra, Chikkanna K.; Srinivasan, Krishnapura

    2015-01-01

    Background & objectives: Dietary fibre-rich tender cluster beans (Cyamopsis tetragonoloba; CB) are known to exert beneficial cholesterol lowering influence. We examined the influence of a combination of dietary tender CB and garlic (Allium sativum) in reducing the cholesterol gallstone formation in mice. Methods: Cholesterol gallstones were induced in Swiss mice by feeding a high-cholesterol diet (HCD) for 10 wk. Dietary interventions were made with 10 per cent CB and 1 per cent garlic included individually or together along with HCD. A total of 100 mice were divided into five groups of 20 mice each. Results: Dietary CB, garlic and CB+garlic reduced the formation of cholesterol gallstones by 44, 25 and 56 per cent, respectively, lowered cholesterol by 23-48, 16-24, and 24-58 in bile, serum, and liver, respectively. Cholesterol saturation index in bile and cholesterol: phospholipid ratio in circulation and hepatic tissue were significantly lowered by these dietary interventions, with highest beneficial effect from CB+garlic. Activities of hepatic cholesterol metabolizing enzymes were modulated by CB, garlic and CB+garlic. Elevation in lipid peroxides caused by HCD was also countered by these dietary interventions, the combination producing the highest effect. Interpretation & conclusions: The results showed that the prevention of experimentally induced formation of cholesterol gallstones by dietary CB and garlic was due to decreased biliary cholesterol secretion and increased cholesterol saturation index. In addition of anti-lithogenic effect, dietary CB and garlic in combination had a beneficial antioxidant effect. PMID:26609039

  4. Phenolic acid allelochemicals induced morphological, ultrastructural, and cytological modification on Cassia sophera L. and Allium cepa L.

    PubMed

    Gulzar, Aasifa; Siddiqui, M B; Bi, Shazia

    2016-09-01

    The allelopathic potential of leaf aqueous extract (LAE) of Calotropis procera on growth behavior, ultrastructural changes on Cassia sophera L., and cytological changes on Allium cepa L. was investigated. LAE at different concentrations (0.5, 1, 2, and 4 %) significantly reduced the root length, shoot length, and dry biomass of C. sophera. Besides, the ultrastructural changes (through scanning electron microscopy, SEM) induced in epidermal cells of 15-day-old seedlings of Cassia leaf were also noticed. The changes induced were shrinking and contraction of epidermal cells along with the formation of major grooves, canals, and cyst-like structures. The treated samples of epidermal cells no longer seem to be smooth as compared to control. LAE at different concentrations induces chromosomal aberrations and variation in shape of the interphase and prophase nucleus in A. cepa root tip cells when compared with control groups. The mitotic index in treated onion root tips decreased with increasing concentrations of the extracts. The most frequent aberrations were despiralization at prophase with the formation of micronuclei, sticky anaphase with bridges, sticky telophase, C-metaphase, etc. The results also show the induction of ghost cells, cells with membrane damage, and cells with heterochromatic nuclei by extract treatment. Upon HPLC analysis, nine phenolic acids (caffeic acid, gentisic acid, catechol, gallic acid, syringic acid, ellagic acid, resorcinol, p-coumaric acid, and p-hydroxy benzoic acid) were identified. Thus, the phenolic acids are mainly responsible for the allelopathic behavior of C. procera. PMID:26387115

  5. The diversity and abundance of small arthropods in onion, Allium cepa, seed crops, and their potential role in pollination.

    PubMed

    Walker, M K; Howlett, B G; Wallace, A R; McCallum, J A; Teulon, D A J

    2011-01-01

    Onion, Allium cepa L. (Asparagales: Amaryllidaceae), crop fields grown for seed production require arthropod pollination for adequate seed yield. Although many arthropod species visit A. cepa flowers, for most there is little information on their role as pollinators. Small flower visiting arthropods (body width < 3 mm) in particular are rarely assessed. A survey of eight flowering commercial A. cepa seed fields in the North and South Islands of New Zealand using window traps revealed that small arthropods were highly abundant among all except one field. Insects belonging to the orders Diptera and Thysanoptera were the most abundant and Hymenoptera, Collembola, Psocoptera, Hemiptera, and Coleoptera were also present. To test whether small arthropods might contribute to pollination, seed sets from umbels caged within 3 mm diameter mesh cages were compared with similarly caged, hand-pollinated umbels and uncaged umbels. Caged umbels that were not hand-pollinated set significantly fewer seeds (average eight seeds/umbel, n = 10) than caged hand-pollinated umbels (average 146 seeds/umbel) and uncaged umbels (average 481 seeds/umbel). Moreover, sticky traps placed on umbels within cages captured similar numbers of small arthropods as sticky traps placed on uncaged umbels, suggesting cages did not inhibit the movement of small arthropods to umbels. Therefore, despite the high abundance of small arthropods within fields, evidence to support their role as significant pollinators of commercial A. cepa seed crops was not found.

  6. Efficacy of Allium cepa test system for screening cytotoxicity and genotoxicity of industrial effluents originated from different industrial activities.

    PubMed

    Pathiratne, Asoka; Hemachandra, Chamini K; De Silva, Nimal

    2015-12-01

    Efficacy of Allium cepa test system for screening cytotoxicity and genotoxicity of treated effluents originated from four types of industrial activities (two textile industries, three rubber based industries, two common treatment plants of industrial zones, and two water treatment plants) was assessed. Physico-chemical parameters including the heavy metal/metalloid levels of the effluents varied depending on the industry profile, but most of the measured parameters in the effluents were within the specified tolerance limits of Sri Lankan environmental regulations for discharge of industrial effluents into inland surface waters. In the A. cepa test system, the undiluted effluents induced statistically significant root growth retardation, mitosis depression, and chromosomal aberrations in root meristematic cells in most cases in comparison to the dilution water and upstream water signifying effluent induced cytotoxicity and genotoxicity. Ethyl methane sulphonate (a mutagen, positive control) and all the effluents under 1:8 dilution significantly induced total chromosomal aberrations in root meristematic cells in comparison to the dilution water and upstream water indicating inadequacy of expected 1:8 dilutions in the receiving waters for curtailing genotoxic impacts. The results support the use of a practically feasible A. cepa test system for rapid screening of cytotoxicity and genotoxicity of diverse industrial effluents discharging into inland surface waters.

  7. Degradation of proteins by enzymes exuded by Allium porrum roots - a potentially important strategy for acquiring organic nitrogen by plants.

    PubMed

    Adamczyk, Bartosz; Godlewski, Mirosław; Smolander, Aino; Kitunen, Veikko

    2009-10-01

    Nitrogen is one of the crucial elements that regulate plant growth and development. It is well-established that plants can acquire nitrogen from soil in the form of low-molecular-mass compounds, namely nitrate and ammonium, but also as amino acids. Nevertheless, nitrogen in the soil occurs mainly as proteins or proteins complexed with other organic compounds. Proteins are believed not to be available to plants. However, there is increasing evidence to suggest that plants can actively participate in proteolysis by exudation of proteases by roots and can obtain nitrogen from digested proteins. To gain insight into the process of organic nitrogen acquisition from proteins by leek roots (Allium porrum L. cv. Bartek), casein, bovine serum albumin and oxidized B-chain of insulin were used; their degradation products, after exposure to plant culture medium, were studied using liquid chromatography-mass spectrometry (LC-MS). Casein was degraded to a great extent, but the level of degradation of bovine serum albumin and the B-chain of insulin was lower. Proteases exuded by roots cleaved proteins, releasing low-molecular-mass peptides that can be taken up by roots. Various peptide fragments produced by digestion of the oxidized B-chain of insulin suggested that endopeptidase, but also exopeptidase activity was present. After identification, proteases were similar to cysteine protease from Arabidopsis thaliana. In conclusion, proteases exuded by roots may have great potential in the plant nitrogen nutrition.

  8. Fertilizing soil with selenium fertilizers: impact on concentration, speciation, and bioaccessibility of selenium in leek (Allium ampeloprasum).

    PubMed

    Lavu, Rama V Srikanth; Du Laing, Gijs; Van de Wiele, Tom; Pratti, Varalakshmi L; Willekens, Koen; Vandecasteele, Bart; Tack, Filip

    2012-11-01

    Leek was fertilized with sodium selenite (Na(2)SeO(3)) and sodium selenate (Na(2)SeO(4)) in a green house to assess the impact of selenium (Se) fertilization on Se uptake by the crop and its speciation in the crop. The bioaccessibility of Se in the Se-enriched leek was assessed using an in vitro extraction protocol mimicking the human gastrointestinal tract (stomach, small intestine, and colon). The lowest Se uptake was observed when Na(2)SeO(3) was used as a fertilizer, which results in a higher risk for Se accumulation in the soil on a longer term. When soil was amended with Na(2)SeO(4), 55 ± 5% of total Se in the leek occurred in an inorganic form, while only 21 ± 8% was inorganic when Na(2)SeO(3) was applied. Se-methylselenocysteine and selenomethione were the major organic species in both treatments. However, concentrations of Se-methylselenocysteine and γ-glutamyl-Se-methyl-selenocysteine, which were previously reported to induce positive health effects, were lower as compared to other Allium species. The majority of the Se in the leek was found to be bioaccessible in the stomach (around 60%) and small intestine (around 80%). However, a significant fraction also has good chances to reach the colon, where it seems to be taken up by the microbial community and may also induce positive health effects. PMID:23078411

  9. Effect of Addition of Allium hookeri on the Quality of Fermented Sausage with Meat from Sulfur Fed Pigs during Ripening.

    PubMed

    Song, Eun-Yeong; Pyun, Chang-Won; Hong, Go-Eun; Lim, Ki-Won; Lee, Chi-Ho

    2014-01-01

    The effect of the addition of Allium hookeri on the quality of fermented sausage made with meat from sulfur fed pigs was examined, throughout a 60 d ripening period. There were two treatments in animal management: normal feed fed pigs, and sulfur fed pigs given 0.3% sulfur mixed normal feed. Fermented sausage manufactured with meat from normal feed fed pigs, and with meat from sulfur fed pigs, and 1% A. hookeri-containing fermented sausage processed with meat from sulfur fed pigs, were determined at 1 d, 15 d, 30 d, and 60 d. The meat qualities in fermented sausage were measured by DPPH radical scavenging activity (DPPH), ABTS(+) radical scavenging activity (ABTS(+)), total phenolic acids, and total flavonoid contents. Fermented sausage made from pigs that had been fed with 0.3% sulfur was protected from oxidation by reduced free radical, as shown by the significant increase in DPPH and ABTS(+) values, compared with fermented sausage made from normal feed fed pigs (p<0.05). A. hookeri-added fermented sausage with sulfur fed pork was shown to increase the values in DPPH, ABTS(+), total phenolic acid, and total flavonoid contents, by comparison with both the control sausage, and sausage with sulfur fed pork, at 60 d. These results suggest that A. hookeri in meat from sulfur fed pigs could be a source of natural addition, to increase quality in the food industry.

  10. Anti-Atherogenic Properties of Allium ursinum Liophylisate: Impact on Lipoprotein Homeostasis and Cardiac Biomarkers in Hypercholesterolemic Rabbits

    PubMed Central

    Bombicz, Mariann; Priksz, Daniel; Varga, Balazs; Gesztelyi, Rudolf; Kertesz, Attila; Lengyel, Peter; Balogh, Peter; Csupor, Dezso; Hohmann, Judit; Bhattoa, Harjit Pal; Haines, David D.; Juhasz, Bela

    2016-01-01

    The present investigation evaluates the capacity of Allium ursinum (wild garlic) leaf lyophilisate (WGLL; alliin content: 0.261%) to mitigate cardiovascular damage in hypercholesterolemic rabbits. New Zealand rabbits were divided into three groups: (i) cholesterol-free rabbit chow (control); (ii) rabbit chow containing 2% cholesterol (hypercholesterolemic, HC); (iii) rabbit chow containing 2% cholesterol + 2% WGLL (hypercholesterolemic treated, HCT); for eight weeks. At the zero- and eight-week time points, echocardiographic measurements were made, along with the determination of basic serum parameters. Following the treatment period, after ischemia-reperfusion injury, hemodynamic parameters were measured using an isolated working heart model. Western blot analyses of heart tissue followed for evaluating protein expression and histochemical study for the atheroma status determination. WGLL treatment mediated increases in fractional shortening; right ventricular function; peak systolic velocity; tricuspidal annular systolic velocity in live animals; along with improved aortic and coronary flow. Western blot analysis revealed WGLL-associated increases in HO-1 protein and decreases in SOD-1 protein production. WGLL-associated decreases were observed in aortic atherosclerotic plaque coverage, plasma ApoB and the activity of LDH and CK (creatine kinase) in plasma. Plasma LDL was also significantly reduced. The results clearly demonstrate that WGLL has complex cardioprotective effects, suggesting future strategies for its use in prevention and therapy for atherosclerotic disorders. PMID:27517918

  11. Antibacterial effect of Allium sativum cloves and Zingiber officinale rhizomes against multiple-drug resistant clinical pathogens

    PubMed Central

    Karuppiah, Ponmurugan; Rajaram, Shyamkumar

    2012-01-01

    Objective To evaluate the antibacterial properties of Allium sativum (garlic) cloves and Zingiber officinale (ginger) rhizomes against multi-drug resistant clinical pathogens causing nosocomial infection. Methods The cloves of garlic and rhizomes of ginger were extracted with 95% (v/v) ethanol. The ethanolic extracts were subjected to antibacterial sensitivity test against clinical pathogens. Results Anti-bacterial potentials of the extracts of two crude garlic cloves and ginger rhizomes were tested against five gram negative and two gram positive multi-drug resistant bacteria isolates. All the bacterial isolates were susceptible to crude extracts of both plants extracts. Except Enterobacter sp. and Klebsiella sp., all other isolates were susceptible when subjected to ethanolic extracts of garlic and ginger. The highest inhibition zone was observed with garlic (19.45 mm) against Pseudomonas aeruginosa (P. aeruginosa). The minimal inhibitory concentration was as low as 67.00 µg/mL against P. aeruginosa. Conclusions Natural spices of garlic and ginger possess effective anti-bacterial activity against multi-drug clinical pathogens and can be used for prevention of drug resistant microbial diseases and further evaluation is necessary. PMID:23569978

  12. Studies on the antioxidant potential of flavones of Allium vineale isolated from its water-soluble fraction.

    PubMed

    Demirtas, Ibrahim; Erenler, Ramazan; Elmastas, Mahfuz; Goktasoglu, Ahmet

    2013-01-01

    The aim of this work was to examine the chemical constituents and antioxidant potential of water-soluble fractions from the commonly consumed vegetable, Allium vineale. The water-soluble fraction, containing phenolic compounds, was extracted with ethyl acetate to obtain flavonoids which were separated and purified by repeated column chromatography over Sephadex LH-20, RP C18 and silica gel. The isolated compounds were identified according to their physicochemical properties and spectral data (UV, HPLC-TOF/MS, (1)H NMR, (13)C NMR and 2D NMR). Three flavonoids were isolated and identified as chrysoeriol-7-O-[2″-O-E-feruloyl]-β-d-glucoside (1), chrysoeriol (2), and isorhamnetin-3-β-d-glucoside (3). Antioxidant studies of the aqueous extract and three isolated compounds, 1, 2, 3, were undertaken and they were found to have significant antioxidant activity. Antioxidant activities were evaluated for total antioxidant activity by the ferric thiocyanate method, ferric ion (Fe(3+)) reducing antioxidant power assay (FRAP), ferrous ion (Fe(2+)) metal chelating activity, and DPPH free radical-scavenging activity. The water-soluble ethyl acetate and methanol extraction methods were also compared using HPLC-TOF/MS. PMID:23017389

  13. Extract of Allium tuberosum Rottler ex Spreng Promoted the Hair Growth through Regulating the Expression of IGF-1

    PubMed Central

    Park, Ki Moon; Kim, Dong Woo; Lee, Seung Ho

    2015-01-01

    Allium tuberosum Rottler ex Spreng (ATRES) has been used as a traditional medicine for the treatment of abdominal pain, diarrhea, and asthma. In this study, we investigated the hair growth promoting activities of ATRES on telogenic C57BL6/N mice. Hair growth was significantly increased in the dorsal skin of ethanol extract of ATRES treated mouse group compared with the control mouse group. To enrich the hair promoting activity, an ethanol-insoluble fraction was further extracted in sequence with n-hexane, dichloromethane, ethyl acetate, n-butanol, and distilled water. Interestingly, we found that extraction with n-butanol is most efficient in producing the hair promoting activity. In addition, the soluble fraction of the n-butanol extract was further separated by silica gel chromatography and thin layer chromatography (TLC) resulting in isolating four single fractions which have hair growth regeneration potential. Furthermore, administration of ATRES extracts to dorsal skin area increased the number of hair follicles compared with control mouse group. Interestingly, administration of ATRES extract stimulated the expression of insulin-like growth factor-1 (IGF-1) but not of keratin growth factor (KGF) or vascular endothelial growth factor (VEGF). Taken together, these results suggest that ATRES possesses strong hair growth promoting potential which controls the expression of IGF-1. PMID:26078771

  14. Cytotoxicity of aluminum oxide nanoparticles on Allium cepa root tip--effects of oxidative stress generation and biouptake.

    PubMed

    Rajeshwari, A; Kavitha, S; Alex, Sruthi Ann; Kumar, Deepak; Mukherjee, Anita; Chandrasekaran, Natarajan; Mukherjee, Amitava

    2015-07-01

    The commercial usage of Al2O3 nanoparticles (Al2O3 NPs) has gone up significantly in the recent times, enhancing the risk of environmental contamination with these agents and their consequent adverse effects on living systems. The current study has been designed to evaluate the cytogenetic potential of Al2O3 NPs in Allium cepa (root tip cells) at a range of exposure concentrations (0.01, 0.1, 1, 10, and 100 μg/mL), their uptake/internalization profile, and the oxidative stress generated. We noted a dose-dependent decrease in the mitotic index (42 to 28 %) and an increase in the number of chromosomal aberrations. Various chromosomal aberrations, e.g. sticky, multipolar and laggard chromosomes, chromosomal breaks, and the formation of binucleate cells, were observed by optical, fluorescence, and confocal laser scanning microscopy. FT-IR analysis demonstrated the surface chemical interaction between the nanoparticles and root tip cells. The biouptake of Al2O3 in particulate form led to reactive oxygen species generation, which in turn probably contributed to the induction of chromosomal aberrations.

  15. Efficacy of garlic (Allium sativum) extract applied as a therapeutic immersion treatment for Neobenedenia sp. management in aquaculture.

    PubMed

    Militz, T A; Southgate, P C; Carton, A G; Hutson, K S

    2014-05-01

    Garlic, Allium sativum L., extract administered as a therapeutic bath was shown to have antiparasitic properties towards Neobenedenia sp. (MacCallum) (Platyhelminthes: Monogenea) infecting farmed barramundi, Lates calcarifer (Bloch). The effect of garlic extract (active component allicin) immersion on Neobenedenia sp. egg development, hatching success, oncomiracidia (larvae) longevity, infection success and juvenile Neobenedenia survival was examined and compared with freshwater and formalin immersion. Garlic extract was found to significantly impede hatching success (5% ± 5%) and oncomiracidia longevity (<2 h) at allicin concentrations of 15.2 μL L(-1) , while eggs in the seawater control had >95% hatching success and mean oncomiracidia longevity of 37 ± 3 h. At much lower allicin concentrations (0.76 and 1.52 μL L(-1)), garlic extract also significantly reduced Neobenedenia infection success of L. calcarifer to 25% ± 4% and 11% ± 4%, respectively, compared with 55% ± 7% in the seawater control. Juvenile Neobenedenia attached to host fish proved to be highly resistant to allicin with 96% surviving 1-h immersion in 10 mL L(-1) (15.2 μL L(-1) allicin) of garlic extract. Allicin-containing garlic extracts show potential for development as a therapy to manage monogenean infections in intensive aquaculture with the greatest impact at the egg and larval stages.

  16. Garlic (Allium sativum) stimulates lipopolysaccharide-induced tumor necrosis factor-alpha production from J774A.1 murine macrophages.

    PubMed

    Sung, Jessica; Harfouche, Youssef; De La Cruz, Melissa; Zamora, Martha P; Liu, Yan; Rego, James A; Buckley, Nancy E

    2015-02-01

    Garlic (Allium sativum) is known to have many beneficial attributes such as antimicrobial, antiatherosclerotic, antitumorigenetic, and immunomodulatory properties. In the present study, we investigated the effects of an aqueous garlic extract on macrophage cytokine production by challenging the macrophage J774A.1 cell line with the garlic extract in the absence or presence of lipopolysaccharide (LPS) under different conditions. The effect of allicin, the major component of crushed garlic, was also investigated. Using enzyme-linked immunosorbent assay and reverse transcriptase-quantitative polymerase chain reaction, it was found that garlic and synthetic allicin greatly stimulated tumor necrosis factor-alpha (TNF-α) production in macrophages treated with LPS. The TNF-α secretion levels peaked earlier and were sustained for a longer time in cells treated with garlic and LPS compared with cells treated with LPS alone. Garlic acted in a time-dependent manner. We suggest that garlic, at least partially via its allicin component, acts downstream from LPS to stimulate macrophage TNF-α secretion.

  17. Variations between diploids and tetraploids of Allium przewalskianum, an important vegetable and/or condiment in the Himalayas.

    PubMed

    Yao, Buqing; Deng, Jianming; Liu, Jianquan

    2011-04-01

    Allium przewalskianum, a wild onion species growing at altitudes ranging from 1800 to 4500 m, has long been commonly used as an important vegetable and/or condiment by Tibetans, Indians, and Nepalese in the highlands of the Himalayas and adjacent regions. This species comprises both diploids and tetraploids. In this study, we examined the nutritional content and biomass accumulation profiles of two cytotypes, collected from 29 sites, with different altitudinal origins but cultivated in a common garden. On an average, this species has superior qualities in the minerals and amino acids compared to other edible congeners. When compared with the diploids, the tetraploids grew faster and accumulated more biomass; in addition, the tetraploids had higher values of moisture and energy, higher contents of cystine and phosphorus, but lower fiber levels. Moreover, the tetraploids from the higher altitudes had greater biomasses than the other tetraploids, in addition to having increased levels of proteins, fats, and the minerals Mg, Fe, Mn, and Cu. These results illustrate the large variations in nutritional efficacy and growth within this single morphological species, and provide critical information for its effective consumption in the future. PMID:21480514

  18. Chromosome aberration and micronucleus frequencies in Allium cepa cells exposed to petroleum polluted water--a case study.

    PubMed

    Leme, Daniela Morais; Marin-Morales, Maria Aparecida

    2008-01-31

    In the present study, we applied Chromosome Aberration (CA) and Micronucleus (MN) tests to Allium cepa root cells, in order to evaluate the water quality of Guaecá river. This river, located in the city of São Sebastião, SP, Brazil, had been affected by an oil pipeline leak. Chemical analyses of Total Petroleum Hydrocarbons (TPHs) and Polycyclic Aromatic Hydrocarbons (PAHs) were also carried out in water samples, collected in July 2005 (dry season) and February 2006 (rainy season) in 4 different river sites. The largest CA and MN incidence in the meristematic cells of A. cepa was observed after exposure to water sample collected during the dry season, at the spring of the river, where the oil leak has arisen. The F(1) cells from roots exposed to such sample (non-merismatic region) were also analyzed for the incidence of MN, showing a larger frequency of irregularities, indicating a possible development of CA into MN. Lastly, our study reveals a direct correlation between water chemical analyses (contamination by TPHs and PAHs) and both genotoxic and mutagenic effects observed in exposed A. cepa cells. PMID:18068420

  19. Effects of hexavalent chromium on microtubule organization, ER distribution and callose deposition in root tip cells of Allium cepa L.

    PubMed

    Eleftheriou, Eleftherios P; Adamakis, Ioannis-Dimosthenis S; Melissa, Pelagia

    2012-04-01

    The subcellular targets of hexavalent chromium [Cr(VI)] were examined in Allium cepa root tips with confocal laser scanning microscopy. Cr(VI) exerted dose- and time-dependent negative effects on root growth rate, the mitotic index and microtubule (MT) organization during cell division cycle. Interphase MTs were more resistant than the mitotic ones, but when affected they were shorter, sparse and disoriented. The preprophase band of MTs became poorly organized, branched or with fragmented MTs, whilst neither a perinuclear array nor a prophase spindle was formed. Metaphase spindles converged to eccentric mini poles or consisted of dissimilar halves and were unable to correctly orient the chromosomes. Anaphase spindles were less disturbed, but chromatids failed to separate; neither did they move to the poles. At telophase, projecting, lagging or bridging chromosomes and micronuclei also occurred. Phragmoplasts were unilaterally developed, split, located at unexpected sites and frequently dissociated from the branched and misaligned cell plates. Chromosomal aberrations were directly correlated with MT disturbance. The morphology and distribution of endoplasmic reticulum was severely perturbed and presumably contributed to MT disassembly. Heavy callose apposition was also induced by Cr(VI), maybe in the context of a cellular defence reaction. Results indicate that MTs are one of the main subcellular targets of Cr(VI), MT impairment underlies chromosomal and mitotic aberrations, and MTs may constitute a reliable biomonitoring system for Cr(VI) toxicity in plants. PMID:21633932

  20. Copper-induced root growth inhibition of Allium cepa var. agrogarum L. involves disturbances in cell division and DNA damage.

    PubMed

    Qin, Rong; Wang, Congyue; Chen, Da; Björn, Lars O; Li, Shaoshan

    2015-05-01

    Copper (Cu) is considered to be an indispensable microelement for plants. Excessive Cu, however, is toxic and disturbs several processes in the plant. The present study addressed the effects of ionic Cu (2.0 µM and 8.0 µM) on mitosis, the microtubule cytoskeleton, and DNA in root tip cells of Allium cepa var. agrogarum L. to better understand Cu toxicity on plant root systems. The results indicated that Cu accumulated in roots and that root growth was inhibited dramatically in Cu treatment groups. Chromosomal aberrations (for example, C-mitosis, chromosome bridges, chromosome stickiness, and micronucleus) were observed, and the mitotic index decreased during Cu treatments at different concentrations. Microtubules were one of the target sites of Cu toxicity in root tip meristematic cells, and Cu exposure substantially impaired microtubule arrangements. The content of α-tubulin decreased following 36 h of exposure to 2.0 µM or 8.0 µM of Cu in comparison with the control group. Copper increased DNA damage and suppressed cell cycle progression. The above toxic effects became more serious with increasing Cu concentration and prolonged exposure time. PMID:25639377

  1. Biodecolorization of azo dye Remazol orange by Pseudomonas aeruginosa BCH and toxicity (oxidative stress) reduction in Allium cepa root cells.

    PubMed

    Jadhav, Shekhar B; Surwase, Shripad N; Kalyani, Dayanand C; Gurav, Ranjit G; Jadhav, Jyoti P

    2012-11-01

    In this report a textile azo dye Remazol orange was degraded and detoxified by bacterium Pseudomonas aeruginosa BCH in plain distilled water. This bacterial decolorization performance was found to be pH and temperature dependent with maximum decolorization observed at pH 8 and temperature 30 °C. Bacterium tolerated higher dye concentrations up to 400 mg l(-1). Effect of initial cell mass showed that higher cell mass concentration can accelerate decolorization process with maximum of 92 % decolorization observed at 2.5 g l(-1) cell mass within 6.5 h. Effect of various metal ions showed Mn has inducing effect whereas Zn strongly inhibited the decolorization process at 5 mM concentration. Analysis of biodegradation products carried out with UV-vis spectroscopy, HPTLC and FTIR confirmed the decolorization and degradation of Remazol orange. Possible route for the degradation of dye was proposed based on GC-MS analysis. During toxicological scrutiny in Allium cepa root cells, induction in the activities of superoxide dismutase (SOD), guaiacol peroxidase (GPX) and inhibition of catalase (CAT) along with raised levels of lipid peroxidation and protein oxidation in dye treated samples were detected which conclusively indicated the generation of oxidative stress. Less toxic nature of the dye degraded products was observed after bacterial treatment. PMID:22948606

  2. Composition of the Essential Oil of Allium neapolitanum Cirillo Growing Wild in Sicily and its Activity on Microorganisms Affecting Historical Art Crafts.

    PubMed

    Casiglia, Simona; Bruno, Maurizio; Senatore, Federica; Senatore, Felice

    2015-01-01

    Essential oil of the aerial parts of Allium neapolitanum Cirillo collected in Sicily were analyzed by gas-chromatography-flame-ionization detection and gas-chromatography-mass spectrometry. Nineteen compounds were identified in the oil and the main components were found to be (E)-chrysanthenyl acetate (28.1%), (Z)-chrysanthenyl acetate (23.8%), (E)-β-farnesene (9.6%), dimethyl trisulfide (9.6%), camphor (7.4%), methyl allyl disulfide (6.8%) and 1-methyl-3-allyl trisulfide (5.8%). The essential oil showed good antimicrobial activity against 11 strains of test microorganisms, including several species infesting historical material. PMID:26632947

  3. The cytotoxic effect of wastewater from the phosphoric gypsum depot on common oak (Quercus robur L.) and shallot (Allium cepa var. ascalonicum).

    PubMed

    Pavlica, M; Besendorfer, V; Rosa, J; Papes, D

    2000-11-01

    The effect of wastewater from a phosphoric gypsum depot on common oak, Quercus robur L., at cytogenetical level was studied. Allium-test was used as a control. The treatment of common oak seedlings with wastewater under laboratory conditions caused mitodepressive effect. Chromosome aberrations and mitotic irregularities were found. Cytogenetic analysis of common oak seedlings grown from acorns collected near the depot did not show changes in mitotic activity in comparison to control but the number of aberrations was higher than in control. In comparison to Alliumtest common oak was found to be more tolerant to wastewater from the phosphoric gypsum depot.

  4. Loss of Microtubules in the Interphase Cells of Onion (Allium cepa L.) Root Tips from the Cell Cortex and Their Appearance in the Cytoplasm after Treatment with Cycloheximide.

    PubMed Central

    Mineyuki, Y.; Iida, H.; Anraku, Y.

    1994-01-01

    As part of a project to investigate the mechanism of cortical microtubule (MT) alignment, we examined the effects of cycloheximide (CHM) on cortical MTs in the root tip cells of Allium cepa L. Results show that although a preprophase band of MTs remained in the cell cortex, interphase MTs disappeared from the cortical cytoplasm and then appeared concomitantly in the inner cytoplasm when the rate of de novo protein synthesis was reduced with CHM (11-360 [mu]M for 2 h) PMID:12232080

  5. [Formation of allicin from dried garlic (Allium sativum): a simple HPTLC method for simultaneous determination of allicin and ajoene in dried garlic and garlic preparations].

    PubMed

    Blania, G; Spangenberg, B

    1991-08-01

    In garlic (Allium sativum L.) the enzyme alliin lyase catalyzes the cleavage of alliin into allicin which reacts further to furnish ajoene. A simultaneous determination of allicin and ajoene is introduced which, in contrast to the determination of alliin only, allows for the testing of the activity of alliin lyase. It can be demonstrated that at a pH value of less than 3 the enzyme produces only small amounts of allicin. For this reason preparations from garlic should be administered only as enteric-coated formulations.

  6. Composition of the Essential Oil of Allium neapolitanum Cirillo Growing Wild in Sicily and its Activity on Microorganisms Affecting Historical Art Crafts.

    PubMed

    Casiglia, Simona; Bruno, Maurizio; Senatore, Federica; Senatore, Felice

    2015-01-01

    Essential oil of the aerial parts of Allium neapolitanum Cirillo collected in Sicily were analyzed by gas-chromatography-flame-ionization detection and gas-chromatography-mass spectrometry. Nineteen compounds were identified in the oil and the main components were found to be (E)-chrysanthenyl acetate (28.1%), (Z)-chrysanthenyl acetate (23.8%), (E)-β-farnesene (9.6%), dimethyl trisulfide (9.6%), camphor (7.4%), methyl allyl disulfide (6.8%) and 1-methyl-3-allyl trisulfide (5.8%). The essential oil showed good antimicrobial activity against 11 strains of test microorganisms, including several species infesting historical material.

  7. Development of Transgenic Cotton Lines Expressing Allium sativum Agglutinin (ASAL) for Enhanced Resistance against Major Sap-Sucking Pests

    PubMed Central

    Nunna, Hariprasad Rao; Puligundla, Sateesh Kumar; Vudem, Dashavantha Reddy; Khareedu, Venkateswara Rao

    2013-01-01

    Mannose-specific Allium sativum leaf agglutinin encoding gene (ASAL) and herbicide tolerance gene (BAR) were introduced into an elite cotton inbred line (NC-601) employing Agrobacterium-mediated genetic transformation. Cotton transformants were produced from the phosphinothricin (PPT)-resistant shoots obtained after co-cultivation of mature embryos with the Agrobacterium strain EHA105 harbouring recombinant binary vector pCAMBIA3300-ASAL-BAR. PCR and Southern blot analysis confirmed the presence and stable integration of ASAL and BAR genes in various transformants of cotton. Basta leaf-dip assay, northern blot, western blot and ELISA analyses disclosed variable expression of BAR and ASAL transgenes in different transformants. Transgenes, ASAL and BAR, were stably inherited and showed co-segregation in T1 generation in a Mendelian fashion for both PPT tolerance and insect resistance. In planta insect bioassays on T2 and T3 homozygous ASAL-transgenic lines revealed potent entomotoxic effects of ASAL on jassid and whitefly insects, as evidenced by significant decreases in the survival, development and fecundity of the insects when compared to the untransformed controls. Furthermore, the transgenic cotton lines conferred higher levels of resistance (1–2 score) with minimal plant damage against these major sucking pests when bioassays were carried out employing standard screening techniques. The developed transgenics could serve as a potential genetic resource in recombination breeding aimed at improving the pest resistance of cotton. This study represents the first report of its kind dealing with the development of transgenic cotton resistant to two major sap-sucking insects. PMID:24023750

  8. Growth and physiological changes in continuously cropped eggplant (Solanum melongena L.) upon relay intercropping with garlic (Allium sativum L.)

    PubMed Central

    Wang, Mengyi; Wu, Cuinan; Cheng, Zhihui; Meng, Huanwen

    2015-01-01

    Relay intercropping represents an alternative for sustainable production of vegetables, but the changes of internally antioxidant defense combined with the growth and yield are not clear. Field experiment was carried out to investigate the malondialdehyde (MDA) content and activity levels of superoxide dismutase (SOD), peroxidase (POD), polyphenol oxidase (PPO), and phenylalanine ammonia-lyase (PAL) in eggplant (Solanum melongena L.) and plant height, stem diameter, maximal leaf area, and yield of eggplant grown under successive cropping in the year 2011 and 2012 to see if relay intercropping with garlic (Allium sativum L.) could benefit to eggplant growth and yield. Three experimental treatments with three repeats in each were carried out (completely randomized block design): eggplant monoculture (CK), eggplant relay intercropping with normal garlic (NG), and eggplant relay intercropping with green garlic (GG). In both years, the MDA content was significantly lower and SOD and POD activities were generally lower in NG and GG compared with CK in most sampling dates. PPO activity trends were generally opposite to those of POD. The general trend of PAL activity was similar to MDA. The plant height and stem of eggplant was lower, but the maximal leaf area was larger in NG and GG in 2011; in 2012 the plant growth was stronger in relay intercropping treatments. For eggplant yield in 2011, NG was 2.85% higher than CK; after the time for the green garlic pulled out was moved forward in 2012, the yield was increased by 6.26 and 7.80%, respectively, in NG and GG. The lower MDA content and enzyme activities in relay intercropping treatments showed that the eggplant suffered less damage from environment and continuous cropping obstacles, which promoted healthier plant. Thus from both the growth and physiological perspective, it was concluded that eggplant/garlic relay intercropping is a beneficial cultivation practice maintaining stronger plant growth and higher yield. PMID

  9. Analysis of the genotoxic potential of low concentrations of Malathion on the Allium cepa cells and rat hepatoma tissue culture.

    PubMed

    Bianchi, Jaqueline; Mantovani, Mario Sérgio; Marin-Morales, Maria Aparecida

    2015-10-01

    Based on the concentration of Malathion used in the field, we evaluated the genotoxic potential of low concentrations of this insecticide on meristematic and F1 cells of Allium cepa and on rat hepatoma tissue culture (HTC cells). In the A. cepa, chromosomal aberrations (CAs), micronuclei (MN), and mitotic index (MI) were evaluated by exposing the cells at 1.5, 0.75, 0.37, and 0.18mg/mL of Malathion for 24 and 48hr of exposure and 48hr of recovery time. The results showed that all concentrations were genotoxic to A. cepa cells. However, the analysis of the MI has showed non-relevant effects. Chromosomal bridges were the CA more frequently induced, indicating the clastogenic action of Malathion. After the recovery period, the higher concentrations continued to induce genotoxic effects, unlike the observed for the lowest concentrations tested. In HTC cells, the genotoxicity of Malathion was evaluated by the MN test and the comet assay by exposing the cells at 0.09, 0.009, and 0.0009mg/5mL culture medium, for 24hr of exposure. In the comet assay, all the concentrations induced genotoxicity in the HTC cells. In the MN test, no significant induction of MN was observed. The genotoxicity induced by the low concentrations of Malathion presented in this work highlights the importance of studying the effects of low concentrations of this pesticide and demonstrates the efficiency of these two test systems for the detection of genetic damage promoted by Malathion. PMID:26456612

  10. [Study of volatile organic compounds of fresh allium species using headspace combined with surface-enhanced Raman scattering].

    PubMed

    Si, Min-Zhen; Zhang, De-Qing; Liu, Ren-Ming

    2014-09-01

    In order to identify volatile organic compounds of fresh plants at room temperature and avoid sample pretreatment and extractions which can be labor intensive, garlic, Chinese chives and scallion were chopped into pieces. Then some of them were placed in the headspace vial and sealed. The gases were drawn from the vial with a syringe and were injected very slowly into Ag colloids for test using R-3000 portable Raman spectrometer. The spectra of volatile organic compounds of allium species, fresh garlic, Chinese chive and shallot plants were successfully.recorded for the first time. For garlic high intensity bands are present at 307, 399, 569, 711, 1,182, 1,287, 1,397 and 1,622 cm(-1). For Chinese chives the high intensity band is present at 672 cm(-1). Low intensity bands are present at 274, 412, 575, 1,185, 1,289, 1,396, 1,618 cm(-1). For shallot high intensity bands are present at 693 cm(-1). Lower intensity bands are present at 372, 888, 1,023 cm(-1). Low intensity bands are present at 1,088, 1,211 and 1,322 cm(-1). The SERS of diallyl disulfide, allyl methyl sulfide and 1-propanethiol in liquid state and gas state were also obtained. The main volatile organic compound of fresh garlic, Chinese chive and shallot are diallyl disulfide, allyl methyl sulfide and 1-propanethiol respectively, and the volatile organic compound of fresh onion, scallion, shallot and chive are all 1-propanethiol. The presented results illustrate that combining headspace and SERS is a powerful tool for volatile organic compound analysis in fresh plants. The volatile organic compound can be detected in fresh plant samples directly and quickly without extraction.

  11. Induction of mitotic and chromosomal abnormalities on Allium cepa cells by pesticides imidacloprid and sulfentrazone and the mixture of them.

    PubMed

    Bianchi, Jaqueline; Fernandes, Thais Cristina Casimiro; Marin-Morales, Maria Aparecida

    2016-02-01

    To evaluate the cytotoxic and genotoxic effects of low concentrations of pesticides in non-target organisms, seeds of Allium cepa were exposed for 24 h to the imidacloprid insecticide, sulfentrazone herbicide and to the mixture of them, followed by recovery periods of 48 and 72 h. Imidacloprid results indicated an indirect genotoxic effect by inducing different types of chromosome aberration (CA), mainly bridges and chromosomal adherences. Cells with micronucleus (MN) were not significant in the analyzed meristems. Moreover, the 72-h recovery tests indicated that the two lower concentrations of the insecticide (0.036 and 0.36 g L(-1)) had their genotoxic effects minimized after discontinuation of treatment, differently to the observed for the field concentration (3.6 g L(-1)). Sulfentrazone herbicide at field concentration (6 g L(-1)) caused cytotoxic effects by inducing nuclear fragmentation and inhibition of cell division. The other concentrations (0.06, 0.6 and 1.2 g L(-1)) indicated genotoxic effects for this herbicide. The concentration of 0.06 g L(-1) induced persistent effects that could be visualized both by the induction of CA in the recovery times as by the presence of MN in meristematic and F1 cells. The induction of MN by this lowest concentration was associated with the great amount of breakage, losses and chromosomal bridges. The mixture of pesticides induced genotoxic and cytotoxic effects, by reducing the MI of the cells. The chromosomal damage induced by the mixture of pesticides was not persistent to the cells, since such damage was minimized 72 h after the interruption of the exposure. PMID:26386773

  12. Calcium movement, graviresponsiveness and the structure of columella cells and columella tissues in roots of Allium cepa L

    NASA Technical Reports Server (NTRS)

    Moore, R.

    1985-01-01

    Roots of Allium cepa L. cv. Yellow are differentially responsive to gravity. Long (e.g. 40 mm) roots are strongly graviresponsive, while short (c.g. 4 mm) roots are minimally responsive to gravity. Although columella cells of graviresponsive roots are larger than those of nongraviresponsive roots, they partition their volumes to cellular organelles similarly. The movement of amyloplasts and nuclei in columella cells of horizontally-oriented roots correlates positively with the onset of gravicurvature. Furthermore, there is no significant difference in the rates of organellar redistribution when graviresponsive and nongraviresponsive roots are oriented horizontally. The more pronounced graviresponsiveness of longer roots correlates positively with (1) their caps being 9-6 times more voluminous, (2) their columella tissues being 42 times more voluminous, (3) their caps having 15 times more columella cells, and (4) their columella tissues having relative volumes 4.4 times larger than those of shorter, nongraviresponsive roots. Graviresponsive roots that are oriented horizontally are characterized by a strongly polar movement of 45Ca2+ across the root tip from the upper to the lower side, while similarly oriented nongraviresponsive roots exhibit only a minimal polar transport of 45Ca2+. These results indicate that the differential graviresponsiveness of roots of A. cepa is probably not due to either (1) ultrastructural differences in their columella cells, (2) differences in the rates of organellar redistribution when roots are oriented horizontally. Rather, these results indicate the graviresponsiveness may require an extensive columella tissue, which, in turn, may be necessary for polar movement of 45Ca2+ across the root tip.

  13. The effect of cultivar, sowing date and transplant location in field on bolting of Welsh onion (Allium fistulosum L.)

    PubMed Central

    2013-01-01

    Background Bolting reduces the quality and commercial yield of Welsh onion (Allium fistulosum L.) in production. However, seed production is directly dependent on flower induction and bolting. The Welsh onion belongs to the green plant vernalisation type, specific seedling characteristics and sufficient accumulated time at low temperature are indispensible for the completion of its vernalisation process. Only if these conditions for vernalisation are fulfilled, the plants will bolt in the following year. The present investigation evaluated the effects of cultivar, sowing date and transplant location in field on the bolting of Welsh onion at the Horticultural Farm of the College of Horticulture, Northwest A&F University, Yangling, Shannxi Province, China in two succeeding production years: 2010–2011 and 2011–2012. A strip split plot layout within a randomised complete block design with three replications was used. Results The results revealed that all three factors (cultivar, sowing date and transplant location) and their interaction had significant effects on the initiation and final rate of bolting observed by 30 April. The earliest bolting date (14 February, 2011 and 15 February, 2012) and the highest bolting rate (100% in 2011 and 62% in 2012) occurred when the JinGuan cultivar was sown on 20 August and transplanted in a plastic tunnel, whereas the latest date and lowest rate (no bolting observed until 30 April) of bolting occurred when the XiaHei cultivar was sown on 29 September and transplanted in an open field. Conclusions These results suggest that we can control bolting in Welsh onion production by choosing an appropriate cultivar, sowing date and transplant location. Choosing a late bolting cultivar, such as cultivar XiaHei, sowing around October, and transplanting in the open field can significantly delay bolting, while a sowing date in late August should be selected for seed production, and the seedlings should be transplanted in a plastic tunnel to

  14. Honey/Chitosan Nanofiber Wound Dressing Enriched with Allium sativum and Cleome droserifolia: Enhanced Antimicrobial and Wound Healing Activity.

    PubMed

    Sarhan, Wessam A; Azzazy, Hassan M E; El-Sherbiny, Ibrahim M

    2016-03-01

    Two natural extracts were loaded within fabricated honey, poly(vinyl alcohol), chitosan nanofibers (HPCS) to develop biocompatible antimicrobial nanofibrous wound dressing. The dried aqueous extract of Cleome droserifolia (CE) and Allium sativum aqueous extract (AE) and their combination were loaded within the HPCS nanofibers in the HPCS-CE, HPCS-AE, and HPCS-AE/CE nanofiber mats, respectively. It was observed that the addition of AE resulted in the least fiber diameter (145 nm), whereas the addition of the AE and CE combination resulted in the least swelling ability and the highest weight loss. In vitro antibacterial testing against Staphylococcus aureus, Escherichia coli, Methicillin-resistant S. aureus (MRSA), and multidrug-resistant Pseudomonas aeruginosa was performed in comparison with the commercial dressing AquacelAg and revealed that the HPCS-AE and HPCS-AE/CE nanofiber mats allowed complete inhibition of S. aureus and the HPCS-AE/CE exhibited mild antibacterial activity against MRSA. A preliminary in vivo study revealed that the developed nanofiber mats enhanced the wound healing process as compared to the untreated control as proved by the enhanced wound closure rates in mice and by the histological examination of the wounds. Moreover, comparison with the commercial dressing Aquacel Ag, the HPCS, and HPCS-AE/CE demonstrated similar effects on the wound healing process, whereas the HPCS/AE allowed an enhanced wound closure rate. Cell culture studies proved the biocompatibility of the developed nanofiber mats in comparison with the commercial Aquacel Ag, which exhibited noticeable cytotoxicity. The developed natural nanofiber mats hold potential as promising biocompatible antibacterial wound dressing.

  15. Selection of functional lactic acid bacteria as starter cultures for the fermentation of Korean leek (Allium tuberosum Rottler ex Sprengel.).

    PubMed

    Yang, Jaesik; Ji, Yosep; Park, Hyunjoon; Lee, Jieun; Park, Soyoung; Yeo, Soyoung; Shin, Hyunkil; Holzapfel, Wilhelm H

    2014-11-17

    The purpose of this research was to find safe and suitable starter cultures for the fermentation of Korean leek (Allium tuberosum Rottler), also known as garlic chives or Oriental garlic. This traditional herb has several functional properties and a strong flavour; its leaves are used as food material. Eighteen strains of lactic acid bacteria (LAB) were isolated from well-fermented leek kimchi. Controlled fermentation of the leek leaves was conducted with 2 strains (Weissella confusa LK4 and Lactobacillus plantarum LK8), selected as potential starter cultures on the basis of their safety properties, and on the pH, total titratable acidity (TTA), and viable cell numbers [colony forming units (CFUml(-1))] achieved during the fermentation. Microbial dynamics was also followed during fermentation by using PCR-DGGE (Denaturing Gradient Gel Electrophoresis) on DNA level. To analyse bioactive compounds such as thiols and allicin (diallyl thiosulfinates), the total flavonoid and polyphenolic contents were determined by colorimetric methods. Functional properties were assessed on the basis of anti-oxidative capacities by determining the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging effect, and ferric reducing antioxidant power (FRAP). W. confusa LK4 rapidly increased during the first stage of leek fermentation, and was mainly responsible for accelerated fermentation during the early period in contrast to L. plantarum LK8, a stronger acid producer during the later stages of fermentation. After 48 h fermentation, leeks fermented with W. confusa LK4 showed the highest radical scavenging effects and reducing ability. The detectable amount of allicin of fermented leeks decreased relative to the change in pH, whereas the concentration of thiols significantly increased. Total flavonoid and poly-phenolic contents changed during fermentation and showed correlation with anti-oxidant effects. We therefore suggest the suitability of W. confusa LK4 as a potential starter

  16. Antioxidant Activity of Allium hookeri Root Extract and Its Effect on Lipid Stability of Sulfur-fed Pork Patties

    PubMed Central

    2015-01-01

    This study was performed to assess the antioxidant activity of Allium hookeri root extract (AHE) on lipid oxidation of raw sulfur-fed pork patties for 14 d of refrigerated storage. Different concentration of ethanol (0-100%) and time (1-12 h) were applied to determine the extraction condition. Water (0% ethanol) extraction for 1 h was selected as an optimal extraction condition of AHE for the following study showing the highest total phenolic content and total flavonoid content, as well as the strongest antioxidant activity. The 1% AHE (SP1), 3% AHE (SP2), and 0.05% ascorbic acid (SP3) were added into sulfur-fed pork patties against controls; SP0 (sulfur-fed pork patties with no AHE) and P0 (normal pork patties with no AHE). The pH values of P0 and SP0 significantly increased (p<0.05) than others on 14 d and redness of P0 showed the largest decrement during storage. P0 and SP0 showed higher production of conjugated dienes on d 7 than others (p<0.05). Thiobarbituric acid reactive substances (TBARS) values were decreased in proportion to the increased level of AHE on 14 d (p<0.05) resulting in higher TBARS values on P0 and SP0 (p<0.05) and the negative correlation between AHE level and TBARS were also demonstrated (r=-0.910, p=0.001). Therefore, the results suggest that AHE effectively retarded the lipid oxidation rate of sulfur-fed pork patties indicating the potential usage of AHE as a natural preservative. PMID:26761799

  17. Water Transport in Onion (Allium cepa L.) Roots (Changes of Axial and Radial Hydraulic Conductivities during Root Development).

    PubMed Central

    Melchior, W.; Steudle, E.

    1993-01-01

    The hydraulic architecture of developing onion (Allium cepa L. cv Calypso) roots grown hydroponically was determined by measuring axial and radial hydraulic conductivities (equal to inverse of specific hydraulic resistances). In the roots, Casparian bands and suberin lamellae develop in the endodermis and exodermis (equal to hypodermis). Using the root pressure probe, changes of hydraulic conductivities along the developing roots were analyzed with high resolution. Axial hydraulic conductivity (Lx) was also calculated from stained cross-sections according to Poiseuille's law. Near the base and the tip of the roots, measured and calculated Lx values were similar. However, at distances between 200 and 300 mm from the apex, measured values of Lx were smaller by more than 1 order of magnitude than those calculated, probably because of remaining cross walls between xylem vessel members. During development of root xylem, Lx increased by 3 orders of magnitude. In the apical 30 mm (tip region), axial resistance limited water transport, whereas in basal parts radial resistances (low radial hydraulic conductivity, Lpr) controlled the uptake. Because of the high axial hydraulic resistance in the tip region, this zone appeared to be "hydraulically isolated" from the rest of the root. Changes of the Lpr of the roots were determined by measuring the hydraulic conductance of roots of different length and referring these data to unit surface area. At distances between 30 and 150 mm from the root tip, Lpr was fairly constant (1.4 x 10-7 m s-1 MPa-1). In more basal root zones, Lpr was considerably smaller and varied between roots. The low contribution of basal zones to the overall water uptake indicated an influence of the exodermal Casparian bands and/or suberin lamellae in the endodermis or exodermis, which develop at distances larger than 50 to 60 mm from the root tip. PMID:12231786

  18. Aluminum induces oxidative burst, cell wall NADH peroxidase activity, and DNA damage in root cells of Allium cepa L.

    PubMed

    Achary, V Mohan M; Parinandi, Narasimham L; Panda, Brahma B

    2012-08-01

    Plants under stress incur an oxidative burst that involves a rapid and transient overproduction of reactive oxygen species (ROS: O(2) (•-) , H(2) O(2) , (•) OH). We hypothesized that aluminum (Al), an established soil pollutant that causes plant stress, would induce an oxidative burst through the activation of cell wall-NADH peroxidase (NADH-PX) and/or plasma membrane-associated NADPH oxidase (NADPH-OX), leading to DNA damage in the root cells of Allium cepa L. Growing roots of A. cepa were treated with Al(3+) (800 μM of AlCl(3) ) for 3 or 6 hr without or with the pretreatment of inhibitors specific to NADH-PX and NADPH-OX for 2 hr. At the end of the treatment, the extent of ROS generation, cell death, and DNA damage were determined. The cell wall-bound protein (CWP) fractions extracted from the untreated control and the Al-treated roots under the aforementioned experimental conditions were also subjected to in vitro studies, which measured the extent of activation of peroxidase/oxidase, generation of (•) OH, and DNA damage. Overall, the present study demonstrates that the cell wall-bound NADH-PX contributes to the Al-induced oxidative burst through the generation of ROS that lead to cell death and DNA damage in the root cells of A. cepa. Furthermore, the in vitro studies revealed that the CWP fraction by itself caused DNA damage in the presence of NADH, supporting a role for NADH-PX in the stress response. Altogether, this study underscores the crucial function of the cell wall-bound NADH-PX in the oxidative burst-mediated cell death and DNA damage in plants under Al stress.

  19. Growth and physiological changes in continuously cropped eggplant (Solanum melongena L.) upon relay intercropping with garlic (Allium sativum L.).

    PubMed

    Wang, Mengyi; Wu, Cuinan; Cheng, Zhihui; Meng, Huanwen

    2015-01-01

    Relay intercropping represents an alternative for sustainable production of vegetables, but the changes of internally antioxidant defense combined with the growth and yield are not clear. Field experiment was carried out to investigate the malondialdehyde (MDA) content and activity levels of superoxide dismutase (SOD), peroxidase (POD), polyphenol oxidase (PPO), and phenylalanine ammonia-lyase (PAL) in eggplant (Solanum melongena L.) and plant height, stem diameter, maximal leaf area, and yield of eggplant grown under successive cropping in the year 2011 and 2012 to see if relay intercropping with garlic (Allium sativum L.) could benefit to eggplant growth and yield. Three experimental treatments with three repeats in each were carried out (completely randomized block design): eggplant monoculture (CK), eggplant relay intercropping with normal garlic (NG), and eggplant relay intercropping with green garlic (GG). In both years, the MDA content was significantly lower and SOD and POD activities were generally lower in NG and GG compared with CK in most sampling dates. PPO activity trends were generally opposite to those of POD. The general trend of PAL activity was similar to MDA. The plant height and stem of eggplant was lower, but the maximal leaf area was larger in NG and GG in 2011; in 2012 the plant growth was stronger in relay intercropping treatments. For eggplant yield in 2011, NG was 2.85% higher than CK; after the time for the green garlic pulled out was moved forward in 2012, the yield was increased by 6.26 and 7.80%, respectively, in NG and GG. The lower MDA content and enzyme activities in relay intercropping treatments showed that the eggplant suffered less damage from environment and continuous cropping obstacles, which promoted healthier plant. Thus from both the growth and physiological perspective, it was concluded that eggplant/garlic relay intercropping is a beneficial cultivation practice maintaining stronger plant growth and higher yield. PMID

  20. Growth and physiological changes in continuously cropped eggplant (Solanum melongena L.) upon relay intercropping with garlic (Allium sativum L.).

    PubMed

    Wang, Mengyi; Wu, Cuinan; Cheng, Zhihui; Meng, Huanwen

    2015-01-01

    Relay intercropping represents an alternative for sustainable production of vegetables, but the changes of internally antioxidant defense combined with the growth and yield are not clear. Field experiment was carried out to investigate the malondialdehyde (MDA) content and activity levels of superoxide dismutase (SOD), peroxidase (POD), polyphenol oxidase (PPO), and phenylalanine ammonia-lyase (PAL) in eggplant (Solanum melongena L.) and plant height, stem diameter, maximal leaf area, and yield of eggplant grown under successive cropping in the year 2011 and 2012 to see if relay intercropping with garlic (Allium sativum L.) could benefit to eggplant growth and yield. Three experimental treatments with three repeats in each were carried out (completely randomized block design): eggplant monoculture (CK), eggplant relay intercropping with normal garlic (NG), and eggplant relay intercropping with green garlic (GG). In both years, the MDA content was significantly lower and SOD and POD activities were generally lower in NG and GG compared with CK in most sampling dates. PPO activity trends were generally opposite to those of POD. The general trend of PAL activity was similar to MDA. The plant height and stem of eggplant was lower, but the maximal leaf area was larger in NG and GG in 2011; in 2012 the plant growth was stronger in relay intercropping treatments. For eggplant yield in 2011, NG was 2.85% higher than CK; after the time for the green garlic pulled out was moved forward in 2012, the yield was increased by 6.26 and 7.80%, respectively, in NG and GG. The lower MDA content and enzyme activities in relay intercropping treatments showed that the eggplant suffered less damage from environment and continuous cropping obstacles, which promoted healthier plant. Thus from both the growth and physiological perspective, it was concluded that eggplant/garlic relay intercropping is a beneficial cultivation practice maintaining stronger plant growth and higher yield.

  1. Induction of mitotic and chromosomal abnormalities on Allium cepa cells by pesticides imidacloprid and sulfentrazone and the mixture of them.

    PubMed

    Bianchi, Jaqueline; Fernandes, Thais Cristina Casimiro; Marin-Morales, Maria Aparecida

    2016-02-01

    To evaluate the cytotoxic and genotoxic effects of low concentrations of pesticides in non-target organisms, seeds of Allium cepa were exposed for 24 h to the imidacloprid insecticide, sulfentrazone herbicide and to the mixture of them, followed by recovery periods of 48 and 72 h. Imidacloprid results indicated an indirect genotoxic effect by inducing different types of chromosome aberration (CA), mainly bridges and chromosomal adherences. Cells with micronucleus (MN) were not significant in the analyzed meristems. Moreover, the 72-h recovery tests indicated that the two lower concentrations of the insecticide (0.036 and 0.36 g L(-1)) had their genotoxic effects minimized after discontinuation of treatment, differently to the observed for the field concentration (3.6 g L(-1)). Sulfentrazone herbicide at field concentration (6 g L(-1)) caused cytotoxic effects by inducing nuclear fragmentation and inhibition of cell division. The other concentrations (0.06, 0.6 and 1.2 g L(-1)) indicated genotoxic effects for this herbicide. The concentration of 0.06 g L(-1) induced persistent effects that could be visualized both by the induction of CA in the recovery times as by the presence of MN in meristematic and F1 cells. The induction of MN by this lowest concentration was associated with the great amount of breakage, losses and chromosomal bridges. The mixture of pesticides induced genotoxic and cytotoxic effects, by reducing the MI of the cells. The chromosomal damage induced by the mixture of pesticides was not persistent to the cells, since such damage was minimized 72 h after the interruption of the exposure.

  2. [Study of volatile organic compounds of fresh allium species using headspace combined with surface-enhanced Raman scattering].

    PubMed

    Si, Min-Zhen; Zhang, De-Qing; Liu, Ren-Ming

    2014-09-01

    In order to identify volatile organic compounds of fresh plants at room temperature and avoid sample pretreatment and extractions which can be labor intensive, garlic, Chinese chives and scallion were chopped into pieces. Then some of them were placed in the headspace vial and sealed. The gases were drawn from the vial with a syringe and were injected very slowly into Ag colloids for test using R-3000 portable Raman spectrometer. The spectra of volatile organic compounds of allium species, fresh garlic, Chinese chive and shallot plants were successfully.recorded for the first time. For garlic high intensity bands are present at 307, 399, 569, 711, 1,182, 1,287, 1,397 and 1,622 cm(-1). For Chinese chives the high intensity band is present at 672 cm(-1). Low intensity bands are present at 274, 412, 575, 1,185, 1,289, 1,396, 1,618 cm(-1). For shallot high intensity bands are present at 693 cm(-1). Lower intensity bands are present at 372, 888, 1,023 cm(-1). Low intensity bands are present at 1,088, 1,211 and 1,322 cm(-1). The SERS of diallyl disulfide, allyl methyl sulfide and 1-propanethiol in liquid state and gas state were also obtained. The main volatile organic compound of fresh garlic, Chinese chive and shallot are diallyl disulfide, allyl methyl sulfide and 1-propanethiol respectively, and the volatile organic compound of fresh onion, scallion, shallot and chive are all 1-propanethiol. The presented results illustrate that combining headspace and SERS is a powerful tool for volatile organic compound analysis in fresh plants. The volatile organic compound can be detected in fresh plant samples directly and quickly without extraction. PMID:25532343

  3. Insecticidal activity and fungitoxicity of plant extracts and components of horseradish (Armoracia rusticana) and garlic (Allium sativum).

    PubMed

    Tedeschi, Paola; Leis, Marilena; Pezzi, Marco; Civolani, Stefano; Maietti, Annalisa; Brandolini, Vincenzo

    2011-01-01

    To avoid environmental pollution and health problems caused by the use of traditional synthetic pesticides, there is a trend to search for naturally occurring toxicants from plants. Among the compounds discussed for anti-fungal and insecticidal activity, the natural extracts from garlic and horseradish have attracted considerable attention. The objective of this study is to determine the insecticidal and anti-fungal activity of Armoracia rusticana and Allium sativum L. extracts against larvae of Aedes albopictus (Skuse) and some pathogenic fungi. For the insecticidal test, horseradish and garlic extracts were prepared from fresh plants (cultivated in Emilia Romagna region) in a solution of ethanol 80 % and the two different solutions were used at different concentrations (for the determination of the lethal dose) against the fourth instar mosquito's larvae. The fungicidal test was carried out by the agar plates technique using garlic and horseradish extracts in a 10 % ethanol solution against the following organisms: Sclerotium rolfsii Sacc., Trichoderma longibrachiatum, Botrytis cinerea Pers., Fusarium oxysporum Schlecht. and Fusarium culmorum (Wm. G. Sm.) Sacc. The first results demonstrated that the horseradish ethanol extracts present only a fungistatic activity against Sclerotium rolfsii Sacc., Fusarium oxysporum Schlecht. and F. culmorum (Wm.G. Sm) Sacc. while garlic extracts at the same concentration provided a good fungicidal activity above all against Botrytis cinerea Pers. and S. rolfsii. A. rusticana and A. sativum preparations showed also an interesting and significant insecticidal activity against larvae of A. albopictus, even if horseradish presented a higher efficacy (LC₅₀ value of 2.34 g/L), approximately two times higher than garlic one (LC₅₀ value of 4.48 g/L).

  4. Dissimilar effects of β-lapachone- and hydroxyurea-induced DNA replication stress in root meristem cells of Allium cepa.

    PubMed

    Zabka, Aneta; Trzaskoma, Paweł; Maszewski, Janusz

    2013-12-01

    Two anticancer drugs, β-lapachone (β-lap, a naphthoquinone) and hydroxyurea (HU, an inhibitor of ribonucleotide reductase), differently affect nuclear morphology and cell cycle control mechanisms in root meristem cells of Allium cepa. The 18 h treatment with 100 μM β-lap results in a lowered number of M-phase cells, increased occurrence of mitotic abnormalities, including over-condensation of chromosomes, their enhanced stickiness, formation of anaphase bridges, micronucleation and reduced mitotic spindles. Following prolonged incubations using high doses of β-lap, cell nuclei reveal dark-red fluorescence evenly distributed in chromatin surrounding the unstained regions of nucleoli. Both drugs generate H2O2 and induce DNA double strand breaks, which is correlated with γ-phoshorylation of H2AX histones. However, the extent of H2AX phosphorylation (including the frequency of γ-H2AX foci and the relative number cells creating phospho-H2AX domains) is considerably reduced in root meristem cells treated jointly with the β-lap/HU mixture. Furthermore, various effects of caffeine (an inhibitor of ATM/ATR cell cycle checkpoint kinases) on β-lap- and HU-induced γ-phoshorylation of H2AX histones and the protective activity of HU against β-lap suggest that their genotoxic activities are largely dissimilar. β-Lap treatment results in the induction of apoptosis-like programmed cell death, while HU treatment leads to cell adaptation to replication stress and promotion of abnormal nuclear divisions with biphasic interphase/mitotic states of chromatin condensation.

  5. Evaluation of the antimutagenic activity and mode of action of the fructooligosaccharide inulin in the meristematic cells of Allium cepa culture.

    PubMed

    Mauro, M O; Pesarini, J R; Marin-Morales, M A; Monreal, M T F D; Monreal, A C D; Mantovani, M S; Oliveira, R J

    2014-01-01

    This study evaluated the mutagenicity and antimutagenicity of inulin in a chromosomal aberration assay in cultures of the meristematic cells of Allium cepa. The treatments evaluated were as follows: negative control--seed germination in distilled water; positive control--aqueous solution of methyl methanesulfonate (10 μg/mL MMS); mutagenicity--aqueous solutions of inulin (0.015, 0.15, and 1.50 μg/mL); and antimutagenicity--associations between MMS and the different inulin concentrations. The antimutagenicity protocols established were pre-treatment, simultaneous simple, simultaneous with pre-incubation, and post-treatment. The damage reduction percentage (DR%) was 43.56, 27.77, and 55.92% for the pre-treatment; -31.11, 18.51, and 7.03% for the simultaneous simple; 30.43, 19.12, and 21.11% for the simultaneous with pre-incubation; and 64.07, 42.96, and 53.70% for the post-treatment. The results indicated that the most effective treatment for inhibiting damages caused by MMS was the post-treatment, which was followed by the pre-treatment, suggesting activity by bioantimutagenesis and desmutagenesis. The Allium cepa assay was demonstrated to be a good screening test for this type of activity because it is easy to perform, has a low cost, and shows DR% that is comparable to that reported studies that evaluated the prevention of DNA damage in mammals by inulin. PMID:24615117

  6. Complete assignment of structural genes involved in flavonoid biosynthesis influencing bulb color to individual chromosomes of the shallot (Allium cepa L.).

    PubMed

    Masuzaki, Shin-ichi; Shigyo, Masayoshi; Yamauchi, Naoki

    2006-08-01

    We analyzed Japanese bunching onion (Allium fistulosum L.) - shallot (Allium cepa L. Aggregatum group) alien chromosome addition lines in order to assign the genes involved in the flavonoid biosynthesis pathway to chromosomes of the shallot. Two complete sets of alien monosomic additions (2n = 2x + 1 = 17) were used for determining the chromosomal locations of several partial sequences of candidate genes, CHS, CHI, F3H, DFR, and ANS via analyses of PCR-based markers. The results of DNA marker analyses showed that the CHS-A, CHS-B, CHI, F3H, DFR, and ANS genes should be assigned to chromosomes 2A, 4A, 3A, 3A, 7A, and 4A, respectively. HPLC analyses of 14 A. fistulosum - shallot multiple alien additions (2n = 2x + 2 - 2x + 7 = 18 - 23) were conducted to identify the anthocyanin compounds produced in the scaly leaves. A direct comparison between the genomic constitution and the anthocyanin compositions of the multiple additions revealed that a 3GT gene for glucosylation of anthocyanidin was located on 4A. Thus, we were able to assign all structural genes involved in flavonoid biosynthesis influencing bulb color to individual chromosomes of A. cepa.

  7. Establishment of a series of alien monosomic addition lines of Japanese bunching onion (Allium fistulosum L.) with extra chromosomes from shallot (A. cepa L. aggregatum group).

    PubMed

    Shigyo, M; Tashiro, Y; Isshiki, S; Miyazaki, S

    1996-12-01

    Forty one plants of alien monosomic addition lines of Allium fistulosum L. with extra chromosomes from A. cepa L. Aggregatum group (FF + nA) were produced through the second backcross of amphidiploids between these two species to A. fistulosum. Identification of the extra chromosomes in the 16 plants by elaborate karyotype analyses indicate that a complete series (eight different types) of the alien monosomic addition lines was established in Allium for the first time in this study. Chromosomal locations of malate dehydrogenase (MDH) gene, triosephosphate isomerase (TPI) gene and 5S rDNA of A. cepa Aggregatum group were determined using the series; The gene locus Mdh-1 was located on 4A, Tpi-1 on 3A and a 5S rDNA locus on 7A. Our previous and present studies using the alien monosomic addition lines revealed 11 genetic markers (isozyme and 5S rDNA) assigned to all eight chromosomes of A. cepa Aggregatum group, and these markers reconfirmed the completion of the series. Extra chromosomes of 25 other plants were examined by means of simple analyses of the chromosome markers and karyotypes. Of the total 41 plants, frequencies of the alien monosomic addition lines with extra chromosomes 1A to 8A were as follows: 1A, 5 plants; 2A, 3; 3A, 5; 4A, 9; 5A, 4; 6A, 2; 7A, 11; and 8A, 2.

  8. In vitro anti-Helicobacter pylori potential of methanol extract of Allium ascalonicum Linn. (Liliaceae) leaf: susceptibility and effect on urease activity.

    PubMed

    Adeniyi, Bolanle A; Anyiam, Festus M

    2004-05-01

    The crude methanol extract of the leaf of Allium ascalonicum was screened in vitro against fi ve strains of Helicobacter pylori (Hp) (ATCC 24376, UCH 97001, UCH 97009, UCH 98026 and UCH 99039) for antibacterial activity by the agar diffusion method in Mueller-Hinton agar supplemented with de fi brinated horse blood. All the strains were inhibited by the extract to varying degrees. The minimum inhibitory concentrations (MICs) of the extract against all the tested strains ranged from 6.25 to 12.5 mg/mL. The effects of increasing concentrations of the extract on the urease activity of three of the Helicobacter pylori strains were investigated further. The results showed that increasing the concentration of the extract decreased the urease activity of all the strains tested. Phytochemical screening of the plant showed that it contains alkaloids, cardiac glycosides and saponins. The anti-Hp activity observed is discussed in relation to the chemical constituents reportedly isolated from these plants and their traditional uses. The result of this work suggests that Allium ascalonicum has some therapeutic potential against Helicobacter pylori infection, which could be explored for patients with gastroduodenal disorders.

  9. Genotoxicity of a thiosulfonate compound derived from Allium sp. intended to be used in active food packaging: In vivo comet assay and micronucleus test.

    PubMed

    Mellado-García, Pilar; Puerto, María; Prieto, Ana I; Pichardo, Silvia; Martín-Cameán, Ana; Moyano, Rosario; Blanco, Alfonso; Cameán, Ana M

    2016-04-01

    Components of Allium species have antimicrobial and antioxidant properties. A commercial Allium sp. extract (Proallium AP(®)), of which the main constituent is propyl thiosulphinate oxide (PTSO), is being used in the development of active food packaging. In previous in vitro genotoxicity studies, PTSO, in the presence of metabolic activation, increased the appearance of micronuclei (MN). We assessed the genotoxicity PTSO in rats following oral administration (doses: 5.5, 17.4, and 55mg/kg). The comet assay in liver and stomach (OECD 489) and the MN assay in bone marrow (OECD 474) were carried out. After necropsy, histopathological examinations of the liver and the stomach were performed. The results revealed no in vivo genotoxicity and the histopathological analysis showed only slight modifications, such as increased glycogen storage in the liver and a degenerative process in stomach, with vacuolization of cell membranes, only at the highest dose. Therefore, the present work confirms that this compound is not genotoxic and could be considered as a natural alternative to synthetic preservatives used in the food packaging industry. PMID:27085469

  10. Integrative structural annotation of de novo RNA-Seq provides an accurate reference gene set of the enormous genome of the onion (Allium cepa L.).

    PubMed

    Kim, Seungill; Kim, Myung-Shin; Kim, Yong-Min; Yeom, Seon-In; Cheong, Kyeongchae; Kim, Ki-Tae; Jeon, Jongbum; Kim, Sunggil; Kim, Do-Sun; Sohn, Seong-Han; Lee, Yong-Hwan; Choi, Doil

    2015-02-01

    The onion (Allium cepa L.) is one of the most widely cultivated and consumed vegetable crops in the world. Although a considerable amount of onion transcriptome data has been deposited into public databases, the sequences of the protein-coding genes are not accurate enough to be used, owing to non-coding sequences intermixed with the coding sequences. We generated a high-quality, annotated onion transcriptome from de novo sequence assembly and intensive structural annotation using the integrated structural gene annotation pipeline (ISGAP), which identified 54,165 protein-coding genes among 165,179 assembled transcripts totalling 203.0 Mb by eliminating the intron sequences. ISGAP performed reliable annotation, recognizing accurate gene structures based on reference proteins, and ab initio gene models of the assembled transcripts. Integrative functional annotation and gene-based SNP analysis revealed a whole biological repertoire of genes and transcriptomic variation in the onion. The method developed in this study provides a powerful tool for the construction of reference gene sets for organisms based solely on de novo transcriptome data. Furthermore, the reference genes and their variation described here for the onion represent essential tools for molecular breeding and gene cloning in Allium spp.

  11. Establishment of a series of alien monosomic addition lines of Japanese bunching onion (Allium fistulosum L.) with extra chromosomes from shallot (A. cepa L. aggregatum group).

    PubMed

    Shigyo, M; Tashiro, Y; Isshiki, S; Miyazaki, S

    1996-12-01

    Forty one plants of alien monosomic addition lines of Allium fistulosum L. with extra chromosomes from A. cepa L. Aggregatum group (FF + nA) were produced through the second backcross of amphidiploids between these two species to A. fistulosum. Identification of the extra chromosomes in the 16 plants by elaborate karyotype analyses indicate that a complete series (eight different types) of the alien monosomic addition lines was established in Allium for the first time in this study. Chromosomal locations of malate dehydrogenase (MDH) gene, triosephosphate isomerase (TPI) gene and 5S rDNA of A. cepa Aggregatum group were determined using the series; The gene locus Mdh-1 was located on 4A, Tpi-1 on 3A and a 5S rDNA locus on 7A. Our previous and present studies using the alien monosomic addition lines revealed 11 genetic markers (isozyme and 5S rDNA) assigned to all eight chromosomes of A. cepa Aggregatum group, and these markers reconfirmed the completion of the series. Extra chromosomes of 25 other plants were examined by means of simple analyses of the chromosome markers and karyotypes. Of the total 41 plants, frequencies of the alien monosomic addition lines with extra chromosomes 1A to 8A were as follows: 1A, 5 plants; 2A, 3; 3A, 5; 4A, 9; 5A, 4; 6A, 2; 7A, 11; and 8A, 2. PMID:9080683

  12. Systemic control of cell division and endoreduplication by NAA and BAP by modulating CDKs in root tip cells of Allium cepa.

    PubMed

    Tank, Jigna G; Thaker, Vrinda S

    2014-01-01

    Molecular mechanism regulated by auxin and cytokinin during endoreduplication, cell division, and elongation process is studied by using Allium cepa roots as a model system. The activity of CDK genes modulated by auxin and cytokinin during cell division, elongation, and endoreduplication process is explained in this research work. To study the significance of auxin and cytokinin in the management of cell division and endoreduplication process in plant meristematic cells at molecular level endoreduplication was developed in root tips of Allium cepa by giving colchicine treatment. There were inhibition of vegetative growth, formation of c-tumor at root tip, and development of endoreduplicated cells after colchicine treatment. This c-tumor was further treated with NAA and BAP to reinitiate vegetative growth in roots. BAP gave positive response in reinitiation of vegetative growth of roots from center of c-tumor. However, NAA gave negative response in reinitiation of vegetative growth of roots from c-tumor. Further, CDKs gene expression analysis from normal, endoreduplicated, and phytohormone (NAA or BAP) treated root tip was done and remarkable changes in transcription level of CDK genes in normal, endoreduplicated, and phytohormones treated cells were observed.

  13. Complete assignment of structural genes involved in flavonoid biosynthesis influencing bulb color to individual chromosomes of the shallot (Allium cepa L.).

    PubMed

    Masuzaki, Shin-ichi; Shigyo, Masayoshi; Yamauchi, Naoki

    2006-08-01

    We analyzed Japanese bunching onion (Allium fistulosum L.) - shallot (Allium cepa L. Aggregatum group) alien chromosome addition lines in order to assign the genes involved in the flavonoid biosynthesis pathway to chromosomes of the shallot. Two complete sets of alien monosomic additions (2n = 2x + 1 = 17) were used for determining the chromosomal locations of several partial sequences of candidate genes, CHS, CHI, F3H, DFR, and ANS via analyses of PCR-based markers. The results of DNA marker analyses showed that the CHS-A, CHS-B, CHI, F3H, DFR, and ANS genes should be assigned to chromosomes 2A, 4A, 3A, 3A, 7A, and 4A, respectively. HPLC analyses of 14 A. fistulosum - shallot multiple alien additions (2n = 2x + 2 - 2x + 7 = 18 - 23) were conducted to identify the anthocyanin compounds produced in the scaly leaves. A direct comparison between the genomic constitution and the anthocyanin compositions of the multiple additions revealed that a 3GT gene for glucosylation of anthocyanidin was located on 4A. Thus, we were able to assign all structural genes involved in flavonoid biosynthesis influencing bulb color to individual chromosomes of A. cepa. PMID:17038797

  14. Genotoxicity of a thiosulfonate compound derived from Allium sp. intended to be used in active food packaging: In vivo comet assay and micronucleus test.

    PubMed

    Mellado-García, Pilar; Puerto, María; Prieto, Ana I; Pichardo, Silvia; Martín-Cameán, Ana; Moyano, Rosario; Blanco, Alfonso; Cameán, Ana M

    2016-04-01

    Components of Allium species have antimicrobial and antioxidant properties. A commercial Allium sp. extract (Proallium AP(®)), of which the main constituent is propyl thiosulphinate oxide (PTSO), is being used in the development of active food packaging. In previous in vitro genotoxicity studies, PTSO, in the presence of metabolic activation, increased the appearance of micronuclei (MN). We assessed the genotoxicity PTSO in rats following oral administration (doses: 5.5, 17.4, and 55mg/kg). The comet assay in liver and stomach (OECD 489) and the MN assay in bone marrow (OECD 474) were carried out. After necropsy, histopathological examinations of the liver and the stomach were performed. The results revealed no in vivo genotoxicity and the histopathological analysis showed only slight modifications, such as increased glycogen storage in the liver and a degenerative process in stomach, with vacuolization of cell membranes, only at the highest dose. Therefore, the present work confirms that this compound is not genotoxic and could be considered as a natural alternative to synthetic preservatives used in the food packaging industry.

  15. Evaluation of the antimutagenic activity and mode of action of the fructooligosaccharide inulin in the meristematic cells of Allium cepa culture.

    PubMed

    Mauro, M O; Pesarini, J R; Marin-Morales, M A; Monreal, M T F D; Monreal, A C D; Mantovani, M S; Oliveira, R J

    2014-02-14

    This study evaluated the mutagenicity and antimutagenicity of inulin in a chromosomal aberration assay in cultures of the meristematic cells of Allium cepa. The treatments evaluated were as follows: negative control--seed germination in distilled water; positive control--aqueous solution of methyl methanesulfonate (10 μg/mL MMS); mutagenicity--aqueous solutions of inulin (0.015, 0.15, and 1.50 μg/mL); and antimutagenicity--associations between MMS and the different inulin concentrations. The antimutagenicity protocols established were pre-treatment, simultaneous simple, simultaneous with pre-incubation, and post-treatment. The damage reduction percentage (DR%) was 43.56, 27.77, and 55.92% for the pre-treatment; -31.11, 18.51, and 7.03% for the simultaneous simple; 30.43, 19.12, and 21.11% for the simultaneous with pre-incubation; and 64.07, 42.96, and 53.70% for the post-treatment. The results indicated that the most effective treatment for inhibiting damages caused by MMS was the post-treatment, which was followed by the pre-treatment, suggesting activity by bioantimutagenesis and desmutagenesis. The Allium cepa assay was demonstrated to be a good screening test for this type of activity because it is easy to perform, has a low cost, and shows DR% that is comparable to that reported studies that evaluated the prevention of DNA damage in mammals by inulin.

  16. Biological safety assessment of mutant variant of Allium sativum leaf agglutinin (mASAL), a novel antifungal protein for future transgenic application.

    PubMed

    Ghosh, Prithwi; Roy, Amit; Chakraborty, Joydeep; Das, Sampa

    2013-12-01

    Genetic engineering has established itself to be an important tool for crop improvement. Despite the success, there is always a risk of food allergy induced by alien gene products. The present study assessed the biosafety of mutant Allium sativum leaf agglutinin (mASAL), a potent antifungal protein generated by site directed mutagenesis of Allium sativum leaf agglutinin (ASAL). mASAL was cloned in pET28a+ and expressed in E. coli, and the safety assessment was carried out according to the FAO/WHO guideline (2001). Bioinformatics analysis, pepsin digestion, and thermal stability assay showed the protein to be nonallergenic. Targeted sera screening revealed no significant IgE affinity of mASAL. Furthermore, mASAL sensitized Balb/c mice showed normal histopathology of lung and gut tissue. All results indicated the least possibility of mASAL being an allergen. Thus, mASAL appears to be a promising antifungal candidate protein suitable for agronomical biotechnology.

  17. Complex distribution patterns, ecology and coexistence of ploidy levels of Allium oleraceum (Alliaceae) in the Czech Republic

    PubMed Central

    Duchoslav, Martin; Šafářová, Lenka; Krahulec, František

    2010-01-01

    Background and Aims Despite extensive study of polyploidy, its origin, and ecogeographical differences between polyploids and their diploid progenitors, few studies have addressed ploidy-level structure and patterns of ecogeographical differentiation at various spatial scales using detailed sampling procedures. The pattern of coexistence of polyploids in the geophyte Allium oleraceum at the landscape and locality scale and their ecology were studied. Methods Flow cytometry and root-tip squashes were used to identify the ploidy level of 4347 plants from 325 populations sampled from the Czech Republic using a stratified random sampling procedure. Ecological differentiation among ploidy levels was tested by comparing sets of environmental variables recorded at each locality. Key Results Across the entire sampling area, pentaploids (2n = 5x = 40) predominated, while hexaploids (2n = 6x = 48) and tetraploids (2n = 4x = 32) were less frequent. The distribution of tetra- and hexaploids was partially sympatric (in the eastern part) to parapatric (in the western part of the Czech Republic) whereas pentaploids were sympatric with other cytotypes. Plants of different ploidy levels were found to be ecologically differentiated and the ruderal character of cytotypes increased in the direction 4x → 5x → 6x with the largest realized niche differences between tetra- and hexaploids. Most populations contained only one ploidy level (77 %), 22 % had two (all possible combinations) and 1 % were composed of three ploidy levels. The majority of 4x + 5x and 5x + 6x mixed populations occurred in sympatry with uniform populations of the participating cytotypes in sites with ecologically heterogeneous or marginal environment, suggesting secondary contact between cytotypes. Some mixed 4x + 6x populations dominated by tetraploids being sympatric and intermixed with uniform 4x populations might represent primary zones of cytotype contact. Almost no mixed accessions were observed on the fine

  18. Antigenotoxicity and antimutagenicity of ethanolic extracts of Brazilian green propolis and its main botanical source determined by the Allium cepa test system

    PubMed Central

    Roberto, Matheus Mantuanelli; Jamal, Cláudia Masrouah; Malaspina, Osmar; Marin-Morales, Maria Aparecida

    2016-01-01

    Abstract Brazilian green propolis is a resinous substance prepared by bees from parts of the plant Baccharis dracunculifolia. As it possess several biological properties, this work assessed the cytotoxic/anticytotoxic, genotoxic/antigenotoxic and mutagenic/antimutagenic potential of ethanolic extracts of Brazilian green propolis (EEGP) and of B. dracunculifolia (EEBD), by means of the Allium cepa test system. The effects were evaluated by assessing the chromosomal aberrations (CA) and micronuclei (MN) frequencies on meristematic and F1 generation cells from onion roots. Chemical analyses performed with the extracts showed differences in flavonoid quality and quantity. No genotoxic or mutagenic potential was detected, and both extracts were capable of inhibiting cellular damage caused by methyl methanesulfonate (MMS) treatment, reducing the frequencies of CA and MN. By these data, we can infer that, independent of their flavonoid content, the extracts presented a protective effect in A. cepa cells against the clastogenicity of MMS. PMID:27223486

  19. Cytotoxicity on Allium cepa of the two main sulcotrione photoproducts, xanthene-1,9-dione-3,4-dihydro-6-methylsulphonyl and 2-chloro-4-mesylbenzoic acid.

    PubMed

    Goujon, Eric; Richard, Claire; Goupil, Pascale; Ledoigt, Gérard

    2015-10-01

    The cytotoxic effects of 2-chloro-4-mesylbenzoic acid (CMBA) and xanthene-1,9-dione-3,4-dihydro-6-methylsulphonyl (XDD), the two main photoproducts of sulcotrione, were investigated on Allium root meristematic cells at different concentrations. Degradation of sulcotrione was correlated to mitotic index decrease, together with increasing anomaly and c-mitosis frequencies. Mitotic index significantly decreased with increasing XDD and CMBA concentrations. Cell frequency with abnormal chromosomes increased with CMBA or XDD application rates. In contrast, CMBA induced a low micronucleus rate even for high concentrations while XDD increased the micronucleus ratio. C-mitoses, chromosomal aberrations due to an inactivation of the spindle, were enhanced by CMBA treatments but not by XDD. The photochemical degradation process of the pesticide can change the risk for the environment. PMID:26453228

  20. Cyanamide mode of action during inhibition of onion (Allium cepa L.) root growth involves disturbances in cell division and cytoskeleton formation.

    PubMed

    Soltys, Dorota; Rudzińska-Langwald, Anna; Kurek, Wojciech; Gniazdowska, Agnieszka; Sliwinska, Elwira; Bogatek, Renata

    2011-09-01

    Cyanamide is an allelochemical produced by hairy vetch (Vicia villosa Roth.). Its phyotoxic effect on plant growth was examined on roots of onion (Allium cepa L.) bulbs. Water solution of cyanamide (2-10 mM) restricted growth of onion roots in a dose-dependent manner. Treatment of onion roots with cyanamide resulted in a decrease in root growth rate accompanied by a decrease in accumulation of fresh and dry weight. The inhibitory effect of cyanamide was reversed by its removal from the environment, but full recovery was observed only for tissue treated with this chemical at low concentration (2-6 mM). Cytological observations of root tip cells suggest that disturbances in cell division may explain the strong cyanamide allelopathic activity. Moreover, in cyanamide-treated onion the following changes were detected: reduction of mitotic cells, inhibition of proliferation of meristematic cells and cell cycle, and modifications of cytoskeleton arrangement.

  1. Assessing toxicity of copper, cadmium and chromium levels relevant to discharge limits of industrial effluents into inland surface waters using common onion, Allium cepa bioassay.

    PubMed

    Hemachandra, Chamini K; Pathiratne, Asoka

    2015-02-01

    Toxicity of copper, cadmium and chromium relevant to established tolerance limits for the discharge of industrial effluents into inland surface waters was evaluated by Allium cepa bioassay. The roots of A. cepa bulbs exposed to Cu(2+) (3 mg L(-1)) individually or in mixtures with Cd(2+) (0.1 mg L(-1)) or/and Cr(6+) (0.1 mg L(-1)) exhibited the highest growth inhibition, mitotic index depression and nuclear abnormalities. Root tip cells exposed to Cr(6+) or Cd(2+) alone or in mixture displayed significant chromosomal aberrations in comparison to the controls. EC50s for root growth inhibition followed the order Cu(2+) < Cd(2+) < Cr(6+) indicating greater toxicity of copper. The results show that the industrial effluent discharge regulatory limits for these metals need to be reviewed considering potential cyto-genotoxicity to biological systems.

  2. [Dynamics of the induced chromosomal instability in welsh onion (Allium fistulosum L.): gamma irradiation of the seeds of different storage periods].

    PubMed

    Lazarenko, L M; Bezrukov, V F

    2006-01-01

    The chromosome aberrations in root meristem cells of welsh onion (Allium fistulosum L.) seeds after gamma-irradiation (5 and 10 Gy) of different-aged seeds (7, 19, 31, 43 and 55 months of storage) were studied. The irradiation dose of 5 Gy significantly increased the frequency of aberrant anaphases (FAA) for 31- and 43-months seeds; the dose of 10 Gy significantly increased the FAA in seeds of all age groups. The irradiation of young (7 months) seeds resulted in decreasing of the fraction of bridges to the control level of the old (55-months) seeds for the dose of 5 Gy and below the control level of the old seeds--for the dose of 10 Gy. Some peculiarities of cytogenetic parameters of genome instability and the germinating capacity of the seeds made it possible to suppose that the third year of storage is a critical period for the welsh onion seeds. PMID:17100278

  3. Biochemical Characterization and Antimicrobial and Antifungal Activity of Two Endemic Varieties of Garlic (Allium sativum L.) of the Campania Region, Southern Italy.

    PubMed

    Fratianni, Florinda; Riccardi, Riccardo; Spigno, Patrizia; Ombra, Maria Neve; Cozzolino, Autilia; Tremonte, Patrizio; Coppola, Raffaele; Nazzaro, Filomena

    2016-07-01

    Extracts of the bulbs of the two endemic varieties "Rosato" and "Caposele" of Allium sativum of the Campania region, Southern Italy, were analyzed. The phenolic content, ascorbic acid, allicin content, and in vitro antimicrobial and antifungal activity were determined. Ultra performance liquid chromatography with diode array detector performed polyphenol profile. The polyphenolic extracts showed antioxidant activity (EC50) lower than 120 mg. The amount of ascorbic acid and allicin in the two extracts was similar. Polyphenol extract exhibited antimicrobial activity against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and (only by the extract of Rosato) against Bacillus cereus. The extract of Caposele was more effective in inhibiting the growth of Aspergillus versicolor and Penicillum citrinum. On the other hand, the extract of Rosato was effective against Penicillium expansum. PMID:27259073

  4. Chemical composition and bioactive compounds of garlic (Allium sativum L.) as affected by pre- and post-harvest conditions: A review.

    PubMed

    Martins, Natália; Petropoulos, Spyridon; Ferreira, Isabel C F R

    2016-11-15

    Garlic (Allium sativum L.) is considered one of the twenty most important vegetables, with various uses throughout the world, either as a raw vegetable for culinary purposes, or as an ingredient of traditional and modern medicine. Furthermore, it has also been proposed as one of the richest sources of total phenolic compounds, among the usually consumed vegetables, and has been highly ranked regarding its contribution of phenolic compounds to human diet. This review aims to examine all the aspects related with garlic chemical composition and quality, focusing on its bioactive properties. A particular emphasis is given on the organosulfur compounds content, since they highly contribute to the effective bioactive properties of garlic, including its derived products. The important effects of pre-harvest (genotype and various cultivation practices) and post-harvest conditions (storage conditions and processing treatments) on chemical composition and, consequently, bioactive potency of garlic are also discussed. PMID:27283605

  5. Chemical composition and bioactive compounds of garlic (Allium sativum L.) as affected by pre- and post-harvest conditions: A review.

    PubMed

    Martins, Natália; Petropoulos, Spyridon; Ferreira, Isabel C F R

    2016-11-15

    Garlic (Allium sativum L.) is considered one of the twenty most important vegetables, with various uses throughout the world, either as a raw vegetable for culinary purposes, or as an ingredient of traditional and modern medicine. Furthermore, it has also been proposed as one of the richest sources of total phenolic compounds, among the usually consumed vegetables, and has been highly ranked regarding its contribution of phenolic compounds to human diet. This review aims to examine all the aspects related with garlic chemical composition and quality, focusing on its bioactive properties. A particular emphasis is given on the organosulfur compounds content, since they highly contribute to the effective bioactive properties of garlic, including its derived products. The important effects of pre-harvest (genotype and various cultivation practices) and post-harvest conditions (storage conditions and processing treatments) on chemical composition and, consequently, bioactive potency of garlic are also discussed.

  6. Antigenotoxicity and antimutagenicity of ethanolic extracts of Brazilian green propolis and its main botanical source determined by the Allium cepa test system.

    PubMed

    Roberto, Matheus Mantuanelli; Jamal, Cláudia Masrouah; Malaspina, Osmar; Marin-Morales, Maria Aparecida

    2016-05-24

    Brazilian green propolis is a resinous substance prepared by bees from parts of the plant Baccharis dracunculifolia. As it possess several biological properties, this work assessed the cytotoxic/anticytotoxic, genotoxic/antigenotoxic and mutagenic/antimutagenic potential of ethanolic extracts of Brazilian green propolis (EEGP) and of B. dracunculifolia (EEBD), by means of the Allium cepa test system. The effects were evaluated by assessing the chromosomal aberrations (CA) and micronuclei (MN) frequencies on meristematic and F1 generation cells from onion roots. Chemical analyses performed with the extracts showed differences in flavonoid quality and quantity. No genotoxic or mutagenic potential was detected, and both extracts were capable of inhibiting cellular damage caused by methyl methanesulfonate (MMS) treatment, reducing the frequencies of CA and MN. By these data, we can infer that, independent of their flavonoid content, the extracts presented a protective effect in A. cepa cells against the clastogenicity of MMS. PMID:27223486

  7. Micronucleus and chromosome aberrations induced in onion (Allium cepa) by a petroleum refinery effluent and by river water that receives this effluent.

    PubMed

    Hoshina, Márcia M; Marin-Morales, Maria A

    2009-11-01

    In this study, micronucleus (MN) and chromosome aberration (CA) tests in Allium cepa (onion) were carried out in order to make a preliminary characterization of the water quality of the Atibaia River in an area that is under the influence of petroleum refinery and also to evaluate the effectiveness of the treatments used by the refinery. For these evaluations, seeds of A. cepa were germinated in waters collected in five different sites related with the refinery in ultra-pure water (negative control) and in methyl methanesulfonate solution (positive control). According to our results, we can suggest that even after the treatments (physicochemical, biological and stabilization pond) the final refinery effluent could induce chromosome aberrations and micronucleus in meristematic cells of A. cepa and that the discharge of the petroleum refinery effluents in the Atibaia River can interfere in the quality of this river. PMID:19647317

  8. Encapsulation of a flavonoid-rich Allium cepa L. var. agrogatum don extract in β-cyclodextrin for transdermal drug delivery.

    PubMed

    Ding, Zhiying; Wu, Min; Guo, Qiushi; Yang, Xiaohong; Zhang, Bingren

    2013-05-22

    This work aims to evaluate the encapsulation of a flavonoid-rich Allium cepa L. var. agrogatum Don extract (ACADFE) in β-cyclodextrin (β-CD) by analyzing the percutaneous penetration in vitro and in vivo, leading to an explanation of the physical mechanism during transdermal transport. The optimal inclusion compound containing ACADFE in β-CD was prepared in a 1:3 molar ratio. The physicochemical characterization of the inclusion complex was performed using IR, UV-vis, simultaneous thermogravimetry (TG), and differential thermal analysis (DTA) studies. It was concluded that the inclusion complex could improve the aqueous solubility and bioavailability of ACADFE. The inclusion complex exhibited significant enhancement of percutaneous absorption both in vitro and in vivo. The dorsal skins of hairless mice were photographed using a confocal scanning laser microscope. Confocal scanning laser microscopy shows that penetration of the ACADFE-β-CD inclusion complex proceeds across skin via both follicular and transcellular routes. PMID:23581706

  9. Supplementation with Japanese bunching onion (Allium fistulosum L.) expressing a single alien chromosome from shallot increases the antioxidant activity of Kamaboko fish jelly paste in vitro.

    PubMed

    Harada, Kazuki; Wada, Ritsuko; Yaguchi, Shigenori; Maeda, Toshimichi; Date, Rie; Tokunaga, Takushi; Kazumura, Kimiko; Shimada, Kazuko; Matsumoto, Misato; Wako, Tadayuki; Yamauchi, Naoki; Shigyo, Masayoshi

    2013-05-01

    Kamaboko is a traditional type of processed seafood made from fish jelly paste that is unique to Japan. We supplemented Kamaboko with Japanese bunching onion (Allium fistulosum L.) with an alien monosome from shallot (Allium cepa L. Aggregatum group) and we measured in vitro the oxygen radical absorbance capacity (ORAC) value, an index of antioxidant activity. We also evaluated the results of sensory testing. The ORAC value of plain Kamaboko was 166±14 μmol trolox equivalent (TE)/100 g fresh weight (FW). The values of the edible Alliaceae powder, i.e., Japanese bunching onion (JBO, genome FF, 2n=2x=16) and the alien addition line of JBO carrying the 6A chromosome from shallot (FF+6A, 2n=2x+1=17), were 6,659±238 and 14,096±635 μmol TE/100 g dry weight (DW). We hypothesized that the 6A chromosome encoded the enhancement of polyphenol production. Subsequently, we created Kamaboko containing 4.8% JBO powder or 4.8% FF+6A powder. The ORAC value of each modified Kamaboko product was increased to 376±24 μmol TE/100 g FW for the JBO powder and to 460±16 μmol TE/100 g FW for the FF+6A powder, respectively. We next created Kamaboko containing 9.0% JBO powder or 9.0% FF+6A powder and the ORAC values of the respective modified Kamaboko products was increased to 671±16 and 740±21 μmol TE/100 g FW, i.e., 4.1- and 4.5-times the value of plain Kamaboko. Consequently, taking into consideration the sensory evaluation regarding taste and appearance as well, the use of Kamaboko supplemented with 4.8% FF+6A powder is recommended.

  10. Changes in chromosome structure, mitotic activity and nuclear DNA content from cells of Allium Test induced by bark water extract of Uncaria tomentosa (Willd.) DC.

    PubMed

    Kuraś, Mieczysław; Nowakowska, Julita; Sliwińska, Elwira; Pilarski, Radosław; Ilasz, Renata; Tykarska, Teresa; Zobel, Alicja; Gulewicz, Krzysztof

    2006-09-19

    The influence of water extract of Uncaria tomentosa (Willd.) DC bark on the meristematic cells of the root tips of Allium cepa L., e.g. cells of Allium Test, was investigated. The experiment was carried out in two variants: (1) continuous incubation at different concentrations (2, 4, 8 and 16 mg/ml) of the extract for 3, 6, 12, 24, 48 and 72h; and (2) 24-h incubation in three concentrations of the extract (4, 8 or 16 mg/ml), followed by post-incubation in distilled water for 3, 6, 12, 24 and 48h. During the continuous incubation, the mitotic activity was reduced (2 and 4 mg/ml) or totally inhibited (8 and 16 mg/ml), depending on the concentration of the extract. All the concentrations resulted in gradual reduction of the mitotic activity. In the concentration of 2 mg/ml, the mitotic activity reached its lowest value after 12h (2 mg/ml) and after 24h in 4 mg/ml, followed by spontaneous intensification of divisions during further incubation. Instead, in higher concentrations of the extracts (8 and 16 mg/ml), the mitotic activity was totally inhibited within 24h and did not resume even after 72h. Incubation caused changes in the phase index, mainly as an increase in the number of prophases. After 24h of incubation, in all phases, condensation and contraction of chromosomes were observed. During post-incubation, divisions resumed in all concentrations, reaching even higher values than the control. Cytometric analysis showed that the extract caused inhibition of the cell cycle at the border between gap(2) and beginning of mitosis (G(2)/M).

  11. Supplementation with Japanese bunching onion (Allium fistulosum L.) expressing a single alien chromosome from shallot increases the antioxidant activity of Kamaboko fish jelly paste in vitro

    PubMed Central

    HARADA, KAZUKI; WADA, RITSUKO; YAGUCHI, SHIGENORI; MAEDA, TOSHIMICHI; DATE, RIE; TOKUNAGA, TAKUSHI; KAZUMURA, KIMIKO; SHIMADA, KAZUKO; MATSUMOTO, MISATO; WAKO, TADAYUKI; YAMAUCHI, NAOKI; SHIGYO, MASAYOSHI

    2013-01-01

    Kamaboko is a traditional type of processed seafood made from fish jelly paste that is unique to Japan. We supplemented Kamaboko with Japanese bunching onion (Allium fistulosum L.) with an alien monosome from shallot (Allium cepa L. Aggregatum group) and we measured in vitro the oxygen radical absorbance capacity (ORAC) value, an index of antioxidant activity. We also evaluated the results of sensory testing. The ORAC value of plain Kamaboko was 166±14 μmol trolox equivalent (TE)/100 g fresh weight (FW). The values of the edible Alliaceae powder, i.e., Japanese bunching onion (JBO, genome FF, 2n=2x=16) and the alien addition line of JBO carrying the 6A chromosome from shallot (FF+6A, 2n=2x+1=17), were 6,659±238 and 14,096±635 μmol TE/100 g dry weight (DW). We hypothesized that the 6A chromosome encoded the enhancement of polyphenol production. Subsequently, we created Kamaboko containing 4.8% JBO powder or 4.8% FF+6A powder. The ORAC value of each modified Kamaboko product was increased to 376±24 μmol TE/100 g FW for the JBO powder and to 460±16 μmol TE/100 g FW for the FF+6A powder, respectively. We next created Kamaboko containing 9.0% JBO powder or 9.0% FF+6A powder and the ORAC values of the respective modified Kamaboko products was increased to 671±16 and 740±21 μmol TE/100 g FW, i.e., 4.1- and 4.5-times the value of plain Kamaboko. Consequently, taking into consideration the sensory evaluation regarding taste and appearance as well, the use of Kamaboko supplemented with 4.8% FF+6A powder is recommended. PMID:24648948

  12. Vavilosides A1/A2-B1/B2, new furostane glycosides from the bulbs of Allium vavilovii with cytotoxic activity.

    PubMed

    Zolfaghari, Behzad; Sadeghi, Masoud; Troiano, Raffaele; Lanzotti, Virginia

    2013-04-01

    A phytochemical analysis of the bulbs of Allium vavilovii M. Pop. & Vved. was attained for the first time extensively, affording to the isolation of four new furostanol saponins, named vavilosides A1/A2-B1/B2 (1a/b-2a/2b), as two couple of isomers in equilibrium, together with ascalonicoside A1/A2 (3a/3b) and 22-O-methyl ascalonicoside A1/A2 (4a/4b), previously isolated from shallot, Allium ascalonicum. High concentrations of kaempferol, kaempferide, and kaempferol 4(I)-glucoside were also isolated. The chemical structures of the new compounds, established through a combination of extensive nuclear magnetic resonance, mass spectrometry and chemical analyses, were identified as (25R)-furost-5(6)-en-1β,3β,22α,26-tetraol 1-O-α-L-rhamnopyranosyl-(1→2)-O-β-D-galactopyranosyl 26-O-α-L-rhamnopyranoside (vaviloside A1), (25R)-furost-5(6)-en-1β,3β,22β,26-tetraol 1-O-α-L-rhamnopyranosyl-(1→2)-O-β-D-galactopyranosyl 26-O-α-L-rhamnopyranoside (vaviloside A2), (25R)-furost-5(6)-en-1β,3β,22α,26-tetraol 1-O-α-L-rhamnopyranosyl-(1→2)-O-β-D-xylopyranosyl 26-O-α-L-rhamnopyranoside (vaviloside B1), (25R)-furost-5(6)-en-1β,3β,22β,26-tetraol 1-O-α-L-rhamnopyranosyl-(1→2)-O-β-d-xylopyranosyl 26-O-α-L-rhamnopyranoside (vaviloside B2). The isolated saponins showed cytotoxic activity on J-774, murine monocyte/macrophage, and WEHI-164, murine fibrosarcoma, cell lines with the following rank: vaviloside B1/B2>ascalonicoside A1/A2>vaviloside A1/A2. PMID:23415085

  13. Supplementation with Japanese bunching onion (Allium fistulosum L.) expressing a single alien chromosome from shallot increases the antioxidant activity of Kamaboko fish jelly paste in vitro.

    PubMed

    Harada, Kazuki; Wada, Ritsuko; Yaguchi, Shigenori; Maeda, Toshimichi; Date, Rie; Tokunaga, Takushi; Kazumura, Kimiko; Shimada, Kazuko; Matsumoto, Misato; Wako, Tadayuki; Yamauchi, Naoki; Shigyo, Masayoshi

    2013-05-01

    Kamaboko is a traditional type of processed seafood made from fish jelly paste that is unique to Japan. We supplemented Kamaboko with Japanese bunching onion (Allium fistulosum L.) with an alien monosome from shallot (Allium cepa L. Aggregatum group) and we measured in vitro the oxygen radical absorbance capacity (ORAC) value, an index of antioxidant activity. We also evaluated the results of sensory testing. The ORAC value of plain Kamaboko was 166±14 μmol trolox equivalent (TE)/100 g fresh weight (FW). The values of the edible Alliaceae powder, i.e., Japanese bunching onion (JBO, genome FF, 2n=2x=16) and the alien addition line of JBO carrying the 6A chromosome from shallot (FF+6A, 2n=2x+1=17), were 6,659±238 and 14,096±635 μmol TE/100 g dry weight (DW). We hypothesized that the 6A chromosome encoded the enhancement of polyphenol production. Subsequently, we created Kamaboko containing 4.8% JBO powder or 4.8% FF+6A powder. The ORAC value of each modified Kamaboko product was increased to 376±24 μmol TE/100 g FW for the JBO powder and to 460±16 μmol TE/100 g FW for the FF+6A powder, respectively. We next created Kamaboko containing 9.0% JBO powder or 9.0% FF+6A powder and the ORAC values of the respective modified Kamaboko products was increased to 671±16 and 740±21 μmol TE/100 g FW, i.e., 4.1- and 4.5-times the value of plain Kamaboko. Consequently, taking into consideration the sensory evaluation regarding taste and appearance as well, the use of Kamaboko supplemented with 4.8% FF+6A powder is recommended. PMID:24648948

  14. Assessment of the effect of Allium sativum on serum nitric oxide level and hepatic histopathology in experimental cystic echinococcosis in mice.

    PubMed

    Ali, Nehad Mahmoud; Ibrahim, Ayman Nabil; Ahmed, Naglaa Samier

    2016-09-01

    The current study was carried out to evaluate the prophylactic and therapeutic effects of Allium sativum on experimental cystic echinococcosis by measuring the serum nitric oxide level and studying hepatic histopathological changes. The experimental animals were divided into five groups, ten mice in each, group (I): prophylactic; group (II): therapeutic; group (III): prophylactic and therapeutic; group (IV): infected nontreated; group (V): non infected non treated. The results showed that serum nitric oxide was significantly increased as a result of infection in all infected groups compared to group V. Statistical significant difference was noted in serum nitrate level in group I at 1st and 8th week post infection compared to the same time interval in group IV. In group II, statistical significance was noticed only at the 1st week post infection. Statistical significant difference was noted in serum nitrate level in group III at 1st, 4th, 6th and 8th week post infection compared to same time interval in group IV. Hydatid cysts developed in livers of mice of group IV as early as 4 weeks of infection while no cysts were found in groups I,II and III. Histopathologically there were moderate pathological changes in group I and group II as hepatocytes showed moderate steatosis, moderate venous congestion and inflammatory cellular infiltrate with foci of degeneration and necrosis. While livers of mice of group III showed mild steatosis, mild venous congestion, mild inflammatory cellular infiltrate, no necrosis and no biliary hyperplasia. Accordingly, that garlic (Allium sativum) may be a promising phototherapeutic agent for cystic echinococcosis. PMID:27605805

  15. Transmission of alien chromosomes from selfed progenies of a complete set of Allium monosomic additions: the development of a reliable method for the maintenance of a monosomic addition set.

    PubMed

    Shigyo, M; Wako, T; Kojima, A; Yamauchi, N; Tashiro, Y

    2003-12-01

    Selfed progeny of a complete set of Allium fistulosum - Allium cepa monosomic addition lines (2n = 2x + 1 = 17, FF+1A-FF+8A) were produced to examine the transmission rates of respective alien chromosomes. All eight types of the selfed monosomic additions set germinable seeds. The numbers of chromosomes (2n) in the seedlings were 16, 17, or 18. The eight extra chromosomes varied in transmission rate (%) from 9 (FF+2A) to 49 (FF+8A). The complete set of monosomic additions was reproduced successfully by self-pollination. A reliable way to maintain a set of Allium monosomic additions was developed using a combination of two crossing methods, selfing and female transmission. FF+8A produced two seedlings with 18 chromosomes. Cytogenetical analyses, including GISH, showed that the seedlings were disomic addition plants carrying two entire homologous chromosomes from A. cepa in an integral diploid background of A. fistulosum. Flow cytometry analysis showed that a double dose of the alien 8A chromosome caused fluorescence intensity values spurring in DNA content, and isozyme analysis showed increased glutamate dehydrogenase activity at the gene locus Gdh-1.

  16. Transmission of alien chromosomes from selfed progenies of a complete set of Allium monosomic additions: the development of a reliable method for the maintenance of a monosomic addition set.

    PubMed

    Shigyo, M; Wako, T; Kojima, A; Yamauchi, N; Tashiro, Y

    2003-12-01

    Selfed progeny of a complete set of Allium fistulosum - Allium cepa monosomic addition lines (2n = 2x + 1 = 17, FF+1A-FF+8A) were produced to examine the transmission rates of respective alien chromosomes. All eight types of the selfed monosomic additions set germinable seeds. The numbers of chromosomes (2n) in the seedlings were 16, 17, or 18. The eight extra chromosomes varied in transmission rate (%) from 9 (FF+2A) to 49 (FF+8A). The complete set of monosomic additions was reproduced successfully by self-pollination. A reliable way to maintain a set of Allium monosomic additions was developed using a combination of two crossing methods, selfing and female transmission. FF+8A produced two seedlings with 18 chromosomes. Cytogenetical analyses, including GISH, showed that the seedlings were disomic addition plants carrying two entire homologous chromosomes from A. cepa in an integral diploid background of A. fistulosum. Flow cytometry analysis showed that a double dose of the alien 8A chromosome caused fluorescence intensity values spurring in DNA content, and isozyme analysis showed increased glutamate dehydrogenase activity at the gene locus Gdh-1. PMID:14663528

  17. Effects of aluminum on nucleoli in root tip cells and selected physiological and biochemical characters in Allium cepa var. agrogarum L

    PubMed Central

    2010-01-01

    Background Increased Al concentration causes reduction of mitotic activity, induction of nucleolar alteration, increase of the production of ROS and alteration of several antioxidant enzyme activities in plant cells. Allium cepa is an excellent plant and a useful biomarker for environmental monitoring. Limited information is available about the effects of Al on nucleoli, antioxidant enzyme system, contents of MDA and soluble protein in A. cepa. Therefore, we carried out the investigation in order to better understand the effects of Al on the growth, nucleoli in root tip cells and selected physiological and biochemical characters. Results The results showed that the root growth exposed to 50 μM Al was inhibited significantly. 50 μM Al could induce some particles of argyrophilic proteins scattered in the nuclei and extruded from the nucleoli into the cytoplasm. The nucleolus did not disaggregate normally and still remained its characteristic structure during metaphase. Nucleolar reconstruction was inhibited. 50 μM Al induced high activities of SOD and POD in leaves and roots significantly (P < 0.05) when compared with control, whereas the level of CAT was low significantly (P < 0.05). At 50 μM Al the content of MDA in leaves was high significantly (P < 0.05) at 9th day and in roots increased (P < 0.05) with prolonging the treatment time during 6-12 days. The soluble protein content in leaves treated with 50 μM Al was high significantly (P < 0.05) at 6th day and increased with prolonging the treatment time. Conclusions We suggest that variations in nucleoli and the alterations of antioxidant enzyme activities, MDA and soluble protein contents in Allium cepa can serve as useful biomarkers, which can provide valuable information for monitoring and forecasting effects of exposure to Al in real scenarios conditions. Among the antioxidant enzymes SOD and POD appear to play a key role in the antioxidant defense mechanism under Al toxicity condition. Data from MDA

  18. Energy-dependent RBE of neutrons to induce micronuclei in root-tip cells of Allium cepa onion irradiated as dry dormant seeds and seedlings.

    PubMed

    Zhang, Wenyi; Fujikawa, Kazuo; Endo, Satoru; Ishikawa, Masayori; Ohtaki, Megu; Ikeda, Hideo; Hoshi, Masaharu

    2003-06-01

    The relative biological effectiveness (RBE) of various energy neutrons produced from a Schenkel-type accelerator at the Research Institute for Radiation Biology and Medicine, Hiroshima University (HIRRAC), compared with 60Co gamma-ray radiation was determined. The neutron radiations and gamma-ray radiation produced good linear changes in the frequency of micronuclei induced in the root-tip cells of Allium cepa onion irradiated as dry dormant seeds (seed assay) and seedlings (seedling assay) with varying radiation doses. Therefore the RBE for radiation-induced micronuclei can be calculated as the ratio of the slopes of the fitted linear dose response for the neutron radiations and the 60Co gamma-ray radiation. The RBE values by seed assay and seedling assay decreased to 174 +/- 7, from 216 +/- 9, and to 31.4 +/- 1.0, from 45.3 +/- 1.3 (one standard error), respectively, when neutron energies increased to 1.0 MeV, from 0.2 MeV, in the present study. Furthermore, the ratio of the micronucleus induction rates of seed assay to seedling assay by gamma-ray radiation was much lower than that by neutron radiations.

  19. Vermistabilization of sugar beet (Beta vulgaris L) waste produced from sugar factory using earthworm Eisenia fetida: Genotoxic assessment by Allium cepa test.

    PubMed

    Bhat, Sartaj Ahmad; Singh, Jaswinder; Vig, Adarsh Pal

    2015-08-01

    In the present study, sugar beet mud (SBM) and pulp (SBP) produced as a waste by-products of the sugar industry were mixed with cattle dung (CD) at different ratios on dry weight basis for vermicomposting with Eisenia fetida. Minimum mortality and highest population of worms were observed in 20:80 (SBM20) mixture of SBM and 10:90 (SBP10) ratios. However, increased percentages of wastes significantly affected the growth and fecundity of worms. Nutrients like nitrogen, phosphorus, sodium, increased from initial feed mixture to final products (i.e., vermicompost), while organic carbon (OC), C:N ratio and electrical conductivity (EC) declined in all the products of vermicomposting. Although there was an increase in the contents of all the heavy metals except copper, chromium, and iron in SBM, the contents were less than the international standards for compost which indicates that the vermicompost can be used in the fields without any ill effects on the soil. Allium cepa root chromosomal aberration assay was used to evaluate the genotoxicity of pre- and post-vermicomposted SBM to understand the effect of vermicomposting on the reduction of toxicity. Genotoxicity analysis of post-vermicomposted samples of SBM revealed 18-75% decline in the aberration frequencies. Scanning electron microscopy (SEM) was recorded to identify the changes in texture in the control and vermicomposted samples. The vermicomposted mixtures in the presence of earthworms confirm more numerous surface irregularities that prove to be good manure. PMID:25794577

  20. Evaluation of larvicidal activity of the essential oil of Allium macrostemon Bunge and its selected major constituent compounds against Aedes albopictus (Diptera: Culicidae)

    PubMed Central

    2014-01-01

    Background During the screening programme for new agrochemicals from Chinese medicinal herbs and local wild plants, the essential oil of dried bulbs of Allium macrostemon Bunge (Liliaceae) was found to possess larvicidal activity against mosquitoes. The aim of this research was to determine the larvicidal activity of the essential oil and its major constituent compounds against the larvae of the Culicidae mosquito, Aedes albopictus. Methods Essential oil of A. macrostemon was obtained by hydrodistillation and analyzed by gas chromatography (GC) and gas chromaotography-mass spectrometry (GC-MS). The activity of the essential oil and its two major constituents were evaluated, using World Health Organization (WHO) procedures, against the fourth instar larvae of Ae. albopictus for 24 h and larval mortalities were recorded at various essential oil/compound concentrations ranging from 9.0 - 150 μg/ml. Results The essential oil of A. macrostemon exhibited larvicidal activity against the early fourth instar larvae of Ae. albopictus with an LC50 value of 72.86 μg/ml. The two constituent compounds, dimethyl trisulfide and methyl propyl disulfide possessed strong larvicidal activity against the early fourth instar larvae of Ae. albopictus with LC50 values of 36.36 μg/ml and 86.16 μg/ml, respectively. Conclusion The results indicated that the essential oil of A. macrostemon and its major constituents have good potential as a source for natural larvicides. PMID:24731297

  1. Antioxidants in aqueous extract of Myristica fragrans (Houtt.) suppress mitosis and cyclophosphamide-induced chromosomal aberrations in Allium cepa L. cells.

    PubMed

    Akinboro, Akeem; Mohamed, Kamaruzaman Bin; Asmawi, Mohd Zaini; Sulaiman, Shaida Fariza; Sofiman, Othman Ahmad

    2011-11-01

    In this study, freeze-dried water extract from the leaves of Myristica fragrans (Houtt.) was tested for mutagenic and antimutagenic potentials using the Allium cepa assay. Freeze-dried water extract alone and its combination with cyclophosphamide (CP) (50 mg/kg) were separately dissolved in tap water at 500, 1000, 2000, and 4000 mg/kg. Onions (A. cepa) were suspended in the solutions and controls for 48 h in the dark. Root tips were prepared for microscopic evaluation. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) free radicals' scavenging power of the extract was tested using butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) as standards. Water extract of Myristica fragrans scavenged free radicals better than BHA, but worse than BHT. The extract alone, as well as in combination with CP suppressed cell division, and induced chromosomal aberrations that were insignificantly different from the negative control (P ≤ 0.05). However, cytotoxic and mutagenic actions of CP were considerably suppressed. The observed effects on cell division and chromosomes of A. cepa may be principally connected to the antioxidant properties of the extract. The obtained results suggest mitodepressive and antimutagenic potentials of water extract of the leaves of M. fragrans as desirable properties of a promising anticancer agent.

  2. Effect of single alien chromosome from shallot (Allium cepa L. Aggregatum group) on carbohydrate production in leaf blade of bunching onion (A. fistulosum L.).

    PubMed

    Hang, Tran Thi Minh; Shigyo, Masayoshi; Yaguchi, Shigenori; Yamauchi, Naoki; Tashiro, Yosuke

    2004-12-01

    We used a complete set of Allium fistulosum - shallot (A. cepa Aggregatum group) monosomic addition lines (FF+1A - FF+8A) to identify shallot chromosomes affecting the production of sugars. In the alien addition lines grown over two years in an experimental field at Yamaguchi University (34 degrees N, 131 degrees E), shallot chromosomes 2A and 8A altered sugar contents in leaf-bunching onion (A. fistulosum). Except for FF+2A, every monosomic addition accumulated non-reducing sugars in winter leaf blades. FF+8A caused an increase in the amounts of non-reducing sugars in the winter. FF+2A hardly produced non-reducing sugar throughout the two-year study. These results indicated that genes related to non-reducing sugar metabolism are located on the 2A and 8A chromosomes. The results of regression analyses using 2002 data on A. fistulosum and the monosomic addition set revealed a correlation (r = 0.63 +/- 0.07; mean +/- SE., n = 9) between reducing sugar and monosaccharide (Glc+Fru) contents but no correlation between non-reducing sugar and sucrose contents. This result indicates the existence of other polysaccharides (e.g., scorodose) as non-reducing sugars in the leaf blade.

  3. Evaluation of toxic, cytotoxic, mutagenic, and antimutagenic activities of natural and technical cashew nut shell liquids using the Allium cepa and Artemia salina bioassays.

    PubMed

    Leite, Aracelli de Sousa; Dantas, Alisson Ferreira; Oliveira, George Laylson da Silva; Gomes Júnior, Antonio L; de Lima, Sidney Gonçalo; Citó, Antônia Maria das Graças Lopes; de Freitas, Rivelilson M; Melo-Cavalcante, Ana Amélia de C; Dantas Lopes, José Arimateia

    2015-01-01

    The cashew nut releases a substance that is known as cashew nut shell liquid (CNSL). There are both natural (iCNSL) and technical (tCNSL) cashew nut shell liquids. This study used an Artemia salina bioassay to evaluate the toxic effects of iCNSL and tCNSL cashew nut shell liquids. It also evaluated the toxicity, cytotoxicity, and mutagenicity of CNSL and its effects on the damage induced by copper sulfate (CuSO4·5H2O) on the meristems' root of Allium cepa. Effects of the damage induced by CuSO4·5H2O were evaluated before (pre-), during (co-), and after (post-) treatments. The iCNSL contained 94.5% anacardic acid, and the tCNSL contained 91.3% cardanol. The liquids were toxic to A. salina. Toxicity, cytotoxicity, and mutagenicity were observed with iCNSL compared with the negative control. Similarly, iCNSL failed to inhibit the toxicity and cytotoxicity of CuSO4·5H2O. The tCNSL was not toxic, cytotoxic, or mutagenic in any of the concentrations. However, the lowest iCNSL concentrations and all of the tCNSL concentrations had preventive, antimutagenic, and reparative effects on micronuclei and on chromosomal aberrations in the A. cepa. Therefore, protective, modulating, and reparative effects may be observed in the A. cepa, depending on the concentration and type of CNSL used. PMID:25861638

  4. Assessment of the cytotoxic, genotoxic and mutagenic effects of the commercial black dye in Allium cepa cells before and after bacterial biodegradation treatment.

    PubMed

    Ventura-Camargo, Bruna de Campos; de Angelis, Dejanira de Franceschi; Marin-Morales, Maria Aparecida

    2016-10-01

    The present study evaluated the cytotoxic, genotoxic and mutagenic actions of different concentrations (50 and 200 μg/L) of BDCP (Black Dye Commercial Product) used by textile industries, before and after bacterial biodegradation, by the conventional staining cytogenetic technique and NOR-banding in Allium cepa cells. Differences in the chromosomal and nuclear aberrations and alterations in the number of nucleoli were observed in cells exposed to BDCP with and without the microbial treatment. The significant frequencies of chromosome and nuclear aberrations noted in the tests with bacterially biodegraded BDCP indicate that the metabolites generated by degradation are more genotoxic than the chemical itself. Losses of genetic material characterize a type of alteration that was mainly associated with the action of the original BDCP, whereas chromosome stickiness, nuclear buds and binucleated cells were the aberrations that were preferentially induced by BDCP metabolites after biodegradation. The significant frequencies of cell death observed in the tests with biodegraded BDCP also show the cytotoxic effects of the BDCP metabolites. The reduction in the total frequency of altered cells after the recovery treatments showed that the test organism A. cepa has the ability to recover from damage induced by BDCP and its metabolites after the exposure conditions are normalized. PMID:27441992

  5. Investigation of volatiles emitted from freshly cut onions (Allium cepa L.) by real time proton-transfer reaction-mass spectrometry (PTR-MS).

    PubMed

    Løkke, Mette Marie; Edelenbos, Merete; Larsen, Erik; Feilberg, Anders

    2012-11-22

    Volatile organic compounds (VOCs) in cut onions (Allium cepa L.) were continuously measured by PTR-MS during the first 120 min after cutting. The headspace composition changed rapidly due to the very reactive volatile sulfurous compounds emitted from onion tissue after cell disruption. Mass spectral signals corresponding to propanethial S-oxide (the lachrymatory factor) and breakdown products of this compound dominated 0-10 min after cutting. Subsequently, propanethiol and dipropyl disulfide predominantly appeared, together with traces of thiosulfinates. The concentrations of these compounds reached a maximum at 60 min after cutting. Propanethiol was present in highest concentrations and had an odor activity value 20 times higher than dipropyl disulfide. Thus, propanethiol is suggested to be the main source of the characteristic onion odor. Monitoring the rapid changes of VOCs in the headspace of cut onion necessitates a high time resolution, and PTR-MS is demonstrated to be a very suitable method for monitoring the headspace of freshly cut onions directly after cutting without extraction or pre-concentration.

  6. Consumption of brown onions (Allium cepa var. cavalier and var. destiny) moderately modulates blood lipids, haematological and haemostatic variables in healthy pigs.

    PubMed

    Ostrowska, Ewa; Gabler, Nicholas K; Sterling, Sam J; Tatham, Brendan G; Jones, Rodney B; Eagling, David R; Jois, Mark; Dunshea, Frank R

    2004-02-01

    Although garlic and onions have long been associated with putative cardiovascular health benefits, the effects of different commercially available onions and level of intake have not been studied. Therefore, the aim of the present study was to evaluate the potential health benefits of raw onions using the pig as a biomedical model. Twenty-five female (Large White x Landrace) pigs were used in a (2 x 2)+1 factorial experiment. Pigs were fed a standard grower diet supplemented with 100 g tallow/kg with the addition of Allium cepa var. cavalier or var. destiny at 0, 10 or 25 g/MJ digestible energy for 6 weeks. Overall, the consumption of onions resulted in significant reductions in plasma triacylglycerol; however, the reductions were most pronounced in pigs fed destiny onions (-26 %, P=0.042). Total plasma cholesterol and LDL:HDL ratios were not significantly different. Onion supplementation, regardless of the variety, resulted in dose-dependent reductions in erythrocyte counts and Hb levels, while the white blood cell concentrations, particularly lymphocytes, were increased in pigs that consumed onions. Furthermore, indices of blood clotting were largely unaffected by onion consumption. In conclusion, dietary supplementation with raw brown onions has moderate lipid-modulating and immunostimulatory properties. However, daily onion intake >25 g/MJ digestible energy could be detrimental to erythrocyte numbers.

  7. Effect of single alien chromosome from shallot (Allium cepa L. Aggregatum group) on carbohydrate production in leaf blade of bunching onion (A. fistulosum L.).

    PubMed

    Hang, Tran Thi Minh; Shigyo, Masayoshi; Yaguchi, Shigenori; Yamauchi, Naoki; Tashiro, Yosuke

    2004-12-01

    We used a complete set of Allium fistulosum - shallot (A. cepa Aggregatum group) monosomic addition lines (FF+1A - FF+8A) to identify shallot chromosomes affecting the production of sugars. In the alien addition lines grown over two years in an experimental field at Yamaguchi University (34 degrees N, 131 degrees E), shallot chromosomes 2A and 8A altered sugar contents in leaf-bunching onion (A. fistulosum). Except for FF+2A, every monosomic addition accumulated non-reducing sugars in winter leaf blades. FF+8A caused an increase in the amounts of non-reducing sugars in the winter. FF+2A hardly produced non-reducing sugar throughout the two-year study. These results indicated that genes related to non-reducing sugar metabolism are located on the 2A and 8A chromosomes. The results of regression analyses using 2002 data on A. fistulosum and the monosomic addition set revealed a correlation (r = 0.63 +/- 0.07; mean +/- SE., n = 9) between reducing sugar and monosaccharide (Glc+Fru) contents but no correlation between non-reducing sugar and sucrose contents. This result indicates the existence of other polysaccharides (e.g., scorodose) as non-reducing sugars in the leaf blade. PMID:15729002

  8. Anti-obesity activity of Allium fistulosum L. extract by down-regulation of the expression of lipogenic genes in high-fat diet-induced obese mice.

    PubMed

    Sung, Yoon-Young; Yoon, Taesook; Kim, Seung Ju; Yang, Won-Kyung; Kim, Ho Kyoung

    2011-01-01

    This study investigated the anti-obesity activity and underlying mechanism of a 70% ethanol extract from Allium fistulosum L. (AFE) in high-fat diet-induced obese mice. AFE was orally administered to mice with the high-fat diet at a dose of 400 mg/kg/day for 6.5 weeks. AFE treatment significantly reduced body weight and white adipose tissue (subcutaneous, epididymal and retroperitoneal) weight as well as adipocyte size compared to high-fat diet-induced control mice. AFE also significantly decreased triglyceride, total cholesterol, low density lipoprotein-cholesterol and leptin concentrations in the serum of the mice, whereas it increased adiponectin levels. Furthermore, AFE suppressed the mRNA expression of transcription factors, such as sterol regulatory element binding protein-1c and peroxisome proliferator activated receptor γ, as well as fatty acid synthase in the subcutaneous adipose tissue. These results suggest that AFE inhibited the adipose size, fat accumulation and serum lipid concentrations by down-regulation of the expression of genes involved in lipogenesis in the adipose tissue of high-fat diet-induced obese mice. PMID:21468588

  9. Vermistabilization of sugar beet (Beta vulgaris L) waste produced from sugar factory using earthworm Eisenia fetida: Genotoxic assessment by Allium cepa test.

    PubMed

    Bhat, Sartaj Ahmad; Singh, Jaswinder; Vig, Adarsh Pal

    2015-08-01

    In the present study, sugar beet mud (SBM) and pulp (SBP) produced as a waste by-products of the sugar industry were mixed with cattle dung (CD) at different ratios on dry weight basis for vermicomposting with Eisenia fetida. Minimum mortality and highest population of worms were observed in 20:80 (SBM20) mixture of SBM and 10:90 (SBP10) ratios. However, increased percentages of wastes significantly affected the growth and fecundity of worms. Nutrients like nitrogen, phosphorus, sodium, increased from initial feed mixture to final products (i.e., vermicompost), while organic carbon (OC), C:N ratio and electrical conductivity (EC) declined in all the products of vermicomposting. Although there was an increase in the contents of all the heavy metals except copper, chromium, and iron in SBM, the contents were less than the international standards for compost which indicates that the vermicompost can be used in the fields without any ill effects on the soil. Allium cepa root chromosomal aberration assay was used to evaluate the genotoxicity of pre- and post-vermicomposted SBM to understand the effect of vermicomposting on the reduction of toxicity. Genotoxicity analysis of post-vermicomposted samples of SBM revealed 18-75% decline in the aberration frequencies. Scanning electron microscopy (SEM) was recorded to identify the changes in texture in the control and vermicomposted samples. The vermicomposted mixtures in the presence of earthworms confirm more numerous surface irregularities that prove to be good manure.

  10. Effects of lead on the morphology and structure of the nucleolus in the root tip meristematic cells of Allium cepa L.

    PubMed

    Jiang, Ze; Zhang, Huaning; Qin, Rong; Zou, Jinhua; Wang, Junran; Shi, Qiuyue; Jiang, Wusheng; Liu, Donghua

    2014-07-31

    To study the toxic mechanisms of lead (Pb) in plants, the effects of Pb on the morphology and structure of the nucleolus in root tip meristematic cells of Allium cepa var. agrogarum L. were investigated. Fluorescence labeling, silver-stained indirect immunofluorescent microscopy and western blotting were used. Fluorescence labeling showed that Pb ions were localized in the meristematic cells and the uptake and accumulation of Pb increased with treatment time. At low concentrations of Pb (1-10 μM) there were persistent nucleoli in some cells during mitosis, and at high concentration (100 μM) many of the nucleolar organizing regions were localized on sticky chromosomes in metaphase and anaphase cells. Pb induced the release of particles containing argyrophilic proteins to be released from the nucleus into the cytoplasm. These proteins contained nucleophosmin and nucleolin. Pb also caused the extrusion of fibrillarin from the nucleus into the cytoplasm. Western blotting demonstrated the increased expression of these three major nucleolar proteins under Pb stress.

  11. Development of an efficient Agrobacterium-mediated transformation system and production of herbicide-resistant transgenic plants in garlic (Allium sativum L.).

    PubMed

    Ahn, Yul-Kyun; Yoon, Moo-Kyoung; Jeon, Jong-Seong

    2013-08-01

    The genetic improvement of garlic plants (Allium sativum L.) with agronomical beneficial traits is rarely achieved due to the lack of an applicable transformation system. Here, we developed an efficient Agrobacterium-mediated transformation procedure with Danyang, an elite Korean garlic cultivar. Examination of sGFP (synthetic green fluorescence protein) expression revealed that treatment with 2-(N-morpholino) ethanesulfonic acid (MES), L-cysteine and/or dithiothreitol (DTT) gives the highest efficiency in transient gene transfer during Agrobacterium co-cultivation with calli derived from the roots of in vitro plantlets. To increase stable transformation efficiency, a two-step selection was employed on the basis of hygromycin resistance and sGFP expression. Of the hygromycin-resistant calli initially produced, only sGFP-expressing calli were subcultured for selection of transgenic calli. Transgenic plantlets produced from these calli were grown to maturity. The transformation efficiency increased up to 10.6% via our optimized procedure. DNA and RNA gel-blot analysis indicated that transgenic garlic plants stably integrated and expressed the phosphinothricin acetyltransferase (PAT) gene. A herbicide spraying assay demonstrated that transgenic plants of garlic conferred herbicide resistance, whilst nontransgenic plants and weeds died. These results indicate that our transformation system can be efficiently utilized to produce transgenic garlic plants with agronomic benefits.

  12. Evaluation of toxic, cytotoxic, mutagenic, and antimutagenic activities of natural and technical cashew nut shell liquids using the Allium cepa and Artemia salina bioassays.

    PubMed

    Leite, Aracelli de Sousa; Dantas, Alisson Ferreira; Oliveira, George Laylson da Silva; Gomes Júnior, Antonio L; de Lima, Sidney Gonçalo; Citó, Antônia Maria das Graças Lopes; de Freitas, Rivelilson M; Melo-Cavalcante, Ana Amélia de C; Dantas Lopes, José Arimateia

    2015-01-01

    The cashew nut releases a substance that is known as cashew nut shell liquid (CNSL). There are both natural (iCNSL) and technical (tCNSL) cashew nut shell liquids. This study used an Artemia salina bioassay to evaluate the toxic effects of iCNSL and tCNSL cashew nut shell liquids. It also evaluated the toxicity, cytotoxicity, and mutagenicity of CNSL and its effects on the damage induced by copper sulfate (CuSO4·5H2O) on the meristems' root of Allium cepa. Effects of the damage induced by CuSO4·5H2O were evaluated before (pre-), during (co-), and after (post-) treatments. The iCNSL contained 94.5% anacardic acid, and the tCNSL contained 91.3% cardanol. The liquids were toxic to A. salina. Toxicity, cytotoxicity, and mutagenicity were observed with iCNSL compared with the negative control. Similarly, iCNSL failed to inhibit the toxicity and cytotoxicity of CuSO4·5H2O. The tCNSL was not toxic, cytotoxic, or mutagenic in any of the concentrations. However, the lowest iCNSL concentrations and all of the tCNSL concentrations had preventive, antimutagenic, and reparative effects on micronuclei and on chromosomal aberrations in the A. cepa. Therefore, protective, modulating, and reparative effects may be observed in the A. cepa, depending on the concentration and type of CNSL used.

  13. Action mechanisms of petroleum hydrocarbons present in waters impacted by an oil spill on the genetic material of Allium cepa root cells.

    PubMed

    Leme, Daniela Morais; de Angelis, Dejanira de Franceschi; Marin-Morales, Maria Aparecida

    2008-07-30

    Chromosomal aberration (CA) assays have been widely used, not only to assess the genotoxic effects of chemical agents, but also to evaluate their action mechanisms on the genetic material of exposed organisms. This is of particular interest, since such analyses provide a better knowledge related to the action of these agents on DNA. Among test organisms, Allium cepa is an outstanding species due to its sensitivity and suitable chromosomal features, which are essential for studies on chromosomal damage or disturbances in cell cycle. The goal of the present study was to analyze the action mechanisms of chemical agents present in petroleum polluted waters. Therefore, CA assay was carried out in A. cepa meristematic cells exposed to the Guaecá river waters, located in the city of São Sebastião, SP, Brazil, which had its waters impacted by an oil pipeline leak. Analyses of the aberration types showed clastogenic and aneugenic effects for the roots exposed to the polluted waters from Guaecá river, besides the induction of cell death. Probably all the observed effects were induced by the petroleum hydrocarbons derived from the oil leakage.

  14. Characterization of a 65 kDa NIF in the nuclear matrix of the monocot Allium cepa that interacts with nuclear spectrin-like proteins.

    PubMed

    Pérez-Munive, Clara; Blumenthal, Sonal S D; de la Espina, Susana Moreno Díaz

    2012-01-01

    Plant cells have a well organized nucleus and nuclear matrix, but lack orthologues of the main structural components of the metazoan nuclear matrix. Although data is limited, most plant nuclear structural proteins are coiled-coil proteins, such as the NIFs (nuclear intermediate filaments) in Pisum sativum that cross-react with anti-intermediate filament and anti-lamin antibodies, form filaments 6-12 nm in diameter in vitro, and may play the role of lamins. We have investigated the conservation and features of NIFs in a monocot species, Allium cepa, and compared them with onion lamin-like proteins. Polyclonal antisera against the pea 65 kDa NIF were used in 1D and 2D Western blots, ICM (imunofluorescence confocal microscopy) and IEM (immunoelectron microscopy). Their presence in the nuclear matrix was analysed by differential extraction of nuclei, and their association with structural spectrin-like proteins by co-immunoprecipitation and co-localization in ICM. NIF is a conserved structural component of the nucleus and its matrix in monocots with Mr and pI values similar to those of pea 65 kDa NIF, which localized to the nuclear envelope, perichromatin domains and foci, and to the nuclear matrix, interacting directly with structural nuclear spectrin-like proteins. Its similarities with some of the proteins described as onion lamin-like proteins suggest that they are highly related or perhaps the same proteins.

  15. Oxidative potential of ultraviolet-A irradiated or nonirradiated suspensions of titanium dioxide or silicon dioxide nanoparticles on Allium cepa roots.

    PubMed

    Koce, Jasna Dolenc; Drobne, Damjana; Klančnik, Katja; Makovec, Darko; Novak, Sara; Hočevar, Matej

    2014-04-01

    The effect of ultraviolet-A irradiated or nonirradiated suspensions of agglomerates of titanium dioxide (TiO(2)) or silicon dioxide (SiO(2)) nanoparticles on roots of the onion (Allium cepa) has been studied. The reactive potential of TiO(2) nanoparticles, which have photocatalytic potential, and the nonphotocatalytic SiO(2) nanoparticles with the same size of agglomerates was compared. The authors measured the activity of antioxidant enzymes glutathione reductase, ascorbate peroxidase, guaiacol peroxidase, and catalase as well as lipid peroxidation to assess the oxidative stress in exposed A. cepa roots. A wide range of concentrations of nanoparticles was tested (0.1-1000 µg/mL). The sizes of agglomerates ranged in both cases from 300 nm to 600 nm, and the exposure time was 24 h. Adsorption of SiO(2) nanoparticles on the root surface was minimal but became significant when roots were exposed to TiO(2) agglomerates. No significant biological effects were observed even at high exposure concentrations of SiO(2) and TiO(2) nanoparticles individually. Plants appear to be protected against nanoparticles by the cell wall, which shields the cell membrane from direct contact with the nanoparticles. The authors discuss the need to supplement conventional phytotoxicity and stress end points with measures of plant physiological state when evaluating the safety of nanoparticles.

  16. Oxidative potential of ultraviolet-A irradiated or nonirradiated suspensions of titanium dioxide or silicon dioxide nanoparticles on Allium cepa roots.

    PubMed

    Koce, Jasna Dolenc; Drobne, Damjana; Klančnik, Katja; Makovec, Darko; Novak, Sara; Hočevar, Matej

    2014-04-01

    The effect of ultraviolet-A irradiated or nonirradiated suspensions of agglomerates of titanium dioxide (TiO(2)) or silicon dioxide (SiO(2)) nanoparticles on roots of the onion (Allium cepa) has been studied. The reactive potential of TiO(2) nanoparticles, which have photocatalytic potential, and the nonphotocatalytic SiO(2) nanoparticles with the same size of agglomerates was compared. The authors measured the activity of antioxidant enzymes glutathione reductase, ascorbate peroxidase, guaiacol peroxidase, and catalase as well as lipid peroxidation to assess the oxidative stress in exposed A. cepa roots. A wide range of concentrations of nanoparticles was tested (0.1-1000 µg/mL). The sizes of agglomerates ranged in both cases from 300 nm to 600 nm, and the exposure time was 24 h. Adsorption of SiO(2) nanoparticles on the root surface was minimal but became significant when roots were exposed to TiO(2) agglomerates. No significant biological effects were observed even at high exposure concentrations of SiO(2) and TiO(2) nanoparticles individually. Plants appear to be protected against nanoparticles by the cell wall, which shields the cell membrane from direct contact with the nanoparticles. The authors discuss the need to supplement conventional phytotoxicity and stress end points with measures of plant physiological state when evaluating the safety of nanoparticles. PMID:24812678

  17. The biphasic interphase-mitotic polarity of cell nuclei induced under DNA replication stress seems to be correlated with Pin2 localization in root meristems of Allium cepa.

    PubMed

    Żabka, Aneta; Trzaskoma, Paweł; Winnicki, Konrad; Polit, Justyna Teresa; Chmielnicka, Agnieszka; Maszewski, Janusz

    2015-02-01

    Long-term treatment of Allium cepa seedlings with low concentration of hydroxyurea (HU) results in a disruption of cell cycle checkpoints, leading root apex meristem (RAM) cells to an abnormal organization of nuclear structures forming interphase (I) and mitotic (M) domains of chromatin at opposite poles of the nucleus. Thus far, both critical cell length and an uneven distribution of cyclin B-like proteins along the nuclear axis have been recognized as essential factors needed to facilitate the formation of biphasic interphase-mitotic (IM) cells. Two new aspects with respect to their emergence are investigated in this study. The first concerns a relationship between the polarity of increasing chromatin condensation (IM orientation) and the acropetal (base→apex) alignment of RAM cell files. The second problem involves the effects of auxin (IAA), on the frequency of IM cells. We provide evidence that there is an association between the advanced M-poles of the IM cell nuclei and the polarized accumulation sites of auxin efflux carriers (PIN2 proteins) and IAA. Furthermore, our observations reveal exclusion regions for PIN2 proteins in the microtubule-rich structures, such as preprophase bands (PPBs) and phragmoplast. The current and previous studies have prompted us to formulate a hypothetical mechanism linking PIN2-mediated unilateral localization of IAA and the induction of bipolar IM cells in HU-treated RAMs of A. cepa.

  18. Pyramided rice lines harbouring Allium sativum (asal) and Galanthus nivalis (gna) lectin genes impart enhanced resistance against major sap-sucking pests.

    PubMed

    Bharathi, Y; Vijaya Kumar, S; Pasalu, I C; Balachandran, S M; Reddy, V D; Rao, K V

    2011-03-20

    We have developed transgene pyramided rice lines, endowed with enhanced resistance to major sap-sucking insects, through sexual crosses made between two stable transgenic rice lines containing Allium sativum (asal) and Galanthus nivalis (gna) lectin genes. Presence and expression of asal and gna genes in pyramided lines were confirmed by PCR and western blot analyses. Segregation analysis of F₂ progenies disclosed digenic (9:3:3:1) inheritance of the transgenes. Homozygous F₃ plants carrying asal and gna genes were identified employing genetic and molecular methods besides insect bioassays. Pyramided lines, infested with brown planthopper (BPH), green leafhopper (GLH) and whitebacked planthopper (WBPH), proved more effective in reducing insect survival, fecundity, feeding ability besides delayed development of insects as compared to the parental transgenics. Under infested conditions, pyramided lines were found superior to the parental transgenics in their seed yield potential. This study represents first report on pyramiding of two lectin genes into rice exhibiting enhanced resistance against major sucking pests. The pyramided lines appear promising and might serve as a novel genetic resource in rice breeding aimed at durable and broad based resistance against hoppers.

  19. Evaluation of Toxic, Cytotoxic, Mutagenic, and Antimutagenic Activities of Natural and Technical Cashew Nut Shell Liquids Using the Allium cepa and Artemia salina Bioassays

    PubMed Central

    Leite, Aracelli de Sousa; Oliveira, George Laylson da Silva; Gomes Júnior, Antonio L.; de Lima, Sidney Gonçalo; Citó, Antônia Maria das Graças Lopes; de Freitas, Rivelilson M.; Melo-Cavalcante, Ana Amélia de C.; Dantas Lopes, José Arimateia

    2015-01-01

    The cashew nut releases a substance that is known as cashew nut shell liquid (CNSL). There are both natural (iCNSL) and technical (tCNSL) cashew nut shell liquids. This study used an Artemia salina bioassay to evaluate the toxic effects of iCNSL and tCNSL cashew nut shell liquids. It also evaluated the toxicity, cytotoxicity, and mutagenicity of CNSL and its effects on the damage induced by copper sulfate (CuSO4·5H2O) on the meristems' root of Allium cepa. Effects of the damage induced by CuSO4·5H2O were evaluated before (pre-), during (co-), and after (post-) treatments. The iCNSL contained 94.5% anacardic acid, and the tCNSL contained 91.3% cardanol. The liquids were toxic to A. salina. Toxicity, cytotoxicity, and mutagenicity were observed with iCNSL compared with the negative control. Similarly, iCNSL failed to inhibit the toxicity and cytotoxicity of CuSO4·5H2O. The tCNSL was not toxic, cytotoxic, or mutagenic in any of the concentrations. However, the lowest iCNSL concentrations and all of the tCNSL concentrations had preventive, antimutagenic, and reparative effects on micronuclei and on chromosomal aberrations in the A. cepa. Therefore, protective, modulating, and reparative effects may be observed in the A. cepa, depending on the concentration and type of CNSL used. PMID:25861638

  20. Allium cepa Extract and Quercetin Protect Neuronal Cells from Oxidative Stress via PKC-ε Inactivation/ERK1/2 Activation

    PubMed Central

    2016-01-01

    Oxidative stress plays an important role in the pathophysiology of various neurologic disorders. Allium cepa extract (ACE) and their main flavonoid component quercetin (QCT) possess antioxidant activities and protect neurons from oxidative stress. We investigated the underlying molecular mechanisms, particularly those linked to the antioxidant effects of the ACE. Primary cortical neuronal cells derived from mouse embryos were preincubated with ACE or QCT for 30 min and exposed to L-buthionine sulfoximine for 4~24 h. We found that ACE and QCT significantly decreased neuronal death and the ROS increase induced by L-buthionine-S, R-sulfoximine (BSO) in a concentration-dependent manner. Furthermore, ACE and QCT activated extracellular signal-regulated kinase 1/2 (ERK1/2), leading to downregulation of protein kinase C-ε (PKC-ε) in BSO-stimulated neuronal cells. In addition, ACE and QCT decreased the phosphorylated levels of p38 mitogen-activated protein kinase. Our results provide new insight into the protective mechanism of ACE and QCT against oxidative stress in neuronal cells. The results suggest that the inactivation of PKC-ε induced by phosphorylating ERK1/2 is responsible for the neuroprotective effect of ACE and QCT against BSO-induced oxidative stress. PMID:27668036

  1. Laboratory Evaluation of Larvicidal Activity of the Essential oil of Allium tuberosum Roots and its Selected Major Constituent Compounds Against Aedes albopictus (Diptera: Culicidae).

    PubMed

    Liu, Xin Chao; Zhou, Ligang; Liu, Qiyong; Liu, Zhi Long

    2015-05-01

    The aim of this research was to evaluate larvicidal activity of the essential oil of Allium tuberosum Rottler ex Sprengle roots and its constituents against larval mosquitoes (Aedes albopictus Skuse). Essential oil of A. tuberosum was obtained by hydrodistillation and analyzed by gas chromatography and gas chromatography-mass spectrometry. The major constituents of the oil were found to be sulfur-containing compounds, including allyl methyl trisulfide (35.19%), diallyl disulfide (28.31%), diallyl trisulfide (20.91%), and dimethyl trisulfide (12.33%). The essential oil of A. tuberosum exhibited larvicidal activity against the fourth-instar larvae of Ae. albopictus, with an LC50 value of 18 μg/ml. The constituents compounds-diallyl trisulfide (LC50 = 4 μg/ml) and diallyl disulfide (LC50 = 6 μg/ml)-possessed stronger larvicidal activity than allyl methyl trisulfide (LC50 = 27 μg/ml) and dimethyl trisulfide (LC50 = 35 μg/ml) against the fourth-instar larvae of Ae. albopictus. The results indicated that the essential oil of A. tuberosum and its major constituents have good potential as a source for natural larvicides. PMID:26334818

  2. Composition and immunotoxicity activity of major essential oils from stems of Allium victorialis L. var. platyphyllum Makino against Aedes aegypti L.

    PubMed

    Chung, Ill-Min; Song, Hong-Keun; Yeo, Min-A; Moon, Hyung-In

    2011-09-01

    The stems of Allium victorialis L. var. platyphyllum were extracted and the major essential oil composition and immunotoxicity effects were studied. The analyses were conducted by gas chromatography and mass spectroscopy (GC-MS), which revealed the essential oils of A. victorialis L. var. platyphyllum stems. The A. victorialis L. var. platyphyllum essential oil yield was 1.45%, and GC/MS analysis revealed that its major constituents were allyl methyl disulfide (24.36%), dimethyl trisulfide (11.78%), allyl cis-1-propenyl disulfide (9.17%), allyl methyl trisulfide (4.13%), and dipropyl trisulfide (7.22%). The essential oil had a significant toxic effect against early fourth-stage larvae of Aedes aegypti L. with an LC(50) value of 24.12 ppm and an LC(90) value of 34.67 ppm. Also, allyl methyl disulfide (≥95.0%), dimethyl trisulfide (≥95.0%), allyl cis-1-propenyl disulfide (≥95.0%), allyl methyl trisulfide (≥95.0%), and dipropyl trisulfide (≥95.0%) were tested against the F(21) laboratory strain of A. aegypti. Allyl cis-1-propenyl disulfide (≥95.0%) has good activity with an LC(50) value of 15.35 ppm. Also, the above data indicate that other major compounds may play a more important role in the toxicity of essential oils. PMID:21162628

  3. Evaluation of the synergistic effect of Allium sativum, Eugenia jambolana, Momordica charantia, Ocimum sanctum, and Psidium guajava on hepatic and intestinal drug metabolizing enzymes in rats

    PubMed Central

    Kumar, Devendra; Trivedi, Neerja; Dixit, Rakesh K.

    2016-01-01

    Aims/Background: This study was to investigated the synergistic effect of polyherbal formulations (PHF) of Allium sativum L., Eugenia jambolana Lam., Momordica charantia L., Ocimum sanctum Linn., and Psidium guajava L. in the inhibition/induction of hepatic and intestinal cytochrome P450 (CYPs) and Phase-II conjugated drug metabolizing enzymes (DMEs). Consumption of these herbal remedy has been extensively documented for diabetes treatment in Ayurveda. Methodology: PHF of these five herbs was prepared, and different doses were orally administered to Sprague–Dawley rats of different groups except control group. Expression of mRNA and activity of DMEs were examined by real-time polymerase chain reaction and high performance liquid chromatography in isolated liver and intestine microsomes in PHF pretreated rats. Results: The activities of hepatic and intestinal Phase-II enzyme levels increased along with mRNA levels except CYP3A mRNA level. PHF administration increases the activity of hepatic and intestinal UDP-glucuronyltransferase and glutathione S-transferase in response to dose and time; however, the activity of hepatic sulfotransferase increased at higher doses. Conclusions: CYPs and Phase-II conjugated enzymes levels can be modulated in dose and time dependent manner. Observations suggest that polyherbal formulation might be a possible cause of herb-drug interaction, due to changes in pharmacokinetic of crucial CYPs and Phase-II substrate drug. PMID:27757267

  4. Development and validation of a thin-layer chromatography-densitometric method for the quantitation of alliin from garlic (Allium sativum) and its formulations.

    PubMed

    Kanaki, Niranjan S; Rajani, M

    2005-01-01

    A selective, precise, and accurate high-performance thin-layer chromatographic (HPTLC) method has been proposed for the analysis of garlic and its formulations for their alliin content. The method involves densitometric evaluation of alliin after resolving it by HPTLC on silica gel plates with n-butanol-acetic acid-water (6 + 2 + 2, v/v) as the mobile phase. For densitometric evaluation, peak areas were recorded at 540 nm after derivatizing the resolved bands with ninhydrin reagent. The relation between the concentration of alliin and corresponding peak areas was found to be linear within the range of 250 to 1500 ng/spot. The method was validated for precision (interday and intraday), repeatability, and accuracy. Mean recovery was 98.36%. The method was applied for the quantitation of alliin in bulbs of Allium sativum Linn. (garlic) and its formulations. The proposed TLC method was found to be precise, specific, sensitive, and accurate and can be used for routine quality control of garlic and its formulations. PMID:16386011

  5. Effects of Lead on the Morphology and Structure of the Nucleolus in the Root Tip Meristematic Cells of Allium cepa L.

    PubMed Central

    Jiang, Ze; Zhang, Huaning; Qin, Rong; Zou, Jinhua; Wang, Junran; Shi, Qiuyue; Jiang, Wusheng; Liu, Donghua

    2014-01-01

    To study the toxic mechanisms of lead (Pb) in plants, the effects of Pb on the morphology and structure of the nucleolus in root tip meristematic cells of Allium cepa var. agrogarum L. were investigated. Fluorescence labeling, silver-stained indirect immunofluorescent microscopy and western blotting were used. Fluorescence labeling showed that Pb ions were localized in the meristematic cells and the uptake and accumulation of Pb increased with treatment time. At low concentrations of Pb (1–10 μM) there were persistent nucleoli in some cells during mitosis, and at high concentration (100 μM) many of the nucleolar organizing regions were localized on sticky chromosomes in metaphase and anaphase cells. Pb induced the release of particles containing argyrophilic proteins to be released from the nucleus into the cytoplasm. These proteins contained nucleophosmin and nucleolin. Pb also caused the extrusion of fibrillarin from the nucleus into the cytoplasm. Western blotting demonstrated the increased expression of these three major nucleolar proteins under Pb stress. PMID:25089875

  6. Aqueous Extract of Allium sativum (Linn.) Bulbs Ameliorated Pituitary-Testicular Injury and Dysfunction in Wistar Rats with Pb-Induced Reproductive Disturbances

    PubMed Central

    Ayoka, Abiodun O.; Ademoye, Aderonke K.; Imafidon, Christian E.; Ojo, Esther O.; Oladele, Ayowole A.

    2016-01-01

    AIM: To determine the effects of aqueous extract of Allium sativum bulbs (AEASAB) on pituitary-testicular injury and dysfunction in Wistar rats with lead-induced reproductive disturbances. MATERIALS AND METHODS: Male Wistar rats were divided into 7 groups such that the control group received propylene glycol at 0.2 ml/100 g intraperitoneally for 10 consecutive days, the toxic group received lead (Pb) alone at 15 mg/kg/day via intraperitoneal route for 10 days while the treatment groups were pretreated with lead as the toxic group after which they received graded doses of the extract at 50, 100 and 200 mg/kg/day via oral route for 28 days. RESULTS: Pb administration induced significant deleterious alterations in the antioxidant status of the brain and testis, sperm characterization (counts, motility and viability) as well as reproductive hormones (FSH, LH and testosterone) of exposed rats (p < 0.05). These were significantly reversed in the AEASAB-treated groups (p < 0.05). Also, there was marked improvement in the Pb-induced vascular congestion and cellular loss in the pituitary while the observed Pb-induced severe testicular vacuolation was significantly reversed in the representative photomicrographs, following administration of the extract. CONCLUSION: AEASAB treatment ameliorated the pituitary-testicular injury and dysfunction in Wistar rats with Pb-Induced reproductive disturbances. PMID:27335588

  7. Allium cepa Extract and Quercetin Protect Neuronal Cells from Oxidative Stress via PKC-ε Inactivation/ERK1/2 Activation

    PubMed Central

    2016-01-01

    Oxidative stress plays an important role in the pathophysiology of various neurologic disorders. Allium cepa extract (ACE) and their main flavonoid component quercetin (QCT) possess antioxidant activities and protect neurons from oxidative stress. We investigated the underlying molecular mechanisms, particularly those linked to the antioxidant effects of the ACE. Primary cortical neuronal cells derived from mouse embryos were preincubated with ACE or QCT for 30 min and exposed to L-buthionine sulfoximine for 4~24 h. We found that ACE and QCT significantly decreased neuronal death and the ROS increase induced by L-buthionine-S, R-sulfoximine (BSO) in a concentration-dependent manner. Furthermore, ACE and QCT activated extracellular signal-regulated kinase 1/2 (ERK1/2), leading to downregulation of protein kinase C-ε (PKC-ε) in BSO-stimulated neuronal cells. In addition, ACE and QCT decreased the phosphorylated levels of p38 mitogen-activated protein kinase. Our results provide new insight into the protective mechanism of ACE and QCT against oxidative stress in neuronal cells. The results suggest that the inactivation of PKC-ε induced by phosphorylating ERK1/2 is responsible for the neuroprotective effect of ACE and QCT against BSO-induced oxidative stress.

  8. Comparison of cytotoxic and genotoxic effects of plutonium-239 alpha particles and mobile phone GSM 900 radiation in the Allium cepa test.

    PubMed

    Pesnya, Dmitry S; Romanovsky, Anton V

    2013-01-20

    The goal of this study was to compare the cytotoxic and genotoxic effects of plutonium-239 alpha particles and GSM 900 modulated mobile phone (model Sony Ericsson K550i) radiation in the Allium cepa test. Three groups of bulbs were exposed to mobile phone radiation during 0 (sham), 3 and 9h. A positive control group was treated during 20min with plutonium-239 alpha-radiation. Mitotic abnormalities, chromosome aberrations, micronuclei and mitotic index were analyzed. Exposure to alpha-radiation from plutonium-239 and exposure to modulated radiation from mobile phone during 3 and 9h significantly increased the mitotic index. GSM 900 mobile phone radiation as well as alpha-radiation from plutonium-239 induced both clastogenic and aneugenic effects. However, the aneugenic activity of mobile phone radiation was more pronounced. After 9h of exposure to mobile phone radiation, polyploid cells, three-groups metaphases, amitoses and some unspecified abnormalities were detected, which were not registered in the other experimental groups. Importantly, GSM 900 mobile phone radiation increased the mitotic index, the frequency of mitotic and chromosome abnormalities, and the micronucleus frequency in a time-dependent manner. Due to its sensitivity, the A. cepa test can be recommended as a useful cytogenetic assay to assess cytotoxic and genotoxic effects of radiofrequency electromagnetic fields.

  9. Confined direct analysis in real time ion source and its applications in analysis of volatile organic compounds of Citrus limon (lemon) and Allium cepa (onion).

    PubMed

    Li, Yue

    2012-05-30

    The DART (direct analysis in real time) ion source is a novel atmospheric pressure ionization technique that enables efficient ionization of gases, liquids and solids with high throughput. A major limit to its wider application in the analysis of gases is its poor detection sensitivity caused by open-air sampling. In this study, a confined interface between the DART ion source outlet and mass spectrometer sampling orifice was developed, where the plasma generated by the atmospheric pressure glow discharge collides and ionizes gas-phase molecules in a Tee-shaped flow tube instead of in open air. It leads to significant increase of collision reaction probability between high energy metastable molecules and analytes. The experimental results show that the ionization efficiency was increased at least by two orders of magnitude. This technique was then applied in the real time analysis of volatile organic compounds (VOCs) of Citrus Limon (lemon) and wounded Allium Cepa (onion). The confined DART ion source was proved to be a powerful tool for the studies of plant metabolomics.

  10. Laboratory Evaluation of Acute Toxicity of the Essential Oil of Allium tuberosum Leaves and Its Selected Major Constituents Against Apolygus lucorum (Hemiptera: Miridae)

    PubMed Central

    Shi, Jizhe; Liu, Xinchao; Li, Zhen; Zheng, Yuanyuan; Zhang, Qingwen; Liu, Xiaoxia

    2015-01-01

    The aim of this research was to evaluate acute toxicity of the essential oil of leaves of Chinese chives, Allium tuberosum Rottler ex Spreng (Asparagales: Alliaceae) and its major constituents against Apolygus lucorum Meyer-Dür (Hemiptera: Miridae). The essential oil of A. tuberosum leaves was obtained by hydrodistillation and analyzed by gas chromatography and gas chromatography-mass spectrometry. The major constituents of the oil were sulfur-containing compounds, including allyl methyl trisulfide (36.24%), diallyl disulfide (27.26%), diallyl trisulfide (18.68%), and dimethyl trisulfide (9.23%). The essential oil of A. tuberosum leaves exhibited acute toxicity against Ap. lucorum with an LD50 value of 20.03 μg per adult. Among the main compounds, diallyl trisulfide (LD50 = 10.13 μg per adult) showed stronger acute toxicity than allyl methyl trisulfide (LD50 = 21.10 μg per adult) and dimethyl trisulfide (LD50 = 21.65 μg per adult). The LD50 value of diallyl disulfide against Ap. lucorum was 28.10 μg per adult. The results indicated that the essential oil of A. tuberosum and its major constituents may have a potential to be developed as botanical insecticides against Ap. lucorum. PMID:26254289

  11. In Vitro Antibacterial Mechanism of Action of Crude Garlic (Allium sativum) Clove Extract on Selected Probiotic Bifidobacterium Species as Revealed by SEM, TEM, and SDS-PAGE Analysis.

    PubMed

    Booyens, J; Labuschagne, M C; Thantsha, M S

    2014-06-01

    There has been much research on the effects of garlic (Allium sativum) on numerous pathogens, but very few, if any, studies on its effect on beneficial, probiotic bifidobacteria. We have recently shown that garlic exhibits antibacterial activity against bifidobacteria. The mechanism by which garlic kills bifidobacteria is yet to be elucidated. This study sought to determine the mechanism of action of garlic clove extract on selected Bifidobacterium species using scanning and transmission electron microscopy and SDS-PAGE analysis. SEM micrographs revealed unusual morphological changes such as cell elongation, cocci-shaped cells with cross-walls, and distorted cells with bulbous ends. With TEM, observed changes included among others, condensation of cytoplasmic material, disintegration of membranes, and loss of structural integrity. SDS-PAGE analysis did not reveal any differences in whole-cell protein profiles of untreated and garlic clove extract-treated cells. The current study is the first to reveal the mechanism of action of garlic clove extract on probiotic Bifidobacterium species. The results indicate that garlic affects these beneficial bacteria in a manner similar to that exhibited in pathogens. These results therefore further highlight that caution should be taken especially when using raw garlic and probiotic bifidobacteria simultaneously as viability of these bacteria could be reduced by allicin released upon crushing of garlic cloves, thereby limiting the health benefits that the consumer anticipate to gain from probiotics.

  12. The biphasic interphase-mitotic polarity of cell nuclei induced under DNA replication stress seems to be correlated with Pin2 localization in root meristems of Allium cepa.

    PubMed

    Żabka, Aneta; Trzaskoma, Paweł; Winnicki, Konrad; Polit, Justyna Teresa; Chmielnicka, Agnieszka; Maszewski, Janusz

    2015-02-01

    Long-term treatment of Allium cepa seedlings with low concentration of hydroxyurea (HU) results in a disruption of cell cycle checkpoints, leading root apex meristem (RAM) cells to an abnormal organization of nuclear structures forming interphase (I) and mitotic (M) domains of chromatin at opposite poles of the nucleus. Thus far, both critical cell length and an uneven distribution of cyclin B-like proteins along the nuclear axis have been recognized as essential factors needed to facilitate the formation of biphasic interphase-mitotic (IM) cells. Two new aspects with respect to their emergence are investigated in this study. The first concerns a relationship between the polarity of increasing chromatin condensation (IM orientation) and the acropetal (base→apex) alignment of RAM cell files. The second problem involves the effects of auxin (IAA), on the frequency of IM cells. We provide evidence that there is an association between the advanced M-poles of the IM cell nuclei and the polarized accumulation sites of auxin efflux carriers (PIN2 proteins) and IAA. Furthermore, our observations reveal exclusion regions for PIN2 proteins in the microtubule-rich structures, such as preprophase bands (PPBs) and phragmoplast. The current and previous studies have prompted us to formulate a hypothetical mechanism linking PIN2-mediated unilateral localization of IAA and the induction of bipolar IM cells in HU-treated RAMs of A. cepa. PMID:25462968

  13. Comparative investigation of concentrations of major and trace elements in organic and conventional Danish agricultural crops. 1. Onions (Allium cepa Hysam) and peas (Pisum sativum ping pong).

    PubMed

    Gundersen, V; Bechmann, I E; Behrens, A; Stürup, S

    2000-12-01

    210 samples of onions (Allium cepa Hysam) from 11 conventionally and 10 organically cultivated sites and 190 samples of peas (Pisum sativum Ping Pong) from 10 conventionally and 9 organically cultivated sites in Denmark were collected and analyzed for 63 and 55 major and trace elements, respectively, by high-resolution inductively coupled plasma mass spectrometry. Sampling, sample preparation, and analysis of the samples were performed under carefully controlled contamination-free conditions. Comparative statistical tests of the element concentration mean values for each site show significantly (p < 0.05) different levels of Ca, Mg, B, Bi, Dy, Eu, Gd, Lu, Rb, Sb, Se, Sr, Ti, U, and Y between the organically and conventionally grown onions and significantly (p < 0.05) different levels of P, Gd, and Ti between the organically and conventionally grown peas. Principal component analysis (PCA) applied to the 63 elements measured in the individual onion samples from the 21 sites split up the sites into two groups according to the cultivation method when the scores of the first and third principal components were plotted against each other. Correspondingly, for peas, a PCA applied to the 55 elements measured as mean values for each site split up the 19 sites into two groups according to the cultivation method when the scores of the third and fourth principal component were plotted against each other. The methodology may be used as authenticity control for organic cultivation after further method development. PMID:11312781

  14. Acaricidal effect of essential oils from Lippia graveolens (Lamiales: Verbenaceae), Rosmarinus officinalis (Lamiales: Lamiaceae), and Allium sativum (Liliales: Liliaceae) against Rhipicephalus (Boophilus) microplus (Acari: Ixodidae).

    PubMed

    Martinez-Velazquez, M; Rosario-Cruz, R; Castillo-Herrera, G; Flores-Fernandez, J M; Alvarez, A H; Lugo-Cervantes, E

    2011-07-01

    Acaricidal effects of three essential oils extracted from Mexican oregano leaves (Lippia graveolens Kunth), rosemary leaves (Rosmarinus officinalis L.), and garlic bulbs (Allium sativum L.) on 10-d-old Rhipicephalus (Boophilus) microplus (Canestrini) tick larvae were evaluated by using the larval packet test bioassay. Serial dilutions of the three essential oils were tested from a starting concentration of 20 to 1.25%. Results showed that both Mexican oregano and garlic essential oils had very similar activity, producing high mortality (90-100%) in all tested concentrations on 10-d-old R. microplus tick larvae. Rosemary essential oil produced >85% larval mortality at the higher concentrations (10 and 20%), but the effect decreased noticeably to 40% at an oil concentration of 5%, and mortality was absent at 2.5 and 1.25% of the essential oil concentration. Chemical composition of the essential oils was elucidated by gas chromatography-mass spectrometry analyses. Mexican oregano essential oil included thymol (24.59%), carvacrol (24.54%), p-cymene (13.6%), and y-terpinene (7.43%) as its main compounds, whereas rosemary essential oil was rich in a-pinene (31.07%), verbenone (15.26%), and 1,8-cineol (14.2%), and garlic essential oil was rich in diallyl trisulfide (33.57%), diallyl disulfide (30.93%), and methyl allyl trisulfide (11.28%). These results suggest that Mexican oregano and garlic essential oils merit further investigation as components of alternative approaches for R. microplus tick control. PMID:21845941

  15. Post-treatment with plant extracts used in Brazilian folk medicine caused a partial reversal of the antiproliferative effect of glyphosate in the Allium cepa test.

    PubMed

    Frescura, Viviane Dal-Souto; Kuhn, Andrielle Wouters; Laughinghouse, Haywood Dail; Paranhos, Juçara Terezinha; Tedesco, Solange Bosio

    2013-08-01

    Species of the genus Psychotria are used for multiple purposes in Brazilian folk medicine, either as water infusions, baths or poultices. This study was aimed to evaluate the genotoxic and antiproliferative effects of infusions of Psychotria brachypoda and P. birotula on the Allium cepa test. Exposure to distilled water was used as a negative control, while exposure to glyphosate was used as a positive control. The interaction of extracts (as a post-treatment) with the effects of glyphosate was also studied. Results showed that glyphosate and the extracts of both P. brachypoda and P. birotula reduced the mitotic index as compared with the negative control (distilled water). Surprisingly, however, both extracts from P. brachypoda and P. birotula caused a partial reversal of the antiproliferative effect of glyphosate when used as a post-treatment. Glyphosate also induced the highest number of cells with chromosomal alterations, which was followed by that of P. birotula extracts. However, the extracts from P. brachypoda did not show any significant genotoxic effect. Post-treatment of glyphosate-treated samples with distilled water allowed a partial recovery of the genotoxic effect of glyphosate, and some of the Psychotria extracts also did so. Notably, post-treatment of glyphosate-treated samples with P. brachypoda extracts induced a statistically significant apoptotic effect. It is concluded that P. brachypoda extracts show antiproliferative effects and are not genotoxic, while extracts of P. birotula show a less potent antiproliferative effect and may induce chromosomal abnormalities. The finding of a partial reversion of the effects of glyphosate by a post-treatment with extracts from both plants should be followed up. PMID:24392578

  16. Analysis of cytotoxicity and genotoxicity on E. coli, human blood cells and Allium cepa suggests a greater toxic potential of hair dye.

    PubMed

    Maiti, Swati; Sasmal, Kankaayan; Sinha, Sudarson Sekhar; Singh, Mukesh

    2016-02-01

    Pharmaceuticals and personal care products (PPCPs) are among the most important emerging environmental contaminants in recent time. PPCPs include wide range of cosmetics, among which hair dyes, are immensely popular in modern society. However, impact of hair dye and its residual discharged to the environment in relation to human health and ecological imbalance have not been widely studied. Based on the result of initial survey among the group of populations of eastern India, three most popular and commonly used permanent hair dyes are selected. Working sample of dye is prepared as recommended on the instructions booklet of the hair dye. The effect of three dyes is studied on Escherichia coli, human red blood cells (RBC), white blood cells (WBC) and Allium cepa bulbs by growth inhibition, hemolysis, 3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay and A. cepa micronuclei assays respectively. The Lethal dose (LD) demonstrated significant differences among three dyes and the model systems. In vitro hemolytic assays performed on RBC, and MTT assays on WBC show the cytotoxic effects of hair dye. Significant growth inhibition of E. coli has also been noted. In addition, the root tips of A. cepa treated with the dye have shown major chromosomal abnormalities coupled with cell division retardation. Here low mitotic index confirm cell division retardation. Finally, results of in vitro studies of dye-DNA interactions demonstrate electrostatic interaction. Combing all these results it confirms that hair dyes are cytotoxic and may cause mutagenic effect on living cells irrespective of microbes, plant and animal system. PMID:26544094

  17. Production and characterization of alien chromosome additions in shallot (Allium cepa L. Aggregatum group) carrying extra chromosome(s) of Japanese bunching onion (A. fistulosum L.).

    PubMed

    Hang, Tran Thi Minh; Shigyo, Masayoshi; Yamauchi, Naoki; Tashiro, Yosuke

    2004-10-01

    First and second backcrosses of amphidiploid hybrids (2n = 4x = 32, genomes AAFF) between shallot (Allium cepa Aggregatum group) and A. fistulosum were conducted to produce A. cepa - A. fistulosum alien addition lines. When shallot (A. cepa Aggregatum group) was used as a pollinator, the amphidiploids and allotriploids set germinable BC(1) and BC(2) seeds, respectively. The 237 BC(1) plants mainly consisted of 170 allotriploids (2n = 3x = 24, AAF) and 42 hypo-allotriploids possessing 23 chromosomes, i.e., single-alien deletions (2n = 3x-1 = 23, AAF-nF). The single-alien deletions in the BC(1) progeny showed dwarfing characteristics and were discriminated from the allotriploids (2n = 24) and hyper-allotriploids (2n = 25) by means of flow cytometric analysis. The chromosome numbers of 46 BC(2) seedlings varied from 16 to 24. Eight monosomic additions (2n = 2x+1 = 17, AA+nF) and 20 single-alien deletions were found in these BC(2) seedlings. Consequently, six kinds of A. cepa - A. fistulosum alien chromosome additions possessing different chromosome numbers (2n = 17, 18, 20, 21, 22, 23) were recognized in the BC(1) and BC(2) populations. A total of 79 aneuploids, including 62 single-alien deletions, were analyzed by a chromosome 6F-specific isozyme marker (Got-2) in order to recognize its existence in their chromosome complements. This analysis revealed that two out of 62 single-alien deletions did not possess 6F. One (AAF-6F) out of the possible eight single-alien deletions could be identified at first. The present study is a first step toward the development of a useful tool, such as a complete set of eight different single-alien deletions, for the rapid chromosomal assignment of genes and genetic markers in A. fistulosum.

  18. Molecular characterization of transgenic shallots (Allium cepa L.) by adaptor ligation PCR (AL-PCR) and sequencing of genomic DNA flanking T-DNA borders.

    PubMed

    Zheng, S J; Henken, B; Sofiari, E; Jacobsen, E; Krens, F A; Kik, C

    2001-06-01

    Genomic DNA blot hybridization is traditionally used to demonstrate that, via genetic transformation, foreign genes are integrated into host genomes. However, in large genome species, such as Allium cepa L., the use of genomic DNA blot hybridization is pushed towards its limits, because a considerable quantity of DNA is needed to obtain enough genome copies for a clear hybridization pattern. Furthermore, genomic DNA blot hybridization is a time-consuming method. Adaptor ligation PCR (AL-PCR) of genomic DNA flanking T-DNA borders does not have these drawbacks and seems to be an adequate alternative to genomic DNA blot hybridization. Using AL-PCR we proved that T-DNA was integrated into the A. cepa genome of three transgenic lines transformed with Agrobacterium tumefaciens EHA 105 (pCAMBIA 1301). The AL-PCR patterns obtained were specific and reproducible for a given transgenic line. The results showed that T-DNA integration took place and gave insight in the number of T-DNA copies present. Comparison of AL-PCR and previously obtained genomic DNA blot hybridization results pointed towards complex T-DNA integration patterns in some of the transgenic plants. After cloning and sequencing the AL-PCR products, the junctions between plant genomic DNA and the T-DNA insert could be analysed in great detail. For example it was shown that upon T-DNA integration a 66 bp genomic sequence was deleted, and no filler DNA was inserted. Primers located within the left and right flanking genomic DNA in transgenic shallot plants were used to recover the target site of T-DNA integration.

  19. Molecular and biochemical identification of alien chromosome additions in shallot (Allium cepa L. Aggregatum group) carrying extra chromosome(s) of bunching onion (A. fistulosum L.).

    PubMed

    Yaguchi, Shigenori; Hang, Tran Thi Minh; Tsukazaki, Hikaru; Hoa, Vu Quynh; Masuzaki, Shin-ichi; Wako, Tadayuki; Masamura, Noriya; Onodera, Shuichi; Shiomi, Norio; Yamauchi, Naoki; Shigyo, Masayoshi

    2009-02-01

    To develop the bunching onion (Allium fistulosum L.; genomes, FF) chromosome-specific genetic markers for identifying extra chromosomes, eight shallot (A. cepa L. Aggregatum group; genomes, AA)--A. fistulosum monosomic addition plants (AA+nF) and 62 shallot--A. fistulosum single-alien deletion plants (AAF-nF) were analyzed by 23 different chromosome-specific genetic markers of shallot. The eight monosomic addition plants consisted of one AA+2F, two AA+6F, and five AA+8F. Of the 62 single-alien deletion plants, 60 could be identified as six different single-alien deletion lines (AAF-1F, -3F, -4F, -6F, -7F, and -8F) out of the eight possible types. Several single-alien deletion lines were classified on the basis of leaf and bulb characteristics. AAF-8F had the largest number of expanded leaves of five deletion plants. AAF-7F grew most vigorously, as expressed by its long leaf blade and biggest bulb size. AAF-4F had very small bulbs. AAF-7F and AAF-8F had different bulbs from those of shallot as well as other types of single-alien deletion lines in skin and outer scale color. Regarding the sugar content of the bulb tissues, the single-alien deletion lines showed higher fructan content than shallot. Moreover, shallot could not produce fructan with degree of polymerization (DP) 12 or higher, although the single-alien deletion lines showed DP 20 or higher. The content of S-alk(en)yl-L-cysteine sulfoxide (ACSO) in the single-alien deletion lines was significantly lower than that in shallot. These results indicated that chromosomes from A. fistulosum might carry anonymous factors to increase the highly polymerized fructan production and inhibit the synthesis of ACSO in shallot bulbs. Accordingly, alien chromosomes from A. fistulosum in shallot would contribute to modify the quality of shallot bulbs.

  20. Allium cepa L. and Quercetin Inhibit RANKL/Porphyromonas gingivalis LPS-Induced Osteoclastogenesis by Downregulating NF-κB Signaling Pathway.

    PubMed

    Oliveira, Tatiane; Figueiredo, Camila A; Brito, Carlos; Stavroullakis, Alexander; Ferreira, Ana Carolina; Nogueira-Filho, Getulio; Prakki, Anuradha

    2015-01-01

    Objectives. We evaluated the in vitro modulatory effects of Allium cepa L. extract (AcE) and quercetin (Qt) on osteoclastogenesis under inflammatory conditions (LPS-induced). Methods. RAW 264.7 cells were differentiated with 30 ng/mL of RANKL, costimulated with PgLPS (1 µg/mL), and treated with AcE (50-1000 µg/mL) or Qt (1.25, 2.5, or 5 µM). Cell viability was determined by alamarBlue and protein assays. Nuclei morphology was analysed by DAPI staining. TRAP assays were performed as follows: p-nitrophenyl phosphate was used to determine the acid phosphatase activity of the osteoclasts and TRAP staining was used to evaluate the number and size of TRAP-positive multinucleated osteoclast cells. Von Kossa staining was used to measure osteoclast resorptive activity. Cytokine levels were measured on osteoclast precursor cell culture supernatants. Using western blot analysis, p-IκBα and IκBα degradation, inhibitor of NF-kappaB, were evaluated. Results. Both AcE and Qt did not affect cell viability and significantly reduced osteoclastogenesis compared to control. We observed lower production of IL-6 and IL-1α and an increased production of IL-3 and IL-4. AcE and Qt downregulated NF-κB pathway. Conclusion. AcE and Qt may be inhibitors of osteoclastogenesis under inflammatory conditions (LPS-induced) via attenuation of RANKL/PgLPS-induced NF-κB activation. PMID:26273314

  1. Fumigant activity of plant essential oils and components from garlic (Allium sativum) and clove bud (Eugenia caryophyllata) oils against the Japanese termite (Reticulitermes speratus Kolbe).

    PubMed

    Park, Il-Kwon; Shin, Sang-Chul

    2005-06-01

    Plant essential oils from 29 plant species were tested for their insecticidal activities against the Japanese termite, Reticulitermes speratus Kolbe, using a fumigation bioassay. Responses varied with plant material, exposure time, and concentration. Good insecticidal activity against the Japanese termite was achived with essential oils of Melaleuca dissitiflora, Melaleuca uncinata, Eucalyptus citriodora, Eucalyptus polybractea, Eucalyptus radiata, Eucalyptus dives, Eucalyptus globulus, Orixa japonica, Cinnamomum cassia, Allium cepa, Illicium verum, Evodia officinalis, Schizonepeta tenuifolia, Cacalia roborowskii, Juniperus chinensis var. horizontalis, Juniperus chinensis var. kaizuka, clove bud, and garlic applied at 7.6 microL/L of air. Over 90% mortality after 3 days was achieved with O. japonica essential oil at 3.5 microL/L of air. E. citriodora, C. cassia, A. cepa, I. verum, S. tenuifolia, C. roborowskii, clove bud, and garlic oils at 3.5 microL/L of air were highly toxic 1 day after treatment. At 2.0 microL/L of air concentration, essential oils of I. verum, C. roborowskik, S. tenuifolia, A. cepa, clove bud, and garlic gave 100% mortality within 2 days of treatment. Clove bud and garlic oils showed the most potent antitermitic activity among the plant essential oils. Garlic and clove bud oils produced 100% mortality at 0.5 microL/L of air, but this decreased to 42 and 67% after 3 days of treatment at 0.25 microL/L of air, respectively. Analysis by gas chromatography-mass spectrometry led to the identification of three major compounds from garlic oil and two from clove bud oils. These five compounds from two essential oils were tested individually for their insecticidal activities against Japanese termites. Responses varied with compound and dose. Diallyl trisulfide was the most toxic, followed by diallyl disulfide, eugenol, diallyl sulfide, and beta-caryophyllene. The essential oils described herein merit further study as potential fumigants for termite

  2. Identification of a novel chimeric gene, orf725, and its use in development of a molecular marker for distinguishing among three cytoplasm types in onion (Allium cepa L.).

    PubMed

    Kim, Sunggil; Lee, Eul-Tai; Cho, Dong Youn; Han, Taeho; Bang, Haejeen; Patil, Bhimanagouda S; Ahn, Yul Kyun; Yoon, Moo-Kyoung

    2009-02-01

    A novel chimeric gene with a 5' end containing the nearly complete sequence of the coxI gene and a 3' end showing homology with chive orfA501 was isolated by genome walking from two cytoplasm types: CMS-S and CMS-T, both of which induce male-sterility in onion (Allium cepa L.). In addition, the normal active and variant inactive coxI genes were also isolated from onions containing the normal and CMS-S cytoplasms, respectively. The chimeric gene, designated as orf725, was nearly undetectable in normal cytoplasm, and the copy number of the normal coxI gene was significantly reduced in CMS-S cytoplasm. RT-PCR results showed that orf725 was not transcribed in normal cytoplasm. Meanwhile, the normal coxI gene, which is essential for normal mitochondrial function, was not expressed in CMS-S cytoplasm. However, both orf725 and coxI were transcribed in CMS-T cytoplasm. The expression of orf725, a putative male-sterility-inducing gene, was not affected by the presence of nuclear restorer-of-fertility gene(s) in male-fertility segregating populations originating from the cross between a male-sterile plant containing either CMS-T or CMS-S and a male-fertile plant whose genotypes of nuclear restorer gene(s) might be heterozygous. The specific stoichiometry of orf725 and coxI in the mtDNA of the three cytoplasm types was consistent among diverse germplasm. Therefore, a molecular marker based on the relative copy numbers of orf725 and coxI was designed for distinguishing among the three cytoplasm types by one simple PCR. The reliability and applicability of the molecular marker was shown by testing diverse onion germplasm.

  3. Production and characterization of alien chromosome additions in shallot (Allium cepa L. Aggregatum group) carrying extra chromosome(s) of Japanese bunching onion (A. fistulosum L.).

    PubMed

    Hang, Tran Thi Minh; Shigyo, Masayoshi; Yamauchi, Naoki; Tashiro, Yosuke

    2004-10-01

    First and second backcrosses of amphidiploid hybrids (2n = 4x = 32, genomes AAFF) between shallot (Allium cepa Aggregatum group) and A. fistulosum were conducted to produce A. cepa - A. fistulosum alien addition lines. When shallot (A. cepa Aggregatum group) was used as a pollinator, the amphidiploids and allotriploids set germinable BC(1) and BC(2) seeds, respectively. The 237 BC(1) plants mainly consisted of 170 allotriploids (2n = 3x = 24, AAF) and 42 hypo-allotriploids possessing 23 chromosomes, i.e., single-alien deletions (2n = 3x-1 = 23, AAF-nF). The single-alien deletions in the BC(1) progeny showed dwarfing characteristics and were discriminated from the allotriploids (2n = 24) and hyper-allotriploids (2n = 25) by means of flow cytometric analysis. The chromosome numbers of 46 BC(2) seedlings varied from 16 to 24. Eight monosomic additions (2n = 2x+1 = 17, AA+nF) and 20 single-alien deletions were found in these BC(2) seedlings. Consequently, six kinds of A. cepa - A. fistulosum alien chromosome additions possessing different chromosome numbers (2n = 17, 18, 20, 21, 22, 23) were recognized in the BC(1) and BC(2) populations. A total of 79 aneuploids, including 62 single-alien deletions, were analyzed by a chromosome 6F-specific isozyme marker (Got-2) in order to recognize its existence in their chromosome complements. This analysis revealed that two out of 62 single-alien deletions did not possess 6F. One (AAF-6F) out of the possible eight single-alien deletions could be identified at first. The present study is a first step toward the development of a useful tool, such as a complete set of eight different single-alien deletions, for the rapid chromosomal assignment of genes and genetic markers in A. fistulosum. PMID:15599056

  4. Garlic (Allium sativum) Fresh Juice Induces Apoptosis in Human Oral Squamous Cell Carcinoma: The Involvement of Caspase-3, Bax and Bcl-2

    PubMed Central

    Farhadi, Farrokh; Jahanpour, Salar; Hazem, Kameliya; Aghbali, Amirala; Baradran, Behzad; Vahid Pakdel, Seyyed Mahdi

    2015-01-01

    Background and aims. There is no report on the apoptotic impact of Allium sativum L.(Garlic) on the oral squamous cell carcinoma (KB); hence, this study was designed to survey the apoptotic effects of garlic fresh juice (GFJ) on the KB cells. Materials and methods. MTTassay (MicrocultureTetrazolium Assay) was carried out to evaluate the cytotoxicity of GFJ on KB cells. Furthermore, TUNEL(Terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling)and DNA fragmentation tests were performed to determine if GFJ is able to induce apoptosis in KB cells. Also a standard kit was used to assess caspase-3 activity in KB cells. Also western blotting was employed to evaluate the effect of GFJ on Bax:Bcl-2 ratio. Results. Significant cytotoxic effects were observed for the minimum used concentration (1μg/mL) as calculated to be 77.97±2.3% for 24 h and 818±3.1% for 36h of incubation (P < 0.001). Furthermore, TUNEL and DNA fragmentation tests corroborated the apoptosis inducing activity of GFJ. Consistently, after treating KB cells with GFJ(1μg/mL), caspase-3 activity and Bax:Bcl-2 ratio were raised by 7.3±0.6 and (P <0.001) folds, respectively. Conclusion. The results of this study advanced that GFJ induces apoptosis in the KB cells through increasing caspase-3 activity and Bax:Bcl2 ratio which could be attributed to its organo-sulfurcomponents. PMID:26889365

  5. Analysis of cytotoxicity and genotoxicity on E. coli, human blood cells and Allium cepa suggests a greater toxic potential of hair dye.

    PubMed

    Maiti, Swati; Sasmal, Kankaayan; Sinha, Sudarson Sekhar; Singh, Mukesh

    2016-02-01

    Pharmaceuticals and personal care products (PPCPs) are among the most important emerging environmental contaminants in recent time. PPCPs include wide range of cosmetics, among which hair dyes, are immensely popular in modern society. However, impact of hair dye and its residual discharged to the environment in relation to human health and ecological imbalance have not been widely studied. Based on the result of initial survey among the group of populations of eastern India, three most popular and commonly used permanent hair dyes are selected. Working sample of dye is prepared as recommended on the instructions booklet of the hair dye. The effect of three dyes is studied on Escherichia coli, human red blood cells (RBC), white blood cells (WBC) and Allium cepa bulbs by growth inhibition, hemolysis, 3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay and A. cepa micronuclei assays respectively. The Lethal dose (LD) demonstrated significant differences among three dyes and the model systems. In vitro hemolytic assays performed on RBC, and MTT assays on WBC show the cytotoxic effects of hair dye. Significant growth inhibition of E. coli has also been noted. In addition, the root tips of A. cepa treated with the dye have shown major chromosomal abnormalities coupled with cell division retardation. Here low mitotic index confirm cell division retardation. Finally, results of in vitro studies of dye-DNA interactions demonstrate electrostatic interaction. Combing all these results it confirms that hair dyes are cytotoxic and may cause mutagenic effect on living cells irrespective of microbes, plant and animal system.

  6. Molecular and biochemical identification of alien chromosome additions in shallot (Allium cepa L. Aggregatum group) carrying extra chromosome(s) of bunching onion (A. fistulosum L.).

    PubMed

    Yaguchi, Shigenori; Hang, Tran Thi Minh; Tsukazaki, Hikaru; Hoa, Vu Quynh; Masuzaki, Shin-ichi; Wako, Tadayuki; Masamura, Noriya; Onodera, Shuichi; Shiomi, Norio; Yamauchi, Naoki; Shigyo, Masayoshi

    2009-02-01

    To develop the bunching onion (Allium fistulosum L.; genomes, FF) chromosome-specific genetic markers for identifying extra chromosomes, eight shallot (A. cepa L. Aggregatum group; genomes, AA)--A. fistulosum monosomic addition plants (AA+nF) and 62 shallot--A. fistulosum single-alien deletion plants (AAF-nF) were analyzed by 23 different chromosome-specific genetic markers of shallot. The eight monosomic addition plants consisted of one AA+2F, two AA+6F, and five AA+8F. Of the 62 single-alien deletion plants, 60 could be identified as six different single-alien deletion lines (AAF-1F, -3F, -4F, -6F, -7F, and -8F) out of the eight possible types. Several single-alien deletion lines were classified on the basis of leaf and bulb characteristics. AAF-8F had the largest number of expanded leaves of five deletion plants. AAF-7F grew most vigorously, as expressed by its long leaf blade and biggest bulb size. AAF-4F had very small bulbs. AAF-7F and AAF-8F had different bulbs from those of shallot as well as other types of single-alien deletion lines in skin and outer scale color. Regarding the sugar content of the bulb tissues, the single-alien deletion lines showed higher fructan content than shallot. Moreover, shallot could not produce fructan with degree of polymerization (DP) 12 or higher, although the single-alien deletion lines showed DP 20 or higher. The content of S-alk(en)yl-L-cysteine sulfoxide (ACSO) in the single-alien deletion lines was significantly lower than that in shallot. These results indicated that chromosomes from A. fistulosum might carry anonymous factors to increase the highly polymerized fructan production and inhibit the synthesis of ACSO in shallot bulbs. Accordingly, alien chromosomes from A. fistulosum in shallot would contribute to modify the quality of shallot bulbs. PMID:19420800

  7. Change in Flavonoid Composition and Antioxidative Activity during Fermentation of Onion (Allium cepa L.) by Leuconostoc mesenteroides with Different Salt Concentrations.

    PubMed

    Lee, Yu Geon; Cho, Jeong-Yong; Kim, Young-Min; Moon, Jae-Hak

    2016-06-01

    The aim of this study is to investigate the change in flavonoid composition and antioxidative activity during fermentation of onion (Allium cepa L.) by Leuconostoc mesenteroides with different NaCl concentrations. In order to qualify and quantify the flavonoids during fermentation of onion, 7 flavonoids, [quercetin 3,7-O-β-d-diglucopyranoside (Q3,7G), quercetin 3,4'-O-β-d-diglucopyranoside (Q3,4'G), quercetin 3-O-β-d-glucopyranoside (Q3G), quercetin 4'-O-β-d-glucopyranoside (Q4'G), isorhamnetin 3-O-β-d-glucopyranoside (IR3G), quercetin (Q), and isorhamnetin (IR)], were isolated and identified from onion. During fermentation, the contents of flavonoid glucosides (Q3,7G, Q3,4'G, Q3G, Q4'G, and IR3G) gradually decreased, whereas the contents of flavonoid aglycones (Q, IR) gradually increased. Decline rates of the flavonoid glucosides increased with the addition of L. mesenteroides. Furthermore, the activity of β-glucosidase, which is produced by L. mesenteroides, is dose-dependently inhibited with different NaCl concentrations during fermentation. The presence of L. mesenteroides enhanced the antioxidative activity of onion as demonstrated using the 1,1-diphenyl-2-picrylhydrazyl, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), and reducing power assays. The enhancement of antioxidative activity was considered because the content of flavonoid aglycones increased during fermentation. However, the addition of NaCl may decrease the antioxidative activity; we surmise that this phenomenon occurs because of the inhibition of β-glucosidase by NaCl. Therefore, we conclude that the addition of NaCl may be useful for the regulation of antioxidative activity via the control of β-glucosidase action, during the fermentation of flavonoid glucoside-rich foods. PMID:27175820

  8. Allium cepa L. and Quercetin Inhibit RANKL/Porphyromonas gingivalis LPS-Induced Osteoclastogenesis by Downregulating NF-κB Signaling Pathway

    PubMed Central

    Oliveira, Tatiane; Figueiredo, Camila A.; Brito, Carlos; Stavroullakis, Alexander; Ferreira, Ana Carolina; Nogueira-Filho, Getulio; Prakki, Anuradha

    2015-01-01

    Objectives. We evaluated the in vitro modulatory effects of Allium cepa L. extract (AcE) and quercetin (Qt) on osteoclastogenesis under inflammatory conditions (LPS-induced). Methods. RAW 264.7 cells were differentiated with 30 ng/mL of RANKL, costimulated with PgLPS (1 µg/mL), and treated with AcE (50–1000 µg/mL) or Qt (1.25, 2.5, or 5 µM). Cell viability was determined by alamarBlue and protein assays. Nuclei morphology was analysed by DAPI staining. TRAP assays were performed as follows: p-nitrophenyl phosphate was used to determine the acid phosphatase activity of the osteoclasts and TRAP staining was used to evaluate the number and size of TRAP-positive multinucleated osteoclast cells. Von Kossa staining was used to measure osteoclast resorptive activity. Cytokine levels were measured on osteoclast precursor cell culture supernatants. Using western blot analysis, p-IκBα and IκBα degradation, inhibitor of NF-kappaB, were evaluated. Results. Both AcE and Qt did not affect cell viability and significantly reduced osteoclastogenesis compared to control. We observed lower production of IL-6 and IL-1α and an increased production of IL-3 and IL-4. AcE and Qt downregulated NF-κB pathway. Conclusion. AcE and Qt may be inhibitors of osteoclastogenesis under inflammatory conditions (LPS-induced) via attenuation of RANKL/PgLPS-induced NF-κB activation. PMID:26273314

  9. Post-treatment with plant extracts used in Brazilian folk medicine caused a partial reversal of the antiproliferative effect of glyphosate in the Allium cepa test.

    PubMed

    Frescura, Viviane Dal-Souto; Kuhn, Andrielle Wouters; Laughinghouse, Haywood Dail; Paranhos, Juçara Terezinha; Tedesco, Solange Bosio

    2013-08-01

    Species of the genus Psychotria are used for multiple purposes in Brazilian folk medicine, either as water infusions, baths or poultices. This study was aimed to evaluate the genotoxic and antiproliferative effects of infusions of Psychotria brachypoda and P. birotula on the Allium cepa test. Exposure to distilled water was used as a negative control, while exposure to glyphosate was used as a positive control. The interaction of extracts (as a post-treatment) with the effects of glyphosate was also studied. Results showed that glyphosate and the extracts of both P. brachypoda and P. birotula reduced the mitotic index as compared with the negative control (distilled water). Surprisingly, however, both extracts from P. brachypoda and P. birotula caused a partial reversal of the antiproliferative effect of glyphosate when used as a post-treatment. Glyphosate also induced the highest number of cells with chromosomal alterations, which was followed by that of P. birotula extracts. However, the extracts from P. brachypoda did not show any significant genotoxic effect. Post-treatment of glyphosate-treated samples with distilled water allowed a partial recovery of the genotoxic effect of glyphosate, and some of the Psychotria extracts also did so. Notably, post-treatment of glyphosate-treated samples with P. brachypoda extracts induced a statistically significant apoptotic effect. It is concluded that P. brachypoda extracts show antiproliferative effects and are not genotoxic, while extracts of P. birotula show a less potent antiproliferative effect and may induce chromosomal abnormalities. The finding of a partial reversion of the effects of glyphosate by a post-treatment with extracts from both plants should be followed up.

  10. Regulation of miR394 in Response to Fusarium oxysporum f. sp. cepae (FOC) Infection in Garlic (Allium sativum L)

    PubMed Central

    Chand, Subodh K.; Nanda, Satyabrata; Joshi, Raj K.

    2016-01-01

    MicroRNAs (miRNAs) are a class of post-transcriptional regulators that negatively regulate gene expression through target mRNA cleavage or translational inhibition and play important roles in plant development and stress response. In the present study, six conserved miRNAs from garlic (Allium sativum L.) were analyzed to identify differentially expressed miRNAs in response to Fusarium oxysporum f. sp. cepae (FOC) infection. Stem-loop RT-PCR revealed that miR394 is significantly induced in garlic seedlings post-treatment with FOC for 72 h. The induction of miR394 expression during FOC infection was restricted to the basal stem plate tissue, the primary site of infection. Garlic miR394 was also upregulated by exogenous application of jasmonic acid. Two putative targets of miR394 encoding F-box domain and cytochrome P450 (CYP450) family proteins were predicted and verified using 5′ RLM-RACE (RNA ligase mediated rapid amplification of cDNA ends) assay. Quantitative RT-PCR showed that the transcript levels of the predicted targets were significantly reduced in garlic plants exposed to FOC. When garlic cultivars with variable sensitivity to FOC were exposed to the pathogen, an upregulation of miR394 and down regulation of the targets were observed in both varieties. However, the expression pattern was delayed in the resistant genotypes. These results suggest that miR394 functions in negative modulation of FOC resistance and the difference in timing and levels of expression in variable genotypes could be examined as markers for selection of FOC resistant garlic cultivars. PMID:26973694

  11. Allium cepa L. as a bioindicator to measure cytotoxicity of surface water of the Quatorze River, located in Francisco Beltrão, Paraná, Brazil.

    PubMed

    Düsman, Elisângela; Luzza, Michel; Savegnago, Leoberto; Lauxen, Daiana; Vicentini, Veronica Elisa Pimenta; Tonial, Ivane Benedetti; Sauer, Ticiane Pokrywiecki

    2014-03-01

    Due to an increase in water consumption in the industrial sector and within the Brazilian population, surface water that receives wastewater from industries, domestic sewage, agricultural industries, and sewage treatment stations can pollute water bodies when not properly treated. The water quality has been linked to catchment characteristics and intensity of agricultural activities. Thus, the aim of this study was to monitor the cytotoxic potential of the water of the Quatorze River, located in the town of Francisco Beltrão, Paraná, Brazil, along its route in the rural area, using the root meristematic cells of Allium cepa L. as a bioindicator. The results showed that the water at points 2, 3, and 4 were not cytotoxic because the rates of A. cepa cell division were unaltered. Point 1 had presented a mitotic index that was statistically larger than the negative control, indicating that this water contained substances with mitogenic capacity, as demonstrated by elevated values in chemical oxygen demand (COD) and biochemical oxygen demand (BOD). However, the mitotic index values decreased along the route of the river (point 1 to point 4), possibly indicating a mechanism of self-purification, despite having received other sources of pollution. Thus, the results of this study show that the water of the Quatorze River should undergo periodic environmental monitoring at different times of the year, including cytotoxicity analysis, to evaluate the principal sources of contamination to maintain the quality of the river water and, consequently, to maintain human health and equilibrium of the entire ecosystem. PMID:24162370

  12. Therapeutic Uses and Pharmacological Properties of Garlic, Shallot, and Their Biologically Active Compounds

    PubMed Central

    Mikaili, Peyman; Maadirad, Surush; Moloudizargari, Milad; Aghajanshakeri, Shahin; Sarahroodi, Shadi

    2013-01-01

    Objective(s): Garlic (Allium sativum L. family Liliaceae) is well known in Iran and its leaves, flowers, and cloves have been used in traditional medicine for a long time. Research in recent decades has shown widespread pharmacological effects of A. sativum and its organosulfur compounds especially Allicin. Studies carried out on the chemical composition of the plant show that the most important constituents of this plant are organosulfur compounds such as allicin, diallyl disulphide, S-allylcysteine, and diallyl trisulfide. Allicin represents one of the most studied among these naturally occurring compounds. In addition to A. sativum, these compounds are also present in A. hirtifolium (shallot) and have been used to treat various diseases. This article reviews the pharmacological effects and traditional uses of A. sativum, A. hirtifolium, and their active constituents to show whether or not they can be further used as potential natural sources for the development of novel drugs. Materials and Methods: For this purpose, the authors went through a vast number of sources and articles and all needed data was gathered. The findings were reviewed and classified on the basis of relevance to the topic and a summary of all effects were reported as tables. Conclusion: Garlic and shallots are safe and rich sources of biologically active compounds with low toxicity. Further studies are needed to confirm the safety and quality of the plants to be used by clinicians as therapeutic agents. PMID:24379960

  13. Two different Bacillus thuringiensis toxin genes confer resistance to beet armyworm (Spodoptera exigua Hübner) in transgenic Bt-shallots (Allium cepa L.).

    PubMed

    Zheng, Si-Jun; Henken, Betty; de Maagd, Ruud A; Purwito, Agus; Krens, Frans A; Kik, Chris

    2005-06-01

    Agrobacterium-mediated genetic transformation was applied to produce beet armyworm (Spodoptera exigua Hübner) resistant tropical shallots (Allium cepa L. group Aggregatum). A cry1Ca or a H04 hybrid gene from Bacillus thuringiensis, driven by the chrysanthemum ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit (Rubisco SSU) promoter, along with the hygromycin phosphotransferase gene (hpt) driven by the CaMV 35S promoter, was employed for genetic transformation. An average transformation frequency of 3.68% was obtained from two shallot cultivars, Tropix and Kuning. After transfer of the in vitro plants to the greenhouse 69% of the cry1Ca and 39% of the H04 transgenic shallots survived the first half year. After one year of cultivation in the greenhouse the remaining cry1Ca and H04 transgenic plants grew vigorously and had a normal bulb formation, although the cry1Ca transgenic plants (and controls) had darker green leaves compared to their H04 counterparts. Standard PCR, adaptor ligation PCR and Southern analyses confirmed the integration of T-DNA into the shallot genome. Northern blot and ELISA analyses revealed expression of the cry1Ca or H04 gene in the transgenic plants. The amount of Cry1Ca expressed in transgenic plants was higher than the expression levels of H04 (0.39 vs. 0.16% of the total soluble leaf proteins, respectively). There was a good correlation between protein expression and beet armyworm resistance. Cry1Ca or H04 gene expression of at least 0.22 or 0.08% of the total soluble protein in shallot leaves was sufficient to give a complete resistance against beet armyworm. This confirms earlier observations that the H04 toxin is more toxic to S. exigua than the Cry1Ca toxin. The results from this study suggest that the cry1Ca and H04 transgenic shallots developed could be used for introducing resistance to beet armyworm in (sub) tropical shallot.

  14. Two different Bacillus thuringiensis toxin genes confer resistance to beet armyworm (Spodoptera exigua Hübner) in transgenic Bt-shallots (Allium cepa L.).

    PubMed

    Zheng, Si-Jun; Henken, Betty; de Maagd, Ruud A; Purwito, Agus; Krens, Frans A; Kik, Chris

    2005-06-01

    Agrobacterium-mediated genetic transformation was applied to produce beet armyworm (Spodoptera exigua Hübner) resistant tropical shallots (Allium cepa L. group Aggregatum). A cry1Ca or a H04 hybrid gene from Bacillus thuringiensis, driven by the chrysanthemum ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit (Rubisco SSU) promoter, along with the hygromycin phosphotransferase gene (hpt) driven by the CaMV 35S promoter, was employed for genetic transformation. An average transformation frequency of 3.68% was obtained from two shallot cultivars, Tropix and Kuning. After transfer of the in vitro plants to the greenhouse 69% of the cry1Ca and 39% of the H04 transgenic shallots survived the first half year. After one year of cultivation in the greenhouse the remaining cry1Ca and H04 transgenic plants grew vigorously and had a normal bulb formation, although the cry1Ca transgenic plants (and controls) had darker green leaves compared to their H04 counterparts. Standard PCR, adaptor ligation PCR and Southern analyses confirmed the integration of T-DNA into the shallot genome. Northern blot and ELISA analyses revealed expression of the cry1Ca or H04 gene in the transgenic plants. The amount of Cry1Ca expressed in transgenic plants was higher than the expression levels of H04 (0.39 vs. 0.16% of the total soluble leaf proteins, respectively). There was a good correlation between protein expression and beet armyworm resistance. Cry1Ca or H04 gene expression of at least 0.22 or 0.08% of the total soluble protein in shallot leaves was sufficient to give a complete resistance against beet armyworm. This confirms earlier observations that the H04 toxin is more toxic to S. exigua than the Cry1Ca toxin. The results from this study suggest that the cry1Ca and H04 transgenic shallots developed could be used for introducing resistance to beet armyworm in (sub) tropical shallot. PMID:16145834

  15. Survival or growth of inoculated Escherichia coli O157:H7 and Salmonella on yellow onions (Allium cepa) under conditions simulating food service and consumer handling and storage.

    PubMed

    Lieberman, Vanessa M; Zhao, Irene Y; Schaffner, Donald W; Danyluk, Michelle D; Harris, Linda J

    2015-01-01

    Whole and diced yellow onions (Allium cepa) were inoculated with five-strain cocktails of rifampin-resistant Escherichia coli O157:H7 or Salmonella and stored under conditions to simulate food service or consumer handling. The inoculum was grown in broth (for both whole and diced onion experiments) or on agar plates (for whole onion experiments). Marked circles (3.3 cm in diameter) on the outer papery skin of whole onions were spot inoculated (10 μl in 10 drops) at 7 log CFU per circle, and onions were stored at 4°C, 30 to 50 % relative humidity, or at ambient conditions (23°C, 30 to 50 % relative humidity). Diced onions were inoculated at 3 log CFU/g and then stored in open or closed containers at 4°C or ambient conditions. Previously inoculated and ambient-stored diced onions were also mixed 1:9 (wt/wt) with refrigerated uninoculated freshly diced onions and stored in closed containers at ambient conditions. Inoculated pathogens were recovered in 0.1 % peptone and plated onto selective and nonselective media supplemented with 50 μg/ml rifampin. Both E. coli O157:H7 and Salmonella populations declined more rapidly on onion skins when the inoculum was prepared in broth rather than on agar. Agar-prepared E. coli O157:H7 and Salmonella declined by 0.4 and 0.3 log CFU per sample per day, respectively, at ambient conditions; at 4°C the rates of reduction were 0.08 and 0.06 log CFU per sample per day for E. coli O157:H7 and Salmonella, respectively. Populations of E. coli O157:H7 and Salmonella did not change over 6 days of storage at 4°C in diced onions. Lag times of 6 to 9 h were observed with freshly inoculated onion at ambient conditions; no lag was observed when previously inoculated and uninoculated onions were mixed. Growth rates at ambient conditions were 0.2 to 0.3 log CFU/g/h for E. coli O157:H7 and Salmonella in freshly inoculated onion and 0.2 log CFU/g/h in mixed product. Diced onions support pathogen growth and should be kept refrigerated.

  16. Cytotoxicity of Spent Pot Liner on Allium cepa root tip cells: A comparative analysis in meristematic cell type on toxicity bioassays.

    PubMed

    Palmieri, Marcel José; Andrade-Vieira, Larissa Fonseca; Campos, José Marcello Salabert; Dos Santos Gedraite, Leonardo; Davide, Lisete Chamma

    2016-11-01

    Spent Pot Liner (SPL) is a waste generated during the production of aluminum. It is comprised of a mixture of substances most of which, like cyanide, aluminum and fluoride, are toxic. Previous studies indicate the highly toxic nature of SPL. However studies using cells of the differentiation/elongation zone of the root meristem (referred as M2 cells in this study) after a proper recovery period in water were never considered. Using these cells could be useful to further understanding the toxicity mechanisms of SPL. A comparative approach between the effects on M2 cells and meristematic cells of the proximal meristem zone (referred as M1 cells in this study) could lead to understanding how DNA damage caused by SPL behaves on successive generations of cells. Allium cepa cells were exposed to 4 different concentrations of SPL (2.5, 5, 7.5 and 10gL(-1)) mixed with soil and diluted in a CaCl2 0.01M to simulate the ionic forces naturally encountered on the environment. A solution containing only soil diluted on CaCl2 0.01M was used as control. M1 and M2 cells were evaluated separately, taking into account four different parameters: (1) mitotic alterations (MA); (2) presence of condensed nuclei (CN); (3) mitotic index (MI); (4) presence of micronucleus (MCN). Significant differences were observed between M1 and M2 roots tip cells for these four parameters accessed. M1 cells was more prompt to reveal citogenotoxicity through the higher frequency of MA observed. Meanwhile, for M2 cells higher frequencies of MCN and CN was noticed, followed by a reduction of MI. Also, it was possible to detect significant differences between the tested treatments and the control on every case. These results indicate SPL toxic effects carries on to future cells generations. This emphasizes the need to properly manage this waste. Joint evaluation of cells from both M1 and M2 regions was proven valuable for the evaluation of a series of parameters on all toxicity tests. PMID:27517141

  17. Cytotoxicity of Spent Pot Liner on Allium cepa root tip cells: A comparative analysis in meristematic cell type on toxicity bioassays.

    PubMed

    Palmieri, Marcel José; Andrade-Vieira, Larissa Fonseca; Campos, José Marcello Salabert; Dos Santos Gedraite, Leonardo; Davide, Lisete Chamma

    2016-11-01

    Spent Pot Liner (SPL) is a waste generated during the production of aluminum. It is comprised of a mixture of substances most of which, like cyanide, aluminum and fluoride, are toxic. Previous studies indicate the highly toxic nature of SPL. However studies using cells of the differentiation/elongation zone of the root meristem (referred as M2 cells in this study) after a proper recovery period in water were never considered. Using these cells could be useful to further understanding the toxicity mechanisms of SPL. A comparative approach between the effects on M2 cells and meristematic cells of the proximal meristem zone (referred as M1 cells in this study) could lead to understanding how DNA damage caused by SPL behaves on successive generations of cells. Allium cepa cells were exposed to 4 different concentrations of SPL (2.5, 5, 7.5 and 10gL(-1)) mixed with soil and diluted in a CaCl2 0.01M to simulate the ionic forces naturally encountered on the environment. A solution containing only soil diluted on CaCl2 0.01M was used as control. M1 and M2 cells were evaluated separately, taking into account four different parameters: (1) mitotic alterations (MA); (2) presence of condensed nuclei (CN); (3) mitotic index (MI); (4) presence of micronucleus (MCN). Significant differences were observed between M1 and M2 roots tip cells for these four parameters accessed. M1 cells was more prompt to reveal citogenotoxicity through the higher frequency of MA observed. Meanwhile, for M2 cells higher frequencies of MCN and CN was noticed, followed by a reduction of MI. Also, it was possible to detect significant differences between the tested treatments and the control on every case. These results indicate SPL toxic effects carries on to future cells generations. This emphasizes the need to properly manage this waste. Joint evaluation of cells from both M1 and M2 regions was proven valuable for the evaluation of a series of parameters on all toxicity tests.

  18. Effect of Allium sativum and fish collagen on the proteolytic and angiotensin-I converting enzyme-inhibitory activities in cheese and yogurt.

    PubMed

    Shori, A B; Baba, A S; Keow, J N

    2012-12-15

    There is an increasing demand of functional foods in developed countries. Yogurt plays an important role in the management of blood pressure. Several bioactive peptides isolated from Allium sativum or fish collagen have shown antihypertensive activity. Thus, in the present study the effects of A. sativum and/or Fish Collagen (FC) on proteolysis and ACE inhibitory activity in yogurt (0, 7 and 14 day) and cheese (0, 14 and 28 day) were investigated. Proteolytic activities were the highest on day 7 of refrigerated storage in A. sativum-FC-yogurt (337.0 +/- 5.3 microg g(-1)) followed by FC-yogurt (275.3 +/- 2.0 microg g(-1)), A. sativum-yogurt (245.8 +/- 4.2 microg g(-1)) and plain-yogurt (40.4 +/- 1.2 microg g(-1)). On the other hand, proteolytic activities in cheese ripening were the highest (p < 0.05) on day 14 of storage for plain and A. sativum-cheeses (411.4 +/- 4.3 and 528.7 +/- 1.6 microg g(-1), respectively). However, the presence of FC increased the proteolysis to the highest level on day 28 of storage for FC- and A. sativum-FC cheeses (641.2 +/- 0.1 and 1128.4 +/- 4.5 microg g(-1), respectively). In addition, plain- and A. sativum-yogurts with or without FC showed maximal inhibition of ACE on day 7 of storage. Fresh plain- and A. sativum-cheeses showed ACE inhibition (72.3 +/- 7.8 and 50.4 +/- 1.6 % respectively), the presence of FC in both type of cheeses reduced the ACE inhibition to 62.9 +/- 0.8 and 44.5 +/- 5.0%, respectively. However, refrigerated storage increased ACE inhibition in cheeses (p < 0.05 on day 28) in the presence of FC more than in the absence. In conclusion, the presence of FC in A. sativum-yogurt or cheese enhanced the proteolytic activity. Thus, it has potential in the development of an effective dietary strategy for hypertension associated cardiovascular diseases.

  19. The fertility restorer genes X and T alter the transcripts of a novel mitochondrial gene implicated in CMS1 in chives (Allium schoenoprasum L.).

    PubMed

    Engelke, T; Tatlioglu, T

    2004-03-01

    A chimeric mitochondrial gene configuration, mainly derived from sequences associated with the essential genes atp9 and atp6, was isolated from the sterility-inducing cytoplasm of the CMS1 system in chives (Allium schoenoprasum L.). This sequence is not found in four other cytoplasm types from chives; however, two copies are present in the mitochondrial DNA of CMS1-inducing cytoplasm, whose 5'-sequences are homologous to those of the atp9 gene. We provide evidence to show that one of the two CMS1-specific copies is actively transcribed, and two transcripts which terminate at the same position but differ in their 5'initiation sites were localized using the RACE technique. These transcripts of 942 and 961 nt, respectively, were confirmed to be the major products of this gene in CMS1 plants by Northern hybridization. However, smaller transcripts were found to accumulate in plants in which fertility had been restored. Restoration of fertility was induced either by the gene X, or the gene T at high temperatures. In (S1) X. genotypes a transcript with an estimated size of 440 nt was detected in all tissues examined. An additional hybridization signal with an estimated size of approximately 850 nt is expressed in temperature-sensitive plants [(S1) xxT.], and the intensity of a minor 350-nt transcript is enhanced. These latter alterations, conditioned by the gene T, occur independently of the growth temperature, but are limited to the flowers; they were not observed in leaves. The CMS1 transcripts are edited at seven positions and contain an ORF with a maximum coding capacity of 780 nt (containing the start codon derived from the atp9 gene in-frame). Use of the third in-frame start codon would result in the synthesis of a protein of a size very close to that of a previously described CMS1-specific protein, which has an apparent molecular weight of 18 kDa. The coding sequence that begins at this third in-frame start codon is also present in the sterility-inducing cytoplasms

  20. Investigation of some biologic activities of Swertia longifolia Boiss.

    PubMed

    Hajimehdipoor, H; Esmaeili, S; Shekarchi, M; Emrarian, T; Naghibi, F

    2013-10-01

    Swertia species are widespread in Eastern and Southern Asian countries and used in traditional medicine as anti-pyretic, analgesic, gastro and liver tonic. Among different species, only Swertia longifolia grows in Iran. In this investigation, antioxidant, cytotoxic and acetylcholinesterase inhibitory activities of S. longifolia have been studied. Aerial parts and roots of the plant were collected, dried and extracted with methanol 80% (total extract). Different extracts of the plant were obtained using hexane, chloroform, ethyl acetate, methanol, methanol:water (1:1) and water, respectively. Cytotoxic activity was determined by MTT assay on MDBK, HepG2, MCF7, HT29 and A549 cell lines. Antioxidant activity was measured by 2,2-diphenyl-1-picryl hydrazyl (DPPH) free radicals and acetylcholinesterase inhibitory (AChEI) effect was evaluated based on Ellman's method in 96-well microplates.The results showed no cytotoxicity of the plant extracts on MDBK, HepG2, MCF7, HT29 and A549 cell lines up to 100 μg/ml. All samples showed radical scavenging activity but methanol extract of aerial parts and ethyl acetate extract of the roots showed the highest effects.Total extract of the roots showed higher AChEI activity than the aerial parts. Among different extracts, chloroform and ethyl acetate extracts of the roots and chloroform and methanol:water extracts of the aerial parts were more potent in AChEI assay. It is concluded that aerial parts and roots of the plant are rich in antioxidant agents with no cytotoxicity on selected cell lines up to 100 μg/ml. Moreover, since antioxidant and AChEI activity of compounds play an important role in the treatment of Alzheimer's disorder, this plant might be a potential candidate for isolation of antioxidant and AChEI compounds which could be used as supportive treatment of Alzheimer's disease. PMID:24082894